WorldWideScience

Sample records for face-centered-cubic femg alloy

  1. Hexagonal close packed to face centered cubic polymorphic transformation in nanocrystalline titanium-zirconium system by mechanical alloying

    International Nuclear Information System (INIS)

    Bera, S.; Manna, I.

    2006-01-01

    The present study reports a reversible hexagonal close packed (hcp) to face centered cubic (fcc) polymorphic phase transformation in four different nanocrystalline titanium-zirconium binary alloys in the course of mechanical alloying in a planetary ball mill. This transformation is monitored at appropriate stages by X-ray diffraction and high-resolution transmission electron microscopy. Lattice parameter of the nanocrystalline fcc phase is a function of the alloy composition. For a given alloy, the lattice parameter and hence volume per atom increase with increase in milling time under comparable conditions. On the other hand, crystallite size, measured from X-ray peak broadening, significantly decreases with the progress of milling. It is suggested that structural instability due to plastic strain, increasing lattice expansion, and negative (from core to boundary) hydrostatic pressure is responsible for this hcp → fcc polymorphic transformation. The said transformation seems reversible as isothermal annealing at 1000 deg. C for 1 h or melting the powder mass leads to partial or complete transformation of the milled product from single phase fcc to hcp

  2. High dose effects in neutron irradiated face-centered cubic metals

    International Nuclear Information System (INIS)

    Garner, F.A.; Toloczko, M.B.

    1993-06-01

    During neutron irradiation, most face-centered cubic metals and alloys develop saturation or quasi-steady state microstructures. This, in turn, leads to saturation levels in mechanical properties and quasi-steady state rates of swelling and creep deformation. Swelling initially plays only a small role in determining these saturation states, but as swelling rises to higher levels, it exerts strong feedback on the microstructure and its response to environmental variables. The influence of swelling, either directly or indirectly via second order mechanisms, such as elemental segregation to void surfaces, eventually causes major changes, not only in irradiation creep and mechanical properties, but also on swelling itself. The feedback effects of swelling on irradiation creep are particularly complex and lead to problems in applying creep data derived from highly pressurized creep tubes to low stress situations, such as fuel pins in liquid metal reactors

  3. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures

    International Nuclear Information System (INIS)

    Wu, Z.; Bei, H.; Pharr, G.M.; George, E.P.

    2014-01-01

    Compared to decades-old theories of strengthening in dilute solid solutions, the mechanical behavior of concentrated solid solutions is relatively poorly understood. A special subset of these materials includes alloys in which the constituent elements are present in equal atomic proportions, including the high-entropy alloys of recent interest. A unique characteristic of equiatomic alloys is the absence of “solvent” and “solute” atoms, resulting in a breakdown of the textbook picture of dislocations moving through a solvent lattice and encountering discrete solute obstacles. To clarify the mechanical behavior of this interesting new class of materials, we investigate here a family of equiatomic binary, ternary and quaternary alloys based on the elements Fe, Ni, Co, Cr and Mn that were previously shown to be single-phase face-centered cubic (fcc) solid solutions. The alloys were arc-melted, drop-cast, homogenized, cold-rolled and recrystallized to produce equiaxed microstructures with comparable grain sizes. Tensile tests were performed at an engineering strain rate of 10 −3 s −1 at temperatures in the range 77–673 K. Unalloyed fcc Ni was processed similarly and tested for comparison. The flow stresses depend to varying degrees on temperature, with some (e.g. NiCoCr, NiCoCrMn and FeNiCoCr) exhibiting yield and ultimate strengths that increase strongly with decreasing temperature, while others (e.g. NiCo and Ni) exhibit very weak temperature dependencies. To better understand this behavior, the temperature dependencies of the yield strength and strain hardening were analyzed separately. Lattice friction appears to be the predominant component of the temperature-dependent yield stress, possibly because the Peierls barrier height decreases with increasing temperature due to a thermally induced increase of dislocation width. In the early stages of plastic flow (5–13% strain, depending on material), the temperature dependence of strain hardening is due

  4. Surface relaxation and surface energy of facecentered Cubic ...

    African Journals Online (AJOL)

    DR. MIKE HORSFALL

    Surface relaxation and surface energy of facecentered Cubic metals. 1AGHEMENLO H E; *2IYAYI, S E; 3AVWIRI ,G O. 1, 3 Department of Physics, Ambrose Alli University, Ekpoma, Nigeria. 2 Department of Physics, University of Benin, Benin City, Nigeria. 3 Department of Physics, University of Port Harcourt, PH, Nigeria.

  5. Face-centered-cubic Nb-Si solid solutions produced by picosecond pulsed laser quenching

    International Nuclear Information System (INIS)

    Wang, W.K.; Spaepen, F.

    1985-01-01

    Face-centered-cubic Nb/sub 100-x/Si/sub x/ solid solutions (10 2 . The lattice parameters of these solutions suggest that the solute atoms can be interstitial or substitutional, probably as a result of a change in the quenching conditions

  6. BFACF-style algorithms for polygons in the body-centered and face-centered cubic lattices

    Energy Technology Data Exchange (ETDEWEB)

    Janse van Rensburg, E J [Department of Mathematics and Statistics, York University, Toronto, Ontario M3J 1P3 (Canada); Rechnitzer, A, E-mail: rensburg@yorku.ca, E-mail: andrewr@math.ubc.ca [Department of Mathematics, The University of British Columbia, Vancouver V6T 1Z2, British Columbia (Canada)

    2011-04-22

    In this paper, the elementary moves of the BFACF-algorithm (Aragao de Carvalho and Caracciolo 1983 Phys. Rev. B 27 1635-45, Aragao de Carvalho and Caracciolo 1983 Nucl. Phys. B 215 209-48, Berg and Foester 1981 Phys. Lett. B 106 323-6) for lattice polygons are generalized to elementary moves of BFACF-style algorithms for lattice polygons in the body-centered (BCC) and face-centered (FCC) cubic lattices. We prove that the ergodicity classes of these new elementary moves coincide with the knot types of unrooted polygons in the BCC and FCC lattices and so expand a similar result for the cubic lattice (see Janse van Rensburg and Whittington (1991 J. Phys. A: Math. Gen. 24 5553-67)). Implementations of these algorithms for knotted polygons using the GAS algorithm produce estimates of the minimal length of knotted polygons in the BCC and FCC lattices.

  7. BFACF-style algorithms for polygons in the body-centered and face-centered cubic lattices

    Science.gov (United States)

    Janse van Rensburg, E. J.; Rechnitzer, A.

    2011-04-01

    In this paper, the elementary moves of the BFACF-algorithm (Aragão de Carvalho and Caracciolo 1983 Phys. Rev. B 27 1635-45, Aragão de Carvalho and Caracciolo 1983 Nucl. Phys. B 215 209-48, Berg and Foester 1981 Phys. Lett. B 106 323-6) for lattice polygons are generalized to elementary moves of BFACF-style algorithms for lattice polygons in the body-centered (BCC) and face-centered (FCC) cubic lattices. We prove that the ergodicity classes of these new elementary moves coincide with the knot types of unrooted polygons in the BCC and FCC lattices and so expand a similar result for the cubic lattice (see Janse van Rensburg and Whittington (1991 J. Phys. A: Math. Gen. 24 5553-67)). Implementations of these algorithms for knotted polygons using the GAS algorithm produce estimates of the minimal length of knotted polygons in the BCC and FCC lattices.

  8. BFACF-style algorithms for polygons in the body-centered and face-centered cubic lattices

    International Nuclear Information System (INIS)

    Janse van Rensburg, E J; Rechnitzer, A

    2011-01-01

    In this paper, the elementary moves of the BFACF-algorithm (Aragao de Carvalho and Caracciolo 1983 Phys. Rev. B 27 1635-45, Aragao de Carvalho and Caracciolo 1983 Nucl. Phys. B 215 209-48, Berg and Foester 1981 Phys. Lett. B 106 323-6) for lattice polygons are generalized to elementary moves of BFACF-style algorithms for lattice polygons in the body-centered (BCC) and face-centered (FCC) cubic lattices. We prove that the ergodicity classes of these new elementary moves coincide with the knot types of unrooted polygons in the BCC and FCC lattices and so expand a similar result for the cubic lattice (see Janse van Rensburg and Whittington (1991 J. Phys. A: Math. Gen. 24 5553-67)). Implementations of these algorithms for knotted polygons using the GAS algorithm produce estimates of the minimal length of knotted polygons in the BCC and FCC lattices.

  9. Clean Grain Boundary Found in C14/Body-Center-Cubic Multi-Phase Metal Hydride Alloys

    Directory of Open Access Journals (Sweden)

    Hao-Ting Shen

    2016-06-01

    Full Text Available The grain boundaries of three Laves phase-related body-center-cubic (bcc solid-solution, metal hydride (MH alloys with different phase abundances were closely examined by scanning electron microscopy (SEM, transmission electron microscopy (TEM, and more importantly, electron backscatter diffraction (EBSD techniques. By using EBSD, we were able to identify the alignment of the crystallographic orientations of the three major phases in the alloys (C14, bcc, and B2 structures. This finding confirms the presence of crystallographically sharp interfaces between neighboring phases, which is a basic assumption for synergetic effects in a multi-phase MH system.

  10. Efficient LBM visual simulation on face-centered cubic lattices.

    Science.gov (United States)

    Petkov, Kaloian; Qiu, Feng; Fan, Zhe; Kaufman, Arie E; Mueller, Klaus

    2009-01-01

    The Lattice Boltzmann method (LBM) for visual simulation of fluid flow generally employs cubic Cartesian (CC) lattices such as the D3Q13 and D3Q19 lattices for the particle transport. However, the CC lattices lead to suboptimal representation of the simulation space. We introduce the face-centered cubic (FCC) lattice, fD3Q13, for LBM simulations. Compared to the CC lattices, the fD3Q13 lattice creates a more isotropic sampling of the simulation domain and its single lattice speed (i.e., link length) simplifies the computations and data storage. Furthermore, the fD3Q13 lattice can be decomposed into two independent interleaved lattices, one of which can be discarded, which doubles the simulation speed. The resulting LBM simulation can be efficiently mapped to the GPU, further increasing the computational performance. We show the numerical advantages of the FCC lattice on channeled flow in 2D and the flow-past-a-sphere benchmark in 3D. In both cases, the comparison is against the corresponding CC lattices using the analytical solutions for the systems as well as velocity field visualizations. We also demonstrate the performance advantages of the fD3Q13 lattice for interactive simulation and rendering of hot smoke in an urban environment using thermal LBM.

  11. Face Centered Cubic and Hexagonal Close Packed Skyrmion Crystals in Centrosymmetric Magnets

    Science.gov (United States)

    Lin, Shi-Zeng; Batista, Cristian D.

    2018-02-01

    Skyrmions are disklike objects that typically form triangular crystals in two-dimensional systems. This situation is analogous to the so-called pancake vortices of quasi-two-dimensional superconductors. The way in which Skyrmion disks or "pancake Skyrmions" pile up in layered centrosymmetric materials is dictated by the interlayer exchange. Unbiased Monte Carlo simulations and simple stabilization arguments reveal face centered cubic and hexagonal close packed Skyrmion crystals for different choices of the interlayer exchange, in addition to the conventional triangular crystal of Skyrmion lines. Moreover, an inhomogeneous current induces a sliding motion of pancake Skyrmions, indicating that they behave as effective mesoscale particles.

  12. Phase transformation of metastable cubic γ-phase in U-Mo alloys

    International Nuclear Information System (INIS)

    Sinha, V.P.; Hegde, P.V.; Prasad, G.J.; Dey, G.K.; Kamath, H.S.

    2010-01-01

    Over the past decade considerable efforts have been put by many fuel designers to develop low enriched uranium (LEU 235 ) base U-Mo alloy as a potential fuel for core conversion of existing research and test reactors which are running on high enriched uranium (HEU > 85%U 235 ) fuel and also for the upcoming new reactors. U-Mo alloy with minimum 8 wt% molybdenum shows excellent metastability with cubic γ-phase in cast condition. However, it is important to characterize the decomposition behaviour of metastable cubic γ-uranium in its equilibrium products for in reactor fuel performance point of view. The present paper describes the phase transformation behaviour of cubic γ-uranium phase in U-Mo alloys with three different molybdenum compositions (i.e. 8 wt%, 9 wt% and 10 wt%). U-Mo alloys were prepared in an induction melting furnace and characterized by X-ray diffraction (XRD) method for phase determination. Microstructures were developed for samples in as cast condition. The alloys were hot rolled in cubic γ-phase to break the cast structure and then they were aged at 500 o C for 68 h and 240 h, so that metastable cubic γ-uranium will undergo eutectoid decomposition to form equilibrium phases of orthorhombic α-uranium and body centered tetragonal U 2 Mo intermetallic compound. U-Mo alloy samples with different ageing history were then characterized by XRD for phase and development of microstructure.

  13. Microscopy evidence of the face-centered cubic arrangement of monodisperse polystyrene nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Hui [School of Science, Beijing Jiaotong University, Beijing 100044 (China)]. E-mail: zhanghui14305@sohu.com; Duan Renguan [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Li Fan [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Tang Qing [Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080 (China); Li Wenchao [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 (China)

    2007-07-01

    This paper reports a scanning electron microscopy (SEM) investigation of polystyrene artificial opal achieved through self-assembly of monodisperse polystyrene nanospheres with a diameter of 250 nm from colloidal suspension after being ambient dried. A detailed analysis of the SEM images verifies that the face-centered cubic (fcc) phase is the most stable one for the polystyrene opal prepared. This finding provides a strong support for, by using polystyrene opal as template, fabricating a photonic crystal with inverse fcc structure of full band gap if the refractive index contrast is higher than 2.8 and the filling fraction of the high index materials is between 0.2 and 0.3.

  14. Microscopy evidence of the face-centered cubic arrangement of monodisperse polystyrene nanospheres

    International Nuclear Information System (INIS)

    Zhang Hui; Duan Renguan; Li Fan; Tang Qing; Li Wenchao

    2007-01-01

    This paper reports a scanning electron microscopy (SEM) investigation of polystyrene artificial opal achieved through self-assembly of monodisperse polystyrene nanospheres with a diameter of 250 nm from colloidal suspension after being ambient dried. A detailed analysis of the SEM images verifies that the face-centered cubic (fcc) phase is the most stable one for the polystyrene opal prepared. This finding provides a strong support for, by using polystyrene opal as template, fabricating a photonic crystal with inverse fcc structure of full band gap if the refractive index contrast is higher than 2.8 and the filling fraction of the high index materials is between 0.2 and 0.3

  15. Discrete exterior calculus approach for discretizing Maxwell's equations on face-centered cubic grids for FDTD

    Science.gov (United States)

    Salmasi, Mahbod; Potter, Michael

    2018-07-01

    Maxwell's equations are discretized on a Face-Centered Cubic (FCC) lattice instead of a simple cubic as an alternative to the standard Yee method for improvements in numerical dispersion characteristics and grid isotropy of the method. Explicit update equations and numerical dispersion expressions, and the stability criteria are derived. Also, several tools available to the standard Yee method such as PEC/PMC boundary conditions, absorbing boundary conditions, and scattered field formulation are extended to this method as well. A comparison between the FCC and the Yee formulations is made, showing that the FCC method exhibits better dispersion compared to its Yee counterpart. Simulations are provided to demonstrate both the accuracy and grid isotropy improvement of the method.

  16. Face centered cubic SnSe as a Z2 trivial Dirac nodal line material

    OpenAIRE

    Tateishi, Ikuma; Matsuura, Hiroyasu

    2018-01-01

    The presence of Dirac nodal line in the time-reversal and inversion symmetric system is dictated by Z2 index when spin-orbit interaction is absent. With the first principles calculation, we show that the Dirac nodal line can emerge in Z2 trivial material by calculating the band structure of SnSe of face centered cubic lattice as an example and it becomes a topological crystalline insulator when spin-orbit interaction is taken into account. We clarify the origin of the Dirac nodal line by obta...

  17. Solid solution hardening in face centered binary alloys: Gliding statistics of a dislocation in random solid solution by atomistic simulation

    International Nuclear Information System (INIS)

    Patinet, S.

    2009-12-01

    The glide of edge and screw dislocation in solid solution is modeled through atomistic simulations in two model alloys of Ni(Al) and Al(Mg) described within the embedded atom method. Our approach is based on the study of the elementary interaction between dislocations and solutes to derive solid solution hardening of face centered cubic binary alloys. We identify the physical origins of the intensity and range of the interaction between a dislocation and a solute atom. The thermally activated crossing of a solute atom by a dislocation is studied at the atomistic scale. We show that hardening of edge and screw segments are similar. We develop a line tension model that reproduces quantitatively the atomistic calculations of the flow stress. We identify the universality class to which the dislocation depinning transition in solid solution belongs. (author)

  18. Ab initio phonon dispersions of face centered cubic Pb: effects of spin-orbit coupling

    International Nuclear Information System (INIS)

    Dal Corso, Andrea

    2008-01-01

    I present the ab initio phonon dispersions of face centered cubic Pb calculated within the framework of density functional perturbation theory, with plane waves and a fully relativistic ultrasoft pseudopotential which includes spin-orbit coupling effects. I find that, within the local density approximation, the theory gives phonon frequencies close to the experimental inelastic neutron scattering data. Many of the anomalies present in these dispersions are well reproduced by the fully relativistic pseudopotential theory and can be shown to appear only for small values of the smearing parameter that controls the sharpness of the Fermi surface.

  19. Atomic-scale processes revealing dynamic twin boundary strengthening mechanisms in face-centered cubic materials

    International Nuclear Information System (INIS)

    Yang, Z.Q.; Chisholm, M.F.; He, L.L.; Pennycook, S.J.; Ye, H.Q.

    2012-01-01

    We report experimental investigations on interactions/reactions between dislocations and twin boundaries in Al. The absorption of screw dislocations via cross-slip and the production of stair-rods via reactions with non-screw dislocations were verified by atomic resolution imaging. Importantly, the resulting partial dislocations moving along twin boundaries can produce secondary sessile defects. These immobile defects act as obstacles to other dislocations and also serve to pin the twin boundaries. These findings show the atomic-level dynamics of the dislocation–twin boundary processes and the unique strengthening mechanism of twin boundaries in face-centered cubic metals.

  20. Multiscale simulations in face-centered cubic metals: A method coupling quantum mechanics and molecular mechanics

    International Nuclear Information System (INIS)

    Yu Xiao-Xiang; Wang Chong-Yu

    2013-01-01

    An effective multiscale simulation which concurrently couples the quantum-mechanical and molecular-mechanical calculations based on the position continuity of atoms is presented. By an iterative procedure, the structure of the dislocation core in face-centered cubic metal is obtained by first-principles calculation and the long-range stress is released by molecular dynamics relaxation. Compared to earlier multiscale methods, the present work couples the long-range strain to the local displacements of the dislocation core in a simpler way with the same accuracy. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  1. Orientation dependence of the dislocation microstructure in compressed body-centered cubic molybdenum

    International Nuclear Information System (INIS)

    Wang, S.; Wang, M.P.; Chen, C.; Xiao, Z.; Jia, Y.L.; Li, Z.; Wang, Z.X.

    2014-01-01

    The orientation dependence of the deformation microstructure has been investigated in commercial pure molybdenum. After deformation, the dislocation boundaries of compressed molybdenum can be classified, similar to that in face-centered cubic metals, into three types: dislocation cells (Type 2), and extended planar boundaries parallel to (Type 1) or not parallel to (Type 3) a (110) trace. However, it shows a reciprocal relationship between face-centered cubic metals and body-centered cubic metals on the orientation dependence of the deformation microstructure. The higher the strain, the finer the microstructure is and the smaller the inclination angle between extended planar boundaries and the compression axis is. - Highlights: • A reciprocal relationship between FCC metals and BCC metals is confirmed. • The dislocation boundaries can be classified into three types in compressed Mo. • The dislocation characteristic of different dislocation boundaries is different

  2. Thermodynamics of face-centered-cubic silicon nucleation at the nanoscale from laser ablation

    International Nuclear Information System (INIS)

    Hu Shengliang; Li Wuhong; Liu Wei; Dong Yingge; Cao Shirui; Yang Jinlong

    2011-01-01

    The thermodynamic nucleation and the phase transition of the face-centered-cubic structure of Si (fcc-Si) on the nanoscale are performed by taking the effect of nanosize-induced additional pressure on the fcc-Si formation under the conditions generated by laser ablation in liquid into account. The thermodynamic analyses showed that the formation of fcc-Si nanocrystals with sizes of 2-6 nm would take place prior to that of large fcc-Si nanocrystals, and the phase transition probability from diamond-like structure Si (d-Si) to fcc-Si is rather high, up to 10 -3 -10 -2 , under the conditions created by laser ablation of an Si target in water. These theoretical results suggest that laser ablation in liquid would be an effective industrial route to prepare ultrasmall fcc-Si nanocrystals.

  3. Shear response of Σ3{112} twin boundaries in face-centered-cubic metals

    Science.gov (United States)

    Wang, J.; Misra, A.; Hirth, J. P.

    2011-02-01

    Molecular statics and dynamics simulations were used to study the mechanisms of sliding and migration of Σ3{112} incoherent twin boundaries (ITBs) under applied shear acting in the boundary in the face-centered-cubic (fcc) metals, Ag, Cu, Pd, and Al, of varying stacking fault energies. These studies revealed that (i) ITBs can dissociate into two phase boundaries (PBs), bounding the hexagonal 9R phase, that contain different arrays of partial dislocations; (ii) the separation distance between the two PBs scales inversely with increasing stacking fault energy; (iii) for fcc metals with low stacking fault energy, one of the two PBs migrates through the collective glide of partials, referred to as the phase-boundary-migration (PBM) mechanism; (iv) for metals with high stacking energy, ITBs experience a coupled motion (migration and sliding) through the glide of interface disconnections, referred to as the interface-disconnection-glide (IDG) mechanism.

  4. Face-centered-cubic lithium crystals formed in mesopores of carbon nanofiber electrodes.

    Science.gov (United States)

    Lee, Byoung-Sun; Seo, Jong-Hyun; Son, Seoung-Bum; Kim, Seul Cham; Choi, In-Suk; Ahn, Jae-Pyoung; Oh, Kyu Hwan; Lee, Se-Hee; Yu, Woong-Ryeol

    2013-07-23

    In the foreseeable future, there will be a sharp increase in the demand for flexible Li-ion batteries. One of the most important components of such batteries will be a freestanding electrode, because the traditional electrodes are easily damaged by repeated deformations. The mechanical sustainability of carbon-based freestanding electrodes subjected to repeated electrochemical reactions with Li ions is investigated via nanotensile tests of individual hollow carbon nanofibers (HCNFs). Surprisingly, the mechanical properties of such electrodes are improved by repeated electrochemical reactions with Li ions, which is contrary to the conventional wisdom that the mechanical sustainability of carbon-based electrodes should be degraded by repeated electrochemical reactions. Microscopic studies reveal a reinforcing mechanism behind this improvement, namely, that inserted Li ions form irreversible face-centered-cubic (FCC) crystals within HCNF cavities, which can reinforce the carbonaceous matrix as strong second-phase particles. These FCC Li crystals formed within the carbon matrix create tremendous potential for HCNFs as freestanding electrodes for flexible batteries, but they also contribute to the irreversible (and thus low) capacity of HCNFs.

  5. Discovery of a Superconducting High-Entropy Alloy

    OpenAIRE

    Kozelj P.; Vrtnik S.; Jelen A.; Jazbec S.; Jaglicic Z.; Maiti S.; Feuerbacher M.; Steurer W.; Dolinsek J.

    2014-01-01

    High entropy alloys (HEAs) are multicomponent mixtures of elements in similar concentrations where the high entropy of mixing can stabilize disordered solid solution phases with simple structures like a bodycentered cubic or a face centered cubic in competition with ordered crystalline intermetallic phases. We have synthesized an HEA with the composition Ta34Nb33Hf8Zr14Ti11 (in at. ) which possesses an average body centered cubic structure of lattice parameter a = 3.36 Å. The measurements of ...

  6. On the phase evolution of AlCoCrCuFeMnSix high entropy alloys prepared by mechanical alloying and arc melting route

    Science.gov (United States)

    Kumar, Anil; Chopkar, Manoj

    2018-05-01

    Effect of Si addition on phase formation of AlCoCrCuFeMnSix (x=0, 0.3, 0.6 and 0.9) high entropy alloy have been investigated in this work. The alloys are prepared by mechanical alloying and vacuum arc melting technique. The X-ray diffraction results reveals the formation of mixture of face centered and body centered cubic solid solution phases in milled powders. The addition of Si favours body centered cubic structure formation during milling process. Whereas, after melting the milled powders, body centered phases formed during milling is partial transformed into sigma phases. XRD results were also correlated with the SEM elemental mapping of as casted samples. Addition of Si favours σ phase formation in the as cast samples.

  7. Study of point defects and matter transport in cubic face centered concentrated alloys

    International Nuclear Information System (INIS)

    Hersant, D.

    1991-01-01

    It is shown that the second moment approximation to the tight binding method allows a functional to be set up which describes transition metals, noble metals and their alloys. It is assumed that the local electronic density of states is rectangular and that the width varies from site to site. It is then shown how the Monte Carlo method can be used to study order in solid solution with a large difference in size between components: atoms of different nature are exchanged and their neighbours are simultaneously displaced in accordance with the microscopic theory of elasticity. The phase diagram of the simulated alloys is then constructed. Experimental results are qualitatively well reproduced but transition temperatures are difficult to evaluate accurately because of a bad estimation of the vibration entropy. A local tendency towards ordering due to chemical effects is shown at the defect proximity. 40 figs., 100 refs

  8. Phase Evolution and Mechanical Properties of AlCoCrFeNiSi x High-Entropy Alloys Synthesized by Mechanical Alloying and Spark Plasma Sintering

    Science.gov (United States)

    Kumar, Anil; Swarnakar, Akhilesh Kumar; Chopkar, Manoj

    2018-05-01

    In the current investigation, AlCoCrFeNiSi x (x = 0, 0.3, 0.6 and 0.9 in atomic ratio) high-entropy alloy systems are prepared by mechanical alloying and subsequently consolidated by spark plasma sintering. The microstructural and mechanical properties were analyzed to understand the effect of Si addition in AlCoCrFeNi alloy. The x-ray diffraction analysis reveals the supersaturated solid solution of the body-centered cubic structure after 20 h of ball milling. However, the consolidation promotes the transformation of body-centered phases partially into the face-centered cubic structure and sigma phases. A recently proposed geometric model based on the atomic stress theory has been extended for the first time to classify single phase and multi-phases on the high-entropy alloys prepared by mechanical alloying and spark plasma sintering process. Improved microhardness and better wear resistance were achieved as the Si content increased from 0 to 0.9 in the present high-entropy alloy.

  9. Phase composition and microstructure of WC-Co alloys obtained by selective laser melting

    Science.gov (United States)

    Khmyrov, Roman S.; Shevchukov, Alexandr P.; Gusarov, Andrey V.; Tarasova, Tatyana V.

    2018-03-01

    Phase composition and microstructure of initial WC, BK8 (powder alloy 92 wt.% WC-8 wt.% Co), Co powders, ball-milled powders with four different compositions (1) 25 wt.% WC-75 wt.% Co, (2) 30 wt.% BK8-70 wt.% Co, (3) 50 wt.% WC-50 wt.% Co, (4) 94 wt.% WC-6 wt.% Co, and bulk alloys obtained by selective laser melting (SLM) from as-milled powders in as-melted state and after heat treatment were investigated by scanning electron microscopy and X-ray diffraction analysis. Initial and ball-milled powders consist of WC, hexagonal α-Co and face-centered cubic β-Co. The SLM leads to the formation of major new phases W3Co3C, W4Co2C and face-centered cubic β-Co-based solid solution. During the heat treatment, there occurs partial decomposition of the face-centered cubic β-Co-based solid solution with the formation of W2C and hexagonal α-Co solid solution. The microstructure of obtained bulk samples, in general, corresponds to the observed phase composition.

  10. Polarization Change in Face-Centered Cubic Opal Films

    Science.gov (United States)

    Wolff, Christian; Romanov, Sergei; Küchenmeister, Jens; Peschel, Ulf; Busch, Kurt

    2011-10-01

    Artificial opals are a popular platform for investigating fundamental properties of Photonic Crystals (PhC). In this work, we provide a theoretical analysis of polarization-resolved transmission experiments through thin opal films. Despite the full cubic symmetry of the PhC, this system provides a very efficient mechanism for manipulating the polarization state of light. Based on band structure calculations and Bloch mode analysis, we find that this effect closely resembles classical birefringence. Due to the cubic symmetry, however, a description using tensorial quantities is not possible. This indicates fundamental limitations of effective material models for Photonic Crystals and demonstrates the importance of accurately modelling the microscopic geometry of such systems.

  11. Synthesis of ultrathin face-centered-cubic Au@Pt and Au@Pd core-shell nanoplates from hexagonal-close-packed Au square sheets

    KAUST Repository

    Fan, Zhanxi

    2015-03-17

    The synthesis of ultrathin face-centered-cubic (fcc) Au@Pt rhombic nanoplates is reported through the epitaxial growth of Pt on hexagonal-close-packed (hcp) Au square sheets (AuSSs). The Pt-layer growth results in a hcp-to-fcc phase transformation of the AuSSs under ambient conditions. Interestingly, the obtained fcc Au@Pt rhombic nanoplates demonstrate a unique (101)f orientation with the same atomic arrangement extending from the Au core to the Pt shell. Importantly, this method can be extended to the epitaxial growth of Pd on hcp AuSSs, resulting in the unprecedented formation of fcc Au@Pd rhombic nanoplates with (101)f orientation. Additionally, a small amount of fcc (100)f-oriented Au@Pt and Au@Pd square nanoplates are obtained with the Au@Pt and Au@Pd rhombic nanoplates, respectively. We believe that these findings will shed new light on the synthesis of novel noble bimetallic nanostructures. Phase change: Ultrathin Au@Pt and Au@Pd core-shell nanoplates were prepared from Au square sheets. A phase transformation from hexagonal close-packed (hcp) to face-centered cubic (fcc) is observed upon coating the hcp Au square sheets with Pt or Pd under ambient conditions. The prepared fcc Au@Pt and Au@Pd rhombic nanoplates demonstrate unique (101)f orientation (picture shows a typical fcc Au@Pt rhombic nanoplate). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Computer simulation of local atomic displacements in alloys. Application to Guinier-Preston zones in Al-Cu

    International Nuclear Information System (INIS)

    Kyobu, J.; Murata, Y.; Morinaga, M.

    1994-01-01

    A new computer program has been developed for the simulation of local atomic displacements in alloys with face-centered-cubic and body-centered-cubic lattices. The combined use of this program with the Gehlen-Cohen program for the simulation of chemical short-range order completely describes atomic fluctuations in alloys. The method has been applied to the structural simulation of Guinier-Preston (GP) zones in an Al-Cu alloy, using the experimental data of Matsubara and Cohen. Characteristic displacements of atoms have been observed around the GP zones and new structural models including local displacements have been proposed for a single-layer zone and several multilayer zones. (orig.)

  13. Impact of medium-range order on the glass transition in liquid Ni-Si alloys

    Science.gov (United States)

    Lü, Y. J.; Entel, P.

    2011-09-01

    We study the thermophysical properties and structure of liquid Ni-Si alloys using molecular dynamics simulations. The liquid Ni-5% and 10%Si alloys crystallize to form the face-centered cubic (Ni) at 900 and 850 K, respectively, and the glass transitions take place in Ni-20% and 25%Si alloys at about 700 K. The temperature-dependent self-diffusion coefficients and viscosities exhibit more pronounced non-Arrhenius behavior with the increase of Si content before phase transitions, indicating the enhanced glass-forming ability. These appearances of thermodynamic properties and phase transitions are found to closely relate to the medium-range order clusters with the defective face-centered cubic structure characterized by both local translational and orientational order. This locally ordered structure tends to be destroyed by the addition of more Si atoms, resulting in a delay of nucleation and even glass transition instead.

  14. Structure and magnetic properties of nanostructured MnNi alloys fabricated by mechanical alloying and annealing treatments

    Science.gov (United States)

    Jalal, T.; Hossein Nedjad, S.; Khalili Molan, S.

    2013-05-01

    A nearly equiatomic MnNi alloy was fabricated from the elemental powders by means of mechanical alloying in a planetary ball milling apparatus. X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and measurements of magnetization were conducted to identify the structural states and properties of the prepared alloys. After ball milling for 20 h, a disordered face-centered cubic (f.c.c.) solid solution was formed which increased in lattice parameter by further milling up to 50 h. An exothermic reaction took place at around 300-400°C during continuous heating of the disordered f.c.c. solid solution. This reaction is attributed to a structural ordering leading to the formation of a face-centered tetragonal (f.c.t.) phase with L10 type ordering. Examination of the magnetic properties indicated that the structural ordering increases remnant magnetization and decreases coerecivity.

  15. Valence electron structure analysis of the cubic silicide intermetallics in rapidly solidified Al-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Wang, J.Q.; Qian, C.F.; Zhang, B.J.; Tseng, M.K.; Xiong, S.W.

    1996-01-01

    The application of rapid solidification for the development of elevated temperature aluminum alloys has resulted in the emergence of several alloys based on the Al-Fe alloy system. Of particular interest are Al-Fe-V-Si alloys which have excellent room temperature and high temperature mechanical properties. In a pioneering study, Skinner et al. showed the stabilization of the cubic phase in ternary Al-Fe-Si alloy by the addition of a quaternary element, vanadium. The evolution of the microstructure in these alloys both during rapid solidification and subsequent processing is of crucial importance. Kim has demonstrated that the composition of the silicide phase in rapidly solidified Al-Fe-V-Si alloy is very close to Al 12 (Fe,V) 3 Si with the body centered cubic (bcc) structure. The structure is closely related to that of quasicrystals.In view of the structural features and the relationship between the α 12 and α 13 phases, the researching emphasis should firstly be put on the α 12 phase. In this paper the authors analyzed the α -(AlFeSi)(α 12 -type) phase from the angle of atomic valence electron structure other than the traditional methods of obtaining the diffraction spots of the phase. Several pieces of information were obtained about the hybrid levels and bond natures of every kind of atom in the α -(AlFeSi) phase. Finally the authors explained the phenomenon which V atom can substitute for Fe atom in the α 12 phase and improve the thermal stability of the phase in Al-Fe-V-Si alloy

  16. Effect of Mn addition on the structural and magnetic properties of Fe-Pd ferromagnetic shape memory alloys

    International Nuclear Information System (INIS)

    Sanchez-Alarcos, V.; Recarte, V.; Perez-Landazabal, J.I.; Gonzalez, M.A.; Rodriguez-Velamazan, J.A.

    2009-01-01

    The effect of Mn addition on the structural and magnetic properties of Fe-Pd ferromagnetic shape memory alloys is investigated. In particular, a complete characterization of the influence of the partial substitution of Fe by Mn has been performed on Fe 69.4-x Pd 30.6 Mn x (x = 0, 1, 2.5 and 5) alloys. The substitution of 1% Fe by Mn fully inhibits the undesirable irreversible face-centered tetragonal to body-centered tetragonal transformation without decreasing the face-centered cubic to face-centered tetragonal temperature. In addition, the substitution of 2.5% Fe by Mn gives rise to the highest thermoelastic transformation temperature observed to date in the Fe-Pd system, probably due to an increase in the valence electron concentration. The magnetocaloric effect has been evaluated in this alloy system for the first time. Nevertheless, the low values obtained suggest that the Fe-Pd alloys are not good candidates for magnetic refrigeration applications.

  17. BDA: A novel method for identifying defects in body-centered cubic crystals.

    Science.gov (United States)

    Möller, Johannes J; Bitzek, Erik

    2016-01-01

    The accurate and fast identification of crystallographic defects plays a key role for the analysis of atomistic simulation output data. For face-centered cubic (fcc) metals, most existing structure analysis tools allow for the direct distinction of common defects, such as stacking faults or certain low-index surfaces. For body-centered cubic (bcc) metals, on the other hand, a robust way to identify such defects is currently not easily available. We therefore introduce a new method for analyzing atomistic configurations of bcc metals, the BCC Defect Analysis (BDA). It uses existing structure analysis algorithms and combines their results to uniquely distinguish between typical defects in bcc metals. In essence, the BDA method offers the following features:•Identification of typical defect structures in bcc metals.•Reduction of erroneously identified defects by iterative comparison to the defects in the atom's neighborhood.•Availability as ready-to-use Python script for the widespread visualization tool OVITO [http://ovito.org].

  18. High-Entropy Alloys in Hexagonal Close-Packed Structure

    Science.gov (United States)

    Gao, M. C.; Zhang, B.; Guo, S. M.; Qiao, J. W.; Hawk, J. A.

    2016-07-01

    The microstructures and properties of high-entropy alloys (HEAs) based on the face-centered cubic and body-centered cubic structures have been studied extensively in the literature, but reports on HEAs in the hexagonal close-packed (HCP) structure are very limited. Using an efficient strategy in combining phase diagram inspection, CALPHAD modeling, and ab initio molecular dynamics simulations, a variety of new compositions are suggested that may hold great potentials in forming single-phase HCP HEAs that comprise rare earth elements and transition metals, respectively. Experimental verification was carried out on CoFeReRu and CoReRuV using X-ray diffraction, scanning electron microscopy, and energy dispersion spectroscopy.

  19. Phonons in face-centred cubic calcium and strontium

    International Nuclear Information System (INIS)

    Singh, S.P.; Rathore, R.P.S.

    1984-01-01

    The axially symmetric and unpaired forces are employed to analyse the phonon dispersion and elastic behaviour of face centred cubic calcium and strontium which have so far not been studied adequately. The model with three parameters predicts the results which agree marvellously with the recently measured data. (author)

  20. Exploitation of 3D face-centered cubic mesoporous silica as a carrier for a poorly water soluble drug: Influence of pore size on release rate

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenquan; Wan, Long; Zhang, Chen; Gao, Yikun; Zheng, Xin; Jiang, Tongying; Wang, Siling, E-mail: silingwang@syphu.edu.cn

    2014-01-01

    The purposes of the present work were to explore the potential application of 3D face-centered cubic mesoporous silica (FMS) with pore size of 16.0 nm as a delivery system for poorly soluble drugs and investigate the effect of pore size on the dissolution rate. FMS with different pore sizes (16.0, 6.9 and 3.7 nm) was successfully synthesized by using Pluronic block co-polymer F127 as a template and adjusting the reaction temperatures. Celecoxib (CEL), which is a BCS class II drug, was used as a model drug and loaded into FMS with different pore sizes by the solvent deposition method at a drug–silica ratio of 1:4. Characterization using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transformation infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), nitrogen adsorption, X-ray diffraction (XRD), and differential scanning calorimetry (DSC) was used to systematically investigate the drug loading process. The results obtained showed that CEL was in a non-crystalline state after incorporation of CEL into the pores of FMS-15 with pore size of 16.0 nm. In vitro dissolution was carried out to demonstrate the effects of FMS with different pore sizes on the release of CEL. The results obtained indicated that the dissolution rate of CEL from FMS-15 was significantly enhanced compared with pure CEL. This could be explained by supposing that CEL encountered less diffusion resistance and its crystallinity decreased due to the large pore size of 16.0 nm and the nanopore channels of FMS-15. Moreover, drug loading and pore size both play an important role in enhancing the dissolution properties for the poorly water-soluble drugs. As the pore size between 3.7 and 16.0 nm increased, the dissolution rate of CEL from FMS gradually increased. - Highlights: • Exploitation of 3D cubic mesoporous silica (16 nm) as a carrier was completed. • The release rate of CEL increased on increasing the pore size of carriers. • The crystallinity

  1. High-speed jet electrodeposition and microstructure of nanocrystalline Ni-Co alloys

    International Nuclear Information System (INIS)

    Qiao Guiying; Jing Tianfu; Wang Nan; Gao Yuwei; Zhao Xin; Zhou Jifeng; Wang Wei

    2005-01-01

    The jet electrodeposition from watts baths with a device of electrolyte jet was carried out to prepare nano-crystalline cobalt-nickel alloys. The influence of the concentration of Co 2+ ions in the electrolyte and electrolysis parameters, such as the cathodic current density, the temperature as well as the electrolyte jet speed, on the chemistry and microstructure of Ni-Co-deposit alloys were investigated. Experimental results indicated that increasing the Co 2+ ions concentration in the bath, the electrolyte jet speed and decreasing of the cathodic current density and decrease of the electrolyte temperature all results in an increase of cobalt content in the alloy. Detailed microstructure changes upon the changes of alloy composition and experimental conditions were characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM). XRD results show the Ni-Co solid solution was formed through the jet electrodeposition. Phase constitution of solid solution changes progressively under different electrolyte concentration. Alloys with low Co concentration exhibit single phase of face-centered cubic (fcc) structure; The Co concentration over 60.39 wt.%, the alloys are composed of face-centered cubic (fcc) phase and hexagonal close-packed (hcp) phase. Furthermore, the formation of the nanostructured Ni-Co alloy deposit is investigated. Increasing the Co 2+ ions concentration in the bath, the cathodic current density, the electrolyte temperature and the electrolyte jet speed all result in the finer grains in the deposits. Additives such as saccharin in the electrolyte also favor the formation of the finer grains in the alloy deposits

  2. Observation of a composition-controlled high-moment/low-moment transition in the face centered cubic Fe-Ni system: Invar effect is an expansion, not a contraction

    International Nuclear Information System (INIS)

    Lagarec, K.; Rancourt, D.G.; Bose, S.K.; Sanyal, B.; Dunlap, R.A.

    2001-01-01

    We report the first conclusive observation of a high-moment (HM)/low-moment (LM) transition occurring in face centered cubic Fe-Ni alloys. 57 Fe Moessbauer isomer shifts give local electronic densities that exhibit a large discontinuity of ∼0.4 el./a 0 3 at the transition that spans the concentration range ∼60-80 at% Fe, in agreement with ab initio predictions. Our electronic structure calculations give an isomer shift discontinuity at a comparable composition and of the same magnitude as the observed one. This identification of the HM/LM transition in Fe-Ni allows an interpretation of the compositional dependence of the lattice parameter (at room temperature or extrapolated to T=0 K) in which it is seen that the Invar effect is an expansion, relative to normal HM non-magnetovolume active behavior, not a contraction as is required in all two-γ-state-like interpretations. Indeed, the Invar effect and the HM/LM transition are seen as two distinct and competing phenomena that dominate at different compositions and that arise from different features of the electronic structure: a large inter-atomic separation dependence of the magnetic exchange interaction between large local moments versus instability of the local moment magnitude, respectively. In the Fe-rich alloys including Invar (Fe 65 Ni 35 ), we observe temperature-induced changes in electronic density that follow the spontaneous magnetization curves and that are both consistent with the associated loss of local moment orientation order and inconsistent with a significant loss of local moment magnitude. This establishes that Invar is predominantly a HM phase at all temperatures where an Invar effect occurs. In the most Fe-rich alloys that have LM ground states (including γ-Fe), we find that thermal stabilization of the HM phase occurs at high temperatures (i.e., increase of local moment magnitude with increasing temperature), along a continuum of homogeneous phases between the LM and HM extremes, in a

  3. Parametric Study of Amorphous High-Entropy Alloys formation from two New Perspectives: Atomic Radius Modification and Crystalline Structure of Alloying Elements

    Science.gov (United States)

    Hu, Q.; Guo, S.; Wang, J. M.; Yan, Y. H.; Chen, S. S.; Lu, D. P.; Liu, K. M.; Zou, J. Z.; Zeng, X. R.

    2017-01-01

    Chemical and topological parameters have been widely used for predicting the phase selection in high-entropy alloys (HEAs). Nevertheless, previous studies could be faulted due to the small number of available data points, the negligence of kinetic effects, and the insensitivity to small compositional changes. Here in this work, 92 TiZrHfM, TiZrHfMM, TiZrHfMMM (M = Fe, Cr, V, Nb, Al, Ag, Cu, Ni) HEAs were prepared by melt spinning, to build a reliable and sufficiently large material database to inspect the robustness of previously established parameters. Modification of atomic radii by considering the change of local electronic environment in alloys, was critically found out to be superior in distinguishing the formation of amorphous and crystalline alloys, when compared to using atomic radii of pure elements in topological parameters. Moreover, crystal structures of alloying element were found to play an important role in the amorphous phase formation, which was then attributed to how alloying hexagonal-close-packed elements and face-centered-cubic or body-centered-cubic elements can affect the mixing enthalpy. Findings from this work not only provide parametric studies for HEAs with new and important perspectives, but also reveal possibly a hidden connection among some important concepts in various fields.

  4. High activity of cubic PtRh alloys supported on graphene towards ethanol electrooxidation.

    Science.gov (United States)

    Rao, Lu; Jiang, Yan-Xia; Zhang, Bin-Wei; Cai, Yuan-Rong; Sun, Shi-Gang

    2014-07-21

    Cubic PtRh alloys supported on graphene (PtxRhy/GN) with different atomic ratio of Pt and Rh were directly synthesized for the first time using the modified polyol method with Br(-) for the shape-directing agents. The process didn't use surface-capping agents such as PVP that easily occupy the active sites of electrocatalysts and are difficult to remove. Graphene is the key factor for cubic shape besides Br(-) and keeping catalysts high-dispersed. The X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to characterize the structure and morphology of these electrocatalysts. The results showed that they were composed of homogeneous cubic PtRh alloys. Traditional electrochemical methods, such as cyclic voltammetry and chronoamperometry, were used to investigate the electrocatalytic properties of PtxRhy/GN towards ethanol electrooxidation. It can be seen that PtxRhy/GN with all atomic ratios exhibited high catalytic activity, and the most active one has a composition with Pt : Rh = 9 : 1 atomic ratio. Electrochemical in situ FTIR spectroscopy was used to evaluate the cleavage of C-C bond in ethanol at room temperature in acidic solutions, the results illustrated that Rh in an alloy can promote the split of C-C bond in ethanol, and the alloy catalyst with atomic ratio Pt : Rh = 1 : 1 showed obviously better performance for the C-C bond breaking in ethanol and higher selectivity for the enhanced activity of ethanol complete oxidation to CO2 than alloys with other ratios of Pt and Rh. The investigation indicates that high activity of PtxRhy/GN electrocatalyst towards ethanol oxidation is due to the specific shape of alloys and the synergistic effect of two metal elements as well as graphene support.

  5. Elastic-modulus enhancement during room-temperature aging and its suppression in metastable Ti–Nb-Based alloys with low body-centered cubic phase stability

    International Nuclear Information System (INIS)

    Tane, M.; Hagihara, K.; Ueda, M.; Nakano, T.; Okuda, Y.

    2016-01-01

    Changes in the elastic properties during room-temperature aging (RT aging) of metastable Ti–Nb-based alloy single crystals with low body-centered cubic (bcc)-phase stability were investigated. The elastic stiffness components of Ti–Nb–Ta–Zr alloys with different Nb concentrations were measured by resonant ultrasound spectroscopy during RT aging; the results revealed that shear moduli c ′ and c 44 were increased by RT aging. In the alloy with the lowest Nb concentration, i.e., with the lowest bcc phase stability, shear moduli c ′ and c 44 were enhanced by the largest amount. The increase rates were ∼5% for 1.1 × 10 7  s (127 days), whereas the bulk modulus was hardly changed by aging. In Ti–Nb–Ta–Zr–O alloys with different oxygen concentrations, shear moduli c ′ and c 44 of the alloy with the lowest oxygen concentration increased most significantly. Moreover, the electrical resistivity of Ti–Nb–Ta–Zr and Ti–Nb–Ta–Zr–O alloys was increased by RT aging. Importantly, the enhancements of shear moduli and electrical resistivity were suppressed by increases in the bcc-phase stability (i.e., increase in the Nb concentration) and oxygen concentration; these factors are known to suppress ω (hexagonal) phase formation. However, transmission electron microscopy (TEM) observations revealed that only a diffuse ω structure—an ω-like lattice distortion—was formed after RT aging. On the basis of alloying element effects, TEM observations, and analysis of the changes in elastic properties by using a micromechanics model, it was deduced that the enhancements of shear moduli and electrical resistivity were possibly caused by the formation of a diffuse ω structure.

  6. Fracture Toughness and Fatigue Crack Growth Behavior of As-Cast High-Entropy Alloys

    Science.gov (United States)

    Seifi, Mohsen; Li, Dongyue; Yong, Zhang; Liaw, Peter K.; Lewandowski, John J.

    2015-08-01

    The fracture toughness and fatigue crack growth behavior of two as-vacuum arc cast high-entropy alloys (HEAs) (Al0.2CrFeNiTi0.2 and AlCrFeNi2Cu) were determined. A microstructure examination of both HEA alloys revealed a two-phase structure consisting of body-centered cubic (bcc) and face-centered cubic (fcc) phases. The notched and fatigue precracked toughness values were in the range of those reported in the literature for two-phase alloys but significantly less than recent reports on a single phase fcc-HEA that was deformation processed. Fatigue crack growth experiments revealed high fatigue thresholds that decreased significantly with an increase in load ratio, while Paris law slopes exhibited metallic-like behavior at low R with significant increases at high R. Fracture surface examinations revealed combinations of brittle and ductile/dimpled regions at overload, with some evidence of fatigue striations in the Paris law regime.

  7. Use of the Primitive Unit Cell in Understanding Subtle Features of the Cubic Closest-Packed Structure

    Science.gov (United States)

    Hawkins, John A.; Rittenhouse, Jeffrey L.; Soper, Linda M.; Rittenhouse, Robert C.

    2008-01-01

    One of the most important crystal structures adopted by metals is characterized by the "abcabc"...stacking of close-packed layers. This structure is commonly referred to in textbooks as the cubic close-packed (ccp) or face-centered cubic (fcc) structure, since the entire lattice can be generated by replication of a face-centered cubic unit cell…

  8. Ductile tungsten-nickel alloy and method for making same

    Science.gov (United States)

    Snyder, Jr., William B.

    1976-01-01

    The present invention is directed to a ductile, high-density tungsten-nickel alloy which possesses a tensile strength in the range of 100,000 to 140,000 psi and a tensile elongation of 3.1 to 16.5 percent in 1 inch at 25.degree.C. This alloy is prepared by the steps of liquid phase sintering a mixture of tungsten-0.5 to 10.0 weight percent nickel, heat treating the alloy at a temperature above the ordering temperature of approximately 970.degree.C. to stabilize the matrix phase, and thereafter rapidly quenching the alloy in a suitable liquid to maintain the matrix phase in a metastable, face-centered cubic, solid- solution of tungsten in nickel.

  9. The Formation of Fe/Mg Smectite Under Mildly Acidic Conditions on Early Mars

    Science.gov (United States)

    Sutter, B.; Golden, D. C.; Ming, Douglas W.; Niles, P. B.

    2011-01-01

    The detection of Fe/Mg smectites and carbonate in Noachian and early Hesperian terrain of Mars suggests that neutral to mildly alkaline conditions prevailed during the early history of Mars. If early Mars surface geochemical conditions were neutral to moderately alkaline with a denser CO2 atmosphere than today, then large carbonates deposits should be more widely detected in Noachian terrain. Why have so few carbonate deposits been detected compared to Fe/Mg smectites? Fe/Mg smectites on early Mars formed under mildly acidic conditions, which would preclude the extensive formation of carbonate deposits. The goal of the proposed work is to evaluate the formation of Fe/Mg smectites under mildly acidic conditions.

  10. Manufacturing of High Entropy Alloys

    Science.gov (United States)

    Jablonski, Paul D.; Licavoli, Joseph J.; Gao, Michael C.; Hawk, Jeffrey A.

    2015-07-01

    High entropy alloys (HEAs) have generated interest in recent years due to their unique positioning within the alloy world. By incorporating a number of elements in high proportion they have high configurational entropy, and thus they hold the promise of interesting and useful properties such as enhanced strength and phase stability. The present study investigates the microstructure of two single-phase face-centered cubic (FCC) HEAs, CoCrFeNi and CoCrFeNiMn, with special attention given to melting, homogenization and thermo-mechanical processing. Large-scale ingots were made by vacuum induction melting to avoid the extrinsic factors inherent in small-scale laboratory button samples. A computationally based homogenization heat treatment was applied to both alloys in order to eliminate segregation due to normal ingot solidification. The alloys fabricated well, with typical thermo-mechanical processing parameters being employed.

  11. Investigation of microstructure in hot-pressed Nb–23Ti–15Al alloy

    International Nuclear Information System (INIS)

    Shi, Zhiwu; Wei, Hua; Zhang, Hongyu; Wu, Duoli; Jin, Tao; Sun, Xiaofeng; Zheng, Qi

    2015-01-01

    Highlights: • The Ti(O, C), a new strengthening phase, is found in Nb–Ti–Al alloys. • Ti(O, C) has a face-centered cubic structure and a lattice parameter of 4.27 Å. • Two different morphologies of Ti(O, C) are observed. • β and δ phases exhibit as large irregular blocks and equiaxed particles. • Ordering of β phase is observed in hot-pressed Nb–Ti–Al alloy. - Abstract: Microstructure of hot-pressed Nb–23Ti–15Al alloy has been systematically investigated, with emphasis on the characterization of Ti(O, C) phase. The microstructure and composition of Nb–23Ti–15Al alloy were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron probe microanalysis (EPMA). The results indicate the presence of β, δ and Ti(O, C) phases in the alloy. The β phase exhibits as large irregular blocks, while the δ phase presents as small equiaxed particles linked together around β blocks. Ordering of β phase is shown by related selected area electronic diffraction (SAED) patterns and dark-field micrograph. The Ti(O, C), a solid-solution of TiO or TiC, is characterized for the first time in Nb–Ti–Al alloy. The Ti(O, C) has a face-centered cubic (FCC) structure and a moderate lattice parameter between that of TiO and TiC. Two different morphologies of Ti(O, C) are observed in the alloy: large cobblestone-like aggregated particles and small dispersive particles. The formation of Ti(O, C) phase can potentially increase high-temperature strength of Nb–Ti–Al alloy

  12. Investigation of microstructure in hot-pressed Nb–23Ti–15Al alloy

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zhiwu; Wei, Hua; Zhang, Hongyu; Wu, Duoli; Jin, Tao; Sun, Xiaofeng; Zheng, Qi, E-mail: qzheng@imr.ac.cn

    2015-07-05

    Highlights: • The Ti(O, C), a new strengthening phase, is found in Nb–Ti–Al alloys. • Ti(O, C) has a face-centered cubic structure and a lattice parameter of 4.27 Å. • Two different morphologies of Ti(O, C) are observed. • β and δ phases exhibit as large irregular blocks and equiaxed particles. • Ordering of β phase is observed in hot-pressed Nb–Ti–Al alloy. - Abstract: Microstructure of hot-pressed Nb–23Ti–15Al alloy has been systematically investigated, with emphasis on the characterization of Ti(O, C) phase. The microstructure and composition of Nb–23Ti–15Al alloy were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron probe microanalysis (EPMA). The results indicate the presence of β, δ and Ti(O, C) phases in the alloy. The β phase exhibits as large irregular blocks, while the δ phase presents as small equiaxed particles linked together around β blocks. Ordering of β phase is shown by related selected area electronic diffraction (SAED) patterns and dark-field micrograph. The Ti(O, C), a solid-solution of TiO or TiC, is characterized for the first time in Nb–Ti–Al alloy. The Ti(O, C) has a face-centered cubic (FCC) structure and a moderate lattice parameter between that of TiO and TiC. Two different morphologies of Ti(O, C) are observed in the alloy: large cobblestone-like aggregated particles and small dispersive particles. The formation of Ti(O, C) phase can potentially increase high-temperature strength of Nb–Ti–Al alloy.

  13. Size-dependent plastic deformation of twinned nanopillars in body-centered cubic tungsten

    Science.gov (United States)

    Xu, Shuozhi; Startt, Jacob K.; Payne, Thomas G.; Deo, Chaitanya S.; McDowell, David L.

    2017-05-01

    Compared with face-centered cubic metals, twinned nanopillars in body-centered cubic (BCC) systems are much less explored partly due to the more complicated plastic deformation behavior and a lack of reliable interatomic potentials for the latter. In this paper, the fault energies predicted by two semi-empirical interatomic potentials in BCC tungsten (W) are first benchmarked against density functional theory calculations. Then, the more accurate potential is employed in large scale molecular dynamics simulations of tensile and compressive loading of twinned nanopillars in BCC W with different cross sectional shapes and sizes. A single crystal, a twinned crystal, and single crystalline nanopillars are also studied as references. Analyses of the stress-strain response and defect nucleation reveal a strong tension-compression asymmetry and a weak pillar size dependence in the yield strength. Under both tensile and compressive loading, plastic deformation in the twinned nanopillars is dominated by dislocation slip on {110} planes that are nucleated from the intersections between the twin boundary and the pillar surface. It is also found that the cross sectional shape of nanopillars affects the strength and the initial site of defect nucleation but not the overall stress-strain response and plastic deformation behavior.

  14. Formation of soft magnetic high entropy amorphous alloys composites containing in situ solid solution phase

    Science.gov (United States)

    Wei, Ran; Sun, Huan; Chen, Chen; Tao, Juan; Li, Fushan

    2018-03-01

    Fe-Co-Ni-Si-B high entropy amorphous alloys composites (HEAACs), which containing high entropy solid solution phase in amorphous matrix, show good soft magnetic properties and bending ductility even in optimal annealed state, were successfully developed by melt spinning method. The crystallization phase of the HEAACs is solid solution phase with body centered cubic (BCC) structure instead of brittle intermetallic phase. In addition, the BCC phase can transformed into face centered cubic (FCC) phase with temperature rise. Accordingly, Fe-Co-Ni-Si-B high entropy alloys (HEAs) with FCC structure and a small amount of BCC phase was prepared by copper mold casting method. The HEAs exhibit high yield strength (about 1200 MPa) and good plastic strain (about 18%). Meanwhile, soft magnetic characteristics of the HEAs are largely reserved from HEAACs. This work provides a new strategy to overcome the annealing induced brittleness of amorphous alloys and design new advanced materials with excellent comprehensive properties.

  15. The hydrogen interaction in an FCC FePd alloy with a vacancy

    Energy Technology Data Exchange (ETDEWEB)

    Ardenghi, S [Instituto de AstronomIa y Fisica del Espacio (IAFE), CC 67-Suc 28 (C1428ZAA) Ciudad Autonoma de Buenos Aires (Argentina); Gonzalez, E; Jasen, P; Juan, A [Departamento de Fisica, Universidad Nacional del Sur, Av. Alem 1253 BahIa Blanca (8000) (Argentina)], E-mail: cajuan@uns.edu.ar

    2009-04-15

    The absorption of hydrogen in the ordered face-centered cubic FePd alloy is investigated using a density functional calculation method. Changes in the electronic structure and bonding after introducing an Fe or Pd vacancy are analysed. H locates close to a tetrahedral site and the H-metal bond is achieved at the expense of the interfacial Fe-Pd bond.

  16. Secondary phases in Al_xCoCrFeNi high-entropy alloys: An in-situ TEM heating study and thermodynamic appraisal

    International Nuclear Information System (INIS)

    Rao, J. C.

    2017-01-01

    Secondary phases, either introduced by alloying or heat treatment, are commonly present in most high-entropy alloys (HEAs). Understanding the formation of secondary phases at high temperatures, and their effect on mechanical properties, is a critical issue that is undertaken in the present paper, using the Al_xCoCrFeNi (x = 0.3, 0.5, and 0.7) as a model alloy. The in-situ transmission-electron-microscopy (TEM) heating observation, an atom-probe-tomography (APT) study for the reference starting materials (Al_0_._3 and Al_0_._5 alloys), and thermodynamic calculations for all three alloys, are performed to investigate (1) the aluminum effect on the secondary-phase fractions, (2) the annealing-twinning formation in the face-centered-cubic (FCC) matrix, (3) the strengthening effect of the secondary ordered body-centered-cubic (B2) phase, and (4) the nucleation path of the σ secondary phase thoroughly. Finally, the present work will substantially optimize the alloy design of HEAs and facilitate applications of HEAs to a wide temperature range.

  17. Phase stability and microstructures of high entropy alloys ion irradiated to high doses

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Songqin [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083 (China); Gao, Michael C. [National Energy Technology Laboratory, 1450 Queen Ave SW, Albany, OR, 97321 (United States); AECOM, P.O. Box 1959, Albany, OR, 97321 (United States); Yang, Tengfei [State Key Laboratory of Nuclear Physics and Technology, Center for Applied Physics and Technology, Peking University, Beijing, 100871 (China); Liaw, Peter K. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN, 37996 (United States); Zhang, Yong, E-mail: drzhangy@ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083 (China)

    2016-11-15

    The microstructures of Al{sub x}CoCrFeNi (x = 0.1, 0.75 and 1.5 in molar ratio) high entropy alloys (HEAs) irradiated at room temperature with 3 MeV Au ions at the highest fluence of 105, 91, and 81 displacement per atom, respectively, were studied. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) analyses show that the initial microstructures and phase composition of all three alloys are retained after ion irradiation and no phase decomposition is observed. Furthermore, it is demonstrated that the disordered face-centered cubic (FCC) and disordered body-centered cubic (BCC) phases show much less defect cluster formation and structural damage than the NiAl-type ordered B2 phase. This effect is explained by higher entropy of mixing, higher defect formation/migration energies, substantially lower thermal conductivity, and higher atomic level stress in the disordered phases.

  18. Simulation of self-assembled nanopatterns in strained 2D alloys on the face centered cubic(111) surface

    Czech Academy of Sciences Publication Activity Database

    Weber, S.; Biehl, M.; Kotrla, Miroslav; Kinzel, W.

    2008-01-01

    Roč. 20, č. 26 (2008), 265004/1-265004/7 ISSN 0953-8984 EU Projects: European Commission(XE) 16447 - MAGDOT Grant - others:NSF DMR(DE) 0502737 Institutional research plan: CEZ:AV0Z10100520 Keywords : nanostructures * surface alloys * Monte Carlo simulation * self-assembling magnetic dots Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.900, year: 2008

  19. Universal centers in the cubic trigonometric Abel equation

    Directory of Open Access Journals (Sweden)

    Jaume Giné

    2014-02-01

    Full Text Available We study the center problem for the trigonometric Abel equation $d \\rho/ d \\theta= a_1 (\\theta \\rho^2 + a_2(\\theta \\rho^3,$ where $a_1(\\theta$ and $a_2(\\theta$ are cubic trigonometric polynomials in $\\theta$. This problem is closely connected with the classical Poincaré center problem for planar polynomial vector fields. A particular class of centers, the so-called universal centers or composition centers, is taken into account. An example of non-universal center and a characterization of all the universal centers for such equation are provided.

  20. Mössbauer study of alloy Fe{sub 67.5}Ni{sub 32.5}, prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Benitez Rodríguez, Edson Daniel, E-mail: edbenitezr@ut.edu.co; Bustos Rodríguez, Humberto; Oyola Lozano, Dagoberto; Rojas Martínez, Yebrail Antonio [University of Tolima, Department of Physics (Colombia); Pérez Alcázar, German Antonio [University of Valle, Department of Physics (Colombia)

    2015-06-15

    We present the study of effect of the particle size on the structural and magnetic properties of the Fe{sub 67.5}Ni{sub 32.5} alloy, prepared by mechanical alloying (MA). After milling the powders during 10 hours they were separated by sieving using different meshes. The refinement of the X-ray patterns showed the coexistence of the BCC (Body Centered Cubic) and the FCC (Face Centered Cubic) phases in all samples with lattice parameters and crystallite sizes independent of the mean particle size. However, big particles presented bigger volumetric fraction of BCC grains. The Mossbauer spectra were fitted with a broad sextet corresponding to the ferromagnetic BCC phase, a hyperfine magnetic field distribution and a broad singlet which correspond to the ferromagnetic and paramagnetic sites of the FCC phase, respectively. Hysteresis loops showed a magnetically, soft behavior for all the samples, however, the saturation magnetization values are smaller for the original powder and for the powders with small, mean, particle size due to the dipolar magnetic interaction and the smaller mean magnetic moment, respectively. These effects were proved by Henkel plots that were made to the samples.

  1. Evolution of microstructure in face centered cubic metals during irradiation: A review

    International Nuclear Information System (INIS)

    Garner, F.A.

    1993-06-01

    When fcc metals and alloys are irradiated at elevated temperatures, they tend to evolve toward saturation microstructures that are independent of the starting state of the metal and the early details of irradiation history. This leads to property changes and rates of dimensional change that also eventually become independent of the starting state. The evolution of microstructure in complex alloys, especially during the transient regime, is usually determined by the complex interaction of many microstructural and microchemical processes. The more complex the alloy, the more difficult it is to-identify and define the separate influence of each participating mechanism. The use of irradiation studies conducted on simple metals or model alloys assists in understanding the behavior of alloys of engineering relevance. A review of such studies shows that a number of prevailing perceptions of radiation-induced microstructural evolution are not universally correct

  2. Metallurgical characterization of new palladium-containing cobalt chromium and nickel chromium alloys

    Science.gov (United States)

    Puri, Raghav

    Recently introduced to the market has been an entirely new subclass of casting alloy composition whereby palladium (˜25 wt%) is added to traditional base metal alloys such as CoCr and NiCr. Objectives. The purpose of this study was to evaluate the microstructure and Vickers hardness of two new CoPdCr and one new NiPdCr alloy and compare them to traditional CoCr and NiCr alloys. Methods. The casting alloys investigated were: CoPdCr-A (Noble Crown NF, The Argen Corporation), CoPdCr-I (Callisto CP+, Ivoclar Vivadent), NiPdCr (Noble Crown, Argen), CoCr (Argeloy N.P. Special, Argen), and NiCr (Argeloy N.P. Star, Argen). As-cast cylindrical alloy specimens were mounted in epoxy resin and prepared with standard metallographic procedures, i.e. grinding with successive grades of SiC paper and polishing with alumina suspensions. The alloys were examined with an optical microscope, SEM/EPMA, and XRD to gain insight into their microstructure, composition, and crystal structure. Vickers hardness (VHN) was measured and statistically analyzed by one way ANOVA and Tukey's HSD test (alpha=0.05). Results. Optical microscopy showed a dendritic microstructure for all alloys. The Pd-containing alloys appear to possess a more complex microstructure. SEM/EPMA showed Cr to be rather uniformly distributed in the matrix with palladium tending to be segregated apart from Mo and Ni or Co. Areas of different composition may explain the poor electrochemical results noted in previous studies. XRD suggested the main phase in the Ni-containing solutions was a face centered cubic Ni solid solution, whereas the CoCr exhibited a hexagonal crystal structure that was altered to face centered cubic when Pd was included in the composition. For Vickers hardness, the Co-containing alloys possessed a greater hardness than the Ni-containing alloys. However, the incorporation of Pd in CoCr and NiCr had only a slight effect on microhardness. Conclusion. Overall, the inclusion of palladium increases the

  3. A self-consistent mean field theory for diffusion in alloys

    International Nuclear Information System (INIS)

    Nastar, M.; Barbe, V.

    2007-01-01

    Starting from a microscopic model of the atomic transport via vacancies and interstitials in alloys, a self-consistent mean field (SCMF) kinetic theory yields the phenomenological coefficients L ij . In this theory, kinetic correlations are accounted for through a set of effective interactions within a non-equilibrium distribution function of the system. The introduction of a master equation describing the evolution with time of the distribution function and its moments leads to general self-consistent kinetic equations. The L ij of a face centered cubic alloy are calculated using the kinetic equations of Nastar (M. Nastar, Philos. Mag., 2005, 85, 3767, ref. 1) derived from a microscopic broken bond model of the vacancy jump frequency. A first approximation leads to an analytical expression of the L ij and a second approximation to a better agreement with the Monte Carlo simulations. A change of sign of the L ij is studied as a function of the microscopic parameters of the jump frequency. The L ij of a cubic centered alloy obtained for the complex diffusion mechanism of the dumbbell configuration of the interstitial are used to study the effect of an on-site rotation of the dumbbell on the transport. (authors)

  4. Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation

    International Nuclear Information System (INIS)

    Zhan, Wangcheng; Wang, Jinglin; Wang, Haifeng; Zhang, Jinshui; Liu, Xiaofei

    2017-01-01

    Controlling the physical and chemical properties of alloy nanoparticles (NPs) is an important approach to optimize NP catalysis. Unlike other tuning knobs, such as size, shape, and composition, crystal structure has received limited attention and not been well understood for its role in catalysis. This deficiency is mainly due to the difficulty in synthesis and fine-tuning of the NPs’ crystal structure. Here, Exemplifying by AuCu alloy NPs with face centered cubic (fcc) and face centered tetragonal (fct) structure, we demonstrate a remarkable difference in phase segregation and catalytic performance depending on the crystal structure. During the thermal treatment in air, the Cu component in fcc-AuCu alloy NPs segregates more easily onto the alloy surface as compared to that in fct-AuCu alloy NPs. As a result, after annealing at 250 °C in air for 1 h, the fcc- and fct-AuCu alloy NPs are phase transferred into Au/CuO and AuCu/CuO core/shell structures, respectively. More importantly, this variation in heterostructures introduces a significant difference in CO adsorption on two catalysts, leading to a largely enhanced catalytic activity of AuCu/CuO NP catalyst for CO oxidation. Furthermore, the same concept can be extended to other alloy NPs, making it possible to fine-tune NP catalysis for many different chemical reactions.

  5. Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Wangcheng [East China Univ. of Science and Technology, Shanghai (China); Wang, Jinglin [East China Univ. of Science and Technology, Shanghai (China); Wang, Haifeng [East China Univ. of Science and Technology, Shanghai (China); Zhang, Jinshui [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Xiaofei [East China Univ. of Science and Technology, Shanghai (China); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhang, Pengfei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chi, Miaofang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guo, Yanglong [East China Univ. of Science and Technology, Shanghai (China); Guo, Yun [East China Univ. of Science and Technology, Shanghai (China); Lu, Guanzhong [East China Univ. of Science and Technology, Shanghai (China); Sun, Shouheng [Brown Univ., Providence, RI (United States); Dai, Sheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Zhu, Huiyuan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-07

    Controlling the physical and chemical properties of alloy nanoparticles (NPs) is an important approach to optimize NP catalysis. Unlike other tuning knobs, such as size, shape, and composition, crystal structure has received limited attention and not been well understood for its role in catalysis. This deficiency is mainly due to the difficulty in synthesis and fine-tuning of the NPs’ crystal structure. Here, Exemplifying by AuCu alloy NPs with face centered cubic (fcc) and face centered tetragonal (fct) structure, we demonstrate a remarkable difference in phase segregation and catalytic performance depending on the crystal structure. During the thermal treatment in air, the Cu component in fcc-AuCu alloy NPs segregates more easily onto the alloy surface as compared to that in fct-AuCu alloy NPs. As a result, after annealing at 250 °C in air for 1 h, the fcc- and fct-AuCu alloy NPs are phase transferred into Au/CuO and AuCu/CuO core/shell structures, respectively. More importantly, this variation in heterostructures introduces a significant difference in CO adsorption on two catalysts, leading to a largely enhanced catalytic activity of AuCu/CuO NP catalyst for CO oxidation. Furthermore, the same concept can be extended to other alloy NPs, making it possible to fine-tune NP catalysis for many different chemical reactions.

  6. Corrosion behaviour of Al-Fe-Ti-V medium entropy alloy

    Science.gov (United States)

    Bodunrin, M. O.; Obadele, B. A.; Chown, L. H.; Olubambi, P. A.

    2017-12-01

    Alloys containing up to four multi-principal elements in equiatomic ratios are referred to as medium entropy alloys (MEA). These alloys have attracted the interest of many researchers due to the superior mechanical properties it offers over the traditional alloys. The design approach of MEA often results to simple solid solution with either body centered cubic; face centered cubic structures or both. As the consideration for introducing the alloys into several engineering application increases, there have been efforts to study the corrosion behaviour of these alloys. Previous reports have shown that some of these alloys are more susceptible to corrosion when compared with traditional alloys due to lack of protective passive film. In this research, we have developed AlFeTiV medium entropy alloys containing two elements (Ti and Al) that readily passivate when exposed to corrosive solutions. The alloys were produced in vacuum arc furnace purged with high purity argon. Open circuit potential and potentiodynamic polarisation tests were used to evaluate the corrosion behaviour of the as-cast AlFeTiV alloy in 3.5 wt% NaCl and 1 M H2SO4. The corrosion performance of the alloy was compared with Ti-6Al-4V alloy tested under similar conditions. The results show that unlike in Ti-6Al-4V alloy, the open circuit potential of the AlFeTiV alloy move towards the negative values in both 3.5 wt% NaCl and 1 M H2SO4 solutions indicating that self-activation occurred rapidly on immersion. Anodic polarisation of the alloys showed that AlFeTiV alloy exhibited a narrow range of passivity in both solutions. In addition, the alloys exhibited lower Ecorr and higher Icorr when compared with traditional Ti-6Al-4V alloy. The traditional Ti-6Al-4V alloy showed superior corrosion resistant to the AlFeTiV alloy in both 3.5 wt.% NaCl and 1 M H2SO4 solutions.

  7. Radiation-induced segregation behavior in random and ordered face-centered cubic materials

    International Nuclear Information System (INIS)

    Bui, T.X.; Robertson, I.M.; Klatt, J.L.; Averback, R.S.; Kirk, M.A.

    1993-01-01

    Radiation-induced segregation has been studied in random solid solution alloys Ni-10%Al and Ni-6%Si, and in the ordered (L1 2 structure) intermetallics Ni 3 Si and Ni 3 Al. These materials were irradiated with 2 MeV He + ions at a temperature between 0.45 and 0.55T m and at an ion dose rate of approximately 1x10 -4 dpa per second. Subsequent Auger Electron Spectroscopy analysis showed that silicon segregated to the surface in the Ni-6% Si and Ni 3 Si alloys, and aluminum segregated away from the near surface region in the Ni-10% Al alloy. The Ni 3 Al samples exhibited no detectable segregation with respect to depth from the sample surface. The mechanisms that may give rise to this resistance to radiation induced segregation will be examined in terms of the mobility of the alloying constituents, ordering energies and atomic sizes. (orig.)

  8. Strain aging in tungsten heavy alloys

    International Nuclear Information System (INIS)

    Dowding, R.J.; Tauer, K.J.

    1991-01-01

    This paper reports on tungsten heavy alloys which are two-phase mixtures of body center cubic (BCC) tungsten surrounded by a face center cubic (FCC) matrix. The matrix is most often composed of nickel and iron in a ratio of 70:30 but, occasionally, the matrix may also contain cobalt or copper. Nickel, however, is always the primary matrix component. The tungsten heavy alloy is fabricated through powder metallurgy techniques. Elemental powders are blended, pressed to shape, and sintered. Depending upon the tungsten content, the sintering temperatures are usually in the range of 1450 degrees C to 1525 degrees C. These temperatures are high enough that, as a result, the matrix is at the liquid phase and the process is known as liquid phase sintering. At the liquid phase temperature, the matrix becomes saturated with tungsten, but this does not change the FCC character of the matrix. The sintering is usually done in a hydrogen atmosphere furnace in order to reduce the oxides on the tungsten powder surfaces and create clean, active surfaces which will enhance the adherence between the tungsten and the matrix. The hydrogen atmosphere also creates the presence of excess dissolved hydrogen in the alloy. It has been shown that the hydrogen degrades the toughness and ductility of the heavy alloy. A post-sintering vacuum heat treatment is generally required to insure that there is no residual hydrogen present. The as-sintered tensile strength of a 90% tungsten, 7% nickel, 3% iron alloy (90W) is in the range of 800 to 940 MPa and can be increased significantly by cold working, usually rolling or swaging. Swaging to reductions in area of 20% can result in tensile strengths of 1250 MPa or more. As the strength increases, the elongation, which may have been 30% or more, decreases to less than 5%

  9. Activated states for cross-slip at screw dislocation intersections in face-centered cubic nickel and copper via atomistic simulation

    International Nuclear Information System (INIS)

    Rao, S.I.; Dimiduk, D.M.; El-Awady, J.A.; Parthasarathy, T.A.; Uchic, M.D.; Woodward, C.

    2010-01-01

    We extend our recent simulation studies where a screw dislocation in face-centered cubic (fcc) Ni was found to spontaneously attain a low energy partially cross-slipped configuration upon intersecting a forest dislocation. Using atomistic (molecular statics) simulations with embedded atom potentials, we evaluated the activation barrier for a dislocation to transform from fully residing on the glide plane to fully residing on a cross-slip plane intersecting a forest dislocation in both Ni and Cu. The activation energies were obtained by determining equilibrium configurations (energies) when variable pure tensile or compressive stresses were applied along the [1 1 1] direction on the partially cross-slipped state. We show that the activation energy is a factor of 2-5 lower than that for cross-slip in isolation via the Escaig process. The cross-slip activation energies obtained at the intersection in Cu were in reasonable accord with the experimentally determined cross-slip activation energy for Cu. Further, the activation barrier for cross-slip at these intersections was shown to be linearly proportional to (d/b)[ln(√(3)d/b)] 1/2 , as in the Escaig process, where d is the Shockley partial dislocation spacing and b is the Burgers vector of the screw dislocation. These results suggest that cross-slip should be preferentially observed at selected screw dislocation intersections in fcc materials.

  10. Nucleation of dislocation loops during irradiation in binary FCC alloys with different alloy compositions

    International Nuclear Information System (INIS)

    Hashimoto, T.; Shigenaka, N.; Fuse, M.

    1992-01-01

    Dislocation loop nucleation is analyzed using a rate theory based model for face-centered cubic (fcc) binary alloys containing A- and B-atoms. In order to calculate the nucleation process in concentrated alloys, the model considers three types of interstitial dumbbells composed of A- and B-atoms, AA-, BB-, and AB-type dumbbells. Conversions between these interstitial dumbbells are newly introduced in the formulation in consideration of dumbbell configurations and movements. The model also includes reactions, such as point defect production by irradiation, mutual recombination of an interstitial and a vacancy, and dislocation loop nucleation and growth. Parameter values are chosen based on the atom size of the alloy component elements, and dislocation loop nucleation kinetics are investigated while varying alloy compositions. Two different types of kinetics are obtained in accordance with the dominant loop nucleus type. The migration energy difference of AA- and BB-type interstitial dumbbells is important in the determination of the dominant loop nucleus type. The present model predicts that the dislocation loop concentration decrease with increasing under sized atoms content, but defect production rate and temperature dependences of loop concentration are insensitive to alloy compositions. (author)

  11. Effective-medium theory for nonlinear magneto-optics in magnetic granular alloys: cubic nonlinearity

    International Nuclear Information System (INIS)

    Granovsky, Alexander B.; Kuzmichov, Michail V.; Clerc, J.-P.; Inoue, Mitsuteru

    2003-01-01

    We propose a simple effective-medium approach for calculating the effective dielectric function of a magnetic metal-insulator granular alloy in which there is a weakly nonlinear relation between electric displacement D and electric field E for both constituent materials of the form D i =ε i (0) E i +χ i (3) |E i | 2 E i . We assume that linear ε i (0) and cubic nonlinear χ i (3) dielectric functions are diagonal and linear with magnetization non-diagonal components. For such metal-insulator composite magneto-optical effects depend on a light intensity and the effective cubic dielectric function χ eff (3) can be significantly greater (up to 10 3 times) than that for constituent materials. The calculation scheme is based on the Bergman and Stroud-Hui theory of nonlinear optical properties of granular matter. The giant cubic magneto-optical nonlinearity is found for composites with metallic volume fraction close to the percolation threshold and at a resonance of optical conductivity. It is shown that a composite may exhibit nonlinear magneto-optics even when both constituent materials have no cubic magneto-optical nonlinearity

  12. Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy

    International Nuclear Information System (INIS)

    Chen, Weiping; Fu, Zhiqiang; Fang, Sicong; Xiao, Huaqiang; Zhu, Dezhi

    2013-01-01

    Highlights: • FeNiCrCo 0.3 Al 0.7 high entropy alloy is prepared via MA and SPS. • Two BCC phases and one FCC phase were obtained after SPS. • The two BCC phases are enriched in Fe–Cr (A2 structure) and enriched in Ni–Al (B2 structure). • Bulk FeNiCrCo 0.3 Al 0.7 HEA exhibits excellent mechanical properties. - Abstract: The present paper reports the synthesis of FeNiCrCo 0.3 Al 0.7 high entropy alloy (HEA) by mechanical alloying (MA) and spark plasma sintering (SPS) process. Alloying behavior, microstructure, mechanical properties and detailed phases of the alloy were investigated systematically. During MA, the formation of a supersaturated solid solution with body-centered cubic (BCC) structure occurred. However, partial BCC structure phase transformed into a face-center cubic (FCC) structure phase during SPS. Two BCC phases with nearly the same lattice parameter of 3.01 Å and one FCC phase with the lattice parameter of 3.72 Å were characterized in the transmission electron microscope (TEM) images. The two BCC phases which are evidently deviated from the definition of high entropy alloys (HEAs) are enriched in Fe–Cr and enriched in Ni–Al, respectively. Moreover, the FCC phase agrees well with the definition of HEAs. Bulk FeNiCrCo 0.3 Al 0.7 alloy with little porosity exhibits much better mechanical properties except compression ratio compared with other typical HEAs of FeNiCrCoAl HEA system. The yield strength, compressive strength, compression ratio and Vickers hardness of FeNiCrCo 0.3 Al 0.7 alloy are 2033 ± 41 MPa, 2635 ± 55 MPa, 8.12 ± 0.51% and 624 ± 26H v , respectively. The fracture mechanism of bulk FeNiCrCo 0.3 Al 0.7 alloy is dominated by intercrystalline fracture and quasi-cleavage fracture

  13. Extraordinary high strength Ti-Zr-Ta alloys through nanoscaled, dual-cubic spinodal reinforcement.

    Science.gov (United States)

    Biesiekierski, Arne; Ping, Dehai; Li, Yuncang; Lin, Jixing; Munir, Khurram S; Yamabe-Mitarai, Yoko; Wen, Cuie

    2017-04-15

    While titanium alloys represent the current state-of-the-art for orthopedic biomaterials, concerns still remain over their modulus. Circumventing this via increased porosity requires high elastic admissible strains, yet also limits traditional thermomechanical strengthening techniques. To this end, a novel β-type Ti-Zr-Ta alloy system, comprised of Ti-45Zr-10Ta, Ti-40Zr-14Ta, Ti-35Zr-18Ta and Ti-30Zr-22Ta, was designed and characterized mechanically and microstructurally. As-cast, this system displayed extremely high yield strengths and elastic admissible strains, up to 1.4GPa and potentially 1.48%, respectively. This strength was attributed to a nanoscaled, cuboidal structure of semi-coherent, dual body-centered cubic (BCC) phases, arising from the thermodynamics of interaction between Ta and Zr; this morphology occurring with dual BCC-phases is heretofore unreported in Ti-based alloys. Further, cell proliferation investigated by MTS assay suggests this was achieved without sacrificing biocompatibility, with no significant difference to either empty-well or commercially-pure Ti controls noted. The current research details microstructural, mechanical, and biological investigations into four novel biomedical alloys in a hitherto uninvestigated region of the Ti-Zr-Ta alloy system; Ti-45Zr-10Ta, Ti-40Zr-14Ta, Ti-35Zr-18Ta and Ti-30Zr-22Ta. We find that the investigated alloys display 0.2% yield strengths of up to 1.40GPa and elastic admissible strains of up to 1.48%, along with biological properties comparable to that seen in the conventional metallic biomaterial ASTM Grade-2 CP-Ti, achieved in the complete absence of traditional thermomechanical processing techniques. This is attributed to the presence of a dual-BCC cuboidal nanostructure, achieved via spinodal decomposition; while similar structures have been reported in e.g. Ni-based superalloys, we believe this is the first such structure investigated in a Ti-based material. As such, this work is felt to be of

  14. Non-equiatomic high entropy alloys: Approach towards rapid alloy screening and property-oriented design

    Energy Technology Data Exchange (ETDEWEB)

    Pradeep, K.G. [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-str.1, 40237 Düsseldorf (Germany); Materials Chemistry, RWTH Aachen University, Kopernikusstr.10, 52074 Aachen (Germany); Tasan, C.C., E-mail: c.tasan@mpie.de [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-str.1, 40237 Düsseldorf (Germany); Yao, M.J. [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-str.1, 40237 Düsseldorf (Germany); Deng, Y. [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-str.1, 40237 Düsseldorf (Germany); Department of Engineering Design and Materials, Norwegian University of Science and Technology, No-7491 Trondheim (Norway); Springer, H. [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-str.1, 40237 Düsseldorf (Germany); Raabe, D., E-mail: d.raabe@mpie.de [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-str.1, 40237 Düsseldorf (Germany)

    2015-11-11

    The high entropy alloy (HEA) concept has triggered a renewed interest in alloy design, even though some aspects of the underlying thermodynamic concepts are still under debate. This study addresses the short-comings of this alloy design strategy with the aim to open up new directions of HEA research targeting specifically non-equiatomic yet massively alloyed compositions. We propose that a wide range of massive single phase solid solutions could be designed by including non-equiatomic variants. It is demonstrated by introducing a set of novel non-equiatomic multi-component CoCrFeMnNi alloys produced by metallurgical rapid alloy prototyping. Despite the reduced configurational entropy, detailed characterization of these materials reveals a strong resemblance to the well-studied equiatomic single phase HEA: The microstructure of these novel alloys exhibits a random distribution of alloying elements (confirmed by Energy-Dispersive Spectroscopy and Atom Probe Tomography) in a single face-centered-cubic phase (confirmed by X-ray Diffraction and Electron Backscatter Diffraction), which deforms through planar slip (confirmed by Electron-Channeling Contrast Imaging) and leads to excellent ductility (confirmed by uniaxial tensile tests). This approach widens the field of HEAs to non-equiatomic multi-component alloys since the concept enables to tailor the stacking fault energy and associated transformation phenomena which act as main mechanisms to design useful strain hardening behavior.

  15. Non-equiatomic high entropy alloys: Approach towards rapid alloy screening and property-oriented design

    International Nuclear Information System (INIS)

    Pradeep, K.G.; Tasan, C.C.; Yao, M.J.; Deng, Y.; Springer, H.; Raabe, D.

    2015-01-01

    The high entropy alloy (HEA) concept has triggered a renewed interest in alloy design, even though some aspects of the underlying thermodynamic concepts are still under debate. This study addresses the short-comings of this alloy design strategy with the aim to open up new directions of HEA research targeting specifically non-equiatomic yet massively alloyed compositions. We propose that a wide range of massive single phase solid solutions could be designed by including non-equiatomic variants. It is demonstrated by introducing a set of novel non-equiatomic multi-component CoCrFeMnNi alloys produced by metallurgical rapid alloy prototyping. Despite the reduced configurational entropy, detailed characterization of these materials reveals a strong resemblance to the well-studied equiatomic single phase HEA: The microstructure of these novel alloys exhibits a random distribution of alloying elements (confirmed by Energy-Dispersive Spectroscopy and Atom Probe Tomography) in a single face-centered-cubic phase (confirmed by X-ray Diffraction and Electron Backscatter Diffraction), which deforms through planar slip (confirmed by Electron-Channeling Contrast Imaging) and leads to excellent ductility (confirmed by uniaxial tensile tests). This approach widens the field of HEAs to non-equiatomic multi-component alloys since the concept enables to tailor the stacking fault energy and associated transformation phenomena which act as main mechanisms to design useful strain hardening behavior.

  16. Salt fog corrosion behavior in a powder-processed icosahedral-phase-strengthened aluminum alloy

    International Nuclear Information System (INIS)

    Watson, T.J.; Gordillo, M.A.; Ernst, A.T.; Bedard, B.A.; Aindow, M.

    2017-01-01

    Highlights: • Pitting corrosion resistance has been evaluated for an Al-Cr-Mn-Co-Zr alloy. • Pit densities and depths are far lower than for other high-strength Al alloys. • Corrosion proceeds by selective oxidation of the Al matrix around the other phases. - Abstract: The pitting corrosion resistance has been evaluated for a powder-processed Al-Cr-Mn-Co-Zr alloy which contains ≈35% by volume of an icosahedral quasi-crystalline phase and a little Al 9 Co 2 in an Al matrix. ASTM standard salt fog exposure tests show that the alloy exhibits far lower corrosion pit densities and depths than commercial high-strength aerospace Al alloys under the same conditions. Electron microscopy data show that the salt fog exposure leads to the selective oxidation of the face-centered cubic Al matrix around the other phases, and to the development of a porous outer oxide scale.

  17. Effective-medium theory for nonlinear magneto-optics in magnetic granular alloys: cubic nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, Alexander B. E-mail: granov@magn.ru; Kuzmichov, Michail V.; Clerc, J.-P.; Inoue, Mitsuteru

    2003-03-01

    We propose a simple effective-medium approach for calculating the effective dielectric function of a magnetic metal-insulator granular alloy in which there is a weakly nonlinear relation between electric displacement D and electric field E for both constituent materials of the form D{sub i}={epsilon}{sub i}{sup (0)}E{sub i} +{chi}{sub i}{sup (3)}|E{sub i}|{sup 2}E{sub i}. We assume that linear {epsilon}{sub i}{sup (0)} and cubic nonlinear {chi}{sub i}{sup (3)} dielectric functions are diagonal and linear with magnetization non-diagonal components. For such metal-insulator composite magneto-optical effects depend on a light intensity and the effective cubic dielectric function {chi}{sub eff}{sup (3)} can be significantly greater (up to 10{sup 3} times) than that for constituent materials. The calculation scheme is based on the Bergman and Stroud-Hui theory of nonlinear optical properties of granular matter. The giant cubic magneto-optical nonlinearity is found for composites with metallic volume fraction close to the percolation threshold and at a resonance of optical conductivity. It is shown that a composite may exhibit nonlinear magneto-optics even when both constituent materials have no cubic magneto-optical nonlinearity.

  18. Vanadium-based alloy hydrides for heat pumps, compressors, and isotope separation

    International Nuclear Information System (INIS)

    Libowitz, G.G.

    1988-01-01

    A series of body-centered cubic (b.c.c.) solid solution alloys have been developed which appears to be unusually suitable for several applications involving metal hydrides. It is normally very difficult to induce the body-centered cubic metals, Nb, V, and Ta, to react with hydrogen; in bulk form the reaction will simply not occur at room temperature. Alloys containing Nb exhibited very large hysteresis effects on hydride formation and thus are not suitable for most applications. However, the V-Ti based alloys showed relatively little hysteresis, and because of their unusual thermodynamic properties offer significant advantages for the specific applications discussed below. (orig./HB)

  19. Structural and magnetic properties of Fe{sub x}Ni{sub 100−x} alloys synthesized using Al as a reducing metal

    Energy Technology Data Exchange (ETDEWEB)

    Srakaew, N. [Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Jantaratana, P., E-mail: fscipsj@ku.ac.th [Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Nipakul, P. [Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Sirisathitkul, C. [Molecular Technology Research Unit, School of Science, Walailak University, Nakhon Si Thammarat 80161 (Thailand)

    2017-08-01

    Highlights: • Reduction by aluminum is a simple and safe route to synthesize iron-nickel alloys. • Alloy compositions with up to 90 at.% Fe can be obtained with minimal oxidation. • Morphology and magnetic properties are varied with the alloy composition. - Abstract: Iron-nickel (Fe-Ni) alloys comprising nine different compositions were rapidly synthesized from the redox reaction using aluminum foils as the reducing metal. Compared with conventional chemical syntheses, this simple approach is relatively safe and allows control over the alloy morphology and magnetic behavior as a function of the alloy composition with minimal oxidation. For alloys having low (10%–30%) Fe content the single face-centered cubic (FCC) FeNi{sub 3} phase was formed with nanorods aligned in the (1 1 1) crystalline direction on the cluster surface. This highly anisotropic morphology gradually disappeared as the Fe content was raised to 40%–70% with the alloy structure possessing a mixture of FCC FeNi{sub 3} and body-centered cubic (BCC) Fe{sub 7}Ni{sub 3}. The FCC phase was entirely replaced by the BCC structure upon further increase the Fe content to 80%–90%. The substitution of Ni by Fe in the crystals and the dominance of the BCC phase over the FCC structure gave rise to enhanced magnetization. By contrast, the coercive field decreased as a function of increasing Fe because of the reduction in shape anisotropy and the rise of saturation magnetization.

  20. Secondary ordering in ternary alloy CuMnPt6

    International Nuclear Information System (INIS)

    Takahashi, Miwako; Das, Ananda Kumar; Nakamura, Reo; Ohshima, Ken-ichi; Iwasaki, Hiroshi; Shishido, Toetsu

    2006-01-01

    Using the pulsed-neutron diffraction technique, we performed in situ measurements of structural ordering in the ternary alloy CuMnPt 6 . The diffraction patterns at various temperatures give a direct observation of a double-step ordering: disorder to Cu 3 Au type order as an ordering within the fundamental face-centered cubic lattice to subdivide the lattice into two sublattices formed by face-centered sites (first sublattice) and corner sites (second sublattice) at 968degC; and Cu 3 Au type order to ABC 6 type order as an ordering within the second to subdivide the lattice further into two sublattices formed by alternating (111) planes at 746degC. The order parameters for the ABC 6 type structure experimentally estimated by the method of static concentration waves indicate that the primary ordering developed almost completely, but the secondary ordering remained incomplete. (author)

  1. Study on the formation of cubic texture in Ni-7 at.% W alloy substrates by powder metallurgy routes

    DEFF Research Database (Denmark)

    Zhao, Yue; Suo, HongLi; Zhu, YongHua

    2009-01-01

    One of the main challenges for coated conductor applications is to produce sharp cubic textured alloy substrates with high strength and low magnetism. In this work, the cubic textured Ni–7 at.% W substrates were prepared from different powder metallurgy ingots by rolling-assisted biaxially textured...... substrate processing. The fabrication processes of cubic texture in the Ni–7 at.% W tapes by two powder metallurgy routes are described in detail. Through the optimized process, full width at half maximum values of 6.7° and 5.0° were obtained, as estimated by X-ray (1 1 1) phi scan and (2 0 0) rocking curve...

  2. Neutron irradiation effects on the mechanical properties of thorium and thorium--carbon alloy

    International Nuclear Information System (INIS)

    Wang, S.C.P.

    1978-04-01

    The effects of neutron exposure to 3.0 x 10 18 neutrons/cm 2 on the mechanical properties of thorium and thorium-carbon alloy are described. Tensile measurements were done at six different test temperatures from 4 0 K to 503 0 K and at two strain rates. Thorium and thorium-carbon alloy are shown to display typical radiation hardening like other face-centered cubic metals. The yield drop phenomenon of the thorium-carbon alloy is unchanged after irradiation. The variation of shear stress and effective shear stress with test temperature was fitted to Seeger's and Fleischer's equations for irradiated and unirradiated thorium and thorium-carbon alloy. Neutron irradiation apparently contributes an athermal component to the yield strength. However, some thermal component is detected in the low temperature range. Strain-rate parameter is increased and activation volume is decreased slightly for both kinds of metal after irradiation

  3. Radiation ordering in quenched alloys observed 'in situ' in the high voltage microscope

    International Nuclear Information System (INIS)

    Tendeloo, G. van; Landuyt, J. van; Amelinckx, S.

    1979-01-01

    Different alloys with a face centered cubic disordered structure have been electron irradiated in the quenched or short range order state under direct observation in a high voltage electron microscope. Ordering due to 1 MeV irradiation has been observed in Au 4 MN, Ni 4 Mo and Cu 3 Pd. Care has been taken to avoid ordering due to the thermal effect of the electron beam. It has been demonstrated that although similar states of order can be achieved by thermal and irradiation ordering, the path followed can be different. (author)

  4. Martensitic cubic → tetragonal transition

    International Nuclear Information System (INIS)

    Schumann, H.

    1983-01-01

    Indium-thallium alloys containing 14 to 30% At. Tl have a cubic face-centred beta phase wich changes into a tetragonal face-centred alpha martensite during solidification. The martensite contains twin crystals that are large enough to be seen by means of a light microscope. The phenomenological crystallographic martensite theory was used to calculate Miller's index of the habit plane, the formation of the surface relief, the orientation relations and the critical thickness ratio of the twins. In a beta monocrystal frequently only one of the 24 crystallographic possible habit planes are formed at one end of the sample and migrate through the whole crystal when the temperature drops. Externally applied tension and compression influence in different ways the direction in which the habit plane moves and can even destroy the twinned structure, i.e. they can modify the substructure of the martensite crystal. This induces superelasticity, an effect that has also been described quantitatively. (author)

  5. Defect clustering in concentrated alloys during irradiation

    International Nuclear Information System (INIS)

    Hashimoto, T.; Shigenaka, N.; Fuse, M.

    1992-01-01

    A rate theory based model is presented to investigate the kinetics of interstitial clustering processes in a face-centered cubic (fcc) binary alloy containing A- and B-atoms. Three types of interstitial dumbbells, AA-, BB- and AB-type dumbbells, are considered. Conversions between these interstitial dumbbells are explicitly introduced into the formulation, based on the consideration of dumbbell configurations and movements. A di- interstitial is assumed to be the nucleus of a dislocation loop. Reactions of point defect production by irradiation, mutual recombination of an interstitial and a vacancy, dislocation loop nucleation and their growth are included in the model. Parameter values are chosen based on the atom size of the alloy elements, and dislocation loop formation kinetics are investigated while varying alloy compositions. Two different types of kinetics are obtained in accordance with the dominant loop nucleus types. Conversions between interstitial dumbbells are important in the determination of the interstitial dumbbell concentration ratios, of the dominant nucleus types, and consequently, the loop formation kinetics. Dislocation loop concentration decreases with increasing undersized atom content, but dose rate and temperature dependence of loop concentration are insensitive to alloy compositions. (author)

  6. ODS alloys for structures subjected to irradiation

    International Nuclear Information System (INIS)

    Carlan, Y. de

    2010-01-01

    ODS (oxide-dispersion-strengthened) materials are considered for cladding purposes for the fourth-generation sodium-cooled fast reactors. ODS materials afford many benefits. Indeed, these high-performance materials combine, at the same time, remarkable mechanical strength, in hot conditions, and outstanding irradiation behavior. New ODS steel grades, exhibiting better performance levels than the last-generation austenitic steels, afford not only negligible swelling under irradiation, owing to their 'ferritic' body-centered cubic structure - by contrast to austenitic grades, which feature a face-centered cubic structure - but equally outstanding creep properties, owing to the nano-reinforcements present in the matrix. ODS materials are obtained by powder metallurgy, the first fabrication step involves co-grinding a metal powder together with yttrium oxide (Y 2 O 3 ) powder. At this stage, an iron oxide may also be added, or an yttrium-rich intermetallic compound in order to provide the amounts of yttrium, and oxygen required for the formation of nano-oxides. The metal powder consists of a powder pre-alloyed to the chemical composition of the desired material. Once the powder has been obtained, consolidation of the ODS materials is achieved either by hot extrusion, or by hot isostatic pressing. (A.C.)

  7. Influence of stacking fault energies on the size distribution and character of defect clusters formed by collision cascades in face-centered cubic metals

    Directory of Open Access Journals (Sweden)

    Y. Yang

    2016-12-01

    Full Text Available Molecular dynamics simulations are performed to evaluate the influence of the stacking fault energy (SFE as a single variable parameter on defect formation by collision cascades in face-centered cubic metals. The simulations are performed for energies of a primary knock-on atom (EPKA up to 50keV at 100K by using six sets of the recently developed embedded atom method–type potentials. Neither the number of residual defects nor their clustering behavior is found to be affected by the SFE, except for the mean size of the vacancy clusters at EPKA=50keV. The mean size increases as the SFE decreases because of the enhanced formation of large vacancy clusters, which prefer to have stacking faults inside them. On the other hand, the ratio of glissile self-interstitial atom (SIA clusters decreases as the SFE increases. At higher SFEs, both the number of Frank loops and number of perfect loops tend to decrease; instead, three-dimensional irregular clusters with higher densities appear, most of which are sessile. The effect of SFE on the number of Frank loops becomes apparent only at a high EPKA of 50keV, where comparably large SIA clusters can be formed with a higher density.

  8. Mechanical Properties and Corrosion Characteristics of Thermally Aged Alloy 22

    International Nuclear Information System (INIS)

    Rebak, R B; Crook, P

    2002-01-01

    Alloy 22 (UNS N06022) is a candidate material for the external wall of the high level nuclear waste containers for the potential repository site at Yucca Mountain. In the mill-annealed (MA) condition, Alloy 22 is a single face centered cubic phase. When exposed to temperatures on the order of 600 C and above for times higher than 1 h, this alloy may develop secondary phases that reduce its mechanical toughness and corrosion resistance. The objective of this work was to age Alloy 22 at temperatures between 482 C and 760 C for times between 0.25 h and 6,000 h and to study the mechanical and corrosion performance of the resulting material. Aging was carried out using wrought specimens as well as gas tungsten arc welded (GTAW) specimens. Mechanical and corrosion testing was carried out using ASTM standards. Results show-that the higher the aging temperature and the longer the aging time, the lower the impact toughness of the aged material and the lower its corrosion resistance. However, extrapolating both mechanical and corrosion laboratory data predicts that Alloy 22 will remain corrosion resistant and mechanically robust for the projected lifetime of the waste container

  9. A comparative study of the effects of thermal- and fast-neutron irradiation on some selected dilute face centered cubic alloys

    International Nuclear Information System (INIS)

    Piani, C.S.B.

    1981-12-01

    Point defect reactions in Pt and Cu and certain dilute alloys were investigated using a resistivity method following either fast-neutron or thermal-neutron irradiation at 4 K. An enhanced irradiation-induced resistivity in certain of the alloys could be attributed to actual enhanced defect production. This was related to a mechanism involving defocussing of replacement collision chains at impurities, together with possible nucleation of interstitial clusters at impurities. The close-pair recovery substages I(A), I(B) and I(C), strongly evident in thermal-neutron-irradiated materials, were suppressed by fast-neutron irradiation. This could be related to the higher energy transfers during irradiation and to significant amounts of irradiation annealing (spontaneous recombination). Fast-neutron cascades favoured interstitial clustering and reduced recovery of the interstitial migration substages I(D) and I(E). Interstitial trapping at impurities during I(D) and I(E) although evident, was less effective in fast-neutron irradiation. Higher concentrations of impurities reduced close-pair recovery as well. Stage II detrapping was related to the trapping efficiency of impurities, as well as to the effective defect concentration. Oversized impurities (Au in Pt or Cu) acted as weak traps, while undersized impurities (Cu or Ni in Pt) appeared to from deeper 'mixed-dumbbell' traps. The 120 K substage in Pt had a unique activation energy approximately 0,37 plus minus 0,03 eV, but did not seem to be due to an impurity detrapping process. It was not possible to attribute the 360 K stage in Pt with a unique activation energy in fast-neutron irradiation

  10. Microstructure of As-cast Co-Cr-Mo Alloy Prepared by Investment Casting

    Science.gov (United States)

    Park, Jong Bum; Jung, Kyung-Hwan; Kim, Kang Min; Son, Yong; Lee, Jung-Il; Ryu, Jeong Ho

    2018-04-01

    The microstructure of a cobalt-base alloy (Co-Cr-Mo) obtained by an investment casting process was studied. This alloy complies with the ASTM F75 standard and is widely used in the manufacturing of orthopedic implants owing to its high strength, good corrosion resistance, and excellent biocompatibility. This work focuses on the resulting microstructures arising from normal industrial environmental conditions. The characterization of the samples was carried out using optical microscopy, field emission scanning electron microscopy and energy-dispersive spectroscopy. In this study, the as-cast microstructure is an γ-Co (face-centered cubic) dendritic matrix with the presence of a secondary phase, such as M23C6 carbides precipitated at grain boundaries and interdendritic zones. These precipitates are the main strengthening mechanism in this type of alloy. Other minority phases, such as the σ phase, were also detected, and their presence could be linked to the manufacturing process and environment.

  11. Determination of the crystallographic parameters of cubic-to-tetragonal martensitic transformation using the infinitesimal deformation approach and wechsler, lieberman, and read theory

    Science.gov (United States)

    Navruz, N.

    2001-02-01

    The aim of the present study is to discuss the infinitesimal deformation (ID) approach’s application and practical applicability. Therefore, ID theory was reformulated and applied to the face centered cubic (fcc) to body centered tetragonal (bct) martensitic transformation for the case of the (110) [bar 110] slip system as the lattice invariant shear (LIS). The analytical solutions for the habit plane orientation, the magnitude of the lattice invariant shear, the orientation relation between parent and product phases, etc. were derived for fcc to bct martensitic transformation in an Fe-7 pct Al-2 pct C alloy. In order to compare with phenomenological theory’s results, crystallographic parameters were also calculated by using Wechsler, Lieberman, and Read (W-L-R) phenomenological theory. Agreement between the two results obtained from ID approach and W-L-R theory was found to be excellent.

  12. Microstructural Evolution of AlCoCrFeNiSi High-Entropy Alloy Powder during Mechanical Alloying and Its Coating Performance.

    Science.gov (United States)

    Tian, Lihui; Fu, Ming; Xiong, Wei

    2018-02-23

    High-entropy alloys (HEAs) are promising structural materials due to their excellent comprehensive performances. The use of mechanically alloyed powders to deposit HEA coatings through atmospheric plasma spraying (APS) is an effective approach that can broaden the application areas of the HEAs. In this paper, a ductility-brittleness AlCoCrFeNiSi system was chosen as an object of study, and the detailed evolution of the surface morphology, particle size distribution, and microstructure of the powder during mechanical alloying was investigated. An AlCoCrFeNiSi HEA coating was deposited using powder milled for 10 h, which can be used as an ideal feedstock for APS. The surface morphology, microstructure, microhardness, and wear behavior of the coating at room temperature were investigated. The results showed that as the milling time increased, the particle size first increased, and then decreased. At the milling time of 10 h, simple body-centered cubic (BCC) and face-centered cubic (FCC) solid solution phases were formed. After spraying, the lamellar structure inside a single particle disappeared. An ordered BCC phase was detected, and the diffraction peaks of the Si element also disappeared, which indicates that phase transformation occurred during plasma spraying. A transmission electron microscopy analysis showed that nanometer crystalline grains with a grain size of about 30 nm existed in the APS coating. For the coating, an average microhardness of 612 ± 41 HV was obtained. Adhesive wear, tribo-oxidation wear, and slight abrasion wear took place during the wear test. The coating showed good wear resistance, with a volume wear rate of 0.38 ± 0.08 × 10 -4 mm³·N -1 ·m -1 , which makes it a promising coating for use in abrasive environments.

  13. High-Temperature Tensile Strength of Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex Alloy (High-Entropy Alloy)

    Science.gov (United States)

    Daoud, H. M.; Manzoni, A. M.; Wanderka, N.; Glatzel, U.

    2015-06-01

    Homogenizing at 1220°C for 20 h and subsequent aging at 900°C for 5 h and 50 h of a novel Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy (high-entropy alloy) produces a microstructure consisting of an L12 ordered γ' phase embedded in a face-centered cubic solid-solution γ matrix together with needle-like B2 precipitates (NiAl). The volume fraction of γ' phase is ~46% and of needle-like B2 precipitates database; Thermo-Calc Software, Stockholm, Sweden). The high-temperature tensile tests were carried out at room temperature, 600°C, 700°C, 800°C, and 1000°C. The tensile strength as well as the elongation to failure of both heat-treated specimens is very high at all tested temperatures. The values of tensile strength has been compared with literature data of well-known Alloy 800H and Inconel 617, and is discussed in terms of the observed microstructure.

  14. Technics Research on Polycrystalline Cubic Boron Nitride Cutting Tools Dry Turning Ti-6AL-4V Alloy Based on Orthogonal Experimental Design

    Directory of Open Access Journals (Sweden)

    Jia Yunhai

    2018-01-01

    Full Text Available Ti-6Al-4V components are the most widely used titanium alloy products not only in the aerospace industry, but also for bio-medical applications. The machine-ability of titanium alloys is impaired by their high temperature chemical reactivity, low thermal conductivity and low modulus of elasticity. Polycrystalline cubic boron nitride represents a substitute tool material for turning titanium alloys due to its high hardness, wear resistance, thermal stability and hot red hardness. For determination of suitable cutting parameters in dry turning Ti-6AL-4V alloy by Polycrystalline cubic boron nitride cutting tools, the samples, 300mm in length and 100mm in diameter, were dry machined in a lathe. The turning suitable parameters, such as cutting speed, feed rate and cut depth were determined according to workpieces surface roughness and tools flank wear based on orthogonal experimental design. The experiment showed that the cutting speed in the range of 160~180 m/min, the feed rate is 0.15 mm/rev and the depth of cut is 0.20mm, ideal workpiece surface roughness and little cutting tools flank wear can be obtained.

  15. Limit cycles bifurcating from the periodic annulus of cubic homogeneous polynomial centers

    Directory of Open Access Journals (Sweden)

    Jaume Llibre

    2015-10-01

    Full Text Available We obtain an explicit polynomial whose simple positive real roots provide the limit cycles which bifurcate from the periodic orbits of any cubic homogeneous polynomial center when it is perturbed inside the class of all polynomial differential systems of degree n.

  16. First-principles determination of band-to-band electronic transition energies in cubic and hexagonal AlGaInN alloys

    Directory of Open Access Journals (Sweden)

    F. L. Freitas

    2016-08-01

    Full Text Available We provide approximate quasiparticle-corrected band gap energies for quaternary cubic and hexagonal AlxGayIn1–x–yN semiconductor alloys, employing a cluster expansion method to account for the inherent statistical disorder of the system. Calculated values are compared with photoluminescence measurements and discussed within the currently accepted model of emission in these materials by carrier localization. It is shown that bowing parameters are larger in the cubic phase, while the range of band gap variation is bigger in the hexagonal one. Experimentally determined transition energies are mostly consistent with band-to-band excitations.

  17. First-principles determination of band-to-band electronic transition energies in cubic and hexagonal AlGaInN alloys

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, F. L., E-mail: felipelopesfreitas@gmail.com; Marques, M.; Teles, L. K. [Grupo de Materiais Semicondutores e Nanotecnologia, Instituto Tecnológico de Aeronáutica, 12228-900 São José dos Campos, SP (Brazil)

    2016-08-15

    We provide approximate quasiparticle-corrected band gap energies for quaternary cubic and hexagonal Al{sub x}Ga{sub y}In{sub 1–x–y}N semiconductor alloys, employing a cluster expansion method to account for the inherent statistical disorder of the system. Calculated values are compared with photoluminescence measurements and discussed within the currently accepted model of emission in these materials by carrier localization. It is shown that bowing parameters are larger in the cubic phase, while the range of band gap variation is bigger in the hexagonal one. Experimentally determined transition energies are mostly consistent with band-to-band excitations.

  18. Minimal knotted polygons in cubic lattices

    International Nuclear Information System (INIS)

    Van Rensburg, E J Janse; Rechnitzer, A

    2011-01-01

    In this paper we examine numerically the properties of minimal length knotted lattice polygons in the simple cubic, face-centered cubic, and body-centered cubic lattices by sieving minimal length polygons from a data stream of a Monte Carlo algorithm, implemented as described in Aragão de Carvalho and Caracciolo (1983 Phys. Rev. B 27 1635), Aragão de Carvalho et al (1983 Nucl. Phys. B 215 209) and Berg and Foester (1981 Phys. Lett. B 106 323). The entropy, mean writhe, and mean curvature of minimal length polygons are computed (in some cases exactly). While the minimal length and mean curvature are found to be lattice dependent, the mean writhe is found to be only weakly dependent on the lattice type. Comparison of our results to numerical results for the writhe obtained elsewhere (see Janse van Rensburg et al 1999 Contributed to Ideal Knots (Series on Knots and Everything vol 19) ed Stasiak, Katritch and Kauffman (Singapore: World Scientific), Portillo et al 2011 J. Phys. A: Math. Theor. 44 275004) shows that the mean writhe is also insensitive to the length of a knotted polygon. Thus, while these results for the mean writhe and mean absolute writhe at minimal length are not universal, our results demonstrate that these values are quite close the those of long polygons regardless of the underlying lattice and length

  19. AIMgSil Alloy Characterization Using Transmission Electron Microscope (TEM)

    International Nuclear Information System (INIS)

    Masrukan; Elman, P.

    1996-01-01

    The aging alloy of AIMgSil containing Mg 2 Si of 1.29 % has been done with the following steps: e.q (a) part of the specimen was heated at 400 o C during 3 hours, and (b) the other part was done with solution treatment at 550 o C followed by quenching. After quenching a part of the specimen was aged at room temperature and other specimen was aged at 160 o C during 16 hours. After the specimen had been heated, then it was shaped into thin foil to be examined by Transmission Electron Microscope. The result showed that the heating at temperature of 400 o C during 3 hours created a second phase (i.e.Mg 2 Si) was like stick shape with the hexagonal structure at [0111] orientation and matrix [001], and the hardness was 31 HB. The aging of specimen at room temperature gave result a GP zone which was like the needles shape in the dislocation area of the face center cubic structure at [111] orientation and [111] matrix. The hardness obtained was 64 HB. In the other hand the aging process at temperature of 160 o C within 16 hours have resulted the precipitate which was greater than that of the former needle shaped as the face center cubic structure without dislocation at matrix with [111] orientation and [114] matrix. The hardness at this condition was 94 HB

  20. Structure determination of the ordered (2 × 1) phase of NiSi surface alloy on Ni(111) using low-energy electron diffraction

    Science.gov (United States)

    Sazzadur Rahman, Md.; Amirul Islam, Md.; Saha, Bidyut Baran; Nakagawa, Takeshi; Mizuno, Seigi

    2015-12-01

    The (2 × 1) structure of the two-dimensional nickel silicide surface alloy on Ni(111) was investigated using quantitative low-energy electron diffraction analysis. The unit cell of the determined silicide structure contains one Si and one Ni atom, corresponding to a chemical formula of NiSi. The Si atoms adopt substitutional face-centered cubic hollow sites on the Ni(111) substrate. The Ni-Si bond lengths were determined to be 2.37 and 2.34 Å. Both the alloy surface and the underlying first layers of Ni atoms exhibit slight corrugation. The Ni-Si interlayer distance is smaller than the Ni-Ni interlayer distance, which indicates that Si atoms and underlying Ni atoms strongly interact.

  1. Iron alloy Fischer-tropsch catalysts--1. Oxidation-reduction studies of the Fe-Ni system

    Energy Technology Data Exchange (ETDEWEB)

    Unmuth, E.E.; Schwartz, L.H.; Butt, J.B.

    1980-01-01

    Catalysts containing 5% iron, nickel, or 4:1 iron-nickel on silica were hydrogen-reduced at 425/sup 0/C for 12 or 24 hr, reoxidized in air for 2 or 4 hr, reduced again in hydrogen for 12 hr, and studied at each treatment step by Moessbauer spectroscopy, X-ray diffraction, and temperature-programed desorption. The nickel was reduced directly to the metal, redispersed during the oxidation, and gave 20% smaller particles in the second reduction than in the first reduction. The ..cap alpha..-Fe/sub 2/O/sub 3/ reduced via an Fe/sub 3/O/sub 4/ intermediate and yielded approx. 70% metallic iron and the second reduction produced about the same particle size as the first reduction. The alloy catalyst reduced into a mixture of two phases, a face-centered cubic phase containing approx. 37.5% Ni, i.e., the bulk equilibrium value, and a body-centered cubic phase, and the particle sizes obtained in the first and second reductions were similar. The activation energies for the reduction were determined.

  2. Formation of metastable cubic phase in Ce{sub 100−x}Al{sub x} (x=45, 50) alloys and their thermal and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Idzikowski, Bogdan, E-mail: idzi@ifmpan.poznan.pl [Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań (Poland); Centre for Advanced Materials and Smart Structures, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław (Poland); Śniadecki, Zbigniew [Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań (Poland); Centre for Advanced Materials and Smart Structures, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław (Poland); Puźniak, Roman [Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warszawa (Poland); Kaczorowski, Dariusz [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław (Poland); Centre for Advanced Materials and Smart Structures, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław (Poland)

    2017-01-01

    Ce{sub 100−x}Al{sub x} (x=45 and 50) alloys were synthesized by rapid quenching technique in the form of ribbons composed of nanocrystalline phase of CeAl with the ClCs-type structure (Pm-3m space group) embedded in an amorphous matrix. The cubic CeAl phase is known as metastable with random distribution of Ce and Al atoms in the unit cell. The crystalline volume fraction is about 7.5% in Ce{sub 55}Al{sub 45} and 3% in Ce{sub 50}Al{sub 50}. The alloy Ce{sub 55}Al{sub 45} shows better thermal stability than Ce{sub 50}Al{sub 50}, indicated by higher effective activation energy and higher crystallization temperature. Small off-stoichiometry in Ce{sub 55}Al{sub 45} results in degrading the glass forming ability and promotes formation of the cubic CeAl phase, as confirmed by magnetic measurements. In both alloys, the Ce ions are in stable trivalent state and order magnetically near 20 K. Another magnetic phase transition close to 10 K was found for Ce{sub 50}Al{sub 50} and was attributed to the presence of the well-known stable orthorhombic CeAl phase. To the best of our knowledge, the magnetic behavior of the CeAl cubic phase is reported here for the first time. - Highlights: • Synthesis of metastable cubic CeAl phase by rapid quenching. • The Ce ions in Ce{sub 55}Al{sub 45} and Ce{sub 50}Al{sub 50} are in stable trivalent state. • Magnetic transition near 10 K connected with the orthorhombic CeAl phase. • Phase transition at about 20 K originates from the cubic CeAl phase.

  3. Wear resistance of layers hard faced by the high-alloyed filler metal

    OpenAIRE

    Dušan Arsić; Vukić Lazić; Ruzica R. Nikolic; Milan Mutavdžić; Srbislav Aleksandrović; Milan Djordjević

    2016-01-01

    The objective of this work was to determine the wear resistance of layers hard faced by the high-alloyed filler metal, with or without the austenite inter-layer, on parts that operate at different sliding speeds in conditions without lubrication. The samples were hard faced with the filler metal E 10-UM-60-C with high content of C, Cr and W. Used filler metal belongs into group of alloys aimed for reparatory hard facing of parts damaged by abrasive and erosive wear and it is characterized by ...

  4. Single-crystal elastic constants of a plutonium-gallium alloy

    International Nuclear Information System (INIS)

    Moment, R.L.

    1976-01-01

    The single-crystal elastic constants of a plutonium-1 wt % gallium alloy were determined at room temperature by measuring ultrasonic sound-wave velocities. The three independent elastic constants of this face-centered cubic delta-phase alloy were determined from the longitudinal and the two shear-wave velocities, all along a direction. Their values are C 11 =3.628, C 12 =2.673 and C 44 =3.359 in units of 10 10 N/m 2 ; the respective errors are estimated to be 1%, 1%, and 0.3 %. The Zener anisotropy ratio is 7.03, almost twice that known for any other fcc metal, and falls among the ratios for the body centered cubic alkali metals, which are noted for their high elastic anisotropy. Polycrystalline elastic constants calculated from the single-crystal data are Young's modulus E=4.064, the shear modulus G=1.596 and the bulk modulus (reciprocal compressibility) B=2.991, all in units of 10 10 N/m 2 , and Poisson's ratio γ=0.27. These values of E and G are both lower than those obtained by Taylor, Linford and Dean from measurements on polycrystalline specimens. Within a single crystal, the longitudinal sound velocity varies with direction by a factor of 1.4 and the transverse velocity by a factor of 2.6. The maximum Young's modulus (along ) was 5.4 times larger than the minimum (along ). The Debye temperature was calculated to be 105.7 K at 293 K and estimated to be 114 K at 0.K. (Auth.)

  5. An overview on the Bauschinger effect in metallic materials

    International Nuclear Information System (INIS)

    Wang Yanfeng; Li Cong; Ling Xuyu; Shen Baoluo; Gao Shengji

    2002-01-01

    The Bauschinger effect in metallic materials including f.c.c. (face-centered cubic) and b.c.c. (body-centered cubic) materials such as pure alloys, casting alloys, copper alloys, aluminium alloys and metal matrix composite materials, and h.c.p. (hexagonal close packed) materials such as zirconium alloys and titanium alloys have been summarized comprehensively. The mechanism of Bauschinger effect is reviewed from the point of dislocation theory and internal stress (or back stress) that is responsible for the effect. Based upon these theories, the methods for calculating internal stress and models for simulating the effect are described briefly, which could explain the effect quantitatively. Finally, the measures to reduce or eliminate the effect have been pointed out, along with the issues to be researched in the future

  6. An evolution from 3D face-centered-cubic ZnSnO3 nanocubes to 2D orthorhombic ZnSnO3 nanosheets with excellent gas sensing performance

    International Nuclear Information System (INIS)

    Chen Yuejiao; Yu Ling; Li Qing; Wu Yan; Li Qiuhong; Wang Taihong

    2012-01-01

    We have successfully observed the development of three-dimensional (3D) face-centered-cubic ZnSnO 3 into two-dimensional (2D) orthorhombic ZnSnO 3 nanosheets, which is the first observation of 2D ZnSnO 3 nanostructures to date. The synthesis from 3D to 2D nanostructures is realized by the dual-hydrolysis-assisted liquid precipitation reaction and subsequent hydrothermal treatment. The time-dependent morphology indicates the transformation via a ‘dissolution–recrystallization’ mechanism, accompanied by a ‘further growth’ process. Furthermore, the 2D ZnSnO 3 nanosheets consist of smaller sized nanoflakes. This further increases the special specific surface area and facilitates their application in gas sensing. The 2D ZnSnO 3 nanosheets exhibit excellent gas sensing properties, especially through their ultra-fast response and recovery. When exposed to ethanol and acetone, the response rate is as fast as 0.26 s and 0.18 s, respectively, and the concentration limit can reach as low as 50 ppb of ethanol. All these results are much better than those reported so far. Our experimental results indicate an efficient approach to realize high-performance gas sensors. (paper)

  7. Enabling microstructural changes of FCC/BCC alloys in 2D dislocation dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Ilker Topuz, Ahmet, E-mail: aitopuz@gmail.com

    2015-03-11

    Dimension reduction procedure is the recipe to represent defects in two dimensional dislocation dynamics according to the changes in the geometrical properties of the defects triggered by different conditions such as radiation, high temperature, or pressure. In the present study, this procedure is extended to incorporate further features related to the presence of defects with a special focus on face-centered cubic/body-centered cubic alloys used for diverse engineering purposes. In order to reflect the microstructural state of the alloy on the computational cell of two dimensional dislocation dynamics, the distribution of the multi-type defects over slip lines is implemented by using corresponding strength and line spacing for each type of defect. Additionally, a simple recursive incremental relation is set to count the loop accumulation on the precipitates. In the case of continuous resistance against the motion of edge dislocations on the slip lines, an expression of friction is introduced to see its contribution on the yield strength. Each new property is applied independently on a different material by using experimental information about defect properties and grain sizes under the condition of plain strain deformation: both constant and dynamically increasing obstacle strength for precipitate coarsening in prime-aged and heat-treated copper-chromium-zirconium, internal friction in tantalum-2.5tungsten, and mixed hardening due to the presence of precipitates and prismatic loops in irradiated oxide dispersion strengthened EUROFER with 0.3% yttria.

  8. Influence of a hydrostatic pressure on the diffusion in metals having a cubic structure

    International Nuclear Information System (INIS)

    Beyeler, M.

    1969-01-01

    In view of obtaining informations on the structure of vacancies. We have determined, by diffusion experiments under high pressure, the activation volumes for self diffusion in different face centered cubic metals: silver, gold, copper, aluminium and in body centered cubic uranium (gamma phase). Activation volumes for noble metals diffusion in aluminium have also been investigated. The experimental results on gold, silver and copper are in good agreement with most of the theoretical models. The estimated activation volume for gamma uranium seems to indicate a vacancy mechanism.The results on aluminium for both self and impurity diffusion agree quite well with Friedel's theoretical predictions [fr

  9. Nano-twin mediated plasticity in carbon-containing FeNiCoCrMn high entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Materials Science and Engineering Department, University of Tennessee, Knoxville, TN 37996 (United States); Parish, C.M. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Bei, H., E-mail: beih@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2015-10-25

    Equiatomic FeNiCoCrMn alloy has been reported to exhibit promising strength and ductility at cryogenic temperature and deformation mediated by nano-twining appeared to be one of the main reasons. We use the FeNiCoCrMn alloy as a base alloy to seek further improvement of its mechanical properties by alloying additional elements, i.e., interstitial carbon. The effects of carbon on microstructures, mechanical properties and twinning activities were investigated in two different temperatures (77 and 293 K). With addition of 0.5 at% C, the high entropy alloy still remains entirely single phase face-centered cubic (FCC) crystal structure. The materials can be cold rolled and recrystallized to produce a microstructure with equiaxed grains. Both strain hardening rate and strength are enhanced while high uniform elongations to fracture (∼70% at 77 K and ∼40% at 293 K) are still maintained. The increased strain hardening and strength could be caused by the promptness of deformation twinning in C-containing high entropy alloys. - Highlights: • Interstitial atom C was successfully added into FeNiCoCrMn high entropy alloys. • The strain hardening rate and strength are enhanced in the C-containing alloy. • The increased strain-hardening and strength are caused by the nano-twinning.

  10. Microstructure and Mechanical Properties in Gamma(face-centered cubic) + Gamma Prime(L12) Precipitation-Strengthened Cobalt-based Superalloys

    Science.gov (United States)

    Bocchini, Peter J.

    High-temperature structural alloys for aerospace and energy applications have long been dominated by Ni-based superalloys, whose high-temperature strength and creep resistance can be attributed to a two-phase microstructure consisting of a large volume fraction of ordered gamma'(L12)-precipitates embedded in a disordered gamma(f.c.c.)-matrix. These alloys exhibit excellent mechanical behavior and thermal stability, but after decades of incremental improvement, are nearing the theoretical limit of their operating temperatures. In 2006, an analogous gamma(f.c.c.) + gamma'(L12) microstructure was identified in the Co-Al-W ternary system with liquidus and solidus temperatures 50-150 °C higher than conventional Ni-based superalloys. The work herein focuses on assessing the effects of alloying additions on microstructure and mechanical behavior in an effort to lay the foundations for understanding this emerging alloy system. A variety of Co-based superalloys are investigated in order to study fundamental materials properties and to address key engineering challenges. Coarsening rate constants and temporal exponents are measured for gamma'(L1 2)-precipitates in a ternary Co-Al-W alloy aged at 650 °C and 750 °C. A series of Co-Al-W-B-Zr alloys are cast to study the influence of segregation of B and Zr to grain boundaries (GBs) on mechanical properties. Co-Ni-Al-W-Ti alloys with various amounts of Al, W, and Ti are cast in order to fabricate Co-based superalloys with decreased density and increased gamma'(L1 2)-solvus temperature. 2-D dislocation dynamics modeling is employed to predict how gamma'(L12)-precipitate size and volume fraction affect the mechanical properties of Ni- and Co-based superalloys. Compositional information such as phase concentrations, partitioning behavior, and GB segregation are measured with local electrode atom probe (LEAP) tomography in alloys with fine microstructures and with scanning electron microscope (SEM) electron dispersive x

  11. Thermal stability of the microstructure of an aged Nb-Zr-C alloy

    Science.gov (United States)

    Uz, Mehmet; Titran, Robert H.

    1991-01-01

    The effects of thermal aging with and without an applied stress on the microstructure of a Nb-Zr-C alloy containing 0.9 wt percent Zr and 0.06 percent C were studied. Chemical analysis, metallographic examination, energy dispersive X-ray spectra of the bulk material, and chemical and X-ray analyses of the phase-extracted residue were used to characterize the microstructure. The samples examined were from a creep strength study involving hot and cold working, and various combinations of exposure to temperatures ranging from 1350 to 1755 K with and without applied load times as long as 34,000 plus hours. The results showed that the initial microstructure consisted primarily of orthorombic precipitates of Nb sub C which were partially or completely transformed to face-centered cubic carbides of Nb and Zr, (Zr, Nb)C, upon prolonged exposure to elevated temperatures. Furthermore, it was found that the microstructure of the alloy is extremely stable owing to the very finely distributed precipitates throughout its matrix and along the grain boundaries. The lattice parameters of the cubic carbides were determined to vary from 0.458 to 0.465 nm as the Zr/Nb ratio varied from 38/62 to 75/25.

  12. Thermal stability of the microstructure of an aged Nb-Zr-C alloy

    International Nuclear Information System (INIS)

    Uz, M.; Titran, R.H.

    1991-01-01

    The effects of thermally aging with and without an applied stress on the microstructure of a Nb-Zr-C alloy containing 0.9 wt % Zr and 0.06 wt % C were studied. Chemical analysis, metallographic examination, energy dispersive x-ray spectra of the bulk material, and chemical and x-ray analyses of the phase-extracted residue were used to characterize the microstructure. The samples examined were from a creep strength study involving hot and cold working, and various combinations of exposure to temperatures ranging from 1350 to 1755 K with and without applied load for times as long as 34,000 plus hours. The results showed that the initial microstructure consisted primarily of orthorhombic precipitates of Nb 2 C which were partially or completely transformed to face-centered cubic carbides of Nb and Zr, (Zr,Nb)C, upon prolonged exposure to elevated temperatures. Furthermore, it was found that the microstructure of the alloy is extremely stable owing to the very finely distributed precipitates throughout its matrix and along the grain boundaries. The lattice parameters of the cubic carbides were determined to vary from 0.458 to 0.465 nm as the Zr/Nb ratio varied from 38/62 to 75/25. 25 refs., 5 figs., 4 tabs

  13. Local Chemical Ordering and Negative Thermal Expansion in PtNi Alloy Nanoparticles.

    Science.gov (United States)

    Li, Qiang; Zhu, He; Zheng, Lirong; Fan, Longlong; Wang, Na; Rong, Yangchun; Ren, Yang; Chen, Jun; Deng, Jinxia; Xing, Xianran

    2017-12-13

    An atomic insight into the local chemical ordering and lattice strain is particular interesting to recent emerging bimetallic nanocatalysts such as PtNi alloys. Here, we reported the atomic distribution, chemical environment, and lattice thermal evolution in full-scale structural description of PtNi alloy nanoparticles (NPs). The different segregation of elements in the well-faceted PtNi nanoparticles is convinced by extended X-ray absorption fine structure (EXAFS). Atomic pair distribution function (PDF) study evidences the coexistence of the face-centered cubic and tetragonal ordering parts in the local environment of PtNi nanoparticles. Further reverse Monte Carlo (RMC) simulation with PDF data obviously exposed the segregation as Ni and Pt in the centers of {111} and {001} facets, respectively. Layer-by-layer statistical analysis up to 6 nm for the local atomic pairs revealed the distribution of local tetragonal ordering on the surface. This local coordination environment facilitates the distribution of heteroatomic Pt-Ni pairs, which plays an important role in the negative thermal expansion of Pt 41 Ni 59 NPs. The present study on PtNi alloy NPs from local short-range coordination to long-range average lattice provides a new perspective on tailoring physical properties in nanomaterials.

  14. A kinematical model for the plastic deformation of face-centred cubic polycrystals

    International Nuclear Information System (INIS)

    Leffers, T.

    1975-01-01

    During the plastic deformation of a polycrystalline material the deformation of the individual grain must be adjusted to the deformation of the surrounding grains so that material continuity is maintained. This continuity condition is the essential feature distinguishing polycrystal deformation from single-crystal deformation. In the present work it is attempted to explain how the continuity condition is fulfilled in face-centred cubic polycrystals. The early treatments of the plastic deformation of polycrystalline materials were aimed directly at the formulation of a ''dynamical'' theory, i.e. it was the intention to cover the magnitude of the stresses involved as well as the slip processes producing the deformation. It is argued that rolling texture is a good tool for a necessary intermediate stage of establishing a ''kinematical'' model describing the slip processes, but not the magnitude of the necessary stresses. Three aspects of rolling texture are considered: (a) the development of the rolling textures found experimentally in face-centred cubic materials can be computer-simulated on the basis of models for the plastic deformation that only involve (111) slip; (b) experimentally that the widely accepted twinning theory for the transition in f.c.c. rolling texture does not reflect the behaviour of real materials; and (c) it is shown that the texture transition is thermally activated with an activation energy corresponding to that of cross slip. An electron-microscopical investigation of the slip process operating during rolling of f.c.c. polycrystals is also included. On the basis of the computer simulation of the texture formation supplemented by the experimental results a kinematical model is developed for the plastic deformation of f.c.c. polycrystals by rolling. In the proposed model the material continuity is maintained by inhomogeneous slip processes, combined with homogeneous multiple glide when the cross-slip frequency is high. (author)

  15. Effect of Al content on structure and mechanical properties of the Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yurchenko, N.Yu. [Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod 308015 (Russian Federation); Stepanov, N.D., E-mail: stepanov@bsu.edu.ru [Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod 308015 (Russian Federation); Shaysultanov, D.G. [Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod 308015 (Russian Federation); Tikhonovsky, M.A. [National Science Center “Kharkov Institute of Physics and Technology”, NAS of Ukraine, Kharkov, 61108 (Ukraine); Salishchev, G.A. [Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod 308015 (Russian Federation)

    2016-11-15

    In present study, structure and mechanical properties of the Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys after arc melting and annealing at 1200 °C for 24 h are investigated. The CrNbTiVZr alloy is composed of body centered cubic (bcc) and C15 (face centered cubic) Laves phases while the Al{sub x}CrNbTiVZr (x = 0.25; 0.5; 1) alloys consist of bcc and two C14 (hexagonal close packed) Laves phases with different chemical compositions. Thermodynamic modeling predicts existence of two phases – bcc and C15 Laves phase and broadening of single bcc phase field due to Al addition. The density of the alloys decreases with the increase of Al content. The alloys are found to be extremely brittle at room temperature and 600 °C. The alloys have high strength at temperatures of 800–1000 °C. For example, yield strength at 800 °C increases from 440 MPa for the CrNbTiVZr alloy to 1250 MPa for the AlCrNbTiVZr alloy. The experimental phase composition of the Al{sub x}CrNbTiVZr alloys is compared with predicted equilibrium phases and the factors governing the transformation of C15 to C14 Laves phases due to Al addition to the CrNbTiVZr alloy analyzed. Specific properties of the alloys are compared with other high-entropy alloys and commercial Ni-based superalloys. - Highlights: •Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) alloys are arc melted and annealed at 1200 °C. •The CrNbTiVZr alloy has bcc and C15 Laves phases. •The Al-containing alloys are composed of bcc and two C14 Laves phases. •The alloys demonstrate high specific strength at temperatures of 800 °C and 1000 °C. •The strength of the alloys increases in proportion with increase of Al content.

  16. Evaluation of nanoscaled precipitates in a Cu–Ni–Si–Cr alloy during aging

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, J.Y., E-mail: bigchengjianyi@163.com [School of Materials Science and Engineering, Nanchang University, Nanchang 330031 (China); Tang, B.B. [School of Materials Science and Engineering, Nanchang University, Nanchang 330031 (China); Institute for Advanced Study, Nanchang University, Nanchang 330031 (China); Yu, F.X.; Shen, B. [School of Materials Science and Engineering, Nanchang University, Nanchang 330031 (China)

    2014-11-25

    Highlights: • The β-Ni{sub 3}Si, δ-Ni{sub 2}Si and (Ni, Cr, Si)-rich phase were precipitated during aging. • The precipitation of ordered fcc (Ni, Cr, Si)-rich phase was confirmed by STEM. • The orientation relationship is (0 0 1){sub Cu}//(0 0 1){sub δ}, [1 1 0]{sub Cu}//[0 1 0]{sub δ} for Ni{sub 2}Si. • The orientation relationship is cube-on-cube for Ni{sub 3}Si and (Ni, Cr, Si)-rich phase. - Abstract: The concurrent existence of three kinds of nano-scaled precipitates, ordered face-centered cubic β-Ni{sub 3}Si, orthorhombic δ-Ni{sub 2}Si and ordered face-centered cubic (Ni, Cr, Si)-rich phase, was found in a Cu–Ni–Si–Cr alloy during aging at 500 °C by high resolution transmission electron microscopy and scanning transmission electron microscopy. It is the first time to report the precipitation of ordered fcc (Ni, Cr, Si)-rich phase in Cu–Ni–Si system alloys during aging. The morphology of β-Ni{sub 3}Si precipitates changed from spheroid to ellipsoid with prolonged aging time. The δ-Ni{sub 2}Si precipitates had its six variants lying on the {0 1 1}{sub Cu} habit planes and maintained disc-like during the whole aging process. The orientation relationships with copper matrix were as follows: (0 0 1){sub Cu}//(0 0 1){sub δ}, [1 1 0]{sub Cu}//[0 1 0]{sub δ} for δ-Ni{sub 2}Si, and cube-on-cube ones for β-Ni{sub 3}Si and (Ni, Cr, Si)-rich phase. The precipitation of (Ni, Cr, Si)-rich phase is responsible for high strength at overaging conditions as 500 °C.

  17. High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi

    Energy Technology Data Exchange (ETDEWEB)

    Tracy, Cameron L.; Park, Sulgiye; Rittman, Dylan R.; Zinkle, Steven J.; Bei, Hongbin; Lang, Maik; Ewing, Rodney C.; Mao, Wendy L.

    2017-05-25

    High-entropy alloys, near-equiatomic solid solutions of five or more elements, represent a new strategy for the design of materials with properties superior to those of conventional alloys. However, their phase space remains constrained, with transition metal high-entropy alloys exhibiting only face- or body-centered cubic structures. Here, we report the high-pressure synthesis of a hexagonal close-packed phase of the prototypical high-entropy alloy CrMnFeCoNi. This martensitic transformation begins at 14 GPa and is attributed to suppression of the local magnetic moments, destabilizing the initial fcc structure. Similar to fcc-to-hcp transformations in Al and the noble gases, the transformation is sluggish, occurring over a range of >40 GPa. However, the behaviour of CrMnFeCoNi is unique in that the hcp phase is retained following decompression to ambient pressure, yielding metastable fcc-hcp mixtures. This demonstrates a means of tuning the structures and properties of high-entropy alloys in a manner not achievable by conventional processing techniques.

  18. Discovery of a Superconducting High-Entropy Alloy

    Science.gov (United States)

    Koželj, P.; Vrtnik, S.; Jelen, A.; Jazbec, S.; Jagličić, Z.; Maiti, S.; Feuerbacher, M.; Steurer, W.; Dolinšek, J.

    2014-09-01

    High-entropy alloys (HEAs) are multicomponent mixtures of elements in similar concentrations, where the high entropy of mixing can stabilize disordered solid-solution phases with simple structures like a body-centered cubic or a face-centered cubic, in competition with ordered crystalline intermetallic phases. We have synthesized an HEA with the composition Ta34Nb33Hf8Zr14Ti11 (in at. %), which possesses an average body-centered cubic structure of lattice parameter a =3.36 Å. The measurements of the electrical resistivity, the magnetization and magnetic susceptibility, and the specific heat revealed that the Ta34Nb33Hf8Zr14Ti11 HEA is a type II superconductor with a transition temperature Tc≈7.3 K, an upper critical field μ0Hc2≈8.2 T, a lower critical field μ0Hc1≈32 mT, and an energy gap in the electronic density of states (DOS) at the Fermi level of 2Δ ≈2.2 meV. The investigated HEA is close to a BCS-type phonon-mediated superconductor in the weak electron-phonon coupling limit, classifying it as a "dirty" superconductor. We show that the lattice degrees of freedom obey Vegard's rule of mixtures, indicating completely random mixing of the elements on the HEA lattice, whereas the electronic degrees of freedom do not obey this rule even approximately so that the electronic properties of a HEA are not a "cocktail" of properties of the constituent elements. The formation of a superconducting gap contributes to the electronic stabilization of the HEA state at low temperatures, where the entropic stabilization is ineffective, but the electronic energy gain due to the superconducting transition is too small for the global stabilization of the disordered state, which remains metastable.

  19. Cubic martensite in high carbon steel

    Science.gov (United States)

    Chen, Yulin; Xiao, Wenlong; Jiao, Kun; Ping, Dehai; Xu, Huibin; Zhao, Xinqing; Wang, Yunzhi

    2018-05-01

    A distinguished structural characteristic of martensite in Fe-C steels is its tetragonality originating from carbon atoms occupying only one set of the three available octahedral interstitial sites in the body-centered-cubic (bcc) Fe lattice. Such a body-centered-tetragonal (bct) structure is believed to be thermodynamically stable because of elastic interactions between the interstitial carbon atoms. For such phase stability, however, there has been a lack of direct experimental evidence despite extensive studies of phase transformations in steels over one century. In this Rapid Communication, we report that the martensite formed in a high carbon Fe-8Ni-1.26C (wt%) steel at room temperature induced by applied stress/strain has actually a bcc rather than a bct crystal structure. This finding not only challenges the existing theories on the stability of bcc vs bct martensite in high carbon steels, but also provides insights into the mechanism for martensitic transformation in ferrous alloys.

  20. Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy

    International Nuclear Information System (INIS)

    Gao, Xuzhou; Lu, Yiping; Zhang, Bo; Liang, Ningning; Wu, Guanzhong; Sha, Gang; Liu, Jizi; Zhao, Yonghao

    2017-01-01

    Recent studies indicate that eutectic high-entropy alloys can simultaneously possess high strength and high ductility, which have potential applications in industrial fields. Nevertheless, microstructural origins of the excellent strength–ductility combination remain unclear. In this study, an AlCoCrFeNi 2.1 eutectic high-entropy alloy was prepared with face-centered cubic (FCC)(L1 2 )/body-centered-cubic (BCC)(B2) modulated lamellar structures and a remarkable combination of ultimate tensile strength (1351 MPa) and ductility (15.4%) using the classical casting technique. Post-deformation transmission electron microscopy revealed that the FCC(L1 2 ) phase was deformed in a matter of planar dislocation slip, with a slip system of {111} <110>, and stacking faults due to low stacking fault energy. Due to extreme solute drag, high densities of dislocations are distributed homogeneously at {111} slip plane. In the BCC(B2) phase, some dislocations exist on two {110} slip bands. The atom probe tomography analysis revealed a high density of Cr-enriched nano-precipitates, which strengthened the BCC(B2) phase by Orowan mechanisms. Fracture surface observation revealed a ductile fracture in the FCC(L1 2 ) phase and a brittle-like fracture in the BCC(B2) lamella. The underlying mechanism for the high strength and high ductility of AlCoCrFeNi 2.1 eutectic high-entropy alloy was finally analyzed based on the coupling between the ductile FCC(L1 2 ) and brittle BCC(B2) phases.

  1. Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications

    International Nuclear Information System (INIS)

    Hirsch, J.; Al-Samman, T.

    2013-01-01

    Aluminum and magnesium are two highly important lightweight metals used in automotive applications to reduce vehicle weight. Crystallographic texture engineering through a combination of intelligent processing and alloying is a powerful and effective tool to obtain superior aluminum and magnesium alloys with optimized strength and ductility for automotive applications. In the present article the basic mechanisms of texture formation of aluminum and magnesium alloys during wrought processing are described and the major aspects and differences in deformation and recrystallization mechanisms are discussed. In addition to the crystal structure, the resulting properties can vary significantly, depending on the alloy composition and processing conditions, which can cause drastic texture and microstructure changes. The elementary mechanisms of plastic deformation and recrystallization comprising nucleation and growth and their orientation dependence, either within the homogeneously formed microstructure or due to inhomogeneous deformation, are described along with their impact on texture formation, and the resulting forming behavior. The typical face-centered cubic and hexagonal close-packed rolling and recrystallization textures, and related mechanical anisotropy and forming conditions are analyzed and compared for standard aluminum and magnesium alloys. New aspects for their modification and advanced strategies of alloy design and microstructure to improve material properties are derived

  2. Real-space calculations of nonspherically averaged charge densities for substitutionally disordered alloys

    International Nuclear Information System (INIS)

    Singh, P.P.; Gonis, A.

    1993-01-01

    Based on screening transformations of muffin-tin orbitals introduced by Andersen and Jepsen [Phys. Rev. Lett. 53, 2571 (1984)], we have developed a formalism for calculating the nonspherically averaged charge densities of substitutionally disordered alloys using the Korringa-Kohn-Rostoker coherent-potential-approximation (KKR CPA) method in the atomic-sphere approximation (ASA). We have validated our method by calculating charge densities for ordered structures, where we find that our approach yields charge densities that are essentially indistinguishable from the results of full-potential methods. Calculations and comparisons are reported for Si, Al, and Li. For substitutionally disordered alloys, where full-potential methods have not been implemented so far, our approach can be used to calculate reliable nonspherically averaged charge densities from spherically symmetric one-electron potentials obtained from the KKR-ASA CPA. We report on our study of differences in charge density between ordered AlLi in the L1 0 phase and substitutionally disordered Al 0.5 Li 0.5 on a face-centered-cubic lattice

  3. Structural investigations on nanocrystalline Ni-W alloy films by transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Klimenkov, M. [Institut fuer Materialforschung, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); Haseeb, A.S.M.A. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Bade, K., E-mail: klaus.bade@imt.fzk.d [Institut fuer Mikrostrukturtechnik, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany)

    2009-10-30

    Electrodeposited Ni-W alloys have been investigated in the as-deposited state by transmission electron microscopy in order to investigate the microstructural features in dependence of the tungsten content. Within the tungsten content range from 7 at.% up to 12 at.%, the microstructure is nanocrystalline characterized by a bimodal grain size distribution, consisting out of 20 to 200 nm sized grains and also larger grains with several 100 nm characteristic dimension. No clear trend in microstructure formation is visible with W content or deposition conditions in the investigated W content range. Only solid solution phase characteristics were observed. The lattice constant is 0.360 nm for 12 at.% W as derived from electron diffraction for the solid solution face centered cubic structure. Larger grains show twinning and stacking faults. Voids with diameter of a few nm were detected along with some multiple twinned particles, indicating high stress level during growth. About 2 at.% difference in the alloy composition from grain to grain was measured.

  4. Investigation of irradiation strengthening of bcc metals and their alloys. Progress report, January 1977--October 1977

    International Nuclear Information System (INIS)

    1977-01-01

    Progress is reported in the areas of (a) the effect of neutron damage on the dislocation kinetics in bcc metals and their alloys, and (b) the effect of 3 He on the deformation characteristics of body centered cubic metals and their alloys. Results obtained from these projects are discussed

  5. The Hexagonal Close-Packed (HCP) a double dagger dagger Face-Centered Cubic (FCC) Transition in Co-Re-Based Experimental Alloys Investigated by Neutron Scattering

    Czech Academy of Sciences Publication Activity Database

    Mukherji, D.; Strunz, Pavel; Piegert, S.; Gilles, R.; Hofmann, M.; Holzel, M.; Rösler, J.

    43A, č. 6 (2012), s. 1834-1844 ISSN 1073-5623 R&D Projects: GA MPO FR-TI1/378 Institutional research plan: CEZ:AV0Z10480505 Keywords : Co-base alloy * neutron diffraction * electron microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.627, year: 2012

  6. Powder Metallurgy Processing of a WxTaTiVCr High-Entropy Alloy and Its Derivative Alloys for Fusion Material Applications.

    Science.gov (United States)

    Waseem, Owais Ahmed; Ryu, Ho Jin

    2017-05-16

    The W x TaTiVCr high-entropy alloy with 32at.% of tungsten (W) and its derivative alloys with 42 to 90at.% of W with in-situ TiC were prepared via the mixing of elemental W, Ta, Ti, V and Cr powders followed by spark plasma sintering for the development of reduced-activation alloys for fusion plasma-facing materials. Characterization of the sintered samples revealed a BCC lattice and a multi-phase structure. The selected-area diffraction patterns confirmed the formation of TiC in the high-entropy alloy and its derivative alloys. It revealed the development of C15 (cubic) Laves phases as well in alloys with 71 to 90at.% W. A mechanical examination of the samples revealed a more than twofold improvement in the hardness and strength due to solid-solution strengthening and dispersion strengthening. This study explored the potential of powder metallurgy processing for the fabrication of a high-entropy alloy and other derived compositions with enhanced hardness and strength.

  7. Superconductivity in U-T alloys (T = Mo, Pt, Pd, Nb, Zr stabilized in the cubic γ-U structure by splat-cooling technique

    Directory of Open Access Journals (Sweden)

    N.-T.H. Kim-Ngan

    2016-06-01

    Full Text Available We succeed to retain the high-temperature (cubic γ-U phase down to low temperatures in U-T alloys with less required T alloying concentration (T = Mo, Pt, Pd, Nb, Zr by means of splat-cooling technique with a cooling rate better than 106 K/s. All splat-cooled U-T alloys become superconducting with the critical temperature Tc in the range of 0.61 K–2.11 K. U-15 at.% Mo splat consisting of the γ-U phase with an ideal bcc A2 structure is a BCS superconductor having the highest critical temperature (2.11 K.

  8. CENTER CONDITIONS AND CYCLICITY FOR A FAMILY OF CUBIC SYSTEMS: COMPUTER ALGEBRA APPROACH.

    Science.gov (United States)

    Ferčec, Brigita; Mahdi, Adam

    2013-01-01

    Using methods of computational algebra we obtain an upper bound for the cyclicity of a family of cubic systems. We overcame the problem of nonradicality of the associated Bautin ideal by moving from the ring of polynomials to a coordinate ring. Finally, we determine the number of limit cycles bifurcating from each component of the center variety.

  9. Effect of Al alloying on the martensitic temperature in Ti-Ta shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, Alberto; Rogal, Jutta; Drautz, Ralf [Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universitaet Bochum (Germany)

    2017-07-01

    Ti-Ta-based alloys are promising candidates as high temperature shape memory alloys (HTSMAs) for actuators and superelastic applications. The shape memory mechanism involves a martensitic transformation between the low-temperature α'' phase (orthorhombic) and the high-temperature β phase (body-centered cubic). In order to prevent the degradation of the shape memory effect, Ti-Ta needs to be alloyed with further elements. However, this often reduces the martensitic temperature M{sub s}, which is usually strongly composition dependent. The aim of this work is to analyze how the addition of a third element to Ti-Ta alloys affects M{sub s} by means of electronic structure calculations. In particular, it will be investigated how alloying Al to Ti-Ta alters the relative stability of the α'' and β phases. This understanding will help to identify new alloy compositions featuring both a stable shape memory effect and elevated transformation temperatures.

  10. Significant contribution of stacking faults to the strain hardening behavior of Cu-15%Al alloy with different grain sizes.

    Science.gov (United States)

    Tian, Y Z; Zhao, L J; Chen, S; Shibata, A; Zhang, Z F; Tsuji, N

    2015-11-19

    It is commonly accepted that twinning can induce an increase of strain-hardening rate during the tensile process of face-centered cubic (FCC) metals and alloys with low stacking fault energy (SFE). In this study, we explored the grain size effect on the strain-hardening behavior of a Cu-15 at.%Al alloy with low SFE. Instead of twinning, we detected a significant contribution of stacking faults (SFs) irrespective of the grain size even in the initial stage of tensile process. In contrast, twinning was more sensitive to the grain size, and the onset of deformation twins might be postponed to a higher strain with increasing the grain size. In the Cu-15 at.%Al alloy with a mean grain size of 47 μm, there was a stage where the strain-hardening rate increases with strain, and this was mainly induced by the SFs instead of twinning. Thus in parallel with the TWIP effect, we proposed that SFs also contribute significantly to the plasticity of FCC alloys with low SFE.

  11. Enhanced mechanical properties of an Al–Si–Cu–Mg alloy at 300 °C: Effects of Mg and the Q-precipitate phase

    International Nuclear Information System (INIS)

    Farkoosh, A.R.; Pekguleryuz, M.

    2015-01-01

    Strategies to improve the strength of Al–Si alloys at elevated temperatures can follow two routes: (i) improving the age-hardening behavior and/or (ii) producing effective dispersoid strengthening. In this study, the influence of Mg (in the range of 0.3–0.7 wt%) on the precipitation characteristics and mechanical properties of the Al–7Si–0.5Cu–(Mg) alloy was investigated. Thermodynamic calculations were performed via the CALPHAD method which showed that Q-Al 5 Mg 8 Cu 2 Si 6 is the main thermodynamically stable precipitate at 300 °C. The calculations were validated by transmission electron microscopy and differential scanning calorimetry analyses. Increasing the Mg level from 0.3 wt% to the maximum solubility limit of ∼0.5 wt% increased the amount of the Q-Al 5 Mg 8 Cu 2 Si 6 precipitates at 300 °C by ∼60 wt% and significantly improved the tensile strength and creep resistance at the expense of some ductility. Mg in excess of the solubility limit was seen to remain within the microstructure in the form of the large π-Al 8 FeMg 3 Si 6 and β-Mg 2 Si intermetallics after solution treatment at 530 °C. Cracking of the brittle π-Al 8 FeMg 3 Si 6 intermetallics during deformation was accounted for the decreased ductility of the alloys at high Mg levels. It is concluded that the Mg level can be increased to 0.5 wt% in the A–7Si–0.5Cu alloys to improve strength. However, for elevated temperature applications in which both strength and ductility are required (e.g. Diesel engine), modification of the π-Al 8 FeMg 3 Si 6 intermetallics would be required to improve the ductility of the alloys with high Mg contents

  12. Study of helium behaviour in body-centered cubic structures for new nuclear reactor generations: experimental approach in well characterized materials

    International Nuclear Information System (INIS)

    Gorondy-Novak, Sofia Maria

    2017-01-01

    The presence of helium produced during the operation of future fast reactors and fusion reactors in core structural materials induces a deterioration of their mechanical properties (hardening, swelling, embrittlement). In order to pursue the development of the metallic structural alloys, it is necessary to comprehend the He interaction with the metal lattice thus the point in common is the study of the metallic components with body-centered cubic structure (bcc) of future alloys, such as iron and/or vanadium. Ion implantation of ions "4He was employed with the aim of simulating the damaging effects associated with the helium accumulation, the point defects' creation (vacancies, self-interstitials) and the He cluster formation in future reactors. Helium evolution in pure iron and pure vanadium has been revealed from the point of view of the trapping sites' nature and well as the helium migration mechanisms and the nucleation/growth of bubbles. These phenomena were studied by coupling different complementary techniques. Despite of the fact that some mechanisms involved seem to be similar for both bcc metals, the comparison between the helium behavior in iron and vanadium shows certain differences. Microstructural defects, including grain boundaries and implanted helium concentration (dose) in both bcc metals will play significant roles on the helium behavior at high temperature. The acquired experimental data coupled with simulation methods contribute to the future development in terms of kinetic and thermodynamic data management of helium behavior in the metal components of the alloys of nuclear interest. (author) [fr

  13. Effects of Ni content on nanocrystalline Fe–Co–Ni ternary alloys synthesized by a chemical reduction method

    Energy Technology Data Exchange (ETDEWEB)

    Chokprasombat, Komkrich, E-mail: komkrich28@gmail.com [Department of Physics, Faculty of Science, Thaksin University, Phatthalung 93210 Thailand (Thailand); Pinitsoontorn, Supree [Integrated Nanotechnology Research Center, Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 Thailand (Thailand); Maensiri, Santi [School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000 Thailand (Thailand)

    2016-05-01

    Magnetic properties of Fe–Co–Ni ternary alloys could be altered by changing of the particle size, elemental compositions, and crystalline structures. In this work, Fe{sub 50}Co{sub 50−x}Ni{sub x} nanoparticles (x=10, 20, 40, and 50) were prepared by the novel chemical reduction process. Hydrazine monohydrate was used as a reducing agent under the concentrated basic condition with the presence of poly(vinylpyrrolidone). We found that the nanoparticles were composed of Fe, Co and Ni with compositions according to the molar ratio of the metal sources. Interestingly, the particles were well-crystalline at the as-prepared state without post-annealing at high temperature. Increasing Ni content resulted in phase transformation from body centered cubic (bcc) to face centered cubic (fcc). For the fcc phase, the average particle size decreased when increased the Ni content; the Fe{sub 50}Ni{sub 50} nanoparticles had the smallest average size with the narrowest size distribution. In additions, the particles exhibited ferromagnetic properties at room temperature with the coercivities higher than 300 Oe, and the saturation magnetiation decreased with increasing Ni content. These results suggest that the structural and magnetic properties of Fe–Co–Ni alloys could be adjusted by varying the Ni content. - Highlights: • We prepared nanocrystalline Fe–Co–Ni alloys by a novel chemical reduction process. • Elemental compositions could be well controlled by the molar ratio of metal sources. • Particle size and magnetic properties clearly depended on the Ni contents. • Fe{sub 50}Co{sub 10}Ni{sub 40} exhibited high saturation magnetization of 126.3 emu/g.

  14. The Effect of Ultrasonic Melt Treatment on the Microstructure and Mechanical Properties of Al-7Si-0.35Mg Casting Alloys

    International Nuclear Information System (INIS)

    Kim, Soo-Bae; Cho, Young-Hee; Lee, Jung-Moo; Jung, Jae-Gil; Lim, Su Gun

    2017-01-01

    The effect of ultrasonic melt treatment (UST) on the microstructure and mechanical properties of Al-7Si-0.35Mg (A356) casting alloys was investigated. The particular aim of this study was to analyze the mechanism involved in the strengthening of the A356 alloys when fabricated by UST. The UST had little effect on the sizes of the α-Al grain and eutectic Si at a melt temperature of 750 ℃, and the yield strength of the A356 alloy was increased by UST by approximately 16%. After T6 heat treatment, however, both alloys prepared with and without UST had similar levels of yield strength. These results are possibly associated with a change in the type and the volume fraction of intermetallics due to UST. UST greatly reduced the volume fractions of the intermetallics which were formed upon solidification, resulting in alloys with predominantly β-Al_5FeSi instead of π-Al_8FeMg_3Si_6. However, T6 heat treatment, especially a solid solution treatment at 530 ℃ for 8 hours, led to the dissolving of intermetallics such as Mg_2Si and π -Al_8FeMg_3Si_6 and as a result their volume fractions were further reduced to similar levels in both alloys with and without UST.

  15. Surface effect theory in binary alloys: surfaces with cut-off

    International Nuclear Information System (INIS)

    Kumar, V.; Silva, C.E.T.G. da; Moran-Lopez, J.L.

    1981-01-01

    A surface effect theory in binary alloys which ore ordered with surfaces with cut-off is presented. This theory is based in a model of pair interaction between first neighbours and includes long and short range effects. The (120) surface with sup(-) (110) monoatomic cut-off and terrace in the (110) planes of an alloy with body centered cubic structure is presented as example. Results for the concentrations in all the different surface sites are given. (L.C.) [pt

  16. Bcc and Fcc transition metals and alloys: a central role for the Jahn-Teller effect in explaining their ideal and distorted structures.

    Science.gov (United States)

    Lee, Stephen; Hoffmann, Roald

    2002-05-01

    Transition metal elements, alloys, and intermetallic compounds often adopt the body centered cubic (bcc) and face centered cubic (fcc) structures. By comparing quantitative density functional with qualitative tight-binding calculations, we analyze the electronic factors which make the bcc and fcc structures energetically favorable. To do so, we develop a tight-binding function, DeltaE(star), a function that measures the energetic effects of transferring electrons within wave vector stars. This function allows one to connect distortions in solids to the Jahn-Teller effect in molecules and to provide an orbital perspective on structure determining deformations in alloys. We illustrate its use by considering first a two-dimensional square net. We then turn to three-dimensional fcc and bcc structures, and distortions of these. Using DeltaE(star), we rationalize the differences in energy of these structures. We are able to deduce which orbitals are responsible for instabilities in seven to nine valence electron per atom (e(-)/a) bcc systems and five and six e(-)/a fcc structures. Finally we demonstrate that these results account for the bcc and fcc type structures found in both the elements and binary intermetallic compounds of group 4 through 9 transition metal atoms. The outline of a theory of metal structure deformations based on loss of point group operation rather than translational symmetry is presented.

  17. X-ray characteristic temperature of Fe-Ni alloys with different crystal lattices

    International Nuclear Information System (INIS)

    Krasnikova, G.N.; Ushakov, A.I.; Kazakov, V.G.; Bochkarev, V.F.; Gorovoj, A.M.

    1978-01-01

    Investigated has been the temperature dependence of the thermal expansion coefficient and the characteristic Debye temperature of the ferronickel films, having a body-centered (cubic) and a face-centered (cubic) lattice. In case of the body-centered lattice films the tests have been staged in the 100-200 deg C range, and in case of the face c.entered lattice films - in the 20-300 deg C range. The study of temperature dependence of the thermal expansion coefficient has revealed that a non-linear growth of the thermal expansion coefficient occurs in α-phase samples when approaching the phase transition temperature. The phase transition in the Invar composition Fe-Ni films is conductive to a considerable variation of the Debye temperature. Approaching the phase transition temperature, the crystal lattice dynamic characteristics vary

  18. Particle linear theory on a self-gravitating perturbed cubic Bravais lattice

    International Nuclear Information System (INIS)

    Marcos, B.

    2008-01-01

    Discreteness effects are a source of uncontrolled systematic errors of N-body simulations, which are used to compute the evolution of a self-gravitating fluid. We have already developed the so-called ''particle linear theory''(PLT), which describes the evolution of the position of self-gravitating particles located on a perturbed simple cubic lattice. It is the discrete analogue of the well-known (Lagrangian) linear theory of a self-gravitating fluid. Comparing both theories permits us to quantify precisely discreteness effects in the linear regime. It is useful to develop the PLT also for other perturbed lattices because they represent different discretizations of the same continuous system. In this paper we detail how to implement the PLT for perturbed cubic Bravais lattices (simple, body, and face-centered) in a cubic simulation box. As an application, we will study the discreteness effects--in the linear regime--of N-body simulations for which initial conditions have been set up using these different lattices.

  19. Orientation selection process during the early stage of cubic dendrite growth: A phase-field crystal study

    International Nuclear Information System (INIS)

    Tang Sai; Wang Zhijun; Guo Yaolin; Wang Jincheng; Yu Yanmei; Zhou Yaohe

    2012-01-01

    Using the phase-field crystal model, we investigate the orientation selection of the cubic dendrite growth at the atomic scale. Our simulation results reproduce how a face-centered cubic (fcc) octahedral nucleus and a body-centered cubic (bcc) truncated-rhombic dodecahedral nucleus choose the preferred growth direction and then evolve into the dendrite pattern. The interface energy anisotropy inherent in the fcc crystal structure leads to the fastest growth velocity in the 〈1 0 0〉 directions. New { 1 1 1} atomic layers prefer to nucleate at positions near the tips of the fcc octahedron, which leads to the directed growth of the fcc dendrite tips in the 〈1 0 0〉 directions. A similar orientation selection process is also found during the early stage of bcc dendrite growth. The orientation selection regime obtained by phase-field crystal simulation is helpful for understanding the orientation selection processes of real dendrite growth.

  20. Microstructure and Wear Behavior of CoCrFeMnNbNi High-Entropy Alloy Coating by TIG Cladding

    Directory of Open Access Journals (Sweden)

    Wen-yi Huo

    2015-01-01

    Full Text Available Alloy cladding coatings are widely prepared on the surface of tools and machines. High-entropy alloys are potential replacements of nickel-, iron-, and cobalt-base alloys in machining due to their excellent strength and toughness. In this work, CoCrFeMnNbNi HEA coating was produced on AISI 304 steel by tungsten inert gas cladding. The microstructure and wear behavior of the cladding coating were studied by X-ray diffraction, scanning electron microscopy, energy dispersive spectrometer, microhardness tester, pin-on-ring wear tester, and 3D confocal laser scanning microscope. The microstructure showed up as a nanoscale lamellar structure matrix which is a face-centered-cubic solid solution and niobium-rich Laves phase. The microhardness of the cladding coating is greater than the structure. The cladding coating has excellent wear resistance under the condition of dry sliding wear, and the microploughing in the worn cladding coating is shallower and finer than the worn structure, which is related to composition changes caused by forming the nanoscale lamellar structure of Laves phase.

  1. Phase conversion from hexagonal CuS(y)Se(1-y) to cubic Cu(2-x)S(y)Se(1-y): composition variation, morphology evolution, optical tuning, and solar cell applications.

    Science.gov (United States)

    Xu, Jun; Yang, Xia; Yang, Qingdan; Zhang, Wenjun; Lee, Chun-Sing

    2014-09-24

    In this work, we report a simple and low-temperature approach for the controllable synthesis of ternary Cu-S-Se alloys featuring tunable crystal structures, compositions, morphologies, and optical properties. Hexagonal CuS(y)Se(1-y) nanoplates and face centered cubic (fcc) Cu(2-x)S(y)Se(1-y) single-crystal-like stacked nanoplate assemblies are synthesized, and their phase conversion mechanism is well investigated. It is found that both copper content and chalcogen composition (S/Se atomic ratio) of the Cu-S-Se alloys are tunable during the phase conversion process. Formation of the unique single-crystal-like stacked nanoplate assemblies is resulted from oriented stacking coupled with the Ostwald ripening effect. Remarkably, optical tuning for continuous red shifts of both the band-gap absorption and the near-infrared localized surface plasmon resonance are achieved. Furthermore, the novel Cu-S-Se alloys are utilized for the first time as highly efficient counter electrodes (CEs) in quantum dot sensitized solar cells (QDSSCs), showing outstanding electrocatalytic activity for polysulfide electrolyte regeneration and yielding a 135% enhancement in power conversion efficiency (PCE) as compared to the noble metal Pt counter electrode.

  2. Effect of Thermal Aging on the Corrosion Behavior of Wrought and Welded Alloy 22

    International Nuclear Information System (INIS)

    Rebak, R.B.; Edgecumbe Summers, T.S.; Lian, T.

    2002-01-01

    Alloy 22 (UNS N06022) is a candidate material for the external wall of the high level nuclear waste containers for the potential repository site at Yucca Mountain. In the mill-annealed (MA) condition, Alloy 22 is a single face centered cubic phase. When exposed to temperatures on the order of 600 C and above for times higher than 1 h, this alloy may develop secondary phases that are brittle and offer a lower corrosion resistance than the MA condition. The objective of this work was to age Alloy 22 at temperatures between 482 C and 800 C for times between 0.25 h and 3,000 h and to study the corrosion performance of the resulting material. Aging was carried out using wrought specimens as well as gas tungsten arc welded (GTAW) specimens. The corrosion performance was characterized using standard immersion tests in aggressive acidic solutions and electrochemical tests in multi-component solutions. Results show that, in general, in aggressive acidic solutions the corrosion rate increased as the aging temperature and aging time increased. However, in multi ionic environments that could be relevant to the potential Yucca Mountain site, the corrosion rate of aged material was the same as the corrosion rate of the MA material

  3. Converting hcp Mg-Al-Zn alloy into bcc Mg-Li-Al-Zn alloy by electrolytic deposition and diffusion of reduced lithium atoms in a molten salt electrolyte LiCl-KCl

    International Nuclear Information System (INIS)

    Lin, M.C.; Tsai, C.Y.; Uan, J.Y.

    2007-01-01

    A body-centered cubic (bcc) Mg-12Li-9Al-1Zn (wt.%) alloy was fabricated in air by electrolysis from LiCl-KCl molten salt at 500 deg. C. Electrolytic deposition of Li atoms on cathode (Mg-Al-Zn alloy) and diffusion of the Li atoms formed the bcc Mg-Li-Al-Zn alloy with 12 wt.% Li and only 0.264 wt.% K. Low K concentration in the bcc Mg alloy strip after the electrolysis process resulted from 47% atomic size misfit between K and Mg atoms and low solubility of K in Mg matrix

  4. Alloying Solid Solution Strengthening of Fe-Ga Alloys: A First-Principle Study

    National Research Council Canada - National Science Library

    Chen, Kuiying; Cheng, Leon M

    2006-01-01

    ... and Co in cubic solid solution of Fe-Ga alloys. Mayer bond order "BO" values were used to evaluate the atomic bond strengths in the alloys, and were then used to assess the alloying strengthening characteristics...

  5. New Au–Cu–Al thin film shape memory alloys with tunable functional properties and high thermal stability

    International Nuclear Information System (INIS)

    Buenconsejo, Pio John S.; Ludwig, Alfred

    2015-01-01

    An Au–Cu–Al thin film materials library prepared by combinatorial sputter-deposition was characterized by high-throughput experimentation in order to identify and assess new shape memory alloys (SMAs) in this alloy system. Automated resistance measurements during thermal cycling between −20 and 250 °C revealed a wide composition range that undergoes reversible phase transformations with martensite transformation start temperatures, reverse transformation finish temperatures and transformation hysteresis ranging from −15 to 149 °C, 5 to 185 °C and 8 to 60 K, respectively. High-throughput X-ray diffraction analysis of the materials library confirmed that the phase-transforming compositions can be attributed to the existence of the β-AuCuAl parent phase and its martensite product. The formation of large amount of phases based on face-centered cubic (Au–Cu), Al–Cu and Al–Au is responsible for limiting the range of phase-transforming compositions. Selected alloys in this system show excellent thermal cyclic stability of the phase transformation. The functional properties of these alloys, combined with the inherent properties of Au-based alloys, i.e. aesthetic value, oxidation and corrosion resistance, makes them attractive as smart materials for a wide range of applications, including applications as SMAs for elevated temperatures in harsh environment

  6. Deformation behaviour of body centered cubic Fe nanowires under tensile and compressive loading

    OpenAIRE

    Sainath, G.; Choudhary, B. K.; Jayakumar, T.

    2014-01-01

    Molecular Dynamics (MD) simulations have been carried out to investigate the deformation behaviour of /{111} body centered cubic (BCC) Fe nanowires under tensile and compressive loading. An embedded atom method (EAM) potential was used to describe the interatomic interactions. The simulations were carried out at 10 K with a constant strain rate of $1\\times10^{8}$ $s^{-1}$. The results indicate a significant differences in deformation mechanisms under tensile and compressive loading. Under ten...

  7. New ternary ordered structures in CuMPt6 (M=3d elements) alloys

    International Nuclear Information System (INIS)

    Das, Ananda Kumar; Nakamura, Reo; Takahashi, Miwako; Ohshima, Ken-ichi; Iwasaki, Hiroshi; Shishido, Toetsu

    2006-01-01

    X-ray and electron diffraction measurements were performed to investigate the structure and ordering behaviour of the ternary alloys CuMPt 6 (M=Ti, V, Cr, Mn, Fe, Co, and Ni). X-ray polycrystalline diffraction patterns of all the speciments quenched from 1000degC have shown that a single phase is formed at this stoichiometric composition. The alloys with M=Cr, Mn, Co, and Ni have the face-centred cubic (fcc) structure, while in the alloys with M=Ti, V, and Fe ordering has occurred and the structure is of the Cu 3 Au type. On annealing at lower temperatures ordering has been induced in the alloys with M=Cr, Mn, and Co and the structure is of the Cu 3 Au type, though the ordering in the last alloy has remained incomplete. Detailed X-ray diffraction measurements on single crystals of the CuMnPt 6 alloy have revealed that further ordering takes place and structure changes from the Cu 3 Au type into the cubic ABC 6 type with the unit cell as large 2 x 2 x 2 as the fcc unit cell, a new observation of the double-step ordering in the ternary fcc alloy. The corresponding transition temperatures are T c =970(±5)degC and T cl =750(±5)degC. (author)

  8. Investigation of phase stability of novel equiatomic FeCoNiCuZn based-high entropy alloy prepared by mechanical alloying

    Science.gov (United States)

    Soni, Vinay Kumar; Sanyal, S.; Sinha, S. K.

    2018-05-01

    The present work reports the structural and phase stability analysis of equiatomic FeCoNiCuZn High entropy alloy (HEA) systems prepared by mechanical alloying (MA) method. In this research effort some 1287 alloy combinations were extensively studied to arrive at most favourable combination. FeCoNiCuZn based alloy system was selected on the basis of physiochemical parameters such as enthalpy of mixing (ΔHmix), entropy of mixing (ΔSmix), atomic size difference (ΔX) and valence electron concentration (VEC) such that it fulfils the formation criteria of stable multi component high entropy alloy system. In this context, we have investigated the effect of novel alloying addition in view of microstructure and phase formation aspect. XRD plots of the MA samples shows the formation of stable solid solution with FCC (Face Cantered Cubic) after 20 hr of milling time and no indication of any amorphous or intermetallic phase formation. Our results are in good agreement with calculation and analysis done on the basis of physiochemical parameters during selection of constituent elements of HEA.

  9. Maximal independent set graph partitions for representations of body-centered cubic lattices

    DEFF Research Database (Denmark)

    Erleben, Kenny

    2009-01-01

    corresponding to the leaves of a quad-tree thus has a smaller memory foot-print. The adjacency information in the graph relieves one from going up and down the quad-tree when searching for neighbors. This results in constant time complexities for refinement and coarsening operations.......A maximal independent set graph data structure for a body-centered cubic lattice is presented. Refinement and coarsening operations are defined in terms of set-operations resulting in robust and easy implementation compared to a quad-tree-based implementation. The graph only stores information...

  10. A microwave assisted one-pot route synthesis of bimetallic PtPd alloy cubic nanocomposites and their catalytic reduction for 4-nitrophenol

    Science.gov (United States)

    Zhang, Jian; Gan, Wei; Fu, Xucheng; Hao, Hequn

    2017-10-01

    We herein report a simple, rapid, and eco-friendly chemical route to the one-pot synthesis of bimetallic PtPd alloy cubic nanocomposites under microwave irradiation. During this process, water was employed as an environmentally benign solvent, while dimethylformamide served as a mild reducing agent, and polyvinylpyrrolidone was used as both a dispersant and a stabilizer. The structure, morphology, and composition of the resulting alloy nanocomposites were examined by x-ray diffraction, transmission electron microscopy, and energy dispersive x-ray spectroscopy. A detailed study was then carried out into the catalytic activity of the PtPd nanocomposites with a Pt:Pd molar ratio of 50:50 in the reduction of 4-nitrophenol (4-NP) by sodium borohydride as a model reaction. Compared with pristine Pt and Pd monometallic nanoparticles (PtNPs and PdNPs), the bimetallic PtPd alloy nanocomposites exhibited enhanced catalytic activities and were readily recyclable in the reduction of 4-NP due to synergistic effects.

  11. Bifurcation of limit cycles for cubic reversible systems

    Directory of Open Access Journals (Sweden)

    Yi Shao

    2014-04-01

    Full Text Available This article is concerned with the bifurcation of limit cycles of a class of cubic reversible system having a center at the origin. We prove that this system has at least four limit cycles produced by the period annulus around the center under cubic perturbations

  12. Radiation behavior of high-entropy alloys for advanced reactors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, Peter K. [Univ. of Tennessee, Knoxville, TN (United States); Egami, Takeshi [Univ. of Tennessee, Knoxville, TN (United States); Zhang, Chuan [CompuTherm, LLC, Madison, WI (United States); Zhang, Fan [CompuTherm, LLC, Madison, WI (United States); Zhang, Yanwen [Univ. of Tennessee, Knoxville, TN (United States)

    2015-04-30

    In the first task, we have demonstrated the radiation damage and the recrystallization behaviors in multicomponent alloys through molecular-dynamics simulations. It is found that by alloying with atoms of different sizes, the atomic-level strain increases, and the propensity of the radiation-induced crystalline to amorphous transition increases as the defects cluster in the cascade body. Recrystallization of the radiation induced supercooled or glass regions show that by tuning the composition and the equilibrium temperature, the multicomponent alloys can be healed. The crystalline-amorphous-crystalline transitions predict the potential high radiation resistance in multicomponent alloys. In the second task, three types of high-entropy alloys (HEAs) were fabricated from AlCoCrFeNi and AlCuCrFeNi quinary alloys. Hardness and reduced contact modulus were measured using nanoindentation tests. Heavy ion irradiation were performed using 10 MeV gold and 5 MeV nickel to study radiation effects. Al0.5CrCuFeNi2 shows phase separation upon the presence of copper. Both hardness and contact modulus exhibit the same trend as increasing the applied load, and it indicates that excessive free volume may alter the growth rate of the plastic zone. The as-cast Al0.1CoCrFeNi specimen undergone the hot isostatic pressing (HIP) process and steady cooling rate which mitigate the quenching effect. The swelling behavior was characterized by the atomic force microscopy (AFM), and the swelling rate is approximately 0.02% dpa. Selected area diffraction (SAD) patters show irradiation-induced amorphization throughout the ion projected range. Within the peak damage region, an amorpous ring is observed, and a mixture of amorphous/ crystalline structure at deeper depth is found. The Al0.3CoCrFeNi HEAs shows good radiation resistance up to 60 peak dpa. No voids or dislocations are observed. The crystal structures remain face-centered-cubic (FCC) before and

  13. Radiation behavior of high-entropy alloys for advanced reactors. Final report

    International Nuclear Information System (INIS)

    Liaw, Peter K.; Egami, Takeshi; Zhang, Chuan; Zhang, Fan; Zhang, Yanwen

    2015-01-01

    In the first task, we have demonstrated the radiation damage and the recrystallization behaviors in multicomponent alloys through molecular-dynamics simulations. It is found that by alloying with atoms of different sizes, the atomic-level strain increases, and the propensity of the radiation-induced crystalline to amorphous transition increases as the defects cluster in the cascade body. Recrystallization of the radiation induced supercooled or glass regions show that by tuning the composition and the equilibrium temperature, the multicomponent alloys can be healed. The crystalline-amorphous-crystalline transitions predict the potential high radiation resistance in multicomponent alloys. In the second task, three types of high-entropy alloys (HEAs) were fabricated from AlCoCrFeNi and AlCuCrFeNi quinary alloys. Hardness and reduced contact modulus were measured using nanoindentation tests. Heavy ion irradiation were performed using 10 MeV gold and 5 MeV nickel to study radiation effects. Al 0.5 CrCuFeNi 2 shows phase separation upon the presence of copper. Both hardness and contact modulus exhibit the same trend as increasing the applied load, and it indicates that excessive free volume may alter the growth rate of the plastic zone. The as-cast Al 0.1 CoCrFeNi specimen undergone the hot isostatic pressing (HIP) process and steady cooling rate which mitigate the quenching effect. The swelling behavior was characterized by the atomic force microscopy (AFM), and the swelling rate is approximately 0.02% dpa. Selected area diffraction (SAD) patters show irradiation-induced amorphization throughout the ion projected range. Within the peak damage region, an amorpous ring is observed, and a mixture of amorphous/ crystalline structure at deeper depth is found. The Al 0.3 CoCrFeNi HEAs shows good radiation resistance up to 60 peak dpa. No voids or dislocations are observed. The crystal structures remain face-centered-cubic (FCC) before and after 5 MeV Ni irradiation. Higher

  14. Impurity diffusion activation energies in Al from first principles

    NARCIS (Netherlands)

    Simonovic, D.; Sluiter, M.H.

    2009-01-01

    Activation energies for vacancy-mediated impurity diffusion in face-centered-cubic aluminum have been computed ab initio for all technologically important alloying elements, as well as for most of the lanthanides. The so-called five-frequency rate model is used to establish the limiting vacancy

  15. Fatigue behavior of ULTIMETRTM alloy: Experiment and theoretical modeling

    Science.gov (United States)

    Jiang, Liang

    ULTIMETRTM alloy is a commercial Co-26Cr-9Ni (weight percent) superalloy, which possesses excellent resistance to both wear and corrosion. In order to extend the structural applications of this alloy and improve the fundamental understanding of the fatigue damage mechanisms, stress- and strain-controlled fatigue tests were performed at various temperatures and in different environments. The stress- and strain-life data were developed for the structural design and engineering applications of this material. Fractographic studies characterized the crack-initiation and propagation behavior of the alloy. Microstructure evolution during fatigue was revealed by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Specifically, it was found that the metastable face-centered-cubic structure of this alloy in the as-received condition could be transformed into a hexagonal-close-packed structure either under the action of plastic deformation at room temperature, or due to the aging and cyclic deformation at intermediate temperatures. This interesting observation constructed a sound basis for the alloy development. The dominant mechanisms, which control the fatigue behavior of ULTIMET alloy, were characterized. High-speed, high-resolution infrared (IR) thermography, as a non-contact, full-field, and nondestructive technique, was used to characterize the damage during fatigue. The temperature variations during each fatigue cycle, which were due to the thermal-elastic-plastic effect, were observed and related to stress-strain analyses. The temperature evolution during fatigue manifested the cumulative fatigue damage process. A constitutive model was developed to predict thermal and mechanical responses of ULTIMET alloy subjected to cyclic deformation. The predicted cyclic stress-strain responses and temperature variations were found to be in good agreement with the experimental results. In addition, a fatigue life prediction model was developed

  16. Sulfur solubility of liquid and solid Fe-Cr alloys. A thermodynamic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Waldner, Peter [Leoben Univ. (Austria). Dept. of General, Analytical and Physical Chemistry

    2015-04-15

    Gibbs energy modeling for sulfur solving liquid and solid iron-chromium phases with body- and face-centered cubic structure has been carried out using a substitutional approach. Experimental data available from the literature on sulfur potentials in the temperature range 1 525 to 1 755 C for the liquid metallic phase and 1 000 to 1 300 C for the solid alloys have been taken into consideration. Recent thermodynamic evaluations of the Fe-S and Cr-S binary subsystems served as basis for the presented work. The obtained models allow a satisfactory reproduction of the majority of the sulfur potential data as well as the prediction of an isothermal partial section at 1 300 C. Consistent embedding of the optimized Gibbs energies within a recent thermodynamic modeling of the complete Cr-Fe-S system is achieved.

  17. Insights on activation enthalpy for non-Schmid slip in body-centered cubic metals

    International Nuclear Information System (INIS)

    Hale, Lucas M.; Lim, Hojun; Zimmerman, Jonathan A.; Battaile, Corbett C.; Weinberger, Christopher R.

    2015-01-01

    We use insights gained from atomistic simulation to develop an activation enthalpy model for dislocation slip in body-centered cubic iron. Using a classical potential that predicts dislocation core stabilities consistent with ab initio predictions, we quantify the non-Schmid stress-dependent effects of slip. The kink-pair activation enthalpy is evaluated and a model is identified as a function of the general stress state. Our model enlarges the applicability of the classic Kocks activation enthalpy model to materials with non-Schmid behavior

  18. Damping behavior of AlxCoCrFeNi high-entropy alloys by a dynamic mechanical analyzer

    International Nuclear Information System (INIS)

    Ma, S.G.; Liaw, P.K.; Gao, M.C.; Qiao, J.W.; Wang, Z.H.; Zhang, Y.

    2014-01-01

    Highlights: • The Al content is related with structural relaxation and damping capability. • Dynamic modulus is insensitive to the frequency especially for storage modulus. • Several internal-friction peaks are observed in the Al-free or Al-lean alloys. • The damping behavior is proposed to be strongly relied on the level of ordering. - Abstract: For the first time, the damping behavior of high-entropy alloys was studied using the dynamic-mechanical analyzer, over a continuous heating temperature from room temperature to 773 K, at a given frequency range from 1 to 16 Hz in model alloys Al x CoCrFeNi (x = 0, 0.25, 0.5, 0.75, and 1). The experimental results reveal that the Al-rich alloys have a much smaller elastic storage-modulus amplitude over the temperature and thus a larger resistance to structural relaxation, while the Al-free and Al-lean alloys exhibit a much higher loss tangent and thus a much higher damping capability. Overall the elastic storage modulus decreases while the loss tangent increases with increasing the temperature, but little dependence was observed for the frequency. Several visible internal-friction peaks were presented in the face-centered cubic alloys, whose positions and heights are independent of the frequency. The damping capability of these alloys can be comparable to or even overwhelm the conventional Fe–Al alloys. The damping behavior above was proposed to be agreeable with the level of ordering (η) of alloys characterized by two proposed parameters (the relative-entropy effect, Ω, and the atomic-size difference, δ)

  19. Design and screening of nanoprecipitates-strengthened advanced ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lizhen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yang, Ying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chen, Tianyi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sridharan, K. [Univ. of Wisconsin, Madison, WI (United States); He, Li [Univ. of Wisconsin, Madison, WI (United States)

    2016-12-30

    Advanced nuclear reactors as well as the life extension of light water reactors require advanced alloys capable of satisfactory operation up to neutron damage levels approaching 200 displacements per atom (dpa). Extensive studies, including fundamental theories, have demonstrated the superior resistance to radiation-induced swelling in ferritic steels, primarily inherited from their body-centered cubic (bcc) structure. This study aims at developing nanoprecipitates strengthened advanced ferritic alloys for advanced nuclear reactor applications. To be more specific, this study aims at enhancing the amorphization ability of some precipitates, such as Laves phase and other types of intermetallic phases, through smart alloying strategy, and thereby promote the crystalline®amorphous transformation of these precipitates under irradiation.

  20. A popular metastable omega phase in body-centered cubic steels

    Energy Technology Data Exchange (ETDEWEB)

    Ping, D.H., E-mail: ping.de-hai@nims.go.jp [National Institute for Materials Science, Sengen 1-2-1, Tsukuba 305-0047 (Japan); Geng, W.T., E-mail: geng@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2013-05-15

    Steel remains to be one of the most common structural materials in the world as human civilization advances from the Iron Age to the ongoing Silicon Age. Our knowledge of its microstructure evolution and structure–performance relationship is nevertheless still incomplete. We report the observation and characterization of a long ignored metastable phase formed in steels with body-centered cubic (bcc) structure using both transmission electron microscopy and density functional theory calculations. This ω phase has a hexagonal structure and coherent interface with the matrix: a{sub ω} = √2 × a{sub bcc} and c{sub ω} = √3/2 × a{sub bcc}. It is 3.6% smaller in volume and 0.18 eV higher in energy than bcc-Fe, with atoms in alternating close- and loose-packed layers couple anti-ferromagnetically. Carbon plays a crucial role in promoting bcc to ω transformation. At a concentration higher than 4 at.% they tend to segregate from the bcc matrix to the ω-phase; at about 14 at.%, they can induce bcc to ω transformation; and finally at 25 at.%, they stabilize the ω phase as ω-Fe{sub 3}C. The ω phase in bcc Fe can serve as sinks for vacancies, H, and He atoms, leading to improved resistance of martensitic steels to irradiation damage. - Highlights: ► A long-ignored metastable ω phase in body-centered cubic (bcc) steel. ► The ω phase has hexagonal structure with lattice parameters a{sub ω} = √2 × a{sub bcc} and c{sub ω} = √3/2 × a{sub bcc}. ► Carbon enrichment is found to play a crucial role on the bcc-to-ω phase transformation. ► The ω phase is strongly related to the martensitic transformation and twinning structure. ► The ω phase in bcc Fe can serve as sinks for vacancies, H, and He atoms.

  1. Bond-order potential for magnetic body-centered-cubic iron and its transferability

    Science.gov (United States)

    Lin, Yi-Shen; Mrovec, M.; Vitek, V.

    2016-06-01

    We derived and thoroughly tested a bond-order potential (BOP) for body-centered-cubic (bcc) magnetic iron that can be employed in atomistic calculations of a broad variety of crystal defects that control structural, mechanical, and thermodynamic properties of this technologically important metal. The constructed BOP reflects correctly the mixed nearly free electron and covalent bonding arising from the partially filled d band as well as the ferromagnetism that is actually responsible for the stability of the bcc structure of iron at low temperatures. The covalent part of the cohesive energy is determined within the tight-binding bond model with the Green's function of the Schrödinger equation determined using the method of continued fractions terminated at a sufficient level of the moments of the density of states. This makes the BOP an O (N ) method usable for very large numbers of particles. Only d d bonds are included explicitly, but the effect of s electrons on the covalent energy is included via their screening of the corresponding d d bonds. The magnetic part of the cohesive energy is included using the Stoner model of itinerant magnetism. The repulsive part of the cohesive energy is represented, as in any tight-binding scheme, by an empirical formula. Its functional form is physically justified by studies of the repulsion in face-centered-cubic (fcc) solid argon under very high pressure where the repulsion originates from overlapping s and p closed-shell electrons just as it does from closed-shell s electrons in transition metals squeezed into the ion core under the influence of the large covalent d bonding. Testing of the transferability of the developed BOP to environments significantly different from those of the ideal bcc lattice was carried out by studying crystal structures and magnetic states alternative to the ferromagnetic bcc lattice, vacancies, divacancies, self-interstitial atoms (SIAs), paths continuously transforming the bcc structure to

  2. Deformation Behavior of Al0.25CoCrFeNi High-Entropy Alloy after Recrystallization

    Directory of Open Access Journals (Sweden)

    Jinxiong Hou

    2017-03-01

    Full Text Available Cold rolling with subsequent annealing can be used to produce the recrystallized structure in high entropy alloys (HEAs. The Al0.25CoCrFeNi HEAs rolled to different final thickness (230, 400, 540, 800, 1000, 1500 μm are prepared to investigate their microstructure evolutions and mechanical behaviors after annealing. Only the single face-centered cubic phase was obtained after cold rolling and recrystallization annealing at 1100 °C for 10 h. The average recrystallized grain size in this alloy after annealing ranges from 92 μm to 136 μm. The annealed thin sheets show obviously size effects on the flow stress and formability. The yield strength and tensile strength decrease as t/d (thickness/average grain diameter ratio decreases until the t/d approaches 2.23. In addition, the stretchability (formability decreases with the decrease of the t/d ratio especially when the t/d ratio is lower than about 6. According to the present results, yield strength can be expressed as a function of the t/d ratio.

  3. An Abel type cubic system

    Directory of Open Access Journals (Sweden)

    Gary R. Nicklason

    2015-07-01

    Full Text Available We consider center conditions for plane polynomial systems of Abel type consisting of a linear center perturbed by the sum of 2 homogeneous polynomials of degrees n and 2n-1 where $n \\ge 2$. Using properties of Abel equations we obtain two general systems valid for arbitrary values on n. For the cubic n=2 systems we find several sets of new center conditions, some of which show that the results in a paper by Hill, Lloyd and Pearson which were conjectured to be complete are in fact not complete. We also present a particular system which appears to be a counterexample to a conjecture by Zoladek et al. regarding rational reversibility in cubic polynomial systems.

  4. Internal Friction of Austenitic Fe-Mn-C-Al Alloys

    Science.gov (United States)

    Lee, Young-Kook; Jeong, Sohee; Kang, Jee-Hyun; Lee, Sang-Min

    2017-12-01

    The internal friction (IF) spectra of Fe-Mn-C-Al alloys with a face-centered-cubic (fcc) austenitic phase were measured at a wide range of temperature and frequency ( f) to understand the mechanisms of anelastic relaxations occurring particularly in Fe-Mn-C twinning-induced plasticity steels. Four IF peaks were observed at 346 K (73 °C) (P1), 389 K (116 °C) (P2), 511 K (238 °C) (P3), and 634 K (361 °C) (P4) when f was 0.1 Hz. However, when f increased to 100 Hz, whereas P1, P2, and P4 disappeared, only P3 remained without the change in peak height, but with the increased peak temperature. P3 matches well with the IF peak of Fe-high Mn-C alloys reported in the literature. The effects of chemical composition and vacancy (v) on the four IF peaks were also investigated using various alloys with different concentrations of C, Mn, Al, and vacancy. As a result, the defect pair responsible for each IF peak was found as follows: a v-v pair for P1, a C-v pair for P2, a C-C pair for P3, and a C-C-v complex (major effect) + a Mn-C pair (minor effect) for P4. These results showed that the IF peaks of Fe-Mn-C-Al alloys reported previously were caused by the reorientation of C in C-C pairs, not by the reorientation of C in Mn-C pairs.

  5. Exploitation of 3D face-centered cubic mesoporous silica as a carrier for a poorly water soluble drug: influence of pore size on release rate.

    Science.gov (United States)

    Zhu, Wenquan; Wan, Long; Zhang, Chen; Gao, Yikun; Zheng, Xin; Jiang, Tongying; Wang, Siling

    2014-01-01

    The purposes of the present work were to explore the potential application of 3D face-centered cubic mesoporous silica (FMS) with pore size of 16.0nm as a delivery system for poorly soluble drugs and investigate the effect of pore size on the dissolution rate. FMS with different pore sizes (16.0, 6.9 and 3.7nm) was successfully synthesized by using Pluronic block co-polymer F127 as a template and adjusting the reaction temperatures. Celecoxib (CEL), which is a BCS class II drug, was used as a model drug and loaded into FMS with different pore sizes by the solvent deposition method at a drug-silica ratio of 1:4. Characterization using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transformation infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), nitrogen adsorption, X-ray diffraction (XRD), and differential scanning calorimetry (DSC) was used to systematically investigate the drug loading process. The results obtained showed that CEL was in a non-crystalline state after incorporation of CEL into the pores of FMS-15 with pore size of 16.0nm. In vitro dissolution was carried out to demonstrate the effects of FMS with different pore sizes on the release of CEL. The results obtained indicated that the dissolution rate of CEL from FMS-15 was significantly enhanced compared with pure CEL. This could be explained by supposing that CEL encountered less diffusion resistance and its crystallinity decreased due to the large pore size of 16.0nm and the nanopore channels of FMS-15. Moreover, drug loading and pore size both play an important role in enhancing the dissolution properties for the poorly water-soluble drugs. As the pore size between 3.7 and 16.0nm increased, the dissolution rate of CEL from FMS gradually increased. © 2013.

  6. Comparison on mechanical anisotropies of selective laser melted Ti-6Al-4V alloy and 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hanchen; Yang, Jingjing; Yin, Jie; Wang, Zemin, E-mail: zmwang@hust.edu.cn; Zeng, Xiaoyan

    2017-05-17

    Near-fully dense Ti-6Al-4V and 304 stainless steel samples have been produced applying selective laser melting (SLM) in the present work. The microstructures, textures and microhardnesses on horizontal and vertical cross sections, as well as the tensile properties of horizontally and vertically SLMed samples are investigated. It is found that the microstructures of the two SLMed alloys are mainly composed of hexagonal close-packed (HCP) martensitic phase or face-centered cubic (FCC) austenitic phase within columnar structures in Ti-6Al-4V alloy and 304 stainless steel, respectively. For both SLMed alloys, the tensile properties and microhardnesses show anisotropic though the textures are weak. Especially, the Ti-6Al-4V samples show even stronger anisotropic mechanical properties compared with 304 stainless steel. The higher length-width ratios of the columnar structures, rather than the weaker textures or the less symmetry of HCP crystal structure in SLMed Ti-6Al-4V are believed to be responsible for the stronger mechanical anisotropies. As expected, heat treatment is an effective method to eliminate columnar structures and leads to nearly isotropic mechanical properties.

  7. Atomistic simulation of fatigue in face centred cubic metals

    International Nuclear Information System (INIS)

    Fan, Zhengxuan

    2016-01-01

    Fatigue is one of the major damage mechanisms of metals. It is characterized by strong environmental effects and wide lifetime dispersions which must be better understood. Different face centred cubic metals, al, Cu, Ni, and Ag are analyzed. The mechanical behaviour of surface steps naturally created by the glide of dislocations subjected to cyclic loading is examined using molecular dynamics simulations in vacuum and in air for Cu and Ni. an atomistic reconstruction phenomenon is observed at these surface steps which can induce strong irreversibility. Three different mechanisms of reconstruction are defined. Surface slip irreversibility under cyclic loading is analyzed. all surface steps are intrinsically irreversible under usual fatigue laboratory loading amplitude without the arrival of opposite sign dislocations on direct neighbor plane.With opposite sign dislocations on non direct neighbour planes, irreversibility cumulates cycle by cycle and a micro-notch is produced whose depth gradually increases.Oxygen environment affects the surface (first stage of oxidation) but does not lead to higher irreversibility as it has no major influence on the different mechanisms linked to surface relief evolution.a rough estimation of surface irreversibility is carried out for pure edge dislocations in persistent slip bands in so-called wavy materials. It gives an irreversibility fraction between 0.5 and 0.75 in copper in vacuum and in air, in agreement with recent atomic force microscopy measurements.Crack propagation mechanisms are simulated in inert environment. Cracks can propagate owing to the irreversibility of generated dislocations because of their mutual interactions up to the formation of dislocation junctions. (author) [fr

  8. Rotation-limited growth of three-dimensional body-centered-cubic crystals.

    Science.gov (United States)

    Tarp, Jens M; Mathiesen, Joachim

    2015-07-01

    According to classical grain growth laws, grain growth is driven by the minimization of surface energy and will continue until a single grain prevails. These laws do not take into account the lattice anisotropy and the details of the microscopic rearrangement of mass between grains. Here we consider coarsening of body-centered-cubic polycrystalline materials in three dimensions using the phase field crystal model. We observe, as a function of the quenching depth, a crossover between a state where grain rotation halts and the growth stagnates and a state where grains coarsen rapidly by coalescence through rotation and alignment of the lattices of neighboring grains. We show that the grain rotation per volume change of a grain follows a power law with an exponent of -1.25. The scaling exponent is consistent with theoretical considerations based on the conservation of dislocations.

  9. PdRu alloy nanoparticles of solid solution in atomic scale: outperformance towards formic acid electro-oxidation in acidic medium

    International Nuclear Information System (INIS)

    Miao, Kanghua; Luo, Yun; Zou, Jiasui; Yang, Jun; Zhang, Fengqi; Huang, Lin; Huang, Jie; Kang, Xiongwu; Chen, Shaowei

    2017-01-01

    Developing catalyst of high performance and low cost toward the electro-oxidation of formic acid on the anode of fuel cell is critical for the commercialization of direct formic acid fuel cells. Here we reported the synthesis of Pd x Ru 10-x (x = 1,3,5,7,9) nanoparticles (NPs) by concurrent reduction of Pd 2+ and Ru 2+ in polyol solution at 200 °C. The particle size of the obtained NPs was confined at 5–15 nm in diameter. X-ray diffraction (XRD) analysis revealed face-centered cubic (fcc) crystal structure for Pd x Ru 10-x (x = 3,5,7,9), with the lattice parameter proportional to the Pd content. The formation of the solid solution in atomic scale was confirmed for the alloy nanoparticles by XRD and the elemental mapping. Williamson-Hall method revealed that the stacking fault was dependent on the alloying extent of the alloy nanoparticles and reached the minimum for Pd 5 Ru 5 , which exhibited the highest activity towards formic acid oxidation among all these prepared samples, with mass activity of 12.6 times higher than that of commercial Pd/C. It was observed that the highest catalytic activity was in agreement with the minimum of the stacking fault of the alloy nanoparticles.

  10. Synthesis and characterization of Pt-Sn-Ni alloys to application as catalysts for direct ethanol fuel cells

    International Nuclear Information System (INIS)

    Silva, E.L. da; Correa, P.S.; Oliveira, E.L. de; Takimi, A.S.; Malfatti, C.F.; Radtke, C.

    2010-01-01

    Direct ethanol fuel cells (DEFCs) have been the focus of recent research due its application in mobile energy sources. In order to obtain the maximum efficiency from these systems, it is necessary the total ethanol oxidation, which implies in C-C bond break. Different catalysts described in literature are employed with this intent. This work consists in studying PtSnNi catalysts supported on carbon Vulcan XC72R, to application in DEFCs. Thus, it was used the impregnation/reduction method, varying the atomic proportion among Pt, Sn and Ni. The alloys were characterized by X-Ray Diffraction, Cyclic Voltammetry and Transmission Microscopy. Preliminary results show that predominant structure on the catalysts is the face centered cubic platinum and the densities currents are dependent on the platinum amount. (author)

  11. Wear resistance of layers hard faced by the high-alloyed filler metal

    Directory of Open Access Journals (Sweden)

    Dušan Arsić

    2016-10-01

    Full Text Available The objective of this work was to determine the wear resistance of layers hard faced by the high-alloyed filler metal, with or without the austenite inter-layer, on parts that operate at different sliding speeds in conditions without lubrication. The samples were hard faced with the filler metal E 10-UM-60-C with high content of C, Cr and W. Used filler metal belongs into group of alloys aimed for reparatory hard facing of parts damaged by abrasive and erosive wear and it is characterized by high hardness and wear resistance. In experiments, the sliding speed and the normal loading were varied and the wear scar was monitored, based on which the volume of the worn material was calculated analytically. The contact duration time was monitored over the sliding path of 300 mm. The most intensive wear was established for the loading force of 100 N and the sliding speed of 1 m.s-1, though the significant wear was also noticed in conditions of the small loading and speed of 0.25 m.s-1, which was even greater that at larger speeds.

  12. The A1 to L10 transformation in FePt films with ternary alloying additions of Mg, V, Mn, and B

    International Nuclear Information System (INIS)

    Wang, B.; Barmak, K.; Klemmer, T. J.

    2011-01-01

    The impact of ternary additions of Mg, V, Mn, and B on the A1 [face centered cubic (fcc)] to L1 0 phase transformation has been studied. The films were cosputter deposited from elemental targets at room temperature and annealed after deposition. The films had Mg additions in the range ∼0-2.6 at.%, V additions in the range 0.7-12.2 at.%, Mn additions in the range 2.2-16.3 at.%, and B additions in the range 1.2-12.9 at.%. For all four ternary alloy systems, annealing resulted in the formation of no other phases than the L1 0 phase. Ternary additions of C than the binary FePt films with the same Pt content.

  13. Modelling zirconium hydrides using the special quasirandom structure approach

    KAUST Repository

    Wang, Hao; Chroneos, Alexander I.; Jiang, Chao; Schwingenschlö gl, Udo

    2013-01-01

    The study of the structure and properties of zirconium hydrides is important for understanding the embrittlement of zirconium alloys used as cladding in light water nuclear reactors. Simulation of the defect processes is complicated due to the random distribution of the hydrogen atoms. We propose the use of the special quasirandom structure approach as a computationally efficient way to describe this random distribution. We have generated six special quasirandom structure cells based on face centered cubic and face centered tetragonal unit cells to describe ZrH2-x (x = 0.25-0.5). Using density functional theory calculations we investigate the mechanical properties, stability, and electronic structure of the alloys. © the Owner Societies 2013.

  14. Liquid structure as a guide for phase stability in the solid state: Discovery of a stable compound in the Au-Si alloy system

    International Nuclear Information System (INIS)

    Tasci, Emre S.; Sluiter, Marcel H.F.; Pasturel, Alain; Villars, Pierre

    2010-01-01

    A new crystalline ground state was discovered in the Au-Si system through first-principles electronic structure calculations. The new structure was found using the experimentally and theoretically determined local atomic structure in the liquid as a guide for the solid state. Local atomic structure in the liquid was matched with that for all known crystal structures as compiled in the Pauling File structural database. The best matching crystalline structures were then explicitly calculated using first-principles methods. Most candidate crystal structures were found to be close, but above the enthalpy of a composition weighted average of the face-centered cubic Au and diamond structure Si terminal phases, but one crystal structure was more stable than the terminal phases by about 10 meV atom -1 at T = 0 K. As first-principles simulations of local structure are feasible for most liquid alloys, the present methodology is applicable to other alloys lying near a eutectic composition.

  15. Influence of face-centered-cubic texturing of Co2Fe6B2 pinned layer on tunneling magnetoresistance ratio decrease in Co2Fe6B2/MgO-based p-MTJ spin valves stacked with a [Co/Pd](n)-SyAF layer.

    Science.gov (United States)

    Takemura, Yasutaka; Lee, Du-Yeong; Lee, Seung-Eun; Chae, Kyo-Suk; Shim, Tae-Hun; Lian, Guoda; Kim, Moon; Park, Jea-Gun

    2015-05-15

    The TMR ratio of Co2Fe6B2/MgO-based p-MTJ spin valves stacked with a [Co/Pd]n-SyAF layer decreased rapidly when the ex situ magnetic annealing temperature (Tex) was increased from 275 to 325 °C, and this decrease was associated with degradation of the Co2Fe6B2 pinned layer rather than the Co2Fe6B2 free layer. At a Tex above 325 °C the amorphous Co2Fe6B2 pinned layer was transformed into a face-centered-cubic (fcc) crystalline layer textured from [Co/Pd]n-SyAF, abruptly reducing the Δ1 coherence tunneling of perpendicular-spin-torque electrons between the (100) MgO tunneling barrier and the fcc Co2Fe6B2 pinned layer.

  16. Strengthening behavior of beta phase in lamellar microstructure of TiAl alloys

    Science.gov (United States)

    Zhu, Hanliang; Seo, D. Y.; Maruyama, K.

    2010-01-01

    β phase can be introduced to TiAl alloys by the additions of β stabilizing elements such as Cr, Nb, W, and Mo. The β phase has a body-centered cubic lattice structure and is softer than the α2 and γ phases in TiAl alloys at elevated temperatures, and hence is thought to have a detrimental effect on creep strength. However, fine β precipitates can be formed at lamellar interfaces by proper heat treatment conditions and the β interfacial precipitate improves the creep resistance of fully lamellar TiAl alloys, since the phase interface of γ/β retards the motion of dislocations during creep. This paper reviews recent research on high-temperature strengthening behavior of the β phase in fully lamellar TiAl alloys.

  17. Self Passivating W-based Alloys as Plasma Facing Material

    International Nuclear Information System (INIS)

    Koch, F.; Koeppl, S.; Bolt, H.

    2007-01-01

    Full text of publication follows: Tungsten (W) is presently the main candidate material for the plasma-facing protection of future fusion power reactors due to the low sputter erosion under bombardment by energetic D, T and He ions. Thus a W-based protection material may provide a wall erosion lifetime of the order of five years which is a pre-requisite for economic fusion reactor operation. A potential problem with the use of pure W in a fusion reactor is the formation of radioactive and highly volatile WO 3 compounds and their potential release under accidental conditions. A loss-of-coolant event in a He-cooled reactor would lead to a temperature rise to 1100 deg. C after approx. 10 to 30 days due to the nuclear decay heat of the in-vessel components. In such a situation additional accidental intense air ingress into the reactor vessel would lead to the formation of WO 3 and subsequent evaporation of radioactive (WO 3 ) x -clusters. The use of self passivating W alloys either as bulk material or as thick coating on the steel wall may be a passively safe alternative for the plasma-facing protection. The use of this material would eliminate the above mentioned concern related to pure W. To enable the formation of a protective film in oxidizing atmosphere which seals the tungsten surface from further oxidation, different elements have been investigated as corrosion protection additives. Therefore binary and ternary tungsten alloys were synthesised using magnetron sputtering. The oxidation behaviour of films deposited on inert substrates was measured with a thermo-balance set up under synthetic air at temperatures up to 1000 deg. C. Binary alloys of W-Si showed good self passivation properties by forming a SiO 2 film at the surface. The oxidation rate of a compound containing 11 wt.% Si was reduced by a factor of 10 2 compared to pure tungsten between 800 deg. C and 1000 deg. C. Using ternary alloys the oxidation behaviour could be further improved. A compound of W

  18. Microstructure and Mechanical Properties Evolution of the Al, C-Containing CoCrFeNiMn-Type High-Entropy Alloy during Cold Rolling.

    Science.gov (United States)

    Klimova, Margarita; Stepanov, Nikita; Shaysultanov, Dmitry; Chernichenko, Ruslan; Yurchenko, Nikita; Sanin, Vladimir; Zherebtsov, Sergey

    2017-12-29

    The effect of cold rolling on the microstructure and mechanical properties of an Al- and C-containing CoCrFeNiMn-type high-entropy alloy was reported. The alloy with a chemical composition (at %) of (20-23) Co, Cr, Fe, and Ni; 8.82 Mn; 3.37 Al; and 0.69 C was produced by self-propagating high-temperature synthesis with subsequent induction. In the initial as-cast condition the alloy had an face centered cubic single-phase coarse-grained structure. Microstructure evolution was mostly associated with either planar dislocation glide at relatively low deformation during rolling (up to 20%) or deformation twinning and shear banding at higher strain. After 80% reduction, a heavily deformed twinned/subgrained structure was observed. A comparison with the equiatomic CoCrFeNiMn alloy revealed higher dislocation density at all stages of cold rolling and later onset of deformation twinning that was attributed to a stacking fault energy increase in the program alloy; this assumption was confirmed by calculations. In the initial as-cast condition the alloy had low yield strength of 210 MPa with yet very high uniform elongation of 74%. After 80% rolling, yield strength approached 1310 MPa while uniform elongation decreased to 1.3%. Substructure strengthening was found to be dominated at low rolling reductions (<40%), while grain (twin) boundary strengthening prevailed at higher strains.

  19. Electrochemical hydrogen storage of Ti-V-based body-centered-cubic phase alloy surface-modified with AB5 nanoparticles

    International Nuclear Information System (INIS)

    Yu, X.B.; Walker, G.S.; Grant, D.M.; Wu, Z.; Xia, B.J.; Shen, J.

    2005-01-01

    A composite of Ti-V-based bcc phase alloy surface-modified with AB 5 nanoparticles was prepared by ball milling. The composite showed significantly improved electrochemical hydrogen release capacities. For example, the 30 min ball milled Ti-30V-15Mn-15Cr+10 wt %AB 5 showed a discharge capacity in the first cycle, at 353 K, of 886 mA h g -1 , corresponding to 3.38 wt % of hydrogen, with a 45 mA g -1 discharge current. It is thought that this high capacity is due to the enhanced electrochemical-catalytic activity from the alloy surface covered with AB 5 nanoparticles, which not only have better charge-discharge capacity themselves, acting as both an electrocatalyst and a microcurrent collector, but also result in the greatly enhanced hydrogen atomic diffusivities in the nanocrystalline relative to their conventional coarse-grained counterparts. These results provide new insight for use of Ti-V-based bcc phase alloy for high-energy batteries

  20. Powder metallurgy and mechanical alloying effects on the formation of thermally induced martensite in an FeMnSiCrNi SMA

    Directory of Open Access Journals (Sweden)

    Pricop Bogdan

    2015-01-01

    Full Text Available By ingot metallurgy (IM, melting, alloying and casting, powder metallurgy (PM, using as-blended elemental powders and mechanical alloying (MA of 50 % of particle volume, three types of FeMnSiCrNi shape memory alloy (SMA specimens were fabricated, respectively. After specimen thickness reduction by hot rolling, solution treatments were applied, at 973 and 1273 K, to thermally induce martensite. The resulting specimens were analysed by X-ray diffraction (XRD and scanning electron microscopy (SEM, in order to reveal the presence of ε (hexagonal close-packed, hcp and α’ (body centred cubic, bcc thermally induced martensites. The reversion of thermally induced martensites, to γ (face centred cubic, fcc austenite, during heating, was confirmed by dynamic mechanical analysis (DMA, which emphasized marked increases of storage modulus and obvious internal friction maxima on DMA thermograms. The results proved that the increase of porosity degree, after PM processing, increased internal friction, while MA enhanced crystallinity degree.

  1. Anomalous diffusion in body-centred and face-centred cubic metals

    International Nuclear Information System (INIS)

    Zanghi, J.-P.

    1975-10-01

    The initial rates of contraction due to self-irradiation damage at 4.2K in three PuSc alloys (5, 12, 18 at % Sc) stabilized in f.c.c. delta-phase were measured. The high negative value of the formation volume of a Frenkel pair which is deduced by extrapolating for pure Pu, can only be explained by assuming that the interstitial Pu may partly recover its distortion energy by creating bonds with its neighbours, by a localized enhancement of the d.f. hybridization and especially by provoking the formation of bonds between its very neighbours. It is shown that about twenty atoms around the interstitial Pu are affected by these bonds. The self-irradiation at 4.2K of a b.c.c. UPuMo alloy was also studied. The activation volume for self-diffusion of Pu in b.c.c. PuZr alloys (10 and 40 at % Zr) was determined. So the validity of Nachtrieb's melting-diffusion correlation could be checked. Indeed, in the Pu 40 at % Zr alloy, which has a pressure temperature diagram the liquidus of which has a positive slope, a positive activation volume was found, whereas in pure epsilon Pu which as a negative slope, the activation volume is negative. A self-diffusion mechanism in PuZr alloys is proposed. A study of the diffusion of Am in these alloys showed that Am and Pu likely diffuse by the same mechanism [fr

  2. Dislocation nucleation from symmetric tilt grain boundaries in body-centered cubic vanadium

    Science.gov (United States)

    Xu, Shuozhi; Su, Yanqing

    2018-05-01

    We perform molecular dynamics (MD) simulations with two interatomic potentials to study dislocation nucleation from six symmetric tilt grain boundaries (GB) using bicrystal models in body-centered cubic vanadium. The influences of the misorientation angle are explored in the context of activated slip systems, critical resolved shear stress (CRSS), and GB energy. It is found that for four GBs, the activated slip systems are not those with the highest Schmid factor, i.e., the Schmid law breaks down. For all misorientation angles, the bicrystal is associated with a lower CRSS than their single crystalline counterparts. Moreover, the GB energy decreases in compressive loading at the yield point with respect to the undeformed configuration, in contrast to tensile loading.

  3. Thickness dependencies of structural and magnetic properties of cubic and tetragonal Heusler alloy bilayer films

    Science.gov (United States)

    Ranjbar, R.; Suzuki, K. Z.; Sugihara, A.; Ando, Y.; Miyazaki, T.; Mizukami, S.

    2017-07-01

    The thickness dependencies of the structural and magnetic properties for bilayers of cubic Co-based Heusler alloys (CCHAs: Co2FeAl (CFA), Co2FeSi (CFS), Co2MnAl (CMA), and Co2MnSi (CMS)) and D022-MnGa were investigated. Epitaxy of the B2 structure of CCHAs on a MnGa film was achieved; the smallest thickness with the B2 structure was found for 3-nm-thick CMS and CFS. The interfacial exchange coupling (Jex) was antiferromagnetic (AFM) for all of the CCHAs/MnGa bilayers except for unannealed CFA/MnGa samples. A critical thickness (tcrit) at which perpendicular magnetization appears of approximately 4-10 nm for the CMA/MnGa and CMS/MnGa bilayers was observed, whereas this thickness was 1-3 nm for the CFA/MnGa and CFS/MnGa films. The critical thickness for different CCHAs materials is discussed in terms of saturation magnetization (Ms) and the Jex .

  4. Impact of Alloying on Stacking Fault Energies in γ-TiAl

    Directory of Open Access Journals (Sweden)

    Phillip Dumitraschkewitz

    2017-11-01

    Full Text Available Microstructure and mechanical properties are key parameters influencing the performance of structural multi-phase alloys such as those based on intermetallic TiAl compounds. There, the main constituent, a γ -TiAl phase, is derived from a face-centered cubic structure. Consequently, the dissociation of dislocations and generation of stacking faults (SFs are important factors contributing to the overall deformation behavior, as well as mechanical properties, such as tensile/creep strength and, most importantly, fracture elongation below the brittle-to-ductile transition temperature. In this work, SFs on the { 111 plane in γ -TiAl are revisited by means of ab initio calculations, finding their energies in agreement with previous reports. Subsequently, stacking fault energies are evaluated for eight ternary additions, namely group IVB–VIB elements, together with Ti off-stoichiometry. It is found that the energies of superlattice intrinsic SFs, anti-phase boundaries (APBs, as well as complex SFs decrease by 20–40% with respect to values in stoichiometric γ -TiAl once an alloying element X is present in the fault plane having thus a composition of Ti-50Al-12.5X. In addition, Mo, Ti and V stabilize the APB on the (111 plane, which is intrinsically unstable at 0 K in stoichiometric γ -TiAl.

  5. Design of Refractory High-Entropy Alloys

    Science.gov (United States)

    Gao, M. C.; Carney, C. S.; Doğan, Ö. N.; Jablonksi, P. D.; Hawk, J. A.; Alman, D. E.

    2015-11-01

    This report presents a design methodology for refractory high-entropy alloys with a body-centered cubic (bcc) structure using select empirical parameters (i.e., enthalpy of mixing, atomic size difference, Ω-parameter, and electronegativity difference) and CALPHAD approach. Sixteen alloys in equimolar compositions ranging from quinary to ennead systems were designed with experimental verification studies performed on two alloys using x-ray diffraction, energy-dispersive spectroscopy, and scanning electron microscopy. Two bcc phases were identified in the as-cast HfMoNbTaTiVZr, whereas multiple phases formed in the as-cast HfMoNbTaTiVWZr. Observed elemental segregation in the alloys qualitatively agrees with CALPHAD prediction. Comparisons of the thermodynamic mixing properties for liquid and bcc phases using the Miedema model and CALPHAD are presented. This study demonstrates that CALPHAD is more effective in predicting HEA formation than empirical parameters, and new single bcc HEAs are suggested: HfMoNbTiZr, HfMoTaTiZr, NbTaTiVZr, HfMoNbTaTiZr, HfMoTaTiVZr, and MoNbTaTiVZr.

  6. Annealing texture of rolled nickel alloys

    International Nuclear Information System (INIS)

    Meshchaninov, I.V.; Khayutin, S.G.

    1976-01-01

    A texture of pure nickel and binary alloys after the 95% rolling and annealing has been studied. Insoluble additives (Mg, Zr) slacken the cubic texture in nickel and neral slackening of the texture (Zr). In the case of alloying with silicium (up to 2%) the texture practically coinsides with that of a technical-grade nickel. The remaining soluble additives either do not change the texture of pure nickel (C, Nb) or enhance the sharpness and intensity of the cubic compontnt (Al, Cu, Mn, Cr, Mo, W, Co -at their content 0.5 to 2.0%). A model is proposed by which variation of the annealing texture upon alloying is caused by dissimilar effect of the alloying elements on the mobility of high- and low-angle grain boundaries

  7. Ab initio modeling of interactions between screw dislocations and interstitial solutes in body-centered cubic transition metals

    International Nuclear Information System (INIS)

    Luthi, Berengere

    2017-01-01

    In order to improve our understanding of alloy plasticity, it is important to describe at the atomic scale the dislocation-solute interactions and their effect on the dislocation mobility. This work focuses on the body-centered cubic (BCC) transition metals in presence of interstitial solute atoms, in particular the Fe-C system. Using Density Functional Theory (DFT) calculations, the core structure of the screw dislocation of Burgers vector b=1/2<111> was investigated in iron in presence of boron, carbon, nitrogen and oxygen solute atoms, and in BCC metals from group 5 (V, Nb, Ta) and 6 (Mo, W) in presence of carbon solutes. A core reconstruction is evidenced in iron and group 6 metals, along with a strong attractive dislocation-solute interaction energy: the dislocation goes from easy to hard configuration where the solute atoms are at the center of trigonal prisms along the dislocation line. A different behavior is observed in group 5 metals, for which the most stable configuration for the carbon atom is an octahedral site in the vicinity of the dislocation, without any core reconstruction. This group tendency is linked to the structure of mono-carbides. Consequences of the strongly attractive dislocation-solute interactions in Fe(C) were then investigated. First the equilibrium segregation close to the dislocation core was studied using a mean-field model and Monte Carlo simulations. Over a wide temperature range, from 200 to 700 K, a strong segregation is predicted with every other prismatic site occupied by a carbon atom. Then, the mobility of the dislocation in presence of carbon atoms was investigated by modeling the double-kink mechanism with DFT, in relation with experimental data obtained with transmission electron microscopy. The activation energy obtained for this atomic scale mechanism is in good agreement with experimental values for the dynamic strain aging. (author) [fr

  8. MoNbTaV Medium-Entropy Alloy

    Directory of Open Access Journals (Sweden)

    Hongwei Yao

    2016-05-01

    Full Text Available Guided by CALPHAD (Calculation of Phase Diagrams modeling, the refractory medium-entropy alloy MoNbTaV was synthesized by vacuum arc melting under a high-purity argon atmosphere. A body-centered cubic solid solution phase was experimentally confirmed in the as-cast ingot using X-ray diffraction and scanning electron microscopy. The measured lattice parameter of the alloy (3.208 Å obeys the rule of mixtures (ROM, but the Vickers microhardness (4.95 GPa and the yield strength (1.5 GPa are about 4.5 and 4.6 times those estimated from the ROM, respectively. Using a simple model on solid solution strengthening predicts a yield strength of approximately 1.5 GPa. Thermodynamic analysis shows that the total entropy of the alloy is more than three times the configurational entropy at room temperature, and the entropy of mixing exhibits a small negative departure from ideal mixing.

  9. Cubic-to-Tetragonal Phase Transitions in Ag-Cu Nano rods

    International Nuclear Information System (INIS)

    Delogu, F.; Mascia, M.

    2012-01-01

    Molecular dynamics simulations have been used to investigate the structural behavior of nano rods with square cross section. The nano rods consist of pure Ag and Cu phases or of three Ag and Cu domains in the sequence Ag-Cu-Ag or Cu-Ag-Cu. Ag and Cu domains are separated by coherent interfaces. Depending on the side length and the size of individual domains, Ag and Cu can undergo a transition from the usual face-centered cubic structure to a body-centered tetragonal one. Such transition can involve the whole nano rod, or only the Ag domains. In the latter case, the transition is accompanied by a loss of coherency at the Ag-Cu interfaces, with a consequent release of elastic energy. The observed behaviors are connected with the stresses developed at the nano rod surfaces.

  10. Effect of stacking fault energy on steady-state creep rate of face ...

    African Journals Online (AJOL)

    Continuum elastic theory was used to establish the relationships between the force of interaction required to constrict dislocation partials, energy of constriction and climb velocity of the constricted thermal jogs, in order to examine the effect of stacking fault energy (SFE) on steady state creep rate of face centered cubic ...

  11. Correlation between thermodynamic and mechanical properties in Ta-W

    Energy Technology Data Exchange (ETDEWEB)

    Hoppe, Sandra; Mueller, Stefan [Institute of Advanced Ceramics, Hamburg University of Technology, Hamburg (Germany)

    2015-07-01

    Varying an alloy's concentration or alloying constituents strongly influences its structural and mechanical properties. Modern simulation methods like density functional theory in combination with the cluster expansion make the whole configurational space accessible. This way, also metastable structures may be considered, which are experimentally difficult to obtain. Recent results for several face-centered cubic (fcc) binary metal alloys suggest a linear correlation between thermodynamic stability and elastic properties at a fixed stoichiometry. This study aims to investigate the generality of these findings by considering a similar correlation for binary body-centered cubic (bcc) alloys. As a model system, Ta-W was chosen due to its simple phase diagram with solid solution in the whole concentration range. Interestingly, the elastic constants c{sub 44} and c{sub 12} show an opposing trend to that observed for fcc alloys: Energetically favorable structures are mechanically weaker than those further away from the ground-state line. This phenomenon may be related to the anomalous behavior of c{sub 44} with increasing pressure or temperature, which has been reported in the literature for Ta-W. We will discuss the interesting behavior of Ta-W with regard to its electronic structure.

  12. Application of the theory of martensite crystallography to displacive phase transformations in substitutional nonferrous alloys

    International Nuclear Information System (INIS)

    Muddle, B.C.; Nie, J.F.; Hugo, G.R.

    1994-01-01

    It has been demonstrated that the theory of martensite crystallography is capable of accounting successfully for the form and crystallography of a range of plate- or lath-shaped transformation products, even when the formation of the product phase involves significant substitutional diffusion. These transformations include the precipitation of metastable hexagonal γ' (Ag 2 Al) plates in disordered face-centered cubic (fcc) solid-solution Al-Ag alloys, the formation of ordered AuCu II plates from disordered fcc solid solution in equiatomic Au-Cu alloys, and the formation of metastable 9R α 1 plates in ordered (B2) Cu-Zn and Ag-Cd alloys. The application of the theory to these transformations is reviewed critically and the features common to them identified. It is confirmed that, in all three transformations, the product phase produces relief at a free surface consistent with an invariant plane-strain shape change and that the transformations are thus properly described as displacive. The agreement between experimental observations and theoretical predictions of the transformation crystallography is in all cases excellent. It is proposed that successful application of the theory implies a growth mechanism in which the coherent or semicoherent, planar interface between parent and product phases maintains its structural identity during migration and that growth proceeds atom by atom in a manner consistent with the maintenance of a correspondence of lattice sites

  13. Evaluation of AS-CAST U-Mo alloys processed in graphite crucible coated with boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Marra, Kleiner M., E-mail: kleiner.marra@prof.una.br [Centro Universitario UNA, Belo Horizonte, MG (Brazil). Curso de Engenharia Mecânica; Reis, Sérgio C.; Paula, João B. de; Pedrosa, Tércio A., E-mail: reissc@cdtn.br, E-mail: jbp@cdtn.br, E-mail: tap@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    This paper reports the production of uranium-molybdenum alloys, which have been considered promising fuel for test and research nuclear reactors. U-Mo alloys were produced in three molybdenum contents: 5w%, 7w%, and 10w%, using an electric vacuum induction furnace. A boron nitride-coated graphite crucible was employed in the production of the alloys and, after melting, the material was immediately poured into a boron nitride-coated graphite mold. The incorporation of carbon was observed, but it happened in a lower intensity than in the case of the non-coated crucible/mold. It is observed that the carbon incorporation increased and alloys density decreased with Mo addition. It was also noticed that the increase in the carbon or molybdenum content did not seem to change the as-cast structure in terms of granulation. The three alloys presented body-centered cubic crystal structure (γ-phase), after solidification, besides a seeming negative microsegregation of molybdenum, from the center to the periphery of the grains. There were signs of macrosegregation, from the base to the top of the ingots. (author)

  14. Ab initio lattice stability of fcc and hcp Fe-Mn random alloys

    International Nuclear Information System (INIS)

    Gebhardt, T; Music, D; Hallstedt, B; Schneider, J M; Ekholm, M; Abrikosov, I A; Vitos, L

    2010-01-01

    We have studied the lattice stability of face centred cubic (fcc) versus hexagonal close packed (hcp) Fe-Mn random alloys using ab initio calculations. In the calculations we considered the antiferromagnetic order of local moments, which for fcc alloys models the magnetic configuration of this phase at room temperature (below its Neel temperature) as well as their complete disorder, corresponding to paramagnetic fcc and hcp alloys. For both cases, the results are consistent with our thermodynamic calculations, obtained within the Calphad approach. For the room temperature magnetic configuration, the cross-over of the total energies of the hcp phase and the fcc phase of Fe-Mn alloys is at the expected Mn content, whereas for the magnetic configuration above the fcc Neel temperature, the hcp lattice is more stable within the whole composition range studied. The increase of the total energy difference between hcp and antiferromagnetic fcc due to additions of Mn as well as the stabilizing effect of antiferromagnetic ordering on the fcc phase are well displayed. These results are of relevance for understanding the deformation mechanisms of these random alloys.

  15. Ab initio lattice stability of fcc and hcp Fe-Mn random alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gebhardt, T; Music, D; Hallstedt, B; Schneider, J M [Materials Chemistry, RWTH Aachen University, D-52056 Aachen (Germany); Ekholm, M; Abrikosov, I A [Department of Physics, Chemistry and Biology (IFM), Linkoeping University, SE-581 83 Linkoeping (Sweden); Vitos, L, E-mail: gebhardt@mch.rwth-aachen.d [Department of Materials Science and Engineering, Applied Materials Physics, oyal Institute of Technology, SE-10044 Stockholm (Sweden)

    2010-07-28

    We have studied the lattice stability of face centred cubic (fcc) versus hexagonal close packed (hcp) Fe-Mn random alloys using ab initio calculations. In the calculations we considered the antiferromagnetic order of local moments, which for fcc alloys models the magnetic configuration of this phase at room temperature (below its Neel temperature) as well as their complete disorder, corresponding to paramagnetic fcc and hcp alloys. For both cases, the results are consistent with our thermodynamic calculations, obtained within the Calphad approach. For the room temperature magnetic configuration, the cross-over of the total energies of the hcp phase and the fcc phase of Fe-Mn alloys is at the expected Mn content, whereas for the magnetic configuration above the fcc Neel temperature, the hcp lattice is more stable within the whole composition range studied. The increase of the total energy difference between hcp and antiferromagnetic fcc due to additions of Mn as well as the stabilizing effect of antiferromagnetic ordering on the fcc phase are well displayed. These results are of relevance for understanding the deformation mechanisms of these random alloys.

  16. Influence of titanium addition on the microstructure of the novel ferrous-based stainless steel

    International Nuclear Information System (INIS)

    Lin, Chia-Cheng; Lin, Li-Hsiang; Hung, Jing-Ming; Shih, Yung-Hsun; Wu, Ching-Zong; Ou, Keng-Liang; Chao, Chih-Yeh

    2011-01-01

    Highlights: → The microstructure of the as-quenched alloy is a mixture of γ, (α + B2 + DO 3 ), and TiC x phases. → The TiC x carbide had a face-center-cubic structure with a lattice parameter a = 0.432 nm.→ Formation of the TiC x carbide causing a γ → (α + γ) transition in the matrix of the alloy. → Addition of Ti promotes the formation of the α phase at high temperatures. - Abstract: The microstructural characteristics of the Fe-9Al-30Mn-1C-5Ti (wt.%) alloy were determined by scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectrometry. The microstructure of the alloy was essentially a mixture of (γ + TiC x + (α + B2 + DO 3 )) phases during solution treatment between 950 deg. C and 1150 deg. C. The TiC x carbide had a face-center-cubic structure with a lattice parameter a of 0.432 nm. When the as-quenched alloy was subjected to aging treatment at temperatures of 450-850 deg. C, the following microstructural transformation occurred: (γ + TiC x + κ + (α + DO 3 )) → (γ + TiC x + κ + (α + B2 + DO 3 + TiC x )) → (γ + TiC x + κ + κ' + (α + B2 + DO 3 )) → (γ + TiC x + (α + B2 + DO 3 )). Addition of Ti promotes the formation of the α phase at high temperatures.

  17. Effect of nitrogen on the microstructure and mechanical properties of Co-33Cr-9W alloys prepared by dental casting.

    Science.gov (United States)

    Yamanaka, Kenta; Mori, Manami; Torita, Yasuhiro; Chiba, Akihiko

    2018-01-01

    The effect of nitrogen concentration on the mechanical properties of Co-33Cr-9W alloy dental castings fabricated using the "high-Cr and high-N" concept was investigated. Microstructural analysis was performed on the alloys, and findings were discussed in relation to the mechanical properties. Owing to their high nitrogen concentrations (0.25-0.35wt%), all alloys prepared exhibited face-centered cubic (fcc) γ-phase matrices with a-few-millimeter grains consisting of dendritic substructures. Strain-induced martensitic transformations to produce hexagonal close-packed (hcp) ε-phases were not identified under tensile deformation. The precipitation of the intermetallic σ-phase was identified at the interdendritic regions where solidification segregation of Cr and W occurred. The size and chemical composition of this σ-phase did not vary with the bulk nitrogen concentration. Adding nitrogen to the alloys did not alter their tensile yield stress or Vickers hardness values significantly, suggesting that the nitrogen strengthening effect is affected by the manufacturing route as well as local chemistry that is involved in the microstructural evolution during solidification. The tensile ductility, on the other hand, increased with an increase in nitrogen concentration; the alloy with 0.35wt% nitrogen exhibited 21% elongation with a high 0.2% proof stress (589MPa). This significant improvement in ductility was likely caused by the reduction in the amount of σ-phase precipitates at the interdendritic regions following the addition of nitrogen. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Tensile deformation behavior and deformation twinning of an equimolar CoCrFeMnNi high-entropy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Joo, S.-H.; Kato, H. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Jang, M.J.; Moon, J. [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of); Tsai, C.W.; Yeh, J.W. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Kim, H.S., E-mail: hskim@postech.ac.kr [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of); Center for High Entropy Alloys, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of)

    2017-03-24

    The tensile deformation and strain hardening behaviors of an equimolar CoCrFeMnNi high-entropy alloy (HEA) were investigated and compared with low and medium entropy equiatomic alloys (LEA and MEA). The HEA had a lower yield strength than the MEA because the addition of Mn weakens solid solution hardening in the HEA. However, deformation twinning induced the multiple stage strain hardening behavior of the HEA and enhanced strength and elongation. Using tensile-interrupted electron backscatter diffraction analysis, geometrically necessary dislocations were observed as plume-shaped features in grain interior, and a considerable texture was characterized, which is typical of face centered cubic metals. Moreover, the relationship between favorably oriented grains and twinning in the HEA bore a clear resemblance to the same tendency in TWIP steels. The thickness of the twin bundles was less than 100 nm. A high density of stacking defects was found in the nanotwins. Nano twinning and stacking faults were found to contribute to the remarkable mechanical properties. Deformation induced twinning not only demonstrated the dynamic Hall-Petch effect but also changed dislocation cell substructures into microband structures.

  19. Simulating Solid-Solid Phase Transition in Shape-Memory Alloy Microstructure by Face-Offsetting Method

    International Nuclear Information System (INIS)

    Bellur Ramaswamy, Ravi S.; Tortorelli, Daniel A.; Fried, Eliot; Jiao Xiangmin

    2008-01-01

    Advances in the understanding of martensitic transformations (diffusionless, solid-solid phase transformations) have been instrumental to the recent discovery of new low hysteresis alloys. However, some key fundamental issues must be better understood to design still better alloys. Restricting attention to antiplane shear, we use finite element analysis to model the shape-memory alloy microstructure within the Abeyaratne-Knowles continuum thermomechanical framework and use an interface kinetic relation of the kind proposed by Rosakis and Tsai. Geometric singularities and topological changes associated with microstructural evolution pose significant numerical challenges. We address such challenges with a recently developed front-tracking scheme called the face-offsetting method (FOM) to explicitly model phase interfaces. Initial results demonstrate the effectiveness of FOM in resolving needle-like twinned microstructures

  20. Anomalous jump of stress upon the variation of the rate of deformation of single crystals of the Ni3Ge alloys with L12 superstructure under the conditions of cubic slip

    International Nuclear Information System (INIS)

    Starenchenko, V.A.; Solov'eva, Yu.V.; Gettinger, M.V.; Kovalevskaya, T.A.

    2005-01-01

    Experimental results are given on variations of plastic strain rate for Ni 3 Ge alloy with L1 2 superstructure possessing anomalous temperature dependence of mechanical properties. For the first time an anomalous strain rate dependence of mechanical properties of the alloy is revealed under conditions of cubic slip. The mechanism is proposed to explain the observed form of stress jump. Using the mechanism proposed normal and anomalous constituents of stress jump are separated. Temperature dependences of stress jump, normal and anomalous constituents of stress jump are analyzed [ru

  1. An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy

    International Nuclear Information System (INIS)

    Owen, L.R.; Pickering, E.J.; Playford, H.Y.; Stone, H.J.; Tucker, M.G.; Jones, N.G.

    2017-01-01

    The formation of single phase solid solutions from combinations of multiple principal elements, with differing atomic radii, has led to the suggestion that the lattices of high-entropy alloys (HEAs) must be severely distorted. To assess this hypothesis, total scattering measurements using neutron radiation have been performed on the CrMnFeCoNi alloy and compared with similar data from five compositionally simpler materials within the same system. The Bragg diffraction patterns from all of the studied materials were similar, consistent with a face-centered cubic structure, and none showed the pronounced dampening that would be expected from a highly distorted lattice. A more detailed evaluation of the local lattice strain was made by considering the first six coordination shells in the pair distribution functions (PDF), obtained from the total scattering data. Across this range, the HEA exhibited the broadest PDF peaks but these widths were not disproportionately larger than those of the simpler alloys. In addition, of all the materials considered, the HEA was at the highest homologous temperature, and hence the thermal vibrations of the atoms would be greatest. Consequently, the level of local lattice strain required to rationalise a given PDF peak width would be reduced. As a result, the data presented in this study do not indicate that the local lattice strain in the equiatomic CrMnFeCoNi HEA is anomalously large.

  2. Influence of Cr on the nucleation of primary Al and formation of twinned dendrites in Al–Zn–Cr alloys: Can icosahedral solid clusters play a role?

    International Nuclear Information System (INIS)

    Kurtuldu, Güven; Jarry, Philippe; Rappaz, Michel

    2013-01-01

    The equiaxed solidification of Al–20 wt.% Zn alloys revealed an unexpectedly large number of fine grains which are in a twin, or near-twin, relationship with their nearest neighbors when minute amounts of Cr (1000 ppm) are added to the melt. Several occurrences of neighboring grains sharing a nearly common 〈1 1 0〉 direction with a fivefold symmetry multi-twinning relationship have been found. These findings are a very strong indication that the primary face-centered cubic Al phase forms on either icosahedron quasicrystals or nuclei of the parent stable Al 45 Cr 7 phase, which exhibits several fivefold symmetry building blocks in its large monoclinic unit cell. They are further supported by thermodynamic calculations and by grains sometimes exhibiting orientations compatible with the so-called interlocked icosahedron. These results are important, not only because they provide an explanation of the nucleation of twinned dendrites in Al alloys, a topic that has remained unclear over the past 60 years despite several recent investigations, but also because they identify a so far neglected nucleation mechanism in aluminum alloys, which could also apply to other metallic systems

  3. Plastic fluctuations in empty crystals formed by cubic wireframe particles

    Science.gov (United States)

    McBride, John M.; Avendaño, Carlos

    2018-05-01

    We present a computer simulation study of the phase behavior of colloidal hard cubic frames, i.e., particles with nonconvex cubic wireframe geometry interacting purely by excluded volume. Despite the propensity of cubic wireframe particles to form cubic phases akin to their convex counterparts, these particles exhibit unusual plastic fluctuations in which a random and dynamic fraction of particles rotate around their lattice positions in the crystal lattice while the remainder of the particles remains fully ordered. We argue that this unexpected effect stems from the nonconvex geometry of the particles in which the faces of a particle can be penetrated by the vertices of the nearest neighbors even at high number densities.

  4. Nanoprecipitates in single-crystal molybdenum-alloy nanopillars detected by TEM and atom probe tomography

    International Nuclear Information System (INIS)

    Oveisi, Emad; Bártová, Barbora; Gerstl, Stephan; Zimmermann, Julien; Marichal, Cécile; Van Swygenhoven, Helena; Hébert, Cécile

    2013-01-01

    Transmission electron microscopy (TEM) supported by various chemical analyses techniques as well as atom probe tomography is applied to characterize newly identified nanosized precipitates in Mo-alloy nanopillars that were prepared by directional solidification. It is shown that the α-Mo matrix contains Al-enriched face-centred cubic precipitates which have a 4.12 Å lattice parameter, and exhibit a Kurdjumov–Sachs crystallographic orientation relationship with the matrix. Such precipitates could be responsible for the unusual behaviour of the pillars during compression tests

  5. Texture evolution maps for upset deformation of body-centered cubic metals

    International Nuclear Information System (INIS)

    Lee, Myoung-Gyu; Wang, Jue; Anderson, Peter M.

    2007-01-01

    Texture evolution maps are used as a tool to visualize texture development during upset deformation in body-centered cubic metals. These maps reveal initial grain orientations that tend toward normal direction (ND)|| versus ND|| . To produce these maps, a finite element analysis (FEA) with a rate-dependent crystal plasticity constitutive relation for tantalum is used. A reference case having zero workpiece/die friction shows that ∼64% of randomly oriented grains rotate toward ND|| and ∼36% rotate toward ND|| . The maps show well-established trends that increasing strain rate sensitivity and decreasing latent-to-self hardening ratio reduce both and percentages, leading to more diffuse textures. Reducing operative slip systems from both {1 1 0}/ and {1 1 2}/ to just {1 1 0}/ has a mixed effect: it increases the percentage but decreases the percentage. Reducing the number of slip systems and increasing the number of FEA integration points per grain strengthen - texture bands that are observed experimentally

  6. Size effect on deformation twinning in face-centred cubic single crystals: Experiments and modelling

    International Nuclear Information System (INIS)

    Liang, Z.Y.; De Hosson, J.T.M.; Huang, M.X.

    2017-01-01

    In addition to slip by dislocation glide, deformation twinning in small-sized metallic crystals also exhibits size effect, namely the twinning stress increases with decreasing sample size. In order to understand the underpinning mechanisms responsible for such effect, systematic experiments were carried out on the small-sized single-crystalline pillars of a twinning-induced plasticity steel with a face-centred cubic structure. The flow stress increases considerably with decreasing pillar diameter from 3 to 0.5 μm, demonstrating a substantial size effect with a power exponent of 0.43. Detailed microstructural characterization reveals that the plastic deformation of the present pillars is dominant by twinning, primarily via twin growth, indicating that the size effect should be related to deformation twinning instead of slip by dislocation glide. Subsequent modelling works indicate that twinning can be accomplished by the dissociation of the ion-radiation-induced vacancy Frank loops in the damaged subsurface layer of the pillars, and the size effect is attributed to the ion-radiation-induced compressive stress in the subsurface layer, which decreases with pillar diameter.

  7. Basic design of a rotating disk centrifugal atomizer for uranium-molybdenum alloys

    International Nuclear Information System (INIS)

    Alzari, Silvio

    2001-01-01

    One of the most used techniques to produce metallic powders is the centrifugal atomization with a rotating disk. This process is employ to fabricate ductile metallic particles of uranium-molybdenum alloys (typically U- 7 % Mo, by weight) for nuclear fuel elements for research and testing reactors. These alloys exhibit a face-centered cubic structure (γ phase) which is stable above 700 C degrees and can be retained at room temperature. The rotating disk centrifugal atomization allows a rapid solidification of spherical metallic droplets of about 40 to 100 μm, considered adequate to manufacture nuclear fuel elements. Besides the thermo-physical properties of both the alloy and the cooling gas, the main parameters of the process are the radius of the disk (R), the diameter of the atomization chamber (D), the disk rotation speed (ω), the liquid volume flow rate (Q) and the superheating of the liquid (ΔT). In this work, they were applied approximate analytical models to estimate the optimal geometrical and operative parameters to obtain spherical metallic powder of U- 7 % Mo alloy. Three physical phenomena were considerate: the liquid metal flow along the surface of the disk, the fragmentation and spheroidization of the droplets and the cooling and solidification of the droplets. The principal results are the more suitable gas is helium; R ≅ 20 mm; D ≥ 1 m; ≅ 20,000 - 50,000 rpm; Q ≅ 4 - 10 cm 3 /s; ΔT ≅ 100 - 200 C degrees. By applying the relevant non-dimensional parameters governing the main physical phenomena, the conclusion is that the more appropriate non-radioactive metal to simulate the atomization of U- 7 % Mo is gold [es

  8. Microstructure and Tensile Behavior of Al8Co17Cr17Cu8Fe17Ni33 (at.%) High-Entropy Alloy

    Science.gov (United States)

    Daoud, H. M.; Manzoni, A.; Völkl, R.; Wanderka, N.; Glatzel, U.

    2013-12-01

    Microstructure evolution and tensile behavior of the high-entropy alloy Al8Co17Cr17Cu8Fe17Ni33 (at.%) are investigated at room temperature and at 500°C in the as-cast state and under different heat-treatment conditions. Detailed microstructural characterizations are carried out using optical microscopy, scanning electron microscopy, and transmission electron microscopy. The equilibrium phase evolution as a function of temperature was calculated using the Thermo-Calc software (Thermo-Calc Software, Stockholm, Sweden) integrated with TTNi-7 database. The observed majority phase is a face-centered cubic solid solution for all tested specimens. Tensile ductility at room temperature and at elevated temperature is enhanced by heat treatment at 1150°C. An embrittlement phenomenon has been observed after a heat treatment at 700°C resulting in significant degradation in tensile properties.

  9. NbTaV-(Ti,W) refractory high-entropy alloys: Experiments and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Yao, H.W. [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Qiao, J.W., E-mail: qiaojunwei@gmail.com [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Gao, M.C., E-mail: michael.gao@netl.doe.gov [National Energy Technology Laboratory, 1450 Queen Ave SW, Albany, OR 97321 (United States); AECOM, P.O. Box 1959, Albany, OR 97321 (United States); Hawk, J.A. [National Energy Technology Laboratory, 1450 Queen Ave SW, Albany, OR 97321 (United States); Ma, S.G. [Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zhou, H.F. [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zhang, Y. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2016-09-30

    This study reports the design and development of ductile and strong refractory single-phase high-entropy alloys (HEAs) for high temperature applications, based on NbTaV with addition of Ti and W. Assisted by CALPHAD modeling, a single body-centered cubic solid solution phase was experimentally confirmed in the as-cast ingots using X-ray diffraction and scanning electron microscopy. The observed elemental segregation in each alloy qualitatively agrees with CALPHAD prediction. The Vickers microhardnesses (and yield strengths) of the alloys are about 3 (and 3.5–4.4) times that those estimated from the rule of mixture. While NbTaTiVW shows an impressive yield strength of 1420 MPa with fracture strain of 20%, NbTaTiV exhibits exceptional compressive ductility at room temperature.

  10. Effect of molybdenum on structure, microstructure and mechanical properties of biomedical Ti-20Zr-Mo alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Pedro Akira Bazaglia [UNESP - Univ Estadual Paulista, Laboratório de Anelasticidade e Biomateriais, 17.033-360, Bauru, SP (Brazil); IBTN/Br – Institute of Biomaterials, Tribocorrosion and Nanomedicine, Brazilian Branch, 17.033-360 Bauru, SP (Brazil); Buzalaf, Marília Afonso Rabelo [USP – Universidade de São Paulo, Departamento de Ciências Biológicas, 17.012-901, Bauru, SP (Brazil); Grandini, Carlos Roberto, E-mail: betog@fc.unesp.br [UNESP - Univ Estadual Paulista, Laboratório de Anelasticidade e Biomateriais, 17.033-360, Bauru, SP (Brazil); IBTN/Br – Institute of Biomaterials, Tribocorrosion and Nanomedicine, Brazilian Branch, 17.033-360 Bauru, SP (Brazil)

    2016-10-01

    Titanium has an allotropic transformation around 883 °C. Below this temperature, the crystalline structure is hexagonal close-packed (α phase), changing to body-centered cubic (β phase). Zirconium has the same allotropic transformation around 862 °C. Molybdenum has body-centered cubic structure, being a strong β-stabilizer for the formation of titanium alloys. In this paper, the effect of substitutional molybdenum was analyzed on the structure, microstructure and selected mechanical properties of Ti-20 Zr-Mo (wt%) alloys to be used in biomedical applications. The samples were prepared by arc-melting and characterized by x-ray diffraction with subsequent refinement by the Rietveld method, optical and scanning electron microscopy. The mechanical properties were analyzed by Vickers microhardness and dynamic elasticity modulus. X-ray measurements and Rietveld analysis revealed the presence of α′ phase without molybdenum, α′ + α″ phases with 2.5 wt% of molybdenum, α″ + β phases with 5 and 7.5 wt% of molybdenum, and only β phase with 10 wt% of molybdenum. These results were corroborated by microscopy results, with a microstructure composed of grains of β phase and lamellae and needles of α′ and α″ phase in intra-grain the region. The hardness of the alloy was higher than the commercially pure titanium, due to the action of zirconium and molybdenum as hardening agents. The samples have a smaller elasticity modulus than the commercially pure titanium. - Highlights: • Ti-20Zr-Mo system alloys were developed. • β-Stabilizer effect of Zr in the presence of another β-stabilizer element • Alloys with low elastic modulus.

  11. On the electron density localization in elemental cubic ceramic and FCC transition metals by means of a localized electrons detector.

    Science.gov (United States)

    Aray, Yosslen; Paredes, Ricardo; Álvarez, Luis Javier; Martiz, Alejandro

    2017-06-14

    The electron density localization in insulator and semiconductor elemental cubic materials with diamond structure, carbon, silicon, germanium, and tin, and good metallic conductors with face centered cubic structure such as α-Co, Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au, was studied using a localized electrons detector defined in the local moment representation. Our results clearly show an opposite pattern of the electron density localization for the cubic ceramic and transition metal materials. It was found that, for the elemental ceramic materials, the zone of low electron localization is very small and is mainly localized on the atomic basin edges. On the contrary, for the transition metals, there are low-valued localized electrons detector isocontours defining a zone of highly delocalized electrons that extends throughout the material. We have found that the best conductors are those in which the electron density at this low-value zone is the lowest.

  12. Multiscale Morphology of Nanoporous Copper Made from Intermetallic Phases

    International Nuclear Information System (INIS)

    Egle, Tobias; Harvard University, Cambridge, MA; Barroo, Cédric; Janvelyan, Nare; Baumgaertel, Andreas C.

    2017-01-01

    Many application-relevant properties of nanoporous metals critically depend on their multiscale architecture. For example, the intrinsically high step-edge density of curved surfaces at the nanoscale provides highly reactive sites for catalysis, whereas the macroscale pore and grain morphology determines the macroscopic properties, such as mass transport, electrical conductivity, or mechanical properties. Here, in this work, we systematically study the effects of alloy composition and dealloying conditions on the multiscale morphology of nanoporous copper (np-Cu) made from various commercial Zn–Cu precursor alloys. Using a combination of X-ray diffraction, electron backscatter diffraction, and focused ion beam cross-sectional analysis, our results reveal that the macroscopic grain structure of the starting alloy surprisingly survives the dealloying process, despite a change in crystal structure from body-centered cubic (Zn–Cu starting alloy) to face-centered cubic (Cu). The nanoscale structure can be controlled by the acid used for dealloying with HCl leading to a larger and more faceted ligament morphology compared to that of H_3PO_4. Finally, anhydrous ethanol dehydrogenation was used as a probe reaction to test the effect of the nanoscale ligament morphology on the apparent activation energy of the reaction.

  13. Stability study of the γ phase in U-Nb-Zr alloys

    International Nuclear Information System (INIS)

    Arico, S.F; Hermida, J.D; Gribaudo, L.M

    2006-01-01

    The development of new low enrichment nuclear fuels for research and radioisotope production reactors imposes the knowledge of properties and behaviors about a series of alloys which the reducing of U 235 (fissionable) concentration is compensated with a greater density of this element inside the fuel. One of these series is composed by U alloys with different contents of alloying, that allow to retain the body centered cubic structure solid solution recognized as phase α in metastable condition at low temperatures. For the present work 10 U based alloys were manufactured with different concentrations containing up to 43,7 % zirconium weight and up to 7,3 % niobium weight. An arch oven was utilized with argon atmosphere. The identification of the present phases in massive samples from the melting was carried out through X-rays diffraction analysis. The results obtained in this work are compared with others results published since the year 1957. In the samples melted the intermetallic UZr 2 diminishes in quantity with the reduction of the composition of Zr in the alloys. In all of them were identified, besides, Zr 6 Fe 3 O, ZrO 0,35 , α and U 3 O 8 present in quantities reduced. The quantity of the two last phases diminishes at the same time with the content in Zr. The parameter of network of the cubic phase γU in these alloys can be represented for the equation: α=(3,5796 -0,1616.x Nb +0,1155.x Zr )/(1.0306+0,003.x Nb -0,0068.x Zr . The parameter of network of the γ phase was measured. Comparing it measured with the value calculated, for eight alloys, the proposed equation showed a very good adjustment (HC)

  14. Investigation of Ti-Fe-Co bulk alloys with high strength and enhanced ductility

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, Dmitri V.; Louzguina-Luzgina, Larissa V.; Kato, Hidemi; Inoue, Akihisa

    2005-01-01

    High-strength Ti-Fe-Co alloys were produced in the shape of arc-melted ingots with the dimensions of about 20-25mm in diameter and 7-10mm in height. The structure of the Ti-Fe-Co alloys (at Fe/Co ratio >1) studied by X-ray diffractometry and scanning electron microscopy consisted of an ordered Pm3-bar m Ti(FeCo) compound and a disordered body-centered cubic Im3-bar m β-Ti solid solution. The optimization of the Ti-Fe-Co alloy composition is performed from the viewpoint of both high strength and ductility. The strongest Ti-Fe-Co alloys have a hypereutectic structure and exhibit a high strength of about 2000MPa and a plastic deformation of 15%. The high strength and ductility values can be achieved without using the injection mould casting or rapid solidification procedure. The deformation behavior and the fractography of Ti-Fe-Co alloys are studied in detail

  15. Cu-Cr Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Need, Ryan F. [Los Alamos National Laboratory

    2012-08-09

    Cu-Cr alloys are part of a class of face-centered cubic (FCC)-body-centered cubic (BCC) composites that includes similar alloys, such as Cu-Nb and Cu-Ta. When heavily deformed, these FCC-BCC materials create 'in situ' composites with a characteristic structure-nanoscale BCC filaments in a ductile FCC matrix. The strength of these composites is vastly greater than predicted by the rule of mixtures, and has been shown to be inversely proportional to the filament spacing. Lower raw materials costs suggest that Cu-Cr alloys may offer more economical solution to high-strength, high-conductivity wire than either their Nb or Ta counterparts. However, Cr is also more brittle and soluble in Cu than Nb or Ta. These qualities necessitate thermal treatments to remove solute atoms from the Cu matrix, improve conductivity, and maintain the ductility of the Cr filaments. Through the use of different thermomechanical processing routes or the addition of select dopants, alloys with strength in excess of 1 GPa at 70% IACS have been achieved. To date, previous research on Cu-Cr alloys has focused on a relatively small number of alloy compositions and processing methods while the effects of dopants and ageing treatments have only been studied independently. Consequently, there remains considerable opportunity for the development and optimization of these alloys as a leading high-strength, high-conductivity material.

  16. Collective dynamics and self-diffusion in a diblock copolymer melt in the body-centered cubic phase

    DEFF Research Database (Denmark)

    Papadakis, C.M.; Rittig, F.; Almdal, K.

    2004-01-01

    The structure and dynamics of a strongly asymmetric poly(ethylene propylene)poly (dimethylsiloxane) (PEP-PDMS) diblock copolymer in the melt have been studied over a wide temperature range. Small-angle neutron scattering reveals that the sample exhibits two stable phases in this temperature range......: Above the order-to-disorder transition temperature, it is disordered, whereas the domain structure is body-centered cubic (bcc) below, being stable down to the lowest temperatures measured. In the disordered state, dynamic light scattering (DLS) in the polarized geometry reveals the heterogeneity mode...

  17. On the mechanical stability of the body-centered cubic phase and the emergence of a metastable cI16 phase in classical hard sphere solids

    Science.gov (United States)

    Warshavsky, Vadim B.; Ford, David M.; Monson, Peter A.

    2018-01-01

    The stability of the body-centered cubic (bcc) solid phase of classical hard spheres is of intrinsic interest and is also relevant to the development of perturbation theories for bcc solids of other model systems. Using canonical ensemble Monte Carlo, we simulated systems initialized in a perfect bcc lattice at various densities in the solid region. We observed that the systems rapidly evolved into one of four structures that then persisted for the duration of the simulation. Remarkably, one of these structures was identified as cI16, a cubic crystalline structure with 16 particles in the unit cell, which has recently been observed experimentally in lithium and sodium solids at high pressures. The other three structures do not exhibit crystalline order but are characterized by common patterns in the radial distribution function and bond-orientational order parameter distribution; we refer to them as bcc-di, with i ranging from 1 to 3. We found similar outcomes when employing any of the three single occupancy cell (SOC) restrictions commonly used in the literature. We also ran long constant-pressure simulations with box shape fluctuations initiated from bcc and cI16 initial configurations. At lower pressures, all the systems evolved to defective face-centered cubic (fcc) or hexagonal close-packed (hcp) structures. At higher pressures, most of the systems initiated as bcc evolved to cI16 with some evolving to defective fcc/hcp. High pressure systems initiated from cI16 remained in that structure. We computed the chemical potential of cI16 using the Einstein crystal reference method and found that it is higher than that of fcc by ˜0.5kT-2.5kT over the pressure range studied, with the difference increasing with pressure. We find that the undistorted bcc solid, even with constant-volume and SOC restrictions applied, is so mechanically unstable that it is unsuitable for consideration as a metastable phase or as a reference system for studying bcc phases of other systems

  18. Formation of Al15Mn3Si2 Phase During Solidification of a Novel Al-12%Si-4%Cu-1.2%Mn Heat-Resistant Alloy and Its Thermal Stability

    Science.gov (United States)

    Suo, Xiaojing; Liao, Hengcheng; Hu, Yiyun; Dixit, Uday S.; Petrov, Pavel

    2018-02-01

    The formation of Al15Mn3Si2 phase in Al-12Si-4Cu-1.2Mn (wt.%) alloy during solidification was investigated by adopting CALPHAD method and microstructural observation by optical microscopy, SEM-EDS, TEM-EDS/SAD and XRD analysis; SEM fixed-point observation method was applied to evaluate its thermal stability. As-cast microstructural observation consistently demonstrates the solidification sequence of the studied alloy predicted by phase diagram calculation. Based on the phase diagram calculation, SEM-EDS, TEM-EDS/SAD and XRD analysis, as well as evidences on Al-Si-Mn-Fe compounds from the literature, the primary and eutectic Mn-rich phases with different morphologies in the studied alloy are identified to be Al15Mn3Si2 that has a body-centered cubic (BCC) structure with a lattice constant of a = 1.352 nm. SEM fixed-point observation and XRD analysis indicate that Al15Mn3Si2 phase has more excellent thermal stability at high temperature than that of CuAl2 phase and can serve as the major strengthening phase in heat-resistant aluminum alloy that has to face a high-temperature working environment. Results of tension test show that addition of Mn can improve the strength of Al-Si-Cu alloy, especially at elevated temperature.

  19. Atomistic simulation study of deformation twinning of nanocrystalline body-centered cubic Mo

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Xiaofeng [The College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu (China); Li, Dan, E-mail: txf8378@163.com [The College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu (China); Yu, You [College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu (China); You, Zhen Jiang [Australian School of Petroleum, University of Adelaide, SA 5005 (Australia); Li, Tongye [The National Key Laboratory of Nuclear Fuel and Materials, Nuclear Power Institute of China, Chengdu (China); Ge, Liangquan [The College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu (China)

    2017-04-06

    Deformation twinning of nanocrystalline body-centered cubic Mo was studied using molecular dynamics simulations, and the effects of grain sizes and temperatures on the deformation were evaluated. With small grain size, grain rotation accompanying grain growth was found to play important role in nanocrystalline Mo during tensile deformation. Additionally, grain rotation and the deformation controlled by GB-mediated processes induce to the difficulty of creating crack. Twin was formed by successive emission of twinning partials from grain boundaries in small grain size systems. However, the twin mechanisms of GB splitting and overlapping of two extended dislocations were also found in larger size grain. Twin induced crack tips were observed in our simulation, and this confirmed the results of previous molecular dynamics simulations. At higher temperatures, GB activities can be thermally activated, resulting in suppression of twinning tendency and improvement of ductility of nanocrystalline Mo.

  20. Ab initio, mean field theory and series expansions calculations study of electronic and magnetic properties of antiferromagnetic MnSe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, BP. 63, 46000 Safi (Morocco); LMPHE (URAC 12), Faculty of Science, Mohammed V-Agdal University, Rabat (Morocco); Hlil, E.K. [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Benyoussef, A. [LMPHE (URAC 12), Faculty of Science, Mohammed V-Agdal University, Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Mounkachi, O.; El Moussaoui, H. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)

    2014-06-01

    Self-consistent ab initio calculations, based on DFT (Density Functional Theory) approach and using FLAPW (Full potential Linear Augmented Plane Wave) method, are performed to investigate both electronic and magnetic properties of the MnSe lattice. Polarized spin and spin–orbit coupling are included in calculations within the framework of the antiferromagnetic state between two adjacent Mn lattices. Magnetic moments considered to lie along (001) axes are computed. Obtained data from ab initio calculations are used as input for the high temperature series expansions (HTSEs) calculations to compute other magnetic parameters. The zero-field high temperature static susceptibility series of the spin −4.28 nearest-neighbor Ising model on face centered cubic (fcc) and lattices is thoroughly analyzed by means of a power series coherent anomaly method (CAM). The exchange interaction between the magnetic atoms and the Néel temperature are deduced using the mean filed and HTSEs theories. - Highlights: • Ab initio calculations are used to investigate both electronic and magnetic properties of the MnSe alloys. • Obtained data from ab initio calculations are used as input for the HTSEs. • The Néel temperature is obtained for MnSe alloys.

  1. E centers in ternary Si1−x−yGexSny random alloys

    KAUST Repository

    Chroneos, Alexander; Bracht, H.; Grimes, R. W.; Jiang, C.; Schwingenschlö gl, Udo

    2009-01-01

    Density functional theory calculations are used to study the association of arsenic (As) atoms to lattice vacancies and the formation of As-vacancy pairs, known as E centers, in the random Si0.375Ge0.5Sn0.125 alloy. The local environments are described by 32-atom special quasirandom structures that represent random Si1−x−yGexSny alloys. It is predicted that the nearest-neighbor environment will exert a strong influence on the stability of E centers in ternary Si0.375Ge0.5Sn0.125.

  2. E centers in ternary Si1−x−yGexSny random alloys

    KAUST Repository

    Chroneos, Alexander

    2009-09-14

    Density functional theory calculations are used to study the association of arsenic (As) atoms to lattice vacancies and the formation of As-vacancy pairs, known as E centers, in the random Si0.375Ge0.5Sn0.125 alloy. The local environments are described by 32-atom special quasirandom structures that represent random Si1−x−yGexSny alloys. It is predicted that the nearest-neighbor environment will exert a strong influence on the stability of E centers in ternary Si0.375Ge0.5Sn0.125.

  3. Anchoring of Ag-Au alloy nanoparticles on reduced graphene oxide sheets for the reduction of 4-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Hareesh, K., E-mail: appi.2907@gmail.com [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Joshi, R.P. [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Sunitha, D.V. [School of Physics, Reva University, Bangalore 560064 (India); Bhoraskar, V.N. [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Dhole, S.D., E-mail: sanjay@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India)

    2016-12-15

    Highlights: • Ag-Au-rGO nanocomposite was synthesized by gamma radiation assisted method. • Ag-Au nanoparticles of size (5–19) nm were decorated on rGO. • Ag-Au-rGO showed enhanced catalytic activity for reduction of 4-Nitrophenol. - Abstract: One-step gamma radiation assisted method has been used for the synthesis of Silver-Gold (Ag-Au) alloy nanoparticles with simultaneous reduction of graphene oxide (GO). UV–vis spectroscopic results along with X-ray diffraction analysis, X-ray Photoelectron spectroscopy and Transmission electron microscopy confirmed the decoration face centered cubic structured Ag-Au nanoparticles of size (5–19) nm on reduced graphene oxide (rGO) sheets. The increase in disorder parameter in Raman spectroscopy indicates the formation of more number of small sp{sup 2} domains. The synthesized Ag-Au-rGO nanocomposite showed enhanced catalytic activity towards the reduction of 4-Nitrophenol compared to individual Ag-Au and rGO components.

  4. Microstructure and texture evolution in a Cu–Ni–Si alloy processed by equal-channel angular pressing

    Energy Technology Data Exchange (ETDEWEB)

    Hadj Larbi, Fayçal; Azzeddine, Hiba [Faculté de Physique, USTHB, BP 32 El-Alia, Dar El Beida, Alger (Algeria); Baudin, Thierry [Université de Paris Sud, ICMMO, UMR CNRS 8182, Laboratoire de physico-chimie de l’état solide, Bâtiment 410, 91405 Orsay Cedex (France); Mathon, Marie-Hélène [Laboratoire Léon Brillouin, CEA-CNRS, CEA/Saclay, 91191 Gif-sur-Yvette (France); Brisset, François; Helbert, Anne-Laure [Université de Paris Sud, ICMMO, UMR CNRS 8182, Laboratoire de physico-chimie de l’état solide, Bâtiment 410, 91405 Orsay Cedex (France); Kawasaki, Megumi, E-mail: megumi@hanyang.ac.kr [Division of Materials Science and Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Departments of Aerospace & Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453 (United States); Bradai, Djamel [Faculté de Physique, USTHB, BP 32 El-Alia, Dar El Beida, Alger (Algeria); Langdon, Terence G. [Departments of Aerospace & Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453 (United States); Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2015-07-25

    Highlights: • A Cu–Ni–Si alloy is processed by ECAP up to 12 passes at 423 K through route A. • The texture after ECAP is characterized by typical shear components of fcc metals. • ECAP leads to randomization of the texture with increasing numbers of passes. • ECAP through route A rotates the texture positions from the ideal component. - Abstract: Experiments were conducted to evaluate the evolution of microstructure and texture in a commercial Cu–2.5Ni–0.6Si (wt.%) alloy processed by equal-channel angular pressing (ECAP) at 423 K for up to 12 passes. An electron backscatter diffraction (EBSD) analysis shows that ECAP processing leads to microstructural refinement with an average grain size of ∼0.9 μm. The refined grains are inclined to the direction of extrusion and the deformation structure evolves from elongated grains to a duplex microstructure of equiaxed and elongated grains. Detailed measurements demonstrate that the grain boundary misorientations gradually increase with increasing numbers of ECAP passes. The texture was investigated using both EBSD and neutron diffraction. The results show the texture after ECAP is characterized by typical shear components of face-centered cubic metals which deviate from their ideal positions.

  5. Microstructure and texture evolution in a Cu–Ni–Si alloy processed by equal-channel angular pressing

    International Nuclear Information System (INIS)

    Hadj Larbi, Fayçal; Azzeddine, Hiba; Baudin, Thierry; Mathon, Marie-Hélène; Brisset, François; Helbert, Anne-Laure; Kawasaki, Megumi; Bradai, Djamel; Langdon, Terence G.

    2015-01-01

    Highlights: • A Cu–Ni–Si alloy is processed by ECAP up to 12 passes at 423 K through route A. • The texture after ECAP is characterized by typical shear components of fcc metals. • ECAP leads to randomization of the texture with increasing numbers of passes. • ECAP through route A rotates the texture positions from the ideal component. - Abstract: Experiments were conducted to evaluate the evolution of microstructure and texture in a commercial Cu–2.5Ni–0.6Si (wt.%) alloy processed by equal-channel angular pressing (ECAP) at 423 K for up to 12 passes. An electron backscatter diffraction (EBSD) analysis shows that ECAP processing leads to microstructural refinement with an average grain size of ∼0.9 μm. The refined grains are inclined to the direction of extrusion and the deformation structure evolves from elongated grains to a duplex microstructure of equiaxed and elongated grains. Detailed measurements demonstrate that the grain boundary misorientations gradually increase with increasing numbers of ECAP passes. The texture was investigated using both EBSD and neutron diffraction. The results show the texture after ECAP is characterized by typical shear components of face-centered cubic metals which deviate from their ideal positions

  6. Determination of the stacking fault energies of face centured cubic metals and alloys by X-rays diffraction

    International Nuclear Information System (INIS)

    Borges, J.F.A.; Padilha, A.F.; Imakuma, K.

    1988-03-01

    An X-rays diffraction method was applied to measure the Stacking Fault Energies (SFE) of the AISI 304, AISI 316, AISI 347 and DIN-WERKSTOFF 1.4970 Austenitic Stainless Steels. The SFE determination plays an important role in the research of the mecanichal behaviour of the Metal and Alloys, their deformation mechanisms, stability of micro-structure and electronic configuration. The method is based on the relationship between the SFE and the ratio of the Mean Square Strains to the Stacking-Fault probability. The Mean Square Strain was evaluated by Fourier Analysis of X-rays Diffaction profiles, corrected to reduce instrumental effects, followed by the application of the Warren-Averbach method to the Fourier Coefficients. The Stacking-Fault probabilities were derived from the changes of peak separations between cold-worked and annealed specimens. (author) [pt

  7. Recent progress in R and D on tungsten alloys for divertor structural and plasma facing materials

    Energy Technology Data Exchange (ETDEWEB)

    Wurster, S., E-mail: stefan.wurster@oeaw.ac.at [Erich Schmid Institute of Materials Science, Austria and Association EURATOM-ÖAW, Jahnstrasse 12, A-8700 Leoben (Austria); Baluc, N.; Battabyal, M. [Ecole Polytechnique Fédérale de Lausanne (EPFL), Villigen PSI (Switzerland); Crosby, T. [University of California, Mechanical and Aerospace Engineering Department, Los Angeles, CA (United States); Du, J. [Max-Planck-Institut für Plasmaphysik, Garching (Germany); García-Rosales, C. [Centro de Estudios e Investigaciones Técnicas de Gipuzkoa (CEIT), San Sebastián (Spain); Hasegawa, A. [Department of Quantum Science and Energy Engineering, Faculty of Engineering, Tohoku University (Japan); Hoffmann, A. [Plansee Metall GmbH, Reutte (Austria); Kimura, A. [Institute of Advanced Energy, Kyoto University (Japan); Kurishita, H. [International Research Center for Nuclear Material Science, Institute for Materials Research, Tohoku University (Japan); Kurtz, R.J. [Pacific Northwest National Laboratory, Richland, WA (United States); Li, H. [Erich Schmid Institute of Materials Science, Austria and Association EURATOM-ÖAW, Jahnstrasse 12, A-8700 Leoben (Austria); Chair of Atomistic Modelling and Design of Materials, University of Leoben, Leoben (Austria); Noh, S.; Reiser, J. [Karlsruhe Institute of Technology, Karlsruhe (Germany); Riesch, J. [Max-Planck-Institut für Plasmaphysik, Garching (Germany); Rieth, M. [Karlsruhe Institute of Technology, Karlsruhe (Germany); Setyawan, W. [Pacific Northwest National Laboratory, Richland, WA (United States); Walter, M. [Karlsruhe Institute of Technology, Karlsruhe (Germany); You, J.-H. [Max-Planck-Institut für Plasmaphysik, Garching (Germany); and others

    2013-11-15

    Tungsten materials are candidates for plasma-facing components for the International Thermonuclear Experimental Reactor and the DEMOnstration power plant because of their superior thermophysical properties. Because these materials are not common structural materials like steels, knowledge and strategies to improve the properties are still under development. These strategies discussed here, include new alloying approaches and microstructural stabilization by oxide dispersion strengthened as well as TiC stabilized tungsten based materials. The fracture behavior is improved by using tungsten laminated and tungsten wire reinforced materials. Material development is accompanied by neutron irradiation campaigns. Self-passivation, which is essential in case of loss-of-coolant accidents for plasma facing materials, can be achieved by certain amounts of chromium and titanium. Furthermore, modeling and computer simulation on the influence of alloying elements and heat loading and helium bombardment will be presented.

  8. Structural materials for large superconducting magnets for tokamaks

    International Nuclear Information System (INIS)

    Long, C.J.

    1976-12-01

    The selection of structural materials for large superconducting magnets for tokamak-type fusion reactors is considered. The important criteria are working stress, radiation resistance, electromagnetic interaction, and general feasibility. The most advantageous materials appear to be face-centered-cubic alloys in the Fe-Ni-Cr system, but high-modulus composites may be necessary where severe pulsed magnetic fields are present. Special-purpose structural materials are considered briefly

  9. Effect of Ti/Cr content on the microstructures and hydrogen storage properties of Laves phase-related body-centered-cubic solid solution alloys

    Energy Technology Data Exchange (ETDEWEB)

    Young, K., E-mail: kwo.young@basf.com [BASF/Battery Materials-Ovonic, 2983 Waterview Drive, Rochester Hills, MI 48309 (United States); Wong, D.F. [BASF/Battery Materials-Ovonic, 2983 Waterview Drive, Rochester Hills, MI 48309 (United States); Department of Chemical Engineering and Materials Science, Wayne State University, MI 48202 (United States); Wang, L. [BASF/Battery Materials-Ovonic, 2983 Waterview Drive, Rochester Hills, MI 48309 (United States)

    2015-02-15

    Highlights: • Influences of Ti/Cr to BCC to hydrogen storage properties were reported. • A new activation using hydrogen pressure at 5 MPa was developed. • A discharge capacity of 463 mA h g{sup −1} was reported on a C14(36%)/BCC(64%) alloy. • Increase in Ti/Cr increases storage capacity and decreases high-rate performance. • The high-rate performance was dominated by the surface reaction. - Abstract: A series of BCC/C14 mixed phase alloys with the chemical composition of Ti{sub 13.6+x}Zr{sub 2.1}V{sub 44}Cr{sub 13.2−x}Mn{sub 6.9}Fe{sub 2.7}Co{sub 1.4}Ni{sub 15.7}Al{sub 0.3}, x = 0, 2, 4, 6, 8, 10, and 12, was fabricated, and their structural, gaseous phase and electrochemical hydrogen storage properties were studied. Raising the maximum pressure for measuring the gaseous hydrogen storage capacity allowed these alloys to reach full activation, and the maximum discharge capacities ranged from 375 to 463 mA h g{sup −1}. As the Ti/Cr ratio in the alloy composition increased, the maximum gaseous hydrogen storage capacity improved due to the expansion in both BCC and C14 unit cells. However, reversibility decreased due to the higher stability of the hydride phase, as indicated by the lower equilibrium pressures measured for these alloys. As with most other metal hydride alloys, the electrochemical capacities measured at 50 and 4 mA g{sup −1} fell between the boundaries set by the maximum and reversible gaseous hydrogen storage capacities. The poorer high-rate dischargeability observed with higher Ti/Cr ratios was attributed to the lower surface exchange current (less catalytic). Two other negative impacts observed with higher Ti/Cr ratios in the alloy composition are poorer cycle stability and lower open-circuit voltage.

  10. Dissolution of manganese and cobalt and their deposition on Type 304 stainless steel in liquid sodium

    International Nuclear Information System (INIS)

    Yokota, Norikatsu; Shimoyashiki, Shigehiro

    1989-01-01

    Dissolution of manganese and cobalt and their deposition on Type 304 stainless steel in liquid sodium at 833 K for 3.6 x 10 3 ks were examined using a liquid sodium pot. Manganese was easily dissolved in sodium from the iron-manganese alloy specimen and deposited on the steel to form two kind of deposition particles, α-phase (body-centered cubic) composed of iron and γ-phase (face-centered cubic) composed of iron and manganese, respectively. Cobalt which was less easily dissolved than manganese also deposited on the Type 304 stainless steel, giving an iron-cobalt alloy. These three deposition particles corresponded to the precipitation lines of iron-manganese and iron-cobalt phase diagrams at 833 K, respectively. Therefore, the deposition process of manganese or cobalt in sodium was explained as a precipitation process of iron-manganese or iron-cobalt in the solid region of the binary phase diagram. A sodium chromite (NaCrO 2 ) layer was formed on the steel surface. (author)

  11. Ground-state ordering of the J1-J2 model on the simple cubic and body-centered cubic lattices

    Science.gov (United States)

    Farnell, D. J. J.; Götze, O.; Richter, J.

    2016-06-01

    The J1-J2 Heisenberg model is a "canonical" model in the field of quantum magnetism in order to study the interplay between frustration and quantum fluctuations as well as quantum phase transitions driven by frustration. Here we apply the coupled cluster method (CCM) to study the spin-half J1-J2 model with antiferromagnetic nearest-neighbor bonds J1>0 and next-nearest-neighbor bonds J2>0 for the simple cubic (sc) and body-centered cubic (bcc) lattices. In particular, we wish to study the ground-state ordering of these systems as a function of the frustration parameter p =z2J2/z1J1 , where z1 (z2) is the number of nearest (next-nearest) neighbors. We wish to determine the positions of the phase transitions using the CCM and we aim to resolve the nature of the phase transition points. We consider the ground-state energy, order parameters, spin-spin correlation functions, as well as the spin stiffness in order to determine the ground-state phase diagrams of these models. We find a direct first-order phase transition at a value of p =0.528 from a state of nearest-neighbor Néel order to next-nearest-neighbor Néel order for the bcc lattice. For the sc lattice the situation is more subtle. CCM results for the energy, the order parameter, the spin-spin correlation functions, and the spin stiffness indicate that there is no direct first-order transition between ground-state phases with magnetic long-range order, rather it is more likely that two phases with antiferromagnetic long range are separated by a narrow region of a spin-liquid-like quantum phase around p =0.55 . Thus the strong frustration present in the J1-J2 Heisenberg model on the sc lattice may open a window for an unconventional quantum ground state in this three-dimensional spin model.

  12. Atomistic simulations of diffusional creep in a nanocrystalline body-centered cubic material

    International Nuclear Information System (INIS)

    Millett, Paul C.; Desai, Tapan; Yamakov, Vesselin; Wolf, Dieter

    2008-01-01

    Molecular dynamics (MD) simulations are used to study diffusion-accommodated creep deformation in nanocrystalline molybdenum, a body-centered cubic metal. In our simulations, the microstructures are subjected to constant-stress loading at levels below the dislocation nucleation threshold and at high temperatures (i.e., T > 0.75T melt ), thereby ensuring that the overall deformation is indeed attributable to atomic self-diffusion. The initial microstructures were designed to consist of hexagonally shaped columnar grains bounded by high-energy asymmetric tilt grain boundaries (GBs). Remarkably the creep rates, which exhibit a double-exponential dependence on temperature and a double power-law dependence on grain size, indicate that both GB diffusion in the form of Coble creep and lattice diffusion in the form of Nabarro-Herring creep contribute to the overall deformation. For the first time in an MD simulation, we observe the formation and emission of vacancies from high-angle GBs into the grain interiors, thus enabling bulk diffusion

  13. Effect of molybdenum on structure, microstructure and mechanical properties of biomedical Ti-20Zr-Mo alloys.

    Science.gov (United States)

    Kuroda, Pedro Akira Bazaglia; Buzalaf, Marília Afonso Rabelo; Grandini, Carlos Roberto

    2016-10-01

    Titanium has an allotropic transformation around 883°C. Below this temperature, the crystalline structure is hexagonal close-packed (α phase), changing to body-centered cubic (β phase). Zirconium has the same allotropic transformation around 862°C. Molybdenum has body-centered cubic structure, being a strong β-stabilizer for the formation of titanium alloys. In this paper, the effect of substitutional molybdenum was analyzed on the structure, microstructure and selected mechanical properties of Ti-20Zr-Mo (wt%) alloys to be used in biomedical applications. The samples were prepared by arc-melting and characterized by x-ray diffraction with subsequent refinement by the Rietveld method, optical and scanning electron microscopy. The mechanical properties were analyzed by Vickers microhardness and dynamic elasticity modulus. X-ray measurements and Rietveld analysis revealed the presence of α' phase without molybdenum, α'+α″ phases with 2.5wt% of molybdenum, α″+β phases with 5 and 7.5wt% of molybdenum, and only β phase with 10wt% of molybdenum. These results were corroborated by microscopy results, with a microstructure composed of grains of β phase and lamellae and needles of α' and α″ phase in intra-grain the region. The hardness of the alloy was higher than the commercially pure titanium, due to the action of zirconium and molybdenum as hardening agents. The samples have a smaller elasticity modulus than the commercially pure titanium. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Migration energy barriers of symmetric tilt grain boundaries in body-centered cubic metal Fe

    International Nuclear Information System (INIS)

    Wu, Minghui; Gu, Jianfeng; Jin, Zhaohui

    2015-01-01

    Graphical abstract: DFT calculated migration energy barrier (left) for symmetric grain boundary in metals is an essential physical property to measure the trend of grain boundary migration, in particular, in terms of the classical homogeneous nucleation model of GB dislocation/disconnection loops (right). - Migration energy barriers of two symmetric tilt grain boundaries in body-centered cubic metal Fe are obtained via first-principles calculations in combination with the nudged elastic band methods. Although the two grain boundaries show similar grain boundary energies, the migration energy barriers are different. Based on a homogeneous nucleation theory of grain-boundary dislocation loops, the calculated energy barrier provides a measure of intrinsic grain-boundary mobility and helps to evaluate effects due to vacancy and interstitial atoms such as carbon

  15. MAPPING FLOW LOCALIZATION PROCESSES IN DEFORMATION OF IRRADIATED REACTOR STRUCTURAL ALLOYS - FINAL REPORT. Nuclear Energy Research Initiative Program No. MSF99-0072. Period: August 1999 through September 2002. (ORNL/TM-2003/63)

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, K.

    2003-09-26

    Metals that can sustain plastic deformation homogeneously throughout their bulk tend to be tough and malleable. Often, however, if a metal has been hardened it will no longer deform uniformly. Instead, the deformation occurs in narrow bands on a microscopic scale wherein stresses and strains become concentrated in localized zones. This strain localization degrades the mechanical properties of the metal by causing premature plastic instability failure or by inducing the formation of cracks. Irradiation with neutrons hardens a metal and makes it more prone to deformation by strain localization. Although this has been known since the earliest days of radiation damage studies, a full measure of the connection between neutron irradiation hardening and strain localization is wanting, particularly in commercial alloys used in the construction of nuclear reactors. Therefore, the goal of this project is to systematically map the extent of involvement of strain localization processes in plastic deformation of three reactor alloys that have been neutron irradiated. The deformation processes are to be identified and related to changes in the tensile properties of the alloys as functions of neutron fluence (dose) and degree of plastic strain. The intent is to define the role of strain localization in radiation embrittlement phenomena. The three test materials are a tempered bainitic A533B steel, representing reactor pressure vessel steel, an annealed 316 stainless steel and annealed Zircaloy-4 representing reactor internal components. These three alloys cover the range of crystal structures usually encountered in structural alloys, i.e. body-centered cubic (bcc), face-centered cubic (fcc), and close-packed hexagonal (cph), respectively. The experiments were conducted in three Phases, corresponding to the three years duration of the project. Phases 1 and 2 addressed irradiations and tensile tests made at near-ambient temperatures, and covered a wide range of neutron fluences

  16. Analysis of heterogeneities in strain and microstructure in aluminum alloy and magnesium processed by high-pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Panda, Subrata, E-mail: subrata.panda@univ-lorraine.fr [Université de Lorraine, Laboratory of Excellence on Design of Alloy Metals for low-mass Structures (DAMAS), Ile du Saulcy, Metz F-57045 (France); Université de Lorraine, Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux (LEM3 UMR 7239), Ile du Saulcy, Metz F-57045 (France); Toth, Laszlo S., E-mail: laszlo.toth@univ-lorraine.fr [Université de Lorraine, Laboratory of Excellence on Design of Alloy Metals for low-mass Structures (DAMAS), Ile du Saulcy, Metz F-57045 (France); Université de Lorraine, Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux (LEM3 UMR 7239), Ile du Saulcy, Metz F-57045 (France); Fundenberger, Jean-Jacques, E-mail: jean-jacques.fundenberger@univ-lorraine.fr [Université de Lorraine, Laboratory of Excellence on Design of Alloy Metals for low-mass Structures (DAMAS), Ile du Saulcy, Metz F-57045 (France); Université de Lorraine, Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux (LEM3 UMR 7239), Ile du Saulcy, Metz F-57045 (France); Perroud, Olivier, E-mail: olivier.perroud@univ-lorraine.fr [Université de Lorraine, Laboratory of Excellence on Design of Alloy Metals for low-mass Structures (DAMAS), Ile du Saulcy, Metz F-57045 (France); Université de Lorraine, Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux (LEM3 UMR 7239), Ile du Saulcy, Metz F-57045 (France); and others

    2017-01-15

    Two distinct bulk light metals were opted to study the shear strain evolution and associated heterogeneities in texture/microstructure development during torsional straining by high pressure torsion (HPT): a face centered cubic Al alloy (A5086) and a hexagonal commercial purity Mg. Relatively thick disk samples - four times thicker than usually employed in HPT process - were processed to 180° and 270° rotations. With the help of X-ray tomography, the shear strain gradients were examined in the axial direction. The results showed strongly localized shear deformation in the middle plane of the disks in both materials. These gradients involved strong heterogeneities in texture, microstructure and associated hardness, in particular through the thickness direction at the periphery of the disk where the interplay between significant strain hardening and possible dynamic recrystallization could occur. - Highlights: •HPT processing was conducted on bulk specimens thicker than the usual thin-disks. •The Al alloy (A5086) and commercial purity magnesium samples were compared. •Distributions of strain and microhardness were evaluated in the radial and axial direction. •Plastic deformation is highly localized in the middle plane at outer edge in both materials. •Different DRX rates governed the differences in microstructure and hardening behavior.

  17. Interaction distances in oxides, sulfides and selenides with face-centered packing

    International Nuclear Information System (INIS)

    Kesler, Ya.A.

    1993-01-01

    Concept of characteristic distances (CD) was specified with account of the principle of topologically face-centered anion packing: calculation method was presented and boundary conditions of CD concept applicability were considered. Tables of CD in oxides, sulfides and selenides, obtained in result of self-consistent calculations on the basis of experimental crystallographic data, are presented. Pair correlations between CD in oxides, sulfides and selenides were considered, their relationship with cation electron structure was established. Peculiarities of chemical bond in oxides, sulfides and selenides with face-centered anion packing were discussed

  18. Phonon broadening in high entropy alloys

    Science.gov (United States)

    Körmann, Fritz; Ikeda, Yuji; Grabowski, Blazej; Sluiter, Marcel H. F.

    2017-09-01

    Refractory high entropy alloys feature outstanding properties making them a promising materials class for next-generation high-temperature applications. At high temperatures, materials properties are strongly affected by lattice vibrations (phonons). Phonons critically influence thermal stability, thermodynamic and elastic properties, as well as thermal conductivity. In contrast to perfect crystals and ordered alloys, the inherently present mass and force constant fluctuations in multi-component random alloys (high entropy alloys) can induce significant phonon scattering and broadening. Despite their importance, phonon scattering and broadening have so far only scarcely been investigated for high entropy alloys. We tackle this challenge from a theoretical perspective and employ ab initio calculations to systematically study the impact of force constant and mass fluctuations on the phonon spectral functions of 12 body-centered cubic random alloys, from binaries up to 5-component high entropy alloys, addressing the key question of how chemical complexity impacts phonons. We find that it is crucial to include both mass and force constant fluctuations. If one or the other is neglected, qualitatively wrong results can be obtained such as artificial phonon band gaps. We analyze how the results obtained for the phonons translate into thermodynamically integrated quantities, specifically the vibrational entropy. Changes in the vibrational entropy with increasing the number of elements can be as large as changes in the configurational entropy and are thus important for phase stability considerations. The set of studied alloys includes MoTa, MoTaNb, MoTaNbW, MoTaNbWV, VW, VWNb, VWTa, VWNbTa, VTaNbTi, VWNbTaTi, HfZrNb, HfMoTaTiZr.

  19. Physically based multiscale-viscoplastic model for metals and steel alloys: Theory and computation

    Science.gov (United States)

    Abed, Farid H.

    The main requirement of large deformation problems such as high-speed machining, impact, and various primarily metal forming, is to develop constitutive relations which are widely applicable and capable of accounting for complex paths of deformation. Achieving such desirable goals for material like metals and steel alloys involves a comprehensive study of their microstructures and experimental observations under different loading conditions. In general, metal structures display a strong rate- and temperature-dependence when deformed non-uniformly into the inelastic range. This effect has important implications for an increasing number of applications in structural and engineering mechanics. The mechanical behavior of these applications cannot be characterized by classical (rate-independent) continuum theories because they incorporate no 'material length scales'. It is therefore necessary to develop a rate-dependent (viscoplasticity) continuum theory bridging the gap between the classical continuum theories and the microstructure simulations. Physically based vicoplasticity models for different types of metals (body centered cubic, face centered cubic and hexagonal close-packed) and steel alloys are derived in this work for this purpose. We adopt a multi-scale, hierarchical thermodynamic consistent framework to construct the material constitutive relations for the rate-dependent behavior. The concept of thermal activation energy, dislocations interactions mechanisms and the role of dislocations dynamics in crystals are used in the derivation process taking into consideration the contribution of the plastic strain evolution of dislocation density to the flow stress of polycrystalline metals. Material length scales are implicitly introduced into the governing equations through material rate-dependency (viscosity). The proposed framework is implemented into the commercially well-known finite element software ABAQUS. The finite element simulations of material

  20. Modelling of residual stresses in valves Norem hard-facing alloys: a material characterization issue

    International Nuclear Information System (INIS)

    Mathieu, J.P.; Arnoldi, F.; Gauthier, E.; Beaurin, G.

    2011-01-01

    Replacement of cobalt-based hard-facing alloys (Stellite) is of high interest within the topic of reduction of human radiation exposure during field-work. Iron-based hard-facing alloys, such as Norem, are considered as good replacement candidates. Their wear characteristics are known to be quite equivalent to Stellite but are counter-balanced by lack of feedback in the field, especially about their resistance/toughness to brutal thermal shocks (60 C - 280 C for primary water). Norem alloys show a solid-solution strengthened austenitic dendrites matrix with a continuous network of eutectic and non-eutectic carbides at the grain boundaries. Toughness evaluation also requires information about residual stresses due to the welding (deposition) process: this work aims at furnishing tools for this purpose. First part of the work involved a microstructural study in order to compare the as-received material to other Norem samples previously observed in EDF's works and literature. A characterization of the different phase evolutions after heating and fast cooling of Norem is then made, in order to characterize whether metallurgical aspects have to be considered in the mechanical part during welding modelling: it appears that no strong solid-solid phase transformation may occur in welding situation. Tensile characterization is then performed on bulk PTAW (Plasma Transferred Arc Welding) specimens. A simplified welding simulation is eventually conducted on different axis-symmetric geometry and on real valve geometry in order to define a representative sample that will be used for further investigation on residual stresses. (authors)

  1. Technetium and technetium alloys

    International Nuclear Information System (INIS)

    Ijdo, W.L.

    1993-10-01

    This report presents the results of a literature survey on technetium and technetium alloys. The literature has been searched through 1993. The survey was focused on technetium and (binary cubic) technetium alloys, but other important information on technetium has not been omitted from this survey. This report has been written with the aim to collect more information about phase systems which could be of importance in the transmutation process by neutrons of technetium. With the information presented in this report, it should be possible to select a suitable technetium alloy for further investigation regarding to the transmutation process. (orig.)

  2. Improvement of hydrogen sorption properties of compounds based on Vanadium “bcc” alloys by mean of intergranular phase development

    International Nuclear Information System (INIS)

    Planté, D.; Raufast, C.; Miraglia, S.; Rango, P. de; Fruchart, D.

    2013-01-01

    Highlights: •Decrease of “bcc” pseudo cell with the increase of amount of additive. •Additive phase improve activation kinetics. •Chromium in the “bcc” matrix decreases the lattice parameter and destabilizes hydride formation/dissociation. •Lower working temperatures could be obtain. -- Abstract: Body centered cubic structure (“bcc”) type alloys based on Vanadium [1] reveal promising characteristics for mobile applications. These disordered solid solutions have particular metal/hydride equilibrium and some regulation aspects have leaded us to pay special attention to this type of material [2]. Compounds based on Vanadium-rich solid solution have been elaborated in order to destabilize γ hydride phase (corresponding to the face centered cubic (“fcc”) structure of VH 2 ). Addition of Ni and Zr-rich Laves phase as a secondary phase results in the development of a particular microstructure composed of a principal “bcc” matrix rounded by intergranular activating phase. This results in a facilitated and faster activation of these compounds. The present study shows that some constituting species of the secondary phase have diffused in the main matrix and therefore have modified the thermodynamic of hydride. In fact, chromium diffusion into the “bcc” matrix destabilizes hydride. It is correlated to the lower stability of chromium hydride compared to Vanadium hydride. The enthalpic terms of each sample have been measured (assuming standard entropy of 130 J mol −1 K −1 ). The equilibrium metal/hydride can be easily switched in order to adapt it to a mobile hydride tank and obtain low working temperature in regard to the potential use

  3. Experimental evidence of body centered cubic iron in Earth's core

    Science.gov (United States)

    Hrubiak, R.; Meng, Y.; Shen, G.

    2017-12-01

    The Earth's core is mainly composed of iron. While seismic evidence has shown a liquid outer core and a solid inner core, the crystalline nature of the solid iron at the core condition remains debated, largely due to the difficulties in experimental determination of exact polymorphs at corresponding pressure-temperature conditions. We have examined crystal structures of iron up to 220 GPa and 6000 K with x-ray diffraction using a double-sided laser heating system at HPCAT, Advanced Photon Source. The iron sample is confined in a small chamber surrounded by single crystal MgO. The laser power can be modulated together with temperature measurements. The modulated heating of iron in an MgO single crystal matrix allows for microstructure analysis during heating and after the sample is quenched. We present experimental evidence of a body-centered-cubic (BCC) iron from about 100 GPa and 3000 K to at least 220 GPa and 4000 K. The observed BCC phase may be consistent with a theoretically predicted BCC phase that is dynamically stable in similar pressure-temperature conditions [1]. We will discuss the stability region of the BCC phase and the melting curve of iron and their implications in the nature of the Earth's inner core. References: A. B. Belonoshko et al., Nat. Geosci., 1-6 (2017).

  4. First-principles study of ternary bcc alloys using special quasi-random structures

    International Nuclear Information System (INIS)

    Jiang Chao

    2009-01-01

    Using a combination of exhaustive enumeration and Monte Carlo simulated annealing, we have developed special quasi-random structures (SQSs) for ternary body-centered cubic (bcc) alloys with compositions of A 1 B 1 C 1 , A 2 B 1 C 1 , A 6 B 1 C 1 and A 2 B 3 C 3 , respectively. The structures possess local pair and multisite correlation functions that closely mimic those of the random bcc alloy. We employed the SQSs to predict the mixing enthalpies, nearest neighbor bond length distributions and electronic density of states of bcc Mo-Nb-Ta and Mo-Nb-V solid solutions. Our convergence tests indicate that even small-sized SQSs can give reliable results. Based on the SQS energetics, the predicting powers of the existing empirical ternary extrapolation models were assessed. The present results suggest that it is important to take into account the ternary interaction parameter in order to accurately describe the thermodynamic behaviors of ternary alloys. The proposed SQSs are quite general and can be applied to other ternary bcc alloys.

  5. An environment-dependent semi-empirical tight binding model suitable for electron transport in bulk metals, metal alloys, metallic interfaces, and metallic nanostructures. I. Model and validation

    Energy Technology Data Exchange (ETDEWEB)

    Hegde, Ganesh, E-mail: ghegde@purdue.edu; Povolotskyi, Michael; Kubis, Tillmann; Klimeck, Gerhard, E-mail: gekco@purdue.edu [Network for Computational Nanotechnology (NCN), Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Boykin, Timothy [Department of Electrical and Computer Engineering, University of Alabama, Huntsville, Alabama (United States)

    2014-03-28

    Semi-empirical Tight Binding (TB) is known to be a scalable and accurate atomistic representation for electron transport for realistically extended nano-scaled semiconductor devices that might contain millions of atoms. In this paper, an environment-aware and transferable TB model suitable for electronic structure and transport simulations in technologically relevant metals, metallic alloys, metal nanostructures, and metallic interface systems are described. Part I of this paper describes the development and validation of the new TB model. The new model incorporates intra-atomic diagonal and off-diagonal elements for implicit self-consistency and greater transferability across bonding environments. The dependence of the on-site energies on strain has been obtained by appealing to the Moments Theorem that links closed electron paths in the system to energy moments of angular momentum resolved local density of states obtained ab initio. The model matches self-consistent density functional theory electronic structure results for bulk face centered cubic metals with and without strain, metallic alloys, metallic interfaces, and metallic nanostructures with high accuracy and can be used in predictive electronic structure and transport problems in metallic systems at realistically extended length scales.

  6. An environment-dependent semi-empirical tight binding model suitable for electron transport in bulk metals, metal alloys, metallic interfaces, and metallic nanostructures. I. Model and validation

    International Nuclear Information System (INIS)

    Hegde, Ganesh; Povolotskyi, Michael; Kubis, Tillmann; Klimeck, Gerhard; Boykin, Timothy

    2014-01-01

    Semi-empirical Tight Binding (TB) is known to be a scalable and accurate atomistic representation for electron transport for realistically extended nano-scaled semiconductor devices that might contain millions of atoms. In this paper, an environment-aware and transferable TB model suitable for electronic structure and transport simulations in technologically relevant metals, metallic alloys, metal nanostructures, and metallic interface systems are described. Part I of this paper describes the development and validation of the new TB model. The new model incorporates intra-atomic diagonal and off-diagonal elements for implicit self-consistency and greater transferability across bonding environments. The dependence of the on-site energies on strain has been obtained by appealing to the Moments Theorem that links closed electron paths in the system to energy moments of angular momentum resolved local density of states obtained ab initio. The model matches self-consistent density functional theory electronic structure results for bulk face centered cubic metals with and without strain, metallic alloys, metallic interfaces, and metallic nanostructures with high accuracy and can be used in predictive electronic structure and transport problems in metallic systems at realistically extended length scales

  7. An environment-dependent semi-empirical tight binding model suitable for electron transport in bulk metals, metal alloys, metallic interfaces, and metallic nanostructures. I. Model and validation

    Science.gov (United States)

    Hegde, Ganesh; Povolotskyi, Michael; Kubis, Tillmann; Boykin, Timothy; Klimeck, Gerhard

    2014-03-01

    Semi-empirical Tight Binding (TB) is known to be a scalable and accurate atomistic representation for electron transport for realistically extended nano-scaled semiconductor devices that might contain millions of atoms. In this paper, an environment-aware and transferable TB model suitable for electronic structure and transport simulations in technologically relevant metals, metallic alloys, metal nanostructures, and metallic interface systems are described. Part I of this paper describes the development and validation of the new TB model. The new model incorporates intra-atomic diagonal and off-diagonal elements for implicit self-consistency and greater transferability across bonding environments. The dependence of the on-site energies on strain has been obtained by appealing to the Moments Theorem that links closed electron paths in the system to energy moments of angular momentum resolved local density of states obtained ab initio. The model matches self-consistent density functional theory electronic structure results for bulk face centered cubic metals with and without strain, metallic alloys, metallic interfaces, and metallic nanostructures with high accuracy and can be used in predictive electronic structure and transport problems in metallic systems at realistically extended length scales.

  8. Cathodoluminescence of cubic boron nitride

    International Nuclear Information System (INIS)

    Tkachev, V.D.; Shipilo, V.B.; Zajtsev, A.M.

    1985-01-01

    Three optically active defects are detected in mono- and polycrystal cubic boron nitride (β-BN). Analysis of intensity of temperature dependences, halfwidth and energy shift of 1.76 eV narrow phononless line (center GC-1) makes it possible to interprete the observed cathodoluminescence spectra an optical analog of the Moessbaner effect. Comparison of the obtained results with the known data for diamond monocrystals makes it possible to suggest that the detected center GC-1 is a nitrogen vacancy . The conclusion, concerning the Moessbauer optical spectra application, is made to analyze structural perfection of β-BN crystal lattice

  9. First-principles study on the phase transition, elastic properties and electronic structure of Pt3Al alloys under high pressure

    International Nuclear Information System (INIS)

    Liu, Yanjun; Huang, Huawei; Pan, Yong; Zhao, Guanghui; Liang, Zheng

    2014-01-01

    Highlights: • The phase transition of Pt 3 Al alloys occurs at 60 GPa. • The elastic modulus of Pt 3 Al alloys increase with increasing pressure. • The cubic structure has good resistance to volume deformation under high pressure. • The pressure enhances the hybridization between Pt atom and Al atom. - Abstract: The phase transition, formation enthalpies, elastic properties and electronic structure of Pt 3 Al alloys are studied using first-principle approach. The calculated results show that the pressure leads to phase transition from tetragonal structure to cubic structure at 60 GPa. With increasing pressure, the elastic constants, bulk modulus and shear modulus of these Pt 3 Al alloys increase linearly and the bond lengths of Pt–Al metallic bonds and the peak at E F decrease. The cubic Pt 3 Al alloy has excellent resistance to volume deformation under high pressure. We suggest that the phase transition is derived from the hybridization between Pt and Al atoms for cubic structure is stronger than that of tetragonal structure and forms the strong Pt–Al metallic bonds under high pressure

  10. Three-Dimensional Random Voronoi Tessellations: From Cubic Crystal Lattices to Poisson Point Processes

    Science.gov (United States)

    Lucarini, Valerio

    2009-01-01

    We perturb the simple cubic (SC), body-centered cubic (BCC), and face-centered cubic (FCC) structures with a spatial Gaussian noise whose adimensional strength is controlled by the parameter α and analyze the statistical properties of the cells of the resulting Voronoi tessellations using an ensemble approach. We concentrate on topological properties of the cells, such as the number of faces, and on metric properties of the cells, such as the area, volume and the isoperimetric quotient. The topological properties of the Voronoi tessellations of the SC and FCC crystals are unstable with respect to the introduction of noise, because the corresponding polyhedra are geometrically degenerate, whereas the tessellation of the BCC crystal is topologically stable even against noise of small but finite intensity. Whereas the average volume of the cells is the intensity parameter of the system and does not depend on the noise, the average area of the cells has a rather interesting behavior with respect to noise intensity. For weak noise, the mean area of the Voronoi tessellations corresponding to perturbed BCC and FCC perturbed increases quadratically with the noise intensity. In the case of perturbed SCC crystals, there is an optimal amount of noise that minimizes the mean area of the cells. Already for a moderate amount of noise ( α>0.5), the statistical properties of the three perturbed tessellations are indistinguishable, and for intense noise ( α>2), results converge to those of the Poisson-Voronoi tessellation. Notably, 2-parameter gamma distributions constitute an excellent model for the empirical pdf of all considered topological and metric properties. By analyzing jointly the statistical properties of the area and of the volume of the cells, we discover that also the cells shape, measured by the isoperimetric quotient, fluctuates. The Voronoi tessellations of the BCC and of the FCC structures result to be local maxima for the isoperimetric quotient among space

  11. Synthesis and characterization of Pt-Sn-Ni alloys to application as catalysts for direct ethanol fuel cells; Sintese e caracterizacao de ligas de Pt-Sn-Ni para aplicacao como caztalisadores em celulas a combustivel do tipo DEFC

    Energy Technology Data Exchange (ETDEWEB)

    Silva, E.L. da; Correa, P.S.; Oliveira, E.L. de; Takimi, A.S.; Malfatti, C.F., E-mail: celia.malfatti@ufrgs.b [Universidade Federal do Rio Grande do Sul (LAPEC/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica. Lab. de Pesquisa em Corrosao; Radtke, C. [Universidade Federal do Rio Grande do Sul (IQ/UFRGS), Porto Alegre, RS (Brazil). Inst. de Quimica

    2010-07-01

    Direct ethanol fuel cells (DEFCs) have been the focus of recent research due its application in mobile energy sources. In order to obtain the maximum efficiency from these systems, it is necessary the total ethanol oxidation, which implies in C-C bond break. Different catalysts described in literature are employed with this intent. This work consists in studying PtSnNi catalysts supported on carbon Vulcan XC72R, to application in DEFCs. Thus, it was used the impregnation/reduction method, varying the atomic proportion among Pt, Sn and Ni. The alloys were characterized by X-Ray Diffraction, Cyclic Voltammetry and Transmission Microscopy. Preliminary results show that predominant structure on the catalysts is the face centered cubic platinum and the densities currents are dependent on the platinum amount. (author)

  12. TA [B] Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloys over Multiple Time Scales

    Energy Technology Data Exchange (ETDEWEB)

    Tomar, Vikas [Purdue Univ., West Lafayette, IN (United States)

    2017-03-06

    DoE-NETL partnered with Purdue University to predict the creep and associated microstructure evolution of tungsten-based refractory alloys. Researchers use grain boundary (GB) diagrams, a new concept, to establish time-dependent creep resistance and associated microstructure evolution of grain boundaries/intergranular films GB/IGF controlled creep as a function of load, environment, and temperature. The goal was to conduct a systematic study that includes the development of a theoretical framework, multiscale modeling, and experimental validation using W-based body-centered-cubic alloys, doped/alloyed with one or two of the following elements: nickel, palladium, cobalt, iron, and copper—typical refractory alloys. Prior work has already established and validated a basic theory for W-based binary and ternary alloys; the study conducted under this project extended this proven work. Based on interface diagrams phase field models were developed to predict long term microstructural evolution. In order to validate the models nanoindentation creep data was used to elucidate the role played by the interface properties in predicting long term creep strength and microstructure evolution.

  13. Design of high density gamma-phase uranium alloys for LEU dispersion fuel applications

    International Nuclear Information System (INIS)

    Hofman, Gerard L.; Meyer, Mitchell K.; Ray, Allison E.

    1998-01-01

    Uranium alloys are candidates for the fuel phase in aluminium matrix dispersion fuels requiring high uranium loading. Certain uranium alloys have been shown to have good irradiation performance at intermediate burnup. previous studies have shown that acceptable fission gas swelling behavior and fuel-aluminium interaction is possible only if the fuel alloy can be maintained in the high temperature body-centered-cubic γ-phase during fabrication and irradiation, at temperatures at which αU is the equilibrium phase. transition metals in Groups V through VIII are known to allow metastable retention of the gamma phase below the equilibrium isotherm. These metals have varying degrees of effectiveness in stabilizing the gamma phase. Certain alloys are metastable for very long times at the relatively low fuel temperatures seen in research operation. In this paper, the existing data on the gamma stability of binary and ternary uranium alloys is analysed. The mechanism and kinetics of decomposition of the gamma phase are assessed with the help of metal alloy theory. Alloys with the highest possible uranium content, good gamma-phase stability, and good neutronic performance are identified for further metallurgical studies and irradiation tests. Results from theory will be compared with experimentally generated data. (author)

  14. Behavior of liquid Li-Sn alloy as plasma facing material on ISTTOK

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, J.P.S., E-mail: jpsloureiro@ipfn.tecnico.ulisboa.pt [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Tabarés, F.L. [Laboratorio Nacional de Fusion, Ciemat, Avenida Complutense 22, E-28040 Madrid (Spain); Fernandes, H.; Silva, C.; Gomes, R.; Alves, E.; Mateus, R.; Pereira, T.; Alves, H.; Figueiredo, H. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal)

    2017-04-15

    The high power loads impinging on the first wall and particularly the divertor of fusion reactors is a decisive factor to the success of nuclear fusion. An alternative to solid plasma facing components is the use of liquid metals such as lithium or tin due to the regenerative properties of the liquid surface. Another suitable candidate is the eutectic lithium tin alloy (30 at.% Li) which is suggested to display beneficial properties of both its constituent elements. The application of these materials as liquid metal plasma facing components depends on several factors such as their affinity to retain hydrogenic isotopes and the discharge performance degradation induced by the enhanced impurity contamination, among others. An experimental setup has been developed to produce and expose samples to ISTTOK plasmas on both liquid and solid states. Samples of Li-Sn alloy were exposed at ISTTOK to deuterium plasmas. Post-mortem analysis of the samples was performed by means of ion beam diagnostics. To quantify the fuel retention on the samples the nuclear reaction analysis (NRA) technique was applied. Complementary, Rutherford backscattering spectrometry (RBS) was used for determination material composition, particularly of impurities, on the samples. Regardless of the high sensitivity of these techniques no deuterium was detected in the samples. Emission of the Li-I 670.7 nm line indicates that there was interaction of the plasma with the samples. Alternative reasons for the low retention of this material are discussed. Lithium segregation to the surface of the sample was observed.

  15. Isoelectronic substitutions and aluminium alloying in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor

    Science.gov (United States)

    von Rohr, Fabian O.; Cava, Robert J.

    2018-03-01

    High-entropy alloys (HEAs) are a new class of materials constructed from multiple principal elements statistically arranged on simple crystallographic lattices. Due to the large amount of disorder present, they are excellent model systems for investigating the properties of materials intermediate between crystalline and amorphous states. Here we report the effects of systematic isoelectronic replacements, using Mo-Y, Mo-Sc, and Cr-Sc mixtures, for the valence electron count 4 and 5 elements in the body-centered cubic (BCC) Ta-Nb-Zr-Hf-Ti high-entropy alloy (HEA) superconductor. We find that the superconducting transition temperature Tc strongly depends on the elemental makeup of the alloy, and not exclusively its electron count. The replacement of niobium or tantalum by an isoelectronic mixture lowers the transition temperature by more than 60%, while the isoelectronic replacement of hafnium, zirconium, or titanium has a limited impact on Tc. We further explore the alloying of aluminium into the nearly optimal electron count [TaNb] 0.67(ZrHfTi) 0.33 HEA superconductor. The electron count dependence of the superconducting Tc for (HEA)Al x is found to be more crystallinelike than for the [TaNb] 1 -x(ZrHfTi) x HEA solid solution. For an aluminum content of x =0.4 the high-entropy stabilization of the simple BCC lattice breaks down. This material crystallizes in the tetragonal β -uranium structure type and superconductivity is not observed above 1.8 K.

  16. Superconductivity and magnet technology

    International Nuclear Information System (INIS)

    Lubell, M.S.

    1975-01-01

    The background theory of superconducting behavior is reviewed. Three parameters that characterize superconducting materials with values of commercial materials as examples are discussed. More than 1000 compounds and alloy systems and 26 elements are known to exhibit superconducting properties under normal conditions at very low temperatures. A wide variety of crystal structures are represented among the known superconductors. The most important ones do seem to have cubic symmetry such as the body-centered cubic (NbZr and NbTi), face-centered cubic (NbN), and the A15 or β-tungsten structures (Nb 3 Sn), V 3 Ga, Nb 3 Ge, Nb 3 Al, and V 3 Si). Attempts to understand some of the particular phenomena associated with superconductors as a necessary prelude to constructing superconducting magnets are discussed by the author. The origin of degradation is briefly discussed and methods to stabilize magnets are illustrated. The results of Oak Ridge National Laboratory design studies of toroidal magnet systems for fusion reactors are described

  17. INVESTIGATION OF MAGNESIUM ALLOYS MACHINABILITY

    Directory of Open Access Journals (Sweden)

    Berat Barıs BULDUM

    2013-01-01

    Full Text Available Magnesium is the lightest structural metal. Magnesium alloys have a hexagonal lattice structure, which affects the fundamental properties of these alloys. Plastic deformation of the hexagonal lattice is more complicated than in cubic latticed metals like aluminum, copper and steel. Magnesium alloy developments have traditionally been driven by industry requirements for lightweight materials to operate under increasingly demanding conditions. Magnesium alloys have always been attractive to designers due to their low density, only two thirds that of aluminium and its alloys [1]. The element and its alloys take a big part of modern industry needs. Especially nowadays magnesium alloys are used in automotive and mechanical (trains and wagons manufacture, because of its lightness and other features. Magnesium and magnesium alloys are the easiest of all metals to machine, allowing machining operations at extremely high speed. All standard machining operations such as turning, drilling, milling, are commonly performed on magnesium parts.

  18. Kinetics and mechanism of transitions involving the lamellar, cubic, inverted hexagonal, and fluid isotropic phases of hydrated monoacylglycerides monitored by time-resolved X-ray diffraction

    International Nuclear Information System (INIS)

    Caffrey, M.

    1987-01-01

    A study of the dynamics and mechanism of the various thermotropic phase transitions undergone by the hydrated monoacylglycerides monoolein and monoelaidin, in the temperature range of 20-120 0 C and from 0 to 5 M NaCl, has been undertaken. Measurements were made by using time-resolved X-ray diffraction at the Cornell High-Energy Synchrotron Source. The lamellar chain order/disorder, lamellar/cubic (body centered, space group No.8), cubic (body centered, No.8)/cubic (primitive No.4), cubic (body centered, No.12)/cubic (primitive, No.4), cubic (primitive, No.4)/fluid isotropic, cubic (body centered, No.12)/inverted hexagonal, cubic (primitive, No.4)/inverted hexagonal, and hexagonal/fluid isotropic transitions were examined under active heating and passive cooling by using a jump in temperature to effect phase transformation. All of the transitions with the exception of the cubic (body centered, No.8)/cubic (primitive, No.4) and the cubic (body centered, No.12)/cubic (primitive, No.4) cooling transitions were found (1) to be repeatable, (2) to be reversible, and (3) to have an upper bound on the transit time (time required to complete the transition) of ≤ 3s. In addition to the time-resolved measurements, data were obtained on the stability of the various phases in the temperature range of 20-120 0 C and from 0 to 5 M NaCl. In the case of fully hydrated monoolein, high salt strongly favors the hexagonal over the cubic (body centered, No.8) phase and slightly elevates the hexagonal/fluid isotropic transition temperature. With fully hydrated monoelaidin, the hexagonal phase which is not observed in the absence of salt becomes the dominant phase at high salt concentration

  19. Effect of Zn on the microstructure and mechanical properties of as-cast Mg–7Gd–3Y–1Nd–0.5Zr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, M.; Zhang, K., E-mail: zhkui@grinm.com; Li, X.G.; Yuan, J.W.; Li, Y.J.; Ma, M.L.; Shi, G.L.; Li, T.; Liu, J.B.

    2015-06-25

    The microstructure and mechanical properties of as-cast Mg–7Gd–3Y–1Nd–xZn–0.5Zr (x=0, 0.5, 1 and 2 wt%) alloys have been investigated by optical microscopy (OM), scanning electron microscopy equipped with energy dispersive spectrum, transmission electron microscopy (TEM), X-ray diffraction and tensile tests at room temperature (RT). Experimental results reveal that the microstructure of the alloy without Zn contains α-Mg and Mg{sub 5}RE phase, the microstructure of the alloy with 0.5% Zn consists of α-Mg, (Mg, Zn){sub 3}RE phase, Mg{sub 5}(RE, Zn) phase and stacking fault. The addition of 1% and 2% Zn results in the disappearance of the Mg{sub 5}(RE, Zn) phase, but the stacking fault can be seen more clearly. Moreover, a new block-like long period stacking ordered (LPSO) phase is observed in grain boundaries with increasing Zn content up to 2%. TEM analyses indicate that the Mg{sub 5}RE, (Mg, Zn){sub 3}RE and Mg{sub 5}(RE, Zn) phases have a face-centered cubic (f.c.c.) structure with lattice constants of 2.22 nm, 0.73 nm and 2.23 nm, respectively. The new block-like LPSO phase belongs to 10H-type. The tensile tests at RT exhibit that the alloy containing 1% Zn shows the optimal mechanical properties and the ultimate tensile strength (UTS), yield strength (YS) and elongation are 187 MPa, 145 MPa and 3.1%, respectively. As indicated by fracture analyses, the fracture modes of the alloys with 0% and 0.5% Zn are typically intercrystalline fracture, whereas both intercrystalline and transcrystalline fractures are observed in the alloys with 1% and 2% Zn.

  20. RhCd{sub 9+δ} (-1.18 ≤δ≤0.29) a γ-brass related cubic giant cell structure

    Energy Technology Data Exchange (ETDEWEB)

    Jana, Partha Pratim [Indian Institute of Technology, Kharagpur (India). Dept. of Chemistry

    2017-09-01

    The compound RhCd{sub 9+δ} (-1.18 ≤δ≤0.29) has been synthesized and the average structure has been analyzed by single crystal X-ray diffraction. The average structure crystallizes in the face centered cubic space group F43m (216) and contains ∝405 atoms/unit cell. It represents a (2a{sub γ}){sup 3}-superstructure of cubic γ-brass and is isostructural to Rh{sub 7-x}Mg{sub 44+x}. The comparison between the structures of RhCd{sub 9+δ} and Rh{sub 7-x}Mg{sub 44+x} has been presented using a layer description. The structure of the title phase has also been described by a ''cluster'' concept. The electronic structure of RhCd{sub 9+δ} (-1.18 ≤δ≤0.29) shows that the phase is stabilized by a Hume-Rothery mechanism.

  1. First-principles study on the phase transition, elastic properties and electronic structure of Pt{sub 3}Al alloys under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanjun [Key Laboratory of Oil and Gas Equipment of Ministry of Education, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Huang, Huawei [National Key Laboratory for Nuclear Fuel and Materials, Nuclear Power of China, Chengdu, Sichuan 610041 (China); Pan, Yong, E-mail: yongpanyn@163.com [State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming 650106 (China); Zhao, Guanghui; Liang, Zheng [Key Laboratory of Oil and Gas Equipment of Ministry of Education, Southwest Petroleum University, Chengdu, Sichuan 610500 (China)

    2014-06-01

    Highlights: • The phase transition of Pt{sub 3}Al alloys occurs at 60 GPa. • The elastic modulus of Pt{sub 3}Al alloys increase with increasing pressure. • The cubic structure has good resistance to volume deformation under high pressure. • The pressure enhances the hybridization between Pt atom and Al atom. - Abstract: The phase transition, formation enthalpies, elastic properties and electronic structure of Pt{sub 3}Al alloys are studied using first-principle approach. The calculated results show that the pressure leads to phase transition from tetragonal structure to cubic structure at 60 GPa. With increasing pressure, the elastic constants, bulk modulus and shear modulus of these Pt{sub 3}Al alloys increase linearly and the bond lengths of Pt–Al metallic bonds and the peak at E{sub F} decrease. The cubic Pt{sub 3}Al alloy has excellent resistance to volume deformation under high pressure. We suggest that the phase transition is derived from the hybridization between Pt and Al atoms for cubic structure is stronger than that of tetragonal structure and forms the strong Pt–Al metallic bonds under high pressure.

  2. Synthesis, mechanical properties and corrosion behavior of powder metallurgy processed Fe/Mg2Si composites for biodegradable implant applications.

    Science.gov (United States)

    Sikora-Jasinska, M; Paternoster, C; Mostaed, E; Tolouei, R; Casati, R; Vedani, M; Mantovani, D

    2017-12-01

    Recently, Fe and Fe-based alloys have shown their potential as degradable materials for biomedical applications. Nevertheless, the slow corrosion rate limits their performance in certain situations. The shift to iron matrix composites represents a possible approach, not only to improve the mechanical properties, but also to accelerate and tune the corrosion rate in a physiological environment. In this work, Fe-based composites reinforced by Mg 2 Si particles were proposed. The initial powders were prepared by different combinations of mixing and milling processes, and finally consolidated by hot rolling. The influence of the microstructure on mechanical properties and corrosion behavior of Fe/Mg 2 Si was investigated. Scanning electron microscopy and X-ray diffraction were used for the assessment of the composite structure. Tensile and hardness tests were performed to characterize the mechanical properties. Potentiodynamic and static corrosion tests were carried out to investigate the corrosion behavior in a pseudo-physiological environment. Samples with smaller Mg 2 Si particles showed a more homogenous distribution of the reinforcement. Yield and ultimate tensile strength increased when compared to those of pure Fe (from 400MPa and 416MPa to 523MPa and 630MPa, respectively). Electrochemical measurements and immersion tests indicated that the addition of Mg 2 Si could increase the corrosion rate of Fe even twice (from 0.14 to 0.28mm·year -1 ). It was found that the preparation method of the initial composite powders played a major role in the corrosion process as well as in the corrosion mechanism of the final composite. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The Al Effects of Co-Free and V-Containing High-Entropy Alloys

    Directory of Open Access Journals (Sweden)

    Songqin Xia

    2017-01-01

    Full Text Available In this study, five-component high-entropy alloys (HEAs AlxCrFeNiV (where x denotes the molar ratio, x = 0, 0.1, 0.3, 0.5, 0.75, 1, and 1.5 were prepared using an arc-melting furnace. The effects of the addition of the Al on the crystal structures were investigated using X-ray diffraction (XRD, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. Also, two non-equiatomic ratio HEAs, AlxCrFeNiV (x = 0.3, and 0.5, were systematically studied through the use of various characterization methods in the as-cast state. The Al0.3CrFeNiV alloy displayed typical duplex body-centered cubic (BCC structures, including disordered BCC (A2, and NiAl-type ordered BCC (B2 phases. Meanwhile, in regard to the Al0.5CrFeNiV alloy, this alloy was found to contain an unknown phase which was enriched in Cr and V, as well as the coherent A2/B2 phases. Both of these alloys displayed very high yield and fracture strengths. However, their compression fracture strains were approximately 10%. Also, the fracture surfaces showed mainly cleavage fracture modes.

  4. Microstructure and Room-Temperature Mechanical Properties of FeCrMoVTi x High-Entropy Alloys

    Science.gov (United States)

    Guo, Jun; Huang, Xuefei; Huang, Weigang

    2017-07-01

    FeCrMoVTi x ( x values represent the molar ratio, where x = 0, 0.5, 1.0, 1.5, and 2.0) high-entropy alloys were prepared by a vacuum arc melting method. The effects of Ti element on the microstructure and room-temperature mechanical properties of the as-cast FeCrMoVTi x alloys were investigated. The results show that the prepared alloys exhibited typical dendritic microstructure and the size of the microstructure became fine with increasing Ti content. The FeCrMoV alloy exhibited a single body-centered cubic structure (BCC1) and the alloys prepared with Ti element exhibited BCC1 + BCC2 mixed structure. The new BCC2 phase is considered as (Fe, Ti)-rich phase and was distributed in the dendrite region. With the increase of Ti content, the volume fraction of the BCC2 phase increased and its shape changed from a long strip to a network. For the FeCrMoV alloy, the fracture strength, plastic strain, and hardness reached as high as 2231 MPa, 28.2%, and 720 HV, respectively. The maximum hardness of 887 HV was obtained in the FeCrMoVTi alloy. However, the fracture strength, yield stress, and plastic strain of the alloys decreased continuously as Ti content increased. In the room-temperature compressive test, the alloys showed typical brittle fracture characteristics.

  5. Helium release from metals with face-centered cubic structure

    International Nuclear Information System (INIS)

    Sciani, V.; Lucki, G.; Jung, P.

    1984-01-01

    The helium release from gold sheets of 5 and 54 μm of thickness and helium concentrations from 10 -9 to 10 -5 ap of He during the isothermal and linear annealing is studied. The helium was put in the sample through the implantation of alpha particles, with variable energy,in the cyclotron. The free diffusion of the atoms of the helium, where the diffusion coefficient follows an Arrhenius law is studied. (E.G.) [pt

  6. Neutron diffraction study of cubic titanium carbohydride at the homogeneity lower limit

    International Nuclear Information System (INIS)

    Khidirov, I.; Mirzaev, B.B.; Mukhtarova, N.N.

    2004-01-01

    Cubic carbohydride TiC 0.47H0.22 was prepared by means of quenching from 1200 deg.C followed by the heat treatment using special regime for preventing the hydrogen yield out the lattice. It is shown that at the lower limit of homogeneity range of the cubic carbohydride, hydrogen atoms occupy the tetrahedral interstices 8(c) of the disordered cubic structure with space group of Fm3m. It is found that carbon and hydrogen atoms are partially ordered by annealing at 900-700 deg.C. The ordered structure is face-centred cubic lattice with the parameter a ≅2a 0 , where a 0 is the lattice parameter in disordered structure. The crystal structure of the disordered phase is described within the framework of space group Fd3m, where the carbon atoms occupy mainly (70%) octahedral interstices 16(c) and another ones of carbon and all hydrogen atoms occupy the octahedral interstices 16(d). (author)

  7. Cathodoluminescence of cubic boron nitride

    International Nuclear Information System (INIS)

    Tkachev, V.D.; Shipilo, V.B.; Zaitsev, A.M.

    1985-01-01

    Three types of optically active defect were observed in single-crystal and polycrystalline cubic boron nitride (β-BN). An analysis of the temperature dependences of the intensity, half-width, and energy shift of a narrow zero-phonon line at 1.76 eV (GC-1 center) made it possible to interpret the observed cathodoluminescence spectra as an optical analog of the Moessbauer effect. A comparison of the results obtained in the present study with the available data on diamond single crystals made it possible to identify the observed GC-1 center as a nitrogen vacancy. It was concluded that optical Moessbauer-type spectra can be used to analyze structure defects in the crystal lattice of β-BN

  8. Grain Refinement and Texture Mitigation in Low Boron Containing TiAl-Alloys

    Science.gov (United States)

    Hecht, Ulrike; Witusiewicz, Victor T.

    2017-12-01

    Controlling the grain size and texture of lamellar TiAl-alloys is essential for well-balanced creep and fatigue properties. Excellent refinement and texture mitigation are achieved in aluminum lean alloys by low boron additions of 0.2 at.%. This amount is sufficient to promote in situ formation of ultrafine borides during the last stages of body centered cubic (BCC) solidification. The borides subsequently serve as nucleation sites for hexagonal close packed (HCP) during the BCC-HCP phase transformation. Bridgman solidification experiments with alloy Ti-43Al-8Nb-0.2C-0.2B were performed under a different growth velocity, i.e., cooling rate, to evaluate the HCP grain size distribution and texture. For slow-to-moderate cooling rates, about 65% of HCP grains are randomly oriented, despite the pronounced texture of the parent BCC phase resulting from directional solidification. For high cooling rates, obtained by quenching, texture mitigation is less pronounced. Only 28% of the HCP grains are randomly oriented, the majority being crystallographic variants of the Burgers orientation relationship.

  9. Helium accumulation and bubble formation in FeCoNiCr alloy under high fluence He+ implantation

    Science.gov (United States)

    Chen, Da; Tong, Y.; Li, H.; Wang, J.; Zhao, Y. L.; Hu, Alice; Kai, J. J.

    2018-04-01

    Face-centered cubic (FCC) high-entropy alloys (HEA), as emerging alloys with equal-molar or near equal-molar constituents, show a promising radiation damage resistance under heavy ion bombardment, making them potential for structural material application in next-generation nuclear reactors, but the accumulation of light helium ions, a product of nuclear fission reaction, has not been studied. The present work experimentally studied the helium accumulation and bubble formation at implantation temperatures of 523 K, 573 K and 673 K in a homogenized FCC FeCoNiCr HEA, a HEA showing excellent radiation damage resistance under heavy ion irradiation. The size and population density of helium bubbles in FeCoNiCr samples were quantitatively analyzed through transmission electron microscopy (TEM), and the helium content existing in bubbles were estimated from a high-pressure Equation of State (EOS). We found that the helium diffusion in such condition was dominated by the self-interstitial/He replacement mechanism, and the corresponding activation energy in FeCoNiCr is comparable with the vacancy migration energy in Ni and austenitic stainless steel but only 14.3%, 31.4% and 51.4% of the accumulated helium precipitated into helium bubbles at 523 K, 573 K and 673 K, respectively, smaller than the pure Ni case. Importantly, the small bubble size suggested that FeCoNiCr HEA has a high resistance of helium bubble formation compared with Ni and steels.

  10. Stress corrosion of alloy 600: mechanism proposition

    International Nuclear Information System (INIS)

    Magnin, T.

    1993-01-01

    A fissuring model by stress corrosion based on interactions corrosion-plasticity on the fissure top is proposed to describe the generally intergranular bursting of INCONEL 600 in the PWR. The calculation shows, and some observations check experimentally, that a pseudo intergranular cracking bound to the zigzag micro facets formation along the joints may be so that a completely intergranular bursting. This pseudo intergranular mode makes up a signature of the proposed mechanism. It may be suggested that it may exist one continuity mechanism between the trans and intergranular cracking by stress corrosion of ductile cubic centered faces materials. 2 figs

  11. Crystallographic relations between face- and body-centred cubic crystals formed under near-equilibrium conditions: Observations from the Gibeon meteorite

    International Nuclear Information System (INIS)

    He Youliang; Godet, Stephane; Jacques, Pascal J.; Jonas, John J.

    2006-01-01

    The orientations of the kamacite lamellae formed from a single prior-taenite grain were measured by analysing the electron backscatter diffraction patterns obtained using scanning electron microscopy. These are shown to be close to the Kurdjumov-Sachs and Nishiyama-Wassermann relations and their intermediate, i.e., the Greninger-Troiano relation. The orientations of the α grains in the plessite regions were also measured and these were found to be continuously distributed around the Bain circles formed by the variants of the common correspondence relationships, including the Pitsch one in this case. The local misorientations between individual face- and body-centred cubic crystals along their common interfaces were measured. These can be characterized by the orientation relationships mentioned above as long as a certain amount of tolerance is allowed. Orientation variations within individual kamacite lamellae were also analysed. The crystallographic data support the view that somewhat different mechanisms are involved in the formation of Widmanstaetten structures and of the plessite in meteorites

  12. Nuclear spin relaxation due to motion on inequivalent sites: H diffusion on O and T sites in the face-centred cubic structure

    International Nuclear Information System (INIS)

    Luo Xinjun; Sholl, C A

    2003-01-01

    Magnetization recoveries for nuclear spin relaxation of like spins due to magnetic dipolar coupling and diffusion on inequivalent sites involve a sum of exponentials. The theory is applied to diffusion on octahedral and tetrahedral interstitial sites in the face-centred cubic structure. Monte Carlo simulations have been used to generate relaxation data for parameters typical for H in metals. It is found that only a single exponential would be observable in the high- and low-temperature limits, but that two-exponential recoveries could be observable in the vicinity of the maximum in the relaxation rate as a function of temperature. The Monte Carlo relaxation data has been fitted using a Bloembergen-Pound-Purcell (BPP) model to assess the accuracy of the BPP model

  13. Robust synthesis of gold cubic nanoframes through a combination of galvanic replacement, gold deposition, and silver dealloying.

    Science.gov (United States)

    Wan, Dehui; Xia, Xiaohu; Wang, Yucai; Xia, Younan

    2013-09-23

    A facile, robust approach to the synthesis of Au cubic nanoframes is described. The synthesis involves three major steps: 1) preparation of Au-Ag alloyed nanocages using a galvanic replacement reaction between Ag nanocubes and HAuCl4 ; 2) deposition of thin layers of pure Au onto the surfaces of the nanocages by reducing HAuCl4 with ascorbic acid, and; 3) formation of Au cubic nanoframes through a dealloying process with HAuCl4 . The key to the formation of Au cubic nanoframes is to coat the surfaces of the Au-Ag nanocages with sufficiently thick layers of Au before they are dealloyed. The Au layer could prevent the skeleton of a nanocage from being fragmented during the dealloying step. The as-prepared Au cubic nanoframes exhibit tunable localized surface plasmon resonance peaks in the near-infrared region, but with much lower Ag content as compared with the initial Au-Ag nanocages. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Cubical local partial orders on cubically subdivided spaces - existence and construction

    DEFF Research Database (Denmark)

    Fajstrup, Lisbeth

    The geometric models of Higher Dimensional Automata and Dijkstra's PV-model are cubically subdivided topological spaces with a local partial order. If a cubicalization of a topological space is free of immersed cubic Möbius bands, then there are consistent choices of direction in all cubes, such ...... that the underlying geometry of an HDA may be quite complicated....

  15. Cubical local partial orders on cubically subdivided spaces - Existence and construction

    DEFF Research Database (Denmark)

    Fajstrup, Lisbeth

    2006-01-01

    The geometric models of higher dimensional automata (HDA) and Dijkstra's PV-model are cubically subdivided topological spaces with a local partial order. If a cubicalization of a topological space is free of immersed cubic Möbius bands, then there are consistent choices of direction in all cubes...... that the underlying geometry of an HDA may be quite complicated....

  16. Metal Dusting: Catastrophic Corrosion by Carbon

    Science.gov (United States)

    Young, David J.; Zhang, Jianqiang

    2012-12-01

    Reducing gases rich in carbon-bearing species such as CO can be supersaturated with respect to graphite at intermediate temperatures of about 400-700°C. Engineering alloys such as low-alloy and stainless steels, and heat-resisting iron-, nickel-, and cobalt-base alloys catalyze gas processes that release the carbon. An understanding of how the resulting carbon deposition can destroy alloys at a catastrophically rapid rate has been the objective of a great deal of research. The current review of recent work on metal dusting covers the mass transfer—principally carbon diffusion—and graphite nucleation processes involved. A clear distinction emerges between ferritic alloys, which form cementite and precipitate graphite within that carbide, and austenitics that nucleate graphite directly within the metal. The latter process is facilitated by the strong orientation relationship between the graphite and face-centered cubic (fcc) lattices. Strategies for the control of dusting are briefly outlined.

  17. Development of ductile long-range ordered alloys for fusion reactor systems

    International Nuclear Information System (INIS)

    Liu, C.T.

    1979-01-01

    A series of Fe-base ordered alloys with compositions (Fe,Ni,Co) 3 V are developed for fusion reactor applications. The alloys from cubic ordered structure similar to AuCu 3 below their critical ordering temperature. The alloys in the ordered state are ductile with elongation in excess of 35% at room temperture. Tensile tests of the ordered alloys at elevated temperatures indicate an unusually attractive mechanical behavior. Their strength, instead of decreasing as with conventional alloys, increases with temperature because of ordering effects. As a result, the ordered alloys are much stronger than 316 stainless steel, particularly at elevated temperatures

  18. Development of bonding techniques between W and Cu-alloys for plasma facing components by HIP method (3). Bonding tests with Au-foil insert

    International Nuclear Information System (INIS)

    Saito, Shigeru

    2002-07-01

    In recent years, it has been considered that W (tungsten) is one of candidate materials for armor tiles of plasma a facing components (PFC), like first wall or divertor, of fusion reactor. On the other hand, Cu-alloys, like OFHC-Cu or DS-Cu, are proposed as heat sink materials behind the plasma facing materials because of its high thermal conductivity. It is necessary to develop a reliable bonding techniques in order to fabricate PFC. JAERI has developed the hot isostatic press (HIP) bonding process to bond W with Cu-alloys. In this experiments, bonding tests with Au-foil insert were performed. We could get the best HIP bonding conditions for W and Cu-alloys with Au-foil as 1123K x 2hours x 147MPa. It was shown that the HIP temperature was 150K lower than that of without Au-foil. Furthermore, the tensile strength was similar to that of with without Au-foil. (author)

  19. Silicon Alloying On Aluminium Based Alloy Surface

    International Nuclear Information System (INIS)

    Suryanto

    2002-01-01

    Silicon alloying on surface of aluminium based alloy was carried out using electron beam. This is performed in order to enhance tribological properties of the alloy. Silicon is considered most important alloying element in aluminium alloy, particularly for tribological components. Prior to silicon alloying. aluminium substrate were painted with binder and silicon powder and dried in a furnace. Silicon alloying were carried out in a vacuum chamber. The Silicon alloyed materials were assessed using some techniques. The results show that silicon alloying formed a composite metal-non metal system in which silicon particles are dispersed in the alloyed layer. Silicon content in the alloyed layer is about 40% while in other place is only 10.5 %. The hardness of layer changes significantly. The wear properties of the alloying alloys increase. Silicon surface alloying also reduced the coefficient of friction for sliding against a hardened steel counter face, which could otherwise be higher because of the strong adhesion of aluminium to steel. The hardness of the silicon surface alloyed material dropped when it underwent a heating cycle similar to the ion coating process. Hence, silicon alloying is not a suitable choice for use as an intermediate layer for duplex treatment

  20. Martensitic phase transformations in Ni–Ti-based shape memory alloys: The Landau theory

    International Nuclear Information System (INIS)

    Shchyglo, Oleg; Salman, Umut; Finel, Alphonse

    2012-01-01

    We present a simple Landau free energy functional for cubic-to-orthorhombic and cubic-to-monoclinic martensitic phase transformations. The functional is derived following group–subgroup relations between different martensitic phases – tetragonal, trigonal, orthorhombic and monoclinic – in order to fully capture the symmetry properties of the free energy of the austenite and martensite phases. The derived free energy functional is fitted to the elastic and thermodynamic properties of NiTi and NiTiCu shape memory alloys which exhibit cubic-to-monoclinic and cubic-to-orthorhombic martensitic phase transformations, respectively.

  1. Experimental and Computational Investigation of High Entropy Alloys for Elevated-Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, Peter [Univ. of Tennessee, Knoxville, TN (United States); Zhang, Fan [CompuTherm LLC, Madison, WI (United States); Zhang, Chuan [CompuTherm LLC, Madison, WI (United States); Wang, Gongyao [Univ. of Tennessee, Knoxville, TN (United States); Xie, Xie [Univ. of Tennessee, Knoxville, TN (United States); Diao, Haoyan [Univ. of Tennessee, Knoxville, TN (United States); Kuo, Chih-Hsiang [Univ. of Tennessee, Knoxville, TN (United States); An, Zhinan [Univ. of Tennessee, Knoxville, TN (United States); Hemphill, Michael [Univ. of Tennessee, Knoxville, TN (United States)

    2016-07-30

    To create and design novel structural materials with enhanced creep-resistance, fundamental studies have been conducted on high-entropy alloys (HEAs), using (1) thermodynamic calculations, (2) mechanical tests, (3) neutron diffraction, (4) characterization techniques, and (5) crystal-plasticity finite-element modeling (CPFEM), to explore future candidates for next-generation power plants. All the constituent binary and ternary systems of the Al-Cr-Cu-Fe-Mn-Ni and Al-Co-Cr-Fe-Ni systems were thermodynamically modeled within the whole composition range. Comparisons between the calculated phase diagrams and literature data are in good agreement. Seven types of HEAs were fabricated from Al-Cr-Cu-Fe-Mn-Ni and Al-Co-Cr-Fe-Ni systems. The AlxCrCuFeMnNi HEAs have disordered [face-centered cubic (FCC) + body-centered cubic (BCC)] crystal structures, not FCC or BCC single structure. Excessive alloying of the Al element results in the change of both microstructural and mechanical properties in AlxCoCrFeNi HEAs. There are mainly three structural features in AlxCoCrFeNi: (1) the morphology, (2) the volume fractions of the constitute phases, and (3) existing temperatures of all six phases. After homogenization, the Al0.3CoCrFeNi material is a pure FCC solid solution. After aging at 700 °C for 500 hours, the optimal microstructure combinations, the FCC matrix, needle-like B2 phase within grains, and granular σ phase along grain boundary, is achieved for Al0.3CoCrFeNi. The cold-rolling process is utilized to reduce the grain size of Al0.1CoCrFeNi and Al0.3CoCrFeNi. The chemical elemental partitioning of FCC, BCC, B2, and σphases at different temperatures, before and after mechanical tests, in Al-Cr-Cu-Fe-Mn-Ni and Al-Co-Cr-Fe-Ni systems are quantitatively characterized by both synchrotron X-ray diffraction, neutron diffraction with levitation, scanning electron microscopy (SEM), advanced atom probe

  2. Polyamorphism in metalic glass.

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, H. W.; Liu, H. Z.; Cheng, Y. Q.; Wen, J.; Lee, P.L.; Luo, W.K.; Shastri, S.D.; Ma, E.; X-Ray Science Division; Johns Hopkins Univ.; Chinese Academy of Sciences

    2007-03-01

    A metal, or an alloy, can often exist in more than one crystal structure. The face-centered-cubic and body-centered-cubic forms of iron (or steel) are a familiar example of such polymorphism. When metallic materials are made in the amorphous form, is a parallel 'polyamorphism' possible? So far, polyamorphic phase transitions in the glassy state have been observed only in glasses involving directional and open (such as tetrahedral) coordination environments. Here, we report an in situ X-ray diffraction observation of a pressure-induced transition between two distinct amorphous polymorphs in a Ce{sub 55}Al{sub 45} metallic glass. The large density difference observed between the two polyamorphs is attributed to their different electronic and atomic structures, in particular the bond shortening revealed by ab initio modeling of the effects of f-electron delocalization. This discovery offers a new perspective of the amorphous state of metals, and has implications for understanding the structure, evolution and properties of metallic glasses and related liquids. Our work also opens a new avenue towards technologically useful amorphous alloys that are compositionally identical but with different thermodynamic, functional and rheological properties due to different bonding and structural characteristics.

  3. Kinetics of cellular transformation and competing precipitation mechanisms during sub-eutectoid annealing of U10Mo alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jana, Saumyadeep; Devaraj, Arun; Kovarik, Libor; Arey, Bruce W.; Sweet, Lucas E.; Varga, Tamas; Lavender, Curt A.; Joshi, Vineet V.

    2017-11-01

    Transformation kinetics of metastable body-centered cubic γ-UMo phase in U-10 wt.percent Mo alloy during annealing at sub-eutectoid temperatures of 500C and 400C has been determined as a function of time using detailed microstructural characterization by scanning electron microscopy, X-ray diffraction analysis, scanning transmission electron microscopy, and atom probe tomography. Based on the results, we found that the phase transformation is initiated by cellular transformation at both the temperatures, which results in formation of a lamellar microstructure along prior γ-UMo grain boundaries.

  4. First-principles study of the structural and elastic properties of AuxV1-x and AuxNb1-x alloys

    Science.gov (United States)

    Al-Zoubi, N.

    2018-04-01

    Ab initio total energy calculations, based on the Exact Muffin-Tin Orbitals (EMTO) method in combination with the coherent potential approximation (CPA), are used to calculate the total energy of AuxV1-x and AuxNb1-x random alloys along the Bain path that connects the body-centred cubic (bcc) and face-centred cubic (fcc) structures as a function of composition x (0 ≤ x ≤ 1). The equilibrium Wigner-Seitz radius and the elastic properties of both systems are determined as a function of composition. Our theoretical prediction in case of pure elements (x = 0 or x = 1) are in good agreement with the available experimental data. For the Au-V system, the equilibrium Wigner-Seitz radius increase as x increases, while for the Au-Nb system, the equilibrium Wigner-Seitz radius is almost constant. The bulk modulus B and C44 for both alloys exhibit nearly parabolic trend. On the other hand, the tetragonal shear elastic constant C‧ decreases as x increases and correlates reasonably well with the structural energy difference between fcc and bcc structures. Our results offer a consistent starting point for further theoretical and experimental studies of the elastic and micromechanical properties of Au-V and Au-Nb systems.

  5. First-principles calculations of the structural and thermodynamic properties of bcc, fcc and hcp solid solutions in the Al-TM (TM = Ti, Zr and Hf) systems: A comparison of cluster expansion and supercell methods

    International Nuclear Information System (INIS)

    Ghosh, G.; Walle, A. van de; Asta, M.

    2008-01-01

    The thermodynamic properties of solid solutions with body-centered cubic (bcc), face-centered cubic (fcc) and hexagonal close-packed (hcp) structures in the Al-TM (TM = Ti, Zr and Hf) systems are calculated from first-principles using cluster expansion (CE), Monte-Carlo simulation and supercell methods. The 32-atom special quasirandom structure (SQS) supercells are employed to compute properties at 25, 50 and 75 at.% TM compositions, and 64-atom supercells have been employed to compute properties of alloys in the dilute concentration limit (one solute and 63 solvent atoms). In general, the energy of mixing (Δ m E) calculated by CE and dilute supercells agree very well. In the concentrated region, the Δ m E values calculated by CE and SQS methods also agree well in many cases; however, noteworthy discrepancies are found in some cases, which we argue originate from inherent elastic and dynamic instabilities of the relevant parent lattice structures. The importance of short-range order on the calculated values of Δ m E for hcp Al-Ti alloys is demonstrated. We also present calculated results for the composition dependence of the atomic volumes in random solid solutions with bcc, fcc and hcp structures. The properties of solid solutions reported here may be integrated within the CALPHAD formalism to develop reliable thermodynamic databases in order to facilitate: (i) calculations of stable and metastable phase diagrams of binary and multicomponent systems, (ii) alloy design, and (iii) processing of Al-TM-based alloys

  6. Formation of Fe/mg Smectite Under Acidic Conditions from Synthetic Adirondack Basaltic Glass: an Analog to Fe/mg Smectite Formation on Mars

    Science.gov (United States)

    Sutter, B.; Peretyazhko, T.; Morris, R. V.; Ming, D. W.

    2014-01-01

    Smectite has been detected as layered material hundreds of meters thick, in intracrater depositional fans, in plains sediments, and deposits at depth on Mars. If early Mars hosted a dense CO2 atmosphere, then extensive carbonate should have formed in the neutral/alkaline conditions expected for smectite formation. However, large carbonate deposits on Mars have not been discovered. Instead of neutral to moderately alkaline conditions, early Mars may have experienced mildly acidic conditions that allowed for Fe/Mg smectite formation but prevented widespread carbonate formation. The objective of this work is to demonstrate that Fe(II)/Mg saponite and nontronite can form in mildly acidic solutions (e.g., pH 4). Synthetic basaltic glass (Smectite was confirmed as the phyllosilicate after treatments with glycerol and KCl and heating to 550 C. Trioctahedral saponite was confirmed by the presence of a 4.58 to 4.63 Angstroms (02l) and 1.54Angstroms (060) peaks. Saponite concentration was highest, as indicated by XRD peak intensity, in the 10 mM Mg treatment followed by the 0 mM and then 10 mM Fe(II) treatments. This order of sapontite concentration suggests that Fe(II) additions may have a role in slowing the kinetics of saponite formation relative to the other treatments. Nontronite synthesis was attempted by exposing Adirondack basaltic glass to pH 4 oxic solutions (without N2 purge) at 200 C for 14 days. X-ray diffraction analysis indicated that mixtures of trioctahedral (saponite) and dioctahedral (nontronite) may have formed in these experiments based on the 02l and 060 peaks. Moessbauer analysis coupled with future experiments are planned to verify if nontronite can be formed under mildly acidic and oxic conditions. Results of this work demonstrate that acidic conditions could have occurred on an early Mars, which allowed for smectite formation but inhibited carbonate formation.

  7. Estimating the board foot to cubic foot ratio

    Science.gov (United States)

    Steve P. Verrill; Victoria L. Herian; Henry N. Spelter

    2004-01-01

    Certain issues in recent softwood lumber trade negotiations have centered on the method for converting estimates of timber volumes reported in cubic meters to board feet. Such conversions depend on many factors; three of the most important of these are log length, diameter, and taper. Average log diameters vary by region and have declined in the western United States...

  8. The surface oxidation kinetics of zirconium-niobium alloys and aα-Fe with prevailing cubical texture

    International Nuclear Information System (INIS)

    Mukhambetov, D.G.; Kargin, D.B.; Chalaya, O. V.; Berber, N.N.

    2002-01-01

    It is known, that the kinetics of oxidation of zirconium at formed heating is characterized by two consecutive stages. At the initial stage the thin protecting film will be derived. The relation of its depth from time h (t) is described predominantly by parabolic law. Some time later there can be a transition to the linear law of oxidation. The time moment divided these areas on the kinetic relation is called as a point of break. The film is formed at the second stage, has a developed grid of pores or cracks, can be flake away and be crumbled by losing its protective properties. At the oxidation of the surface shells of the heat generating elements and the technological channels of atomic boilers both stages are proceeded simultaneously. This phenomenon is called modular corrosion. Its consequences can be dangerous for the equipment. Its mechanism is not clear till now. Similar dependencies h(t), with the break point, beginning from which the thin film is transformed into the thick one were found by us at the oxidation α-Fe with prevailing cubical texture. The task of the work was to study the oxide film growth laws in order to clarify the mechanisms of transition of the thin film into the oxide layer on the α-Fe surface and Zr-Nb alloy modular corrosion emergence. Low-carbonate steel with contents 99.43 % of α-Fe was used as a model object of our research. In the texture of the steel surface planar direction [100] was prevalent. Its part accounted for about 40 %. The isothermal air oxidation was carried out in the interval of 450-500 deg. C . Phase composition of the film was determined with X-ray diffraction. The mathematical treatment of the dependencies h(t) obtained by experiment showed that the kinetics of the film growth can be conditionally divided into 4-stages. The initial stage is described by function logarithmic function, the other stages - by the power mode h n =A n ·t, namely, the second stage - is described by function close to cubical (n≅3

  9. Slurry Erosion Behavior of AlxCoCrFeNiTi0.5 High-Entropy Alloy Coatings Fabricated by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Jianhua Zhao

    2018-02-01

    Full Text Available High-entropy alloys (HEAs have gained extensive attention due to their excellent properties and the related scientific value in the last decade. In this work, AlxCoCrFeNiTi0.5 HEA coatings (x: molar ratio, x = 1.0, 1.5, 2.0, and 2.5 were fabricated on Q345 steel substrate by laser-cladding process to develop a practical protection technology for fluid machines. The effect of Al content on their phase evolution, microstructure, and slurry erosion performance of the HEA coatings was studied. The AlxCoCrFeNiTi0.5 HEA coatings are composed of simple face-centered cubic (FCC, body-centered cubic (BCC and their mixture phase. Slurry erosion tests were conducted on the HEA coatings with a constant velocity of 10.08 m/s and 16–40 meshs and particles at impingement angles of 15, 30, 45, 60 and 90 degrees. The effect of three parameters, namely impingement angle, sand concentration and erosion time, on the slurry erosion behavior of AlxCoCrFeNiTi0.5 HEA coatings was investigated. Experimental results show AlCoCrFeNiTi0.5 HEA coating follows a ductile erosion mode and a mixed mode (neither ductile nor brittle for Al1.5CoCrFeNiTi0.5 HEA coating, while Al2.0CoCrFeNiTi0.5 and Al2.5CoCrFeNiTi0.5 HEA coatings mainly exhibit brittle erosion mode. AlCoCrFeNiTi0.5 HEA coating has good erosion resistance at all investigated impingement angles due to its high hardness, good plasticity, and low stacking fault energy (SFE.

  10. Darboux integrability and rational reversibility in cubic systems with two invariant straight lines

    Directory of Open Access Journals (Sweden)

    Dumitru Cozma

    2013-01-01

    Full Text Available We find conditions for a singular point O(0,0 of a center or a focus type to be a center, in a cubic differential system with two distinct invariant straight lines. The presence of a center at O(0,0 is proved by using the method of Darboux integrability and the rational reversibility.

  11. Effect of solute atoms on glass-forming ability for Fe–Y–B alloy: An ab initio molecular dynamics study

    International Nuclear Information System (INIS)

    Han, J.J.; Wang, W.Y.; Liu, X.J.; Wang, C.P.; Hui, X.D.; Liu, Z.K.

    2014-01-01

    The glass-forming abilities of Fe 78 B 22 , Fe 70 Y 6 B 24 , Fe 72 Y 6 B 22 and Fe 72.5 Y 3.5 B 24 alloys were characterized comprehensively using ab initio molecular dynamics simulations. The calculated results were correlated with the properties and atomic structures. It was found that the Fe 72 Y 6 B 22 alloy consists of both the most stable and the least deformed body centered cubic atomic packing structures in the supercooled liquid and glassy states. It was observed that the local compositions in the Fe 72 Y 6 B 22 alloy significantly deviate from the compositions of stable crystalline phases, indicating that the Fe 72 Y 6 B 22 alloy has the best glass-forming ability among the alloys studied. However, Fe 72 Y 6 B 22 alloy has two flaws in terms of glass-forming ability, i.e. relatively large atomic diffusivity and insufficiently close atomic packing. The best performance in these two aspects is observed in the Fe 72.5 Y 3.5 B 24 alloy. Thus, the theoretical study predicts that the best glass former for the Fe–Y–B system is within the compositional range of 22–24 at.% B and 3.5–6 at.% Y

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    In the present study defect-free nanocrystalline (nc) Ni–Co alloys with the Co content ranging from 2.4–59.3% (wt. ... single face-centred cubic solid solution is formed for each alloy and that the grain size reduces monotonically with increasing ...

  13. Heat capacities, third-law entropies and thermodynamic functions of the negative thermal expansion materials, cubic {alpha}-ZrW{sub 2}O{sub 8} and cubic ZrMo{sub 2}O{sub 8}, from T=(0 to 400) K

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Rebecca; Linford, Jessica; Woodfield, Brian F.; Boerio-Goates, Juliana. E-mail: boerio-goates@byu.edu; Lind, Cora; Wilkinson, Angus P.; Kowach, Glen

    2003-06-01

    The molar heat capacities of crystalline cubic {alpha}-ZrW{sub 2}O{sub 8} and cubic ZrMo{sub 2}O{sub 8} have been measured at temperatures from (0.6 to 400) K. At T=298.15 K, the standard molar heat capacities are (207.01{+-}0.21) J{center_dot}K{sup -1}{center_dot}mol{sup -1} for the tungstate and (210.06{+-}0.42) J{center_dot}K{sup -1}{center_dot}mol{sup -1} for the molybdate. Thermodynamic functions have been generated from smoothed fits of the experimental results. The standard molar entropies for the tungstate and molybdate are (257.96{+-}0.50) J{center_dot}K{sup -1}{center_dot}mol{sup -1} and (254.3{+-}1) J{center_dot}K{sup -1}{center_dot}mol{sup -1}, respectively. The uncertainty of the entropy of the cubic ZrMo{sub 2}O{sub 8} is larger due to the presence of small chemical and phase impurities whose effects cannot be corrected for at this time. The heat capacities of the negative thermal expansion materials have been compared to the weighted sums of their constituent binary oxides. Both negative thermal expansion materials have heat capacities which are significantly greater than the sum of the binary oxides over the entire temperature region.

  14. Energy gap formation mechanism through the interference phenomena of electrons in face-centered cubic elements and compounds with the emphasis on half-Heusler and Heusler compounds

    Science.gov (United States)

    Mizutani, U.; Sato, H.

    2018-05-01

    Many face-centred cubic elements and compounds with the number of atoms per unit cell N equal to 8, 12 and 16 are known to be stabilised by forming either a band gap or a pseudogap at the Fermi level. They are conveniently expressed as cF8, cF12 and cF16, respectively, in the Pearson symbol. From the cF8 family, we worked on three tetravalent elements C (diamond), Si and Ge, SZn-type AsGa compound and NaCl-type compounds like BiLu, AsSc, etc. From the cF12 family, more than 80 compounds were selected, with a particular emphasis on ABC- and half-Heusler-type ternary equiatomic compounds. Among cF16 compounds, both the Heusler compounds ABC2 and Zintl compounds were studied. We revealed that, regardless of whether or not the transition metal (TM) and/or rare-earth (RE) elements are involved as constituent elements, the energy gap formation mechanism for cF8, cF12 and cF16 compounds can be universally discussed in terms of interference phenomenon of itinerant electrons with set of reciprocal lattice planes with ? = 8, 11 and 12, where ? refers to square of the critical reciprocal of lattice vector of an fcc lattice. The number of itinerant electrons per unit cell, e/uc, for all these band gap/pseudogap-bearing compounds is found to fall on a universal line called "3/2-power law" when plotted against ? on a logarithmic scale. This proves the validity of the fulfilment of the interference condition ? in conformity with other pseudogap compounds with different crystal symmetries and different sizes of the unit cell reported in literature.

  15. Precipitation behaviors of cubic and tetragonal Zr–rich phase in Al–(Si–)Zr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Tong [Australian Centre for Microscopy & Microanalysis, The University of Sydney, NSW 2006 (Australia); Key Laboratory of Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Ceguerra, Anna; Breen, Andrew [Australian Centre for Microscopy & Microanalysis, The University of Sydney, NSW 2006 (Australia); Liu, Xiangfa; Wu, Yuying [Key Laboratory of Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Ringer, Simon, E-mail: simon.ringer@sydney.edu.au [Australian Centre for Microscopy & Microanalysis, The University of Sydney, NSW 2006 (Australia)

    2016-07-25

    The precipitation behaviors of Zr–rich phase in binary Al–0.5Zr and ternary Al–3Si–0.5Zr alloys were investigated by high resolution transmission electron microscopy and atom probe. After the alloys were aged at 525 °C for 24 h, the precipitates in Al–0.5Zr alloy are identified as L1{sub 2}–ZrAl{sub 3}, performing a coherent relationship with the Al matrix. While in Al–3Si–0.5Zr alloy, the precipitates are Si–containing D0{sub 23}–Zr(Al,Si){sub 3}, which has an approximate 90° reversed cube–on–cube orientation relationship with Al. It is regarded that Si accelerates the precipitation of D0{sub 23}–Zr(Al,Si){sub 3}. - Highlights: • L1{sub 2}–ZrAl{sub 3} and D0{sub 23}–Zr(Al, Si){sub 3} particles precipitate in Al–Zr and Al–Si–Zr alloys. • D0{sub 23}–Zr(Al, Si){sub 3} performs an approximate 90° reversed cube–on–cube orientation relationship with Al. • Si accelerates the precipitation process of D0{sub 23}–Zr(Al,Si){sub 3}.

  16. Local Energies and Energy Fluctuations — Applied to the High Entropy Alloy CrFeCoNi

    Science.gov (United States)

    Fukushima, Tetsuya; Katayama-Yoshida, Hiroshi; Sato, Kazunori; Ogura, Masako; Zeller, Rudolf; Dederichs, Peter H.

    2017-11-01

    High entropy alloys show a variety of fascinating properties like high hardness, wear resistance, corrosion resistance, etc. They are random solid solutions of many components with rather high concentrations. We perform ab-initio calculations for the high entropy alloy CrFeCoNi, which equal concentration of 25% for each element. By the KKRnano program package, which is based on an order-N screened Korringa-Kohn-Rostoker Green's function method, we consider a face-centered cubic (FCC) supercell with 1372 randomly distributed elements, and in addition also smaller supercells with 500 and 256 atoms. It is found from our calculations that the local moments of the Cr atoms show a large environmental variation, ranging from -1.70 μB to +1.01 μB with an average of about -0.51 μB. We present a new method to calculate "local energies" of all atoms. This is based on the partitioning of the whole space into Voronoi cells and allows to calculate the energetic contribution of each atomic cell to the total energy of the supercell. The supercell calculations show very large variations of the local energies, analogous to the variations of the local moments. This shows that the random solid solution is not stable and has a tendency to form an L12-structure with the Cr-atoms ordered at the corner of the cube and the elements Fe, Co, and Ni randomly distributed on the three other FCC sublattices. For this structure the variation of the local moments are much smaller.

  17. Calculations of and evidence for chain packing stress in inverse lyotropic bicontinuous cubic phases.

    Science.gov (United States)

    Shearman, Gemma C; Khoo, Bee J; Motherwell, Mary-Lynn; Brakke, Kenneth A; Ces, Oscar; Conn, Charlotte E; Seddon, John M; Templer, Richard H

    2007-06-19

    Inverse bicontinuous cubic lyotropic phases are a complex solution to the dilemma faced by all self-assembled water-amphiphile systems: how to satisfy the incompatible requirements for uniform interfacial curvature and uniform molecular packing. The solution reached in this case is for the water-amphiphile interfaces to deform hyperbolically onto triply periodic minimal surfaces. We have previously suggested that although the molecular packing in these structures is rather uniform the relative phase behavior of the gyroid, double diamond, and primitive inverse bicontinuous cubic phases can be understood in terms of subtle differences in packing frustration. In this work, we have calculated the packing frustration for these cubics under the constraint that their interfaces have constant mean curvature. We find that the relative packing stress does indeed differ between phases. The gyroid cubic has the least packing stress, and at low water volume fraction, the primitive cubic has the greatest packing stress. However, at very high water volume fraction, the double diamond cubic becomes the structure with the greatest packing stress. We have tested the model in two ways. For a system with a double diamond cubic phase in excess water, the addition of a hydrophobe may release packing frustration and preferentially stabilize the primitive cubic, since this has previously been shown to have lower curvature elastic energy. We have confirmed this prediction by adding the long chain alkane tricosane to 1-monoolein in excess water. The model also predicts that if one were able to hydrate the double diamond cubic to high water volume fractions, one should destabilize the phase with respect to the primitive cubic. We have found that such highly swollen metastable bicontinuous cubic phases can be formed within onion vesicles. Data from monoelaidin in excess water display a well-defined transition, with the primitive cubic appearing above a water volume fraction of 0.75. Both of

  18. Thermally stimulated current analysis of Zn{sub 1-x}Cd{sub x}O alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Aybek, A. Senol, E-mail: saybek@anadolu.edu.tr [Department of Physics, Anadolu University, Eskisehir 26470 (Turkey); Baysal, Nihal [Kilicoglu Anadolu High School, Eskisehir 26050 (Turkey); Zor, Muhsin; Turan, Evren; Kul, Metin [Department of Physics, Anadolu University, Eskisehir 26470 (Turkey)

    2011-02-03

    Research highlights: > We have studied the structural and electrical properties of Zn{sub 1-x}Cd{sub x}O alloy films deposited by ultrasonic spray pyrolysis technique. > The trap energy, the capture cross-section, the attempt-to-escape frequency and the concentration of the traps in Zn{sub 1-x}Cd{sub x}O films are reported. > The effect of the Cd incorporation into ZnO material on trapping levels was investigated by the TSC measurements. Two overlapped peaks were registered at levels of 0.033 and 0.197 eV in ZnO sample by the curve fitting technique. The observed trap energy levels for ZnO film is thought to originate from zinc interstitials and oxygen vacancies. However, the incorporation of Cd into Zn{sub 1-x}Cd{sub x}O alloy films with x = 0.59 have resulted in two trapping centers with activation energies of 0.118 and 0.215 eV. The observed trap levels in Zn{sub 0.41}Cd{sub 0.59}O alloy film are related to oxygen adsorption in the sample. - Abstract: We have studied the structural and electrical properties of Zn{sub 1-x}Cd{sub x}O alloy films deposited by ultrasonic spray pyrolysis technique. XRD measurement indicated that pure ZnO and CdO samples had single phases with hexagonal wurtzite and cubic structures, respectively. However, Zn{sub 1-x}Cd{sub x}O alloy films with x = 0.59 and 0.78 exhibited mixtures of a hexagonal wurtzite ZnO phase and a cubic CdO phase. Analysis of thermally stimulated current spectra of Zn{sub 1-x}Cd{sub x}O alloy films revealed the existence of a number of overlapped peaks each characterized by different trap energy levels located in the range of 0.033-0.215 eV below the conduction band. We have used curve fitting method for the evaluation of the trap parameters of the alloy films. The values of attempt-to-escape frequency {nu}, capture cross-section S and concentration of the traps N{sub t} have been determined.

  19. 10 CFR Appendix G to Part 50 - Fracture Toughness Requirements

    Science.gov (United States)

    2010-01-01

    ... means carbon and low-alloy steels, higher alloy steels including all stainless alloys of the 4xx series, and maraging and precipitation hardening steels with a predominantly body-centered cubic crystal... the following materials: A. Carbon and low-alloy ferritic steel plate, forgings, castings, and pipe...

  20. Control of in-plane texture of body centered cubic metal thin films

    International Nuclear Information System (INIS)

    Harper, J.M.; Rodbell, K.P.; Colgan, E.G.; Hammond, R.H.

    1997-01-01

    We show that dramatically different in-plane textures can be produced in body centered cubic (bcc) metal thin films deposited on amorphous substrates under different deposition conditions. The crystallographic orientation distribution of polycrystalline bcc metal thin films on amorphous substrates often has a strong left-angle 110 right-angle fiber texture, indicating that {110} planes are parallel to the substrate plane. When deposition takes place under bombardment by energetic ions or atoms at an off-normal angle of incidence, the left-angle 110 right-angle fiber texture develops an in-plane texture, indicating nonrandom azimuthal orientations of the crystallites. Three orientations in Nb films have been observed under different deposition geometries, in which the energetic particle flux coincides with channeling directions in the bcc crystal structure. In-plane orientations in Mo films have also been obtained in magnetron sputtering systems with various configurations. These are described, and an example is given in which the in-plane orientation of Mo films deposited in two different in-line magnetron sputtering systems differs by a 90 degree rotation. In these two cases, there is a strong left-angle 110 right-angle fiber texture, but the in-plane left-angle 100 right-angle direction is oriented parallel to the scan direction in one system, and perpendicular to the scan direction in the other system. The conditions which produce such different in-plane textures in two apparently similar sputtering systems are discussed. copyright 1997 American Institute of Physics

  1. Robust zero resistance in a superconducting high-entropy alloy at pressures up to 190 GPa

    Science.gov (United States)

    Guo, Jing; Wang, Honghong; von Rohr, Fabian; Wang, Zhe; Cai, Shu; Zhou, Yazhou; Yang, Ke; Li, Aiguo; Jiang, Sheng; Wu, Qi; Cava, Robert J.; Sun, Liling

    2017-12-01

    We report the observation of extraordinarily robust zero-resistance superconductivity in the pressurized (TaNb)0.67(HfZrTi)0.33 high-entropy alloy--a material with a body-centered-cubic crystal structure made from five randomly distributed transition-metal elements. The transition to superconductivity (TC) increases from an initial temperature of 7.7 K at ambient pressure to 10 K at ˜60 GPa, and then slowly decreases to 9 K by 190.6 GPa, a pressure that falls within that of the outer core of the earth. We infer that the continuous existence of the zero-resistance superconductivity from 1 atm up to such a high pressure requires a special combination of electronic and mechanical characteristics. This high-entropy alloy superconductor thus may have a bright future for applications under extreme conditions, and also poses a challenge for understanding the underlying quantum physics.

  2. Microhardness variation and related microstructure in Al-Cu alloys prepared by HF induction melting and RF sputtering

    Science.gov (United States)

    Boukhris, N.; Lallouche, S.; Debili, M. Y.; Draissia, M.

    2009-03-01

    The materials under consideration are binary aluminium-copper alloys (10 at% to 90.3 at%Cu) produced by HF melting and RF magnetron sputtering. The resulting micro structures have been observed by standard metallographic techniques, X-ray powder diffraction, scanning electron microscopy and transmission electron microscopy. Vickers microhardness of bulk Al-Cu alloys reaches a maximum of 1800 MPa at 70.16 at%Cu. An unexpected metastable θ ' phase has been observed within aluminium grain in Al-37 at%Cu. The mechanical properties of a family of homogeneous Al{1-x}Cu{x} (0 Al-Cu targets have been investigated. The as-deposited microstructures for all film compositions consisted of a mixture of the two expected face-centred-cubic (fcc) Al solid solution and tetragonal θ (Al{2}Cu) phases. The microhardness regularly increases and the grain size decreases both with copper concentration. This phenomenon of significant mechanical strengthening of aluminium by means of copper is essentially due to a combination between solid solution effects and grain size refinement. This paper reports some structural features of different Al-Cu alloys prepared by HF melting and RF magnetron on glass substrate sputtering.

  3. Nickel/carbon core/shell nanotubes: Lanthanum nickel alloy catalyzed synthesis, characterization and studies on their ferromagnetic and lithium-ion storage properties

    International Nuclear Information System (INIS)

    Anthuvan Rajesh, John; Pandurangan, Arumugam; Senthil, Chenrayan; Sasidharan, Manickam

    2014-01-01

    Highlights: • Ni/CNTs core/shell structure was synthesized using LaNi 5 alloy catalyst by CVD. • The magnetic and lithium-ion storage properties of Ni/CNTs structure were studied. • The specific Ni/CNTs structure shows strong ferromagnetic property with large coercivity value of 446.42 Oe. • Ni/CNTs structure shows enhanced electrochemical performance in terms of stable capacity and better rate capability. - Abstract: A method was developed to synthesize ferromagnetic nickel core/carbon shell nanotubes (Ni/CNTs) by chemical vapor deposition using Pauli paramagnetic lanthanum nickel (LaNi 5 ) alloy both as a catalyst and as a source for the Ni-core. The Ni-core was obtained through oxidative dissociation followed by hydrogen reduction during the catalytic growth of the CNTs. Transmission electron microscopy (TEM), selected area electron diffraction (SAED) and X-ray diffraction (XRD) analyses reveal that the Ni-core exists as a face centered cubic single crystal. The magnetic hysteresis loop of Ni/CNTs particle shows increased coercivity (446.42 Oe) than bulk Ni at room temperature. Furthermore, the Ni/CNTs core/shell particles were investigated as anode materials in lithium-ion batteries. The Ni/CNTs electrode delivered a high discharge capacity of 309 mA h g −1 at 0.2 C, and a stable cycle-life, which is attributed to high structural stability of Ni/CNTs electrode during electrochemical lithium-ion insertion and de-insertion redox reactions

  4. Detwinning mechanisms for growth twins in face-centered cubic metals

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J., E-mail: wangj6@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Li, N.; Anderoglu, O. [Department of Mechanical Engineering, Materials Science and Engineering Program, Texas A and M University, College Station, TX 77843-3123 (United States); Zhang, X., E-mail: zhangx@tamu.edu [Department of Mechanical Engineering, Materials Science and Engineering Program, Texas A and M University, College Station, TX 77843-3123 (United States); Misra, A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Huang, J.Y. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Hirth, J.P. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2010-04-15

    Using in situ transmission electron microscopy, we studied the stability of growth twins. We observed the rapid migration of incoherent twin boundaries (ITBs), indicating that nanotwins are unstable. Topological analysis and atomistic simulations are adopted to explore detwinning mechanisms. The results show that: (i) the detwinning process is accomplished via the collective glide of multiple twinning dislocations that form an ITB; (ii) detwinning can easily occur for thin twins, and the driving force is mainly attributed to a variation of the excess energy of a coherent twin boundary; (iii) shear stresses enable ITBs to migrate easily, causing the motion of coherent twin boundaries; and (iv) the migration velocity depends on stacking fault energy. The results imply that detwinning becomes the dominant deformation mechanism for growth twins of the order of a few nanometers thick.

  5. Variable-temperature single-crystal X-ray diffraction study of tetragonal and cubic perovskite-type barium titanate phases.

    Science.gov (United States)

    Nakatani, Tomotaka; Yoshiasa, Akira; Nakatsuka, Akihiko; Hiratoko, Tatsuya; Mashimo, Tsutomu; Okube, Maki; Sasaki, Satoshi

    2016-02-01

    A variable-temperature single-crystal X-ray diffraction study of a synthetic BaTiO3 perovskite has been performed over the temperature range 298-778 K. A transition from a tetragonal (P4mm) to a cubic (Pm3m) phase has been revealed near 413 K. In the non-centrosymmetric P4mm symmetry group, both Ti and O atoms are displaced along the c-axis in opposite directions with regard to the Ba position fixed at the origin, so that Ti(4+) and Ba(2+) cations occupy off-center positions in the TiO6 and BaO12 polyhedra, respectively. Smooth temperature-dependent changes of the atomic coordinates become discontinuous with the phase transition. Our observations imply that the cations remain off-center even in the high-temperature cubic phase. The temperature dependence of the mean-square displacements of Ti in the cubic phase includes a significant static component which means that Ti atoms are statistically distributed in the off-center positions.

  6. Preparation of spherical and cubic Fe{sub 55}Co{sub 45} microstructures for studying the role of particle morphology in magnetorheological suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Arief, Injamamul; Mukhopadhyay, P.K., E-mail: pkm@bose.res.in

    2014-06-01

    Cubic and spherical Fe{sub 55}Co{sub 45} alloyed microstructures were synthesized by borohydride reduction from aqueous solutions of metallic precursors, using stabilizers and polymer. Monosodium citrate, sodium acetate and PEG 6000 were utilized as electrostatic stabilizers and polymeric surface modifier. Suitable reaction conditions were maintained for synthesis of predominantly larger particles (0.7 µm to 1.2 µm), that facilitates use in magnetorheological fluids. Surface morphological studies by scanning electron microscopy revealed well shaped cubic and spherical geometry for the citrate and polymer-stabilized Fe{sub 55}Co{sub 45} alloys, while the alloy compositions remained nearly the same for both. X-ray diffractions of the as-prepared and annealed samples under various temperatures showed high degree of crystallinity with increasing temperatures. Studies of D.C. magnetization of the systems reveal that the particles have a core–shell structure, with inner magnetic core having a diameter around 30 nm with a log-normal distribution. Magnetorheological studies were performed with 8 vol% suspensions of as-synthesized particles dispersed in silicone oil (viscosity 30 mPa s at 25 °C) under different magnetic fields. Detailed studies of the magnetorheological properties were studied on these systems for practical use.

  7. Signature of dislocations and stacking faults of face-centred cubic nanocrystals in coherent X-ray diffraction patterns: a numerical study.

    Science.gov (United States)

    Dupraz, Maxime; Beutier, Guillaume; Rodney, David; Mordehai, Dan; Verdier, Marc

    2015-06-01

    Crystal defects induce strong distortions in diffraction patterns. A single defect alone can yield strong and fine features that are observed in high-resolution diffraction experiments such as coherent X-ray diffraction. The case of face-centred cubic nanocrystals is studied numerically and the signatures of typical defects close to Bragg positions are identified. Crystals of a few tens of nanometres are modelled with realistic atomic potentials and 'relaxed' after introduction of well defined defects such as pure screw or edge dislocations, or Frank or prismatic loops. Diffraction patterns calculated in the kinematic approximation reveal various signatures of the defects depending on the Miller indices. They are strongly modified by the dissociation of the dislocations. Selection rules on the Miller indices are provided, to observe the maximum effect of given crystal defects in the initial and relaxed configurations. The effect of several physical and geometrical parameters such as stacking fault energy, crystal shape and defect position are discussed. The method is illustrated on a complex structure resulting from the simulated nanoindentation of a gold nanocrystal.

  8. Investigation of route to martensitic transition in Ni-Mn-In shape memory alloys

    Science.gov (United States)

    Nevgi, R.; Priolkar, K. R.; Righi, L.

    2018-04-01

    The temperature dependent x-ray diffraction and magnetization measurements on the off stoichiometric Ni2Mn1+xIn1-x alloys have confirmed the appearance of martensite at critical Mn concentration of x=0.35. The high temperature phase of all the alloys have cubic L21 structure with the lattice constant steadily decreasing with increase in Mn concentration. Martensitic transition begins to appear in Ni2Mn1.35In0.65 at about 197K and the structure seems to adopt two phases including the major cubic along with the modulated monoclinic phase. This has been explained on the basis of number of Mn-Ni-Mn hybridized pairs that are responsible for inducing martensitic transition.

  9. WC-3015 alloy (high-temperature alloy)

    International Nuclear Information System (INIS)

    Anon.

    1974-01-01

    WC-3015 Nb alloy containing 28 to 30 Hf, 1 to 2 Zr, 13 to 16 W, 0 to 4 Ta, 0 to 5 Ti, 0.07 to 0.33 C, less than or equal to 0.02 N, less than or equal to 0.03 O, less than or equal to 0.001 H was developed for use at high temperature in oxidizing environments. Its composition can be tailored to meet specific requirements. When WC-3015 is exposed to O at elevated temperature, Hf and Nb oxidized preferentially and HfO 2 dissolves in Nb 2 O 5 to form 6HfO-Nb 2 O 5 . This complex oxide has a tight cubic lattice which resists the diffusion of O into the substrate. During 24-h exposure to air at 2400 0 F, the alloy oxidizes to a depth of approximately 0.035 in. with a surface recession of 0 to 0.004 in. Oxidation resistance of WC-3015 welds and base material can be further enhanced greatly by applying silicide coatings. WC-3015 alloy can be machined by conventional and electrical-discharge methods. It can be hot worked readily by extrusion, forging or rolling. Cold working can be used at room or elevated temperature. It can be welded by the electron-beam or Tig processes. Physical constants, typical mechanical properties at 75 to 2400 0 F, and effects of composition and heat treatment on tensile and stress-rupture properties of the alloy are tabulated

  10. Face Centred Cubic Multi-Component Equiatomic Solid Solutions in the Au-Cu-Ni-Pd-Pt System

    Directory of Open Access Journals (Sweden)

    Jens Freudenberger

    2017-04-01

    Full Text Available A single-phase solid solution is observed in quaternary and quinary alloys obtained from gold, copper, nickel, palladium and platinum. The lattice parameters of the alloys follow the linear rule of mixture when considering the lattice parameters of the elements and their concentration. The elements are a priori not homogeneously distributed within the respective alloys resulting in segregations. These segregations cause a large broadening of X-ray lines, which is accessed in the present article. This correlation is visualized by the help of local element mappings utilizing scanning electron microscopy including energy dispersive X-ray analysis and their quantitative analysis.

  11. Microstructural Evolution and Mechanical Properties in Superlight Mg-Li Alloy Processed by High-Pressure Torsion

    Directory of Open Access Journals (Sweden)

    Qian Su

    2018-04-01

    Full Text Available Microstructural evolution and mechanical properties of LZ91 Mg-Li alloy processed by high-pressure torsion (HPT at an ambient temperature were researched in this paper. The microstructure analysis demonstrated that significant grain refinement was achieved after HPT processing with an average grain size reducing from 30 μm (the as-received condition to approximately 230 nm through 10 turns. X-ray diffraction analysis revealed LZ91 alloy was consisted of α phase (hexagonal close-packed structure, hcp and β phase (body-centered cubic structure, bcc before and after HPT processing. The mean value of microhardness increased with the increasing number of HPT turns. This significantly increased hardness of specimens can be explained by Hall-Petch strengthening. Simultaneously, the distribution of microhardness along the specimens was different from other materials after HPT processing due to the different mechanical properties of two different phases. The mechanical properties of LZ91 alloy processed by HPT were assessed by the micro-tensile testing at 298, 373, 423, and 473 K. The results demonstrate that the ultra-fine grain LZ91 Mg-Li alloy exhibits excellent mechanical properties: tensile elongation is approximately 400% at 473 K with an initial strain rate of 1 × 10−2 s−1.

  12. Band gap depiction of quaternary FeMnTiAl alloy using Hubbard (U) potential

    Science.gov (United States)

    Bhat, Tahir Mohiuddin; Yousuf, Saleem; Khandy, Shakeel Ahmad; Gupta, Dinesh C.

    2018-05-01

    We have employed self-consistent ab-initio calculations to investigate new quaternary alloy FeMnTiAl by applying Hubbard potential (U). The alloy is found to be stable in ferromagnetic phase with cubic structure. The alloy shows half-metallic (HM) ferromagnet character. The values of minority band gap FeMnTiAl are found to be 0.33 eV respectively. Electronic charge density reveals that both types of bonds covalent as well as ionic are present in the alloy. Thus the new quaternary alloy can be proved as vital contender for spin valves and spin generator devices.

  13. Contribution to the study of diffusion in rare earth metals and actinides

    International Nuclear Information System (INIS)

    Marbach, Gabriel.

    1978-07-01

    This work describes several experiments carried out in order to understand the process of self diffusion in rare earth and actinides (self diffusion of body centered cubic γ neptunium, diffusion of gadolinium in body centered delta cerium, measurement of the activation volume of face centered cubic γ cerium). The unstable electronic structure of some elements cannot be correlate with anomalous diffusion properties. In fact the diffusion parameters of neptunium and plutonium are similar (high diffusivity and low activation energy) whereas the electronic structure of neptunium is stable and that of plutonium is temperature dependent. The negative activation volume of the body centered cubic phases of plutonium and cerium does not indicate a particular diffusion mechanism since self diffusion is faster under pressure in face centered cubic γ cerium where a vacancy mechanism is assumed according to earlier results. The vacancy mechanism is the most probable diffusion process in the body centered cubic and compact phases of rare earths and actinides [fr

  14. Environmental reactions and their effects on mechanical behavior of metallic materials. Technical progress report, February 1, 1977--January 31, 1978

    International Nuclear Information System (INIS)

    Gibala, R.; Sethi, V.K.; Fournier, R.

    1977-01-01

    New results obtained in surface oxide softening of the Group VB refractory metals and mechanical behavior of Nb-H and Nb-D alloys are presented. The results include: (a) experimental verification of a model of surface oxide softening of body-centered cubic metals; (b) determination of a stress-differential effect in surface oxide softening; and (c) characterization of hydrogen and deuterium strengthening in Nb and Nb-O alloys. The second section reviews major contributions in topics on: interstitials in metals, mechanical behavior of body-centered cubic metals, solute-defect interactions and internal friction mechanisms in solids

  15. Macroscopic and bulk-controlled elastic modes in an interaction of interstitial alcali metal cations within a face-centered cubic crystalline fullerine

    Energy Technology Data Exchange (ETDEWEB)

    Tatarenko, V.A.; Tsysman, C.L.; Oltarzhevskaya, Y.T. [Institute for Metal Physics, Kiev (Ukraine)

    1994-12-31

    The calculations in a majority of previous works for the fulleride (AqC{sub 60}) crystals were performed within the framework of the rigid-lattice model, neglecting the distoration relaxation of the host fullerene (C{sub 60}) crystal caused by the interstitial alkali-metal (A) cations. However, an each cation is a source of a static distoration field, and the resulting field is a superposition of such fields generated by all cations. This is a reason why the host-crystal distortions depend on the A-cations configurations, i.e. on a type of a spatial bulk distribution of interstitial cations. This paper seeks to find a functional relation between the amplitudes of the doping-induced structure-distortion waves and of statistic concentration ones. A semiphenomenological model is constructed here within the scope of statistical-thermodynamic treatment and using the lattice-statistics simulation method. In this model the effects due to the presence of q solute A cations over available interstices (per unit cell) on the statistic inherent reorientation and/or displacements of the solvent molecules from the average-lattice sites as well as on the lattice parameter a of the elastically-anysotropic cubic C{sub 60} crystal are taken into account.

  16. Corrosion behavior of electrodeposited Co-Fe alloys in aerated solutions

    Energy Technology Data Exchange (ETDEWEB)

    Chansena, A. [Research Unit on Corrosion, College of Data Storage Innovation, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand); Sutthiruangwong, S., E-mail: sutha.su@kmitl.ac.th [Department of Chemistry, Faculty of Science, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand); Research Unit on Corrosion, College of Data Storage Innovation, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand)

    2017-05-01

    Co-Fe alloy is an important component for reader-writer in hard disk drive. The surface of the alloy is exposed to the environment both in gas phase and in liquid phase during manufacturing process. The study of corrosion behavior of Co-Fe alloys can provide useful fundamental data for reader-writer production planning especially when corrosion becomes a major problem. The corrosion study of electrodeposited Co-Fe alloys from cyclic galvanodynamic polarization was performed using potentiodynamic polarization technique. The composition of electrodeposited Co-Fe alloys was determined by X-ray fluorescence spectrometry. The patterns from X-ray diffractometer showed that the crystal structure of electrodeposited Co-Fe alloys was body-centered cubic. A vibrating sample magnetometer was used for magnetic measurements. The saturation magnetization (M{sub s}) was increased and the intrinsic coercivity (H{sub ci}) was decreased with increasing Fe content. The corrosion rate study was performed in aerated deionized water and aerated acidic solutions at pH 3, 4 and 5. The corrosion rate diagram for Co-Fe alloys was constructed. It was found that the corrosion rate of Co-Fe alloys was increased with increasing Fe content in both aerated deionized water and aerated acidic solutions. In aerated pH 3 solution, the Co-Fe alloy containing 78.8% Fe showed the highest corrosion rate of 7.7 mm yr{sup −1} with the highest M{sub s} of 32.0 A m{sup 2} kg{sup −1}. The corrosion rate of the alloy with 23.8% Fe was at 1.1 mm yr{sup −1} with M{sub s} of 1.2 A m{sup 2} kg{sup −1}. In aerated deionized water, the alloy with the highest Fe content of 78.5% still showed the highest corrosion rate of 0.0059 mm yr{sup −1} while the alloy with the lowest Fe content of 20.4% gave the lowest corrosion rate of 0.0045 mm yr{sup −1}. - Highlights: • The aeration during corrosion measurement simulates reader-writer head production environment. • The corrosion rate diagram for Co-Fe alloys

  17. Face, Body, and Center of Gravity Mediate Person Detection in Natural Scenes

    Science.gov (United States)

    Bindemann, Markus; Scheepers, Christoph; Ferguson, Heather J.; Burton, A. Mike

    2010-01-01

    Person detection is an important prerequisite of social interaction, but is not well understood. Following suggestions that people in the visual field can capture a viewer's attention, this study examines the role of the face and the body for person detection in natural scenes. We observed that viewers tend first to look at the center of a scene,…

  18. Direct prediction of the solute softening-to-hardening transition in W–Re alloys using stochastic simulations of screw dislocation motion

    Science.gov (United States)

    Zhao, Yue; Marian, Jaime

    2018-06-01

    Interactions among dislocations and solute atoms are the basis of several important processes in metal plasticity. In body-centered cubic (bcc) metals and alloys, low-temperature plastic flow is controlled by screw dislocation glide, which is known to take place by the nucleation and sideward relaxation of kink pairs across two consecutive Peierls valleys. In alloys, dislocations and solutes affect each other’s kinetics via long-range stress field coupling and short-range inelastic interactions. It is known that in certain substitutional bcc alloys a transition from solute softening to solute hardening is observed at a critical concentration. In this paper, we develop a kinetic Monte Carlo model of screw dislocation glide and solute diffusion in substitutional W–Re alloys. We find that dislocation kinetics is governed by two competing mechanisms. At low solute concentrations, nucleation is enhanced by the softening of the Peierls stress, which dominates over the elastic repulsion of Re atoms on kinks. This trend is reversed at higher concentrations, resulting in a minimum in the flow stress that is concentration and temperature dependent. This minimum marks the transition from solute softening to hardening, which is found to be in reasonable agreement with experiments.

  19. On the measurement of the stacking-fault energies of face centered cubic metal and austenitic stainless steels by X-ray diffraction

    International Nuclear Information System (INIS)

    Borges, J.F.A.

    1985-01-01

    An X-rays diffraction method was applied to measure the Stacking-Fault Energies (SFE) of the AISI 304, AISI 316, AISI 347 and DIN-WERKSTOFF 1.4970 Austenitic Stainless Steels. The SFE determination plays an important role in the research of the mechanical behaviour of the Metal and Alloys, their deformation mechanisms, stability of microstructure amd electronic configuration. The method is based on the relationship between the SFE and the ratio of the Mean Square Strain to the Stacking-Fault probability. The Mean Square Strain was evaluated by Fourier Analysis of X-rays Diffraction profiles, corrected to reduce instrumental effects, followed by the application of the Warren-Averbach method to the Fourier Coefficients. The Stacking-Fault probabilities were derived from the changes of peak separations between cold-worked and annealed specimens. (author) [pt

  20. Cubic metaplectic forms and theta functions

    CERN Document Server

    Proskurin, Nikolai

    1998-01-01

    The book is an introduction to the theory of cubic metaplectic forms on the 3-dimensional hyperbolic space and the author's research on cubic metaplectic forms on special linear and symplectic groups of rank 2. The topics include: Kubota and Bass-Milnor-Serre homomorphisms, cubic metaplectic Eisenstein series, cubic theta functions, Whittaker functions. A special method is developed and applied to find Fourier coefficients of the Eisenstein series and cubic theta functions. The book is intended for readers, with beginning graduate-level background, interested in further research in the theory of metaplectic forms and in possible applications.

  1. Influence of Annealing on Microstructure and Mechanical Properties of Refractory CoCrMoNbTi0.4 High-Entropy Alloy

    Science.gov (United States)

    Zhang, Mina; Zhou, Xianglin; Zhu, Wuzhi; Li, Jinghao

    2018-04-01

    A novel refractory CoCrMoNbTi0.4 high-entropy alloy (HEA) was prepared via vacuum arc melting. After annealing treatment at different temperatures, the microstructure evolution, phase stability, and mechanical properties of the alloy were investigated. The alloy was composed of two primary body-centered cubic structures (BCC1 and BCC2) and a small amount of (Co, Cr)2Nb-type Laves phase under different annealing conditions. The microhardness and compressive strength of the heat-treated alloy was significantly enhanced by the solid-solution strengthening of the BCC phase matrix and newborn Laves phase. Especially, the alloy annealed at 1473 K (1200 °C) achieved the maximum hardness and compressive strength values of 959 ± 2 HV0.5 and 1790 MPa, respectively, owing to the enhanced volume fraction of the dispersed Laves phase. In particular, the HEAs exhibited promising high-temperature mechanical performance, when heated to an elevated temperature of 1473 K (1200 °C), with a compressive fracture strength higher than 580 MPa without fracture at a strain of more than 20 pct. This study suggests that the present refractory HEAs have immense potential for engineering applications as a new class of high-temperature structural materials.

  2. Development of bonding techniques between tungsten and copper alloy for plasma facing components by HIP method (2). Bonding between tungsten and DS-copper

    International Nuclear Information System (INIS)

    Saito, Shigeru; Fukaya, Kiyoshi; Eto, Motokuni; Ishiyama, Shintaro; Akiba, Masato

    2000-02-01

    Recently, W (tungsten)-alloys are considered as plasma facing material (PFM) for ITER because of these many favorable properties such as high melting point (3655 K), relatively high thermal conductivity and higher resistivity for plasma sputtering. On the other hand, Cu-alloys, especially DS (dispersion strengthened)-Cu, are proposed as heat sink materials because of its high thermal conductivity and good mechanical properties at high temperature. Plasma facing components (PFC) are designed as the duplex structure where W armor tiles are bonded with Cu-alloy heat sink. Then, we started the bonding technology development by hot isostatic press (HIP) method to bond W with Cu-alloys because of its many advantages. Until now, it was reported that we could get the best HIP bonding conditions for W and OFHC-Cu and the tensile strength was similar with HIP treated OFHC-Cu. In this experiments, bonding tests of W and DS-Cu with insert material were performed. As insert material, OFHC-Cu was used with different thickness. Bonding conditions were selected as 1273 K x 2 hours x 147 MPa. Bonding tests with 0.3 to 1.8 mm thickness OFHC-Cu were successfully bonded but with 0.1 mm thickness was not bonded. From the results of tensile tests, the tensile strength of the specimens with 0.3 and 0.5 mm thickness were decreased at elevated temperature. It was shown that over 1.0 mm thickness OFHC-Cu insert may be needed and the tensile strength were a little higher than that of HIP treated OFHC-Cu. (author)

  3. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys

    International Nuclear Information System (INIS)

    Senkov, O.N.; Senkova, S.V.; Woodward, C.

    2014-01-01

    The microstructure, phase composition and mechanical properties of the AlMo 0.5 NbTa 0.5 TiZr and Al 0.4 Hf 0.6 NbTaTiZr high-entropy alloys are reported. The AlMo 0.5 NbTa 0.5 TiZr alloy consists of two body-centered cubic (bcc) phases with very close lattice parameters, a 1 = 326.8 pm and a 2 = 332.4 pm. One phase was enriched with Mo, Nb and Ta and another phase was enriched with Al and Zr. The phases formed nano-lamellae modulated structure inside equiaxed grains. The alloy had a density of ρ = 7.40 g cm −3 and Vickers hardness H v = 5.8 GPa. Its yield strength was 2000 MPa at 298 K and 745 MPa at 1273 K. The Al 0.4 Hf 0.6 NbTaTiZr had a single-phase bcc structure, with the lattice parameter a = 336.7 pm. This alloy had a density ρ = 9.05 g cm −3 , Vickers microhardness H v = 4.9 GPa, and its yield strength at 298 K and 1273 K was 1841 MPa and 298 MPa, respectively. The properties of these Al-containing alloys were compared with the properties of the parent CrMo 0.5 NbTa 0.5 TiZr and HfNbTaTiZr alloys and the beneficial effects from the Al additions on the microstructure and properties were outlined. A thermodynamic calculation of the solidification and equilibrium phase diagrams was conducted for these alloys and the calculated results were compared with the experimental data

  4. Development of microstructure and mechanical properties during annealing of a cold-swaged Co-Cr-Mo alloy rod.

    Science.gov (United States)

    Mori, Manami; Sato, Nanae; Yamanaka, Kenta; Yoshida, Kazuo; Kuramoto, Koji; Chiba, Akihiko

    2016-12-01

    In this study, we investigated the evolution of the microstructure and mechanical properties during annealing of a cold-swaged Ni-free Co-Cr-Mo alloy for biomedical applications. A Co-28Cr-6Mo-0.14N-0.05C (mass%) alloy rod was processed by cold swaging, with a reduction in area of 27.7%, and then annealed at 1173-1423K for various periods up to 6h. The duplex microstructure of the cold-swaged rod consisted of a face-centered cubic γ-matrix and hexagonal closed-packed ε-martensite developed during cold swaging. This structure transformed nearly completely to the γ-phase after annealing and many annealing twin boundaries were observed as a result of the heat treatment. A small amount of the ε-phase was identified in specimens annealed at 1173K. Growth of the γ-grains occurred with increasing annealing time at temperatures ≥1273K. Interestingly, the grain sizes remained almost unchanged at 1173K and a very fine grain size of approximately 8μm was obtained. The precipitation that occurred during annealing was attributed to the limited grain coarsening during heat treatment. Consequently, the specimens treated at this temperature showed the highest tensile strength and lowest ductility among the specimens prepared. An elongation-to-failure value larger than 30% is sufficient for the proposed applications. The other specimens treated at higher temperatures possessed similar tensile properties and did not show any significant variations with different annealing times. Optimization of the present rod manufacturing process, including cold swaging and interval annealing heat treatment, is discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Influence of a hydrostatic pressure on the diffusion in metals having a cubic structure; Contribution a l'etude de l'influence de la pression hydrostatique sur la diffusion dans les metaux cubiques

    Energy Technology Data Exchange (ETDEWEB)

    Beyeler, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    In view of obtaining informations on the structure of vacancies. We have determined, by diffusion experiments under high pressure, the activation volumes for self diffusion in different face centered cubic metals: silver, gold, copper, aluminium and in body centered cubic uranium (gamma phase). Activation volumes for noble metals diffusion in aluminium have also been investigated. The experimental results on gold, silver and copper are in good agreement with most of the theoretical models. The estimated activation volume for gamma uranium seems to indicate a vacancy mechanism.The results on aluminium for both self and impurity diffusion agree quite well with Friedel's theoretical predictions. [French] Pour preciser la structure des lacunes, on a, par des etudes de diffusion sous haute pression determine les volumes d'activation correspondant a l'autodiffusion dans des metaux de structure cubique face centree: argent, or, cuivre et aluminium et dans un metal de structure cubique centree: l'uranium gamma. On a egalement determine les volumes d'activation pour l'heterodiffusion des metaux nobles dans l'aluminium. Les resultats obtenus pour l'or, l'argent et le cuivre sont en accord avec la plupart des modeles theoriques classiques. Le volume d'activation d'autodiffusion evalue pour l'uranium gamma est compatible avec une diffusion par lacune. Les resultats concernant l'aluminium et l'heterediffusion des metaux nobles dans l'aluminium verifient assez bien les previsions theoriques de Friedel. (auteur)

  6. Synthesis of nanocrystalline Cu1-xTax composites using physical vapor deposition

    International Nuclear Information System (INIS)

    Savage, H.S.; Wang, H.; Rigsbee, J.M.

    1993-01-01

    Physical vapor deposition (PVD) processes provide the capability for creating new types of metallic, ceramic, and polymeric composites by allowing atomic-scale engineering of structure and chemistry. Because PVD processes provide the capacity for circumventing thermodynamic factors, such as solubility limits, it is possible to produce nonequilibrium alloys and materials with unique mixtures of phases. The ease by which PVD produces materials with nanocrystalline microstructures is an added benefit of these processes. This paper describes ion plating, a plasma-assisted PVD process, and its application for the development of a new class of nanoscale dispersion-strengthened Cu 1-x Ta x alloys. Copper-tantalum was selected as a model system because the extensive liquid miscibility gap and nearly zero mutual solid solubilities prevent creation of Cu-Ta alloys by conventional or rapid solidification processes. Microchemical analyses of the family of Cu 1-x Ta x alloys indicate that PVD can produce materials with any desired level of Ta. X-ray diffraction and transmission electron microscopy analyses show that the as-deposited microstructures consist generally of a Cu matrix supersaturated with Ta and containing a uniform dispersion of Ta particles with diameters below 10 nm. The Ta particles are face centered cubic (exceptionally large Ta particles, larger than ∼100 nm, are body centered cubic) and are oriented identically with the Cu matrix. Particle coarsening studies, at temperatures up to 900C and for times as long as 100 hours, indicate an extreme degree of microstructural stability. The Ta particles also appear highly effective at maintaining a submicron Cu matrix grain size even after annealing at 900C

  7. Cubic colloids : Synthesis, functionalization and applications

    NARCIS (Netherlands)

    Castillo, S.I.R.

    2015-01-01

    This thesis is a study on cubic colloids: micron-sized cubic particles with rounded corners (cubic superballs). Owing to their shape, particle packing for cubes is more efficient than for spheres and results in fascinating phase and packing behavior. For our cubes, the particle volume fraction when

  8. Phonon dynamics and Urbach energy studies of MgZnO alloys

    Energy Technology Data Exchange (ETDEWEB)

    Huso, Jesse, E-mail: jhuso@vandals.uidaho.edu; Che, Hui; Thapa, Dinesh; Canul, Amrah; Bergman, Leah [Department of Physics, University of Idaho, Moscow, Idaho 83844-0903 (United States); McCluskey, M. D. [Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814 (United States)

    2015-03-28

    The Mg{sub x}Zn{sub 1−x}O alloy system is emerging as an environmentally friendly choice in ultraviolet lighting and sensor technologies. Knowledge of defects which impact their optical and material properties is a key issue for utilization of these alloys in various technologies. The impact of phase segregation, structural imperfections, and alloy inhomogeneities on the phonon dynamics and electronic states of Mg{sub x}Zn{sub 1−x}O thin films were studied via selective resonant Raman scattering (SRRS) and Urbach analyses, respectively. A series of samples with Mg composition from 0–68% were grown using a sputtering technique, and the optical gaps were found to span a wide UV range of 3.2–5.8 eV. The extent of the inherent phase segregation was determined via SRRS using two UV-laser lines to achieve resonance with the differing optical gaps of the embedded cubic and wurtzite structural domains. The occurrence of Raman scattering from cubic structures is discussed in terms of relaxation of the selection rules due to symmetry breaking by atomic substitutions. The Raman linewidth and Urbach energy behavior indicate the phase segregation region occurs in the range of 47–66% Mg. Below the phase segregation, the longitudinal optical phonons are found to follow the model of one-mode behavior. The phonon decay model of Balkanski et al. indicates that the major contributor to Raman linewidth arises from the temperature-independent term attributed to structural defects and alloy inhomogeneity, while the contribution from anharmonic decay is relatively small. Moreover, a good correlation between Urbach energy and Raman linewidth was found, implying that the underlying crystal dynamics affecting the phonons also affect the electronic states. Furthermore, for alloys with low Mg composition structural defects are dominant in determining the alloy properties, while at higher compositions alloy inhomogeneity cannot be neglected.

  9. The effect of voids on the hardening of body-centered cubic Fe

    Energy Technology Data Exchange (ETDEWEB)

    Nakai, Ryosuke, E-mail: ryosuke.nakai@jupiter.qse.tohoku.ac.jp [Department of Quantum Science and Energy Engineering, Tohoku University, 6-6-01-2, Aramaki-Aza-Aoba, Aobaku, Sendai, Miyagi, 980-8579 (Japan); Yabuuchi, Kiyohiro, E-mail: k-yabuuchi@iae.kyoto-u.ac.jp [Department of Quantum Science and Energy Engineering, Tohoku University, 6-6-01-2, Aramaki-Aza-Aoba, Aobaku, Sendai, Miyagi, 980-8579 (Japan); Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 (Japan); Nogami, Shuhei, E-mail: shuhei.nogami@qse.tohoku.ac.jp [Department of Quantum Science and Energy Engineering, Tohoku University, 6-6-01-2, Aramaki-Aza-Aoba, Aobaku, Sendai, Miyagi, 980-8579 (Japan); Hasegawa, Akira, E-mail: akira.hasegawa@qse.tohoku.ac.jp [Department of Quantum Science and Energy Engineering, Tohoku University, 6-6-01-2, Aramaki-Aza-Aoba, Aobaku, Sendai, Miyagi, 980-8579 (Japan)

    2016-04-01

    The mechanical properties of metals are affected by various types of defects. Hardening is usually described through the interaction between dislocations and obstacles, in the so-called line tension theory. The strength factor in the line tension theory represents the resistance of a defect against the dislocation motion. In order to understand hardening from the viewpoint of the microstructure, an accurate determination of the strength factor of different types of defects is essential. In the present study, the strength factor of voids in body-centered cubic (BCC) Fe was investigated by two different approaches: one based on the Orowan equation to link the measured hardness with the average size and density of voids, and the other involving direct observation of the interaction between dislocations and voids by transmission electron microscope (TEM). The strength factor of voids induced by ion irradiation estimated by the Orowan equation was 0.6, whereas the strength factor estimated by the direct TEM approach was 0.8. The difference in the strength factors measured by the two approaches is due to the positional relationship between dislocations and voids: the central region of a void is stronger than the tip. Moreover, the gliding plane and the direction of dislocation may also affect the strength factor of voids. This study determined the strength factor of voids in BCC Fe accurately, and suggested that the contribution of voids to the irradiation hardening is larger than that of dislocation loops and Cu-rich precipitates. - Highlights: • The strength factor of voids in BCC Fe was experimentally investigated. • The strength factor of voids estimated by the line tension theory was 0.6. • The strength factor of voids estimated by the bowing angle of dislocations was 0.8. • The different strength factors are due to the positional relationship.

  10. Microstructural and wear characteristics of cobalt free, nickel base intermetallic alloy deposited by laser cladding

    International Nuclear Information System (INIS)

    Awasthi, Reena; Kumar, Santosh; Viswanadham, C.S.; Srivastava, D.; Dey, G.K.; Limaye, P.K.

    2011-01-01

    This paper describes the microstructural and wear characteristics of Ni base intermetallic hardfacing alloy (Tribaloy-700) deposited on stainless steel-316 L substrate by laser cladding technique. Cobalt base hardfacing alloys have been most commonly used hardfacing alloys for application involving wear, corrosion and high temperature resistance. However, the high cost and scarcity of cobalt led to the development of cobalt free hardfacing alloys. Further, in the nuclear industry, the use of cobalt base alloys is limited due to the induced activity of long lived radioisotope 60 Co formed. These difficulties led to the development of various nickel and iron base alloys to replace cobalt base hardfacing alloys. In the present study Ni base intermetallic alloy, free of Cobalt was deposited on stainless steel- 316 L substrate by laser cladding technique. Traditionally, welding and thermal spraying are the most commonly employed hardfacing techniques. Laser cladding has been explored for the deposition of less diluted and fusion-bonded Nickel base clad layer on stainless steel substrate with a low heat input. The laser cladding parameters (Laser power density: 200 W/mm 2 , scanning speed: 430 mm/min, and powder feed rate: 14 gm/min) resulted in defect free clad with minimal dilution of the substrate. The microstructure of the clad layer was examined by Optical microscopy, Scanning electron microscopy, with energy dispersive spectroscopy. The phase analysis was performed by X-ray diffraction technique. The clad layer exhibited sharp substrate/clad interface in the order of planar, cellular, and dendritic from the interface upwards. Dilution of clad with Fe from substrate was very low passing from ∼ 15% at the interface (∼ 40 μm) to ∼ 6% in the clad layer. The clad layer was characterized by the presence of hexagonal closed packed (hcp, MgZn 2 type) intermetallic Laves phase dispersed in the eutectic of Laves and face centered cubic (fcc) gamma solid solution. The

  11. Comment on 'Magic strains in face-centered and body-centered cubic lattices'

    Energy Technology Data Exchange (ETDEWEB)

    Waal, B.W. van de (Technische Hogeschool Twente, Enschede (Netherlands). Dept. of Physics)

    1990-03-01

    The six symmetry-related so-called magic strain tensors that transform a f.c.c. lattice (or a b.c.c. lattice) into itself, which have been reported recently by Boyer are not unique: An infinite number of displacement tensors can be constructed that transform one lattice into another, or into itself. There is no connection with fivefold symmetry, other than that in any f.c.c. crystal. (orig.).

  12. Neutron irradiation damage of a stress relieved TZM alloy

    International Nuclear Information System (INIS)

    Abe, K.; Masuyama, T.; Satou, M.; Hamilton, M.L.

    1992-01-01

    The objective of this work is to study defect microstructures and irradiation hardening in a stress relieved TZM alloy after irradiation in the Fast Flux Test Facility (FFTF) using the Materials Open Test Assembly (MOTA). Disk specimens of the molybdenum alloy TZM that had been stress relieved at 1199 K (929 C) for 0.9 ks (15 min.) were irradiated in the FFTF/MOTA 1F at 679, 793 and 873 K (406, 520, and 600 C) to a fast fluence of ∼9.6 x 10 22 n/cm 2 . Microstructures were observed in a transmission electron microscope (TEM). Dislocation structures consisted of isolated loops, aggregated loops (rafts) and elongated dislocations. The size of the loops increased with the irradiation temperature. Void swelling was about 1 and 2% at 793 and 873 K (520 and 600 C), respectively. A void lattice was developed in the body centered cubic (bcc) structure with a spacing of 26 - 28 nm. The fine grain size (0.5 - 2 μm) was retained following high temperature irradiation, indicating that the stress relief heat treatment may extend the material's resistance to radiation damage up to high fluence levels. Microhardness measurements indicated that irradiation hardening increased with irradiation temperature. The relationship between the microstructure and the observed hardening was determined

  13. Cobalt-doped Ti–48Al–2Cr–2Nb alloy fabricated by cold compaction and pressureless sintering

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Y. [The University of Queensland, School of Mechanical and Mining Engineering, ARC Centre of Excellence for Design in Light Metals, Brisbane, Qld 4072 (Australia); Yu, P. [Department of Micro-Nano Material and Device, The South University of Science and Technology of China, Shenzhen, 518055 (China); Schaffer, G.B. [The University of Queensland, School of Mechanical and Mining Engineering, ARC Centre of Excellence for Design in Light Metals, Brisbane, Qld 4072 (Australia); Qian, M., E-mail: ma.qian@uq.edu.au [The University of Queensland, School of Mechanical and Mining Engineering, ARC Centre of Excellence for Design in Light Metals, Brisbane, Qld 4072 (Australia)

    2013-07-01

    An addition of 1.5 at% Co to Ti–48Al–2Cr–2Nb (in at%) transformed the alloy from essentially unsinterable to fully sinterable at 1300 °C. This, together with a simple powder coating process developed recently, has allowed near-net shape fabrication of the alloy for the first time by cold compaction and pressureless sintering. The addition of Co results in the formation of an intermediate face centred cubic (fcc) CoAl{sub 2}Ti phase prior to 1220 °C during heating. It subsequently reacts with an α phase leading to the formation of a Co-containing, wettable sintering liquid through a two-step process, CoAl{sub 2}Ti+α→Liquid at 1256.2 °C and CoAl{sub 2}Ti+α→γ-TiAl+Liquid at 1267.2 °C, and therefore full densification of the alloy. Without Co, sintering of the Ti–48Al–2Cr–2Nb alloy powder at 1300 °C is controlled by the slow self-diffusion of Ti and interdiffusion of Ti and Al according to the activation energy determined. Transmission electron microscopy (TEM) identified an fcc CoAl{sub 2}Ti phase and a hexagonal close packed (hcp) Co-enriched Ti(Al, Co, Cr, Nb) phase in the final as-sintered Ti–48Al–2Cr–2Nb–1.5Co alloy. They both form during cooling at 1240 °C through Liquid+α→CoAl{sub 2}Ti+Ti (Al, Co, Cr, Nb). The tensile and compressive properties of the as-sintered Ti–48Al–2Cr–2Nb–1.5Co alloy were compared to the original General Electric (GE) Ti–48Al–2Cr–2Nb alloy fabricated by casting or metal injection moulding.

  14. The cyclicity of a cubic system with nonradical Bautin ideal

    Science.gov (United States)

    Levandovskyy, Viktor; Romanovski, Valery G.; Shafer, Douglas S.

    We present a method for investigating the cyclicity of an elementary focus or center of a polynomial system of differential equations by means of complexification of the system and application of algorithms of computational algebra, showing an approach to treating the case that the Bautin ideal B of focus quantities is not a radical ideal (more precisely, when the ideal B is not radical, where B is the ideal generated by the shortest initial string of focus quantities that, like the Bautin ideal, determines the center variety). We illustrate the method with a family of cubic systems.

  15. Watching a metal collapse: Examining cerium's γ ↔ α transformation using X-ray diffraction of compressed single and polycrystals

    International Nuclear Information System (INIS)

    Moore, K.T.; Belhadi, L.; Decremps, F.; Farber, D.L.; Bradley, J.A.; Occelli, F.; Gauthier, M.; Polian, A.; Aracne-Ruddle, C.M.

    2011-01-01

    Numerous investigations have been performed on Ce metal since the discovery of the γ → α phase transformation, where a face-centered cubic structure is believed to collapse isostructurally with a volume change of ∼17%. However, two questions have yet to be answered definitively. First, is the transformation truly isostructural or is the face-centered cubic structure lost in α-Ce due to symmetry breaking? Second, if the transformation is isostructural does the face-centered cubic structure stay in crystallographic orientation through the volume collapse? Here, we use high-pressure and high-temperature X-ray diffraction measurements to examine single and polycrystalline samples of Ce in the vicinity of the γ ↔ α transformation. This was achieved by successive continuous compression and decompression in a diamond anvil cell at temperatures under, at and above the critical point. Our results show that the crystal structure remains face-centered cubic for both the γ and α phases. The results also show that the face-centered cubic structure retains its crystallographic orientation, simply reducing in volume during the γ → α phase transformation. Upon transformation to α, polycrystalline samples show increased diffraction peak broadening, while single crystals show increased streaking. These changes in diffraction can be attributed to increased damage and lattice misorientation from the transformation. Using a simple atomic lattice model, we show that a periodic array of misfit edge dislocation is necessary to accommodate the large volume difference at the γ-α interface and this could act as a source of the edge dislocations needed to produced previously observed deformation bands.

  16. PDS 1-5. Divertor heat sink materials pre- and post-neutron irradiation. Tensile and fatigue tests of brazed joints of molybdenum alloys and 316L stainless steel

    International Nuclear Information System (INIS)

    Lind, Anders.

    1994-01-01

    Tensile specimens from brazed joints of molybdenum alloys (TZM or Mo-5%Re) and Type 316L austenitic stainless steel tubes have been tested at ambient temperature and 127 degrees C before and after neutron irradiation at about 40 degrees C to approximately 0.2 dpa. The unirradiated specimens showed generally ductile behaviour, but the irradiated specimens were notch sensitive and failed in a brittle manner with zero elongation; in all cases the fracture occurred in the molybdenum alloy. The brittle behaviour is consistent with previously published data and results from the increase in strength (radiation hardening) and the associated increase in the ductile-brittle transition temperature (radiation embrittlement) induced in the body-centered-cubic (BCC) molybdenum alloys by irradiation to relatively low displacement doses. The same type of irradiated specimens were also used in fatigue tests. However, the results from the fatigue tests are too limited and complementary studies are needed. During exposure to water locally up to 25% of the wall thickness of the Mo-alloys has corroded away. These observations cast serious doubts on the viability of the molybdenum alloys for divertor applications in fusion systems. 8 refs, 29 figs

  17. Preparation of nickel and Ni_3Sn nanoparticles via extension of conventional citric acid and ethylene diamine tetraacetic acid mediated sol–gel method

    International Nuclear Information System (INIS)

    Li, Pingyun; Deng, Guodong; Guo, Xiaode; Liu, Hongying; Jiang, Wei; Li, Fengsheng

    2016-01-01

    This work aims to extend the application field of sol–gel process from conventional oxides, carbides, sulfides to metallic nanocrystalline materials. Metallic ions were coordinated with chelating agents of citric acid (CA) and ethylene diamine tetraacetic acid (EDTA) in aqueous solution. Then the solutions were dried at 383 K, resulting in the formation of sol and gel. Heating treatments of dried gels were then carried out with protection of N_2 atmosphere. Ni and Ni_3Sn alloy nanoparticles were obtained by this sol–gel method in the range of 623–823 K. The as-prepared Ni and Ni_3Sn alloy nanoparticles have average grain sizes of 15 and 30 nm, and have face-centred-cubic (fcc) crystalline phase. Our results provide new insight into the application of conventional sol–gel method. - Graphical abstract: Sol–gel method is conventionally applied to prepare oxides, carbides, and sulfides. In this work, the application field of sol–gel method is extended to metallic nanoparticles. By using citric acid (CA) and ethylene diamine tetraacetic acid (EDTA) mediated sol–gel method, metallic Ni (a and c) and Ni_3Sn (b and d) alloy nanoparticles can be prepared when the heating treatments are performed under N_2 protecting atmosphere. The Ni and Ni_3Sn nanoparticles have face-centered-cubic (fcc) crystalline phase and ultrafine grain sizes. Diffraction peaks of (110) superstructure reflection plane of Ni_3Sn nanoparticles can also be observed in Figure b, which can be considered as direct evidence of formation of alloy crystalline phase by performing this sol–gel method. - Highlights: • Ni and Ni_3Sn alloy nanoparticles have been prepared by sol–gel processes. • Citric acid and ethylene diamine tetraacetic acid were applied as chelating agent. • Diffraction peak of superstructure reflection plane of Ni_3Sn was detected by XRD. • A novel strategy for preparation of alloy nanoparticles has been presented.

  18. High Strain Rate Deformation Mechanisms of Body Centered Cubic Material Subjected to Impact Loading

    Science.gov (United States)

    Visser, William

    Low carbon steel is the most common grade of structural steel used; it has carbon content of 0.05% to 0.25% and very low content of alloying elements. It is produced in great quantities and provides material properties that are acceptable for many engineering applications, particularly in the construction industry in which low carbon steel is widely used as the strengthening phase in civil structures. The overall goal of this dissertation was to investigate the deformation response of A572 grade 50 steel when subjected to impact loading. This steel has a 0.23% by weight carbon content and has less than 2% additional alloying elements. The deformation mechanisms of this steel under shock loading conditions include both dislocation motion and twin formation. The goal of this work was achieved by performing experimental, analytical and numerical research in three integrated tasks. The first is to determine the relationship between the evolution of deformation twins and the impact pressure. Secondly, a stress criterion for twin nucleation during high strain rate loading was developed which can account for the strain history or initial dislocation density. Lastly, a method was applied for separating the effects of dislocations and twins generated by shock loading in order to determine their role in controlling the flow stress of the material. In this regard, the contents of this work have been categorically organized. First, the active mechanisms in body centered cubic (BCC) low carbon steel during shock loading have been determined as being a composed of the competing mechanisms of dislocations and deformation twins. This has been determined through a series of shock loading tests of the as-received steel. The shock loading tests were done by plate impact experiments at several impact pressures ranging from 2GPa up to 13GPa using a single stage light gas gun. A relationship between twin volume fraction and impact pressure was determined and an analytical model was

  19. An analysis of the flow stress of a two-phase alloy system, Ti-6Al-4V

    International Nuclear Information System (INIS)

    Reed-Hill, R.E.; Iswaran, C.V.; Kaufman, M.J.

    1996-01-01

    An analysis of the tensile deformation behavior of a two-phase body-centered cubic (bcc)-hexagonal close-packed (hcp) alloy, Ti-6Al-4V, has been made. This has shown that the temperature dependence of the flow stress, the logarithm of the effective stress, and the strain-rate sensitivities can be described by simple analytical equations if the thermally activated strain-rate equation contains the Yokobori activation enthalpy H = H 0 ln (σ* 0 /σ*), where H 0 is a constant, σ* the effective stress, and σ* 0 its 0 K value. The flow stress-temperature plateau region (500 to 600 K) also can be rationalized analytically in terms of oxygen dynamic strain aging in the alpha phase

  20. Development of bonding techniques between tungsten and copper alloy for plasma facing components by HIP method. 1. Bonding between tungsten and oxygen free copper

    International Nuclear Information System (INIS)

    Saito, Shigeru; Fukaya, Kiyoshi; Ishiyama, Shintaro; Eto, Motokuni; Akiba, Masato

    1999-08-01

    In recent years, it has been considered that W (tungsten) is one of candidate materials for armor tiles of plasma facing components, like first wall or divertor, of fusion reactor. On the other hand, oxygen free high thermal conductivity (OFHC)-copper is proposed as heat sink materials behind the plasma facing materials because of its high thermal conductivity. However, plasma facing components are exposed to cyclic high heat load and heavily irradiated by 14 MeV neutron. Under these conditions, many unfavorable effects, for instance, thermal stresses of bonding interface, irradiation damage and He atom production by nuclear transmutation, will be decreased bonding strength between W and Cu alloys. Therefore, it is necessary to develop a reliable bonding techniques in order to make plasma facing components which can resist them. Then, we started the bonding technology development by hot isostatic press (HIP) method to bond W with Cu alloys. In this experiments, to optimize HIP bonding conditions, four point bending were performed for each bonded conditions at temperature from R.T. to 873 K and we could get the best HIP bonding conditions for W and OFHC-Cu as 1273 K x 2 hours x 147 MPa. To evaluate bonding strength of the specimen bonded at these conditions, tensile tests were also performed at same temperature range. The tensile strength was similar with OFHC-Cu which were treated at same conditions. (author)

  1. Using the Plan View to Teach Basic Crystallography in General Chemistry

    Science.gov (United States)

    Cushman, Cody V.; Linford, Matthew R.

    2015-01-01

    The plan view is used in crystallography and materials science to show the positions of atoms in crystal structures. However, it is not widely used in teaching general chemistry. In this contribution, we introduce the plan view, and show these views for the simple cubic, body-centered cubic, face-centered cubic, hexagonal close packed, CsCl, NaCl,…

  2. Study of hydrogen in metal and alloy by nuclear reaction channeling method

    International Nuclear Information System (INIS)

    Yagi, Eiichi

    1998-01-01

    The position of hydrogen in the lattice was determined by the combination method of 1 H( 11 B, α)αα with a channeling effect of 11 B ion in the crystal. When the concentration of hydrogen in V single crystal was VH 0.1 at the room temperature, hydrogen occupied T position in the body-centered cubic lattice. The position was shifted to the displaced-T by the thermal treatment. Hydrogen in V is oversensitive to a stress, so that it located the displaced-T or 4T state under 7 kg/mm 2 of compressive stress. Hydrogen in Nb and Ta located T position, too. But their displaced states were not observed by the thermal treatment. All hydrogen in Nb-3 at % Mo-2 at % H alloy were captured by Mo and they located the positions of 0.62A displaced from T in the direction of Mo. In Nb-3 at % Mo-5 at % H alloy, a part of hydrogen were captured by Mo, but the other located T positions. At 100degC, hydrogen was free from capture of Mo and moved to T position. (S.Y.)

  3. High-Throughput Combinatorial Development of High-Entropy Alloys For Light-Weight Structural Applications

    Energy Technology Data Exchange (ETDEWEB)

    Van Duren, Jeroen K [Intermolecular, Inc., San Jose, CA (United States); Koch, Carl [North Carolina State Univ., Raleigh, NC (United States); Luo, Alan [The Ohio State Univ., Columbus, OH (United States); Sample, Vivek [Arconic, Pittsburgh, PA (United States); Sachdev, Anil [General Motors, Detroit, MI (United States)

    2017-12-29

    on Al-Cr-Fe-Ni, shows compressive strain >10% and specific compressive yield strength of 229 MPa x cc/g, yet does not show ductility in tensile tests due to cleavage. When replacing Cr in Al-Cr-Fe-based 4- and 5-element LDHEA with Mn, hardness drops 2x. Combined with compression test results, including those on the ternaries Al-Cr-Fe and Al-Mn-Fe suggest that Al-Mn-Fe-based LDHEA are still worth pursuing. These initial results only represent one compressive stress-strain curve per composition without any property optimization. As such, reproducibility needs to be followed by optimization to show their full potential. When including Li, Mg, and Zn, single-phase Li-Mg-Al-Ti-Zn LDHEA has been found with a specific ultimate compressive strength of 289MPa x cc/g. Al-Ti-Mn-Zn showed a specific ultimate compressive strength of 73MPa x cc/g. These initial results after hot isostatic pressing (HIP) of the ball-milled powders represent the lower end of what is possible, since no secondary processing (e.g. extrusion) has been performed to optimize strength and ductility. Compositions for multi-phase (e.g. dual-phase) LDHEA were identified largely by automated searches through CALPHAD databases, while screening for large face-centered-cubic (FCC) volume fractions, followed by experimental verification. This resulted in several new alloys. Li-Mg-Al-Mn-Fe and Mg-Mn-Fe-Co ball-milled powders upon HIP show specific ultimate compressive strengths of 198MPa x cc/g and 45MPa x cc/g, respectively. Several malleable quarternary Al-Zn-based alloys have been found upon arc/induction melting, yet with limited specific compressive yield strength (<75 MPa x cc/g). These initial results are all without any optimization for strength and/or ductility. High-throughput experimentation allowed us to triple the existing experimental HEA database as published in the past 10 years in less than 2 years which happened at a rate 10x higher than previous methods. Furthermore, we showed that high

  4. The effects of Mg addition on the microstructure and mechanical properties of thixoformed Al–5%Si–Cu alloys

    International Nuclear Information System (INIS)

    Salleh, M.S.; Omar, M.Z.; Syarif, J.

    2015-01-01

    Highlights: • The average globule size of α-Al decreased when Mg amount is increased. • T6 heat treatment has increased the strength of the thixoformed alloys. • The elongation after T6 heat treatment is even significantly improved. • Thixoformed alloy with high Mg content shows a brittle type fracture. • Thixoformed alloy in T6 condition shows a ductile type fracture. - Abstract: In this study, the effects of different amounts of magnesium (Mg) on the microstructures and tensile properties of thixoformed Al–5%Si–Cu alloys were investigated. Three different alloys containing various amounts of Mg (0.5, 0.8 and 1.2 wt%) were prepared through the cooling slope casting technique, before they were thixoformed using a compression press. Several of the thixoformed samples were then treated with a T6 heat treatment, that is, solution treatment at 525 °C for 8 h, quenching in warm water at 60 °C, followed by aging at 155 °C for 4 h. All of the samples were then characterised by optical microscopy (OM), scanning electron microscopy (SEM) energy dispersive X-ray (EDX) spectroscopy and X-ray diffraction (XRD) analysis as well as by tensile tests. The results revealed that magnesium was able to refine the size of α-Al globules and the eutectic silicon in the samples. It was also observed that a compact π-Al 9 FeMg 3 Si 5 phase was formed when the magnesium content was 0.8 wt% and 1.2 wt%. The mechanical properties of the thixoformed alloys improved significantly after the T6 heat treatment. The highest attainment was recorded by the latter alloy (i.e. with 1.2 wt%Mg) with its ultimate tensile strength (UTS) as high as 306 MPa, yield strength (YS), 264 MPa, and elongation to fracture of 1.8%. The fracture of thixoformed alloy with a low Mg content (0.5 wt%) showed a combination of dimple and cleavage fracture, whereas in the alloy that contained the highest Mg content (1.2 wt%), cleavage fracture was observed

  5. Evolution of solidification texture during additive manufacturing

    Science.gov (United States)

    Wei, H. L.; Mazumder, J.; DebRoy, T.

    2015-01-01

    Striking differences in the solidification textures of a nickel based alloy owing to changes in laser scanning pattern during additive manufacturing are examined based on theory and experimental data. Understanding and controlling texture are important because it affects mechanical and chemical properties. Solidification texture depends on the local heat flow directions and competitive grain growth in one of the six preferred growth directions in face centered cubic alloys. Therefore, the heat flow directions are examined for various laser beam scanning patterns based on numerical modeling of heat transfer and fluid flow in three dimensions. Here we show that numerical modeling can not only provide a deeper understanding of the solidification growth patterns during the additive manufacturing, it also serves as a basis for customizing solidification textures which are important for properties and performance of components. PMID:26553246

  6. Finding the Atomic Configuration with a Required Physical Property in Multi-Atom Structures

    International Nuclear Information System (INIS)

    d'Avezac, M.; Zunger, A.

    2007-01-01

    In many problems in molecular and solid state structures one seeks to determine the energy-minimizing decoration of sites with different atom types. In other problems, one is interested in finding a decoration with a target physical property (e.g. alloy band gap) within a certain range. In both cases, the sheer size of the configurational space can be horrendous. We present two approaches which identify either the minimum-energy configuration or configurations with a target property for a fixed underlying Bravais lattice. We compare their efficiency at locating the deepest minimum energy configuration of face centered cubic Au-Pd alloy. We show that a global-search genetic-algorithm approach with diversity-enhancing constraints and reciprocal-space mating can efficiently find the global optimum, whereas the local-search virtual-atom approach presented here is more efficient at finding structures with a target property

  7. Effects of Rhenium Addition on the Temporal Evolution of the Nanostructure and Chemistry of a Model Ni-Cr-Al Superalloy. 1; Experimental Observations

    Science.gov (United States)

    Yoon, Kevin E.; Noebe, Ronald D.; Seidman, David N.

    2006-01-01

    The temporal evolution of the nanostructure and chemistry of a model Ni-8.5 at.% Cr-10 at. % Al alloy, with the addition of 2 at.% Re, aged at 1073 K from 0.25 to 264 h, was studied. Transmission electron microscopy and atom-probe tomography were used to measure the number density and mean radius of the gamma prime (L1(sub 2) structure)-precipitates and the chemistry of the gamma prime-precipitates and the gamma (face-centered cubic)-matrix, including the partitioning behavior of all alloying elements between the gamma- and gamma prime-phases and the segregation behavior at gamma/gamma prime interfaces. The precipitates remained spheroidal for an aging time of up to 264 h and, unlike commercial nickel-based superalloys containing Re, there was not confined (nonmonotonic) Re segregation at the gamma/gamma prime interfaces.

  8. Matrix Transformation in Boron Containing High-Temperature Co-Re-Cr Alloys

    Science.gov (United States)

    Strunz, Pavel; Mukherji, Debashis; Beran, Přemysl; Gilles, Ralph; Karge, Lukas; Hofmann, Michael; Hoelzel, Markus; Rösler, Joachim; Farkas, Gergely

    2018-03-01

    An addition of boron largely increases the ductility in polycrystalline high-temperature Co-Re alloys. Therefore, the effect of boron on the alloy structural characteristics is of high importance for the stability of the matrix at operational temperatures. Volume fractions of ɛ (hexagonal close-packed—hcp), γ (face-centered cubic—fcc) and σ (Cr2Re3 type) phases were measured at ambient and high temperatures (up to 1500 °C) for a boron-containing Co-17Re-23Cr alloy using neutron diffraction. The matrix phase undergoes an allotropic transformation from ɛ to γ structure at high temperatures, similar to pure cobalt and to the previously investigated, more complex Co-17Re-23Cr-1.2Ta-2.6C alloy. It was determined in this study that the transformation temperature depends on the boron content (0-1000 wt. ppm). Nevertheless, the transformation temperature did not change monotonically with the increase in the boron content but reached a minimum at approximately 200 ppm of boron. A probable reason is the interplay between the amount of boron in the matrix and the amount of σ phase, which binds hcp-stabilizing elements (Cr and Re). Moreover, borides were identified in alloys with high boron content.

  9. Influence of grain structure on the deformation mechanism in martensitic shear reversion-induced Fe-16Cr-10Ni model austenitic alloy with low interstitial content: Coarse-grained versus nano-grained/ultrafine-grained structure

    Energy Technology Data Exchange (ETDEWEB)

    Challa, V.S.A. [Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical, Materials Engineering, and Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States); Misra, R.D.K., E-mail: dmisra2@utep.edu [Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical, Materials Engineering, and Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States); Somani, M.C. [Center for Advanced Steels Research, The University of Oulu, P.O. Box 4200, 90014 Oulu (Finland); Wang, Z.D. [State Key Laboratory for Rolling and Automation, Northeastern University, 3-11 Wenhua Road, Shenyang 110819 (China)

    2016-04-20

    Nanograined/ultrafine-grained (NG/UFG) materials characterized by high strength-high ductility combination are excellent vehicles to obtain an unambiguous understanding of deformation mechanisms vis-à-vis their coarse-grained counterparts. In this context, the innovative concept of phase reversion-induced NG/UFG structure enabled achieving high strength besides comparable ductility, for instance, in metastable austenitic stainless steels. In the phase reversion process, severe deformation of austenite at room temperature (typically ~60–80%) transforms face-centered cubic austenite (γ) to body centered cubic martensite (α′). Upon annealing, martensite reverts to austenite leading to extensive grain refinement. The objective of the present study to fundamentally understand the deformation mechanisms in NG/UFG structure in relation to that of the coarse-grained (CG) structure was accomplished by combining depth-sensing nanoscale experiments on an Fe-16Cr-10Ni model austenitic alloy conducted at different strain rates, followed by the study of structural evolution in the deformed zone using transmission electron microscopy (TEM). In the high strength NG/UFG steel (YS~585 MPa), stacking faults and nanotwins contributed to the enhanced ductility (El~35%), while in the case of low strength (YS~260 MPa) coarse-grained (CG) counterpart, ductility was also high (El~40%), but chiefly due to strain-induced martensite, which points to a clear case of grain size effect (and the corresponding level of strength). The distinct change in the deformation mechanism from stacking faults and twinning-induced plasticity (TWIP) in the NG structure to transformation-induced plasticity (TRIP) in the CG structure is elucidated in terms of austenite stability-strain energy relationship. The insights on the relationship between grain structure (and strength) and deformation mechanisms are envisaged to be important in providing a new direction for the futuristic design of high strength

  10. Contribution of Lattice Distortion to Solid Solution Strengthening in a Series of Refractory High Entropy Alloys

    Science.gov (United States)

    Chen, H.; Kauffmann, A.; Laube, S.; Choi, I.-C.; Schwaiger, R.; Huang, Y.; Lichtenberg, K.; Müller, F.; Gorr, B.; Christ, H.-J.; Heilmaier, M.

    2018-03-01

    We present an experimental approach for revealing the impact of lattice distortion on solid solution strengthening in a series of body-centered-cubic (bcc) Al-containing, refractory high entropy alloys (HEAs) from the Nb-Mo-Cr-Ti-Al system. By systematically varying the Nb and Cr content, a wide range of atomic size difference as a common measure for the lattice distortion was obtained. Single-phase, bcc solid solutions were achieved by arc melting and homogenization as well as verified by means of scanning electron microscopy and X-ray diffraction. The atomic radii of the alloying elements for determination of atomic size difference were recalculated on the basis of the mean atomic radii in and the chemical compositions of the solid solutions. Microhardness (μH) at room temperature correlates well with the deduced atomic size difference. Nevertheless, the mechanisms of microscopic slip lead to pronounced temperature dependence of mechanical strength. In order to account for this particular feature, we present a combined approach, using μH, nanoindentation, and compression tests. The athermal proportion to the yield stress of the investigated equimolar alloys is revealed. These parameters support the universality of this aforementioned correlation. Hence, the pertinence of lattice distortion for solid solution strengthening in bcc HEAs is proven.

  11. Numerical Studies on Natural Convection Heat Losses from Open Cubical Cavities

    Directory of Open Access Journals (Sweden)

    M. Prakash

    2013-01-01

    Full Text Available The natural convection heat losses occurring from cubical open cavities are analysed in this paper. Open cubical cavities of sides 0.1 m, 0.2 m, 0.25 m, 0.5 m, and 1 m with constant temperature back wall boundary conditions and opening ratio of 1 are studied. The Fluent CFD software is used to analyse the three-dimensional (3D cavity models. The studies are carried out for cavities with back wall temperatures between 35°C and 100°C. The effect of cavity inclination on the convective loss is analysed for angles of 0° (cavity facing sideways, 30°, 45°, 60°, and 90° (cavity facing vertically downwards. The Rayleigh numbers involved in this study range between 4.5 × 105 and 1.5 × 109. The natural convection loss is found to increase with an increase in back wall temperature. The natural convection loss is observed to decrease with an increase in cavity inclination; the highest convective loss being at 0° and the lowest at 90° inclination. This is observed for all cavities analysed here. Nusselt number correlations involving the effect of Rayleigh number and the cavity inclination angle have been developed from the current studies. These correlations can be used for engineering applications such as electronic cooling, low- and medium-temperature solar thermal systems, passive architecture, and also refrigeration systems.

  12. Effects of Different Levels of Boron on Microstructure and Hardness of CoCrFeNiAlxCu0.7Si0.1By High-Entropy Alloy Coatings by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Yizhu He

    2017-01-01

    Full Text Available High-entropy alloys (HEAs are novel solid solution strengthening metallic materials, some of which show attractive mechanical properties. This paper aims to reveal the effect of adding small atomic boron on the interstitial solid solution strengthening ability in the laser cladded CoCrFeNiAlxCu0.7Si0.1By (x = 0.3, x = 2.3, and 0.3 ≤ y ≤ 0.6 HEA coatings. The results show that laser rapid solidification effectively prevents brittle boride precipitation in the designed coatings. The main phase is a simple face-centered cubic (FCC matrix when the Al content is equal to 0.3. On the other hand, the matrix transforms to single bcc solid solution when x increases to 2.3. Increasing boron content improves the microhardness of the coatings, but leads to a high degree of segregation of Cr and Fe in the interdendritic microstructure. Furthermore, it is worth noting that CoCrFeNiAl0.3Cu0.7Si0.1B0.6 coatings with an FCC matrix and a modulated structure on the nanometer scale exhibit an ultrahigh hardness of 502 HV0.5.

  13. Moment mapping of body-centered-cubic Fe{sub x}Mn{sub 1−x} alloy films on MgO(001)

    Energy Technology Data Exchange (ETDEWEB)

    Idzerda, Y. U., E-mail: idzerda@physics.montana.edu; Bhatkar, H. [Department of Physics, Montana State University, Bozeman, Montana 59717 (United States); Arenholz, E. [Advanced Light Source, Lawrence Berkeley National Laboratories, Berkeley, California 59717 (United States)

    2015-05-07

    The alloy composition and elemental magnetic moments of bcc single crystal films of compositionally graded Fe{sub x}Mn{sub 1−x} films (20 nm thick films with 0.8 ≤ x ≤ 0.9) grown on MgO(001) are spatially mapped using X-ray absorption spectroscopy and magnetic circular dichroism. Electron diffraction measurements on single composition samples confirmed that the structure of Fe{sub x}Mn{sub 1−x} films remained epitaxial and in the bcc phase from 0.65 ≤ x ≤ 1, but rotated 45° with respect to the MgO(001) surface net. This is beyond the bulk bcc stability limit of x = 0.88. The Fe moment is found to gradually reduce with increasing Mn content with a very abrupt decline at x = 0.85, a slightly higher composition than observed in the bulk. Surprisingly, the Mn exhibits a very small net moment (<0.1 μ{sub B}) at all compositions, suggesting a complex Mn spin structure.

  14. Effect of B addition to hypereutectic Ti-based alloys

    International Nuclear Information System (INIS)

    Louzguina-Luzgina, Larissa V.; Louzguine-Luzgin, Dmitri V.; Inoue, Akihisa

    2009-01-01

    The structure and mechanical properties of Ti-Fe-B and Ti-Fe-Co-B alloys produced in the shape of the arc-melted ingots of about 25 mm diameter and 10 mm height are studied. The hypereutectic alloys showed excellent compressive mechanical properties. The structures of the high-strength and ductile hypereutectic alloys studied by X-ray diffractometry and scanning electron microscopy were found to consist of the primary cubic cP2 intermetallic compound (TiFe-phase or a solid solution on its base) and a dispersed eutectic consisting of this cP2 intermetallic compound + BCC cI2 β-Ti supersaturated solid solution phase. The addition of B increased mechanical strength. Si causes embrittlement owing to the formation of alternative intermetallic compounds. The structure and deformation behaviour were studied

  15. Alloying Behavior and Properties of FeSiBAlNiCo x High Entropy Alloys Fabricated by Mechanical Alloying and Spark Plasma Sintering

    Science.gov (United States)

    Wang, Wen; Li, Boyu; Zhai, Sicheng; Xu, Juan; Niu, Zuozhe; Xu, Jing; Wang, Yan

    2018-02-01

    In this paper, FeSiBAlNiCo x (x = 0.2, 0.8) high-entropy alloy (HEA) powders were fabricated by mechanical alloying process, and the powders milled for 140 h were sintered by spark plasma sintering (SPS) technique. The microstructures and properties of as-milled powders and as-sintered samples were investigated. The results reveal that the final milling products (140 h) of both sample powders present the fully amorphous structure. The increased Co contents obviously enhance the glass forming ability and thermal stability of amorphous HEA powders, which are reflected by the shorter formation time of fully amorphous phase and the higher onset crystallization temperature, respectively. According to coercivity, the as-milled FeSiBAlNiCo x (x = 0.2, 0.8) powders (140 h) are the semi-hard magnetic materials. FeSiBAlNiCo0.8 HEA powders possess the highest saturation magnetization and largest remanence ratio. The SPS-ed products of both bulk HEAs are composed of body-centered cubic solid solution, and FeSi and FeB intermetallic phases. They possess the high relative density above 97% and excellent microhardness exceeding 1150 HV. The as-sintered bulks undergo the remarkable increase in saturation magnetization compared with the as-milled state. The SPS-ed FeSiBAlNiCo0.8 HEA exhibits the soft magnetic properties. The electrochemical corrosion test is carried out in 3.5% NaCl solution. The SPS-ed FeSiBAlNiCo0.2 HEA reveals the better passivity with low passive current density, and the higher pitting resistance with wide passive region.

  16. An X-ray diffraction study of microstructural deformation induced by cyclic loading of selected steels

    International Nuclear Information System (INIS)

    Fourspring, P.M.; Pangborn, R.N.

    1996-06-01

    X-ray double crystal diffractometry (XRDCD) was used to assess cyclic microstructural deformation in a face centered cubic (fcc) steel (AISI304) and a body centered cubic (bcc) steel (SA508 class 2). The first objective of the investigation was to determine if XRDCD could be used to effectively monitor cyclic microstructural deformation in polycrystalline Fe alloys. A second objective was to study the microstructural deformation induced by cyclic loading of polycrystalline Fe alloys. The approach used in the investigation was to induce fatigue damage in a material and to characterize the resulting microstructural deformation at discrete fractions of the fatigue life of the material. Also, characterization of microstructural deformation was carried out to identify differences in the accumulation of damage from the surface to the bulk, focusing on the following three regions: near surface (0--10 microm), subsurface (10--300 microm), and bulk. Characterization of the subsurface region was performed only on the AISI304 material because of the limited availability of the SA508 material. The results from the XRDCD data indicate a measurable change induced by fatigue from the initial state to subsequent states of both the AISI304 and the SA508 materials. Therefore, the XRDCD technique was shown to be sensitive to the microstructural deformation caused by fatigue in steels; thus, the technique can be used to monitor fatigue damage in steels. In addition, for the AISI304 material, the level of cyclic microstructural deformation in the bulk material was found to be greater than the level in the near surface material. In contrast, previous investigations have shown that the deformation is greater in the near surface than the bulk for Al alloys and bcc Fe alloys

  17. Tailoring the light absorption of Ag-PZT thin films by controlling the growth of hexagonal- and cubic-phase Ag nanoparticles

    Science.gov (United States)

    Hu, Tao; Wang, Zongrong; Ma, Ning; Du, Piyi

    2017-12-01

    PbZr0.52Ti0.48O3 thin films containing hexagonal and cubic Ag nanoparticles (Ag NPs) of various sizes were prepared using the sol-gel technique. During the aging process, Ag ions were photo-reduced to form hexagonal Ag NPs. These NPs were uniform in size, and their uniformity was maintained in the thin films during the heat treatment process. Both the total volume and average size of the hexagonal Ag NPs increased with an increasing Ag ion concentration from 0.02 to 0.08 mol l-1. Meanwhile, the remaining Ag ions were reduced to form unstable Ag-Pb alloy particles with Pb ions during the early heating stage. During subsequent heat treatment, these alloys decomposed to form cubic Ag NPs in the thin films. The absorption range of the thin films, quantified as the full width at half maximum in the ultraviolet-visible absorption spectrum, expanded from 6.3 × 1013 Hz (390-425 nm) to 8.4 × 1013 Hz (383-429 nm) as the Ag NPs/PZT ratio increased from 0.2 to 0.8. This work provides an effective way to broaden the absorption range and enhance the optical properties of such films.

  18. Tailoring the light absorption of Ag-PZT thin films by controlling the growth of hexagonal- and cubic-phase Ag nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Tao; Wang, Zongrong; Ma, Ning; Du, Piyi [Zhejiang University, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Hangzhou (China)

    2017-12-15

    PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} thin films containing hexagonal and cubic Ag nanoparticles (Ag NPs) of various sizes were prepared using the sol-gel technique. During the aging process, Ag ions were photo-reduced to form hexagonal Ag NPs. These NPs were uniform in size, and their uniformity was maintained in the thin films during the heat treatment process. Both the total volume and average size of the hexagonal Ag NPs increased with an increasing Ag ion concentration from 0.02 to 0.08 mol l{sup -1}. Meanwhile, the remaining Ag ions were reduced to form unstable Ag-Pb alloy particles with Pb ions during the early heating stage. During subsequent heat treatment, these alloys decomposed to form cubic Ag NPs in the thin films. The absorption range of the thin films, quantified as the full width at half maximum in the ultraviolet-visible absorption spectrum, expanded from 6.3 x 10{sup 13} Hz (390-425 nm) to 8.4 x 10{sup 13} Hz (383-429 nm) as the Ag NPs/PZT ratio increased from 0.2 to 0.8. This work provides an effective way to broaden the absorption range and enhance the optical properties of such films. (orig.)

  19. Exchange anisotropy as a probe of antiferromagnetism in expanded face-centered-tetragonal Mn(001) layers

    NARCIS (Netherlands)

    Kohlhepp, J.T.; Wieldraaijer, H.; Jonge, de W.J.M.

    2006-01-01

    Manganese (Mn) grows coherent and with an expanded metastable face-centered-tetragonal (e-fct) structure on ultrathin fct Co(001)/Cu(001) template layers. From the temp. dependence of the obsd. unidirectional Mn/Co interface exchange anisotropy, an antiferromagnetic state with a blocking temp.

  20. Effects of Re concentration on the expansivity of NiRe alloys to 1200 K NULL

    Science.gov (United States)

    Babu, V. Suresh; Seehra, Mohindar S.

    1998-08-01

    Measurements of the thermal expansion 0953-8984/10/33/006/img1 and hence the coefficient of thermal expansion 0953-8984/10/33/006/img2 are reported for 0953-8984/10/33/006/img3 alloys (x = 0, 5, 8, 10, 12, 16 and 25%) in the temperature range of 300 to 1300 K using a dilatometer. Room temperature x-ray diffraction studies show that for 0953-8984/10/33/006/img4%, a small fraction of Re begins to precipitate out, in addition to the dominant face-centred cubic (fcc) phase whose lattice constant increases linearly with x. The variations of 0953-8984/10/33/006/img2 with x plotted at selected temperatures of 503, 903 and 1203 K shows that for 0953-8984/10/33/006/img6%, 0953-8984/10/33/006/img2 decreases with increasing x at 503 and 903 K, whereas it remains practically constant with x at 1203 K. The latter result is in agreement with the predictions of Mei et al (1994 Alloy Modeling and Design ed G M Stocks and P E A Turchi (Warrendale, PA: TMS Publishing)) using molecular dynamics simulations. The variation of 0953-8984/10/33/006/img2 with x shows a minimum at x = 12% at all temperatures. The possible role of shear stresses in the dendritic grain structure of these alloys on measured 0953-8984/10/33/006/img2 below 1000 K is discussed.

  1. Ab initio calculations of ideal strength and lattice instability in W-Ta and W-Re alloys

    Science.gov (United States)

    Yang, Chaoming; Qi, Liang

    2018-01-01

    An important theoretical criterion to evaluate the ductility of metals with a body-centered cubic (bcc) lattice is the mechanical failure mode of their perfect crystals under tension along ; directions. When the tensile stress reaches the ideal tensile strength, the pure W crystal fails by a cleavage fracture along the {100 } plane so that it is intrinsically brittle. To discover the strategy to improve its ductility, we performed density functional theory and density functional perturbation theory calculations to study the ideal tensile strength and the lattice instability under tension for both W-Ta and W-Re alloys. Anisotropic linear elastic fracture mechanics (LEFM) theory and Rice's criterion were also applied to analyze the mechanical instability at the crack tip under tension based on the competition between cleavage propagation and dislocation emission. The results show that the intrinsic ductility can be achieved in both W-Ta and W-Re, however, by different mechanisms. Even though W-Ta alloys with low Ta concentrations are still intrinsically brittle, the intrinsic ductility of W-Ta alloys with high Ta concentrations is promoted by elastic shear instability before the cleavage failure. The intrinsic ductility of W-Re alloys is produced by unstable transverse phonon waves before the cleavage failure, and the corresponding phonon mode is related to the generation of 1/2 {2 ¯11 } dislocation in bcc crystals. The ideal tensile calculations, phonon analyses, and anisotropic LEFM examinations are mutually consistent in the evaluation of intrinsic ductility. These results bring us physical insights on the ductility-brittle mechanisms of W alloys under extreme stress conditions.

  2. Nucleation of the lamellar decomposition in a Ti-44Al-4Nb-4Zr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.C.; Cheng, T.T.; Aindow, M

    2004-01-05

    The onset of the lamellar decomposition ({alpha}{yields}{alpha}{sub 2}+{gamma}) in a titanium aluminide alloy containing Nb and Zr has been studied by transmission electron microscopy. Samples water-quenched from the solution-treatment temperature of 1350 deg. C show fault-like features resembling those reported previously as the precursors for the formation of the {gamma} lamellae. High-resolution lattice images obtained from such features have revealed that the 'faults' are actually embryonic {gamma} lamellae, just a few atomic layers in thickness, which clearly exhibit the ordered L1{sub 0} structure. This implies that the {gamma} phase is formed directly, rather than via some intermediate disordered face-centred-cubic phase as suggested previously. Moreover, the character and configuration of the interfacial defects is consistent with this occurring in a diffusive-displacive manner with short-range fluxes across the risers of mobile perfect interfacial disconnections.

  3. Nucleation of the lamellar decomposition in a Ti-44Al-4Nb-4Zr alloy

    International Nuclear Information System (INIS)

    Zhang, L.C.; Cheng, T.T.; Aindow, M.

    2004-01-01

    The onset of the lamellar decomposition (α→α 2 +γ) in a titanium aluminide alloy containing Nb and Zr has been studied by transmission electron microscopy. Samples water-quenched from the solution-treatment temperature of 1350 deg. C show fault-like features resembling those reported previously as the precursors for the formation of the γ lamellae. High-resolution lattice images obtained from such features have revealed that the 'faults' are actually embryonic γ lamellae, just a few atomic layers in thickness, which clearly exhibit the ordered L1 0 structure. This implies that the γ phase is formed directly, rather than via some intermediate disordered face-centred-cubic phase as suggested previously. Moreover, the character and configuration of the interfacial defects is consistent with this occurring in a diffusive-displacive manner with short-range fluxes across the risers of mobile perfect interfacial disconnections

  4. The influence of additions of Al and Si on the lattice stability of fcc and hcp Fe-Mn random alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gebhardt, T; Music, D; Schneider, J M [Materials Chemistry, RWTH Aachen University, D-52056 Aachen (Germany); Ekholm, M; Abrikosov, I A [Department of Physics, Chemistry and Biology (IFM), Linkoeping University, SE-58183 Linkoeping (Sweden); Vitos, L [Department of Materials and Engineering, Applied Materials Physics, Royal Institute of Technology (KTH), SE-10044 Stockholm (Sweden); Dick, A; Hickel, T; Neugebauer, J, E-mail: gebhardt@mch.rwth-aachen.de [Department of Computational Materials Design, Max-Planck-Institut fuer Eisenforschung GmbH, D-40237 Duesseldorf (Germany)

    2011-06-22

    We have studied the influence of additions of Al and Si on the lattice stability of face-centred-cubic (fcc) versus hexagonal-closed-packed (hcp) Fe-Mn random alloys, considering the influence of magnetism below and above the fcc Neel temperature. Employing two different ab initio approaches with respect to basis sets and treatment of magnetic and chemical disorder, we are able to quantify the predictive power of the ab initio methods. We find that the addition of Al strongly stabilizes the fcc lattice independent of the regarded magnetic states. For Si a much stronger dependence on magnetism is observed. Compared to Al, almost no volume change is observed as Si is added to Fe-Mn, indicating that the electronic contributions are responsible for stabilization/destabilization of the fcc phase.

  5. The influence of additions of Al and Si on the lattice stability of fcc and hcp Fe-Mn random alloys

    International Nuclear Information System (INIS)

    Gebhardt, T; Music, D; Schneider, J M; Ekholm, M; Abrikosov, I A; Vitos, L; Dick, A; Hickel, T; Neugebauer, J

    2011-01-01

    We have studied the influence of additions of Al and Si on the lattice stability of face-centred-cubic (fcc) versus hexagonal-closed-packed (hcp) Fe-Mn random alloys, considering the influence of magnetism below and above the fcc Neel temperature. Employing two different ab initio approaches with respect to basis sets and treatment of magnetic and chemical disorder, we are able to quantify the predictive power of the ab initio methods. We find that the addition of Al strongly stabilizes the fcc lattice independent of the regarded magnetic states. For Si a much stronger dependence on magnetism is observed. Compared to Al, almost no volume change is observed as Si is added to Fe-Mn, indicating that the electronic contributions are responsible for stabilization/destabilization of the fcc phase.

  6. Perpendicular Magnetic Anisotropy in Heusler Alloy Films and Their Magnetoresistive Junctions

    Directory of Open Access Journals (Sweden)

    Atsufumi Hirohata

    2018-01-01

    Full Text Available For the sustainable development of spintronic devices, a half-metallic ferromagnetic film needs to be developed as a spin source with exhibiting 100% spin polarisation at its Fermi level at room temperature. One of the most promising candidates for such a film is a Heusler-alloy film, which has already been proven to achieve the half-metallicity in the bulk region of the film. The Heusler alloys have predominantly cubic crystalline structures with small magnetocrystalline anisotropy. In order to use these alloys in perpendicularly magnetised devices, which are advantageous over in-plane devices due to their scalability, lattice distortion is required by introducing atomic substitution and interfacial lattice mismatch. In this review, recent development in perpendicularly-magnetised Heusler-alloy films is overviewed and their magnetoresistive junctions are discussed. Especially, focus is given to binary Heusler alloys by replacing the second element in the ternary Heusler alloys with the third one, e.g., MnGa and MnGe, and to interfacially-induced anisotropy by attaching oxides and metals with different lattice constants to the Heusler alloys. These alloys can improve the performance of spintronic devices with higher recording capacity.

  7. Influence of a hydrostatic pressure on the diffusion in metals having a cubic structure; Contribution a l'etude de l'influence de la pression hydrostatique sur la diffusion dans les metaux cubiques

    Energy Technology Data Exchange (ETDEWEB)

    Beyeler, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    In view of obtaining informations on the structure of vacancies. We have determined, by diffusion experiments under high pressure, the activation volumes for self diffusion in different face centered cubic metals: silver, gold, copper, aluminium and in body centered cubic uranium (gamma phase). Activation volumes for noble metals diffusion in aluminium have also been investigated. The experimental results on gold, silver and copper are in good agreement with most of the theoretical models. The estimated activation volume for gamma uranium seems to indicate a vacancy mechanism.The results on aluminium for both self and impurity diffusion agree quite well with Friedel's theoretical predictions. [French] Pour preciser la structure des lacunes, on a, par des etudes de diffusion sous haute pression determine les volumes d'activation correspondant a l'autodiffusion dans des metaux de structure cubique face centree: argent, or, cuivre et aluminium et dans un metal de structure cubique centree: l'uranium gamma. On a egalement determine les volumes d'activation pour l'heterodiffusion des metaux nobles dans l'aluminium. Les resultats obtenus pour l'or, l'argent et le cuivre sont en accord avec la plupart des modeles theoriques classiques. Le volume d'activation d'autodiffusion evalue pour l'uranium gamma est compatible avec une diffusion par lacune. Les resultats concernant l'aluminium et l'heterediffusion des metaux nobles dans l'aluminium verifient assez bien les previsions theoriques de Friedel. (auteur)

  8. Interpolation of natural cubic spline

    Directory of Open Access Journals (Sweden)

    Arun Kumar

    1992-01-01

    Full Text Available From the result in [1] it follows that there is a unique quadratic spline which bounds the same area as that of the function. The matching of the area for the cubic spline does not follow from the corresponding result proved in [2]. We obtain cubic splines which preserve the area of the function.

  9. Evidence of new high-pressure magnetic phases in Fe-Pt Invar alloy

    International Nuclear Information System (INIS)

    Matsushita, M.; Endo, S.; Miura, K.; Ono, F.

    2003-01-01

    To investigate the magnetic properties of disordered Fe 70 Pt 30 Invar alloy under high pressure, measurements of the real part of the AC susceptibility (χ) were made under pressure up to 7.5 GPa in the temperature range 4.2-385 K using a cubic anvil high-pressure apparatus. The Curie temperature (T C ) decreased with increasing pressure, and then, two new high-pressure magnetic phases appeared. These results show that the ferromagnetism of Fe-Pt Invar alloy becomes weaker, and the antiferromagnetic interaction becomes dominant with increasing pressure

  10. The electric field of a uniformly charged cubic shell

    Science.gov (United States)

    McCreery, Kaitlin; Greenside, Henry

    2018-01-01

    As an integrative and insightful example for undergraduates learning about electrostatics, we discuss how to use symmetry, Coulomb's law, superposition, Gauss's law, and visualization to understand the electric field E (x ,y ,z ) produced by a uniformly charged cubic shell. We first discuss how to deduce qualitatively, using freshman-level physics, the perhaps surprising fact that the interior electric field is nonzero and has a complex structure, pointing inwards from the middle of each face of the shell and pointing outwards towards each edge and corner. We then discuss how to understand the quantitative features of the electric field by plotting an analytical expression for E along symmetry lines and on symmetry surfaces of the shell.

  11. An ab initio study on the structural, electronic and mechanical properties of quaternary full-Heusler alloys FeMnCrSn and FeMnCrSb

    Science.gov (United States)

    Erkişi, Aytaç

    2018-06-01

    The quaternary full Heusler alloys FeMnCrSn and FeMnCrSb, which have face-centred cubic (FCC) crystal structure and conform to ? space group with 216 space number, have been investigated using Generalised Gradient Approximation (GGA) in the Density Functional Theory (DFT) as implemented in VASP (Vienna Ab initio Simulation Package) software. These alloys are considered in ferromagnetic (FM) order. After the investigation of structural stability of these alloys, their mechanical and thermal properties and also electronic band structures have been examined. The calculated spin-polarised electronic band structures and total electronic density of states (DOS) within GGA approximation show that these alloys can exhibit both metallic and half-metallic characters in different structural phases. The calculated formation enthalpies and the plotted energy-volume graphs show that Type-III phase is most stable structural phase for these materials. Also, FeMnCrSb alloy in Type-I/Type-III phases and FeMnCrSn alloy in Type-III phase show half-metallic behaviour with integer total magnetic moments almost 2 and 1 μB per formula unit, respectively, since there are band gaps observed in spin-down states, whereas they have metallic behaviour in majority bands. Other structural phases of both systems are also metallic. Moreover, the calculated elastic constants and the estimated anisotropy shear factors indicate that these materials are stable mechanically in all of three phases except FeMnCrSn in Type-I phase that does not satisfy Born stability criteria in this phase and have high anisotropic behaviour.

  12. Emplacement of Widespread Fe/Mg Phyllosilicate Layer in West Margaritifer Terra, Mars

    Science.gov (United States)

    Seelos, K. D.; Maxwell, R. E.; Seelos, F. P.; Buczkowski, D.; Viviano-Beck, C. E.

    2017-12-01

    West Margaritifer Terra is located at the eastern end of Valles Marineris at the complex intersection of chaos terrains, cratered highlands, and multiple generations of outflow channels. Adjacent regions host layered phyllosilicates thought to indicate early Mars pedogenic and/or ground water-based alteration (e.g., Le Deit et al., 2012), and indeed, hydrologic modeling supports prolonged aqueous activity in the Noachian and Hesperian eras (Andrews-Hanna and Lewis, 2011). The remnant high-standing plateaus in West Margaritifer (0-15°S, 325-345°E) host numerous phyllosilicate-bearing outcrops as well and are the focus of this study. Here, we performed a systematic mapping and characterization of mineralogy and morphology of these deposits in order to assess similarity to other layered phyllosilicates and evaluate potential formation mechanisms. Utilizing multiple remote sensing datasets, we identified three types of phyllosilicate exposures distributed throughout the region: 1) along upper chaos fracture walls, 2) in erosional windows on the plains, and 3) in crater walls and ejecta. Outcrops are spectrally indicative of Fe/Mg smectite (most similar to saponite) and only rare, isolated occurrences of Al-phyllosilicate were observed. Morphologically, the layer is a few to 10 m thick, light-toned, polygonally fractured at decameter scales, and vertical subparallel banding is evident in places. These characteristics were used along with spatial distribution, elevation, and geologic context to evaluate 4 potential formation mechanisms: fluvio-lacustrine, pedogenesis, diagenesis, and hydrothermal alteration. We find that the widespread distribution and spectral homogeneity of the layer favors formation via groundwater alteration and/or pedogenic weathering. This is consistent with interpretations of similar layered phyllosilicates in NW Noachis Terra and the Valles Marineris plains to the west, and significantly extends the area over which these aqueous processes

  13. Gunshot wounds to the face: level I urban trauma center: a 10-year level I urban trauma center experience.

    Science.gov (United States)

    Pereira, Clifford; Boyd, J Brian; Dickenson, Brian; Putnam, Brant

    2012-04-01

    Gunshot wounds (GSWs) to the face are an infrequent occurrence outside of a war zone. However, when they occur, they constitute a significant reconstructive challenge. We present our 10-year experience at an urban level I trauma center to define the patterns of injury, assess the morbidity and mortality, and estimate the cost to the health care system. A retrospective review was performed on all patients admitted to Harbor-UCLA Medical Center with GSWs to the head and neck region between January 1997 and January 2007. Those who had sustained GSWs to the face requiring operative intervention were closely reviewed. Between 1997 and 2007, a total of 702 patients were admitted to the Harbor UCLA Emergency Department having sustained GSWs to the head and neck region, of which 501 patients survived. Of the survivors, 28 patients (26 male, 2 female) sustained GSWs to their face requiring operative intervention. The mean age of these patients was 28 (±8.3) years. They generally presented within a few hours of the injury, but 1 individual arrived over 24 hours later. Low-velocity single gunshots (from handguns) were predominantly involved, with facial fractures occurring in all cases. Fractures were of a localized shattering type without the major displacement of bony complexes seen in motor vehicle accidents. Most required wound debridement and fracture fixation. A few patients (14.2%) underwent free tissue transfer for reconstruction (3 fibular flaps, 1 TRAM). Tracheostomy was performed in 35.7% of patients. Mean length of hospital stay was 8.3 (±7.1) days, with 50% of cases requiring admission to the intensive care unit. Mean length of intensive care unit stay was 5.2 (±5.7) days. The average cost per patient exceeded $100,000.

  14. Strain softening during tension in cold drawn Cu–Ag alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chang, L.L., E-mail: lilichang@sdu.edu.cn [School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061 (China); Wen, S.; Li, S.L.; Zhu, X.D. [School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061 (China); Shang, X.J. [Jinan Baoshida Industrial Development Co., Ltd, Jinan, Shandong 250061 (China)

    2015-10-15

    Experiments were conducted on Cu–0.1wt.%Ag alloys to evaluate the influence of producing procedures and annealing conditions on microstructure evolution and mechanical properties of Cu–Ag alloys. Optical microscopy (OM), electron back-scattered diffraction (EBSD), X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used for microstructural evaluation and mechanical properties were characterized by tensile tests. The results indicated that hot-extruded Cu–Ag alloys had a typical dynamic recrystallized microstructure with equiaxed grains. Cold drawing at room temperature leaded to partial recrystallized microstructure with a mixture of coarse and fine grains. The dominate {001}<100 > cubic texture formed during hot extrusion was changed to be {112}<111 > copper texture by cold drawing. Strain softening occurred during room temperature tension of cold drawn Cu–Ag alloys with an average grain size of 13–19.7 μm. - Highlights: • Strain softening occurred during tension of Cu–Ag alloys with coarse grain size. • Work hardening was observed in hot-extruded and annealed Cu–0.1wt.%Ag alloys. • Strain softening was ascribed to dynamic recovery and dynamic recrystallization.

  15. Difficulties faced by family physicians in primary health care centers in Jeddah, Saudi Arabia.

    Science.gov (United States)

    Mumenah, Sahar H; Al-Raddadi, Rajaa M

    2015-01-01

    The aim was to determine the difficulties faced by family physicians, and compare how satisfied those working with the Ministry of Health (MOH) are with their counterparts who work at some selected non-MOH hospitals. An analytical, cross-sectional study was conducted at King Abdulaziz University Hospital, King Faisal Specialist Hospital and Research Center (KFSH and RC), and 40 MOH primary health care centers across Jeddah. A structured multi-item questionnaire was used to collect demographic data and information on the difficulties family physicians face. The physicians' level of satisfaction and how it was affected by the difficulties was assessed. Women constituted 71.9% of the sample. Problems with transportation formed one of the main difficulties encountered by physicians. Compared to non-MOH physician, a significantly higher proportion of MOH physicians reported unavailability of radiology technicians (P = 0.011) and radiologists (P building maintenance (P < 0.001). Family physicians with the MOH were less satisfied with their jobs compared with non-MOH physicians (P = 0.032). MOH family physicians encountered difficulties relating to staff, services, and infrastructure, which consequently affected their level of satisfaction.

  16. Mean stress effects on high-cycle fatigue of Alloy 718

    International Nuclear Information System (INIS)

    Korth, G.E.

    1980-07-01

    This report covers an investigation of the effects of tensile mean stress on the high-cycle fatigue properties of Alloy 718. Three test temperatures (24, 427, and 649 degree C) were employed, and there were tests in both strain and load control. Results were compared with three different models: linear Modified-Goodman, Peterson cubic, and stress-strain parameter. The linear Modified-Goodman model gave good correlation with actual test data for low and moderate mean stress values, but the stress-strain parameter showed excellent correlation over the entire range of possible mean stresses and therefore is recommended for predicting mean stress effects of Alloy 718. 13 refs., 12 figs

  17. Complex cubic metallides AM{sub ∝6} (A=Ca, Sr; M=Zn, Cd, Hg). Synthesis, crystal chemistry and chemical bonding

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Michael; Wendorff, Marco; Roehr, Caroline [Freiburg Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie

    2017-09-01

    In a systematic synthetic, crystallographic and bond theoretical study, the stability ranges as well as the distribution of the isoelectronic late d-block elements Zn, Cd and Hg (M) in the polyanions of the YCd{sub 6}-type phases (Ca/Sr)Cd{sub 6} have been investigated. Starting from Ca(Cd/Hg){sub 6}, 12-30% of the M atoms can be substituted by Zn, which gradually occupies the center of the empty cubes. In all ternary compounds, smaller/less electronegative Zn/Cd atoms occupy the disordered tetrahedra explaining the lack of the YCd{sub 6}-type for pure mercurides. Along the section SrCd{sub 6}-SrHg{sub 6}, the ordered Eu{sub 4}Cd{sub 25}-type is formed (Sr{sub 4}Cd{sub 16.1}Hg{sub 8.9}: cF1392, Fd anti 3, a=3191.93(5) pm, R1=0.0404). Besides, two new complex cubic Ca phases appear at increased Zn proportion: Ca{sub 2}Zn{sub 5.1}Cd{sub 5.8}, which exhibits a nearly complete site preference of Zn and Cd, crystallizes in the rare cubic Mg{sub 2}Zn{sub 11}-type structure (cP39-δ, Pm anti 3, a=918.1(1) pm, R1=0.0349). In the Ca-Hg system, an increased Zn proportion yielded the new compound CaZn{sub 1.31}Hg{sub 3.69} (cF480, F anti 43m, a=2145.43(9) pm, R1=0.0572), with a complex cubic structure closely related to Ba{sub 20}Hg{sub 103}. All structures, which are commonly described using nested polyhedra around high-symmetric sites, are alternatively described in accordance with the calculated electron densities and charge distribution: building blocks are face-sharing [M{sub 4}] tetrahedra (star polyhedra such as TS, IS, OS), each with a cage-critical point in its center, and [M{sub 8}] cubes (deformed TS), which are either empty, distorted or filled. The M element distribution in the anion is determined by size criteria and the difference in electronegativity, which induces a preferred formation of heteroatomic polar bonds.

  18. Influence of boron introduction on structure and electrochemical hydrogen storage properties of Ti–V-based alloys

    International Nuclear Information System (INIS)

    Qiu, Shujun; Huang, Jianling; Chu, Hailiang; Zou, Yongjin; Xiang, Cuili; Zhang, Huanzhi; Xu, Fen; Sun, Lixian; Zhou, Huaiying

    2015-01-01

    In order to improve the properties of Ti–V-based alloys in the electrochemical system, Ti 0.17 Zr 0.08 V 0.35 Cr 0.1 Ni 0.3 B x (x = 0–0.04) alloys were prepared and their structural and electrochemical performances had been systematically investigated in this study. XRD patterns show that they are mainly comprised of a C14 Laves phase and a body centered cubic (BCC) solid solution phase. The introduction of boron has little effect on the structure, while it remarkably influences the electrochemical performances. The cycle life of each electrode made from the studied alloy is obviously improved. For instance, the cycle retention after 200 charge–discharge cycles is more than 90%. Furthermore, high rate dischargeability (HRD) is also enhanced after boron introduction. It is also found that the charge-transfer reaction resistance R ct , the limiting current density I L, and the hydrogen diffusion coefficient D are first decreased and then increased with the increase of boron amount. Taking into consideration various factors, the introduction of boron in the alloy has an optimal value of x = 0.01. - Graphical abstract: Trace amounts of B element was introduced into Ti 0.17 Zr 0.08 V 0.35 Cr 0.1 Ni 0.3 alloys. XRD patterns show that the introduction of B has little effect on the structure, while it remarkably influences the electrochemical performances. The cycle life and the high rate dischargeability (HRD) are obviously improved. - Highlights: • Trace amounts of B element was introduced into Ti–V-based alloys. • Ti 0.17 Zr 0.08 V 0.35 Cr 0.1 Ni 0.3 B 0.01 has an optimal property. • At x = 0.01, C 200 /C max is 89.4% and HRD 800 is 72.5%

  19. Cubical sets as a classifying topos

    DEFF Research Database (Denmark)

    Spitters, Bas

    Coquand’s cubical set model for homotopy type theory provides the basis for a computational interpretation of the univalence axiom and some higher inductive types, as implemented in the cubical proof assistant. We show that the underlying cube category is the opposite of the Lawvere theory of De...... Morgan algebras. The topos of cubical sets itself classifies the theory of ‘free De Morgan algebras’. This provides us with a topos with an internal ‘interval’. Using this interval we construct a model of type theory following van den Berg and Garner. We are currently investigating the precise relation...

  20. Generalized Vaidya spacetime for cubic gravity

    Science.gov (United States)

    Ruan, Shan-Ming

    2016-03-01

    We present a kind of generalized Vaidya solution of a new cubic gravity in five dimensions whose field equations in spherically symmetric spacetime are always second order like the Lovelock gravity. We also study the thermodynamics of its spherically symmetric apparent horizon and get its entropy expression and generalized Misner-Sharp energy. Finally, we present the first law and second law hold in this gravity. Although all the results are analogous to those in Lovelock gravity, we in fact introduce the contribution of a new cubic term in five dimensions where the cubic Lovelock term is just zero.

  1. Microstructural characterisation of high-entropy alloy AlCoCrFeNi fabricated by laser engineered net shaping

    Energy Technology Data Exchange (ETDEWEB)

    Kunce, I., E-mail: ikunce@wat.edu.pl [Department of Advanced Materials and Technology, Military University of Technology, 2 Kaliskiego Str., 01-908 Warsaw (Poland); Polanski, M.; Karczewski, K. [Department of Advanced Materials and Technology, Military University of Technology, 2 Kaliskiego Str., 01-908 Warsaw (Poland); Plocinski, T.; Kurzydlowski, K.J. [Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Wołoska Str., 02-507 Warsaw (Poland)

    2015-11-05

    Laser engineered net shaping (LENS) was used to produce thin-walled samples of the high-entropy alloy AlCoCrFeNi from a prealloyed powder. To determine the effect of the cooling rate during solidification on the microstructure of the alloy, different laser scanning rates were used. A microstructural study of the surfaces of the sample walls was performed using X-ray diffraction analysis and optical and scanning/transmission electron microscopy. The crystal structure of the alloy was determined to be a body-centred cubic (bcc)-derivative B2-ordered type. The microstructure of the alloy produced by LENS was dendritic. Further, it was found that with an increase in the laser scanning rate from 2.5 to 40 mm s{sup −1}, the average grain size decreased from 108.3 ± 32.4 μm to 30.6 ± 9.2 μm. The maximum cooling rate achieved during the laser cladding of the alloy was 44 × 10{sup 3} K s{sup −1}. The electron microscopy study of the alloy showed the presence of precipitates. The morphology of the disordered bcc (Fe, Cr)-rich precipitates in the ordered B2 (Al, Ni)-rich matrix changed in the dendritic and interdendritic regions from fine and spherical (with a diameter of less 100 nm) to spinodal (with the thickness being less than 100 nm). The LENS- produced AlCoCrFeNi alloy exhibited an average microhardness of approximately 543 HV0.5; this was approximately 13% higher than the hardness in the as-cast state and can be attributed to the grain refinemet in the LENS- produced alloy. Moreover, it was found that increasing the cooling rate during laser cladding increasess the microhardness of the alloy. - Highlights: • Laser-engineered net shaping is used to produce samples of AlCoCrFeNi alloy. • The alloy has a body-centred cubic (bcc)-derivative B2-ordered crystal structure. • Electron microscopy images of the alloy show the presence of precipitates. • The microhardness of the laser-clad alloy is higher than that of the as-cast alloy. • The cooling rate

  2. Cytocompatibility of a free machining titanium alloy containing lanthanum.

    Science.gov (United States)

    Feyerabend, Frank; Siemers, Carsten; Willumeit, Regine; Rösler, Joachim

    2009-09-01

    Titanium alloys like Ti6Al4V are widely used in medical engineering. However, the mechanical and chemical properties of titanium alloys lead to poor machinability, resulting in high production costs of medical products. To improve the machinability of Ti6Al4V, 0.9% of the rare earth element lanthanum (La) was added. The microstructure, the mechanical, and the corrosion properties were determined. Lanthanum containing alloys exhibited discrete particles of cubic lanthanum. The mechanical properties and corrosion resistance were slightly decreased but are still sufficient for many applications in the field of medical engineering. In vitro experiments with mouse macrophages (RAW 264.7) and human bone-derived cells (MG-63, HBDC) were performed and revealed that macrophages showed a dose response below and above a LaCl3 concentration of 200 microM, while MG-63 and HBDC tolerated three times higher concentrations without reduction of viability. The viability of cells cultured on disks of the materials showed no differences between the reference and the lanthanum containing alloy. We therefore propose that lanthanum containing alloy appears to be a good alternative for biomedical applications, where machining of parts is necessary.

  3. Microstructure and age-hardening effects of aluminium alloys with additions of scandium and zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Galun, R.; Mordike, B.L. [Inst. fuer Werkstoffkunde und Werkstofftechnik, Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany); Maiwald, T.; Smola, B. [Zentrum fuer Funktionswerkstoffe GmbH, Clausthal-Zellerfeld (Germany); Mergen, R.; Manner, M.; Uitz, W. [Miba Gleitlager GmbH, Laakirchen (Australia)

    2004-12-01

    The aim of the work presented in this report was to produce age-hardenable aluminium alloys containing scandium and zirconium by a casting process with similar cooling conditions like an industrial casting process. Microstructure, precipitation structure and age-hardening response of different alloys with up to 0.4 wt.% Sc and Zr were investigated. Age-hardening experiments from the as-cast condition without solution annealing showed a significant increase of hardness of about 100% for Sc-rich alloys and of 50% for Zr-rich alloys compared to the as-cast condition. TEM investigations revealed the formation of precipitates of ternary Al{sub 3}(Sc{sub x}Zr{sub 1-x}) phases with a cubic cP4 crystal structure. In addition to the strengthening effect, a high thermal stability especially of the precipitates in Zr-rich alloys up to 400 C let these alloys look very promising for high-temperature applications. (orig.)

  4. Hard facings used in welded joints. Industrial applications

    International Nuclear Information System (INIS)

    Delair, J.

    1998-01-01

    In this article, two industrial application cases of special hard facings used in offshore and nuclear fabrications are described into details. These hard facings concern more particularly 1)the heterogeneous joints of a martensitic steel on an ordinary carbon steel 2)the homogeneous joints of a high resistive low alloy carbon steel. (O.M.)

  5. Superconducting properties of the hexagonal-close-packed alloy system TcZr

    International Nuclear Information System (INIS)

    Chatterjee, P.

    1984-01-01

    The theoretical formula of McMillan, modified via the multiple-scattering theory of Gomersall and Gyorffy, is very successful in computing the electron-phonon coupling constant (lambda) and the superconducting transition temperature (T/sub c/) of elements and compounds from quantities readily obtainable from band structure work or approaches based on the scattering theory. However, for disordered solids this theory fails because of the breakdown of the translational symmetry used in the multiple scattering theory. In the particular case of substitutional alloys, the problem can still be solved however if, at each lattice point, the t-matrix of an individual scatterer is replaced by a configurational average of the t-matrices of the alloying materials (average t-matrix approximation). This modified theory, which has already been successfully applied to some cubic substitutional alloys, is herein used to predict lambda and T/sub c/ for the h.c.p. TcZr alloy system. The results indicate that this system has good superconducting properties. (author)

  6. Faces in the Mist: Illusory Face and Letter Detection

    Directory of Open Access Journals (Sweden)

    Cory A. Rieth

    2011-06-01

    Full Text Available We report three behavioral experiments on the spatial characteristics evoking illusory face and letter detection. False detections made to pure noise images were analyzed using a modified reverse correlation method in which hundreds of observers rated a modest number of noise images (480 during a single session. This method was originally developed for brain imaging research, and has been used in a number of fMRI publications, but this is the first report of the behavioral classification images. In Experiment 1 illusory face detection occurred in response to scattered dark patches throughout the images, with a bias to the left visual field. This occurred despite the use of a fixation cross and expectations that faces would be centered. In contrast, illusory letter detection (Experiment 2 occurred in response to centrally positioned dark patches. Experiment 3 included an oval in all displays to spatially constrain illusory face detection. With the addition of this oval the classification image revealed an eyes/nose/mouth pattern. These results suggest that face detection is triggered by a minimal face-like pattern even when these features are not centered in visual focus.

  7. Formation of Al70Cu20Fe10 icosahedral quasicrystal by mechanically alloyed method

    International Nuclear Information System (INIS)

    Yin Shilong; Bian Qing; Qian Liying; Zhang Aimei

    2007-01-01

    The structural evolutions of the mechanically alloyed ternary Al 70 Cu 20 Fe 10 powders with the milling time and the annealing treatment have been studied by X-ray diffraction (XRD), transmission electronic microscopy (TEM) and X-ray absorption fine-structure spectroscopy (XAFS) techniques. Results show that an Al 2 Cu compound forms with short-time milling, while a Cu 9 Al 4 compound forms with long-time milling. Fe can react with Al-Cu alloy by annealing treatment. Al 7 Cu 2 Fe compound with tetragonal structure or Al (Cu, Fe) solid solution with cubic structure may form at lower temperature, while a quasicrystal phase of Al 65 Cu 20 Fe 15 alloy may form at higher temperature

  8. Spinning solitons in cubic-quintic nonlinear media

    Indian Academy of Sciences (India)

    Spinning solitons in cubic-quintic nonlinear media ... features of families of bright vortex solitons (doughnuts, or 'spinning' solitons) in both conservative and dissipative cubic-quintic nonlinear media. ... Pramana – Journal of Physics | News.

  9. The effect of Cu addition and milling contaminations on the microstructure evolution of ball milled Al-Pb alloy during sintering

    International Nuclear Information System (INIS)

    Zhu, M.; Ouyang, L.Z.; Wu, Z.F.; Zeng, M.Q.; Li, Y.Y.; Zou, J.

    2006-01-01

    Al-10 wt.%Pb and Al-10 wt.%Pb-x wt.%Cu (x = 0-7.0) bulk alloys were prepared by sintering the mechanically alloyed powders at various temperatures. The microstructure changes of the as consolidated powders in the course of sintering were analyzed by differential scanning calorimetry, scanning electron microscopy, X-ray diffraction analysis and transmission electron microscopy. It has been found that, with respect to the Al-10 wt.%Pb-x wt.%Cu alloy, CuAl 2 and Cu 9 Al 4 phases formed in the milling process, and the amount of CuAl 2 phase increased while the Cu 9 Al 4 phase disappeared gradually in the sintering process. In both Al-10 wt.%Pb and Al-10 wt.%Pb-x wt.%Cu alloys, the sintering process results in the coarsening of Pb phase and the growth rate of Pb phase fulfills the Lifshitz-Slyozov-Wagner equation even though the size of the Pb phase was in nanometer range. The Pb particle exhibits cuboctahedral morphology and has a cubic to cubic orientation relationship with the Al matrix. The addition of Cu strongly depressed the growth rate of Pb. Contamination induced by milling has apparent influence on the microstructure of the sintered alloys. Al 7 Cu 2 Fe and aluminium oxide phases were identified in the sintered alloys. The cuboctahedral morphology of Pb particles was broken up by the presence of the oxide phase

  10. Energy landscape of defects in body-centered cubic metals

    International Nuclear Information System (INIS)

    Alexander, Rebecca

    2016-01-01

    The structural materials in nuclear reactors are subjected to severe irradiation conditions, leading to changes in their mechanical properties. The aging of these materials raises important issues such as those related to the safety of existing plants and future reactors. In many cases, materials with body-centered cubic bcc crystal structure are used with iron, tungsten, vanadium and tantalum as base metal. Collisions between irradiating particles and atoms constituting materials generate point defects whose migration leads to the formation of clusters responsible for aging. In this thesis, we studied the energetic properties of point defects in the bcc metals mentioned above at the atomic scale. Modeling point defects at the atomic scale can be achieved with different methods that differ only in the quality of the description of the interaction between atoms. Studies using accurate atomic interactions such ab initio calculations are computationally costly making it impossible to directly study clusters of large sizes. The modeling of atomic interactions using semi-empirical potentials reduces the reliability of predictive calculations but allow calculations for large-sized clusters. In this thesis we have developed a unique energy model for dislocation loops as well as for three-dimensional interstitial cluster of type C15. The resulting model has no size limit and can be set entirely by ab initio calculations. To test its robustness for large sizes of clusters we also set this model with semi-empirical potentials calculations and compared the predictions of the model to atomic simulations. With our development we have determined: (i) The relative stability of interstitial dislocation loops according to their Burgers vectors. (ii) The stability of the clusters C15 compared to the type of cluster loop. We showed that the C15 type clusters are more stable when they involve less than 41 interstitials in iron. (iii) In Ta we were able to show the same stability till

  11. Development of bonding techniques of W and Cu-alloys for plasma facing components of fusion reactor with HIP method

    International Nuclear Information System (INIS)

    Saito, S.; Fukaya, K.; Ishiyama, S.; Eto, M.; Sato, K.; Akiba, M.

    1998-01-01

    W (tungsten) and Cu (copper)-alloys, like oxygen free high thermal conductivity (OFHC)-copper or dispersion strengthened (DS)-copper, are candidate materials for plasma facing components(PFC) of TOKAMAK type fusion reactor as armor tile and heat sink, respectively. However, PFC are exposed to cyclic high heat load and heavy irradiation by 14 MeV neutrons. Under these conditions, thermal stresses at bonding interface and irradiation damage will decrease the bonding strength between W and Cu alloys. Therefore, it is necessary to develop a reliable bonding techniques in order to make PFC with enough integrity. We have applied the hot isostatic press (HIP) method to bond W with Cu-alloys. In this experiments, to optimize HIP bonding conditions, four point bending tests were performed for different bonding conditions at temperatures from R.T. to 873 K and we obtained an optimum HIP bonding condition for W and OFHC-Cu as 1273 SK x 2 hours x 98 ∼ 147 MPa. Tensile tests were also performed at the same temperature range. The tensile strength of the bonded W / Cu was almost equal to that of OFHC Cu which was HIPed at the same conditions. Tensile specimens were broken at the bonding interface or OFHC-Cu side. Bonding tests of W and DS-Cu showed that HIP was not successful because tungsten oxide was produced at the bonding interface and residual stresses were not relaxed. Therefore, it was concluded that some insert materials will be needed to bond W and DS-Cu. (author)

  12. Effect of thermo-mechanical processing on microstructure and mechanical properties of U - Nb - Zr alloys: Part 2 - U - 3 wt % Nb - 9 wt % Zr and U - 9 wt% Nb - 3 wt% Zr

    Science.gov (United States)

    Morais, Nathanael Wagner Sales; Lopes, Denise Adorno; Schön, Cláudio Geraldo

    2018-04-01

    The present work is the second and final part of an extended investigation on Usbnd Nb - Zr alloys. It investigates the effect of mechanical processing routes on microstructure of alloys U - 3 wt % Nb - 9 wt % Zr and U - 9 wt% Nb - 3 wt% Zr, through X-ray diffraction and scanning electron microscopy, completing the investigation, which started with alloy U - 6 wt% Nb - 6 wt% Zr in part 1. Mechanical properties are determined using microhardness and bending tests and correlated with the developed microstructures. The results show that processing sequence, in particular the inclusion of a 1000 °C heat treatment step, affects significantly the microstructure and mechanical properties of these alloys alloy in different ways. Microstructural characterization shows that both alloys present significant volume fraction of precipitates of a body-centered cubic (BCC) γ-Nb-Zr rich phase in addition the uranium-rich matrix. Bending tests show that sample ductility does not correlate necessarily with hardness and that the key factor appears to be the amount of the γ-Nb-Zr precipitates, which controls the matrix microstructure. Samples with a monoclinic α″ cellular microstructure and/or with the tetragonally-distorted BCC phase (γ0), although not strictly ductile, showed the largest allowed strains-before-break and complete elastic recovery of the broken pieces, pointing out to the macroscopic observation of superelasticity.

  13. Influences of residual oxygen impurities, cubic indium oxide grains and indium oxy-nitride alloy grains in hexagonal InN crystalline films grown on Si(111) substrates by electron cyclotron resonance plasma-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Yodo, T.; Nakamura, T.; Kouyama, T.; Harada, Y.

    2005-01-01

    We investigated the influences of residual oxygen (O) impurities, cubic indium oxide (β-In 2 O 3 ) grains and indium oxy-nitride (InON) alloy grains in 200 nm-thick hexagonal (α)-InN crystalline films grown on Si(111) substrates by electron cyclotron resonance plasma-assisted molecular beam epitaxy. Although β-In 2 O 3 grains with wide band-gap energy were formed in In film by N 2 annealing, they were not easily formed in N 2 -annealed InN films. Even if they were not detected in N 2 -annealed InN films, the as-grown films still contained residual O impurities with concentrations of less than 0.5% ([O]≤0.5%). Although [O]∝1% could be estimated by investigating In 2 O 3 grains formed in N 2 -annealed InN films, [O]≤0.5% could not be measured by it. However, we found that they can be qualitatively measured by investigating In 2 O 3 grains formed by H 2 annealing with higher reactivity with InN and O 2 , using X-ray diffraction and PL spectroscopy. In this paper, we discuss the formation mechanism of InON alloy grains in InN films. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Martensitic transformation in Heusler alloys Mn2YIn (Y=Ni, Pd and Pt): Theoretical and experimental investigation

    International Nuclear Information System (INIS)

    Luo, Hongzhi; Liu, Bohua; Xin, Yuepeng; Jia, Pengzhong; Meng, Fanbin; Liu, Enke; Wang, Wenhong; Wu, Guangheng

    2015-01-01

    The martensitic transformation and electronic structure of Heusler alloys Mn 2 YIn (Y=Ni, Pd, Pt) have been investigated by both first-principles calculation and experimental investigation. Theoretical calculation reveals that, the energy difference ΔE between the tetragonal martensitic phase and cubic austenitic phase increases with Y varying from Ni to Pt in Mn 2 YIn. Thus a structural transition from cubic to tetragonal is most likely to happen in Heusler alloy Mn 2 PtIn. A single Heusler phase can be obtained in both Mn 2 PtIn and Mn 2 PdIn. A martensitic transformation temperature of 615 K has been identified in Mn 2 PtIn. And in Mn 2 PdIn, the austenitic phase is stable and no martensitic transformation is observed till 5 K. This indicates there may exist a positive relation between ΔE and martensitic transformation temperature. Calculated results show that Mn 2 YIn are all ferrimagnets in both austenitic and martensitic phases. The magnetic properties are mainly determined by the antiparallel aligned Mn spin moments. These findings can help to develop new FSMAs with novel properties. - Highlights: • Positive relation between ΔE and martensitic transformation temperature has been observed. • Heusler alloy Mn 2 PdIn has been synthesized successfully and investigated. • Martensitic transformation in Heusler alloys can be predicted by first -principles calculations

  15. Improved Catalysis of Green-Synthesized Pd-Ag Alloy-Nanoparticles for Anodic Oxidation of Methanol in Alkali

    International Nuclear Information System (INIS)

    Roy Chowdhury, Sreya; Ghosh, Srabanti; Bhattachrya, Swapan Kumar

    2017-01-01

    Highlights: • Pd and Pd x Ag y nanoalloys are synthesised by simple green synthetic method without using any capping agent. • Increased electrochemical surface area and roughness factor in case of Pd x Ag y alloy generates enhanced catalytically active sites which help methanol oxidation reaction. • By analysing the products of MOR reaction by CV, FTIR and HPLC plausible mechanism of the reaction is proposed. • Among different compositions Pd 4 Ag and Pd are the best electrodes for oxidation of methanol and formate respectively in alkali. - Abstract: Monometallic Pd, Ag and bimetallic Pd x Ag y alloy nanoparticles were synthesized in a single pot using a green synthetic protocol in absence of any capping agent. X-ray, electron diffraction, microscopic and spectroscopic studies of synthesized material demonstrate the formation of nanoballs with radius of 10–20 nm of face centred cubic metals and alloys. The electrochemical studies of as-synthesized materials loaded on carbon support reveal that the Pd 4 Ag nanoparticles exhibit the best and synergistic electro-catalytic activity in reference to oxidation of methanol in alkali. The most active Pd 4 Ag nanoparticles show higher peak current (201 mA mg −1 ) in comparison to that (133 mA mg −1 ) of Pd in cyclic voltammetric study. The electrode shows the highest exchange current density (1.95 × 10 −2 mA mg −1 of Pd) for methanol oxidation reaction (MOR) and higher catalytic activity for oxidation of possible intermediates like formaldehyde and sodium formate of MOR. Ex-situ infrared spectrometry and chromatographic studies of reaction products reveal that Ag accelerates the formation of formate rather than carbonate elucidating the plausible mechanism of the reaction. These findings have important implications for further fine-tuning of the Pd nano alloys toward highly active and selective catalysts for alcohol fuel cells.

  16. Additive Manufacturing: Reproducibility of Metallic Parts

    Directory of Open Access Journals (Sweden)

    Konda Gokuldoss Prashanth

    2017-02-01

    Full Text Available The present study deals with the properties of five different metals/alloys (Al-12Si, Cu-10Sn and 316L—face centered cubic structure, CoCrMo and commercially pure Ti (CP-Ti—hexagonal closed packed structure fabricated by selective laser melting. The room temperature tensile properties of Al-12Si samples show good consistency in results within the experimental errors. Similar reproducible results were observed for sliding wear and corrosion experiments. The other metal/alloy systems also show repeatable tensile properties, with the tensile curves overlapping until the yield point. The curves may then follow the same path or show a marginal deviation (~10 MPa until they reach the ultimate tensile strength and a negligible difference in ductility levels (of ~0.3% is observed between the samples. The results show that selective laser melting is a reliable fabrication method to produce metallic materials with consistent and reproducible properties.

  17. Universality in Oxygen Reduction Electrocatalysis on Metal Surfaces

    DEFF Research Database (Denmark)

    Viswanathan, Venkatasubramanian; Hansen, Heine Anton; Rossmeisl, Jan

    2012-01-01

    In this work, we extend the activity volcano for oxygen reduction from the face-centered cubic (fcc) metal (111) facet to the (100) facet. Using density functional theory calculations, we show that the recent findings of constant scaling between OOH* and OH* holds on the fcc metal (100) facet......, as well. Using this fact, we show the existence of a universal activity volcano to describe oxygen reduction electrocatalysis with a minimum overpotential, ηmin = 0.37 ± 0.1 V. Specifically, we find that the (100) facet of Pt is found to bind oxygen intermediates too strongly and is not active for oxygen...... reduction reaction (ORR). In contrast, Au(100) is predicted to be more active than Au(111) and comparable in activity to Pt alloys. Using this activity volcano, we further predict that Au alloys that bind OH more strongly could display improved ORR activity on the (100) facet. We carry out a computational...

  18. A Note on Cubic Convolution Interpolation

    OpenAIRE

    Meijering, E.; Unser, M.

    2003-01-01

    We establish a link between classical osculatory interpolation and modern convolution-based interpolation and use it to show that two well-known cubic convolution schemes are formally equivalent to two osculatory interpolation schemes proposed in the actuarial literature about a century ago. We also discuss computational differences and give examples of other cubic interpolation schemes not previously studied in signal and image processing.

  19. The optimal viewing position in face recognition.

    Science.gov (United States)

    Hsiao, Janet H; Liu, Tina T

    2012-02-28

    In English word recognition, the best recognition performance is usually obtained when the initial fixation is directed to the left of the center (optimal viewing position, OVP). This effect has been argued to involve an interplay of left hemisphere lateralization for language processing and the perceptual experience of fixating at word beginnings most often. While both factors predict a left-biased OVP in visual word recognition, in face recognition they predict contrasting biases: People prefer to fixate the left half-face, suggesting that the OVP should be to the left of the center; nevertheless, the right hemisphere lateralization in face processing suggests that the OVP should be to the right of the center in order to project most of the face to the right hemisphere. Here, we show that the OVP in face recognition was to the left of the center, suggesting greater influence from the perceptual experience than hemispheric asymmetry in central vision. In contrast, hemispheric lateralization effects emerged when faces were presented away from the center; there was an interaction between presented visual field and location (center vs. periphery), suggesting differential influence from perceptual experience and hemispheric asymmetry in central and peripheral vision.

  20. Study of phase transformations in Fe-Mn-Cr Alloys

    International Nuclear Information System (INIS)

    Schule, W.; Panzarasa, A.; Lang, E.

    1988-01-01

    Nickel free alloys for fusion reactor applications are examined. Phase changes in fifteen, mainly austenitic iron-manganese-chromium-alloys of different compositions were investigated in the temperature range between -196 0 C and 1000 0 C after different thermo-mechanical treatments. A range of different physical measuring techniques was employed to investigate the structural changes occurring during heating and cooling and after cold-work: electrical resistivity techniques, differential thermal analysis, magnetic response, Vickers hardness and XRD measurement. The phase boundary between the α Fe-phase and the γ-phase of the iron manganese alloy is approximately maintained if chromium is added to the two component materials. Consequently all the alloy materials for contents of manganese smaller than about 30% Mn are not stable below 500 0 C. This concerns also the AMCR alloys. However the α Fe-phase is not formed during slow cooling from 1000 0 C to ambient temperature and is only obtained if nucleation sites are provided and after very long anneals. A cubic α Mn-type-phase is found for alloys with 18% Cr and 15% Mn, with 13% Cr and 25% Mn, with 10% Cr and 30% Mn, and with 10% Cr and 40% Mn. For these reasons the γ-phase field of the iron-chromium-manganese alloys is very small below 600 0 C and much narrower than reported in the literature. 95 figs. 22 refs

  1. Effect of processing on the microstructural development in a rapidly solidified Al-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Ranganathan, S.; Ojha, S.N.

    1993-01-01

    An Al 80 Fe 10 Si 6 alloy has been rapidly solidified using melt spinning, gas atomization and spray forming processes. The effect of processing techniques on the microstructural characteristics of the alloy has ben evaluated. The melt spun alloy has shown an icosahedral quasicrystalline phase surrounded by a rational approximant structure of the icosahedral phase. The rational approximant structure has been identified as a crystalline cubic silicide phase. The atomized powders have exhibited cellular and dendritic morphology depending on the size of particles. In addition, the second phase particles of the silicide phase are observed to decorate the cell boundaries and interdendritic regions. In contrast, the alloy processed by spray deposition has revealed an equiaxed solidification morphology with a uniform dispersion of find silicon phase inside the grain. The origin of the microstructure in the alloy processed by these techniques is discussed. The results are compared wherever possible with the commercially available Al-Fe-V-Si alloys

  2. Effect of orientation and loading rate on compression behavior of small-scale Mo pillars

    International Nuclear Information System (INIS)

    Schneider, A.S.; Clark, B.G.; Frick, C.P.; Gruber, P.A.; Arzt, E.

    2009-01-01

    Recently, much work has focused on the size effect in face centered cubic (fcc) structures, however few pillar studies have focused on body centered cubic (bcc) metals. This paper explores the role of bcc crystal structure on the size effect, through compression testing of [001] and [235] Molybdenum (Mo) small-scale pillars manufactured by focused ion beam (FIB). The pillar diameters ranged from 200 nm to 5 μm. Results show that the relationship between yield stress and diameter exhibits an inverse relationship (σ y ∝ d -0.22 for [001] Mo and σ y ∝ d -0.34 for [235] Mo) weaker than that observed for face centered cubic (fcc) metals (σ y ∝ d -0.6to-1.0 ). Additional tests at various loading rates revealed that small-scale Mo pillars exhibit a strain rate sensitivity similar to bulk Mo.

  3. The competitive growth of cubic domains in Ti(1-x)AlxN films studied by diffraction anomalous near-edge structure spectroscopy.

    Science.gov (United States)

    Pinot, Y; Tuilier, M-H; Pac, M-J; Rousselot, C; Thiaudière, D

    2015-11-01

    Titanium and aluminium nitride films deposited by magnetron sputtering generally grow as columnar domains made of oriented nanocrystallites with cubic or hexagonal symmetry depending on Al content, which are embedded in more disordered grain boundaries. The substitution of Al atoms for Ti in the cubic lattice of the films improves their resistance to wear and oxidation, allowing their use as protective coatings. Ti K-edge X-ray absorption spectroscopy, which probes both crystallized and more disordered grain boundaries, and X-ray diffraction anomalous fine structure, which is sensitive to short- and long-range order within a given crystallized domain, are carried out on a set of Ti(1-x)AlxN films deposited by magnetron sputtering on Si substrates. Attention is paid to the shape of the pre-edge region, which is sensitive to the symmetry of the site occupied by Ti atoms, either octahedral in face-centred-cubic Ti-rich (TiN, Ti0.54Al0.46N) samples or tetrahedral in hexagonal-close-packed Al-rich (Ti0.32Al0.68N) films. In order to obain information on the titanium environment in the well crystallized areas, subtraction of the smooth part of the energy-dependent structure factor for the Bragg reflections is applied to the pre-edge region of the diffraction anomalous data in order to restore their spectroscopic appearance. A flat pre-edge is related to the typical octahedral environment of Ti atoms for cubic reflections. The difference observed between pre-edge spectra associated with face-centred-cubic 200 and 111 Bragg reflections of Ti0.54Al0.46N is assigned to Ti enrichment of 111 large well ordered domains compared with the more disordered 200 ones. The sharp peak observed in the spectrum recorded from the hexagonal 002 peak of Ti0.32Al0.68N can be regarded as a standard for the pure tetrahedral Ti environment in hexagonal-close-packed nitride.

  4. On q-power cycles in cubic graphs

    DEFF Research Database (Denmark)

    Bensmail, Julien

    2017-01-01

    In the context of a conjecture of Erdos and Gyárfás, we consider, for any q ≥ 2, the existence of q-power cycles (i.e. with length a power of q) in cubic graphs. We exhibit constructions showing that, for every q ≥ 3, there exist arbitrarily large cubic graphs with no q-power cycles. Concerning...... the remaining case q = 2 (which corresponds to the conjecture of Erdos and Gyárfás), we show that there exist arbitrarily large cubic graphs whose only 2-power cycles have length 4 only, or 8 only....

  5. Fabrication technological development of the oxide dispersion strengthened alloy MA957 for fast reactor applications

    International Nuclear Information System (INIS)

    ML Hamilton; DS Gelles; RJ Lobsinger; GD Johnson; WF Brown; MM Paxton; RJ Puigh; CR Eiholzer; C Martinez; MA Blotter

    2000-01-01

    A significant amount of effort has been devoted to determining the properties and understanding the behavior of the alloy MA957 to define its potential usefulness as a cladding material, in the fast breeder reactor program. The numerous characterization and fabrication studies that were conducted are documented in this report. The alloy is a ferritic stainless steel developed by International Nickel Company specifically for structural reactor applications. It is strengthened by a very fine, uniformly distributed yttria dispersoid. Its fabrication involves a mechanical alloying process and subsequent extrusion, which ultimately results in a highly elongated grain structure. While the presence of the dispersoid produces a material with excellent strength, the body centered cubic structure inherent to the material coupled with the high aspect ratio that results from processing operations produces some difficulties with ductility. The alloy is very sensitive to variations in a number of processing parameters, and if the high strength is once lost during fabrication, it cannot be recovered. The microstructural evolution of the alloy under irradiation falls into two regimes. Below about 550 C, dislocation development, αprime precipitation and void evolution in the matrix are observed, while above about 550 C damage appears to be restricted to cavity formation within oxide particles. The thermal expansion of the alloy is very similar to that of HT9 up to the temperature where HT9 undergoes a phase transition to austenitic. Pulse magnetic welding of end caps onto MA957 tubing can be accomplished in a manner similar to that in which it is performed on HT9, although the welding parameters appear to be very sensitive to variations in the tubing that result from small changes in fabrication conditions. The tensile and stress rupture behavior of the alloy are acceptable in the unirradiated condition, being comparable to HT9 below about 700 C and exceeding those of HT9 at

  6. Microstructural features and heat flow analysis of atomized and spray-formed Al-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Ranganathan, S.; Ojha, S.N.

    1998-01-01

    Microstructural features of rapidly solidified powders and preforms of Al 80 Fe 10 V 4 Si 6 alloy produced by spray forming process have been studied. The atomization and spray deposition were carried out using a confined gas atomization process and the microstructural features were characterized using scanning electron microscopy and transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. The microstructure of a wide size range of atomized powders invariably revealed cellular and dendritic morphology. The extent of dendritic region and the dendritic arm spacing were observed to increase with power particle size. The TEM investigations indicated the presence of ultrafine second-phase particles in the intercellular or interdendritic regions. In contrast, the spray deposits of the alloy showed considerable variation in microstructure and size and dispersion of the second-phase particles at specific distances from the deposit-substrate interface and the exterior regions of the deposit. Nevertheless, considerable homogeneity was observed in the microstructure toward the center of the spray deposit. The formation and distribution of a cubic phase α-Al(Fe, V)Si has been characterized in both atomized powders and spray deposits. A one-dimensional heat flow model has been used to analyze the evolution of microstructure during atomization and also during spray deposition processing of this alloy. The results indicate that thermal history of droplets in the spray on deposition surface and their solidification behavior considerably influence the microstructural features of the spray deposits

  7. Electron exchange between tin impurity U{sup –} centers in PbS{sub z}Se{sub 1–z} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Marchenko, A. V. [Alexander Herzen State Pedagogical University of Russia (Russian Federation); Terukov, E. I. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Seregin, P. P., E-mail: ppseregin@mail.ru; Rasnjuk, A. N.; Kiselev, V. S. [Alexander Herzen State Pedagogical University of Russia (Russian Federation)

    2016-07-15

    Using emission {sup 119mm}Sn({sup 119m}Sn) and {sup 119}Sb({sup 119m}Sn) Mössbauer spectroscopy, it is shown that impurity tin atoms in PbS{sub z}Se{sub 1–z} alloys substitute lead atoms and are two-electron donors with negative correlation energy (U{sup –} centers). It is found that the energy levels related to impurity tin atoms are in the lower half of the band gap at z ≥ 0.5 against the background of allowed valence-band states at z ≤ 0.4. The electron exchange between neutral and doubly ionized tin U{sup –} centers in partially compensated Pb{sub 0.99}Sn{sub 0.005}Na{sub 0.005}S{sub z}Se{sub 1–z} alloys is studied. The activation energy of this process decreases from 0.111(5) eV for a composition with z = 1 to 0.049(5) eV for compositions with c ≤ 0. For all z, the exchange is implemented via the simultaneous transfer of two electrons using delocalized valence-band states.

  8. Size-dependent and intra-band photoluminescence of NiS2 nano-alloys synthesized by microwave assisted hydrothermal technique

    CSIR Research Space (South Africa)

    Linganiso, C

    2013-03-01

    Full Text Available Synthesis of nickel disulfide (NiS2) nano-alloys capped and uncapped with hexadecylamine (HDA) was carried out. A cubic phase NiS2 formation was confirmed by X-ray diffraction (XRD) analysis. An average crystallite size of 35 nm was obtained...

  9. Growth of InAs Wurtzite Nanocrosses from Hexagonal and Cubic Basis

    DEFF Research Database (Denmark)

    Krizek, Filip; Kanne, Thomas; Razmadze, Davydas

    2017-01-01

    . Two methods use conventional wurtzite nanowire arrays as a 6-fold hexagonal basis for growing single crystal wurtzite nanocrosses. A third method uses the 2-fold cubic symmetry of (100) substrates to form well-defined coherent inclusions of zinc blende in the center of the nanocrosses. We show......Epitaxially connected nanowires allow for the design of electron transport experiments and applications beyond the standard two terminal device geometries. In this Letter, we present growth methods of three distinct types of wurtzite structured InAs nanocrosses via the vapor-liquid-solid mechanism...

  10. Partitioning of rhodium and ruthenium between Pd–Rh–Ru and (Ru,Rh)O{sub 2} solid solutions in high-level radioactive waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, Toru, E-mail: toru@gipc.akita-u.ac.jp [Center for Engineering Science, Akita University, 1-1, Tegatagakuenmachi, Akita City, Akita 010-8502 (Japan); Ohira, Toshiaki [Center for Engineering Science, Akita University, 1-1, Tegatagakuenmachi, Akita City, Akita 010-8502 (Japan); Komamine, Satoshi; Ochi, Eiji [Research and Development Department, Reprocessing Business Division, Japan Nuclear Fuel Limited, 4-108, Okitsuke, Obuchi, Rokkasho-mura, Aomori 039-3212 (Japan)

    2015-10-15

    The partitioning of rhodium and ruthenium between Pd–Rh–Ru alloy with a face-centered cubic (FCC) structure and (Ru,Rh)O{sub 2} solid solution has been investigated between 1273 and 1573 K at atmospheric oxygen fugacity. The rhodium and ruthenium contents in FCC increase, while the RhO{sub 2} content in (Ru,Rh)O{sub 2} decreases with increasing temperature due to progressive reduction of the system. Based on the experimental results and previously reported thermodynamic data, the thermodynamic mixing properties of FCC phase and (Ru,Rh)O{sub 2} have been calibrated in an internally consistent manner. Phase equilibrium of platinum grope metals in an HLW glass was calculated by using the obtained thermodynamic parameters.

  11. Effect of Cr, Ti, V, and Zr Micro-additions on Microstructure and Mechanical Properties of the Al-Si-Cu-Mg Cast Alloy

    Science.gov (United States)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2016-05-01

    Uniaxial static and cyclic tests were used to assess the role of Cr, Ti, V, and Zr additions on properties of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in as-cast and T6 heat-treated conditions. The microstructure of the as-cast alloy consisted of α-Al, eutectic Si, and Cu-, Mg-, and Fe-rich phases Al2.1Cu, Al8.5Si2.4Cu, Al5.2CuMg4Si5.1, and Al14Si7.1FeMg3.3. In addition, the micro-sized Cr/Zr/Ti/V-rich phases Al10.7SiTi3.6, Al6.7Si1.2TiZr1.8, Al21.4Si3.4Ti4.7VZr1.8, Al18.5Si7.3Cr2.6V, Al7.9Si8.5Cr6.8V4.1Ti, Al6.3Si23.2FeCr9.2V1.6Ti1.3, Al92.2Si16.7Fe7.6Cr8.3V1.8, and Al8.2Si30.1Fe1.6Cr18.8V3.3Ti2.9Zr were present. During solution treatment, Cu-rich phases were completely dissolved, while the eutectic silicon, Fe-, and Cr/Zr/Ti/V-rich intermetallics experienced only partial dissolution. Micro-additions of Cr, Zr, Ti, and V positively affected the alloy strength. The modified alloy in the T6 temper during uniaxial tensile tests exhibited yield strength of 289 MPa and ultimate tensile strength of 342 MPa, being significantly higher than that for the Al-Si-Cu-Mg base. Besides, the cyclic yield stress of the modified alloy in the T6 state increased by 23 pct over that of the base alloy. The fatigue life of the modified alloy was substantially longer than that of the base alloy tested using the same parameters. The role of Cr, Ti, V, and Zr containing phases in controlling the alloy fracture during static and cyclic loading is discussed.

  12. III-nitrides on oxygen- and zinc-face ZnO substrates

    International Nuclear Information System (INIS)

    Namkoong, Gon; Burnham, Shawn; Lee, Kyoung-Keun; Trybus, Elaissa; Doolittle, W. Alan; Losurdo, Maria; Capezzuto, Pio; Bruno, Giovanni; Nemeth, Bill; Nause, Jeff

    2005-01-01

    The characteristics of III-nitrides grown on zinc- and oxygen-face ZnO by plasma-assisted molecular beam epitaxy were investigated. The reflection high-energy electron diffraction pattern indicates formation of a cubic phase at the interface between III-nitride and both Zn- and O-face ZnO. The polarity indicates that Zn-face ZnO leads to a single polarity, while O-face ZnO forms mixed polarity of III-nitrides. Furthermore, by using a vicinal ZnO substrate, the terrace-step growth of GaN was realized with a reduction by two orders of magnitude in the dislocation-related etch pit density to ∼10 8 cm -2 , while a dislocation density of ∼10 10 cm -2 was obtained on the on-axis ZnO substrates

  13. Crystal and electronic structure study of AgAu and AgCu bimetallic alloy thin films by X-ray techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ozkendir, O. Murat, E-mail: ozkendir@gmail.com [Mersin University, Faculty of Technology, Energy Systems Engineering, Tarsus (Turkey); Mersin University, Institute of Natural Science, Department of Nanotechnology and Advanced Materials, Mersin (Turkey); Cengiz, E. [Karadeniz Technical University, Faculty of Science, Department of Physics, Trabzon (Turkey); Yalaz, E. [Mersin University, Institute of Natural Science, Department of Nanotechnology and Advanced Materials, Mersin (Turkey); Söğüt, Ö.; Ayas, D.H. [Kahramanmaraş Sütçü İmam Üniversitesi, Faculty of Science and Letters, Department of Physics, Kahramanmaraş (Turkey); Thammajak, B. Nirawat [Synchrotron Light Research Institute (Public Organisation), 111 University Avenue, T. Suranaree, A. Muang, Nakhon Ratchasima 30000 (Thailand)

    2016-05-15

    Highlights: • Crystal and electronic properties of bimetallic AgCu and AgAu alloy thin films were studied. • Both AgCu and AgAu bimetallic samples were determined to have cubic crystal geometry. • Strong influence of Cu and Au atoms on the electronic structure of the Ag atoms were determined. - Abstract: Crystal and electronic structure properties of bimetallic AgAu and AgCu alloy thin films were investigated by X-ray spectroscopic techniques. The aim of this study is to probe the influence of Au or Cu atoms on the electronic behaviors of Ag ions in bimetallic alloy materials that yields different crystal properties. To identify the mechanisms causing crystal phase transitions, study were supported by the collected EXAFS (Extended X-ray Absorption Fine Structure) data. Crystal structures of both Cu and Au doped bimetallic Ag samples were determined mainly in cubic geometry with “Fm3m” space group. Through the Ag–Au and Ag–Cu molecular interactions during bimetallic alloy formations, highly overlapped electronic levels that supports large molecular band formations were observed with different ionization states. Besides, traces of the d–d interactions in Au rich samples were determined as the main interplay in the broad molecular bond formations. The exact atomic locations and types in the samples were determined by EXAFS studies and supported by the performed calculations with FEFF scientific code.

  14. Shape Preserving Interpolation Using C2 Rational Cubic Spline

    Directory of Open Access Journals (Sweden)

    Samsul Ariffin Abdul Karim

    2016-01-01

    Full Text Available This paper discusses the construction of new C2 rational cubic spline interpolant with cubic numerator and quadratic denominator. The idea has been extended to shape preserving interpolation for positive data using the constructed rational cubic spline interpolation. The rational cubic spline has three parameters αi, βi, and γi. The sufficient conditions for the positivity are derived on one parameter γi while the other two parameters αi and βi are free parameters that can be used to change the final shape of the resulting interpolating curves. This will enable the user to produce many varieties of the positive interpolating curves. Cubic spline interpolation with C2 continuity is not able to preserve the shape of the positive data. Notably our scheme is easy to use and does not require knots insertion and C2 continuity can be achieved by solving tridiagonal systems of linear equations for the unknown first derivatives di, i=1,…,n-1. Comparisons with existing schemes also have been done in detail. From all presented numerical results the new C2 rational cubic spline gives very smooth interpolating curves compared to some established rational cubic schemes. An error analysis when the function to be interpolated is ft∈C3t0,tn is also investigated in detail.

  15. Guarded Cubical Type Theory

    DEFF Research Database (Denmark)

    Birkedal, Lars; Bizjak, Aleš; Clouston, Ranald

    2016-01-01

    This paper improves the treatment of equality in guarded dependent type theory (GDTT), by combining it with cubical type theory (CTT). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning...... with coinductive types. We wish to implement GDTT with decidable type-checking, while still supporting non-trivial equality proofs that reason about the extensions of guarded recursive constructions. CTT is a variation of Martin-L\\"of type theory in which the identity type is replaced by abstract paths between...... terms. CTT provides a computational interpretation of functional extensionality, is conjectured to have decidable type checking, and has an implemented type-checker. Our new type theory, called guarded cubical type theory, provides a computational interpretation of extensionality for guarded recursive...

  16. Guarded Cubical Type Theory

    DEFF Research Database (Denmark)

    Birkedal, Lars; Bizjak, Aleš; Clouston, Ranald

    2016-01-01

    This paper improves the treatment of equality in guarded dependent type theory (GDTT), by combining it with cubical type theory (CTT). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning...... with coinductive types. We wish to implement GDTT with decidable type checking, while still supporting non-trivial equality proofs that reason about the extensions of guarded recursive constructions. CTT is a variation of Martin-L\\"of type theory in which the identity type is replaced by abstract paths between...... terms. CTT provides a computational interpretation of functional extensionality, enjoys canonicity for the natural numbers type, and is conjectured to support decidable type-checking. Our new type theory, guarded cubical type theory (GCTT), provides a computational interpretation of extensionality...

  17. Development of a copper alloy to beryllium HIP bonding technology for the ITER first wall

    International Nuclear Information System (INIS)

    Sherlock, P.; Peacock, A.T.; Mc Callum, A.D.

    2005-01-01

    The primary first wall (PFW) panels of the ITER blanket concept comprise a bi-metallic copper alloy/stainless steel water-cooled heatsink faced with a plasma facing material. Precipitation strengthened CuCrZr is one option for the copper alloy of the heatsink; beryllium, in the form of tiles is an option for the plasma facing material. Over recent years, the technology needed to HIP bond the beryllium tiles to CuCrZr alloy has been developed. This paper describes small samples and larger mock-ups produced during the development of this HIP bonding technology and outlines how structural analyses were used to gain an understanding of the bonding process and refine the design

  18. Evaluating the ductility characteristics of self-centering buckling-restrained shape memory alloy braces

    Science.gov (United States)

    Abou-Elfath, Hamdy

    2017-05-01

    Recently, self-centering earthquake resistant systems have attracted attention because of their promising potential in controlling the residual drifts and reducing repair costs after earthquake events. Considerable portion of self-centering research is based on using short-segment superelastic shape memory alloy (SMA) braces as strengthening technique because of the lower modulus of elasticity of SMA in comparison with that of steel. The goal of this study is to investigate the ductility characteristics of these newly proposed short-segment SMA braces to evaluate their safety levels against fracture failures under earthquake loading. This goal has been achieved by selecting an appropriate seismic performance criterion for steel frames equipped with SMA braces, defining the level of strain capacity of SMA and calculating the strain demands in the SMA braces by conducting a series of pushover and earthquake time history analyzes on typical frame structure. The results obtained in this study indicated the inability of short-segment SMA designs to provide adequate ductility to the lateral resistant systems. An alternative approach is introduced by using hybrid steel-SMA braces that are capable of controlling the residual drifts and providing the structure with adequate lateral stiffness.

  19. Face-to-face Tobacco Sales: What Retailers Need to Know

    Centers for Disease Control (CDC) Podcasts

    2010-09-30

    This podcast reviews new federal tobacco product regulations that require retailers to sell cigarettes and smokeless tobacco products in a face-to-face exchange.  Created: 9/30/2010 by The CDC Division of News and Electronic Media and the FDA Center for Tobacco Products.   Date Released: 9/30/2010.

  20. Difficulties faced by family physicians in primary health care centers in Jeddah, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Sahar H Mumenah

    2015-01-01

    Full Text Available Aim: The aim was to determine the difficulties faced by family physicians, and compare how satisfied those working with the Ministry of Health (MOH are with their counterparts who work at some selected non-MOH hospitals. Methods: An analytical, cross-sectional study was conducted at King Abdulaziz University Hospital, King Faisal Specialist Hospital and Research Center (KFSH and RC, and 40 MOH primary health care centers across Jeddah. A structured multi-item questionnaire was used to collect demographic data and information on the difficulties family physicians face. The physicians′ level of satisfaction and how it was affected by the difficulties was assessed. Results: Women constituted 71.9% of the sample. Problems with transportation formed one of the main difficulties encountered by physicians. Compared to non-MOH physician, a significantly higher proportion of MOH physicians reported unavailability of radiology technicians (P = 0.011 and radiologists (P < 0.001, absence of the internet and computer access (P < 0.001, unavailability of laboratory services (P = 0.004, reagents (P = 0.001, X-ray equipment (P = 0.027, ultrasound equipment (P < 0.001, an electronic medical records system (P < 0.001, insufficient laboratory tests (P = 0.0001, and poor building maintenance (P < 0.001. Family physicians with the MOH were less satisfied with their jobs compared with non-MOH physicians (P = 0.032. Conclusion: MOH family physicians encountered difficulties relating to staff, services, and infrastructure, which consequently affected their level of satisfaction.

  1. Effect of microstructure on properties of friction stir welded Inconel Alloy 600

    International Nuclear Information System (INIS)

    Sato, Y.S.; Arkom, P.; Kokawa, H.; Nelson, T.W.; Steel, R.J.

    2008-01-01

    Friction stir welding (FSW) has been widely used to metals with moderate melting temperatures, primarily Al alloys. Recently, tool materials that withstand high stresses and temperatures necessary for FSW of materials with high melting temperatures have been developed. In the present study, polycrystalline cubic boron nitride (PCBN) tool was used for partially penetrated FSW of Inconel Alloy 600, and a defect-free weld was successfully produced. Microstructural characteristics, mechanical and corrosion properties in the weld were examined. The weld had better mechanical properties than the base material due to formation of fine grain structure in the stir zone, but exhibited slightly the lower corrosion resistance in a part of the stir zone and heat-affected zone (HAZ)

  2. Randomized Block Cubic Newton Method

    KAUST Repository

    Doikov, Nikita; Richtarik, Peter

    2018-01-01

    We study the problem of minimizing the sum of three convex functions: a differentiable, twice-differentiable and a non-smooth term in a high dimensional setting. To this effect we propose and analyze a randomized block cubic Newton (RBCN) method, which in each iteration builds a model of the objective function formed as the sum of the natural models of its three components: a linear model with a quadratic regularizer for the differentiable term, a quadratic model with a cubic regularizer for the twice differentiable term, and perfect (proximal) model for the nonsmooth term. Our method in each iteration minimizes the model over a random subset of blocks of the search variable. RBCN is the first algorithm with these properties, generalizing several existing methods, matching the best known bounds in all special cases. We establish ${\\cal O}(1/\\epsilon)$, ${\\cal O}(1/\\sqrt{\\epsilon})$ and ${\\cal O}(\\log (1/\\epsilon))$ rates under different assumptions on the component functions. Lastly, we show numerically that our method outperforms the state-of-the-art on a variety of machine learning problems, including cubically regularized least-squares, logistic regression with constraints, and Poisson regression.

  3. Randomized Block Cubic Newton Method

    KAUST Repository

    Doikov, Nikita

    2018-02-12

    We study the problem of minimizing the sum of three convex functions: a differentiable, twice-differentiable and a non-smooth term in a high dimensional setting. To this effect we propose and analyze a randomized block cubic Newton (RBCN) method, which in each iteration builds a model of the objective function formed as the sum of the natural models of its three components: a linear model with a quadratic regularizer for the differentiable term, a quadratic model with a cubic regularizer for the twice differentiable term, and perfect (proximal) model for the nonsmooth term. Our method in each iteration minimizes the model over a random subset of blocks of the search variable. RBCN is the first algorithm with these properties, generalizing several existing methods, matching the best known bounds in all special cases. We establish ${\\\\cal O}(1/\\\\epsilon)$, ${\\\\cal O}(1/\\\\sqrt{\\\\epsilon})$ and ${\\\\cal O}(\\\\log (1/\\\\epsilon))$ rates under different assumptions on the component functions. Lastly, we show numerically that our method outperforms the state-of-the-art on a variety of machine learning problems, including cubically regularized least-squares, logistic regression with constraints, and Poisson regression.

  4. [Microbiological corrosion of aluminum alloys].

    Science.gov (United States)

    Smirnov, V F; Belov, D V; Sokolova, T N; Kuzina, O V; Kartashov, V R

    2008-01-01

    Biological corrosion of ADO quality aluminum and aluminum-based construction materials (alloys V65, D16, and D16T) was studied. Thirteen microscopic fungus species and six bacterial species proved to be able to attack aluminum and its alloys. It was found that biocorrosion of metals by microscopic fungi and bacteria was mediated by certain exometabolites. Experiments on biocorrosion of the materials by the microscopic fungus Alternaria alternata, the most active biodegrader, demonstrated that the micromycete attack started with the appearance of exudate with pH 8-9 on end faces of the samples.

  5. Computer simulations of low energy displacement cascades in a face centered cubic lattice

    International Nuclear Information System (INIS)

    Schiffgens, J.O.; Bourquin, R.D.

    1976-09-01

    Computer simulations of atomic motion in a copper lattice following the production of primary knock-on atoms (PKAs) with energies from 25 to 200 eV are discussed. In this study, a mixed Moliere-Englert pair potential is used to model the copper lattice. The computer code COMENT, which employs the dynamical method, is used to analyze the motion of up to 6000 atoms per time step during cascade evolution. The atoms are specified as initially at rest on the sites of an ideal lattice. A matrix of 12 PKA directions and 6 PKA energies is investigated. Displacement thresholds in the [110] and [100] are calculated to be approximately 17 and 20 eV, respectively. A table showing the stability of isolated Frenkel pairs with different vacancy and interstitial orientations and separations is presented. The numbers of Frenkel pairs and atomic replacements are tabulated as a function of PKA direction for each energy. For PKA energies of 25, 50, 75, 100, 150, and 200 eV, the average number of Frenkel pairs per PKA are 0.4, 0.6, 1.0, 1.2, 1.4, and 2.2 and the average numbers of replacements per PKA are 2.4, 4.0, 3.3, 4.9, 9.3, and 15.8

  6. Dislocation structures of Σ3 {112} twin boundaries in face centered cubic metals

    Science.gov (United States)

    Wang, J.; Anderoglu, O.; Hirth, J. P.; Misra, A.; Zhang, X.

    2009-07-01

    High resolution transmission electron microscopy of nanotwinned Cu films revealed Σ3 {112} incoherent twin boundaries (ITBs), with a repeatable pattern involving units of three {111} atomic planes. Topological analysis shows that Σ3 {112} ITBs adopt two types of atomic structure with differing arrangements of Shockley partial dislocations. Atomistic simulations were performed for Cu and Al. These studies revealed the structure of the two types of ITBs, the formation mechanism and stability of the associated 9R phase, and the influence of stacking fault energies on them. The results suggest that Σ3 {112} ITBs may migrate through the collective glide of partial dislocations.

  7. Elastic-plastic collapse of super-elastic shock waves in face-centered-cubic solids

    International Nuclear Information System (INIS)

    Zhakhovsky, Vasily V; Demaske, Brian J; Oleynik, Ivan I; Inogamov, Nail A; White, Carter T

    2014-01-01

    Shock waves in the [110] and [111] directions of single-crystal Al samples were studied using molecular dynamics (MD) simulations. Piston-driven simulations were performed to investigate the split shock-wave regime. At low piston velocities, the material is compressed initially to a metastable over-compressed elastic state leading to a super-elastic single shock wave. This metastable elastic state later collapses to a plastic state resulting in the formation of a two-wave structure consisting of an elastic precursor followed by a slower plastic wave. The single two-zone elastic-plastic shock-wave regime appearing at higher piston velocities was studied using moving window MD. The plastic wave attains the same average speed as the elastic precursor to form a single two-zone shock wave. In this case, repeated collapse of the highly over-compressed elastic state near the plastic shock front produces ultrashort triangle pulses that provide the pressure support for the leading elastic precursor.

  8. Neutrosophic Cubic MCGDM Method Based on Similarity Measure

    Directory of Open Access Journals (Sweden)

    Surapati Pramanik

    2017-06-01

    Full Text Available The notion of neutrosophic cubic set is originated from the hybridization of the concept of neutrosophic set and interval valued neutrosophic set. We define similarity measure for neutrosophic cubic sets and prove some of its basic properties.

  9. Cubical version of combinatorial differential forms

    DEFF Research Database (Denmark)

    Kock, Anders

    2010-01-01

    The theory of combinatorial differential forms is usually presented in simplicial terms. We present here a cubical version; it depends on the possibility of forming affine combinations of mutual neighbour points in a manifold, in the context of synthetic differential geometry.......The theory of combinatorial differential forms is usually presented in simplicial terms. We present here a cubical version; it depends on the possibility of forming affine combinations of mutual neighbour points in a manifold, in the context of synthetic differential geometry....

  10. Additive Manufacturing of 17-4 PH Stainless Steel: Post-processing Heat Treatment to Achieve Uniform Reproducible Microstructure

    Science.gov (United States)

    Cheruvathur, Sudha; Lass, Eric A.; Campbell, Carelyn E.

    2016-03-01

    17-4 precipitation hardenable (PH) stainless steel is a useful material when a combination of high strength and good corrosion resistance up to about 315°C is required. In the wrought form, this steel has a fully martensitic structure that can be strengthened by precipitation of fine Cu-rich face-centered cubic phase upon aging. When fabricated via additive manufacturing (AM), specifically laser powder-bed fusion, 17-4 PH steel exhibits a dendritic structure containing a substantial fraction of nearly 50% of retained austenite along with body centered cubic/martensite and fine niobium carbides preferentially aligned along interdendritic boundaries. The effect of post-build thermal processing on the material microstructure is studied in comparison to that of conventionally produced wrought 17-4 PH with the intention of creating a more uniform, fully martensitic microstructure. The recommended stress relief heat treatment currently employed in industry for post-processing of AM 17-4 PH steel is found to have little effect on the as-built dendritic microstructure. It is found that, by implementing the recommended homogenization heat treatment regimen of Aerospace Materials Specification 5355 for CB7Cu-1, a casting alloy analog to 17-4 PH, the dendritic solidification structure is eliminated, resulting in a microstructure containing about 90% martensite with 10% retained austenite.

  11. P-union and P-intersection of neutrosophic cubic sets

    OpenAIRE

    Florentin Smarandache; Chang Su Kim

    2015-01-01

    Conditions for the P-intersection and P-intersection of falsity-external (resp. indeterminacy-external and truth-external) neutrosophic cubic sets to be an falsity-external (resp. indeterminacy-external and truth- external) neutrosophic cubic set are provided. Conditions for the P-union and the P-intersection of two truth-external (resp. indeterminacy-external and falsity-external) neutrosophic cubic sets to be a truth-internal (resp. indeterminacy-internal and falsity-internal) neutrosoph...

  12. Impacts of trace carbon on the microstructure of as-sintered biomedical Ti-15Mo alloy and reassessment of the maximum carbon limit.

    Science.gov (United States)

    Yan, M; Qian, M; Kong, C; Dargusch, M S

    2014-02-01

    The formation of grain boundary (GB) brittle carbides with a complex three-dimensional (3-D) morphology can be detrimental to both the fatigue properties and corrosion resistance of a biomedical titanium alloy. A detailed microscopic study has been performed on an as-sintered biomedical Ti-15Mo (in wt.%) alloy containing 0.032 wt.% C. A noticeable presence of a carbon-enriched phase has been observed along the GB, although the carbon content is well below the maximum carbon limit of 0.1 wt.% specified by ASTM Standard F2066. Transmission electron microscopy (TEM) identified that the carbon-enriched phase is face-centred cubic Ti2C. 3-D tomography reconstruction revealed that the Ti2C structure has morphology similar to primary α-Ti. Nanoindentation confirmed the high hardness and high Young's modulus of the GB Ti2C phase. To avoid GB carbide formation in Ti-15Mo, the carbon content should be limited to 0.006 wt.% by Thermo-Calc predictions. Similar analyses and characterization of the carbide formation in biomedical unalloyed Ti, Ti-6Al-4V and Ti-16Nb have also been performed. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Spatial Bimetallic Castings Manufactured from Iron Alloys

    Directory of Open Access Journals (Sweden)

    M. Cholewa

    2007-07-01

    Full Text Available In this paper a conception for manufacturing method of skeleton castings with composite features was shown. Main application of such castings are the working organs of machines subjected to intensive abrasive and erosive wear. Skeleton geometry was based on three-dimensional cubic net consisting of circular connectors and nodes joining 6 connectors according to Cartesian co-ordinate system. Dimension of an elementary cell was equal to 10 mm and diameter of single connector was equal to 5 mm. For bimetallic castings preparation two Fe based alloys were used: L25SHMN cast steel for skeleton substrate and ZlCr15NiMo cast iron for working part of the casting. In presented work obtained structure was analyzed with indication of characteristic regions. Authors described phenomena occurring at the alloys interface and phases in transition zone. A thesis was formulated concerning localization of transition zone at the cast iron matrix – cast steel reinforcement interface. Direction of further studies were indicated.

  14. Identification of intermetallic phases in a eutectic Al-Si casting alloy using electron backscatter diffraction pattern analysis

    International Nuclear Information System (INIS)

    Kral, M.V.; McIntyre, H.R.; Smillie, M.J.

    2004-01-01

    Intermetallic phases in sand cast eutectic Al-Si alloys were characterized using a combination of SEM, EDS and EBSD pattern analysis. Chinese script α-phase particles were consistent with cubic Al 19 (Fe,Mn) 5 Si 2 . Plate-shaped β-phase particles were consistent with tetragonal Al 3 (Fe,Mn)Si 2

  15. Determination of crystalline texture in aluminium - uranium alloys by neutron diffraction

    International Nuclear Information System (INIS)

    Azevedo, A.M.V. de.

    1978-01-01

    Textures of hot-rolled aluminum-uranium alloys and of aluminum were determined by neutron diffraction. Sheets of alloys containing 8.0, 21.5 and 23.7 wt pct U, as well as pure aluminum, were obtained in a stepped rolling process, 15% reduction each step, 75% total reduction. During the rolling the temperature was 600 0 C. Alloys with low uranium contents are two phase systems in which an intermetallic compound UAl 4 , orthorhombic, is dispersed in a pure aluminum matrix. The addition of a few percent of Si in such alloys leads to the formation of UAl 3 , simple cubic, instead of UAl 4 . The Al -- 23.7 wt pct U alloy was prepared with 2,2 wt pct of Si. The results indicate that the texture of the matrix is more dependent on the uranium concentration than on the texture of the intermetallic phases. An improvement in the technique applied to texture measurements by using a sample fully bathed in the neutron beam is also presented. The method takes advantage of the low neutron absorption of the studied materials as well as of the neglibible variation in the multiple scattering which occurs in a conveniently shaped sample having a weakly developed texture. (Author) [pt

  16. Structural and constitutional studies of some cerium-praseodymium alloys

    International Nuclear Information System (INIS)

    Altunbas, M.; Harris, I.R.

    1980-01-01

    Room temperature X-ray diffraction studies on some powdered Ce-Pr alloys indicate that the face-centred-cubic (fcc) structure extends from 0 to 65% Pr and the double hexagonal (dhcp) structure from 66 to 100% Pr, after a heat treatment of 600 0 C for 2 h and quickly cooling to room temperature. Variations of atomic volume with composition in both ranges indicate that the volume difference between the fcc form of praseodymium and the dhcp form is similar to that observed for α(dhcp) and β(fcc) lanthanum, whereas extrapolation to 100% Ce from the dhcp range gave an atomic volume for the dhcp Ce appreciably in excess of the atomic volume of fcc γ-Ce. This volume expansion is consistent with a slight change of the effective valency of the cerium atoms in the dhcp solid solutions when compared with the γ-Ce but there is uncertainty as to the precise atomic volume of dhcp β-Ce. The DTA studies indicate a narrow liquidus/solidus separation and the electrical resistivity and DTA measurements indicate a regular change with composition in the transition temperature of the high temperature bcc phase. For the dhcp-fcc transition there is a marked variation in the width of the hysteresis loop across the Ce-Pr system which can be correlated with the degree of plastic deformation involved in the transformation. There is a marked increase in the slope of the transition temperature with composition for the Pr-rich alloys and no such transition is observed for the praseodymium samples after one heating cycle. A possible dhcp-fcc transition, however, is indicated by the DTA traces of the commercially pure praseodymium sample on cycling with temperature and this has been attributed to the influence of interstitial impurities. (author)

  17. Abrupt symmetry decrease in the ThT2Al20 alloys (T = 3d transition metal)

    International Nuclear Information System (INIS)

    Uziel, A.; Bram, A.I.; Venkert, A.; Kiv, A.E.; Fuks, D.; Meshi, L.

    2015-01-01

    Th-T-Al system, where T-3d transition metals, was studied at ThT 2 Al 20 stoichiometry to establish the influence of T on the structural stability of ternary aluminide formed. Different alloys were prepared, varying T in the row from Ti to Fe. Using electron microscopy and X-ray diffraction methods it was found that ThT 2 Al 20 phase adopts CeCr 2 Al 20 structure type when T = Ti, V, and Cr. Starting from Mn, the symmetry of the stable Al-rich phase, which forms in the alloys with the same composition, decreases from cubic to orthorhombic. The results of Density Functional Theory (DFT) calculations coincide with experiments. Concepts of the Theory of Coordination Compounds and Jahn–Teller effect were used to explain the observed abrupt change of the symmetry. These considerations were supported by DFT calculations. - Highlights: • Type of transition metal influences symmetry change in the ThT 2 Al 20 alloys. • It was found that cubic ThT 2 Al 20 phase is stable for T = Ti, V and Cr. • When T = Mn, Fe–Al + orthorhombic ThT 2 Al 10 are formed, lowering the symmetry. • Experimental results and DFT calculations were in full agreement. • TCC and of Jahn–Teller effect were used for explanation of the results

  18. Non-spherical micelles in an oil-in-water cubic phase

    DEFF Research Database (Denmark)

    Leaver, M.; Rajagopalan, V.; Ulf, O.

    2000-01-01

    phase, both with and without SDS, was established by NMR self-diffusion. In addition H-2 NMR relaxation experiments have demonstrated that the micelles in the cubic phase are non-spherical, having grown and changed shape upon formation of the cubic phase from the micellar solution. Small angle...... associated with the micellar cubic phase, Pm3n and Fd3m. The micellar volumes calculated for these space groups are similar and are consistent with a change in micellar geometry from spherical to prolate.......The cubic phase formed between the microemulsion and hexagonal phases of the ternary pentaethylene glycol dodecyl ether (C12E5)-decane-water system and that doped with small amounts of sodium dodecylsulfate (SDS) have been investigated. The presence of discrete oil-swollen micelles in the cubic...

  19. Density functional theory investigation of elastic properties and martensitic transformation of Ti-Ta alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Tanmoy; Rogal, Jutta; Drautz, Ralf [Interdisciplinary Centre for Advanced Materials Simulation, Ruhr- Universitaet Bochum (Germany)

    2016-07-01

    Ti-Ta alloys are considered as promising materials for high temperature shape memory alloys as well as biomedical applications. The properties of these alloys have been shown to be strongly composition dependent. The temperature for the martensitic transformation between the high temperature cubic austenite and the low temperature orthorhombic martensite decreases linearly with increasing Ta content. Likewise, the elastic properties show clear trends with changing composition. We use density functional theory to investigate the involved phases in Ti-Ta where the disordered phases are treated by special quasi-random structures. To compare the stability of the involved phases as a function of temperature we calculate free energies using the quasi-harmonic Debye model. The obtained trends in the stability are consistent with experimentally measured transformation temperatures. Furthermore, we determine elastic properties which are in good agreement with experimentally observed trends.

  20. Investigation of machining damage and tool wear resulting from drilling powder metal aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Fell, H.A. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States)

    1997-05-01

    This report documents the cutting of aluminum powder metallurgy (PM) parts for the North Carolina Manufacturing Extension Partnership. The parts, an aluminum powder metal formulation, were supplied by Sinter Metals Inc., of Conover, North Carolina. The intended use of the alloy is for automotive components. Machining tests were conducted at Y-12 in the machine shop of the Skills Demonstration Center in Building 9737. Testing was done on June 2 and June 3, 1997. The powder metal alloy tested is very abrasive and tends to wear craters and produce erosion effects on the chip washed face of the drills used. It also resulted in huge amounts of flank wear and degraded performance on the part of most drills. Anti-wear coatings on drills seemed to have an effect. Drills with the coating showed less wear for the same amount of cutting. The usefulness of coolants and lubricants in reducing tool wear and chipping/breakout was not investigated.

  1. Effects of additive Pd on the structures and electrochemical hydrogen storage properties of Mg{sub 67}Co{sub 33}-based composites or alloys with BCC phase

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yao; Zhuang, Xiangyang [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Zhu, Yunfeng [College of Materials Science and Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009 (China); Zhan, Leyu [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Pu, Zhenggan [College of Materials Science and Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009 (China); Wan, Neng [SEU-FEI Nano Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronics Science and Engineering, Southeast University, Nanjing 210096 (China); Li, Liquan [College of Materials Science and Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009 (China)

    2015-02-15

    Highlights: • Additive Pd in Mg{sub 67}Co{sub 33} benefits to form a ternary BCC alloy. • Introducing 5.0 at.% Pd in Mg{sub 67}Co{sub 33} lifts the initial discharge capacity from 10 mAh/g to maximum 530 mAh/g. • Exchange current density was increased due to the homogeneously dispersed Pd. • Additive Pd slightly enhances the hydrogen diffusion coefficient of Mg-Co-Pd composites or alloys. - Abstract: Mg{sub 67}Co{sub 33} and Mg{sub 67}Co{sub 33}-Pd composites/alloys prepared by ball milling for 120 h possess nano-crystalline with body-centered cubic (BCC) structure, which was verified by high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) analyses. The introduced 5.0 at.% Pd significantly lifts the initial discharge capacity from 10 mAh g{sup -1} of Mg{sub 67}Co{sub 33} to maximum 530 mAh g{sup -1}. Pd also drives the Mg{sub 67}Co{sub 33}-Pd composite forming a full BCC alloy during ball milling. The distribution of Pd gradually becomes homogeneous with the augmentation of the ball milling time according to the analyses by scanning electron microscopy-energy dispersive spectrometer (SEM-EDS). Exchange current density increased with the milling time and can be ascribed to the homogeneously dispersion of Pd over the surface. The introduced Pd also enhances the hydrogen diffusion coefficient of the Mg{sub 67}Co{sub 33}-Pd composites/alloys.

  2. Evaluation of microstructure and phase relations in a powder processed Ti-44Al-12Nb alloy

    International Nuclear Information System (INIS)

    Kumar, S.G.; Reddy, R.G.; Wu, J.; Holthus, J.

    1995-01-01

    Titanium aluminides based on the ordered face-centered tetragonal γTiAl phase possess attractive properties, such as low density, high melting point, good elevated temperature strength, modulus retention, and oxidation resistance, making these alloys potential high-temperature structural materials. These alloys can be processed by both ingot metallurgy and powder metallurgy routes. In the present study, three variations of the powder metallurgy route were studied to process a Ti-44Al-12Nb (at.%) alloy: (a) cold pressing followed by reaction sintering (CP process); (b) cold pressing, vacuum hot pressing, and then sintering (HP process); and (c) arc melting, hydride-dehydride process to make the alloy powder, cold isostatic pressing, and then sintering (AM process). Microstructural and phase relations were studied by x-ray diffraction (XRD) analysis, optical microscopy, scanning electron microscopy with an energy-dispersive spectrometer (SEM-EDS), and electron probe microanalysis (EPMA). The phases identified were Ti 3 Al and TiAl; an additional Nb 2 Al phase was observed in the HP sample. The microstructures of CP and HP processed samples are porous and chemically inhomogeneous whereas the AM processed sample revealed fine equiaxed microstructure. This refinement of the microstructure is attributed to the fine, homogeneous powder produced by the hydride-dehydride process and the high compaction pressures

  3. Growth and characterization of β-In N films on Mg O: the key role of a β-Ga N buffer layer in growing cubic In N

    International Nuclear Information System (INIS)

    Navarro C, H.; Perez C, M.; Rodriguez, A. G.; Lopez L, E.; Vidal, M. A.

    2012-01-01

    Cubic In N samples were grown on Mg O (001) substrates by gas source molecular beam epitaxy. In general, we find that In N directly deposited onto the Mg O substrate results in polycrystalline or columnar films of hexagonal symmetry. We find that adequate conditions to grow the cubic phase of this compound require the growth of an initial cubic Ga N buffer interlayer (β-t Ga N) on the Mg O surface. Subsequently, the growth conditions were optimized to obtain good photoluminescence (Pl) emission. The resultant In N growth is mostly cubic, with very small hexagonal inclusions, as confirmed by X-ray diffraction and scanning electron microscopy studies. Good crystalline quality requires that the samples to be grown under rich Indium metal flux. The cubic β-t In N/Ga N/Mg O samples exhibit a high signal to noise ratio for Pl at low temperatures (20 K). The Pl is centered at O.75 eV and persist at room temperature. (Author)

  4. Irradiation-assisted stress corrosion cracking in HTH Alloy X-750 and Alloy 625

    International Nuclear Information System (INIS)

    Bajaj, R.; Mills, W.J.; Lebo, M.R.; Hyatt, B.Z.; Burke, M.G.

    1995-01-01

    In-reactor testing of bolt-loaded compact tension specimens was performed in 360 C water to determine the irradiation-assisted stress corrosion cracking (IASCC) behavior of HTH Alloy X-750 and direct-aged Alloy 625. New data confirm previous results showing that high irradiation levels reduce SCC resistance in Alloy X-750. Heat-to-heat variability correlates with boron content, with low boron heats showing improved IASCC properties. Alloy 625 is resistant to IASCC, as no cracking was observed in any Alloy 625 specimens. Microstructural, microchemical and deformation studies were performed to characterize the mechanisms responsible for IASCC in Alloy X-750 and the lack of an effect in Alloy 625. The mechanisms under investigation are: boron transmutation effects, radiation-induced changes in microstructure and deformation characteristics, and radiation-induced segregation. Irradiation of Alloy X-750 caused significant strengthening and ductility loss that was associated with the formation of cavities and dislocation loops. High irradiation levels did not cause significant segregation of alloying or trace elements in Alloy X-750. Irradiation of Alloy 625 resulted in the formation of small dislocation loops and a fine body-centered-orthorhombic phase. The strengthening due to the loops and precipitates was apparently offset by a partial dissolution of γ double-prime precipitates, as Alloy 625 showed no irradiation-induced strengthening or ductility loss. In the nonirradiated condition, an IASCC susceptible HTH heat containing 28 ppm B showed grain boundary segregation of boron, whereas a nonsusceptible HTH heat containing 2 ppm B and Alloy 625 with 20 ppm B did not show significant boron segregation. Transmutation of boron to helium at grain boundaries, coupled with matrix strengthening, is believed to be responsible for IASCC in Alloy X-750, and the absence of these two effects results in the superior IASCC resistance displayed by Alloy 625

  5. Ab initio calculations of mechanical properties of bcc W-Re-Os random alloys: effects of transmutation of W.

    Science.gov (United States)

    Li, Xiaojie; Schönecker, Stephan; Li, Ruihuan; Li, Xiaoqing; Wang, Yuanyuan; Zhao, Jijun; Johansson, Börje; Vitos, Levente

    2016-06-03

    To examine the effect of neutron transmutation on tungsten as the first wall material of fusion reactors, the elastic properties of W 1-x-y  Re x  Os y (0  ⩽  x, y  ⩽  6%) random alloys in body centered cubic (bcc) structure are investigated systematically using the all-electron exact muffin-tin orbitals (EMTO) method in combination with the coherent-potential approximation (CPA). The calculated lattice constant and elastic properties of pure W are consistent with available experiments. Both Os and Re additions reduce the lattice constant and increase the bulk modulus of W, with Os having the stronger effect. The polycrystalline shear modulus, Young's modulus and the Debye temperature increase (decrease) with the addition of Re (Os). Except for C 11 , the other elastic parameters including C 12 , C 44 , Cauchy pressure, Poisson ratio, B/G, increase as a function of Re and Os concentration. The variations of the latter three parameters and the trend in the ratio of cleavage energy to shear modulus for the most dominant slip system indicate that the ductility of the alloy enhances with increasing Re and Os content. The calculated elastic anisotropy of bcc W slightly increases with the concentration of both alloying elements. The estimated melting temperatures of the W-Re-Os alloy suggest that Re or Os addition will reduce the melting temperature of pure W solid. The classical Labusch-Nabarro model for solid-solution hardening predicts larger strengthening effects in W 1-y  Os y than in W 1-x  Re x . A strong correlation between C' and the fcc-bcc structural energy difference for W 1-x-y  Re x  Os y is revealed demonstrating that canonical band structure dictates the alloying effect on C'. The structural energy difference is exploited to estimate the alloying effect on the ideal tensile strength in the [0 0 1] direction.

  6. Advanced powder metallurgy aluminum alloys and composites

    Science.gov (United States)

    Lisagor, W. B.; Stein, B. A.

    1982-01-01

    The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.

  7. Fabrication technological development of the oxide dispersion strengthened alloy MA957 for fast reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    ML Hamilton; DS Gelles; RJ Lobsinger; GD Johnson; WF Brown; MM Paxton; RJ Puigh; CR Eiholzer; C Martinez; MA Blotter

    2000-03-27

    A significant amount of effort has been devoted to determining the properties and understanding the behavior of the alloy MA957 to define its potential usefulness as a cladding material, in the fast breeder reactor program. The numerous characterization and fabrication studies that were conducted are documented in this report. The alloy is a ferritic stainless steel developed by International Nickel Company specifically for structural reactor applications. It is strengthened by a very fine, uniformly distributed yttria dispersoid. Its fabrication involves a mechanical alloying process and subsequent extrusion, which ultimately results in a highly elongated grain structure. While the presence of the dispersoid produces a material with excellent strength, the body centered cubic structure inherent to the material coupled with the high aspect ratio that results from processing operations produces some difficulties with ductility. The alloy is very sensitive to variations in a number of processing parameters, and if the high strength is once lost during fabrication, it cannot be recovered. The microstructural evolution of the alloy under irradiation falls into two regimes. Below about 550 C, dislocation development, {alpha}{prime} precipitation and void evolution in the matrix are observed, while above about 550 C damage appears to be restricted to cavity formation within oxide particles. The thermal expansion of the alloy is very similar to that of HT9 up to the temperature where HT9 undergoes a phase transition to austenitic. Pulse magnetic welding of end caps onto MA957 tubing can be accomplished in a manner similar to that in which it is performed on HT9, although the welding parameters appear to be very sensitive to variations in the tubing that result from small changes in fabrication conditions. The tensile and stress rupture behavior of the alloy are acceptable in the unirradiated condition, being comparable to HT9 below about 700 C and exceeding those of HT9

  8. Cubic interactions of Maxwell-like higher spins

    Energy Technology Data Exchange (ETDEWEB)

    Francia, Dario [Scuola Normale Superiore and INFN,Piazza dei Cavalieri, 7 I-56126 Pisa (Italy); Monaco, Gabriele Lo [Dipartimento di Fisica, Università di Pisa,Piazza Fibonacci, 3, I-56126, Pisa (Italy); Dipartimento di Fisica, Università di Milano-Bicocca,Piazza della Scienza 3, I-20126 Milano (Italy); Mkrtchyan, Karapet [Max Planck Institut für Gravitationsphysik,Am Mühlenberg 1, Potsdam 14476 (Germany)

    2017-04-12

    We study the cubic vertices for Maxwell-like higher-spins in flat and (A)dS background spaces of any dimension. Reducibility of their free spectra implies that a single cubic vertex involving any three fields subsumes a number of couplings among different particles of various spins. The resulting vertices do not involve traces of the fields and in this sense are simpler than their Fronsdal counterparts. We propose an extension of both the free theory and of its cubic deformation to a more general class of partially reducible systems, that one can obtain from the original theory upon imposing trace constraints of various orders. The key to our results is a version of the Noether procedure allowing to systematically account for the deformations of the transversality conditions to be imposed on the gauge parameters at the free level.

  9. Cubication of conservative nonlinear oscillators

    International Nuclear Information System (INIS)

    Belendez, Augusto; Alvarez, Mariela L; Fernandez, Elena; Pascual, Inmaculada

    2009-01-01

    A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear and cubic terms depend on the initial amplitude, A, while in a Taylor expansion of the restoring force these coefficients are independent of A. The replacement of the original nonlinear equation by an approximate Duffing equation allows us to obtain an approximate frequency-amplitude relation as a function of the complete elliptic integral of the first kind. Some conservative nonlinear oscillators are analysed to illustrate the usefulness and effectiveness of this scheme.

  10. Theory of surface enrichment in disordered monophasic binary alloys. Numerical computations for Ag-Au alloys

    NARCIS (Netherlands)

    Santen, van R.A.; Boersma, M.A.M.

    1974-01-01

    The regular solution model is used to compute the surface enrichment in the (111)- and (100)-faces of silver-gold alloys. Surface enrichment by silver is predicted to increase if the surface plane becomes less saturated and decreases if one raises the temperature. The possible implications of these

  11. Plutonium Elastic Moduli, Electron Localization, and Temperature

    International Nuclear Information System (INIS)

    Migliori, Albert; Mihut-Stroe, Izabella; Betts, Jon B.

    2008-01-01

    In almost all materials, compression is accompanied naturally by stiffening. Even in materials with zero or negative thermal expansion, where warming is accompanied by volume contraction it is the volume change that primarily controls elastic stiffness. Not so in the metal plutonium. In plutonium, alloying with gallium can change the sign of thermal expansion, but for the positive thermal- expansion monoclinic phase as well as the face-centered-cubic phase with either sign of thermal expansion, and the orthorhombic phase, recent measurements of elastic moduli show soften on warming by an order of magnitude more than expected, the shear and compressional moduli track, and volume seems irrelevant. These effects point toward a novel mechanism for electron localization, and have important implication for the pressure dependence of the bulk compressibility. (authors)

  12. Transdermal delivery of paeonol using cubic gel and microemulsion gel

    Science.gov (United States)

    Luo, Maofu; Shen, Qi; Chen, Jinjin

    2011-01-01

    Background The aim of this study was to develop new systems for transdermal delivery of paeonol, in particular microemulsion gel and cubic gel formulations. Methods Various microemulsion vehicles were prepared using isopropyl myristate as an oil phase, polyoxyethylated castor oil (Cremophor® EL) as a surfactant, and polyethylene glycol 400 as a cosurfactant. In the optimum microemulsion gel formulation, carbomer 940 was selected as the gel matrix, and consisted of 1% paeonol, 4% isopropyl myristate, 28% Cremophor EL/polyethylene glycol 400 (1:1), and 67% water. The cubic gel was prepared containing 3% paeonol, 30% water, and 67% glyceryl monooleate. Results A skin permeability test using excised rat skins indicated that both the cubic gel and microemulsion gel formulations had higher permeability than did the paeonol solution. An in vivo pharmacokinetic study done in rats showed that the relative bioavailability of the cubic gel and microemulsion gel was enhanced by about 1.51-fold and 1.28-fold, respectively, compared with orally administered paeonol suspension. Conclusion Both the cubic gel and microemulsion gel formulations are promising delivery systems to enhance the skin permeability of paeonol, in particular the cubic gel. PMID:21904450

  13. Nonlinear dynamics of quadratically cubic systems

    International Nuclear Information System (INIS)

    Rudenko, O V

    2013-01-01

    We propose a modified form of the well-known nonlinear dynamic equations with quadratic relations used to model a cubic nonlinearity. We show that such quadratically cubic equations sometimes allow exact solutions and sometimes make the original problem easier to analyze qualitatively. Occasionally, exact solutions provide a useful tool for studying new phenomena. Examples considered include nonlinear ordinary differential equations and Hopf, Burgers, Korteweg–de Vries, and nonlinear Schrödinger partial differential equations. Some problems are solved exactly in the space–time and spectral representations. Unsolved problems potentially solvable by the proposed approach are listed. (methodological notes)

  14. Diffraction-based study of fatigue crack initiation and propagation in aerospace aluminum alloys

    Science.gov (United States)

    Gupta, Vipul K.

    crystallographic {111} slip-plane cracking typical of the Stage I crack growth mode observed in single crystals and high purity polycrystals of face centered cubic metals, and which has presently been assumed for the present materials within fatigue crack initiation models. Rather, the facets tend to have near-Mode I spatial orientation, which is another indicator of the importance of environmentally affected fatigue damage. The results provide a physical basis to develop microstructurally-based next generation multi-stage fatigue (MSF) models that should include a new crack decohesion criteria based upon environmental fatigue cracking mechanisms. EBSD study of small-cracks in alloy 7050-T7451, stressed in warm-humid environment, showed that crack-path orientation changes and crack-branching occurred at both low/high-angle grain and subgrain boundaries. Single surface trace analysis suggests that the crack-path differs substantially from crystallographic slip-planes. EBSD-based observations of small-crack propagation through subgrain structure, either formed by cyclic plastic strain accumulation or pre-existing (typical of unrecrystallized grain structure in the present materials), suggest that subgrain structure plays a crucial role in small fatigue crack propagation. As mentioned earlier, local fluctuations in small-crack growth rates appear to be caused by frequent interaction with subgrain boundaries, and multiple occurrences of crack-branching and crack-path orientation changes at low/high-angle grain and subgrain boundaries. The aforementioned deviation from low-index {001}/{101}-planes and the occurrence of high-index cracking planes observed by EBSD/Stereology, in this study and others, are interpreted as trans-subgranular decohesion or inter-subgranular cracking, due to trapped hydrogen. In summary, the results provide a firmer experimental foundation for, and clearer understanding of, the mechanisms of environmental fatigue cracking of aluminum alloys, especially the

  15. Methane hydrate dissociation using inverted five-spot water flooding method in cubic hydrate simulator

    International Nuclear Information System (INIS)

    Li, Gang; Li, Xiao-Sen; Li, Bo; Wang, Yi

    2014-01-01

    The combination forms of the hydrate dissociation methods in different well systems are divided into 6 main patterns. Dissociation processes of methane hydrate in porous media using the inverted five-spot water flooding method (Pattern 4) are investigated by the experimental observation and numerical simulation. In situ methane hydrate is synthesized in the Cubic Hydrate Simulator (CHS), a 5.832-L cubic reactor. A center vertical well is used as the hot water injection well, while the four vertical wells at the corner are the gas and water production wells. The gas production begins simultaneously with the hot water injection, while after approximately 20 min of compression, the water begins to be produced. One of the common characteristics of the inverted five-spot water flooding method is that both the gas and water production rates decrease with the reduction of the hydrate dissociation rate. The evaluation of the energy efficiency ratio might indicate the inverted five-spot water flooding as a promising gas producing method from the hydrate reservoir. - Highlights: • A three-dimensional 5.8-L cubic pressure vessel is developed. • Gas production of hydrate using inverted five-spot flooding method is studied. • Water/gas production rate and energy efficiency ratio are evaluated. • Temperature distributions of numerical simulation and experiment agree well. • Hydrate dissociation process is a moving boundary problem in this study

  16. The thermal expansion of gold: point defect concentrations and pre-melting in a face-centred cubic metal.

    Science.gov (United States)

    Pamato, Martha G; Wood, Ian G; Dobson, David P; Hunt, Simon A; Vočadlo, Lidunka

    2018-04-01

    On the basis of ab initio computer simulations, pre-melting phenomena have been suggested to occur in the elastic properties of hexagonal close-packed iron under the conditions of the Earth's inner core just before melting. The extent to which these pre-melting effects might also occur in the physical properties of face-centred cubic metals has been investigated here under more experimentally accessible conditions for gold, allowing for comparison with future computer simulations of this material. The thermal expansion of gold has been determined by X-ray powder diffraction from 40 K up to the melting point (1337 K). For the entire temperature range investigated, the unit-cell volume can be represented in the following way: a second-order Grüneisen approximation to the zero-pressure volumetric equation of state, with the internal energy calculated via a Debye model, is used to represent the thermal expansion of the 'perfect crystal'. Gold shows a nonlinear increase in thermal expansion that departs from this Grüneisen-Debye model prior to melting, which is probably a result of the generation of point defects over a large range of temperatures, beginning at T / T m > 0.75 (a similar homologous T to where softening has been observed in the elastic moduli of Au). Therefore, the thermodynamic theory of point defects was used to include the additional volume of the vacancies at high temperatures ('real crystal'), resulting in the following fitted parameters: Q = ( V 0 K 0 )/γ = 4.04 (1) × 10 -18  J, V 0 = 67.1671 (3) Å 3 , b = ( K 0 ' - 1)/2 = 3.84 (9), θ D = 182 (2) K, ( v f /Ω)exp( s f / k B ) = 1.8 (23) and h f = 0.9 (2) eV, where V 0 is the unit-cell volume at 0 K, K 0 and K 0 ' are the isothermal incompressibility and its first derivative with respect to pressure (evaluated at zero pressure), γ is a Grüneisen parameter, θ D is the Debye temperature, v f , h f and s f are the vacancy formation volume, enthalpy and entropy

  17. On Application of Non-cubic EoS to Compositional Reservoir Simulation

    DEFF Research Database (Denmark)

    Yan, Wei; Michelsen, Michael Locht; Stenby, Erling Halfdan

    Compositional reservoir simulation uses almost exclusively cubic equations of state (EoS) such as the SRK EoS and the PR EoS. This is in contrast with process simulation in the downstream industry where more recent and advanced thermodynamic models are quickly adopted. Many of these models are non-cubic...... EoS, such as the PC-SAFT EoS. A major reason for the use of the conventional cubic EoS in reservoir simulation is the concern over computation time. Flash computation is the most time consuming part in compositional reservoir simulation, and the extra complexity of the non-cubic EoS may significantly...... increase the time consumption. In addition to this, the non-cubic EoS also needs a C7+ characterization. The main advantage of the non-cubic EoS is that it provides for a more accurate descrition of fluid properties, and it is therefore of interest to investigate the computational aspects of using...

  18. Purely cubic action for string field theory

    Science.gov (United States)

    Horowitz, G. T.; Lykken, J.; Rohm, R.; Strominger, A.

    1986-01-01

    It is shown that Witten's (1986) open-bosonic-string field-theory action and a closed-string analog can be written as a purely cubic interaction term. The conventional form of the action arises by expansion around particular solutions of the classical equations of motion. The explicit background dependence of the conventional action via the Becchi-Rouet-Stora-Tyutin operator is eliminated in the cubic formulation. A closed-form expression is found for the full nonlinear gauge-transformation law.

  19. Evidence for nanoscale two-dimensional Co clusters in CoPt{sub 3} films with perpendicular magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Cross, J O [Department of Physics, University of Washington, Seattle, WA 98195 (United States); Newville, M [Consortium for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637 (United States); Maranville, B B; Hellman, F [Department of Physics, University of California at San Diego, La Jolla, CA 92093 (United States); Bordel, C [Department of Physics, University of California at Berkeley, CA 94720 (United States); Harris, V G, E-mail: cbordel@berkeley.ed [Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115 (United States)

    2010-04-14

    The length scale of the local chemical anisotropy responsible for the growth-temperature-induced perpendicular magnetic anisotropy of face-centered cubic CoPt{sub 3} alloy films was investigated using polarized extended x-ray absorption fine structure (EXAFS). These x-ray measurements were performed on a series of four (111) CoPt{sub 3} films epitaxially grown on (0001) sapphire substrates. The EXAFS data show a preference for Co-Co pairs parallel to the film plane when the film exhibits magnetic anisotropy, and random chemical order otherwise. Furthermore, atomic pair correlation anisotropy was evidenced only in the EXAFS signal from the next neighbors to the absorbing Co atoms and from multiple scattering paths focused through the next neighbors. This suggests that the Co clusters are no more than a few atoms in extent in the plane and one monolayer in extent out of the plane. Our EXAFS results confirm the correlation between perpendicular magnetic anisotropy and two-dimensional Co segregation in CoPt{sub 3} alloy films, and establish a length scale on the order of 10 A for the Co clusters.

  20. NASA-427: A New Aluminum Alloy

    Science.gov (United States)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center researchers have developed a new, stronger aluminum alloy, ideal for cast aluminum products that have powder or paint-baked thermal coatings. With advanced mechanical properties, the NASA-427 alloy shows greater tensile strength and increased ductility, providing substantial improvement in impact toughness. In addition, this alloy improves the thermal coating process by decreasing the time required for heat treatment. With improvements in both strength and processing time, use of the alloy provides reduced materials and production costs, lower product weight, and better product performance. The superior properties of NASA-427 can benefit many industries, including automotive, where it is particularly well-suited for use in aluminum wheels.

  1. Room and ultrahigh temperature structure-mechanical property relationships of tungsten alloys formed by field assisted sintering technique (FAST)

    Energy Technology Data Exchange (ETDEWEB)

    Browning, Paul N.; Alagic, Sven [Pennsylvania State University, Department of Materials Science and Engineering, State College, PA-16801 (United States); Pennsylvania State University, Applied Research Laboratory, State College, PA-16801 (United States); Kulkarni, Anil [Pennsylvania State University, Department of Nuclear and Mechanical Engineering, State College, PA-16801 (United States); Matson, Lawrence [Materials and Manufacturing Directorate, Wright Patterson Air Force Base, Dayton, OH (United States); Singh, Jogender, E-mail: jxs46@arl.psu.edu [Pennsylvania State University, Department of Materials Science and Engineering, State College, PA-16801 (United States); Pennsylvania State University, Applied Research Laboratory, State College, PA-16801 (United States)

    2016-09-30

    Tungsten based alloys have become of critical importance in a number of applications including plasma-facing materials in nuclear fusion reactors, rocket nozzles for aerospace applications, and in kinetic energy penetrators in the defense industry. Formation of components for these uses by powder metallurgical techniques has proven challenging, due to tungsten's relatively poor sinterability. Here we report the use of field assisted sintering technique (FAST) to produce high density, fine grain alloys with mechanical properties comparable or superior to that of components produced by conventional techniques. Alloys of pure tungsten, W-3 vol%TiC, W-5 vol%TiC, and W-10 vol%Ta were synthesized at 2100 °C, 35 MPa for 25 min using FAST. Microstructural characterization revealed effective reduction of grain size with TiC addition and preferential diffusion of oxygen into the center of tantalum particles in tantalum containing alloys. Tensile testing of alloys revealed TiC addition to W resulted in substantially improved ultimate tensile strength at the cost of ductility in comparison at temperatures up to 1926 °C (3500 °F) however this strengthening effect was lost at 2204 °C (4000 °F). Addition of 10 vol%Ta to W resulted in reduced hardness at room temperature, but substantially increased yield strength at the cost of slightly reduced ductility at 1926 °C and 2204 °C.

  2. Eliminating cubic terms in the pseudopotential lattice Boltzmann model for multiphase flow

    Science.gov (United States)

    Huang, Rongzong; Wu, Huiying; Adams, Nikolaus A.

    2018-05-01

    It is well recognized that there exist additional cubic terms of velocity in the lattice Boltzmann (LB) model based on the standard lattice. In this work, elimination of these cubic terms in the pseudopotential LB model for multiphase flow is investigated, where the force term and density gradient are considered. By retaining high-order (≥3 ) Hermite terms in the equilibrium distribution function and the discrete force term, as well as introducing correction terms in the LB equation, the additional cubic terms of velocity are entirely eliminated. With this technique, the computational simplicity of the pseudopotential LB model is well maintained. Numerical tests, including stationary and moving flat and circular interface problems, are carried out to show the effects of such cubic terms on the simulation of multiphase flow. It is found that the elimination of additional cubic terms is beneficial to reduce the numerical error, especially when the velocity is relatively large. Numerical results also suggest that these cubic terms mainly take effect in the interfacial region and that the density-gradient-related cubic terms are more important than the other cubic terms for multiphase flow.

  3. Microstructural characterization and phase transformation of ternary alloys near at Al3Ti compound

    International Nuclear Information System (INIS)

    Angeles Ch, C.

    1999-01-01

    This research work is related with the structural characteristic and compositional values of the crystalline phases, which are found in ternary alloys of Ti-Al-Fe and TI-Al-Cu. These types of alloys were obtained using a rapid solidification technique (10 3 -10 4 K/s) and pure elements such as Al, Ti, Fe and Cu (99.99%). These cooling velocities allow the formation of stable phases and small grain sizes (approximately in range of a few micras). The obtained results indicate the presence of Al 3 Ti and others phases of L1 2 type. These phases are commonly found in a matrix rich in A1. The microalloyed elements (Cu and Fe) substitute the aluminum in both kinds of phases. Alloys with low content of Cu show transition states from the tetragonal structure DO 22 to the cubic phases L1 2 . The structural characteristics of the alloys are related with some microhardness measurement. The results show that the presence of the L1 2 phase tends to increase to hardness depending of the content of this phase

  4. Effects of Fe and Cr on corrosion behavior of ZrFeCr alloys in 500 oC steam

    International Nuclear Information System (INIS)

    Wang Jun; Fan Hongyuan; Xiong Ji; Liu Hong; Miao Zhi; Ying Shihao; Yang Gang

    2011-01-01

    Research highlights: Amount and size of SPP will effect the corrosion resistance of Zr alloy at 500 o C/10.3 MPa. - Abstract: A study of the corrosion behaviors of ZrFeCr alloy and the influence of microstructure on corrosion resistance are described by X-ray diffraction and scanning electron microscope in this paper. The results show that several ZrFeCr alloys exhibit protective behavior throughout the test and oxide growth is stable and protective. The best alloy has the composition Zr1.0Fe0.6Cr. Fitting of the weight gain curves for the protective oxide alloys in the region of protective behavior, it showed nearly cubic behavior for the most protective alloys. The Zr1.0Fe0.6Cr has the more laves Zr(Fe,Cr) 2 precipitate in matrix and it has the better corrosion resistance. The Zr0.2Fe0.1Cr has little precipitate, the biggest hydrogen absorption and the worst corrosion resistance. The number of precipitates and the amount of hydrogen absorption in Zr alloy plays an important role on corrosion resistance behaviors in 500 o C/10.3 MPa steam.

  5. Ranking alloys for susceptibility to MIC

    International Nuclear Information System (INIS)

    Scott, P.J.B.; Davies, M.; Goldie, J.

    1991-01-01

    This paper reports that laboratory experiments demonstrate that alloys containing 6 to 9% Mo are susceptible to microbiologically influenced corrosion attack. They also demonstrate that corrosion behavior in batch cultures do not correlate well with standard ferric chloride and pitting potential tests of the same alloys. In recent years, there has been an increasing awareness of the incidence of plant equipment failures caused by microbiologically influenced corrosion (MIC). This has led to the search for suitable testing techniques to look for MIC, which, in turn, has expanded the list of known susceptible alloys. Faced with field failures, the normal response has been to upgrade the alloy of construction. There is, for example, a common belief that the addition of more molybdenum to austenitic stainless steels conveys immunity (or at least increased resistance) to MIC. The basis for this is an extrapolation of localized corrosion data. The supposed correlation between molybdenum content and resistance to MIC has not yet been supported by a comprehensive testing program

  6. Kinks in systems with cubic and quartic anharmonicity

    International Nuclear Information System (INIS)

    Kashcheev, V.N.

    1988-01-01

    For a classical system of interacting particles with on-site cubic or quartic anharmonicity explicit analytic solutions of the d'Alembert equation are obtained in the form of kinks in the presence of dissipation (viscous or Rayleigh) and a constant force. These kinks will be asymptotically stable in the case of quartic anharmonicity and unstable in the case cubic anharmonicity

  7. Enhanced hardness in epitaxial TiAlScN alloy thin films and rocksalt TiN/(Al,Sc)N superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Bivas [School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Lawrence, Samantha K.; Bahr, David F. [School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Schroeder, Jeremy L.; Birch, Jens [Thin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Sands, Timothy D. [School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2014-10-13

    High hardness TiAlN alloys for wear-resistant coatings exhibit limited lifetimes at elevated temperatures due to a cubic-AlN to hexagonal-AlN phase transformation that leads to decreasing hardness. We enhance the hardness (up to 46 GPa) and maximum operating temperature (up to 1050 °C) of TiAlN-based coatings by alloying with scandium nitride to form both an epitaxial TiAlScN alloy film and epitaxial rocksalt TiN/(Al,Sc)N superlattices on MgO substrates. The superlattice hardness increases with decreasing period thickness, which is understood by the Orowan bowing mechanism of the confined layer slip model. These results make them worthy of additional research for industrial coating applications.

  8. Computer generated structures of grain boundaries in Li2-type ordered alloys

    International Nuclear Information System (INIS)

    DeHosson, J.Th.M.; Pestman, B.J.; Schapink, F.W.; Tichelaar, F.D.

    1988-01-01

    In recent years, the influence of the establishment of long-range order in cubic alloys on the structure of grain boundaries in Li 2 alloys has been considered. Thus, for example, for the Σ = 5 (310) tilt boundary the various possible structures have been investigated that are generated upon ordering, starting from plausible structures in the disordered state. However, apart from some rough energy estimates based upon nearest neighbor interactions, no reliable energy calculations have been performed of these different possible structures. In this paper, computer calculations based upon interatomic pair potentials constructed in such a way that the Li 2 structure is stable with respect to disordering, are reported for the Σ = 5 (310) boundary. The relative stability of various possible structures, with associated different boundary compositions, has been investigated

  9. The sintering behavior of close-packed spheres

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Tikare, V.; Frandsen, Henrik Lund

    2012-01-01

    The sintering behavior of close-packed spheres is investigated using a numerical model. The investigated systems are the body-centered cubic (bcc), face-centered cubic (fcc) and hexagonal close-packed spheres (hcp). The sintering behavior is found to be ideal, with no grain growth until full dens...... density is reached for all systems. During sintering, the grains change shape from spherical to tetrakaidecahedron, similar to the geometry analyzed by Coble [R.L. Coble, J. Appl. Phys. 32 (1961) 787]....

  10. Glass-forming ability and stability of ternary Ni-early transition metal (Ti/Zr/Hf) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Joysurya [Department of Metallurgy, Indian Institute of Science, Bangalore 560 012 (India); Ranganathan, S. [Department of Metallurgy, Indian Institute of Science, Bangalore 560 012 (India)]. E-mail: rangu@met.iisc.ernet.in

    2006-08-15

    Four Ni-bearing Ti, Zr and Hf ternary alloys of nominal composition Zr{sub 41.5}Ti{sub 41.5}Ni{sub 17}, Zr{sub 25}Ti{sub 25}Ni{sub 50}, Zr{sub 41.5}Hf{sub 41.5}Ni{sub 17} and Ti{sub 41.5}Hf{sub 41.5}Ni{sub 17} were rapidly solidified in order to produce ribbons. The Zr-Ti-Ni and Ti-Hf-Ni alloys become amorphous, whereas the Zr-Hf-Ni alloy shows precipitation of a cubic phase. The devitrification of all three alloys was followed and the relative tendency to form nanoquasicrystals and cF96 phases analysed. The relative glass-forming ability of the alloys can be explained by taking into account their atomic size difference. Addition of Ni often leads to quasicrystallisation or quasicrystal-related phases. This can be explained by the atomic radius and heat of mixing of the constituent elements. The phases precipitated at the initial stages of crystallisation indicate the possible presence of Frank-Kasper polyhedral structure in the amorphous alloys. Structural analysis reveals that the Laves and the anti-Laves phases have the same polyhedral structural unit, which is similar to the structural characteristics of glass.

  11. Ultra-thin zirconia films on Zr-alloys

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Joong Il Jake; Mayr-Schmoelzer, Wernfried; Mittendorfer, Florian; Redinger, Josef; Diebold, Ulrike; Schmid, Michael [Institute of Applied Physics, Vienna University of Technology (Austria); Li, Hao; Rupprechter, Guenther [Institute of Materials Chemistry, Vienna University of Technology (Austria)

    2014-07-01

    Zirconia ultra-thin films have been prepared by oxidation of Pt{sub 3}Zr(0001) and showed a structure equivalent to (111) of cubic zirconia. Following previous work, we have prepared ultra-thin zirconia by oxidation of a different alloy, Pd{sub 3}Zr(0001), which resulted in a similar structure with a slightly different lattice parameter, 351.2 ±0.4 pm. Unlike the oxide on Pt{sub 3}Zr, where Zr of the oxide binds to Pt in the substrate, here the oxide binds to substrate Zr via oxygen. This causes stronger distortion of the oxide structure, i.e. a stronger buckling of Zr in the oxide. After additional oxidation of ZrO{sub 2}/Pt{sub 3}Zr, a different ultra-thin zirconia phase is observed. A preliminary structure model for this film is based on (113)-oriented cubic zirconia. 3D oxide clusters are also present after growing ultra-thin zirconia films. They occur at the step edges, and the density is higher on Pd{sub 3}Zr. These clusters also appear on terraces after additional oxidation. XPS reveals different core level shifts of the oxide films, bulk, and oxide clusters.

  12. Transport, Structural and Mechanical Properties of Quaternary FeVTiAl Alloy

    Science.gov (United States)

    Bhat, Tahir Mohiuddin; Gupta, Dinesh C.

    2016-11-01

    The electronic, structural, magnetic and transport properties of FeVTiAl quaternary alloy have been investigated within the framework of density functional theory. The material is a completely spin-polarized half-metallic ferromagnet in its ground state with F-43m structure. The structural stability was further confirmed by elastic constants in the cubic phase with high Young's modulus and brittle nature. The present study predicts an energy band gap of 0.72 eV in a localized minority spin channel at equilibrium lattice parameter of 6.00 Å. The transport properties of the material are discussed based on the Seebeck coefficient, and electrical and thermal conductivity coefficients. The alloy presents large values of Seebeck coefficients, ~39 μV K-1 at room temperature (300 K), and has an excellent thermoelectric performance with ZT = ~0.8.

  13. Deformation of the cubic open string field theory

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taejin, E-mail: taejin@kangwon.ac.kr

    2017-05-10

    We study a consistent deformation of the cubic open bosonic string theory in such a way that the non-planar world sheet diagrams of the perturbative string theory are mapped onto their equivalent planar diagrams of the light-cone string field theory with some length parameters fixed. An explicit evaluation of the cubic string vertex in the zero-slope limit yields the correct relationship between the string coupling constant and the Yang–Mills coupling constant. The deformed cubic open string field theory is shown to produce the non-Abelian Yang–Mills action in the zero-slope limit if it is defined on multiple D-branes. Applying the consistent deformation systematically to multi-string world sheet diagrams, we may be able to calculate scattering amplitudes with an arbitrary number of external open strings.

  14. Deformation of the cubic open string field theory

    International Nuclear Information System (INIS)

    Lee, Taejin

    2017-01-01

    We study a consistent deformation of the cubic open bosonic string theory in such a way that the non-planar world sheet diagrams of the perturbative string theory are mapped onto their equivalent planar diagrams of the light-cone string field theory with some length parameters fixed. An explicit evaluation of the cubic string vertex in the zero-slope limit yields the correct relationship between the string coupling constant and the Yang–Mills coupling constant. The deformed cubic open string field theory is shown to produce the non-Abelian Yang–Mills action in the zero-slope limit if it is defined on multiple D-branes. Applying the consistent deformation systematically to multi-string world sheet diagrams, we may be able to calculate scattering amplitudes with an arbitrary number of external open strings.

  15. Deformation of the cubic open string field theory

    Directory of Open Access Journals (Sweden)

    Taejin Lee

    2017-05-01

    Full Text Available We study a consistent deformation of the cubic open bosonic string theory in such a way that the non-planar world sheet diagrams of the perturbative string theory are mapped onto their equivalent planar diagrams of the light-cone string field theory with some length parameters fixed. An explicit evaluation of the cubic string vertex in the zero-slope limit yields the correct relationship between the string coupling constant and the Yang–Mills coupling constant. The deformed cubic open string field theory is shown to produce the non-Abelian Yang–Mills action in the zero-slope limit if it is defined on multiple D-branes. Applying the consistent deformation systematically to multi-string world sheet diagrams, we may be able to calculate scattering amplitudes with an arbitrary number of external open strings.

  16. Parameter optimization for selective laser melting of TiAl6V4 alloy by CO2 laser

    Science.gov (United States)

    Baitimerov, R. M.; Lykov, P. A.; Radionova, L. V.; Safonov, E. V.

    2017-10-01

    TiAl6V4 alloy is one of the widely used materials in powder bed fusion additive manufacturing technologies. In recent years selective laser melting (SLM) of TiAl6V4 alloy by fiber laser has been well studied, but SLM by CO2-lasers has not. SLM of TiAl6V4 powder by CO2-laser was studied in this paper. Nine 10×10×10 mm cubic specimens were fabricated using different SLM process parameters. All of the fabricated specimens have a good dense structure and a good surface finish quality without dimensional distortion. The lowest porosity that was achieved was about 0.5%.

  17. Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V substrate

    International Nuclear Information System (INIS)

    Huang, Can; Zhang, Yongzhong; Vilar, Rui; Shen, Jianyun

    2012-01-01

    Highlights: ► TiVCrAlSi high entropy alloy coatings were obtained on Ti–6Al–4V by laser cladding. ► (Ti,V) 5 Si 3 forms because the formation is accompanied of large variation on enthalpy. ► Wear resistance of Ti–6Al–4V is improved by laser cladding with TiVCrAlSi. ► The wear mechanism is investigated. -- Abstract: Approximately equimolar ratio TiVCrAlSi high entropy alloy coatings has been deposited by laser cladding on Ti–6Al–4V alloy. The analysis of the microstructure by scanning electron microscopy (SEM) shows that the coating is metallurgically bonded to the substrate. X-ray diffraction (XRD) and energy dispersive spectrometer (EDS) analyses show that TiVCrAlSi coating is composed of precipitates of (Ti,V) 5 Si 3 dispersed in a body-centered cubic (BCC) matrix. Intermetallic compound (Ti,V) 5 Si 3 forms because the formation is accompanied by larger variation on enthalpy, which may offset the entropy term. The dry sliding wear tests show that the wear resistance of Ti–6Al–4V is improved by laser cladding with TiVCrAlSi. The enhancement of the wear resistance is explained by the presence of the hard silicide phase dispersed in a relatively ductile BCC matrix, which allows sliding wear to occur in the mild oxidative regime for a wide range of testing conditions.

  18. Interaction of dispersed cubic phases with blood components

    DEFF Research Database (Denmark)

    Bode, J C; Kuntsche, Judith; Funari, S S

    2013-01-01

    The interaction of aqueous nanoparticle dispersions, e.g. based on monoolein/poloxamer 407, with blood components is an important topic concerning especially the parenteral way of administration. Therefore, the influence of human and porcine plasma on dispersed cubic phases was investigated. Part...... activity of cubic phases based on monoolein and poloxamer 188, on soy phosphatidylcholine, glycerol dioleate and polysorbate 80 or the parenteral fat emulsion Lipofundin MCT 20%....

  19. Presentation - I: Electronic structure calculations of ordered cubic-based Mg-Li alloys; II: Microstructural evolution of a+ß

    CSIR Research Space (South Africa)

    Phasha, MJ

    2006-04-01

    Full Text Available Mg alloys have, in the past decade, received revolutionary attention which emanated from the need of lightweight materials in transportation and allied industries, wherein intrinsic strength to weight ratio is of paramount importance...

  20. Extinction in an extended-face crystal of zinc selenide

    International Nuclear Information System (INIS)

    Stevenson, A.W.; Barnea, Z.

    1982-01-01

    X-ray intensity measurements from an extended-face single crystal of cubic zinc selenide obtained by McIntyre, Moss and Barnea (1980) have been re-analysed with a view to explaining the unresolved discrepancies between theory and experiment present in the original analysis of the most severely extinguished reflections. The results are shown to complement the recent findings of a wavelength dependent study using the same crystal specimen and foreshadow the need to allow for the presence of the Borrmann effect

  1. Microstructure And Functional Properties Of Prosthetic Cobalt Alloys CoCrW

    Directory of Open Access Journals (Sweden)

    Nadolski M.

    2015-09-01

    Full Text Available The material subject to investigation was two commercial alloys of cobalt CoCrW (No. 27 and 28 used in prosthodontics. The scope of research included performing an analysis of microstructure and functional properties (microhardness, wear resistance and corrosion resistance, as well as dilatometric tests. The examined alloys were characterized by diverse properties, which was considerably influenced by the morphology of precipitates in these materials. Alloy No. 27 has a higher corrosion resistance, whereas alloy No. 28 shows higher microhardness, better wear resistance and higher coefficient of linear expansion. Lower value of the expansion coefficient indicates less probability of initiation of a crack in the facing ceramic material.

  2. An assessment of magnetic effects in ferromagnetic martensitic steels for use in fusion machines

    International Nuclear Information System (INIS)

    Lechtenberg, T.; Dahms, C.; Attaya, H.

    1984-01-01

    Interest in the 9-12%Cr class of martensitic stainless steels has accelerated since these materials were included in the U.S. Alloy Development for Irradiation Performance (ADIP) task funded by the Office of Fusion Energy in 1979. This program is focused on developing structural materials for fusion reactor first wall/breeding blanket components where the neutron damage is most severe. This area of a fusion reactor will be required to tolerate damage levels on the order of 110 dpa( 1 ). As a part of ADIP, study of the martensitic steels is focused on establishing the feasibility of using these materials. The interest in martensitic steels stems from their potential to tolerate high levels of radiation damage without significant degradation of material properties. Martensitic steels have a body-centered-cubic crystal structure that, unlike face-centered-cubic structure of austenitic steels, exhibits very little swelling under neutron irradiation( 2 ). One of the outstanding issues with martensitic steels is the possible parasitic stresses associated with ferromagnetic interaction with the magnetic fields. This paper is divided into two parts, the first reviews previous work on magnetic effects to the structure and plasma; the second presents new calculations of stresses on a coolant pipe in a Starfire model assumed to be made of 12Cr-1Mo steel(HT-9)

  3. An increase of structural order parameter in Fe endash Co endash V soft magnetic alloy after thermal aging

    International Nuclear Information System (INIS)

    Zhu, Q.; Li, L.; Masteller, M.S.; Del Corso, G.J.

    1996-01-01

    Alloys of Fe 49 Co 49 V 2 (Hiperco Alloy 50) (Hiperco is a registered trademark of CRS Holdings, Inc.), both annealed and thermally aged, were studied using anomalous synchrotron x-ray and neutron powder diffraction. Rietveld and diffraction profile analysis indicated both an increase in the structural order parameter and a small lattice expansion (∼0.0004 A) after aging at 450 degree C for 200 h. In addition, a cubic minority phase (<0.3%) was identified in the open-quote open-quote annealed close-quote close-quote sample, which increased noticeably (0.3%→0.8%) as a result of aging. The presence of antiphase domain boundaries in the alloys was also revealed. These results directly correlate with the observed changes in the magnetization behavior and challenge the notion that a open-quote open-quote fully close-quote close-quote ordered Fe endash Co alloy demonstrates optimum soft magnetic properties. copyright 1996 American Institute of Physics

  4. Traditional Technology of Chromium-Tungsten Steels Facing, its Disadvantages and Suggestions for their Eliminations

    OpenAIRE

    Valuev, Denis Viktorovich; Malushin, N. N.; Valueva, Anna Vladimirovna; Dariev, R. S.; Mamadaliev, R. A.

    2016-01-01

    To reveal the disadvantages of the traditional technology of facing with chromium-tungsten steels analysis of the given technology was completed. The analysis showed that the main disadvantages of the technology are high-temperature heating and underutilization of high-alloyed metal properties. To eliminate the disadvantages we developed the methods of facing allowing obtaining faced metal which state is close to that of the hardened one without cracks.

  5. Physical vapor deposition of cubic boron nitride thin films

    International Nuclear Information System (INIS)

    Kester, D.J.

    1991-01-01

    Cubic boron nitride was successfully deposited using physical vapor-deposition methods. RF-sputtering, magnetron sputtering, dual-ion-beam deposition, and ion-beam-assisted evaporation were all used. The ion-assisted evaporation, using boron evaporation and bombardment by nitrogen and argon ions, led to successful cubic boron nitride growth over the widest and most controllable range of conditions. It was found that two factors were important for c-BN growth: bombardment of the growing film and the presence of argon. A systematic study of the deposition conditions was carried out. It was found that the value of momentum transferred into the growing from by the bombarding ions was critical. There was a very narrow transition range in which mixed cubic and hexagonal phase films were prepared. Momentum-per-atom value took into account all the variables involved in ion-assisted deposition: deposition rate, ion energy, ion flux, and ion species. No other factor led to the same control of the process. The role of temperature was also studied; it was found that at low temperatures only mixed cubic and hexagonal material are deposited

  6. d and f electrons in a qp-quantized cubical field

    International Nuclear Information System (INIS)

    Kibler, M.; Sztucki, J.

    1993-03-01

    A procedure for qp-quantizing a crystal-field potential V with an arbitrary symmetry G is developed. Such a procedure is applied to the case where V involves cubic components (G=0) of the degrees 4 and 6. This case corresponds to d and f electrons in a qp-quantized cubical potential. It is shown that the qp-quantization of the considered cubical potential is equivalent to a symmetry breaking of type O→D 4 . A general conjecture about this symmetry breaking phenomenon is given. (author) 21 refs

  7. Growth of cubic InN on r-plane sapphire

    International Nuclear Information System (INIS)

    Cimalla, V.; Pezoldt, J.; Ecke, G.; Kosiba, R.; Ambacher, O.; Spiess, L.; Teichert, G.; Lu, H.; Schaff, W.J.

    2003-01-01

    InN has been grown directly on r-plane sapphire substrates by plasma-enhanced molecular-beam epitaxy. X-ray diffraction investigations have shown that the InN layers consist of a predominant zinc blende (cubic) structure along with a fraction of the wurtzite (hexagonal) phase which content increases with proceeding growth. The lattice constant for zinc blende InN was found to be a=4.986 A. For this unusual growth of a metastable cubic phase on a noncubic substrate an epitaxial relationship was proposed where the metastable zinc blende phase grows directly on the r-plane sapphire while the wurtzite phase arises as the special case of twinning in the cubic structure

  8. Microhardness of the YbxY1-xInCu4 alloy system: the of electronic structure on hardness

    International Nuclear Information System (INIS)

    Ocko, M; Sarrao, J L; Stubicar, N; Aviani, I; Simek, Z; Stubicar, M

    2003-01-01

    We show that the Vickers microhardness, measured on flux grown single crystals of the Yb x Y 1-x InCu 4 alloy system, although sample dependent, exhibits clear concentration dependence; it increases with decreasing x. Such a dependence is not expected because the cubic lattice parameter increases with decreasing x and one expects then a decrease of hardness with decreasing x. Also, such a concentration dependence is in accordance with neither the Mott-Nabarro theory nor other known experimental results. We ascribe the observed dependence to the change of the electronic structure of the Yb x Y 1-x InCu 4 alloy system with x

  9. Vibrational entropies in metallic alloys

    Science.gov (United States)

    Ozolins, Vidvuds; Asta, Mark; Wolverton, Christopher

    2000-03-01

    Recently, it has been recognized that vibrational entropy can have significant effects on the phase stability of metallic alloys. Using density functional linear response calculations and molecular dynamics simulations we study three representative cases: (i) phase diagram of Al-rich Al-Sc alloys, (ii) stability of precipitate phases in CuAl_2, and (iii) phonon dynamics in bcc Zr. We find large vibrational entropy effects in all cases. In the Al-Sc system, vibrations increase the solid solubility of Sc in Al by decreasing the stability of the L12 (Al_3Sc) phase. This leads to a nearly ten-fold increase in the solid solubility of Sc in Al at T=800 K. In the Cu-Al system, our calculations predict that the tetragonal Laves phase of CuAl2 has 0.35 kB/atom higher vibrational entropy than the cubic CaF_2-type phase (the latter is predicted to be the T=0 K ground state of CuAl_2). This entropy difference causes a structural transformation in CuAl2 precipitates from the fluorite to the tetragonal Laves phase around T=500 K. Finally, we analyze the highly unusual dynamics of anharmonically stabilized bcc Zr, finding large diffuse-scattering intensity streaks between the bcc Bragg peaks.

  10. Face-to-face Tobacco Sales: What Retailers Need to Know PSA (:30)

    Centers for Disease Control (CDC) Podcasts

    2010-09-30

    PSA to help raise retailers' awareness of the new federal tobacco regulations related to the sale of cigarettes and smokeless tobacco products to people under 18 and the requirement to sell products face-to-face.  Created: 9/30/2010 by The CDC Division of News and Electronic Media and the FDA Center for Tobacco Products.   Date Released: 9/30/2010.

  11. Anomalies in the Thermophysical Properties of Undercooled Glass-Forming Alloys

    Science.gov (United States)

    Hyers, Robert W.; Rogers, Jan R.; Kelton, Kenneth F.; Gangopadhyay, Anup

    2008-01-01

    The surface tension, viscosity, and density of several bulk metallic glass-forming alloys have been measured using noncontact techniques in the electrostatic levitation facility (ESL) at NASA Marshall Space Flight Center. All three properties show unexpected behavior in the undercooled regime. Similar deviations were previously observed in titanium-based quasicrystal-forming alloys,but the deviations in the properties of the glass-forming alloys are much more pronounced. New results for anomalous thermophysical properties in undercooled glass-forming alloys will be presented and discussed.

  12. A study on the determination of diffusion coefficient of carbon in 304 austenitic stainless steels by internal friction method

    International Nuclear Information System (INIS)

    Kim, K.S.; Kim, T.H.

    1982-01-01

    Internal friction peaks associated with the presence of carbon in 18-8 type 304 stainless steel have been observed from measurements with a torsion pendulum. The temperature for maximum internal friction lies between 250degC and 300degC with a frequency of vibration. The height of the peak rises and the position of the peak shifts to a lower temperature with an increase of the carbon content. And a comparison of the activation energy and the diffusion coefficient determined by internal friction methods with those measured in conventional macro-diffusion experiments reveals that the diffusion data measured by internal friction method and the diffusion data measured by conventional method exist in the same line. It follows from the above fact that observed internal friction peak is associated with the stress-induced diffusion of carbon in face-centered cubic alloys. (Author)

  13. Effects of substrate temperature on the structure and mechanical properties of (TiVCrZrHf)N coatings

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Shih-Chang [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Chang, Zue-Chin [Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan (China); Tsai, Du-Cheng [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Lin, Yi-Chen; Sung, Huan-Shin [Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan (China); Deng, Min-Jen [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Department of Optometry, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli County 356, Taiwan (China); Shieu, Fuh-Sheng, E-mail: fsshieu@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan (China)

    2011-06-15

    The present paper reports the influence of growth conditions on the characteristics of (TiVCrZrHf)N films prepared by rf reactive magnetron sputtering at various substrate temperatures. The nitrogen content is observed to decrease with increasing substrate temperature. The X-ray diffraction results indicate that all (TiVCrZrHf)N films are simple face centered cubic (FCC) structures. Initially, there is an obvious decrease followed by an increase in grain size with the increase in substrate temperature. The lower part of the microstructure has an amorphous structure. A nano grain structure (size {approx}1 nm) with a random orientation is also observed above the amorphous structure. The fully dense columnar structure with an fcc crystal phase then starts to develop. Extreme hardness of around 48 GPa is obtained in the present alloy design.

  14. Effects of substrate temperature on the structure and mechanical properties of (TiVCrZrHf)N coatings

    International Nuclear Information System (INIS)

    Liang, Shih-Chang; Chang, Zue-Chin; Tsai, Du-Cheng; Lin, Yi-Chen; Sung, Huan-Shin; Deng, Min-Jen; Shieu, Fuh-Sheng

    2011-01-01

    The present paper reports the influence of growth conditions on the characteristics of (TiVCrZrHf)N films prepared by rf reactive magnetron sputtering at various substrate temperatures. The nitrogen content is observed to decrease with increasing substrate temperature. The X-ray diffraction results indicate that all (TiVCrZrHf)N films are simple face centered cubic (FCC) structures. Initially, there is an obvious decrease followed by an increase in grain size with the increase in substrate temperature. The lower part of the microstructure has an amorphous structure. A nano grain structure (size ∼1 nm) with a random orientation is also observed above the amorphous structure. The fully dense columnar structure with an fcc crystal phase then starts to develop. Extreme hardness of around 48 GPa is obtained in the present alloy design.

  15. Annual report 1985

    International Nuclear Information System (INIS)

    1985-01-01

    Aspects regarding ceramics, electronic materials, metals, the specialist task group, services to industry and other organizations and research support activities are discussed in the report. The highlights of the period are given, namely: the effect of high pressure on twophase systems, spinel structures, elastic moduli of stabilized zirconia crystals, alumina ceramics, a fast sodium-ion conducting solid electrolyte (Nasicon), liquid phase epitaxial growth of (HgCd)Te, compositional uniformity of bulk-grown (HgCd)Te, semi-quantitative mass spectrography of Cd and Te, depth profiling of metal semiconductor interdiffusion, low resistance ohmic contacts on GaAs, studies of Fe-Mn-Al alloys, surface mechanical properties of materials, electron diffraction, ceramic mould laboratory for investment casting of metals, grain boundary, sliding in the deformation of polycrystalline copper and a theory of work-hardening in face-centered cubic metals

  16. Phase Composition of a CrMo0.5NbTa0.5TiZr High Entropy Alloy: Comparison of Experimental and Simulated Data

    OpenAIRE

    Fan Zhang; Oleg N. Senkov; Jonathan D. Miller

    2013-01-01

    Microstructure and phase composition of a CrMo0.5NbTa0.5TiZr high entropy alloy were studied in the as-solidified and heat treated conditions. In the as-solidified condition, the alloy consisted of two disordered BCC phases and an ordered cubic Laves phase. The BCC1 phase solidified in the form of dendrites enriched with Mo, Ta and Nb, and its volume fraction was 42%. The BCC2 and Laves phases solidified by the eutectic-type reaction, and their volume fractions were 27% and 31%, respectively....

  17. Carbon supported Pd-Co-Mo alloy as an alternative to Pt for oxygen reduction in direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Ch. Venkateswara [National Centre for Catalysis Research, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, TN (India); Viswanathan, B., E-mail: bvnathan@acer.iitm.ernet.i [National Centre for Catalysis Research, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, TN (India)

    2010-03-01

    Carbon black (CDX975) supported Pd and Pd-Co-Mo alloy nanoparticles are prepared by the reduction of metal precursors with hydrazine in reverse microemulsion of water/Triton-X-100/propanol-2/cyclohexane. The as-synthesized Pd-Co-Mo/CDX975 is heat treated at 973, 1073 and 1173 K to promote alloy formation. The prepared materials are characterized by powder XRD and EDX. Face-centred cubic structure of Pd is evident from XRD. The chemical composition of the respective elements in the catalysts is evaluated from the EDX analysis and observed that it is in good agreement with initial metal precursor concentrations. Oxygen reduction measurements performed by linear sweep voltammetry indicate the good catalytic activity of Pd-Co-Mo alloys compared to Pd. This is due to the suppression of (hydr)oxy species on Pd surface by the presence of alloying elements, Co and Mo. Among the investigated catalysts, heat-treated Pd-Co-Mo/CDX975 at 973 K exhibited good ORR activity compared to the catalysts heat treated at 1073 and 1173 K. This is due to the small crystallite size and high surface area. Rotating disk electrode (RDE) measurements indicated the comparable ORR activity of heat-treated Pd-Co-Mo/CDX975 at 973 K with that of commercial Pt/C. Kinetic analysis reveals that the ORR on Pd-Co-Mo/CDX975 follows the four-electron pathway leading to water. Moreover, Pd-Co-Mo/CDX975 exhibited substantially higher ethanol tolerance during the ORR than Pt/C. Good dispersion of metallic nanoparticles on the carbon support is observed from HRTEM images. Single-cell direct ethanol fuel cell tests indicated the comparable performance of Pd-Co-Mo/CDX975 with that of commercial Pt/C. Stability under DEFC operating conditions for 50 h indicated the good stability of Pd-Co-Mo/CDX975 compared with that of Pt/C.

  18. Abrupt symmetry decrease in the ThT{sub 2}Al{sub 20} alloys (T = 3d transition metal)

    Energy Technology Data Exchange (ETDEWEB)

    Uziel, A.; Bram, A.I. [Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel); Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel); Venkert, A. [Nuclear Research Center-Negev, POB 9001, Beer-Sheva (Israel); Kiv, A.E.; Fuks, D. [Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel); Meshi, L., E-mail: louisa@bgu.ac.il [Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel); Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel)

    2015-11-05

    Th-T-Al system, where T-3d transition metals, was studied at ThT{sub 2}Al{sub 20} stoichiometry to establish the influence of T on the structural stability of ternary aluminide formed. Different alloys were prepared, varying T in the row from Ti to Fe. Using electron microscopy and X-ray diffraction methods it was found that ThT{sub 2}Al{sub 20} phase adopts CeCr{sub 2}Al{sub 20} structure type when T = Ti, V, and Cr. Starting from Mn, the symmetry of the stable Al-rich phase, which forms in the alloys with the same composition, decreases from cubic to orthorhombic. The results of Density Functional Theory (DFT) calculations coincide with experiments. Concepts of the Theory of Coordination Compounds and Jahn–Teller effect were used to explain the observed abrupt change of the symmetry. These considerations were supported by DFT calculations. - Highlights: • Type of transition metal influences symmetry change in the ThT{sub 2}Al{sub 20} alloys. • It was found that cubic ThT{sub 2}Al{sub 20} phase is stable for T = Ti, V and Cr. • When T = Mn, Fe–Al + orthorhombic ThT{sub 2}Al{sub 10} are formed, lowering the symmetry. • Experimental results and DFT calculations were in full agreement. • TCC and of Jahn–Teller effect were used for explanation of the results.

  19. Pattern formation in three-dimensional reaction-diffusion systems

    Science.gov (United States)

    Callahan, T. K.; Knobloch, E.

    1999-08-01

    Existing group theoretic analysis of pattern formation in three dimensions [T.K. Callahan, E. Knobloch, Symmetry-breaking bifurcations on cubic lattices, Nonlinearity 10 (1997) 1179-1216] is used to make specific predictions about the formation of three-dimensional patterns in two models of the Turing instability, the Brusselator model and the Lengyel-Epstein model. Spatially periodic patterns having the periodicity of the simple cubic (SC), face-centered cubic (FCC) or body-centered cubic (BCC) lattices are considered. An efficient center manifold reduction is described and used to identify parameter regimes permitting stable lamellæ, SC, FCC, double-diamond, hexagonal prism, BCC and BCCI states. Both models possess a special wavenumber k* at which the normal form coefficients take on fixed model-independent ratios and both are described by identical bifurcation diagrams. This property is generic for two-species chemical reaction-diffusion models with a single activator and inhibitor.

  20. Achieving perpendicular anisotropy in half-metallic Heusler alloys for spin device applications

    Science.gov (United States)

    Munira, Kamaram; Romero, Jonathon; Butler, William H.

    2014-05-01

    Various full Heusler alloys are interfaced with MgO and the magnetic properties of the Heusler-MgO junctions are studied. Next to MgO, the cubic Heusler system distorts to a tetragonal one, thereby inducing an anisotropy. The half-metallicity and nature of anisotropy (in-plane or perpendicular) in the Heusler-MgO system is governed mostly by the interface Heusler layers. There is a trend that Mn-O bonding near the MgO-Heusler junction results in perpendicular anisotropy. The ability to remain half-metallic and have perpendicular anisotropy makes some of these alloys potential candidates as free-layers in Spin Transfer Torque Random Access Memory (STT-RAM) devices, particularly, Cr2MnAs-MgO system with MnAs interface layers and Co2MnSi-MgO system with Mn2 interface layers.