WorldWideScience

Sample records for fabrication process involves

  1. Mask fabrication process

    Science.gov (United States)

    Cardinale, Gregory F.

    2000-01-01

    A method for fabricating masks and reticles useful for projection lithography systems. An absorber layer is conventionally patterned using a pattern and etch process. Following the step of patterning, the entire surface of the remaining top patterning photoresist layer as well as that portion of an underlying protective photoresist layer where absorber material has been etched away is exposed to UV radiation. The UV-exposed regions of the protective photoresist layer and the top patterning photoresist layer are then removed by solution development, thereby eliminating the need for an oxygen plasma etch and strip and chances for damaging the surface of the substrate or coatings.

  2. Process for fabrication of cermets

    Science.gov (United States)

    Landingham, Richard L [Livermore, CA

    2011-02-01

    Cermet comprising ceramic and metal components and a molten metal infiltration method and process for fabrication thereof. The light weight cermets having improved porosity, strength, durability, toughness, elasticity fabricated from presintered ceramic powder infiltrated with a molten metal or metal alloy. Alumina titanium cermets biocompatible with the human body suitable for bone and joint replacements.

  3. Cascade reactor: granule fabrication processes

    International Nuclear Information System (INIS)

    Erlandson, O.D.; Winkler, E.O.; Maya, I.; Pitts, J.H.

    1985-01-01

    A key feature of Cascade is the granular blanket. Of the many blanket material options open to Cascade, fabrication of Li 2 O granules was felt to offer the greatest challenge. The authors explored available methods for initial Li 2 O granule fabrication. They identified three cost-effective processes for fabricating Li 2 O granules: the VSM drop-melt furnace process, which is based on melting and spheroidizing irregularly shaped Li 2 O feed granules; the LiOH process, which spheroidizes liquefied LiOH and uses GA Technologies' sphere-forming procedures; and the Li 2 CO 3 sol-gel process, used for making spherical fuel particles for the high-temperature gas-cooled reactor (HTGR). Each process is described below

  4. Quality in the fabrication process

    International Nuclear Information System (INIS)

    Romano, A.; Aguirre, F.

    2010-01-01

    Enusa commitment to quality in the manufacture process materializes in the application of the most advanced product quality control technologies such as not-destructive inspection techniques, like artificial vision, X-ray or UT inspection, or process parameter statistical control systems. Quality inspectors are trained and certified by the main National Quality Organizations and receive periodic training under a formal company training program that constantly updates their qualification. Fabrication quality control reliability is based on a strategy that prioritizes redundancy of critical inspection equipment's and inspection personnel knowledge polyvalence. Furthermore, improvement in fabrication quality is obtained by a systematic application of the six sigma methodology where added value is created in projects integrating crosscutting company knowledge, reinforcing the global company vision that the fuel business is based on quality. (Author)

  5. Simple process to fabricate nitride alloy powders

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kim, Dong-Joo; Kim, Keon Sik; Rhee, Young Woo; Oh, Jang-Soo; Kim, Jong Hun; Koo, Yang Hyun

    2013-01-01

    Uranium mono-nitride (UN) is considered as a fuel material [1] for accident-tolerant fuel to compensate for the loss of fissile fuel material caused by adopting a thickened cladding such as SiC composites. Uranium nitride powders can be fabricated by a carbothermic reduction of the oxide powders, or the nitriding of metal uranium. Among them, a direct nitriding process of metal is more attractive because it has advantages in the mass production of high-purity powders and the reusing of expensive 15 N 2 gas. However, since metal uranium is usually fabricated in the form of bulk ingots, it has a drawback in the fabrication of fine powders. The Korea Atomic Energy Research Institute (KAERI) has a centrifugal atomisation technique to fabricate uranium and uranium alloy powders. In this study, a simple reaction method was tested to fabricate nitride fuel powders directly from uranium metal alloy powders. Spherical powder and flake of uranium metal alloys were fabricated using a centrifugal atomisation method. The nitride powders were obtained by thermal treating the metal particles under nitrogen containing gas. The phase and morphology evolutions of powders were investigated during the nitriding process. A phase analysis of nitride powders was also part of the present work. KAERI has developed the centrifugal rotating disk atomisation process to fabricate spherical uranium metal alloy powders which are used as advanced fuel materials for research reactors. The rotating disk atomisation system involves the tasks of melting, atomising, and collecting. A nozzle in the bottom of melting crucible introduces melt at the center of a spinning disk. The centrifugal force carries the melt to the edge of the disk and throws the melt off the edge. Size and shape of droplets can be controlled by changing the nozzle size, the disk diameter and disk speed independently or simultaneously. By adjusting the processing parameters of the centrifugal atomiser, a spherical and flake shape

  6. Process for fabricating mixed-oxide powders

    International Nuclear Information System (INIS)

    Elmaleh, D.; Giraudel, A.

    1975-01-01

    A physical-chemical process for fabricating homogeneous powders suitable for sintering is described. It can be applied to the synthesis of all mixed oxides having mutually compatible and water soluble salts. As a specific example, the fabrication of lead titanate-zirconate powders used to make hot pressed ceramics is described. These ceramics show improved piezoelectric properties [fr

  7. Polymer micromold and fabrication process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Abraham P. (1428 Whitecliff Way, Walnut Creek, CA 94596); Northrup, M. Allen (923 Creston Rd., Berkeley, CA 94708); Ahre, Paul E. (1299 Gonzaga Ct., Livermore, CA 94550); Dupuy, Peter C. (1736 Waldo Ct., Modesto, CA 95358)

    1997-01-01

    A mold assembly with micro-sized features in which the hollow portion thereof is fabricated from a sacrificial mandrel which is surface treated and then coated to form an outer shell. The sacrificial mandrel is then selectively etched away leaving the outer shell as the final product. The sacrificial mandrel is fabricated by a precision lathe, for example, so that when removed by etching the inner or hollow area has diameters as small as 10's of micros (.mu.m). Varying the inside diameter contours of the mold can be accomplished with specified ramping slopes formed on the outer surface of the sacrificial mandrel, with the inside or hollow section being, for example, 275 .mu.m in length up to 150 .mu.m in diameter within a 6 mm outside diameter (o.d.) mold assembly. The mold assembly itself can serve as a micronozzle or microneedle, and plastic parts, such as microballoons for angioplasty, polymer microparts, and microactuators, etc., may be formed within the mold assembly.

  8. Polymer micromold and fabrication process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A.P.; Northrup, M.A.; Ahre, P.E.; Dupuy, P.C.

    1997-08-19

    A mold assembly is disclosed with micro-sized features in which the hollow portion thereof is fabricated from a sacrificial mandrel which is surface treated and then coated to form an outer shell. The sacrificial mandrel is then selectively etched away leaving the outer shell as the final product. The sacrificial mandrel is fabricated by a precision lathe, for example, so that when removed by etching the inner or hollow area has diameters as small as 10`s of micros ({micro}m). Varying the inside diameter contours of the mold can be accomplished with specified ramping slopes formed on the outer surface of the sacrificial mandrel, with the inside or hollow section being, for example, 275 {micro}m in length up to 150 {micro}m in diameter within a 6 mm outside diameter (o.d.) mold assembly. The mold assembly itself can serve as a micronozzle or microneedle, and plastic parts, such as microballoons for angioplasty, polymer microparts, and microactuators, etc., may be formed within the mold assembly. 6 figs.

  9. Fabrication Process Development for Light Deformable Mirrors

    Data.gov (United States)

    National Aeronautics and Space Administration — The project objective is to develop robust, reproductibble fabrication processes to realize functional deformable membrane mirrors (DM) for a space mission in which...

  10. Micro and nano fabrication tools and processes

    CERN Document Server

    Gatzen, Hans H; Leuthold, Jürg

    2015-01-01

    For Microelectromechanical Systems (MEMS) and Nanoelectromechanical Systems (NEMS) production, each product requires a unique process technology. This book provides a comprehensive insight into the tools necessary for fabricating MEMS/NEMS and the process technologies applied. Besides, it describes enabling technologies which are necessary for a successful production, i.e., wafer planarization and bonding, as well as contamination control.

  11. Fabrication process of expanded cooling jackets

    International Nuclear Information System (INIS)

    Weber, C.M.

    1980-01-01

    The present invention concerns the fabrication process of heat exchangers and in particular, the fabrication and assembly process of cooling jackets of the system driving the control rods used in nuclear reactors. The cooling jackets are assembled for cooling the stator of a tubular motor displacing the control rods. The fabrication and assembling of the cooling jacket is made up by the following operations: - a sleeve has an inner fluid inlet and outlet ways, - an external socket is fitted to the sleeve, - on the external socket a continuous welding is realized, which join the socket to the sleeve, and define a serie of parallel welded turns, - a pressure is established between the sleeve and the socket by a fluid through the outlet or inlet ways of the sleeve. When the other way is sealed up, the socket expands between the welded turns, and the fluid can pass through the jacket [fr

  12. DHA involvement in neurotransmission process

    Directory of Open Access Journals (Sweden)

    Vancassel Sylvie

    2007-05-01

    Full Text Available The very high enrichment of the nervous system in the polyunsaturated fatty acids, arachidonic (AA, 20: 4n-6 and docosahexaenoic acids (DHA, 22: 6n-3, is dependant of the dietary availability of their respective precursors, linoleic (18: 2n-6 and_-linolenic acids (18: 3n-3. Inadequate amounts of DHA in brain membranes have been linked to a wide variety of abnormalities ranging from visual acuity and learning irregularities, to psychopathologies. However, the molecular mechanisms involved remain unknown. Several years ago, we hypothesized that a modification of DHA contents of neuronal membranes by dietary modulation could change the neurotransmission function and then underlie inappropriate behavioural response. We showed that, in parallel to a severe loss of brain DHA concomitant to a compensatory substitution by 22:5n-6, the dietary lack of α-linolenic acid during development induced important changes in the release of neurotransmitters (dopamine, serotonin, acetylcholine in cerebral areas specifically involved in learning, memory and reward processes. Data suggested alteration of presynaptic storage process and dysregulations of reciprocal functional interactions between monoaminergic and cholinergic pathways. Moreover, we showed that recovery of these neurochemical changes was possible when the deficient diet was switched to a diet balanced in n-3 and n-6 PUFA before weaning. The next step is to understand the mechanism involved. Particularly, we focus on the study of the metabolic cooperation between the endothelial cell, the astrocyte and the neuron which regulate synaptic transmission.These works could contribute to the understanding of the link between some neuropsychiatric disorders and the metabolism of n-3 PUFA, through their action on neurotransmission.

  13. Inverted process for graphene integrated circuits fabrication.

    Science.gov (United States)

    Lv, Hongming; Wu, Huaqiang; Liu, Jinbiao; Huang, Can; Li, Junfeng; Yu, Jiahan; Niu, Jiebin; Xu, Qiuxia; Yu, Zhiping; Qian, He

    2014-06-07

    CMOS compatible 200 mm two-layer-routing technology is employed to fabricate graphene field-effect transistors (GFETs) and monolithic graphene ICs. The process is inverse to traditional Si technology. Passive elements are fabricated in the first metal layer and GFETs are formed with buried gate/source/drain in the second metal layer. Gate dielectric of 3.1 nm in equivalent oxide thickness (EOT) is employed. 500 nm-gate-length GFETs feature a yield of 80% and fT/fmax = 17 GHz/15.2 GHz RF performance. A high-performance monolithic graphene frequency multiplier is demonstrated using the proposed process. Functionality was demonstrated up to 8 GHz input and 16 GHz output. The frequency multiplier features a 3 dB bandwidth of 4 GHz and conversion gain of -26 dB.

  14. Fabricating an S&OP Process

    DEFF Research Database (Denmark)

    Lichen, Alex Yu

    , constituents of the S&OP process are dispersed in diverse local times and spaces rather than being coordinated in a single time and space by the group demand chain. Accounting is a set of matters of concern. The S&OP process and its purpose of integration come from an “absolute nothingness” – its minimal......Inspired by Latour’s (2005a) notion of matters of concern and M.C. Escher’s Circle Limit III as a representation of the Poincaré Disk, this study follows how an S&OP process was fabricated in a large Swedish manufacturing company. The study claims that when actors are fabricating the S&OP process......, local actors create emergent, ongoing and multiple matters of concern around it. The group demand chain, the actor who is responsible for guiding the implementation of the process, delegates the attempts to close these matters of concern to local actors located in separate times and spaces. As a result...

  15. A scalable fabrication process of polymer microneedles

    Directory of Open Access Journals (Sweden)

    Yang S

    2012-03-01

    Full Text Available Sixing Yang, Yan Feng, Lijun Zhang, Nixiang Chen, Weien Yuan, Tuo JinSchool of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of ChinaAbstract: While polymer microneedles may easily be fabricated by casting a solution in a mold, either centrifugation or vacuumizing is needed to pull the viscous polymer solution into the microholes of the mold. We report a novel process to fabricate polymer microneedles with a one-sided vacuum using a ceramic mold that is breathable but water impermeable. A polymer solution containing polyvinyl alcohol and polysaccharide was cast in a ceramic mold and then pulled into the microholes by a vacuum applied to the opposite side of the mold. After cross-linking and solidification through freeze-thawing, the microneedle patch was detached from the mold and transferred with a specially designed instrument for the drying process, during which the patch shrank evenly to form an array of regular and uniform needles without deformation. Moreover, the shrinkage of the patches helped to reduce the needles' size to ease microfabrication of the male mold. The dried microneedle patches were finally punched to the desired sizes to achieve various properties, including sufficient strength to penetrate skin, microneedles-absorbed water-swelling ratios, and drug-release kinetics. The results showed that the microneedles were strong enough to penetrate pigskin and that their performance was satisfactory in terms of swelling and drug release.Keywords: polymer microneedles, ceramic mold, polyvinyl alcohol, swelling

  16. DHA involvement in neurotransmission process

    OpenAIRE

    Vancassel Sylvie; Aïd Sabah; Denis Isabelle; Guesnet Philippe; Lavialle Monique

    2007-01-01

    The very high enrichment of the nervous system in the polyunsaturated fatty acids, arachidonic (AA, 20: 4n-6) and docosahexaenoic acids (DHA, 22: 6n-3), is dependant of the dietary availability of their respective precursors, linoleic (18: 2n-6) and_-linolenic acids (18: 3n-3). Inadequate amounts of DHA in brain membranes have been linked to a wide variety of abnormalities ranging from visual acuity and learning irregularities, to psychopathologies. However, the molecular mechanisms involved ...

  17. Cryogenic Dark Matter Search detector fabrication process and recent improvements

    Energy Technology Data Exchange (ETDEWEB)

    Jastram, A., E-mail: akjastram@tamu.edu [Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Harris, H.R.; Mahapatra, R.; Phillips, J.; Platt, M.; Prasad, K. [Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Sander, J. [Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Department of Physics, University of South Dakota, Vermillion, SD 57069 (United States); Upadhyayula, S. [Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States)

    2015-02-01

    A dedicated facility has been commissioned for Cryogenic Dark Matter Search (CDMS) detector fabrication at Texas A and M University (TAMU). The fabrication process has been carefully tuned using this facility and its equipment. Production of successfully tested detectors has been demonstrated. Significant improvements in detector performance have been made using new fabrication methods/equipment and tuning of process parameters.

  18. Adaptive Control of Freeze-Form Extrusion Fabrication Processes (Preprint)

    National Research Council Canada - National Science Library

    Zhao, Xiyue; Landers, Robert G; Leu, Ming C

    2008-01-01

    Freeze-form Extrusion Fabrication (FEF) is an additive manufacturing process that extrudes high solids loading aqueous ceramic pastes in a layer-by-layer fashion below the paste freezing temperature for component fabrication...

  19. DWDM DFB LD fabricated by nanoimprint process

    Science.gov (United States)

    Liu, Wen; Wang, Lei; Zhou, Ning; Zhang, Yiwen; Qiu, Fei; Xu, Zhimou

    2011-02-01

    DFB LDs are key components in DWDM optical network. Now they are very expensive because the feedback grating period has to be controlled with very high accuracy and EBL is currently the most popular solution. We propose a high throughput, low cost NIL process based on a large stamp fabricated by SFIL and soft stamp pattern transfer method. DFB chips on 30mm*30mm area were manufactured with both good uniformity and performance. 13 ITU channels from 1540nm to 1560nm of 200GHz space are made. Our results show NIL has high potential to become another popular technology for DFB LD production, this cost effective and high efficiency manufacture solution may yield a significant impact to the future optical communication industry development.

  20. Optimum processing parameters for the fabrication of twill flax fabric-reinforced polypropylene (PP) composites

    Science.gov (United States)

    Zuhudi, Nurul Zuhairah Mahmud; Minhat, Mulia; Shamsuddin, Mohd Hafizi; Isa, Mohd Dali; Nur, Nurhayati Mohd

    2017-12-01

    In recent years, natural fabric thermoplastic composites such as flax have received much attention due to its attractive capabilities for structural applications. It is crucial to study the processing of flax fabric materials in order to achieve good quality and cost-effectiveness in fibre reinforced composites. Though flax fabric has been widely utilized for several years in composite applications due to its high strength and abundance in nature, much work has been concentrated on short flax fibre and very little work focused on using flax fabric. The effectiveness of the flax fabric is expected to give higher strength performance due to its structure but the processing needs to be optimised. Flax fabric composites were fabricated using compression moulding due to its simplicity, gives good surface finish and relatively low cost in terms of labour and production. Further, the impregnation of the polymer into the fabric is easier in this process. As the fabric weave structure contributes to the impregnation quality which leads to the overall performance, the processing parameters of consolidation i.e. pressure, time, and weight fraction of fabric were optimized using the Taguchi method. This optimization enhances the consolidation quality of the composite by improving the composite mechanical properties, three main tests were conducted i.e. tensile, flexural and impact test. It is observed that the processing parameter significantly affected the consolidation and quality of composite.

  1. A Rapid Process for Fabricating Gas Sensors

    Directory of Open Access Journals (Sweden)

    Chun-Ching Hsiao

    2014-07-01

    Full Text Available Zinc oxide (ZnO is a low-toxicity and environmentally-friendly material applied on devices, sensors or actuators for “green” usage. A porous ZnO film deposited by a rapid process of aerosol deposition (AD was employed as the gas-sensitive material in a CO gas sensor to reduce both manufacturing cost and time, and to further extend the AD application for a large-scale production. The relative resistance change (△R/R of the ZnO gas sensor was used for gas measurement. The fabricated ZnO gas sensors were measured with operating temperatures ranging from 110 °C to 180 °C, and CO concentrations ranging from 100 ppm to 1000 ppm. The sensitivity and the response time presented good performance at increasing operating temperatures and CO concentrations. AD was successfully for applied for making ZnO gas sensors with great potential for achieving high deposition rates at low deposition temperatures, large-scale production and low cost.

  2. User involvement in the innovation process

    DEFF Research Database (Denmark)

    Christensen, Dan Saugstrup

    2008-01-01

    User involvement in the innovation process is not a new phenomenon. However, combined with the growing individualisation of demand and with highly competitive and dynamic environments, user involvement in the innovation process and thereby in the design, development, and manufacturing process, can...... nevertheless provide a competitive advantage. This is the case as an intensified user involvement in the innovation process potentially results in a more comprehensive understanding of the user needs and requirements and the context within which these are required, and thereby provides the possibility...... of developing better and more suitable products. The theoretical framework of this thesis is based on user involvement in the innovation process and how user involvement in the innovation process can be deployed in relation to deriving and colleting user needs and requirements, and thereby serves...

  3. Electrochemical/Pyrometallurgical Waste Stream Processing and Waste Form Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Steven Frank; Hwan Seo Park; Yung Zun Cho; William Ebert; Brian Riley

    2015-07-01

    This report summarizes treatment and waste form options being evaluated for waste streams resulting from the electrochemical/pyrometallurgical (pyro ) processing of used oxide nuclear fuel. The technologies that are described are South Korean (Republic of Korea – ROK) and United States of America (US) ‘centric’ in the approach to treating pyroprocessing wastes and are based on the decade long collaborations between US and ROK researchers. Some of the general and advanced technologies described in this report will be demonstrated during the Integrated Recycle Test (IRT) to be conducted as a part of the Joint Fuel Cycle Study (JFCS) collaboration between US Department of Energy (DOE) and ROK national laboratories. The JFCS means to specifically address and evaluated the technological, economic, and safe guard issues associated with the treatment of used nuclear fuel by pyroprocessing. The IRT will involve the processing of commercial, used oxide fuel to recover uranium and transuranics. The recovered transuranics will then be fabricated into metallic fuel and irradiated to transmutate, or burn the transuranic elements to shorter lived radionuclides. In addition, the various process streams will be evaluated and tested for fission product removal, electrolytic salt recycle, minimization of actinide loss to waste streams and waste form fabrication and characterization. This report specifically addresses the production and testing of those waste forms to demonstrate their compatibility with treatment options and suitability for disposal.

  4. Getting Involved in the IEP Process

    Science.gov (United States)

    Kowalski, Ellen; Lieberman, Lauren J.; Daggett, Sara

    2006-01-01

    Although, in many districts, physical educators are integral members of the Individualized Education Program (designed for students with disabilities such as Down syndrome and autism), in other districts, physical educators are only partially involved in the process or are not given the opportunity to be involved at all. However, the physical…

  5. FINAL PROCESS DEPENDENT DIMENSIONAL CHANGES OF DOUBLE KNIT FABRICS

    Directory of Open Access Journals (Sweden)

    Vedat ÖZYAZGAN

    2012-01-01

    Full Text Available In this paper Ne 30/1 cotton yarn obtained by using pure cotton fibers is employed. 1x1, 2x1 and 3x1 Rib fabrics were knitted with yarns at different gauges. During the knitting process, the tension was kept constant. In order to investigate the relaxation on the knitting process fabric samples were treated using three relaxation processes; dry, wet and full respectively. After each relaxation process, stitches dimensions were measured. As a result of these measurements, it is observed that as the relaxation increases the stitches length decreases while the stitches width increases. In rib knitting, As the fabric stretches increases the stitch length increases. As a result it is observed that as the stitch length increases, the width of the stitches increases linearly. In all rib fabrics, increase in the stitch density leads to an increase in the weight of the fabric.

  6. An improved fabrication process for Si-detector-compatible JFETs

    International Nuclear Information System (INIS)

    Piemonte, Claudio; Dalla Betta, Gian-Franco; Boscardin, Maurizio; Gregori, Paolo; Zorzi, Nicola; Ratti, Lodovico

    2006-01-01

    We report on JFET devices fabricated on high-resistivity silicon with a radiation detector technology. The problems affecting previous versions of these devices have been thoroughly investigated and solved by developing an improved fabrication process, which allows for a sizeable enhancement in the JFET performance. In this paper, the main features of the fabrication technology are presented and selected results from the electrical and noise characterization of transistors are discussed

  7. Process development and fabrication for sphere-pac fuel rods

    International Nuclear Information System (INIS)

    Welty, R.K.; Campbell, M.H.

    1981-06-01

    Uranium fuel rods containing sphere-pac fuel have been fabricated for in-reactor tests and demonstrations. A process for the development, qualification, and fabrication of acceptable sphere-pac fuel rods is described. Special equipment to control fuel contamination with moisture or air and the equipment layout needed for rod fabrication is described and tests for assuring the uniformity of the fuel column are discussed. Fuel retainers required for sphere-pac fuel column stability and instrumentation to measure fuel column smear density are described. Results of sphere-pac fuel rod fabrication campaigns are reviewed and recommended improvements for high throughput production are noted

  8. Environmental assessment for radioisotope heat source fuel processing and fabrication

    International Nuclear Information System (INIS)

    1991-07-01

    DOE has prepared an Environmental Assessment (EA) for radioisotope heat source fuel processing and fabrication involving existing facilities at the Savannah River Site (SRS) near Aiken, South Carolina and the Los Alamos National Laboratory (LANL) near Los Alamos, New Mexico. The proposed action is needed to provide Radioisotope Thermoelectric Generators (RTG) to support the National Aeronautics and Space Administration's (NASA) CRAF and Cassini Missions. Based on the analysis in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an Environmental Impact Statement is not required. 30 refs., 5 figs

  9. Spin versus helicity in processes involving transversity

    CERN Document Server

    Mekhfi, Mustapha

    2011-01-01

    We construct the spin formalism in order to deal in a direct and natural way with processes involving transversity which are now of increasing popularity. The helicity formalism which is more appropriate for collision processes of definite helicity has been so far used also to manage processes with transversity, but at the price of computing numerous helicity amplitudes generally involving unnecessary kinematical variables.In a second step we work out the correspondence between both formalisms and retrieve in another way all results of the helicity formalism but in simpler forms.We then compute certain processes for comparison.A special process:the quark dipole magnetic moment is shown to be exclusively treated within the spin formalism as it is directly related to the transverse spin of the quark inside the baryon.

  10. U-10Mo Baseline Fuel Fabrication Process Description

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Lance R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Arendt, Christina L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dye, Daniel F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clayton, Christopher K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lerchen, Megan E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lombardo, Nicholas J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zacher, Alan H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-09-27

    This document provides a description of the U.S. High Power Research Reactor (USHPRR) low-enriched uranium (LEU) fuel fabrication process. This document is intended to be used in conjunction with the baseline process flow diagram (PFD) presented in Appendix A. The baseline PFD is used to document the fabrication process, communicate gaps in technology or manufacturing capabilities, convey alternatives under consideration, and as the basis for a dynamic simulation model of the fabrication process. The simulation model allows for the assessment of production rates, costs, and manufacturing requirements (manpower, fabrication space, numbers and types of equipment, etc.) throughout the lifecycle of the USHPRR program. This document, along with the accompanying PFD, is updated regularly

  11. Optimizing The DSSC Fabrication Process Using Lean Six Sigma

    Science.gov (United States)

    Fauss, Brian

    Alternative energy technologies must become more cost effective to achieve grid parity with fossil fuels. Dye sensitized solar cells (DSSCs) are an innovative third generation photovoltaic technology, which is demonstrating tremendous potential to become a revolutionary technology due to recent breakthroughs in cost of fabrication. The study here focused on quality improvement measures undertaken to improve fabrication of DSSCs and enhance process efficiency and effectiveness. Several quality improvement methods were implemented to optimize the seven step individual DSSC fabrication processes. Lean Manufacturing's 5S method successfully increased efficiency in all of the processes. Six Sigma's DMAIC methodology was used to identify and eliminate each of the root causes of defects in the critical titanium dioxide deposition process. These optimizations resulted with the following significant improvements in the production process: 1. fabrication time of the DSSCs was reduced by 54 %; 2. fabrication procedures were improved to the extent that all critical defects in the process were eliminated; 3. the quantity of functioning DSSCs fabricated was increased from 17 % to 90 %.

  12. Brazing process in nuclear fuel element fabrication

    International Nuclear Information System (INIS)

    Katam, K.; Sudarsono

    1982-01-01

    The purpose of the brazing process is to join the spacers and pads of fuel pins, so that the process is meant as a soldering technique and not only as a hardening or reinforcing process such as in common brazing purposes. There are some preliminary processes before executing the brazing process such as: materials preparation, sand blasting, brazing metal coating tack welding the spacers and pads on the fuel cladding. The metal brazing used is beryllium in strip form which will be evaporated in vacuum condition to coat the spacers and pads. The beryllium vapor and dust is very hazardous to the workers, so all the line process of brazing needs specials safety protection and equipment to protect the workers and the processing area. Coating process temperature is 2470 deg C with a vacuum pressure of 10 -5 mmHg. Brazing process temperature process is 1060 deg C with a vacuum pressure of 10 -6 mmHg. The brazing process with beryllium coating probably will give metallurgical structural change in the fuel cladding metal at the locations of spacers and pads. The quality of brazing is highly influenced by and is depending on the chemical composition of the metal and the brazing metal, materials preparations, temperature, vacuum pressure, time of coating and brazing process. The quality control of brazing could be performed with methods of visuality geometry, radiography and metallography. (author)

  13. Fabrication of Separator Demonstration Facility process vessel

    International Nuclear Information System (INIS)

    Oberst, E.F.

    1985-01-01

    The process vessel system is the central element in the Separator Development Facility (SDF). It houses the two major process components, i.e., the laser-beam folding optics and the separators pods. This major subsystem is the critical-path procurement for the SDF project. Details of the vaious parts of the process vessel are given

  14. Involving IDPs in the Darfur peace process

    Directory of Open Access Journals (Sweden)

    David Lanz

    2008-04-01

    Full Text Available The UN estimates that there are 2.4 millionIDPs in Darfur –over one third of the totalpopulation. There can be no meaningfulpeace process without their involvement.Giving IDPs a formal seat in official peacenegotiations is problematic but there areother ways to ensure their participation.

  15. Research on plant of metal fuel fabrication using casting process

    International Nuclear Information System (INIS)

    Senda, Yasuhide; Mori, Yukihide

    2003-12-01

    This document presents the plant concept of metal fuel fabrication system (38tHM/y) using casting process in electrolytic recycle, which based on recent studies of its equipment design and quality control system. And we estimate the cost of its construction and operation, including costs of maintenance, consumed hardware and management of waste. The content of this work is as follows. (1) Designing of fuel fabrication equipment: We make material flow diagrams of the fuel fabrication plant and rough designs of the injection casting furnace, demolder and inspection equipment. (2) Designing of resolution system of liquid waste, which comes from analytical process facility. Increased analytical items, we rearrange analytical process facility, estimate its chemicals and amount of waste. (3) Arrangement of equipments: We made a arrangement diagram of the metal fuel fabrication equipments in cells. (4) Estimation of cost data: We estimated cost to construct the facility and to operate it. (author)

  16. Utilization of process TEG for fabrication of HTS circuits

    International Nuclear Information System (INIS)

    Hato, T.; Okada, Y.; Maruyama, M.; Suzuki, H.; Wakana, H.; Adachi, S.; Kawabe, U.; Tanabe, K.

    2006-01-01

    We improved the fabrication process of high-temperature superconducting (HTS) sampler circuits with multilayer structures by utilizing a test elements group (TEG). Among a lot of difficulties in the HTS circuit fabrication process, loss of oxygen is one of the most significant problems. Since the film transition temperature (T c ) has a strong relationship with the resistance at room temperature, we fabricated a test pattern on the same wafer of the circuits and measured the resistance at room temperature by using a prober to estimate the T c of each layer. By introducing the measurement of the normal resistance after each process, we found better process conditions without a T c drop. Moreover, we constructed a low-temperature probing system, in which we can measure the junction TEG. The system enabled feedback of the fabrication condition soon after the junction process. The utilization of the process TEG contributed to reproducible fabrication of HTS circuits and that is a promising advance of the HTS circuit technology

  17. Chemical aspects of nuclear fuel fabrication processes

    Energy Technology Data Exchange (ETDEWEB)

    Naylor, A; Ellis, J F; Watson, R H

    1986-04-01

    Processes used by British Nuclear Fuels plc for the conversion of uranium ore concentrates to uranium metal and uranium hexafluoride, are reviewed. Means of converting the latter compound, after enrichment, to sintered UO/sub 2/ fuel bodies are also described. An overview is given of the associated chemical engineering technology.

  18. Superconducting materials fabrication process and materials obtained

    International Nuclear Information System (INIS)

    Lafon, M.O.; Magnier, C.

    1989-01-01

    The preparation process of a fine powder of YBaCuO type superconductors of easy sintering comprises: mixing in presence of alcohol an aqueous solution of rare earth nitrate or acetate, alkaline earth nitrate or acetate and copper nitrate or acetate and an oxalic acid solution, the pH value of the mixture is comprised between 2 and 4, the obtained precipitate is separated, dried, calcined and eventually crushed [fr

  19. Fabrication of HTR fuel elements by a gaseous impregnation process

    International Nuclear Information System (INIS)

    Blin, J.C.; Berthier, J.; Devillard, J.

    1976-01-01

    The results obtained with the gaseous impregnation process are described. The successive steps of the fabrication in their present state of realization are given together with the results obtained after irradiation. A comparison between this process and a classical method is presented

  20. Charge exchange processes involving iron ions

    International Nuclear Information System (INIS)

    Phaneuf, R.A.

    1985-01-01

    A review and evaluation is given of the experimental data which are available for charge exchange processes involving iron ions and neutral H, H 2 and He. Appropriate scaling laws are presented, and their accuracy estimated for these systems. A bibliography is given of available data sources, as well as of useful data compilations and review articles. A procedure is recommended for providing single approximate formulae to the fusion community to describe total cross sections for electron capture by partially-stripped Fe/sup q+/ ions in collisions with H, H 2 and He, based on the scaling relationships suggested by Janev and Hvelplund

  1. State of the art of UO2 fuel fabrication processes

    International Nuclear Information System (INIS)

    Henke, M.; Klemm, U.

    1980-01-01

    Starting from the need of UO 2 for thermal power reactors in the period from 1980 to 1990 and the role of UF 6 conversion into UO 2 within the fuel cycle, the state-of-the-art of the three established industrial processes - ADU process, AUC process, IDR process - is assessed. The number of process stages and requirements on process management are discussed. In particular, the properties of the fabricated UO 2 powders, their influence on the following pellet production and on operational behaviour of the fuel elements under reactor conditions are described. Hence, an evaluation of the three essential conversion processes is derived. (author)

  2. Property-process relationships in nuclear fuel fabrication

    International Nuclear Information System (INIS)

    Tikare, V.

    2015-01-01

    Nuclear fuels are fabricated using many different techniques as they come in a large variety of shapes and compositions. The design and composition of nuclear fuels are predominantly dictated by the engineering requirements necessary for their function in reactors of various designs. Other engineering properties requirements originate from safety and security concerns, and the easy of handling, storing, transporting and disposing of the radioactive materials. In this chapter, the more common of these fuels will be briefly reviewed and the methods used to fabricate them will be presented. The fuels considered in this paper are oxide fuels used in LWRs and FRs, metal fuels in FRs and particulate fuels used in HTGRs. Fabrication of alternative fuel forms and use of standard fuels in alternative reactors will be discussed briefly. The primary motivation to advance fuel fabrication is to improve performance, reduce cost, reduce waste or enhance safety and security of the fuels. To achieve optimal performance, developing models to advance fuel fabrication has to be done in concert with developing fuel performance models. The specific properties and microstructures necessary for improved fuel performance must be identified using fuel performance models, while fuel fabrication models that can determine processing variables to give the desired microstructure and materials properties must be developed. (author)

  3. Processes involved in solving mathematical problems

    Science.gov (United States)

    Shahrill, Masitah; Putri, Ratu Ilma Indra; Zulkardi, Prahmana, Rully Charitas Indra

    2018-04-01

    This study examines one of the instructional practices features utilized within the Year 8 mathematics lessons in Brunei Darussalam. The codes from the TIMSS 1999 Video Study were applied and strictly followed, and from the 183 mathematics problems recorded, there were 95 problems with a solution presented during the public segments of the video-recorded lesson sequences of the four sampled teachers. The analyses involved firstly, identifying the processes related to mathematical problem statements, and secondly, examining the different processes used in solving the mathematical problems for each problem publicly completed during the lessons. The findings revealed that for three of the teachers, their problem statements coded as `using procedures' ranged from 64% to 83%, while the remaining teacher had 40% of his problem statements coded as `making connections.' The processes used when solving the problems were mainly `using procedures', and none of the problems were coded as `giving results only'. Furthermore, all four teachers made use of making the relevant connections in solving the problems given to their respective students.

  4. Fabrication and characterization of melt-processed YBCO

    International Nuclear Information System (INIS)

    Sengupta, S.; Corpus, J.; Gaines, J.R. Jr.; Todt, V.R.; Zhang, X.F.; Miller, D.J.; Varanasi, C.; McGinn, P.J.

    1996-01-01

    Large domain YBCO are fabricated by using a melt processing technique for magnetic levitation applications. A Nd 1+x Ba 2-x Cu 3 O y seed is used to initiate grain growth and to control the orientation of YBCO grains. Samples as large as 2 inch have been fabricated by utilizing this method. Microstructural studies reveals two distinct regions in these levitators due to different growth mechanism along a/b and c axis. Some initial results on the mass production of these levitators are also reported

  5. Metal matrix composite fabrication processes for high performance aerospace structures

    Science.gov (United States)

    Ponzi, C.

    A survey is conducted of extant methods of metal matrix composite (MMC) production in order to serve as a basis for prospective MMC users' selection of a matrix/reinforcement combination, cost-effective primary fabrication methods, and secondary fabrication techniques for the achievement of desired performance levels. Attention is given to the illustrative cases of structural fittings, control-surface connecting rods, hypersonic aircraft air inlet ramps, helicopter swash plates, and turbine rotor disks. Methods for technical and cost analysis modeling useful in process optimization are noted.

  6. Involving construction in the preliminary engineering process

    International Nuclear Information System (INIS)

    Mahoney, D.T. Jr.; Boccieri, S.V. Jr.

    1994-01-01

    With today's high cost associated with modifications in nuclear power plants, it is imperative that the authors continue to investigate ways to cut costs but at the same time improve efficiency and reduce radiation exposure to those directly associated with the implementation of modifications. The success associated with involving construction in the preliminary engineering process will not only cut costs and improve efficiency but will establish a Team Building concept to provide accountability to all those associated with the implementation of the task. This form of partnering focuses on the solutions rather than highlighting the difficulties. This paper will demonstrate techniques to implement such ideas and provide examples to corroborate actual successes already achieved

  7. Sol-gel process for thermal reactor fuel fabrication

    International Nuclear Information System (INIS)

    Mukerjee, S.K.

    2008-01-01

    Full text: Sol-gel processes have revolutionized conventional ceramic technology by providing extremely fine and uniform powders for the fabrication of ceramics. The use of this technology for nuclear fuel fabrication has also been explored in many countries. Unlike the conventional sol-gel process, sol-gel process for nuclear fuels tries to eliminate the preparation of powders in view of the toxic nature of the powders particularly those of plutonium and 233 U. The elimination of powder handling thus makes this process more readily amenable for use in glove boxes or for remote handling. In this process, the first step is the preparation of microspheres of the fuel material from a solution which is then followed by vibro-compaction of these microspheres of different sizes to obtain the required smear density of fuel inside a pin. The maximum achievable packing density of 92 % makes it suitable for fast reactors only. With a view to extend the applicability of sol-gel process for thermal reactor fuel fabrication the concept of converting the gel microspheres derived from sol-gel process, to the pellets, has been under investigation for several years. The unique feature of this process is that it combines the advantages of sol-gel process for the preparation of fuel oxide gel microspheres of reproducible quality with proven irradiation behavior of the pellet fuel. One of the important pre-requisite for the success of this process is the preparation of soft oxide gel microspheres suitable for conversion to dense pellets free from berry structure. Studies on the internal gelation process, one of the many variants of sol-gel process, for obtaining soft oxide gel microspheres suitable for gel pelletisation is now under investigation at BARC. Some of the recent findings related to Sol-Gel Microsphere Pelletisation (SGMP) in urania-plutonia and thoria-urania systems will be presented

  8. Processing and characterization of multilayers for energy device fabrication (invited)

    DEFF Research Database (Denmark)

    Kaiser, Andreas; Kiebach, Wolff-Ragnar; Gurauskis, Jonas

    SOFC and tubular OTM, we present selected challenges in ceramic processing such asymmetric multilayer structures. By optimizing different steps in the ceramic processing, we improved the mechanical properties and gas permeability of porous supports and the (electrochemical) performance of electrodes......The performance of asymmetric multilayer structures in solid oxide fuel cells (SOFC)/solid oxide electrolysis cells (SOEC), tubular oxygen transport membranes (OTM) and similar high temperature energy devices is often determined by the ceramic fabrication (for given materials and design). A good...... understanding and control of different processing steps (from powder/materials selection, through shaping and sintering) is of crucial importance to achieve a defect-free multilayer microstructure with the desired properties and performance. Based on the experiences at DTU Energy with the fabrication of planar...

  9. Process for fabricating composite material having high thermal conductivity

    Science.gov (United States)

    Colella, Nicholas J.; Davidson, Howard L.; Kerns, John A.; Makowiecki, Daniel M.

    2001-01-01

    A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

  10. USHPRR FUEL FABRICATION PILLAR: FABRICATION STATUS, PROCESS OPTIMIZATIONS, AND FUTURE PLANS

    Energy Technology Data Exchange (ETDEWEB)

    Wight, Jared M.; Joshi, Vineet V.; Lavender, Curt A.

    2018-03-12

    The Fuel Fabrication (FF) Pillar, a project within the U.S. High Performance Research Reactor Conversion program of the National Nuclear Security Administration’s Office of Material Management and Minimization, is tasked with the scale-up and commercialization of high-density monolithic U-Mo fuel for the conversion of appropriate research reactors to use of low-enriched fuel. The FF Pillar has made significant steps to demonstrate and optimize the baseline co-rolling process using commercial-scale equipment at both the Y-12 National Security Complex (Y-12) and BWX Technologies (BWXT). These demonstrations include the fabrication of the next irradiation experiment, Mini-Plate 1 (MP-1), and casting optimizations at Y-12. The FF Pillar uses a detailed process flow diagram to identify potential gaps in processing knowledge or demonstration, which helps direct the strategic research agenda of the FF Pillar. This paper describes the significant progress made toward understanding the fuel characteristics, and models developed to make informed decisions, increase process yield, and decrease lifecycle waste and costs.

  11. Defining stakeholder involvement in participatory design processes

    NARCIS (Netherlands)

    Vink, P.; Imada, A.S.; Zink, K.J.

    2008-01-01

    A participatory approach could be used to implement work place or organizational improvements. However, the question is which participants should be involved and how. In this paper the theoretical involvement in different steps of a linear stepwise approach is described and compared with the latest

  12. Lithium zirconate elements fabricated by industrial scale processes

    International Nuclear Information System (INIS)

    Roux, N.

    1991-01-01

    Lithium metazirconate Li 2 ZrO 3 is one of the leading tritium breeding ceramics contemplated in solid blanket concepts for fusion reactors. Among its merits are fair physical properties, satisfactory compatibility with structural materials and beryllium, satisfactory mechanical strength, excellent irradiation behaviour as shown by a comparative irradiation of ceramics in the EBR II reactor, and very good tritium release performance as evidenced in the MOZART and EXOTIC neutron irradiations. Pechiney and the CEA are jointly involved in developing industrial fabrication of Li 2 ZrO 3 elements to the microstructural and geometrical specifications required for their use in the solid blankets as conceived in the European Program

  13. Process for the fabrication of nuclear fuel oxide pellets

    International Nuclear Information System (INIS)

    Francois, Bernard; Paradis, Yves.

    1977-01-01

    Process for the fabrication of nuclear fuel oxide pellets of the type for which particles charged with an organic binder -selected from the group that includes polyvinyl alcohol, carboxymethyl cellulose, polyvinyl compounds and methyl cellulose- are prepared from a powder of such an oxide, for instance uranium dioxide. These particles are then compressed into pellets which are then sintered. Under this process the binder charged particles are prepared by stirring the powder with a gas, spraying on to the stirred powder a solution or a suspension in a liquid of this organic binder in order to obtain these particles and then drying the particles so obtained with this gas [fr

  14. Infra-red process for colour fixation on fabrics

    International Nuclear Information System (INIS)

    Raymond, D.J.; Biau, D.

    1983-01-01

    Infra-red radiations find wide application in industrial processes as heating, drying, stoving and forming. The results are often far better than those from the other techniques: convection oven, gas IR etc ... They come from the electric IR specific advantages: energy direct transmission, emitter and product spectral coupling, possible selectivity. That is the case in the Textile Industry, where experiments showed that infra-red process heating could be efficient for colour fixation on fabrics. Shorter production cycles and energy saving are the main results

  15. Microstructure fabrication process induced modulations in CVD graphene

    Science.gov (United States)

    Matsubayashi, Akitomo; Zhang, Zhenjun; Lee, Ji Ung; LaBella, Vincent P.

    2014-12-01

    The systematic Raman spectroscopic study of a "mimicked" graphene device fabrication is presented. Upon photoresist baking, compressive stress is induced in the graphene which disappears after it is removed. The indirect irradiation from the electron beam (through the photoresist) does not significantly alter graphene characteristic Raman peaks indicating that graphene quality is preserved upon the exposure. The 2D peak shifts and the intensity ratio of 2D and G band, I(2D)/I(G), decreases upon direct metal deposition (Co and Py) suggesting that the electronic modulation occurs due to sp2 C-C bond weakening. In contrast, a thin metal oxide film deposited graphene does not show either the significant 2D and G peaks shift or I(2D)/I(G) decrease upon the metal deposition suggesting the oxide protect the graphene quality in the fabrication process.

  16. Microstructure fabrication process induced modulations in CVD graphene

    Energy Technology Data Exchange (ETDEWEB)

    Matsubayashi, Akitomo, E-mail: amatsubayashi@albany.edu; Zhang, Zhenjun; Lee, Ji Ung; LaBella, Vincent P., E-mail: vlabella@albany.edu [College of Nanoscale Science and Engineering, University at Albany, SUNY, Albany, New York 12203 (United States)

    2014-12-15

    The systematic Raman spectroscopic study of a “mimicked” graphene device fabrication is presented. Upon photoresist baking, compressive stress is induced in the graphene which disappears after it is removed. The indirect irradiation from the electron beam (through the photoresist) does not significantly alter graphene characteristic Raman peaks indicating that graphene quality is preserved upon the exposure. The 2D peak shifts and the intensity ratio of 2D and G band, I(2D)/I(G), decreases upon direct metal deposition (Co and Py) suggesting that the electronic modulation occurs due to sp{sup 2} C-C bond weakening. In contrast, a thin metal oxide film deposited graphene does not show either the significant 2D and G peaks shift or I(2D)/I(G) decrease upon the metal deposition suggesting the oxide protect the graphene quality in the fabrication process.

  17. Applications and fabrication processes of superconducting composite materials

    International Nuclear Information System (INIS)

    Gregory, E.

    1984-01-01

    This paper discusses the most recent applications and manufacturing considerations in the field of superconductivity. The constantly changing requirements of a growing number of users encourage development in fabrication and inspection techniques. For the first time, superconductors are being used commercially in large numbers and superconducting magnets are no longer just laboratory size. Although current demand for these conductors represents relatively small quantities of material, advances in the production of high-quality composites may accelerate technological growth into several new markets. Three large-scale application areas for superconductors are discussed: accelerator magnets for high-energy physics research, magnetic confinement for thermonuclear fusion, and magnetic resonance imaging for health care. Each application described is accompanied by a brief description of the conductors used and fabrication processes employed to make them

  18. A new planetary structure fabrication process using phosphoric acid

    Science.gov (United States)

    Buchner, Christoph; Pawelke, Roland H.; Schlauf, Thomas; Reissner, Alexander; Makaya, Advenit

    2018-02-01

    Minimising the launch mass is an important aspect of exploration mission planning. In-situ resource utilisation (ISRU) can improve this by reducing the amount of terrestrial materials needed for planetary exploration activities. We report on a recently concluded investigation into the requirements and available technologies for creating hardware on extra-terrestrial bodies, using the limited resources available on site. A trade-off of ISRU technologies for hardware manufacturing was conducted. A new additive manufacturing process suitable for fabricating structures on the Moon or Mars was developed. The process uses planetary regolith as the base material and concentrated phosphoric acid as the liquid binder. Mixing the reagents creates a sticky construction paste that slowly solidifies into a hard, rock-like material. Prior to solidification, the paste is extruded in layers, creating the desired structures in a 3D printing process. We used Martian regolith simulant JSC-Mars-1A, but the process is not selective towards regolith composition. Samples were exposed to thermal cycles and were mechanically characterised. Reduced-scale demonstrator structures were printed to demonstrate structure fabrication using the developed process.

  19. Customer Involvement in the Game Development Process

    Directory of Open Access Journals (Sweden)

    Kaja Prystupa-Rządca

    2015-01-01

    Full Text Available The creative industry is a fast developing sector of economy in many countries. Growing competition in this area has led many companies to implement strategy of users' involvement in product development in order to deliver products that are more aligned with customers’ needs. On the other hand, the attempt to align the customers’ expectations with artistic creativity may create tensions. Therefore, the aim of the research is to examine the methods of users’ involvement in product development and real impact of the users on project design. The obtained findings are based on two-year qualitative research project conducted in game development companies.

  20. Materials and fabrication processes for operation in hot hydrogen

    International Nuclear Information System (INIS)

    Tuffias, R.H.; Duffy, A.J.; Arrieta, V.M.; Abrams, W.M.; Benander, R.E.

    1997-01-01

    Operation in hot (2500 endash 3000 K) hydrogen severely limits the choice of structural materials. Rhenium is nonreactive with and has low permeability to hydrogen, and has sufficient strength up to 2800 K. Carbon, in the form of graphite or carbon composites, has excellent high temperature strength but reacts with hydrogen to form methane at a rapid rate above 2000 K. The carbides of zirconium, niobium, hafnium, and tantalum are nonreactive with and have low permeability to hydrogen, but they can be reliably fabricated only in the form of coatings. In order to demonstrate the Integrated Solar Upper Stage (ISUS) solar-thermal propulsion concept, rhenium and rhenium-coated graphite were chosen as the structural materials for the receiver-absorber-converter (RAC) component of the ISUS system. Several methods were investigated for fabricating the rhenium parts and coatings, with chemical vapor deposition (CVD) and Ultramet chosen as the most likely process and company for success. The CVD or rhenium and other refractory materials were thus applied to the ISUS program for fabrication of the RAC subsystem. copyright 1997 American Institute of Physics

  1. A simple cost-effective and eco-friendly wet chemical process for the fabrication of superhydrophobic cotton fabrics

    Energy Technology Data Exchange (ETDEWEB)

    Richard, Edna; Lakshmi, R.V.; Aruna, S.T., E-mail: aruna_reddy@nal.res.in; Basu, Bharathibai J.

    2013-07-15

    Superhydrophobic surfaces were created on hydrophilic cotton fabrics by a simple wet chemical process. The fabric was immersed in a colloidal suspension of zinc hydroxide followed by subsequent hydrophobization with stearic acid. The wettability of the modified cotton fabric sample was studied by water contact angle (WCA) and water shedding angle (WSA) measurements. The modified cotton fabrics exhibited superhydrophobicity with a WCA of 151° for 8 μL water droplet and a WSA of 5–10° for 40 μL water droplet. The superhydrophobic cotton sample was also characterized by field emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectroscopy (EDX). The method is simple, eco-friendly and cost-effective and can be applied to large area of cotton fabric materials. It was shown that superhydrophobicity of the fabric was due to the combined effect of surface roughness imparted by zinc hydroxide and the low surface energy of stearic acid.

  2. A simple cost-effective and eco-friendly wet chemical process for the fabrication of superhydrophobic cotton fabrics

    International Nuclear Information System (INIS)

    Richard, Edna; Lakshmi, R.V.; Aruna, S.T.; Basu, Bharathibai J.

    2013-01-01

    Superhydrophobic surfaces were created on hydrophilic cotton fabrics by a simple wet chemical process. The fabric was immersed in a colloidal suspension of zinc hydroxide followed by subsequent hydrophobization with stearic acid. The wettability of the modified cotton fabric sample was studied by water contact angle (WCA) and water shedding angle (WSA) measurements. The modified cotton fabrics exhibited superhydrophobicity with a WCA of 151° for 8 μL water droplet and a WSA of 5–10° for 40 μL water droplet. The superhydrophobic cotton sample was also characterized by field emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectroscopy (EDX). The method is simple, eco-friendly and cost-effective and can be applied to large area of cotton fabric materials. It was shown that superhydrophobicity of the fabric was due to the combined effect of surface roughness imparted by zinc hydroxide and the low surface energy of stearic acid.

  3. Fabrication process for the PEP II RF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Franks, R.M.; Rimmer, R.A. [Lawrence Berkeley National Lab., CA (United States); Schwarz, H. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1997-06-05

    This paper presents the major steps used in the fabrication of the 26 RF Cavities required for the PEP-II B-factory. Several unique applications of conventional processes have been developed and successfully implemented: electron beam welding (EBW), with minimal porosity, of .75 inch (19 mm) copper cross-sections; extensive 5-axis milling of water channels; electroplating of .37 inch (10 mm) thick OFE copper; tuning of the cavity by profiling beam noses prior to final joining with the cavity body; and machining of the cavity interior, are described here.

  4. Information management data base for fusion target fabrication processes

    International Nuclear Information System (INIS)

    Reynolds, J.

    1983-01-01

    A computer-based data management system has been developed to handle data associated with target fabrication processes including glass microballoon characterization, gas filling, materials coating, and storage locations. The system provides automatic data storage and computation, flexible data entry procedures, fast access, automated report generation, and secure data transfer. It resides on a CDC CYBER 175 computer and is compatible with the CDC data base language Query Update, but is based on custom fortran software interacting directly with the CYBER's file management system. The described data base maintains detailed, accurate, and readily available records of fusion targets information

  5. Dustless Process for Minor Actinide-Bearing Blanket Fabrication

    International Nuclear Information System (INIS)

    Caisso, M.; Lebreton, F.; Horlait, D.; Delahaye, Th.; Picart, S.; Martin, Ph.M.; Renard, C.; Roussel, P.; Neuville, D.R.; Belin, R.C.; Dardenne, K.; Rothe, J.; Ayral, A.

    2015-01-01

    U 1-x Am x O 2±δ mixed-oxides are considered promising compounds for americium heterogeneous transmutation in fast neutron reactor. At lab-scale, the fabrication of americium bearing blankets (AmBB) under the form of ceramic pellets, required for irradiation, follows a powder metallurgy route which generates highly contaminant fine particles. Considering scale-up, dustless processes that can avoid particle dispersion in the fabrication lines are thus recommended. With this aim, the development of an innovative route called calcined resin microsphere pelletizing (CRMP) process has been initiated. The general approach consists in synthesising mixed-oxide microsphere precursors from beads of ion exchange resin through an adaptation of the weak acid resin process (WAR), and their pelletizing before sintering. This study focuses on the microsphere synthesis and particularly on the mechanisms implied during the thermal conversion of metal loaded ion exchange resin in porous mixed-oxide microspheres. The results are discussed, in a first time, on the basis of the synthesis of oxide microspheres integrating uranium and americium surrogates (Ce and Gd respectively) before a transposition to the highly active materials in a second time. (authors)

  6. Silicon Solar Cell Process Development, Fabrication and Analysis, Phase 1

    Science.gov (United States)

    Yoo, H. I.; Iles, P. A.; Tanner, D. P.

    1979-01-01

    Solar cells from RTR ribbons, EFG (RF and RH) ribbons, dendritic webs, Silso wafers, cast silicon by HEM, silicon on ceramic, and continuous Czochralski ingots were fabricated using a standard process typical of those used currently in the silicon solar cell industry. Back surface field (BSF) processing and other process modifications were included to give preliminary indications of possible improved performance. The parameters measured included open circuit voltage, short circuit current, curve fill factor, and conversion efficiency (all taken under AM0 illumination). Also measured for typical cells were spectral response, dark I-V characteristics, minority carrier diffusion length, and photoresponse by fine light spot scanning. the results were compared to the properties of cells made from conventional single crystalline Czochralski silicon with an emphasis on statistical evaluation. Limited efforts were made to identify growth defects which will influence solar cell performance.

  7. Innovative Pedagogical Processes Involving Educational Technology

    DEFF Research Database (Denmark)

    Weitze, Charlotte Lærke

    to create motivating learning for the students. This was done by examining the three actors in the educational institution (students, teachers and the surrounding organisation) individually and relationally. The design-based research project developed knowledge in co-design processes with the three actors...

  8. Wafer-Level Membrane-Transfer Process for Fabricating MEMS

    Science.gov (United States)

    Yang, Eui-Hyeok; Wiberg, Dean

    2003-01-01

    A process for transferring an entire wafer-level micromachined silicon structure for mating with and bonding to another such structure has been devised. This process is intended especially for use in wafer-level integration of microelectromechanical systems (MEMS) that have been fabricated on dissimilar substrates. Unlike in some older membrane-transfer processes, there is no use of wax or epoxy during transfer. In this process, the substrate of a wafer-level structure to be transferred serves as a carrier, and is etched away once the transfer has been completed. Another important feature of this process is that two electrodes constitutes an electrostatic actuator array. An SOI wafer and a silicon wafer (see Figure 1) are used as the carrier and electrode wafers, respectively. After oxidation, both wafers are patterned and etched to define a corrugation profile and electrode array, respectively. The polysilicon layer is deposited on the SOI wafer. The carrier wafer is bonded to the electrode wafer by using evaporated indium bumps. The piston pressure of 4 kPa is applied at 156 C in a vacuum chamber to provide hermetic sealing. The substrate of the SOI wafer is etched in a 25 weight percent TMAH bath at 80 C. The exposed buried oxide is then removed by using 49 percent HF droplets after an oxygen plasma ashing. The SOI top silicon layer is etched away by using an SF6 plasma to define the corrugation profile, followed by the HF droplet etching of the remaining oxide. The SF6 plasma with a shadow mask selectively etches the polysilicon membrane, if the transferred membrane structure needs to be patterned. Electrostatic actuators with various electrode gaps have been fabricated by this transfer technique. The gap between the transferred membrane and electrode substrate is very uniform ( 0.1 m across a wafer diameter of 100 mm, provided by optimizing the bonding control). Figure 2 depicts the finished product.

  9. Microwave heating processes involving carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Menendez, J.A.; Arenillas, A.; Fidalgo, B.; Fernandez, Y.; Zubizarreta, L.; Calvo, E.G.; Bermudez, J.M. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain)

    2010-01-15

    Carbon materials are, in general, very good absorbents of microwaves, i.e., they are easily heated by microwave radiation. This characteristic allows them to be transformed by microwave heating, giving rise to new carbons with tailored properties, to be used as microwave receptors, in order to heat other materials indirectly, or to act as a catalyst and microwave receptor in different heterogeneous reactions. In recent years, the number of processes that combine the use of carbons and microwave heating instead of other methods based on conventional heating has increased. In this paper some of the microwave-assisted processes in which carbon materials are produced, transformed or used in thermal treatments (generally, as microwave absorbers and catalysts) are reviewed and the main achievements of this technique are compared with those obtained by means of conventional (non microwave-assisted) methods in similar conditions. (author)

  10. Electrochemical redox processes involving soluble cerium species

    International Nuclear Information System (INIS)

    Arenas, L.F.; Ponce de León, C.; Walsh, F.C.

    2016-01-01

    Highlights: • The relevance of cerium in laboratory and industrial electrochemistry is considered. • The history of fundamental electrochemical studies and applications is considered. • The chemistry, redox thermodynamics and electrode kinetics of cerium are summarised. • The uses of cerium ions in synthesis, energy storage, analysis and environmental treatment are illustrated. • Research needs and development perspectives are discussed. - Abstract: Anodic oxidation of cerous ions and cathodic reduction of ceric ions, in aqueous acidic solutions, play an important role in electrochemical processes at laboratory and industrial scale. Ceric ions, which have been used for oxidation of organic wastes and off-gases in environmental treatment, are a well-established oxidant for indirect organic synthesis and specialised cleaning processes, including oxide film removal from tanks and process pipework in nuclear decontamination. They also provide a classical reagent for chemical analysis in the laboratory. The reversible oxidation of cerous ions is an important reaction in the positive compartment of various redox flow batteries during charge and discharge cycling. A knowledge of the thermodynamics and kinetics of the redox reaction is critical to an understanding of the role of cerium redox species in these applications. Suitable choices of electrode material (metal or ceramic; coated or uncoated), geometry/structure (2-or 3-dimensional) and electrolyte flow conditions (hence an acceptable mass transport rate) are critical to achieving effective electrocatalysis, a high performance and a long lifetime. This review considers the electrochemistry of soluble cerium species and their diverse uses in electrochemical technology, especially for redox flow batteries and mediated electrochemical oxidation.

  11. Role of thermal analysis in uranium oxide fuel fabrication process

    International Nuclear Information System (INIS)

    Balaji Rao, Y.; Yadav, R.B.

    2006-01-01

    The present paper discusses the application of thermal analysis, particularly, differential thermal analysis (Dta) at various stages of fuel fabrication process. The useful role of Dta in knowing the decomposition pattern and calcination temperature of Adu along with de-nitration temperature is explained. The decomposition pattern depends upon the type of drying process adopted for wet ADU cake (ADU C). Also, the paper highlights the utility of DTA in determining the APS and SSA of UO 2+x and U 3 O 8 powders as an alternate technique. Further, the temperature difference (ΔT max ) between the two exothermic peaks obtained in UO 2+x powder oxidation is related to sintered density of UO 2 pellets. (author)

  12. Fabricating binary optics: An overview of binary optics process technology

    Science.gov (United States)

    Stern, Margaret B.

    1993-01-01

    A review of binary optics processing technology is presented. Pattern replication techniques have been optimized to generate high-quality efficient microoptics in visible and infrared materials. High resolution optical photolithography and precision alignment is used to fabricate maximally efficient fused silica diffractive microlenses at lambda = 633 nm. The degradation in optical efficiency of four-phase-level fused silica microlenses resulting from an intentional 0.35 micron translational error has been systematically measured as a function of lens speed (F/2 - F/60). Novel processes necessary for high sag refractive IR microoptics arrays, including deep anisotropic Si-etching, planarization of deep topography and multilayer resist techniques, are described. Initial results are presented for monolithic integration of photonic and microoptic systems.

  13. Flexible aerogel composite for mechanical stability and process of fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Coronado, P.R.; Poco, J.F.

    1999-10-26

    A flexible aerogel and process of fabrication are disclosed. An aerogel solution is mixed with fibers in a mold and allowed to gel. The gel is then processed by supercritical extraction, or by air drying, to produce a flexible aerogel formed to the shape of the mold. The flexible aerogel has excellent thermal and acoustic properties, and can be utilized in numerous applications, such as for energy absorption, insulation (temperature and acoustic), to meet the contours of aircraft shapes, and where space is limited since an inch of aerogel is a 4--5 times better insulator than an inch of fiberglass. The flexible aerogel may be of an inorganic (silica) type or an organic (carbon) type, but containing fibers, such as glass or carbon fibers.

  14. Flexible aerogel composite for mechanical stability and process of fabrication

    Science.gov (United States)

    Coronado, Paul R.; Poco, John F.

    1999-01-01

    A flexible aerogel and process of fabrication. An aerogel solution is mixed with fibers in a mold and allowed to gel. The gel is then processed by supercritical extraction, or by air drying, to produce a flexible aerogel formed to the shape of the mold. The flexible aerogel has excellent thermal and acoustic properties, and can be utilized in numerous applications, such as for energy absorption, insulation (temperature and acoustic), to meet the contours of aircraft shapes, and where space is limited since an inch of aerogel is a 4-5 times better insulator than an inch of fiberglass. The flexible aerogel may be of an inorganic (silica) type or an organic (carbon) type, but containing fibers, such as glass or carbon fibers.

  15. Flexible aerogel composite for mechanical stability and process of fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Coronado, P.R.; Poco, J.F.

    2000-07-11

    A flexible aerogel and process of fabrication are disclosed. An aerogel solution is mixed with fibers in a mold and allowed to gel. The gel is then processed by supercritical extraction, or by air drying, to produce a flexible aerogel formed to the shape of the mold. The flexible aerogel has excellent thermal and acoustic properties, and can be utilized in numerous applications, such as for energy absorption, insulation (temperature and acoustic), to meet the contours of aircraft shapes, and where space is limited since an inch of aerogel is a 4--5 times better insulator than an inch of fiberglass. The flexible aerogel may be of an inorganic (silica) type or an organic (carbon) type, but containing fibers, such as glass or carbon fibers.

  16. Process for the fabrication of a nuclear fuel

    International Nuclear Information System (INIS)

    Hirose, Yasuo.

    1970-01-01

    Herein disclosed is a process for fabricating a nuclear fuel incorporating either uranium or plutonium. A pellet-like substrate consisting of a packed powder ceramic fuel such as uranium or plutonium is prepared with the horizontal surface of the body provided with a masking. Next, after impregnating the substrate voids with a solution consisting of a fissile material or mixture of fissile material and poison, the solvent is removed by a chemical deposition process which causes the impregnated material to migrate through capillary action toward the vicinity of the fuel body surface. Sintering and pyrolysis of the deposited material and masking are subsequently carried out to yield a fuel body having adjacent to its surface an intensely concentrated layer of either fissile material or a mixture of fissile material and poison. (Owens, K.J.)

  17. Motivational Influences on Cognition: Task Involvement, Ego Involvement, and Depth of Information Processing.

    Science.gov (United States)

    Graham, Sandra; Golan, Shari

    1991-01-01

    Task involvement and ego involvement were studied in relation to depth of information processing for 126 fifth and sixth graders in 2 experiments. Ego involvement resulted in poorer word recall at deep rather than shallow information processing levels. Implications for the study of motivation are discussed. (SLD)

  18. PHWR fuel fabrication with imported uranium - procedures and processes

    International Nuclear Information System (INIS)

    Rao, R.V.R.L.V.; Rameswara Rao, A.; Hemantha Rao, G.V.S.; Jayaraj, R.N.

    2010-01-01

    Following the 123 agreement and subsequent agreements with IAEA & NSG, Government of India has entered into bilateral agreements with different countries for nuclear trade. Department of Atomic Energy (DAE), Government of India, has entered into contract with few countries for supply of uranium material for use in the safeguarded PHWRs. Nuclear Fuel Complex (NFC), an industrial unit of DAE, established in the early seventies, is engaged in the production of Nuclear Fuel and Zircaloy items required for Nuclear Power Reactors operating in the country. NFC has placed one of its fuel fabrication facilities (NFC, Block-A, INE-) under safeguards. DAE has opted to procure uranium material in the form of ore concentrate and fuel pellets. Uranium ore concentrate was procured as per the ASTM specifications. Since no international standards are available for PHWR fuel pellets, Specifications have to be finalized based on the present fabrication and operating experience. The process steps have to be modified and fine tuned for handling the imported uranium material especially for ore concentrate. Different transportation methods are to be employed for transportation of uranium material to the facility. Cost of the uranium material imported and the recoveries at various stages of fuel fabrication have impact on the fuel pricing and in turn the unit energy costs. Similarly the operating procedures have to be modified for safeguards inspections by IAEA. NFC has successfully manufactured and supplied fuel bundles for the three 220 MWe safeguarded PHWRs. The paper describes various issues encountered while manufacturing fuel bundles with different types of nuclear material. (author)

  19. A microelectromechanical accelerometer fabricated using printed circuit processing techniques

    Science.gov (United States)

    Rogers, J. E.; Ramadoss, R.; Ozmun, P. M.; Dean, R. N.

    2008-01-01

    A microelectromechanical systems (MEMS) capacitive-type accelerometer fabricated using printed circuit processing techniques is presented. A Kapton polymide film is used as the structural layer for fabricating the MEMS accelerometer. The accelerometer proof mass along with four suspension beams is defined in the Kapton polyimide film. The proof mass is suspended above a Teflon substrate using a spacer. The deflection of the proof mass is detected using a pair of capacitive sensing electrodes. The top electrode of the accelerometer is defined on the top surface of the Kapton film. The bottom electrode is defined in the metallization on the Teflon substrate. The initial gap height is determined by the distance between the bottom electrode and the Kapton film. For an applied external acceleration (normal to the proof mass), the proof mass deflects toward or away from the fixed bottom electrode due to inertial force. This deflection causes either a decrease or increase in the air-gap height thereby either increasing or decreasing the capacitance between the top and the bottom electrodes. An example PCB MEMS accelerometer with a square proof mass of membrane area 6.4 mm × 6.4 mm is reported. The measured resonant frequency is 375 Hz and the Q-factor in air is 0.52.

  20. A microelectromechanical accelerometer fabricated using printed circuit processing techniques

    International Nuclear Information System (INIS)

    Rogers, J E; Ramadoss, R; Ozmun, P M; Dean, R N

    2008-01-01

    A microelectromechanical systems (MEMS) capacitive-type accelerometer fabricated using printed circuit processing techniques is presented. A Kapton polymide film is used as the structural layer for fabricating the MEMS accelerometer. The accelerometer proof mass along with four suspension beams is defined in the Kapton polyimide film. The proof mass is suspended above a Teflon substrate using a spacer. The deflection of the proof mass is detected using a pair of capacitive sensing electrodes. The top electrode of the accelerometer is defined on the top surface of the Kapton film. The bottom electrode is defined in the metallization on the Teflon substrate. The initial gap height is determined by the distance between the bottom electrode and the Kapton film. For an applied external acceleration (normal to the proof mass), the proof mass deflects toward or away from the fixed bottom electrode due to inertial force. This deflection causes either a decrease or increase in the air-gap height thereby either increasing or decreasing the capacitance between the top and the bottom electrodes. An example PCB MEMS accelerometer with a square proof mass of membrane area 6.4 mm × 6.4 mm is reported. The measured resonant frequency is 375 Hz and the Q-factor in air is 0.52

  1. Quality control of CANDU6 fuel element in fabrication process

    International Nuclear Information System (INIS)

    Li Yinxie; Zhang Jie

    2012-01-01

    To enhance the fine control over all aspects of the production process, improve product quality, fuel element fabrication process for CANDU6 quality process control activities carried out by professional technical and management technology combined mode, the quality of the fuel elements formed around CANDU6 weak links - - end plug , and brazing processes and procedures associated with this aspect of strict control, in improving staff quality consciousness, strengthening equipment maintenance, improved tooling, fixtures, optimization process test, strengthen supervision, fine inspection operations, timely delivery carry out aspects of the quality of information and concerns the production environment, etc., to find the problem from the improvement of product quality and factors affecting the source, and resolved to form the active control, comprehensive and systematic analysis of the problem of the quality management concepts, effectively reducing the end plug weld microstructure after the failure times and number of defects zirconium alloys brazed, improved product quality, and created economic benefits expressly provided, while staff quality consciousness and attention to detail, collaboration department, communication has been greatly improved and achieved very good management effectiveness. (authors)

  2. ODS steel fabrication: relationships between process, microstructure and mechanical properties

    International Nuclear Information System (INIS)

    Couvrat, M.

    2011-01-01

    Oxide Dispersion Strengthened (ODS) steels are promising candidate materials for generation IV and fusion nuclear energy systems thanks to their excellent thermal stability, high-temperature creep strength and good irradiation resistance. Their superior properties are attributed both to their nano-structured matrix and to a high density of Y-Ti-O nano-scale clusters (NCs). ODS steels are generally prepared by Mechanical Alloying of a pre-alloyed Fe-Cr-W-Ti powder with Y 2 O 3 powder. A fully dense bar or tube is then produced from this nano-structured powder by the mean of hot extrusion. The aim of this work was to determine the main parameters of the process of hot extrusion and to understand the link between the fabrication process, the microstructure and the mechanical properties. The material microstructure was characterized at each step of the process and bars were extruded with varying hot extrusion parameters so as to identify the impact of these parameters. Temperature then appeared to be the main parameter having a great impact on microstructure and mechanical properties of the extruded material. We then proposed a cartography giving the microstructure versus the process parameters. Based on these results, it is possible to control very accurately the obtained material microstructure and mechanical properties setting the extrusion parameters. (author) [fr

  3. Materials Selection And Fabrication Practices For Food Processing Equipment Manufacturers In Uganda

    Directory of Open Access Journals (Sweden)

    John Baptist Kirabira

    2017-08-01

    Full Text Available The food processing industry is one of the fast-growing sub-sectors in Uganda. The industry which is majorly composed of medium and small scale firms depends on the locally developed food processing equipment. Due to lack of effective materials selection practices employed by the equipment manufacturers the materials normally selected for most designs are not the most appropriate ones hence compromising the quality of the equipment produced. This has not only led to poor quality food products due to contamination but could also turn out health hazardous to the consumers of the food products. This study involved the assessment of the current materials selection and fabrication procedures used by the food processing equipment manufacturers with a view of devising best practices that can be used to improve the quality of the food products processed by the locally fabricated equipment. Results of the study show that designers experience biasness and desire to minimize cost compromise the materials selection procedure. In addition to failing to choose the best material for a given application most equipment manufacturers are commonly fabricating equipment with inadequate surface finish and improper weldments. This hinders the equipments ability to meet food hygiene standards.

  4. The data acquisition system for the management of nuclear materials involved in the fabrication of MOX fuel at the Cogema plant in Cadarache

    International Nuclear Information System (INIS)

    Crousilles, M.; Beche, M.; Dalverny, G.

    2001-01-01

    This article presents the follow-up system of all the nuclear materials that are involved in the industrial process of MOX fuel fabrication. This system, called Concerto, allows the management of MOX fabrication but also of any nuclear material transfer and of the stockpile of nuclear materials with taking into account their own specificity such as the risk of criticality. Operators that intervene on the different steps of the fabrication process, supply Concerto with information so Concerto can be considered as a near real-time system providing and recording the localization, the composition, the weight, the container,... of any batch of nuclear materials. Concerto complies with the requirements of quality assurance but also of nuclear safety by forbidding any transfer whenever the maximal authorized quantity would be exceeded. (A.C.)

  5. Development of a Batch Fabrication Process for Chemical Nanosensors: Recent Advancements at NASA Glenn Research Center

    Science.gov (United States)

    Biaggi-Labiosa, Azlin M.

    2014-01-01

    A major objective in aerospace sensor development is to produce sensors that are small in size, easy to batch fabricate and low in cost, and have low power consumption. Chemical sensors involving nanostructured materials can provide these characteristics as well as the potential for the development of sensor systems with unique properties and improved performance. However, the fabrication and processing of nanostructures for sensor applications currently is limited by the ability to control their location on the sensor platform, which in turn hinders the progress for batch fabrication. This presentation will discuss the following: the development of a novel room temperature methane (CH4) sensor fabricated using porous tin oxide (SnO2) nanorods as the sensing material, the advantages of using nanomaterials in sensor designs, the challenges encountered with the integration of nanostructures into microsensordevices, and the different methods that have been attempted to address these challenges. An approach for the mass production of sensors with nanostructures using a method developed by our group at the NASA Glenn Research Center to control the alignment of nanostructures onto a sensor platform will also be described.

  6. Optimal fabrication processes for unidirectional metal-matrix composites: A computational simulation

    Science.gov (United States)

    Saravanos, D. A.; Murthy, P. L. N.; Morel, M.

    1990-01-01

    A method is proposed for optimizing the fabrication process of unidirectional metal matrix composites. The temperature and pressure histories are optimized such that the residual microstresses of the composite at the end of the fabrication process are minimized and the material integrity throughout the process is ensured. The response of the composite during the fabrication is simulated based on a nonlinear micromechanics theory. The optimal fabrication problem is formulated and solved with non-linear programming. Application cases regarding the optimization of the fabrication cool-down phases of unidirectional ultra-high modulus graphite/copper and silicon carbide/titanium composites are presented.

  7. Optimal fabrication processes for unidirectional metal-matrix composites - A computational simulation

    Science.gov (United States)

    Saravanos, D. A.; Murthy, P. L. N.; Morel, M.

    1990-01-01

    A method is proposed for optimizing the fabrication process of unidirectional metal matrix composites. The temperature and pressure histories are optimized such that the residual microstresses of the composite at the end of the fabrication process are minimized and the material integrity throughout the process is ensured. The response of the composite during the fabrication is simulated based on a nonlinear micromechanics theory. The optimal fabrication problem is formulated and solved with nonlinear programming. Application cases regarding the optimization of the fabrication cool-down phases of unidirectional ultra-high modulus graphite/copper and silicon carbide/titanium composites are presented.

  8. Radioactive waste management of experimental DUPIC fuel fabrication process

    International Nuclear Information System (INIS)

    Lee, H. H.; Park, J. J.; Shin, J. M.; Yang, M. S.; Hong, K. P.

    2001-01-01

    The concept of DUPIC(Direct Use of Spent PWR Fuel in CANDU Reactors) is a dry processing technology to manufacture CANDU compatible DUPIC fuel from spent PWR fuel material. Real spent PWR fuel was used in IMEF M6 hot cell to carry out DUPIC experiment. Afterwards, about 200 kg-U of spent PWR fuel is supposed to be used till 2006. This study has been conducted in some hot cells of PIEF and M6 cell of IMEF. There are various forms of nuclear material such as rod cut, powder, green pellet, sintered pellet, fabrication debris, fuel rod, fuel bundle, sample, and process waste produced from various manufacturing experiment of DUPIC fuel. After completing test, the above nuclear wastes and test equipment etc. will be classified as radioactive waste, transferred to storage facility and managed rigorously according to domestic and international laws until the final management policy is determined. It is desirable to review management options in advance for radioactive waste generated from manufacturing experiment of DUPIC nuclear fuel as well as residual nuclear material and dismantled equipment. This paper includes basic plan for DUPIC radwaste, arising source and estimated amount of radioactive waste, waste classification and packing, transport cask, transport procedures

  9. LAF-Fabric : Data processing for Linguistic Annotation Framework

    NARCIS (Netherlands)

    Roorda, Dirk

    2014-01-01

    LAF-fabric is a Python tool for running Python notebooks with access to the information in a LAF resource. The selling point of LAF-fabric is performance, both in terms of speed and memory usage. The second goal is to make it really easy for you to write analytic notebooks straightforwardly in terms

  10. Processing summary report: Fabrication of cesium and strontium heat and radiation sources

    International Nuclear Information System (INIS)

    Holton, L.K. Jr.; Surma, J.E.; Allen, R.P.

    1989-02-01

    The Pacific Northwest Laboratory (PNL), has produced 30 isotopic heat sources (canisters) for the Federal Republic of Germany (FRG) to be used as part of a repository testing program in the Asse Salt Mine. PNL program work involved the filling, closure, and decontamination of the 30 canisters. The canisters were fabricated (filled) in three separate processing campaigns using the radioactive liquid-fed ceramic melter to produce a borosilicate glass. Within the borosilicate glass matrix radiochemical constituents ( 137 Cs and 90 Sr) were immobilized to yield a product with a predetermined decay heat and surface radiation exposure rate

  11. A Fully Contained Resin Infusion Process for Fiber-Reinforced Polymer Composite Fabrication and Repair

    Science.gov (United States)

    2013-01-01

    Figures iv  Acknowledgments v  1.  Introduction 1  2.  Experimental 2  2.1  Composite Laminate Fabrication...2 Figure 2. Image of fiberglass composite being fabricated using VARTM processing. 2. Experimental 2.1 Composite Laminate Fabrication...style 5 × 5 plain 5 weave prepreg S-2 fiberglass fabric and a honeycomb core cured in an autoclave, much like the composite parts fielded in

  12. Time effectiveness of capillary effect improvement of ramie fabrics processed by RF glow discharging

    International Nuclear Information System (INIS)

    Wang Zhiwen; Wei Weixing; He Yanhe; Zhao Yuanqing; Pan Liyiji; Li Xuemei; Shi Shaodui; Li Guangxin

    2010-01-01

    The time effectiveness of capillary effect improvement of ramie fabrics processed by RF glow discharging was studied. The ramie fabrics were processed in fulfilling with different gas (O 2 , N 2 , Ar) by different parameters (such as pressure,power and time) plasma. The capillary effect of the ramie fabrics processed by RF glow discharging was tested at different time. The results indicate that the capillary effect of ramie fabrics processed by RF glow discharging has been improved, the improvement of the capillary effect firstly decrease rapidly, then slowly, and become stable after 15 day, it indicate that improvement of the ramie fabrics capillary has good time effectiveness, and the plasma parameter for the best capillary effect improvement of ramie fabric is 100 W and 40 Pa processed 20 min by oxygen plasma. (authors)

  13. Democratizing Process Innovation? On Citizen Involvement in Public Sector BPM

    Science.gov (United States)

    Niehaves, Björn; Malsch, Robert

    ‘Open Innovation’ has been heavily discussed for product innovations; however, an information systems (IS) perspective on ‘process innovation’ has not yet been taken. Analyzing the example of the public sector in Germany, the paper seeks to investigate the factors that hinder and support ‘open process innovation’, a concept we define as the involvement of citizens in business process management (BPM) activities. With the help of a quantitative study (n=358), six factors are examined for their impact on citizen involvement in local government BPM initiatives. The results show that citizen involvement in reform processes is not primarily motivated by the aim of cost reduction, but rather related to legitimacy reasons and the intent to increase employee motivation. Based on these findings, implications for (design) theory and practice are discussed: Instead of detailed collaborative business processes modeling, the key of citizen involvement in public sector BPM lies in communication and mutual understanding.

  14. Superconducting materials fabrication process and products obtained. Procede de fabrication de materiaux supraconducteurs et produits ainsi obtenus

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, B; Odier, P

    1989-09-15

    A fabrication process of a fine superconducting powder easy to sinter is claimed. It consists in thermal treatment of an aerosol containing an organic and/or inorganic salt and/or a hydroxide of a rare earth, an alkaline earth metal and a transition metal in a ratio corresponding to the stoichiometry of the superconducting materials.

  15. Bioinspired superhydrophobic surfaces, fabricated through simple and scalable roll-to-roll processing.

    Science.gov (United States)

    Park, Sung-Hoon; Lee, Sangeui; Moreira, David; Bandaru, Prabhakar R; Han, InTaek; Yun, Dong-Jin

    2015-10-22

    A simple, scalable, non-lithographic, technique for fabricating durable superhydrophobic (SH) surfaces, based on the fingering instabilities associated with non-Newtonian flow and shear tearing, has been developed. The high viscosity of the nanotube/elastomer paste has been exploited for the fabrication. The fabricated SH surfaces had the appearance of bristled shark skin and were robust with respect to mechanical forces. While flow instability is regarded as adverse to roll-coating processes for fabricating uniform films, we especially use the effect to create the SH surface. Along with their durability and self-cleaning capabilities, we have demonstrated drag reduction effects of the fabricated films through dynamic flow measurements.

  16. Integrated porous-silicon light-emitting diodes: A fabrication process using graded doping profiles

    International Nuclear Information System (INIS)

    Barillaro, G.; Diligenti, A.; Pieri, F.; Fuso, F.; Allegrini, M.

    2001-01-01

    A fabrication process, compatible with an industrial bipolar+complementary metal - oxide - semiconductor (MOS)+diffusion MOS technology, has been developed for the fabrication of efficient porous-silicon-based light-emitting diodes. The electrical contact is fabricated with a double n + /p doping, achieving a high current injection efficiency and thus lower biasing voltages. The anodization is performed as the last step of the process, thus reducing potential incompatibilities with industrial processes. The fabricated devices show yellow-orange electroluminescence, visible with the naked eye in room lighting. A spectral characterization of light emission is presented and briefly discussed. [copyright] 2001 American Institute of Physics

  17. Multi-Step Deep Reactive Ion Etching Fabrication Process for Silicon-Based Terahertz Components

    Science.gov (United States)

    Jung-Kubiak, Cecile (Inventor); Reck, Theodore (Inventor); Chattopadhyay, Goutam (Inventor); Perez, Jose Vicente Siles (Inventor); Lin, Robert H. (Inventor); Mehdi, Imran (Inventor); Lee, Choonsup (Inventor); Cooper, Ken B. (Inventor); Peralta, Alejandro (Inventor)

    2016-01-01

    A multi-step silicon etching process has been developed to fabricate silicon-based terahertz (THz) waveguide components. This technique provides precise dimensional control across multiple etch depths with batch processing capabilities. Nonlinear and passive components such as mixers and multipliers waveguides, hybrids, OMTs and twists have been fabricated and integrated into a small silicon package. This fabrication technique enables a wafer-stacking architecture to provide ultra-compact multi-pixel receiver front-ends in the THz range.

  18. Fast electrochemical deposition of Ni(OH)2 precursor involving water electrolysis for fabrication of NiO thin films

    Science.gov (United States)

    Koyama, Miki; Ichimura, Masaya

    2018-05-01

    Ni(OH)2 precursor films were deposited by galvanostatic electrochemical deposition (ECD), and NiO thin films were fabricated by annealing in air. The effects of the deposition current densities were studied in a range that included current densities high enough to electrolyze water and generate hydrogen bubbles. The films fabricated by ECD involving water electrolysis had higher transparency and smoother surface morphology than those deposited with lower current densities. In addition, the annealed NiO films clearly had preferred (111) orientation when the deposition was accompanied by water electrolysis. p-type conduction was confirmed for the annealed films.

  19. Electrochromic Windows: Process and Fabrication Improvements for Lower Total Costs

    Energy Technology Data Exchange (ETDEWEB)

    Mark Burdis; Neil Sbar

    2007-03-31

    The overall goal with respect to the U.S. Department of Energy (DOE) is to achieve significant national energy savings through maximized penetration of EC windows into existing markets so that the largest cumulative energy reduction can be realized. The speed with which EC windows can be introduced and replace current IGU's (and current glazings) is clearly a strong function of cost. Therefore, the aim of this project was to investigate possible improvements to the SageGlass{reg_sign} EC glazing products to facilitate both process and fabrication improvements resulting in lower overall costs. The project was split into four major areas dealing with improvements to the electrochromic layer, the capping layer, defect elimination and general product improvements. Significant advancements have been made in each of the four areas. These can be summarized as follows: (1) Plasma assisted deposition for the electrochromic layer was pursued, and several improvements made to the technology for producing a plasma beam were made. Functional EC devices were produced using the new technology, but there are still questions to be answered regarding the intrinsic properties of the electrochromic films produced by this method. (2) The capping layer work was successfully implemented into the existing SageGlass{reg_sign} product, thereby providing a higher level of transparency and somewhat lower reflectivity than the 'standard' product. (3) Defect elimination is an ongoing effort, but this project spurred some major defect reduction programs, which led to significant improvements in yield, with all the implicit benefits afforded. In particular, major advances were made in the development of a new bus bar application process aimed at reducing the numbers of 'shorts' developed in the finished product, as well as making dramatic improvements in the methods used for tempering the glass, which had previously been seen to produce a defect which appeared as a

  20. Comparison of silicon pin diode detector fabrication processes using ion implantation and thermal doping

    International Nuclear Information System (INIS)

    Zhou, C.Z.; Warburton, W.K.

    1996-01-01

    Two processes for the fabrication of silicon p-i-n diode radiation detectors are described and compared. Both processes are compatible with conventional integrated-circuit fabrication techniques and yield very low leakage currents. Devices made from the process using boron thermal doping have about a factor of 2 lower leakage current than those using boron ion implantation. However, the boron thermal doping process requires additional process steps to remove boron skins. (orig.)

  1. Mixed U/Pu oxide fuel fabrication facility co-processed feed, pelletized fuel

    International Nuclear Information System (INIS)

    1978-09-01

    Two conceptual MOX fuel fabrication facilities are discussed in this study. The first facility in the main body of the report is for the fabrication of LWR uranium dioxide - plutonium dioxide (MOX) fuel using co-processed feed. The second facility in the addendum is for the fabrication of co-processed MOX fuel spiked with 60 Co. Both facilities produce pellet fuel. The spiked facility uses the same basic fabrication process as the conventional MOX plant but the fuel feed incorporates a high energy gamma emitter as a safeguard measure against diversion; additional shielding is added to protect personnel from radiation exposure, all operations are automated and remote, and normal maintenance is performed remotely. The report describes the fuel fabrication process and plant layout including scrap and waste processing; and maintenance, ventilation and safety measures

  2. Optimization benefits analysis in production process of fabrication components

    Science.gov (United States)

    Prasetyani, R.; Rafsanjani, A. Y.; Rimantho, D.

    2017-12-01

    The determination of an optimal number of product combinations is important. The main problem at part and service department in PT. United Tractors Pandu Engineering (shortened to PT.UTPE) Is the optimization of the combination of fabrication component products (known as Liner Plate) which influence to the profit that will be obtained by the company. Liner Plate is a fabrication component that serves as a protector of core structure for heavy duty attachment, such as HD Vessel, HD Bucket, HD Shovel, and HD Blade. The graph of liner plate sales from January to December 2016 has fluctuated and there is no direct conclusion about the optimization of production of such fabrication components. The optimal product combination can be achieved by calculating and plotting the amount of production output and input appropriately. The method that used in this study is linear programming methods with primal, dual, and sensitivity analysis using QM software for Windows to obtain optimal fabrication components. In the optimal combination of components, PT. UTPE provide the profit increase of Rp. 105,285,000.00 for a total of Rp. 3,046,525,000.00 per month and the production of a total combination of 71 units per unit variance per month.

  3. Investigating Individuals' Intention to be Involved in Knowledge Management Process

    OpenAIRE

    M. J.M. Razi; N. S.A. Karim

    2011-01-01

    Problem statement: Implementation of Knowledge Management (KM) process in organizations is considered as essential to be competitive in the present competitive world. Though the modern KM practices highly depend on technology, individuals (organizational members) intention to be involved in KM process plays a major role in the success. Hence, the evaluation of individuals intention is deemed as significant before the actual implementation of KM process in organizations. Nevertheless, inadequa...

  4. Process and device for fabricating nuclear fuel assembly grids

    International Nuclear Information System (INIS)

    Thiebaut, B.; Duthoo, D.; Germanaz, J.J.; Angilbert, B.

    1991-01-01

    The method for fabricating PWR fuel assembly grids consists to place the grid of which the constituent parts are held firmly in place within a frame into a sealed chamber full of inert gas. This chamber can rotate about an axis. The welding on one face at a time is carried out with a laser beam orthogonal to the axis orientation of the device. The laser source is outside of the chamber and the beam penetrates via a transparent view port

  5. CNEA developments in U-Mo-ZrY-4 mini plates and plates fabrication process

    International Nuclear Information System (INIS)

    López, M.; Picchetti, B.; Gonzalez, A.; Taboada, H.

    2013-01-01

    The Uranium Molybdenum alloy was the material chosen to develop the fabrication of high density nuclear fuel, due to its excellent behaviour under irradiation –a consequence of the metastable bcc crystalline structure-. At present, the study is focused on the application of this alloy to monolithic fuel plate development, which fuel core is a thin U-Mo layer. The Zircalloy-4 (Zry-4) alloy used as cladding material is extensively known in the nuclear industry due to its low neutron capture section efficiency and excellent mechanical and corrosion resistance properties. Miniplates fabrication process involves a welded compact made of two Zry-4 covers and a frame surrounding a monolithic U-Mo core, which is co rolled under high temperature. Molybdenum contains of 7% to 10% (mass) in U Mo alloys guarantees the presence of meta-stable bcc gamma phase and, at the same time, does not penalize the neutron economy due to Mo98 presence. In the case of U Mo monolithic miniplates relevant parameters of fabrication, considering the behaviour of the U-Mo alloys reported in many work and in order to optimize the o-rolling process, have been revised: co-rolling temperature, compressive stress and presence of gap. Under this experimental conditions can be studied the the interdiffusion layer, the binding between materials and the Dog Bone. The experimental results shows that 650ºC is an optimal co-rolling temperature; at higher temperatures not only a bigger interdiffusion layer is observed –this phenomenon can lead to a region enriched in Molybdenum- but also a bigger Dog Bone is obtained. Working at higher compressive stress has the same effect in relation to the interdiffusion layer. In addition, the absence of gases in the core is essential for the correct binding of the materials. Concerning the monolithic U-Mo plates fabrication, involved in the ALT FUTURE experiment a new workshop has been conditioned. The aim is to use all the valuable information collected during

  6. PLC and SCADA based automation of injection casting process for casting of uranium-zirconium blanket fuel slugs for metallic fuel fabrication

    International Nuclear Information System (INIS)

    Yathish Kumar, G.; Jagadeeschandran, J.; Avvaru, Prafulla Kumar; Yadaw, Abhishek Kumar; Lavakumar, R.; Prabhu, T.V.; Muralidharan, P.; Anthonysamy, S.

    2016-01-01

    Fabrication of metallic (U-6wt.%Zr) slugs involves melting of binary alloy under vacuum and injection casting into quartz moulds at high pressure. Injection casting system housed inside glove box comprises of high vacuum, induction melting, high pressure control, motion control, mould preheating, chamber cooling, crucible handling and glove box pressure control systems. The technology development for process automation of injection casting system and process optimisation for fabrication of metallic (U-6%Zr) slugs is outlined in this paper. (author)

  7. Mono-domain YBa2Cu3Oy superconductor fabrics prepared by an infiltration process

    International Nuclear Information System (INIS)

    Sudhakar Reddy, E.; Noudem, J.G.; Tarka, M.; Schmitz, G.J.

    2000-01-01

    A novel process for the fabrication of a new form of YBa 2 Cu 3 O y (123) superconducting material, with the dimensions of a thick film and the microstructure of a melt-textured single-domain bulk is described. The process allows the fabrication of 123 as a self-supporting fabric or as a thick film on various substrate materials. The process, which is generic and economical, uses commercially available Y 2 O 3 fabrics as a precursor material. The Y 2 O 3 cloth is infiltrated with barium cuprates and copper oxides from a liquid-phase source, then converted into Y 2 BaCuO 5 (211) phase and eventually to 123. The nucleation and growth of the 123 phase is controlled by seeding the cloth with an oriented heterogeneous MgO or Nd123 seed. Interesting application areas for the new form of the 123 mono-domain fabric are discussed. (author)

  8. Novel magnetic wire fabrication process by way of nanoimprint lithography for current induced magnetization switching

    Directory of Open Access Journals (Sweden)

    Tsukasa Asari

    2017-05-01

    Full Text Available Nanoimprint lithography (NIL is an effective method to fabricate nanowire because it does not need expensive systems and this process is easier than conventional processes. In this letter, we report the Current Induced Magnetization Switching (CIMS in perpendicularly magnetized Tb-Co alloy nanowire fabricated by NIL. The CIMS in Tb-Co alloy wire was observed by using current pulse under in-plane external magnetic field (HL. We successfully observed the CIMS in Tb-Co wire fabricated by NIL. Additionally, we found that the critical current density (Jc for the CIMS in the Tb-Co wire fabricated by NIL is 4 times smaller than that fabricated by conventional lift-off process under HL = 200Oe. These results indicate that the NIL is effective method for the CIMS.

  9. Novel magnetic wire fabrication process by way of nanoimprint lithography for current induced magnetization switching

    Science.gov (United States)

    Asari, Tsukasa; Shibata, Ryosuke; Awano, Hiroyuki

    2017-05-01

    Nanoimprint lithography (NIL) is an effective method to fabricate nanowire because it does not need expensive systems and this process is easier than conventional processes. In this letter, we report the Current Induced Magnetization Switching (CIMS) in perpendicularly magnetized Tb-Co alloy nanowire fabricated by NIL. The CIMS in Tb-Co alloy wire was observed by using current pulse under in-plane external magnetic field (HL). We successfully observed the CIMS in Tb-Co wire fabricated by NIL. Additionally, we found that the critical current density (Jc) for the CIMS in the Tb-Co wire fabricated by NIL is 4 times smaller than that fabricated by conventional lift-off process under HL = 200Oe. These results indicate that the NIL is effective method for the CIMS.

  10. Additive advantage in characteristics of MIMCAPs on flexible silicon (100) fabric with release-first process

    KAUST Repository

    Ghoneim, Mohamed T.; Rojas, Jhonathan Prieto; Hussain, Aftab M.; Hussain, Muhammad Mustafa

    2013-01-01

    We report the inherent increase in capacitance per unit planar area of state-of-the art high-κ integrated metal/insulator/metal capacitors (MIMCAPs) fabricated on flexible silicon fabric with release-first process. We methodically study and show

  11. Top contact organic field effect transistors fabricated using a photolithographic process

    International Nuclear Information System (INIS)

    Wang Hong; Peng Ying-Quan; Ji Zhuo-Yu; Shang Li-Wei; Liu Xing-Hua; Liu Ming

    2011-01-01

    This paper proposes an effective method of fabricating top contact organic field effect transistors by using a photolithographic process. The semiconductor layer is protected by a passivation layer. Through photolithographic and etching processes, parts of the passivation layer are etched off to form source/drain electrode patterns. Combined with conventional evaporation and lift-off techniques, organic field effect transistors with a top contact are fabricated successfully, whose properties are comparable to those prepared with the shadow mask method and one order of magnitude higher than the bottom contact devices fabricated by using a photolithographic process. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  12. Secretory processes involved in the formation of milk

    International Nuclear Information System (INIS)

    Knutsson, P.G.

    1976-01-01

    Current knowledge on milk formation is reviewed. Emphasis is given to sites of formation of protein, fat and lactose, and transfer of these compounds into the alveolar lumen. Further, the formation of the water phase of milk is thoroughly discussed, and evidence presented that milk formation includes both secretory and re-absorptive processes as well as diffusion. A short presentation of colostrum formation is included. Neither biochemical processes involved in synthesis of organic compounds nor mammary gland endocrinology are discussed. (author)

  13. Fabrication of superhydrophobic wood surfaces via a solution-immersion process

    Science.gov (United States)

    Liu, Changyu; Wang, Shuliang; Shi, Junyou; Wang, Chengyu

    2011-11-01

    Superhydrophobic wood surfaces were fabricated from potassium methyl siliconate (PMS) through a convenient solution-immersion method. The reaction involves a hydrogen bond assembly and a polycondensation process. The silanol was formed by reacting PMS aqueous solution with CO2, which was assembled on the wood surface via hydrogen bonds with the wood surface -OH groups. The polymethylsilsesquioxane coating was obtained through the polycondensation reaction of the hydroxyl between wood and silanol. The morphology of products were characterized using a scanning electron microscope (SEM), the surface chemical composition was determined using energy dispersive X-ray analysis (EDXA), Fourier transform infrared spectroscopy (FT-IR), thermogravimetry (TGA) and contact angle measurement. Analytical results revealed that rough protuberances uniformly covered the wood surface, thus transforming the wood surface from hydrophilic to superhydrophobic. The water contact angle of the superhydrophobic wood surface was about 153° and a sliding angle was 4.6°.

  14. Fabrication Process and Reliability Evaluation of Shape Memory Alloy Composite

    International Nuclear Information System (INIS)

    Lee, Jin Kyung; Choi, Il Kook; Park, Young Chul; Lee, Kyu Chang; Lee, Joon Hyun

    2001-01-01

    Shape memory alloy has been used to improve the tensile strength of composite by the occurrence of compressive residual stress in matrix using its shape memory effect. In order to fabricate shape memory alloy composite, TiNi alloy and A16061 were used as reinforcing material and mix, respectively. In this study, TiNi/A16061 shape memory alloy composite was made by using hot press method. However, the specimen fabricated by this method had the bonding problem at the boundary between TiNi fiber and Al matrix when the load was applied to it. A cold rolling was imposed to the specimen to improve the bonding effect. It was found that tensile strength of specimen subjected to cold rolling was more increased than that of specimen which did not underwent cold rolling. In addition, acoustic emission technique was used to quantify the microscopic damage behavior of cold rolled TiNi/A16061 shape memory alloy composite at high temperature

  15. IMPROVING KNITTED FABRICS BY A STATISTICAL CONTROL OF DIMENSIONAL CHANGES AFTER THE DYEING PROCESS

    Directory of Open Access Journals (Sweden)

    LLINARES-BERENGUER Jorge

    2017-05-01

    Full Text Available One of the most important problems that cotton knitted fabrics present during the manufacturing process is their dimensional instability, which needs to be minimised. Some of the variables that intervene in fabric shrinkage are related with its structural characteristics, use of fiber when producing yarn, the yarn count used or the dyeing process employed. Conducted under real factory conditions, the present study attempted to model the behaviour of a fabric structure after a dyeing process by contributing several algorithms that calculate dyed fabric stability after the first wash cycle. Small-diameter circular machines are used to produce garments with no side seams. This is the reason why a list of machines that produce the same fabrics for different widths needs to be made available to produce all the sizes of a given garment. Two relaxation states were distingued for interlock fabric: dyed and dry relaxation, and dyed and wash relaxation. The linear density of the yarn employed to produce sample fabric was combed cotton Ne 30. The machines used for optic bleaching were Overflow. To obtain knitting structures with optimum dimensional stability, different statistical tools were used to help us to evaluate all the production process variables (raw material, machines and process responsible for this variation. This allowed to guarantee product quality without creating costs and losses.

  16. Stakeholders involvement in the decommissioning processes in Italy

    International Nuclear Information System (INIS)

    Dionisi, Mario

    2006-01-01

    The aim of this paper is to present the situation about stakeholders involvement in Italy in the framework of the decommissioning process of the Italian nuclear installations, and in particular the specific experience of the Italian Regulatory Body APAT. Specific aspects and APAT initiatives for building confidence of stakeholders in the process of the release of solid material from the regulatory control are presented. Content: Decommissioning activities in Italy, Decommissioning licensing procedures (Site and material release, APAT - ARPA Partnership approach in the clearance process)

  17. Defect reduction for fabric cutting process to produce polo shirts : a case study of garment factory

    Directory of Open Access Journals (Sweden)

    Panicha Suttanako

    2014-09-01

    Full Text Available This research aims to study the factors affecting the crooked fabric cutting and to present the new cutting procedure that complies with the factors affecting the crooked fabric cutting of a case study. The defect in fabric cutting process was crooked fabric making nonconforming product. The cause and effect diagram was utilized to analyze and suggest related factors leading to the problem. It was showed that the number of times of knife sharpening and the number of layers in fabric paving would affect the crooked fabric cutting the design of experiment was applied to determine appropriate the level of these factors. The main factor significantly affected the crooked fabric cutting (p < 0.05 was the number of times of knife sharpening, but the number of layers in fabric paving and interaction between both factors would not significantly affect the crooked fabric cutting. The number of times of knife sharpening in the level 4 had been sharpened twenty times in each cutting round. The least average defective proportion was 0.0173. Then the new cutting procedure would significantly reduce average defective proportion. It could reduce the average number of defective items as 5.74 pieces in each cutting round or 70.52 percents.

  18. Closed-Loop Process Control for Electron Beam Freeform Fabrication and Deposition Processes

    Science.gov (United States)

    Taminger, Karen M. (Inventor); Hafley, Robert A. (Inventor); Martin, Richard E. (Inventor); Hofmeister, William H. (Inventor)

    2013-01-01

    A closed-loop control method for an electron beam freeform fabrication (EBF(sup 3)) process includes detecting a feature of interest during the process using a sensor(s), continuously evaluating the feature of interest to determine, in real time, a change occurring therein, and automatically modifying control parameters to control the EBF(sup 3) process. An apparatus provides closed-loop control method of the process, and includes an electron gun for generating an electron beam, a wire feeder for feeding a wire toward a substrate, wherein the wire is melted and progressively deposited in layers onto the substrate, a sensor(s), and a host machine. The sensor(s) measure the feature of interest during the process, and the host machine continuously evaluates the feature of interest to determine, in real time, a change occurring therein. The host machine automatically modifies control parameters to the EBF(sup 3) apparatus to control the EBF(sup 3) process in a closed-loop manner.

  19. A batch process micromachined thermoelectric energy harvester: fabrication and characterization

    International Nuclear Information System (INIS)

    Su, J; Goedbloed, M; Van Andel, Y; De Nooijer, M C; Elfrink, R; Wang, Z; Vullers, R J M; Leonov, V

    2010-01-01

    Micromachined thermopiles are considered as a cost-effective solution for energy harvesters working at a small temperature difference and weak heat flows typical for, e.g., the human body. They can be used for powering autonomous wireless sensor nodes in a body area network. In this paper, a micromachined thermoelectric energy harvester with 6 µm high polycrystalline silicon germanium (poly-SiGe) thermocouples fabricated on a 6 inch wafer is presented. An open circuit voltage of 1.49 V and an output power of 0.4 µW can be generated with 3.5 K temperature difference in a model of a wearable micromachined energy harvester of the discussed design, which has a die size of 1.0 mm × 2.5 mm inside a watch-size generator

  20. Silicon Web Process Development. [for solar cell fabrication

    Science.gov (United States)

    Duncan, C. S.; Seidensticker, R. G.; Hopkins, R. H.; Mchugh, J. P.; Hill, F. E.; Heimlich, M. E.; Driggers, J. M.

    1979-01-01

    Silicon dendritic web, ribbon form of silicon and capable of fabrication into solar cells with greater than 15% AMl conversion efficiency, was produced from the melt without die shaping. Improvements were made both in the width of the web ribbons grown and in the techniques to replenish the liquid silicon as it is transformed to web. Through means of improved thermal shielding stress was reduced sufficiently so that web crystals nearly 4.5 cm wide were grown. The development of two subsystems, a silicon feeder and a melt level sensor, necessary to achieve an operational melt replenishment system, is described. A gas flow management technique is discussed and a laser reflection method to sense and control the melt level as silicon is replenished is examined.

  1. Development of the fabrication process of SiC composite by polycarbosilane

    International Nuclear Information System (INIS)

    Park, Ji Yeon; Kim, Weon Ju; Kim, Jung Il; Ryu, Woo Seog

    2004-11-01

    This technical report reviewed the fabrication process of fiber reinforced ceramic composites, characteristics of the PIP process, and applications of SiC f /SiC composite to develop a silicon carbide composite by PIP method. Additionally, characteristics and thermal behaviors of a PCS+SiC powder slurry and infiltration behaviors of slurry into the SiC fabric was evaluated. The stacking behaviors of SiC fabrics infiltrated a PCS+SiC powder slurry was also investigated. Using this stacked preforms, SiC f /SiC composites were fabricated by the electron beam curing and pyrolysis process and the thermal oxidation curing and pyrolysis process, respectively. And the characteristics of both composites were compared

  2. A novel fabrication process for out-of-plane microneedle sheets of biocompatible polymer

    Science.gov (United States)

    Han, Manhee; Hyun, Dong-Hun; Park, Hyoun-Hyang; Lee, Seung S.; Kim, Chang-Hyeon; Kim, Changgyou

    2007-06-01

    This paper presents a novel process for fabricating out-of-plane microneedle sheets of biocompatible polymer using in-plane microneedles. This process comprises four steps: (1) fabrication of in-plane microneedles using inclined UV lithography and electroforming, (2) conversion of the in-plane microneedles to an out-of-plane microneedle array, (3) fabrication of a negative PDMS mold and (4) fabrication of out-of-plane microneedle sheets of biocompatible polymer by hot embossing. The in-plane microneedles are fabricated with a sharp tip for low insertion forces and are made long to ensure sufficient penetration depth. The in-plane microneedles are converted into an out-of-plane microneedle array to increase the needle density. The negative mold is fabricated for mass-production using a polymer molding technique. The final out-of-plane microneedle sheets are produced using polycarbonate for biocompatibility by employing the hot embossing process. The height of the fabricated needles ranges from 500 to 1500 µm, and the distance between the needles is 500 to 2000 µm. The radii of curvature are approximately 2 µm, while the tip angles are in the range of 39-56°. Most of the geometrical characteristics of the out-of-plane microneedles can be freely controlled for real life applications such as drug delivery, cosmetic delivery and mesotherapy. Since it is also possible to mass-produce the microneedles, this novel process holds sufficient potential for applications in industrial fields.

  3. Laser Control of Self-Organization Process in Microscopic Region and Fabrication of Fine Microporous Structure

    OpenAIRE

    Matsumura, Yukimasa; Inami, Wataru; Kawata, Yoshimasa

    2012-01-01

    We present a controlling technique of microporous structure by laser irradiation during self-organization process. Self-organization process is fabrication method of microstructure. Polymer solution was dropped on the substrate at high humid condition. Water in air appears dropping air temperature below the dew point. The honeycomb structure with regularly aligned pores on the film was fabricated by attaching water droplets onto the solution surface. We demonstrate that it was possible to pre...

  4. Aspects for selection of materials and fabrication processes for nuclear component manufacturing

    International Nuclear Information System (INIS)

    Pernstich, K.

    1980-01-01

    For components of the Nuclear steam supply System of Light Water Reactors an extremely high safety standard is required. These requirements only can be met by adequate selection of materials and fabrication processes and their proper application in combination with strict quality assurance and control measurements. A general overview of the basic aspects to be considered in this connection is presented together with an indication of the present state of art for the main materials and fabrication processes. (author) [pt

  5. Biomimetic architectures by plasma processing fabrication and applications

    CERN Document Server

    Chattopadhyay, Surojit

    2014-01-01

    Photonic structures in the animal kingdom: valuable inspirations for bio-mimetic applications. Moth eye-type anti-reflecting nanostructures by an electron cyclotron resonance plasma. Plasma-processed biomimetic nano/microstructures. Wetting properties of natural and plasma processed biomimetic surfaces. Biomimetic superhydrophobic surface by plasma processing. Biomimetic interfaces of plasma modified titanium alloy.

  6. Screen printing of a capacitive cantilever-based motion sensor on fabric using a novel sacrificial layer process for smart fabric applications

    International Nuclear Information System (INIS)

    Wei, Yang; Torah, Russel; Yang, Kai; Beeby, Steve; Tudor, John

    2013-01-01

    Free-standing cantilevers have been fabricated by screen printing sacrificial and structural layers onto a standard polyester cotton fabric. By printing additional conductive layers, a complete capacitive motion sensor on fabric using only screen printing has been fabricated. This type of free-standing structure cannot currently be fabricated using conventional fabric manufacturing processes. In addition, compared to conventional smart fabric fabrication processes (e.g. weaving and knitting), screen printing offers the advantages of geometric design flexibility and the ability to simultaneously print multiple devices of the same or different designs. Furthermore, a range of active inks exists from the printed electronics industry which can potentially be applied to create many types of smart fabric. Four cantilevers with different lengths have been printed on fabric using a five-layer structure with a sacrificial material underneath the cantilever. The sacrificial layer is subsequently removed at 160 °C for 30 min to achieve a freestanding cantilever above the fabric. Two silver electrodes, one on top of the cantilever and the other on top of the fabric, are used to capacitively detect the movement of the cantilever. In this way, an entirely printed motion sensor is produced on a standard fabric. The motion sensor was initially tested on an electromechanical shaker rig at a low frequency range to examine the linearity and the sensitivity of each design. Then, these sensors were individually attached to a moving human forearm to evaluate more representative results. A commercial accelerometer (Microstrain G-link) was mounted alongside for comparison. The printed sensors have a similar motion response to the commercial accelerometer, demonstrating the potential of a printed smart fabric motion sensor for use in intelligent clothing applications. (paper)

  7. Screen printing of a capacitive cantilever-based motion sensor on fabric using a novel sacrificial layer process for smart fabric applications

    Science.gov (United States)

    Wei, Yang; Torah, Russel; Yang, Kai; Beeby, Steve; Tudor, John

    2013-07-01

    Free-standing cantilevers have been fabricated by screen printing sacrificial and structural layers onto a standard polyester cotton fabric. By printing additional conductive layers, a complete capacitive motion sensor on fabric using only screen printing has been fabricated. This type of free-standing structure cannot currently be fabricated using conventional fabric manufacturing processes. In addition, compared to conventional smart fabric fabrication processes (e.g. weaving and knitting), screen printing offers the advantages of geometric design flexibility and the ability to simultaneously print multiple devices of the same or different designs. Furthermore, a range of active inks exists from the printed electronics industry which can potentially be applied to create many types of smart fabric. Four cantilevers with different lengths have been printed on fabric using a five-layer structure with a sacrificial material underneath the cantilever. The sacrificial layer is subsequently removed at 160 °C for 30 min to achieve a freestanding cantilever above the fabric. Two silver electrodes, one on top of the cantilever and the other on top of the fabric, are used to capacitively detect the movement of the cantilever. In this way, an entirely printed motion sensor is produced on a standard fabric. The motion sensor was initially tested on an electromechanical shaker rig at a low frequency range to examine the linearity and the sensitivity of each design. Then, these sensors were individually attached to a moving human forearm to evaluate more representative results. A commercial accelerometer (Microstrain G-link) was mounted alongside for comparison. The printed sensors have a similar motion response to the commercial accelerometer, demonstrating the potential of a printed smart fabric motion sensor for use in intelligent clothing applications.

  8. A full description of a simple and scalable fabrication process for electrowetting displays

    International Nuclear Information System (INIS)

    Zhou, K; Heikenfeld, J; Dean, K A; Howard, E M; Johnson, M R

    2009-01-01

    Electrowetting displays provide a high white state reflectance of >50% and have attracted substantial world-wide interest, yet are primarily an industrially led effort with few details on preferred materials and fabrication processes. Reported herein is the first complete description of the electrowetting display fabrication process. The description includes materials selection, purification and all fabrication steps from substrate selection to sealing. Challenging materials and fabrication processes include dielectric optimization, fluoropolymer selection, hydrophilic grid patterning, liquid dosing, dye purification and liquid ionic content. The process described herein has produced pixel arrays that were switched at 2 . The majority of fabrication processes can conform to liquid-crystal style manufacturing equipment, and therefore can be readily adopted by many display practitioners. Also presented are additional tips and techniques, such as controlling the onset of oil film break-up in an electrowetting display. This paper should enable anyone skilled in displays or microfabrication to quickly and successfully set up research and fabrication of electrowetting displays

  9. Thermal and radiation process for nano-/micro-fabrication of crosslinked PTFE

    International Nuclear Information System (INIS)

    Kobayashi, Akinobu; Oshima, Akihiro; Okubo, Satoshi; Tsubokura, Hidehiro; Takahashi, Tomohiro; Oyama, Tomoko Gowa; Tagawa, Seiichi; Washio, Masakazu

    2013-01-01

    Nano-/micro-fabrication process of crosslinked poly(tetrafluoroethylene) (RX-PTFE) is proposed as a novel method using combined process which is thermal and radiation process for fabrication of RX-PTFE (TRaf process). Nano- and micro-scale patterns of silicon wafers fabricated by EB lithography were used as the molds for TRaf process. Poly(tetrafluoroethylene) (PTFE) dispersion was dropped on the fabricated molds, and then PTFE was crosslinked with doses from 105 kGy to 1500 kGy in its molten state at 340 °C in nitrogen atmosphere. The obtained nano- and micro-structures by TRaf process were compared with those by the conventional thermal fabrication process. Average surface roughness (R a ) of obtained structures was evaluated with atomic force microscope (AFM) and scanning electron microscope (SEM). R a of obtained structures with the crosslinking dose of 600 kGy showed less than 1.2 nm. The fine nano-/micro-structures of crosslinked PTFE were successfully obtained by TRaf process

  10. EARLY READING ASSESSMENT INSTRUMENTS: ABILITIES AND PROCESSES INVOLVED

    Directory of Open Access Journals (Sweden)

    Ana Cláudia de Souza

    2017-04-01

    Full Text Available This study investigates the following early reading assessment instruments: “Bateria de Recepção e Produção da Linguagem Verbal” (SCLIAR-CABRAL, 2003a and “Teste de Competência de Leitura de Palavras e Pseudopalavras” (SEABRA; CAPOVILLA, 2010. The main research goal is to analyze in each one of these reading assessment instruments some of the multiple cognitive processes and basic low-level abilities involved in reading. In this sense, decoding, word recognition, lexical access, syntactic and textual processing, and comprehension are the cognitive processes taken into account. With regard to the basic reading abilities, accuracy and fluency (rhythm, prosody and speed are considered. The results indicate that each one of the analyzed reading assessment instruments assesses different aspects of the reading processes and abilities, mainly through off-line measures. ScliarCabral’s assessment battery allows the researcher or the teacher to evaluate the following processes: perception of the grapheme opposition in minimal pairs of words and in sentences, difficulties in sentence processing, skills in decoding the graphemic-phonemic relationship, and textual comprehension. In its turn, the reading assessment instrument proposed by Seabra e Capovilla allows one to evaluate student’s reading development level, by classifying the kind of processing as logographic, alphabetic or orthographic.

  11. Review of manufacturing processes for fabrication of SOFC components

    International Nuclear Information System (INIS)

    Stacey, B.; Badwal, S.P.S.; Foger, K.

    1998-01-01

    In order for fuel cell technology to be commercial, it must meet stringent criteria of reliability, life-time expectations and cost. While materials play an important role in determining these parameters, engineering design and manufacturing processes for fuel cell stack components are equally important. Manufacturing processes must be low cost and suitable for large volume production for the technology to be viable and competitive in the market place. Several processes suitable for the production of ceramic components used in solid oxide fuel cells as well as ceramic coating techniques required for the protection of some metal components have been described. Copyright (1998) Australasian Ceramic Society

  12. Characterization of depleted uranium oxides fabricated using different processing methods

    International Nuclear Information System (INIS)

    Hastings, E.P.; Lewis, C.; FitzPatrick, J.; Rademacher, D.; Tandon, L.

    2008-01-01

    Identifying both physical and chemical characteristics of Special Nuclear Material (SNM) production processes is the corner stone of nuclear forensics. Typically, processing markers are based on measuring an interdicted sample's bulk chemical properties, such as the elemental or isotopic composition, or focusing on the chemical and physical morphology of only a few particles. Therefore, it is imperative that known SNM processes be fully characterized from bulk to trace level for each particle size range. This report outlines a series of particle size measurements and fractionation techniques that can be applied to a bulk SNM powders, categorizing both chemical and physical properties in discrete particle size fractions. This will be demonstrated by characterizing the process signatures of a series of different depleted uranium oxides prepared at increasing firing temperatures (350-1100 deg C). Results will demonstrate how each oxides' material density, particle size distribution, and morphology varies. (author)

  13. Public involvement in decision making process in nuclear field

    International Nuclear Information System (INIS)

    Constantin, M.; Diaconu, D.

    2009-01-01

    Decision Making Process (DMP) in nuclear field is influenced by multiple factors such as: complex technical aspects, diversity of stakeholders, long term risks, psychological stresses, societal attitudes, etc. General public is sometimes considered as the only one of stakeholders, the involvement of the public being seen as a factor to obtain the acceptance in the late phase of DMP. Generally it is assessed by public consultation on the environment impact studies and by approval of the sitting through the local authorities decision. Modern society uses methods to involve public from the beginning of DMP. The paper shows a general view of the methods and tools used in Europe for public involvement in DMP. The process of construction of a continuous democratic dialog inside of Romanian Stakeholder Group (RSG) in the frame of the FP6-COWAM2 and CIP projects is presented with a focusing of the barriers and factors of disturbing the trust and collaboration between stakeholders. The influence on the public acceptance is also discussed. (authors)

  14. More steps towards process automation for optical fabrication

    Science.gov (United States)

    Walker, David; Yu, Guoyu; Beaucamp, Anthony; Bibby, Matt; Li, Hongyu; McCluskey, Lee; Petrovic, Sanja; Reynolds, Christina

    2017-06-01

    In the context of Industrie 4.0, we have previously described the roles of robots in optical processing, and their complementarity with classical CNC machines, providing both processing and automation functions. After having demonstrated robotic moving of parts between a CNC polisher and metrology station, and auto-fringe-acquisition, we have moved on to automate the wash-down operation. This is part of a wider strategy we describe in this paper, leading towards automating the decision-making operations required before and throughout an optical manufacturing cycle.

  15. Generic nano-imprint process for fabrication of nanowire arrays

    NARCIS (Netherlands)

    Pierret, A.; Hocevar, M.; Diedenhofen, S.L.; Algra, R.E.; Vlieg, E.; Timmering, E.C.; Verschuuren, M.A.; Immink, W.G.G.; Verheijen, M.A.; Bakkers, E.P.A.M.

    2010-01-01

    A generic process has been developed to grow nearly defect-free arrays of (heterostructured) InP and GaP nanowires. Soft nano-imprint lithography has been used to pattern gold particle arrays on full 2inch substrates. After lift-off organic residues remain on the surface, which induce the growth of

  16. Rework of process effluents from the fabrication of HTR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lasberg, Ingo; Braehler, Georg [NUKEM Technologies GmbH (Germany); Boyes, David [Pebble Bed Modular Reactor (Pty) Ltd., Centurion (South Africa)

    2008-07-01

    HTR fuel facilities require the application of several liquid chemicals and accordingly they produce significant amounts of Uranium contaminated/potentially contaminated effluents. The main effluents are (amounts for a 3 t Uranium/a plant): aqueous solutions including tetrahydrofurfuryl alcohol THFA, ammonium hydroxide NH4OH, and ammonium nitrate NH4NO3 (180 m{sup 3}/a), isopropanol IPA/water mixtures (130 m{sup 3}/a); Non-Process Water NPW (300 m{sup 3}/a); methanol (7m{sup 3}/a); additionally off-gas streams, containing ammonia (9 t/a) have to be treated. In an industrial scale facility all such effluents/gases need to be processed for recycling, decontamination prior to release to the environment (as waste or as valuable material). Thermal decomposition is applied to dispose of burnable residues.

  17. Process for fabricating ZnO-based varistors

    Science.gov (United States)

    Lauf, R.J.

    The invention is a process for producing ZnO-based varistors incorporating a metal oxide dopant. In one form, the invention comprises providing a varistor powder mix of colloidal particles of ZnO and metal-oxide dopants including Bi/sub 2/O/sub 3/. The mix is hot-pressed to form a compact at temperatures below 850/sup 0/C and under conditions effecting reduction of the ZnO to sub-stoichiometric oxide. This promotes densification while restricting liquid formation and grain growth. The compact then is heated under conditions restoring the zinc oxide to stoichiometric composition, thus improving the varistor properties of the compact. The process produces fine-grain varistors characterized by a high actual breakdown voltage and a high average breakdown voltage per individual grain boundary.

  18. Rework of process effluents from the fabrication of HTR fuel

    International Nuclear Information System (INIS)

    Lasberg, Ingo; Braehler, Georg; Boyes, David

    2008-01-01

    HTR fuel facilities require the application of several liquid chemicals and accordingly they produce significant amounts of Uranium contaminated/potentially contaminated effluents. The main effluents are (amounts for a 3 t Uranium/a plant): aqueous solutions including tetrahydrofurfuryl alcohol THFA, ammonium hydroxide NH4OH, and ammonium nitrate NH4NO3 (180 m 3 /a), isopropanol IPA/water mixtures (130 m 3 /a); Non-Process Water NPW (300 m 3 /a); methanol (7m 3 /a); additionally off-gas streams, containing ammonia (9 t/a) have to be treated. In an industrial scale facility all such effluents/gases need to be processed for recycling, decontamination prior to release to the environment (as waste or as valuable material). Thermal decomposition is applied to dispose of burnable residues.

  19. Generic nano-imprint process for fabrication of nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Pierret, Aurelie; Hocevar, Moira; Algra, Rienk E; Timmering, Eugene C; Verschuuren, Marc A; Immink, George W G; Verheijen, Marcel A; Bakkers, Erik P A M [Philips Research Laboratories Eindhoven, High Tech Campus 11, 5656 AE Eindhoven (Netherlands); Diedenhofen, Silke L [FOM Institute for Atomic and Molecular Physics c/o Philips Research Laboratories, High Tech Campus 4, 5656 AE Eindhoven (Netherlands); Vlieg, E, E-mail: e.p.a.m.bakkers@tue.nl [IMM, Solid State Chemistry, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands)

    2010-02-10

    A generic process has been developed to grow nearly defect-free arrays of (heterostructured) InP and GaP nanowires. Soft nano-imprint lithography has been used to pattern gold particle arrays on full 2 inch substrates. After lift-off organic residues remain on the surface, which induce the growth of additional undesired nanowires. We show that cleaning of the samples before growth with piranha solution in combination with a thermal anneal at 550 deg. C for InP and 700 deg. C for GaP results in uniform nanowire arrays with 1% variation in nanowire length, and without undesired extra nanowires. Our chemical cleaning procedure is applicable to other lithographic techniques such as e-beam lithography, and therefore represents a generic process.

  20. Silicon Nano fabrication by Atomic Force Microscopy-Based Mechanical Processing

    International Nuclear Information System (INIS)

    Miyake, Sh.; Wang, M.; Kim, J.

    2014-01-01

    This paper reviews silicon nano fabrication processes using atomic force microscopy (AFM). In particular, it summarizes recent results obtained in our research group regarding AFM-based silicon nano fabrication through mechanochemical local oxidation by diamond tip sliding, as well as mechanical, electrical, and electromechanical processing using an electrically conductive diamond tip. Microscopic three-dimensional manufacturing mainly relies on etching, deposition, and lithography. Therefore, a special emphasis was placed on nano mechanical processes, mechanochemical reaction by potassium hydroxide solution etching, and mechanical and electrical approaches. Several important surface characterization techniques consisting of scanning tunneling microscopy and related techniques, such as scanning probe microscopy and AFM, were also discussed.

  1. Relationship between single-event upset immunity and fabrication processes of recent memories

    International Nuclear Information System (INIS)

    Nemoto, N.; Shindou, H.; Kuboyama, S.; Matsuda, S.; Itoh, H.; Okada, S.; Nashiyama, I.

    1999-01-01

    Single-Event upset (SEU) immunity for commercial devices were evaluated by irradiation tests using high-energy heavy ions. We show test results and describe the relationship between observed SEU and structures/fabrication processes. We have evaluated single-even upset (SEU) tolerance of recent commercial memory devices using high energy heavy ions in order to find relationship between SEU rate and their fabrication process. It was revealed that the change of the process parameter gives much effect for the SEU rate of the devices. (authors)

  2. 3D MEMS in Standard Processes: Fabrication, Quality Assurance, and Novel Measurement Microstructures

    Science.gov (United States)

    Lin, Gisela; Lawton, Russell A.

    2000-01-01

    Three-dimensional MEMS microsystems that are commercially fabricated require minimal post-processing and are easily integrated with CMOS signal processing electronics. Measurements to evaluate the fabrication process (such as cross-sectional imaging and device performance characterization) provide much needed feedback in terms of reliability and quality assurance. MEMS technology is bringing a new class of microscale measurements to fruition. The relatively small size of MEMS microsystems offers the potential for higher fidelity recordings compared to macrosize counterparts, as illustrated in the measurement of muscle cell forces.

  3. Re-qualification of MTR-type fuel plates fabrication process

    International Nuclear Information System (INIS)

    Elseaidy, I.M.; Ghoneim, M.M.

    2010-01-01

    The fabricability issues with increased uranium loading due to use low enrichment of uranium (LEU), i.e. less than 20 % of U 235 , increase the problems which occur during compact manufacturing, roll bonding of the fuel plates, potential difficulty in forming during rolling process, mechanical integrity of the core during fabrication, potential difficulty in meat homogeneity, and the ability to fabricate plates with thicker core as a means of increasing total uranium loading. To produce MTR- type fuel plates with high uranium loading (HUL) and keep the required quality of these plates, many of qualification process must be done in the commissioning step of fuel fabrication plant. After that any changing of the fabrication parameters, for example changing of any of the raw materials, devises, operators, and etc., a re- qualification process should be done in order to keep the quality of produced plates. Objective of the present work is the general description of the activities to be accomplished for re-qualification of manufacturing MTR- type nuclear fuel plates. For each process to be re-qualified, a detailed of re-qualification process were established. (author)

  4. Emission sensitization processes involving Nd{sup 3+} in YAG

    Energy Technology Data Exchange (ETDEWEB)

    Lupei, V., E-mail: lupei_voicu@yahoo.com [National Institute of Laser, Plasma and Radiation Physics, Bucharest 077125 (Romania); Lupei, A.; Gheorghe, C. [National Institute of Laser, Plasma and Radiation Physics, Bucharest 077125 (Romania); Ikesue, A. [World Lab. Co., Nagoya (Japan)

    2016-02-15

    The paper investigates the characteristics of sensitization processes of Nd{sup 3+} emission in YAG ceramics under broad band pumping by co-doping with Cr{sup 3+} and the prospect of using Nd{sup 3+} and Cr{sup 3+} for sensitization of emission of Yb{sup 3+}. It is evidenced that the energy transfer from Cr{sup 3+} to Nd{sup 3+} involves both direct and weak migration-assisted processes and is thus dependent on the concentrations of both species. It is also found that the ion–ion interaction responsible for the direct transfer contains besides the dipole–dipole coupling strong superexchange contribution that dominates the transfer to the Nd{sup 3+} ions up to the third coordination sphere and has major implication in sensitization. Investigation of (Cr, Nd, Yb)-doped YAG ceramics shows that Cr{sup 3+} can sensitize the emission of Yb{sup 3+} both via the chain Cr–Nd–Yb or by direct Cr–Yb energy transfer. The prospect of utilization of these processes in the solar-pumped laser is discussed. - Highlights: • The efficiency of sensitization increases at high Cr and Nd doping concentrations. • The Cr-to-Nd energy transfer involves both direct and migration-assisted processes. • The direct transfer implies both dipole–dipole and superexchange interactions. • The superexchange interaction has major influence on sensitization. • Sensitized emission of Yb{sup 3+} in (Cr,Nd,Yb):YAG by Cr–Nd–Yb and Cr–Yb transfers.

  5. Development of automated welding process for field fabrication of thick walled pressure vessels

    International Nuclear Information System (INIS)

    Schneider, U.A.

    Research on automatic welding processes for the fabrication of thick-walled pressure vessels continued. A literature review on the subject was completed. A laboratory study of criteria for judging acceptable root parameters continued. Equipment for a demonstration facility to test the components and processes of the automated welding system has been specified and is being obtained

  6. Development of automated welding process for field fabrication of thick walled pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, U A

    1981-01-01

    Research on automatic welding processes for the fabrication of thick-walled pressure vessels continued. A literature review on the subject was completed. A laboratory study of criteria for judging acceptable root parameters continued. Equipment for a demonstration facility to test the components and processes of the automated welding system has been specified and is being obtained. (LCL)

  7. Standard format and content of license applications for plutonium processing and fuel fabrication plants

    International Nuclear Information System (INIS)

    1976-01-01

    The standard format suggested for use in applications for licenses to possess and use special nuclear materials in Pu processing and fuel fabrication plants is presented. It covers general description of the plant, summary safety assessment, site characteristics, principal design criteria, plant design, process systems, waste confinement and management, radiation protection, accident safety analysis, conduct of operations, operating controls and limits, and quality assurance

  8. A piezoresistive cantilever for lateral force detection fabricated by a monolithic post-CMOS process

    International Nuclear Information System (INIS)

    Ji Xu; Li Zhihong; Li Juan; Wang Yangyuan; Xi Jianzhong

    2008-01-01

    This paper presents a post-CMOS process to monolithically integrate a piezoresistive cantilever for lateral force detection and signal processing circuitry. The fabrication process includes a standard CMOS process and one more lithography step to micromachine the cantilever structure in the post-CMOS process. The piezoresistors are doped in the CMOS process but defined in the post-CMOS micromachining process without any extra process required. A partially split cantilever configuration is developed for the lateral force detection. The piezoresistors are self-aligned to the split cantilever, and therefore the width of the beam is only limited by lithography. Consequently, this kind of cantilever potentially has a high resolution. The preliminary experimental results show expected performances of the fabricated piezoresistors and electronic circuits

  9. Understanding the cognitive processes involved in writing to learn.

    Science.gov (United States)

    Arnold, Kathleen M; Umanath, Sharda; Thio, Kara; Reilly, Walter B; McDaniel, Mark A; Marsh, Elizabeth J

    2017-06-01

    Writing is often used as a tool for learning. However, empirical support for the benefits of writing-to-learn is mixed, likely because the literature conflates diverse activities (e.g., summaries, term papers) under the single umbrella of writing-to-learn. Following recent trends in the writing-to-learn literature, the authors focus on the underlying cognitive processes. They draw on the largely independent writing-to-learn and cognitive psychology learning literatures to identify important cognitive processes. The current experiment examines learning from 3 writing tasks (and 1 nonwriting control), with an emphasis on whether or not the tasks engaged retrieval. Tasks that engaged retrieval (essay writing and free recall) led to better final test performance than those that did not (note taking and highlighting). Individual differences in structure building (the ability to construct mental representations of narratives; Gernsbacher, Varner, & Faust, 1990) modified this effect; skilled structure builders benefited more from essay writing and free recall than did less skilled structure builders. Further, more essay-like responses led to better performance, implicating the importance of additional cognitive processes such as reorganization and elaboration. The results highlight how both task instructions and individual differences affect the cognitive processes involved when writing-to-learn, with consequences for the effectiveness of the learning strategy. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. Investigation of small scale sphere-pac fuel fabrication plant with external gelation process

    International Nuclear Information System (INIS)

    Maekawa, Kazuhiko; Yoshimura, Tadahiro; Kikuchi, Toshiaki; Hoshino, Yasushi; Munekata, Hideki; Shimizu, Makoto

    2005-02-01

    In feasibility studies on commercialized FBR cycle system, comprehensive system investigation and properties evaluation for candidate FBR cycle systems have been implemented through view point of safety, economics, environmental burden reduction, non-proliferation resistivity, etc. As part of these studies, an investigation of small scale sphere-pac fuel fabrication plant with external gelation process was conducted. Until last fiscal year, equipment layout in cells and overall layout design of the 200t-HM/y scale fuel fabrication plant were conducted as well as schematical design studies on main equipments in gelation and reagent recovery processes of the plant. System property data concerning economics and environmental burden reduction of fuel fabrication plant was also acquired. In this fiscal year, the processes from vibropacking to fuel assemblies storage were added to the investigation range, and a conceptual design of whole fuel fabrication plant was studied as well as deepening the design study on main equipments. The conceptual design study was mainly conducted for small 50t-HM/y scale plant and a revising investigation was done for 200t-HM/y scale plant. Taking the planed comparative evaluation with pellet fuel fabrication system into account, design of equipments which should be equivalent with pellet system, especially in post-vibropacking processes, were standardized in each system. Based on these design studies, system properties data concerning economics and environmental burden reduction of the plant was also acquired. In comparison with existing design, the cell height was lowered on condition that plug type pneumatic system was adopted and fuel fabrication building was downsized by applying rationalized layout design of pellet system to post-vibropacking processes. Reduction of reagent usage at gelation process and rationalization of sintering and O/M controlling processes etc., are foremost tasks. (author)

  11. Process system and method for fabricating submicron field emission cathodes

    Science.gov (United States)

    Jankowski, Alan F.; Hayes, Jeffrey P.

    1998-01-01

    A process method and system for making field emission cathodes exists. The deposition source divergence is controlled to produce field emission cathodes with height-to-base aspect ratios that are uniform over large substrate surface areas while using very short source-to-substrate distances. The rate of hole closure is controlled from the cone source. The substrate surface is coated in well defined increments. The deposition source is apertured to coat pixel areas on the substrate. The entire substrate is coated using a manipulator to incrementally move the whole substrate surface past the deposition source. Either collimated sputtering or evaporative deposition sources can be used. The position of the aperture and its size and shape are used to control the field emission cathode size and shape.

  12. In-process fault detection for textile fabric production: onloom imaging

    Science.gov (United States)

    Neumann, Florian; Holtermann, Timm; Schneider, Dorian; Kulczycki, Ashley; Gries, Thomas; Aach, Til

    2011-05-01

    Constant and traceable high fabric quality is of high importance both for technical and for high-quality conventional fabrics. Usually, quality inspection is carried out by trained personal, whose detection rate and maximum period of concentration are limited. Low resolution automated fabric inspection machines using texture analysis were developed. Since 2003, systems for the in-process inspection on weaving machines ("onloom") are commercially available. With these defects can be detected, but not measured quantitative precisely. Most systems are also prone to inevitable machine vibrations. Feedback loops for fault prevention are not established. Technology has evolved since 2003: Camera and computer prices dropped, resolutions were enhanced, recording speeds increased. These are the preconditions for real-time processing of high-resolution images. So far, these new technological achievements are not used in textile fabric production. For efficient use, a measurement system must be integrated into the weaving process; new algorithms for defect detection and measurement must be developed. The goal of the joint project is the development of a modern machine vision system for nondestructive onloom fabric inspection. The system consists of a vibration-resistant machine integration, a high-resolution machine vision system, and new, reliable, and robust algorithms with quality database for defect documentation. The system is meant to detect, measure, and classify at least 80 % of economically relevant defects. Concepts for feedback loops into the weaving process will be pointed out.

  13. Porous Gold Films Fabricated by Wet-Chemistry Processes

    Directory of Open Access Journals (Sweden)

    Aymeric Pastre

    2016-01-01

    Full Text Available Porous gold films presented in this paper are formed by combining gold electroless deposition and polystyrene beads templating methods. This original approach allows the formation of conductive films (2 × 106 (Ω·cm−1 with tailored and interconnected porosity. The porous gold film was deposited up to 1.2 μm on the silicon substrate without delamination. An original zirconia gel matrix containing gold nanoparticles deposited on the substrate acts both as an adhesion layer through the creation of covalent bonds and as a seed layer for the metallic gold film growth. Dip-coating parameters and gold electroless deposition kinetics have been optimized in order to create a three-dimensional network of 20 nm wide pores separated by 20 nm thick continuous gold layers. The resulting porous gold films were characterized by GIXRD, SEM, krypton adsorption-desorption, and 4-point probes method. The process is adaptable to different pore sizes and based on wet-chemistry. Consequently, the porous gold films presented in this paper can be used in a wide range of applications such as sensing, catalysis, optics, or electronics.

  14. Motor cortical processing is causally involved in object recognition.

    Science.gov (United States)

    Decloe, Rebecca; Obhi, Sukhvinder S

    2013-12-14

    Motor activity during vicarious experience of actions is a widely reported and studied phenomenon, and motor system activity also accompanies observation of graspable objects in the absence of any actions. Such motor activity is thought to reflect simulation of the observed action, or preparation to interact with the object, respectively. Here, in an initial exploratory study, we ask whether motor activity during observation of object directed actions is involved in processes related to recognition of the object after initial exposure. Single pulse Transcranial Magnetic Stimulation (TMS) was applied over the thumb representation of the motor cortex, or over the vertex, during observation of a model thumb typing on a cell-phone, and performance on a phone recognition task at the end of the trial was assessed. Disrupting motor processing over the thumb representation 100 ms after the onset of the typing video impaired the ability to recognize the phone in the recognition test, whereas there was no such effect for TMS applied over the vertex and no TMS trials. Furthermore, this effect only manifested for videos observed from the first person perspective. In an additional control condition, there was no evidence for any effects of TMS to the thumb representation or vertex when observing and recognizing non-action related shape stimuli. Overall, these data provide evidence that motor cortical processing during observation of object-directed actions from a first person perspective is causally linked to the formation of enduring representations of objects-of-action.

  15. Motor cortical processing is causally involved in object recognition

    Science.gov (United States)

    2013-01-01

    Background Motor activity during vicarious experience of actions is a widely reported and studied phenomenon, and motor system activity also accompanies observation of graspable objects in the absence of any actions. Such motor activity is thought to reflect simulation of the observed action, or preparation to interact with the object, respectively. Results Here, in an initial exploratory study, we ask whether motor activity during observation of object directed actions is involved in processes related to recognition of the object after initial exposure. Single pulse Transcranial Magnetic Stimulation (TMS) was applied over the thumb representation of the motor cortex, or over the vertex, during observation of a model thumb typing on a cell-phone, and performance on a phone recognition task at the end of the trial was assessed. Disrupting motor processing over the thumb representation 100 ms after the onset of the typing video impaired the ability to recognize the phone in the recognition test, whereas there was no such effect for TMS applied over the vertex and no TMS trials. Furthermore, this effect only manifested for videos observed from the first person perspective. In an additional control condition, there was no evidence for any effects of TMS to the thumb representation or vertex when observing and recognizing non-action related shape stimuli. Conclusion Overall, these data provide evidence that motor cortical processing during observation of object-directed actions from a first person perspective is causally linked to the formation of enduring representations of objects-of-action. PMID:24330638

  16. Mechanical design and fabrication processes for the ALS third-harmonic cavities

    International Nuclear Information System (INIS)

    Franks, M.; Henderson, T.; Hernandez, K.; Otting, D.; Plate, D.; Rimmer, R.

    1999-01-01

    It is planned to install five third-harmonic (1.5 GHz) RF Cavities in May/June 1999 as an upgrade to the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory (LBNL). This paper presents mechanical design features, their experiences in using electronic design models to expedite the manufacturing process, and the fabrication processes employed to produce these cavities for the ALS. They discuss some of the lessons learned from the PEP-II RF Cavity design and fabrication, and outline the improvements incorporated in the new design. They also report observations from the current effort

  17. Wear Process Analysis of the Polytetrafluoroethylene/Kevlar Twill Fabric Based on the Components’ Distribution Characteristics

    Directory of Open Access Journals (Sweden)

    Gu Dapeng

    2017-12-01

    Full Text Available Polytetrafluoroethylene (PTFE/Kevlar fabric or fabric composites with excellent tribological properties have been considered as important materials used in bearings and bushing, for years. The components’ (PTFE, Kevlar, and the gap between PTFE and Kevlar distribution of the PTFE/Kevlar fabric is uneven due to the textile structure controlling the wear process and behavior. The components’ area ratio on the worn surface varying with the wear depth was analyzed not only by the wear experiment, but also by the theoretical calculations with our previous wear geometry model. The wear process and behavior of the PTFE/Kevlar twill fabric were investigated under dry sliding conditions against AISI 1045 steel by using a ring-on-plate tribometer. The morphologies of the worn surface were observed by the confocal laser scanning microscopy (CLSM. The wear process of the PTFE/Kevlar twill fabric was divided into five layers according to the distribution characteristics of Kevlar. It showed that the friction coefficients and wear rates changed with the wear depth, the order of the antiwear performance of the previous three layers was Layer III>Layer II>Layer I due to the area ratio variation of PTFE and Kevlar with the wear depth.

  18. Public involvement in the decision making process, Argentine experience

    International Nuclear Information System (INIS)

    Clein, D.

    1999-01-01

    In the frame of a young participative democracy the Comision Nacional de Energia Atomica (C.N.E.A.), technical and legal responsible for radioactive waste management, is developing a plan for the close out of tailings facilities from past mining and milling operations and the environmental restoration of nine different sites in six provinces all over the country. In the first site, Malargue Facility, different activities have been developed promoting public involvement in the decision making process. The lessons learned and the experience acquired have given the background for the systematization of public consultation in the ongoing and future stages of the plan. Malargue's experience in this field will be analyzed stressing on different aspects considered of importance for the design of a communicational strategy adapted to the characteristics of a society without experience in this field. The influence of public concern on conservative bias of technical decisions will be evaluated. (author)

  19. A sacrificial process for fabrication of biodegradable polymer membranes with submicron thickness.

    Science.gov (United States)

    Beardslee, Luke A; Stolwijk, Judith; Khaladj, Dimitrius A; Trebak, Mohamed; Halman, Justin; Torrejon, Karen Y; Niamsiri, Nuttawee; Bergkvist, Magnus

    2016-08-01

    A new sacrificial molding process using a single mask has been developed to fabricate ultrathin 2-dimensional membranes from several biocompatible polymeric materials. The fabrication process is similar to a sacrificial microelectromechanical systems (MEMS) process flow, where a mold is created from a material that can be coated with a biodegradable polymer and subsequently etched away, leaving behind a very thin polymer membrane. In this work, two different sacrificial mold materials, silicon dioxide (SiO2 ) and Liftoff Resist (LOR) were used. Three different biodegradable materials; polycaprolactone (PCL), poly(lactic-co-glycolic acid) (PLGA), and polyglycidyl methacrylate (PGMA), were chosen as model polymers. We demonstrate that this process is capable of fabricating 200-500 nm thin, through-hole polymer membranes with various geometries, pore-sizes and spatial features approaching 2.5 µm using a mold fabricated via a single contact photolithography exposure. In addition, the membranes can be mounted to support rings made from either SU8 or PCL for easy handling after release. Cell culture compatibility of the fabricated membranes was evaluated with human dermal microvascular endothelial cells (HDMECs) seeded onto the ultrathin porous membranes, where the cells grew and formed confluent layers with well-established cell-cell contacts. Furthermore, human trabecular meshwork cells (HTMCs) cultured on these scaffolds showed similar proliferation as on flat PCL substrates, further validating its compatibility. All together, these results demonstrated the feasibility of our sacrificial fabrication process to produce biocompatible, ultra-thin membranes with defined microstructures (i.e., pores) with the potential to be used as substrates for tissue engineering applications. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1192-1201, 2016. © 2015 Wiley Periodicals, Inc.

  20. Stretchable V2O5/PEDOT supercapacitors: a modular fabrication process and charging with triboelectric nanogenerators.

    Science.gov (United States)

    Qi, Ruijie; Nie, Jinhui; Liu, Mingyang; Xia, Mengyang; Lu, Xianmao

    2018-04-26

    Stretchable energy storage devices are of great importance for the viable applications of wearable/stretchable electronics. Studies on stretchable energy storage devices, especially supercapacitors (SCs), have shown encouraging progress. However, challenges still remain in the pursuit of high specific capacitances and facile fabrication methods. Herein, we report a modular materials fabrication and assembly process for stretchable SCs. With a V2O5/PEDOT composite as the active material, the resulting stretchable SCs exhibited high areal specific capacitances up to 240 mF cm-2 and good capacitance retention at a strain of 50%. To demonstrate the facile assembly process, a stretchable wristband was fabricated by simply assembling SC cells in series to deliver a voltage higher than 2 V. Charging the wristband with a triboelectric nanogenerator (TENG) to light an LED was further demonstrated, indicating the potential to integrate our SCs with environmental energy harvesters for self-powered stretchable devices.

  1. Modeling of an improved chemical vapor infiltration process for ceramic composites fabrication

    International Nuclear Information System (INIS)

    Tai, N.H.; Chou, T.W.

    1990-01-01

    A quasi-steady-state approach is applied to model the pressure-driven, temperature-gradient chemical vapor infiltration (improved CVI process) for ceramic matrix composites fabrication. The deposited matrix in this study is SiC which is converted from the thermal decomposition of methyltrichlorosilane gas under excess hydrogen. A three-dimensional unit cell is adopted to simulate the spatial arrangements of reinforcements in discontinuous fiber mats and three-dimensionally woven fabrics. The objectives of this paper are to predict the temperature and density distributions in a fibrous preform during processing, the advancement of the solidified front, the total fabrication period, and the vapor inlet pressure variation for maintaining a constant flow rate

  2. Literature on fabrication of tungsten for application in pyrochemical processing of spent nuclear fuels

    International Nuclear Information System (INIS)

    Edstrom, C.M.; Phillips, A.G.; Johnson, L.D.; Corle, R.R.

    1980-01-01

    The pyrochemical processing of nuclear fuels requires crucibles, stirrers, and transfer tubing that will withstand the temperature and the chemical attack from molten salts and metals used in the process. This report summarizes the literature that pertains to fabrication (joining, chemical vapor deposition, plasma spraying, forming, and spinning) is the main theme. This report also summarizes a sampling of literature on molbdenum and the work previously performed at Argonne National Laboratory on other container materials used for pyrochemical processing of spent nuclear fuels

  3. A Highly Controllable Electrochemical Anodization Process to Fabricate Porous Anodic Aluminum Oxide Membranes

    Science.gov (United States)

    Lin, Yuanjing; Lin, Qingfeng; Liu, Xue; Gao, Yuan; He, Jin; Wang, Wenli; Fan, Zhiyong

    2015-12-01

    Due to the broad applications of porous alumina nanostructures, research on fabrication of anodized aluminum oxide (AAO) with nanoporous structure has triggered enormous attention. While fabrication of highly ordered nanoporous AAO with tunable geometric features has been widely reported, it is known that its growth rate can be easily affected by the fluctuation of process conditions such as acid concentration and temperature during electrochemical anodization process. To fabricate AAO with various geometric parameters, particularly, to realize precise control over pore depth for scientific research and commercial applications, a controllable fabrication process is essential. In this work, we revealed a linear correlation between the integrated electric charge flow throughout the circuit in the stable anodization process and the growth thickness of AAO membranes. With this understanding, we developed a facile approach to precisely control the growth process of the membranes. It was found that this approach is applicable in a large voltage range, and it may be extended to anodization of other metal materials such as Ti as well.

  4. Fabrication of metal-matrix composites and adaptive composites using ultrasonic consolidation process

    International Nuclear Information System (INIS)

    Kong, C.Y.; Soar, R.C.

    2005-01-01

    Ultrasonic consolidation (UC) has been used to embed thermally sensitive and damage intolerant fibres within aluminium matrix structures using high frequency, low amplitude, mechanical vibrations. The UC process can induce plastic flow in the metal foils being bonded, to allow the embedding of fibres at typically 25% of the melting temperature of the base metal and at a fraction of the clamping force when compared to fusion processes. To date, the UC process has successfully embedded Sigma silicon carbide (SiC) fibres, shape memory alloy wires and optical fibres, which are presented in this paper. The eventual aim of this research is targeted at the fabrication of adaptive composite structures having the ability to measure external stimuli and respond by adapting their structure accordingly, through the action of embedded active and passive functional fibres within a freeform fabricated metal-matrix structure. This paper presents the fundamental studies of this research to identify embedding methods and working range for the fabrication of adaptive composite structures. The methods considered have produced embedded fibre specimens in which large amounts of plastic flow have been observed, within the matrix, as it is deformed around the fibres, resulting in fully consolidated specimens without damage to the fibres. The microscopic observation techniques and macroscopic functionality tests confirms that the UC process could be applied to the fabrication of metal-matrix composites and adaptive composites, where fusion techniques are not feasible and where a 'cold' process is necessary

  5. Rapsodie first core manufacture. 1. part: processing plant; Fabrication du premier coeur de rapsodie. Premiere partie: l'atelier de fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Masselot, Y; Bataller, S; Ganivet, M; Guillet, H; Robillard, A; Stosskopf, F [Commissariat a l' Energie Atomique, Cadarache (France). Centre d' Etudes Nucleaires

    1968-07-01

    This report is the first in a series of three describing the processes, results and peculiar technical problems related to the manufacture of the first core of the fast reactor Rapsodie. A detailed study of manufacturing processes(pellets, pins, fissile sub-assemblies), the associated testings (raw materials, processed pellets and pins, sub-assemblies before delivery), manufacturing facilities and improvements for a second campaign are described. (author) [French] Ce rapport est le premier d'une serie de trois qui decrivent les procedes, les resultats et les problemes techniques particuliers de la fabrication du du premier coeur de la pile a neutrons rapides Rapsodie. Il comporte une etude detaillee des procedes de fabrication (pastilles, aiguilles, assemblages combustibles) et des methodes de controle associees (matieres premieres, pastilles et aiguilles en cours de fabrication, assemblages fissiles avant livraison), ainsi qu'une decription complete des installations de l'atelier de fabrication et les modifications apportees pour une deuxieme campagne. (auteur)

  6. Key Processes of Silicon-On-Glass MEMS Fabrication Technology for Gyroscope Application.

    Science.gov (United States)

    Ma, Zhibo; Wang, Yinan; Shen, Qiang; Zhang, Han; Guo, Xuetao

    2018-04-17

    MEMS fabrication that is based on the silicon-on-glass (SOG) process requires many steps, including patterning, anodic bonding, deep reactive ion etching (DRIE), and chemical mechanical polishing (CMP). The effects of the process parameters of CMP and DRIE are investigated in this study. The process parameters of CMP, such as abrasive size, load pressure, and pH value of SF1 solution are examined to optimize the total thickness variation in the structure and the surface quality. The ratio of etching and passivation cycle time and the process pressure are also adjusted to achieve satisfactory performance during DRIE. The process is optimized to avoid neither the notching nor lag effects on the fabricated silicon structures. For demonstrating the capability of the modified CMP and DRIE processes, a z-axis micro gyroscope is fabricated that is based on the SOG process. Initial test results show that the average surface roughness of silicon is below 1.13 nm and the thickness of the silicon is measured to be 50 μm. All of the structures are well defined without the footing effect by the use of the modified DRIE process. The initial performance test results of the resonant frequency for the drive and sense modes are 4.048 and 4.076 kHz, respectively. The demands for this kind of SOG MEMS device can be fulfilled using the optimized process.

  7. Additive advantage in characteristics of MIMCAPs on flexible silicon (100) fabric with release-first process

    KAUST Repository

    Ghoneim, Mohamed T.

    2013-11-20

    We report the inherent increase in capacitance per unit planar area of state-of-the art high-κ integrated metal/insulator/metal capacitors (MIMCAPs) fabricated on flexible silicon fabric with release-first process. We methodically study and show that our approach to transform bulk silicon (100) into a flexible fabric adds an inherent advantage of enabling higher integration density dynamic random access memory (DRAM) on the same chip area. Our approach is to release an ultra-thin silicon (100) fabric (25 μm thick) from the bulk silicon wafer, then build MIMCAPs using sputtered aluminium electrodes and successive atomic layer depositions (ALD) without break-ing the vacuum of a high-κ aluminium oxide sandwiched between two tantalum nitride layers. This result shows that we can obtain flexible electronics on silicon without sacrificing the high density integration aspects and also utilize the non-planar geometry associated with fabrication process to obtain a higher integration density compared to bulk silicon integration due to an increased normalized capacitance per unit planar area. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Effect of the preform fabrication process on the properties of all-silica optical fibres

    Science.gov (United States)

    Grishchenko, A. B.

    2017-12-01

    In this paper, we present a detailed comparison of technical capabilities of processes for the fabrication of all-silica optical fibre preforms with the use of an atmospheric pressure radio frequency plasma (POVD process) and low-pressure microwave plasma (PCVD process) and analyse the origin of the difference in optical properties between fibres produced by these methods. It is shown that the higher temperature of the core material and the higher oxygen partial pressure in preform fabrication by the POVD process lead to an increase in optical losses in the visible and UV spectral regions in the silica fibres with low hydroxyl (OH) content and a decrease in the solarisation resistance of the fibres with high OH content, i.e. to a more rapid increase in background losses in response to UV irradiation. No such drawbacks are detected in the case of the growth of reflective layers by the PCVD process.

  9. Development of joining processes and fabrication of US first wall qualification mockups for ITER

    International Nuclear Information System (INIS)

    Watson, Roger M.; Puskar, Joseph David; Ulrickson, Michael Andrew; Goods, Steven Howard

    2009-01-01

    We report here the fabrication processes used to manufacture US Party Team First Wall Qualification Mockups along with the detailed microstructural characterization and mechanical properties of the Be/CuCrZr/316L HIP bonds. A companion submission to this conference describes details of the PMTF heat flux testing and the performance of the first US FWQM.

  10. Role of ion chromatograph in nuclear fuel fabrication process at Nuclear Fuel Complex

    International Nuclear Information System (INIS)

    Balaji Rao, Y.; Prasada Rao, G.; Prahlad, B.; Saibaba, N.

    2012-01-01

    The present paper discusses the different applications of ion chromatography followed in nuclear fuel fabrication process at Nuclear Fuel Complex. Some more applications of IC for characterization of nuclear materials and which are at different stages of method development at Control Laboratory, Nuclear Fuel Complex are also highlighted

  11. All polymer, injection molded nanoslits, fabricated through two-level UV-LIGA processes

    DEFF Research Database (Denmark)

    Østergaard, Peter Friis; Matteucci, Marco; Marie, Rodolphe

    2012-01-01

    in the micro- and nanoregime is required. To obtain this, injection molding is included in the research process for making several chips (100-1000) with the same layout. The time it takes for the individual chip to be fabricated in this way is much shorter than with conventional cleanroom methods...

  12. Fabrication of long REBCO coated conductors by PLD process in China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yijie, E-mail: yjli@sjtu.edu.cn [Key Laboratory of Artificial Structure and Quantum Control, Ministry of Education, Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 20040 (China); Shanghai Superconductor Technology Corporation, Ltd, 28 Jiang Chuan Road, Shanghai 200240 (China); Liu, Linfei; Wu, Xiang [Key Laboratory of Artificial Structure and Quantum Control, Ministry of Education, Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 20040 (China)

    2015-11-15

    Highlights: • SJTU fabricated 100 m long class CC tapes with over 300 A/cm on RABiTS tapes in 2011. • 100 m long CC tapes with 500 A/cm have been routinely fabricated on IBAD-MgO tapes. • The process optimization for kilometer long coated conductor tapes is underway. - Abstract: In China, the First National Key Project on CC Program started in 2009, which was focused on developing hundred meter long class CC tapes based on PLD/RABiTS processes. In this project, SJTU mainly worked on all of functional layer deposition process development. Northwest Institute for Non-ferrous Metal Research worked on RABiTS tape fabrication. At the end of the project in 2011, SJTU successfully fabricated hundred meter long CC tapes with over 300 A/cm (at 77 K, self field) on RABiTS tapes. To develop high performance CC tapes by PLD/IBAD-MgO processes, a pilot CC fabrication line was set up at Shanghai Superconductor Technology Corporation, Ltd. in 2013. High quality long REBCO coated conductors have been successfully fabricated on flexible polycrystalline metal tapes by PLD plus magnetron sputter and IBAD processes. Under optimized conditions, the IBAD-MgO layers showed pure (0 0 1) orientation and excellent in-plane texture. The in-plane phi-scan rocking curve is 4–6 degrees. AFM observation showed MgO layer had very smooth surface. The RMS is less 1 nm. On the textured MgO layer, sputter deposited single cerium oxide cap-layer showed pure (0 0 1) orientation and excellent in-plane texture of 4–6 degree. Reel-to-reel PLD process with high deposition rate was already scaled up to 100 m/h tape speed. Hundred meters long coated conductor tapes with over 500 A/cm performance have been routinely fabricated. And now, the process optimization for kilometer long coated conductor tapes is underway.

  13. Material control in nuclear fuel fabrication facilities. Part I. Fuel descriptions and fabrication processes, P.O. 1236909 Final report

    International Nuclear Information System (INIS)

    Borgonovi, G.M.; McCartin, T.J.; Miller, C.L.

    1978-12-01

    The report presents information on foreign nuclear fuel fabrication facilities. Fuel descriptions and fuel fabrication information for three basic reactor types are presented: The information presented for LWRs assumes that Pu--U Mixed Oxide Fuel (MOX) will be used as fuel

  14. Towards Polarization Diversity on the SOI Platform With Simple Fabrication Process

    DEFF Research Database (Denmark)

    Ding, Yunhong; Liu, Liu; Peucheret, Christophe

    2011-01-01

    We present a polarization diversity circuit built on the silicon-on-insulator (SOI) platform, which can be fabricated by a simple process. The polarization diversity is based on two identical air-clad asymmetrical directional couplers, which simultaneously play the roles of polarization splitter...... and rotator. A silicon polarization diversity circuit with a single microring resonator is fabricated on the SOI platform. Only ${1-dB polarization-dependent loss is demonstrated. A significant improvement of the polarization dependence is obtained for 20-Gb/s nonreturn-to-zero differential phase-shift keying...

  15. Comparison of Jacket Production Processes Designed by Fabric Materials and Leather

    Directory of Open Access Journals (Sweden)

    Emine Utkun

    2011-02-01

    Full Text Available Leather and leather products industry has shown a significant improvement in export area, as a result of intensive shuttle trades and demand that comes from crumbling Eastern Bloc countries in 1990's. This development has caused capacity increasing and thus makes large investments in this sector. Leather garment industry differs from woven or fabrics industry at various points. Differantation seems in raw materials features such as size, thickness, biological, chemical or physical homogenity. Due to the natural structure, leather shows different attributes in different regions. This study examines the diversity of production processes of leather and fabric designed jacket.

  16. Free-form processing of near-net shapes using directed light fabrication

    International Nuclear Information System (INIS)

    Thoma, D.J.; Lewis, G.K.; Milewski, J.O.; Nemec, R.B.

    1997-05-01

    Directed light fabrication (DLF) is a rapid fabrication process that fuses gas delivered metal powders within a focal zone of a laser beam to produce fully dense, near-net shape, three-dimensional metal components from a computer generated solid model. Computer controls dictate the metal deposition pathways, and no preforms or molds are required to generate complex sample geometries with accurate and precise tolerances. The DLF technique offers unique advantages over conventional thermomechanical processes or thermal spray processes in that many labor and equipment intensive steps can be avoided to produce components with fully dense microstructures. Moreover, owing to the flexibility in power distributions of lasers, a variety of materials have been processed, ranging from aluminum alloys to tungsten, and including intermetallics such as Mo 5 Si 3 . Since DLF processing offers unique capabilities and advantages for the rapid fabrication of complex metal components, an examination of the microstructural development has been performed in order to define and optimize the processed materials. Solidification studies of DLF processing have demonstrated that a continuous liquid/solid interface is maintained while achieving high constant cooling rates that can be varied between 10 to 10 5 K s -1 and solidification growth rates ranging up to the 10 -2 m s -1

  17. Cost-effective large-scale fabrication of diffractive optical elements by using conventional semiconducting processes.

    Science.gov (United States)

    Yoo, Seunghwan; Song, Ho Young; Lee, Junghoon; Jang, Cheol-Yong; Jeong, Hakgeun

    2012-11-20

    In this article, we introduce a simple fabrication method for SiO(2)-based thin diffractive optical elements (DOEs) that uses the conventional processes widely used in the semiconductor industry. Photolithography and an inductively coupled plasma etching technique are easy and cost-effective methods for fabricating subnanometer-scale and thin DOEs with a refractive index of 1.45, based on SiO(2). After fabricating DOEs, we confirmed the shape of the output light emitted from the laser diode light source and applied to a light-emitting diode (LED) module. The results represent a new approach to mass-produce DOEs and realize a high-brightness LED module.

  18. A miniature rigid/flex salinity measurement device fabricated using printed circuit processing techniques

    International Nuclear Information System (INIS)

    Broadbent, H A; Ketterl, T P; Reid, C S

    2010-01-01

    The design, fabrication and initial performance of a single substrate, miniature, low-cost conductivity, temperature, depth (CTD) sensor board with interconnects are presented. In combination these sensors measure ocean salinity. The miniature CTD device board was designed and fabricated as the main component of a 50 mm × 25 mm × 25 mm animal-attached biologger. The board was fabricated using printed circuit processes and consists of two distinct regions on a continuous single liquid crystal polymer substrate: an 18 mm × 28 mm rigid multi-metal sensor section and a 72 mm long flexible interconnect section. The 95% confidence intervals for the conductivity, temperature and pressure sensors were demonstrated to be ±0.083 mS cm −1 , 0.01 °C, and ±0.135 dbar, respectively.

  19. Investigation on shortening fabrication process of instrumented irradiation capsule of JMTR

    International Nuclear Information System (INIS)

    Nagata, Hiroshi; Inoue, Shuichi; Yamaura, Takayuki; Tsuchiya, Kunihiko; Nagao, Yoshiharu

    2013-06-01

    Refurbishment of The Japan Materials Testing Reactor (JMTR) was completed in FY2010. For damage caused by the 2011 off the Pacific coast of Tohoku Earthquake, the repair of facilities was completed in October 2012. Currently, the JMTR is in preparation for restart. Irradiation tests for LWRs safety research, science and technologies and production of RI for medical diagnosis medicine, etc. are expected after the JMTR restart. On the other hand, aiming at the attractive irradiation testing reactor, the usability improvement has been discussed. As a part of the usability improvement, shortening of turnaround time to get irradiation results from an application for irradiation use was discussed focusing on the fabrication process of irradiation capsules, where the fabrication process was analyzed and reviewed by referring a trial fabrication of the mockup capsule. As a result, it was found that the turnaround time can be shortened 2 months from fabrication period of 6 months with communize of irradiation capsule parts, application of ready-made instrumentation including the sheath heater, reconsideration of inspection process, etc. (author)

  20. Porous ceramic materials for micro filtration processes I: Al2 O3 fabrication and characterization

    International Nuclear Information System (INIS)

    Salas K, J.; Reyes M, P.E.; Piderit A, G.

    1992-01-01

    Ceramic filters in separation processes are becoming more important every day. The use of these filters or membranes in the micro and ultrafiltration range, which origin goes back to the nuclear industry for uranium isotopes separation by gaseous diffusion and radioactive waste treatments, significantly improves some industrial processes efficiency. The present work describes the research done in the filters, or ceramic membrane supports fabrication field, the obtained operational results and their relation with the microstructure. (author)

  1. Investigation of heat treatment conditions of structural material for blanket fabrication process

    International Nuclear Information System (INIS)

    Hirose, Takanori; Suzuki, Satoshi; Akiba, Masato; Shiba, Kiyoyuki; Sawai, Tomotsugu; Jitsukawa, Shiro

    2004-01-01

    This paper presents recent results of thermal hysteresis effects on ceramic breeder blanket structural material. Reduced activation ferritic/martensitic (RAF) steel is the leading candidates for the first wall structural materials of breeding blankets. RAF steel demonstrates superior resistance to high dose neutron irradiation, because the steel has tempered martensite structure which contains the number of sink site for radiation defects. This microstructure obtained by two-step heat treatment, first is normalizing at temperature above 1200 K and the second is tempering at temperature below 1100 K. Recent study revealed the thermal hysteresis has significant impacts on the post-irradiation mechanical properties. The breeding blanket has complicated structure, which consists of tungsten armor and thin first wall with cooling pipe. The blanket fabrication requires some high temperature joining processes. Especially hot isostatic pressing (HIP) is examined as a near-net-shape fabrication process for this structure. The process consists of heating above 1300 K and isostatic pressing at the pressure above 150 MPa followed by tempering. Moreover ceramics pebbles are packed into blanket module and the module is to be seamed by welding followed by post weld heat treatment in the final assemble process. Therefore the final microstructural features of RAFs strongly depend on the blanket fabrication process. The objective of this work is to evaluate the effects of thermal hysteresis corresponding to blanket fabrication process on RAFs microstructure in order to establish appropriate blanket fabrication process. Japanese RAFs F82H (Fe-0.1C-8Cr-2W-0.2V-0.05Ta) was investigated by metallurgical method after isochronal heat treatment up to 1473 K simulating high temperature bonding process. Although F82H showed significant grain growth after conventional solid HIP conditions (1313 K x 2 hr.), this coarse grained microstructure was refined by the post HIP normalizing at

  2. Process development for fabrication of zircaloy- 4 of dissolver assembly for spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Tonpe, Sunil; Saibaba, N.; Jairaj, R.N.; Ravi Shankar, A.; Kamachi Mudali, U.; Raj, Baldev

    2010-01-01

    Spent fuel reprocessing for fast breeder reactor (FBR) requires a dissolver made of a material which has resistance to corrosion as the process involves Nitric Acid as the process medium. Various materials to achieve minimum corrosion rates have been tried for this operation. Particularly the focus was on the use of advanced materials with high performance (corrosion rate and product life) for high concentrations greater than 8 N and temperatures (boiling and vapour) of Nitric Acid employed in the dissolver unit. The different commercially available materials like SS316L , Pure Titanium, Ti - 5% Ta and Ti - 5% Ta - 1.8% Nb were tried and the corrosion behavior of these materials was studied in detail. As this is continuous process of evolution of new materials, it was decided to try out zircaloy - 4 as the material of construction for construction due to its excellent corrosion resistance properties in Nitric Acid environment. The specifications were stringent and the geometrical configurations of the assembly were very intricate in shape. On accepting the challenge of fabrication of dissolver, NFC has made different fixtures for Electron Beam Welding and TIG Welding. Various trials were carried out for optimization of various operating parameter like beam current, Acceleration voltage, welding speed to get adequate weld penetration. Both EB welding and TIG welding process were standardized and qualified by carrying out a number of trials and testing these welds by various weld qualification procedures like radiography, Liquid dye penetrant testing etc. for different intricate weld geometries. All the welds were simulated with samples to optimize the weld parameters. Tests such as include metallographic (for microstructure and HAZ), mechanical (for weld strength) and chemical (material analysis for gases) were conducted and all the weld samples met the acceptable criteria. Finally the dissolver was made meeting stringent specifications. All the welds were checked

  3. Ecosystem protection by effluent bioremediation: silver nanoparticles impregnation in a textile fabrics process

    International Nuclear Information System (INIS)

    Duran, Nelson; Marcato, Priscyla D.; Alves, Oswaldo L.; Silva, Joao P. S. Da; Souza, Gabriel I. H. De; Rodrigues, Flavio A.; Esposito, Elisa

    2010-01-01

    This work studied a bioremediation process of silver nanoparticles with the bacterium Chromobacterium violaceum. These nanoparticles were obtained from several washes of cotton fabrics impregnated with silver nanoparticles produced by the fungus Fusarium oxysporum. The optimized growth of C. violaceum for silver nanoparticles bioremediation was obtained. The effluents of wash process of the cotton fabric were efficiently treated with C. violaceum. This treatment was based on biosorption which was very efficient for the elimination of silver nanoparticles remaining in the wash water. The bacteria after biosorption were morphologically transformed, but the normal morphology after a new culture was completely restored. The process also allowed the recovery of silver material that was leached into the effluent for a reutilization avoiding any effect to the eco-environment.

  4. Ecosystem protection by effluent bioremediation: silver nanoparticles impregnation in a textile fabrics process

    Energy Technology Data Exchange (ETDEWEB)

    Duran, Nelson, E-mail: duran@iqm.unicamp.br; Marcato, Priscyla D. [Universidade Estadual de Campinas, Biological Chemistry Laboratory, Instituto de Quimica (Brazil); Alves, Oswaldo L. [Universidade Estadual de Campinas, Solid State Chemistry Laboratory, Instituto de Quimica (Brazil); Silva, Joao P. S. Da; Souza, Gabriel I. H. De [Universidade de Mogi das Cruzes, Biological Chemistry and Biotechnology Laboratory, Environmental Sciences Center (Brazil); Rodrigues, Flavio A. [Universidade de Mogi das Cruzes, Material Chemistry Laboratory, Biochemical Research Center (Brazil); Esposito, Elisa [Universidade de Mogi das Cruzes, Biological Chemistry and Biotechnology Laboratory, Environmental Sciences Center (Brazil)

    2010-01-15

    This work studied a bioremediation process of silver nanoparticles with the bacterium Chromobacterium violaceum. These nanoparticles were obtained from several washes of cotton fabrics impregnated with silver nanoparticles produced by the fungus Fusarium oxysporum. The optimized growth of C. violaceum for silver nanoparticles bioremediation was obtained. The effluents of wash process of the cotton fabric were efficiently treated with C. violaceum. This treatment was based on biosorption which was very efficient for the elimination of silver nanoparticles remaining in the wash water. The bacteria after biosorption were morphologically transformed, but the normal morphology after a new culture was completely restored. The process also allowed the recovery of silver material that was leached into the effluent for a reutilization avoiding any effect to the eco-environment.

  5. Composite material having high thermal conductivity and process for fabricating same

    Science.gov (United States)

    Colella, Nicholas J.; Davidson, Howard L.; Kerns, John A.; Makowiecki, Daniel M.

    1998-01-01

    A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

  6. Advanced ACTPol Multichroic Polarimeter Array Fabrication Process for 150 mm Wafers

    Science.gov (United States)

    Duff, S. M.; Austermann, J.; Beall, J. A.; Becker, D.; Datta, R.; Gallardo, P. A.; Henderson, S. W.; Hilton, G. C.; Ho, S. P.; Hubmayr, J.; Koopman, B. J.; Li, D.; McMahon, J.; Nati, F.; Niemack, M. D.; Pappas, C. G.; Salatino, M.; Schmitt, B. L.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Van Lanen, J.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-08-01

    Advanced ACTPol (AdvACT) is a third-generation cosmic microwave background receiver to be deployed in 2016 on the Atacama Cosmology Telescope (ACT). Spanning five frequency bands from 25 to 280 GHz and having just over 5600 transition-edge sensor (TES) bolometers, this receiver will exhibit increased sensitivity and mapping speed compared to previously fielded ACT instruments. This paper presents the fabrication processes developed by NIST to scale to large arrays of feedhorn-coupled multichroic AlMn-based TES polarimeters on 150-mm diameter wafers. In addition to describing the streamlined fabrication process which enables high yields of densely packed detectors across larger wafers, we report the details of process improvements for sensor (AlMn) and insulator (SiN_x) materials and microwave structures, and the resulting performance improvements.

  7. THE DYEING PROCESS OF KNITTED FABRICS AT DIFFERENT TEMPERATURES USING ULTRASOUND

    Directory of Open Access Journals (Sweden)

    MITIC Jelena

    2014-05-01

    Full Text Available The dyeing of knitted fabrics made from 100 % cellulose using on-line procedure vinyl sulfonic reactive dye, with or without ultrasound energy, is carried out in this paper. The impact of temperature has been observed. The dye exhaustion is monitored using the method of absorption spectrophotometry, and the quality control of the coloration is monitored using color measurements. The acting of ultrasound on coloration consistency, as well as on some mechanical characteristics has also been examined. All examples of the ultrasound dyeing process show greater dye exhaustion in comparison to the conventional procedure. In addition, all the samples, which have been dyed with the ultrasound energy at 40°C, are significantly darker and have deeper color in comparison with the referent sample. The temperature has a great influence on kinetic energy of the dye molecules, and therefore on the diffusion processes in the dyeing system. The exhaustion chart indicates that when the temperature is lower the exhaustion degree drops. However, all the samples dyed with the ultrasound energy have bigger exhaustion. Besides that, ultrasound energy contributes to warming up the processing environment, so the additional warm up with the electricity is unnecessary, unlike the conventional way of dyeing. Since the reactive dyes chemically connect themselves with the cellulose substrate and in that way form covalent connection, the dyed fabrics have good washing consistency. Analysis results indicate that the consistencies are identical regardless the applied dyeing procedure. In other words, the dyeing method using the ultrasound energy produces the dyed fabric of the same quality. After analyzing the results of breaking force and elongation at break of knitted fabrics, it is noticeable that there is no degradation of previously mentioned knitted fabrics features (horizontally and vertically during the ultrasound wave’s activity.

  8. The Characterization of Cognitive Processes Involved in Chemical Kinetics Using a Blended Processing Framework

    Science.gov (United States)

    Bain, Kinsey; Rodriguez, Jon-Marc G.; Moon, Alena; Towns, Marcy H.

    2018-01-01

    Chemical kinetics is a highly quantitative content area that involves the use of multiple mathematical representations to model processes and is a context that is under-investigated in the literature. This qualitative study explored undergraduate student integration of chemistry and mathematics during problem solving in the context of chemical…

  9. Statistical methods to assess and control processes and products during nuclear fuel fabrication

    International Nuclear Information System (INIS)

    Weidinger, H.

    1999-01-01

    Very good statistical tools and techniques are available today to access the quality and the reliability of fabrication process as the original sources for a good and reliable quality of the fabricated processes. Quality control charts of different types play a key role and the high capability of modern electronic data acquisition technologies proved, at least potentially, a high efficiency in the more or less online application of these methods. These techniques focus mainly on stability and the reliability of the fabrication process. In addition, relatively simple statistical tolls are available to access the capability of fabrication process, assuming they are stable, to fulfill the product specifications. All these techniques can only result in as good a product as the product design is able to describe the product requirements necessary for good performance. Therefore it is essential that product design is strictly and closely performance oriented. However, performance orientation is only successful through an open and effective cooperation with the customer who uses or applies those products. During the last one to two decades in the west, a multi-vendor strategy has been developed by the utility, sometimes leading to three different fuel vendors for one reactor core. This development resulted in better economic conditions for the user but did not necessarily increase an open attitude with the vendor toward the using utility. The responsibility of the utility increased considerably to ensure an adequate quality of the fuel they received. As a matter of fact, sometimes the utilities had to pay a high price because of unexpected performance problems. Thus the utilities are now learning that they need to increase their knowledge and experience in the area of nuclear fuel quality management and technology. This process started some time ago in the west. However, it now also reaches the utilities in the eastern countries. (author)

  10. Fabrication of subwavelength metallic structures by using a metal direct imprinting process

    International Nuclear Information System (INIS)

    Hsieh, C W; Hsiung, H Y; Lu, Y T; Sung, C K; Wang, W H

    2007-01-01

    This work employs a metal direct imprinting process, which possesses the characteristics of simplicity, low-cost and high resolution, for the fabrication of subwavelength structures on a metallic thin film. Herein, the mould featuring periodic line structures is manufactured by using E-beam lithography and followed by a dry etching process; meanwhile, the thin film is fabricated by sputtering Al on a silicon substrate. AFM section analyses are employed to measure imprinting depths of the subwavelength metallic structures and it is found that the uniformity of the imprinting depths is affected by the designed patterns, the material property of thin film and mould deformation. The process temperature and the mould filling that influence the transferred quality are investigated. In addition, TEM is also utilized to examine defects in the subwavelength metallic structures. Finally, good quality subwavelength metallic structures are fabricated under a pressure of 300 MPa for 60 s at room temperature. In this study, we have demonstrated that subwavelength metallic structures with a minimum linewidth of less than 100 nm on the Al thin film are successfully constructed by the metal direct imprinting process

  11. A Novel Continuous Extrusion Process to Fabricate Wedge-Shaped Light Guide Plates

    Directory of Open Access Journals (Sweden)

    Wen-Tse Hsiao

    2013-01-01

    Full Text Available Backlight modules are key components in thin-film transistor liquid crystal displays (TFT-LCD. Among the components of a backlight module, the light guide plate (LGP plays the most important role controlling the light projected to the eyes of users. A wedge-shaped LGP, with its asymmetrical structure, is usually fabricated by an injection proces, but the fabrication time of this process is long. This study proposes a continuous extrusion process to fabricate wedge-shaped LGPs. This continuous process has advantages for mass production. Besides a T-die and rollers, this system also has an in situ monitor of the melt-bank that forms during the extrusion process, helping control the plate thickness. Results show that the melt bank has a close relationship with the plate thickness. The temperature of the bottom heater and roller was adjusted to reduce the surface deformation of the wedge-shaped plate. This continuous extrusion system can successfully manufacture wedge-shaped LGPs for mass production.

  12. Impact of process temperature on GaSb metal-oxide-semiconductor interface properties fabricated by ex-situ process

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Masafumi, E-mail: yokoyama@mosfet.t.u-tokyo.ac.jp; Takenaka, Mitsuru; Takagi, Shinichi [Department of Electrical Engineering and Information Systems, The University of Tokyo, Yayoi 2-11-16, Bunkyo, Tokyo 113-0032 (Japan); JST-CREST, Yayoi 2-11-16, Bunkyo, Tokyo 113-0032 (Japan); Asakura, Yuji [Department of Electrical Engineering and Information Systems, The University of Tokyo, Yayoi 2-11-16, Bunkyo, Tokyo 113-0032 (Japan); Yokoyama, Haruki [NTT Photonics Laboratories, NTT Corporation, Atsugi 243-0198 (Japan)

    2014-06-30

    We have studied the impact of process temperature on interface properties of GaSb metal-oxide-semiconductor (MOS) structures fabricated by an ex-situ atomic-layer-deposition (ALD) process. We have found that the ALD temperature strongly affects the Al{sub 2}O{sub 3}/GaSb MOS interface properties. The Al{sub 2}O{sub 3}/GaSb MOS interfaces fabricated at the low ALD temperature of 150 °C have the minimum interface-trap density (D{sub it}) of ∼4.5 × 10{sup 13 }cm{sup −2} eV{sup −1}. We have also found that the post-metalization annealing at temperature higher than 200 °C degrades the Al{sub 2}O{sub 3}/GaSb MOS interface properties. The low-temperature process is preferable in fabricating GaSb MOS interfaces in the ex-situ ALD process to avoid the high-temperature-induced degradations.

  13. Drowning unconformities: Palaeoenvironmental significance and involvement of global processes

    Science.gov (United States)

    Godet, Alexis

    2013-07-01

    Drowning unconformities are stratigraphic key surfaces in the history of carbonate platforms. They mostly consist in the deposition of deep marine facies on top of shallow marine limestones. Although large-scale depositional geometries mimic lowstand systems track architecture, these sedimentary turnovers are developed in relation with major sea level rise, inducing an increase in the rate of creation of accommodation space that outpaces the capacity of carbonate to keep up. This so-called paradox of carbonate platform drowning implies that parameters other than purely eustatic fluctuations are involved in the demise of shallow marine ecosystems. Worldwide and at different times during Earth history, in-depth studies of drowning unconformities revealed that changes in nutrient input, clastic delivery, temperature, or a combination of them may be responsible for a decrease in light penetration in the water column and the progressive suffocation and poisoning of photosynthetic carbonate producers. The examination of such case examples from various stratigraphic intervals and palaeogeographical settings thus helps in identifying and hierarchizing potential triggering mechanisms for drowning unconformities. This is complemented by new data from Early Cretaceous successions from the Helvetic Alps. During this time period, the Helvetic carbonate platform developed along the northern Tethyan margin using both photozoan and heterozoan communities. Phases of healthy production were interrupted by several drowning episodes. The latter are marked in the sedimentary record by condensation and associated phosphogenesis and glauconitisation. From the earliest Valanginian to the early to late Barremian, three drowning unconformities reflect the intermittent installation of a more humid climate and subsequent enhanced trophic conditions, which first induced a switch from photozoan to heterozoan communities and then to long-lasting drowning phases. The latter encompass several sea

  14. Improvement of the process for immobilization of silver nanoparticles onto cotton and peco fabrics to prepare antibacterial fabrics

    International Nuclear Information System (INIS)

    Truong Thi Hanh; Nguyen Thi Thu; Dang Van Phu; Le Anh Quoc; Nguyen Quoc Hien

    2015-01-01

    Silver nanoparticles (AgNPs) with diameter about 11.6 ± 0.7 nm in chitosan solution were synthesized by γ-irradiation at the dose of 17.6 kGy, and then immobilized onto fabrics. The Ag-NPs contents onto cotton and peco fabrics were about 1700 and 140 mg/kg for the initial AgNPs concentrations of 1000 and 100 ppm, respectively. The AgNPs colloidal solution was characterized by UV-Vis spectroscopy and TEM image. The AgNPs size has been estimated by using Debye-Scherrer formula from X ray diffraction pattern. The presence of AgNPs on fabrics was confirmed from scanning electron microscopy (SEM) images. The antibacterial activity of AgNPs cotton and peco fabrics after 60 washings against Staphylococcus aureus and Klebsiella pneumonia was found to be > 99.40%. Effects of AgNPs on multidrug-resistant pathogens from the clinical specimens were also tested. In addition, the AgNPs fabrics were innoxious to the skin (k=0) by skin-irritation testing to animal (rabbit). (author)

  15. Development of the fabrication process of SiC composite by radiation beam

    International Nuclear Information System (INIS)

    Park, Ji Yeon; Kim, Weon Ju; Jung, Choong Hwan; Woo, Chang Hyeon; Ryu, Woo Seog

    2006-01-01

    In order to operate the nuclear system at high temperatures, core materials with a good irradiation resistance at high temperatures must be developed. SiC composite is one of candidates for high temperature structural materials. Among several fabrication processes, the PIP process includes the curing and pyrolysis process. Generally, the thermal oxidation curing method has some disadvantages; difficulty in the control of oxygen contents and volatilization of many constituents. To overcome these disadvantages and reduce the process time, a new and improved method like the beam curing process has been proposed as one of the effective methods for the fabrication of SiC composite. In this study, the electron beam curing method in the PIP process was optimized to develop SiCf/SiC composite with low oxygen contents. Using the electron beam curing method with full doses of 2∼10 MGy and the pyrolysis process at 1300∼1400 .deg. C, composite with the oxygen content of less than 1 wt% could be obtained. Additionally, if the slurry impregnation and curing/pyrolysis processes were repeated several times, dense composite could be produced

  16. Investigation of a thermoplastic-powder metallurgy process for the fabrication of porous niobium rods

    International Nuclear Information System (INIS)

    Nordin, D.R.

    1978-06-01

    The feasibility of using a thermoplastic-powder metallurgy technique for the fabrication of porous niobium rods was investigated. Some early problems were overcome to successfully extrude the polymer coated niobium powder into long lengths. The effects of certain process variables were investigated. Residual porosity and extrusion pressure were found to be regulated by the polymer fraction. The procedures for taking the extruded polystyrene--niobium rods through the heat treatments to the final, tin infiltrated stage are explained

  17. Fabrication of a reinforced polymer microstructure using femtosecond laser material processing

    International Nuclear Information System (INIS)

    Alubaidy, M; Venkatakrishnan, K; Tan, B

    2010-01-01

    This paper presents a new method for the formation of microfeatures with reinforced polymer using femtosecond laser material processing. The femtosecond laser was used for the generation of a three-dimensional interweaved nanofiber and the construction of microfeatures, such as microchannels and voxels, through two-photon polymerization of a nanofiber-dispersed polymer resin. This new method has the potential of direct fabrication of reinforced micro/nanostructures.

  18. Characterization of high-purity niobium structures fabricated using the electron beam melting process

    Science.gov (United States)

    Terrazas Najera, Cesar Adrian

    Additive Manufacturing (AM) refers to the varied set of technologies utilized for the fabrication of complex 3D components from digital data in a layer-by-layer fashion. The use of these technologies promises to revolutionize the manufacturing industry. The electron beam melting (EBM) process has been utilized for the fabrication of fully dense near-net-shape components from various metallic materials. This process, catalogued as a powder bed fusion technology, consists of the deposition of thin layers (50 - 120microm) of metallic powder particles which are fused by the use of a high energy electron beam and has been commercialized by Swedish company Arcam AB. Superconducting radio frequency (SRF) cavities are key components that are used in linear accelerators and other light sources for studies of elemental physics. Currently, cavity fabrication is done by employing different forming processes including deep-drawing and spinning. In both of the latter techniques, a feedstock high-purity niobium sheet with a thickness ranging from 3-4 mm is mechanically deformed and shaped into the desired geometry. In this manner, half cavities are formed that are later joined by electron beam welding (EBW). The welding step causes variability in the shape of the cavity and can also introduce impurities at the surface of the weld interface. The processing route and the purity of niobium are also of utmost importance since the presence of impurities such as inclusions or defects can be detrimental for the SRF properties of cavities. The focus of this research was the use of the EBM process in the manufacture of high purity niobium parts with potential SRF applications. Reactor grade niobium was plasma atomized and used as the precursor material for fabrication using EBM. An Arcam A2 system was utilized for the fabrication. The system had all internal components of the fabrication chamber replaced and was cleaned to prevent contamination of niobium powder. A mini-vat, developed at

  19. Development of Infrastructure Facilities for Superconducting RF Cavity Fabrication, Processing and 2 K Characterization at RRCAT

    Science.gov (United States)

    Joshi, S. C.; Raghavendra, S.; Jain, V. K.; Puntambekar, A.; Khare, P.; Dwivedi, J.; Mundra, G.; Kush, P. K.; Shrivastava, P.; Lad, M.; Gupta, P. D.

    2017-02-01

    An extensive infrastructure facility is being established at Raja Ramanna Centre for Advanced Technology (RRCAT) for a proposed 1 GeV, high intensity superconducting proton linac for Indian Spallation Neutron Source. The proton linac will comprise of a large number of superconducting Radio Frequency (SCRF) cavities ranging from low beta spoke resonators to medium and high beta multi-cell elliptical cavities at different RF frequencies. Infrastructure facilities for SCRF cavity fabrication, processing and performance characterization at 2 K are setup to take-up manufacturing of large number of cavities required for future projects of Department of Atomic Energy (DAE). RRCAT is also participating in a DAE’s approved mega project on “Physics and Advanced technology for High intensity Proton Accelerators” under Indian Institutions-Fermilab Collaboration (IIFC). In the R&D phase of IIFC program, a number of high beta, fully dressed multi-cell elliptical SCRF cavities will be developed in collaboration with Fermilab. A dedicated facility for SCRF cavity fabrication, tuning and processing is set up. SCRF cavities developed will be characterized at 2K using a vertical test stand facility, which is already commissioned. A Horizontal Test Stand facility has also been designed and under development for testing a dressed multi-cell SCRF cavity at 2K. The paper presents the infrastructure facilities setup at RRCAT for SCRF cavity fabrication, processing and testing at 2K.

  20. Development of a Multi-User Polyimide-MEMS Fabrication Process and its Application to MicroHotplates

    KAUST Repository

    Lizardo, Ernesto B.

    2013-05-08

    Micro-electro-mechanical systems (MEMS) became possible thanks to the silicon based technology used to fabricate integrated circuits. Originally, MEMS fabrication was limited to silicon based techniques and materials, but the expansion of MEMS applications brought the need of a wider catalog of materials, including polymers, now being used to fabricate MEMS. Polyimide is a very attractive polymer for MEMS fabrication due to its high temperature stability compared to other polymers, low coefficient of thermal expansion, low film stress and low cost. The goal of this thesis is to expand the Polyimide usage as structural material for MEMS by the development of a multi-user fabrication process for the integration of this polymer along with multiple metal layers on a silicon substrate. The process also integrates amorphous silicon as sacrificial layer to create free-standing structures. Dry etching is used to release the devices and avoid stiction phenomena. The developed process is used to fabricate platforms for micro-hotplate gas sensors. The fabrication steps for the platforms are described in detail, explaining the process specifics and capabilities. An initial testing of the micro-hotplate is presented. As the process was also used as educational tool, some designs made by students and fabricated with the Polyimide-MEMS process are also presented.

  1. Improvement of formability for fabricating thin continuously corrugated structures in sheet metal forming process

    International Nuclear Information System (INIS)

    Choi, Sung Woo; Park, Sang Hu; Park, Seong Hun; Ha, Man Yeong; Jeong, Ho Seung; Cho, Jong Rae

    2012-01-01

    A stamping process is widely used for fabricating various sheet metal parts for vehicles, airplanes, and electronic devices by the merit of low processing cost and high productivity. Recently, the use of thin sheets with a corrugated structure for sheet metal parts has rapidly increased for use in energy management devices, such as heat exchangers, separators in fuel cells, and many others. However, it is not easy to make thin corrugated structures directly using a single step stamping process due to their geometrical complexity and very thin thickness. To solve this problem, a multi step stamping (MSS) process that includes a heat treatment process to improve formability is proposed in this work: the sequential process is the initial stamping, heat treatment, and final shaping. By the proposed method, we achieved successful results in fabricating thin corrugated structures with an average thickness of 75μm and increased formability of about 31% compared to the single step stamping process. Such structures can be used in a plate-type heat exchanger requiring low weight and a compact shape

  2. Pressure analysis in the fabrication process of TRISO UO2-coated fuel particle

    International Nuclear Information System (INIS)

    Liu Malin; Shao Youlin; Liu Bing

    2012-01-01

    Highlights: ► The pressure signals during the real TRISO UO2-coated fuel particle fabrication process. ► A new relationship about the pressure drop change and the coated fuel particles properties. ► The proposed relationship is validated by experimental results during successive coating. ► A convenient method for monitoring the fluidized state during coating process. - Abstract: The pressure signals in the coating furnace are obtained experimentally from the TRISO UO 2 -coated fuel particle fabrication process. The pressure signals during the coating process are analyzed and a simplified relationship about the pressure drop change due to the coated layer is proposed based on the spouted bed hydrodynamics. The change of pressure drop is found to be consistent with the change of the combination factor about particle density, bed density, particle diameter and static bed height, during the successive coating process of the buffer PyC, IPyC, SiC and OPyC layer. The newly proposed relationship is validated by the experimental values. Based on this relationship, a convenient method is proposed for real-time monitoring the fluidized state of the particles in a high-temperature coating process in the spouted bed. It can be found that the pressure signals analysis is an effective method to monitor the fluidized state on-line in the coating process at high temperature up to 1600 °C.

  3. Scalable, Economical Fabrication Processes for Ultra-Compact Warm-White LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Lowes, Ted [Cree, Inc., Durham, NC (United States)

    2016-01-31

    Conventional warm-white LED component fabrication consists of a large number of sequential steps which are required to incorporate electrical, mechanical, and optical functionality into the component. Each of these steps presents cost and yield challenges which multiply throughout the entire process. Although there has been significant progress in LED fabrication over the last decade, significant advances are needed to enable further reductions in cost per lumen while not sacrificing efficacy or color quality. Cree conducted a focused 18-month program to develop a new low-cost, high-efficiency light emitting diode (LED) architecture enabled by novel large-area parallel processing technologies, reduced number of fabrication steps, and minimized raw materials use. This new scheme is expected to enable ultra-compact LED components exhibiting simultaneously high efficacy and high color quality. By the end of the program, Cree fabricated warm-white LEDs with a room-temperature “instant on” efficacy of >135 lm/W at ~3500K and 90 CRI (when driven at the DOE baseline current density of 35 A/cm2). Cree modified the conventional LED fabrication process flow in a manner that is expected to translate into simultaneously high throughput and yield for ultra-compact packages. Building on its deep expertise in LED wafer fabrication, Cree developed these ultra-compact LEDs to have no compromises in color quality or efficacy compared to their conventional counterparts. Despite their very small size, the LEDs will also be robustly electrically integrated into luminaire systems with the same attach yield as conventional packages. The versatility of the prototype high-efficacy LED architecture will likely benefit solid-state lighting (SSL) luminaire platforms ranging from bulbs to troffers. We anticipate that the prototype LEDs will particularly benefit luminaires with large numbers of distributed compact packages, such as linear and area luminaires (e.g. troffers). The fraction of

  4. Interactive methods to involve users into workspace design process

    DEFF Research Database (Denmark)

    Souza da Conceição, Carolina; Broberg, Ole; Banke, Palle

    2013-01-01

    This paper addresses the question of whether the use of a combination of interactive methods involving workers can lead to a useful input to the (re)design of their workspace. The workbook and the layout design game methods were tested, and a comparison between their use and the ergonomic analysi...

  5. Parental Involvement and Children's School Achievement: Evidence for Mediating Processes

    Science.gov (United States)

    Rogers, Maria A.; Theule, Jennifer; Ryan, Bruce A.; Adams, Gerald R.; Keating, Leo

    2009-01-01

    This study used path analytic techniques and an ecological framework to examine the association between children's perceptions of their parents' educational involvement, children's personal characteristics, and their school achievement. Fathers' academic pressure was predictive of lower achievement, whereas mothers' encouragement and support…

  6. Evaluation of microplastic release caused by textile washing processes of synthetic fabrics.

    Science.gov (United States)

    De Falco, Francesca; Gullo, Maria Pia; Gentile, Gennaro; Di Pace, Emilia; Cocca, Mariacristina; Gelabert, Laura; Brouta-Agnésa, Marolda; Rovira, Angels; Escudero, Rosa; Villalba, Raquel; Mossotti, Raffaella; Montarsolo, Alessio; Gavignano, Sara; Tonin, Claudio; Avella, Maurizio

    2018-05-01

    A new and more alarming source of marine contamination has been recently identified in micro and nanosized plastic fragments. Microplastics are difficult to see with the naked eye and to biodegrade in marine environment, representing a problem since they can be ingested by plankton or other marine organisms, potentially entering the food web. An important source of microplastics appears to be through sewage contaminated by synthetic fibres from washing clothes. Since this phenomenon still lacks of a comprehensive analysis, the objective of this contribution was to investigate the role of washing processes of synthetic textiles on microplastic release. In particular, an analytical protocol was set up, based on the filtration of the washing water of synthetic fabrics and on the analysis of the filters by scanning electron microscopy. The quantification of the microfibre shedding from three different synthetic fabric types, woven polyester, knitted polyester, and woven polypropylene, during washing trials simulating domestic conditions, was achieved and statistically analysed. The highest release of microplastics was recorded for the wash of woven polyester and this phenomenon was correlated to the fabric characteristics. Moreover, the extent of microfibre release from woven polyester fabrics due to different detergents, washing parameters and industrial washes was evaluated. The number of microfibres released from a typical 5 kg wash load of polyester fabrics was estimated to be over 6,000,000 depending on the type of detergent used. The usage of a softener during washes reduces the number of microfibres released of more than 35%. The amount and size of the released microfibres confirm that they could not be totally retained by wastewater treatments plants, and potentially affect the aquatic environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Printing Outside the Box: Additive Manufacturing Processes for Fabrication of Large Aerospace Structures

    Science.gov (United States)

    Babai, Majid; Peters, Warren

    2015-01-01

    To achieve NASA's mission of space exploration, innovative manufacturing processes are being applied to the fabrication of propulsion elements. Liquid rocket engines (LREs) are comprised of a thrust chamber and nozzle extension as illustrated in figure 1 for the J2X upper stage engine. Development of the J2X engine, designed for the Ares I launch vehicle, is currently being incorporated on the Space Launch System. A nozzle extension is attached to the combustion chamber to obtain the expansion ratio needed to increase specific impulse. If the nozzle extension could be printed as one piece using free-form additive manufacturing (AM) processes, rather than the current method of forming welded parts, a considerable time savings could be realized. Not only would this provide a more homogenous microstructure than a welded structure, but could also greatly shorten the overall fabrication time. The main objective of this study is to fabricate test specimens using a pulsed arc source and solid wire as shown in figure 2. The mechanical properties of these specimens will be compared with those fabricated using the powder bed, selective laser melting technology at NASA Marshall Space Flight Center. As printed components become larger, maintaining a constant temperature during the build process becomes critical. This predictive capability will require modeling of the moving heat source as illustrated in figure 3. Predictive understanding of the heat profile will allow a constant temperature to be maintained as a function of height from substrate while printing complex shapes. In addition, to avoid slumping, this will also allow better control of the microstructural development and hence the properties. Figure 4 shows a preliminary comparison of the mechanical properties obtained.

  8. Computer-Aided Process Planning for the Layered Fabrication of Porous Scaffold Matrices

    Science.gov (United States)

    Starly, Binil

    Rapid Prototyping (RP) technology promises to have a tremendous impact on the design and fabrication of porous tissue replacement structures for applications in tissue engineering and regenerative medicine. The layer-by-layer fabrication technology enables the design of patient-specific medical implants and complex structures for diseased tissue replacement strategies. Combined with advancements in imaging modalities and bio-modeling software, physicians can engage themselves in advanced solutions for craniofacial and mandibular reconstruction. For example, prior to the advancement of RP technologies, solid titanium parts used as implants for mandibular reconstruction were fashioned out of molding or CNC-based machining processes (Fig. 3.1). Titanium implants built using this process are often heavy, leading to increased patient discomfort. In addition, the Young's modulus of titanium is almost five times that of healthy cortical bone resulting in stress shielding effects [1,2]. With the advent of CAD/CAM-based tools, the virtual reconstruction of the implants has resulted in significant design improvements. The new generation of implants can be porous, enabling the in-growth of healthy bone tissue for additional implant fixation and stabilization. Newer implants would conform to the external shape of the defect site that is intended to be filled in. More importantly, the effective elastic modulus of the implant can be designed to match that of surrounding tissue. Ideally, the weight of the implant can be designed to equal the weight of the tissue that is being replaced resulting in increased patient comfort. Currently, such porous structures for reconstruction can only be fabricated using RP-based metal fabrication technologies such as Electron Beam Melting (EBM), Selective Laser Sintering (SLS®), and 3D™ Printing processes.

  9. Progress in high-efficient solution process organic photovoltaic devices fundamentals, materials, devices and fabrication

    CERN Document Server

    Li, Gang

    2015-01-01

    This book presents an important technique to process organic photovoltaic devices. The basics, materials aspects and manufacturing of photovoltaic devices with solution processing are explained. Solution processable organic solar cells - polymer or solution processable small molecules - have the potential to significantly reduce the costs for solar electricity and energy payback time due to the low material costs for the cells, low cost and fast fabrication processes (ambient, roll-to-roll), high material utilization etc. In addition, organic photovoltaics (OPV) also provides attractive properties like flexibility, colorful displays and transparency which could open new market opportunities. The material and device innovations lead to improved efficiency by 8% for organic photovoltaic solar cells, compared to 4% in 2005. Both academic and industry research have significant interest in the development of this technology. This book gives an overview of the booming technology, focusing on the solution process fo...

  10. Design and fabrication process of silicon micro-calorimeters on simple SOI technology for X-ray spectral imaging

    International Nuclear Information System (INIS)

    Aliane, A.; Agnese, P.; Pigot, C.; Sauvageot, J.-L.; Moro, F. de; Ribot, H.; Gasse, A.; Szeflinski, V.; Gobil, Y.

    2008-01-01

    Several successful development programs have been conducted on infra-red bolometer arrays at the 'Commissariat a l'Energie Atomique' (CEA-LETI Grenoble) in collaboration with the CEA-SAp (Saclay); taking advantage of this background, we are now developing an X-ray spectro-imaging camera for next generation space astronomy missions, using silicon only technology. We have developed monolithic silicon micro-calorimeters based on implanted thermistors in an improved array that could be used for future space missions. The 8x8 array consists of a grid of 64 suspended pixels fabricated on a silicon on insulator (SOI) wafer. Each pixel of this detector array is made of a tantalum (Ta) absorber, which is bound by means of indium bump hybridization, to a silicon thermistor. The absorber array is bound to the thermistor array in a collective process. The fabrication process of our detector involves a combination of standard technologies and silicon bulk micro-machining techniques, based on deposition, photolithography and plasma etching steps. Finally, we present the results of measurements performed on these four primary building blocks that are required to create a detector array up to 32x32 pixels in size

  11. Across frequency processes involved in auditory detection of coloration

    DEFF Research Database (Denmark)

    Buchholz, Jörg; Kerketsos, P

    2008-01-01

    filterbank was designed to approximate auditory filter-shapes measured by Oxenham and Shera [JARO, 2003, 541-554], derived from forward masking data. The results of the present study demonstrate that a “purely” spectrum-based model approach can successfully describe auditory coloration detection even at high......When an early wall reflection is added to a direct sound, a spectral modulation is introduced to the signal's power spectrum. This spectral modulation typically produces an auditory sensation of coloration or pitch. Throughout this study, auditory spectral-integration effects involved in coloration...... detection are investigated. Coloration detection thresholds were therefore measured as a function of reflection delay and stimulus bandwidth. In order to investigate the involved auditory mechanisms, an auditory model was employed that was conceptually similar to the peripheral weighting model [Yost, JASA...

  12. Numerical study on fabricating rectangle microchannel in microfluidic chips by glass molding process

    Science.gov (United States)

    Wang, Tao; Chen, Jing; Zhou, Tianfeng

    2017-09-01

    This paper studied the glass molding process (GMP) for fabricating a typical microstructure of glass microfluidic chips, i. e., rectangle microchannel, on soda-lime glass by finite element method. More than 100 models were established on the platform of Abaqus/Standard. The influence of parameters, i. e., temperature, aspect ratio, side wall angle and friction coefficient on deformation were studied, and the predicted morphology of the molded microchannel were presented as well. The research could provide fundamental experience for optimizing GMP process in the future.

  13. Innovative fabrication processing of advanced composite materials concepts for primary aircraft structures

    Science.gov (United States)

    Kassapoglou, Christos; Dinicola, Al J.; Chou, Jack C.

    1992-01-01

    The autoclave based THERM-X(sub R) process was evaluated by cocuring complex curved panels with frames and stiffeners. The process was shown to result in composite parts of high quality with good compaction at sharp radius regions and corners of intersecting parts. The structural properties of the postbuckled panels fabricated were found to be equivalent to those of conventionally tooled hand laid-up parts. Significant savings in bagging time over conventional tooling were documented. Structural details such as cocured shear ties and embedded stiffener flanges in the skin were found to suppress failure modes such as failure at corners of intersecting members and skin stiffeners separation.

  14. Ceramic matrix composite article and process of fabricating a ceramic matrix composite article

    Science.gov (United States)

    Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert

    2016-01-12

    A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.

  15. The silicon sensor for the compact muon solenoid tracker. Control of the fabrication process

    International Nuclear Information System (INIS)

    Manolescu, Florentina; Mihul, Alexandru; Macchiolo, Anna

    2005-01-01

    The Compact Muon Solenoid (CMS) is one of the experiments at the Large Hadron Collider (LHC) under construction at CERN. The inner tracking system of this experiment consists of the world largest Silicon Strip Tracker (SST). In total, 24,244 silicon sensors are implemented covering an area of 206 m 2 . To construct this large system and to ensure its functionality for the full lifetime of ten years under the hard LHC condition, a detailed quality assurance program has been developed. This paper describes the strategy of the Process Qualification Control to monitor the stability of the fabrication process throughout the production phase and the results obtained are shown. (authors)

  16. Research Education: Perspectives and subjective processes involved in educational research

    Directory of Open Access Journals (Sweden)

    Harm H. Tillema

    2009-10-01

    Full Text Available Educational research acknowledges that researcher’s beliefs and training play a role in framing the outcomes of any study. Research not only consists of defining objectives and following certain methods (search but also of making decisions over the steps taking during the inquiry process (research.Establishing a conceptual framework to guide actions on the subjective processes in research is then crucial to control them. With that purpose in mind we offer researchers and Teacher Educators a heuristic tool to be conscious on the risks that can be taken when immersed in research interpretative process. This instrument could be utilised in PhD programs, masters and research projects.

  17. FABRICE process for the refrabrication of experimental pins in a hot cell, from pins pre-irradiated in power reactors

    International Nuclear Information System (INIS)

    Vignesoult, N.; Atabek, R.; Ducas, S.

    1982-06-01

    The Fabrice ''hot cell refabrication'' process for small pins from very long irradiated fuel elements was developed at the CEA to allow parametric studies of the irradiation behavior of pins from nuclear power plants. Since this operation required complete assurance of the validity of the process, qualification of the fabrication was performed on test pins, refabricated in the hot cell, as well as irradiation qualification. The latter qualification was intended to demonstrate that, in identical experimental irradiation conditions, the refabricated Fabrice pins behaved in the same way as whole pins with the same initial characteristics. This qualification of the Fabrice process, dealing with more than twenty pins at different burnups, showed that fabrication did not alter: the inherent characteristics of the sampled fuel element and the irradiation behavior of the sampled fuel element [fr

  18. The Interaction between Personality, Social Network Position and Involvement in Innovation Process

    NARCIS (Netherlands)

    E. Dolgova (Evgenia); W. van Olffen (Woody); F.A.J. van den Bosch (Frans); H.W. Volberda (Henk)

    2010-01-01

    textabstractAbstract This dissertation proposal investigates how personality and individuals’ social network position affect individuals’ involvement into the innovation process. It posits that people would feel inclined to become involved into the different phases of the innovation process

  19. Fabrication of Li2TiO3 pebbles by a freeze drying process

    International Nuclear Information System (INIS)

    Lee, Sang-Jin; Park, Yi-Hyun; Yu, Min-Woo

    2013-01-01

    Li 2 TiO 3 pebbles were successfully fabricated by using a freeze drying process. The Li 2 TiO 3 slurry was prepared using a commercial powder of particle size 0.5–1.5 μm and the pebble pre-form was prepared by dropping the slurry into liquid nitrogen through a syringe needle. The droplets were rapidly frozen, changing their morphology to spherical pebbles. The frozen pebbles were dried at −10 °C in vacuum. To make crack-free pebbles, some glycerin was employed in the slurry, and long drying time and a low vacuum condition were applied in the freeze drying process. In the process, the solid content in the slurry influenced the spheroidicity of the pebble green body. The dried pebbles were sintered at 1200 °C in an air atmosphere. The sintered pebbles showed almost 40% shrinkage. The sintered pebbles revealed a porous microstructure with a uniform pore distribution and the sintered pebbles were crushed under an average load of 50 N in a compressive strength test. In the present study, a freeze drying process for fabrication of spherical Li 2 TiO 3 pebbles is introduced. The processing parameters, such as solid content in the slurry and the conditions of freeze drying and sintering, are also examined

  20. Processes involved in pion capture in hydrogen-containing molecules

    International Nuclear Information System (INIS)

    Horvath, D.

    1983-03-01

    A systematic analysis is presented of the possible elementary processes determining the fate of negative pions stopped in hydrogen-containing samples. Using a phenomenological description in comparison with the available experimental information on pion capture in hydrogen, it is shown that the formation and decay of pπ - atoms in compounds Zsub(m)Hsub(n) are determined mainly by the processes of Auger capture in a molecular orbit ZHπ - , transition from molecular to atomic orbit, transfer of pions to atoms Z in collisions pπ - +Z, and nuclear capture in collisions pπ - +H. The recent assumption of a considerable role of the processes of radiative atomic capture in bound hydrogen atoms, nuclear capture of pions by protons from the molecular state ZHπ - , or 'inner' transfer of the pion via tunnelling through the bond Z-H is not supported by the theory and contradicts the experimental data

  1. Processing and analysis techniques involving in-vessel material generation

    Science.gov (United States)

    Schabron, John F [Laramie, WY; Rovani, Jr., Joseph F.

    2012-09-25

    In at least one embodiment, the inventive technology relates to in-vessel generation of a material from a solution of interest as part of a processing and/or analysis operation. Preferred embodiments of the in-vessel material generation (e.g., in-vessel solid material generation) include precipitation; in certain embodiments, analysis and/or processing of the solution of interest may include dissolution of the material, perhaps as part of a successive dissolution protocol using solvents of increasing ability to dissolve. Applications include, but are by no means limited to estimation of a coking onset and solution (e.g., oil) fractionating.

  2. Engineering structure design and fabrication process of small sized China helium-cooled solid breeder test blanket module

    International Nuclear Information System (INIS)

    Wang Zeming; Chen Lu; Hu Gang

    2014-01-01

    Preliminary design and analysis for china helium-cooled solid breeder (CHHC-SB) test blanket module (TBM) have been carried out recently. As partial verification that the original size module was reasonable and the development process was feasible, fabrication work of a small sized module was to be carried out targetedly. In this paper, detailed design and structure analysis of small sized TBM was carried out based on preliminary design work, fabrication process and integrated assembly process was proposed, so a fabrication for the trial engineering of TBM was layed successfully. (authors)

  3. The flashcal process for the fabrication of fuel-metal oxides using the whiteshell roto-spray calciner

    International Nuclear Information System (INIS)

    Sridhar, T.S.

    1988-01-01

    A one-step, continuous, thermochemical calcination process, called the FLASHCAL (Flash Calcination) process has been developed for the production of single- and mixed-oxide powders of fuel metals (uranium, thorium and plutonium) from the respective nitrate solutions using the Whiteshell Roto-Spray Calciner (RSC). The metal-nitrate feed solution, either by itself or mixed with a suitable chemical reactant or additive, is converted to its oxide powder in the RSC at temperatures between 300 and 600 0 C. Rapid denitration takes place in the calciner, yielding the metal-oxide powders while simultaneously destroying any excess chemical additive and reaction by-products. In the production of precursor oxide powders suitable for fuel fabrication, the FLASHCAL process has advantages over batch calcination and other processes that involve precipitation and filtration steps because fewer processing and handling operations are needed. Results obtained with thorium nitrate and uranium nitrate-thorium nitrate mixtures indicate that some measure of control over the size distribution and morphology of the oxide product powders is possible in this process with the proper selection of chemical additive, as well as the operating parameters of the calciner

  4. A casting based process to fabricate 3D alginate scaffolds and to investigate the influence of heat transfer on pore architecture during fabrication

    International Nuclear Information System (INIS)

    Parks, W.M.; Guo, Y.B.

    2008-01-01

    The fabrication of 3-dimensional (3D) tissue scaffolds is a competitive approach to engineered tissues. An ideal tissue scaffold must be highly porous, biocompatible, biodegradable, easily processed and cost-effective, and have adequate mechanical properties. A casting based process has been developed in this study to fabricate 3D alginate tissue scaffolds. The alginate/calcium gluconate hydrogel was quenched in a glass mold and freeze dried to form a highly porous tissue scaffold whose tiny pores retain the shape of the ice crystals during quenching. Knowing that the water in the alginate hydrogel would form ice crystals if frozen and that different cooling conditions may dramatically influence the pore architecture, the speed and direction of the heat transfer in freeze drying hydrogel were examined with regard to pore size and orientation. The pore architecture at the different locations of the fabricated scaffolds was characterized using scanning electron microscopy. The fabricated scaffolds consist of pores that are highly interconnected, with a diameter about 200 μm (average diameter of a capillary) to permit blood vessel penetration. It also has been found that the pore size, orientation, and uniformity are significantly affected by the condition of heat transfer during freeze drying. Tailoring the pore architecture of the scaffolds is feasible by controlling heat transfer. This study provides an insight on pore architecture formation and control by altered process parameters

  5. Fabrication of AA6061-T6 Plate Type Fuel Assembly Using Electron Beam Welding Process

    International Nuclear Information System (INIS)

    Kim, Soosung; Seo, Kyoungseok; Lee, Donbae; Park, Jongman; Lee, Yoonsang; Lee, Chongtak

    2014-01-01

    AA6061-T6 aluminum alloy is easily welded by conventional GTAW (Gas Tungsten Arc Welding), LBW (Laser Beam Welding) and EBW. However, certain characteristics, such as solidification cracking, porosity, HAZ (Heat-affected Zone) degradation must be considered during welding. Because of high energy density and low heat input, especially LBW and EBW processes possess the advantage of minimizing the fusing zone and HAZ and producing deeper penetration than arc welding processes. In present study, to apply for the nuclear fuel plate fabrication and assembly, a fundamental EBW experiment using AA6061-T6 aluminum alloy specimens was conducted. Furthermore, to establish the welding process, and satisfy the requirements of the weld quality, EBW apparatus using an electron welding gun and vacuum chamber was developed, and preliminary investigations for optimizing the welding parameters of the specimens using AA6061-T6 aluminum plates were also performed. The EB weld quality of AA6061-T6 aluminum alloy for the fuel plate assembly has been also studied by the shrinkage measurement and weld inspection using computed tomography. This study was carried out to determine the suitable welding parameters and to evaluate tensile strength of AA6061-T6 aluminum alloy. In the present experiment, satisfactory electron beam welding process of the full-sized sample was being developed. Based on this fundamental study, fabrication of the plate-type fuel assembly will be provided for the future Ki-Jang research reactor project

  6. Fabrication process optimization for improved mechanical properties of Al 7075/SiCp metal matrix composites

    Directory of Open Access Journals (Sweden)

    Dipti Kanta Das

    2016-04-01

    Full Text Available Two sets of nine different silicon carbide particulate (SiCp reinforced Al 7075 Metal Matrix Composites (MMCs were fabricated using liquid metallurgy stir casting process. Mean particle size and weight percentage of the reinforcement were varied according to Taguchi L9 Design of Experiments (DOE. One set of the cast composites were then heat treated to T6 condition. Optical micrographs of the MMCs reveal consistent dispersion of reinforcements in the matrix phase. Mechanical properties were determined for both as-cast and heat treated MMCs for comparison of the experimental results. Linear regression models were developed for mechanical properties of the heat treated MMCs using list square method of regression analysis. The fabrication process parameters were then optimized using Taguchi based grey relational analysis for the multiple mechanical properties of the heat treated MMCs. The largest value of mean grey relational grade was obtained for the composite with mean particle size 6.18 µm and 25 weight % of reinforcement. The optimal combination of process parameters were then verified through confirmation experiments, which resulted 42% of improvement in the grey relational grade. Finally, the percentage of contribution of each process parameter on the multiple performance characteristics was calculated through Analysis of Variance (ANOVA.

  7. Influence of Fabricating Process on Gas Sensing Properties of ZnO Nanofiber-Based Sensors

    International Nuclear Information System (INIS)

    Xu Lei; Wang Rui; Liu Yong; Dong Liang

    2011-01-01

    ZnO nanofibers are synthesized by an electrospinning method and characterized by x-ray diffraction (XRD) and scanning electron microscopy (SEM). Two types of gas sensors are fabricated by loading these nanofibers as the sensing materials and their performances are investigated in detail. Compared with the sensors based on traditional ceramic tubes with Au electrodes (traditional sensors), the sensors fabricated by spinning ZnO nanofibers on ceramic planes with Ag-Pd electrodes (plane sensors) exhibit much higher sensing properties. The sensitivity for the plane sensors is about 30 to 100 ppm ethanol at 300°C, while the value is only 13 for the traditional sensors. The response and recovery times are about 2 and 3s for the plane sensors and are 3 and 6s for the traditional sensors, respectively. Lower minimum-detection-limit is also found for the plane sensors. These improvements are explained by considering the morphological damage in the fabricating process for traditional sensors. The results suggest that the plane sensors are more suitable to sensing investigation for higher veracity. (general)

  8. Effect of Fabrication Process Parameters on the Size of Gelatin/Nanohydroxyapatite Microspheres

    Directory of Open Access Journals (Sweden)

    S. Bagheri-Khoulenjani

    2009-12-01

    Full Text Available Nano-hydroxyapatite/gelatin (nHA/Ge microspheres are currently used in bone tissue engineering as bone filler. In this  study, the effect of fabrication process parameters on the particle size of nano-hydroxyapatite/gelatinmicrospheres was investigated. The nHA/Ge microspheres were fabricated using water in oil emulsion. In order to design an experimental design, a surface response model with 2 factors including the rate of shaking and water to oil volume ratio in 3 levels was applied. Particle size was evaluated by using an optical microscope. The morphology of microspheres and distribution of nano-particles within the microspheres were studied by using scanning electron microscope and Ca elemental map obtained from energy dispersive X-ray analysis (EDX, respectively. Statistical analysis of the results obtained from particle size measurements revealed that the rate of shaking has stronger influence on the particle size of microspheres. Morphological studies showed that the fabricated microspheres were spherical with smooth surface. Ca elemental map of the microspheres showed that nano-hydroxyapatite particles distributed uniformly within the microspheres.

  9. Improving industrial designers work process by involving user research

    DEFF Research Database (Denmark)

    Dai, Zheng; Ómarsson, Ólafur

    2011-01-01

    With changing times, new technologies and more opinionated consumers, the modern industrial designer has found himself in need of fresher and more up to date approaches in his daily work. In a fast moving industry, the designer needs to keep a thinking process of dynamic and subjective attitude...... will give the grounding for believing that the industrial designer needs to adopt user research methods to a level where he can still continue to work under the very nature of industrial design that has made it a successful practice for the last century. The combing of the approaches and attitude will help....... User research is part of user centered design (UCD). UCD has a reputation for subjective and reflective practice. In this paper there are two example cases. One is conducted by a classical industrial design process, and another is costing half of energy and time in user research. These examples...

  10. Physical Processes Involved In Yellow Sea Solitary Waves

    Science.gov (United States)

    Warn-Varnas, A.; Chin-Bing, S.; King, D.; Lamb, K.; Hawkins, J.; Teixeira, M.

    The study area is located south of the Shandong peninsula. In this area, soliton gener- ation and propagation studies are per formed with the Lamb(1994) model. The model is nonhydrostatic and is formulated in 2 1/2 dimensions for terrain following c oordi- nates. In the area, 20 to 30 m topographic variations over distances of 10 to 20 km are found to occur in the digit al atlas of Choi (1999). The area is shallow with maximum depths ranging from 40 m to 70 m. Along the southern boundary of the region the semi-diurnal tidal strength magnitude varies from .6 m/sec to 1.2 m/sec, Fang(1994). We show that, for sum mer conditions, the existing physical processes associated with the semi-diurnal tidal flow over the topographic variations , in the shelfbreak region, lead to the formation of internal bores in the model simulations. Through acting phys- ical proce sses, the internal bores propagate on and off the shelf. A disintegration process of internal bores into solitary waves occ urs through frequency and ampli- tude dispersion. SAR observations of the area show images containing six events con- sisting of internal bores and solitary waves that travel in a well-defined direction for two and a half days. The origin of the trains appeared to be at a point along a steep topo graphic drop. The SAR observations are used for guiding and tuning the model simulations, by comparing spectra of observed and modeled wavelengths. The tuned model yields wavelengths that are within a factor of 2 of the SAR data. The modeled amp litudes are within a factor of 2 of amplitudes obtained with a two-layer model and the SAR data The signature on the acoustical field of ongoing physical processes through the interaction of the resultant oceanic struct ure with the acoustical field is pursued. Internal bore and solitary wave structures interact with the acoustic field. A re distribution of acoustical energy to higher acoustical modes occurs at some fre- quencies. Mode decomposition of the

  11. "Fabrication of arbitrarily shaped carbonate apatite foam based on the interlocking process of dicalcium hydrogen phosphate dihydrate".

    Science.gov (United States)

    Sugiura, Yuki; Tsuru, Kanji; Ishikawa, Kunio

    2017-08-01

    Carbonate apatite (CO 3 Ap) foam with an interconnected porous structure is highly attractive as a scaffold for bone replacement. In this study, arbitrarily shaped CO 3 Ap foam was formed from α-tricalcium phosphate (α-TCP) foam granules via a two-step process involving treatment with acidic calcium phosphate solution followed by hydrothermal treatment with NaHCO 3 . The treatment with acidic calcium phosphate solution, which is key to fabricating arbitrarily shaped CO 3 Ap foam, enables dicalcium hydrogen phosphate dihydrate (DCPD) crystals to form on the α-TCP foam granules. The generated DCPD crystals cause the α-TCP granules to interlock with each other, inducing an α-TCP/DCPD foam. The interlocking structure containing DCPD crystals can survive hydrothermal treatment with NaHCO 3 . The arbitrarily shaped CO 3 Ap foam was fabricated from the α-TCP/DCPD foam via hydrothermal treatment at 200 °C for 24 h in the presence of a large amount of NaHCO 3 .

  12. Information-management data base for fusion-target fabrication processes

    International Nuclear Information System (INIS)

    Reynolds, J.

    1982-01-01

    A computer-based data-management system has been developed to handle data associated with target-fabrication processes including glass microballoon characterization, gas filling, materials coating, and storage locations. The system provides automatic data storage and computation, flexible data-entry procedures, fast access, automated report generation, and secure data transfer. It resides on a CDC CYBER 175 computer and is compatible with the CDC data-base-language Query Update, but is based on custom FORTRAN software interacting directly with the CYBER's file-management system. The described data base maintains detailed, accurate, and readily available records of fusion targets information

  13. Cliché fabrication method using precise roll printing process with 5 um pattern width

    Science.gov (United States)

    Shin, Yejin; Kim, Inyoung; Oh, Dong-Ho; Lee, Taik-Min

    2016-09-01

    Among the printing processes for printed electronic devices, gravure offset and reverse offset method have drawn attention for its fine pattern printing possibility. These printing methods use cliché, which has critical effect on the final product precision and quality. In this research, a novel precise cliché replica method is proposed. It consists of copper sputtering, precise mask pattern printing with 5 um width using reverse offset printing, Ni electroplating, lift-off, etching, and DLC coating. We finally compare the fabricated replica cliché with the original one and print out precise patterns using the replica cliché.

  14. Comparison between mixed and spatially separated remote phosphor fabricated via a screen-printing process

    Science.gov (United States)

    Kim, Byung-Ho; Hwang, Jonghee; Lee, Young Jin; Kim, Jin-Ho; Jeon, Dae-Woo; Lee, Mi Jai

    2016-08-01

    We developed a fabrication method for remote phosphor by a screen-printing process, using green phosphor, red phosphor, and thermally stable glass frit. The glass frit was introduced for long-term stability. The optical properties of the remote phosphor were observed via an integrating sphere; the photoluminescence spectrum dramatically changed on incorporating a minor amount of the red phosphor. These unique optical properties were elucidated using four factors: phosphor ratio, scattering induced by packing density, light intensity per unit volume, and reabsorption. The thermal stability of the remote phosphor was investigated at 500°C, demonstrating its outstanding thermal properties.

  15. Experimental and Numerical Simulation Research on Micro-Gears Fabrication by Laser Shock Punching Process

    OpenAIRE

    Huixia Liu; Jianwen Li; Zongbao Shen; Qing Qian; Hongfeng Zhang; Xiao Wang

    2015-01-01

    The aim of this paper is to fabricate micro-gears via laser shock punching with Spitlight 2000 Nd-YAG Laser, and to discuss effects of process parameters namely laser energy, soft punch properties and blank-holder on the quality of micro-gears deeply. Results show that dimensional accuracy is the best shocked at 1690 mJ. Tensile fracture instead of shear fracture is the main fracture mode under low laser energy. The soft punch might cause damage to punching quality when too high energy is emp...

  16. Design of experiment characterization of microneedle fabrication processes based on dry silicon etching

    Science.gov (United States)

    Held, J.; Gaspar, J.; Ruther, P.; Hagner, M.; Cismak, A.; Heilmann, A.; Paul, O.

    2010-02-01

    This paper reports on the characterization of dry etching-based processes for the fabrication of silicon microneedles using a design of experiment (DoE) approach. The possibility of using such microneedles as protruding microelectrodes able to electroporate adherently growing cells and record intracellular potentials motivates the systematic analysis of the influence of etching parameters on the needle shape. Two processes are characterized: a fully isotropic etch process and a three-step etching approach. In the first case, the shape of the microneedles is defined by a single etch step. For the stepped method, the structures are realized using the following sequence: a first, isotropic step defines the tip; this is followed by anisotropic etching that increases the height of the needle; a final isotropic procedure thins the microneedle and sharpens its tip. From the various process parameters tested, it is concluded that the isotropic fabrication is influenced mostly by four process parameters, whereas six parameters dominantly govern the outcome of the stepped etching technique. The dependence of the needle shape on the etch mask diameter is also investigated. Microneedles with diameters down to the sub-micrometer range and heights below 10 µm are obtained. The experimental design is performed using the D-optimal method. The resulting geometry, i.e. heights, diameters and radii of curvature measured at different positions, is extracted from scanning electron micrographs of needle cross-sections obtained from cuts by focused ion beam. The process parameters are used as inputs and the geometry features of the microneedles as outputs for the analysis of the process.

  17. Design of experiment characterization of microneedle fabrication processes based on dry silicon etching

    International Nuclear Information System (INIS)

    Held, J; Gaspar, J; Ruther, P; Paul, O; Hagner, M; Cismak, A; Heilmann, A

    2010-01-01

    This paper reports on the characterization of dry etching-based processes for the fabrication of silicon microneedles using a design of experiment (DoE) approach. The possibility of using such microneedles as protruding microelectrodes able to electroporate adherently growing cells and record intracellular potentials motivates the systematic analysis of the influence of etching parameters on the needle shape. Two processes are characterized: a fully isotropic etch process and a three-step etching approach. In the first case, the shape of the microneedles is defined by a single etch step. For the stepped method, the structures are realized using the following sequence: a first, isotropic step defines the tip; this is followed by anisotropic etching that increases the height of the needle; a final isotropic procedure thins the microneedle and sharpens its tip. From the various process parameters tested, it is concluded that the isotropic fabrication is influenced mostly by four process parameters, whereas six parameters dominantly govern the outcome of the stepped etching technique. The dependence of the needle shape on the etch mask diameter is also investigated. Microneedles with diameters down to the sub-micrometer range and heights below 10 µm are obtained. The experimental design is performed using the D-optimal method. The resulting geometry, i.e. heights, diameters and radii of curvature measured at different positions, is extracted from scanning electron micrographs of needle cross-sections obtained from cuts by focused ion beam. The process parameters are used as inputs and the geometry features of the microneedles as outputs for the analysis of the process.

  18. Fabrication and evaluation of valsartan–polymer– surfactant composite nanoparticles by using the supercritical antisolvent process

    Science.gov (United States)

    Kim, Min-Soo; Baek, In-hwan

    2014-01-01

    The aim of this study was to fabricate valsartan composite nanoparticles by using the supercritical antisolvent (SAS) process, and to evaluate the correlation between in vitro dissolution and in vivo pharmacokinetic parameters for the poorly water-soluble drug valsartan. Spherical composite nanoparticles with a mean size smaller than 400 nm, which contained valsartan, were successfully fabricated by using the SAS process. X-ray diffraction and thermal analyses indicated that valsartan was present in an amorphous form within the composite nanoparticles. The in vitro dissolution and oral bioavailability of valsartan were dramatically enhanced by the composite nanoparticles. Valsartan–hydroxypropyl methylcellulose–poloxamer 407 nanoparticles exhibited faster drug release (up to 90% within 10 minutes under all dissolution conditions) and higher oral bioavailability than the raw material, with an approximately 7.2-fold higher maximum plasma concentration. In addition, there was a positive linear correlation between the pharmacokinetic parameters and the in vitro dissolution efficiency. Therefore, the preparation of composite nanoparticles with valsartan–hydroxypropyl methylcellulose and poloxamer 407 by using the SAS process could be an effective formulation strategy for the development of a new dosage form of valsartan with high oral bioavailability. PMID:25404856

  19. Nanosized-Particle Dispersion-Strengthened Al Matrix Composites Fabricated by the Double Mechanical Alloying Process.

    Science.gov (United States)

    Kim, Chungseok

    2018-03-01

    The objective of this study was to fabricate an Al metal matrix composite strengthened by nanosized Al3Ti particles via double mechanical alloying process. Several Al-xTi alloys were fabricated, including Al-12%Ti, Al-15%Ti, and Al-12%Ti-1%Y2O3. The lattice parameter of as-milled state was calculated to be 4.0485 Å; after a milling time of 540 min, it was 4.0401 Å. This decrease was induced by Ti solutionizing into the Al matrix. The equivalent size of a coarse Al3Ti particle was 200-500 nm after the heat treatment; however, the particles were uniformly distributed and were refined through the MA2 process. The particle size of a Al3Ti phase was 30 nm or less, and the particles were uniformly distributed. These particles remained in a fine state in the matrix without growth and coarsening, even after the hot extrusion process. The microstructure of hot extruded alloys consisted of a uniform distribution of Al3Ti particles and other dispersoids in the Al matrix.

  20. Continuously graded extruded polymer composites for energetic applications fabricated using twin-screw extrusion processing technology

    Science.gov (United States)

    Gallant, Frederick M.

    A novel method of fabricating functionally graded extruded composite materials is proposed for propellant applications using the technology of continuous processing with a Twin-Screw Extruder. The method is applied to the manufacturing of grains for solid rocket motors in an end-burning configuration with an axial gradient in ammonium perchlorate volume fraction and relative coarse/fine particle size distributions. The fabrication of functionally graded extruded polymer composites with either inert or energetic ingredients has yet to be investigated. The lack of knowledge concerning the processing of these novel materials has necessitated that a number of research issues be addressed. Of primary concern is characterizing and modeling the relationship between the extruder screw geometry, transient processing conditions, and the gradient architecture that evolves in the extruder. Recent interpretations of the Residence Time Distributions (RTDs) and Residence Volume Distributions (RVDs) for polymer composites in the TSE are used to develop new process models for predicting gradient architectures in the direction of extrusion. An approach is developed for characterizing the sections of the extrudate using optical, mechanical, and compositional analysis to determine the gradient architectures. The effects of processing on the burning rate properties of extruded energetic polymer composites are characterized for homogeneous formulations over a range of compositions to determine realistic gradient architectures for solid rocket motor applications. The new process models and burning rate properties that have been characterized in this research effort will be the basis for an inverse design procedure that is capable of determining gradient architectures for grains in solid rocket motors that possess tailored burning rate distributions that conform to user-defined performance specifications.

  1. Fabrication of Li_2TiO_3 pebbles by a selective laser sintering process

    International Nuclear Information System (INIS)

    Zhou, Qilai; Gao, Yue; Liu, Kai; Xue, Lihong; Yan, Youwei

    2015-01-01

    Highlights: • Selective laser sintering (SLS) is employed to fabricate ceramic pebbles. • Quantities and diameter of the pebbles could be easily controlled by adjusting the model of pebbles. • All the pebbles could be prepared at a time within several minutes. • The Li_2TiO_3 pebbles sintered at 1100 °C show a notable crush load of 43 N. - Abstract: Lithium titanate, Li_2TiO_3, is an important tritium breeding material for deuterium (D)–tritium (T) fusion reactor. In test blanket module (TBM) design of China, Li_2TiO_3 is considered as one candidate material of tritium breeders. In this study, selective laser sintering (SLS) technology was introduced to fabricate Li_2TiO_3 ceramic pebbles. This fabrication process is computer assisted and has a high level of flexibility. Li_2TiO_3 powder with a particle size of 1–3 μm was used as the raw material, whilst epoxy resin E06 was adopted as a binder. Green Li_2TiO_3 pebbles with certain strengths were successfully prepared via SLS. Density of the green pebbles was subsequently increased by cold isostatic pressing (CIP) process. Li_2TiO_3 pebbles with a diameter of about 2 mm were obtained after high temperature sintering. Density of the pebbles reaches 80% of theoretical density (TD) with a comparable crush load of 43 N. This computer assisted approach provides a new efficient route for the production of Li_2TiO_3 ceramic pebbles.

  2. Design, fabrication, and application of a directional thermal processing system for controlled devitrification of metallic glasses

    Science.gov (United States)

    Meyer, Megan Anne Lamb

    The potential of using metallic glass as a pathway to obtaining novel morphologies and metastable phases has been garnering attention since their discovery. Several rapid solidification techniques; such as gas atomization, melt spinning, laser melting, and splat quenching produce amorphous alloys. A directional thermal processing system (DTPS) was designed, fabricated and characterized for the use of zone processing or gradient-zone processing of materials. Melt-spun CuZr metallic glass alloy was subjected to the DTPS and the relaxation and crystallization responses of the metallic glass were characterized. A range of processing parameters were developed and analyzed that would allow for devitrification to occur. The relaxation and crystallization responses were compared with traditional heat treatment methods of metallic glasses. The new processing method accessed equilibrium and non-equilibrium phases of the alloy and the structures were found to be controllable and sensitive to processing conditions. Crystallized fraction, crystallization onset temperature, and structural relaxation were controlled through adjusting the processing conditions, such as the hot zone temperature and sample velocity. Reaction rates computed from isothermal (TTT) transformation data were not found to be reliable, suggesting that the reaction kinetics are not additive. This new processing method allows for future studying of the thermal history effects of metallic glasses.

  3. Anodization-based process for the fabrication of all niobium nitride Josephson junction structures

    Directory of Open Access Journals (Sweden)

    Massimiliano Lucci

    2017-03-01

    Full Text Available We studied the growth and oxidation of niobium nitride (NbN films that we used to fabricate superconductive tunnel junctions. The thin films were deposited by dc reactive magnetron sputtering using a mixture of argon and nitrogen. The process parameters were optimized by monitoring the plasma with an optical spectroscopy technique. This technique allowed us to obtain NbN as well as good quality AlN films and both were used to obtain NbN/AlN/NbN trilayers. Lift-off lithography and selective anodization of the NbN films were used, respectively, to define the main trilayer geometry and/or to separate electrically, different areas of the trilayers. The anodized films were characterized by using Auger spectroscopy to analyze compounds formed on the surface and by means of a nano-indenter in order to investigate its mechanical and adhesion properties. The transport properties of NbN/AlN/NbN Josephson junctions obtained as a result of the above described fabrication process were measured in liquid helium at 4.2 K.

  4. Manufacturing processes in the textile industry. Expert Systems for fabrics production

    Directory of Open Access Journals (Sweden)

    Juan BULLON

    2017-03-01

    Full Text Available The textile industry is characterized by the economic activity whose objective is the production of fibres, yarns, fabrics, clothing and textile goods for home and decoration,as well as technical and industrial purposes. Within manufacturing, the Textile is one of the oldest and most complex sectors which includes a large number of sub-sectors covering the entire production cycle, from raw materials and intermediate products, to the production of final products. Textile industry activities present different subdivisions, each with its own traits. The length of the textile process and the variety of its technical processes lead to the coexistence of different sub-sectors in regards to their business structure and integration. The textile industry is developing expert systems applications to increase production, improve quality and reduce costs. The analysis of textile designs or structures includes the use of mathematical models to simulate the behavior of the textile structures (yarns, fabrics and knitting. The Finite Element Method (FEM has largely facilitated the prediction of the behavior of that textile structure under mechanical loads. For classification problems Artificial Neural Networks (ANNs haveproved to be a very effective tool as a quick and accurate solution. The Case-Based Reasoning (CBR method proposed in this study complements the results of the finite element simulation, mathematical modeling and neural networks methods.

  5. Study on Microstructures and Mechanical Properties of Foam Titanium Carbide Ceramics Fabricated by Reaction Sintering Process

    Science.gov (United States)

    Ma, Yana; Bao, Chonggao; Chen, Jie; Song, Suocheng; Han, Longhao

    2018-05-01

    Foam titanium carbide (TiC) ceramics with a three-dimensional network structure were fabricated by the reaction sintering process, in which polyurethane foam was taken as the template, and TiO2 and phenolic resin were used as the reactants. Phase, microstructures and fracture morphologies of foam TiC ceramics were characterized by x-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results show that when the mass ratios of phenolic resin and TiO2 (F/T) are (0.8-1.2): 1, foam TiC ceramics with pure TiC phase can be formed. As the F/T ratios increase, crystal lattice parameters of fabricated foam TiC ceramics become bigger. When the value of F/T decreases from 1.2 to 0.8, grain size of TiC grows larger and microstructures get denser; meanwhile, the compressive strength increases from 0.10 to 1.05 MPa. Additionally, either raising the sintering temperatures or extending holding time can facilitate the completion of the reaction process and increase the compressive strength.

  6. Research on plant of metal fuel fabrication using casting process (2)

    International Nuclear Information System (INIS)

    Senda, Yasuhide; Yamada, Seiya

    2005-02-01

    In this research work for the metal fuel fabrication system (38 tHM/y), the studies of the concept of the main process equipments were performed based on the previous studies on the process design and the quality control system design. In this study the handling equipment of the products were also designed, according to these designs the handling periods were evaluated. Consequently the numbers of the equipments were assessed taking into account for the method of the blending the fuel composition. (1) Structural concept design of the major equipments, the fuel handling machine and the gravimetries in the main fabrication process. The structural concept were designed for the fuel composition blending equipment, the fuel pin assembling equipment, the sodium bonding equipment, the handling equipment for fuel slug palettes, the handling equipment for fuel pins and the gravimetries. (2) Re-assessment of the numbers of the equipments taking account of the handling periods. Based on the results of item (1) the periods were evaluated for the fuel slug and pin handling. Processing time of demolder is short, then the number of it is increased to two. Three vehicles are also added to transfer the slugs and a heel smoothly. (3) Design of the buffer storages. The buffer storages among the equipments were designed through the comparison of the process speed between the equipments taking into account for the handling periods. The required amount of the structural parts (for example cladding materials) was assessed for the buffer in the same manner and the amount of the buffer facilities were optimized. (author)

  7. Study of microstructure, texture and mechanical properties of Zr–2.5Nb alloy pressure tubes fabricated with different processing routes

    International Nuclear Information System (INIS)

    Saibaba, N.; Vaibhaw, Kumar; Neogy, S.; Mani Krishna, K.V.; Jha, S.K.; Phani Babu, C.; Ramana Rao, S.V.; Srivastava, D.; Dey, G.K.

    2013-01-01

    Different fabrication trials involving the variation in three important stages of Zr–2.5Nb pressure tube were undertaken. The variations were with respect to the mode of breaking the cast structure of the ingot (forging vs extrusion), the hot extrusion ratio and the number of subsequent cold work stages to produce the finished tube. It was observed that the forging process resulted in superior performance in breaking the cast structure. Higher extrusion ratios resulted in more favorable texture and microstructure. More continuity of the beta phase was observed in the final microstructure for the route involving the single cold work step subsequent to hot extrusion

  8. Wet-Lay Process - A Novel Approach to Scalable Fabrication of Tissue Scaffolds and Reinforcement Membranes

    Science.gov (United States)

    Wood, Andrew

    Fibrous materials received a great deal of interest in the fields of tissue engineering and regenerative medicine due to the beneficial cell-interactions and tunable properties for various biomedical applications. These materials are highly advantageous as they provide a large surface area for cellular attachment, proliferation, high porosity values for cellular in-growth, and the ability to modify the membrane to achieve desired responses to both mechanical loading as well as environmental stimuli. A prominent method currently used to fabricate such membranes is electrospinning which uses electrostatic forces to produce fibers on the range of nanometers giving them high morphological saliency to the native extra cellular matrix (ECM). These fibers are also advantageous mechanically with strength and flexibility due to their larger aspect ratio when compared to larger diameter micro/macro fibers. While this spinning technique has many advantages and has seen the most quantity of research in recent years, it does have its own set of drawbacks. Among them is the use cytotoxic solvents during processing which must be fully removed before implantation. In addition, since the fiber produced have smaller diameters, the resulting average pore-size of the scaffold is decreased which in turn hinders cellular penetration into the bulk scaffold. In this work, we have proposed and characterized a novel method called wet-lay process for the rapid fabrication of fibrous membranes for tissue scaffolds. Wet-laying is a method common to textiles and paper industry but unexplored for tissue scaffolds. Short fibers are first suspended in an aqueous bath and homogeneously dispersed using shear force. After draining away the aqueous solution, a nonwoven fibro-porous membrane is deposited onto the draining screen. The implementation of wet-laid membranes into weak hydrogel matrices has shown a reinforcement effect for the composite. Further analyses were carried out to determine the

  9. Fabrication of metal matrix composite by semi-solid powder processing

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yufeng [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Various metal matrix composites (MMCs) are widely used in the automotive, aerospace and electrical industries due to their capability and flexibility in improving the mechanical, thermal and electrical properties of a component. However, current manufacturing technologies may suffer from insufficient process stability and reliability and inadequate economic efficiency and may not be able to satisfy the increasing demands placed on MMCs. Semi-solid powder processing (SPP), a technology that combines traditional powder metallurgy and semi-solid forming methods, has potential to produce MMCs with low cost and high efficiency. In this work, the analytical study and experimental investigation of SPP on the fabrication of MMCs were explored. An analytical model was developed to understand the deformation mechanism of the powder compact in the semi-solid state. The densification behavior of the Al6061 and SiC powder mixtures was investigated with different liquid fractions and SiC volume fractions. The limits of SPP were analyzed in terms of reinforcement phase loading and its impact on the composite microstructure. To explore adoption of new materials, carbon nanotube (CNT) was investigated as a reinforcing material in aluminum matrix using SPP. The process was successfully modeled for the mono-phase powder (Al6061) compaction and the density and density distribution were predicted. The deformation mechanism at low and high liquid fractions was discussed. In addition, the compaction behavior of the ceramic-metal powder mixture was understood, and the SiC loading limit was identified by parametric study. For the fabrication of CNT reinforced Al6061 composite, the mechanical alloying of Al6061-CNT powders was first investigated. A mathematical model was developed to predict the CNT length change during the mechanical alloying process. The effects of mechanical alloying time and processing temperature during SPP were studied on the mechanical, microstructural and

  10. Fabrication of porous anodic alumina films by using two-step anodization process

    International Nuclear Information System (INIS)

    Xu Zhan; Zhou Bin; Xu Xiang; Wang Xiaoli; Wu Di; Shen Jun

    2006-01-01

    This article introduces the fabrication of the porous anodic alumina films which have ordered pore arrangement by using a two-step anodization process. The films have a parallel channel structure which nanopore diameter can be 20-100 nm, and depth can reach 50 μm. The change of pore structure in the first and second anodization, moving the alumina layer, widening process was analysed. The effect of the parameters such as different electrolytes, anodization temperature and the voltage on the nanopore structure was studied. The surface and profile structure through FE-SEM (field emission scanning electron microscope), the element composition in tiny area of the anodic aluminum oxide (AAO) surface were studied. The result indicates the pore diameter of AAO which is anodized in oxalic acid solution is larger than which anodized in sulfuric acid solution. The anodization temperature and voltage can enlarge the nanopore diameter of AAO in a range. (authors)

  11. A process for imparting durable flame retardancy to fabric, fibres and other materials

    International Nuclear Information System (INIS)

    Nablo, S.V.

    1981-01-01

    The invention provides a process for grafting a fire-retarding additive including one or more phosphorus and/or halogen-rich compounds to fabrics, fibres and other flammable materials, the process comprising: applying to the material a solution of the additive and a copolymerization-grafting compound for effecting copolymerization with the additive; adjusting the solids content of the applied solution to correspond to a predetermined desired add-on level; at least partly drying the material; exposing the material so treated to an electron irradiating beam; and adjusting the electron irradiation within energy ranges of substantially 50 to 250 keV and dose levels of from substantially 2 to 5 megarads. (author)

  12. Concurrent engineering solution for the design of ship and offshore bracket parts and fabrication process

    Directory of Open Access Journals (Sweden)

    Tae-Won Kim

    2013-09-01

    Full Text Available Brackets in ships and offshore structures are added structures that can endure stress concentrations. In this study, a concurrent engineering solution was proposed, and a high strength low carbon cast steel alloy applicable to offshore structures was designed and developed. The yield strength and ultimate tensile strength of the designed steel were 480 and 600 MPa, respectively. The carbon equivalent of the steel was 0.446 with a weld crack susceptibility index of 0.219. The optimal structural design of the brackets for offshore structures was evaluated using ANSYS commercial software. The possibility of replacing an assembly of conventional built-up brackets with a single casting bulb bracket was verified. The casting process was simulated using MAGMAsoft commercial software, and a casting fabrication process was designed. For the proposed bulb bracket, it was possible to reduce the size and weight by approximately 30% and 50%, respectively, compared to the conventional type of bracket.

  13. Fabrication and characterization of solution processed vertically aligned ZnO microrods

    Energy Technology Data Exchange (ETDEWEB)

    Gadallah, A.-S., E-mail: agadallah@niles.edu.eg [Laboratoire de Nanotechnologie et d’Instrumentation Optique, Institut Charles Delaunay, CNRS UMR 6279, Université de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France); Department of Laser Sciences and Interactions, National Institute of Laser Enhanced Sciences, Cairo University, 12613 Giza (Egypt)

    2014-08-30

    Simple and effective cost high quality vertically aligned densely packed ZnO microrods have been prepared using solution processed two-step deposition process, specifically sol–gel spin coating combined with chemical bath deposition. X-ray diffraction pattern and scanning electron microscope show that there has been preferential crystal orientation along c-axis and the growth of the microrods has occurred normal to the glass substrate and the facets of the these microrods are hexagons. Photoluminescence measurements showed an emission band in the UV region and another weak band in the visible region with the emission intensity of UV band grows superlinearly with the excitation intensity. The film shows an electrical resistivity of 136 Ω cm as evaluated from four-point probe method. The fabricated film has been used as UV detector through Au/SiO{sub 2}/ZnO structure on glass substrate as the structure shows higher current under illumination compared to without illumination.

  14. Dielectric microwave absorbing material processed by impregnation of carbon fiber fabric with polyaniline

    Directory of Open Access Journals (Sweden)

    Luiza de Castro Folgueras

    2007-03-01

    Full Text Available It is a known fact that the adequate combination of components and experimental conditions may produce materials with specific requirements. This study presents the effect of carbon fiber fabric impregnation with polyaniline conducting polymer aiming at the radar absorbing material processing. The experiments consider the sample preparation with one and two impregnations. The prepared samples were evaluated by reflectivity measurements, in the frequency range of 8-12 GHz and scanning electron microscopy analyses. The correlation of the results shows that the quantity of impregnated material influences the performance of the processed microwave absorber. This study shows that the proposed experimental route provides flexible absorbers with absorption values of the incident radiation close to 87%.

  15. Fabrication process of ionization chamber multidetector and multidetector got by this process

    International Nuclear Information System (INIS)

    Tirelli, M.; Lecolant, R.; Hecquet, R.

    1986-01-01

    The multidetector ionization chamber walls are fixed one related to the others and carried together with a tool above a resin bath to polymerize. After resin hardening, the detector includes resin basis. To contain the resin bath, the realization of a mould cut in a massive resin block are been provided for. This allows for its manutention all along the process without any deterioration risk [fr

  16. Functional Circuitry on Commercial Fabric via Textile-Compatible Nanoscale Film Coating Process for Fibertronics.

    Science.gov (United States)

    Bae, Hagyoul; Jang, Byung Chul; Park, Hongkeun; Jung, Soo-Ho; Lee, Hye Moon; Park, Jun-Young; Jeon, Seung-Bae; Son, Gyeongho; Tcho, Il-Woong; Yu, Kyoungsik; Im, Sung Gap; Choi, Sung-Yool; Choi, Yang-Kyu

    2017-10-11

    Fabric-based electronic textiles (e-textiles) are the fundamental components of wearable electronic systems, which can provide convenient hand-free access to computer and electronics applications. However, e-textile technologies presently face significant technical challenges. These challenges include difficulties of fabrication due to the delicate nature of the materials, and limited operating time, a consequence of the conventional normally on computing architecture, with volatile power-hungry electronic components, and modest battery storage. Here, we report a novel poly(ethylene glycol dimethacrylate) (pEGDMA)-textile memristive nonvolatile logic-in-memory circuit, enabling normally off computing, that can overcome those challenges. To form the metal electrode and resistive switching layer, strands of cotton yarn were coated with aluminum (Al) using a solution dip coating method, and the pEGDMA was conformally applied using an initiated chemical vapor deposition process. The intersection of two Al/pEGDMA coated yarns becomes a unit memristor in the lattice structure. The pEGDMA-Textile Memristor (ETM), a form of crossbar array, was interwoven using a grid of Al/pEGDMA coated yarns and untreated yarns. The former were employed in the active memristor and the latter suppressed cell-to-cell disturbance. We experimentally demonstrated for the first time that the basic Boolean functions, including a half adder as well as NOT, NOR, OR, AND, and NAND logic gates, are successfully implemented with the ETM crossbar array on a fabric substrate. This research may represent a breakthrough development for practical wearable and smart fibertronics.

  17. Binder Jetting: A Novel Solid Oxide Fuel-Cell Fabrication Process and Evaluation

    Science.gov (United States)

    Manogharan, Guha; Kioko, Meshack; Linkous, Clovis

    2015-03-01

    With an ever-growing concern to find a more efficient and less polluting means of producing electricity, fuel cells have constantly been of great interest. Fuel cells electrochemically convert chemical energy directly into electricity and heat without resorting to combustion/mechanical cycling. This article studies the solid oxide fuel cell (SOFC), which is a high-temperature (100°C to 1000°C) ceramic cell made from all solid-state components and can operate under a wide range of fuel sources such as hydrogen, methanol, gasoline, diesel, and gasified coal. Traditionally, SOFCs are fabricated using processes such as tape casting, calendaring, extrusion, and warm pressing for substrate support, followed by screen printing, slurry coating, spray techniques, vapor deposition, and sputter techniques, which have limited control in substrate microstructure. In this article, the feasibility of engineering the porosity and configuration of an SOFC via an additive manufacturing (AM) method known as binder jet printing was explored. The anode, cathode and oxygen ion-conducting electrolyte layers were fabricated through AM sequentially as a complete fuel cell unit. The cell performance was measured in two modes: (I) as an electrolytic oxygen pump and (II) as a galvanic electricity generator using hydrogen gas as the fuel. An analysis on influence of porosity was performed through SEM studies and permeability testing. An additional study on fuel cell material composition was conducted to verify the effects of binder jetting through SEM-EDS. Electrical discharge of the AM fabricated SOFC and nonlinearity of permeability tests show that, with additional work, the porosity of the cell can be modified for optimal performance at operating flow and temperature conditions.

  18. 44 CFR 5.8 - Records involved in litigation or other judicial process.

    Science.gov (United States)

    2010-10-01

    ... litigation or other judicial process. 5.8 Section 5.8 Emergency Management and Assistance FEDERAL EMERGENCY... Provisions § 5.8 Records involved in litigation or other judicial process. Where there is reason to believe that any records requested may be involved in litigation or other judicial process in which the United...

  19. Preparation of highly hydrophobic cotton fabrics by modification with bifunctional silsesquioxanes in the sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Przybylak, Marcin, E-mail: marcin.przybylak@ppnt.poznan.pl [Poznań Science and Technology Park, Adam Mickiewicz University Foundation, Rubież 46, 61-612 Poznań (Poland); Maciejewski, Hieronim, E-mail: maciejm@amu.edu.pl [Poznań Science and Technology Park, Adam Mickiewicz University Foundation, Rubież 46, 61-612 Poznań (Poland); Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań (Poland); Dutkiewicz, Agnieszka, E-mail: agdut@interia.pl [Poznań Science and Technology Park, Adam Mickiewicz University Foundation, Rubież 46, 61-612 Poznań (Poland)

    2016-11-30

    Highlights: • Fabric hydrophobization process using bifunctional silsesquioxanes was studied. • Superhydrophobic fabric was produced using fluorofunctional silsesquioxanes. • Surface of modified fabrics was analyzed using different techniques. - Abstract: The surface modification of cotton fabrics was carried out using two types of bifunctional fluorinated silsesquioxanes with different ratios of functional groups. The modification was performed either by one- or two-step process. Two methods, the sol-gel and the dip coating method were used in different configurations. The heat treatment and the washing process were applied after modification. The wettability of cotton fabric was evaluated by measuring water contact angles (WCA). Changes in the surface morphology were examined by scanning electron microscopy (SEM, SEM-LFD) and atomic force microscopy (AFM). Moreover, the modified fabrics were subjected to analysis of elemental composition of the applied coatings using SEM-EDS techniques. Highly hydrophobic textiles were obtained in all cases studied and one of the modifications resulted in imparting superhydrophobic properties. Most of impregnated textiles remained hydrophobic even after multiple washing process which shows that the studied modification is durable.

  20. Progress in nanoscale dry processes for fabrication of high-aspect-ratio features: How can we control critical dimension uniformity at the bottom?

    Science.gov (United States)

    Ishikawa, Kenji; Karahashi, Kazuhiro; Ishijima, Tatsuo; Cho, Sung Il; Elliott, Simon; Hausmann, Dennis; Mocuta, Dan; Wilson, Aaron; Kinoshita, Keizo

    2018-06-01

    In this review, we discuss the progress of emerging dry processes for nanoscale fabrication of high-aspect-ratio features, including emerging design technology for manufacturability. Experts in the fields of plasma processing have contributed to addressing the increasingly challenging demands of nanoscale deposition and etching technologies for high-aspect-ratio features. The discussion of our atomic-scale understanding of physicochemical reactions involving ion bombardment and neutral transport presents the major challenges shared across the plasma science and technology community. Focus is placed on advances in fabrication technology that control surface reactions on three-dimensional features, as well as state-of-the-art techniques used in semiconductor manufacturing with a brief summary of future challenges.

  1. Fabrication and Microstructure of Hydroxyapatite Coatings on Zirconia by Room Temperature Spray Process.

    Science.gov (United States)

    Seo, Dong Seok; Chae, Hak Cheol; Lee, Jong Kook

    2015-08-01

    Hydroxyapatite coatings were fabricated on zirconia substrates by a room temperature spray process and were investigated with regards to their microstructure, composition and dissolution in water. An initial hydroxyapatite powder was prepared by heat treatment of bovine-bone derived powder at 1100 °C for 2 h, while dense zirconia substrates were fabricated by pressing 3Y-TZP powder and sintering it at 1350 °C for 2 h. Room temperature spray coating was performed using a slit nozzle in a low pressure-chamber with a controlled coating time. The phase composition of the resultant hydroxyapatite coatings was similar to that of the starting powder, however, the grain size of the hydroxyapatite particles was reduced to about 100 nm due to their formation by particle impaction and fracture. All areas of the coating had a similar morphology, consisting of reticulated structure with a high surface roughness. The hydroxyapatite coating layer exhibited biostability in a stimulated body fluid, with no severe dissolution being observed during in vitro experimentation.

  2. Gelatin-GAG electrospun nanofibrous scaffold for skin tissue engineering: fabrication and modeling of process parameters.

    Science.gov (United States)

    Pezeshki-Modaress, Mohamad; Mirzadeh, Hamid; Zandi, Mojgan

    2015-03-01

    Electrospinning is a very useful technique for producing polymeric nanofibers by applying electrostatic forces. In this study, fabrication of novel gelatin/GAG nanofibrous mats and also the optimization of electrospinning process using response surface methodology were reported. At optimization section, gelatin/GAG blend ratio, applied voltage and feeding rate, their individual and interaction effects on the mean fiber diameter (MFD) and standard deviation of fiber diameter (SDF) were investigated. The obtained model for MFD has a quadratic relationship with gelatin/GAG blend ratio, applied voltage and feeding rate. The interactions of blend ratio and applied voltage and also applied voltage and flow rate were found significant but the interactions of blend ratio and flow rate were ignored. The optimum condition for gelatin/GAG electrospinning was also introduced using the model obtained in this study. The potential use of optimized electrospun mat in skin tissue engineering was evaluated using culturing of human dermal fibroblast cells (HDF). The SEM micrographs of HDF cells on the nanofibrous structure show that fibroblast cells can highly attach, grow and populate on the fabricated scaffold surface. The electrospun gelatin/GAG nanofibrous mats have a potential for using as scaffold for skin, cartilage and cornea tissue engineering. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Fully Solution-Processable Fabrication of Multi-Layered Circuits on a Flexible Substrate Using Laser Processing

    Directory of Open Access Journals (Sweden)

    Seok Young Ji

    2018-02-01

    Full Text Available The development of printing technologies has enabled the realization of electric circuit fabrication on a flexible substrate. However, the current technique remains restricted to single-layer patterning. In this paper, we demonstrate a fully solution-processable patterning approach for multi-layer circuits using a combined method of laser sintering and ablation. Selective laser sintering of silver (Ag nanoparticle-based ink is applied to make conductive patterns on a heat-sensitive substrate and insulating layer. The laser beam path and irradiation fluence are controlled to create circuit patterns for flexible electronics. Microvia drilling using femtosecond laser through the polyvinylphenol-film insulating layer by laser ablation, as well as sequential coating of Ag ink and laser sintering, achieves an interlayer interconnection between multi-layer circuits. The dimension of microvia is determined by a sophisticated adjustment of the laser focal position and intensity. Based on these methods, a flexible electronic circuit with chip-size-package light-emitting diodes was successfully fabricated and demonstrated to have functional operations.

  4. Fully Solution-Processable Fabrication of Multi-Layered Circuits on a Flexible Substrate Using Laser Processing

    Science.gov (United States)

    Ji, Seok Young; Choi, Wonsuk; Jeon, Jin-Woo; Chang, Won Seok

    2018-01-01

    The development of printing technologies has enabled the realization of electric circuit fabrication on a flexible substrate. However, the current technique remains restricted to single-layer patterning. In this paper, we demonstrate a fully solution-processable patterning approach for multi-layer circuits using a combined method of laser sintering and ablation. Selective laser sintering of silver (Ag) nanoparticle-based ink is applied to make conductive patterns on a heat-sensitive substrate and insulating layer. The laser beam path and irradiation fluence are controlled to create circuit patterns for flexible electronics. Microvia drilling using femtosecond laser through the polyvinylphenol-film insulating layer by laser ablation, as well as sequential coating of Ag ink and laser sintering, achieves an interlayer interconnection between multi-layer circuits. The dimension of microvia is determined by a sophisticated adjustment of the laser focal position and intensity. Based on these methods, a flexible electronic circuit with chip-size-package light-emitting diodes was successfully fabricated and demonstrated to have functional operations. PMID:29425144

  5. A process to fabricate fused silica nanofluidic devices with embedded electrodes using an optimized room temperature bonding technique

    Science.gov (United States)

    Boden, Seth; Karam, P.; Schmidt, A.; Pennathur, S.

    2017-05-01

    Fused silica is an ideal material for nanofluidic systems due to its extreme purity, chemical inertness, optical transparency, and native hydrophilicity. However, devices requiring embedded electrodes (e.g., for bioanalytical applications) are difficult to realize given the typical high temperature fusion bonding requirements (˜1000 °C). In this work, we optimize a two-step plasma activation process which involves an oxygen plasma treatment followed by a nitrogen plasma treatment to increase the fusion bonding strength of fused silica at room temperature. We conduct a parametric study of this treatment to investigate its effect on bonding strength, surface roughness, and microstructure morphology. We find that by including a nitrogen plasma treatment to the standard oxygen plasma activation process, the room temperature bonding strength increases by 70% (0.342 J/m2 to 0.578 J/m2). Employing this optimized process, we fabricate and characterize a nanofluidic device with an integrated and dielectrically separated electrode. Our results prove that the channels do not leak with over 1 MPa of applied pressure after a 24 h storage time, and the electrode exhibits capacitive behavior with a finite parallel resistance in the upper MΩ range for up to a 6.3Vdc bias. These data thus allow us to overcome the barrier that has barred nanofluidic progress for the last decade, namely, the development of nanometer scale well-defined channels with embedded metallic materials for far-reaching applications such as the exquisite manipulation of biomolecules.

  6. Radiation protection of workers in uranium mining, ore processing and fuel fabrication in India

    International Nuclear Information System (INIS)

    Khan, A. H.; Jha, G.; Jha, S.; Srivastava, G. K.; Sadasivan, S.; Raj, Venkat

    2002-01-01

    Low grade of uranium ore mined from three underground mines is processed in a mill at Jaduguda in eastern India to recover uranium concentrate in the form of yellow cake. This concentrate is further processed at the Nuclear Fuel Complex at Hyderabad, in southern India, to produce fuel for use in nuclear power plants. Radiation protection of workers is given due importance at all stages of these operations. Dedicated Health Physics Units and Environmental Survey Laboratories established at each site regularly carry out in-plant and environmental surveillance to keep radiation exposure of workers and the members of public within the limits prescribed by the regulatory body. The limits set by the national regulatory body are based on the international standards suggested by the ICRP and the IAEA. In the uranium mines external gamma radiation, radon and airborne activity due to radioactive dust is monitored. Similarly, in the uranium mill and the fuel fabrication plant gamma radiation and airborne radioactivity due to long-lived α -emitters are monitored. Personal dosimeters are also issued to workers. The total radiation exposure of workers from external and internal sources is evaluated from the personal monitoring and area monitoring data. It has been observed that the total radiation dose to workers has been well below 20 mSv.y 1 at all stages of operations. Adequate ventilation is provided during mining, ore processing and fuel fabrication operations to keep the concentrations of airborne radioactivity well below the derived limits. Workers use personal protective appliances, where necessary, as a supplementary means of control. The monitoring methodologies, results and control measures are presented in the paper

  7. Radiation protection of workers in uranium mining, ore processing and fuel fabrication in India

    International Nuclear Information System (INIS)

    Khan, A.H.; Jha, G.; Jha, S.; Srivastava, G.K.; Sadasivan, S.; Venkat Raj, V.

    2002-01-01

    Full text: Low grade of uranium ore mined from three underground mines is processed in a mill at Jaduguda in eastern India to recover uranium concentrate in the form of yellow cake. This concentrate is further processed at the Nuclear Fuel Complex at Hyderabad, in southern India, to produce fuel for use in nuclear power plants. Radiation protection of workers is given due importance at all stages of these operations. Dedicated Health Physics Units and Environmental Survey Laboratories established at each site regularly carry out in-plant and environmental surveillance to keep radiation exposure of workers and the members of public within the limits prescribed by the regulatory body. The limits set by the national regulatory body are based on the international standards suggested by the ICRP and the IAEA. In the uranium mines external gamma radiation, radon and airborne activity due to radioactive dust is monitored. Similarly, in the uranium mill and the fuel fabrication plant gamma radiation and airborne radioactivity due to long-lived a- emitters are monitored. Personal dosimeters are also issued to workers. The total radiation exposure of workers from external and internal sources is evaluated from the personal monitoring and area monitoring data. It has been observed that the total radiation dose to workers has been well below 20 mSvy -1 at all stages of operations. Adequate ventilation is provided during mining, ore processing and fuel fabrication operations to keep the concentrations of airborne radioactivity well below the derived limits. Workers use personal protective appliances, where necessary, as a supplementary means of control. The monitoring methodologies, results and control measures are presented in the paper

  8. Design and fabrication of a glovebox for the Plasma Hearth Process radioactive bench-scale system

    International Nuclear Information System (INIS)

    Wahlquist, D.R.

    1996-01-01

    This paper presents some of the design considerations and fabrication techniques for building a glovebox for the Plasma Hearth Process (PHP) radioactive bench-scale system. The PHP radioactive bench-scale system uses a plasma torch to process a variety of radioactive materials into a final vitrified waste form. The processed waste will contain plutonium and trace amounts of other radioactive materials. The glovebox used in this system is located directly below the plasma chamber and is called the Hearth Handling Enclosure (HHE). The HHE is designed to maintain a confinement boundary between the processed waste and the operator. Operations that take place inside the HHE include raising and lowering the hearth using a hydraulic lift table, transporting the hearth within the HHE using an overhead monorail and hoist system, sampling and disassembly of the processed waste and hearth, weighing the hearth, rebuilding a hearth, and sampling HEPA filters. The PHP radioactive bench-scale system is located at the TREAT facility at Argonne National Laboratory-West in Idaho Falls, Idaho

  9. Adhesion enhancement between electroless nickel and polyester fabric by a palladium-free process

    Energy Technology Data Exchange (ETDEWEB)

    Lu Yinxiang, E-mail: yxlu@fudan.edu.cn [Department of Materials Science, Fudan University, 220 Handan Road, Shanghai 200433 (China); Xue Longlong; Li Feng [Department of Materials Science, Fudan University, 220 Handan Road, Shanghai 200433 (China)

    2011-01-15

    A new, efficient, palladium- and etchant-free process for the electroless nickel plating of poly(ethylene terephthalate) (PET) fabric has been developed. PET electroless plating can be prepared in three steps, namely: (i) the grafting of thiol group onto PET, (ii) the silver Ag{sup 0} seeding of the PET surface, and (iii) the nickel metallization using electroless plating bath. Scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, X-ray photoelectron spectroscopy (XPS), Raman spectrometer, X-ray diffraction (XRD), and thermogravimetric analysis (TG) were used to characterize the samples in the process, and the nickel loading was quantified by weighing. This process successfully compares with the traditional one based on KMnO{sub 4}/H{sub 2}SO{sub 4} etching and palladium-based seed layer. The nickel coating obtained in this palladium-free process can pass through ultrasonic washing challenge, and shows excellent adhesion with the PET substrate. However, the sample with Pd catalyst via traditional process was damaged during the testing experiment.

  10. Design and development on automated control system of coated fuel particle fabrication process

    International Nuclear Information System (INIS)

    Liu Malin; Shao Youlin; Liu Bing

    2013-01-01

    With the development trend of the large-scale production of the HTR coated fuel particles, the original manual control system can not meet the requirement and the automation control system of coated fuel particle fabrication in modern industrial grade is needed to develop. The comprehensive analysis aiming at successive 4-layer coating process of TRISO type coated fuel particles was carried out. It was found that the coating process could be divided into five subsystems and nine operating states. The establishment of DCS-type (distributed control system) of automation control system was proposed. According to the rigorous requirements of preparation process for coated particles, the design considerations of DCS were proposed, including the principle of coordinated control, safety and reliability, integration specification, practical and easy to use, and open and easy to update. A complete set of automation control system for coated fuel particle preparation process was manufactured based on fulfilling the requirements of these principles in manufacture practice. The automated control system was put into operation in the production of irradiated samples for HTRPM demonstration project. The experimental results prove that the system can achieve better control of coated fuel particle preparation process and meet the requirements of factory-scale production. (authors)

  11. CMOS compatible fabrication process of MEMS resonator for timing reference and sensing application

    Science.gov (United States)

    Huynh, Duc H.; Nguyen, Phuong D.; Nguyen, Thanh C.; Skafidas, Stan; Evans, Robin

    2015-12-01

    Frequency reference and timing control devices are ubiquitous in electronic applications. There is at least one resonator required for each of this device. Currently electromechanical resonators such as crystal resonator, ceramic resonator are the ultimate choices. This tendency will probably keep going for many more years. However, current market demands for small size, low power consumption, cheap and reliable products, has divulged many limitations of this type of resonators. They cannot be integrated into standard CMOS (Complement metaloxide- semiconductor) IC (Integrated Circuit) due to material and fabrication process incompatibility. Currently, these devices are off-chip and they require external circuitries to interface with the ICs. This configuration significantly increases the overall size and cost of the entire electronic system. In addition, extra external connection, especially at high frequency, will potentially create negative impacts on the performance of the entire system due to signal degradation and parasitic effects. Furthermore, due to off-chip packaging nature, these devices are quite expensive, particularly for high frequency and high quality factor devices. To address these issues, researchers have been intensively studying on an alternative for type of resonator by utilizing the new emerging MEMS (Micro-electro-mechanical systems) technology. Recent progress in this field has demonstrated a MEMS resonator with resonant frequency of 2.97 GHz and quality factor (measured in vacuum) of 42900. Despite this great achievement, this prototype is still far from being fully integrated into CMOS system due to incompatibility in fabrication process and its high series motional impedance. On the other hand, fully integrated MEMS resonator had been demonstrated but at lower frequency and quality factor. We propose a design and fabrication process for a low cost, high frequency and a high quality MEMS resonator, which can be integrated into a standard

  12. Dynamic Risk Identification Using Fuzzy Failure Mode Effect Analysis in Fabric Process Industries: A Research Article as Management Perspective

    OpenAIRE

    A. Sivakumar; S. S. Darun Prakash; P. Navaneethakrishnan

    2015-01-01

    In and around Erode District, it is estimated that more than 1250 chemical and allied textile processing fabric industries are affected, partially closed and shut off for various reasons such as poor management, poor supplier performance, lack of planning for productivity, fluctuation of output, poor investment, waste analysis, labor problems, capital/labor ratio, accumulation of stocks, poor maintenance of resources, deficiencies in the quality of fabric, low capacity ut...

  13. Compact Layers of Hybrid Halide Perovskites Fabricated via the Aerosol Deposition Process-Uncoupling Material Synthesis and Layer Formation.

    Science.gov (United States)

    Panzer, Fabian; Hanft, Dominik; Gujar, Tanaji P; Kahle, Frank-Julian; Thelakkat, Mukundan; Köhler, Anna; Moos, Ralf

    2016-04-08

    We present the successful fabrication of CH₃NH₃PbI₃ perovskite layers by the aerosol deposition method (ADM). The layers show high structural purity and compactness, thus making them suitable for application in perovskite-based optoelectronic devices. By using the aerosol deposition method we are able to decouple material synthesis from layer processing. Our results therefore allow for enhanced and easy control over the fabrication of perovskite-based devices, further paving the way for their commercialization.

  14. Efficient composite fabrication using electron-beam rapidly cured polymers engineered for several manufacturing processes

    International Nuclear Information System (INIS)

    Walton, T.C.; Crivello, J.V.

    1995-01-01

    Low cost, efficiently processed ultra high specific strength and stiffness graphite fiber reinforced polymeric composite materials are of great interest to commercial transportation, construction and aerospace industries for use in various components with enhanced degrees of weight reduction, corrosion/erosion resistance and fatigue resistance. 10 MeV Electron Beam cure processing has been found to increase the cure rate by an order of magnitude over thermally cured systems yet provide less molded in stresses and high T g s. However, a limited range of resins are available which are easily processed with low shrinkage and with performance properties equal or exceeding those of state of the art toughened epoxies and BMI's. The technology, introduced by an academia-industry partnership sparked by Langley Research Center utilizes a cost effective, rapid curing polymeric composite processing technique which effectively reduces the need for expensive tooling and energy inefficient autoclave processing and can cure the laminate in seconds (compared to hours for thermal curing) in ambient or sub-ambient conditions. The process is based on electron beam (E-Beam) curing of a new series of (65 to 1,000,000 cPs.) specially formulated resins that have been shown to exhibit excellent mechanical and physical properties once cured. Fabrication processes utilizing these specially formulated and newly commercialized resins, (e.g. including Vacuum Assist Resin Transfer molding (VARTM), vacuum bag prepreg layup, pultrusion and filament winding grades) are engineered to cure with low shrinkage, provide excellent mechanical properties, be processed solventless (environmentally friendly) and are inherently non toxic

  15. Using a micro-molding process to fabricate polymeric wavelength filters

    Science.gov (United States)

    Chuang, Wei-Ching; Lee, An-Chen; Ho, Chi-Ting

    2008-08-01

    A procedure for fabricating a high aspect ratio periodic structure on a UV polymer at submicron order using holographic interferometry and molding processes is described. First, holographic interferometry using a He-Cd (325 nm) laser was used to create the master of the periodic line structure on an i-line sub-micron positive photoresist film. A 20 nm nickel thin film was then sputtered on the photoresist. The final line pattern on a UV polymer was obtained from casting against the master mold. Finally, a SU8 polymer was spun on the polymer grating to form a planar waveguide or a channel waveguide. The measurement results show that the waveguide length could be reduced for the waveguide having gratings with a high aspect ratio.

  16. Powder metallurgy and fabricating processes of cermet and metmet fuel in Russia

    International Nuclear Information System (INIS)

    Vatulin, A.; Konovalov, I.; Savchenco, A.; Stetsky, Y.; Trifonov, Y.; Bochvar, A.A.

    2000-01-01

    Methods of powder metallurgy are widely used for manufacturing of various components of reactor core: beryllium reflectors, absorbers, parts of controlling and safety systems, fuel pellets for fuel elements of power reactors and etc. The new problems arising before atomic engineering associated with increasing requirements to safe operation of reactors, non-proliferation of the nuclear weapons and utilization of plutonium stockpile in the world, served as a push to development of new kinds of dispersion nuclear fuel CERMET, CERCER, METMET. The bases of fabricating processes of such compositions are the methods of powder metallurgy. In this report some results of research activities on the development of new kinds of CERMET and METMET fuel and fuel elements for different type reactors are presented. (author)

  17. Fabrication of protein microarrays for alpha fetoprotein detection by using a rapid photo-immobilization process

    Directory of Open Access Journals (Sweden)

    Sirasa Yodmongkol

    2016-03-01

    Full Text Available In this study, protein microarrays based on sandwich immunoassays are generated to quantify the amount of alpha fetoprotein (AFP in blood serum. For chip generation a mixture of capture antibody and a photoactive copolymer consisting of N,N-dimethylacrylamide (DMAA, methacryloyloxy benzophenone (MaBP, and Na-4-styrenesulfonate (SSNa was spotted onto unmodified polymethyl methacrylate (PMMA substrates. Subsequently to printing of the microarray, the polymer and protein were photochemically cross-linked and the forming, biofunctionalized hydrogels simultaneously bound to the chip surface by short UV- irradiation. The obtained biochip was incubated with AFP antigen, followed by biotinylated AFP antibody and streptavidin-Cy5 and the fluorescence signal read-out. The developed microarray biochip covers the range of AFP in serum samples such as maternal serum in the range of 5 and 100 ng/ml. The chip production process is based on a fast and simple immobilization process, which can be applied to conventional plastic surfaces. Therefore, this protein microarray production process is a promising method to fabricate biochips for AFP screening processes. Keywords: Photo-immobilization, Protein microarray, Alpha fetoprotein, Hydrogel, 3D surface, Down syndrome

  18. Fabrication of a DRAM cube using a novel laser patterned 3-D interconnect process

    International Nuclear Information System (INIS)

    Malba, V.

    1997-01-01

    A new process is described for producing metal interconnect on three dimensional surfaces. The process makes use of a laser to expose an electrophoretic photoresist which is conformally plated onto a thin metal seed layer that covers the various surfaces. After resist exposure and development, copper, nickel, and gold are plated onto the seed layer through the resist mask. Finally, the residual resist and seed layer are removed leaving conformally plated metal traces. The process has been applied to the reroute of the I/O pads of DRAM chips to form new pads on one of the long sidewalls of the bare die. Die are stacked and bonded and pads are arranged so that data lines and some control lines in a stack are staggered while address, power, ground, and some control lines are positioned identically. This architecture permits bonding of the stack to a single sided flex tape using an anisotropically conducting adhesive. The flex is bonded to a circuit board to complete the assembly. The DRAM stack fabrication and attachment process is relatively simple and may be attractive for high density 3D packaging for consumer electronics

  19. Fabrication of Surface Level Cu/Si Cp Nano composites by Friction Stir Processing Route

    International Nuclear Information System (INIS)

    Srinivasan, R. C.; Karunanithi, M.

    2015-01-01

    Friction stir processing (FSP) technique has been successfully employed as low energy consumption route to prepare copper based surface level nano composites reinforced with nano sized silicon carbide particles (Si Cp). The effect of FSP parameters such as tool rotational speed, processing speed, and tool tilt angle on microstructure and microhardness was investigated. Single pass FSP was performed based on Box-Behnken design at three factors in three levels. A cluster of blind holes 2 mm in diameter and 3 mm in depth was used as particulate deposition technique in order to reduce the agglomeration problem during composite fabrication. K-type thermocouples were used to measure temperature histories during FSP. The results suggest that the heat generation during FSP plays a significant role in deciding the microstructure and microhardness of the surface composites. Microstructural observations revealed a uniform dispersion of nano sized Si Cp without any agglomeration problem and well bonded with copper matrix at different process parameter combinations. X-ray diffraction study shows that no intermetallic compound was produced after processing. The microhardness of nano composites was remarkably enhanced and about 95% more than that of copper matrix

  20. Fabrication of Surface Level Cu/SiCp Nanocomposites by Friction Stir Processing Route

    Directory of Open Access Journals (Sweden)

    Cartigueyen Srinivasan

    2015-01-01

    Full Text Available Friction stir processing (FSP technique has been successfully employed as low energy consumption route to prepare copper based surface level nanocomposites reinforced with nanosized silicon carbide particles (SiCp. The effect of FSP parameters such as tool rotational speed, processing speed, and tool tilt angle on microstructure and microhardness was investigated. Single pass FSP was performed based on Box-Behnken design at three factors in three levels. A cluster of blind holes 2 mm in diameter and 3 mm in depth was used as particulate deposition technique in order to reduce the agglomeration problem during composite fabrication. K-type thermocouples were used to measure temperature histories during FSP. The results suggest that the heat generation during FSP plays a significant role in deciding the microstructure and microhardness of the surface composites. Microstructural observations revealed a uniform dispersion of nanosized SiCp without any agglomeration problem and well bonded with copper matrix at different process parameter combinations. X-ray diffraction study shows that no intermetallic compound was produced after processing. The microhardness of nanocomposites was remarkably enhanced and about 95% more than that of copper matrix.

  1. Consumable Process Development for Chemical Mechanical Planarization of Bit Patterned Media for Magnetic Storage Fabrication

    Science.gov (United States)

    Bonivel, Joseph T., Jr.

    2010-09-01

    As the superparamagnetic limit is reached, the magnetic storage industry looks to circumvent the barrier by implementing patterned media (PM) as a viable means to store and access data. Chemical mechanical polishing (CMP) is a semiconductor fabrication technique used to planarize surfaces and is investigated as a method to ensure that the PM is polished to surface roughness parameters that allow the magnetic read/write head to move seamlessly across the PM. Results from this research have implications in feasibility studies of utilizing CMP as the main planarization technique for PM fabrication. Benchmark data on the output parameters of the CMP process, for bit patterned media (BPM), based on the machine process parameters, pad properties, and slurry characteristics are optimized. The research was conducted in a systematic manner in which the optimized parameters for each phase are utilized in future phases. The optimum results from each of the phases provide an overall optimum characterization for BPM CMP. Results on the CMP machine input parameters indicate that for optimal surface roughness and material removal, low polish pressures and high velocities should be used on the BPM. Pad characteristics were monitored by non destructive technique and results indicate much faster deterioration of all padcharacteristics versus polish time of BPM when compared to IC CMP. The optimum pad for PM polishing was the IC 1400 dual layer Suba V pad with a shore hardness of 57, and a k-groove pattern. The final phase of polishing evaluated the slurry polishing properties and novel nanodiamond (ND) slurry was created and benchmarked on BPM. The resulting CMP output parameters were monitored and neither the ND slurry nor the thermally responsive polymer slurry performed better than the commercially available Cabot iCue slurry for MRR or surface roughness. Research results indicate CMP is a feasible planarization technique for PM fabrication, but successful implementation of CMP

  2. Design and fabrication of a 30 T superconducting solenoid using overpressure processed Bi2212 round wire

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, Gene [Muons, Inc., Batavia, IL (United States); Johnson, Rolland [Muons, Inc., Batavia, IL (United States)

    2016-02-18

    High field superconducting magnets are used in particle colliders, fusion energy devices, and spectrometers for medical imaging and advanced materials research. Magnets capable of generating fields of 20-30 T are needed by future accelerator facilities. A 20-30 T magnet will require the use of high-temperature superconductors (HTS) and therefore the challenges of high field HTS magnet development need to be addressed. Superconducting Bi2Sr2CaCu2Ox (Bi2212) conductors fabricated by the oxide-powder-in-tube (OPIT) technique have demonstrated the capability to carry large critical current density of 105 A/cm2 at 4.2 K and in magnetic fields up to 45 T. Available in round wire multi-filamentary form, Bi2212 may allow fabrication of 20-50 T superconducting magnets. Until recently the performance of Bi2212 has been limited by challenges in realizing high current densities (Jc ) in long lengths. This problem now is solved by the National High Magnetic Field Lab using an overpressure (OP) processing technique, which uses external pressure to process the conductor. OP processing also helps remove the ceramic leakage that results when Bi-2212 liquid leaks out from the sheath material and reacts with insulation, coil forms, and flanges. Significant advances have also been achieved in developing novel insulation materials (TiO2 coating) and Ag-Al sheath materials that have higher mechanical strengths than Ag-0.2wt.% Mg, developing heat treatment approaches to broadening the maximum process temperature window, and developing high-strength, mechanical reinforced Bi-2212 cables. In the Phase I work, we leveraged these new opportunities to prototype overpressure processed solenoids and test them in background fields of up to 14 T. Additionally a design of a fully superconducting 30 T solenoid was produced. This work in conjunction with the future path outlined in the Phase II proposal would

  3. A novel surface micromachining process to fabricate AlN unimorph suspensions and its application for RF resonators

    NARCIS (Netherlands)

    Saravanan, S.; Saravanan, S.; Berenschot, Johan W.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    2006-01-01

    A novel surface micromachining process is reported for aluminum nitride (AlN) thin films to fabricate piezoelectric unimorph suspension devices for micro actuator applications. Wet anisotropic etching of AlN thin film is used with a Cr metal mask layer in the microfabrication process. Tetra methyl

  4. Patient involvement in a scientific advisory process: setting the research agenda for medical products.

    NARCIS (Netherlands)

    Elberse, J.E.; Pittens, C.A.C.M.; de Cock Buning, J.T.; Broerse, J.E.W.

    2012-01-01

    Patient involvement in scientific advisory processes could lead to more societally relevant advice. This article describes a case study wherein the Health Council of the Netherlands involved patient groups in an advisory process with a predefined focus: setting a research agenda for medical products

  5. Test fabrication of sulfuric acid decomposer applied for thermochemical hydrogen production IS process

    International Nuclear Information System (INIS)

    Noguchi, Hiroki; Terada, Atsuhiko; Kubo, Shinji; Onuki, Kaoru; Hino, Ryutaro; Ota, Hiroyuki

    2007-07-01

    Thermo-chemical Iodine-Sulfur (IS) process produces large amount of hydrogen effectively without carbon dioxide emission. Since the IS process uses strong acids such as sulfuric acid and hydriodic acid, it is necessary to develop large-scale chemical reactors featuring materials that exhibit excellent heat and corrosion resistance. A sulfuric acid decomposer is one of the key components of the IS process plant, in which sulfuric acid is evaporated and decomposed into water and sulfur trioxide under temperature range from 300degC to 500degC using the heat supplied by high temperature helium gas. The decomposer is exposed to severe corrosion condition of sulfuric acid boiling flow, where only the SiC ceramics shows good corrosion resistance. However, at the current status, it is very difficult to manufacture the large-scale SiC ceramics structure required in the commercial plant. Therefore, we devised a new concept of the decomposer, which featured a counter flow type heat exchanger consisting of cylindrical blocks made of SiC ceramics. Scale up can be realized by connecting the blocks in parallel and/or in series. This paper describes results of the design work and the test-fabrication study of the sulfuric acid decomposer, which was carried out in order to confirm its feasibility. (author)

  6. Fabrication process for tall, sharp, hollow, high aspect ratio polymer microneedles on a platform

    International Nuclear Information System (INIS)

    Ceyssens, Frederik; Chaudhri, Buddhadev Paul; Van Hoof, Chris; Puers, Robert

    2013-01-01

    This paper reports on a new lithographic process for fabricating arrays of tall, high aspect ratio (defined as height/wall thickness), hollow, polymer microneedles on a platform. The microneedles feature a high sharpness (down to 3 µm tip radius) and aspect ratio (>65) which is a factor 2 and 4 better than the state of the art, respectively. The maximum achievable needle shaft length is over 1 mm. The improved performance was obtained by using an anisotropically patterned silicon substrate covered with an antireflective layer as mold for the needle tip and an optimized SU-8 lithographic process. Furthermore, a platform containing liquid feedthroughs holding an arbitrary number of needles out of plane can be manufactured with only one additional process step. The high aspect ratio microneedles undergo failure at the critical load of around 230 mN in the case of 1 mm long hollow needles with triangular cross section and a base of 175 µm. Penetration into human skin is demonstrated as well. (paper)

  7. MicroElectroMechanical devices and fabrication technologies for radio-frequency analog signal processing

    Science.gov (United States)

    Young, Darrin Jun

    The proliferation of wireless services creates a pressing need for compact and low cost RF transceivers. Modern sub-micron technologies provide the active components needed for miniaturization but fail to deliver high quality passives needed in oscillators and filters. This dissertation demonstrates procedures for adding high quality inductors and tunable capacitors to a standard silicon integrated circuits. Several voltage-controlled oscillators operating in the low Giga-Hertz range demonstrate the suitability of these components for high performance RF building blocks. Two low-temperature processes are described to add inductors and capacitors to silicon ICs. A 3-D coil geometry is used for the inductors rather than the conventional planar spiral to substantially reduce substrate loss and hence improve the quality factor and self-resonant frequency. Measured Q-factors at 1 GHz are 30 for a 4.8 nH device, 16 for 8.2 nH and 13.8 nH inductors. Several enhancements are proposed that are expected to result in a further improvement of the achievable Q-factor. This research investigates the design and fabrication of silicon-based IC-compatible high-Q tunable capacitors and inductors. The goal of this investigation is to develop a monolithic low phase noise radio-frequency voltage-controlled oscillator using these high-performance passive components for wireless communication applications. Monolithic VCOs will help the miniaturization of current radio transceivers, which offers a potential solution to achieve a single hand-held wireless phone with multistandard capabilities. IC-compatible micromachining fabrication technologies have been developed to realize on-chip high-Q RF tunable capacitors and 3-D coil inductors. The capacitors achieve a nominal capacitance value of 2 pF and can be tuned over 15% with 3 V. A quality factor over 60 has been measured at 1 GHz. 3-D coil inductors obtain values of 4.8 nH, 8.2 nH and 13.8 nH. At 1 GHz a Q factor of 30 has been achieved

  8. Stakeholder involvement activities in Slovakia. NRA's Commitment to Transparent Regulatory Process. Stakeholder Involvement in the French Regulatory Process - From Public Information to Public Participation. Stakeholder involvement in nuclear decision making in the Russian Federation

    International Nuclear Information System (INIS)

    Ziakova, Marta Chairperson; Nuclear Regulatory Authority of the Slovak Republic; Nuclear Regulation Authority - NRA; Ferapontov, Alexey

    2017-01-01

    Session 2 focused on the regulatory perspectives related to stakeholder involvement in the regulatory decision-making process. Presentations provided the audience with information regarding the international and national legal framework implemented in the Slovak Republic, in France, in Japan and in Russia. Examples of stakeholder involvement, as well as some tools used for this purpose, were presented and discussed. The value of consistency and complementarity between international and national requirements was highlighted. Presentations and discussion confirmed the very close tie between the way the stakeholder involvement process is conducted and the public confidence and perception of reliability the regulatory body may gain, or lose. The four presentations confirmed that stakeholder involvement is a key challenge for maintaining regulatory body credibility, independence and legitimacy. All countries confirmed their commitment to trying to make their stakeholder involvement processes as open, visible, transparent and comprehensive as possible. Involvement represents a long and permanent process which requires investment of time, human resources and money, as well as the ability to reach out, to listen, to share, and to take input into account, while keeping in view the goal of delivering decisions that are as rational and objective as possible. Involving stakeholders is more than informing or communicating. The earlier the stakeholders are involved in the decision-making process, the greater the chance of success. If losing credibility is easy, all regulatory bodies agreed on the long process needed to recover it

  9. Density match during fabrication process of poly (α-methylstyrene) mandrels by microencapsulation

    International Nuclear Information System (INIS)

    Chen Sufen; Su Lin; Liu Yiyang; Li Bo; Qi Xiaobo; Zhang Zhanwen; Liu Meifang

    2012-01-01

    During the curing process of double emulsions for fabricating poly (α-methylstyrene) (PAMS) capsules by microencapsulation technology, the match of density between the water in oil compound droplet and the outer water phase is vital to the sphericity of PAMS capsules. To investigate the effects of density mismatch on the sphericity of the resulting PAMS capsules, the densities of compound droplets with different inner diameters and polymer oil layer thicknesses were calculated theoretically and measured experimentally during the curing process. Also, the polymer concentrations of the oil phase in the compound droplets during the curing process were further studied. The results show that, the density mismatch between the compound droplets and the outer water phase can be quantitatively controlled by adjusting the compositions of the outer water phase. The curing stage with the polymer concentration of the oil phase increasing from 20% to 60% is the key phase of the curing process. When the density mismatch between the compound droplets and the outer water phase lowering from 0.00495 g/cm 3 to 0.00002 g/cm 3 , the number percentage of PAMS capsules with out of round (OOR) value less than 10 μm in batches can be increased from 14.3% to 93.3%. Thus for the compound droplets with different inner diameters and polymer oil layer thicknesses, the sphericity of the resulting PAMS capsules can be significantly improved, through reducing the density mismatch between the compound droplets and the outer water phase in the key phase of the curing process. (authors)

  10. Synthesis, processing and characterization of shear thickening fluid (STF) impregnated fabric composites

    International Nuclear Information System (INIS)

    Hassan, Tarig A.; Rangari, Vijay K.; Jeelani, Shaik

    2010-01-01

    Shear thickening is a non-Newtonian fluid behavior defined as the increase of viscosity with the increase in the applied shear rate. The shear thickening fluid (STF) is a combination of hard metal oxide particles suspended in a liquid polymer. This mixture of flowable and hard components at a particular composition, results in a material with remarkable properties. In this manuscript the shear thickening fluid (STF) was prepared by ultrasound irradiation of silica nanoparticles dispersed in liquid polyethylene glycol polymer. The as-prepared STFs have been tested for their rheological and thermal properties. Kevlar and Nylon fabrics were soaked in STF/ethanol solution to make STF/fabric composite. Knife threats and quasistatic penetration tests were performed on the neat fabrics and STF/fabric composite targets for both engineered spike and knife on areal density basis. The results showed that STF impregnated fabrics have better penetration resistance as compared to neat fabrics without affecting the fabric flexibility. This indicates that the addition of STF to the fabric have enhanced the fabric performance and can be used in liquid body armor applications.

  11. Metal finishing and vacuum processes groups, Materials Fabrication Division progress report, March-May 1984

    International Nuclear Information System (INIS)

    Dini, J.W.; Romo, J.G.; Jones, L.M.

    1984-01-01

    Progress is reported in fabrication and coating activities being conducted for the weapons program, nuclear test program, nuclear design program, magnetic fusion program, and miscellaneous applications

  12. Fabrication Processes to Generate Concentration Gradients in Polymer Solar Cell Active Layers

    Science.gov (United States)

    Inaba, Shusei; Vohra, Varun

    2017-01-01

    Polymer solar cells (PSCs) are considered as one of the most promising low-cost alternatives for renewable energy production with devices now reaching power conversion efficiencies (PCEs) above the milestone value of 10%. These enhanced performances were achieved by developing new electron-donor (ED) and electron-acceptor (EA) materials as well as finding the adequate morphologies in either bulk heterojunction or sequentially deposited active layers. In particular, producing adequate vertical concentration gradients with higher concentrations of ED and EA close to the anode and cathode, respectively, results in an improved charge collection and consequently higher photovoltaic parameters such as the fill factor. In this review, we relate processes to generate active layers with ED–EA vertical concentration gradients. After summarizing the formation of such concentration gradients in single layer active layers through processes such as annealing or additives, we will verify that sequential deposition of multilayered active layers can be an efficient approach to remarkably increase the fill factor and PCE of PSCs. In fact, applying this challenging approach to fabricate inverted architecture PSCs has the potential to generate low-cost, high efficiency and stable devices, which may revolutionize worldwide energy demand and/or help develop next generation devices such as semi-transparent photovoltaic windows. PMID:28772878

  13. Fabrication Process and Thermoelectric Properties of CNT/Bi2(Se,Te3 Composites

    Directory of Open Access Journals (Sweden)

    Kyung Tae Kim

    2015-01-01

    Full Text Available Carbon nanotube/bismuth-selenium-tellurium composites were fabricated by consolidating CNT/Bi2(Se,Te3 composite powders prepared from a polyol-reduction process. The synthesized composite powders exhibit CNTs homogeneously dispersed among Bi2(Se,Te3 matrix nanopowders of 300 nm in size. The powders were densified into a CNT/Bi2(Se,Te3 composite in which CNTs were randomly dispersed in the matrix through spark plasma sintering process. The effect of an addition of Se on the dimensionless figure-of-merit (ZT of the composite was clearly shown in 3 vol.% CNT/Bi2(Se,Te3 composite as compared to CNT/Bi2Te3 composite throughout the temperature range of 298 to 473 K. These results imply that matrix modifications such as an addition of Se as well as the incorporation of CNTs into bismuth telluride thermoelectric materials is a promising means of achieving synergistic enhancement of the thermoelectric performance levels of these materials.

  14. Fabrication of SiCp/Al Alloy Composites by In-situ Vacuum Hot Press Process

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S. W.; Hong, S. K.; Kim, Y. M.; Kang, C. S. [Chonnam National University, Kwangju (Korea); Chang, S. Y. [Hanyang University, Seoul (Korea)

    2001-07-01

    SiCp/pure Al and SiCp/2024Al MMCs were fabricated by in-situ VHP process designed specially just in this study which is composed of the vacuum hot press at range from R.T. to 500 deg.C and the continuous extrusion without canning process at 520 deg.C. It was investigated the effect of SiC particle size, volume fraction and extrusion ratio on the tensile properties and micro structure in all composites. In case of the 10:1 extrusion ratio, but SiCp/pure Al and SiCp/2024Al composites were shown a sound appearance and a good micro structure without crack of SiCp as well as uniform distribution of SiCp. However, in case of the 16:1 extrusion ratio, the number of cracked SiC particles more than increased in a higher volume fraction composite and 2024Al matrix composite compared with pure Al matrix one. The tensile strength of the composites reinforced smaller SiCp was higher than that of the bigger SiCp reinforced in same volume fraction and extrusion ratio. (author) 14 refs., 14 figs.

  15. Copper-carbon and aluminum-carbon composites fabricated by powder metallurgy processes

    International Nuclear Information System (INIS)

    Silvain, Jean-François; Veillère, Amélie; Lu, Yongfeng

    2014-01-01

    The increase in both power and packing densities in power electronic devices has led to an increase in the market demand for effective heat-dissipating materials, with high thermal conductivity and thermal- expansion coefficient compatible with chip materials still ensuring the reliability of the power modules. In this context, metal matrix composites: carbon fibers and diamond-reinforced copper and aluminum matrix composites among them are considered very promising as a next generation of thermal-management materials in power electronic packages. These composites exhibit enhanced thermal properties compared to pure copper combined with lower density. This article presents the fabrication techniques of copper/carbon fibers and copper/diamond and aluminum/carbon fibers composite films by powder metallurgy and hot pressing. The thermal analyses clearly indicate that interfacial treatments are required in these composites to achieve high thermomechanical properties. Interfaces (through novel chemical and processing methods), when selected carefully and processed properly will form the right chemical/mechanical link between metal and carbon, enhancing all the desired thermal properties while minimizing the deleterious effect.

  16. Binder Jetting: A Novel NdFeB Bonded Magnet Fabrication Process

    Science.gov (United States)

    Paranthaman, M. Parans; Shafer, Christopher S.; Elliott, Amy M.; Siddel, Derek H.; McGuire, Michael A.; Springfield, Robert M.; Martin, Josh; Fredette, Robert; Ormerod, John

    2016-07-01

    The goal of this research is to fabricate near-net-shape isotropic (Nd)2Fe14B-based (NdFeB) bonded magnets using a three dimensional printing process to compete with conventional injection molding techniques used for bonded magnets. Additive manufacturing minimizes the waste of critical materials and allows for the creation of complex shapes and sizes. The binder jetting process works similarly to an inkjet printer. A print-head passes over a bed of NdFeB powder and deposits a polymer binding agent to bind the layer of particles together. The bound powder is then coated with another layer of powder, building the desired shape in successive layers of bonded powder. Upon completion, the green part and surrounding powders are placed in an oven at temperatures between 100°C and 150°C for 4-6 h to cure the binder. After curing, the excess powder can be brushed away to reveal the completed "green" part. Green magnet parts were then infiltrated with a clear urethane resin to achieve the measured density of the magnet of 3.47 g/cm3 close to 46% relative to the NdFeB single crystal density of 7.6 g/cm3. Magnetic measurements indicate that there is no degradation in the magnetic properties. This study provides a new pathway for preparing near-net-shape bonded magnets for various magnetic applications.

  17. Fabrication of Fe-Cr-Mo powder metallurgy steel via a mechanical-alloying process

    Science.gov (United States)

    Park, Jooyoung; Jeong, Gowoon; Kang, Singon; Lee, Seok-Jae; Choi, Hyunjoo

    2015-11-01

    In this study, we employed a mechanical-alloying process to manufacture low-alloy CrL and CrM steel powders that have similar specifications to their water-atomized counterparts. X-ray diffraction showed that Mo and Cr are alloyed in Fe after four cycles of planetary milling for 1 h at 150 RPM with 15-min pauses between the cycles (designated as P2C4 process). Furthermore, the measured powder size was found to be similar to that of the water-atomized counterparts according to both scanning electron microscope images and laser particle size analysis. The samples were sintered at 1120 °C, after which the P2C4-milled CrL showed similar hardness to that of water-atomized CrL, whereas the P2C4-milled CrM showed about 45% lower hardness than that of its water-atomized counterpart. Water-atomized CrM consists of a well-developed lathtype microstructure (bainite or martensite), while a higher fraction of polygonal ferrite is observed in P2C4-milled CrM. This phase difference causes the reduction of hardness in the P2C4-milled CrM, implying that the phase transformation behavior of specimens produced via powder metallurgy is influenced by the powder fabrication method.

  18. Performance evaluation of WDXRF as a process control technique for MOX fuel fabrication

    International Nuclear Information System (INIS)

    Pandey, A.; Khan, F.A.; Das, D.K.; Behere, P.G.; Afzal, Mohd

    2015-01-01

    This paper presents studies on Wavelength Dispersive X-Ray Fluorescence (WDXRF), as a powerful non destructive technique (NDT) for the compositional analysis of various types of MOX fuels. The sample has come after mixing and milling of UO 2 and PuO 2 powder for the estimation of plutonium, as a process control step of fabrication of (U, Pu)O 2 mixed oxide (MOX) fuel. For the characterization for heavy metal in various MOX fuel, a WDXRF method was established as a process control technique. The attractiveness of our system is that it can analyze the samples in solid form as well as in liquid form. The system is adapted in a glove box for handling of plutonium based fuels. The glove box adapted system was optimized with Uranium and Thorium based MOX sample before introduction of Pu. Uranium oxide and thorium oxide have been estimated in uranium thorium MOX samples. Standard deviation for the analysis of U 3 O 8 and ThO 2 were found to be 0.14 and 0.15 respectively. The results are validated against the conventional wet chemical methods of analysis. (author)

  19. Pore Formation Process of Porous Ti3SiC2 Fabricated by Reactive Sintering

    Directory of Open Access Journals (Sweden)

    Huibin Zhang

    2017-02-01

    Full Text Available Porous Ti3SiC2 was fabricated with high purity, 99.4 vol %, through reactive sintering of titanium hydride (TiH2, silicon (Si and graphite (C elemental powders. The reaction procedures and the pore structure evolution during the sintering process were systematically studied by X-ray diffraction (XRD and scanning electron microscope (SEM. Our results show that the formation of Ti3SiC2 from TiH2/Si/C powders experienced the following steps: firstly, TiH2 decomposed into Ti; secondly, TiC and Ti5Si3 intermediate phases were generated; finally, Ti3SiC2 was produced through the reaction of TiC, Ti5Si3 and Si. The pores formed in the synthesis procedure of porous Ti3SiC2 ceramics are derived from the following aspects: interstitial pores left during the pressing procedure; pores formed because of the TiH2 decomposition; pores formed through the reactions between Ti and Si and Ti and C powders; and the pores produced accompanying the final phase synthesized during the high temperature sintering process.

  20. Fabricating Copper Nanotubes by Electrodeposition

    Science.gov (United States)

    Yang, E. H.; Ramsey, Christopher; Bae, Youngsam; Choi, Daniel

    2009-01-01

    Copper tubes having diameters between about 100 and about 200 nm have been fabricated by electrodeposition of copper into the pores of alumina nanopore membranes. Copper nanotubes are under consideration as alternatives to copper nanorods and nanowires for applications involving thermal and/or electrical contacts, wherein the greater specific areas of nanotubes could afford lower effective thermal and/or electrical resistivities. Heretofore, copper nanorods and nanowires have been fabricated by a combination of electrodeposition and a conventional expensive lithographic process. The present electrodeposition-based process for fabricating copper nanotubes costs less and enables production of copper nanotubes at greater rate.

  1. Experimental study of micro dimple fabrication based on laser shock processing

    Science.gov (United States)

    Li, Kangmei; Hu, Yongxiang; Yao, Zhenqiang

    2013-06-01

    Micro-dimple array has been generally considered as a valuable texture for sliding surfaces. It can improve lubrication and reduce wear by acting as reservoirs of lubricants and grinding debris. Laser shock processing (LSP) is an innovative process which can not only improve fatigue, corrosion and wearing resistance but also shape metallic parts accurately. In this study, a new process for the fabrication of micro dimples based on LSP was proposed, which was named as laser peen texturing (LPT). Experiments were performed on 2024 aluminum alloy, Oxygen-Free High Conductivity (OFHC) copper and SUS304 stainless steel to study the effects of processing parameters of LPT on surface integrity of the specimen. Surface morphology, micro hardness and microstructure of the micro dimples were investigated under various laser power densities, laser spot diameters and repeated shock numbers. It was found that the depth of the micro dimples induced by LPT is strongly dependent on material properties. The diameter, depth as well as aspect ratio of micro dimples were increased with the laser power density and the repeated shock number under the conditions in this study. But when the laser spot diameter changed, the variation laws of the diameter, depth and aspect ratio of the dimple were different from each other. The results of micro hardness measurements suggested that LPT is beneficial for the improvement of the micro hardness beneath the dimple. Grain refinement was found significantly on 2024 aluminum alloy and OFHC copper but not clearly on SUS304 stainless steel. Both the hardening effect and the grain refinement have close relationship with the depth of the micro dimple.

  2. Fabrication of ruthenium thin film and characterization of its chemical mechanical polishing process

    International Nuclear Information System (INIS)

    Chou, Yi-Sin; Yen, Shi-Chern; Jeng, King-Tsai

    2015-01-01

    The fabrication of Ru thin film is conducted on titanium (Ti)-based rotating disk electrodes (RDE) by electrodeposition and characteristics of its chemical mechanical polishing (CMP) are investigated to be employed for copper diffusion layer applications in various semiconductor-device interconnects. The electrodeposits obtained under different electrodeposition conditions are characterized using atomic force microscope (AFM) and field emission scanning electron microscope (FESEM). Experimental results indicate that the Ru electrodeposition exhibits a Tafel behavior with a 2e metal ion reduction process. Both exchange current density and cathodic transfer coefficient are determined. A quasi Koutecky–Levich analysis is proposed to analyze the electrodeposition processes under different applied current density conditions and the activation overpotentials together with electrodeposition rate constants are obtained. For Ru CMP operations, slurries containing metal-free 2wt% ammonium persulfate and 2wt% silica abrasive at various pH values are employed. Potentiodynamic polarization studies indicate that the corrosion current density varies in the presence of ammonia while the static etch rate remains low. Both chemical and mechanical effects are investigated and analyzed, and the CMP efficacy factors are obtained. - Highlights: • Ru electrodeposition is a 2e metal ion reduction process with Tafel behavior. • Ru electrodeposition on Ti RDE fits a quasi Koutecky–Levich equation. • Metal-free slurry is employed for CMP operation to avoid contamination. • The Ru CMP process is affected by the surface condition and the pH of slurry. • The CMP efficacy factor should be high in order to obtain a smooth surface

  3. Fabrication of ruthenium thin film and characterization of its chemical mechanical polishing process

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Yi-Sin [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Yen, Shi-Chern, E-mail: scyen@ntu.edu.tw [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Jeng, King-Tsai [Research Division I, TIER, 7F, No. 16-8, Dehuei St., Taipei 10461, Taiwan (China)

    2015-07-15

    The fabrication of Ru thin film is conducted on titanium (Ti)-based rotating disk electrodes (RDE) by electrodeposition and characteristics of its chemical mechanical polishing (CMP) are investigated to be employed for copper diffusion layer applications in various semiconductor-device interconnects. The electrodeposits obtained under different electrodeposition conditions are characterized using atomic force microscope (AFM) and field emission scanning electron microscope (FESEM). Experimental results indicate that the Ru electrodeposition exhibits a Tafel behavior with a 2e metal ion reduction process. Both exchange current density and cathodic transfer coefficient are determined. A quasi Koutecky–Levich analysis is proposed to analyze the electrodeposition processes under different applied current density conditions and the activation overpotentials together with electrodeposition rate constants are obtained. For Ru CMP operations, slurries containing metal-free 2wt% ammonium persulfate and 2wt% silica abrasive at various pH values are employed. Potentiodynamic polarization studies indicate that the corrosion current density varies in the presence of ammonia while the static etch rate remains low. Both chemical and mechanical effects are investigated and analyzed, and the CMP efficacy factors are obtained. - Highlights: • Ru electrodeposition is a 2e metal ion reduction process with Tafel behavior. • Ru electrodeposition on Ti RDE fits a quasi Koutecky–Levich equation. • Metal-free slurry is employed for CMP operation to avoid contamination. • The Ru CMP process is affected by the surface condition and the pH of slurry. • The CMP efficacy factor should be high in order to obtain a smooth surface.

  4. Introduction of the new process and quality control methods in fuel fabrication at Siemens/ANF

    International Nuclear Information System (INIS)

    Rogge, K.T.; Fickers, H.H.; Doerr, W.

    2000-01-01

    The central point of ANFs quality philosophy is the process of continuous improvements. With respect to the causes of defects and the efforts needed for elimination, the importance of continuous improvements is evident. In most of the cases, defects are caused in the initial stages of a product but the majority of the problems will be only detected during fabrication and inspection and in the worst case when the product is already in use. Goal of the improvement process is to assure a high product quality. Therefore, the efforts are focused on robust and centered processes. A reasonable quality planning is the basis for achieving and maintaining the quality targets. Quality planning includes prefabrication studies, in-process inspections and final inspections. The inspections provide a large amount of various quality data, process parameters as well as product proper-ties. Key data will be defined and subjected to a statistical analysis. In view of the effectiveness of the analysis, it is important, that the process parameters which influence the characteristics of the product are well known and that appropriate methods for data evaluation and visualization will be used. Main approach of the data visualization is to obtain a tighter control of the product properties and to improve the process robustness by implementation of defined improvements. With respect to the fuel safety and fuel performance, the presentation shows for typical product quality characteristics some examples of visualized quality data. The examples includes the integrity of the pellet column (rod scanner results), the spring force of PWR spacers (critical characteristic with regard to rod fretting) and the spacer intersection weld size (thermo-hydraulic fuel bundle behaviour). The presentation also includes an example for the statistical process control, the in-line surveillance of the fuel rod weld parameters which assures the integrity of the welds within tight tolerance ranges. The quality

  5. Novel Bonding Process for CBW Protective Electrospun Fabric Laminates Phase 2

    Science.gov (United States)

    2011-12-01

    thane Foam Knit Polyester Fabric Woven C otton Fabric Army C hemical Protective Uniform Polyacrylonitrile Electrospun Membrane Microporous PTFE...deposit more material per unit time, quickly building up an insulating layer beneath the nozzle tip. Again this pushes the fiber deposit outward to

  6. Estimation of radiation exposure for hot cell workers during DUPIC fuel fabrication process in IMEF M6 cell

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Yong Bum; Baek, Sang Yeol; Park, Dae Kyu

    1997-06-01

    DUPIC(Direct Use of spent PWR fuel In CANDU) fuel cycle to utilize the PWR spent fuel in fabricating CANDU fuel, which is expected to reduce not only the total amount of high level radwastes but the energy sources is underway. IMEF M6 cell to be used as DUPIC fuel fabrication facility is refurbished and retrofitted. Radiation exposure for the hot cell worker by dispersion of the radioactive materials during the DUPIC process were estimated on the basis of the hot cell design information. According to the estimation results, DUPIC fuel fabrication process could be run without any severe impacts to the hot cell workers when the ventilation system to maintain the sufficient pressure difference between hotcell and working area and radiation monitoring system is supports the hot cell operation properly. (author). 4 tabs., 6 figs.

  7. A three-dimensional hierarchical collagen scaffold fabricated by a combined solid freeform fabrication (SFF) and electrospinning process to enhance mesenchymal stem cell (MSC) proliferation

    International Nuclear Information System (INIS)

    Ahn, SeungHyun; Kim, GeunHyung; Koh, Young Ho

    2010-01-01

    Collagen has the advantage of being very similar to macromolecular substances that can be recognized and metabolized in the biological environment. Although the natural material has superior property for this purpose, its use to fabricate reproducible and pore-structure-controlled 3D structures, which are designed to allow the entry of sufficient cells and the easy diffusion of nutrients, has been limited due to its low processability. Here, we propose a hybrid technology that combines a cryogenic plotting system with an electrospinning process. Using this technique, an easily pore-size-controllable hierarchical 3D scaffold consisting of micro-sized highly porous collagen strands and micro/nano-sized collagen fibers was fabricated. The pore structure of the collagen scaffold was controlled by the collagen micro/nanofibers, which were layered in the scaffold. The hierarchical scaffolds were characterized with respect to initial cell attachment and proliferation of bone marrow-derived mesenchymal stem cells within the scaffolds. The hierarchical scaffold exhibited incredibly enhanced initial cell attachment and cell compactness between pores of the plotted scaffold relative to the normally designed 3D collagen scaffold.

  8. Processing and Characterisation of the Copper Treated Polylactic Acid and Cotton Fabrics: Thermophysiological Comfort Properties

    Directory of Open Access Journals (Sweden)

    Muhammet UZUN

    2014-04-01

    Full Text Available The main objective of this study is to develop a novel copper treatment method and characterise the effect of treatment on the thermophysiological comfort properties of the treated fabrics. It is also aimed to analyse and evaluate the thermophysiological properties of the PLA fabrics. The study was conducted by using polylactic acid (PLA, cotton and their blend yarns. The knitted fabrics, single pique, were made from these yarns by using weft knitting machine. The fabrics were treated with two copper solution concentrations (5 % and 10 % at 20 minutes ultrasonic energy. The results show that the treatment has a critical effect on the tested fabrics in terms of thermal conductivity, thermal resistance, thermal absorbtivity, water vapour permeability, and heat loss. The results also clearly demonstrated that the PLA fabric was successfully treated with the copper solution, and the coated fabrics showed significant change as compared to their untreated counterparts in terms of tested parameters.DOI: http://dx.doi.org/10.5755/j01.ms.20.1.1853

  9. Highly Magneto-Responsive Elastomeric Films Created by a Two-Step Fabrication Process

    KAUST Repository

    Marchi, Sophie

    2015-08-24

    An innovative method for the preparation of elastomeric magnetic films with increased magneto-responsivity is presented. Polymeric films containing aligned magnetic microchains throughout their thickness are formed upon the magnetophoretic transport and assembly of microparticles during polymer curing. The obtained films are subsequently magnetized at a high magnetic field of 3 T directed parallel to the orientation of the microchains. We prove that the combination of both alignment of the particles along a favorable direction during curing and the subsequent magnetization of the solid films induces an impressive increase of the films’ deflection. Specifically, the displacements reach few millimeters, up to 85 times higher than those of the nontreated films with the same particle concentration. Such a process can improve the performance of the magnetic films without increasing the amount of magnetic fillers and, thus, without compromising the mechanical properties of the resulting composites. The proposed method can be used for the fabrication of magnetic films suitable as components in systems in which large displacements at relatively low magnetic fields are required, such as sensors and drug delivery or microfluidic systems, especially where remote control of valves is requested to achieve appropriate flow and mixing of liquids.

  10. A novel fabrication method of carbon electrodes using 3D printing and chemical modification process.

    Science.gov (United States)

    Tian, Pan; Chen, Chaoyang; Hu, Jie; Qi, Jin; Wang, Qianghua; Chen, Jimmy Ching-Ming; Cavanaugh, John; Peng, Yinghong; Cheng, Mark Ming-Cheng

    2017-11-23

    Three-dimensional (3D) printing is an emerging technique in the field of biomedical engineering and electronics. This paper presents a novel biofabrication method of implantable carbon electrodes with several advantages including fast prototyping, patient-specific and miniaturization without expensive cleanroom. The method combines stereolithography in additive manufacturing and chemical modification processes to fabricate electrically conductive carbon electrodes. The stereolithography allows the structures to be 3D printed with very fine resolution and desired shapes. The resin is then chemically modified to carbon using pyrolysis to enhance electrochemical performance. The electrochemical characteristics of 3D printing carbon electrodes are assessed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The specific capacitance of 3D printing carbon electrodes is much higher than the same sized platinum (Pt) electrode. In-vivo electromyography (EMG) recording, 3D printing carbon electrodes exhibit much higher signal-to-noise ratio (40.63 ± 7.73) than Pt electrodes (14.26 ± 6.83). The proposed biofabrication method is envisioned to enable 3D printing in many emerging applications in biomedical engineering and electronics.

  11. Highly Magneto-Responsive Elastomeric Films Created by a Two-Step Fabrication Process

    KAUST Repository

    Marchi, Sophie; Casu, Alberto; Bertora, Franco; Athanassiou, Athanassia; Fragouli, Despina

    2015-01-01

    An innovative method for the preparation of elastomeric magnetic films with increased magneto-responsivity is presented. Polymeric films containing aligned magnetic microchains throughout their thickness are formed upon the magnetophoretic transport and assembly of microparticles during polymer curing. The obtained films are subsequently magnetized at a high magnetic field of 3 T directed parallel to the orientation of the microchains. We prove that the combination of both alignment of the particles along a favorable direction during curing and the subsequent magnetization of the solid films induces an impressive increase of the films’ deflection. Specifically, the displacements reach few millimeters, up to 85 times higher than those of the nontreated films with the same particle concentration. Such a process can improve the performance of the magnetic films without increasing the amount of magnetic fillers and, thus, without compromising the mechanical properties of the resulting composites. The proposed method can be used for the fabrication of magnetic films suitable as components in systems in which large displacements at relatively low magnetic fields are required, such as sensors and drug delivery or microfluidic systems, especially where remote control of valves is requested to achieve appropriate flow and mixing of liquids.

  12. Recent Advances in the Fabrication of Membranes Containing “Ion Pairs” for Nanofiltration Processes

    Directory of Open Access Journals (Sweden)

    Yan-Li Ji

    2017-12-01

    Full Text Available In the face of serious environmental pollution and water scarcity problems, the membrane separation technique, especially high efficiency, low energy consumption, and environmental friendly nanofiltration, has been quickly developed. Separation membranes with high permeability, good selectivity, and strong antifouling properties are critical for water treatment and green chemical processing. In recent years, researchers have paid more and more attention to the development of high performance nanofiltration membranes containing “ion pairs”. In this review, the effects of “ion pairs” characteristics, such as the super-hydrophilicity, controllable charge character, and antifouling property, on nanofiltration performances are discussed. A systematic survey was carried out on the various approaches and multiple regulation factors in the fabrication of polyelectrolyte complex membranes, zwitterionic membranes, and charged mosaic membranes, respectively. The mass transport behavior and antifouling mechanism of the membranes with “ion pairs” are also discussed. Finally, we present a brief perspective on the future development of advanced nanofiltration membranes with “ion pairs”.

  13. Fabrication of micro-hollow fiber by electrospinning process in near-critical carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Koichi; Wahyudiono,; Kanda, Hideki; Goto, Motonobu, E-mail: mgoto@nuce.nagoya-u.ac.jp [Department of Chemical Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603 (Japan); Machmudah, Siti [Department of Chemical Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan and Department of Chemical Engineering, Sepuluh Nopember Institute of Technology, Kampus ITS Sukolilo, Surabaya 60111 (Indonesia); Okubayashi, Satoko [Department of Advanced Fibro-Science, Kyoto Institute of Technology, Kyoto 606-8585, Japan (Japan); Fukuzato, Ryuichi [SCF Techno-Link, Inc., Ashiya 659-0033 (Japan)

    2014-02-24

    Electrospinning is a simple technique that has gained much attention because of its capability and feasibility in the fabrication of large quantities of fibers from polymer with diameters ranging in nano-microscale. These fibers provided high surface area to volume ratios, and it was of considerable interest for many applications, such as nanoparticle carriers in controlled release, scaffolds in tissue engineering, wound dressings, military wear with chemical and biological toxin-resistance, nanofibrous membranes or filters, and electronic sensors. Recently there has been a great deal of progress in the potential applications of hollow fibers in microfluids, photonics, and energy storage. In this work, electrospinning was conducted under high-pressure carbon dioxide (CO{sub 2}) to reduce the viscosity of polymer solution. The experiments were conducted at 313 K and ∼8.0 MPa. Polymer solution containing 5 wt% polymers which prepared in dichloromethane (DCM) with polyvinylpyrrolidone (PVP) to poly-L-lactic acid (PLLA) ratio 80:20 was used as a feed solution. The applied voltage was 15 kV and the distance of nozzle and collector was 8 cm. The morphology and structure of the fibers produced were observed using scanning electron microscopy (SEM). Under pressurized CO{sub 2}, PVP electrospun was produced without bead formation with diameter ranges of 608.50 - 7943.19 nm. These behaviors hold the potential to considerably improve devolatilization electrospinning processes.

  14. Microstructure Characterization of Al-TiC Surface Composite Fabricated by Friction Stir Processing

    Science.gov (United States)

    Shiva, Apireddi; Cheepu, Muralimohan; Charan Kantumuchu, Venkata; Kumar, K. Ravi; Venkateswarlu, D.; Srinivas, B.; Jerome, S.

    2018-03-01

    Titanium carbide (TiC) is an exceedingly hard and wear refractory ceramic material. The surface properties of the material are very important and the corrosion, wear and fatigue resistance behaviour determines its ability and applications. It is necessary to modify the surface properties of the materials to enhance their performance. The present work aims on developing a new surface composite using commercially pure aluminum and TiC reinforcement powder with a significant fabrication technique called friction stir processing (FSP). The metal matrix composite of Al/TiC has been developed without any defects formation to investigate the particles distribution in the composite, microstructural changes and mechanical properties of the material. The microstructural observations exhibited that the grain refinement in the nugget compared to the base metal and FSP without TiC particles. The developed composite properties showed substantial improvement in micro-hardness, friction factor, wear resistance and microstructural characteristics in comparison to parent metal. On the other side, the ductility of the composite specimens was diminished over the substrate. The FSPed specimens were characterised using X-ray diffraction technique and revealed that the formation of AlTi compounds and the presence of Ti phases in the matrix. The microstructures of the samples illustrated the uniform distribution of particles in the newly developed metal matrix composite.

  15. Fast-dissolving core-shell composite microparticles of quercetin fabricated using a coaxial electrospray process.

    Directory of Open Access Journals (Sweden)

    Chen Li

    Full Text Available This study reports on novel fast-dissolving core-shell composite microparticles of quercetin fabricated using coaxial electrospraying. A PVC-coated concentric spinneret was developed to conduct the electrospray process. A series of analyses were undertaken to characterize the resultant particles in terms of their morphology, the physical form of their components, and their functional performance. Scanning and transmission electron microscopies revealed that the microparticles had spherical morphologies with clear core-shell structure visible. Differential scanning calorimetry and X-ray diffraction verified that the quercetin active ingredient in the core and sucralose and sodium dodecyl sulfate (SDS excipients in the shell existed in the amorphous state. This is believed to be a result of second-order interactions between the components; these could be observed by Fourier transform infrared spectroscopy. In vitro dissolution and permeation studies showed that the microparticles rapidly released the incorporated quercetin within one minute, and had permeation rates across the sublingual mucosa around 10 times faster than raw quercetin.

  16. Wire rod coating process of gas diffusion layers fabrication for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, A.M.; Sadananda, S.; Parker, D.; Munukutla, L. [Electronic Systems Department, Arizona State University, 7001 E Williams Field Road, Mesa, AZ 85212 (United States); Wertz, J. [Hollingsworth and Vose Co., A.K. Nicholson Research Lab, 219 Townsend Road West Groton, MA 01472 (United States); Thommes, M. [Quantachrome Instruments, 1900 Corporate Drive, Boynton Beach, FL 33426 (United States)

    2008-03-15

    Gas diffusion layers (GDLs) were fabricated using non-woven carbon paper as a macro-porous layer substrate developed by Hollingsworth and Vose Company. A commercially viable coating process was developed using wire rod for coating micro-porous layer by a single pass. The thickness as well as carbon loading in the micro-porous layer was controlled by selecting appropriate wire thickness of the wire rod. Slurry compositions with solid loading as high as 10 wt.% using nano-chain and nano-fiber type carbons were developed using dispersion agents to provide cohesive and homogenous micro-porous layer without any mud-cracking. The surface morphology, wetting characteristics and pore size distribution of the wire rod coated GDLs were examined using FESEM, Goniometer and Hg porosimetry, respectively. The GDLs were evaluated in single cell PEMFC under various operating conditions (temperature and RH) using hydrogen and air as reactants. It was observed that the wire rod coated micro-porous layer with 10 wt.% nano-fibrous carbon based GDLs showed the highest fuel cell performance at 85 C using H{sub 2} and air at 50% RH, compared to all other compositions. (author)

  17. Fabrication process and electromagnetic wave absorption characterization of a CNT/Ni/epoxy nanocomposite.

    Science.gov (United States)

    Ryu, Seongwoo; Mo, Chan Bin; Lee, Haeshin; Hong, Soon Hyung

    2013-11-01

    Since carbon nanotube (CNT) was first discovered in 1991, it has been considered as a viable type of conductive filler for electromagnetic wave absorption materials in the GHz range. In this paper, pearl-necklace-structure CNT/Ni nano-powders were fabricated by a polyol process as conductive fillers. Compared to synthesized CNT, pearl-necklace Ni-decorated CNT increased the electrical conductivity by an order of 1 due to the enhancement of the Ni-conductive network. Moreover, the decorated Ni particles prevented the agglomeration of CNTs by counterbalancing the Van der Walls interaction between the CNTs. A CNT/Ni nanocomposite showed a homogeneous dispersion in an epoxy-based matrix. This enhanced physical morphology and electrical properties lead to an increase in the loss tangent and reflection loss in the CNT/Ni/Epoxy nanocomposite compared to these characteristics of a CNT/Epoxy nanocomposite in range of 8-12 GHz. The electromagnetic wave absorption properties of CNT/Ni/epoxy nanocomposites will provide enormous opportunities for electronic applications where lightweight EMI shielding or electro-magnetic wave absorption properties are necessary.

  18. Evaluation of mechanical properties for spherical magnetic regenerator materials fabricated by rapid solidification process

    International Nuclear Information System (INIS)

    Okamura, M.; Sori, N.; Saito, A.

    1997-01-01

    Various magnetic regenerator materials, such as Er 3 Ni, Er 3 Co and ErNi, are fabricated in the form of a spherical particle by a rapid solidification process. 4 K level refrigeration has been obtained by a GM refrigerator using these materials. However, the magnetic regenerator materials are considered brittle, as they are intermetallic compounds. It is important to evaluate the mechanical properties of these materials to confirm reliability as a regenerator material. In this paper, experimental results of compression and vibration tests for magnetic regenerator materials are described. The technical point of this study is to use spherical particles as test samples. The compressive stress of 20 MPa was applied to these spherical particles and no fractured spheres were observed. Similarly, no fractured spheres were found after the vibration test, in which the maximum acceleration was 30 X 9.8 m/s 2 and the number of vibration times was 1 X 10 6 , insofar as there was no room to stir spherical particles in a regenerator. In practice, the reliability of magnetic regenerator materials has been confirmed by a long-run test of 7,000 h in a usual GM refrigerator

  19. 3-Dimensional Microorifice Fabricated Utilizing Single Undercut Etching Process for Producing Ultrasmall Water and Chitosan Droplets

    Directory of Open Access Journals (Sweden)

    Che-Hsin Lin

    2013-01-01

    Full Text Available This research reports a microfluidic device for producing small droplets via a microorifice and a T-junction structure. The orifice is fabricated using an isotropic undercut etching process of amorphous glass materials. Since the equivalent hydraulic diameter of the produced microorifice can be as small as 1.1 μm, the microdevice can easily produce droplets of the size smaller than 10 μm in diameter. In addition, a permanent hydrophobic coating technique is also applied to modify the main channel to be hydrophobic to enhance the formation of water-based droplets. Experimental results show that the developed microfluidic chip with the ultrasmall orifice can steadily produce water-in-oil droplets with different sizes. Uniform water-in-oil droplets with the size from 60 μm to 6.5 μm in diameter can be formed by adjusting the flow rate ratio of the continuous phase and the disperse phases from 1 to 7. Moreover, curable linear polymer of chitosan droplets with the size smaller than 100 μm can also be successfully produced using the developed microchip device. The microfluidic T-junction with a micro-orifice developed in the present study provides a simple yet efficient way to produce various droplets of different sizes.

  20. Fabrication of micro-hollow fiber by electrospinning process in near-critical carbon dioxide

    International Nuclear Information System (INIS)

    Okamoto, Koichi; Wahyudiono,; Kanda, Hideki; Goto, Motonobu; Machmudah, Siti; Okubayashi, Satoko; Fukuzato, Ryuichi

    2014-01-01

    Electrospinning is a simple technique that has gained much attention because of its capability and feasibility in the fabrication of large quantities of fibers from polymer with diameters ranging in nano-microscale. These fibers provided high surface area to volume ratios, and it was of considerable interest for many applications, such as nanoparticle carriers in controlled release, scaffolds in tissue engineering, wound dressings, military wear with chemical and biological toxin-resistance, nanofibrous membranes or filters, and electronic sensors. Recently there has been a great deal of progress in the potential applications of hollow fibers in microfluids, photonics, and energy storage. In this work, electrospinning was conducted under high-pressure carbon dioxide (CO 2 ) to reduce the viscosity of polymer solution. The experiments were conducted at 313 K and ∼8.0 MPa. Polymer solution containing 5 wt% polymers which prepared in dichloromethane (DCM) with polyvinylpyrrolidone (PVP) to poly-L-lactic acid (PLLA) ratio 80:20 was used as a feed solution. The applied voltage was 15 kV and the distance of nozzle and collector was 8 cm. The morphology and structure of the fibers produced were observed using scanning electron microscopy (SEM). Under pressurized CO 2 , PVP electrospun was produced without bead formation with diameter ranges of 608.50 - 7943.19 nm. These behaviors hold the potential to considerably improve devolatilization electrospinning processes

  1. Experimental and Numerical Simulation Research on Micro-Gears Fabrication by Laser Shock Punching Process

    Directory of Open Access Journals (Sweden)

    Huixia Liu

    2015-07-01

    Full Text Available The aim of this paper is to fabricate micro-gears via laser shock punching with Spitlight 2000 Nd-YAG Laser, and to discuss effects of process parameters namely laser energy, soft punch properties and blank-holder on the quality of micro-gears deeply. Results show that dimensional accuracy is the best shocked at 1690 mJ. Tensile fracture instead of shear fracture is the main fracture mode under low laser energy. The soft punch might cause damage to punching quality when too high energy is employed. Appropriate thickness and hardness of soft punch is necessary. Silica gel with 200 µm in thickness is beneficial to not only homogenize energy but also propagate the shock wave. Polyurethane films need more energy than silica gel with the same thickness. In addition, blank-holders with different weight levels are used. A heavier blank-holder is more beneficial to improve the cutting quality. Furthermore, the simulation is conducted to reveal typical stages and the different deformation behavior under high and low pulse energy. The simulation results show that the fracture mode changes under lower energy.

  2. Fabrication of gas turbine water-cooled composite nozzle and bucket hardware employing plasma spray process

    Science.gov (United States)

    Schilke, Peter W.; Muth, Myron C.; Schilling, William F.; Rairden, III, John R.

    1983-01-01

    In the method for fabrication of water-cooled composite nozzle and bucket hardware for high temperature gas turbines, a high thermal conductivity copper alloy is applied, employing a high velocity/low pressure (HV/LP) plasma arc spraying process, to an assembly comprising a structural framework of copper alloy or a nickel-based super alloy, or combination of the two, and overlying cooling tubes. The copper alloy is plamsa sprayed to a coating thickness sufficient to completely cover the cooling tubes, and to allow for machining back of the copper alloy to create a smooth surface having a thickness of from 0.010 inch (0.254 mm) to 0.150 inch (3.18 mm) or more. The layer of copper applied by the plasma spraying has no continuous porosity, and advantageously may readily be employed to sustain a pressure differential during hot isostatic pressing (HIP) bonding of the overall structure to enhance bonding by solid state diffusion between the component parts of the structure.

  3. Fabrication of Copper-Rich Cu-Al Alloy Using the Wire-Arc Additive Manufacturing Process

    Science.gov (United States)

    Dong, Bosheng; Pan, Zengxi; Shen, Chen; Ma, Yan; Li, Huijun

    2017-12-01

    An innovative wire-arc additive manufacturing (WAAM) process is used to fabricate Cu-9 at. pct Al on pure copper plates in situ, through separate feeding of pure Cu and Al wires into a molten pool, which is generated by the gas tungsten arc welding (GTAW) process. After overcoming several processing problems, such as opening the deposition molten pool on the extremely high-thermal conductive copper plate and conducting the Al wire into the molten pool with low feed speed, the copper-rich Cu-Al alloy was successfully produced with constant predesigned Al content above the dilution-affected area. Also, in order to homogenize the as-fabricated material and improve the mechanical properties, two further homogenization heat treatments at 1073 K (800 °C) and 1173 K (900 °C) were applied. The material and mechanical properties of as-fabricated and heat-treated samples were compared and analyzed in detail. With increased annealing temperatures, the content of precipitate phases decreased and the samples showed gradual improvements in both strength and ductility with little variation in microstructures. The present research opened a gate for in-situ fabrication of Cu-Al alloy with target chemical composition and full density using the additive manufacturing process.

  4. Development of advanced spent fuel management process. The fabrication and oxidation behavior of simulated metallized spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ro, Seung Gy; Shin, Y.J.; You, G.S.; Joo, J.S.; Min, D.K.; Chun, Y.B.; Lee, E.P.; Seo, H.S.; Ahn, S.B

    1999-03-01

    The simulated metallized spent fuel ingots were fabricated and evaluated the oxidation rates and the activation energies under several temperature conditions to develop an advanced spent fuel management process. It was also checked the alloying characteristics of the some elements with metal uranium. (Author). 3 refs., 1 tab., 36 figs.

  5. Fabrication of nano-sized magnetic tunnel junctions using lift-off process assisted by atomic force probe tip.

    Science.gov (United States)

    Jung, Ku Youl; Min, Byoung-Chul; Ahn, Chiyui; Choi, Gyung-Min; Shin, Il-Jae; Park, Seung-Young; Rhie, Kungwon; Shin, Kyung-Ho

    2013-09-01

    We present a fabrication method for nano-scale magnetic tunnel junctions (MTJs), employing e-beam lithography and lift-off process assisted by the probe tip of atomic force microscope (AFM). It is challenging to fabricate nano-sized MTJs on small substrates because it is difficult to use chemical mechanical planarization (CMP) process. The AFM-assisted lift-off process enables us to fabricate nano-sized MTJs on small substrates (12.5 mm x 12.5 mm) without CMP process. The e-beam patterning has been done using bi-layer resist, the poly methyl methacrylate (PMMA)/ hydrogen silsesquioxane (HSQ). The PMMA/HSQ resist patterns are used for both the etch mask for ion milling and the self-aligned mask for top contact formation after passivation. The self-aligned mask buried inside a passivation oxide layer, is readily lifted-off by the force exerted by the probe tip. The nano-MTJs (160 nm x 90 nm) fabricated by this method show clear current-induced magnetization switching with a reasonable TMR and critical switching current density.

  6. Innovative monitoring of 3D warp interlock fabric during forming process

    Science.gov (United States)

    Dufour, C.; Jerkovic, I.; Wang, P.; Boussu, F.; Koncar, V.; Soulat, D.; Grancaric, A. M.; Pineau, P.

    2017-10-01

    The final geometry of 3D warp interlock fabric needs to be check during the 3D forming step to ensure the right locations of warp and weft yarns inside the final structure. Thus, a new monitoring approach has been proposed based on sensor yarns located in the fabric thickness. To ensure the accuracy of measurements, the observation of the surface deformation of the 3D warp interlock fabric has been joined to the sensor yarns measurements. At the end, it has been revealed a good correlation between strain measurement done globally by camera and locally performed by sensor yarns.

  7. Fabrication of microfluidic mixers with varying topography in glass using the powder-blasting process

    International Nuclear Information System (INIS)

    Sayah, Abdeljalil; Thivolle, Pierre-Antoine; Parashar, Virendra K; Gijs, Martin A M

    2009-01-01

    The powder-blasting method is used to fabricate structures with a three-dimensional topography in glass using elastomeric masks. The relation between the mask opening width and the erosion depth is exploited to fabricate microstructures with varying depth in a single micropatterning step. As an application, planar three-dimensional micro-mixers were fabricated, which consist of a repeating convergent microfluidic nozzle structure. Three different designs of the micro-mixers were considered. The mixing of co-flowing laminar streams results from the generation of multiple vortices at the exit of the different convergent nozzles

  8. Has patients' involvement in the decision-making process changed over time?

    NARCIS (Netherlands)

    Brink-Muinen, A. van den; Dulmen, A.M. van; Haes, H.C.J.M. de; Visser, A.P.; Schellevis, F.G.; Bensing, J.M.

    2006-01-01

    Objective: To get insight into the changes over time of patients' involvement in the decision-making process, and into the factors contributing to patients' involvement and general practitioners' (GPs) communication related to the Medical Treatment Act (MTA) Issues: information about treatment,

  9. Has patients’ involvement in the decision-making process changed over time?

    NARCIS (Netherlands)

    Brink-Muinen, A. van den; Dulmen, S.M. van; Haes, H.C.J.M. de; Visser, A.P.; Schellevis, F.G.; Bensing, J.

    2006-01-01

    Objective To get insight into the changes over time of patients’ involvement in the decision-making process, and into the factors contributing to patients’ involvement and general practitioners’ (GPs) communication related to the Medical Treatment Act (MTA) issues: information about treatment,

  10. Influence of Stored Strain on Fabricating of Al/SiC Nanocomposite by Friction Stir Processing

    Science.gov (United States)

    Khorrami, M. Sarkari; Kazeminezhad, M.; Kokabi, A. H.

    2015-05-01

    In this work, 1050 aluminum (Al) sheets were annealed and severely deformed by 1, 2, and 3 passes of constrained groove pressing process to obtain the various initial stored strain values of 0, 1.16, 2.32, and 3.48, respectively. Friction stir processing (FSP) was then applied using SiC nanoparticles to fabricate Al/SiC nanocomposite with approximately 1.5 vol pct reinforced particles. Microstructural examinations revealed that an increase in the initial stored strain of the base metal led to the formation of finer grain structure after 1 pass of FSP. The finer grain structure occurred in the stir zone where a sufficient amount of nanoparticles with a relatively proper distribution existed. However, the initial stored strain value had a contrary influence in the regions with low volume fraction of nanoparticles. In fact, more stored strain in the base metal provided more driving force for both nucleation and grain growth of newly recrystallized grains at the stir zone. Pinning effect of well-distributed nanoparticles could effectively retard grain growth leading to the formation of very fine grain structure. Also it was observed that the initial stored strain values did not have impressive rule in the microstructural evolutions at the stir zone during the second and third FSP passes signifying that all of the stored energy in the base metal would be released after 1 pass of FSP. The results obtained with microhardness measurement at the stir zone were fairly in agreement with those achieved by the microstructure assessments.

  11. Fabricating process of hollow out-of-plane Ni microneedle arrays and properties of the integrated microfluidic device

    Science.gov (United States)

    Zhu, Jun; Cao, Ying; Wang, Hong; Li, Yigui; Chen, Xiang; Chen, Di

    2013-07-01

    Although microfluidic devices that integrate microfluidic chips with hollow out-of-plane microneedle arrays have many advantages in transdermal drug delivery applications, difficulties exist in their fabrication due to the special three-dimensional structures of hollow out-of-plane microneedles. A new, cost-effective process for the fabrication of a hollow out-of-plane Ni microneedle array is presented. The integration of PDMS microchips with the Ni hollow microneedle array and the properties of microfluidic devices are also presented. The integrated microfluidic devices provide a new approach for transdermal drug delivery.

  12. Enhanced Fabrication Processes Development for High Actuator Count Deformable Mirrors, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design and fabricate a MEMS micromirror array consisting of 1021 ultra-flat, close-packed hexagonal mirror elements, each capable of 6mrad of tip and...

  13. Fabrication Process for Machined and Shrink-Fitted Impactor-Type Liners for the LOS Alamos Hedp Program

    Science.gov (United States)

    Randolph, B.

    2004-11-01

    Composite liners have been fabricated for the Los Alamos liner-driven High Energy Density Physics (HEDP) experiments using impactors formed by physical vapor deposition, and by machining and shrink fitting. Chemical vapor deposition has been proposed for some ATLAS liner applications. This paper describes the processes used to fabricate machined and shrink-fitted impactors; these processes have been used for copper impactors in 1100 aluminum liners and for 6061 T-6 aluminum impactors in 1100 aluminum liners. The most successful processes have been largely empirically developed and rely upon a combination of shrink-fitting and light press fitting. The processes used to date will be described along with some considerations for future composite liners for the HEDP Program.

  14. High-throughput fabrication of micrometer-sized compound parabolic mirror arrays by using parallel laser direct-write processing

    International Nuclear Information System (INIS)

    Yan, Wensheng; Gu, Min; Cumming, Benjamin P

    2015-01-01

    Micrometer-sized parabolic mirror arrays have significant applications in both light emitting diodes and solar cells. However, low fabrication throughput has been identified as major obstacle for the mirror arrays towards large-scale applications due to the serial nature of the conventional method. Here, the mirror arrays are fabricated by using a parallel laser direct-write processing, which addresses this barrier. In addition, it is demonstrated that the parallel writing is able to fabricate complex arrays besides simple arrays and thus offers wider applications. Optical measurements show that each single mirror confines the full-width at half-maximum value to as small as 17.8 μm at the height of 150 μm whilst providing a transmittance of up to 68.3% at a wavelength of 633 nm in good agreement with the calculation values. (paper)

  15. Process Optimization of Eco-Friendly Flame Retardant Finish for Cotton Fabric: a Response Surface Methodology Approach

    Science.gov (United States)

    Yasin, Sohail; Curti, Massimo; Behary, Nemeshwaree; Perwuelz, Anne; Giraud, Stephane; Rovero, Giorgio; Guan, Jinping; Chen, Guoqiang

    The n-methylol dimethyl phosphono propionamide (MDPA) flame retardant compounds are predominantly used for cotton fabric treatments with trimethylol melamine (TMM) to obtain better crosslinking and enhanced flame retardant properties. Nevertheless, such treatments are associated with a toxic issue of cancer-causing formaldehyde release. An eco-friendly finishing was used to get formaldehyde-free fixation of flame retardant to the cotton fabric. Citric acid as a crosslinking agent along with the sodium hypophosphite as a catalyst in the treatment was utilized. The process parameters of the treatment were enhanced for optimized flame retardant properties, in addition, low mechanical loss to the fabric by response surface methodology using Box-Behnken statistical design experiment methodology was achieved. The effects of concentrations on the fabric’s properties (flame retardancy and mechanical properties) were evaluated. The regression equations for the prediction of concentrations and mechanical properties of the fabric were also obtained for the eco-friendly treatment. The R-squared values of all the responses were above 0.95 for the reagents used, indicating the degree of relationship between the predicted values by the Box-Behnken design and the actual experimental results. It was also found that the concentration parameters (crosslinking reagents and catalysts) in the treatment formulation have a prime role in the overall performance of flame retardant cotton fabrics.

  16. Classification of processes involved in sharing individual participant data from clinical trials.

    Science.gov (United States)

    Ohmann, Christian; Canham, Steve; Banzi, Rita; Kuchinke, Wolfgang; Battaglia, Serena

    2018-01-01

    Background: In recent years, a cultural change in the handling of data from research has resulted in the strong promotion of a culture of openness and increased sharing of data. In the area of clinical trials, sharing of individual participant data involves a complex set of processes and the interaction of many actors and actions. Individual services/tools to support data sharing are available, but what is missing is a detailed, structured and comprehensive list of processes/subprocesses involved and tools/services needed. Methods : Principles and recommendations from a published data sharing consensus document are analysed in detail by a small expert group. Processes/subprocesses involved in data sharing are identified and linked to actors and possible services/tools. Definitions are adapted from the business process model and notation (BPMN) and applied in the analysis. Results: A detailed and comprehensive list of individual processes/subprocesses involved in data sharing, structured according to 9 main processes, is provided. Possible tools/services to support these processes/subprocesses are identified and grouped according to major type of support. Conclusions: The list of individual processes/subprocesses and tools/services identified is a first step towards development of a generic framework or architecture for sharing of data from clinical trials. Such a framework is strongly needed to give an overview of how various actors, research processes and services could form an interoperable system for data sharing.

  17. Fabrication of micro- and nano-structured materials using mask-less processes

    International Nuclear Information System (INIS)

    Roy, Sudipta

    2007-01-01

    Micro- and nano-scale devices are used in electronics, micro-electro- mechanical, bio-analytical and medical components. An essential step for the fabrication of such small scale devices is photolithography. Photolithography requires a master mask to transfer micrometre or sub-micrometre scale patterns onto a substrate. The requirement of a physical, rigid mask can impede progress in applications which require rapid prototyping, flexible substrates, multiple alignment and 3D fabrication. Alternative technologies, which do not require the use of a physical mask, are suitable for these applications. In this paper mask-less methods of micro- and nano-scale fabrication have been discussed. The most common technique, which is the laser direct imaging (LDI), technique has been applied to fabricate micrometre scale structures on printed circuit boards, glass and epoxy. LDI can be combined with chemical methods to deposit metals, inorganic materials as well as some organic entities at the micrometre scale. Inkjet technology can be used to fabricate micrometre patterns of etch resists, organic transistors as well as arrays for bioanalysis. Electrohydrodynamic atomisation is used to fabricate micrometre scale ceramic features. Electrochemical methodologies offer a variety of technical solutions for micro- and nano-fabrication owing to the fact that electron charge transfer can be constrained to a solid-liquid interface. Electrochemical printing is an adaptation of inkjet printing which can be used for rapid prototyping of metallic circuits. Micro-machining using nano-second voltage pulses have been used to fabricate high precision features on metals and semiconductors. Optimisation of reactor, electrochemistry and fluid flow (EnFACE) has also been employed to transfer micrometre scale patterns on a copper substrate. Nano-scale features have been fabricated by using specialised tools such as scanning tunnelling microscopy, atomic force microscopy and focused ion beam. The

  18. Pyrolysis process of agricultural waste using CO2 for waste management, energy recovery, and biochar fabrication

    International Nuclear Information System (INIS)

    Lee, Jechan; Yang, Xiao; Cho, Seong-Heon; Kim, Jae-Kon; Lee, Sang Soo; Tsang, Daniel C.W.; Ok, Yong Sik; Kwon, Eilhann E.

    2017-01-01

    Highlights: • CO 2 reacts with VOCs enhancing syngas generation from pyrolysis of biomass. • CO 2 reduces tar formation by expediting thermal cracking of VOCs. • Properties of biochar can be easily modified using CO 2 as a pyrolysis agent. • A detailed mass balance for pyrolysis of red pepper stalk was provided. • Energy saving can be expected in pyrolysis of biomass using CO 2 . - Abstract: This study focused on the mechanistic understanding of CO 2 in pyrolysis process of agricultural waste to achieve waste management, energy recovery, and biochar fabrication. In order to scrutinize the genuine role of CO 2 in the biomass pyrolysis, all pyrogenic products such as syngas, pyrolytic oil (i.e., tar), and biochar generated from pyrolysis of red pepper stalk in N 2 and CO 2 were characterized. Thermo-gravimetric analysis confirmed that during the thermolysis of red pepper stalk, the magnitude of exothermic reaction in CO 2 from 220 to 400 °C was substantially different from that in N 2 , resulting in the different extents of carbonization. The physico-chemical properties of biochar produced in CO 2 were varied compared to biochar produced in N 2 . For example, the surface area of biochar produced in CO 2 was increased from 32.46 to 109.15 m 2 g −1 . This study validates the role of CO 2 not only as expediting agent for the thermal cracking of volatile organic carbons (VOCs) but also as reacting agent with VOCs. This genuine influence of CO 2 in pyrolysis of red pepper stalk led to enhanced generation of syngas, which consequently reduced tar production because VOCs evolving from devolatilization of biomass served as substrates for syngas via reaction between CO 2 and VOCs. The enhanced generation of CO reached up to 3000 and 6000% at 600 and 690 °C, respectively, whereas 33.8% tar reduction in CO 2 was identified at 600 °C.

  19. Influence of key processing parameters and seeding density effects of microencapsulated chondrocytes fabricated using electrohydrodynamic spraying.

    Science.gov (United States)

    Gansau, Jennifer; Kelly, Lara; Buckley, Conor

    2018-06-11

    Cell delivery and leakage during injection remains a challenge for cell-based intervertebral disc regeneration strategies. Cellular microencapsulation may offer a promising approach to overcome these limitations by providing a protective niche during intradiscal injection. Electrohydrodynamic spraying (EHDS) is a versatile one-step approach for microencapsulation of cells using a high voltage electric field. The primary objective of this work was to characterise key processing parameters such as applied voltage (0, 5, 10 or 15kV), emitter needle gauge (21, 26 or 30G), alginate concentration (1, 2 or 3%) and flow rate (50, 100, 250 or 500 µl/min) to regulate the morphology of alginate microcapsules and subsequent cell viability when altering these parameters. The effect of initial cell seeding density (5, 10 and 20x106 cells/ml) on subsequent matrix accumulation of microencapsulated articular chondrocytes was also evaluated. Results showed that increasing alginate concentration and thus viscosity increased overall microcapsule size but also affected the geometry towards ellipsoidal-shaped gels. Altering the electric field strength and needle diameter regulated microcapsule size towards a smaller diameter with increasing voltage and smaller needle diameter. Needle size did not appear to affect cell viability when operating with lower alginate concentrations (1% and 2%), although higher concentrations (3%) and thus higher viscosity hydrogels resulted in diminished viability with decreasing needle diameter. Increasing cell density resulted in decreased cell viability and a concomitant decrease in DNA content, perhaps due to competing nutrient demands as a result of more closely packed cells. However, higher cell densities resulted in increased levels of extracellular matrix accumulated. Overall, this work highlights the potential of EHDS as a controllable and versatile approach to fabricate microcapsules for injectable delivery which can be used in a

  20. Comparative Study of Laboratory-Scale and Prototypic Production-Scale Fuel Fabrication Processes and Product Characteristics

    International Nuclear Information System (INIS)

    Marshall, Douglas W.

    2014-01-01

    An objective of the High Temperature Gas Reactor fuel development and qualification program for the United States Department of Energy has been to qualify fuel fabricated in prototypic production-scale equipment. The quality and characteristics of the tristructural isotropic (TRISO) coatings on fuel kernels are influenced by the equipment scale and processing parameters. The standard deviations of some TRISO layer characteristics were diminished while others have become more significant in the larger processing equipment. The impact on statistical variability of the processes and the products, as equipment was scaled, are discussed. The prototypic production-scale processes produce test fuels meeting all fuel quality specifications. (author)

  1. Involving patients in health technology funding decisions: stakeholder perspectives on processes used in Australia.

    Science.gov (United States)

    Lopes, Edilene; Street, Jackie; Carter, Drew; Merlin, Tracy

    2016-04-01

    Governments use a variety of processes to incorporate public perspectives into policymaking, but few studies have evaluated these processes from participants' point of view. The objective of this study was twofold: to understand the perspectives of selected stakeholders with regard to involvement processes used by Australian Advisory Committees to engage the public and patients; and to identify barriers and facilitators to participation. Twelve semi-structured interviews were conducted with representatives of different stakeholder groups involved in health technology funding decisions in Australia. Data were collected and analysed using a theoretical framework created by Rowe and Frewer, but adapted to more fully acknowledge issues of power and influence. Stakeholder groups disagreed as to what constitutes effective and inclusive patient involvement. Barriers reported by interviewees included poor communication, a lack of transparency, unworkable deadlines, and inadequate representativeness. Also described were problems associated with defining the task for patients and their advocates and with the timing of patient input in the decision-making process. Interviewees suggested that patient participation could be improved by increasing the number of patient organizations engaged in processes and including those organizations at different stages of decision making, especially earlier. The different evaluations made by stakeholder groups appear to be underpinned by contrasting conceptions of public involvement and its value, in line with Graham Martin's work which distinguishes between 'technocratic' and 'democratic' public involvement. Understanding stakeholders' perspectives and the contrasting conceptions of public involvement could foster future agreement on which processes should be used to involve the public in decision making. © 2015 John Wiley & Sons Ltd.

  2. Design and fuel fabrication processes for the AC-3 mixed-carbide irradiation test

    International Nuclear Information System (INIS)

    Latimer, T.W.; Chidester, K.M.; Stratton, R.W.; Ledergerber, G.; Ingold, F.

    1992-01-01

    The AC-3 test was a cooperative U.S./Swiss irradiation test of 91 wire-wrapped helium-bonded U-20% Pu carbide fuel pins irradiated to 8.3 at % peak burnup in the Fast Flux Test Facility. The test consisted of 25 pins that contained spherepac fuel fabricated by the Paul Scherrer Institute (PSI) and 66 pins that contained pelletized fuel fabricated by the Los Alamos National Laboratory. Design of AC-3 by LANL and PSI was begun in 1981, the fuel pins were fabricated from 1983 to 1985, and the test was irradiated from 1986 to 1988. The principal objective of the AC-3 test was to compare the irradiation performance of mixed-carbide fuel pins that contained either pelletized or sphere-pac fuel at prototypic fluence and burnup levels for a fast breeder reactor

  3. The purchase decision process and involvement of the elderly regarding nonprescription products.

    Science.gov (United States)

    Reisenwitz, T H; Wimbish, G J

    1997-01-01

    The elderly or senior citizen is a large and growing market segment that purchases a disproportionate amount of health care products, particularly nonprescription products. This study attempts to examine the elderly's level of involvement (high versus low) and their purchase decision process regarding nonprescription or over-the-counter (OTC) products. Frequencies and percentages are calculated to indicate level of involvement as well as purchase decision behavior. Previous research is critiqued and managerial implications are discussed.

  4. Stakeholder involvement in stages of a participatory process illustrated in interior design cases

    DEFF Research Database (Denmark)

    Vink, Peter; van Rhijn, Gu; Seim, Rikke

    2008-01-01

    In a previous study (Vink et al., 2008) an overview was made of the involvement of different stakeholders in a participatory design process. In this paper this overview was used to describe four participatory design cases focused on improvising productivity, health, and comfort by interior design....... It appeared that this overview is useful to describe the involvement in participatory interior design projects. However, it can only serve as an initial benchmark as much is dependent on the specific case at hand....

  5. Fabrication of high-resolution reflective scale grating for an optical encoder using a patterned self-assembly process

    International Nuclear Information System (INIS)

    Fan, Shanjin; Jiang, Weitao; Li, Xuan; Yu, Haoyu; Lei, Biao; Shi, Yongsheng; Yin, Lei; Chen, Bangdao; Liu, Hongzhong

    2016-01-01

    Steel tape scale grating of a reflective incremental linear encoder has a key impact on the measurement accuracy of the optical encoder. However, it is difficult for conventional manufacturing processes to fabricate scale grating with high-resolution grating strips, due to process and material problems. In this paper, self-assembly technology was employed to fabricate high-resolution steel tape scale grating for a reflective incremental linear encoder. Graphene oxide nanoparticles were adopted to form anti-reflective grating strips of steel tape scale grating. They were deposited in the tape, which had a hydrophobic and hydrophilic grating pattern when the dispersion of the nanoparticles evaporated. A standard lift-off process was employed to fabricate the hydrophobic grating strips on the steel tape. Simultaneously, the steel tape itself presents a hydrophilic property. The hydrophobic and hydrophilic grating pattern was thus obtained. In this study, octafluorocyclobutane was used to prepare the hydrophobic grating strips, due to its hydrophobic property. High-resolution graphene oxide steel tape scale grating with a pitch of 20 μ m was obtained through the self-assembly process. The photoelectric signals of the optical encoder containing the graphene oxide scale grating and conventional scale grating were tested under the same conditions. Comparison test results showed that the graphene oxide scale grating has a better performance in its amplitude and harmonic components than that of the conventional steel tape scale. A comparison experiment of position errors was also conducted, demonstrating an improvement in the positioning error of the graphene oxide scale grating. The comparison results demonstrated the applicability of the proposed self-assembly process to fabricate high-resolution graphene oxide scale grating for a reflective incremental linear encoder. (paper)

  6. STAKEHOLDER INVOLVEMENT IN THE HEALTH TECHNOLOGY ASSESSMENT PROCESS IN LATIN AMERICA.

    Science.gov (United States)

    Pichon-Riviere, Andres; Soto, Natalie; Augustovski, Federico; Sampietro-Colom, Laura

    2018-06-11

    Latin American countries are taking important steps to expand and strengthen universal health coverage, and health technology assessment (HTA) has an increasingly prominent role in this process. Participation of all relevant stakeholders has become a priority in this effort. Key issues in this area were discussed during the 2017 Latin American Health Technology Assessment International (HTAi) Policy Forum. The Forum included forty-one participants from Latin American HTA agencies; public, social security, and private insurance sectors; and the pharmaceutical and medical device industry. A background paper and presentations by invited experts and Forum members supported discussions. This study presents a summary of these discussions. Stakeholder involvement in HTA remains inconsistently implemented in the region and few countries have established formal processes. Participants agreed that stakeholder involvement is key to improve the HTA process, but the form and timing of such improvements must be adapted to local contexts. The legitimization of both HTA and decision-making processes was identified as one of the main reasons to promote stakeholder involvement; but to be successful, the entire system of assessment and decision making must be properly staffed and organized, and certain basic conditions must be met, including transparency in the HTA process and a clear link between HTA and decision making. Participants suggested a need for establishing clear rules of participation in HTA that would protect HTA producers and decision makers from potentially distorting external influences. Such rules and mechanisms could help foster trust and credibility among stakeholders, supporting actual involvement in HTA processes.

  7. Pilot-scale demonstration of the modified direct denitration process to prepare uranium oxide for fuel fabrication evaluation

    International Nuclear Information System (INIS)

    Kitts, F.G.

    1994-04-01

    The Uranium-Atomic Vapor Laser Isotope Separation (U-AVLIS) Program has the objective of developing a cost-competitive enrichment process that will ultimately replace the gaseous diffusion process used in the United States. Current nuclear fuel fabricators are set up to process only the UF 6 product from gaseous diffusion enrichment. Enriched uranium-iron alloy from the U-AVLIS separator system must be chemically converted into an oxide form acceptable to these fabricators to make fuel pellets that meet American Society for Testing and Materials (ASTM) and utility company specifications. A critical step in this conversion is the modified direct denitration (MDD) that has been selected and presented in the AVLIS Conceptual Design for converting purified uranyl nitrate to UO 3 to be shipped to fabricators for making UO 2 pellets for power reactor fuel. This report describes the MDD process, the equipment used, and the experimental work done to demonstrate the conversion of AVLIS product to ceramic-grade UO 3 suitable for making reactor-grade fuel pellets

  8. Effect of fabrication processes on mechanical properties of glass fiber reinforced polymer composites for 49 meter (160 foot recreational yachts

    Directory of Open Access Journals (Sweden)

    Dave (Dae-Wook Kim

    2010-03-01

    Full Text Available Polymer composite materials offer high strength and stiffness to weight ratio, corrosion resistance, and total life cost reductions that appeal to the marine industry. The advantages of composite construction have led to their incorporation in U.S. yacht hull structures over 46 meters (150 feet in length. In order to construct even larger hull structures, higher quality composites with lower cost production techniques need to be developed. In this study, the effect of composite hull fabrication processes on mechanical properties of glass fiber reinforced plastic (GFRP composites is presented. Fabrication techniques investigated during this study are hand lay-up (HL, vacuum infusion (VI, and hybrid (HL + VI processes. Mechanical property testing includes: tensile, compressive, and ignition loss sample analysis. Results demonstrate that the vacuum pressure implemented during composite fabrication has an effect on mechanical properties. The VI processed GFRP yields improved mechanical properties in tension/compression strengths and tensile modulus. The hybrid GFRP composites, however, failed in a sequential manor, due to dissimilar failure modes in the HL and VI processed sides. Fractography analysis was conducted to validate the mechanical property testing results.

  9. Effect of fabrication processes on mechanical properties of glass fiber reinforced polymer composites for 49 meter (160 foot) recreational yachts

    Science.gov (United States)

    Kim, Dave (dea-wook); Hennigan, Daniel John; Beavers, Kevin Daniel

    2010-03-01

    Polymer composite materialsoffer high strength and stiffness to weight ratio, corrosion resistance, and total life cost reductions that appeal to the marine industry. The advantages of composite construction have led to their incorporation in U.S. yacht hull structures over 46 meters (150 feet) in length. In order to construct even larger hull structures, higher quality composites with a lower cost production techniques need to be developed. In this study, the effect of composite hull fabrication processes on mechanical properties of glass fiber reinforced plastic(GFRP) composites is presented. Fabrication techniques used in this study are hand lay-up (HL), vacuum infusion (VI), and hybrid (HL+VI) processes. Mechanical property testing includes: tensile, compressive, and ignition loss sample analysis. Results demonstrate that the vacuum pressure implemented during composite fabrication has an effect on mechanical properties. The VI processed GFRP yields improved mechanical properties in tension/compression strengths and tensile modulus. The hybrid GFRP composites, however, failed in a sequential manor, due to dissimilar failure modes in the HL and VI processed sides. Fractography analysis was conducted to validate the mechanical property testing results

  10. Process Modelling of Rapid Manufacturing Based Mass Customisation System for Fabrication of Custom Foot Orthoses: Review Paper

    Directory of Open Access Journals (Sweden)

    Saleh Jumani

    2013-04-01

    Full Text Available The need for custom-made devices, rehabilitation aids and treatments is explicit in the medical sector. Applications of rapid manufacturing techniques based on additive fabrication processes combined with medical digitising technologies can generate high quality solutions in situations where the need for custom-made devices and rehabilitation aids and low-lead times are very important factors. Foot orthoses are medical devices applied in the treatment of biomechanical foot disorders, foot injuries and foot diseases including rheumatoid arthritis and diabetes. The significant challenge in the treatment of foot related diseases is progressing pathological deterioration in the affected sites of the foot which requires quick provision of the orthoses. A process model is developed using the IDEF0 modelling technique in which a rapid manufacturing approach is integrated in the design and fabrication process of custom foot orthoses. The process model will be used in the development of rapid manufacturing based design and fabrication system for mass customisation of foot orthoses. The developed system is aimed at mass scale production of custom foot orthoses with the advantages of reduced cost, reduced lead-time and improved product in terms of increased fit, consistency and accuracy in the final product.

  11. FBR pellet fabrication - density and dimensional control

    International Nuclear Information System (INIS)

    Rasmussen, D.E.; Schaus, P.S.

    1982-01-01

    The fuel pellet fabricating experience described in this paper involved pellet processing tests using mixed oxide (PuO 2 -UO 2 ) powders to produce fast breeder reactor (FBR) fuel pellets. Objectives of the pellet processing tests were to establish processing parameters for sintered-to-size fuel pellets to be used in an irradiation test in the Fast Flux Test Facility and to establish baseline fabrication control information. 26 figures, 7 tables

  12. Developments of steel fabrication processes for castings and ingots for forgings

    International Nuclear Information System (INIS)

    Fernandez, S.

    1980-01-01

    This chapter deals with a series of technological developments in the manufacture of steels which have occurred during the last years, in particular reporting the results obtained in Reinosa with some of these methods in the fabrication of castings as well as forgings and rolled products. (author)

  13. Processing and Electromagnetic Shielding Properties of Multifunctional Metal Composite Knitted Fabric used as Socks

    Directory of Open Access Journals (Sweden)

    Yu Zhicai

    2016-01-01

    Full Text Available In this research, a type of bamboo charcoal polyester (BC-PET/antibacterial nylon(AN/stainless steel wire (SSW metal composite yarn was prepared with a hollow spindle spinning machine, which using the SSW as the core material, the BC-PET and AN as the outer and inner wrapped yarns, respectively. The wrapping numbers was set at 8.0turns/cm for the produced metal composite yarns. Furthermore, a type of plated knitted fabric was designed and produced by using the automatic jacquard knitting machine. The plated knitted fabric presents the BC-PET/AN/SSW metal composite yarn on the knitted fabric face and the crisscross-section polyester (CSP on the knit back. The effect of lamination numbers and angles on the electromagnetic shielding effectiveness (EMSE were discussed in this study. EMSE measurement showed that the lamination angles will influence the EMSE, but not affect the air permeability. Finally, a novel EM shielding socks was designed with the produced plated knitted fabric. Finally, the performance of thermal resistance and evaporation resistance was also test usingThe sweating guarded hot plate apparatus.

  14. A study of process-related electrical defects in SOI lateral bipolar transistors fabricated by ion implantation

    Science.gov (United States)

    Yau, J.-B.; Cai, J.; Hashemi, P.; Balakrishnan, K.; D'Emic, C.; Ning, T. H.

    2018-04-01

    We report a systematic study of process-related electrical defects in symmetric lateral NPN transistors on silicon-on-insulator (SOI) fabricated using ion implantation for all the doped regions. A primary objective of this study is to see if pipe defects (emitter-collector shorts caused by locally enhanced dopant diffusion) are a show stopper for such bipolar technology. Measurements of IC-VCE and Gummel currents in parallel-connected transistor chains as a function of post-fabrication rapid thermal anneal cycles allow several process-related electrical defects to be identified. They include defective emitter-base and collector-base diodes, pipe defects, and defects associated with a dopant-deficient region in an extrinsic base adjacent its intrinsic base. There is no evidence of pipe defects being a major concern in SOI lateral bipolar transistors.

  15. Design and fabrication of a chitosan hydrogel with gradient structures via a step-by-step cross-linking process.

    Science.gov (United States)

    Xu, Yongxiang; Yuan, Shenpo; Han, Jianmin; Lin, Hong; Zhang, Xuehui

    2017-11-15

    The development of scaffolds to mimic the gradient structure of natural tissue is an important consideration for effective tissue engineering. In the present study, a physical cross-linking chitosan hydrogel with gradient structures was fabricated via a step-by-step cross-linking process using sodium tripolyphosphate and sodium hydroxide as sequential cross-linkers. Chitosan hydrogels with different structures (single, double, and triple layers) were prepared by modifying the gelling process. The properties of the hydrogels were further adjusted by varying the gelling conditions, such as gelling time, pH, and composition of the crosslinking solution. Slight cytotoxicity was showed in MTT assay for hydrogels with uncross-linking chitosan solution and non-cytotoxicity was showed for other hydrogels. The results suggest that step-by-step cross-linking represents a practicable method to fabricate scaffolds with gradient structures. Copyright © 2017. Published by Elsevier Ltd.

  16. Ultrastable Photoelectrodes for Solar Water Splitting Based on Organic Metal Halide Perovskite Fabricated by Lift-Off Process.

    Science.gov (United States)

    Nam, SeongSik; Mai, Cuc Thi Kim; Oh, Ilwhan

    2018-05-02

    Herein, we report an integrated photoelectrolysis of water employing organic metal halide (OMH) perovskite material. As generic OMH perovskite material and device architecture are highly susceptible to degradation by aqueous electrolytes, we have developed a versatile mold-cast and lift-off process to fabricate and assemble multipurpose metal encapsulation onto perovskite devices. With the metal encapsulation effectively protecting the perovskite cell and also functioning as electrocatalyst, the high-performance perovskite photoelectrodes exhibit high photovoltage and photocurrent that are effectively inherited from the original solid-state solar cell. More importantly, thus-fabricated perovskite photoelectrode demonstrates record-long unprecedented stability even at highly oxidizing potential in strong alkaline electrolyte. We expect that this versatile lift-off process can be adapted in a wide variety of photoelectrochemical devices to protect the material surfaces from corroding electrolyte and facilitate various electrochemical reactions.

  17. Fabrication of CoZn alloy nanowire arrays: Significant improvement in magnetic properties by annealing process

    International Nuclear Information System (INIS)

    Koohbor, M.; Soltanian, S.; Najafi, M.; Servati, P.

    2012-01-01

    Highlights: ► Increasing the Zn concentration changes the structure of NWs from hcp to amorphous. ► Increasing the Zn concentration significantly reduces the Hc value of NWs. ► Magnetic properties of CoZn NWs can be significantly enhanced by appropriate annealing. ► The pH of electrolyte has no significant effect on the properties of the NW arrays. ► Deposition frequency has considerable effects on the magnetic properties of NWs. - Abstract: Highly ordered arrays of Co 1−x Zn x (0 ≤ x ≤ 0.74) nanowires (NWs) with diameters of ∼35 nm and high length-to-diameter ratios (up to 150) were fabricated by co-electrodeposition of Co and Zn into pores of anodized aluminum oxide (AAO) templates. The Co and Zn contents of the NWs were adjusted by varying the ratio of Zn and Co ion concentrations in the electrolyte. The effect of the Zn content, electrodeposition conditions (frequency and pH) and annealing on the structural and magnetic properties (e.g., coercivity (Hc) and squareness (Sq)) of NW arrays were investigated using X-ray diffraction (XRD), scanning electron microscopy, electron diffraction, and alternating gradient force magnetometer (AGFM). XRD patterns reveal that an increase in the concentration of Zn ions of the electrolyte forces the hcp crystal structure of Co NWs to change into an amorphous phase, resulting in a significant reduction in Hc. It was found that the magnetic properties of NWs can be significantly improved by appropriate annealing process. The highest values for Hc (2050 Oe) and Sq (0.98) were obtained for NWs electrodeposited using 0.95/0.05 Co:Zn concentrations at 200 Hz and annealed at 575 °C. While the pH of electrolyte is found to have no significant effect on the structural and magnetic properties of the NW arrays, the electrodeposition frequency has considerable effects on the magnetic properties of the NW arrays. The changes in magnetic property of NWs are rooted in a competition between shape anisotropy and

  18. Fabrication of CoZn alloy nanowire arrays: Significant improvement in magnetic properties by annealing process

    Energy Technology Data Exchange (ETDEWEB)

    Koohbor, M. [Department of Physics, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Soltanian, S., E-mail: s.soltanian@gmail.com [Department of Physics, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Department of Electrical and Computer Engineering, University of British Columbia, Vancouver (Canada); Najafi, M. [Department of Physics, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Department of Physics, Hamadan University of Technology, Hamadan (Iran, Islamic Republic of); Servati, P. [Department of Electrical and Computer Engineering, University of British Columbia, Vancouver (Canada)

    2012-01-05

    Highlights: Black-Right-Pointing-Pointer Increasing the Zn concentration changes the structure of NWs from hcp to amorphous. Black-Right-Pointing-Pointer Increasing the Zn concentration significantly reduces the Hc value of NWs. Black-Right-Pointing-Pointer Magnetic properties of CoZn NWs can be significantly enhanced by appropriate annealing. Black-Right-Pointing-Pointer The pH of electrolyte has no significant effect on the properties of the NW arrays. Black-Right-Pointing-Pointer Deposition frequency has considerable effects on the magnetic properties of NWs. - Abstract: Highly ordered arrays of Co{sub 1-x}Zn{sub x} (0 {<=} x {<=} 0.74) nanowires (NWs) with diameters of {approx}35 nm and high length-to-diameter ratios (up to 150) were fabricated by co-electrodeposition of Co and Zn into pores of anodized aluminum oxide (AAO) templates. The Co and Zn contents of the NWs were adjusted by varying the ratio of Zn and Co ion concentrations in the electrolyte. The effect of the Zn content, electrodeposition conditions (frequency and pH) and annealing on the structural and magnetic properties (e.g., coercivity (Hc) and squareness (Sq)) of NW arrays were investigated using X-ray diffraction (XRD), scanning electron microscopy, electron diffraction, and alternating gradient force magnetometer (AGFM). XRD patterns reveal that an increase in the concentration of Zn ions of the electrolyte forces the hcp crystal structure of Co NWs to change into an amorphous phase, resulting in a significant reduction in Hc. It was found that the magnetic properties of NWs can be significantly improved by appropriate annealing process. The highest values for Hc (2050 Oe) and Sq (0.98) were obtained for NWs electrodeposited using 0.95/0.05 Co:Zn concentrations at 200 Hz and annealed at 575 Degree-Sign C. While the pH of electrolyte is found to have no significant effect on the structural and magnetic properties of the NW arrays, the electrodeposition frequency has considerable effects on

  19. Two-In-One Method for Graphene Transfer: Simplified Fabrication Process for Organic Light-Emitting Diodes.

    Science.gov (United States)

    Liu, Lihui; Shang, Wenjuan; Han, Chao; Zhang, Qing; Yao, Yao; Ma, Xiaoqian; Wang, Minghao; Yu, Hongtao; Duan, Yu; Sun, Jie; Chen, Shufen; Huang, Wei

    2018-02-28

    Graphene as one of the most promising transparent electrode materials has been successfully applied in organic light-emitting diodes (OLEDs). However, traditional poly(methyl methacrylate) (PMMA) transfer method usually results in hardly removed polymeric residues on the graphene surface, which induces unwanted leakage current, poor diode behavior, and even device failure. In this work, we proposed a facile and efficient two-in-one method to obtain clean graphene and fabricate OLEDs, in which the poly(9,9-di-n-octylfluorene-alt-(1,4-phenylene-(4-sec-butylphenyl)imino)-1,4-phenylene) (TFB) layer was inserted between the graphene and PMMA film both as a protector during the graphene transfer and a hole-injection layer in OLEDs. Finally, green OLED devices were successfully fabricated on the PMMA-free graphene/TFB film, and the device luminous efficiency was increased from 64.8 to 74.5 cd/A by using the two-in-one method. Therefore, the proposed two-in-one graphene transfer method realizes a high-efficient graphene transfer and device fabrication process, which is also compatible with the roll-to-roll manufacturing. It is expected that this work can enlighten the design and fabrication of the graphene-based optoelectronic devices.

  20. Design and fabrication of substrates with microstructures for bio-applications through the modified optical disc process

    Science.gov (United States)

    Chiu, Kuo-Chi; Chang, Sheng-Li; Huang, Chu-Yu; Guan, Hann-Wen

    2011-05-01

    The modified optical disc process has been investigated and demonstrated to enable fast prototyping in fabricating molds and replicating substrates with various microstructures including micro-chambers and micro-channels. A disc-like microfluidic device was created and the testing results showed good performance in bonding and packaging. The switching of the nozzle-like micro-valve was also validated to work well. Furthermore, the relevant procedures of liquid samples loading, separating and mixing were also accomplished through food experiments.

  1. A voice from the high wire: Public involvement in a co-operative siting process

    International Nuclear Information System (INIS)

    Oates, D.J.L.

    1995-01-01

    The author is a public consultation and communications consultant to the Siting Task Force (STF), Low level Radioactive Waste Management. The STF is a Canadian government-appointed yet independent body implementing a voluntary, co-operative siting process for a long term storage or disposal facility for 1 million cubic metres of LLRW. The presentation will document the experiences of and lessons learned by the author during her role developing and implementing a public involvement program for the process. The Co-operative Siting Process is a new approach to siting controversial facilities. It is based on the belief that communities should accept such a facility in their backyard and not be forced against their will on technical or political grounds. A formal 'ground rules-up-front' process was developed and is now being carried out, with completion slated for April, 1995. Putting these rules and theories into practice has resulted in significant changes being made to the work plan for technical activities, and in a sober second look at the intricacies involved in planning and carrying out a thorough and efficient public involvement program that remain practical and cost-effective. There is a delicate balancing act between meaningful public participation that lays the foundation for trust, confidence and consensus, and public involvement that can result in the process being side-tracked and legitimate solutions and technical activities becoming mired in political and personal agendas

  2. A Review of the Effect of Processing Variables on the Fabrication of Electrospun Nanofibers for Drug Delivery Applications

    Directory of Open Access Journals (Sweden)

    Viness Pillay

    2013-01-01

    Full Text Available Electrospinning is a fast emerging technique for producing ultrafine fibers by utilizing electrostatic repulsive forces. The technique has gathered much attention due to the emergence of nanotechnology that sparked worldwide research interest in nanomaterials for their preparation and application in biomedicine and drug delivery. Electrospinning is a simple, adaptable, cost-effective, and versatile technique for producing nanofibers. For effective and efficient use of the technique, several processing parameters need to be optimized for fabricating polymeric nanofibers. The nanofiber morphology, size, porosity, surface area, and topography can be refined by varying these parameters. Such flexibility and diversity in nanofiber fabrication by electrospinning has broadened the horizons for widespread application of nanofibers in the areas of drug and gene delivery, wound dressing, and tissue engineering. Drug-loaded electrospun nanofibers have been used in implants, transdermal systems, wound dressings, and as devices for aiding the prevention of postsurgical abdominal adhesions and infection. They show great promise for use in drug delivery provided that one can confidently control the processing variables during fabrication. This paper provides a concise incursion into the application of electrospun nanofibers in drug delivery and cites pertinent processing parameters that may influence the performance of the nanofibers when applied to drug delivery.

  3. A Review of the Effect of Processing Variables on the Fabrication of Electro spun Nano fibers for Drug Delivery Applications

    International Nuclear Information System (INIS)

    Pillay, V.; Dott, C.; Choonara, Y.E.; Tyagi, Ch.; Tomar, L.; Kumar, P.; Toit, L.C.D.; Ndesendo, V.M.K.

    2013-01-01

    Electro spinning is a fast emerging technique for producing ultrafine fibers by utilizing electrostatic repulsive forces. The technique has gathered much attention due to the emergence of nano technology that sparked worldwide research interest in nano materials for their preparation and application in biomedicine and drug delivery. Electro spinning is a simple, adaptable, cost-effective, and versatile technique for producing nano fibers. For effective and efficient use of the technique, several processing parameters need to be optimized for fabricating polymeric nano fibers. The nano fiber morphology, size, porosity, surface area, and topography can be refined by varying these parameters. Such flexibility and diversity in nano fiber fabrication by electro spinning has broadened the horizons for widespread application of nano fibers in the areas of drug and gene delivery, wound dressing, and tissue engineering. Drug-loaded electro spun nano fibers have been used in implants, transdermal systems, wound dressings, and as devices for aiding the prevention of post surgical abdominal adhesions and infection. They show great promise for use in drug delivery provided that one can confidently control the processing variables during fabrication. This paper provides a concise incursion into the application of electro spun nano fibers in drug delivery and cites pertinent processing parameters that may influence the performance of the nano fibers when applied to drug delivery.

  4. Direct-write PVDF nonwoven fiber fabric energy harvesters via the hollow cylindrical near-field electrospinning process

    International Nuclear Information System (INIS)

    Liu, Z H; Pan, C T; Ou, Z Y; Lin, L W; Huang, J C

    2014-01-01

    One-dimensional piezoelectric nanomaterials have attracted great attention in recent years for their possible applications in mechanical energy scavenging devices. However, it is difficult to control the structural diameter, length, and density of these fibers fabricated by micro/nano-technologies. This work presents a hollow cylindrical near-field electrospinning (HCNFES) process to address production and performance issues encountered previously in either far-field electrospinning (FFES) or near-field electrospinning (NFES) processes. Oriented polyvinylidene fluoride (PVDF) fibers in the form of nonwoven fabric have been directly written on a glass tube for aligned piezoelectricity. Under a high in situ electrical poling field and strong mechanical stretching (the tangential speed on the glass tube collector is about 1989.3 mm s −1 ), the HCNFES process is able to uniformly deposit large arrays of PVDF fibers with good concentrations of piezoelectric β-phase. The nonwoven fiber fabric (NFF) is transferred onto a polyethylene terephthalate (PET) substrate and fixed at both ends using copper foil electrodes as a flexible textile-fiber-based PVDF energy harvester. Repeated stretching and releasing of PVDF NFF with a strain of 0.05% at 7 Hz produces a maximum peak voltage and current at 76 mV and 39 nA, respectively. (paper)

  5. Fabrication-process-induced variations of Nb/Al/AlOx/Nb Josephson junctions in superconductor integrated circuits

    International Nuclear Information System (INIS)

    Tolpygo, Sergey K; Amparo, Denis

    2010-01-01

    Currently, superconductor digital integrated circuits fabricated at HYPRES, Inc. can operate at clock frequencies approaching 40 GHz. The circuits present multilayered structures containing tens of thousands of Nb/Al/AlO x /Nb Josephson junctions (JJs) of various sizes interconnected by four Nb wiring layers, resistors, and other circuit elements. In order to be fully operational, the integrated circuits should be fabricated such that the critical currents of the JJs are within the tight design margins and the proper relationships between the critical currents of JJs of different sizes are preserved. We present experimental data and discuss mechanisms of process-induced variations of the critical current and energy gap of Nb/Al/AlO x /Nb JJs in integrated circuits. We demonstrate that the Josephson critical current may depend on the type and area of circuit elements connected to the junction, on the circuit pattern, and on the step in the fabrication process at which the connection is made. In particular, we discuss the influence of (a) the junction base electrode connection to the ground plane, (b) the junction counter electrode connection to the ground plane, and (c) the counter electrode connection to the Ti/Au or Ti/Pd/Au contact pads by Nb wiring. We show that the process-induced changes of the properties of Nb/Al/AlO x /Nb junctions are caused by migration of impurity atoms (hydrogen) between the different layers comprising the integrated circuits.

  6. Density improvement of Li{sub 2}TiO{sub 3} pebbles fabricated by wet process

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, K; Kawamura, H [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Fuchinoue, K; Sawada, H; Watarumi, K

    1998-03-01

    Lithium titanate (Li{sub 2}TiO{sub 3}) has attracted the attention of many researchers from a point of tritium recovery at low temperature, chemical stability, etc.. The application of small Li{sub 2}TiO{sub 3} sphere has been proposed in some designs of fusion blanket. On the other hand, the wet process is most advantageous as the fabrication method of Li{sub 2}TiO{sub 3} pebbles from a point of mass production, and of reprocessing necessary for effective use of resources and reduction of radioactive wastes. In the preliminary fabrication test, density of Li{sub 2}TiO{sub 3} pebbles was about 40%T.D.. Therefore, in this study, density improvement tests and preliminary characterization of Li{sub 2}TiO{sub 3} pebbles by wet process were performed, noting the aging condition and sintering condition in the fabrication process of the gel-spheres. This study yielded Li{sub 2}TiO{sub 3} pebbles in target range of 80-85%T.D.. (author)

  7. Microstructures and mechanical properties of Co-29Cr-6Mo alloy fabricated by selective laser melting process for dental applications.

    Science.gov (United States)

    Takaichi, Atsushi; Suyalatu; Nakamoto, Takayuki; Joko, Natsuka; Nomura, Naoyuki; Tsutsumi, Yusuke; Migita, Satoshi; Doi, Hisashi; Kurosu, Shingo; Chiba, Akihiko; Wakabayashi, Noriyuki; Igarashi, Yoshimasa; Hanawa, Takao

    2013-05-01

    The selective laser melting (SLM) process was applied to a Co-29Cr-6Mo alloy, and its microstructure, mechanical properties, and metal elution were investigated to determine whether the fabrication process is suitable for dental applications. The microstructure was evaluated using scanning electron microscopy with energy-dispersed X-ray spectroscopy (SEM-EDS), X-ray diffractometry (XRD), and electron back-scattered diffraction pattern analysis. The mechanical properties were evaluated using a tensile test. Dense builds were obtained when the input energy of the laser scan was higher than 400 J mm⁻³, whereas porous builds were formed when the input energy was lower than 150 J mm⁻³. The microstructure obtained was unique with fine cellular dendrites in the elongated grains parallel to the building direction. The γ phase was dominant in the build and its preferential orientation was confirmed along the building direction, which was clearly observed for the builds fabricated at lower input energy. Although the mechanical anisotropy was confirmed in the SLM builds due to the unique microstructure, the yield strength, UTS, and elongation were higher than those of the as-cast alloy and satisfied the type 5 criteria in ISO22764. Metal elution from the SLM build was smaller than that of the as-cast alloy, and thus, the SLM process for the Co-29Cr-6Mo alloy is a promising candidate for fabricating dental devices. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. [Energy dispersive spectrum analysis of surface compositions of selective laser melting cobalt-chromium alloy fabricated by different processing parameters].

    Science.gov (United States)

    Qian, Liang; Zeng, Li; Wei, Bin; Gong, Yao

    2015-06-01

    To fabricate selective laser melting cobalt-chromium alloy samples by different processing parameters, and to analyze the changes of energy dispersive spectrum(EDS) on their surface. Nine groups were set up by orthogonal experimental design according to different laser powers,scanning speeds and powder feeding rates(laser power:2500-3000 W, scanning speed: 5-15 mm/s, powder feeding rate: 3-6 r/min). Three cylinder specimens(10 mm in diameter and 3 mm in thickness) were fabricated in each group through Rofin DL 035Q laser cladding system using cobalt-chromium alloy powders which were developed independently by our group.Their surface compositions were then measured by EDS analysis. Results of EDS analysis of the 9 groups fabricated by different processing parameters(Co:62.98%-67.13%,Cr:25.56%-28.50%,Si:0.49%-1.23%) were obtained. They were similar to the compositions of cobalt-chromium alloy used in dental practice. According to EDS results, the surface compositions of the selective laser melting cobalt-chromium alloy samples are stable and controllable, which help us gain a preliminary sight into the range of SLM processing parameters. Supported by "973" Program (2012CB910401) and Research Fund of Science and Technology Committee of Shanghai Municipality (12441903001 and 13140902701).

  9. Early print-tuned ERP response with minimal involvement of linguistic processing in Japanese Hiragana strings.

    Science.gov (United States)

    Okumura, Yasuko; Kasai, Tetsuko; Murohashi, Harumitsu

    2014-04-16

    The act of reading leads to the development of specific neural responses for print, the most frequently reported of which is the left occipitotemporal N170 component of event-related potentials. However, it remains unclear whether this electrophysiological response solely involves print-tuned neural activities. The present study examined an early print-tuned event-related potential response with minimal involvement of linguistic processing in a nonalphabetic language. Japanese Hiragana words, nonwords, and alphanumeric symbol strings were presented rapidly and the task was to detect the change in color of a fixation cross to restrict linguistic processing. As a result, Hiragana words and nonwords elicited a larger posterior N1 than alphanumeric symbol strings bilaterally, irrespective of intercharacter spacing. The fact that this N1 was enhanced specifically for rapidly presented Hiragana strings suggests the existence of print-tuned neural processes that are relatively independent of the influence of linguistic processing.

  10. Restart of the chemical preparation process for the fabrication of ZnO varistors for ferroelectric neutron generator power supplies

    International Nuclear Information System (INIS)

    Lockwood, Steven John

    2005-01-01

    To date, all varistors used in ferroelectric neutron generators have been supplied from a single, proprietary source, General Electric Corporate Research and Development (GE CR and D). To protect against the vulnerability of a single source, Sandia initiated a program in the early 1980's to develop a second source for this material. A chemical preparation process for making homogeneous, high purity ZnO-based varistor powder was generated, scaled to production quantities, and transferred to external suppliers. In 1992, the chem-prep varistor program was suspended when it appeared there was sufficient inventory of GE CR and D material to supply ferroelectric neutron generator production for many years. In 1999, neutron generator production schedules increased substantially, resulting in a predicted exhaustion of the existing supply of varistor material within five years. The chem-prep program was restarted in January, 2000. The goals of the program were to (1) duplicate the chem-prep powder synthesis process that had been qualified for WR production, (2) demonstrate sintered billets from the chem-prep powder met requirements, (3) develop a process for rod fabrication and demonstrate that all component specifications could be met, and (4) optimize the process from powder synthesis through component fabrication for full-scale production. The first three of these goals have been met and are discussed in this report. A facility for the fabrication of production quantities of chem-prep powder has been established. All batches since the restart have met compositional requirements, but differences in sintering behavior between the original process and the restarted process were noted. Investigation into the equipment, precipitant stoichiometry, and powder processing procedures were not able to resolve the discrepancies. It was determined that the restarted process, which incorporated Na doping for electrical stability (a process that was not introduced until the end of the

  11. TRAINING DURING ISO 9001 IMPLEMENTATION AND WORKERS INVOLVEMENT INTO THE QUALITY MANAGEMENT PROCESS IN MONTENEGRO

    Directory of Open Access Journals (Sweden)

    Marc-Arthur Diaye

    2009-03-01

    Full Text Available According to several researchers, workers involvement into the implementation of a quality system in a firm is a key of its success. Since training can improve workers involvement during the implementation of a quality system in a firm, we try in this paper to evaluate quantitatively in the case of Montenegro, the impact of training of workers' involvement. Using an original data set about two leading firms from Montenegro, we show that the coefficient associated with the training variable is on average about -1.44 and is significant at a level of 1%. That is workers who are not trained during the ISO 9001 implementation are strongly less involved into the quality management process of their firms.

  12. Tightening the Purchasing Process: Superintendents Get More Involved in Buying Policies

    Science.gov (United States)

    Rivero, Victor

    2009-01-01

    Over the last 18 months, school district purchasing offices across the country have been tightening the reins like never before while more top-level administrators get involved in the budget process. "When the economy really hit the skids, states got hit hard, so a lot of school districts were forced to make severe budget cuts," says John Musso,…

  13. Links between social information processing in middle childhood and involvement in bullying. [IF 0.95

    NARCIS (Netherlands)

    Camodeca, M.; Goossens, F.A.; Schuengel, C.; Meerum Terwogt, M.

    2003-01-01

    The aim of this study was to investigate the way in which bullies, victims, bully/victims, and those not involved process social information. A peer nomination measure of bullying and victimization was administered twice over an interval of one year. The sample consisted of 236 (126 girls and 110

  14. Reflections on Practical Approaches to Involving Children and Young People in the Data Analysis Process

    Science.gov (United States)

    Coad, Jane; Evans, Ruth

    2008-01-01

    This article reflects on key methodological issues emerging from children and young people's involvement in data analysis processes. We outline a pragmatic framework illustrating different approaches to engaging children, using two case studies of children's experiences of participating in data analysis. The article highlights methods of…

  15. Perceptions of legally mandated public involvement processes in the U.S. Forest Service

    Science.gov (United States)

    S. Andrew Predmore; Marc J. Stern; Michael J. Mortimer; David N. Seesholtz

    2011-01-01

    Results from an agency-wide survey of U.S. Forest Service personnel indicate that respondents in our sample engage in National Environmental Policy Act (NEPA) public involvement processes primarily to accomplish two goals. The most commonly supported goal was to inform and disclose as mandated by the act. The other goal reflected interests in managing agency...

  16. ADHD Coaching with College Students: Exploring the Processes Involved in Motivation and Goal Completion

    Science.gov (United States)

    Prevatt, Frances; Smith, Shannon M.; Diers, Sarah; Marshall, Diana; Coleman, Jennifer; Valler, Emilee; Miller, Nathan

    2017-01-01

    College students with attention-deficit/hyperactivity disorder (ADHD) often experience increased academic difficulties, which can negatively impact graduation rates, employment, self-esteem, and mental health. ADHD coaching assists students with ADHD to reduce such difficulties. The present study evaluated the processes involved in ADHD coaching…

  17. A full-wafer fabrication process for glass microfluidic chips with integrated electroplated electrodes by direct bonding of dry film resist

    International Nuclear Information System (INIS)

    Vulto, Paul; Urban, G A; Huesgen, Till; Albrecht, Björn

    2009-01-01

    A full-wafer process is presented for fast and simple fabrication of glass microfluidic chips with integrated electroplated electrodes. The process employs the permanent dry film resist (DFR) Ordyl SY300 to create microfluidic channels, followed by electroplating of silver and subsequent chlorination. The dry film resist is bonded directly to a second substrate, without intermediate gluing layers, only by applying pressure and moderate heating. The process of microfluidic channel fabrication, electroplating and wafer bonding can be completed within 1 day, thus making it one of the fastest and simplest full-wafer fabrication processes. (note)

  18. Fabrication of polycrystalline diamond refractive X-ray lens by femtosecond laser processing

    Energy Technology Data Exchange (ETDEWEB)

    Kononenko, T.V.; Ralchenko, V.G.; Ashkinazi, E.E.; Konov, V.I. [General Physics Institute of Russian Academy of Sciences, Moscow (Russian Federation); National Research Nuclear University ' ' MEPhI' ' , Moscow (Russian Federation); Polikarpov, M.; Ershov, P. [Immanuel Kant Baltic Federal University, Functional Nanomaterials, Kaliningrad (Russian Federation); Kuznetsov, S.; Yunkin, V. [Institute of Microelectronics Technology RAS, Chernogolovka, Moscow region (Russian Federation); Snigireva, I. [European Synchrotron Radiation Facility, Grenoble (France)

    2016-03-15

    X-ray planar compound refractive lenses were fabricated from a polycrystalline diamond plate grown by chemical vapor deposition, by precise through cutting with femtosecond laser pulses. The lens geometry and the surface morphology were investigated with optical and scanning electron microscopy, while the material structure modification was analyzed by Raman spectroscopy. The results of the preliminary lens test at 9.25-keV X-rays are presented. (orig.)

  19. Fabrication of polycrystalline diamond refractive X-ray lens by femtosecond laser processing

    International Nuclear Information System (INIS)

    Kononenko, T.V.; Ralchenko, V.G.; Ashkinazi, E.E.; Konov, V.I.; Polikarpov, M.; Ershov, P.; Kuznetsov, S.; Yunkin, V.; Snigireva, I.

    2016-01-01

    X-ray planar compound refractive lenses were fabricated from a polycrystalline diamond plate grown by chemical vapor deposition, by precise through cutting with femtosecond laser pulses. The lens geometry and the surface morphology were investigated with optical and scanning electron microscopy, while the material structure modification was analyzed by Raman spectroscopy. The results of the preliminary lens test at 9.25-keV X-rays are presented. (orig.)

  20. Manufacturing processes in the textile industry. Expert Systems for fabrics production

    OpenAIRE

    Bullon, Juan; González Arrieta, Angélica; Hernández Encinas, Ascensión; Queiruga Dios, Araceli

    2017-01-01

    The textile industry is characterized by the economic activity whose objective is the production of fibres, yarns, fabrics, clothing and textile goods for home and decoration,as well as technical and industrial purposes. Within manufacturing, the Textile is one of the oldest and most complex sectors which includes a large number of sub-sectors covering the entire production cycle, from raw materials and intermediate products, to the production of final products. Textile industry activities pr...

  1. Continuous process of powder production for MOX fuel fabrication according to ''granat'' technology

    International Nuclear Information System (INIS)

    Morkovnikov, V.E.; Raginskiy, L.S.; Pavlinov, A.P.; Chernov, V.A.; Revyakin, V.V.; Varykhanov, V.S.; Revnov, V.N.

    2000-01-01

    During last years the problem of commercial MOX fuel fabrication for nuclear reactors in Russia was solved in a number of directions. The paper deals with the solution of the problem of creating a continuous pilot plant for the production of MOX fuel powders on the basis of the home technology 'Granat', that was tested before on a small-scale pilot-commercial batch-operated plant of the same name and confirmed good results. (authors)

  2. Comparison of Jacket Production Processes Designed by Fabric Materials and Leather

    OpenAIRE

    Emine Utkun; Ziynet Öndoğan

    2011-01-01

    Leather and leather products industry has shown a significant improvement in export area, as a result of intensive shuttle trades and demand that comes from crumbling Eastern Bloc countries in 1990's. This development has caused capacity increasing and thus makes large investments in this sector. Leather garment industry differs from woven or fabrics industry at various points. Differantation seems in raw materials features such as size, thickness, biological, chemical or physical homogenity....

  3. Fabrication process for CMUT arrays with polysilicon electrodes, nanometre precision cavity gaps and through-silicon vias

    International Nuclear Information System (INIS)

    Due-Hansen, J; Poppe, E; Summanwar, A; Jensen, G U; Breivik, L; Wang, D T; Schjølberg-Henriksen, K; Midtbø, K

    2012-01-01

    Capacitive micromachined ultrasound transducers (CMUTs) can be used to realize miniature ultrasound probes. Through-silicon vias (TSVs) allow for close integration of the CMUT and read-out electronics. A fabrication process enabling the realization of a CMUT array with TSVs is being developed. The integrated process requires the formation of highly doped polysilicon electrodes with low surface roughness. A process for polysilicon film deposition, doping, CMP, RIE and thermal annealing that resulted in a film with sheet resistance of 4.0 Ω/□ and a surface roughness of 1 nm rms has been developed. The surface roughness of the polysilicon film was found to increase with higher phosphorus concentrations. The surface roughness also increased when oxygen was present in the thermal annealing ambient. The RIE process for etching CMUT cavities in the doped polysilicon gave a mean etch depth of 59.2 ± 3.9 nm and a uniformity across the wafer ranging from 1.0 to 4.7%. The two presented processes are key processes that enable the fabrication of CMUT arrays suitable for applications in for instance intravascular cardiology and gastrointestinal imaging. (paper)

  4. Luminescence and scintillation enhancement of Y2O3:Tm transparent ceramic through post-fabrication thermal processing

    International Nuclear Information System (INIS)

    Chapman, M.G.; Marchewka, M.R.; Roberts, S.A.; Schmitt, J.M.; McMillen, C.; Kucera, C.J.; DeVol, T.A.; Ballato, J.; Jacobsohn, L.G.

    2015-01-01

    The effects of post-fabrication thermal processing in O 2 flux on the luminescence and scintillation of a Y 2 O 3 :Tm transparent ceramic were investigated. The results showed that the strategy of post-fabrication processing can be beneficial to the performance of the ceramics, depending on the cumulative processing time. After the first hour of processing, about 40% enhancement in the luminescence output together with about 20% enhancement in the scintillation light yield were obtained. The enhancements were tentatively assigned to the incorporation of oxygen into vacancy sites. Longer cumulative processing times lead to the incorporation of oxygen as interstitials that is detrimental to scintillation light yield but not to luminescence output. This work also revealed that thermoluminescence measurements are a useful tool to predict scintillation light yield of Y 2 O 3 :Tm. - Highlights: • Scintillation and PL enhancement of transparent ceramics through thermal processing. • First thermoluminescence measurements of Y 2 O 3 :Tm above room temperature. • Observation of correlation between TL and scintillation light yield results

  5. Process for recovery of plutonium from fabrication residues of mixed fuels consisting of uranium oxide and plutonium oxide

    International Nuclear Information System (INIS)

    Heremanns, R.H.; Vandersteene, J.J.

    1983-01-01

    The invention concerns a process for recovery of plutonium from fabrication residues of mixed fuels consisting of uranium oxide and plutonium oxide in the form of PuO 2 . Mixed fuels consisting of uranium oxide and plutonium oxide are being used more and more. The plants which prepare these mixed fuels have around 5% of the total mass of fuels as fabrication residue, either as waste or scrap. In view of the high cost of plutonium, it has been attempted to recover this plutonium from the fabrication residues by a process having a purchase price lower than the price of plutonium. The problem is essentially to separate the plutonium, the uranium and the impurities. The residues are fluorinated, the UF 6 and PuF 6 obtained are separated by selective absorption of the PuF 6 on NaF at a temperature of at least 400 0 C, the complex obtained by this absorption is dissolved in nitric acid solution, the plutonium is precipitated in the form of plutonium oxalate by adding oxalic acid, and the precipitated plutonium oxalate is calcined

  6. 3D Viscoelastic Finite Element Modelling of Polymer Flow in the Fiber Drawing Process for Microstructured Polymer Optical Fiber Fabrication

    DEFF Research Database (Denmark)

    Fasano, Andrea; Rasmussen, Henrik K.; Marín, J. M. R.

    2015-01-01

    The process of drawing an optical fiber from a polymer preform is still not completely understood,although it represents one of the most critical steps in the process chain for the fabrication of microstructuredpolymer optical fibers (mPOFs). Here we present a new approach for the numerical...... modelling of the fiber drawingprocess using a fully three-dimensional and time-dependent finite element method, giving significant insightinto this widely spread mPOF production technique. Our computational predictions are physically based on theviscoelastic fluid dynamics of polymers. Until now...

  7. Design and fabrication of a diffractive beam splitter for dual-wavelength and concurrent irradiation of process points.

    Science.gov (United States)

    Amako, Jun; Shinozaki, Yu

    2016-07-11

    We report on a dual-wavelength diffractive beam splitter designed for use in parallel laser processing. This novel optical element generates two beam arrays of different wavelengths and allows their overlap at the process points on a workpiece. To design the deep surface-relief profile of a splitter using a simulated annealing algorithm, we introduce a heuristic but practical scheme to determine the maximum depth and the number of quantization levels. The designed corrugations were fabricated in a photoresist by maskless grayscale exposure using a high-resolution spatial light modulator. We characterized the photoresist splitter, thereby validating the proposed beam-splitting concept.

  8. Mobility of persons who are blind: How the attentional processes and working memory are involved?

    OpenAIRE

    PIGEON, Caroline; MARIN-LAMELLET, Claude

    2015-01-01

    Although navigation without vision seems to strongly mobilize the attentional processes and the working memory, few studies seem to be conducted about the link between these processes and the mobility of people who are blind. The main aim of this PhD work is to consider the attentional and working memory capacities of people who are blind and investigate the attentional processes involved during the navigation activity. In the first part of this PhD work, blind participants (early and late) p...

  9. Cochlear Implant: the complexity involved in the decision making process by the family

    Directory of Open Access Journals (Sweden)

    Sheila de Souza Vieira

    2014-06-01

    Full Text Available OBJECTIVE: to understand the meanings the family attributes to the phases of the decision-making process on a cochlear implant for their child.METHOD: qualitative research, using Symbolic Interactionism and Grounded Theory as the theoretical and methodological frameworks, respectively. Data collection instrument: semistructured interview. Nine families participated in the study (32 participants.RESULTS: knowledge deficit, difficulties to contextualize benefits and risks and fear are some factors that make this process difficult. Experiences deriving from interactions with health professionals, other cochlear implant users and their relatives strengthen decision making in favor of the implant.CONCLUSION: deciding on whether or not to have the implant involves a complex process, in which the family needs to weigh gains and losses, experience feelings of accountability and guilt, besides overcoming the risk aversion. Hence, this demands cautious preparation and knowledge from the professionals involved in this intervention.

  10. Cochlear Implant: the complexity involved in the decision making process by the family.

    Science.gov (United States)

    Vieira, Sheila de Souza; Bevilacqua, Maria Cecília; Ferreira, Noeli Marchioro Liston Andrade; Dupas, Giselle

    2014-01-01

    to understand the meanings the family attributes to the phases of the decision-making process on a cochlear implant for their child. qualitative research, using Symbolic Interactionism and Grounded Theory as the theoretical and methodological frameworks, respectively. Data collection instrument: semistructured interview. Nine families participated in the study (32 participants). knowledge deficit, difficulties to contextualize benefits and risks and fear are some factors that make this process difficult. Experiences deriving from interactions with health professionals, other cochlear implant users and their relatives strengthen decision making in favor of the implant. deciding on whether or not to have the implant involves a complex process, in which the family needs to weigh gains and losses, experience feelings of accountability and guilt, besides overcoming the risk aversion. Hence, this demands cautious preparation and knowledge from the professionals involved in this intervention.

  11. Cochlear Implant: the complexity involved in the decision making process by the family1

    Science.gov (United States)

    Vieira, Sheila de Souza; Bevilacqua, Maria Cecília; Ferreira, Noeli Marchioro Liston Andrade; Dupas, Giselle

    2014-01-01

    Objective to understand the meanings the family attributes to the phases of the decision-making process on a cochlear implant for their child. Method qualitative research, using Symbolic Interactionism and Grounded Theory as the theoretical and methodological frameworks, respectively. Data collection instrument: semistructured interview. Nine families participated in the study (32 participants). Results knowledge deficit, difficulties to contextualize benefits and risks and fear are some factors that make this process difficult. Experiences deriving from interactions with health professionals, other cochlear implant users and their relatives strengthen decision making in favor of the implant. Conclusion deciding on whether or not to have the implant involves a complex process, in which the family needs to weigh gains and losses, experience feelings of accountability and guilt, besides overcoming the risk aversion. Hence, this demands cautious preparation and knowledge from the professionals involved in this intervention. PMID:25029052

  12. The fabrication process of ceramic grade UO2 powder via fluorid system AUC and the treatment on AUC precipitation filtrate

    International Nuclear Information System (INIS)

    Liu Jinhong; Xu Kui; Li Zhiwan; Yi Wei; Tang Yueming; Li Guangrong; Lei Maolin; Cui Chuanjiang

    2006-10-01

    It is described about the technology of fabricating AUC powder by Circum-fluence Precipitation Reactor with Gas (CPRG) from UF 6 hydrolyzed liquid, manufacturing nuclear pure ceramic grade UO 2 powder via fluorid system AUC process with fluidized bed method, recovering U(VI) with ion exchange resin, depositing fluorin in an outflow of effusion wastewater from the ion exchange using calces. The primary control parameters on the fabricating AUC powder is study, it is discussed to character difference of AUC powder between fluorid system and nitrate. Result show that the composing the manufacture AUC powder is invariable by CORG, and that the AUC quality is consistent, and that by decomposition and reduction of AUC and stabilization of UO 2 powder with fluidized bed, through optimum technological parameters, the excellent UO 2 powder is obtained on the quality. (authors)

  13. Characterization of the nanosized porous structure of black Si solar cells fabricated via a screen printing process

    Institute of Scientific and Technical Information of China (English)

    Tang Yehua; Fei Jianming; Cao Hongbin; Zhou Chunlan; Wang Wenjing; Zhou Su; Zhao Yan; Zhao Lei; Li Hailing; Yan Baojun; Chen Jingwei

    2012-01-01

    A silicon (Si) surface with a nanosized porous structure was formed via simple wet chemical etching catalyzed by gold (Au) nanoparticles on p-type Cz-Si (100).The average reflectivity from 300 to 1200 nm was less than 1.5%.Black Si solar cells were then fabricated using a conventional production process.The results reflected the output characteristics of the cells fabricated using different etching depths and emitter dopant profiles.Heavier dopants and shallower etching depths should be adopted to optimize the black Si solar cell output characteristics.The efficiency at the optimized etching time and dopant profile was 12.17%.However,surface passivation and electrode contact due to the nanosized porous surface structure are still obstacles to obtaining high conversion efficiency for the black Si solar cells.

  14. One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Liu, Gui-qiang; Yu, Mei-dong; Liu, Zheng-qi; Liu, Xiao-shan; Huang, Shan; Pan, Ping-ping; Wang, Yan; Liu, Mu-lin; Gu, Gang

    2015-01-01

    One-process fabrication of highly active and reproducible surface-enhanced Raman scattering (SERS) substrates via ion beam deposition is reported. The fabricated metal–dielectric–metal (MDM) hierarchical nanostructure possesses rich nanogaps and a tunable resonant cavity. Raman scattering signals of analytes are dramatically strengthened due to the strong near-field coupling of localized surface plasmon resonances (LSPRs) and the strong interaction of LSPRs of metal NPs with surface plasmon polaritons (SPPs) on the underlying metal film by crossing over the dielectric spacer. The maximum Raman enhancement for the highest Raman peak at 1650 cm −1 is 13.5 times greater than that of a single metal nanoparticle (NP) array. Moreover, the SERS activity can be efficiently tailored by varying the size and number of voids between adjacent metal NPs and the thickness of the dielectric spacer. These findings may broaden the scope of SERS applications of MDM hierarchical nanostructures in biomedical and analytical chemistry. (paper)

  15. Fabrication of a Sludge-Conditioning System for processing legacy wastes from the Gunite and Associated Tanks

    International Nuclear Information System (INIS)

    Randolph, J.D.; Lewis, B.E.; Farmer, J.R.; Johnson, M.A.

    2000-01-01

    The Sludge Conditioning System (SCS) for the Gunite and Associated Tanks (GAATs) is designed to receive, monitor, characterize and process legacy waste materials from the South Tank Farm tanks in preparation for final transfer of the wastes to the Melton Valley Storage Tanks (MVSTs), which are located at Oak Ridge National Laboratory. The SCS includes (1) a Primary Conditioning System (PCS) Enclosure for sampling and particle size classification, (2) a Solids Monitoring Test Loop (SMTL) for slurry characterization, (3) a Waste Transfer Pump to retrieve and transfer waste materials from GAAT consolidation tank W-9 to the MVSTs, (4) a PulsAir Mixing System to provide mixing of consolidated sludges for ease of retrieval, and (5) the interconnecting piping and valving. This report presents the design, fabrication, cost, and fabrication schedule information for the SCS

  16. Abatement of waste gases and water during the processes of semiconductor fabrication.

    Science.gov (United States)

    Wen, Rui-mei; Liang, Jun-wu

    2002-10-01

    The purpose of this article is to examine the methods and equipment for abating waste gases and water produced during the manufacture of semiconductor materials and devices. Three separating methods and equipment are used to control three different groups of electronic wastes. The first group includes arsine and phosphine emitted during the processes of semiconductor materials manufacture. The abatement procedure for this group of pollutants consists of adding iodates, cupric and manganese salts to a multiple shower tower (MST) structure. The second group includes pollutants containing arsenic, phosphorus, HF, HCl, NO2, and SO3 emitted during the manufacture of semiconductor materials and devices. The abatement procedure involves mixing oxidants and bases in an oval column with a separator in the middle. The third group consists of the ions of As, P and heavy metals contained in the waste water. The abatement procedure includes adding CaCO3 and ferric salts in a flocculation-sedimentation compact device equipment. Test results showed that all waste gases and water after the abatement procedures presented in this article passed the discharge standards set by the State Environmental Protection Administration of China.

  17. Final report on the public involvement process phase 1, Monitored Retrievable Storage Facility Feasibility Study

    International Nuclear Information System (INIS)

    Moore, L.; Shanteau, C.

    1992-12-01

    This report summarizes the pubic involvement component of Phase 1 of the Monitored Retrievable Storage Facility (NM) Feasibility Study in San Juan County, Utah. Part of this summary includes background information on the federal effort to locate a voluntary site for temporary storage of nuclear waste, how San Juan County came to be involved, and a profile of the county. The heart of the report, however, summarizes the activities within the public involvement process, and the issues raised in those various forums. The authors have made every effort to reflect accurately and thoroughly all the concerns and suggestions expressed to us during the five month process. We hope that this report itself is a successful model of partnership with the citizens of the county -- the same kind of partnership the county is seeking to develop with its constituents. Finally, this report offers some suggestions to both county officials and residents alike. These suggestions concern how decision-making about the county's future can be done by a partnership of informed citizens and listening decision-makers. In the Appendix are materials relating to the public involvement process in San Juan County

  18. Final report on the public involvement process phase 1, Monitored Retrievable Storage Facility Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Moore, L.; Shanteau, C.

    1992-12-01

    This report summarizes the pubic involvement component of Phase 1 of the Monitored Retrievable Storage Facility (NM) Feasibility Study in San Juan County, Utah. Part of this summary includes background information on the federal effort to locate a voluntary site for temporary storage of nuclear waste, how San Juan County came to be involved, and a profile of the county. The heart of the report, however, summarizes the activities within the public involvement process, and the issues raised in those various forums. The authors have made every effort to reflect accurately and thoroughly all the concerns and suggestions expressed to us during the five month process. We hope that this report itself is a successful model of partnership with the citizens of the county -- the same kind of partnership the county is seeking to develop with its constituents. Finally, this report offers some suggestions to both county officials and residents alike. These suggestions concern how decision-making about the county's future can be done by a partnership of informed citizens and listening decision-makers. In the Appendix are materials relating to the public involvement process in San Juan County.

  19. Final report on the public involvement process phase 1, Monitored Retrievable Storage Facility Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Moore, L.; Shanteau, C.

    1992-12-01

    This report summarizes the pubic involvement component of Phase 1 of the Monitored Retrievable Storage Facility (NM) Feasibility Study in San Juan County, Utah. Part of this summary includes background information on the federal effort to locate a voluntary site for temporary storage of nuclear waste, how San Juan County came to be involved, and a profile of the county. The heart of the report, however, summarizes the activities within the public involvement process, and the issues raised in those various forums. The authors have made every effort to reflect accurately and thoroughly all the concerns and suggestions expressed to us during the five month process. We hope that this report itself is a successful model of partnership with the citizens of the county -- the same kind of partnership the county is seeking to develop with its constituents. Finally, this report offers some suggestions to both county officials and residents alike. These suggestions concern how decision-making about the county`s future can be done by a partnership of informed citizens and listening decision-makers. In the Appendix are materials relating to the public involvement process in San Juan County.

  20. Influence of the fabrication process parameters on microstructures and mechanical properties of 10Cr-1Mo ODS steel

    International Nuclear Information System (INIS)

    Jin, Hyun Ju; Kim, Ki Baik; Choi, Byoung Kwon; Kang, Suk Hoon; Noh, Sang Hoon; Kim, Ga Eon; Kim, Tae Kyu

    2016-01-01

    Oxide dispersion strengthened (ODS) FM steels have been developed as the most promising core structural material for high- temperature components operating in severe environments such as nuclear fusion and fission systems owing to its excellent elevated temperature strength and radiation resistance stemming from the addition of extremely thermally stable oxide particles dispersed in a ferritic/martensitic matrix. To realize the structural components such as plates, sheets and tubes in SFR, the development of manufacturing processes is an essential issue for the ODS FM steel. While the ODS steel has superior radiation resistance and high temperature strength, in comparison with the existing commercial steels, it is difficult for the ODS steel to obtain sufficient workability for the fabrication due to high hardness and low ductility at room temperature, meaning that the manufacturing of the ODS plate including cladding tube can be complicated by the low cold workability. In order to prevent the ODS steel from any damage during the manufacturing process, thus, the introduction of intermediate heat treatments between cold rolling processes is necessary. This study investigates effects of the fabrication process parameters such as the cold working ratio, the intermediate and final heat treatments on the microstructure and mechanical properties of 10Cr-1Mo ODS steel. In an effort to optimize the manufacturing route of the ODS FM steel, the microstructural and mechanical evolutions for the ODS plate manufactured by a control of the fabrication process parameters were evaluated in the present study. In the present study, the effect of a cold rolling and intermediate heat treatments on microstructures and mechanical properties of 10Cr-1Mo FM ODS steel were investigated. During the manufacturing route the hardness measurements remained below the critical value of 400 Hv. Intermediate heat treatment with slow cooling led to a softened ferritic structures which can be further

  1. Comparative Study of Laboratory-Scale and Prototypic Production-Scale Fuel Fabrication Processes and Product Characteristics

    International Nuclear Information System (INIS)

    2014-01-01

    An objective of the High Temperature Gas Reactor fuel development and qualification program for the United States Department of Energy has been to qualify fuel fabricated in prototypic production-scale equipment. The quality and characteristics of the tristructural isotropic coatings on fuel kernels are influenced by the equipment scale and processing parameters. Some characteristics affecting product quality were suppressed while others have become more significant in the larger equipment. Changes to the composition and method of producing resinated graphite matrix material has eliminated the use of hazardous, flammable liquids and enabled it to be procured as a vendor-supplied feed stock. A new method of overcoating TRISO particles with the resinated graphite matrix eliminates the use of hazardous, flammable liquids, produces highly spherical particles with a narrow size distribution, and attains product yields in excess of 99%. Compact fabrication processes have been scaled-up and automated with relatively minor changes to compact quality to manual laboratory-scale processes. The impact on statistical variability of the processes and the products as equipment was scaled are discussed. The prototypic production-scale processes produce test fuels that meet fuel quality specifications.

  2. Fabrication of Li{sub 2}TiO{sub 3} pebbles by a freeze drying process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Jin, E-mail: lee@mokpo.ac.kr [Department of Advanced Materials Science and Engineering, Mokpo National University, Muan 534-729 (Korea, Republic of); Park, Yi-Hyun [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Yu, Min-Woo [Department of Advanced Materials Science and Engineering, Mokpo National University, Muan 534-729 (Korea, Republic of)

    2013-11-15

    Li{sub 2}TiO{sub 3} pebbles were successfully fabricated by using a freeze drying process. The Li{sub 2}TiO{sub 3} slurry was prepared using a commercial powder of particle size 0.5–1.5 μm and the pebble pre-form was prepared by dropping the slurry into liquid nitrogen through a syringe needle. The droplets were rapidly frozen, changing their morphology to spherical pebbles. The frozen pebbles were dried at −10 °C in vacuum. To make crack-free pebbles, some glycerin was employed in the slurry, and long drying time and a low vacuum condition were applied in the freeze drying process. In the process, the solid content in the slurry influenced the spheroidicity of the pebble green body. The dried pebbles were sintered at 1200 °C in an air atmosphere. The sintered pebbles showed almost 40% shrinkage. The sintered pebbles revealed a porous microstructure with a uniform pore distribution and the sintered pebbles were crushed under an average load of 50 N in a compressive strength test. In the present study, a freeze drying process for fabrication of spherical Li{sub 2}TiO{sub 3} pebbles is introduced. The processing parameters, such as solid content in the slurry and the conditions of freeze drying and sintering, are also examined.

  3. Microstructural evolution and strengthening behavior in in-situ magnesium matrix composites fabricated by solidification processing

    Energy Technology Data Exchange (ETDEWEB)

    Chelliah, Nagaraj M., E-mail: cmnraj.7@gmail.com [Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab (India); Singh, Harpreet, E-mail: harpreetsingh@iitrpr.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab (India); Surappa, M.K., E-mail: mirle@materials.iisc.ac.in [Department of Materials Engineering, Indian Institute of Science, Bengaluru 560012, Karnataka (India)

    2017-06-15

    In-situ magnesium matrix composites with three different matrix materials (including Mg, AZ91 and AE44 Mg-alloys) were fabricated by injecting cross-linked polymer directly into the molten Mg/Mg-alloys, and having it convert to the 2.5 vol% SiCNO ceramic phase using liquid stir-casting method. In-situ chemical reaction took place within the molten slurry tending to produce 42 and 18 vol% Mg{sub 2}Si crystals in Mg and AE44 matrix composites, respectively but not in AZ91 matrix composite. Microstructural evolution of Mg{sub 2}Si crystals was discussed on the basis of availability of heterogeneous nucleation sites and amount of Al-atoms in the molten slurry. The observed micro-hardness and yield strengths are enhanced by factor of four to three as compared to their unreinforced counterparts, and Taylor strengthening was found to be the predominant strengthening mechanism in magnesium and AE44 matrix composites. Summation model predicted the yield strengths of the fabricated composites more preciously when compared to Zhang and Chen, and modified Clyne models. - Highlights: • In-situ magnesium composites were fabricated using liquid stir-casting method. • In-situ pyrolysis of cross-linked polymer has been utilized to obtain ceramic phases. • Mg{sub 2}Si crystals were formed in magnesium and AE44 matrix composites but not in AZ91 matrix composites. • The variation in size and morphology of Mg{sub 2}Si crystals with matrix materials are discussed. • Strengthening mechanisms in in-situ composites are analyzed and discussed.

  4. Relationship between single-event upset immunity and fabrication processes of recent memories; Relations entre l'immunite au SEU et les procedes de fabrication de memoires recentes

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, N.; Shindou, H.; Kuboyama, S.; Matsuda, S. [National Space Development Agency of Japan, Ibaraki-ken (Japan); Itoh, H.; Okada, S.; Nashiyama, I. [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan)

    1999-07-01

    Single-Event upset (SEU) immunity for commercial devices were evaluated by irradiation tests using high-energy heavy ions. We show test results and describe the relationship between observed SEU and structures/fabrication processes. We have evaluated single-even upset (SEU) tolerance of recent commercial memory devices using high energy heavy ions in order to find relationship between SEU rate and their fabrication process. It was revealed that the change of the process parameter gives much effect for the SEU rate of the devices. (authors)

  5. Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets

    Science.gov (United States)

    Makowiecki, Daniel M.; Ramsey, Philip B.; Juntz, Robert S.

    1995-01-01

    An improved method for fabricating pyrolytic graphite sputtering targets with superior heat transfer ability, longer life, and maximum energy transmission. Anisotropic pyrolytic graphite is contoured and/or segmented to match the erosion profile of the sputter target and then oriented such that the graphite's high thermal conductivity planes are in maximum contact with a thermally conductive metal backing. The graphite contact surface is metallized, using high rate physical vapor deposition (HRPVD), with an aluminum coating and the thermally conductive metal backing is joined to the metallized graphite target by one of four low-temperature bonding methods; liquid-metal casting, powder metallurgy compaction, eutectic brazing, and laser welding.

  6. Characterization of complementary patterned metallic membranes produced simultaneously by a dual fabrication process

    Science.gov (United States)

    Hao, Qingzhen; Zeng, Yong; Wang, Xiande; Zhao, Yanhui; Wang, Bei; Chiang, I.-Kao; Werner, Douglas H.; Crespi, Vincent; Huang, Tony Jun

    2010-11-01

    An efficient technique is developed to fabricate optically thin metallic films with subwavelength patterns and their complements simultaneously. By comparing the spectra of the complementary films, we show that Babinet's principle nearly holds for these structures in the optical domain. Rigorous full-wave simulations are employed to verify the experimental observations. It is further demonstrated that a discrete-dipole approximation can qualitatively describe the spectral dependence of the metallic membranes on the geometry of the constituent particles as well as the illuminating polarization.

  7. Effect of the fabrication process on fatigue performance of U3Si2 fuel plate with sandwich structure

    International Nuclear Information System (INIS)

    Wang Xishu; Li Shuangshou; Wang Qingyuan; Xu Yong

    2005-01-01

    U 3 Si 2 -Al fuel plate is one of the dispersion fuel structure materials recently developed and widely used in research reactors. The mechanical properties of this structural material, especially the fatigue performance, are strongly dependent on its fabrication process. To investigate the effects of these processing technologies, the fatigue tests for the different specimens were carried out. The S-N curves indicate that the fabrication processing technologies of U 3 Si 2 fuel plate, such as the addition of U 3 Si 2 particles into aluminum powder to form the fuel meat, holding and rolling the processes of meat and cladding of 6061-Al alloy, plays an important role in improving the mechanical properties and fatigue performance of this fuel plate. In addition, some factors that influence the crack initiation and propagation are summarized based on the fatigue images that are in situ observations with SEM. The critical criterion for fatigue damage is proposed based on the fatigue data of the structural material, which were obtained at the different conditions

  8. [Effect of fluoride concentration on the corrosion behavior of cobalt-chromium alloy fabricated by two different technology processes].

    Science.gov (United States)

    Qiuxia, Yang; Ying, Yang; Han, Xu; Di, Wu; Ke, Guo

    2016-02-01

    This study aims to determine the effect of fluoride concentration on the corrosion behavior of cobalt-chromium alloy fabricated by two different technology processes in a simulated oral environment. A total of 15 specimens were employed with selective laser melting (SLM) and another 15 for traditional casting (Cast) in cobalt-chromium alloy powders and blocks with the same material composition. The corrosion behavior of the specimens was studied by potentiodynamic polarization test under different oral environments with varying solubilities of fluorine (0, 0.05%, and 0.20% for each) in acid artificial saliva (pH = 5.0). The specimens were soaked in fluorine for 24 h, and the surface microstructure was observed under a field emission scanning electron microscope after immersing the specimens in the test solution at constant temperature. The corrosion potential (Ecorr) value of the cobalt-chromium alloy cast decreased with increasing fluoride concentration in acidic artificial saliva. The Ecorr, Icorr, and Rp values of the cobalt-chromium alloy fabricated by two different technology processes changed significantly when the fluoride concentration was 0.20% (P technology processes exhibited a statistically significant difference. The Icorr value of the cobalt-chromium alloy cast was higher than that in the SLM group cobalt-chromium alloy when the fluoride concentration was 0.20% (P technology processes. The corrosion resistance of the cobalt-chromium alloy cast was worse than that of the SLM group cobalt-chromium alloy when the fluoride concentration was 0.20%.

  9. Simple Fabrication Process for 2D ZnO Nanowalls and Their Potential Application as a Methane Sensor

    Directory of Open Access Journals (Sweden)

    Zhan-Shuo Hu

    2013-03-01

    Full Text Available Two-dimensional (2D ZnO nanowalls were prepared on a glass substrate by a low-temperature thermal evaporation method, in which the fabrication process did not use a metal catalyst or the pre-deposition of a ZnO seed layer on the substrate. The nanowalls were characterized for their surface morphology, and the structural and optical properties were investigated using scanning electron microscopy (SEM, X-ray diffraction (XRD, transmission electron microscopy (TEM, and photoluminescence (PL. The fabricated ZnO nanowalls have many advantages, such as low growth temperature and good crystal quality, while being fast, low cost, and easy to fabricate. Methane sensor measurements of the ZnO nanowalls show a high sensitivity to methane gas, and rapid response and recovery times. These unique characteristics are attributed to the high surface-to-volume ratio of the ZnO nanowalls. Thus, the ZnO nanowall methane sensor is a potential gas sensor candidate owing to its good performance.

  10. Evaluation on microscopic damage and fabrication process of shape memory alloy

    International Nuclear Information System (INIS)

    Lee, Jin Kyung; Choi, Il Kook; Park, Young Chul; Lee, Kyu Chang; Lee, Jun Hyun

    2002-01-01

    Shape memory alloy has been used to improve the tensile strength of composite by the occurrence of compressive residual stress in matrix using its shape memory effect. In order to fabricate shape memory alloy composite, TiNi alloy and Al6061 were used as reinforcing material and matrix, respectively. In this study, TiNi/Al6061 shape memory alloy composite was made by using hot press method. However, the specimen fabricated by this method had the bonding problem at tile boundary between TiNi fiber anti Al matrix when the load was applied to it. A cold rolling was imposed to the specimen to improve the bonding effort. It was found that tensile strength of specimen subjected to cold rolling was more increased than that of specimen which did not underwent cold rolling. In addition, acoustic emission technique was used to quantify the microscopic damage behavior of cold rolled TiNi/Al6061 shape memory alloy composite at high temperature.

  11. Functional brain imaging study on brain processes involved in visual awareness

    International Nuclear Information System (INIS)

    Kobayashi, Tetsuo; Futakawa, Hiroyuki; Tokita, Shohko; Jung, Jiuk

    2003-01-01

    Recently, there has been great interest in visual awareness because it is thought that it may provide valuable information in understanding aspects of consciousness. An important but still controversial issue is what region in the brain is involved in visual awareness. When viewing ambiguous figures, observers can be aware of only one of multiple competing percepts at any given moment, but experience spontaneous alternations among the percepts over time. This phenomenon is known as multistable perceptions and thought to be essential in understanding the brain processes involved in visual awareness. We used functional magnetic resonance imaging to investigate the brain activities associated with multistable perceptions. Two separate experiments were performed based on two different multistable phenomena known as binocular rivalry and perceptions of ambiguous figures. Significant differential activations in the parietal and prefrontal areas were commonly observed under multistable conditions compared to monostable control conditions in the two separate experiments. These findings suggest that neural processes in the parietal and prefrontal areas may be involved in perceptual alternations in situations involving multistable phenomena. (author)

  12. Applications of a Hybrid Manufacturing Process for Fabrication and Repair of Metallic Structures (Preprint)

    National Research Council Canada - National Science Library

    Liou, Frank; Slattery, Kevin; Kinsella, Mary; Newkirk, Joseph; Chou, Hsin-Nan; Landers, Robert

    2006-01-01

    .... Coupled between the additive and the subtractive processes into a single workstation, the integrated process, or hybrid process, can produce a metal part with machining accuracy and surface finish...

  13. Composition-graded nanowire solar cells fabricated in a single process for spectrum-splitting photovoltaic systems.

    Science.gov (United States)

    Caselli, Derek; Liu, Zhicheng; Shelhammer, David; Ning, Cun-Zheng

    2014-10-08

    Nanomaterials such as semiconductor nanowires have unique features that could enable novel optoelectronic applications such as novel solar cells. This paper aims to demonstrate one such recently proposed concept: Monolithically Integrated Laterally Arrayed Multiple Band gap (MILAMB) solar cells for spectrum-splitting photovoltaic systems. Two cells with different band gaps were fabricated simultaneously in the same process on a single substrate using spatially composition-graded CdSSe alloy nanowires grown by the Dual-Gradient Method in a chemical vapor deposition system. CdSSe nanowire ensemble devices tested under 1 sun AM1.5G illumination achieved open-circuit voltages up to 307 and 173 mV and short-circuit current densities as high as 0.091 and 0.974 mA/cm(2) for the CdS- and CdSe-rich cells, respectively. The open-circuit voltages were roughly three times those of similar CdSSe film cells fabricated for comparison due to the superior optical quality of the nanowires. I-V measurements were also performed using optical filters to simulate spectrum-splitting. The open-circuit voltages and fill factors of the CdS-rich subcells were uniformly larger than the corresponding CdSe-rich cells for similar photon flux, as expected. This suggests that if all wires can be contacted, the wide-gap cell is expected to have greater output power than the narrow-gap cell, which is the key to achieving high efficiencies with spectrum-splitting. This paper thus provides the first proof-of-concept demonstration of simultaneous fabrication of MILAMB solar cells. This approach to solar cell fabrication using single-crystal nanowires for spectrum-splitting photovoltaics could provide a future low-cost high-efficiency alternative to the conventional high-cost high-efficiency tandem cells.

  14. Diversity for design: A framework for involving neurodiverse children in the technology design process

    OpenAIRE

    Benton, L.; Vasalou, A.; Khaled, R.; Johnson, H.; Gooch, D.

    2014-01-01

    The neurodiversity movement seeks to positively reframe certain neurological conditions, such as autism spectrum disorders (ASD) and dyslexia, by concentrating on their strengths. In recent years, neurodiverse children have increasingly been involved in the technology design process, but the design approaches adopted have focused mostly on overcoming difficulties of working with these children, leaving their strengths untapped. We present a new participatory design (PD) framework, Diversity f...

  15. Diversity for design : a framework for involving neurodiverse children in the technology design process

    OpenAIRE

    Benton, Laura; Vasalou, Asimina; Khaled, Rilla; Johnson, Hilary; Gooch, Daniel

    2014-01-01

    The neurodiversity movement seeks to positively reframe certain neurological conditions, such as autism spectrum disorders (ASD) and dyslexia, by concentrating on their strengths. In recent years, neurodiverse children have increasingly been involved in the technology design process, but the design approaches adopted have focused mostly on overcoming difficulties of working with these children, leaving their strengths untapped. We present a new participatory design (PD) framework, Diversity f...

  16. Domain general sequence operations contribute to pre-SMA involvement in visuo-spatial processing

    Directory of Open Access Journals (Sweden)

    E. Charles eLeek

    2016-01-01

    Full Text Available This study used 3T MRI to elucidate the functional role of supplementary motor area (SMA in relation to visuo-spatial processing. A localizer task contrasting sequential number subtraction and repetitive button pressing was used to functionally delineate non-motor sequence processing in pre-SMA, and activity in SMA-proper associated with motor sequencing. Patterns of BOLD responses in these regions were then contrasted to those from two tasks of visuo-spatial processing. In one task participants performed mental rotation in which recognition memory judgments were made to previously memorized 2D novel patterns across image-plane rotations. The other task involved abstract grid navigation in which observers computed a series of imagined location shifts in response to directional (arrow cues around a mental grid. The results showed overlapping activation in pre-SMA for sequential subtraction and both visuo-spatial tasks. These results suggest that visuo-spatial processing is supported by non-motor sequence operations that involve pre-SMA. More broadly, these data further highlight the functional heterogeneity of pre-SMA, and show that its role extends to processes beyond the planning and online control of movement.

  17. The difficulties experienced by nurses and healthcare staff involved in the process of breaking bad news.

    Science.gov (United States)

    Warnock, Clare; Buchanan, Jean; Tod, Angela Mary

    2017-07-01

    The aim of this study was to explore the difficulties experienced by nurses and healthcare professionals when engaging in the process of breaking bad news. The challenges faced by staff when breaking bad news have previously been researched in relation to particular settings or participants. This study involved staff from diverse settings and roles to develop broader insights into the range of difficulties experienced in clinical practice. The study used a descriptive survey design involving self-reported written accounts and framework analysis. Data were collected using a structured questionnaire containing a free text section that asked participants to describe a difficult experience they had encountered when involved in the process of breaking bad news. Data were collected from healthcare staff from hospital, community, hospice and care home settings attending training days on breaking bad news between April 2011 and April 2014. Multiple inter-related factors presented challenges to staff engaging in activities associated with breaking bad news. Traditional subjects such as diagnostic and treatment information were described but additional topics were identified such as the impact of illness and care at the end of life. A descriptive framework was developed that summarizes the factors that contribute to creating difficult experiences for staff when breaking bad news. The framework provides insights into the scope of the challenges faced by staff when they engage in the process of breaking bad news. This provides the foundation for developing interventions to support staff that more closely matches their experiences in clinical practice. © 2017 John Wiley & Sons Ltd.

  18. Hybrid fabrication process of additive manufacturing and direct writing for a 4 X 4 mm matrix flexible tactile sensor

    International Nuclear Information System (INIS)

    Woo, Sang Gu; Lee, In Hwan; Lee, Kyong Chang

    2015-01-01

    Various machines require data from their external environments for safety and/or accuracy. In this respect, many sensors that mimic the human sensory system have been investigated. Among these, tactile sensors may be useful for obtaining data on the roughness of, and external forces acting upon, an object. Several tactile sensors have been developed; however, these are typically fabricated via a series of complex processes, and hence are unsuitable for volume manufacturing. In this paper, we report a fabrication process for a 4 X 4 mm matrix flexible sensor element using layered manufacturing and direct-write technology. A composite composed of photocurable resin and Multi-walled carbon nanotubes (MWCNTs) was used as the sensing material. The MWCNTs were mixed with the photocurable resin using ultrasonic dispersion, and the liquid mixture exhibited excellent piezoresistive properties following curing using ultraviolet light. The used photocurable resin is flexible and elastic after curing. Therefore, the composite material can be bent and deformed. To use this composite material with the flexible sensor, dispensing characteristics were examined using direct-write technology. For the acquisition of sensor data, a commercial pin-header was inserted and photocurable resin was filled up to the height of pin-header and cured . Then, the composite material was dispensed onto the pin-header as a sensing material. Using this process, a flexible sensor with piezoresistive properties was formed.

  19. Hybrid fabrication process of additive manufacturing and direct writing for a 4 X 4 mm matrix flexible tactile sensor

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sang Gu; Lee, In Hwan [Chungbuk National University, Chungju (Korea, Republic of); Lee, Kyong Chang [Pukyong National University, Busan (Korea, Republic of)

    2015-09-15

    Various machines require data from their external environments for safety and/or accuracy. In this respect, many sensors that mimic the human sensory system have been investigated. Among these, tactile sensors may be useful for obtaining data on the roughness of, and external forces acting upon, an object. Several tactile sensors have been developed; however, these are typically fabricated via a series of complex processes, and hence are unsuitable for volume manufacturing. In this paper, we report a fabrication process for a 4 X 4 mm matrix flexible sensor element using layered manufacturing and direct-write technology. A composite composed of photocurable resin and Multi-walled carbon nanotubes (MWCNTs) was used as the sensing material. The MWCNTs were mixed with the photocurable resin using ultrasonic dispersion, and the liquid mixture exhibited excellent piezoresistive properties following curing using ultraviolet light. The used photocurable resin is flexible and elastic after curing. Therefore, the composite material can be bent and deformed. To use this composite material with the flexible sensor, dispensing characteristics were examined using direct-write technology. For the acquisition of sensor data, a commercial pin-header was inserted and photocurable resin was filled up to the height of pin-header and cured . Then, the composite material was dispensed onto the pin-header as a sensing material. Using this process, a flexible sensor with piezoresistive properties was formed.

  20. PVDF core-free actuator for Braille displays: design, fabrication process, and testing

    Science.gov (United States)

    Levard, Thomas; Diglio, Paul J.; Lu, Sheng-Guo; Gorny, Lee J.; Rahn, Christopher D.; Zhang, Q. M.

    2011-04-01

    Refreshable Braille displays require many, small diameter actuators to move the pins. The electrostrictive P(VDF-TrFECFE) terpolymer can provide the high strain and actuation force under modest electric fields that are required of this application. In this paper, we develop core-free tubular actuators and integrate them into a 3 × 2 Braille cell. The films are solution cast, stretched to 6 μm thick, electroded, laminated into a bilayer, rolled into a 2 mm diameter tube, bonded, and provided with top and bottom contacts. Experimental testing of 17 actuators demonstrates significant strains (up to 4%). A novel Braille cell is designed and fabricated using six of these actuators.

  1. Fabrication of AlN-TiC/Al composites by gas injection processing

    Institute of Scientific and Technical Information of China (English)

    YU Huashun; CHEN Hongmei; MA Rendian; MIN Guanghui

    2006-01-01

    The fabrication of AlN-TiC/Al composites by carbon-and nitrogen-containing gas injection into Al-Mg-Ti melts was studied. It was shown that AlN and TiC particles could be formed by the in situ reaction of mixture gas (N2+C2H2+NH3) with Al-Mg-Ti melts. The condition for the formation of AlN was that the treatment temperature must be higher than 1373 K, and the amounts of AlN and TiC increased with the increase of the treatment temperature and the gas injection time.It was considered that AlN was formed by the direct reaction of Al with nitrogen-containing gas at the interface of the gas bubble and the melt. However, the mechanism of TiC formation is a combination mechanism of solution-precipitation and solid-liquid reaction.

  2. Fast anodization fabrication of AAO and barrier perforation process on ITO glass

    Science.gov (United States)

    Liu, Sida; Xiong, Zuzhou; Zhu, Changqing; Li, Ma; Zheng, Maojun; Shen, Wenzhong

    2014-04-01

    Thin films of porous anodic aluminum oxide (AAO) on tin-doped indium oxide (ITO) substrates were fabricated through evaporation of a 1,000- to 2,000-nm-thick Al, followed by anodization with different durations, electrolytes, and pore widening. A faster method to obtain AAO on ITO substrates has been developed, which with 2.5 vol.% phosphoric acid at a voltage of 195 V at 269 K. It was found that the height of AAO films increased initially and then decreased with the increase of the anodizing time. Especially, the barrier layers can be removed by extending the anodizing duration, which is very useful for obtaining perforation AAO and will broaden the application of AAO on ITO substrates.

  3. Development of ultrafine and pure amorphous and crystalline new materials and their fabrication process

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Kim, Y. E.; Kim, J. G.; Gu, J. H.; Yoon, N. K.; Seong, S. Y.; Ryu, S. E.; Lee, J. C.

    1996-07-01

    Based on an estimation of annual rice production of 5.2 Million tons, rice husks by-production reaches to 1.17 Million tons per year in Korea. distinguished to other corns, rice contains a lot of Si; 10 ∼ 20 % by weight in rice husks calculated as silica. The aim of this research project is to develop technologies for ceramic powders and materials utilizing the silica in rice husks called phytoliths. In this researches of the following subjects were performed; decomposition of the organic components, acid treatments, extraction of the organic matter, effect of gamma-ray irradiation on the acid treatment, plasma treatment, crystallization of silica powder, dispersion of amorphous silica powder, fabrication of ultrafine crystalline fibrous materials.. (author). 18 refs., 5 tabs., 55 figs

  4. Subwavelength Microstructures Fabrication by Self-Organization Processes in Photopolymerizable Nanocomposite

    Directory of Open Access Journals (Sweden)

    I. Yu. Denisyuk

    2012-01-01

    Full Text Available This paper describes our research results on nanometers sizes subwavelength nanostructure fabrication by UV curing of special nanocomposite material with self-organization and light self-focusing effects. For this purpose, special UV curable nanocomposite material with a set of effects was developing: light self-focusing in the photopolymer with positive refractive index change, self-organization based on photo-induced nanoparticles transportation, and oxygen-based polymerization threshold. Both holographic and projection lithography writing methods application for microstructure making shows geometrical optical laws perturbation as result of nanocomposite self-organization effects with formation of nanometers-sized high-aspect-ratio structures. Obtained results will be useful for diffraction limit overcoming in projection lithography as well as for deep lithography technique.

  5. Involving the stakeholders in the curriculum process: a recipe for success?

    Science.gov (United States)

    Keogh, Johannes J; Fourie, Willem J; Watson, Sheona; Gay, H

    2010-01-01

    The Department of Nursing and Health Studies at the Manukau Institute of Technology (MIT) in Auckland, New Zealand, decided to involve stakeholders from the health care sector in developing a new curriculum. After implementing the new curriculum, the process was evaluated using a content analysis as qualitative research design. Seven individual interviews and one Focus group interview were conducted with the stakeholders to determine their experiences during the process. Ethical permission was sought from the MIT ethical committee. The analyses of the collected data enabled the researchers to identify six main categories. The categories were: "Existing Programme", "The need to change", "The curriculum development process", "The stakeholders", "Personnel", and "Ethnic minorities". From the collected data, it was clear that a new curriculum was necessary to enable the graduates to meet the health care needs of the New Zealand population, especially after the primary health care policy was introduced in New Zealand. It was also clear that the curriculum development process could be a painful process for all concerned, but a strong leadership could cement a feeling of "collegiality" between stakeholders and teaching staff. The importance of considering the rights of ethnic minorities is clearly stated in the Treaty of Waitangi, safeguarding the rights of the Maori People, and therefore applied rigorously in the development process. In this project, the collaborative process was very successful, and the stakeholders actually expressed feelings of "Ownership" of the curriculum.

  6. Microstructure of Semi-Solid 6063 Alloy Fabricated by Radial Forging Combined with Unidirectional Compression Recrystallization and Partial Melting Process

    Directory of Open Access Journals (Sweden)

    Wang Yongfei

    2017-01-01

    Full Text Available Radial forging combined with unidirectional compression (RFCUM is introduced in recrystallization and partial melting (RAP to fabricate semi-solid 6063 aluminum alloy, which can be defined as a process of RFCUM-RAP. In this study, the microstructures of semi-solid 6063 alloy prepared by semi-solid isothermal treatment (SSIT and RFCUM-RAP processes are investigated. The results show that, the solid grains of semi-solid alloy prepared by SSIT are large and irregular. However, solid grains of semi-solid billet prepared by RFCUC-RAP are fine and spherical. Additionally, during RFCUC-RAP process, with the increase of isothermal holding time, the shape of solid grain is more and more spherical, but the size of solid grain is gradually increased. To obtain ideal semi-solid microstructure, the optimal isothermal holding temperature and time are 630 °C and 5~10 min, respectively.

  7. Effects of thermal budget in n-type bifacial solar cell fabrication processes on effective lifetime of crystalline silicon

    Directory of Open Access Journals (Sweden)

    Tomihisa Tachibana

    2017-04-01

    Full Text Available The effects of residual C on cell properties are investigated from the view point of thermal budget in the n-type bifacial cell processes. Implied Voc obtained from wafers with same Oi concentration depend on the thermal budgets decreases as the Cs concentration increases. The Voc values vary depending on the wafer with different growth cooling rate. To analyze the effect of thermal budget correspond to solar cell fabrication process, CZ wafers with almost the same Oi concentrations are prepared. One of the wafers with relatively high residual Cs concentration shows the longer lifetime than the initial value after the 950 oC annealing step. On the other hand, the lifetime of a wafer with relatively low Cs concentration dramatically decreased by the same process due to the O segregation. These results suggest that it is important to choose appropriate wafer specification, starting with feedstock material, for increasing the solar cell efficiency.

  8. Forms And Methods Of Modern Russian Youth Involvement Into The Electoral Process

    Directory of Open Access Journals (Sweden)

    Aleksey D. Maslov

    2015-03-01

    Full Text Available In the present article authors analyzes forms and methods of modern Russian youth involvement in the electoral process. Involving young people in the electoral process is directly related to the problem of increasing the level of political culture in the society. This article presents the main forms of work to attract young people to participate in elections in our country, according to the Central Election Commission (CEC of Russia, some of the regional election commissions, the Russian Public Opinion Research Center (WCIOM. Authors note that at present there are more than one hundred and sixty legislative acts of the Russian Federation, which reflect certain aspects of the state youth policy. All these measures stimulate the political activity of young people, but in our opinion, that is not enough. The fundamental change in the attitude of young people to politics, to the institution of elections is possible only when young people feel like a real part and the subject of transformation processes in our country. In conclusion authors summarizes, that a fundamental change in the relationship of young people to politics, the institution of elections is possible only, when very young feel a real party and the subject of transformation processes in our country. This is possible only when the state is really and not formally prioritizes youth policy. Young people should have a daily state support for education, starting a business, implementation of acquired skills for a decent fee, starting a family, buying a house, etc.

  9. Survey of welding processes for field fabrication of 2 1/4 Cr-1 Mo steel pressure vessels. [128 references

    Energy Technology Data Exchange (ETDEWEB)

    Grotke, G.E.

    1980-04-01

    Any evaluation of fabrication methods for massive pressure vessels must consider several welding processes with potential for heavy-section applications. These include submerged-arc and shielded metal-arc, narrow-joint modifications of inert-gas metal-arc and inert-gas tungsten-arc processes, electroslag, and electron beam. The advantage and disadvantages of each are discussed. Electroslag welding can be dropped from consideration for joining of 2 1/4 Cr-1 Mo steel because welds made with this method do not provide the required mechanical properties in the welded and stress relieved condition. The extension of electron-beam welding to sections as thick as 4 or 8 inches (100 or 200 mm) is too recent a development to permit full evaluation. The manual shielded metal-arc and submerged-arc welding processes have both been employed, often together, for field fabrication of large vessels. They have the historical advantage of successful application but present other disadvantages that make them otherwise less attractive. The manual shielded metal-arc process can be used for all-position welding. It is however, a slow and expensive technique for joining heavy sections, requires large amounts of skilled labor that is in critically short supply, and introduces a high incidence of weld repairs. Automatic submerged-arc welding has been employed in many critical applications and for welding in the flat position is free of most of the criticism that can be leveled at the shielded metal-arc process. Specialized techniques have been developed for horizontal and vertical position welding but, used in this manner, the applications are limited and the cost advantage of the process is lost.

  10. Stakeholders and public involvement in river management: heterogeneous acceptance of participatory processes among Swiss institutions.

    Science.gov (United States)

    Buletti, Nora; Utz, Stephan; Ejderyan, Olivier; Graefe, Olivier; Lane, Stuart; Reynard, Emmanuel

    2014-05-01

    This research explores participatory processes in the domain of river management in Switzerland. The main objective is to better understand how participatory processes are incorporated into river management practice. Switzerland being a federal state, river management is a cantonal (regional) responsibility, under the supervision (and co-funding) of the State (a Confederation). The federal funding includes the opportunity to fund additional participatory activities to aid river management, not least because the federal authorities consider the involvement of wider stakeholders and the public in decision-making as a means of aiding the progression of projects. This is a particularly important goal in a Swiss setting where direct democracy (the possibility of calling the decision of any level of government into question through a popular vote) means that a reasonable level of project acceptance is a necessary element of project progression. River management in Switzerland now includes both flood protection and river restoration objectives, which has served to increase its controversy: river corridors contain competing interests with different objectives (e.g. ecological enhancement, protection of agricultural land, flood risk reduction). We were asked by the Confederation to evaluate participatory processes it sponsored and one element of this evaluation aimed to develop a typology of stakeholder participation. We conducted interviews with the 26 cantonal officers in charge of river management. These interviews were based upon thematically structured open ended questions, with the responses analyzed qualitatively. We have identified significant divergence in the implementation of participatory processes between the cantons. These appear to be related to two factors: (1) the canton's historical experience of river management; and (2) the methods used to select stakeholders for inclusion in the decisional process. Cantons that refer to guidelines or pre

  11. The interactive alphabet with augmented reality as a form of involving children in educational process

    Directory of Open Access Journals (Sweden)

    Vladimir D. Sekerin

    2017-01-01

    Full Text Available Research objective: to prove the expediency of using technologies with augmented reality in educational process of children in order to increase the level of their involvement and to improve the efficiency of educational process. Materials and methods. The information base of the research was made by scientific publications, information and analytical reviews, periodicals, monographs, information placed in the Internet network, concerning practical application of technologies with augmented reality in educational process, descriptive and comparative methods of analysis form the methodical basis of this research. Results. It is shown that in educational process of children it is expedient to use the modern technological achievements allowing organizing productive interactions and relationship of the students among themselves and with teachers, lecturers. Educational, business, role-playing games, discussions promoting acceleration of acquiring  a new experience and receiving new knowledge are the perspective formats of realizing the educational process. The world of augmented reality has the following properties: combines the real and virtual, interacts in real time mode, and functions in three-dimensional space. The advantages of the Interactive alphabet on the basis of the augmented reality technology are as follows: 1 security of strong emotional responses; 2 the involvement and interactivity promoting steady memorizing; 3 possibilities of interaction with the artificial world by means of gadgets; 4 Digital and offline communication; 5 possibility of carrying out virtual lessons. One of the main features of virtual reality is the feeling of participation and the opportunity to observe everything from the first person. It makes expedient to carry out lessons entirely in the virtual reality. Achievement of full involvement in educational process promotes increase of motivation and progress in knowledge acquisition.  The use of the augmented

  12. Sulfomethylated lignosulfonates as additives in oil recovery processes involving chemical recovery agents

    Energy Technology Data Exchange (ETDEWEB)

    Kalfoglou, G.

    1979-10-30

    A process for producing petroleum from subterranean formations is disclosed wherein production from the formation is obtained by driving a fluid from an injection well to a production well. The process involves injecting via the injection well into the formation an aqueous solution of sulfomethylated lignosulfonate salt as a sacrificial agent to inhibit the deposition of surfactant and/or polymer on the reservoir matrix. The process may best be carried out by injecting the sulfomethylated lignosulfonates into the formation through the injection well mixed with either a polymer, a surfactant solution and/or a micellar dispersion. This mixture would then be followed by a drive fluid such as water to push the chemicals to the production well.

  13. Sulfomethylated lignosulfonates as additives in oil recovery processes involving chemical recovery agents

    Energy Technology Data Exchange (ETDEWEB)

    Kalfoglou, G.

    1981-05-26

    A process for producing petroleum from subterranean formations is disclosed wherein production from the formation is obtained by driving a fluid from an injection well to a production well. The process involves injecting via the injection well into the formation an aqueous solution of sulfomethylated lignosulfonate salt as a sacrificial agent to inhibit the deposition of surfactant and/or polymer on the reservoir matrix. The process may best be carried out by injecting the sulfomethylated lignosulfonates into the formation through the injection well mixed with either a polymer, a surfactant solution and/or a micellar dispersion. This mixture would then be followed by a drive fluid such as water to push the chemicals to the production well.

  14. Monitoring and control of amygdala neurofeedback involves distributed information processing in the human brain.

    Science.gov (United States)

    Paret, Christian; Zähringer, Jenny; Ruf, Matthias; Gerchen, Martin Fungisai; Mall, Stephanie; Hendler, Talma; Schmahl, Christian; Ende, Gabriele

    2018-03-30

    Brain-computer interfaces provide conscious access to neural activity by means of brain-derived feedback ("neurofeedback"). An individual's abilities to monitor and control feedback are two necessary processes for effective neurofeedback therapy, yet their underlying functional neuroanatomy is still being debated. In this study, healthy subjects received visual feedback from their amygdala response to negative pictures. Activation and functional connectivity were analyzed to disentangle the role of brain regions in different processes. Feedback monitoring was mapped to the thalamus, ventromedial prefrontal cortex (vmPFC), ventral striatum (VS), and rostral PFC. The VS responded to feedback corresponding to instructions while rPFC activity differentiated between conditions and predicted amygdala regulation. Control involved the lateral PFC, anterior cingulate, and insula. Monitoring and control activity overlapped in the VS and thalamus. Extending current neural models of neurofeedback, this study introduces monitoring and control of feedback as anatomically dissociated processes, and suggests their important role in voluntary neuromodulation. © 2018 Wiley Periodicals, Inc.

  15. Tech-X Corporation releases simulation code for solving complex problems in plasma physics : VORPAL code provides a robust environment for simulating plasma processes in high-energy physics, IC fabrications and material processing applications

    CERN Multimedia

    2005-01-01

    Tech-X Corporation releases simulation code for solving complex problems in plasma physics : VORPAL code provides a robust environment for simulating plasma processes in high-energy physics, IC fabrications and material processing applications

  16. A non-linear decision making process for public involvement in environmental management activities

    International Nuclear Information System (INIS)

    Harper, M.R.; Kastenberg, W.

    1995-01-01

    The international industrial and governmental institutions involved in radioactive waste management and environmental remediation are now entering a new era in which they must significantly expand public involvement. Thus the decision making processes formerly utilized to direct and guide these institutions must now be shifted to take into consideration the needs of many more stakeholders than ever before. To meet this challenge, they now have the job of developing and creating a new set of accurate, sufficient and continuous self-regulating and self-correcting information pathways between themselves and the many divergent stakeholder groups in order to establish sustainable, trusting and respectful relationships. In this paper the authors introduce a new set of non-linear, practical and effective strategies for interaction. These self-regulating strategies provide timely feedback to a system, establishing trust and creating a viable vehicle for staying open and responsive to the needs out of which change and balanced adaptation can continually emerge for all stakeholders. The authors present a decision making process for public involvement which is congruent with the non-linear ideas of holographic and fractal relationships -- the mutual influence between related parts of the whole and the self-symmetry of systems at every level of complexity

  17. Development of fabrication process of upper nozzle BIBLIS type of PWR fuel element

    International Nuclear Information System (INIS)

    Miranda, O.; Lorenzo, D.F.R.

    1982-01-01

    Process and parameters of milling and welding of a upper nozzle BIBLIS type prototype are presented. Milling process, cutting tools studies, production devices and inspection were developed and researched. (author) [pt

  18. Practical investigation of a monopod fabrication method and the numerical investigation of its up-righting process

    Directory of Open Access Journals (Sweden)

    Khaled A. Hafez

    2013-09-01

    Full Text Available The principal purpose of this paper is to present a novel two phases rational scenario applied in constructing an offshore monopod platform; in which the two phases are the all-ground horizontal construction phase and the post-construction phase. Concerning the all-ground construction phase, a brief investigation of its different stages, i.e., pre-fabrication, fabrication, pre-assembling, positioning, assembling, and surface finishing is introduced. The important practical aspects of such construction phase are investigated without going into the nitty-gritty of the details involved therein. Concerning the post-construction phase, a clear investigation of its sequential stages, i.e., lifting, moving and up-righting is introduced. A finite element model (FEM of the monopod platform is created to perform the structural analysis necessary to decide the suspension points/devices and the handling scenario during the various stages of the post-construction phase on a rational wise. Such structural analysis is performed within the framework of the three dimensional quasi-static modeling and analysis aiming at simulating the realistic handling condition, and hence introducing a reliable physical interpretation of the numerical results. For the whole effort to be demonstrated efficiently, the results obtained are analyzed, the conclusions are presented, and few related recommendations are suggested.

  19. Stake holder involvement in the Canadian review process for uranium production projects in Northern Saskatchewan

    International Nuclear Information System (INIS)

    Underhill, D.

    2004-01-01

    This report describes the Canadian environmental review process for uranium production projects as a case study for the purpose of understanding the nature and value of stakeholder involvement in the management of radiological hazards. While the Canadian review process potentially applies to any development, this case study focuses on the assessment of the uranium projects of northern Saskatchewan conducted during the 1990's. It describes the environmental assessment (EA) conducted in the 1990's for six new uranium facilities (including mines and mills and related tailings disposal sites) planned in northern Saskatchewan. Both the Canadian federal and the Saskatchewan provincial government have extensive environmental review processes that must under law be complete before any major industrial development judged to have potential environmental impacts is undertaken within their respective territories. However, even in those instances where no clear potential environmental impacts are evident, Canadian law mandates 'if public concern about the proposal is such that a public review is desirable, the initiating department shall refer the proposal to the Minister for review by a Panel'. (Wh95) As a stakeholder under law, in both Canada and Saskatchewan, the public plays an important role in the environmental review process. To encourage participation and assist the public in its review the two governments may provide funding (as done in this review) to assist qualified individuals or groups to participant in the review process. The first section of this case study sets the scene. It describes the Saskatchewan uranium mining story, focusing on how the importance of the public stakeholder evolved to become a major component, under law, in the EA process for new uranium mines. This increase in stakeholder involvement opportunities coincided with heightened public concern for the socio-economic impacts of the projects. In the late 1980's both governments were advised by

  20. EMPLOYEE INVOLVEMENT IN A CHANGE PROCESS - A CASE STUDY FOR ROMANIAN ORGANIZATIONS

    Directory of Open Access Journals (Sweden)

    Prediscan Mariana

    2015-07-01

    Full Text Available Innovation, competitive advantage, change are some concepts that should be on every organization's agenda, due to the fact the global market leads to global competition so in order to increase the market share, turnover or profit organizations have to incorporate those concepts in their strategies. The outside environment is very unstable and things are evolving very fast so managers from all levels have to acknowledge the importance of change and to identify as soon as possible several new ideas that should be the subject of different change processes. Openness to organizational change has become a mandatory feature for those organizations that want to survive and adapt to the external pressure, helping them to be efficient. Even if in many cases managers are the initiators of change, this process is very complex and needs support and involvement from all the members of the organization, so the employee's attitude and commitment to change is crucial. In many cases employees have a negative attitude towards change and manifest a strong resistance, due to the fact that they are not consulted and are not involved in the process of the identification for the need of change. Without understanding and knowing very well what it is expected from them, employees are afraid of the unknown and prefer to perform their tasks as they did before. Creating a climate and a culture for change is very important, because like this change will be something normal, continuous and people will feel comfortable with any change initiatives, without being surprised, confused or scared. Even if any change process should improve the current state of the organization, sometimes change efforts fail because the ones that resist change are stronger than the ones supporting change. The purpose of this paper is to analyze how often are Romanian employees involved in the processes of change and how important is the role they play. We have also tried to see the Romanian manager

  1. Involvement of translation and transcription processes into neurophysiological mechanisms of long-term memory reconsolidation.

    Science.gov (United States)

    Kozyrev, S A; Nikitin, V P

    2013-03-01

    We studied the involvement of translation and transcription processes into behavioral and neuronal mechanisms of reconsolidation of the long-term memory of the conditioned taste aversion in edible snails. Injection of cycloheximide (an inhibitor of protein synthesis) to the snails in 48 h after training combined with subsequent reminder and presentation of the conditional stimulus resulted in the development of persistent amnesia and depression of the responses of the defensive behavior command neurons LPl1 and RPl1 to the conditional stimulus. Injection of mRNA synthesis inhibitors actinomycin D or DRB (5,6-dichloro-1-β-D-ribofuranosylbenzimidasole) in 48 h after conditioning with subsequent reminding procedure produced no effects on memory retention and on the responses of the command neurons to the conditional stimulus. The study suggests that the proteins translated from previously synthesized and stored mRNA were involved in the mechanisms of reconsolidation of the memory responsible for conditioned taste aversion.

  2. Relevant Factors in the Process of Socialization, Involvement and Belonging of Descendants in Family Businesses

    Directory of Open Access Journals (Sweden)

    Melquicedec Lozano-Posso

    2016-12-01

    Full Text Available This research works toward the identification of the factors that comprise the process of socialization, involvement and initial belonging of descendants in family businesses and the key relationships between them. By means of a qualitative detailed study of four cases, complemented by a quantitative survey of 274 Colombian family businesses, the authors generate a new model that takes into account both factors explored in previous research as well as others identified in this study. Findings confirm the specific dependency of each stage on the subsequent ones; socialization influences involvement, which in turn influences the belonging of the descendants to the family business, with a strong presence of factors such as knowledge, leadership, mode, timing, and motivation. Those responsible for the orientation of potential successors may examine these findings in order to optimize their preparation efforts and support of family human resources for the continuity of the business.

  3. The insula is not specifically involved in disgust processing: an fMRI study.

    Science.gov (United States)

    Schienle, A; Stark, R; Walter, B; Blecker, C; Ott, U; Kirsch, P; Sammer, G; Vaitl, D

    2002-11-15

    fMRI studies have shown that the perception of facial disgust expressions specifically activates the insula. The present fMRI study investigated whether this structure is also involved in the processing of visual stimuli depicting non-mimic disgust elicitors compared to fear-inducing and neutral scenes. Twelve female subjects were scanned while viewing alternating blocks of 40 disgust-inducing, 40 fear-inducing and 40 affectively neutral pictures, shown for 1.5 s each. Afterwards, affective ratings were assessed. The disgust pictures, rated as highly repulsive, induced activation in the insula, the amygdala, the orbitofrontal and occipito-temporal cortex. Since during the fear condition the insula was also involved, our findings do not fit the idea of the insula as a specific disgust processor.

  4. A quality assurance program for environmental data operations involving waste management processes

    International Nuclear Information System (INIS)

    Johnson, G.L.; Blacker, S.M.

    1990-01-01

    This paper describes the 'core' elements needed in an effective Quality Program for environmental data operations involving nuclear, mixed, or non-nuclear wastes. For each core element, this paper examines the minimum components needed for an effective Quality Program for EDOs, and compares approaches to Quality Programs currently required by the U.S. DOE and the U.S. EPA. The comparison suggests how the Quality Program requirements used at DOE, and defined by NQA-1 and its supplements, and those used by EPA through its QAMS program guidance, may provide a basis for developing a harmonized Quality Program for EDOs involving any waste management processes, nuclear, non-nuclear, or mixed. (orig./DG)

  5. APP processing and the APP-KPI domain involvement in the amyloid cascade.

    Science.gov (United States)

    Menéndez-González, M; Pérez-Pinera, P; Martínez-Rivera, M; Calatayud, M T; Blázquez Menes, B

    2005-01-01

    Alternative APP mRNA splicing can generate isoforms of APP containing a Kunitz protease inhibitor (KPI) domain. KPI is one of the main serine protease inhibitors. Protein and mRNA KPI(+)APP levels are elevated in Alzheimer's disease (AD) brain and are associated with increased amyloid beta deposition. In the last years increasing evidence on multiple points in the amyloid cascade where KPI(+)APP is involved has been accumulated, admitting an outstanding position in the pathogenesis of AD to the KPI domain. This review focuses on the APP processing, the molecular activity of KPI and its physiological and pathological roles and the KPI involvement in the amyloid cascade through the nerve growth factor, the lipoprotein receptor-related protein, the tumor necrosis factor-alpha converting enzyme and the Notch1 protein.

  6. Fabrication of assembled ZnO/TiO2 heterojunction thin film transistors using solution processing technique

    Science.gov (United States)

    Liau, Leo Chau-Kuang; Lin, Yun-Guo

    2015-01-01

    Ceramic-based metal-oxide-semiconductor (MOS) field-effect thin film transistors (TFTs), which were assembled by ZnO and TiO2 heterojunction films coated using solution processing technique, were fabricated and characterized. The fabrication of the device began with the preparation of ZnO and TiO2 films by spin coating. The ZnO and TiO2 films that were stacked together and annealed at 450 °C were characterized as a p-n junction diode. Two types of the devices, p-channel and n-channel TFTs, were produced using different assemblies of ZnO and TiO2 films. Results show that the p-channel TFTs (p-TFTs) and n-channel TFTs (n-TFTs) using the assemblies of ZnO and TiO2 films were demonstrated by source-drain current vs. drain voltage (IDS-VDS) measurements. Several electronic properties of the p- and n- TFTs, such as threshold voltage (Vth), on-off ratio, channel mobility, and subthreshold swing (SS), were determined by current-voltage (I-V) data analysis. The ZnO/TiO2-based TFTs can be produced using solution processing technique and an assembly approach.

  7. Fabrication and Characterization of Porous MgAl₂O₄ Ceramics via a Novel Aqueous Gel-Casting Process.

    Science.gov (United States)

    Yuan, Lei; Liu, Zongquan; Liu, Zhenli; He, Xiao; Ma, Beiyue; Zhu, Qiang; Yu, Jingkun

    2017-11-30

    A novel and aqueous gel-casting process has been successfully developed to fabricate porous MgAl₂O₄ ceramics by using hydratable alumina and MgO powders as raw materials and deionized water as hydration agent. The effects of different amounts of deionized water on the hydration properties, apparent porosity, bulk density, microstructure, pore size distribution and compressive strength of the samples were investigated. The results indicated that the porosity and the microstructure of porous MgAl₂O₄ ceramics were governed by the amounts of deionized water added. The porous structure was formed by the liberation of physisorbed water and the decomposition of hydration products such as bayerite, brucite and boehmite. After determining the addition amounts of deionized water, the fabricated porous MgAl₂O₄ ceramics had a high apparent porosity (52.5-65.8%), a small average pore size structure (around 1-3 μm) and a relatively high compressive strength (12-28 MPa). The novel aqueous gel-casting process with easy access is expected to be a promising candidate for the preparation of Al₂O₃-based porous ceramics.

  8. Understanding the Thermal Properties of Precursor-Ionomers to Optimize Fabrication Processes for Ionic Polymer-Metal Composites (IPMCs

    Directory of Open Access Journals (Sweden)

    Sarah Trabia

    2018-04-01

    Full Text Available Ionic polymer-metal composites (IPMCs are one of many smart materials and have ionomer bases with a noble metal plated on the surface. The ionomer is usually Nafion, but recently Aquivion has been shown to be a promising alternative. Ionomers are available in the form of precursor pellets. This is an un-activated form that is able to melt, unlike the activated form. However, there is little study on the thermal characteristics of these precursor ionomers. This lack of knowledge causes issues when trying to fabricate ionomer shapes using methods such as extrusion, hot-pressing, and more recently, injection molding and 3D printing. To understand the two precursor-ionomers, a set of tests were conducted to measure the thermal degradation temperature, viscosity, melting temperature, and glass transition. The results have shown that the precursor Aquivion has a higher melting temperature (240 °C than precursor Nafion (200 °C and a larger glass transition range (32–65°C compared with 21–45 °C. The two have the same thermal degradation temperature (~400 °C. Precursor Aquivion is more viscous than precursor Nafion as temperature increases. Based on the results gathered, it seems that the precursor Aquivion is more stable as temperature increases, facilitating the manufacturing processes. This paper presents the data collected to assist researchers in thermal-based fabrication processes.

  9. Effect of tool plunge depth on reinforcement particles distribution in surface composite fabrication via friction stir processing

    Directory of Open Access Journals (Sweden)

    Sandeep Rathee

    2017-04-01

    Full Text Available Aluminium matrix surface composites are gaining alluring role especially in aerospace, defence, and marine industries. Friction stir processing (FSP is a promising novel solid state technique for surface composites fabrication. In this study, AA6061/SiC surface composites were fabricated and the effect of tool plunge depth on pattern of reinforcement particles dispersion in metal matrix was investigated. Six varying tool plunge depths were chosen at constant levels of shoulder diameter and tool tilt angle to observe the exclusive effect of plunge variation. Process parameters chosen for the experimentation are speed of rotation, travel speed and tool tilt angle which were taken as 1400 rpm, 40 mm/min, and 2.5°respectively. Macro and the microstructural study were performed using stereo zoom and optical microscope respectively. Results reflected that lower plunge depth levels lead to insufficient heat generation and cavity formation towards the stir zone center. On the other hand, higher levels of plunge depth result in ejection of reinforcement particles and even sticking of material to tool shoulder. Thus, an optimal plunge depth is needed in developing defect free surface composites.

  10. Fabrication and Characterization of Porous MgAl2O4 Ceramics via a Novel Aqueous Gel-Casting Process

    Directory of Open Access Journals (Sweden)

    Lei Yuan

    2017-11-01

    Full Text Available A novel and aqueous gel-casting process has been successfully developed to fabricate porous MgAl2O4 ceramics by using hydratable alumina and MgO powders as raw materials and deionized water as hydration agent. The effects of different amounts of deionized water on the hydration properties, apparent porosity, bulk density, microstructure, pore size distribution and compressive strength of the samples were investigated. The results indicated that the porosity and the microstructure of porous MgAl2O4 ceramics were governed by the amounts of deionized water added. The porous structure was formed by the liberation of physisorbed water and the decomposition of hydration products such as bayerite, brucite and boehmite. After determining the addition amounts of deionized water, the fabricated porous MgAl2O4 ceramics had a high apparent porosity (52.5–65.8%, a small average pore size structure (around 1–3 μm and a relatively high compressive strength (12–28 MPa. The novel aqueous gel-casting process with easy access is expected to be a promising candidate for the preparation of Al2O3-based porous ceramics.

  11. A process for integrating public involvement into technical/social programs

    International Nuclear Information System (INIS)

    Wiltshire, S.; Williams, C.

    1994-01-01

    Good technical/social decisions--those that are technically sound and publicly acceptable--result from a planning process that considers consulting the public a basic part of the technical program, as basic as hiring a technical consultant to advise about new ideas in computer modeling. This paper describes a specific process for making public involvement an integral part of decision-making about high-level radioactive waste management, so that important technical, social, environmental, economic, and cultural information and values can be incorporated in a meaningful way in planning and carrying out a high-level waste management program or project. The process for integration must consider: (a) the decision or task for which public interaction is needed; (b) the people who should or will want to participate in the decision or task; (c) the goals or purposes of the communication or interaction--the agency's and the public's; (d) the kinds of information the public needs and that the agency needs in order to understand the relevant technical and social issues; and (e) the types of communication or involvement that best serve to meet the agency's and the public's goals

  12. Involvement of microRNAs in physiological and pathological processes in the lung

    Directory of Open Access Journals (Sweden)

    Kriegova Eva

    2010-11-01

    Full Text Available Abstract To date, at least 900 different microRNA (miRNA genes have been discovered in the human genome. These short, single-stranded RNA molecules originate from larger precursor molecules that fold to produce hairpin structures, which are subsequently processed by ribonucleases Drosha/Pasha and Dicer to form mature miRNAs. MiRNAs play role in the posttranscriptional regulation of about one third of human genes, mainly via degradation of target mRNAs. Whereas the target mRNAs are often involved in the regulation of diverse physiological processes ranging from developmental timing to apoptosis, miRNAs have a strong potential to regulate fundamental biological processes also in the lung compartment. However, the knowledge of the role of miRNAs in physiological and pathological conditions in the lung is still limited. This review, therefore, summarizes current knowledge of the mechanism, function of miRNAs and their contribution to lung development and homeostasis. Besides the involvement of miRNAs in pulmonary physiological conditions, there is evidence that abnormal miRNA expression may lead to pathological processes and development of various pulmonary diseases. Next, the review describes current state-of-art on the miRNA expression profiles in smoking-related diseases including lung cancerogenesis, in immune system mediated pulmonary diseases and fibrotic processes in the lung. From the current research it is evident that miRNAs may play role in the posttranscriptional regulation of key genes in human pulmonary diseases. Further studies are, therefore, necessary to explore miRNA expression profiles and their association with target mRNAs in human pulmonary diseases.

  13. Adolescent fathers: knowledge of and involvement in the breast feeding process in Brazil.

    Science.gov (United States)

    Torres de Lacerda, Ana Catarina; Lucena de Vasconcelos, Maria Gorete; Nascimento de Alencar, Eloine; Osório, Mônica Maria; Pontes, Cleide Maria

    2014-03-01

    to understand the ways in which adolescent fathers participate in the breast feeding process in the family environment in North-eastern Brazil. a descriptive, exploratory, qualitative study was undertaken involving 10 couples with infants aged 6-8 months living in a single community in Recife, Pernambuco, Brazil. Data were collected using semi-structured interviews with questions to guide the interviewer. Data were analysed using thematic content analysis, and interpreted under the theoretical reference of being an adolescent father within the context of breast feeding. from the data collected, three themes were identified: knowledge of the benefits of breast feeding for the child's health; discontinued participation of the father in breast feeding during the pregnancy-childbearing cycle; and exclusion of the adolescent father from the breast feeding process. The adolescent fathers knew about the benefits of breast feeding in terms of the child's health, but did not mention benefits for the mother, the family or society. For some adolescent fathers, their participation in the breast feeding process started during pregnancy, whereas for others, it was only initiated after the infant was born. One of the fathers was prevented, by his wife and mother-in-law, from participating in the breast feeding process. the involvement of adolescent fathers in the breast feeding process oscillated during the pregnancy-childbearing cycle. This may be due to the patriarchal cultural heritage, Brazilian paternity laws, and the fact that these fathers were adolescents. This study showed that adolescent parents were knowledgeable about breast feeding. Finally, fathers want a new model of parenting in which the man participates in child care. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  14. Genes involved in complex adaptive processes tend to have highly conserved upstream regions in mammalian genomes

    Directory of Open Access Journals (Sweden)

    Kohane Isaac

    2005-11-01

    Full Text Available Abstract Background Recent advances in genome sequencing suggest a remarkable conservation in gene content of mammalian organisms. The similarity in gene repertoire present in different organisms has increased interest in studying regulatory mechanisms of gene expression aimed at elucidating the differences in phenotypes. In particular, a proximal promoter region contains a large number of regulatory elements that control the expression of its downstream gene. Although many studies have focused on identification of these elements, a broader picture on the complexity of transcriptional regulation of different biological processes has not been addressed in mammals. The regulatory complexity may strongly correlate with gene function, as different evolutionary forces must act on the regulatory systems under different biological conditions. We investigate this hypothesis by comparing the conservation of promoters upstream of genes classified in different functional categories. Results By conducting a rank correlation analysis between functional annotation and upstream sequence alignment scores obtained by human-mouse and human-dog comparison, we found a significantly greater conservation of the upstream sequence of genes involved in development, cell communication, neural functions and signaling processes than those involved in more basic processes shared with unicellular organisms such as metabolism and ribosomal function. This observation persists after controlling for G+C content. Considering conservation as a functional signature, we hypothesize a higher density of cis-regulatory elements upstream of genes participating in complex and adaptive processes. Conclusion We identified a class of functions that are associated with either high or low promoter conservation in mammals. We detected a significant tendency that points to complex and adaptive processes were associated with higher promoter conservation, despite the fact that they have emerged

  15. Emotion and attention interactions in social cognition: brain regions involved in processing anger prosody.

    Science.gov (United States)

    Sander, David; Grandjean, Didier; Pourtois, Gilles; Schwartz, Sophie; Seghier, Mohamed L; Scherer, Klaus R; Vuilleumier, Patrik

    2005-12-01

    Multiple levels of processing are thought to be involved in the appraisal of emotionally relevant events, with some processes being engaged relatively independently of attention, whereas other processes may depend on attention and current task goals or context. We conducted an event-related fMRI experiment to examine how processing angry voice prosody, an affectively and socially salient signal, is modulated by voluntary attention. To manipulate attention orthogonally to emotional prosody, we used a dichotic listening paradigm in which meaningless utterances, pronounced with either angry or neutral prosody, were presented simultaneously to both ears on each trial. In two successive blocks, participants selectively attended to either the left or right ear and performed a gender-decision on the voice heard on the target side. Our results revealed a functional dissociation between different brain areas. Whereas the right amygdala and bilateral superior temporal sulcus responded to anger prosody irrespective of whether it was heard from a to-be-attended or to-be-ignored voice, the orbitofrontal cortex and the cuneus in medial occipital cortex showed greater activation to the same emotional stimuli when the angry voice was to-be-attended rather than to-be-ignored. Furthermore, regression analyses revealed a strong correlation between orbitofrontal regions and sensitivity on a behavioral inhibition scale measuring proneness to anxiety reactions. Our results underscore the importance of emotion and attention interactions in social cognition by demonstrating that multiple levels of processing are involved in the appraisal of emotionally relevant cues in voices, and by showing a modulation of some emotional responses by both the current task-demands and individual differences.

  16. Decontamination chamber for the maintenance of DUPIC nuclear fuel fabrication and process equipment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. H.; Park, J. J.; Yang, M. S.; Lee, H. H.; Shin, J. M

    2000-10-01

    This report presents the decontamination chamber of being capable of decontaminating and maintaining DUPIC nuclear fuel fabrication equipment contaminated in use. The decontamination chamber is a closed room in which contaminated equipment can be isolated from a hot-cell, be decontaminated and be reparired. This chamber can prevent contamination from spreading over the hot-cell, and it can also be utilized as a part of the hot-cell after maintenance work. The developed decontamination chamber has mainly five sub-modules - a horizontal module for opening and closing a ceil of the chamber, a vertical module for opening and closing a side of the chamber, a subsidiary door module for enforcing the vertical opening/closing module, a rotary module for rotating contaminated equipment, and a grasping module for holding a decontamination device. Such sub-modules were integrated and installed in the M6 hot-cell of the IMEF at the KAERI. The mechanical design considerations of each modules and the arrangement with hot-cell facility, remote operation and manipulation of the decontamination chamber are also described.

  17. Vitamin E-loaded silk fibroin nanofibrous mats fabricated by green process for skin care application.

    Science.gov (United States)

    Sheng, Xiaoyue; Fan, Linpeng; He, Chuanglong; Zhang, Kuihua; Mo, Xiumei; Wang, Hongsheng

    2013-05-01

    In the present study, we reported fabrication and skin benefit of a novel vitamin E (VE)-loaded silk fibroin (SF) nanofibrous mats. RRR-α-Tocopherol polyethylene glycol 1000 succinate (VE TPGS), a water-soluble derivative of VE, was incorporated into SF nanofiber successfully by aqua solution electrospinning for the first time. Morphology of the composite nanofibers changed with the different amount of VE TPGS: a ribbon-like shape for lower loading dose of VE TPGS, while a round shape for higher loading dose (more than 4% (wt/wt) based on the weight of SF). After treated with 75% (v/v) ethanol vapor, the composite nanofibrous mats showed an excellent water-resistant ability. In vitro study disclosed a sustained release behavior of VE TPGS disassociated from the nanofibrous mats. The mouse skin fibroblasts (L929 cells) cultured on the VE-loaded SF nanofibrous mats spread and proliferated much better than on cover slips. Moreover, the incorporation of VE TPGS was found strengthening the ability of SF nanofibrous mats on protecting the cells against oxidation stress induced by tert-butyl hydroperoxide. Our data presented impressive skin benefits of this VE-loaded SF nanofibrous mats, suggesting a promising applicative potential of this novel product on personal skin care, tissue regeneration and other related area. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Fabrication of hydrophobic compressed oil palm trunk surface by sol-gel process

    Science.gov (United States)

    Muzakir, Syafiqah; Salim, Nurjannah; Huda Abu Bakar, Nurul; Roslan, Rasidi; Sin, Lim Wan; Hashim, Rokiah

    2018-04-01

    Improvement of the robustness of hydrophobic surfaces is crucial to achieving commercial applications of these surfaces in such various areas as self-cleaning, water repellency and corrosion resistance. Compressed oil palm trunk (OPT) panel is one of potential product which can be used as panelling and indoor furniture application. By adding hydrophobic properties to compressed oil palm trunk panel might increase the application of compressed oil palm trunk especially for outdoor application. In this study, fabrication is using the sol-gel technique. Sol-gel was prepared by adding ethanol with Hexadecyl Trimethyl Ammonium Bromide (CTAB) solution with Tetraethyl Orthosilicate (TEOS) with surface modification of chlorotrimethylsilane (CTMS). The surface with hydrophobic coating was undergone surface analysis with contact angle machine with the aid of software SCA 20 and the determined of the morphology of surface with scanning electron microscope (SEM). The produced compressed oil palm trunk surfaces exhibited promising hydrophobic properties with a contact angle of 104° and the relatively better mechanical robustness.

  19. Decontamination chamber for the maintenance of DUPIC nuclear fuel fabrication and process equipment

    International Nuclear Information System (INIS)

    Kim, K. H.; Park, J. J.; Yang, M. S.; Lee, H. H.; Shin, J. M.

    2000-10-01

    This report presents the decontamination chamber of being capable of decontaminating and maintaining DUPIC nuclear fuel fabrication equipment contaminated in use. The decontamination chamber is a closed room in which contaminated equipment can be isolated from a hot-cell, be decontaminated and be reparired. This chamber can prevent contamination from spreading over the hot-cell, and it can also be utilized as a part of the hot-cell after maintenance work. The developed decontamination chamber has mainly five sub-modules - a horizontal module for opening and closing a ceil of the chamber, a vertical module for opening and closing a side of the chamber, a subsidiary door module for enforcing the vertical opening/closing module, a rotary module for rotating contaminated equipment, and a grasping module for holding a decontamination device. Such sub-modules were integrated and installed in the M6 hot-cell of the IMEF at the KAERI. The mechanical design considerations of each modules and the arrangement with hot-cell facility, remote operation and manipulation of the decontamination chamber are also described

  20. The effects of the firing temperature of YBCO coated conductors fabricated by TFA-MOD process

    International Nuclear Information System (INIS)

    Jang, Seok Hern; Lim, Jun Hyung; Kim, Kyu Tae; Lee, Jin Sung; Yoon, Kyung Min; Kim, Ho-Jin; Joo, Jinho; Kim, Hyoungsub; Lee, Hee-Gyoun; Hong, Gye-Won

    2006-01-01

    We fabricated YBCO films on LAO substrates using the TFA-MOD method and evaluated the effects of the heat treatment temperature on the microstructure, degree of texture, and critical properties. The phase formation and microstructure were characterized by X-ray diffraction, Raman spectroscopy and scanning electron microscopy (SEM) and the degree of texture was evaluated by pole-figure analysis. The firing was performed in the temperature range of 750-800 deg. C and we found that the phase purity, grain size and orientation, degree of texture, and oxygen content varied with the firing temperature. The films fired at 775 deg. C showed the highest critical temperature (T C -onset) of 89.5 K and critical current (I C ) of 40 A/cm-width, which corresponds to a critical current density (J C ) of 1.8 MA/cm 2 . According to the results of the XRD, pole-figure, SEM and Raman analyses, these optimum critical properties can probably be attributed to the formation of a pure YBCO phase, stronger c-axis orientation and higher oxygen content

  1. One-step electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on magnesium alloy.

    Science.gov (United States)

    Liu, Qin; Chen, Dexin; Kang, Zhixin

    2015-01-28

    A simple, one-step method has been developed to construct a superhydrophobic surface by electrodepositing Mg-Mn-Ce magnesium plate in an ethanol solution containing cerium nitrate hexahydrate and myristic acid. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy were employed to characterize the surfaces. The shortest electrodeposition time to obtain a superhydrophobic surface was about 1 min, and the as-prepared superhydrophobic surfaces had a maximum contact angle of 159.8° and a sliding angle of less than 2°. Potentiodynamic polarization and electrochemical impedance spectroscopy measurements demonstrated that the superhydrophobic surface greatly improved the corrosion properties of magnesium alloy in 3.5 wt % aqueous solutions of NaCl, Na2SO4, NaClO3, and NaNO3. Besides, the chemical stability and mechanical durability of the as-prepared superhydrophobic surface were also examined. The presented method is rapid, low-cost, and environmentally friendly and thus should be of significant value for the industrial fabrication of anticorrosive superhydrophobic surfaces and should have a promising future in expanding the applications of magnesium alloys.

  2. Cellular processes involved in human epidermal cells exposed to extremely low frequency electric fields.

    Science.gov (United States)

    Collard, J-F; Hinsenkamp, M

    2015-05-01

    We observed on different tissues and organisms a biological response after exposure to pulsed low frequency and low amplitude electric or electromagnetic fields but the precise mechanism of cell response remains unknown. The aim of this publication is to understand, using bioinformatics, the biological relevance of processes involved in the modification of gene expression. The list of genes analyzed was obtained after microarray protocol realized on cultures of human epidermal explants growing on deepidermized human skin exposed to a pulsed low frequency electric field. The directed acyclic graph on a WebGestalt Gene Ontology module shows six categories under the biological process root: "biological regulation", "cellular process", "cell proliferation", "death", "metabolic process" and "response to stimulus". Enriched derived categories are coherent with the type of in vitro culture, the stimulation protocol or with the previous results showing a decrease of cell proliferation and an increase of differentiation. The Kegg module on WebGestalt has highlighted "cell cycle" and "p53 signaling pathway" as significantly involved. The Kegg website brings out interactions between FoxO, MAPK, JNK, p53, p38, PI3K/Akt, Wnt, mTor or NF-KappaB. Some genes expressed by the stimulation are known to have an exclusive function on these pathways. Analyses performed with Pathway Studio linked cell proliferation, cell differentiation, apoptosis, cell cycle, mitosis, cell death etc. with our microarrays results. Medline citation generated by the software and the fold change variation confirms a diminution of the proliferation, activation of the differentiation and a less well-defined role of apoptosis or wound healing. Wnt and DKK functional classes, DKK1, MACF1, ATF3, MME, TXNRD1, and BMP-2 genes proposed in previous publications after a manual analysis are also highlighted with other genes after Pathway Studio automatic procedure. Finally, an analysis conducted on a list of genes

  3. Fabrication of micro T-shaped tubular components by hydroforming process

    Science.gov (United States)

    Manabe, Ken-ichi; Itai, Kenta; Tada, Kazuo

    2017-10-01

    This paper deals with a T-shape micro tube hydroforming (MTHF) process for 500 µm outer diameter copper microtube. The MTHF experiments were carried out using a MTHF system utilizing ultrahigh pressure. The fundamental micro hydroforming characteristics as well as forming limits are examined experimentally and numerically. From the results, a process window diagram for micro T-shape hydroforming process is created, and a suitable "success" region is revealed.

  4. Considerations of metal joining processes for space fabrication, construction and repair

    Science.gov (United States)

    Russell, C.; Poorman, R.; Jones, C.; Nunes, A.; Hoffman, D.

    1991-01-01

    A comprehensive evaluation is conducted of candidate processes for metalworking in orbital (vacuum-microgravity) conditions. Attention is given to electron-beam welding, brazing, gas-tungsten arc welding, laser welding, plasma arc welding, and gas-metal arc welding. It is established that several of these processes will be required to cover all foreseeable requirements. Microgravity effects are considered minor, and efforts are being concentrated on problems associated with vacuum conditions and with process-operator safety.

  5. An acetone microsensor with a ring oscillator circuit fabricated using the commercial 0.18 μm CMOS process.

    Science.gov (United States)

    Yang, Ming-Zhi; Dai, Ching-Liang; Shih, Po-Jen

    2014-07-17

    This study investigates the fabrication and characterization of an acetone microsensor with a ring oscillator circuit using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The acetone microsensor contains a sensitive material, interdigitated electrodes and a polysilicon heater. The sensitive material is α-Fe2O3 synthesized by the hydrothermal method. The sensor requires a post-process to remove the sacrificial oxide layer between the interdigitated electrodes and to coat the α-Fe2O3 on the electrodes. When the sensitive material adsorbs acetone vapor, the sensor produces a change in capacitance. The ring oscillator circuit converts the capacitance of the sensor into the oscillation frequency output. The experimental results show that the output frequency of the acetone sensor changes from 128 to 100 MHz as the acetone concentration increases 1 to 70 ppm.

  6. Fabrication of a metallic roll stamp with low internal stress and high hardness for large area display applications by a pulse reverse current electroforming process

    International Nuclear Information System (INIS)

    Kim, Joongeok; Han, Jungjin; Kim, Taekyung; Kang, Shinill

    2014-01-01

    With the increasing demand for large scale micro/nano components in the fields of display, energy and electrical devices, etc, the establishment of a roll imprinting process has become a priority. The fabrication of a roll stamp with high dimensional accuracy and uniformity is one of the key issues in the roll imprinting process, because the roll stamp determines the properties of the replicated micro/nano structures. In this study, a method to fabricate a metallic roll stamp with low internal stress, high flatness, and high hardness was proposed by a pulse reverse current (PRC) electroforming process. The effects of PRC electroforming processes on the internal stress, hardness, and grain size of the electroformed stamp were examined, and the optimum process conditions were suggested. As a practical example of the proposed method, various micro-patterns for electronic circuits were fabricated via the roll imprinting process using a PRC electroformed stamp. (paper)

  7. Fabrication mechanism of FeSe superconductors with high-energy ball milling aided sintering process

    International Nuclear Information System (INIS)

    Zhang, Shengnan; Liu, Jixing; Feng, Jianqing; Wang, Yao; Ma, Xiaobo; Li, Chengshan; Zhang, Pingxiang

    2015-01-01

    FeSe Superconducting bulks with high content of superconducting PbO-type β-FeSe phase were prepared with high-energy ball milling (HEBM) aided sintering process. During this process, precursor powders with certain Fe/Se ratio were ball milled first then sintered. The influences of HEBM process as well as initial Fe/Se ratio on the phase evolution process were systematically discussed. With HEBM process and proper initial Fe/Se ratio, the formation of non-superconducting hexagonal δ-FeSe phase were effectively avoided. FeSe bulk with the critical temperature of 9.0 K was obtained through a simple one-step sintering process with lower sintering temperature. Meanwhile, the phase evolution mechanism of the HEBM precursor powders during sintering was deduced based on both the thermodynamic analysis and step-by-step sintering results. The key function of the HEBM process was to provide a high uniformity of chemical composition distribution, thus to successfully avoide the formation of intermediate product during sintering, including FeSe 2 and Fe 7 Se 8 . Therefore, the fundamental principal for the synthesis of FeSe superconductors were concluded as: HEBM aided sintering process, with the sintering temperature of >635 °C and a slow cooling process. - Highlights: • A novel synthesis technique was developed for FeSe based superconductors. • FeSe bulks with high Tc and high β-FeSe phase content has been obtained. • Phase evolution process for the HEBM aided sintering process was proposed

  8. Stress-strain effects in alumina-Cu reinforced Nb3Sn wires fabricated by the tube process

    International Nuclear Information System (INIS)

    Murase, Satoru; Nakayama, Shigeo; Masegi, Tamaki; Koyanagi, Kei; Nomura, Shunji; Shiga, Noriyuki; Kobayashi, Norio; Watanabe, Kazuo.

    1997-01-01

    In order to fabricate a large-bore, high-field magnet which achieves a low coil weight and volume, a high strength compound superconducting wire is required. For those demands we have developed the reinforced Nb 3 Sn wire using alumina dispersion strengthened copper (alumina-Cu) as a reinforcement material and the tube process of the Nb 3 Sn wire fabrication. The ductility study of the composites which consisted of the reinforcement, Nb tube, Cu, and Cu clad Sn brought a 1 km long alumina-Cu reinforced Nb 3 Sn wire successfully. Using fabricated wires measurements and evaluations of critical current density as parameters of magnetic field, tensile stress, tensile strain, and transverse compressive stress, and those of stress-strain curves at 4.2 K were performed. They showed superior performance such as high 0.3% proof stress (240 MPa at 0.3% strain) and high maximum tolerance stress (320 MPa) which were two times as large as those of conventional Cu matrix Nb 3 Sn wire. The strain sensitivity parameters were obtained for the reinforced Nb 3 Sn wire and the Cu matrix one using the scaling law. Residual stress of the component materials caused by cooling down to 4.2 K from heat-treatment temperature was calculated using equivalent Young's modulus, equivalent yield strength, thermal expansion coefficient and other mechanical parameters. Calculated stress-strain curves at 4.2 K for the reinforced Nb 3 Sn wire and the Cu matrix one based on calculation of residual stress, had good agreement with the experimental values. (author)

  9. Optimized Compositional Design and Processing-Fabrication Paths for Larger Heats of Nanostructured Ferritic Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Odette, G. Robert [Univ. of California, Santa Barbara, CA (United States)

    2017-02-06

    The objective of this work was to characterize the alloy 14YWT-PM2, which is an extruded and cross-rolled precursor alloy to a large heat of 14YWT being produced using an alternative processing path that incorporates Y during gas atomization process.

  10. Fabrication and processing of polymer solar cells: A review of printing and coating techniques

    DEFF Research Database (Denmark)

    Krebs, Frederik C

    2009-01-01

    Polymer solar cells are reviewed in the context of the processing techniques leading to complete devices. A distinction is made between the film-forming techniques that are used currently such as spincoating, doctor blading and casting and the, from a processing point of view, more desirable film...... are described with focus on the particular advantages and disadvantages associated with each case....

  11. High performance poly(etherketoneketone) (PEKK) composite parts fabricated using Big Area Additive Manufacturing (BAAM) processes

    Energy Technology Data Exchange (ETDEWEB)

    Kunc, Vlastimil [ORNL; Kishore, Vidya [ORNL; Chen, Xun [ORNL; Ajinjeru, Christine [ORNL; Duty, Chad [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL); Hassen, Ahmed A [ORNL

    2016-09-01

    ORNL collaborated with Arkema Inc. to investigate poly(etherketoneketone) (PEKK) and its composites as potential feedstock material for Big Area Additive Manufacturing (BAAM) system. In this work thermal and rheological properties were investigated and characterized in order to identify suitable processing conditions and material flow behavior for BAAM process.

  12. Decolorization and degradation of reactive dye during the dyed cotton fabric rinsing process.

    Science.gov (United States)

    Luo, Deng-Hong; Zheng, Qing-Kang; Chen, Sheng; Liu, Qing-Shu; Wang, Xiu-Xing; Guan, Yu; Pu, Zong-Yao

    2010-01-01

    Dyeing process of textile consumes large quantities of water, which results in huge amounts of colored wastewater. Most of the dye wastewater treating methods focused on the treatment of wastewater after the rinsing process of dyed textile. In this paper, tetraacetylethylenediamine/hydrogen peroxide (TAED/H₂O₂) active oxidation (AO) system was developed to rinse dyed textile and decolorize the rinsing wastewater simultaneously. The results indicated that the decolorization ratio of the rinse effluent obtained by AO method were in the range of 51.72%-84.15% according to different dyes and the COD value decreased more than 30% compared with that of traditional rinsing process. The decolorization kinetics investigation showed that the decolorization of dyes during AO rinsing process followed the law of pseudo-first order kinetics. The result of UV-Vis and UPLC-MS analysis demonstrated that the dye was degraded into colorless organic molecular fragments and partly mineralized during the AO rinsing process.

  13. Perception Of The Nurse In The Process Of Donation Of Organs And Fabrics For Transplantation

    Directory of Open Access Journals (Sweden)

    Vanessa Vargas

    2017-06-01

    Full Text Available Objective: to know the nurses' perception in the process of organ and tissue donation for transplants. Methods: qualitative research with data collection performed through a semistructured interview with 16 nurses from a hospital. The data were submitted to Bardin content analysis. Results: categories emerged after content analysis were as follows: Organ donation process: nurses' experience; Nursing care for potential donors; Family approach; Main difficulties in the donation process. Conclusion: the research demonstrated the real difficulties of the professionals during the donation process, such as lack of human resources, extensive protocols, and lack of awareness of the society to understand the donation process and the family approach. Keywords: Transplantation of Organs; Obtaining Tissues and Organs; Nursing care.

  14. Reflective processes and competencies involved in teaching practice at university: a case study

    Directory of Open Access Journals (Sweden)

    Caetano da Costa

    2010-01-01

    Full Text Available Founded on practical rationality, this qualitative case study aimed to explore the teaching practice at university, focusing on teacher's reflections and competencies. To this end, teaching practices were described, analyzed, and interpreted. These interactions with students on a course in the pharmacy program, brought about situations involving dilemmas and learning opportunities for problem-solving and decision-making skills. Throughout the study, students were encouraged to use knowledge-in-action, reflection-in-action, and reflection-on-action, and these processes were also experienced by the teacher. Analysis of the records from classroom observation and the interviews with students and the teacher showed the fundamental role of such reflective processes, which led to attainment of the intended objectives. In this sense, the teacher's reflective practice was essential for supporting the application of each curricular component of the course.

  15. A Traveller Information System: Minimisation of the Number of Graphs’ Nodes Involved When Processing Route Requests

    Directory of Open Access Journals (Sweden)

    Bendaoud Zakaria

    2014-12-01

    Full Text Available The number of people using public transport is continuously increasing. Transport companies want to fulfil travellers’ expectations wherever possible. However, the great number of public transport companies operating in the same area can sometimes confuse travellers as to which route they should take and how to obtain the information relative to their journey. In this paper we suggest integrating several traveller information systems from different companies into the same multimodal information system, offering companies the choice not to share their data. This encourages them to join the system. Additionally, we have minimised the number of nodes involved when processing travellers’ requests in order to simplify the calculation process. To put our plan into action, we have opted for a multi-agent system coupled with the Voronoi decomposition for managing the network.

  16. Fabrication of highly crystalline oxide thin films on plastics: Sol–gel transfer technique involving high temperature process

    Directory of Open Access Journals (Sweden)

    Hiromitsu Kozuka

    2016-09-01

    Full Text Available Si(100 substrates were coated with a polyimide (PI–polyvinylpyrrolidone (PVP mixture film, and an alkoxide-derived TiO2 gel film was deposited on it by spin-coating. The gel films were fired under various conditions with final annealing at 600–1000 °C. The PI–PVP layer was completely decomposed at such high temperatures while the TiO2 films survived on Si(100 substrates without any damages. When the final annealing temperature was raised, the crystalline phase changed from anatase to rutile, and the crystallite size and the refractive index of the films tended to increase. The TiO2 films thus fired on Si(100 substrates were transferred to polycarbonate (PC substrates by melting the surface of the plastic substrate either in a near-infrared image furnace or on a hot plate under a load. Cycles of deposition and firing were found to be effective in achieving successful transfer even for the films finally annealed at 1000 °C. X-ray photoelectron spectroscopic analyses on the film/Si(100 interface suggested that the residual carbon or carbides at the interface could be a possible factor, but not a necessary and decisive factor that allows the film transfer.

  17. Electrospun pH-sensitive core-shell polymer nanocomposites fabricated using a tri-axial process.

    Science.gov (United States)

    Yang, Chen; Yu, Deng-Guang; Pan, Deng; Liu, Xin-Kuan; Wang, Xia; Bligh, S W Annie; Williams, Gareth R

    2016-04-15

    A modified tri-axial electrospinning process was developed for the generation of a new type of pH-sensitive polymer/lipid nanocomposite. The systems produced are able to promote both dissolution and permeation of a model poorly water-soluble drug. First, we show that it is possible to run a tri-axial process with only one of the three fluids being electrospinnable. Using an electrospinnable middle fluid of Eudragit S100 (ES100) with pure ethanol as the outer solvent and an unspinnable lecithin-diclofenac sodium (PL-DS) core solution, nanofibers with linear morphology and clear core/shell structures can be fabricated continuously and smoothly. X-ray diffraction proved that these nanofibers are structural nanocomposites with the drug present in an amorphous state. In vitro dissolution tests demonstrated that the formulations could preclude release in acidic conditions, and that the drug was released from the fibers in two successive steps at neutral pH. The first step is the dissolution of the shell ES100 and the conversion of the core PL-DS into sub-micron sized particles. This frees some DS into solution, and later the remaining DS is gradually released from the PL-DS particles through diffusion. Ex vivo permeation results showed that the composite nanofibers give a more than twofold uplift in the amount of DS passing through the colonic membrane as compared to pure DS; 74% of the transmitted drug was in the form of PL-DS particles. The new tri-axial electrospinning process developed in this work provides a platform to fabricate structural nanomaterials, and the core-shell polymer-PL nanocomposites we have produced have significant potential applications for oral colon-targeted drug delivery. A modified tri-axial electrospinning is demonstrated to create a new type of core-shell pH-sensitive polymer/lipid nanocomposites, in which an electrospinnable middle fluid is exploited to support the un-spinnable outer and inner fluids. The structural nanocomposites are able

  18. Qualified public involvement in the decision making process of siting a waste repository

    International Nuclear Information System (INIS)

    Rodrigues, Danielle Monegalha; Almeida, Ivan Pedro Salati de

    2009-01-01

    The main objective of this paper is to identify the most important characteristics required for the qualification of local communities for participating in the process of defining a specific site for a radioactive waste repository. It also compares the strategies used by Hungary, United Kingdom and Belgium to stimulate the public participation in the decision-making process of building and operating a radioactive waste repository, considering both the stepwise process and the spontaneous candidacy. Two main aspects are discussed as prerequisites to constitute a qualified public. The first aspect is how well the person or entity can be considered an effective representative of the community affected by the repository. This means the conditions the representative has to speak on behalf of the community and participate in the decision making process as its voice. The second characteristic is the level and quality of the information that the community and its representatives must have to participate actively in the decision-making process and what can be done to improve this status. Referring to the strategy to public involvement, this paper discusses the importance of transparency in the process, aiming the credibility of the entrepreneur as the first pace to gaining the confidence of the public affected by the project. Implementing an open dialog and listening to the needs and claims of the population are the first steps to being accepted as a true partner of the community. Preliminary discussions and explanations are important to introduce the subject and to reduce beliefs of false threats in the affected community. The constitution of a local committee is suggested, to act as a legal and formal channel to facilitate the partnership between local community, neighbors and the entrepreneur in order to achieve a positive result in the whole process. (author)

  19. Fabrication and evaluation of porous Ti–HA bio-nanomaterial by leaching process

    Directory of Open Access Journals (Sweden)

    A.M. Omran

    2015-05-01

    Full Text Available A porous surface of Ti–HA composite was successfully fabricated by pulsed current activated sintering (PCAS, followed by leaching using diluted H3PO4. The Ti and HA powders were mixed at different contents of the HA, Ti-5, 10, 30 and 40 wt% HA powders. The mixed powders were pressed in a coated graphite die using pulsed current activated sintering (PCAS under pressure of 60 MPa at temperature of 1000 °C for 5 min. The sintered Ti–HA specimens were immersed in the eight kinds of leaching solutions at room temperature for 24 h. The leached specimen’s surfaces were characterized using XRD, SEM, EDX and Rockwell hardness. The XRD patterns after sintering show that many phases were detected at the sintered specimen surfaces such as; Ti2O, CaO, CaTiO3, TixPy in addition to the remaining Ti and HA. Furthermore, the high concentration H3PO4 leaching solution is more efficient than the low concentration. Also the produced porous surfaces of Ti–HA materials containing more than 30% HA have a low relative density and hardness than the commercial Ti–6Al–4V ELI alloy. In a word, the presence of porous surface coated by HA will promote the nucleation of the biological apatite created with the human tissue and increase the bonding between them. So, the produced porous materials are considered so easy for the muscle cells to permeate after transplanted with high coherence.

  20. Thermal processing of strained silicon-on-insulator for atomically precise silicon device fabrication

    International Nuclear Information System (INIS)

    Lee, W.C.T.; Bishop, N.; Thompson, D.L.; Xue, K.; Scappucci, G.; Cederberg, J.G.; Gray, J.K.; Han, S.M.; Celler, G.K.; Carroll, M.S.; Simmons, M.Y.

    2013-01-01

    Highlights: ► Strained silicon-on-insulator (sSOI) samples were flash-annealed at high temperature under ultra-high vacuum conditions. ► The extend of surface strain relaxation depends on the annealing temperature with no strain relaxation observed below 1020 °C. ► A 2 × 1 reconstructed surface with low defect density can be achieved. ► The annealed sSOI surface shows enhanced step undulations due to the unique energetics caused by surface strain. - Abstract: We investigate the ability to reconstruct strained silicon-on-insulator (sSOI) substrates in ultra-high vacuum for use in atomic scale device fabrication. Characterisation of the starting sSOI substrate using μRaman shows an average tensile strain of 0.8%, with clear strain modulation in a crosshatch pattern across the surface. The surfaces were heated in ultra-high vacuum from temperatures of 900 °C to 1100 °C and subsequently imaged using scanning tunnelling microscopy (STM). The initial strain modulation on the surface is observed to promote silicon migration and the formation of crosshatched surface features whose height and pitch increases with increasing annealing temperature. STM images reveal alternating narrow straight S A steps and triangular wavy S B steps attributed to the spontaneous faceting of S B and preferential adatom attachment on S B under biaxial tensile strain. Raman spectroscopy shows that despite these high temperature anneals no strain relaxation of the substrate is observed up to temperatures of 1020 °C. Above 1100 °C, strain relaxation is evident but is confined to the surface.

  1. Development of a Multi-User Polyimide-MEMS Fabrication Process and its Application to MicroHotplates

    KAUST Repository

    Lizardo, Ernesto B.

    2013-01-01

    Micro-electro-mechanical systems (MEMS) became possible thanks to the silicon based technology used to fabricate integrated circuits. Originally, MEMS fabrication was limited to silicon based techniques and materials, but the expansion of MEMS

  2. Tensile Properties and Fracture Behavior of Aluminum Alloy Foam Fabricated from Die Castings without Using Blowing Agent by Friction Stir Processing Route.

    Science.gov (United States)

    Hangai, Yoshihiko; Kamada, Hiroto; Utsunomiya, Takao; Kitahara, Soichiro; Kuwazuru, Osamu; Yoshikawa, Nobuhiro

    2014-03-21

    Al foam has been used in a wide range of applications owing to its light weight, high energy absorption and high sound insulation. One of the promising processes for fabricating Al foam involves the use of a foamable precursor. In this study, ADC12 Al foams with porosities of 67%-78% were fabricated from Al alloy die castings without using a blowing agent by the friction stir processing route. The pore structure and tensile properties of the ADC12 foams were investigated and compared with those of commercially available ALPORAS. From X-ray computed tomography (X-ray CT) observations of the pore structure of ADC12 foams, it was found that they have smaller pores with a narrower distribution than those in ALPORAS. Tensile tests on the ADC12 foams indicated that as their porosity increased, the tensile strength and tensile strain decreased, with strong relation between the porosity, tensile strength, and tensile strain. ADC12 foams exhibited brittle fracture, whereas ALPORAS exhibited ductile fracture, which is due to the nature of the Al alloy used as the base material of the foams. By image-based finite element (FE) analysis using X-ray CT images corresponding to the tensile tests on ADC12 foams, it was shown that the fracture path of ADC12 foams observed in tensile tests and the regions of high stress obtained from FE analysis correspond to each other. Therefore, it is considered that the fracture behavior of ADC12 foams in relation to their pore structure distribution can be investigated by image-based FE analysis.

  3. Tensile Properties and Fracture Behavior of Aluminum Alloy Foam Fabricated from Die Castings without Using Blowing Agent by Friction Stir Processing Route

    Directory of Open Access Journals (Sweden)

    Yoshihiko Hangai

    2014-03-01

    Full Text Available Al foam has been used in a wide range of applications owing to its light weight, high energy absorption and high sound insulation. One of the promising processes for fabricating Al foam involves the use of a foamable precursor. In this study, ADC12 Al foams with porosities of 67%–78% were fabricated from Al alloy die castings without using a blowing agent by the friction stir processing route. The pore structure and tensile properties of the ADC12 foams were investigated and compared with those of commercially available ALPORAS. From X-ray computed tomography (X-ray CT observations of the pore structure of ADC12 foams, it was found that they have smaller pores with a narrower distribution than those in ALPORAS. Tensile tests on the ADC12 foams indicated that as their porosity increased, the tensile strength and tensile strain decreased, with strong relation between the porosity, tensile strength, and tensile strain. ADC12 foams exhibited brittle fracture, whereas ALPORAS exhibited ductile fracture, which is due to the nature of the Al alloy used as the base material of the foams. By image-based finite element (FE analysis using X-ray CT images corresponding to the tensile tests on ADC12 foams, it was shown that the fracture path of ADC12 foams observed in tensile tests and the regions of high stress obtained from FE analysis correspond to each other. Therefore, it is considered that the fracture behavior of ADC12 foams in relation to their pore structure distribution can be investigated by image-based FE analysis.

  4. Optimization Of PVDF-TrFE Processing Conditions For The Fabrication Of Organic MEMS Resonators.

    Science.gov (United States)

    Ducrot, Pierre-Henri; Dufour, Isabelle; Ayela, Cédric

    2016-01-21

    This paper reports a systematic optimization of processing conditions of PVDF-TrFE piezoelectric thin films, used as integrated transducers in organic MEMS resonators. Indeed, despite data on electromechanical properties of PVDF found in the literature, optimized processing conditions that lead to these properties remain only partially described. In this work, a rigorous optimization of parameters enabling state-of-the-art piezoelectric properties of PVDF-TrFE thin films has been performed via the evaluation of the actuation performance of MEMS resonators. Conditions such as annealing duration, poling field and poling duration have been optimized and repeatability of the process has been demonstrated.

  5. Decision process involved in preparing the Shippingport reactor pressure vessel for transport

    International Nuclear Information System (INIS)

    Murphie, W.E.

    1989-01-01

    The most significant part of the Shippingport Station Decommissioning Project was the one-piece removal and shipment of the reactor pressure vessel (RPV). Implicit in the RPV transport was the task of qualifying the RPV as a waste package acceptable for shipment. Soon after physical decommissioning began on September 1985, questions regarding the packaging certification and transport of the RPV from Shippingport, Pennsylvania to the US Department of Energy (DOE) Hanford Waste Burial Site necessitated reexamination of several planning assumptions. A complete reassessment of the regulatory requirements governing the RPV shipment resulted in a programmatic decision to obtain a type B(U) Certificate of Compliance and abandon the originally planned US Department of Transportation (DOT) low specific activity (LSA) shipment. The decision process resulting in this conclusion was extensive and involved many organizations and agencies. Incidental to this process, several subtle certification issues were identified that required resolution. Some of these issues involved the definition of LSA material for large packages; interpretation and compliance with DOE, DOT and US Nuclear Regulatory Commission (NRC) regulations for the transport of radioactive material; incorporation of the International Atomic Energy Agency (IAEA) regulations by the Panama Canal; and DOE policy requiring advance notification to states of radioactive waste shipments. 2 figs

  6. Aspects of Information Architecture involved in process mapping in Military Organizations under the semiotic perspective

    Directory of Open Access Journals (Sweden)

    Mac Amaral Cartaxo

    2016-04-01

    Full Text Available Introduction: The description of the processes to represent the activities in an organization has important call semiotic, It is the flowcharts of uses, management reports and the various forms of representation of the strategies used. The subsequent interpretation of the organization's employees involved in learning tasks and the symbols used to translate the meanings of management practices is essential role for the organization. Objective: The objective of this study was to identify evidence of conceptual and empirical, on aspects of information architecture involved in the mapping process carried out in military organizations under the semiotic perspective. Methodology: The research is characterized as qualitative, case study and the data collection technique was the semi-structured interview, applied to management advisors. Results: The main results indicate that management practices described with the use of pictorial symbols and different layouts have greater impact to explain the relevance of management practices and indicators. Conclusion: With regard to the semiotic appeal, it was found that the impact of a management report is significant due to the use of signs and layout that stimulate further reading by simplifying complex concepts in tables, diagrams summarizing lengthy descriptions.

  7. Decision process involved in preparing the Shippingport reactor pressure vessel for transport

    International Nuclear Information System (INIS)

    Murphie, W.E.

    1990-01-01

    The most significant part of the Shippingport Station Decommissioning Project was the one-piece removal and shipment of the reactor pressure vessel (RPV). Implicit in the RPV transport was the task of qualifying the RPV as a waste package acceptable for shipment. Soon after physical decommissioning began on September, 1985, questions regarding the packaging certification and transport of the RPV from Shippingport, Pennsylvania to the U.S. Department of Energy (DOE) Hanford waste burial site necessitated reexamination of several planning assumptions. A complete reassessment of the regulatory requirements governing the RPV shipment resulting in a programmatic decision to obtain a Type B(U) Certification of Compliance and abandon the originally planned U.S. Department of Transportation (DOT) low specific activity (LSA) shipment. The decision process resulting in this conclusion was extensive and involved many organizations and agencies. Incidental to this process, several subtle certification issues were identified that required resolution. Some of these issues involved the definition of LSA material for large packages; interpretation and compliance with DOE, DOT and U.S. Nuclear Regulatory Commission (NRC) regulations for the transport of radioactive material; incorporation of the International Atomic Energy Agency (IAEA) regulations by the Panama Canal; and DOE policy requiring advance notification to states of radioactive waste shipments

  8. Development of automated welding process for field fabrication of thick walled pressure vessels: management plan

    International Nuclear Information System (INIS)

    1979-01-01

    A Westinghouse Electric Corp. management plan is presented that consists of the following: management structure; management processes; contract work breakdown structure; schedules; cost plan; contract change control procedures; and government owned property

  9. Numerical simulations of industrial processes involving fluid dynamics, combustion and radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ducrocq, J [Air Liquide, Centre de Recherche Claude-Delorme, Jouy-en-Josas (France)

    1998-12-31

    Moving out of the scientific community research laboratories, computational fluid dynamics (CFD) software packages are now allowing industrials to analyse and optimize industrial processes involving the use of gases, liquids and even some two-phase fluids. Their attractiveness and their impact stems out from the opportunity they offer to bring insight into an existing unit, or even at the design stage, by displaying the spatial distribution of process relevant variables such as temperature, concentration. The filling of the spacing in between a two-layer window is a simple example. This new opportunity of visualisation is at times an unique way, when the process environment is an opaque one, such as liquid metal flowing into a tundish or when measurements of flows may be a long and tedious work, such as flows within water treatment basins. This environment we are to investigate in order to optimize can also be a harsh one, due to its high temperature level for example. Such are burners. But then pure fluid flow analysis, such as cold flow water models, has too many shortcomings. The description of combustion processes and of radiation become a necessary feature in order to describe thermal heat transfer or to locate `hot spots`. Such numerical models showing our oxycombustion expertise in glass melting will be presented. (author)

  10. Hemispheric involvement in the processing of Chinese idioms: An fMRI study.

    Science.gov (United States)

    Yang, Jie; Li, Ping; Fang, Xiaoping; Shu, Hua; Liu, Youyi; Chen, Lang

    2016-07-01

    Although the left hemisphere is believed to handle major language functions, the role of the right hemisphere in language comprehension remains controversial. Recently researchers have investigated hemispheric language processing with figurative language materials (e.g., metaphors, jokes, and idioms). The current study capitalizes on the pervasiveness and distinct features of Chinese idioms to examine the brain mechanism of figurative language processing. Native Chinese speakers performed a non-semantic task while reading opaque idioms, transparent idioms, and non-idiomatic literal phrases. Whole-brain analyses indicated strong activations for all three conditions in an overlapping brain network that includes the bilateral inferior/middle frontal gyrus and the temporo-parietal and occipital-temporal regions. The two idiom conditions elicited additional activations in the right superior parietal lobule and right precuneus. Item-based modulation analyses further demonstrated that activation amplitudes in the right angular gyrus, right superior parietal lobule and right precuneus, as well as left inferior temporo-occipital cortex, are negatively correlated with the semantic transparency of the idioms. These results suggest that both hemispheres are involved in idiom processing but they play different roles. Implications of the findings are discussed in light of theories of figurative language processing and hemispheric functions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Diurnal rhythmicity in biological processes involved in bioavailability of functional food factors.

    Science.gov (United States)

    Tsurusaki, Takashi; Sakakibara, Hiroyuki; Aoshima, Yoshiki; Yamazaki, Shunsuke; Sakono, Masanobu; Shimoi, Kayoko

    2013-05-01

    In the past few decades, many types of functional factors have been identified in dietary foods; for example, flavonoids are major groups widely distributed in the plant kingdom. However, the absorption rates of the functional food factors are usually low, and many of these are difficult to be absorbed in the intact forms because of metabolization by biological processes during absorption. To gain adequate beneficial effects, it is therefore mandatory to know whether functional food factors are absorbed in sufficient quantity, and then reach target organs while maintaining beneficial effects. These are the reasons why the bioavailability of functional food factors has been well investigated using rodent models. Recently, many of the biological processes have been reported to follow diurnal rhythms recurring every 24 h. Therefore, absorption and metabolism of functional food factors influenced by the biological processes may vary with time of day. Consequently, the evaluation of the bioavailability of functional food factors using rodent models should take into consideration the timing of consumption. In this review, we provide a perspective overview of the diurnal rhythm of biological processes involved in the bioavailability of functional food factors, particularly flavonoids.

  12. Numerical simulations of industrial processes involving fluid dynamics, combustion and radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ducrocq, J. [Air Liquide, Centre de Recherche Claude-Delorme, Jouy-en-Josas (France)

    1997-12-31

    Moving out of the scientific community research laboratories, computational fluid dynamics (CFD) software packages are now allowing industrials to analyse and optimize industrial processes involving the use of gases, liquids and even some two-phase fluids. Their attractiveness and their impact stems out from the opportunity they offer to bring insight into an existing unit, or even at the design stage, by displaying the spatial distribution of process relevant variables such as temperature, concentration. The filling of the spacing in between a two-layer window is a simple example. This new opportunity of visualisation is at times an unique way, when the process environment is an opaque one, such as liquid metal flowing into a tundish or when measurements of flows may be a long and tedious work, such as flows within water treatment basins. This environment we are to investigate in order to optimize can also be a harsh one, due to its high temperature level for example. Such are burners. But then pure fluid flow analysis, such as cold flow water models, has too many shortcomings. The description of combustion processes and of radiation become a necessary feature in order to describe thermal heat transfer or to locate `hot spots`. Such numerical models showing our oxycombustion expertise in glass melting will be presented. (author)

  13. Solution-processable precursor route for fabricating ultrathin silica film for high performance and low voltage organic transistors

    Institute of Scientific and Technical Information of China (English)

    Shujing Guo; Liqiang Li; Zhongwu Wang; Zeyang Xu; Shuguang Wang; Kunjie Wu; Shufeng Chen; Zongbo Zhang; Caihong Xu; Wenfeng Qiu

    2017-01-01

    Silica is one of the most commonly used materials for dielectric layer in organic thin-film transistors due to its excellent stability,excellent electrical properties,mature preparation process,and good compatibility with organic semiconductors.However,most of conventional preparation methods for silica film are generally performed at high temperature and/or high vacuum.In this paper,we introduce a simple solution spin-coating method to fabricate silica thin film from precursor route,which possesses a low leakage current,high capacitance,and low surface roughness.The silica thin film can be produced in the condition of low temperature and atmospheric environment.To meet various demands,the thickness of film can be adjusted by means of preparation conditions such as the speed of spin-coating and the concentration of solution.The p-type and n-type organic field effect transistors fabricated by using this film as gate electrodes exhibit excellent electrical performance including low voltage and high performance.This method shows great potential for industrialization owing to its characteristic of low consumption and energy saving,time-saving and easy to operate.

  14. Superconductor-normal metal-superconductor process development for the fabrication of small Josephson junctions in ramp type configuration

    International Nuclear Information System (INIS)

    Poepel, R.; Hagedorn, D.; Weimann, T.; Buchholz, F.-I.; Niemeyer, J.

    2000-01-01

    At PTB, a fabrication process has been developed in SNS Nb/PdAu/Nb technology for the verification of small Josephson junctions (JJs) in the deep sub-micron range to enable the implementation of JJs as active elements in highly integrated superconducting circuits. Two steps of this technological development are described with regard to appropriately designed circuit layouts of JJ series arrays (JJAs), the first one in a conventional window type junction (WTJ) configuration and the second one in a ramp type junction (RTJ) configuration. Test circuits of JJAs containing up to 10 000 JJs have been fabricated and experimentally tested. In WTJ configuration, the circuits proved to be sensitive to external perturbing effects affecting the stability of circuit operation. In contrast to that, in RTJ configuration, the circuits realized showed correct function and a high grade of reliability of operation. To produce RTJ circuits, the technology parameters have been set to realize JJs with contact areas of A=0.25μmx1.3μm. At a thickness of the PdAu normal metal layer of d = 40 nm, the values achieved for the critical current density and for the product of critical current and normal state resistance are about j c = 200 k Acm -2 and about I c R N = 21 μV. (author)

  15. Graphene photodetectors with a bandwidth  >76 GHz fabricated in a 6″ wafer process line

    Science.gov (United States)

    Schall, Daniel; Porschatis, Caroline; Otto, Martin; Neumaier, Daniel

    2017-03-01

    In recent years, the data traffic has grown exponentially and the forecasts indicate a huge market that could be addressed by communication infrastructure and service providers. However, the processing capacity, space, and energy consumption of the available technology is a serious bottleneck for the exploitation of these markets. Chip-integrated optical communication systems hold the promise of significantly improving these issues related to the current technology. At the moment, the answer to the question which material is best suited for ultrafast chip integrated communication systems is still open. In this manuscript we report on ultrafast graphene photodetectors with a bandwidth of more than 76 GHz well suitable for communication links faster than 100 GBit s-1 per channel. We extract an upper value of 7.2 ps for the timescale in which the bolometric photoresponse in graphene is generated. The photodetectors were fabricated on 6″ silicon-on-insulator wafers in a semiconductor pilot line, demonstrating the scalable fabrication of high-performance graphene based devices.

  16. Fabrication of a Superhydrophobic Surface with Flower-Like Microstructures with a One-Step Immersion Process

    International Nuclear Information System (INIS)

    Kim, Younga; Go, Seungcheol; Ahn, Yonghyun

    2013-01-01

    It has been demonstrated that flower-like microstructures can be fabricated on a Mg plate using a solution of propylphosphonic acid and HFTHTMS in ethanol. In the presence of propylphosphonic acid, the HFTHTMS is polymerized and then deposited on the surface of the Mg plates during the immersion period. Many flower-like structures were formed on the surface after at least 6 h of immersion, at which point the modified plate became superhydro-phobic. The nano-/micro scale flower-like structure is composed of fluorinated polysiloxane, which acts as a low-surface-energy material. SEM images reveal that the flower-like structure is composed of many thin flakes. It is confirmed that these structures on the surface contain air and result in an ideal structure for obtaining the superhydrophobic surface. This proposed coating method is simple and can be applied to a large sample to fabricate a superhydrophobic surface without expensive instruments. Superhydrophobicity of solid materials has attracted significant attention because it provides strong water repellency and self-cleaning properties. The chemical composition and nano-/microscale structures of the surface are key factors determining the surface properties. Recently, superhydro-phobic surfaces showing high water contact angles (CA) > 150 .deg. and low sliding angles (SA) < 10 .deg. have been the focus of much research because they have many applications in both academic fields and industrial processes

  17. Graphene photodetectors with a bandwidth  >76 GHz fabricated in a 6″ wafer process line

    International Nuclear Information System (INIS)

    Schall, Daniel; Porschatis, Caroline; Otto, Martin; Neumaier, Daniel

    2017-01-01

    In recent years, the data traffic has grown exponentially and the forecasts indicate a huge market that could be addressed by communication infrastructure and service providers. However, the processing capacity, space, and energy consumption of the available technology is a serious bottleneck for the exploitation of these markets. Chip-integrated optical communication systems hold the promise of significantly improving these issues related to the current technology. At the moment, the answer to the question which material is best suited for ultrafast chip integrated communication systems is still open. In this manuscript we report on ultrafast graphene photodetectors with a bandwidth of more than 76 GHz well suitable for communication links faster than 100 GBit s −1 per channel. We extract an upper value of 7.2 ps for the timescale in which the bolometric photoresponse in graphene is generated. The photodetectors were fabricated on 6″ silicon-on-insulator wafers in a semiconductor pilot line, demonstrating the scalable fabrication of high-performance graphene based devices. (paper)

  18. An assessment of the process of Self-propagating High-Temperature Synthesis for the fabrication of porous copper composite

    International Nuclear Information System (INIS)

    Moloodi, A.; Raiszadeh, R.; Vahdati-Khaki, J.; Babakhani, A.

    2009-01-01

    The present article describes the process of Self-propagating High-temperature Synthesis (SHS) that is employed for fabricating open cell copper-alumina composite foam. This foam was fabricated by the reactions between the powders of CuO, Al and C. The gas released during these reactions as well as the initial porosity of the green powder compact were suggested to be the sources of the produced pores. Further, the effect of C content and the precursor compressing pressure on the porosity content and morphology of the SHS product was determined. Optical microscopy (OM), scanning electron microscopy (SEM), and X-ray diffraction (XRD) were utilized to characterize the porous samples. The optimum weight fractions for blending the initial powders were determined to be 84 wt.% CuO, 9.5 wt.% Al, and 6.5 wt.% C, and the SHS reaction was sustainable only if the initial compacting pressure of the powders was between 100 and 300 MPa.

  19. Fabrication of a 77 GHz Rotman Lens on a High Resistivity Silicon Wafer Using Lift-Off Process

    Directory of Open Access Journals (Sweden)

    Ali Attaran

    2014-01-01

    Full Text Available Fabrication of a high resistivity silicon based microstrip Rotman lens using a lift-off process has been presented. The lens features 3 beam ports, 5 array ports, 16 dummy ports, and beam steering angles of ±10 degrees. The lens was fabricated on a 200 μm thick high resistivity silicon wafer and has a footprint area of 19.7 mm × 15.6 mm. The lens was tested as an integral part of a 77 GHz radar where a tunable X band source along with an 8 times multiplier was used as the RF source and the resulting millimeter wave signal centered at 77 GHz was radiated through a lens-antenna combination. A horn antenna with a downconverter harmonic mixer was used to receive the radiated signal and display the received signal in an Advantest R3271A spectrum analyzer. The superimposed transmit and receive signal in the spectrum analyzer showed the proper radar operation confirming the Rotman lens design.

  20. Characterization of the high density plasma etching process of CCTO thin films for the fabrication of very high density capacitors

    International Nuclear Information System (INIS)

    Altamore, C; Tringali, C; Sparta', N; Marco, S Di; Grasso, A; Ravesi, S

    2010-01-01

    In this work the feasibility of CCTO (Calcium Copper Titanate) patterning by etching process is demonstrated and fully characterized in a hard to etch materials etcher. CCTO sintered in powder shows a giant relative dielectric constant (10 5 ) measured at 1 MHz at room temperature. This feature is furthermore coupled with stability from 10 1 Hz to 10 6 Hz in a wide temperature range (100K - 600K). In principle, this property can allow to fabricate very high capacitance density condenser. Due to its perovskite multi-component structure, CCTO can be considered a hard to etch material. For high density capacitor fabrication, CCTO anisotropic etching is requested by using high density plasma. The behavior of etched CCTO was studied in a HRe- (High Density Reflected electron) plasma etcher using Cl 2 /Ar chemistry. The relationship between the etch rate and the Cl 2 /Ar ratio was also studied. The effects of RF MHz, KHz Power and pressure variation, the impact of HBr addiction to the Cl 2 /Ar chemistry on the CCTO etch rate and on its selectivity to Pt and photo resist was investigated.