WorldWideScience

Sample records for fabrication improved cycle

  1. Design and Fabrication of Eu-Cycle

    Directory of Open Access Journals (Sweden)

    A.Venkat Sai

    2014-10-01

    Full Text Available EU-Cycle is a self balancing electric unicycle. A regular unicycle is powered by pedal and is balanced by a rider, whilst the EU-Cycle runs by an electric motor and balance by control system in the roll direction. The simple thing to do by rider is to lean forward for acceleration, to lean backward for braking. EU-Cycle is designed as to be a fast and portable means of transport among crowded area, home and office. Therefore, The EU-Cycle gives tough challenge to the unicycle. EU-Cycle has attracted print media including future stories in radio, television. Thus in addition to successful development of EU-Cycle in urban use, the project has to implement the EU-cycle as an educative device.

  2. Improvements in Cold-Plate Fabrication

    Science.gov (United States)

    Zaffetti, Mark A.; Taddey, Edmund P.; Laurin, Michael B.; Chabebe, Natalia

    2012-01-01

    Five improvements are reported in cold-plate fabrication. This cold plate is part of a thermal control system designed to serve on space missions. The first improvement is the merging of the end sheets of the cold plate with the face sheets of the structural honeycomb panel. The cold plate, which can be a brazed assembly, uses the honeycomb face sheet as its end sheet. Thus, when the honeycomb panel is fabricated, the face sheet that is used is already part of the cold plate. In addition to reducing weight, costs, and steps, the main benefit of this invention is that it creates a more structurally sound assembly. The second improvement involves incorporation of the header into the closure bar to pass the fluid to a lower layer. Conventional designs have used a separate header, which increases the geometry of the system. The improvement reduces the geometry, thus allowing the cold plate to fit into smaller area. The third improvement eliminates the need of hose, tube, or manifold to supply the cooling fluid externally. The external arrangement can be easily damaged and is vulnerable to leakage. The new arrangement incorporates an internal fluid transfer tube. This allows the fluid to pass from one cold plate to the other without any exposed external features. The fourth improvement eliminates separate fabrication of cold plate(s) and structural members followed by a process of attaching them to each other. Here, the structural member is made of material that can be brazed just as that of the cold plate. Now the structural member and the cold plate can be brazed at the same time, creating a monolithic unit, and thus a more structurally sound assembly. Finally, the fifth improvement is the elimination of an additional welding step that can damage the braze joints. A tube section, which is usually welded on after the braze process, is replaced with a more structurally sound configuration that can be brazed at the same time as the rest of the cold plate.

  3. Fabrication and life cycle assessment of organic photovoltaics

    Science.gov (United States)

    Anctil, Annick

    2011-12-01

    Increasing demand for renewable energy has resulted in a new interest for alternative technologies such as organic photovoltaics. With efficiencies exceeding 8% for both polymer and small molecule photovoltaics, organic photovoltaics are now being commercialized due to their flexibility and low weight which allow for their adoption in new applications such as portable electronics, smart fabrics, and building-integrated photovoltaics. To date, most research efforts have been focused on increasing power efficiency with little assessment of potential negative impacts associated with their large scale production. It is generally assumed that organic photovoltaics have low environmental impacts and are by nature inexpensive to produce since they are often solution processed. In the present work, a comprehensive analysis of the life cycle embodied energy for C60 and C70 fullerenes which are the most common acceptor molecules in organic photovoltaics, has been performed from cradle-to-gate, including the relative contributions from synthesis, separation, purification, and functionalization processes. The embodied energy of all fullerenes was calculated to be an order of magnitude higher than most bulk chemicals. These results have enabled the life cycle impact associated with the production of various types of organic photovoltaics to be calculated, including polymer, small molecule and multi-junction devices. An outcome of the life cycle assessment for organic photovoltaics shows that small molecule devices require significant fabrication energy from high vacuum processing and their efficiency is limited by poor absorption in the near-infrared (NIR). Therefore, a solution processing approach with novel NIR absorbing molecules in multi-junction devices has been developed in order to minimize the total cumulative energy. The combined efforts have led to the first demonstration of a spray-coated small molecule photovoltaic NIR device, using a combination of ZnPc and Al

  4. African primary care research: Quality improvement cycles

    Directory of Open Access Journals (Sweden)

    Claire Van Deventer

    2014-01-01

    Full Text Available Improving the quality of clinical care and translating evidence into clinical practice is commonly a focus of primary care research. This article is part of a series on primary care research and outlines an approach to performing a quality improvement cycle as part of a research assignment at a Masters level. The article aims to help researchers design their quality improvement cycle and write their research project proposal.

  5. African primary care research: quality improvement cycles.

    Science.gov (United States)

    van Deventer, Claire; Mash, Bob

    2014-04-24

    Improving the quality of clinical care and translating evidence into clinical practice is commonly a focus of primary care research. This article is part of a series on primary care research and outlines an approach to performing a quality improvement cycle as part of a research assignment at a Masters level. The article aims to help researchers design their quality improvement cycle and write their research project proposal.

  6. Enhancing the Effectiveness of Cycle Time Estimation in Wafer Fabrication-Efficient Methodology and Managerial Implications

    Directory of Open Access Journals (Sweden)

    Toly Chen

    2014-08-01

    Full Text Available Cycle time management plays an important role in improving the performance of a wafer fabrication factory. It starts from the estimation of the cycle time of each job in the wafer fabrication factory. Although this topic has been widely investigated, several issues still need to be addressed, such as how to classify jobs suitable for the same estimation mechanism into the same group. In contrast, in most existing methods, jobs are classified according to their attributes. However, the differences between the attributes of two jobs may not be reflected on their cycle times. The bi-objective nature of classification and regression tree (CART makes it especially suitable for tackling this problem. However, in CART, the cycle times of jobs of a branch are estimated with the same value, which is far from accurate. For these reason, this study proposes a joint use of principal component analysis (PCA, CART, and back propagation network (BPN, in which PCA is applied to construct a series of linear combinations of original variables to form new variables that are as unrelated to each other as possible. According to the new variables, jobs are classified using CART before estimating their cycle times with BPNs. A real case was used to evaluate the effectiveness of the proposed methodology. The experimental results supported the superiority of the proposed methodology over some existing methods. In addition, the managerial implications of the proposed methodology are also discussed with an example.

  7. An improved fabrication process for Si-detector-compatible JFETs

    Energy Technology Data Exchange (ETDEWEB)

    Piemonte, Claudio [ITC-irst, Divisione Microsistemi, Via Sommarive, 18, 38050 Povo di Trento (Italy); Dalla Betta, Gian-Franco [Dipartimento di Informatica e Telecomunicazioni, Universita di Trento, Via Sommarive, 14, 38050 Povo di Trento (Italy)]. E-mail: dallabe@dit.unitn.it; Boscardin, Maurizio [ITC-irst, Divisione Microsistemi, Via Sommarive, 18, 38050 Povo di Trento (Italy); Gregori, Paolo [ITC-irst, Divisione Microsistemi, Via Sommarive, 18, 38050 Povo di Trento (Italy); Zorzi, Nicola [ITC-irst, Divisione Microsistemi, Via Sommarive, 18, 38050 Povo di Trento (Italy); Ratti, Lodovico [Dipartimento di Elettronica, Universita di Pavia, Via Ferrata 1, 27100 Pavia (Italy)

    2006-11-30

    We report on JFET devices fabricated on high-resistivity silicon with a radiation detector technology. The problems affecting previous versions of these devices have been thoroughly investigated and solved by developing an improved fabrication process, which allows for a sizeable enhancement in the JFET performance. In this paper, the main features of the fabrication technology are presented and selected results from the electrical and noise characterization of transistors are discussed.

  8. Automating claims management improves revenue cycle.

    Science.gov (United States)

    Nivison, Matthew

    2008-02-01

    One healthcare organization was able to improve revenue cycle operations by automating its claims management. Using web-based technology enabled the organization to streamline internal workflow processes, redeploy staff, and reduce overhead costs. As a result, cash flow increased 7 percent, and A/R days dropped 16 percent.

  9. Fused deposition modeling (FDM) fabricated part behavior under tensile stress, thermal cycling, and fluid pressure

    Science.gov (United States)

    Hossain, Mohammad Shojib

    Material extrusion based additive manufacturing (AM) technology, such as fused deposition modeling (FDM), is gaining popularity with the numerous 3D printers available worldwide. FDM technology is advancing from exclusively prototype construction to achieving production-grade quality. Today, FDM-fabricated parts are widely used in the aerospace industries, biomedical applications, and other industries that may require custom fabricated, low volume parts. These applications are and were possible because of the different production grade material options (e.g., acrylonitrile butadiene styrene (ABS), polycarbonate (PC), polyphenylsulfone (PPSF), etc.) available to use in FDM systems. Recent researchers are exploring other material options including polycaprolactone (PCL), polymethylmethacrylate (PMMA), composites containing ceramic, glass and metal fillers, and even metals which depict the diversified materials and possibility of new material options using FDM technology. The understanding of the behavior and mechanical properties of the finished FDM-fabricated parts is of utmost importance in the advancement of this technology. The processing parameters, e.g., build orientation, raster width (RW), contour width (CW), raster angle (RA), and raster to raster air gap (RRAG) are important factors in determining the mechanical properties of FDM fabricated parts. The work presented here focused on the mechanical properties improvement by modifying those build parameters. The main concentration is on how modifying those parameters can improve ultimate tensile stress (UTS), Young's modulus, and tensile strain of the final product. In this research, PC parts were fabricated using three build methods: 1) default method, 2) Insight revision method, and 3) visual feedback method. By modifying build parameters, the highest average UTS obtained for PC was 63.96 MPa which was 7% higher than that of 59.73 MPa obtained using the default build parameters. The parameter modification

  10. Fabrication approaches for plasmon-improved photovoltaic cells

    DEFF Research Database (Denmark)

    Gritti, Claudia; Malureanu, Radu; Kardynal, B.

    During this talk we will present various fabrication approaches to improve the performance of photovoltaic (PV) cells by using metallic nanoparticles in order to generate photocurrent below the bandgap. This effect is possible due to the generation of surface plasmon polaritons (SPPs) in optimized...

  11. An improved fabrication method for carbon nanotube probe

    Institute of Scientific and Technical Information of China (English)

    XU Zong-wei; GUO Li-qiu; DONG Shen; ZHAO Qing-liang

    2008-01-01

    An improved arc discharge method is developed to fabricate the carbon nanotube probe.In this method,the silicon probe and the carbon nanotube were manipulated under an optical microscope.When the silicon probe and the carbon nanotube were very close,30-60 V dc or ac was applied between them,and the carbon nanotube was divided and attached to the end of the silicon probe.Comparing with the arc discharge method,the new method need not coat the silicon probe with metal in advance,which Can greatly reduce the fabrication difficulty and cost.The fabricated carbon nanotube probe exhibits the good property of hish aspect ratio and can reflect the true topography more accurately than the silicon probe.

  12. INTRODUCTORY BACKGROUND FOR LIFE CYCLE ASSESSMENT (LCA OF PURE SILK FABRIC

    Directory of Open Access Journals (Sweden)

    Silvia Mara Bortoloto Damasceno Barcelos

    2013-06-01

    Full Text Available The main goal of this study is to provide an introductory background to development of the Life Cycle Assessment studies of pure silk fabric. There are not studies available on the life cycle of pure silk fabric. In this sense, was developed a scenario model for LCA application, following the methodology established by the Standard BNR ISO 14040:2009, which establishes principles and framework for an LCA study. It was considered one of the first steps in ISO, being the definition of the purpose and scope. The limits considered for the system had as a starting point the wiring step within the company, and as a final limit the stage of the finishing of the fabric, where you get the finished product. The information used in this study was collected directly from the company entitled 'Fio de Seda', a Brazilian industry. In order to construct the scenario proposed, was used the software Umberto® 5.6 v. Acad and through it, it was possible to generate the scenario model for the production of the silk fabric. Based on this scenario, the accomplishment of the later stages is possible, as outlined in ISO 14040, thus obtaining the inventory of the LCA for the pure silk fabric, as well as its life cycle inventory assessment.

  13. Compressional behavior of knitted fabrics exposed to repeated wash and wear cycles

    Directory of Open Access Journals (Sweden)

    Stanković Snežana B.

    2006-01-01

    Full Text Available The quality requirements of knitted fabrics nowadays have become highly demanding in terms of appearance and comfort properties. It is well known that yarns are subjected to tension, bending, torsion and compression during the wear and care of apparels. The appropriate selection of raw materials could be the way to reduce the deformation of knits caused by mechanical forces. Keeping in mind the fact that natural fibers and man-made fibers can significantly differ in respect to elastic properties, natural fiber and synthetic fiber knits were produced for the experiment. The experimental material included three different variants of knitted fabrics: 100% hemp knit, 100% PAC knit and hemp 50%/PAC 50% knit. The behavior of knitted fabrics during the relaxation of compression was investigated. In order to indicate the change of the compressional properties of knitted fabrics, the same investigation after undergoing repeated wash and wear cycles (during eight weeks was repeated. Although the structure of the tested samples was the same, there were differences in the compressional behavior of the knitted fabrics. It is obvious that the differences in the elastic properties of hemp and PAC fibers were projected into the knits. Compression curves were drawn in order to obtain an insight into the change of the compressional behavior of knitted fabrics during wear. These curves also enabled a comparative estimation of the compressional behavior of knits made of different yarn components. The surfaces proportional to the work of the compression for each of the cycles, as well as the work of compression between the first and the fifth cycles, of loading-unloading cycles were calculated. In order to compare the tested knitted fabrics, the hysteresis of compression was analyzed from the aspect of ability of elastic recovery. The change in compressional behavior of knits exposed to wear and care cycles was confirmed. However, analysis of the comparative

  14. PHYSICAL PROPERTIES OF ANTIBACTERIAL TREATED COTTON FABRICS AND EFFECT OF LAUNDRY CYCLE

    Directory of Open Access Journals (Sweden)

    PALAMUTCU Sema

    2014-05-01

    Full Text Available During daily usage of textiles, humidity and warmth conditions provide appropriate living conditions for bacteria and microorganisms in textile products. Bacteria growth, infection and cross infection by pathogens might develop due to usage of textile products. Especially since World War II, antibacterial textile products have developed as a result of the hygiene demand of the society. In this study, triclosan (sample A, quaternary ammonium plus triclosan (sample B, dichlorophenol (sample C, silver (sample D, quaternary ammonium (sample E and chitosan (sample F based six different antibacterial additives were applied on 100% cotton fabrics for antibacterial treatment. All six treated fabrics and the untreated fabric (control sample were washed for 40 cycles; the antibacterial efficacies were tested; changes in tear strength and Berger whiteness values of the samples were recorded prior to washing and after 1st, 5th, 10th, 20th and 40th washing cycles. Regarding all washing cycles, a decrease in tear strength results is observed between unwashed and 40 cycle washed samples. Textile materials such as bedlinen, pillow cases, surgeon gowns for which tear strength values are important and that have antibacterial treatments should be tested for tear strength values for different washing cycles to see if they meet minimum tear strength requirements. The change in tear strength and Berger whiteness of samples shows differences according to the antibacterial agent treated and washing cycle applied. Generally, slight decreases in tear strength values are observed. And slight decreases in whiteness, except for sample F which is treated with chitosan, are observed as well. Textile materials having antibacterial treatments should be tested for the special antibacterial agent they are treated and for the number of washing cycles that is required for their product life.

  15. Deposition Time and Thermal Cycles of Fabricating Thin-wall Steel Parts by Double Electrode GMAW Based Additive Manufacturing

    Directory of Open Access Journals (Sweden)

    Yang Dongqing

    2017-01-01

    Full Text Available The deposition time for fabricating the thin-wall part as well as the peak temperature of the substrate during the process was analyzed in the double electrode gas metal arc welding (DE-GMAW based additive manufacturing (AM. The total deposition time and the interlayer idle time of the manufacturing process decreased with the increasing of the bypass current under the same interlayer temperature and the same deposition rate. The thermal cycling curves illustrated that the peak temperature of the substrate was lower in the DE-GMAW base AM under the same conditions. When depositing the thin-wall parts, the DE-GMAW based AM can reduce the heat input to the substrate and improve the fabrication efficiency, compared with the GMAW based AM.

  16. Nuclear Fuel Cycle Options Catalog FY15 Improvements and Additions.

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Barela, Amanda Crystal [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Schetnan, Richard Reed [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Walkow, Walter M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2015 fiscal year.

  17. Study on the improvement of hydrophilic character on polyvinylalcohol treated polyester fabric

    OpenAIRE

    S. Pitchai; J. Jeyakodi Moses; Natarajan Swarna

    2014-01-01

    Polyester fabric was treated with polyvinyl alcohol in alkaline medium. The moisture regain, water retention and wettability of the PVA treated polyester fabric were tested. The PVA treated PET fabric was dyed with disperse dye. The presence of PVA in the treated PET fabric was assessed by spot test. The treated fabric was also characterized by scanning electron microscope, FTIR and differential scanning calorimetry. The PVA treated polyester fabric showed improved hydrophilic character over ...

  18. Development and fabrication of improved power transistor switches. [fabrication and manufacturing of semiconductor devices

    Science.gov (United States)

    Hower, P. L.; Chu, C. K.

    1976-01-01

    A new class of high-voltage power transistors has been achieved by adapting present interdigitated thyristor processing techniques to the fabrication of NPN Si transistors. Present devices are 2.3 cm in diameter. The electrical performance obtained is consistent with the predictions of an optimum design theory specifically developed for power switching transistors. The forward safe operating area of the experimental transistors shows a significant improvement over commercially available devices. The report describes device design, wafer processing, and various measurements which include dc characteristics, forward and reverse second breakdown limits, and switching times.

  19. Experiment on the improvement of OREOX process for fabrication of dry recycling nuclear fuel pellets

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woong Ki; Kim, S. S.; Park, G. I. [and others

    2004-01-01

    The OREOX(Oxidation and REduction of OXide fuel) process has been performed to fabricate dry recycling(DUPIC ; Direct Use of spent PWR fuel In CANDU reactor) nuclear fuel pellets by using spent PWR fuel. Generally, sinterable DUPIC powder has been manufactured from spent PWR fuel pellets by the 3 cycles of oxidation and reduction treatment. The OREOX process is one of the most important processes for DUPIC pellet fabrication. A lot of time more than 37 hours as well as a lot of reaction gas is required to perform 3 cycles of OREOX treatments. In this experiment, 1 cycle OREOX process was adopted to improve the powdering process of DUPIC pellet manufacturing processes. As a result of experiment, the densities of pellets sintered at 1800 .deg. C for 10 hours ranged from 10.15 to 10.22 g/cm{sup 3}(93.8{approx}94.5 % of T.D.). The pellets were sintered again to increase the sintered density. The sintered densities of pellets re-sintered at 1850 .deg. C for 7 hours ranged from 10.27 to 10.33 g/cm{sup 3}(94.9{approx} 95.5 % of T.D)

  20. Updated Life-Cycle Assessment of Aluminum Production and Semi-fabrication for the GREET Model

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Qiang [Argonne National Lab. (ANL), Argonne, IL (United States); Kelly, Jarod C. [Argonne National Lab. (ANL), Argonne, IL (United States); Burnham, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Elgowainy, Amgad [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    This report serves as an update for the life-cycle analysis (LCA) of aluminum production based on the most recent data representing the state-of-the-art of the industry in North America. The 2013 Aluminum Association (AA) LCA report on the environmental footprint of semifinished aluminum products in North America provides the basis for the update (The Aluminum Association, 2013). The scope of this study covers primary aluminum production, secondary aluminum production, as well as aluminum semi-fabrication processes including hot rolling, cold rolling, extrusion and shape casting. This report focuses on energy consumptions, material inputs and criteria air pollutant emissions for each process from the cradle-to-gate of aluminum, which starts from bauxite extraction, and ends with manufacturing of semi-fabricated aluminum products. The life-cycle inventory (LCI) tables compiled are to be incorporated into the vehicle cycle model of Argonne National Laboratory’s Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model for the release of its 2015 version.

  1. Study on the improvement of hydrophilic character on polyvinylalcohol treated polyester fabric

    Directory of Open Access Journals (Sweden)

    S. Pitchai

    2014-12-01

    Full Text Available Polyester fabric was treated with polyvinyl alcohol in alkaline medium. The moisture regain, water retention and wettability of the PVA treated polyester fabric were tested. The PVA treated PET fabric was dyed with disperse dye. The presence of PVA in the treated PET fabric was assessed by spot test. The treated fabric was also characterized by scanning electron microscope, FTIR and differential scanning calorimetry. The PVA treated polyester fabric showed improved hydrophilic character over intact and sodium hydroxide treated PET fabrics.

  2. Improved flexibility with grayscale fabrication of calcium fluoride homogenizers

    Science.gov (United States)

    Brown, Jeremiah; Brakhage, Peter; Simmons, Lamarr; Mueller, Ralf

    2012-03-01

    High quality and highly uniform illumination is a critical component for advanced lithography systems and wafer inspection tools. Homogenizer elements fabricated in calcium fluoride have demonstrated good performance for deep UV applications. Grayscale photolithography allows for the fabrication of single-sided micro lens array (MLA) elements with excellent optical performance. The MLA offers some significant advantages over crossed cylinders fabricated using grayscale photolithography processes, including the reduction in the number of fabrication steps and the added flexibility of manufacturing noncylindrical surface geometries. This research presentation reviews the fabrication process and compares grayscale crossed cylindrical arrays and MLAs in terms of their capabilities and performance.

  3. Facile fabrication of cobalt oxalate nanostructures with superior specific capacitance and super-long cycling stability

    Science.gov (United States)

    Cheng, Guanhua; Si, Conghui; Zhang, Jie; Wang, Ying; Yang, Wanfeng; Dong, Chaoqun; Zhang, Zhonghua

    2016-04-01

    Transition metal oxalate materials have shown huge competitive advantages for applications in supercapacitors. Herein, nanostructured cobalt oxalate supported on cobalt foils has been facilely fabricated by anodization, and could directly serve as additive/binder-free electrodes for supercapacitors. The as-prepared cobalt oxalate electrodes present superior specific capacitance of 1269 F g-1 at the current density of 6 A g-1 in the galvanostatic charge/discharge test. Moreover, the retained capacitance is as high as 87.2% as the current density increases from 6 A g-1 to 30 A g-1. More importantly, the specific capacitance of cobalt oxalate retains 91.9% even after super-long cycling of 100,000 cycles. In addition, an asymmetric supercapacitor assembled with cobalt oxalate (positive electrode) and activated carbon (negative electrode) demonstrates excellent capacitive performance with high energy density and power density.

  4. Fabrication of titania inverse opals by multi-cycle dip-infiltration for optical sensing

    Science.gov (United States)

    Chiang, Chun-Chen; Tuyen, Le Dac; Ren, Ching-Rung; Chau, Lai-Kwan; Wu, Cheng Yi; Huang, Ping-Ji; Hsu, Chia Chen

    2016-04-01

    We have demonstrated a low-cost method to fabricate TiO2 inverse opal photonic crystals with high refractive index skeleton. The TiO2 inverse opal films were fabricated from a polystyrene opal template by multi-cycle dip-infiltration-coating method. The properties of the TiO2 inverse opal films were characterized by scanning electron microscopy and Bragg reflection spectroscopy. The reflection spectroscopic measurements of the TiO2 inverse opal films were compared with theories of photonic band calculations and Bragg law. The agreement between experiment and theory indicates that we can precisely predict the refractive index of the infiltrated liquid sample in the TiO2 inverse opal films from the measurement results. The red-shift of the peak wavelength in the Bragg reflection spectra for both alcohol mixtures and aqueous sucrose solutions of increasing refractive index was observed and respective refractive index sensitivities of 296 and 286 nm/RIU (refractive index unit) were achieved. As the fabrication of the TiO2 inverse opal films and reflection spectroscopic measurement are fairly easy, the TiO2 inverse opal films have potential applications in optical sensing.

  5. Electrochromic Windows: Process and Fabrication Improvements for Lower Total Costs

    Energy Technology Data Exchange (ETDEWEB)

    Mark Burdis; Neil Sbar

    2007-03-31

    The overall goal with respect to the U.S. Department of Energy (DOE) is to achieve significant national energy savings through maximized penetration of EC windows into existing markets so that the largest cumulative energy reduction can be realized. The speed with which EC windows can be introduced and replace current IGU's (and current glazings) is clearly a strong function of cost. Therefore, the aim of this project was to investigate possible improvements to the SageGlass{reg_sign} EC glazing products to facilitate both process and fabrication improvements resulting in lower overall costs. The project was split into four major areas dealing with improvements to the electrochromic layer, the capping layer, defect elimination and general product improvements. Significant advancements have been made in each of the four areas. These can be summarized as follows: (1) Plasma assisted deposition for the electrochromic layer was pursued, and several improvements made to the technology for producing a plasma beam were made. Functional EC devices were produced using the new technology, but there are still questions to be answered regarding the intrinsic properties of the electrochromic films produced by this method. (2) The capping layer work was successfully implemented into the existing SageGlass{reg_sign} product, thereby providing a higher level of transparency and somewhat lower reflectivity than the 'standard' product. (3) Defect elimination is an ongoing effort, but this project spurred some major defect reduction programs, which led to significant improvements in yield, with all the implicit benefits afforded. In particular, major advances were made in the development of a new bus bar application process aimed at reducing the numbers of 'shorts' developed in the finished product, as well as making dramatic improvements in the methods used for tempering the glass, which had previously been seen to produce a defect which appeared as a

  6. Improved Design and Fabrication of Hydrated-Salt Pills

    Science.gov (United States)

    Shirron, Peter J.; DiPirro, Michael J.; Canavan, Edgar R.

    2011-01-01

    A high-performance design, and fabrication and growth processes to implement the design, have been devised for encapsulating a hydrated salt in a container that both protects the salt and provides thermal conductance between the salt and the environment surrounding the container. The unitary salt/container structure is known in the art as a salt pill. In the original application of the present design and processes, the salt is, more specifically, a hydrated paramagnetic salt, for use as a refrigerant in a very-low-temperature adiabatic demagnetization refrigerator (ADR). The design and process can also be applied, with modifications, to other hydrated salts. Hydrated paramagnetic salts have long been used in ADRs because they have the desired magnetic properties at low temperatures. They also have some properties, disadvantageous for ADRs, that dictate the kind of enclosures in which they must be housed: Being hydrated, they lose water if exposed to less than 100-percent relative humidity. Because any dehydration compromises their magnetic properties, salts used in ADRs must be sealed in hermetic containers. Because they have relatively poor thermal conductivities in the temperature range of interest (<0.1 K), integral thermal buses are needed as means of efficiently transferring heat to and from the salts during refrigeration cycles. A thermal bus is typically made from a high-thermal-conductivity met al (such as copper or gold), and the salt is configured to make intimate thermal contact with the metal. Commonly in current practice (and in the present design), the thermal bus includes a matrix of wires or rods, and the salt is grown onto this matrix. The density and spacing of the conductors depend on the heat fluxes that must be accommodated during operation.

  7. Quality improvement cycles that reduced waiting times at Tshwane ...

    African Journals Online (AJOL)

    TDH is a level-one hospital, delivering services in the centre of Pretoria since February 2006. ... finding better ways to provide better care and service.11 The QI cycle is a recognised tool for analysing and improving the efficiency and quality ..... in reducing waiting times and improving patient satisfaction.14 The need for ...

  8. Non toxic additives for improved fabric filter performance

    Energy Technology Data Exchange (ETDEWEB)

    Bustard, C.J.; Baldrey, K.E.; Ebner, T.G. [ADA Technologies, Inc., Englewood, CO (United States)] [and others

    1995-11-01

    The overall objective of this three-phase Small Business innovative Research (SBIR) program funded by the Department of Energy pittsburgh Energy Technology Center (PETC) is to commercialize a technology based upon the use of non-toxic, novel flue gas conditioning agents to improve particulate air toxic control and overall fabric filter performance. The ultimate objective of the Phase II program currently in progress is to demonstrate that the candidate additives are successful at full-scale on flue gas from a coal-fired utility boiler. This paper covers bench-scale field tests conducted during the period February through May, 1995. The bench-scale additives testing was conducted on a flue gas slipstream taken upstream of the existing particulate control device at a utility power plant firing a Texas lignite coal. These tests were preceded by extensive testing with additives in the laboratory using a simulated flue gas stream and re-dispersed flyash from the same power plant. The bench-scale field testing was undertaken to demonstrate the performance with actual flue gas of the bet candidate additives previously identified in the laboratory. Results from the bench-scale tests will be used to establish operating parameters for a larger-scale demonstration on either a single baghouse compartment or a full baghouse at the same site.

  9. A New, Highly Improved Two-Cycle Engine

    Science.gov (United States)

    Wiesen, Bernard

    2008-01-01

    The figure presents a cross-sectional view of a supercharged, variable-compression, two-cycle, internal-combustion engine that offers significant advantages over prior such engines. The improvements are embodied in a combination of design changes that contribute synergistically to improvements in performance and economy. Although the combination of design changes and the principles underlying them are complex, one of the main effects of the changes on the overall engine design is reduced (relative to prior two-cycle designs) mechanical complexity, which translates directly to reduced manufacturing cost and increased reliability. Other benefits include increases in the efficiency of both scavenging and supercharging. The improvements retain the simplicity and other advantages of two-cycle engines while affording increases in volumetric efficiency and performance across a wide range of operating conditions that, heretofore have been accessible to four-cycle engines but not to conventionally scavenged two-cycle ones, thereby increasing the range of usefulness of the two-cycle engine into all areas now dominated by the four-cycle engine. The design changes and benefits are too numerous to describe here in detail, but it is possible to summarize the major improvements: Reciprocating Shuttle Inlet Valve The entire reciprocating shuttle inlet valve and its operating gear is constructed as a single member. The shuttle valve is actuated in a lost-motion arrangement in which, at the ends of its stroke, projections on the shuttle valve come to rest against abutments at the ends of grooves in a piston skirt. This shuttle-valve design obviates the customary complex valve mechanism, actuated from an engine crankshaft or camshaft, yet it is effective with every type of two-cycle engine, from small high-speed single cylinder model engines, to large low-speed multiple cylinder engines.

  10. Improvements in the fabrication of HTR fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Braehler, Georg, E-mail: georg.braehler@nukemtechnologies.de [NUKEM Technologies GmbH, Industriestrasse 13, 63755 Alzenau (Germany); Hartung, Markus [NUKEM Technologies GmbH, Industriestrasse 13, 63755 Alzenau (Germany); Fachinger, Johannes; Grosse, Karl-Heinz [FNAG Furnaces Nuclear Applications Grenoble S.A.S., Wilhelm-Rohn Strasse 35, 63450 Hanau (Germany); Seemann, Richard [ALD Vacuum Technologies GmbH, Wilhelm-Rohn Strasse 35, 63450 Hanau (Germany)

    2012-10-15

    The application of High Temperature Reactor (HTR) Technology in the course of the continuously increasing world wide demand on energy is taken more and more under serious consideration in the power supply strategy of various countries. Especially for the emerging nations the HTR Technology has become of special interest because of its inherent safety feature and due to the alternative possibilities of applications, e.g. in the production of liquid hydrocarbons or the alternative application in H{sub 2} generation. The HTR fuel in its various forms (spheres or prismatic fuel blocks) is based on small fuel kernels of about 500 {mu}m in diameter. Each of these uranium oxide or carbide kernels are coated with several layers of pyrocarbon (PyC) as well as an additional silicon carbide (SiC) layer. While the inner pyrocarbon layer is porous and capable to absorb gaseous fission products, the dense outer PyC layer forms the barrier against fission product release. The SiC layer improves the mechanical strengths of this barrier and considerably increases the retention capacity for solid fission products that tent to diffuse at these temperatures. Especially the high quality German LEU TRISO spherical fuel based on the NUKEM design, has demonstrated the best fission product release rate, particular at high temperatures. The {approx}10% enriched uranium triple-coated particles are embedded in a moulded graphite sphere. A fuel sphere consists of approximately 9 g of uranium (some 15,000 particles) and has a diameter of 60 mm. As the unique safety features, especially the inherent safety of the HTR is based on the fuel design, this paper shall reflect the complexity but also developments and economical aspects of the fabrication processes for HTR fuel elements.

  11. Improvement of the cascading closed loop cycle system

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guoqiang; CAI Ruixian

    2007-01-01

    Aspen Plus was used to simulate and get more information about the cascading closed loop cycle (CCLC)system [1-3].Following evaluation of the variable temperature heat source (e.g.gas turbine flue gas) utilized by the CCLC,both qualitative and quantitive comparisons between the system and simple steam Rankine cycle,were made.The results indicate that CCLC has the advantage in recuperating exergy from flue gas,but it cannot sufficiently convert the recuperated exergy to useful work.To improve the utilization of low temperature flue gas heat,the properties and parameters of the working substance must match conditions of the low temperature heat source.A better cycle scheme and pressure distribution was proposed to raise the efficiency of the CCLC.In addition,the multifunction system concept was introduced to improve the performance of CCLC with solar energy.

  12. High-intensity cycle interval training improves cycling and running performance in triathletes.

    Science.gov (United States)

    Etxebarria, Naroa; Anson, Judith M; Pyne, David B; Ferguson, Richard A

    2014-01-01

    Effective cycle training for triathlon is a challenge for coaches. We compared the effects of two variants of cycle high-intensity interval training (HIT) on triathlon-specific cycling and running. Fourteen moderately-trained male triathletes ([Formula: see text]O2peak 58.7 ± 8.1 mL kg(-1) min(-1); mean ± SD) completed on separate occasions a maximal incremental test ([Formula: see text]O2peak and maximal aerobic power), 16 × 20 s cycle sprints and a 1-h triathlon-specific cycle followed immediately by a 5 km run time trial. Participants were then pair-matched and assigned randomly to either a long high-intensity interval training (LONG) (6-8 × 5 min efforts) or short high-intensity interval training (SHORT) (9-11 × 10, 20 and 40 s efforts) HIT cycle training intervention. Six training sessions were completed over 3 weeks before participants repeated the baseline testing. Both groups had an ∼7% increase in [Formula: see text]O2peak (SHORT 7.3%, ±4.6%; mean, ±90% confidence limits; LONG 7.5%, ±1.7%). There was a moderate improvement in mean power for both the SHORT (10.3%, ±4.4%) and LONG (10.7%, ±6.8%) groups during the last eight 20-s sprints. There was a small to moderate decrease in heart rate, blood lactate and perceived exertion in both groups during the 1-h triathlon-specific cycling but only the LONG group had a substantial decrease in the subsequent 5-km run time (64, ±59 s). Moderately-trained triathletes should use both short and long high-intensity intervals to improve cycling physiology and performance. Longer 5-min intervals on the bike are more likely to benefit 5 km running performance.

  13. Innovative predictive maintenance concepts to improve life cycle management

    NARCIS (Netherlands)

    Tinga, T.

    2014-01-01

    For naval systems with typically long service lives, high sustainment costs and strict availability requirements, an effective and efficient life cycle management process is very important. In this paper four approaches are discussed to improve that process: physics of failure based predictive maint

  14. Exploring Wind Power: Improving Mathematical Thinking through Digital Fabrication

    Science.gov (United States)

    Tillman, Daniel A.; An, Song A.; Cohen, Jonathan D.; Kjellstrom, William; Boren, Rachel L.

    2014-01-01

    This mixed methods study examined the impacts of digital fabrication activities that were integrated into contextualized mathematics education. The study investigated the students' mathematics content knowledge and attitudes. Data analysis yielded two key findings regarding our intervention combined with the other mathematics activities resulted…

  15. Exploring Wind Power: Improving Mathematical Thinking through Digital Fabrication

    Science.gov (United States)

    Tillman, Daniel A.; An, Song A.; Cohen, Jonathan D.; Kjellstrom, William; Boren, Rachel L.

    2014-01-01

    This mixed methods study examined the impacts of digital fabrication activities that were integrated into contextualized mathematics education. The study investigated the students' mathematics content knowledge and attitudes. Data analysis yielded two key findings regarding our intervention combined with the other mathematics activities resulted…

  16. Chronic eccentric cycling improves quadriceps muscle structure and maximum cycling power.

    Science.gov (United States)

    Leong, C H; McDermott, W J; Elmer, S J; Martin, J C

    2014-06-01

    An interesting finding from eccentric exercise training interventions is the presence of muscle hypertrophy without changes in maximum concentric strength and/or power. The lack of improvements in concentric strength and/or power could be due to long lasting suppressive effects on muscle force production following eccentric training. Thus, improvements in concentric strength and/or power might not be detected until muscle tissue has recovered (e. g., several weeks post-training). We evaluated alterations in muscular structure (rectus-femoris, RF, and vastus lateralis, VL, thickness and pennation angles) and maximum concentric cycling power (Pmax) 1-week following 8-weeks of eccentric cycling training (2×/week; 5-10.5 min; 20-55% of Pmax). Pmax was assessed again at 8-weeks post-training. At 1 week post-training, RF and VL thickness increased by 24±4% and 13±2%, respectively, and RF and VL pennation angles increased by 31±4% and 13±1%, respectively (all Peccentric cycling can be a time-effective intervention for improving muscular structure and function in the lower body of healthy individuals. The larger Pmax increase detected at 8-weeks post-training implies that sufficient recovery might be necessary to fully detect changes in muscular power after eccentric cycling training.

  17. Strength training improves cycling efficiency in master endurance athletes.

    Science.gov (United States)

    Louis, Julien; Hausswirth, Christophe; Easthope, Christopher; Brisswalter, Jeanick

    2012-02-01

    The purpose of this study was to test the effect of a 3-week strength training program of knee extensor muscles on cycling delta efficiency in master endurance athletes. Nine master (age 51.5 ± 5.5 years) and 8 young (age 25.6 ± 5.9 years) endurance athletes with similar training levels participated in this study. During three consecutive weeks, all the subjects were engaged in a strength training program of the knee extensor muscles. Every week, they performed three training sessions consist of 10 × 10 knee extensions at 70% of maximal repetition with 3 min rest between in a leg extension apparatus. Maximal voluntary contraction torque (MVC torque) and force endurance (End) were assessed before, after every completed week of training, and after the program. Delta efficiency (DE) in cycling was evaluated before and after the training period. Before the training period, MVC torque, End, and DE in cycling were significantly lower in masters than in young. The strength training induced a significant improvement in MVC torque in all the subjects, more pronounced in masters (+17.8% in masters vs. +5.9% in young, P < 0.05). DE in cycling also significantly increased after training in masters, whereas it was only a trend in young. A significant correlation (r = 0.79, P < 0.01) was observed between MVC torque and DE in cycling in masters. The addition of a strength training program for the knee extensor muscles to endurance-only training induced a significant improvement in strength and cycling efficiency in master athletes. This enhancement in muscle performance alleviated all the age-related differences in strength and efficiency.

  18. Improving Life-Cycle Cost Management of Spacecraft Missions

    Science.gov (United States)

    Clardy, Dennon

    2010-01-01

    This presentation will explore the results of a recent NASA Life-Cycle Cost study and how project managers can use the findings and recommendations to improve planning and coordination early in the formulation cycle and avoid common pitfalls resulting in cost overruns. The typical NASA space science mission will exceed both the initial estimated and the confirmed life-cycle costs by the end of the mission. In a fixed-budget environment, these overruns translate to delays in starting or launching future missions, or in the worst case can lead to cancelled missions. Some of these overruns are due to issues outside the control of the project; others are due to the unpredictable problems (unknown unknowns) that can affect any development project. However, a recent study of life-cycle cost growth by the Discovery and New Frontiers Program Office identified a number of areas that are within the scope of project management to address. The study also found that the majority of the underlying causes for cost overruns are embedded in the project approach during the formulation and early design phases, but the actual impacts typically are not experienced until late in the project life cycle. Thus, project management focus in key areas such as integrated schedule development, management structure and contractor communications processes, heritage and technology assumptions, and operations planning, can be used to validate initial cost assumptions and set in place management processes to avoid the common pitfalls resulting in cost overruns.

  19. Fabrication

    Directory of Open Access Journals (Sweden)

    E.M.S. Azzam

    2013-12-01

    Full Text Available In the present work, the nanoclay composites were fabricated using the synthesized poly 6-(3-aminophenoxy hexane-1-thiol, poly 8-(3-aminophenoxy octane-1-thiol and poly 10-(3-aminophenoxy decane-1-thiol surfactants with gold nanoparticles. The polymeric thiol surfactants were first assembled on gold nanoparticles and then impregnated into the clay matrix. Different spectroscopic and microscopic techniques such as X-ray diffraction (XRD, Scanning electron microscope (SEM and Transmission microscope (TEM were used to characterize the fabricated nanoclay composites. The results showed that the polymeric thiol surfactants assembled on gold nanoparticles are located in the interlayer space of the clay mineral and affected the clay structure.

  20. Direction of Improvement for Licensing Advanced Fuel Cycle Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Il; Yook, Dae Sik; Jeong, Seung Yeong; Jeong, Chan Woo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-05-15

    The final spent fuel management method has yet to be established, and the South Korean government is expected to decide on the final spent fuel management method under a national consensus. In particular, two methods of spent fuel management are under consideration: Direct disposal in base rock several hundred meters underground and recycling. The present study reviewed the direction of improvement of the regulatory system that can be applied when an advanced fuel cycle for recycling spent fuel is adopted as the final management method. For recycling to be adopted as the domestic final spent fuel management method, there remains the task of having to overcome the stumbling blocks of a national consensus and the Agreement for Cooperation between the Government of the Republic of Korea and the Government of the United States of America concerning the Civil Use of Atomic Energy (Korea-US Atomic Energy Agreement). To resolve this and to construct and operate advanced fuel cycle facilities, it is necessary to establish an applicable legal system, which the present study reviewed. The results of the present study are expected to be used as the basic data in improving the legal system after the realization of advanced fuel cycles in the future. In addition, research on the development of technical standards and safety requirements for advanced fuel cycle facilities will continue to be necessary.

  1. Improvement of fabrication and characterization methods for micromechanical disk resonators

    Institute of Scientific and Technical Information of China (English)

    Zhao Hui; Luo Wei; Zheng Hai-Yang; Yang Jin-Ling; Yang Fu-Hua

    2012-01-01

    In this paper we present a novel method to fabricate reliable micro-electro-mechanical system (MEMS) disk resonators with high yield and good performance.The key breakthrough in the fabrication process is a novel approach to effectively restraining electro-chemical corrosion of polycrystalline silicon (polysilicon) electrically coupled with noble metals of MEMS devices by hydrofluoric acid (HF)-based solutions.In addition,a measurement architecture based on a differential readout topology is demonstrated.The differential circuit proposed here can effectively suppress noise and feed-through current by common-mode rejection of the differential amplifier. This differential amplifier circuit configuration is also used to build up a notch filter.The preliminary result about the temperature dependence of the resonance frequency is discussed,and the device failure is analysed.

  2. Electrochemical capacitor improvement fabricated by carbon microfiber composite with admicellar-modified carbon nanotube

    Science.gov (United States)

    Pongprayoon, Thirawudh; Ayutthaya, Montira Seneewong-Na; Poochai, Chatwarin

    2017-02-01

    Conventional electrochemical capacitors are usually made from activated carbon microfiber electrode, which has relatively low electrochemical capacitance. To improve performance of electrochemical capacitor, carbon nanotube (CNT) was used to incorporate in carbon microfiber. Firstly, CNT was coated with ultra-thin polyacrylonitrile (PAN) film coating using the admicellar polymerization technique to improve its dispersion in PAN matrix. Secondly, the mix solution of admicellar-modified CNT (Ad-CNT) and PAN in N,N-dimethylformamide (DMF) was prepared to produce microfiber by electrospinning. Lastly, microfiber was collected as a sheet, which was then stabilized and carbonized to be used as an electrode. The fabricated electrode using Ad-CNT/PAN was analyzed by SEM and TEM. SEM images show that the microfiber was uniform with approximately 2 μm average diameter. TEM images display well alignment and good dispersion of Ad-CNT in the matrix. The electrode made from Ad-CNT/PAN exhibited a high specific capacitance of 125 F g-1 at a scan rate of 3 mV s-1 (based on cyclic voltammetry) and 82 F g-1 at a specific current of 1 A g-1 (based on galvanostatic charge/discharge). The percentage of relative specific capacitance retention of the prepared electrode was 70% after 1000 cycles. The results clearly show that the Ad-CNT played an effective role in improving dispersion in electrode leading to increase in electrical conductivity as well as electrical capacitance of the capacitor.

  3. Energetic and exergetic Improvement of geothermal single flash cycle

    Directory of Open Access Journals (Sweden)

    Navid Nazari

    2016-08-01

    Full Text Available This paper presents a detailed analysis of a new method for improving energetic and exergetic efficiencies of single flash cycle. The thermodynamic process of the new method consists of extracting a fraction of hot wellhead geothermal brine for the purpose of superheating saturated steam entering the turbine. Computer programming scripts were developed and optimized based on mathematical proposed models for the different components of the systems. The operating parameters such as separator temperature, geofluid wellhead enthalpy and geothermal source temperature are varied to investigate their effects on both net power output and turbine exhaust quality of the systems. Also, full exergy assessment was performed for the new design. The results of separator temperature optimization revealed that specific net power output of the new design can be boosted up to 8% and turbine exhaust quality can be diminished up to 50% as compared to common single flash cycle. In addition, for wells with higher discharge enthalpy, superheating process improve specific net power output even up to 10%. Finally, it was observed that the overall system exergy efficiency was approximately raised 3%. Article History: Received January 5th 2016; Received in revised form June 25th 2016; Accepted July 3rd 2016; Available online How to Cite This Article: Nazari, N. and Porkhial, S. (2016. Energetic and Exergetic Improvement of Geothermal Single Flash Cycle. Int. Journal of Renewable Energy Development, 5(2,129-138. http://dx.doi.org/10.14710/ijred.5.2.129-138 

  4. Development and fabrication of improved power transistor switches

    Science.gov (United States)

    Hower, P. L.; Chu, C. K.

    1979-01-01

    A new class of high-voltage power transistors was achieved by adapting present interdigitated thyristor processing techniques to the fabrication of npn Si transistors. Present devices are 2.3 cm in diameter and have V sub CEO (sus) in the range of 400 to 600V. V sub CEO (sus) = 450V devices were made with an (h sub FE)(I sub C) product of 900A at V sub CE = 2.5V. The electrical performance obtained was consistent with the predictions of an optimum design theory specifically developed for power switching transistors. The device design, wafer processing, and assembly techniques are described. Experimental measurements of the dc characteristics, forward SOA, and switching times are included. A new method of characterizing the switching performance of power transistors is proposed.

  5. IMPROVING KNITTED FABRICS BY A STATISTICAL CONTROL OF DIMENSIONAL CHANGES AFTER THE DYEING PROCESS

    Directory of Open Access Journals (Sweden)

    LLINARES-BERENGUER Jorge

    2017-05-01

    Full Text Available One of the most important problems that cotton knitted fabrics present during the manufacturing process is their dimensional instability, which needs to be minimised. Some of the variables that intervene in fabric shrinkage are related with its structural characteristics, use of fiber when producing yarn, the yarn count used or the dyeing process employed. Conducted under real factory conditions, the present study attempted to model the behaviour of a fabric structure after a dyeing process by contributing several algorithms that calculate dyed fabric stability after the first wash cycle. Small-diameter circular machines are used to produce garments with no side seams. This is the reason why a list of machines that produce the same fabrics for different widths needs to be made available to produce all the sizes of a given garment. Two relaxation states were distingued for interlock fabric: dyed and dry relaxation, and dyed and wash relaxation. The linear density of the yarn employed to produce sample fabric was combed cotton Ne 30. The machines used for optic bleaching were Overflow. To obtain knitting structures with optimum dimensional stability, different statistical tools were used to help us to evaluate all the production process variables (raw material, machines and process responsible for this variation. This allowed to guarantee product quality without creating costs and losses.

  6. Micro solid oxide fuel cell fabricated on porous stainless steel: a new strategy for enhanced thermal cycling ability

    Science.gov (United States)

    Kim, Kun Joong; Park, Byung Hyun; Kim, Sun Jae; Lee, Younki; Bae, Hongyeul; Choi, Gyeong Man

    2016-03-01

    Miniaturized solid oxide fuel cells (micro-SOFCs) are being extensively studied as a promising alternative to Li batteries for next generation portable power. A new micro-SOFC is designed and fabricated which shows enhanced thermal robustness by employing oxide-based thin-film electrode and porous stainless steel (STS) substrate. To deposit gas-tight thin-film electrolyte on STS, nano-porous composite oxide is proposed and applied as a new contact layer on STS. The micro-SOFC fabricated on composite oxide- STS dual layer substrate shows the peak power density of 560 mW cm-2 at 550 °C and maintains this power density during rapid thermal cycles. This cell may be suitable for portable electronic device that requires high power-density and fast thermal cycling.

  7. Improving long term outcomes in urea cycle disorders-report from the Urea Cycle Disorders Consortium.

    Science.gov (United States)

    Waisbren, Susan E; Gropman, Andrea L; Batshaw, Mark L

    2016-07-01

    The Urea Cycle Disorders Consortium (UCDC) has conducted, beginning in 2006, a longitudinal study (LS) of eight enzyme deficiencies/transporter defects associated with the urea cycle. These include N-acetylglutamate synthase deficiency (NAGSD); Carbamyl phosphate synthetase 1 deficiency (CPS1D); Ornithine transcarbamylase deficiency (OTCD); Argininosuccinate synthetase deficiency (ASSD) (Citrullinemia); Argininosuccinate lyase deficiency (ASLD) (Argininosuccinic aciduria); Arginase deficiency (ARGD, Argininemia); Hyperornithinemia, hyperammonemia, homocitrullinuria (HHH) syndrome (or mitochondrial ornithine transporter 1 deficiency [ORNT1D]); and Citrullinemia type II (mitochondrial aspartate/glutamate carrier deficiency [CITRIN]). There were 678 UCD patients enrolled in 14 sites in the U.S., Canada, and Europe at the writing of this paper. This review summarizes findings of the consortium related to outcome, focusing primarily on neuroimaging findings and neurocognitive function. Neuroimaging studies in late onset OTCD offered evidence that brain injury caused by biochemical dysregulation may impact functional neuroanatomy serving working memory processes, an important component of executive function and regulation. Additionally, there were alteration in white mater microstructure and functional connectivity at rest. Intellectual deficits in OTCD and other urea cycle disorders (UCD) vary. However, when neuropsychological deficits occur, they tend to be more prominent in motor/performance areas on both intelligence tests and other measures. In some disorders, adults performed significantly less well than younger patients. Further longitudinal follow-up will reveal whether this is due to declines throughout life or to improvements in diagnostics (especially newborn screening) and treatments in the younger generation of patients.

  8. Development of a pressure gain combustor for improved cycle efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Gemmen, R.S.; Richards, G.A.; Janus, M.C.

    1994-09-01

    This paper presents results from an experimental research program attempting to improve the thermodynamic efficiencies of gas-turbine combustors. An elementary thermodynamic analysis shows that the thermodynamic cycle efficiencies of gas turbines can be significantly improved by using unsteady combustion that achieves quasi-constant-volume combustion. The ability to produce the so-called pressure gain via this process has already been demonstrated by others for pressures less than 3 atmospheres. This paper presents experimental results for pressures up to 11 atmospheres, compares certain process parameters to a numerical simulation, and briefly examines the problem of scale-up. Results of pollutant measurements over the 2--11 atmospheric range of operation are also included.

  9. Combined glucose ingestion and mouth rinsing improves sprint cycling performance.

    Science.gov (United States)

    Chong, Edwin; Guelfi, Kym J; Fournier, Paul A

    2014-12-01

    This study investigated whether combined ingestion and mouth rinsing with a carbohydrate solution could improve maximal sprint cycling performance. Twelve competitive male cyclists ingested 100 ml of one of the following solutions 20 min before exercise in a randomized double-blinded counterbalanced order (a) 10% glucose solution, (b) 0.05% aspartame solution, (c) 9.0% maltodextrin solution, or (d) water as a control. Fifteen min after ingestion, repeated mouth rinsing was carried out with 11 × 15 ml bolus doses of the same solution at 30-s intervals. Each participant then performed a 45-s maximal sprint effort on a cycle ergometer. Peak power output was significantly higher in response to the glucose trial (1188 ± 166 W) compared with the water (1036 ± 177 W), aspartame (1088 ± 128 W) and maltodextrin (1024 ± 202 W) trials by 14.7 ± 10.6, 9.2 ± 4.6 and 16.0 ± 6.0% respectively (p sprint was significantly higher in the glucose trial compared with maltodextrin (p sprinting did not differ significantly between treatments (p > .05). These findings suggest that combining the ingestion of glucose with glucose mouth rinsing improves maximal sprint performance. This ergogenic effect is unlikely to be related to changes in blood glucose, sweetness, or energy sensing mechanisms in the gastrointestinal tract.

  10. Process improvement by cycle time reduction through Lean Methodology

    Science.gov (United States)

    Siva, R.; patan, Mahamed naveed khan; lakshmi pavan kumar, Mane; Purusothaman, M.; pitchai, S. Antony; Jegathish, Y.

    2017-05-01

    In present world, every customer needs their products to get on time with good quality. Presently every industry is striving to satisfy their customer requirements. An aviation concern trying to accomplish continuous improvement in all its projects. In this project the maintenance service for the customer is analyzed. The maintenance part service is split up into four levels. Out of it, three levels are done in service shops and the fourth level falls under customer’s privilege to change the parts in their aircraft engines at their location. An enhancement for electronics initial provisioning (eIP) is done for fourth level. Customers request service shops to get their requirements through Recommended Spare Parts List (RSPL) by eIP. To complete this RSPL for one customer, it takes 61.5 hours as a cycle time which is very high. By mapping current state VSM and takt time, future state improvement can be done in order to reduce cycle time using Lean tools such as Poke-Yoke, Jidoka, 5S, Muda etc.,

  11. Maximal strength training improves cycling economy in competitive cyclists.

    Science.gov (United States)

    Sunde, Arnstein; Støren, Oyvind; Bjerkaas, Marius; Larsen, Morten H; Hoff, Jan; Helgerud, Jan

    2010-08-01

    The purpose of the present study was to investigate the effect of maximal strength training on cycling economy (CE) at 70% of maximal oxygen consumption (Vo2max), work efficiency in cycling at 70% Vo2max, and time to exhaustion at maximal aerobic power. Responses in 1 repetition maximum (1RM) and rate of force development (RFD) in half-squats, Vo2max, CE, work efficiency, and time to exhaustion at maximal aerobic power were examined. Sixteen competitive road cyclists (12 men and 4 women) were randomly assigned into either an intervention or a control group. Thirteen (10 men and 3 women) cyclists completed the study. The intervention group (7 men and 1 woman) performed half-squats, 4 sets of 4 repetitions maximum, 3 times per week for 8 weeks, as a supplement to their normal endurance training. The control group continued their normal endurance training during the same period. The intervention manifested significant (p < 0.05) improvements in 1RM (14.2%), RFD (16.7%), CE (4.8%), work efficiency (4.7%), and time to exhaustion at pre-intervention maximal aerobic power (17.2%). No changes were found in Vo2max or body weight. The control group exhibited an improvement in work efficiency (1.4%), but this improvement was significantly (p < 0.05) smaller than that in the intervention group. No changes from pre- to postvalues in any of the other parameters were apparent in the control group. In conclusion, maximal strength training for 8 weeks improved CE and efficiency and increased time to exhaustion at maximal aerobic power among competitive road cyclists, without change in maximal oxygen uptake, cadence, or body weight. Based on the results from the present study, we advise cyclists to include maximal strength training in their training programs.

  12. Improvements in ICF target fabrication through high precision assembly and nondestructive characterization

    Energy Technology Data Exchange (ETDEWEB)

    Obrey, Kimberly Ann Defriend [Los Alamos National Laboratory; Schmidt, Derek W [Los Alamos National Laboratory; Patterson, Brian M [Los Alamos National Laboratory; Day, Robert D [Los Alamos National Laboratory; Valdez, Adelaida C [Los Alamos National Laboratory; Capelli, Deanna [Los Alamos National Laboratory; Perea, Ron [Los Alamos National Laboratory; Randolph, Blaine [Los Alamos National Laboratory; Hatch, Doug [Los Alamos National Laboratory; Garcia, Felix [Los Alamos National Laboratory; Honnell, Diana [Los Alamos National Laboratory

    2009-01-01

    Current ICF and HED targets are fielded on Omega, Z, and Trident, and future campaigns will be fielded on NIF. NIF will only field less than 2 shots per day. With such few experiments, target fabrication and target alignment accuracy, enhanced metrology and advanced component machining will be even more important. Future target designs are also becoming more complex and more stringent in terms of accuracy. Several steps have been taken to improve the fabrication and characterization of targets, such as instituting an automated assembly station with 3 mm tolerances, utilizing nondestructive characterization tools for rapid component metrology and target assembly, and advancing machining capabilities. Recapitalization of target fabrication infrastructure is continuous.

  13. Building effectiveness communication ratios for improved building life cycle management

    Energy Technology Data Exchange (ETDEWEB)

    Morrissey, E.; Keane, M.; McCarthy, J. [Ireland National Univ., Cork (Ireland). IRUSE; O' Donnell, J. [Lawrence Berkely National Laboratory, Berkeley, CA (United States)]|[Ireland National Univ., Cork (Ireland). IRUSE

    2005-07-01

    The construction and operation of buildings consumes 35 per cent of total U.S. energy production. Although the application of building energy simulation models in early design stages can significantly increase performance throughout the building life cycle, energy simulation modeling has not been widely adopted by the design community. The complexity and length of time needed to prepare energy models are considered to be barriers, as well as the lack of energy appraisal tools capable of modeling a wide spectrum of hybrid heating, ventilation and air conditioning (HVAC) systems. A performance-based strategy using building effectiveness communication ratios stored in Building Information Models (BIM) was presented in this paper. The strategy aimed to link currently fragmented stages within the building life cycle. It was suggested that the ability to share and exchange information will reduce the amount of user time required for building simulation models. The proposed Building Energy Monitoring Analyzing and Communication (BEMAC) framework is an integrated environment that allows users to share data with other applications through an integrated data model. The data models allow each participant to employ tools specific to their needs without compromising or corrupting project data. Data values elicited from the model act as best-possible values. It was anticipated that by assigning spaces within the simulation model with proposed HVAC systems, reproductions of the energy use by these mechanical systems can contribute to overall energy data representation and analysis. Idealized Effectiveness Ratios and Performance Effectiveness Ratios were discussed in relation to a case study of the Glucksman Art Gallery at the National University of Ireland. Results indicated that the Idealized Effectiveness Ratio is applicable across the entire building life cycle, while the Performance Effectiveness Ratio allows facility managers to investigate the energy saving potential of the

  14. Process Cycle Efficiency Improvement Through Lean: A Case Study

    Directory of Open Access Journals (Sweden)

    P.V. Mohanram

    2011-06-01

    Full Text Available Lean manufacturing is an applied methodology of scientific, objective techniques that cause work tasks in a process to be performed with a minimum of non-value adding activities resulting in greatly reduced wait time, queue time, move time, administrative time, and other delays. This work addresses the implementation of lean principles in a construction equipment company. The prime objective is to evolve and test several strategies to eliminate waste on the shop floor. This paper describes an application of value stream mapping (VSM. Consequently, the present and future states of value stream maps are constructed to improve the production process by identifying waste and its sources. A noticeable reduction in cycle time and increase in cycle efficiency is confirmed. The production flow was optimized thus minimizing several non-value added activities/times such as bottlenecking time, waiting time, material handling time, etc. This case study can be useful in developing a more generic approach to design lean environment.

  15. Evaluation of fuel fabrication and the back end of the fuel cycle for light-water- and heavy-water-cooled nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Carter, W.L.; Olsen, A.R.

    1979-06-01

    The classification of water-cooled nuclear reactors offers a number of fuel cycles that present inherently low risk of weapons proliferation while making power available to the international community. Eight fuel cycles in light water reactor (LWR), heavy water reactor (HWR), and the spectral shift controlled reactor (SSCR) systems have been proposed to promote these objectives in the International Fuel Cycle Evaluation (INFCE) program. Each was examined in an effort to provide technical and economic data to INFCE on fuel fabrication, refabrication, and reprocessing for an initial comparison of alternate cycles. The fuel cycles include three once-through cycles that require only fresh fuel fabrication, shipping, and spent fuel storage; four cycles that utilize denatured uranium--thorium and require all recycle operations; and one cycle that considers the LWR--HWR tandem operation requiring refabrication but no reprocessing.

  16. Enhanced cycle stability of micro-sized Si/C anode material with low carbon content fabricated via spray drying and in situ carbonization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dingsheng; Gao, Mingxia, E-mail: gaomx@zju.edu.cn; Pan, Hongge; Liu, Yongfeng; Wang, Junhua; Li, Shouquan; Ge, Hongwei

    2014-08-01

    Highlights: • Micro-sized Si/C composites were fabricated via. spray drying and carbonization. • Multi-morphology carbon was formed in the Si/C composites. • Si/C composite with 5.6 wt.% C provides significant improved cycling stability. • Multi-morphology carbon plays effective role in improving the electrochemical property. • The method provides potential for mass production of superior Si-based anode materials. - Abstract: Micro-sized Si/C composites with in situ introduced carbon of multi-morphology were fabricated via spray drying a suspension of commercial micro-sized Si and citric acid followed by a carbonization. Different ratios of Si to citric acid were used to optimize the composition and structure of the composites and thus the electrochemical performance. Carbon flakes including crooked and flat ones were well dispersed in between the Si particles, forming Si/C composites. Floc-like carbon layers and carbon fragments were also found to cover partially the Si particles. The Si/C composite with a low carbon content of 5.6 wt.% provides an initial reversible capacity of 2700 mA h/g and a capacity of 1860 mA h/g after 60 cycles at a current density of 100 mA/g as anode material for lithium-ion batteries (LIBs), which are much higher than those of pristine Si and the Si/C composites with higher carbon content. The mechanism of the enhancement of electrochemical performance of the micro-sized Si/C composite is discussed. The fabrication method and the structure design of the composites offer valuable potential in developing adaptable Si-based anode materials for industrial applications.

  17. Surface modification of polyester fabric with plasma pretreatment and carbon nanotube coating for antistatic property improvement

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.X., E-mail: cxwang@mail.dhu.edu.cn [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Collaborative Innovation Center for Ecological Building Materials and Environmental Protection Equipments, Jiangsu 224051 (China); Key Laboratory for Advanced Technology in Environmental Protection, Jiangsu 224051 (China); Lv, J.C. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Ren, Y. [School of Textile and Clothing, Nantong University, Jiangsu 226019 (China); Zhi, T.; Chen, J.Y.; Zhou, Q.Q. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Lu, Z.Q.; Gao, D.W. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Collaborative Innovation Center for Ecological Building Materials and Environmental Protection Equipments, Jiangsu 224051 (China); Key Laboratory for Advanced Technology in Environmental Protection, Jiangsu 224051 (China); Jin, L.M. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China)

    2015-12-30

    Graphical abstract: - Highlights: • PET was finished by plasma treatment and SWCNT coating to improve antistatic property. • Plasma modification had a positive effect on SWCNT coating on PET fiber surface. • O{sub 2} plasma was more effective in SWCNT coating than Ar plasma in the shorter time. • Antistatic enhanced and then declined with enhancing treatment time and output power. • Antistatic increased with increasing concentration, curing time, curing temperature. - Abstract: This study introduced a green method to prepare antistatic polyester (PET) fabrics by plasma pretreatment and single-walled carbon nanotube (SWCNT) coating. The influences of plasma conditions and SWCNT coating parameters on antistatic property of PET fabrics were investigated. PET fabrics were pretreated under various plasma conditions such as different treatment times, output powers and working gases, and then SWCNT coating on the plasma treated PET fabrics was carried out by coating-dry-cure using various coating parameters including different SWCNT concentrations, curing times and curing temperatures. PET fabrics were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and volume resistivity. SEM and XPS analysis of the plasma treated PET fabrics revealed the increase in surface roughness and oxygen/nitrogen containing groups on the PET fiber surface. SEM and XPS analysis of the plasma treated and SWCNT coated PET fabrics indicated the SWCNT coating on PET fiber surface. The plasma treated and SWCNT coated PET fabrics exhibited a good antistatic property, which increased and then decreased with the increasing plasma treatment time and output power. The antistatic property of the O{sub 2} plasma treated and SWCNT coated PET fabric was better and worse than that of N{sub 2} or Ar plasma treated and SWCNT coated PET fabric in the shorter treatment time and the longer treatment time, respectively. In addition, the antistatic property of the

  18. Improvement of Capacity and Cycling Performance of Spinel LiMn2O4 Cathode Materials with TiO2-B Nanobelts

    DEFF Research Database (Denmark)

    Zhang, J.Y.; Shen, J.X.; Wang, T.L.;

    2013-01-01

    The spinel LiMn2O4 was modified with TiO2-B nanobelts to improve its specific capacity and cycling performance. TiO2-B/LiMn2O4 composites were fabricated by a facile liquid phase mixing method. The morphology and structure of the samples were characterized by means of X-ray diffraction, scanning ...

  19. Improved Structure and Fabrication of Large, High-Power KHPS Rotors - Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Corren, Dean [Verdant Power, Inc.; Colby, Jonathan [Verdant Power, Inc.; Adonizio, Mary Ann [Verdant Power, Inc.

    2013-01-29

    Verdant Power, Inc, working in partnership with the National Renewable Energy Laboratory (NREL), Sandia National Laboratories (SNL), and the University of Minnesota St. Anthony Falls Laboratory (SAFL), among other partners, used evolving Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) models and techniques to improve the structure and fabrication of large, high-power composite Kinetic Hydropower System (KHPS) rotor blades. The objectives of the project were to: design; analyze; develop for manufacture and fabricate; and thoroughly test, in the lab and at full scale in the water, the improved KHPS rotor blade.

  20. Variable geometry gas turbines for improving the part-load performance of marine combined cycles - Combined cycle performance

    DEFF Research Database (Denmark)

    Haglind, Fredrik

    2011-01-01

    -derivative configuration and a single-shaft industrial configuration. The results suggest that by the use of variable geometry gas turbines, the combined cycle part-load performance can be improved. In order to minimise the voyage fuel consumption, a combined cycle featuring two-shaft gas turbines with VAN control...

  1. Multi-bed Mass Recovery Adsorption Cycle -Improving Performance

    Science.gov (United States)

    Khan, Md. Zafar Iqbal; Saha, Bidyut Baran; Alam, K. C. Amanul; Miyazaki, Takahiko; Akisawa, Atsushi; Kashiwagi, Takao

    The study aims at clarifying the performance of a 3-bed, mass recovery silica gel-water adsorption refrigeration cycle. The cycle with mass recovery can be driven by waste heat at near ambient temperatures (between 50 and 90°C). All components of adsorption cycle are operated in different pressure levels. The 3-bed chiller with mass recovery process utilizes those pressure levels to enhance the refrigerant mass circulation. The innovative adsorption chiller comprises with three sorption elements (SEs), one evaporator and one condenser. The configuration of SE1 and SE2 are uniform but the configuration of SE3 is taken as half of SE1 or SE2. Two cycles (cycle-1, cycle-2) with mass recovery process are used and compare the performance with each other. In cycle-1, mass recovery process occurs between SE3 with either SE1 or SE2 and no mass recovery between SE1 and SE2 occurs. In cycle-2, mass recovery process occurs between SE1 and SE2, and no mass recovery process occurs between SE3 with either SE1 or SE2. The mathematical model shown herein is solved numerically. Simulated results are obtained from transient to cyclic steady state. Simulated results show that the COP and SCP of cycle-1 are better than those of cycle-2.

  2. Improved wafer-scale fabrication of aligned pdms-glass microchips with integrated electrodes

    NARCIS (Netherlands)

    Li, J.; Le Gac, S.; Berg, van den A.; Viovy, J.L.; Tabeling, P.; Descroix, S.; Malaquin, L.

    2007-01-01

    We report an improved fabrication process of PDMS-based hybrid chips at the scale of a whole wafer and including an alignment step. This implies a control of the dimension variations of this elastomer upon temperature changes and the production of a PDMS wafer compatible with the use of standard ali

  3. Improving geothermal power plants with a binary cycle

    Science.gov (United States)

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2015-12-01

    The recent development of binary geothermal technology is analyzed. General trends in the introduction of low-temperature geothermal sources are summarized. The use of single-phase low-temperature geothermal fluids in binary power plants proves possible and expedient. The benefits of power plants with a binary cycle in comparison with traditional systems are shown. The selection of the working fluid is considered, and the influence of the fluid's physicochemical properties on the design of the binary power plant is discussed. The design of binary power plants is based on the chemical composition and energy potential of the geothermal fluids and on the landscape and climatic conditions at the intended location. Experience in developing a prototype 2.5 MW Russian binary power unit at Pauzhetka geothermal power plant (Kamchatka) is outlined. Most binary systems are designed individually for a specific location. Means of improving the technology and equipment at binary geothermal power plants are identified. One option is the development of modular systems based on several binary systems that employ the heat from the working fluid at different temperatures.

  4. Dielectric Coating Thermal Stabilization During GaAs-Based Laser Fabrication for Improved Device Yield

    Science.gov (United States)

    Connors, Michael K.; Millsapp, Jamal E.; Turner, George W.

    2016-06-01

    The quality and yield of GaAs-based ridge waveguide devices fabricated at MIT Lincoln Laboratory were negatively impacted by the random lot-to-lot appearance of blisters in the front-side contact metal. The blisters signaled compromised adhesion between the front-side contact metal, underlying SiO2 dielectric coating, and semiconductor surface. A thermal-anneal procedure developed for the fabrication of GaAs slab coupled optical waveguide (SCOW) ridge waveguide devices stabilizes the SiO2 dielectric coating by means of outgassing and stress reduction. This process eliminates a primary source of adhesion loss, as well as blister generation, and thereby significantly improves device yield. Stoney's equation was used to analyze stress-induced bow in device wafers fabricated using this stabilization procedure. This analysis suggests that changes in wafer bow contribute to the incidence of metal blisters in SCOW devices.

  5. An Automated Ac Susceptibility Set up Fabricated Using a Closed-Cycle Helium Refrigerator

    CERN Document Server

    Kundu, S

    2011-01-01

    We have described here the design and operation of an automated ac susceptibility set up using a closed cycle helium refrigerator. This set up is useful for measuring linear and nonlinear magnetic susceptibilities of various magnetic materials. The working temperature range is 2 K to 300 K. The overall sensitivity of the set up is found to be 10-3 emu.

  6. Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings

    KAUST Repository

    Yao, Yan

    2012-01-01

    For silicon nanowires (Si NWs) to be used as a successful high capacity lithium-ion battery anode material, improvements in cycling stability are required. Here we show that a conductive polymer surface coating on the Si NWs improves cycling stability; coating with PEDOT causes the capacity retention after 100 charge-discharge cycles to increase from 30% to 80% over bare NWs. The improvement in cycling stability is attributed to the conductive coating maintaining the mechanical integrity of the cycled Si material, along with preserving electrical connections between NWs that would otherwise have become electrically isolated during volume changes. © 2012 The Royal Society of Chemistry.

  7. Improvement in Tensile Strength of Bamboo Knitted Fabric by Sol-Gel Coating

    Directory of Open Access Journals (Sweden)

    Awais Khatri

    2013-07-01

    Full Text Available Textiles made of bamboo regenerated fibre are reported to have lower tensile strength than the other cellulosic fibres, due to high porosity of the fibre. This paper was aimed to modify the bamboo knitted fabric by the sol-gel coating to improve the tensile strength with minimum effect on its inherent morphology and ultimate relevant properties such as good absorbency and air permeability. The paddry- bake process was employed for the coating where tetraethyl-orthosilicate and nano-titanium-dioxide were used as the active ingredients. The treated fabrics were tested for the tensile behaviour in terms of breaking strength and elongation and the sol-gel process recipe and parameters were optimised. The absorbency, air-permeability and washing durability of the coating were also tested for the optimised process. Results showed the increase in tensile strength of the fabric by sol-gel coating, whereas absorbency and air-permeability were almost unaffected. The coating results were unaffected even after a washing treatment (equivalent to 5 industrial washings. Additionally, the wrinkle recovery angle of the coated fabric was also tested and found improved.

  8. The Improvement of the Resistance to Candida albicans and Trichophyton interdigitale of Some Woven Fabrics Based on Cotton.

    Science.gov (United States)

    Surdu, Lilioara; Stelescu, Maria Daniela; Manaila, Elena; Nicula, Gheorghe; Iordache, Ovidiu; Dinca, Laurentiu Christian; Berechet, Mariana-Daniela; Vamesu, Mariana; Gurau, Dana

    2014-01-01

    This paper presents the improvement of the antimicrobial character of woven fabrics based on cotton. The woven fabrics were cleaned in oxygen plasma and treated by padding with silver chloride and titanium dioxide particles. The existence of silver and titanium on woven fabrics was evidenced by electronic microscope images (SEM, EDAX) and by flame atomic absorption spectrophotometry. The antimicrobial tests were performed with two fungi: Candida albicans and Trichophyton interdigitale. The obtained antimicrobial effect was considerably higher compared to the raw fabrics. Treatment of dyed fabrics with a colloidal solution based on silver chloride and titanium dioxide particles does not considerably influence colour resistance of dyes.

  9. The Improvement of the Resistance to Candida albicans and Trichophyton interdigitale of Some Woven Fabrics Based on Cotton

    Science.gov (United States)

    Stelescu, Maria Daniela; Manaila, Elena; Nicula, Gheorghe; Iordache, Ovidiu; Dinca, Laurentiu Christian; Berechet, Mariana-Daniela; Vamesu, Mariana; Gurau, Dana

    2014-01-01

    This paper presents the improvement of the antimicrobial character of woven fabrics based on cotton. The woven fabrics were cleaned in oxygen plasma and treated by padding with silver chloride and titanium dioxide particles. The existence of silver and titanium on woven fabrics was evidenced by electronic microscope images (SEM, EDAX) and by flame atomic absorption spectrophotometry. The antimicrobial tests were performed with two fungi: Candida albicans and Trichophyton interdigitale. The obtained antimicrobial effect was considerably higher compared to the raw fabrics. Treatment of dyed fabrics with a colloidal solution based on silver chloride and titanium dioxide particles does not considerably influence colour resistance of dyes. PMID:25276112

  10. Improving the quality of care for patients with hypertension in Moshupa District, Botswana: Quality improvement cycle

    Directory of Open Access Journals (Sweden)

    Cathy Kande

    2014-01-01

    Full Text Available Background: Although there are no prevalence studies on hypertension in Botswana, this condition is thought to be common and the quality of care to be poor.Aim: The aim of this project was to assess and improve the quality of primary care forhypertension.Setting: Moshupa clinic and catchment area, Botswana.Methods: Quality improvement cycle.Results: Two hundred participants were included in the audit. Sixty-eight per cent were women with a mean age of 55 years. In the baseline audit none of the target standards were met. During the re-audit six months later, six out of nine structural target standards, five out of 11 process target standards and one out of two outcome target standards were achieved. Statistically-significant improvement in performance (p < 0.05 was shown in 10 criteria although the target standard was not always met. In the re-audit, the target of achieving blood pressure control (< 140/90 in 70% of patients was achieved.Conclusion: The quality of care for hypertension was suboptimal in our setting. Simple interventions were designed and implemented to improve the quality of care. These interventions led to significant improvement in structural and process criteria. A corresponding significant improvement in the control of blood pressure was also seen.

  11. The design and fabrication of a reverse Brayton cycle cryocooler system for the high temperature superconductivity cable cooling

    Science.gov (United States)

    Park, Jae Hong; Kwon, Yong Ha; Kim, Young Soo

    2005-01-01

    A high temperature superconductivity cable must be cooled below the nitrogen liquefaction temperature to apply the cable to power generation and transmission systems under superconducting state. To maintain the superconducting state, a reliable cryocooler system is also required. The design and fabrication of a cryocooler system have been performed with a reverse Brayton cycle using neon gas as a refrigerant. The system consists of a compressor, a recuperator, a cold-box, and control valves. The design of the system is made to have 1 kW cooling capacity. The heat loss through multilayer insulators is calculated. Conduction heat loss is about 7 W through valves and access ports and radiation heat loss is about 18 W on the surface of a cryocooler. The design factors are discussed in detail.

  12. Nanosatellite Architectures for Improved Study of the Hydrologic Cycle

    Science.gov (United States)

    Blackwell, W. J.; Osaretin, I.; Cahoy, K.

    2012-12-01

    The need for low-cost, mission-flexible, and rapidly deployable spaceborne sensors that meet stringent performance requirements pervades the NASA Earth Science measurement programs, including especially the recommended NRC Decadal Survey missions. To address these challenges, we present nanosatellite constellation architectures that would profoundly improve both the performance and cost/risk/schedule profiles of NASA Earth and Space Science missions by leveraging recent technology advancements. As a key enabling element, we describe a scalable and mission-flexible 6U CubeSat-based self-organizing constellation architecture (the Distributed Observatory for Monitoring of Earth, henceforth "DOME") that will achieve state-of-the-art performance (and beyond) relative to current systems with respect to spatial, spectral, and radiometric resolution. A focus of this presentation is an assessment of the viability of a cross-linked CubeSat constellation with onboard propulsion systems for high-fidelity Earth and Space Science research. Such architecture could provide game-changing advances by reducing costs by at least an order of magnitude while increasing robustness to launch and sensor failures, allowing fast-track insertion of new technologies, and improving science performance. High-resolution passive microwave atmospheric sounding is an ideal sensing modality for nanosatellite implementation due to rapidly advancing microwave and millimeterwave receiver technology. The DOME constellation would nominally comprise 6U CubeSat Microwave Atmospheric Sounder (CMAS) satellites. Each CMAS satellite would host a complete 6U CubeSat atmospheric sounder, including a radiometer payload module with passive microwave receivers operating near atmospheric absorption lines near 60 and 183.31 GHz, and a spacecraft bus with attitude determination and control, avionics, power, cross-linked communications (spacecraft-to-spacecraft and spacecraft-to-ground), and propulsion systems. A

  13. Design and optimization of a novel organic Rankine cycle with improved boiling process

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Larsen, U.; Knudsen, Thomas

    2015-01-01

    In this paper we present a novel organic Rankine cycle layout, named the organic split-cycle, designed for utilization of low grade heat. The cycle is developed by implementing a simplified version of the split evaporation concept from the Kalina split-cycle in the organic Rankine cycle in order....../pentane mixture which, for the 90 °C hot fluid inlet temperature case, achieves a 14.5% higher net power output than an optimized organic Rankine cycle using the same mixture. Two parameter studies suggest that optimum conditions for the organic split-cycle are when the temperature profile allows the minimum...... pinch point temperature difference to be reached at two locations in the boiler. Compared to the transcritical organic Rankine cycle, the organic split-cycle improves the boiling process without an entailing increase in the boiler pressure, thus enabling an efficient low grade heat to power conversion...

  14. Dynamic high-cadence cycling improves motor symptoms in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Angela eRidgel

    2015-09-01

    Full Text Available Rationale: Individuals with Parkinson’s disease (PD often have deficits in kinesthesia. There is a need for rehabilitation interventions that improve these kinesthetic deficits. Forced (tandem cycling at a high cadence improves motor function. However, tandem cycling is difficult to implement in a rehabilitation setting. Objective: To construct an instrumented, motored cycle and to examine if high cadence dynamic cycling promotes improvements in motor function. Method: This motored cycle had two different modes: dynamic and static cycling. In dynamic mode, the motor maintained 75-85 rpm. In static mode, the rider determined the pedaling cadence. UPDRS Motor III and Timed Up and Go (TUG were used to assess changes in motor function after three cycling sessions. Results: Individuals in the static group showed a lower cadence but a higher power, torque and heart rate than the dynamic group. UPDRS score showed a significant 13.9% improvement in the dynamic group and only a 0.9% improvement in the static group. There was also a 16.5% improvement in TUG time in the dynamic group but only an 8% improvement in the static group. Conclusion: These findings show that dynamic cycling can improve PD motor function and that activation of proprioceptors with a high cadence but variable pattern may be important for motor improvements in PD.

  15. Improving early cycle economic evaluation of diagnostic technologies

    NARCIS (Netherlands)

    Steuten, Lotte M.G.; Ramsey, Scott D.

    2014-01-01

    The rapidly increasing range and expense of new diagnostics, compels consideration of a different, more proactive approach to health economic evaluation of diagnostic technologies. Early cycle economic evaluation is a decision analytic approach to evaluate technologies in development so as to increa

  16. Fabrication of Sn–Ni/MWCNT composite coating for Li-ion batteries by pulse electrodeposition: Effects of duty cycle

    Energy Technology Data Exchange (ETDEWEB)

    Uysal, Mehmet, E-mail: mehmetu@sakarya.edu.tr; Cetinkaya, Tugrul; Alp, Ahmet; Akbulut, Hatem

    2015-04-15

    Highlights: • Sn–Ni/MWCNT composite electrodes prepared by pulse electrodeposition at different duty cycle. • The effect of duty cycle studied on electrochemical properties of composite electrodes. • A high reversible capacity, and good cyclability were achieved for Sn–Ni/MWNT (75% duty cycle). - Abstract: Nanocrystalline Sn–Ni/MWCNT composite was prepared by ultrasonic-pulse electrodeposition on a copper substrate in a pyrophosphate bath at different duty cycles. Surface morphology of produced Sn–Ni/MWCNT composites were characterized by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) was conducted to understand the elemental surface composition of composites. X-ray diffraction analysis (XRD) was carried out to investigate structure of Sn–Ni/MWCNT composites. The electrochemical performance of Sn–Ni/MWCNT composite electrodes were investigated by charge/discharge tests and cyclic voltammetric experiments. The cells discharge capacities were determined by cyclic testing by a battery tester at a constant current in voltage range between 0.02 V and 1.5 V. The duty cycle was shown to be a crucial factor to improve Sn–Ni/MWCNT composite anodes for cyclability and reversible capacity.

  17. High Cycling Performance Cathode Material: Interconnected LiFePO4/Carbon Nanoparticles Fabricated by Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    Zhigao Yang

    2014-01-01

    Full Text Available Interconnected LiFePO4/carbon nanoparticles for Li-ion battery cathode have been fabricated by sol-gel method followed by a carbon coating process involving redox reactions. The carbon layers coated on the LiFePO4 nanoparticles not only served as a protection layer but also supplied fast electrons by building a 3D conductive network. As a cooperation, LiFePO4 nanoparticles encapsulated in interconnected conductive carbon layers provided the electrode reactions with fast lithium ions by offering the lithium ions shortening and unobstructed pathways. Field emission scanning electron microscopy (FESEM and X-ray diffraction (XRD tests showed optimized morphology. Electrochemical characterizations including galvanostatic charge/discharge, cyclic voltammetry (CV, and electrochemical impedance spectroscopy (EIS tests, together with impedance parameters calculated, all indicated better electrochemical performance and excellent cycling performance at high rate (with less than 9.5% discharge capacity loss over 2000 cycles, the coulombic efficiency maintained about 100%.

  18. The study about the improvement of the quality for the fabrics made of chenille yarn

    Science.gov (United States)

    Hristian, L.; Ostafe, M. M.; Manea, L. R.; Leon, A. L.

    2016-08-01

    The work is a study about the decrease of the serious defects from the fabrics such as: the deviations from quality or the high costs, discovered and seized by customers. The analyzed fabrics have in their structures three types of different chenille yarns, such as: the Article A1 (viscose fiber with cotton, Nm 3500 dyed coil), the Article A2 (textured polyester, Nm 8000 dyed coil), the Article A3 (Trevira CS polyester, Nm 3000 the pre-dyed raw materials). The technology of chenille yarn, regardless of composition and properties is the same and is performed on the twisting machines. This study has found that the most of the flaws in the fabric, noticed by customers, are caused by the production technology of the chenille yarns. In any organization which makes goods, there are concerns about the improvement of the quality through the elimination of the nonquality. It is extremely difficult to get to “zero defects” but the first step is a systematic action plan to reduce drastically the nonconformities and the defects. The continuous improvement of the effectiveness of the integrated quality and environmental management is achieved by applying the PDCA methodology: planning, development, control, action.

  19. Performance improvement: an active life cycle product management

    Science.gov (United States)

    Cucchiella, Federica; Gastaldi, Massimo; Lenny Koh, S. C.

    2010-03-01

    The management of the supply chain has gained importance in many manufacturing firms. Operational flexibility can be considered a crucial weapon to increase competitiveness in a turbulent marketplace. It reflects the ability of a firm to properly and rapidly respond to a variable and dynamic environment. For the firm operating in a fashion sector, the management of the supply chain is even more complex because the product life cycle is shorter than that of the firm operating in a non-fashion sector. The increase of firm flexibility level can be reached through the application of the real option theory inside the firm network. In fact, real option may increase the project value by allowing managers to more efficiently direct the production. The real option application usually analysed in literature does not take into account that the demands of products are well-defined by the product life cycle. Working on a fashion sector, the life cycle pattern is even more relevant because of an expected demand that grows according to a constant rate that does not capture the demand dynamics of the underlying fashion goods. Thus, the primary research objective of this article is to develop a model useful for the management of investments in a supply chain operating in a fashion sector where the system complexity is increased by the low level of unpredictability and stability that is proper of the mood phenomenon. Moreover, unlike the traditional model, a real option framework is presented here that considers fashion product characterised by uncertain stages of the production cycle.

  20. Strength training improves cycling performance, fractional utilization of VO2max and cycling economy in female cyclists.

    Science.gov (United States)

    Vikmoen, O; Ellefsen, S; Trøen, Ø; Hollan, I; Hanestadhaugen, M; Raastad, T; Rønnestad, B R

    2016-04-01

    The purpose of this study was to investigate the effect of adding heavy strength training to well-trained female cyclists' normal endurance training on cycling performance. Nineteen female cyclists were randomly assigned to 11 weeks of either normal endurance training combined with heavy strength training (E+S, n = 11) or to normal endurance training only (E, n = 8). E+S increased one repetition maximum in one-legged leg press and quadriceps muscle cross-sectional area (CSA) more than E (P < 0.05), and improved mean power output in a 40-min all-out trial, fractional utilization of VO2 max and cycling economy (P < 0.05). The proportion of type IIAX-IIX muscle fibers in m. vastus lateralis was reduced in E+S with a concomitant increase in type IIA fibers (P < 0.05). No changes occurred in E. The individual changes in performance during the 40-min all-out trial was correlated with both change in IIAX-IIX fiber proportion (r = -0.63) and change in muscle CSA (r = 0.73). In conclusion, adding heavy strength training improved cycling performance, increased fractional utilization of VO2 max , and improved cycling economy. The main mechanisms behind these improvements seemed to be increased quadriceps muscle CSA and fiber type shifts from type IIAX-IIX toward type IIA.

  1. Improving reactive ink jet printing via cationization of cellulosic linen fabric.

    Science.gov (United States)

    Rekaby, M; Abd-El Thalouth, J I; Abd El-Salam, Sh H

    2013-11-06

    Cellulose linen fabric samples subjected to cationization using different cationizing agents: dodecyl trimethyl ammonium bromide (DTAB), tetra methyl ammonium hydroxide (TMAH), and Quat-188, via pad batch technique, followed by ink jet printing with reactive dyes. The %N as well as the K/S of the cationized samples was found to be depends on: (a) the nature of the cationizing agent and (b) on the time of batching. As the latter increases both of the nitrogen content and K/S increases to a maximum depending on the nature of the reagent used. Further increase in the batching time up to 30 h is accompanied by a decrease in both the %N and K/S irrespective of the nature of the cationizing agent used. Cationization improves the printability of reactive dye ink jet printed linen fabrics with no remarkable effect on the overall color fastness properties.

  2. Performance Improvement of Combined Cycle Power Plant Based on the Optimization of the Bottom Cycle and Heat Recuperation

    Institute of Scientific and Technical Information of China (English)

    Wenguo XIANG; Yingying CHEN

    2007-01-01

    Many F class gas turbine combined cycle (GTCC) power plants are built in China at present because of less emission and high efficiency. It is of great interest to investigate the efficiency improvement of GTCC plant. A combined cycle with three-pressure reheat heat recovery steam generator (HRSG) is selected for study in this paper.In order to maximize the GTCC efficiency, the optimization of the HRSG operating parameters is performed. The operating parameters are determined by means of a thermodynamic analysis, i.e. the minimization of exergy losses. The influence of HRSG inlet gas temperature on the steam bottoming cycle efficiency is discussed. The result shows that increasing the HRSG inlet temperature has less improvement to steam cycle efficiency when it is over 590℃. Partial gas to gas recuperation in the topping cycle is studied. Joining HRSG optimization with the use of gas to gas heat recuperation, the combined plant efficiency can rise up to 59.05% at base load. In addition,the part load performance of the GTCC power plant gets much better. The efficiency is increased by 2.11% at 75% load and by 4.17% at 50% load.

  3. Exergy Analysis of a Subcritical Refrigeration Cycle with an Improved Impulse Turbo Expander

    Directory of Open Access Journals (Sweden)

    Zhenying Zhang

    2014-08-01

    Full Text Available The impulse turbo expander (ITE is employed to replace the throttling valve in the vapor compression refrigeration cycle to improve the system performance. An improved ITE and the corresponding cycle are presented. In the new cycle, the ITE not only acts as an expansion device with work extraction, but also serves as an economizer with vapor injection. An increase of 20% in the isentropic efficiency can be attained for the improved ITE compared with the conventional ITE owing to the reduction of the friction losses of the rotor. The performance of the novel cycle is investigated based on energy and exergy analysis. A correlation of the optimum intermediate pressure in terms of ITE efficiency is developed. The improved ITE cycle increases the exergy efficiency by 1.4%–6.1% over the conventional ITE cycle, 4.6%–8.3% over the economizer cycle and 7.2%–21.6% over the base cycle. Furthermore, the improved ITE cycle is also preferred due to its lower exergy loss.

  4. Transmutation, Burn-Up and Fuel Fabrication Trade-Offs in Reduced-Moderation Water Reactor Thorium Fuel Cycles - 13502

    Energy Technology Data Exchange (ETDEWEB)

    Lindley, Benjamin A.; Parks, Geoffrey T. [University of Cambridge, Cambridge (United Kingdom); Franceschini, Fausto [Westinghouse Electric Company LLC, Cranberry Township, PA (United States)

    2013-07-01

    Multiple recycle of long-lived actinides has the potential to greatly reduce the required storage time for spent nuclear fuel or high level nuclear waste. This is generally thought to require fast reactors as most transuranic (TRU) isotopes have low fission probabilities in thermal reactors. Reduced-moderation LWRs are a potential alternative to fast reactors with reduced time to deployment as they are based on commercially mature LWR technology. Thorium (Th) fuel is neutronically advantageous for TRU multiple recycle in LWRs due to a large improvement in the void coefficient. If Th fuel is used in reduced-moderation LWRs, it appears neutronically feasible to achieve full actinide recycle while burning an external supply of TRU, with related potential improvements in waste management and fuel utilization. In this paper, the fuel cycle of TRU-bearing Th fuel is analysed for reduced-moderation PWRs and BWRs (RMPWRs and RBWRs). RMPWRs have the advantage of relatively rapid implementation and intrinsically low conversion ratios. However, it is challenging to simultaneously satisfy operational and fuel cycle constraints. An RBWR may potentially take longer to implement than an RMPWR due to more extensive changes from current BWR technology. However, the harder neutron spectrum can lead to favourable fuel cycle performance. A two-stage fuel cycle, where the first pass is Th-Pu MOX, is a technically reasonable implementation of either concept. The first stage of the fuel cycle can therefore be implemented at relatively low cost as a Pu disposal option, with a further policy option of full recycle in the medium term. (authors)

  5. 'Virtual' central business office: how UMMS improved revenue cycle performance.

    Science.gov (United States)

    Henciak, Bill; Fontaine, Christine; Fields, Keith; Parks, Stacy

    2010-06-01

    Based on its experience with implementing a virtual central business office, UMMS recommends the following steps to ensure the success of such an initiative: Define the process flow for the organization's day-today revenue cycle operations prior to implementation. Then select best practices and milestones for managing accounts. Identify any possible technology issues that could arise during implementation prior to go live. Hold a midproject debriefing with staff. Develop an organizational chart that details who is responsible for handling issues that arise during implementation and afterward.

  6. Radiation grafting of glycidyl methacrylate and divinylbenzene onto polyethylene terephthalate fabrics for improving anti-dripping performance

    Science.gov (United States)

    Chen, Xu; Wang, Yue; Dai, Guoliang; Peng, Jing; Li, Jiuqiang; Shi, Meiwu; Zhai, Maolin

    2016-10-01

    A new kind of anti-dripping polyethylene terephthalate (PET) fabric was successfully prepared by simultaneous gamma radiation-induced grafting polymerization of glycidyl methacrylate (GMA) and divinylbenzene (DVB) onto the surface of PET fabrics. The grafting yield (GY) and anti-dripping effect were optimized by changing the total absorbed dose, dose rate, concentration and the feed ratio of GMA and DVB. The grafting yield increased with the increase of absorbed dose and GMA monomer concentration, and decreased with the dose rate. It is confirmed that PET fabrics had been modified by Fourier transform infrared spectroscopy analysis. The tensile strength and elongation at break of modified PET fabrics were improved compared with original PET fabrics. The limiting oxygen index (LOI) of modified PET fabrics with the GY of 23-25% was 21.5, which was similar to that of unmodified PET fabrics. However, the anti-dripping performance of PET fabrics was improved remarkably after radiation modification due to the crosslinking of the sidechains grafted on the PET surface. This anti-dripping fabric may be promising for fire protective clothing.

  7. Rapid-fire improvement with short-cycle kaizen.

    Science.gov (United States)

    Heard, E

    1999-05-01

    Continuous improvement is an attractive idea, but it is typically more myth than reality. SCK is no myth. It delivers dramatic improvements in traditional measures quickly. SCK accomplishes this via kaizens: rapid, repeated, time-compressed changes for the better in bite-sized chunks of the business.

  8. Mexican Bottom of Barrel Life Cycle environmental improvement proposal

    Energy Technology Data Exchange (ETDEWEB)

    Pulido, Ricardo [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, Mexico, D.F., C.P. 07730 (Mexico); Fernandez, Georgina [Universidad Nacional Autonoma de Mexico, Facultad de Ingenieria, Ciudad Universitaria, Mexico, D.F., C.P. 04510 (Mexico)

    2007-04-15

    Growing economies have the dual challenge of economical and industrial growing, but in a sustainable way and with protection of Ecosystems, all prior requirements are a must that are either satisfied or Human Kind will suffer the irreparable loss of Earth Biosphere. Prospective studies show that for the period 1990-2010 the petroleum will be heavier and richer in sulphur. In order to make a more sustainable use of Mexican heavy petroleum the actual 'Life Cycle' of Mexican Bottom of Barrel crude oil can be modified through the proposal of producing an activated carbon (CAFOB) from Mexican petroleum vacuums residue and Mexican petroleum coke applied in the flue gases desulphuration, therefore, experimental activated carbon was made from Mexican petroleum vacuums residue and petroleum coke and desulphuration adsorption tests of a synthetic flue gas mixture similar in composition to flue gases produced from the burning of Mexican heavy fuel oil were made. Commercial activated carbons were used as reference materials. The CAFOB180M experimental activated carbon showed a good desulphuration capacity compared to commercial activated carbon, showing its potentiality in the process of evolving the actual 'Life Cycle' of Mexican Bottom of Barrel crude oil to a more sustainable one. (author)

  9. IMPROVED FABRICATION METHOD FOR CARBON NANOTUBE PROBE OF ATOMIC FORCE MICROSCOPY(AFM)

    Institute of Scientific and Technical Information of China (English)

    XU Zongwei; DONG Shen; GUO Liqiu; ZHAO Qingliang

    2006-01-01

    An improved arc discharge method is developed to fabricate carbon nanotube probe of atomic force microscopy (AFM) here. First, silicon probe and carbon nanotube are manipulated under an optical microscope by two high precision microtranslators. When silicon probe and carbon nanotube are very close, several tens voltage is applied between them. And carbon nanotube is divided and attached to the end of silicon probe, which mainly due to the arc welding function.Comparing with the arc discharge method before, the new method here needs no coat silicon probe with metal film in advance, which can greatly reduce the fabrication's difficulty. The fabricated carbon nanotube probe shows good property of higher aspect ratio and can more accurately reflect the true topography of silicon grating than silicon probe. Under the same image drive force, carbon nanotube probe had less indentation depth on soft triblock copolymer sample than silicon probe. This showed that carbon nanotube probe has lower spring constant and less damage to the scan sample than silicon probe.

  10. CDMS Detector Fabrication Improvements and Low Energy Nuclear Recoil Measurements in Germanium

    Energy Technology Data Exchange (ETDEWEB)

    Jastram, Andrew [Texas A & M Univ., College Station, TX (United States)

    2015-12-01

    As the CDMS (Cryogenic Dark Matter Search) experiment is scaled up to tackle new dark matter parameter spaces (lower masses and cross-sections), detector production efficiency and repeatability becomes ever more important. A dedicated facility has been commissioned for SuperCDMS detector fabrication at Texas A&M University (TAMU). The fabrication process has been carefully tuned using this facility and its equipment. Production of successfully tested detectors has been demonstrated. Significant improvements in detector performance have been made using new fabrication methods, equipment, and tuning of process parameters. This work has demonstrated the capability for production of next generation CDMS SNOLAB detectors. Additionally, as the dark matter parameter space is probed further, careful calibrations of detector response to nuclear recoil interactions must be performed in order to extract useful information (in relation to dark matter particle characterzations) from experimental results. A neutron beam of tunable energy is used in conjunction with a commercial radiation detector to characterize ionization energy losses in germanium during nuclear recoil events. Data indicates agreement with values predicted by the Lindhard equation, providing a best-t k-value of 0.146.

  11. Improved Strength and Toughness of Carbon Woven Fabric Composites with Functionalized MWCNTs

    Directory of Open Access Journals (Sweden)

    Eslam Soliman

    2014-06-01

    Full Text Available This investigation examines the role of carboxyl functionalized multi-walled carbon nanotubes (COOH-MWCNTs in the on- and off-axis flexure and the shear responses of thin carbon woven fabric composite plates. The chemically functionalized COOH-MWCNTs were used to fabricate epoxy nanocomposites and, subsequently, carbon woven fabric plates to be tested on flexure and shear. In addition to the neat epoxy, three loadings of COOH-MWCNTs were examined: 0.5 wt%, 1.0 wt% and 1.5 wt% of epoxy. While no significant statistical difference in the flexure response of the on-axis specimens was observed, significant increases in the flexure strength, modulus and toughness of the off-axis specimens were observed. The average increase in flexure strength and flexure modulus with the addition of 1.5 wt% COOH-MWCNTs improved by 28% and 19%, respectively. Finite element modeling is used to demonstrate fiber domination in on-axis flexure behavior and matrix domination in off-axis flexure behavior. Furthermore, the 1.5 wt% COOH-MWCNTs increased the toughness of carbon woven composites tested on shear by 33%. Microstructural investigation using Fourier Transform Infrared Spectroscopy (FTIR proves the existence of chemical bonds between the COOH-MWCNTs and the epoxy matrix.

  12. Study of oxygen plasma pre-treatment of polyester fabric for improved polypyrrole adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Mehmood, Tariq [School of Engineering, Deakin University, Geelong, Victoria 3216 (Australia); Kaynak, Akif, E-mail: akaynak@deakin.edu.au [School of Engineering, Deakin University, Geelong, Victoria 3216 (Australia); Dai, Xiujuan J. [Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216 (Australia); Kouzani, Abbas [School of Engineering, Deakin University, Geelong, Victoria 3216 (Australia); Magniez, Kevin; Rubin de Celis, David; Hurren, Christopher J. [Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216 (Australia); Plessis, Johan du [School of Applied Sciences, RMIT University, GPO Box 2476V, Melbourne, Victoria 3001 (Australia)

    2014-01-15

    In this work, we have systematically studied the improvement of binding of polypyrrole with polyethylene terephthalate (PET) thin films and fabrics using low pressure oxygen plasma. A range of plasma treatment times were employed to investigate plasma induced effects on surface roughness, surface chemistry and hydrophilicity. Modifications of PET films were studied with respect to surface morphology by means of atomic force and scanning electron microscopy. Chemical effects of plasma treatment were studied using X-ray photoelectron spectroscopy. Results showed that both the increase in surface functionalisation by carboxylic groups and formation of nano size roughness contributed to improved adhesion and conductivity. - Highlights: • Improved adhesion between polypyrrole and polyester due to oxygen plasma treatment. • Formation of additional C–O and O–C=O groups due to plasma reactions. • Plasma induced increase in surface energy and roughness.

  13. Fabrication of flexible magnetic papers based on bacterial cellulose and barium hexaferrite with improved mechanical properties

    Science.gov (United States)

    Lim, Guh-Hwan; Lee, Jooyoung; Kwon, Nayoung; Bok, Shingyu; Sim, Hwansu; Moon, Kyoung-Seok; Lee, Sang-Eui; Lim, Byungkwon

    2016-09-01

    We report on a simple approach to fabricate mechanically robust magnetic cellulose papers containing M-type barium hexaferrite (BaFe12O19) nanoplates. BaFe12O19 nanoplates were synthesized by a hydrothermal method and then chemically functionalized by using a silane coupling agent. The magnetic cellulose papers prepared with the silane-treated BaFe12O19 nanoplates exhibited improved mechanical properties with tensile strength of 58.5 MPa and Young's modulus of 2.95 GPa.

  14. Crop improvement using life cycle datasets acquired under field conditions

    Directory of Open Access Journals (Sweden)

    Keiichi eMochida

    2015-09-01

    Full Text Available Crops are exposed to various environmental stresses in the field throughout their life cycle. Modern plant science has provided remarkable insights into the molecular networks of plant stress responses in laboratory conditions, but the responses of different crops to environmental stresses in the field need to be elucidated. Recent advances in omics analytical techniques and information technology have enabled us to integrate data from a spectrum of physiological metrics of field crops. The interdisciplinary efforts of plant science and data science enable us to explore factors that affect crop productivity and identify stress tolerance-related genes and alleles. Here, we describe recent advances in technologies that are key components for data driven crop design, such as population genomics, chronological omics analyses, and computer-aided molecular network prediction. Integration of the outcomes from these technologies will accelerate our understanding of crop phenology under practical field situations and identify key characteristics to represent crop stress status. These elements would help us to genetically engineer designed crops to prevent yield shortfalls because of environmental fluctuations due to future climate change.

  15. Improving Cycling Performance: Transcranial Direct Current Stimulation Increases Time to Exhaustion in Cycling.

    Directory of Open Access Journals (Sweden)

    Marcelo Vitor-Costa

    Full Text Available The central nervous system seems to have an important role in fatigue and exercise tolerance. Novel noninvasive techniques of neuromodulation can provide insights on the relationship between brain function and exercise performance. The purpose of this study was to determine the effects of transcranial direct current stimulation (tDCS on physical performance and physiological and perceptual variables with regard to fatigue and exercise tolerance. Eleven physically active subjects participated in an incremental test on a cycle simulator to define peak power output. During 3 visits, the subjects experienced 3 stimulation conditions (anodal, cathodal, or sham tDCS-with an interval of at least 48 h between conditions in a randomized, counterbalanced order to measure the effects of tDCS on time to exhaustion at 80% of peak power. Stimulation was administered before each test over 13 min at a current intensity of 2.0 mA. In each session, the Brunel Mood State questionnaire was given twice: after stimulation and after the time-to-exhaustion test. Further, during the tests, the electromyographic activity of the vastus lateralis and rectus femoris muscles, perceived exertion, and heart rate were recorded. RM-ANOVA showed that the subjects performed better during anodal primary motor cortex stimulation (491 ± 100 s compared with cathodal stimulation (443 ± 11 s and sham (407 ± 69 s. No significant difference was observed between the cathodal and sham conditions. The effect sizes confirmed the greater effect of anodal M1 tDCS (anodal x cathodal = 0.47; anodal x sham = 0.77; and cathodal x sham = 0.29. Magnitude-based inference suggested the anodal condition to be positive versus the cathodal and sham conditions. There were no differences among the three stimulation conditions in RPE (p = 0.07 or heart rate (p = 0.73. However, as hypothesized, RM- ANOVA revealed a main effect of time for the two variables (RPE and HR: p < 0.001. EMG activity also did not

  16. Improving ethanol productivity through self-cycling fermentation of yeast: a proof of concept.

    Science.gov (United States)

    Wang, Jie; Chae, Michael; Sauvageau, Dominic; Bressler, David C

    2017-01-01

    The cellulosic ethanol industry has developed efficient strategies for converting sugars obtained from various cellulosic feedstocks to bioethanol. However, any further major improvements in ethanol productivity will require development of novel and innovative fermentation strategies that enhance incumbent technologies in a cost-effective manner. The present study investigates the feasibility of applying self-cycling fermentation (SCF) to cellulosic ethanol production to elevate productivity. SCF is a semi-continuous cycling process that employs the following strategy: once the onset of stationary phase is detected, half of the broth volume is automatically harvested and replaced with fresh medium to initiate the next cycle. SCF has been shown to increase product yield and/or productivity in many types of microbial cultivation. To test whether this cycling process could increase productivity during ethanol fermentations, we mimicked the process by manually cycling the fermentation for five cycles in shake flasks, and then compared the results to batch operation. Mimicking SCF for five cycles resulted in regular patterns with regards to glucose consumption, ethanol titer, pH, and biomass production. Compared to batch fermentation, our cycling strategy displayed improved ethanol volumetric productivity (the titer of ethanol produced in a given cycle per corresponding cycle time) and specific productivity (the amount of ethanol produced per cellular biomass) by 43.1 ± 11.6 and 42.7 ± 9.8%, respectively. Five successive cycles contributed to an improvement of overall productivity (the aggregate amount of ethanol produced at the end of a given cycle per total processing time) and the estimated annual ethanol productivity (the amount of ethanol produced per year) by 64.4 ± 3.3 and 33.1 ± 7.2%, respectively. This study provides proof of concept that applying SCF to ethanol production could significantly increase productivities, which will help strengthen the

  17. Improving Light Outcoupling Efficiency for OLEDs with Microlens Array Fabricated on Transparent Substrate

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2014-01-01

    Full Text Available Low light outcoupling efficiency restricts the wide application of organic light-emitting diodes in solid state light market although the internal quantum efficiency of the device could reach near to 100%. In order to improve the output efficiency, different kinds of microlens array on the substrate emission surface were designed and simulated using light tracing method. Simulation results indicate that the microlens array on the substrate could efficiently improve the light output efficiency and an enhancement of 1.8 could be obtained with optimized microlens structure design. The microlens array with semicircle shape using polymer material was fabricated on glass substrate by a facile approach. Finally, the organic device with microlens array substrate was manufactured and the light output of the device with surface microlens structure could increase to 1.64 times comparing with the device without microlens.

  18. Model improvements for tritium transport in DEMO fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Santucci, Alessia, E-mail: alessia.santucci@enea.it [Unità Tecnica Fusione – ENEA C. R. Frascati, Via E. Fermi 45, 00044 Frascati (Roma) (Italy); Tosti, Silvano [Unità Tecnica Fusione – ENEA C. R. Frascati, Via E. Fermi 45, 00044 Frascati (Roma) (Italy); Franza, Fabrizio [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2015-10-15

    Highlights: • T inventory and permeation of DEMO blankets have been assessed under pulsed operation. • 1-D model for T transport has been developed for the HCLL DEMO blanket. • The 1-D model evaluated T partial pressure and T permeation rate radial profiles. - Abstract: DEMO operation requires a large amount of tritium, which is directly produced inside the reactor by means of Li-based breeders. During its production, recovering and purification, tritium comes in contact with large surfaces of hot metallic walls, therefore it can permeate through the blanket cooling structure, reach the steam generator and finally the environment. The development of dedicated simulation tools able to predict tritium losses and inventories is necessary to verify the accomplishment of the accepted tritium environmental releases as well as to guarantee a correct machine operation. In this work, the FUS-TPC code is improved by including the possibility to operate in pulsed regime: results in terms of tritium inventory and losses for three pulsed scenarios are shown. Moreover, the development of a 1-D model considering the radial profile of the tritium generation is described. By referring to the inboard segment on the equatorial axis of the helium-cooled lithium–lead (HCLL) blanket, preliminary results of the 1-D model are illustrated: tritium partial pressure in Li–Pb and tritium permeation in the cooling and stiffening plates by assuming several permeation reduction factor (PRF) values. Future improvements will consider the application of the model to all segments of different blanket concepts.

  19. A fabrication method for field emitter array of carbon nanotubes with improved carbon nanotube rooting

    Energy Technology Data Exchange (ETDEWEB)

    Chouhan, V., E-mail: vchouhan@post.kek.jp [School of High Energy Accelerator, The Graduate University for Advanced Studies, Tsukuba 305-0801 (Japan); Noguchi, T. [High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 (Japan); Kato, S. [School of High Energy Accelerator, The Graduate University for Advanced Studies, Tsukuba 305-0801 (Japan); High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 (Japan)

    2015-11-30

    We have developed a technique for fabrication of a field emitter array (FEA) of carbon nanotubes (CNTs) to obtain a high emission current along with a high current density. The FEA was prepared with many small equidistant circular emitters of randomly oriented multiwall carbon nanotubes. The fabrication of a FEA substrate followed with deposition of titanium nitride (TiN) film on a tantalum (Ta) substrate and circular titanium (Ti) islands on the TiN coated Ta substrate in a DC magnetron sputtering coater. CNTs were dispersed on the substrate and rooted into the circular Ti islands at a high temperature to prepare an array of circular emitters of CNTs. The TiN film was applied on a Ta substrate to make a reaction barrier between the Ta substrate and CNTs in order to root CNTs only into the Ti islands without a reaction with the Ta substrate at the high temperature. A high emission current of 31.7 mA with an effective current density of 34.5 A/cm{sup 2} was drawn at 6.5 V/μm from a FEA having 130 circular emitters in a diameter of 50 μm and with a pitch of 200 μm. The high emission current was ascribed to the good quality rooting of CNTs into the Ti islands and an edge effect, in which a high emission current was expected from the peripheries of the circular emitters. - Highlights: • We developed a method to fabricate a field emitter array of carbon nanotubes (CNTs). • CNT rooting into array of titanium islands was improved at a high temperature. • Titanium nitride film was used to stop reaction between CNT and tantalum substrate. • Strong edge effect was achieved from an array of small circular emitters of CNTs. • The good quality CNT rooting and the edge effect enhanced an emission current.

  20. [Primary care for diabetic patients: a quality improvement cycle].

    Science.gov (United States)

    Navarro-Martínez, A; Suárez-Beke, M P; Sánchez-Nicolás, J A; Lázaro-Aragues, P; de Jesús Jiménez-Vázquez, E; Huertas-de Mora, O

    2014-01-01

    The aim of this study was to evaluate and improve the quality of medical care provided to diabetic patients following the standards proposed by the American Diabetes Association. The study was conducted in three phases by analyzing data from the computerized clinical history of a sample of 340 patients. First phase (2010): cross-sectional, descriptive study which assessed the proportion of patients who met the standards related to the screening of diabetes, and goals of control and treatment. Subsequently, health professionals reviewed the results in order to promote the implementation of corrective action. Finally (2012), a new assessment with the same standards was performed. An increase in the number of patients treated with insulin (12.7% in 2010 and 20.2% in 2012) was observed (P < .01). There were also percentage increases in the number of patients who met the screening standards as regards analytical determinations: glycosylated hemoglobin (from 44.4% to 68.2%), lipid profile (47.6%-73.8%), creatinine (32.5% - 73.5%), and albumin-creatinine ratio (9.2%-24.4%) (P < .001). Only 6.4% (CI: 3.2- 9.8) of diabetic patients attained the composite target of glycosylated hemoglobin < 7%, blood pressure < 130/80 mmHg and low-density lipoprotein cholesterol < 100 mg/dl in 2012. This study shows that medical care has improved the goals related to analytical determinations and the number of insulin-treated diabetic type 2 patients. An optimal level was also maintained in metabolic control of diabetes, but there was still poor control of risk factors for cardiovascular disease. Copyright © 2014 SECA. Published by Elsevier Espana. All rights reserved.

  1. New Fabrication Method Improves the Efficiency and Economics of Solar Cells (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-07-01

    NT-based DSSCs and determines an optimal illumination direction to use in these cells. The synthetic fabrication strategy will improve the economics and conversion efficiency of DSSCs.

  2. Improvement of strength of B/Al composite by thermal-mechanical cycling

    Institute of Scientific and Technical Information of China (English)

    覃耀春; 何世禹; 杨德庄

    2004-01-01

    The mechanical properties of B/Al composite were measured at room temperature in the as-fabricated condition and after thermal-mechanical cycling(TMC). The effects of TMC on microstructure and tensile fracture behavior of B/Al composite were studied using transmission electron microscope(TEM) and scanning electron microscope(SEM). The fibers/matrix interfaces are degraded during TMC, the extent of which is enhanced with in creasing the cycles, causing a measurable decrease of stage Ⅰ modulus of the B/Al composite. The TMC induces the dislocation generation in the aluminum matrix and the dislocation density increases with the cycles. The synergistic effect of the matrix strengthening and the interfacial degradation during TMC is found to play an important role in controlling the changes of tensile strengths and fracture behavior of the composite. The ultimate tensile strength of the composite increases with the cycles increasing. The interfaces in the B/Al composite change from the strongly bonded states toward the appropriately-bonded ones with increasing the cycles. TMC will provide an approach of im proving the strength of B/Al composites.

  3. Overview and Improving Fiber Optic Gyroscope Based on MEMS/NEMS Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Bo; Kahn, M T E [Electrical Engineering Department, Cape Peninsula University of Technology, BELLVILLE CAMPUS, Cape Town, 7535 (South Africa); Electrical Engineering Department, Cape Peninsula University of Technology, BELLVILLE CAMPUS, Cape Town, 7535 (South Africa)

    2006-04-01

    The measurement of the rotation of rigid solids is of considerable interest in a number of areas. Rotation detectors are not only used in aircraft, missiles etc. military fields have also been developed for new civil fields such as automobile navigation, antenna stabilization, crane control, unmanned vehicle control, wind and renewable energy platform stabilization. In this paper, the fundamental operations of fiber-optic gyroscopes are reviewed. Performance-limiting phenomena are discussed along with methods to reduce their effect on the rotation-rate signal. Current technology and performance of new demodulate systems are presented applicable to MEMS technology. The FOG with scanning phase-shift demodulates technology based on anti-noise filter circuit improvement of DSP algorithm is proposed in this paper. New methods, which are used to fabricate the nanometer optical fiber, are discussed.

  4. Activation of corn cellulose with alcohols to improve its dissolvability in fabricating ultrafine fibers via electrospinning.

    Science.gov (United States)

    Chen, Haizhen; Ni, Jinping; Chen, Jing; Xue, Wenwen; Wang, Jinggang; Na, Haining; Zhu, Jin

    2015-06-05

    Water and four small molecular alcohols are respectively used to activate corn cellulose (CN cellulose) with the aim to improve the dissolvability in DMAc/LiCl. Among all these activated agents, monohydric alcohols are found to produce the optimal effect of activation in the whole process including of activating, dissolving, and electrospinning of CN cellulose. Meanwhile, well distributed fibers with the diameter of 500nm-2μm are fabricated in electrospinning. Understanding the activation effect of monohydric alcohols with water and polyhydric alcohols, the most effective activated agent is ascertained with the characteristics of small molecular size, low viscosity, and single functionality. This work is definitely initiated to understand the critical principle of CN cellulose in dissolving. Accordingly, a feasible methodology is also established to prepare ultrafine cellulose fibers with good morphology in electrospinning.

  5. Improving Target Repeatability Yields Broader Results in Component Fabrication and Overall Build

    Science.gov (United States)

    Klein, Sallee; Gamboa, Eliseo; Gillespie, Robb; Huntington, Channing; Krauland, Christine; Kuranz, Carolyn; di Stefano, Carlos; Susalla, Peter; Lairson, Bruce; Elsner, Fred; Keiter, Paul; Drake, R. Paul

    2012-10-01

    The University of Michigan has been fabricating targets for high energy density experiments since 2003. Our experiments study physics relevant to laboratory astrophysics. Machined acrylic structures serve as a backbone supporting all the components on our targets, as well as providing us with a method that eases our build. A most vital component to nearly every target we build, is shielding. Employing techniques to bend gold foils, enables complex geometries and eliminates seams that possibly allow unwanted emission in our diagnostics. Many of our experiments explore the dynamics of a radiative shock launched into xenon or argon gas. Polyimide (PI) tubing confines the gas and is transmissive to the diagnostic x-rays used to probe the experiment. Recent interest in the shock dynamics of non-axisymmetric shocks has lead to the development of PI tubes with non-circular cross sections. We present the techniques we use to produce repeatable targets as well as recent improvements in our techniques.

  6. Improvement of resistance to hydrogen induced cracking in electric resistance welded pipes fabricated with slit coils

    Science.gov (United States)

    Hong, Hyun Uk; Lee, Jong Bong; Choi, Ho Jin

    2009-02-01

    The optimization of electric resistance welding (ERW) conditions was studied to improve the resistance to hydrogen induced cracking (HIC) at the bondline in small diameter API X60 ERW pipes fabricated with slit coils. The results show that HIC is initiated preferentially at the elongated Si, Mn and Al-rich oxide inclusions, normally known as a penetrator on the bondline. However, no evidence was found of any centerline segregation effect. The HIC ratio increases with the fraction of penetrators at the bondline, regardless of the degrees of center segregation. Furthermore, for a satisfactory level of HIC resistance, the fraction of penetrators must be less than 0.03 % and most of the penetrators should be circular-shaped. The design of experimental (DOE) method was used to determine the optimum ERW condition for minimization of the penetrator ratio. Finally, guideline is suggested for the optimum ERW condition for achieving excellent HIC resistance.

  7. ZIF-8 Membranes with Improved Reproducibility Fabricated from Sputter-Coated ZnO/Alumina Supports

    KAUST Repository

    Yu, Jian

    2015-11-10

    Zeolitic imidazolate framework-8 (ZIF-8) membrane has shown great potential for propylene/propane separation based on molecular sieving mechanism. Although diverse synthesis strategies were applied to prepare ZIF-8 membranes, it is still a challenge for reproducible fabrication of high-quality membranes. In this study, high-quality ZIF-8 membranes were prepared through hydrothermal synthesis under the partial self-conversion of sputter-coated ZnO layer on porous α-alumina supports. The reproducibility was significantly improved, compared with that from sol-gel coated ZnO layer, due to the highly controllable sputtering deposition of ZnO precursor. The relationship between the quality of as-synthesized membrane and amount of deposited ZnO was also determined. The effect of pressure drop in C3H6/C3H8 separation on separating performance was also examined.

  8. Fabrication process responsible for fundamentally improving Silicon X-ray microcalorimeter arrays

    Energy Technology Data Exchange (ETDEWEB)

    Brekosky, R.P. E-mail: regis.brekosky@gsfc.nasa.gov; Allen, C.A.; Galeazzi, M.; Gygax, J.D.; Isenburg, H.; Kelley, R.L.; McCammon, D.; McClanahan, R.A.; Porter, F.S.; Stahle, C.K.; Szymkowiak, A.E

    2004-03-11

    We have developed an improved microcalorimeter array that will be used on the AstroE-2 satellite mission. The 6x6 array consists of a grid of 36 suspended pixels. Each 1.5 {mu}m thick pixel has an ion-implanted thermometer, four thermal links (support beams), and four X-ray absorber support tabs. Improvements in Silicon micro-machining capabilities and the availability of custom Silicon-on-Insulator (SOI) wafers has enabled us to precisely control pixel geometry, lead widths, and develop a more compact array. Knowing the silicon thickness, we can calculate a precise implant dose for the thermometer. Using a high-temperature anneal, we can uniformly diffuse the implant throughout the depth of the top layer of the SOI wafer. Defining the length, width, and thickness of the support beams, we can control the thermal conductance of the pixel. Advancements in polymer-photo resists have enabled us to develop a new absorber support tab attachment scheme resulting in more controlled heat dissipation from the absorber to the thermometer on the pixel. An overview of fabrication improvements focusing on these topics will be discussed.

  9. Chemical modification of cotton fabrics for improving utilization of reactive dyes.

    Science.gov (United States)

    Fang, Long; Zhang, Xiaodong; Sun, Deshuai

    2013-01-02

    The cotton fabric was chemically modified with the acrylamide through Michael addition reaction and Hoffman degradation reaction. And the optimum chemical modification conditions were determined. The molecular structure of the modified cotton fabric was identified by Fourier transform infrared spectroscopy (FTIR). The structures of both the raw and modified cotton fabrics were investigated by X-ray diffraction and scanning electronic microscopy. The raw and modified cotton fabrics were dyed using commercial reactive dyes with vinyl-sulfone groups. The results showed that the total dye utilization of modified cotton fabrics in the salt-free dyeing was higher than that of raw cotton fabrics in the conventional dyeing. And the color fastness properties and tear strength of modified fabrics were both satisfactory.

  10. Improving of cycle-slip detection and correction of Blewitt method

    Science.gov (United States)

    Zheng, Z. Y.; Cheng, Z. Y.; Huang, C.; Lu, X. S.

    2005-04-01

    On the basis of introducing Blewitt method, new idea and arithmetic were put forward on bad observations deletion, cycle-slip detection and correction, and ambiguity float solution in allusion to some questions of Blewitt method. To discuss the feasibility from error theory and to analyzed it with some samples, it was tested: cycle-slip detection was more clean and more clean and more reasonable and viable after improving.

  11. Potential Improvements of Supercritical CO2 Brayton Cycle by Modifying Critical Point of CO2

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Woo Seok; Lee, Jeong Ik; Jeong, Yong Hoon; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2009-10-15

    A Sodium-cooled Fast Reactor (SFR) is one of strong candidates for a next generation nuclear reactor. However, the conventional design of a SFR concept with an indirect Rankine cycle is subjected to a sodium water reaction, which can deteriorate the safety of a SFR. To prevent any hazards from sodium-water reaction, a SFR with the Brayton cycle using Helium or Supercritical Carbon dioxide (S-CO2) as working fluids can be an alternative approach to improve the current SFR design. As in a helium cycle, there has been an investigation to modify thermo-physical properties to increase the efficiency of the cycle and reduce the size of turbomachineries. Particularly, He-Xe or He-N2 binary mixture were successful to decrease the stages of turbomachines due to the increment of molecular weight of gas mixture than that of pure helium. Similar to the case of helium, CO2 has a potential to modify its thermo-physical properties by mixing with other gases. For instance, it was reported that critical point of CO2 can be shifted by mixing with different gases. Since, the efficiency of a S-CO2 cycle is limited to the critical point of CO2, the shift in critical point implies that there is a possibility of improving the cycle efficiency than the current design. This paper presents the results of a preliminary analysis to identify the effects of CO2 critical point modification on the Brayton cycle performance.

  12. Quality improvement on chemistry practicum courses through implementation of 5E learning cycle

    Science.gov (United States)

    Merdekawati, Krisna

    2017-03-01

    Two of bachelor of chemical education's competences are having practical skills and mastering chemistry material. Practicum courses are organized to support the competency achievement. Based on observation and evaluation, many problems were found in the implementation of practicum courses. Preliminary study indicated that 5E Learning Cycle can be used as an alternative solution in order to improve the quality of chemistry practicum course. The 5E Learning Cycle can provide positive influence on the achievement of the competence, laboratory skills, and students' understanding. The aim of the research was to describe the feasibility of implementation of 5E Learning Cycle on chemistry practicum courses. The research was based on phenomenology method in qualitative approach. The participants of the research were 5 person of chemistry laboratory manager (lecturers at chemistry and chemistry education department). They concluded that the 5E Learning Cycle could be implemented to improve the quality of the chemistry practicum courses. Practicum guides and assistant competences were organized to support the implementation of 5E Learning Cycle. It needed training for assistants to understand and implement in the stages of 5E Learning Cycle. Preparation of practical guidelines referred to the stages of 5E Learning Cycle, started with the introduction of contextual and applicable materials, then followed with work procedures that accommodate the stage of engagement, exploration, explanation, extension, and evaluation

  13. An Improved Multi-Evaporator Adsorption Desalination Cycle for GCC Countries

    KAUST Repository

    Shahzad, Muhammad Wakil

    2017-03-29

    In Gulf Cooperation Council (GCC) countries, cogeneration based desalination processes consume almost 25% of the total annual energy and it is increasing at 2.2% annually. The high fresh water demand is attributed to high gross domestic product (GDP) growth rate, 24%, and the high water languishes, more than 10%. Over the past two decades, GCC countries have spent tens of billion dollars to expand their present and planned desalination capacities. It is foreseeable that with business-as-usual scenario, the domestic oil consumption of Saudi Arabia may exceed its production capacity by 2040. Innovative and sustainable water production solutions are needed urgently for future water supplies without environment impact. In this paper, a hybrid desalination cycle is proposed by integrating multi cascaded-evaporators (CE) with an adsorption cycle (AD). In this new innovative cycle, AD desorbed vapors are supplied to the CE to exploit the latent condensation energy within the evaporators arranged in both pressures-temperatures cascaded manner to improves the performance ratio (PR) of the cycle. Hybrid cycle shows more than 10 folds water production improvement as compared to conventional AD cycle due to synergetic effect. This concept is demonstrated in a laboratory pilot plant using a 3 cascaded evaporators pilot and simulation of 8 evaporators hybrid cycle.

  14. Improved Laser Manipulation for On-chip Fabricated Microstructures Based on Solution Replacement and Its Application in Single Cell Analysis

    Directory of Open Access Journals (Sweden)

    Tao Yue

    2014-02-01

    Full Text Available In this paper, we present the fabrication and assembly of microstructures inside a microfluidic device based on a photocrosslinkable resin and optical tweezers. We also report a method of solution replacement inside the microfluidic channel in order to improve the manipulation performance and apply the assembled microstructures for single cell cultivation. By the illumination of patterned ultraviolet (UV through a microscope, microstructures of arbitrary shape were fabricated by the photocrosslinkable resin inside a microfluidic channel. Based on the microfluidic channel with both glass and polydimethylsiloxane (PDMS surfaces, immovable and movable microstructures were fabricated and manipulated. The microstructures were fabricated at the desired places and manipulated by the optical tweezers. A rotational microstructure including a microgear and a rotation axis was assembled and rotated in demonstrating this technique. The improved laser manipulation of microstructures was achieved based on the on-chip solution replacement method. The manipulation speed of the microstructures increased when the viscosity of the solvent decreased. The movement efficiency of the fabricated microstructures inside the lower viscosity solvent was evaluated and compared with those microstructures inside the former high viscosity solvent. A novel cell cage was fabricated and the cultivation of a single yeast cell (w303 was demonstrated in the cell cage, inside the microfluidic device.

  15. Fabrication and thermal conductivity improvement of novel composite adsorbents adding with nanoparticles

    Science.gov (United States)

    Wu, Qibai; Yu, Xiaofen; Zhang, Haiyan; Chen, Yiming; Liu, Liying; Xie, Xialin; Tang, Ke; Lu, Yiji; Wang, Yaodong; Roskilly, Anthony Paul

    2016-10-01

    Thermal conductivity is one of key parameters of adsorbents, which will affect the overall system performance of adsorption chiller. To improve adsorbent's thermal conductivity is always one of research focuses in chemisorption field. A new chemical composite adsorbent is fabricated by adding carbon coated metal(Aluminum and Nickel) nanoparticles with three different addition amounts into the mixture of chloride salts and natural expanded graphite aiming to improve the thermal conductivity. The preparation processes and its thermal conductivity of this novel composite adsorbent are reported and summarized. Experimental results indicate that the nanoparticles are homogenously dispersed in the composite adsorbent by applying the reported preparation processes. The thermal conductivity of the composite adsorbent can averagely enlarge by 20% when the weight ratio of the added nanoparticles is 10 wt%. Moreover, carbon coated aluminum nanoparticles exhibit more effective enlargement in thermal conductivity than nickel nanoparticles. As for the composite adsorbent of CaCl2-NEG, there is a big reinforcement from 30% to 50% for Al@C nanoparticles, however only 10% in maximum caused by Ni@C nanoparticles. The proposed research provides a methodology to design and prepare thermal conductive chemical composite adsorbent.

  16. A novel procedure for fabricating flexible screen-printed electrodes with improved electrochemical performance

    Science.gov (United States)

    Du, C. X.; Han, L.; Dong, S. L.; Li, L. H.; Wei, Y.

    2016-07-01

    Screen-printed electrodes (SPEs) with improved electrochemical performance were fabricated in this study. The SPEs on hydrophilic surface of polyethylene ethylene terephthalate (PET) film showed better electrochemical behaviour than that on hydrophobic surface. The optimal condition of pretreating fresh SPEs was that alternately dealt with chemical treatment (soaked in 3M NaOH solutions for 1h) and high temperature curing (heated at 120 °C for 15 min) for two times. After chemical treatment, the electrochemical performance of self-made SPEs was better than the commercial three electrodes system. By analyzing cyclic voltammetry (CV) curves, we found that the oxidation peak currents and peak to peak separation reached 407.65 μA and 111.16 mV, which mean the sensitivity and electron transfer rate improved 1.9 times and 3.8 times compared with fresh SPEs, and 2 times and 3 times compared with commercial DropSens (DS) electrodes. The obtained SPEs were stable, convenient and inexpensive, which could be extensively applied for developing novel electrochemical sensors.

  17. Investigation and improvement of the dispenser printing of electrical interconnections for smart fabric applications

    Science.gov (United States)

    Ahmed, Z.; Torah, R.; Yang, K.; Beeby, S.; Tudor, J.

    2016-10-01

    Electrical interconnections are essential for the integration of electronic functions in a fabric. These interconnects can be dispenser printed on a fabric; however printing directly on a breathable woven fabric surface is challenging due to the high surface variation and porosity defined by the weave. This paper, for the first time, experimentally shows that fabric surface variation leads to inconsistent printed structures which adversely affects the electrical properties of printed conductive tracks. It investigates a solution of overcoming the fabric surface variation in the form of dispenser printing an interface layer between the conductive ink and the fabric surface. Four dielectric inks DuPont 5018, Electra EFV4/4965, Fabinks-UV-IF-1004 and Fabinks-UV-TC0233 are quantitatively evaluated, as interface materials, in terms of surface consistency, thickness consistency, repeatability, flexibility, thermal stability and the electrical characteristics of conductive tracks printed on them. All four of the evaluated interface materials significantly reduced the fabric surface variation by more than 95% and provided a suitable low variation surface for printing subsequent electronic layers. Conductive tracks, dispenser printed on the four interface materials, produced ∼90% lower electrical resistivity compared to tracks printed directly on the fabric and similar resistivity to dispenser printed tracks on Kapton, a traditional printed electronic substrate. An increased focus on low powered electronics especially for wearables requires the electrical interconnections to dissipate minimum power. The innovative interface layer approach allows fabrication of low resistance electrical interconnections on fabric substrates reducing interconnect power dissipation, making this approach highly suitable for smart fabric applications. Reported details of dispenser printing of interface materials can be used for replicating these results on a range of fabric substrates. The

  18. Improved lithium-ion battery anode capacity with a network of easily fabricated spindle-like carbon nanofibers.

    Science.gov (United States)

    Liu, Mengting; Xie, Wenhe; Gu, Lili; Qin, Tianfeng; Hou, Xiaoyi; He, Deyan

    2016-01-01

    A novel network of spindle-like carbon nanofibers was fabricated via a simplified synthesis involving electrospinning followed by preoxidation in air and postcarbonization in Ar. Not only was the as-obtained carbon network comprised of beads of spindle-like nanofibers but the cubic MnO phase and N elements were successfully anchored into the amorphous carbon matrix. When directly used as a binder-free anode for lithium-ion batteries, the network showed excellent electrochemical performance with high capacity, good rate capacity and reliable cycling stability. Under a current density of 0.2 A g(-1), it delivered a high reversible capacity of 875.5 mAh g(-1) after 200 cycles and 1005.5 mAh g(-1) after 250 cycles with a significant coulombic efficiency of 99.5%.

  19. Aspects Regarding the Improving of Fitness and Health Issues by Cycling

    Directory of Open Access Journals (Sweden)

    Cătălin Octavian MĂNESCU

    2014-12-01

    Full Text Available This article is trying to explain all the benefits cycling has over fitness and specific health issues, the importance of a training plan, of a balanced diet and a good hydration during a training period of time and, also, presents the results of some studies regarding the importance of ride biking, generally, and exercising, particularly. Riding a bike is a healthy activity. Regular exercise in the form of cycling will make people fitter, stronger, will help them reduce fat levels and look in better shape, boost their energy and generally improve their mood. For many people, cycling is the first step to independence and exploration. Good planning and preparation are essential to ensure that cycling is a positive experience to everybody.

  20. Fabrication of mesoporous titania-zirconia composite membranes based on nanoparticles improved hydrosol.

    Science.gov (United States)

    Yin, Yiling; Wang, Hui; Li, Dan; Jing, Wenheng; Fan, Yiqun; Xing, Weihong

    2016-09-15

    A novel method for the fabrication of mesoporous titania-zirconia (TiO2ZrO2) composite membranes was successfully developed based on nanoparticles (NPs) improved hydrosol. ZrO2 hydrosols were synthesized through a straightforward sol-gel route using zirconium oxychloride. Compared to the polymeric sol route, this method was found to be more environmentally friendly because organic solvent was not required. Further, highly hydrophilic TiO2 NPs of 10-20nm were well dispersed in the sol and effectively reduced the sol infiltrating into the channels of the support layer by a "bridging" effect. After a rapid evaporation process, a mixed matrix gel was formed on the surface of the support. The dynamic mechanical analysis results showed that the toughness and stiffness of the gel were significantly strengthened, which was beneficial to reduce the risk of membrane cracking. So, an integrated, crack-free mesoporous TiO2ZrO2 composite membrane was obtained by directly coating and sintering the mixture on a macroporous support. It showed that the composite membrane delivered better separation performance though the filtration test. The water flux, molecular weight cutoff, and average pore size of the synthesized membrane were 60Lm(-2)h(-1)bar(-1), 4704Da, and 3.5nm, respectively.

  1. Improved microwave shielding behavior of carbon nanotube-coated PET fabric using plasma technology

    Energy Technology Data Exchange (ETDEWEB)

    Haji, Aminoddin, E-mail: Ahaji@iaubir.ac.ir [Department of Textile Engineering, Birjand Branch, Islamic Azad University, Birjand (Iran, Islamic Republic of); Semnani Rahbar, Ruhollah [Department of Textile and Leather, Faculty of Chemistry and Petrochemical Engineering, Standard Research Institute, Karaj (Iran, Islamic Republic of); Mousavi Shoushtari, Ahmad [Textile Engineering Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2014-08-30

    Four different procedures were conducted to load amine functionalized multiwall carbon nanotube (NH{sub 2}-MWCNT) onto poly (ethylene terephthalate) (PET) fabric surface to obtain a microwave shielding sample. Plasma treated fabric which was subsequently coated with NH{sub 2}-MWCNT in the presence of acrylic acid was chosen as the best sample. Surface changes in the PET fabrics were investigated by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Wide-angle X-ray diffraction was used to study the crystalline structure of the PET fabric. The microwave shielding performance of the PET fabrics in term of reflection loss was determined using a network analyzer at X-band (8.2–12.4 GHz). The XPS results revealed that the carbon atomic percentage decreased while the oxygen atomic percentage increased when the fabric was plasma treated and coated with NH{sub 2}-MWCNT. The SEM images showed that the NH{sub 2}-MWCNTs were homogenously dispersed and individually separated in the surface of fabric. Moreover, the structural studies showed that the crystalline region of the fabrics was not affected by NH{sub 2}-MWCNT and plasma treatment. The best microwave absorbing properties were obtained from the plasma treated fabric which was then coated with 10% NH{sub 2}-MWCNT in the presence of acrylic acid. It showed a minimum reflection loss of ∼−18.2 dB about 11 GHz. Proper attachments of NH{sub 2}-MWCNT on the PET fabric surface was explained in the suggested mechanism in which hydrogen bonding and amide linkage are responsible for the achievement of microwave shielding properties with high durability.

  2. Improved microwave shielding behavior of carbon nanotube-coated PET fabric using plasma technology

    Science.gov (United States)

    Haji, Aminoddin; Semnani Rahbar, Ruhollah; Mousavi Shoushtari, Ahmad

    2014-08-01

    Four different procedures were conducted to load amine functionalized multiwall carbon nanotube (NH2-MWCNT) onto poly (ethylene terephthalate) (PET) fabric surface to obtain a microwave shielding sample. Plasma treated fabric which was subsequently coated with NH2-MWCNT in the presence of acrylic acid was chosen as the best sample. Surface changes in the PET fabrics were investigated by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Wide-angle X-ray diffraction was used to study the crystalline structure of the PET fabric. The microwave shielding performance of the PET fabrics in term of reflection loss was determined using a network analyzer at X-band (8.2-12.4 GHz). The XPS results revealed that the carbon atomic percentage decreased while the oxygen atomic percentage increased when the fabric was plasma treated and coated with NH2-MWCNT. The SEM images showed that the NH2-MWCNTs were homogenously dispersed and individually separated in the surface of fabric. Moreover, the structural studies showed that the crystalline region of the fabrics was not affected by NH2-MWCNT and plasma treatment. The best microwave absorbing properties were obtained from the plasma treated fabric which was then coated with 10% NH2-MWCNT in the presence of acrylic acid. It showed a minimum reflection loss of ∼-18.2 dB about 11 GHz. Proper attachments of NH2-MWCNT on the PET fabric surface was explained in the suggested mechanism in which hydrogen bonding and amide linkage are responsible for the achievement of microwave shielding properties with high durability.

  3. Improvements in Cycling but Not Handcycling 10 km Time Trial Performance in Habitual Caffeine Users.

    Science.gov (United States)

    Graham-Paulson, Terri; Perret, Claudio; Goosey-Tolfrey, Victoria

    2016-06-25

    Caffeine supplementation during whole-/lower-body exercise is well-researched, yet evidence of its effect during upper-body exercise is equivocal. The current study explored the effects of caffeine on cycling/handcycling 10 km time trial (TT) performance in habitual caffeine users. Eleven recreationally trained males (mean (SD) age 24 (4) years, body mass 85.1 (14.6) kg, cycling/handcycling peak oxygen uptake ( V · peak) 42.9 (7.3)/27.6 (5.1) mL∙kg∙min(-1), 160 (168) mg/day caffeine consumption) completed two maximal incremental tests and two familiarization sessions. During four subsequent visits, participants cycled/handcycled for 30 min at 65% mode-specific V · peak (preload) followed by a 10 km TT following the ingestion of 4 mg∙kg(-1) caffeine (CAF) or placebo (PLA). Caffeine significantly improved cycling (2.0 (2.0)%; 16:35 vs. 16:56 min; p = 0.033) but not handcycling (1.8 (3.0)%; 24:10 vs. 24:36 min; p = 0.153) TT performance compared to PLA. The improvement during cycling can be attributed to the increased power output during the first and last 2 km during CAF. Higher blood lactate concentration (Bla) was reported during CAF compared to PLA (p Caffeine improved cycling but not handcycling TT performance. The lack of improvement during handcycling may be due to the smaller active muscle mass, elevated (Bla) and/or participants' training status.

  4. Improvements in Cycling but Not Handcycling 10 km Time Trial Performance in Habitual Caffeine Users

    Science.gov (United States)

    Graham-Paulson, Terri; Perret, Claudio; Goosey-Tolfrey, Victoria

    2016-01-01

    Caffeine supplementation during whole-/lower-body exercise is well-researched, yet evidence of its effect during upper-body exercise is equivocal. The current study explored the effects of caffeine on cycling/handcycling 10 km time trial (TT) performance in habitual caffeine users. Eleven recreationally trained males (mean (SD) age 24 (4) years, body mass 85.1 (14.6) kg, cycling/handcycling peak oxygen uptake (V·peak) 42.9 (7.3)/27.6 (5.1) mL∙kg∙min−1, 160 (168) mg/day caffeine consumption) completed two maximal incremental tests and two familiarization sessions. During four subsequent visits, participants cycled/handcycled for 30 min at 65% mode-specific V·peak (preload) followed by a 10 km TT following the ingestion of 4 mg∙kg−1 caffeine (CAF) or placebo (PLA). Caffeine significantly improved cycling (2.0 (2.0)%; 16:35 vs. 16:56 min; p = 0.033) but not handcycling (1.8 (3.0)%; 24:10 vs. 24:36 min; p = 0.153) TT performance compared to PLA. The improvement during cycling can be attributed to the increased power output during the first and last 2 km during CAF. Higher blood lactate concentration (Bla) was reported during CAF compared to PLA (p < 0.007) and was evident 5 min post-TT during cycling (11.2 ± 2.6 and 8.8 ± 3.2 mmol/L; p = 0.001) and handcycling (10.6 ± 2.5 and 9.2 ± 2.9 mmol/L; p = 0.006). Lower overall ratings of perceived exertion (RPE) were seen following CAF during the preload (p < 0.05) but not post-TT. Lower peripheral RPE were reported at 20 min during cycling and at 30 min during handcycling, and lower central RPE was seen at 30 min during cycling (p < 0.05). Caffeine improved cycling but not handcycling TT performance. The lack of improvement during handcycling may be due to the smaller active muscle mass, elevated (Bla) and/or participants’ training status. PMID:27348000

  5. Improvements in Cycling but Not Handcycling 10 km Time Trial Performance in Habitual Caffeine Users

    Directory of Open Access Journals (Sweden)

    Terri Graham-Paulson

    2016-06-01

    Full Text Available Caffeine supplementation during whole-/lower-body exercise is well-researched, yet evidence of its effect during upper-body exercise is equivocal. The current study explored the effects of caffeine on cycling/handcycling 10 km time trial (TT performance in habitual caffeine users. Eleven recreationally trained males (mean (SD age 24 (4 years, body mass 85.1 (14.6 kg, cycling/handcycling peak oxygen uptake ( V · peak 42.9 (7.3/27.6 (5.1 mL∙kg∙min−1, 160 (168 mg/day caffeine consumption completed two maximal incremental tests and two familiarization sessions. During four subsequent visits, participants cycled/handcycled for 30 min at 65% mode-specific V · peak (preload followed by a 10 km TT following the ingestion of 4 mg∙kg−1 caffeine (CAF or placebo (PLA. Caffeine significantly improved cycling (2.0 (2.0%; 16:35 vs. 16:56 min; p = 0.033 but not handcycling (1.8 (3.0%; 24:10 vs. 24:36 min; p = 0.153 TT performance compared to PLA. The improvement during cycling can be attributed to the increased power output during the first and last 2 km during CAF. Higher blood lactate concentration (Bla was reported during CAF compared to PLA (p < 0.007 and was evident 5 min post-TT during cycling (11.2 ± 2.6 and 8.8 ± 3.2 mmol/L; p = 0.001 and handcycling (10.6 ± 2.5 and 9.2 ± 2.9 mmol/L; p = 0.006. Lower overall ratings of perceived exertion (RPE were seen following CAF during the preload (p < 0.05 but not post-TT. Lower peripheral RPE were reported at 20 min during cycling and at 30 min during handcycling, and lower central RPE was seen at 30 min during cycling (p < 0.05. Caffeine improved cycling but not handcycling TT performance. The lack of improvement during handcycling may be due to the smaller active muscle mass, elevated (Bla and/or participants’ training status.

  6. An analysis of the aircraft engine Component Improvement Program (CIP) : a life cycle cost approach

    OpenAIRE

    Borer, Chris Joseph

    1990-01-01

    Approved for public release; distribution unlimited. Increasing budgetary constraints have prompted actions to reduce the maintenance cost of current naval aircraft. This thesis examines the Aircraft Engine Component Improvement Program (CIP), its impact on these cost at the organizational and intermediate levels of maintenance, and savings from these improvements. The objectives of the research were to identify current life cycle cost (LCC) models used by the Navy andor the other services...

  7. A sol-gel process for fabrication of NiO/NiCo2O4/Co3O4 composite with improved electrochemical behavior for electrochemical capacitors.

    Science.gov (United States)

    Liu, Mao-Cheng; Kong, Ling-Bin; Lu, Chao; Li, Xiao-Ming; Luo, Yong-Chun; Kang, Long

    2012-09-26

    Transition metal oxides possess multiple oxidation states that enable rich redox reactions for pseudo capacitanc. They have been investigated as promising electrode materials to achieve high energy density. In this study, NiO/NiCo(2)O(4)/Co(3)O(4) composite with high specific surface and mesoporous structure is fabricated by a sol-gel process then calcined at 250 °C. Benefits from the improved electron conductivity and effective mesoporous structure, the fabricated composite exhibits high specific capacitance (1717 F g(-1)), enhanced rate capability, and excellent electrochemical stability (94.9% retention after 1000 cycles). Interestingly, the specific capacitance of the composite is higher than that of NiO, NiCo(2)O(4), and Co(3)O(4), which indicates a synergistic effect of the composite on improvement of electrochemical performance. The findings demonstrate the importance and great potential of NiO/NiCo(2)O(4)/Co(3)O(4) composite in development of high-performance energy-storage systems.

  8. Improving the low temperature dyeability of polyethylene terephthalate fabric with dispersive dyes by atmospheric pressure plasma discharge

    Science.gov (United States)

    Elabid, Amel E. A.; Zhang, Jie; Shi, Jianjun; Guo, Ying; Ding, Ke; Zhang, Jing

    2016-07-01

    Polyethylene terephthalate (PET) fiber and textile is one of the largest synthetic polymer commodity in the world. The great energy consumption and pollution caused by the high temperature and pressure dyeing of PET fibers and fabrics with disperse dyes has been caused concern these years. In this study, an atmospheric pressure plasma with fine and uniform filament discharge operated at 20 kHz has been used to improve the low temperature dyeability of PET fabric at 95 °C with three cation disperse dyes: Red 73, Blue 183 and Yellow 211. The dyes uptake percentage of the treated PET fabrics was observed to increase as twice as much of untreated fabric. The color strength rate was increased more than 20%. The reducing of the water contact angle and the raising of the capillary height of treated PET fabric strip indicate its hydrophilicity improvement. Scanning electron microscope (SEM) results display nano to micro size of etching pits appeared uniformly on the fiber surface of the treated PET. Simultaneously, X-ray photoelectron spectroscopy (XPS) analysis indicates an increase of the oxygen content in the surface caused by the introduction of polar groups such as Cdbnd O and COOH. The rough surface with improved polar oxygen groups showed hydrophilicity and affinity to C.I. dispersive dyes and is believed to be caused by the strong and very fine filament discharge appearing randomly at one place at an instant but evenly at many places at a longer period. This increases the diffusion and absorption of the C.I. disperse dyes on the PET fiber surface, which improve its low temperature dyeability.

  9. Can FES-augmented active cycling training improve locomotion in post-acute elderly stroke patients?

    Directory of Open Access Journals (Sweden)

    Elisabetta Peri

    2016-06-01

    Full Text Available Recent studies advocated the use of active cycling coupled with functional electrical stimulation to induce neuroplasticity and enhance functional improvements in stroke adult patients. The aim of this work was to evaluate whether the benefits induced by such a treatment are superior to standard physiotherapy. A single-blinded randomized controlled trial has been performed on post-acute elderly stroke patients. Patients underwent FES-augmented cycling training combined with voluntary pedaling or standard physiotherapy. The intervention consisted of fifteen 30-minutes sessions carried out within 3 weeks. Patients were evaluated before and after training, through functional scales, gait analysis and a voluntary pedaling test. Results were compared with an age-matched healthy group. Sixteen patients completed the training. After treatment, a general improvement of all clinical scales was obtained for both groups. Only the mechanical efficiency highlighted a group effect in favor of the experimental group. Although a group effect was not found for any other cycling or gait parameters, the experimental group showed a higher percentage of change with respect to the control group (e.g. the gait velocity was improved of 35.4% and 25.4% respectively, and its variation over time was higher than minimal clinical difference for the experimental group only. This trend suggests that differences in terms of motor recovery between the two groups may be achieved increasing the training dose. In conclusion, this study, although preliminary, showed that FES-augmented active cycling training seems to be effective in improving cycling and walking ability in post-acute elderly stroke patients. A higher sample size is required to confirm results.

  10. What are the elements required to improve exposure estimates in life cycle assessments?

    DEFF Research Database (Denmark)

    Ernstoff, Alexi; Rosenbaum, Ralph K.; Margni, Manuele

    2016-01-01

    In this study we aim to identify and discuss priority elements required to improve exposure estimates in Life cycle assessment (LCA). LCA aims at guiding decision-support to minimize damages on resources, humans, and ecosystems which incur via providing society with products and services. Potential...... human toxicity and ecosystem toxicity of chemicals posed by different product life cycle stages are characterized in the life cycle impact assessment (LCIA) phase. Exposure and effect quantification as part of LCIA toxicity characterization faces numerous challenges related to inventory analysis (e.......g. number and quantity of chemicals emitted), substance-specific modelling (e.g. organics, inorganics, nano-materials) in various environments and time horizons, human and ecosystem exposure quantification (e.g. exposed organisms and exposure pathways), and toxicity end-points (e.g. carcinogenicity...

  11. Improving building life-cycle information management through documentation and communication of project objectives

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, R.J.

    1995-08-01

    Most currently available computer tools for the building industry proffer little more than productivity improvement in the transmission of graphical drawings and textual specifications, without addressing more fundamental changes in building life-cycle information management. This paper describes preliminary research into the development of a framework for the documentation and communication of the project objectives of a building project. When implemented in an interactive networked environment, this framework is intended to promote multiple participant involvement in the establishment and use of a common set of explicit goals, from the earliest phase of a project throughout its life cycle. A number of potential applications for this framework are identified. The requirements for integrating this life-cycle information with a product model of the physical design of a building, in an attempt to document and communicate design intent, are also discussed.

  12. The urban harvest approach as framework and planning tool for improved water and resource cycles.

    Science.gov (United States)

    Leusbrock, I; Nanninga, T A; Lieberg, K; Agudelo-Vera, C M; Keesman, K J; Zeeman, G; Rijnaarts, H H M

    2015-01-01

    Water and resource availability in sufficient quantity and quality for anthropogenic needs represents one of the main challenges in the coming decades. To prepare for upcoming challenges such as increased urbanization and climate change related consequences, innovative and improved resource management concepts are indispensable. In recent years we have developed and applied the urban harvest approach (UHA). The UHA aims to model and quantify the urban water cycle on different temporal and spatial scales. This approach allowed us to quantify the impact of the implementation of water saving measures and new water treatment concepts in cities. In this paper we will introduce the UHA and its application for urban water cycles. Furthermore, we will show first results for an extension to energy cycles and highlight future research items (e.g. nutrients, water-energy-nexus).

  13. Improving the low temperature dyeability of polyethylene terephthalate fabric with dispersive dyes by atmospheric pressure plasma discharge

    Energy Technology Data Exchange (ETDEWEB)

    Elabid, Amel E.A., E-mail: amelkanzi2014@gmail.com [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620 (China); Zhang, Jie; Shi, Jianjun; Guo, Ying; Ding, Ke [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Science, Donghua University, Shanghai 201620 (China); Zhang, Jing, E-mail: jingzh@dhu.cdu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Science, Donghua University, Shanghai 201620 (China)

    2016-07-01

    Graphical abstract: - Highlights: • Atmospheric pressure glow-like plasma with fine and uniform filament discharge has been successfully applied to the low temperature dyeing (95 °C) of PET fabric. • Simultaneously the dye uptake was increased as twice as much and the color strength rate was increased by about 20% for less than 3 min plasma treated PET. • Dyeing mechanism research showed the significance of surface roughing and functional group introduction by this kind of discharge. • Results highlight a novel environmentally friendly dyeing process for one of the largest commodity in polymer fabric. - Abstract: Polyethylene terephthalate (PET) fiber and textile is one of the largest synthetic polymer commodity in the world. The great energy consumption and pollution caused by the high temperature and pressure dyeing of PET fibers and fabrics with disperse dyes has been caused concern these years. In this study, an atmospheric pressure plasma with fine and uniform filament discharge operated at 20 kHz has been used to improve the low temperature dyeability of PET fabric at 95 °C with three cation disperse dyes: Red 73, Blue 183 and Yellow 211. The dyes uptake percentage of the treated PET fabrics was observed to increase as twice as much of untreated fabric. The color strength rate was increased more than 20%. The reducing of the water contact angle and the raising of the capillary height of treated PET fabric strip indicate its hydrophilicity improvement. Scanning electron microscope (SEM) results display nano to micro size of etching pits appeared uniformly on the fiber surface of the treated PET. Simultaneously, X-ray photoelectron spectroscopy (XPS) analysis indicates an increase of the oxygen content in the surface caused by the introduction of polar groups such as C=O and COOH. The rough surface with improved polar oxygen groups showed hydrophilicity and affinity to C.I. dispersive dyes and is believed to be caused by the strong and very fine

  14. Gamma radiations induced improvement in dyeing properties and colorfastness of cotton fabrics dyed with chicken gizzard leaves extracts

    Science.gov (United States)

    Batool, Fatima; Adeel, Shahid; Azeem, Muhammad; Ahmad Khan, Ali; Ahmad Bhatti, Ijaz; Ghaffar, Abdul; Iqbal, Naeem

    2013-08-01

    Cotton fabric and chicken gizzard leaves powder were treated with different absorbed doses of 5, 10, 15, 20 and 25 kGy using Cs-137 gamma irradiator. Effects of different mordants on dyeing of un-irradiated and irradiated cotton fabrics were investigated in the CIE Lab system using Spectraflash SF650. Methods suggested by International Standard Organization (ISO) were followed throughout the study period. The results indicated that color strength of cotton fabric was significantly improved by the gamma ray treatment. Absorbed dose of 10 kGy was proved to be most effective in improving cotton dyeing properties compared with other levels of gamma radiation used in the study. The optimum temperature for dyeing was 60 °C with the time duration of 60 min using 4 g/L of electrolyte with alkali solubilized extract of chicken gizzard. Furthermore, 4% of iron (Fe) as pre-mordant and 1% of tannic acid (TA) as post-mordant proved to be more effective in enhancing the color fastness properties of irradiated cotton fabric.

  15. Wash fastness improvement of malachite green-dyed cotton fabrics coated with nanosol composites of silica–titania

    Indian Academy of Sciences (India)

    I Kartini; I Ilmi; E S Kunarti; Kamariah

    2014-10-01

    Washing fastness of dyed cotton fabrics by malachite green (MG) blended with nanosols composite of SiO2–TiO2 has been significantly enhanced. The nanoparticulate inorganic sols were prepared by acidcatalyzed hydrolysis of titanium (IV) tetraisopropoxide (TTIP) and tetraethylortosilicate (TEOS) in ethanol at room temperature. The effect of silica on the characteristics of nanosols composite of TiO2–SiO2 was studied. Nanosols morphology was examined by transmission electron microscope (TEM). The nanosols silica–titania composite showed homogeneous morphology of interconnected spheres of about 20–25 nm. Enhanced dye absorption was observed at nanosols with silica content. The reflection spectra of the samples before and after leaching test using sodium dodecyl sulphate were recorded. The results showed that embedding TiO2–SiO2 and SiO2 sols into the MG dye can improve the wash fastness by 40–95%. The highest improvement was obtained by SiO2–MG-coated cotton fabrics as well as composites of SiO2–TiO2–MG-dyed cotton fabrics at highest silica content. The MG-nanosols composite silica–titania dyed cotton fabric has also shown remarkable antibacterial activity over Staphylococcus aureus and Escherichia coli.

  16. Cure Cycle Design Methodology for Fabricating Reactive Resin Matrix Fiber Reinforced Composites: A Protocol for Producing Void-free Quality Laminates

    Science.gov (United States)

    Hou, Tan-Hung

    2014-01-01

    For the fabrication of resin matrix fiber reinforced composite laminates, a workable cure cycle (i.e., temperature and pressure profiles as a function of processing time) is needed and is critical for achieving void-free laminate consolidation. Design of such a cure cycle is not trivial, especially when dealing with reactive matrix resins. An empirical "trial and error" approach has been used as common practice in the composite industry. Such an approach is not only costly, but also ineffective at establishing the optimal processing conditions for a specific resin/fiber composite system. In this report, a rational "processing science" based approach is established, and a universal cure cycle design protocol is proposed. Following this protocol, a workable and optimal cure cycle can be readily and rationally designed for most reactive resin systems in a cost effective way. This design protocol has been validated through experimental studies of several reactive polyimide composites for a wide spectrum of usage that has been documented in the previous publications.

  17. A Virtual Reality-Cycling Training System for Lower Limb Balance Improvement

    Directory of Open Access Journals (Sweden)

    Chieh Yin

    2016-01-01

    Full Text Available Stroke survivors might lose their walking and balancing abilities, but many studies pointed out that cycling is an effective means for lower limb rehabilitation. However, during cycle training, the unaffected limb tends to compensate for the affected one, which resulted in suboptimal rehabilitation. To address this issue, we present a Virtual Reality-Cycling Training System (VRCTS, which senses the cycling force and speed in real-time, analyzes the acquired data to produce feedback to patients with a controllable VR car in a VR rehabilitation program, and thus specifically trains the affected side. The aim of the study was to verify the functionality of the VRCTS and to verify the results from the ten stroke patients participants and to compare the result of Asymmetry Ratio Index (ARI between the experimental group and the control group, after their training, by using the bilateral pedal force and force plate to determine any training effect. The results showed that after the VRCTS training in bilateral pedal force it had improved by 0.22 (p=0.046 and in force plate the stand balance has also improved by 0.29 (p=0.031; thus both methods show the significant difference.

  18. A Virtual Reality-Cycling Training System for Lower Limb Balance Improvement.

    Science.gov (United States)

    Yin, Chieh; Hsueh, Ya-Hsin; Yeh, Chun-Yu; Lo, Hsin-Chang; Lan, Yi-Ting

    2016-01-01

    Stroke survivors might lose their walking and balancing abilities, but many studies pointed out that cycling is an effective means for lower limb rehabilitation. However, during cycle training, the unaffected limb tends to compensate for the affected one, which resulted in suboptimal rehabilitation. To address this issue, we present a Virtual Reality-Cycling Training System (VRCTS), which senses the cycling force and speed in real-time, analyzes the acquired data to produce feedback to patients with a controllable VR car in a VR rehabilitation program, and thus specifically trains the affected side. The aim of the study was to verify the functionality of the VRCTS and to verify the results from the ten stroke patients participants and to compare the result of Asymmetry Ratio Index (ARI) between the experimental group and the control group, after their training, by using the bilateral pedal force and force plate to determine any training effect. The results showed that after the VRCTS training in bilateral pedal force it had improved by 0.22 (p = 0.046) and in force plate the stand balance has also improved by 0.29 (p = 0.031); thus both methods show the significant difference.

  19. An improved dust emission model with insights into the global dust cycle's climate sensitivity

    Science.gov (United States)

    Kok, J. F.; Mahowald, N. M.; Albani, S.; Fratini, G.; Gillies, J. A.; Ishizuka, M.; Leys, J. F.; Mikami, M.; Park, M.-S.; Park, S.-U.; Van Pelt, R. S.; Ward, D. S.; Zobeck, T. M.

    2014-03-01

    Simulations of the global dust cycle and its interactions with a changing Earth system are hindered by the empirical nature of dust emission parameterizations in climate models. Here we take a step towards improving global dust cycle simulations by presenting a physically-based dust emission model. The resulting dust flux parameterization depends only on the wind friction speed and the soil's threshold friction speed, and can therefore be readily implemented into climate models. We show that our parameterization's functional form is supported by a compilation of quality-controlled vertical dust flux measurements, and that it better reproduces these measurements than existing parameterizations. Both our theory and measurements indicate that many climate models underestimate the dust flux's sensitivity to soil erodibility. This finding can explain why dust cycle simulations in many models are improved by using an empirical preferential sources function that shifts dust emissions towards the most erodible regions. In fact, implementing our parameterization in a climate model produces even better agreement against aerosol optical depth measurements than simulations that use such a source function. These results indicate that the need to use a source function is at least partially eliminated by the additional physics accounted for by our parameterization. Since soil erodibility is affected by climate changes, our results further suggest that many models have underestimated the climate sensitivity of the global dust cycle.

  20. Fabrication of ultrahigh density metal-cell-metal crossbar memory devices with only two cycles of lithography and dry-etch procedures

    KAUST Repository

    Zong, Baoyu

    2013-05-20

    A novel approach to the fabrication of metal-cell-metal trilayer memory devices was demonstrated by using only two cycles of lithography and dry-etch procedures. The fabricated ultrahigh density crossbar devices can be scaled down to ≤70 nm in half-pitch without alignment issues. Depending on the different dry-etch mechanisms in transferring high and low density nanopatterns, suitable dry-etch angles and methods are studied for the transfer of high density nanopatterns. Some novel process methods have also been developed to eliminate the sidewall and other conversion obstacles for obtaining high density of uniform metallic nanopatterns. With these methods, ultrahigh density trilayer crossbar devices (∼2 × 1010 bit cm-2-kilobit electronic memory), which are composed of built-in practical magnetoresistive nanocells, have been achieved. This scalable process that we have developed provides the relevant industries with a cheap means to commercially fabricate three-dimensional high density metal-cell-metal nanodevices. © 2013 IOP Publishing Ltd.

  1. Methodologies to improve product life cycle decision making in the telecommunications industry

    OpenAIRE

    Mead, Carl Dennis

    2003-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. As pressure from regulation and customers increases on telecommunications equipment manufacturers and service providers to reduce the hazardous material content of telecommunications products and generally improve environmental performance, new methods for Product Life Cycle Management are required. Supplier and component environmental evaluation are vital and fundamental elements of any Prod...

  2. Fabrication of CoZn alloy nanowire arrays: Significant improvement in magnetic properties by annealing process

    Energy Technology Data Exchange (ETDEWEB)

    Koohbor, M. [Department of Physics, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Soltanian, S., E-mail: s.soltanian@gmail.com [Department of Physics, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Department of Electrical and Computer Engineering, University of British Columbia, Vancouver (Canada); Najafi, M. [Department of Physics, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Department of Physics, Hamadan University of Technology, Hamadan (Iran, Islamic Republic of); Servati, P. [Department of Electrical and Computer Engineering, University of British Columbia, Vancouver (Canada)

    2012-01-05

    Highlights: Black-Right-Pointing-Pointer Increasing the Zn concentration changes the structure of NWs from hcp to amorphous. Black-Right-Pointing-Pointer Increasing the Zn concentration significantly reduces the Hc value of NWs. Black-Right-Pointing-Pointer Magnetic properties of CoZn NWs can be significantly enhanced by appropriate annealing. Black-Right-Pointing-Pointer The pH of electrolyte has no significant effect on the properties of the NW arrays. Black-Right-Pointing-Pointer Deposition frequency has considerable effects on the magnetic properties of NWs. - Abstract: Highly ordered arrays of Co{sub 1-x}Zn{sub x} (0 {<=} x {<=} 0.74) nanowires (NWs) with diameters of {approx}35 nm and high length-to-diameter ratios (up to 150) were fabricated by co-electrodeposition of Co and Zn into pores of anodized aluminum oxide (AAO) templates. The Co and Zn contents of the NWs were adjusted by varying the ratio of Zn and Co ion concentrations in the electrolyte. The effect of the Zn content, electrodeposition conditions (frequency and pH) and annealing on the structural and magnetic properties (e.g., coercivity (Hc) and squareness (Sq)) of NW arrays were investigated using X-ray diffraction (XRD), scanning electron microscopy, electron diffraction, and alternating gradient force magnetometer (AGFM). XRD patterns reveal that an increase in the concentration of Zn ions of the electrolyte forces the hcp crystal structure of Co NWs to change into an amorphous phase, resulting in a significant reduction in Hc. It was found that the magnetic properties of NWs can be significantly improved by appropriate annealing process. The highest values for Hc (2050 Oe) and Sq (0.98) were obtained for NWs electrodeposited using 0.95/0.05 Co:Zn concentrations at 200 Hz and annealed at 575 Degree-Sign C. While the pH of electrolyte is found to have no significant effect on the structural and magnetic properties of the NW arrays, the electrodeposition frequency has considerable effects on

  3. Fuel utilization improvements in a once-through PWR fuel cycle. Final report on Task 6

    Energy Technology Data Exchange (ETDEWEB)

    Dabby, D.

    1979-06-01

    In studying the position of the United States Department of Energy, Non-proliferation Alternative Systems Assessment Program, this report determines the uranium saving associated with various improvement concepts applicable to a once-through fuel cycle of a standard four-loop Westinghouse Pressurized Water Reactor. Increased discharged fuel burnup from 33,000 to 45,000 MWD/MTM could achieve a 12% U/sub 3/O/sub 8/ saving by 1990. Improved fuel management schemes combined with coastdown to 60% power, could result in U/sub 3/O/sub 8/ savings of 6%.

  4. A synthesis of research needs for improving the understanding of atmospheric mercury cycling

    Science.gov (United States)

    Zhang, Leiming; Lyman, Seth; Mao, Huiting; Lin, Che-Jen; Gay, David A.; Wang, Shuxiao; Sexauer Gustin, Mae; Feng, Xinbin; Wania, Frank

    2017-07-01

    This synthesis identifies future research needs in atmospheric mercury science, based on a series of review papers, as well as recent developments in field data collection, modeling analysis, and emission assessments of speciated atmospheric mercury. Research activities are proposed that focus on areas that we consider important. These include refinement of mercury emission estimations, quantification of dry deposition and air-surface exchange, improvement of the treatment of chemical mechanisms in chemical transport models, increase in the accuracy of oxidized mercury measurements, better interpretation of atmospheric mercury chemistry data, and harmonization of network operation. Knowledge gained in these research areas will significantly improve our understanding of atmospheric cycling from local to global scales.

  5. Using the Dual-Tree Complex Wavelet Transform for Improved Fabric Defect Detection

    Directory of Open Access Journals (Sweden)

    Hermanus Vermaak

    2016-01-01

    Full Text Available The dual-tree complex wavelet transform (DTCWT solves the problems of shift variance and low directional selectivity in two and higher dimensions found with the commonly used discrete wavelet transform (DWT. It has been proposed for applications such as texture classification and content-based image retrieval. In this paper, the performance of the dual-tree complex wavelet transform for fabric defect detection is evaluated. As experimental samples, the fabric images from TILDA, a textile texture database from the Workgroup on Texture Analysis of the German Research Council (DFG, are used. The mean energies of real and imaginary parts of complex wavelet coefficients taken separately are identified as effective features for the purpose of fabric defect detection. Then it is shown that the use of the dual-tree complex wavelet transform yields greater performance as compared to the undecimated wavelet transform (UDWT with a detection rate of 4.5% to 15.8% higher depending on the fabric type.

  6. Improved thermal cycling durability and PCR compatibility of polymer coated quantum dot

    Science.gov (United States)

    Xun, Zhe; Zhao, Xiaoyun; Guan, Yifu

    2013-09-01

    Quantum dots have experienced rapid development in imaging, labeling and sensing in medicine and life science. To be suitable for polymerase chain reaction (PCR) assay, we have tested QD thermal cycling durability and compatibility, which have not been addressed in previous reports. In this study, we synthesized CdSe/ZnS QDs with a surface modification with high-MW amphiphilic copolymers and observed that Mg2+ ions in the PCR reaction could induce the QDs to precipitate and reduce their fluorescence signal significantly after thermal cycling. To overcome this problem, we used mPEG2000 to conjugate the QD surface for further protection, and found that this modification enables QDs to endure 40 thermal cycles in the presence of other components essential for PCR reactions. We have also identified that QDs have different effects on rTaq and Ex Taq polymerization systems. A high QD concentration could apparently reduce the PCR efficiency, but this inhibition was relieved significantly in the Ex PCR system as the concentration of Ex Taq polymerase was increased. Real-time PCR amplification results showed that QDs could provide a sufficiently measurable fluorescence signal without excessively inhibiting the DNA amplification. Based on this improved thermal cycling durability and compatibility with the PCR system, QDs have the potential to be developed as stable fluorescent sensors in PCR and real-time PCR amplification.

  7. Simulated single-cycle kinetics improves the design of surface plasmon resonance assays.

    Science.gov (United States)

    Palau, William; Di Primo, Carmelo

    2013-09-30

    Instruments based on the surface plasmon resonance (SPR) principle are widely used to monitor in real time molecular interactions between a partner, immobilized on a sensor chip surface and another one injected in a continuous flow of buffer. In a classical SPR experiment, several cycles of binding and regeneration of the surface are performed in order to determine the rate and the equilibrium constants of the reaction. In 2006, Karlsson and co-workers introduced a new method named single-cycle kinetics (SCK) to perform SPR assays. The method consists in injecting sequentially increasing concentrations of the partner in solution, with only one regeneration step performed at the end of the complete binding cycle. A 10 base-pair DNA duplex was characterized kinetically to show how simulated sensorgrams generated by the BiaEvaluation software provided by Biacore™ could really improve the design of SPR assays performed with the SCK method. The DNA duplex was investigated at three temperatures, 10, 20 and 30 °C, to analyze fast and slow rate constants. The results show that after a short obligatory preliminary experiment, simulations provide users with the best experimental conditions to be used, in particular, the maximum concentration used to reach saturation, the dilution factor for the serial dilutions of the sample injected and the duration of the dissociation and association phases. The use of simulated single-cycle kinetics saves time and reduces sample consumption. Simulations can also be used to design SPR experiments with ternary complexes.

  8. Fabrication and improvement of nanopillar InGaN/GaN light-emitting diodes using nanosphere lithography

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Ou, Yiyu; Zhan, Teng

    2015-01-01

    Surface-patterning technologies have enabled the improvement of currently existinglight-emitting diodes (LEDs) and can be used to overcome the issue of low quantum efficiency ofgreen GaN-based LEDs. We have applied nanosphere lithography to fabricate nanopillars onInGaN∕GaN quantum-well LEDs...... that nanopillar LEDs can be significantly improved byapplying a combination of ion-damage curing techniques, including thermal and acidic treatment,and have analyzed their effects using x-ray photoelectron spectroscopy....

  9. Development of silver-zinc cells of improved cycle life and energy density

    Science.gov (United States)

    Serenyi, Roberto; James, Stanley D.

    1994-03-01

    Substantial increases in the cost effectiveness and range of naval underwater vehicles are possible by virtue of advances made, in this program, to silver-zinc, vehicle propulsion batteries. To improve battery cycle life and energy density, electropermeable membranes (EPM's) were used as additives and/or as coatings for the negative electrodes and as coatings for conventional separator materials. Also, bismuth oxide was tested as an additive to the negative electrodes and P2291-40/20, a radiation-grafted polyethylene film, as a separator used in conjunction with silver-treated cellophane. EPM's used as negative electrode additives and also as coatings for Celgard 2500 microporous polypropylene greatly improved cells. Cells with EPM's used as coatings for the negative electrodes failed rapidly because of an error in formulation. Cells with 10 percent bismuth oxide in the negative electrodes exhibited substantially lower capacity than the standard cells and were removed from the test. Cells with radiation-grafted polyethylene separators provided fewer cycles than the standard cells, with 5 percent higher capacity and 6 percent lower utilization of active materials by cycle 60. However, the slightly better capacity of these cells, realized due to the additional space available for active materials, does not compensate for their generally unimpressive performance.

  10. Ice slurry ingestion during cycling improves Olympic distance triathlon performance in the heat.

    Science.gov (United States)

    Stevens, Christopher John; Dascombe, Ben; Boyko, Andriy; Sculley, Dean; Callister, Robin

    2013-01-01

    This study investigated the effect of ice slurry ingestion during a triathlon on intragastric temperature and 10 km running performance in the heat. Nine well-trained male triathletes performed two randomised trials of a simulated Olympic distance triathlon in hot conditions (32-34°C). Exercise intensity during the swim (1500 m) and cycle (1 hr) legs was standardised, and the 10 km run leg was a self-paced time trial. During the cycle leg, either 10 g · kgBM(-1) of ice slurry (triathlon running performance in the heat. The attenuation of intragastric temperature and perceived thermal stress were likely contributors to the self-selection of a higher running intensity and improved performance time.

  11. Plasma treatment of polypropylene fabric for improved dyeability with soluble textile dyestuff

    Energy Technology Data Exchange (ETDEWEB)

    Yaman, Necla [Department of Textile Engineering, Usak University, Usak Universitesi Mueh. Fak. Tekstil Mueh. Boel. Bir Eyluel Kampusue Usak (Turkey); Ozdogan, Esen [Department of Textile Engineering, Ege University, E.U. Mueh. Fak. Tekstil Mueh. Boel., 35100 Bornova-Izmir (Turkey); Seventekin, Necdet, E-mail: necdet.seventekin@ege.edu.tr [Department of Textile Engineering, Ege University, E.U. Mueh. Fak. Tekstil Mueh. Boel., 35100 Bornova-Izmir (Turkey); Ayhan, Hakan [Department of Chemistry, Biochemistry Division, Mugla Uni. Fen Edebiyat Fak. Kimya Boel., 48000 Koetekli-Mugla (Turkey)

    2009-05-15

    The impact of plasma treatment parameters on the surface morphology, physical-chemical, and dyeing properties of polypropylene (PP) using anionic and cationic dyestuffs were investigated in this study. Argon plasma treatment was used to activate PP fabric surfaces. Activated surfaces were grafted different compounds: 6-aminohexanoic acid (6-AHA), acrylic acid (AA), ethylendiamine (EDA), acryl amide (AAMID) and hexamethyldisiloxane (HMDS). Compounds were applied after the plasma treatment and the acid and basic dyeing result that was then observed, were quite encouraging in certain conditions. The possible formed oxidizing groups were emphasized by FTIR and ATR and the surface morphology of plasma treated PP fibers was also investigated with scanning electron microscopy (SEM). PP fabric could be dyed with acid and basic dyestuffs after only plasma treatment and plasma induced grafting, and fastnesses of the dyed samples were satisfactory.

  12. Plasma treatment of polypropylene fabric for improved dyeability with soluble textile dyestuff

    Science.gov (United States)

    Yaman, Necla; Özdoğan, Esen; Seventekin, Necdet; Ayhan, Hakan

    2009-05-01

    The impact of plasma treatment parameters on the surface morphology, physical-chemical, and dyeing properties of polypropylene (PP) using anionic and cationic dyestuffs were investigated in this study. Argon plasma treatment was used to activate PP fabric surfaces. Activated surfaces were grafted different compounds: 6-aminohexanoic acid (6-AHA), acrylic acid (AA), ethylendiamine (EDA), acryl amide (AAMID) and hexamethyldisiloxane (HMDS). Compounds were applied after the plasma treatment and the acid and basic dyeing result that was then observed, were quite encouraging in certain conditions. The possible formed oxidizing groups were emphasized by FTIR and ATR and the surface morphology of plasma treated PP fibers was also investigated with scanning electron microscopy (SEM). PP fabric could be dyed with acid and basic dyestuffs after only plasma treatment and plasma induced grafting, and fastnesses of the dyed samples were satisfactory.

  13. New Zealand blackcurrant extract improves cycling performance and fat oxidation in cyclists.

    Science.gov (United States)

    Cook, Matthew David; Myers, Stephen David; Blacker, Sam David; Willems, Mark Elisabeth Theodorus

    2015-11-01

    Blackcurrant intake increases peripheral blood flow in humans, potentially by anthocyanin-induced vasodilation which may affect substrate delivery and exercise performance. We examined the effects of New Zealand blackcurrant (NZBC) extract on substrate oxidation, cycling time-trial performance and plasma lactate responses following the time-trial in trained cyclists. Using a randomized, double-blind, crossover design, 14 healthy men (age: 38 ± 13 years, height: 178 ± 4 cm, body mass: 77 ± 9 kg, VO2max: 53 ± 6 mL kg(-1) min(-1), mean ± SD) ingested NZBC extract (300 mg day(-1) CurraNZ™ containing 105 mg anthocyanin) or placebo (PL, 300 mg microcrystalline cellulose M102) for 7 days (washout 14 days). On day 7, participants performed 30 min of cycling (3 × 10 min at 45, 55 and 65 % VO2max), followed by a 16.1 km time-trial with lactate sampling during a 20-min passive recovery. NZBC extract increased fat oxidation at 65 % VO2max by 27 % (P < 0.05) and improved 16.1 km time-trial performance by 2.4 % (NZBC: 1678 ± 108 s, PL: 1722 ± 131 s, P < 0.05). Plasma lactate was higher with NZBC extract immediately following the time-trial (NZBC: 7.06 ± 1.73 mmol L(-1), PL: 5.92 ± 1.58 mmol L(-1), P < 0.01). Seven-day intake of New Zealand blackcurrant extract improves 16.1 km cycling time-trial performance and increases fat oxidation during moderate intensity cycling.

  14. Different plasma-based strategies to improve the interaction of anionic dyes with polyester fabrics surface

    Science.gov (United States)

    Salem, Tarek; Pleul, Dieter; Nitschke, Mirko; Müller, Martin; Simon, Frank

    2013-01-01

    Low-pressure plasma treatments with subsequent immobilization of functional macromolecules from aqueous solution have gained an increasing popularity for its applications in new industrial processes. In this work, two different strategies to endow polyester fabrics (PET) with accessible primary amino groups are compared. (a) NH2 groups were produced directly using low-pressure ammonia plasma. (b) Negatively charged groups were introduced by low-pressure oxygen plasma to hydrophilize the fabric surfaces and used as anchor groups for the immobilization of water-borne polyelectrolyte copolymers poly(vinyl amine-co-vinyl amide) (PVAm). To study the effects of these surface modifications, a combination of various surface-sensitive characterization techniques such as X-ray photoelectron spectroscopy (XPS), streaming potential measurements and time-dependent contact angle measurements were used. Furthermore, the influence of the pre-treatments on the interaction of PET fabrics with water-soluble dyes was evaluated. For that purpose, color strength and fastness tests were carried out to prove the effectiveness of pre-treatments.

  15. Experiments for improving fabrication, recovery and surface-protection of Cs3Sb photocathode

    Science.gov (United States)

    Kimoto, Takayoshi; Arai, Yoshihiro; Nagayama, Kuniak

    2017-01-01

    We examined 1) the photocurrent from Cs3Sb photocathode as a function of anode voltage below 200 V, 2) the relationship between the quantum efficiency of photoemission and the conditions for fabrication by the sandwich method, 3) recovery of the photoemission by additional Cs deposition, and 4) the effects of surface protection of Cs3Sb photocathodes by WO3 and Cr2O3 films in the passive state. The photocurrent had a maximum at approximately 68 V except when we increased the anode voltage extraordinarily slowly. Cs3Sb photocathodes were fabricated by increasing the temperature of sandwiched layers of Sb, Cs and Sb deposited on the fine tips of eight cathodes at less than -12 °C. Cs3Sb photocathodes having higher quantum efficiency were fabricated by smoothly increasing the temperature of the layers quickly after we deposited the second Sb layer. The photocurrent from the Cs3Sb photocathodes was significantly higher when Cs was deposited at temperatures of 50-70 °C. Deposition of a one- to three- atomic-layer W or Cr film extended the photoemission lifetime after the layers were oxidized to WO3 or Cr2O3 in the passive state due to oxidation. The WO3 or Cr2O3 in the passive state provided more surface protection as their thickness increased.

  16. Designing of epoxy composites reinforced with carbon nanotubes grown carbon fiber fabric for improved electromagnetic interference shielding

    Directory of Open Access Journals (Sweden)

    B. P. Singh

    2012-06-01

    Full Text Available In this letter, we report preparation of strongly anchored multiwall carbon nanotubes (MWCNTs carbon fiber (CF fabric preforms. These preforms were reinforced in epoxy resin to make multi scale composites for microwave absorption in the X-band (8.2-12.4GHz. The incorporation of MWCNTs on the carbon fabric produced a significant enhancement in the electromagnetic interference shielding effectiveness (EMI-SE from −29.4 dB for CF/epoxy-composite to −51.1 dB for CF-MWCNT/epoxy multiscale composites of 2 mm thickness. In addition to enhanced EMI-SE, interlaminar shear strength improved from 23 MPa for CF/epoxy-composites to 50 MPa for multiscale composites indicating their usefulness for making structurally strong microwave shields.

  17. Improved Fabrication of Ceramic Matrix Composite/Foam Core Integrated Structures

    Science.gov (United States)

    Hurwitz, Frances I.

    2009-01-01

    The use of hybridized carbon/silicon carbide (C/SiC) fabric to reinforce ceramic matrix composite face sheets and the integration of such face sheets with a foam core creates a sandwich structure capable of withstanding high-heatflux environments (150 W/cm2) in which the core provides a temperature drop of 1,000 C between the surface and the back face without cracking or delamination of the structure. The composite face sheet exhibits a bilinear response, which results from the SiC matrix not being cracked on fabrication. In addition, the structure exhibits damage tolerance under impact with projectiles, showing no penetration to the back face sheet. These attributes make the composite ideal for leading edge structures and control surfaces in aerospace vehicles, as well as for acreage thermal protection systems and in high-temperature, lightweight stiffened structures. By tailoring the coefficient of thermal expansion (CTE) of a carbon fiber containing ceramic matrix composite (CMC) face sheet to match that of a ceramic foam core, the face sheet and the core can be integrally fabricated without any delamination. Carbon and SiC are woven together in the reinforcing fabric. Integral densification of the CMC and the foam core is accomplished with chemical vapor deposition, eliminating the need for bond-line adhesive. This means there is no need to separately fabricate the core and the face sheet, or to bond the two elements together, risking edge delamination during use. Fibers of two or more types are woven together on a loom. The carbon and ceramic fibers are pulled into the same pick location during the weaving process. Tow spacing may be varied to accommodate the increased volume of the combined fiber tows while maintaining a target fiber volume fraction in the composite. Foam pore size, strut thickness, and ratio of face sheet to core thickness can be used to tailor thermal and mechanical properties. The anticipated CTE for the hybridized composite is managed by

  18. Improvement of the COP of the LiBr-Water Double-Effect Absorption Cycles

    Science.gov (United States)

    Shitara, Atsushi

    Prevention of the global warming has called for a great necessity for energy saving. This applies to the improvement of the COP of absorption chiller-heaters. We started the development of the high efficiency gas-fired double-effect absorption chiller-heater using LiBr-H2O to achieve target performance in short or middle term. To maintain marketability, the volume of the high efficiency machine has been set below the equal to the conventional machine. The absorption cycle technology for improving the COP and the element technology for downsizing the machine is necessary in this development. In this study, the former is investigated. In this report, first of all the target performance has been set at cooling COP of 1.35(on HHV), which is 0.35 higher than the COP of 1.0 for conventional machines in the market. This COP of 1.35 is practically close to the maximum limit achievable by double-effect absorption chiller-heater. Next, the design condition of each element to achieve the target performance and the effect of each mean to improve the COP are investigated. Moreover, as a result of comparing the various flows(series, parallel, reverse)to which the each mean is applied, it has been found the optimum cycle is the parallel flow.

  19. Low cycle fatigue improvement of powder metallurgy titanium alloy through thermomechanical treatment

    Institute of Scientific and Technical Information of China (English)

    LIU Bin; LIU Yong; HE Xiao-yu; TANG Hui-ping; CHEN Li-fang

    2008-01-01

    A low-cost β type Ti-1.5Fe-6.8Mo-4.8Al-1.2Nd (mass fraction, %)(T12LCC) alloy was produced by blended elemental powder metallurgy(P/M) method and subsequent thermomechanical treatment. Low cycle fatigue(LCF) behavior of P/M T12LCC alloy before and after thermomechanical treatment was studied. The results show that the LCF resistance of P/M titanium alloy is significantly enhanced through the thermomechanical treatment. The mechanisms for the improvement of LCF behavior are attributed to the elimination of residual pores, the microstructure refining and homogenization.

  20. Improved cycling behavior of ZEBRA battery operated at intermediate temperature of 175 °C

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.; Lemmon, John P.; Sprenkle, Vincent L.

    2014-03-01

    Operation of the sodium-nickel chloride battery at temperatures below 200°C reduces cell degradation and improves cyclability. One of the main technical issues with operating this battery at intermediate temperatures such as 175°C is the poor wettability of molten sodium on β”-alumina solid electrolyte (BASE), which causes reduced active area and limits charging. In order to overcome the poor wettability of molten sodium on BASE at 175°C, a Pt grid was applied on the anode side of the BASE using a screen printing technique. Cells with their active area increased by metallized BASEs exhibited deeper charging and stable cycling behavior.

  1. Design, simulation and modelling of auxiliary exoskeleton to improve human gait cycle.

    Science.gov (United States)

    Ashkani, O; Maleki, A; Jamshidi, N

    2016-11-28

    Exoskeleton is a walking assistance device that improves human gait cycle through providing auxiliary force and transferring physical load to the stronger muscles. This device takes the natural state of organ and follows its natural movement. Exoskeleton functions as an auxiliary device to help those with disabilities in hip and knee such as devotees, elderly farmers and agricultural machinery operators who suffer from knee complications. In this research, an exoskeleton designed with two screw jacks at knee and hip joints. To simulate extension and flexion movements of the leg joints, bearings were used at the end of hip and knee joints. The generated torque and motion angles of these joints obtained as well as the displacement curves of screw jacks in the gait cycle. Then, the human gait cycle was simulated in stance and swing phases and the obtained torque curves were compared. The results indicated that they followed the natural circle of the generated torque in joints with a little difference from each other. The maximum displacement obtained 4 and 6 cm in hip and knee joints jack respectively. The maximum torques in hip and knee joints were generated in foot contact phase. Also the minimum torques in hip and knee joints were generated in toe off and heel off phases respectively.

  2. Strength training improves 5-min all-out performance following 185 min of cycling.

    Science.gov (United States)

    Rønnestad, B R; Hansen, E A; Raastad, T

    2011-04-01

    To investigate the effects of heavy strength training on the mean power output in a 5-min all-out trial following 185 min of submaximal cycling at 44% of maximal aerobic power output in well-trained cyclists. Twenty well-trained cyclists were assigned to either usual endurance training combined with heavy strength training [E+S; n=11 (♂=11)] or to usual endurance training only [E; n=9 (♂=7, ♀=2)]. The strength training performed by E+S consisted of four lower body exercises [3 × 4-10 repetition maximum (RM)], which were performed twice a week for 12 weeks. E+S increased 1 RM in half-squat (P≤0.001), while no change occurred in E. E+S led to greater reductions than E in oxygen consumption, heart rate, blood lactate concentration, and rate of perceived exertion (P<0.05) during the last hour of the prolonged cycling. Further, E+S increased the mean power output during the 5-min all-out trial (from 371 ± 9 to 400 ± 13 W, P<0.05), while no change occurred in E. In conclusion, adding strength training to usual endurance training improves leg strength and 5-min all-out performance following 185 min of cycling in well-trained cyclists.

  3. An optimization approach to cycle quality network chain based on improved SCOR model

    Institute of Scientific and Technical Information of China (English)

    Renbin Xiao; Zhengying Cai; Xinhui Zhang

    2009-01-01

    Based on the improved supply chain operations reference (SCOR) model, a network-topology structure of cycle quality chain oper-ations reference (CQCOR) model is built up, which realizes the cycle operation by an added quality process of reverse manufacturing. The concept of cycle quality chain management is defined, and its cost structure is analyzed according to positive and reverse quality processes. If the quality level is controlled by the positive quality cost, then the reverse quality cost is a nonlinear function of quality level. All the quality processes are connected by acceptable probability, so the optimized objective function is described as a fuzzy multi-objective function comprising maximum of the total profit of quality chain, maximum of the recycling efficiency and maximum of environment protection and source saving. The effects of different quality policies on fuzzy rules are compared by a simplified example. When the policy of recycling efficiency dominates, the total quality profit will be less than that of maximum profit policy.

  4. Design and optimization of a novel organic Rankine cycle with improved boiling process

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Larsen, U.; Knudsen, Thomas;

    2015-01-01

    In this paper we present a novel organic Rankine cycle layout, named the organic split-cycle, designed for utilization of low grade heat. The cycle is developed by implementing a simplified version of the split evaporation concept from the Kalina split-cycle in the organic Rankine cycle in order...

  5. Fabrication of recyclable superhydrophobic cotton fabrics

    Science.gov (United States)

    Han, Sang Wook; Park, Eun Ji; Jeong, Myung-Geun; Kim, Il Hee; Seo, Hyun Ook; Kim, Ju Hwan; Kim, Kwang-Dae; Kim, Young Dok

    2017-04-01

    Commercial cotton fabric was coated with SiO2 nanoparticles wrapped with a polydimethylsiloxane (PDMS) layer, and the resulting material surface showed a water contact angle greater than 160°. The superhydrophobic fabric showed resistance to water-soluble contaminants and maintained its original superhydrophobic properties with almost no alteration even after many times of absorption-washing cycles of oil. Moreover, superhydrophobic fabric can be used as a filter to separate oil from water. We demonstrated a simple method of fabrication of superhydrophobic fabric with potential interest for use in a variety of applications.

  6. Fabrication of mitigation pits for improving laser damage resistance in dielectric mirrors by femtosecond laser machining

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, Justin E.; Qiu, S. Roger; Stolz, Christopher J.

    2011-03-20

    Femtosecond laser machining is used to create mitigation pits to stabilize nanosecond laser-induced damage in multilayer dielectric mirror coatings on BK7 substrates. In this paper, we characterize features and the artifacts associated with mitigation pits and further investigate the impact of pulse energy and pulse duration on pit quality and damage resistance. Our results show that these mitigation features can double the fluence-handling capability of large-aperture optical multilayer mirror coatings and further demonstrate that femtosecond laser macromachining is a promising means for fabricating mitigation geometry in multilayer coatings to increase mirror performance under high-power laser irradiation.

  7. Design and Fabrication of DebriSat - A Representative LEO Satellite for Improvements to Standard Satellite Breakup Models

    Science.gov (United States)

    Clark, S.; Dietrich, A.; Fitz-Coy, N.; Weremeyer, M.; Liou, J.-C.

    2012-01-01

    This paper discusses the design and fabrication of DebriSat, a 50 kg satellite developed to be representative of a modern low Earth orbit satellite in terms of its components, materials used, and fabrication procedures. DebriSat will be the target of a future hypervelocity impact experiment to determine the physical characteristics of debris generated after an on-orbit collision of a modern LEO satellite. The major ground-based satellite impact experiment used by DoD and NASA in their development of satellite breakup models was SOCIT, conducted in 1992. The target used for that experiment was a Navy transit satellite (40 cm, 35 kg) fabricated in the 1960's. Modern satellites are very different in materials and construction techniques than those built 40 years ago. Therefore, there is a need to conduct a similar experiment using a modern target satellite to improve the fidelity of the satellite breakup models. To ensure that DebriSat is truly representative of typical LEO missions, a comprehensive study of historical LEO satellite designs and missions within the past 15 years for satellites ranging from 1 kg to 5000 kg was conducted. This study identified modern trends in hardware, material, and construction practices utilized in recent LEO missions. Although DebriSat is an engineering model, specific attention is placed on the quality, type, and quantity of the materials used in its fabrication to ensure the integrity of the outcome. With the exception of software, all other aspects of the satellite s design, fabrication, and assembly integration and testing will be as rigorous as that of an actual flight vehicle. For example, to simulate survivability of launch loads, DebriSat will be subjected to a vibration test. As well, the satellite will undergo thermal vacuum tests to verify that the components and overall systems meet typical environmental standards. Proper assembly and integration techniques will involve comprehensive joint analysis, including the precise

  8. Photovoltaic fabrics

    Science.gov (United States)

    2015-04-22

    during wire fabrication. Weaving was demonstrated for both military-type nylon -cotton blend (NYCO) warp fibers and cotton-polyester warp fibers. A...Lowell, MA 01852 14. ABSTRACT This report describes a project to improve photovoltaic fabrics. It had four objectives: 1) Efficiency – make PV wires on...a continuous basis that exhibit 7% efficiency; 2) Automated Welding – demonstrate an automated means of interconnecting the electrodes of one wire

  9. Density improvement of Li{sub 2}TiO{sub 3} pebbles fabricated by wet process

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, K.; Kawamura, H. [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Fuchinoue, K.; Sawada, H.; Watarumi, K.

    1998-03-01

    Lithium titanate (Li{sub 2}TiO{sub 3}) has attracted the attention of many researchers from a point of tritium recovery at low temperature, chemical stability, etc.. The application of small Li{sub 2}TiO{sub 3} sphere has been proposed in some designs of fusion blanket. On the other hand, the wet process is most advantageous as the fabrication method of Li{sub 2}TiO{sub 3} pebbles from a point of mass production, and of reprocessing necessary for effective use of resources and reduction of radioactive wastes. In the preliminary fabrication test, density of Li{sub 2}TiO{sub 3} pebbles was about 40%T.D.. Therefore, in this study, density improvement tests and preliminary characterization of Li{sub 2}TiO{sub 3} pebbles by wet process were performed, noting the aging condition and sintering condition in the fabrication process of the gel-spheres. This study yielded Li{sub 2}TiO{sub 3} pebbles in target range of 80-85%T.D.. (author)

  10. Single-leg cycle training is superior to double-leg cycling in improving the oxidative potential and metabolic profile of trained skeletal muscle.

    Science.gov (United States)

    Abbiss, Chris R; Karagounis, Leonidas G; Laursen, Paul B; Peiffer, Jeremiah J; Martin, David T; Hawley, John A; Fatehee, Naeem N; Martin, James C

    2011-05-01

    Single-leg cycling may enhance the peripheral adaptations of skeletal muscle to a greater extent than double-leg cycling. The purpose of the current study was to determine the influence of 3 wk of high-intensity single- and double-leg cycle training on markers of oxidative potential and muscle metabolism and exercise performance. In a crossover design, nine trained cyclists (78 ± 7 kg body wt, 59 ± 5 ml·kg(-1)·min(-1) maximal O(2) consumption) performed an incremental cycling test and a 16-km cycling time trial before and after 3 wk of double-leg and counterweighted single-leg cycle training (2 training sessions per week). Training involved three (double) or six (single) maximal 4-min intervals with 6 min of recovery. Mean power output during the single-leg intervals was more than half that during the double-leg intervals (198 ± 29 vs. 344 ± 38 W, P training-induced increase in Thr(172)-phosphorylated 5'-AMP-activated protein kinase α-subunit for both groups (P Training-induced improvements in maximal O(2) consumption (3.9 ± 6.2% vs. 0.6 ± 3.6%) and time-trial performance (1.3 ± 0.5% vs. 2.3 ± 4.2%) were similar following both interventions. We conclude that short-term high-intensity single-leg cycle training can elicit greater enhancement in the metabolic and oxidative potential of skeletal muscle than traditional double-leg cycling. Single-leg cycling may therefore provide a valuable training stimulus for trained and clinical populations.

  11. Cotton fabric functionalisation with menthol/PCL micro- and nano-capsules for comfort improvement.

    Science.gov (United States)

    Mossotti, Raffaella; Ferri, Ada; Innocenti, Riccardo; Zelenková, Tereza; Dotti, Francesca; Marchisio, Daniele L; Barresi, Antonello A

    2015-01-01

    Cotton functionalisation with poly-ɛ-caprolactone (PCL) micro- and nano-capsules containing menthol was carried out with the aim of introducing a long-lasting refreshing sensation. The preparation of the polymer micro- and nano-capsules was carried out by solvent displacement technique. A confined impinging jets mixer was used in order to ensure fast mixing and generate a homogeneous environment where PCL and menthol can self-assemble. The micro- and nano-capsules and the functionalised fabrics were characterised by means of DSC, FT-IR spectroscopy and SEM imaging. Micro- and nano-capsules of different size, from about 200 to about 1200 nm, were obtained varying menthol to PCL ratio (from 0.76 to 8), overall concentration and flow rate (i.e. mixing conditions). The inclusion of menthol was confirmed by DSC analysis. A patch test was carried out by 10 volunteers. Micro-capsules were found to be effective in conferring the fabric a refreshing sensation without altering skin physiology.

  12. Experimental study of UC polycrystals in the prospect of improving the as-fabricated sample purity

    Science.gov (United States)

    Raveu, Gaëlle; Martin, Guillaume; Fiquet, Olivier; Garcia, Philippe; Carlot, Gaëlle; Palancher, Hervé; Bonnin, Anne; Khodja, Hicham; Raepsaet, Caroline; Sauvage, Thierry; Barthe, Marie-France

    2014-12-01

    Uranium and plutonium carbides are candidate fuels for Generation IV nuclear reactors. This study is focused on the characterization of uranium monocarbide samples. The successive fabrication steps were carried out under atmospheres containing low oxygen and moisture concentrations (typically less than 100 ppm) but sample transfers occurred in air. Six samples were sliced from four pellets elaborated by carbothermic reaction under vacuum. Little presence of UC2 is expected in these samples. The α-UC2 phase was indeed detected within one of these UC samples during an XRD experiment performed with synchrotron radiation. Moreover, oxygen content at the surface of these samples was depth profiled using a recently developed nuclear reaction analysis method. Large oxygen concentrations were measured in the first micron below the sample surface and particularly in the first 100-150 nm. UC2 inclusions were found to be more oxidized than the surrounding matrix. This work points out to the fact that more care must be given at each step of UC fabrication since the material readily reacts with oxygen and moisture. A new glovebox facility using a highly purified atmosphere is currently being built in order to obtain single phase UC samples of better purity.

  13. Improvement of distortion error for fabricating precision microparts using two-photon photopolymerization

    Science.gov (United States)

    Kim, Jung-Dae; Lee, Yong-Gu

    2016-07-01

    The manufacturing accuracy of microparts produced using two-photon polymerization depends on the accuracy of control of the positions of the focal spot. The accuracy becomes more important when these microparts need to be assembled into a whole with parts that are free to move in relation to each other. Ideally, the exact location of the movement of the focal spots in an optical system, no matter how complex it may be, can be solved using geometric optics. However, in reality, this is not so easy because of the complexity of optical systems and also due to the imperfections that lie between the design and the physical layout. We thus take a black-box approach such that the optical system is not examined but only the output result, and the command from the system is compared, interpreted and finally calibrated. The result is an extremely simple, yet very effective adaptation of the commanding of the focal spot that only requires the focal spot at the manufacturing plane to be monitored through a digital camera. We have also shown the effectiveness of the proposed method by fabricating a microstructure and measuring the fabrication error, which was found to be less than 3%.

  14. Improved cycling behavior of ZEBRA battery operated at intermediate temperature of 175°C

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong; Lemmon, John P.; Sprenkle, Vincent L.

    2014-03-01

    Operation of sodium-nickel chloride battery at temperatures lower than 200°C reduces cell degradation and improves the cyclability. One of the main technical issues in terms of operating this battery at intermediate temperatures such as 175°C is the poor wettability of molten sodium on β”-alumina solid electrolyte (BASE) causing reduced active area and limited charging . In order to overcome the problem related to poor wettability of Na melt on BASE at 175°C, Pt grid was applied on the anode side of BASE using a screen printing technique. Deeper charging and improved cycling behavior was observed on the cells with metalized BASEs due to extended active area.

  15. A synthesis of research needs for improving the understanding of atmospheric mercury cycling

    Directory of Open Access Journals (Sweden)

    L. Zhang

    2017-07-01

    Full Text Available This synthesis identifies future research needs in atmospheric mercury science, based on a series of review papers, as well as recent developments in field data collection, modeling analysis, and emission assessments of speciated atmospheric mercury. Research activities are proposed that focus on areas that we consider important. These include refinement of mercury emission estimations, quantification of dry deposition and air–surface exchange, improvement of the treatment of chemical mechanisms in chemical transport models, increase in the accuracy of oxidized mercury measurements, better interpretation of atmospheric mercury chemistry data, and harmonization of network operation. Knowledge gained in these research areas will significantly improve our understanding of atmospheric cycling from local to global scales.

  16. Marmoset: A programming project assignment framework to improve the feedback cycle for students, faculty and researchers

    Science.gov (United States)

    Spacco, Jaime W.

    We developed Marmoset, a system that improves the feedback cycle on programming assignments for students, faculty and researchers alike. Using automation, Marmoset substantially lowers the burden on faculty for grading programming assignments, allowing faculty to give students more rapid feedback on their assignments. To further improve the feedback cycle, Marmoset provides students with limited access to the results of the instructor's private test cases before the submission deadline using a novel token-based incentive system. This both encourages students to start their work early and to think critically about their work. Because students submit early, instructors can monitor all students' progress on test cases and identify where in projects students are having problems in order to update the project requirements in a timely fashion and make the best use of time in lectures, discussion sections, and office hours. To study in more detail the development process of students, Marmoset can be configured to transparently capture snapshots to a central repository every-time students save their files. These detailed development histories offer a unique, detailed perspective of each student's progress on a programming assignment, from the first line of code written and saved all the way through the final edit before the final submission. This type of data has proved extremely valuable for many uses, such as mining new bug patterns and evaluating existing bug-finding tools.

  17. A novel biofeedback cycling training to improve gait symmetry in stroke patients: a case series study.

    Science.gov (United States)

    Ambrosini, Emilia; Ferrante, Simona; Pedrocchi, Alessandra; Ferrigno, Giancarlo; Guanziroli, Eleonora; Molteni, Franco

    2011-01-01

    The restoration of walking ability is crucial for maximizing independent mobility among patients with stroke. Leg cycling is becoming an established intervention to supplement ambulation training for stroke patients with problems of unbalance and weakness. The aim of the study was to explore the feasibility of a biofeedback pedaling treatment and its effects on cycling and walking ability in chronic stroke patients. Three patients were included in the study. The training consisted of a 2-week treatment of 6 sessions, during which a visual biofeedback helped the participants in maintaining a symmetrical pedaling. Participants were assessed before, after training and at follow-up, by means of a pedaling test and gait analysis. Outcome measurements were the unbalance during pedaling, the temporal, spatial and symmetry parameters during walking. An intra-subject statistical analysis (ANOVA, p<;0.05) showed that all patients significantly decreased pedaling unbalance after treatment and maintained the improvements at follow-up. The training induced some gait pattern modifications in two patients: one significantly improved mean velocity and gait symmetry, while the other one reduced the compensation strategy of the healthy leg. The results demonstrated the feasibility of the treatment. If further trials on a larger and controlled scale confirmed the same results, this treatment, thanks to its safety and low price, could have a significant impact as a home-rehabilitation treatment.

  18. Facile fabrication of hierarchical ZnCo2O4/NiO core/shell nanowire arrays with improved lithium-ion battery performance.

    Science.gov (United States)

    Sun, Zhipeng; Ai, Wei; Liu, Jilei; Qi, Xiaoying; Wang, Yanlong; Zhu, Jianhui; Zhang, Hua; Yu, Ting

    2014-06-21

    We report a facile and controllable strategy for the fabrication of three-dimensional (3D) ZnCo2O4/NiO core/shell nanowire arrays (ZCO/NiO NWs) on nickel (Ni) foam substrates by a simple, cost-effective, two-step, solution-based method. Ultra-thin NiO nanosheets are revealed to grow uniformly on the porous ZnCo2O4 nanowires with many interparticle mesopores, resulting in the formation of 3D core/shell nanowire arrays with hierarchical architecture. In comparison with the pristine ZnCo2O4 nanowire arrays (ZCO NWs), the ZCO/NiO NWs exhibit significantly improved Li storage properties, in terms of higher capacity, enhanced rate capability and improved cycling stability when applied as binders and additive-free anode materials for lithium-ion batteries. The superior Li storage performance of the ZCO/NiO NWs could be attributed to the synergetic effect between the ZnCo2O4 core and the NiO shell, as well as its unique hierarchical architecture, which ensures a large specific surface area and good conductivity. Our results may offer very useful guidelines in scrupulously designing 3D core/shell nanowire-array electrodes using cheap, earth-abundant materials in energy storage applications.

  19. How can LCA approaches contribute to improve geo-cycles management

    Science.gov (United States)

    Carreiras, M.; Ferreira, A. J. D.; Esteves, T. C. J.; Delgado, F.; Andrade, F.; Franco, J.; Pereira, C. D.

    2012-04-01

    Climate change and land use have become a major challenge for mankind and the natural environment. Greenhouse gas (GHG) emissions released into the atmosphere in ever rapidly growing volumes are most likely to be responsible for this change. Carbon dioxide gas (CO2) is suggested to be the main cause of global warming. Carbon reduction is the key to preventing this, for example, by enhancing energy efficiency and mitigating carbon emissions by means of green energy and adjusting the use of natural resources. Different activities produce distinguish impacts, and each product generates specific impacts on nature. The impact of man activities in the geo-cycles is of paramount importance in what concerns long term sustainability. Nevertheless, the environmental and sustainability impacts of different approaches and techniques of ecosystem management is a difficult question that can be assessed using LCA techniques LCA is a technique to assess environmental impacts associated with all the stages of a product's life from-cradle-to-grave. Based on that, LCA can be effective in supporting the assessment of decision making on complex sustainability issues because it can integrate the diversity of impacts categories guise and it can be adapted to a large variety of contexts. By incorporating quantitative data LCA allows decision makers to include a full range of economic, environmental, social and technical criteria. The integrated framework is configured such that the pros and cons of alternative environmental and energy strategies can be measured in terms of their ability to achieve the overall goals and objectives of the sustainable development, while satisfying the pollution control requirements. Because it is holistic, integrate and dynamic, this approach represents a state of the art tool for enhance the sustainable development of a sector, allowing a more transparent and participated management, a basic instrument for improved competitiveness. This approach may serve

  20. Bottom-up fabrication of zwitterionic polymer brushes on intraocular lens for improved biocompatibility

    Science.gov (United States)

    Han, Yuemei; Xu, Xu; Tang, Junmei; Shen, Chenghui; Lin, Quankui; Chen, Hao

    2017-01-01

    Intraocular lens (IOL) is an efficient implantable device commonly used for treating cataracts. However, bioadhesion of bacteria or residual lens epithelial cells on the IOL surface after surgery causes postoperative complications, such as endophthalmitis or posterior capsular opacification, and leads to loss of sight again. In the present study, zwitterionic polymer brushes were fabricated on the IOL surface via bottom-up grafting procedure. The attenuated total reflection-Fourier transform infrared and contact angle measurements indicated successful surface modification, as well as excellent hydrophilicity. The coating of hydrophilic zwitterionic polymer effectively decreased the bioadhesion of lens epithelial cells or bacteria. In vivo intraocular implantation results showed good in vivo biocompatibility of zwitterionic IOL and its effectiveness against postoperative complications. PMID:28053528

  1. Improvement of the optical and morphological properties of microlens arrays fabricated by laser using a sol–gel coating

    Energy Technology Data Exchange (ETDEWEB)

    Nieto, Daniel, E-mail: daniel.nieto@usc.es [Microoptics and GRIN Optics Group, Applied Physics Department, Faculty of Physics, University of Santiago de Compostela, Santiago de Compostela E15782 (Spain); Gómez-Varela, Ana Isabel [Microoptics and GRIN Optics Group, Applied Physics Department, Faculty of Physics, University of Santiago de Compostela, Santiago de Compostela E15782 (Spain); Martín, Yolanda Castro [Instituto de Cerámica y Vidrio (CSIC), Kelsen 5, Campus de Cantoblanco, 28049 Madrid (Spain); O’Connor, Gerard M. [School of Physics, National Centre for Laser Applications, National University of Ireland, University Road, Galway (Ireland); Flores-Arias, María Teresa, E-mail: maite.flores@usc.es [Microoptics and GRIN Optics Group, Applied Physics Department, Faculty of Physics, University of Santiago de Compostela, Santiago de Compostela E15782 (Spain)

    2015-10-01

    Highlights: • Microlens arrays were fabricated on soda-lime glass using a Ti:Sapphire laser. • A SiO{sub 2} coating prepared via sol–gel route was used to improve the microlens quality. • The sol–gel coating was deposited at the microlens top surface using a dip coating. • Optical properties of the microlenses were improved by the coating. - Abstract: We present a simple, repeatable and non-contaminant method to improve the optical and morphological properties of microlens arrays. It consists on depositing hybrid SiO{sub 2} (TEOS, MTES) coatings via sol–gel route onto microlens arrays fabricated using a Ti:Sapphire Femtosecond Amplitude Systems S-pulse HP laser operating at 1030 nm. The deposited silica sol–gel layer reduces the surface roughness (quantified as the root mean square) and increases the quality of the interstices between the microlenses generated by the ablation process, thus improving the contrast and homogeneity of the foci of the microlens array. The proposed technique allows us to obtain microlenses with a diameter in the range of 15–20 μm and a depth of 1.5–15 μm. For the characterization of the micro-optical structures, the UV–visible spectroscopy, spectral ellipsometry, confocal microscopy and beam profilometry were used. The proof-of-principle presented in this paper can be used to improve the optical and morphological properties of micro-optical systems of different nature by tailoring the parameters involved in both the laser ablation and sol–gel processes comprising the starting materials, solvent and catalysts nature and concentration, hydrolysis ratio, aging time and/or deposition conditions.

  2. Increased Mesohippocampal Dopaminergic Activity and Improved Depression-Like Behaviors in Maternally Separated Rats Following Repeated Fasting/Refeeding Cycles

    Directory of Open Access Journals (Sweden)

    Jeong Won Jahng

    2012-01-01

    Full Text Available We have previously reported that rats that experienced 3 h of daily maternal separation during the first 2 weeks of birth (MS showed binge-like eating behaviors with increased activity of the hypothalamic-pituitary-adrenal axis when they were subjected to fasting/refeeding cycles repeatedly. In this study, we have examined the psychoemotional behaviors of MS rats on the fasting/refeeding cycles, together with their brain dopamine levels. Fasting/refeeding cycles normalized the ambulatory activity of MS rats, which was decreased by MS experience. Depression-like behaviors, but not anxiety, by MS experience were improved after fasting/refeeding cycles. Fasting/refeeding cycles did not significantly affect the behavioral scores of nonhandled (NH control rats. Fasting/refeeding cycles increased dopamine levels not only in the hippocampus but also in the midbrain dopaminergic neurons in MS rats, but not in NH controls. Results demonstrate that fasting/refeeding cycles increase the mesohippocampal dopaminergic activity and improve depression-like behaviors in rats that experienced MS. Together with our previous paper, it is suggested that increased dopamine neurotransmission in the hippocampus may be implicated in the underlying mechanisms by which the fasting/refeeding cycles induce binge-like eating and improve depression-like behaviors in MS rats.

  3. An audit cycle of consent form completion: A useful tool to improve junior doctor training

    Directory of Open Access Journals (Sweden)

    Catherine Leng

    2016-01-01

    Full Text Available Background: Consent for surgical procedures is an essential part of the patient's pathway. Junior doctors are often expected to do this, especially in the emergency setting. As a result, the aim of our audit was to assess our practice in consenting and institute changes within our department to maintain best medical practice. Methods: An audit of consent form completion was conducted in March 2013. Standards were taken from Good Surgical Practice (2008 and General Medical Council guidelines. Inclusion of consent teaching at a formal consultant delivered orientation programme was then instituted. A re-audit was completed to reassess compliance. Results: Thirty-seven consent forms were analysed. The re-audit demonstrated an improvement in documentation of benefits (91–100% and additional procedures (0–7.5%. Additional areas for improvement such as offering a copy of the consent form to the patient and confirmation of consent if a delay occurred between consenting and the procedure were identified. Conclusion: The re-audit demonstrated an improvement in the consent process. It also identified new areas of emphasis that were addressed in formal teaching sessions. The audit cycle can be a useful tool in monitoring, assessing and improving clinical practice to ensure the provision of best patient care.

  4. Improving the seasonal cycle and interannual variations of biomass burning aerosol sources

    Directory of Open Access Journals (Sweden)

    S. Generoso

    2003-01-01

    Full Text Available This paper suggests a method for improving current inventories of aerosol emissions from biomass burning. The method is based on the hypothesis that, although the total estimates within large regions are correct, the exact spatial and temporal description can be improved. It makes use of open fire detection from the ATSR instrument that is available since 1996. The emissions inventories are re-distributed in space and time according to the occurrence of open fires. Although the method is based on the night-time hot-spot product of the ATSR, other satellite biomass burning proxies (AVHRR, TRMM, GLOBSCAR and GBA2000 show similar distributions. The impact of the method on the emission inventories is assessed using an aerosol transport model, the results of which are compared to sunphotometer and satellite data. The seasonal cycle of aerosol load in the atmosphere is significantly improved in several regions, in particular South America and Australia. Besides, the use of ATSR fire detection may be used to account for interannual events, as is demonstrated on the large Indonesian fires of 1997, a consequence of the 1997-1998 El Niño. Despite these improvements, there are still some large discrepancies between the simulated and observed aerosol optical thicknesses resulting from biomass burning emissions.

  5. Does a non-circular chainring improve performance in the bicycle motocross cycling start sprint?

    Science.gov (United States)

    Mateo-March, Manuel; Fernández-Peña, Eneko; Blasco-Lafarga, Cristina; Morente-Sánchez, Jaime; Zabala, Mikel

    2014-01-01

    Maximising power output during the initial acceleration phase of a bicycle motocross (BMX) race increases the chance to lead the group for the rest of the race. The purpose of this study was to investigate the effect of non-circular chainrings (Q-ring) on performance during the initial acceleration phase of a BMX race. Sixteen male cyclists (Spanish National BMX team) performed two counterbalanced and randomized initial sprints (3.95s), using Q- ring vs. circular chainring, on a BMX track. The sample was divided into two different groups according to their performance (Elite; n = 8 vs. Cadet; n = 8). Elite group covered a greater distance using Q-ring (+0.26 m, p = 0.02; D = 0.23), whilst the improvement for the Cadet (+0.04 m) was not significant (p = 0.87; D = -0.02). Also, there was no significant difference in power output for the Elite group, while the Cadet group revealed larger peak power with the circular chainring. Neither lactate level, nor heart rate showed significant differences due to the different chainring used. The non-circular chainring improved the initial acceleration capacity only in the Elite riders. Key PointsThis work provides novel results demonstrating very significant improvements in the sprint performance of BMX cycling discipline using a non-circular chainring system.This study seeks a practical application from scientific analysisAll data are obtained in a real context of high competition using a sample comprised by the National Spanish Team.Some variables influencing performance as subjects' physical fitness are discussed.Technical equipment approved by International Cycling Union is studied to check its potentially beneficial influence on performance.

  6. Fabrication of Ge Nano-Dot Heterojunction Phototransistors for Improved Light Detection at 1.55 μm

    Institute of Scientific and Technical Information of China (English)

    SHI Wen-Hua; MAO Rong-Wei; ZHAO Lei; LUO Li-Ping; WANG Qi-Ming

    2006-01-01

    @@ Heterojunction phototransistors (HPTs) with several Ge/Si nano-dot layers as the absorption region are fabri cated to obtain improved light detectivity at 1.55 μm. The HPT detectors are of n-p-n type with ten layers of Ge(8ML)/Si(45nm) incorporated in the base-collector junction and are grown by an ultrahigh-vacuum chemical vapor-deposition system. The detectors are operated with normal incidence. Because of the good quality of the grown material and fabrication process, the dark current is only 0.71 pA/μm2 under 5 V bias and the break down voltage is over 20 V. Compared to the positive-intrinsic-negative (PIN) reference detector with the same absorption layer, the responsivity is improved over 17 times for normal incidence at 1.55 μm.

  7. Ingestion of sodium plus water improves cardiovascular function and performance during dehydrating cycling in the heat.

    Science.gov (United States)

    Hamouti, N; Fernández-Elías, V E; Ortega, J F; Mora-Rodriguez, R

    2014-06-01

    We studied if salt and water ingestion alleviates the physiological strain caused by dehydrating exercise in the heat. Ten trained male cyclists (VO2max : 60 ± 7 mL/kg/min) completed three randomized trials in a hot-dry environment (33 °C, 30% rh, 2.5 m/s airflow). Ninety minutes before the exercise, participants ingested 10 mL of water/kg body mass either alone (CON trial) or with salt to result in concentrations of 82 or 164 mM Na(+) (ModNa(+) or HighNa(+) trial, respectively). Then, participants cycled at 63% of VO2 m ⁢ a x for 120 min immediately followed by a time-trial. After 120 min of exercise, the reduction in plasma volume was lessened with ModNa(+) and HighNa(+) trials (-11.9 ± 2.1 and -9.8 ± 4.2%) in comparison with CON (-16.4 ± 3.2%; P performance by 7.4% above CON (∼ 289 ± 42 vs 269 ± 50 W, respectively; P dehydrating exercise in the heat without thermoregulatory effects. However, it maintains cardiovascular function and improves cycling performance.

  8. Life Cycle Considerations for Improving Sustainability Assessments in Seafood Awareness Campaigns

    Science.gov (United States)

    Pelletier, Nathan; Tyedmers, Peter

    2008-11-01

    It is widely accepted that improving the sustainability of seafood production requires efforts to reverse declines in global fisheries due to overfishing and to reduce the impacts to host ecosystems from fishing and aquaculture production technologies. Reflective of on-going dialogue amongst participants in an international research project applying Life Cycle Assessment to better understand and manage global salmon production systems, we argue here that such efforts must also address the wider range of biophysical, ecological, and socioeconomic impacts stemming from the material and energetic throughput associated with these industries. This is of particular relevance given the interconnectivity of global environmental change, ocean health, and the viability of seafood production in both fisheries and aquaculture. Although the growing popularity of numerous ecolabeling, certification, and consumer education programs may be making headway in influencing Western consumer perceptions of the relative sustainability of alternative seafood products, we also posit that the efficacy of these initiatives in furthering sustainability objectives is compromised by the use of incomplete criteria. An emerging body of Life Cycle Assessment research of fisheries and aquaculture provides valuable insights into the biophysical dimensions of environmental performance in alternative seafood production and consumption systems, and should be used to inform a more holistic approach to labeling, certifying, and educating for sustainability in seafood production. More research, however, must be undertaken to develop novel techniques for incorporating other critical dimensions, in particular, socioeconomic considerations, into our sustainability decision-making.

  9. Life cycle considerations for improving sustainability assessments in seafood awareness campaigns.

    Science.gov (United States)

    Pelletier, Nathan; Tyedmers, Peter

    2008-11-01

    It is widely accepted that improving the sustainability of seafood production requires efforts to reverse declines in global fisheries due to overfishing and to reduce the impacts to host ecosystems from fishing and aquaculture production technologies. Reflective of on-going dialogue amongst participants in an international research project applying Life Cycle Assessment to better understand and manage global salmon production systems, we argue here that such efforts must also address the wider range of biophysical, ecological, and socioeconomic impacts stemming from the material and energetic throughput associated with these industries. This is of particular relevance given the interconnectivity of global environmental change, ocean health, and the viability of seafood production in both fisheries and aquaculture. Although the growing popularity of numerous ecolabeling, certification, and consumer education programs may be making headway in influencing Western consumer perceptions of the relative sustainability of alternative seafood products, we also posit that the efficacy of these initiatives in furthering sustainability objectives is compromised by the use of incomplete criteria. An emerging body of Life Cycle Assessment research of fisheries and aquaculture provides valuable insights into the biophysical dimensions of environmental performance in alternative seafood production and consumption systems, and should be used to inform a more holistic approach to labeling, certifying, and educating for sustainability in seafood production. More research, however, must be undertaken to develop novel techniques for incorporating other critical dimensions, in particular, socioeconomic considerations, into our sustainability decision-making.

  10. Concentrated Electrolyte for the Sodium-Oxygen Battery: Solvation Structure and Improved Cycle Life.

    Science.gov (United States)

    He, Mingfu; Lau, Kah Chun; Ren, Xiaodi; Xiao, Neng; McCulloch, William D; Curtiss, Larry A; Wu, Yiying

    2016-12-05

    Alkali metal-oxygen batteries are of great interests for energy storage because of their unparalleled theoretical energy densities. Particularly attractive is the emerging Na-O2 battery because of the formation of superoxide as the discharge product. Dimethyl sulfoxide (DMSO) is a promising solvent for this battery but its instability towards Na makes it impractical in the Na-O2 battery. Herein we report the enhanced stability of Na in DMSO solutions containing concentrated sodium trifluoromethanesulfonimide (NaTFSI) salts (>3 mol kg(-1) ). Raman spectra of NaTFSI/DMSO electrolytes and ab initio molecular dynamics simulation reveal the Na(+) solvation number in DMSO and the formation of Na(DMSO)3 (TFSI)-like solvation structure. The majority of DMSO molecules solvating Na(+) in concentrated solutions reduces the available free DMSO molecules that can react with Na and renders the TFSI anion decomposition, which protects Na from reacting with the electrolyte. Using these concentrated electrolytes, Na-O2 batteries can be cycled forming sodium superoxide (NaO2 ) as the sole discharge product with improved long cycle life, highlighting the beneficial role of concentrated electrolytes for Na-based batteries.

  11. Improving the Cycling Life of Aluminum and Germanium Thin Films for use as Anodic Materials in Li-Ion Batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Hudak, Nicholas [Dominican Univ., River Forest, IL (United States); Huber, Dale L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gulley, Gerald [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    The cycling of high-capacity electrode materials for lithium-ion batteries results in significant volumetric expansion and contraction, and this leads to mechanical failure of the electrodes. To increase battery performance and reliability, there is a drive towards the use of nanostructured electrode materials and nanoscale surface coatings. As a part of the Visiting Faculty Program (VFP) last summer, we examined the ability of aluminum oxide and gold film surface coatings to improve the mechanical and cycling properties of vapor-deposited aluminum films in lithium-ion batteries. Nanoscale gold coatings resulted in significantly improved cycling behavior for the thinnest aluminum films whereas aluminum oxide coatings did not improve the cycling behavior of the aluminum films. This summer we performed a similar investigation on vapor-deposited germanium, which has an even higher theoretical capacity per unit mass than aluminum. Because the mechanism of lithium-alloying is different for each electrode material, we expected the effects of coating the germanium surface with aluminum oxide or gold to differ significantly from previous observations. Indeed, we found that gold coatings gave only small or negligible improvements in cycling behavior of germanium films, but aluminum oxide (Al2O3) coatings gave significant improvements in cycling over the range of film thicknesses tested.

  12. Trapping truffle production in holes: a promising technique for improving production and unravelling truffle life cycle

    Directory of Open Access Journals (Sweden)

    Claude Murat

    2016-10-01

    Full Text Available The Périgord black truffle, Tuber melanosporum Vittad., is an ectomycorrhizal fungus that forms edible hypogeous ascomata. It is now harvested in plantations and is recognized as an agricultural product by European policy. Empirical techniques without scientific demonstration of their efficiency are often used to improve the production of truffles in plantations. One of these techniques is “truffle trapping” which consists in practicing holes inside the potential productive area and to fill them with a substrate containing ascospores. We report an experiment in a truffle orchard where 784 holes were set under 196 trees. Two years after the installation of the holes, 95% of the truffles were found inside the holes corresponding to only 5% of the productive area. This study confirms the efficiency of this empirical technique and demonstrates new ways for in situ studies of the truffle life cycle.

  13. Endurance training of respiratory muscles improves cycling performance in fit young cyclists

    Directory of Open Access Journals (Sweden)

    Holm Paige

    2004-05-01

    Full Text Available Abstract Background Whether or not isolated endurance training of the respiratory muscles improves whole-body endurance exercise performance is controversial, with some studies reporting enhancements of 50 % or more, and others reporting no change. Twenty fit (VO2 max 56.0 ml/kg/min, experienced cyclists were randomly assigned to three groups. The experimental group (n = 10 trained their respiratory muscles via 20, 45 min sessions of hyperpnea. The placebo group (n = 4 underwent "sham" training (20, 5 min sessions, and the control group (n = 6 did no training. Results After training, the experimental group increased their respiratory muscle endurance capacity by 12 %. Performance on a bicycle time trial test designed to last about 40 min improved by 4.7 % (9 of 10 subjects showed improvement. There were no test-re-test improvements in either respiratory muscle or bicycle exercise endurance performance in the placebo group, nor in the control group. After training, the experimental group had significantly higher ventilatory output and VO2, and lower PCO2, during constant work-rate exercise; the placebo and control groups did not show these changes. The perceived respiratory effort was unchanged in spite of the higher ventilation rate after training. Conclusions The results suggest that respiratory muscle endurance training improves cycling performance in fit, experienced cyclists. The relative hyperventilation with no change in respiratory effort sensations suggest that respiratory muscle training allows subjects to tolerate the higher exercise ventilatory response without more dyspnea. Whether or not this can explain the enhanced performance is unknown.

  14. ECONOMICS AND FEASIBILITY OF RANKINE CYCLE IMPROVEMENTS FOR COAL FIRED POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Richard E. Waryasz; Gregory N. Liljedahl

    2004-09-08

    ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL), American Electric Company (AEP) and Parsons Energy and Chemical Group to conduct a comprehensive study evaluating coal fired steam power plants, known as Rankine Cycles, equipped with three different combustion systems: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}). Five steam cycles utilizing a wide range of steam conditions were used with these combustion systems. The motivation for this study was to establish through engineering analysis, the most cost-effective performance potential available through improvement in the Rankine Cycle steam conditions and combustion systems while at the same time ensuring that the most stringent emission performance based on CURC (Coal Utilization Research Council) 2010 targets are met: > 98% sulfur removal; < 0.05 lbm/MM-Btu NO{sub x}; < 0.01 lbm/MM-Btu Particulate Matter; and > 90% Hg removal. The final report discusses the results of a coal fired steam power plant project, which is comprised of two parts. The main part of the study is the analysis of ten (10) Greenfield steam power plants employing three different coal combustion technologies: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}) integrated with five different steam cycles. The study explores the technical feasibility, thermal performance, environmental performance, and economic viability of ten power plants that could be deployed currently, in the near, intermediate, and long-term time frame. For the five steam cycles, main steam temperatures vary from 1,000 F to 1,292 F and pressures from 2,400 psi to 5,075 psi. Reheat steam temperatures vary from 1,000 F to 1,328 F. The number of feedwater heaters varies from 7 to 9 and the associated feedwater temperature varies from 500 F to 626 F. The main part of the

  15. Acclimation training improves endurance cycling performance in the heat without inducing endotoxemia

    Directory of Open Access Journals (Sweden)

    Joshua Guy

    2016-07-01

    Full Text Available Purpose: While the intention of endurance athletes undertaking short term heat training protocols is to rapidly gain meaningful physical adaption prior to competition in the heat, it is currently unclear whether or not this process also presents an overt, acute challenge to the immune system. The aim of this study was therefore to examine the effects of heat training on both endurance performance and biomarkers associated with inflammatory and immune system responses. Methods: Moderately-actively males (n=24 were allocated randomly to either HOT (n=8, 35oC and 70% RH; NEUTRAL (n=8, 20oC and 45% RH; or a non-exercising control group, (CON, n=8. Over the 18 day study HOT and NEUTRAL performed seven training sessions (40 min cycling at 55% of V̇O2 max and all participants completed three heat stress tests (HST at 35oC and 70% RH. The HST protocol comprised three x sub-maximal intervals followed by a 5 km time trial on a cycle ergometer. Serum samples were collected before and after each HST and analysed for interleukin-6, immunoglobulin M and lipopolysaccharide. Results: Both HOT and NEUTRAL groups experienced substantial improvement to 5 km time trial performance (HOT -33 ± 20 s, p = 0.02, NEUTRAL -39 ± 18 s, p = 0.01 but only HOT were faster (-45 ± 25 s and -12 s ± 7 s, p = 0.01 in HST3 compared to baseline and HST2. Interleukin-6 was elevated after exercise for all groups however there were no significant changes for immunoglobulin M or lipopolysaccharide. Conclusions: Short-term heat training enhances 5 km cycling time trial performance in moderately-fit subjects by ~6%, similar in magnitude to exercise training in neutral conditions. Three top-up training sessions yielded a further 3% improvement in performance for the HOT group. Furthermore, the heat training did not pose a substantial challenge to the immune system.

  16. A facile fabrication of nitrogen-doped electrospun In2O3 nanofibers with improved visible-light photocatalytic activity

    Science.gov (United States)

    Lu, Na; Shao, Changlu; Li, Xinghua; Miao, Fujun; Wang, Kexin; Liu, Yichun

    2017-01-01

    Semiconductor photocatalysis demonstrates to be an effective approach for eliminating most types of environment contaminants and for producing hydrogen. Herein, a facile synthesis route combining electrospinning technique and thermal treatment method under NH3 atmosphere has been presented as a straightforward protocol for the fabrication of nitrogen-doped In2O3 (N-In2O3) nanofibers, the nitrogen content of which can be well controlled by adjusting the annealing temperature. Photocatalytic tests show that the N-In2O3 nanofibers demonstrate an improved degradation rate of Rhodamine B (RB) compared with pure In2O3 nanofibers under visible-light irradiation. This can be attributed to the nitrogen atom introducing at interstitial sites as well as the generation of oxygen vacancy on the surface of In2O3 nanofibers, resulting in the enhanced utilization of visible light for the N-In2O3 nanofibers. Furthermore, the obtained N-In2O3 nanofibers with the advantage of ultra-long one-dimensional nanostructures can be recycled several times by facile sedimentation and hence present almost no decrease in photocatalytic activity indicative of a well regeneration capability. Therefore, the as-fabricated nitrogen-doped In2O3 nanofibers as a promising photocatalyst present good photocatalytic degradation of organic pollutant in waste water for practical application.

  17. Fabrication of Silicon Backshorts with Improved Out-of-Band Rejection for Waveguide-Coupled Superconducting Detectors

    Science.gov (United States)

    Crowe, Erik J.; Bennett, Charles L.; Chuss, David T.; Denis, Kevin L.; Eimer, Joseph; Lourie, Nathan; Marriage, Tobias; Moseley, Samuel H.; Rostem, Karwan; Stevenson, Thomas R.; Towner, Deborah; U-yen, Kongpop; Wollack, Edward J.

    2012-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a ground-based instrument that will measure the polarization of the cosmic microqave background to search for gravitational waves form a posited epoch of inflation early in the universe's history. This measurement will require integration of superconducting transition-edge sensors with microwave waveguide inputs with good conrol of systematic errors, such as unwanted coupling to stray signals at frequencies outside of a precisely defined microwave band. To address these needs we will present work on the fabrication of silicon quarter-wave backshorts for the CLASS 40GHz focal plane. The 40GHz backshort consists of three degeneratively doped silicon wafers. Two spacer wafers are micromachined with through wafer vins to provide a 2.0mm long square waveguide. The third wafer acts as the backshort cap. The three wafers are bonded at the wafer level by Au-Au thermal compression bonding then aligned and flip chip bonded to the CLASS detector at the chip level. The micromachining techniques used have been optimized to create high aspect ratio waveguides, silicon pillars, and relief trenches with the goal of providing improved out of band signal rejection. We will discuss the fabrication of integrated CLASS superconducting detectors with silicon quarter wave backshorts and present current measurement results.

  18. Fabrication of flexible silver nanowire conductive films and transmittance improvement based on moth-eye nanostructure array

    Science.gov (United States)

    Zhang, Chengpeng; Zhu, Yuwen; Yi, Peiyun; Peng, Linfa; Lai, Xinmin

    2017-07-01

    Transparent conductive electrodes (TCEs) are widely used in optoelectronic devices, such as touch screens, liquid-crystal displays and light-emitting diodes. To date, the material of the most commonly used TCEs was indium-tin oxide (ITO), which had several intrinsic drawbacks that limited its applications in the long term, including relatively high material cost and brittleness. Silver nanowire (AgNW), as one of the alternative materials for ITO TCEs, has already gained much attention all over the world. In this paper, we reported a facile method to greatly enhance the transmittance of the AgNW TCEs without reducing the electrical conductivity based on moth-eye nanostructures, and the moth-eye nanostructures were fabricated by using a roll-to-roll ultraviolet nanoimprint lithography process. Besides, the effects of mechanical pressure and bending on the moth-eye nanostructure layer were also investigated. In the research, the optical transmittance of the flexible AgNW TCEs was enhanced from 81.3% to 86.0% by attaching moth-eye nanostructures onto the other side of the flexible polyethylene terephthalate substrate while the electrical conductivity of the AgNW TCEs was not sacrificed. This research can provide a direction for the cost-effective fabrication of moth-eye nanostructures and the transmittance improvement of the flexible transparent electrodes.

  19. COMPARATIVE STUDY OF EXHAUSTION AND PAD-STEAM METHODS FOR IMPROVEMENT OF HANDLE, DYE UPTAKE AND WATER ABSORPTION OF POLYESTER/COTTON FABRIC

    Directory of Open Access Journals (Sweden)

    Aminoddin Haji

    2011-09-01

    Full Text Available In this study, a pad-steam process for treatment of polyester/cotton fabric with sodium hydroxide is developed and the effects of process parameters on selected properties of the fabric are investigated. The results are compared with the conventional exhaustion process. Both processes improved the handle, dyeability and water absorption of the polyester/cotton fabric, but the pad-steam process has the advantages of less strength loss of the fibers, shorter treatment time, lower consumption of water and chemicals that make the process less hazardous to the environment.

  20. A technique for recording polycrystalline structure and orientation during in situ deformation cycles of rock analogues using an automated fabric analyser.

    Science.gov (United States)

    Peternell, M; Russell-Head, D S; Wilson, C J L

    2011-05-01

    Two in situ plane-strain deformation experiments on norcamphor and natural ice using synchronous recording of crystal c-axis orientations have been performed with an automated fabric analyser and a newly developed sample press and deformation stage. Without interrupting the deformation experiment, c-axis orientations are determined for each pixel in a 5 × 5 mm sample area at a spatial resolution of 5 μm/pixel. In the case of norcamphor, changes in microstructures and associated crystallographic information, at a strain rate of ∼2 × 10(-5) s(-1), were recorded for the first time during a complete in situ deformation-cycle experiment that consisted of an annealing, deformation and post-deformation annealing path. In the case of natural ice, slower external strain rates (∼1 × 10(-6) s(-1)) enabled the investigation of small changes in the polycrystal aggregate's crystallography and microstructure for small amounts of strain. The technical setup and first results from the experiments are presented. © 2010 The Authors Journal of Microscopy © 2010 Royal Microscopical Society.

  1. Using life cycle assessment to address stakeholders' potential for improving municipal solid waste management.

    Science.gov (United States)

    de Andrade Junior, Milton Aurelio Uba; Zanghelini, Guillherme Marcelo; Soares, Sebastião Roberto

    2017-05-01

    Because the consumption of materials is generally higher than their recovery rate, improving municipal solid waste (MSW) management is fundamental for increasing the efficiency of natural resource use and consumption in urban areas. More broadly, the characteristics of a MSW management system influence the end-of-life (EOL) impacts of goods consumed by households. We aim to indicate the extent to which greenhouse gas emissions from a MSW management system can be reduced by increasing waste paper recycling. We also address the stakeholders' contribution for driving transition towards an improved scenario. Life cycle assessment (LCA) addresses the EOL impacts of the paper industry, driven by the characteristics of MSW management in Florianópolis, Brazil, by varying the level of stakeholders' commitment through different recycling scenarios. The results show that 41% of the climate change impacts from waste paper management could be reduced when increasing the waste paper recycling rates and reducing waste paper landfilling. To achieve such emissions reduction, the industry contribution to the MSW management system would have to increase from 17% in the business-as-usual scenario to 74% in the target scenario. We were able to measure the differences in stakeholders' contribution by modelling the MSW management system processes that are under the industry's responsibility separately from the processes that are under the government's responsibility, based on the Brazilian legal framework. The conclusions indicate that LCA can be used to support policy directions on reducing the impacts of MSW management by increasing resource recovery towards a circular economy.

  2. Fabrication of ZnO Nanoneedle/nanocolumn Composite Films and Annealing Induced Improvement in Their Microstructural and Photoluminescence Characteristics

    Institute of Scientific and Technical Information of China (English)

    Dongjiang QIU; Ping YU; Yintu JIANG; Huizhen WU

    2006-01-01

    ZnO nanoneedle/nanocolumn (NN/NC) composite films were grown via reactive electron beam evaporation(REBE) in the NH3/H2 gaseous mixture by using polycrystalline ZnO ceramic targets as source materials. The growth was performed at low substrate temperatures (450~500℃) without employing any metallic catalysts.As-prepared samples were then rapidly annealed in O2 ambient at a higher temperature (600℃). Electron microscopic observations revealed the typical composite-structured morphologies of NN/NC/substrate of ZnO nanomaterials grown at 500℃. Such unique morphologies should render potential applications, for instance,as an efficient microwave absorption material utilized in the fabrication of concealed aerostat. In addition,X-ray diffraction and photoluminescence measurements showed remarkable improvement in crystal and optical qualities of ZnO NN/NC composite films after annealing.

  3. Improved simulation of the terrestrial hydrological cycle in permafrost regions by the Community Land Model

    Directory of Open Access Journals (Sweden)

    Sean Claude Swenson

    2012-08-01

    Full Text Available Plausible predictions of future climate require realistic representations of past and current climate. Simulations of the distribution of permafrost in the 21st century made with the Community Climate System Model (CCSM4 indicate that substantial decreases in permafrost extent can be expected, especially under high emissions scenarios. One of the implications of permafrost loss is the potential release of carbon from newly thawed soils into the atmosphere, thus raising its concentration of greenhouse gases and amplifying the initial warming trend. However, the biogeochemical cycle simulated by CCSM4 presents significant biases in carbon fluxes such as gross primary production, net primary production, and vegetation carbon storage in permafrost regions. The biases in the carbon cycle simulated by CCSM4 are in part due to excessively dry soils in permafrost regions. In this study, we show that the CCSM4 dry soil bias results from the model's formulation of soil hydraulic permeability when soil ice is present. The calculation of the hydraulic properties of frozen soils is first modified by replacing their dependence on total water content with liquid water content only. Then an ice impedance function having a power-law form is incorporated. When the parameterization of the hydraulic properties of frozen soil is corrected, the model simulates significantly higher moisture contents in near-surface soils in permafrost regions, especially during spring. This result is validated qualitatively by comparing soil moisture profiles to descriptions based on field studies, and quantitatively by comparing simulated hydrographs of two large Siberian rivers to observed hydrographs. After the dry soil bias is reduced, the vegetation productivity simulated by the model is improved, which is manifested in leaf area indices that at some locations are twice as large as in the original model.

  4. Improved communication with the laboratory for the fabrication of labial veneers.

    Science.gov (United States)

    Schwartzman, Aaron; Zweig, Alan E

    2015-04-01

    Advances in dental materials and adhesive technologies have changed the way we practice dentistry. Consequently, restorative dentistry has seen the adoption and almost exponential increase in usage of materials like zirconia and lithium disilicate. Unlike the incidence of ceramic failure in the past, these newer materials are paving the road to better looking dentistry. This paper focuses on lithium disilicate and predominantly glassy ceramics, as well as improving communication with the laboratory.

  5. Design Improvement For Preventing Discharge During Fabrication Of Electrostatic Energy Harvester

    Science.gov (United States)

    Miwatani, N.; Fujita, T.; Kitagawa, Y.; Kanda, K.; Maenaka, K.

    2016-11-01

    This paper reports an improvement of structure design of bipolar charged electret energy harvester to prevent an electrical discharge during a corona charging process on electret. We confirmed that differential output power of 33μW is obtained with 8.8 g at 350 Hz sinusoidal vibration from the developed device. By using a commercially available power management IC, regulated voltage of 1.8 V is properly obtained and can drive a load resistance more than 500 kΩ.

  6. Standardization of Buckypaper composite actuator fabrication process and improvement of force generation

    Science.gov (United States)

    DeGraff, Joshua

    The Buckypaper/Nafion composite actuator (BCA) is promising for lightweight and micro-robotic system applications. Lightweight BCA provides an energy-efficient and flexible design to achieve muscle-like actuation for micro-actuator applications. The BCA encompasses of a solid Nafion electrolyte stacked between two conductive carbon nanotube thin thins or Buckypaper (BP) sheets. As an ionic electro-active polymer (iEAP), Nafion's response to an electrical signal is similar to the electrochemical response of biological muscles. The adhesion between the electrolyte film and the electrode materials is critical to the actuator performance. BCA manufacturing avoids the complexities of repetitive metallic plating, as BP supplies a high surface area film of conductive carbon nanotubes. Since the actuator's charging occurs where the constituent materials come in contact, a standard manufacturing process needs to be developed to ensure repeatability. This research includes two focuses. The first focus pertains to optimizing the ion-exchange processes that improve Nafion's ionic transport properties. The second focus is to strengthening the interaction between Nafion and Buckypaper, which will ensure effective charge accumulation at the interface and improve the BCA's mechanical properties relevant to force exertion. The research presents a novel BCA manufacturing approach to achieve excellent repeatability and significantly improves the BCA's mechanical properties.

  7. Improved continuity of reduced graphene oxide on polyester fabric by use of polypyrrole to achieve a highly electro-conductive and flexible substrate

    Energy Technology Data Exchange (ETDEWEB)

    Berendjchi, Amirhosein [Department of Textile Engineering, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Khajavi, Ramin, E-mail: khajavi@azad.ac.ir [Nano Technology Research Center, South Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Yousefi, Ali Akbar [Faculty of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of); Yazdanshenas, Mohammad Esmail [Department of Textile Engineering, Yazd Branch, Islamic Azad University, Yazd (Iran, Islamic Republic of)

    2016-02-15

    Graphical abstract: - Highlights: • Discontinuity of reduced graphene oxide (RGO) coated polyester fabric (PET) substrate was overcome by filling the gaps by in situ chemical oxidative polymerization of polypyrrole (PPy). • The RGO–PPy coated samples exhibited 53% and 263% lower surface resistivity values (5 Ω/sq) than samples coated only with PPy (12 Ω/sq) and RGO (1300 Ω/sq), respectively. • The RGO–PPy coated fabric displayed other properties, such as excellent UV blocking (UPF = 73), antibacterial activity, improved electrochemical behavior and thermal stability which make it a multifunctional fabric. - Abstract: A flexible and highly conductive fabric can be applied for wearable electronics and as a pliable counter electrode for photovoltaics. Methods such as surface coating of fabrics with conductive polymers and materials have been developed, but the roughness of fabric is a challenge because it creates discontinuity in the coated layer. The present study first coated polyethylene terephthalate (PET) fabric with reduced graphene oxide sheets; RGO and then filled the gaps with polypyrrole (PPy). The samples were first dipped in graphene oxide (GO) and then reduced to RGO. They were next coated with PPy by in situ polymerization. The results showed that the presence of oxidative agent during synthesis of PPy oxidized the RGO to some extent on the previously RGO-coated samples. PPy was more uniform on samples pre-coated with RGO in comparison those coated with raw PET. The RGO–PPy coated samples exhibited 53% and 263% lower surface resistivity values than samples coated only with PPy and RGO, respectively. There was no significant difference between the tenacity of samples but the bending rigidity of samples increased. The RGO–PPy coated fabric displayed properties, such as excellent UV blocking (UPF = 73), antibacterial activity, improved electrochemical behavior and thermal stability which make it a multifunctional fabric.

  8. Improvement in safety and cycle life of lithium-ion batteries by employing quercetin as an electrolyte additive

    Science.gov (United States)

    Lee, Meng-Lun; Li, Yu-Han; Yeh, Jien-Wei; Shih, Han C.

    2012-09-01

    Quercetin, an organic antioxidant, has been employed as an additive in lithium-ion cells to enhance the electrochemical performance to enhance the cycle life and the overcharging characteristics of LiPF6/EC + EMC + DMC (1 M) when used as an electrolyte. A LiCoO2/graphite full cell with 0.05% quercetin showed a significant improvement in safety associated with overcharging tolerance and thermal stability, without causing damage in C-rate capability, and even a small improvement in cycle life performance. The quercetin-containing lithium battery showed an improvement in its electrochemical properties with 92% capacity retention after 350 cycles from 2.8 to 4.3 V, at a rate of 1 C; compared to 85% capacity retention for a cell without quercetin operated under the same conditions. The electrochemical impedance spectroscopy (EIS) results for the LiCoO2 cathode show that the addition of 0.05% quercetin provides a significant suppression in the impedance of the cell after 60 cycles. The improvement might result from the formation of a passivation microstructure (from quercetin oxidation) on the electrode's surface. The quercetin-containing batteries provided long term cycling and a high safety performance, making them a viable power source for applications involving electric devices with significant safety requirements.

  9. Sintered cadmium telluride nanocrystal photovoltaics: Improving chemistry to facilitate roll-to-roll fabrication

    Science.gov (United States)

    Kurley, James Matthew, III

    Recent interest in clean, renewable energy has increased importance on cost-effective and materials efficient deposition methods. Solution-processed solar cells utilizing cadmium telluride nanocrystal inks offer a viable method for reducing cost, increasing materials effectiveness, and decreasing the need for fossil fuels in the near future. Initial work focused on developing a useful platform for testing new chemistries for solubilizing and depositing nanocrystal inks. Layer-by-layer deposition using a combination of spincoating, cadmium chloride treatment, and annealing created a photovoltaic-grade CdTe absorber layer. In conjunction with layer-by-layer deposition, a device architecture of ITO/CdTe/ZnO/Al was utilized to create power conversion efficiencies of over 12% with the help of current/light soaking. Detailed exploration of device geometry, capacitance measurements, and intensity- and temperature-dependent testing determined the ITO/CdTe interface required additional scrutiny. This initial investigation sparked three new. avenues of research: create an Ohmic contact to CdTe, remove the cadmium chloride bath treatment, and create a roll-to-roll friendly process. Improved contact between ITO and CdTe was achieved by using a variety of materials already proven to create Ohmic contact to CdTe. While most of these materials were previously employed using standard approaches, solution-processed analogs were explored. The cadmium chloride bath treatment proved inconsistent, wasteful, and difficult to utilize quickly. It was removed by using trichlorocadmate-capped nanocrystals to combine the semiconductor with the required grain growth agent. To establish roll-to-roll friendly process, the deposition method was improved, heating source changed, and cadmium chloride bath step was removed. Spraycoating or doctor-blading the trichlorocadmate-capped nanocrystals followed by annealing with an IR lamp established a process that can deposit CdTe in a high throughput

  10. Solid state field-cycling NMR relaxometry: instrumental improvements and new applications.

    Science.gov (United States)

    Fujara, Franz; Kruk, Danuta; Privalov, Alexei F

    2014-10-01

    The paper reviews recent progress in field cycling (FC) NMR instrumentation and its application to solid state physics. Special emphasis is put on our own work during the last 15years on instrumentation, theory and applications. As far as instrumentation is concerned we report on our development of two types of electronical FC relaxometers, a mechanical FC relaxometer and a combination of FC and one-dimensional microimaging. Progress has been achieved with respect to several parameters such as the accessible field and temperature range as well as the incorporation of sample spinning. Since an appropriate analysis of FC data requires a careful consideration of relaxation theory, we include a theory section discussing the most relevant aspects of relaxation in solids which are related to residual dipolar and quadrupolar interactions. The most important limitations of relaxation theory are also discussed. With improved instrumentation and with the help of relaxation theory we get access to interesting new applications such as ionic motion in solid electrolytes, structure determination in molecular crystals, ultraslow polymer dynamics and rotational resonance phenomena.

  11. Doing supplements to improve performance in club cycling: a life-course analysis.

    Science.gov (United States)

    Stewart, B; Outram, S; Smith, A C T

    2013-12-01

    Using qualitative life-course and pathway analysis, this article explores the beliefs that serious club cyclists have about performance improvement, and what they think are appropriate and inappropriate ways of achieving it. We interviewed 11 cyclists from suburban clubs in Melbourne, Australia, and invited them to discuss their approach to training, racing, and supplementation. We found that each of the 11 cyclists were not only committed to the sport, but also paid a keen interest in bike technology and training regimes. In addition, they believed that supplement use was integral to meeting the physical and mental demands of their sport, even at club level. They also understood that supplement use, like training regimes, followed a sequential pathway where the accumulation of capacity, know-know, and knowledge, allowed progression to the next level of performance. And, like similar studies of club cycling in Europe, this cohort of cyclists balked at using banned substances, but also believed that in order to effectively transition to the elite - that is, professional - level, some additional supplement and drug-use was essential.

  12. Incorporating redox processes improves prediction of carbon and nutrient cycling and greenhouse gas emission

    Science.gov (United States)

    Tang, Guoping; Zheng, Jianqiu; Yang, Ziming; Graham, David; Gu, Baohua; Mayes, Melanie; Painter, Scott; Thornton, Peter

    2016-04-01

    Among the coupled thermal, hydrological, geochemical, and biological processes, redox processes play major roles in carbon and nutrient cycling and greenhouse gas (GHG) emission. Increasingly, mechanistic representation of redox processes is acknowledged as necessary for accurate prediction of GHG emission in the assessment of land-atmosphere interactions. Simple organic substrates, Fe reduction, microbial reactions, and the Windermere Humic Aqueous Model (WHAM) were added to a reaction network used in the land component of an Earth system model. In conjunction with this amended reaction network, various temperature response functions used in ecosystem models were assessed for their ability to describe experimental observations from incubation tests with arctic soils. Incorporation of Fe reduction reactions improves the prediction of the lag time between CO2 and CH4 accumulation. The inclusion of the WHAM model enables us to approximately simulate the initial pH drop due to organic acid accumulation and then a pH increase due to Fe reduction without parameter adjustment. The CLM4.0, CENTURY, and Ratkowsky temperature response functions better described the observations than the Q10 method, Arrhenius equation, and ROTH-C. As electron acceptors between O2 and CO2 (e.g., Fe(III), SO42-) are often involved, our results support inclusion of these redox reactions for accurate prediction of CH4 production and consumption. Ongoing work includes improving the parameterization of organic matter decomposition to produce simple organic substrates, examining the influence of redox potential on methanogenesis under thermodynamically favorable conditions, and refining temperature response representation near the freezing point by additional model-experiment iterations. We will use the model to describe observed GHG emission at arctic and tropical sites.

  13. MAPLE Fabricated Fe3O4@Cinnamomum verum Antimicrobial Surfaces for Improved Gastrostomy Tubes

    Directory of Open Access Journals (Sweden)

    Alina Georgiana Anghel

    2014-06-01

    Full Text Available Cinnamomum verum-functionalized Fe3O4 nanoparticles of 9.4 nm in size were laser transferred by matrix assisted pulsed laser evaporation (MAPLE technique onto gastrostomy tubes (G-tubes for antibacterial activity evaluation toward Gram positive and Gram negative microbial colonization. X-ray diffraction analysis of the nanoparticle powder showed a polycrystalline magnetite structure, whereas infrared mapping confirmed the integrity of C. verum (CV functional groups after the laser transfer. The specific topography of the deposited films involved a uniform thin coating together with several aggregates of bio-functionalized magnetite particles covering the G-tubes. Cytotoxicity assays showed an increase of the G-tube surface biocompatibility after Fe3O4@CV treatment, allowing a normal development of endothelial cells up to five days of incubation. Microbiological assays on nanoparticle-modified G-tube surfaces have proved an improvement of anti-adherent properties, significantly reducing both Gram negative and Gram positive bacteria colonization.

  14. Fabrication of barium/strontium carbonate coated amorphous carbon nanotubes as an improved field emitter

    Science.gov (United States)

    Maity, S.; Jha, A.; Das, N. S.; Chattopadhyay, K. K.

    2013-02-01

    Amorphous carbon nanotubes (aCNTs) were synthesized by a chemical reaction between ferrocene and ammonium chloride at a temperature ˜250 ∘C in an air furnace. As-synthesized aCNTs were coated with the barium/strontium carbonate through a simple chemical process. The coating of barium/strontium carbonate was confirmed by a high resolution transmission electron microscopy, X-ray diffraction, and Fourier transformed infrared spectroscopy. Morphology of the as-prepared samples was studied by field emission scanning electron microscopy. Thermal gravimetric analysis showed that barium/strontium carbonate coated aCNTs are more stable than the pristine aCNTs. As-prepared barium/strontium carbonate coated aCNTs showed significantly improved field emission properties with a turn-on field as low as 2.5 V/μm. The variation of field emission characteristics of the barium/strontium carbonate coated aCNTs with interelectrode distances was also studied.

  15. Sputtering graphite coating to improve the elevated-temperature cycling ability of the LiMn2O4 electrode.

    Science.gov (United States)

    Wang, Jiexi; Zhang, Qiaobao; Li, Xinhai; Wang, Zhixing; Guo, Huajun; Xu, Daguo; Zhang, Kaili

    2014-08-14

    To improve the cycle performance of LiMn2O4 at elevated temperature, a graphite layer is introduced to directly cover the surface of a commercial LiMn2O4-based electrode via room-temperature DC magnetron sputtering. The as-modified cathodes display improved capacity retention as compared to the bare LiMn2O4 cathode (BLMO) at 55 °C. When sputtering graphite for 30 min, the sample shows the best cycling performance at 55 °C, maintaining 96.2% capacity retention after 200 cycles. Reasons with respect to the graphite layer for improving the elevated-temperature performance of LiMn2O4 are systematically investigated via the methods of cyclic voltammetry, electrochemical impedance spectroscopy, X-ray photoelectron spectrometry, scanning and transmission electron microscopy, X-ray diffraction and inductively coupled plasma-atomic emission spectrometry. The results demonstrate that the graphite coated LiMn2O4 cathode has much less increased electrode polarization and electrochemical impedance than BLMO during the elevated-temperature cycling process. Furthermore, the graphite layer is able to alleviate the severe dissolution of manganese ions into the electrolyte and mitigate the morphological and structural degradation of LiMn2O4 during cycling. A model for the electrochemical kinetics process is also suggested for explaining the roles of the graphite layer in suppressing the Mn dissolution.

  16. Swing-Leg Retraction for Limit Cycle Walkers Improves Disturbance Rejection

    NARCIS (Netherlands)

    Hobbelen, D.G.E.; Wisse, M.

    2008-01-01

    Limit cycle walkers are bipeds that exhibit a stable cyclic gaitwithout requiring local controllability at all times during gait. A well-known example of limit cycle walking is McGeer’s “passive dynamic walking,” but the concept expands to actuated bipeds as involved in this study. One of the stabil

  17. Improving fuel cycle design and safety characteristics of a gas cooled fast reactor

    NARCIS (Netherlands)

    van Rooijen, W.F.G.

    2006-01-01

    This research concerns the fuel cycle and safety aspects of a Gas Cooled Fast Reactor, one of the so-called "Generation IV" nuclear reactor designs. The Generation IV Gas Cooled Fast Reactor uses helium as coolant at high temperature. The goal of the GCFR is to obtain a "closed nuclear fuel cycle",

  18. Afferent electrical stimulation during cycling improves spinal processing of sensorimotor function after incomplete spinal cord injury.

    Science.gov (United States)

    Piazza, Stefano; Serrano-Muñoz, Diego; Gómez-Soriano, Julio; Torricelli, Diego; Segura-Fragosa, Antonio; Pons, José Luis; Taylor, Julian

    2017-01-01

    Appropriate afferent feedback delivery during the execution of motor tasks is important for rehabilitation after incomplete spinal cord injury (iSCI). However, during leg-cycling therapy, the plantar afferent feedback is minimal. We hypothesize that the augmentation of sensory input by combining cycling with a locomotor-like stimulation of plantar cutaneous innervations (ES-cycling), might help to restore proper spinal processing of sensorimotor function. Thirteen non-injured subjects and 10 subjects with iSCI performed 10 minutes of cycling and, on another session, of ES-cycling. To assess spinal processing of sensorimotor function, soleus H-reflex response was tested following a conditioning plantar electrical stimulation applied at 25-100 ms inter-stimulus intervals (ISI's), measured before and after the execution of the tasks. Before tasks execution, the conditioned H-reflex response was modulated in non-injured subjects, and absent in subjects with iSCI; after cycling, modulation profiles were unchanged. However, after ES-cycling a significant increase in H-reflex excitability was observed in the non-injured group at 100 ms ISI (p spinal processing of sensorimotor function. Reflex modulation recovery after ES-cycling may indicate the partial reactivation of these mechanisms.

  19. Improving fuel cycle design and safety characteristics of a gas cooled fast reactor

    NARCIS (Netherlands)

    van Rooijen, W.F.G.

    2006-01-01

    This research concerns the fuel cycle and safety aspects of a Gas Cooled Fast Reactor, one of the so-called "Generation IV" nuclear reactor designs. The Generation IV Gas Cooled Fast Reactor uses helium as coolant at high temperature. The goal of the GCFR is to obtain a "closed nuclear fuel cycle",

  20. Improvement of one-cycle controller by use of proportional integral differential controller

    Institute of Scientific and Technical Information of China (English)

    RUZBEHANI Mohsen; ZHOU Luowei; WANG Mingyu

    2004-01-01

    The main advantage of one-cycle control is its ability to reject input disturbance in one-cycle. Despite this great ability,it can not provide good responses in following commands and rejecting load disturbance. This study explores the way toovercome these problems by using another controller. Although the idea of using output feedback has been used in previousworks, by considering a simple model for one-cycle controller, the design of the controller has become simpler in this work. In theproposed method, difficult mathematical modeling is avoided. Based on decupling of effects of feedback and input voltagedisturbance, a simple model for one-cycle controller has been given. Therefore, by employing a conventional averaging methodand the model of one-cycle controller, design of proportional integral differential controller has become straightforward.

  1. New fire diurnal cycle characterizations to improve fire radiative energy assessments made from low-Earth orbit satellites sampling

    Science.gov (United States)

    Andela, N.; Kaiser, J. W.; van der Werf, G. R.; Wooster, M. J.

    2015-03-01

    errors, while generally overestimating FRE. Including information on the climatology of the fire diurnal cycle provided the most promising avenue to improve FRE estimations. This approach also improved the performance on relatively high spatiotemporal resolutions, although only when aggregating model results to coarser spatial and/or temporal scale good correlation was found with the full SEVIRI hourly reference dataset. In general model performance was best in areas of frequent fire and low errors of omission. We recommend the use of regionally varying fire diurnal cycle information within the Global Fire Assimilation System (GFAS) used in the Copernicus Atmosphere Monitoring Services, which will improve FRE estimates and may allow for further reconciliation of biomass burning emission estimates from different inventories.

  2. Environmental impacts of innovative dairy farming systems aiming at improved internal nutrient cycling: a multi-scale assessment

    NARCIS (Netherlands)

    Vries, de W.; Kros, J.; Dolman, M.A.; Vellinga, Th.V.; Boer, de H.C.; Sonneveld, M.P.W.; Bouma, J.

    2015-01-01

    Several dairy farms in the Netherlands aim at reducing environmental impacts by improving the internal nutrient cycle (INC) on their farm by optimizing the use of available on-farm resources. This study evaluates the environmental performance of selected INC farms in the Northern Friesian Woodlands

  3. Improving knowledge of the surface salinity annual cycle with Aquarius satellite measurements

    Science.gov (United States)

    Lagerloef, G. S. E.

    2016-12-01

    To improve knowledge of the ocean surface salinity annual cycle, and its link to global precipitation patterns, remains a key science measurement objective for satellites. The Aquarius satellite data are applied here to address this, and the analysis is not as straightforward as it may seem. Sensor calibration is considered carefully to ensure that seasonality in external calibration data sources do not alias the satellite measurements. For example, quasi-monthly calibration error signals were identified early in the Aquarius mission. Subsequently, Aquarius data processing has relied primarily on an ocean target calibration method, whereby the satellite observations were co-located with output from the US Navy operational HYCOM model to adjust for these quasi-monthly calibration drifts. It was later determined that HYCOM salinity fields are themselves adjusted with a climatological restoring term, that imprints the seasonal climatology signal on the sensor calibration. When that output is compared with a parallel Aquarius data processing that bypasses the HYCOM ocean target calibration, and substitutes a simulation of the sensor electronics, the globally averaged output show very different annual signals between these trials. A modified ocean-target calibration, that employs satellite data matched directly with the in situ observations, is presently being investigated. The methodology uses signal processing to separate the satellite-in situ differences related to the sensor calibration from geophysical error sources. This remains a work-in-progress, and the results, with any unresolved issues, will be discussed. The presentation will also provide a very brief summary of Aquarius scientific accomplishments, the final "legacy" data set production, and the program to continue salinity data processing from other satellites.

  4. A non-endoreversible Otto cycle model: improving power output and efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Angulo-Brown, F. [Instituto Politecnico Nacional, Mexico City (Mexico). Escuela Superior de Fisica y Matematicas; Rocha-Martinez, J.A.; Navarrete-Gonzalez, T.D. [Universidad Autonoma Metropolitana-Azcapotzalco, Mexico City (Mexico). Dept. de Ciencias Basicas

    1996-01-14

    We propose a finite-time thermodynamics model for an Otto thermal cycle. Our model considers global losses in a simplified way lumped into a friction-like term, and takes into account the departure from an endoreversible regime through a parameter (R) arising from the Clausius inequality. Our numerical results suggest that the cycle`s power output and efficiency are very sensitive to that parameter. We find that R is the ratio of the constant-volume heat capacities of the reactants and products in the combustion reaction occurring inside the working fluid. Our results have implications in the search for new fuels for internal combustion engines. (author)

  5. Environmental life cycle assessment of Italian mozzarella cheese: Hotspots and improvement opportunities.

    Science.gov (United States)

    Dalla Riva, A; Burek, J; Kim, D; Thoma, G; Cassandro, M; De Marchi, M

    2017-10-01

    The present study investigated a cradle-to-grave life cycle assessment to estimate the environmental impacts associated with Italian mozzarella cheese consumption. The differences between mozzarella produced from raw milk and mozzarella produced from curd were studied, and differences in manufacturing processes have been emphasized in order to provide guidance for targeted improvements at this phase. Specifically, the third-largest Italian mozzarella producer was surveyed to collect site-specific manufacturing data. The Ecoinvent v3.2 database was used for secondary data, whereas SimaPro 8.1 was the modeling software. The inventory included inputs from farm activities to end of life disposal of wasted mozzarella and packaging. Additionally, plant-specific information was used to assign major inputs, such as electricity, natural gas, packaging, and chemicals to specific products; however, where disaggregated information was not provided, milk solids allocation was applied. Notably, loss of milk solids was accounted during the manufacture, moreover mozzarella waste and transport were considered during distribution, retail, and consumption phases. Feed production and animal emissions were the main drivers of raw milk production. Electricity and natural gas usage, packaging (cardboard and plastic), transport, wastewater treatment, and refrigerant loss affected the emissions from a farm gate-to-dairy plant gate perspective. Post-dairy plant gate effects were mainly determined by electricity usage for storage of mozzarella, transport of mozzarella, and waste treatment. The average emissions were 6.66 kg of CO2 equivalents and 45.1 MJ of cumulative energy demand/kg of consumed mozzarella produced directly from raw milk, whereas mozzarella from purchased curd had larger emissions than mozzarella from raw milk due to added transport of curd from specialty manufacturing plants, as well as electricity usage from additional processes at the mozzarella plant that are required

  6. Perioperative dexamethasone administration in tonsillectomy patients: A three-cycle audit showing improvement using printed theatre lists.

    Science.gov (United States)

    Bola, Summy; Bartlett, Annie; Williams, Richard

    2015-01-01

    Dexamethasone administration prior to tonsillectomy has been shown to reduce morbidity and is part of SIGN guideline 117. We conducted a three-cycle audit of 149 patients to ascertain how well guidelines were being met and introduce a sustainable method to improve compliance. A 3-month audit was conducted to ascertain how many tonsillectomy patients didn't receive pre-operative dexamethasone. ENT secretaries were requested to add 'Dex Please' to tonsillectomy theatre lists. A 3-month re-audit was conducted; the intervention was only implemented in half of cases and so a reminding tool for the secretarial staff was administered before a third cycle. Initially, there was 73% compliance to SIGN guidelines, this improved to 87% in the second cycle. After the second intervention, all tonsillectomy theatre lists had the 'Dex Please' note and compliance to SIGN guidelines was 100%. There were five readmissions in the first cycle, three in the second and two in the third cycle. All readmissions were underdosed according to guidelines. Understanding there are regular staff rotations throughout many U.K. hospitals, we implemented a reliable method to increase compliance to guidelines which helped reduce post-operative readmission after tonsillectomy. This can be easily introduced to other institutions and for other perioperative requirements.

  7. Recent developments in thermally-driven seawater desalination: Energy efficiency improvement by hybridization of the MED and AD cycles

    KAUST Repository

    Ng, Kim Choon

    2015-01-01

    The energy, water and environment nexus is a crucial factor when considering the future development of desalination plants or industry in the water-stressed economies. New generation of desalination processes or plants has to meet the stringent environment discharge requirements and yet the industry remains highly energy efficient and sustainable when producing good potable water. Water sources, either brackish or seawater, have become more contaminated as feed while the demand for desalination capacities increase around the world. One immediate solution for energy efficiency improvement comes from the hybridization of the proven desalination processes to the newer processes of desalination: For example, the integration of the available thermally-driven to adsorption desalination (AD) cycles where significant thermodynamic synergy can be attained when cycles are combined. For these hybrid cycles, a quantum improvement in energy efficiency as well as in increase in water production can be expected. The advent of MED with AD cycles, or simply called the MEDAD cycles, is one such example where seawater desalination can be pursued and operated in cogeneration with the electricity production plants: The hybrid desalination cycles utilize only the low exergy bled-steam at low temperatures, complemented with waste exhaust or renewable solar thermal heat at temperatures between 60 and 80. °C. In this paper, the authors have reported their pioneered research on aspects of AD and related hybrid MEDAD cycles, both at theoretical models and experimental pilots. Using the cogeneration of electricity and desalination concept, the authors examined the cost apportionment of fuel cost by the quality or exergy of working steam for such cogeneration configurations.

  8. Improvement of Taihu water quality by the technology of immobilized nitrogen cycle bacteria

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Experimental studies were carried out on the purification of eutrophicTaihu Lake water by dynamic experiment using immobilized nitrogen cycle bacteria(INCB). The results showed that the eutrophic water of Taihu Lake can be purifiedeffectively as it passes through the experimental reactor into which some immobilizednitrogen cycle bacteria were put. The removal efficiencies for Total N (TN), NH4+-Nwith immobilized nitrogen cycle bacteria were 72.4% and 85.6%, respectively. It wasfound that the immobilized nitrogen cycle bacteria also have purificatory effect oneutrophic water of Taihu Lake at winter temperature (7°C), and that the removalmefficiencies for Total N (TN), NH4+-N were 55.6%, and 58.9%, respectively. Theremoval efficiencies for TN and NH4+-N depend on the time the water stays in theexperimental reactor.``

  9. Improving the cycling stability of Sn4P3 anode for sodium-ion battery

    Science.gov (United States)

    Wang, Wenhui; Zhang, Jiaolong; Yu, Denis Y. W.; Li, Quan

    2017-10-01

    Experimental results from electrochemical characterizations and ex-situ X-ray diffraction (XRD) of the Sn4P3 anode upon cycling reveal that Sn agglomeration from the Sn4P3 particles plays a major role in the fast capacity fading of the Sn4P3 anode for sodium-ion batteries. TiC is demonstrated to be an effective additive to enhance the cycle stability of Sn4P3 by suppressing Sn agglomeration during cycling. Sn4P3/30-wt%TiC composite delivers a stable capacity of 300 mAh g-1 or 700 Ah L-1 over 100 cycles at current density of 100 mA g-1. The high density TiC (4.93 g cm-3), as compared to conventional carbon based additives, makes it attractive for achieving higher volumetric capacity of the anode.

  10. Improvement of methodological and data background for life cycle assessment of nano-metaloxides

    DEFF Research Database (Denmark)

    Miseljic, Mirko

    that considers the whole life cycle of a product or system and is able to quantify impacts from a wide range of impact categories. In theory LCA is the needed tool, but still there is a limited amount of LCAs performed on ENM products and there are concerns raised on how to apply such a tool on an emerging......Engineered nanomaterials (ENMs) introduction into consumer products and the increasing amount of ENM product has led to concerns. Based on this, an all-inclusive environmental assessment method of the potential impacts from these is needed. Life cycle assessment (LCA) is an assessment method...... that there are several challenges. Firstly the LCAs are limited to the first part of the life cycle, the cradle-to-gate. The main reason for this is that the data and approaches for assessing the remainder of the life cycle are not there. Industrial data inventories are missing, e.g. the data for production of ENMs...

  11. Aspects Regarding the Improving of Fitness and Health Issues by Cycling

    OpenAIRE

    Cătălin Octavian MĂNESCU

    2014-01-01

    This article is trying to explain all the benefits cycling has over fitness and specific health issues, the importance of a training plan, of a balanced diet and a good hydration during a training period of time and, also, presents the results of some studies regarding the importance of ride biking, generally, and exercising, particularly. Riding a bike is a healthy activity. Regular exercise in the form of cycling will make people fitter, stronger, will help them reduce fat levels and loo...

  12. Facile and scalable fabrication engineering of fullerenol nanoparticles by improved alkaline-oxidation approach and its antioxidant potential in maize

    Science.gov (United States)

    Liu, Fu-yang; Xiong, Feng-xia; Fan, Yi-kang; Li, Juan; Wang, He-zhong; Xing, Geng-mei; Yan, Feng-ming; Tai, Fu-ju; He, Rui

    2016-11-01

    A feasible in operation, labor-saving and low-cost one-step technology to fabricate fullerenol nanoparticles (FNPs) up to 10 g in laboratory was developed by improved alkaline-oxidation approach using moderately concentrated sodium hydroxide solution as the hydroxylation agent and o-dichlorobenzene as the solvent. This strategy paves the avenue for industrial-scale bulk production of FNPs. The resulted product, [C60(OH)22·8H2O]n, were characterized by various measurements including matrix-assisted laser desorption ionization time-of-flight mass spectrometry, high-resolution 1H nuclear magnetic resonance spectrometry, Fourier transform infrared spectroscopy, UV-Visible spectrophotometer, thermogravimetric analysis, differential scanning calorimetry, dynamic light scattering analysis, scanning electron microscopy, and electron spin resonance spectrometer. Radical scavenging assay in vitro confirmed the high efficiency of water-soluble [C60(OH)22·8H2O]n as a novel radical scavenger. Furthermore, [C60(OH)22·8H2O]n as an excellent candidate has the potential to serve as the plant defense stimulation agent in maize.

  13. Fabrication of divertor mock-up with ODS-Cu and W by the improved brazing technique

    Science.gov (United States)

    Tokitani, M.; Hamaji, Y.; Hiraoka, Y.; Masuzaki, S.; Tamura, H.; Noto, H.; Tanaka, T.; Muroga, T.; Sagara, A.; FFHR Design Group

    2017-07-01

    Copper alloy has been considered as a divertor cooling tube or heat sink not only in the helical reactor FFHR-d1 but also in the tokamak DEMO reactor, because it has a high thermal conductivity. This work focused on applying an oxide dispersion strengthened copper alloy (ODS-Cu), GlidCop® (Cu-0.3 wt%Al2O3) as the divertor heat sink material of FFHR-d1. This alloy has superior high temperature yield strength exceeding 300 MPa at room temperature even after annealing up to ~1000 °C. The change in material properties of Pure-Cu, GlidCop® and CuCrZr by neutron irradiation are summarized in this paper. A primary dose limit is the radiation-induced hardening/softening (~0.2 dpa/1-2 dpa) which has a temperature dependence. According to such an evaluation, the GlidCop® can be selected as the current best candidate material in the commercial base of the divertor heat sink, and its temperature should be maintained as close as possible to 300 °C during operation. Bonding between the W armour and the GlidCop® heat sink was successfully performed by using an improved brazing technique with BNi-6 (Ni-11%P) filler material. The bonding strength was measured by a three-point bending test and reached up to approximately 200 MPa. Surprisingly, several specimens showed an obvious yield point. This means that the BNi-6 brazing (bonding) layer caused relaxation of the applied stress. The small-scale divertor mock-up of the W/BNi-6/GlidCop® was successfully fabricated by using the improved brazing technique. The heat loading test was carried out by the electron beam device ACT2 in NIFS. The mock-up showed an excellent heat removal capability for use in the FFHR-d1 divertor.

  14. Improved cycling performance with ingestion of hydrolyzed marine protein depends on performance level

    Directory of Open Access Journals (Sweden)

    Vegge Geir

    2012-04-01

    Full Text Available Abstract Background The effect on performance of protein ingestion during or after exercise is not clear. This has largely been attributed to the utilization of different scientific protocols and the neglection of accounting for factors such as differences in physical and chemical properties of protein supplements and differences in athletic performance level. Methods We hypothesized that ingestion of unprocessed whey protein (15.3 g·h-1 together with carbohydrate (60 g·h-1, would provide no ergogenic effect on 5-min mean-power performance following 120 min cycling at 50% of maximal aerobic power (2.8 ± 0.2 W·kg-1, corresponding to 60 ± 4% of VO2max, compared to CHO alone (60 g·h-1. Conversely, we hypothesized that ingestion of the hydrolyzed marine protein supplement NutriPeptin™ (Np, 2.7 g·h-1, a processed protein supplement with potentially beneficial amino acid composition, together with a PROCHO beverage (12.4 g·h-1 and 60 g·h-1, respectively would provide an ergogenic effect on mean-power performance. We also hypothesized that the magnitude of the ergogenic effect of NpPROCHO would be dependent on athletic performance. As for the latter analysis, performance level was defined according to a performance factor, calculated from individual pre values of Wmax, VO2max and 5-min mean-power performance, wherein the performance of each subject was ranked relative to the superior cyclist whos performance was set to one. Twelve trained male cyclists (VO2max = 65 ± 4 ml·kg-1·min-1 participated in a randomized double-blinded cross-over study. Results and conclusions Overall, no differences were found in 5-min mean-power performance between either of the beverages (CHO 5.4 ± 0.5 W·kg-1; PROCHO 5.3 ± 0.5 W·kg-1; NpPROCHO 5.4 ± 0.3 W·kg-1 (P = 0.29. A negative correlation was found between NpPROCHO mean-power performance and athletic performance level (using CHO-performance as reference; Pearson R = -0.74, P = 0.006. Moreover

  15. BCO-DMO: Improving Access to Ocean Research Data throughout the Data Life Cycle

    Science.gov (United States)

    Chandler, C. L.; Groman, R. C.; Allison, M. D.; Wiebe, P. H.; Glover, D. M.

    2012-12-01

    The Biological and Chemical Oceanography Data Management Office (BCO-DMO) was created in late 2006, by combining the formerly independent data management offices for the U.S. GLOBEC and U.S. JGOFS programs. BCO-DMO staff members work with investigators to publish data from research projects funded by the Biological and Chemical Oceanography Sections and the Office of Polar Programs Antarctic Organisms & Ecosystems Program (OPP ANT) at the U.S. National Science Foundation. Since 2006, researchers have been contributing data to the BCO-DMO data system, and it has developed into a rich repository of data from ocean, coastal and Great Lakes research programs. Data management services are provided at no additional cost to investigators funded by those offices. The main goals of BCO-DMO are to ensure preservation of NSF funded project data and to provide open access to those data. BCO-DMO has developed an end-to-end data stewardship process that includes all phases of the data life cycle: (1) working with investigators at the proposal stage to write their two-page NSF data management plan; (2) registering their funded project at BCO-DMO; (3) adding data and supporting documentation to the BCO-DMO data repository; (4) providing geospatial and text-based data access systems that support data discovery, access, display, assessment, integration, and export of data resources; (5) publication of data sets to provide publishers of the peer-reviewed literature with citable references (Digital Object Identifiers) and to encourage proper citation and attribution of data sets in the future and (6) submission of final data sets for preservation in the appropriate long-term data archive. Recent efforts by BCO-DMO staff members have focused on identifying globally unique, persistent identifiers to unambiguously identify resources of interest that are curated by and available from BCO-DMO. The process involves several essential components: (1) identifying a trusted authoritative source

  16. Global Climate Modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds

    CERN Document Server

    Navarro, Thomas; Forget, François; Spiga, Aymeric; Millour, Ehouarn; Montmessin, Franck

    2013-01-01

    Radiative effects of water ice clouds have noteworthy consequences on the Martian atmosphere, its thermal structure and circulation. Accordingly, the inclusion of such effects in the LMD Mars Global Climate Model (GCM) greatly modifies the simulated Martian water cycle. The intent of this paper is to address the impact of radiatively active clouds on atmospheric water vapor and ice in the GCM and improve its representation. We propose a new enhanced modeling of the water cycle, consisting of detailed cloud microphysics with dynamic condensation nuclei and a better implementation of perennial surface water ice. This physical modeling is based on tunable parameters. This new version of the GCM is compared to the Thermal Emission Spectrometer observations of the water cycle. Satisfying results are reached for both vapor and cloud opacities. However, simulations yield a lack of water vapor in the tropics after Ls=180{\\deg} which is persistent in simulations compared to observations, as a consequence of aphelion c...

  17. Improvement of system code importing evaluation of Life Cycle Analysis of tokamak fusion power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kobori, Hikaru [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Hiwatari, Ryoji [Central Research Institute of Electric Power Industry, Tokyo (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2016-11-01

    Highlights: • We incorporated the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code. • We calculated CO{sub 2} emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. • We found that the objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. • The tokamak fusion reactor can reduce CO{sub 2} emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. • The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant. - Abstract: This study incorporate the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code to calculate CO{sub 2} emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. Competitiveness of tokamak fusion power reactors is expected to be evaluated by the cost and environmental impact represented by the CO{sub 2} emissions, compared with present and future power generating systems such as fossil, nuclear and renewables. Result indicated that (1) The objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. (2) The tokamak fusion reactor can reduce CO{sub 2} emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. (3) The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant.

  18. Teflon/SiO2 Bilayer Passivation for Improving the Electrical Reliability of Oxide TFTs Fabricated Using a New Two-Photomask Self-Alignment Process

    Directory of Open Access Journals (Sweden)

    Ching-Lin Fan

    2015-04-01

    Full Text Available This study proposes a two-photomask process for fabricating amorphous indium–gallium–zinc oxide (a-IGZO thin-film transistors (TFTs that exhibit a self-aligned structure. The fabricated TFTs, which lack etching-stop (ES layers, have undamaged a-IGZO active layers that facilitate superior performance. In addition, we demonstrate a bilayer passivation method that uses a polytetrafluoroethylene (Teflon and SiO2 combination layer for improving the electrical reliability of the fabricated TFTs. Teflon was deposited as a buffer layer through thermal evaporation. The Teflon layer exhibited favorable compatibility with the underlying IGZO channel layer and effectively protected the a-IGZO TFTs from plasma damage during SiO2 deposition, resulting in a negligible initial performance drop in the a-IGZO TFTs. Compared with passivation-free a-IGZO TFTs, passivated TFTs exhibited superior stability even after 168 h of aging under ambient air at 95% relative humidity.

  19. Modelling and Improvement of Thermal Cycling in Power Electronics for Motor Drive Applications

    DEFF Research Database (Denmark)

    Vernica, Ionut; Ma, Ke; Blaabjerg, Frede

    2016-01-01

    It is well known that the dynamical change of the thermal stress in the power devices is one of the major factors that have influences on the overall efficiency and reliability of power electronics. The main objective of this paper consists of identifying the main parameters that affect the thermal...... cycling of power devices in a motor drive application and modelling their impact on the thermal stress. The motor drive system together with the thermal cycling in the power semiconductors have been modelled, and after investigating the dynamic behavior of the system, adverse temperature swings...... thermal response of the power devices is validated through experimental results....

  20. Modelling and Improvement of Thermal Cycling in Power Electronics for Motor Drive Applications

    DEFF Research Database (Denmark)

    Vernica, Ionut; Ma, Ke; Blaabjerg, Frede

    2016-01-01

    cycling of power devices in a motor drive application and modelling their impact on the thermal stress. The motor drive system together with the thermal cycling in the power semiconductors have been modelled, and after investigating the dynamic behavior of the system, adverse temperature swings......It is well known that the dynamical change of the thermal stress in the power devices is one of the major factors that have influences on the overall efficiency and reliability of power electronics. The main objective of this paper consists of identifying the main parameters that affect the thermal...... thermal response of the power devices is validated through experimental results....

  1. Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving VHTR Efficiency and Testing Material Compatibility - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Chang H. Oh

    2006-06-01

    Generation IV reactors will need to be intrinsically safe, having a proliferation-resistant fuel cycle and several advantages relative to existing light water reactor (LWR). They, however, must still overcome certain technical issues and the cost barrier before it can be built in the U.S. The establishment of a nuclear power cost goal of 3.3 cents/kWh is desirable in order to compete with fossil combined-cycle, gas turbine power generation. This goal requires approximately a 30 percent reduction in power cost for stateof-the-art nuclear plants. It has been demonstrated that this large cost differential can be overcome only by technology improvements that lead to a combination of better efficiency and more compatible reactor materials. The objectives of this research are (1) to develop a supercritical carbon dioxide Brayton cycle in the secondary power conversion side that can be applied to the Very-High-Temperature Gas-Cooled Reactor (VHTR), (2) to improve the plant net efficiency by using the carbon dioxide Brayton cycle, and (3) to test material compatibility at high temperatures and pressures. The reduced volumetric flow rate of carbon dioxide due to higher density compared to helium will reduce compression work, which eventually increase plant net efficiency.

  2. Fabrication mechanism of nanostructured HA/TNTs biomedical coatings: an improvement in nanomechanical and in vitro biological responses.

    Science.gov (United States)

    Ahmadi, Shahab; Riahi, Zohreh; Eslami, Aylar; Sadrnezhaad, S K

    2016-10-01

    In this paper, a mechanism for fabrication of nanostructured hydroxyapatite coating on TiO2 nanotubes is presented. Also, the physical, biological, and nanomechanical properties of the anodized Ti6Al4V alloy consisting TiO2 nanotubes, electrodeposited hydroxyapatite, and the hydroxyapatite/TiO2 nanotubes double layer coating on Ti6Al4V alloy implants are compared. Mean cell viability of the samples being 84.63 % for uncoated plate, 91.53 % for electrodeposited hydroxyapatite, and 94.98 % for hydroxyapatite/TiO2 nanotubes coated sample were in the acceptable range. Merely anodized prototype had the highest biocompatibility of 110 % with respect to the control sample. Bonding strength of hydroxyapatite deposit to the substrate increased from 12 ± 2 MPa to 25.4 ± 2 MPa using intermediate TiO2 nanotubes layer. Hardness and elastic modulus of the anodized surface were 956 MPa and 64.7 GPa, respectively. The corresponding values for hydroxyapatite deposit were approximately measured 44.3 MPa and 0.66 GPa, respectively, while the average obtained values for hardness (159.3 MPa) and elastic modulus (2.25 GPa) of the hydroxyapatite/TiO2 nanotubes double coating improved more than 30 % of the pure hydroxyapatite deposit. Friction coefficient (ξ) of the anodized surface was 0.32 ± 0.02. The calculated friction coefficient enhanced from 0.65 ± 0.04 for sole hydroxyapatite layer to the 0.46 ± 0.02 for hydroxyapatite/TiO2 nanotubes due to presence of nanotubular TiO2 intermediate layer.

  3. Concentrated dual-salt electrolytes for improving the cycling stability of lithium metal anodes

    Science.gov (United States)

    Pin, Liu; Qiang, Ma; Zheng, Fang; Jie, Ma; Yong-Sheng, Hu; Zhi-Bin, Zhou; Hong, Li; Xue-Jie, Huang; Li-Quan, Chen

    2016-07-01

    Lithium (Li) metal is an ideal anode material for rechargeable Li batteries, due to its high theoretical specific capacity (3860 mAh/g), low density (0.534 g/cm3), and low negative electrochemical potential (-3.040 V vs. standard hydrogen electrode). In this work, the concentrated electrolytes with dual salts, composed of Li[N(SO2F)2] (LiFSI) and Li[N(SO2CF3)2] (LiTFSI) were studied. In this dual-salt system, the capacity retention can even be maintained at 95.7% after 100 cycles in Li|LiFePO4 cells. A Li|Li cell can be cycled at 0.5 mA/cm2 for more than 600 h, and a Li|Cu cell can be cycled at 0.5 mA/cm2 for more than 200 cycles with a high average Coulombi efficiency of 99%. These results show that the concentrated dual-salt electrolytes exhibit superior electrochemical performance and would be a promising candidate for application in rechargeable Li batteries. Project supported by the National Nature Science Foundation of China (Grant Nos. 51222210, 51472268, 51421002, and 11234013) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA09010300).

  4. Analyze and Improve Lifetime in 3L-NPC Inverter from Power Cycle and Thermal Balance

    DEFF Research Database (Denmark)

    Chen, Quan; Chen, Zhe; Wang, Qunjing

    2014-01-01

    Three-level Neutral-point-clamped (3L-NPC) topology is becoming a realistic alternative to the conventional one in high-voltage and high-power application. Studies show that the power cycling mean time to failure (MTTF) of the semiconductor bond wire in 3L-NPC inverter system may be very short un...

  5. Improvements in the life cycle approach as an environmental evaluation tool in organic farming

    NARCIS (Netherlands)

    Antón, A.; Núñez, M.; Montero, J.I.; Muñoz, P.; Stanghellini, C.

    2014-01-01

    Very few studies objectively quantify environmental impact of organic farming practices. The Life Cycle Assessment (LCA) tool has proved to be an accurate, objective, and transparent tool to quantify many environmental impacts. The purpose of this paper is to disseminate the LCA methodology, demonst

  6. Concentrated dual-salt electrolytes for improving the cycling stability of lithium metal anodes

    Institute of Scientific and Technical Information of China (English)

    刘品; 马强; 方铮; 马洁; 胡勇胜; 周志彬; 李泓; 黄学杰; 陈立泉

    2016-01-01

    Lithium (Li) metal is an ideal anode material for rechargeable Li batteries, due to its high theoretical specific ca-pacity (3860 mAh/g), low density (0.534 g/cm3), and low negative electrochemical potential (−3.040 V vs. standard hydrogen electrode). In this work, the concentrated electrolytes with dual salts, composed of Li[N(SO2F)2] (LiFSI) and Li[N(SO2CF3)2] (LiTFSI) were studied. In this dual-salt system, the capacity retention can even be maintained at 95.7%after 100 cycles in Li|LiFePO4 cells. A Li|Li cell can be cycled at 0.5 mA/cm2 for more than 600 h, and a Li|Cu cell can be cycled at 0.5 mA/cm2 for more than 200 cycles with a high average Coulombi efficiency of 99%. These results show that the concentrated dual-salt electrolytes exhibit superior electrochemical performance and would be a promising candidate for application in rechargeable Li batteries.

  7. Improvement of 3D Polyester Fabric Surface with Nano Beta-Cyclodextrin and Hydrophilic Silicone and Microemulsion Softeners

    Directory of Open Access Journals (Sweden)

    M. M. Jolaei

    2016-12-01

    Full Text Available Modifying of polyester spacer fabric by β-Cyclodextrin may create new characteristics in the product. Using different siloxane including amino ethyl amino propyl polydimethylsiloxane and polyether amino functional siloxane can produce appropriate softness and lead to relative stability of β-CD on polyester fabric. In this research different concentration of siloxane compounds as a softener, and β- CD as a modifier are applied and some of the properties of the fabric including weight change, regain, water drop absorption time on fabric surface, chrome ion absorption and reactive dye absorption are studied. Also morphology of fabric surface has been examined by SEM images and chemical structure by FT-IR. We have also studied washing durability of the modified product after 10 times of washing. The results show that increasing of concentration of softener and β-CD leads to obtain a higher gain modification. In comparison of two different based softeners the amino ethyl amino propyl polydimethylsiloxane (AEAP- Silicon indicates a better durability than the polyether amino functional siloxane (PEA-Silicon.

  8. Study program for design improvements of the X-3060 klystron. Phase 3: Electron gun fabrication and beam analyzer evaluation. Phase 4: Klystron prototype fabrication and testing

    Science.gov (United States)

    Goldfinger, A.

    1981-01-01

    A full scale model was produced to verify suggested design changes. Through beam analyzer study, the correct electron beam diameter and cross sectional profile were established in conjunction with the desired confining magnetic field. Comparative data on the performance of the X-3060 klystron, design predictions for the improved klystron, and performance data taken during acceptance testing of the prototype VKS-8274 JPL are presented.

  9. Analysis of different image-based biofeedback models for improving cycling performances

    Science.gov (United States)

    Bibbo, D.; Conforto, S.; Bernabucci, I.; Carli, M.; Schmid, M.; D'Alessio, T.

    2012-03-01

    Sport practice can take advantage from the quantitative assessment of task execution, which is strictly connected to the implementation of optimized training procedures. To this aim, it is interesting to explore the effectiveness of biofeedback training techniques. This implies a complete chain for information extraction containing instrumented devices, processing algorithms and graphical user interfaces (GUIs) to extract valuable information (i.e. kinematics, dynamics, and electrophysiology) to be presented in real-time to the athlete. In cycling, performance indexes displayed in a simple and perceivable way can help the cyclist optimize the pedaling. To this purpose, in this study four different GUIs have been designed and used in order to understand if and how a graphical biofeedback can influence the cycling performance. In particular, information related to the mechanical efficiency of pedaling is represented in each of the designed interfaces and then displayed to the user. This index is real-time calculated on the basis of the force signals exerted on the pedals during cycling. Instrumented pedals for bikes, already designed and implemented in our laboratory, have been used to measure those force components. A group of subjects underwent an experimental protocol and pedaled with (the interfaces have been used in a randomized order) and without graphical biofeedback. Preliminary results show how the effective perception of the biofeedback influences the motor performance.

  10. Deceleration of fusion-fission cycles improves mitochondrial quality control during aging.

    Directory of Open Access Journals (Sweden)

    Marc Thilo Figge

    Full Text Available Mitochondrial dynamics and mitophagy play a key role in ensuring mitochondrial quality control. Impairment thereof was proposed to be causative to neurodegenerative diseases, diabetes, and cancer. Accumulation of mitochondrial dysfunction was further linked to aging. Here we applied a probabilistic modeling approach integrating our current knowledge on mitochondrial biology allowing us to simulate mitochondrial function and quality control during aging in silico. We demonstrate that cycles of fusion and fission and mitophagy indeed are essential for ensuring a high average quality of mitochondria, even under conditions in which random molecular damage is present. Prompted by earlier observations that mitochondrial fission itself can cause a partial drop in mitochondrial membrane potential, we tested the consequences of mitochondrial dynamics being harmful on its own. Next to directly impairing mitochondrial function, pre-existing molecular damage may be propagated and enhanced across the mitochondrial population by content mixing. In this situation, such an infection-like phenomenon impairs mitochondrial quality control progressively. However, when imposing an age-dependent deceleration of cycles of fusion and fission, we observe a delay in the loss of average quality of mitochondria. This provides a rational why fusion and fission rates are reduced during aging and why loss of a mitochondrial fission factor can extend life span in fungi. We propose the 'mitochondrial infectious damage adaptation' (MIDA model according to which a deceleration of fusion-fission cycles reflects a systemic adaptation increasing life span.

  11. Fabrication of Li{sub 2}TiO{sub 3} pebbles with small grain size via hydrothermal and improved dry-rolling methods

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wen; Zhou, Qilai; Xue, Lihong, E-mail: xuelh@mail.hust.edu.cn; Yan, Youwei

    2015-09-15

    Highlights: • The fabricated pebbles can be densified (81% T.D.) at a low sintering temperature (850 °C). • The pebbles’ size can be controlled during the fabrication process. • Average grain size of the Li{sub 2}TiO{sub 3} pebbles is less than 1 μm (0.82 μm). • The molar ratio of Li to Ti of the pebbles sintered at 850 °C keeps the value of 1.97 after sintering. - Abstract: Lithium titanate (Li{sub 2}TiO{sub 3}) ceramic pebbles were successfully fabricated by using hydrothermal and improved dry-rolling method. In the present work, ultra-fine Li{sub 2}TiO{sub 3} powder of high reactivity was prepared via hydrothermal reaction, using anatase titania and lithium hydroxide as raw materials. The as-synthesized Li{sub 2}TiO{sub 3} powder exhibits an average crystalline size as small as 100 nm. Improved dry-rolling method was employed to fabricate Li{sub 2}TiO{sub 3} pebbles. The green pebbles can be well-sintered (81% T.D.) at a temperature as low as 850 °C for 3 h. The pebbles have good sphericity (1.08) and narrow diameter distribution (1.0–1.2 mm) with a crush load of 35 N. Scanning electron microscope (SEM) observations of pebbles showed that the ceramic grain size was below 1 μm and atomic emission spectrometer fitted with inductively coupled plasma (ICP-AES) results confirmed that atomic ratio of Li to Ti in the fabricated pebbles was 1.97.

  12. A Life-cycle Approach to Improve the Sustainability of Rural Water Systems in Resource-Limited Countries

    Directory of Open Access Journals (Sweden)

    Nicholas Stacey

    2012-11-01

    Full Text Available A WHO and UNICEF joint report states that in 2008, 884 million people lacked access to potable drinking water. A life-cycle approach to develop potable water systems may improve the sustainability for such systems, however, a review of the literature shows that such an approach has primarily been used for urban systems located in resourced countries. Although urbanization is increasing globally, over 40 percent of the world’s population is currently rural with many considered poor. In this paper, we present a first step towards using life-cycle assessment to develop sustainable rural water systems in resource-limited countries while pointing out the needs. For example, while there are few differences in costs and environmental impacts for many improved rural water system options, a system that uses groundwater with community standpipes is substantially lower in cost that other alternatives with a somewhat lower environmental inventory. However, a LCA approach shows that from institutional as well as community and managerial perspectives, sustainability includes many other factors besides cost and environment that are a function of the interdependent decision process used across the life cycle of a water system by aid organizations, water user committees, and household users. These factors often present the biggest challenge to designing sustainable rural water systems for resource-limited countries.

  13. Improvement actions in waste management systems at the provincial scale based on a life cycle assessment evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Rigamonti, L., E-mail: lucia.rigamonti@polimi.it; Falbo, A.; Grosso, M.

    2013-11-15

    Highlights: • LCA was used for evaluating the performance of four provincial waste management systems. • Milano, Bergamo, Pavia and Mantova (Italy) are the provinces selected for the analysis. • Most of the data used to model the systems are primary. • Significant differences were found among the provinces located in the same Region. • LCA was used as a decision-supporting tool by Regione Lombardia. - Abstract: This paper reports some of the findings of the ‘GERLA’ project: GEstione Rifiuti in Lombardia – Analisi del ciclo di vita (Waste management in Lombardia – Life cycle assessment). The project was devoted to support Lombardia Region in the drafting of the new waste management plan by applying a life cycle thinking perspective. The present paper mainly focuses on four Provinces in the Region, which were selected based on their peculiarities. Life cycle assessment (LCA) was adopted as the methodology to assess the current performance of the integrated waste management systems, to discuss strengths and weaknesses of each of them and to design their perspective evolution as of year 2020. Results show that despite a usual business approach that is beneficial to all the provinces, the introduction of technological and management improvements to the system provides in general additional energy and environmental benefits for all four provinces. The same improvements can be easily extended to the whole Region, leading to increased environmental benefits from the waste management sector, in line with the targets set by the European Union for 2020.

  14. Improvement actions in waste management systems at the provincial scale based on a life cycle assessment evaluation.

    Science.gov (United States)

    Rigamonti, L; Falbo, A; Grosso, M

    2013-11-01

    This paper reports some of the findings of the 'GERLA' project: GEstione Rifiuti in Lombardia - Analisi del ciclo di vita (Waste management in Lombardia - Life cycle assessment). The project was devoted to support Lombardia Region in the drafting of the new waste management plan by applying a life cycle thinking perspective. The present paper mainly focuses on four Provinces in the Region, which were selected based on their peculiarities. Life cycle assessment (LCA) was adopted as the methodology to assess the current performance of the integrated waste management systems, to discuss strengths and weaknesses of each of them and to design their perspective evolution as of year 2020. Results show that despite a usual business approach that is beneficial to all the provinces, the introduction of technological and management improvements to the system provides in general additional energy and environmental benefits for all four provinces. The same improvements can be easily extended to the whole Region, leading to increased environmental benefits from the waste management sector, in line with the targets set by the European Union for 2020. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. A Novel Organic Rankine Cycle System with Improved Thermal Stability and Low Global Warming Fluids

    Directory of Open Access Journals (Sweden)

    Panesar Angad S

    2014-07-01

    Full Text Available This paper proposes a novel Organic Rankine Cycle (ORC system for long haul truck application. Rather than typical tail pipe heat recovery configurations, the proposed setup exploits the gaseous streams that are already a load on the engine cooling module. The system uses dual loops connected only by the Exhaust Gas Recirculation (EGR stream. A water blend study is conducted to identify suitable mixtures for the High Temperature (HT loop, while the Low Temperature (LT loop utilises a Low Global Warming (GWP Hydrofluoroether.

  16. Weight loss and biomedical health improvement on a very low calorie diet: the moderating role of history of weight cycling.

    Science.gov (United States)

    Hart, Kenneth E; Warriner, Erin M

    2005-01-01

    In this study, the authors examined biomedical consequences of participation in a professionally delivered, multifaceted very low calorie diet (VLCD) program and whether the degree of benefit associated with treatment was moderated by history of weight cycling. The authors monitored body weight and biomedical health indicators in 66 severely obese outpatients on a VLCD liquid fast. Participants remained on the VLCD for a median of 55 (range 9 to 247) days. Treatment was associated with significant pre-to-post improvements on body weight, systolic and diastolic blood pressure, triglycerides, and cholesterol. History of weight cycling (independent of age) was inversely related to the magnitude of absolute pre-to-post treatment changes in systolic and diastolic blood pressure, as well as to the rate of weight change. More intensive, longer term, and explicit maintenance components, especially aimed at individuals with multiple weight loss-regain episodes, may be necessary to facilitate weight loss and attain optimal health benefits from VLCDs.

  17. ON IMPROVING AN INTEGRATED INVENTORY MODEL FOR A SINGLE VENDOR AND MULTIPLE BUYERS WITH A RELAXED MATERIAL ORDERING CYCLE POLICY

    Institute of Scientific and Technical Information of China (English)

    Yugang YU; Feng CHU; Haoxun CHEN

    2006-01-01

    In this paper, we propose a new model for improving the lot size obtained with the model of Woo, Hsu, and Wu (2001) proposed in their paper "An integrated inventory model for a single vendor and multiple buyers with ordering cost reduction" (Int. J. Production Economics 73 203-215). The new model can provide a lower or equal joint total cost as compared to Woo, Hsu, and Wu's model due to the relaxation of their integral multiple material ordering cycle policy to a fractional-integral multiple material ordering cycle policy. The proposed model is analyzed and an algorithm for calculating the optimal lot size of the model is developed. A numerical study based on the example used by Woo, Hsu, and Wu is presented.

  18. Improvement of Film Quality in CuInSe2 Thin Films Fabricated by a Non-Vacuum, Nanoparticle-Based Approach

    Science.gov (United States)

    Zhang, Yiwen; Ito, Manabu; Tamura, Tomoaki; Yamada, Akira; Konagai, Makoto

    2011-04-01

    To improve the quality of CuInSe2 (CIS) thin films fabricated by a non-vacuum, nanoparticle-based approach, in this study, two categories of nanoparticles, Cu (InGa) Se2 (CIGS) nanoparticles and copper selenide (Cu-Se) with indium selenide (In-Se) nanoparticles are investigated. It is found that the Cu-Se with In-Se nanoparticles show a higher crystallization velocity than CIGS nanoparticles. The films obtained from Cu-Se with In-Se nanoparticles exhibit higher crystallinity with a larger grain size. Thiourea is applied as a sintering additive during the selenization process. It is clarified that the addition of thiourea is very effective for grain growth and the fabrication of a dense CIS layer. The cell performance is measured under Air Mass 1.5 irradiation. The efficiency of the solar cell, fabricated using Cu-Se, In-Se nanoparticles with thiourea, is 2.15%, higher than that of the solar cell fabricated using CIGS nanoparticles, which is 0.28%.

  19. Integrated Metrics for Improving the Life Cycle Approach to Assessing Product System Sustainability

    Directory of Open Access Journals (Sweden)

    Wesley Ingwersen

    2014-03-01

    Full Text Available Life cycle approaches are critical for identifying and reducing environmental burdens of products. While these methods can indicate potential environmental impacts of a product, current Life Cycle Assessment (LCA methods fail to integrate the multiple impacts of a system into unified measures of social, economic or environmental performance related to sustainability. Integrated metrics that combine multiple aspects of system performance based on a common scientific or economic principle have proven to be valuable for sustainability evaluation. In this work, we propose methods of adapting four integrated metrics for use with LCAs of product systems: ecological footprint, emergy, green net value added, and Fisher information. These metrics provide information on the full product system in land, energy, monetary equivalents, and as a unitless information index; each bundled with one or more indicators for reporting. When used together and for relative comparison, integrated metrics provide a broader coverage of sustainability aspects from multiple theoretical perspectives that is more likely to illuminate potential issues than individual impact indicators. These integrated metrics are recommended for use in combination with traditional indicators used in LCA. Future work will test and demonstrate the value of using these integrated metrics and combinations to assess product system sustainability.

  20. Application of Data Cubes for Improving Detection of Water Cycle Extreme Events

    Science.gov (United States)

    Albayrak, Arif; Teng, William

    2015-01-01

    As part of an ongoing NASA-funded project to remove a longstanding barrier to accessing NASA data (i.e., accessing archived time-step array data as point-time series), for the hydrology and other point-time series-oriented communities, "data cubes" are created from which time series files (aka "data rods") are generated on-the-fly and made available as Web services from the Goddard Earth Sciences Data and Information Services Center (GES DISC). Data cubes are data as archived rearranged into spatio-temporal matrices, which allow for easy access to the data, both spatially and temporally. A data cube is a specific case of the general optimal strategy of reorganizing data to match the desired means of access. The gain from such reorganization is greater the larger the data set. As a use case of our project, we are leveraging existing software to explore the application of the data cubes concept to machine learning, for the purpose of detecting water cycle extreme events, a specific case of anomaly detection, requiring time series data. We investigate the use of support vector machines (SVM) for anomaly classification. We show an example of detection of water cycle extreme events, using data from the Tropical Rainfall Measuring Mission (TRMM).

  1. Improvement of CaO-based sorbent performance for CO{sub 2} looping cycles

    Energy Technology Data Exchange (ETDEWEB)

    Vasilije Manovic; Edward J. Anthony [CANMET Energy Technology Centre-Ottawa, Ottawa, ON (Canada)

    2009-07-01

    This paper presents research on CO{sub 2} capture by lime-based looping cycles. This is a new and promising technology that may help in mitigation of global warming and climate change caused primarily by the use of fossil fuels. The intensity of the anticipated changes urgently requires solutions such as the developing technologies for CO{sub 2} capture, especially those based on CaO looping cycles. This technology is at the pilot plant demonstration stage and there are still significant challenges that require solutions. The technology is based on a dual fluidized bed reactor which contains a carbonator - a unit for CO{sub 2} capture, and a calciner - a unit for CaO regeneration. The major technology components are well known from other technologies and easily applicable. However, even though CaO is a very good candidate as a solid CO{sub 2} carrier, its performance in a practical system still has significant limitations. Thus, research on CaO performance is critical and this paper discusses some of the more important problems and potential solutions that are being examined at CETC-O. To date, the most promising methods were reactivation of spent sorbent by steam, thermal pretreatment of sorbent, and doping, most likely with Al{sub 2}O{sub 3}. The combination of these methods, including pelletization, should provide us with enhanced sorbent performance. 75 refs., 19 figs.

  2. Interim Report: Air-Cooled Condensers for Next Generation Geothermal Power Plants Improved Binary Cycle Performance

    Energy Technology Data Exchange (ETDEWEB)

    Daniel S. Wendt; Greg L. Mines

    2010-09-01

    As geothermal resources that are more expensive to develop are utilized for power generation, there will be increased incentive to use more efficient power plants. This is expected to be the case with Enhanced Geothermal System (EGS) resources. These resources will likely require wells drilled to depths greater than encountered with hydrothermal resources, and will have the added costs for stimulation to create the subsurface reservoir. It is postulated that plants generating power from these resources will likely utilize the binary cycle technology where heat is rejected sensibly to the ambient. The consumptive use of a portion of the produced geothermal fluid for evaporative heat rejection in the conventional flash-steam conversion cycle is likely to preclude its use with EGS resources. This will be especially true in those areas where there is a high demand for finite supplies of water. Though they have no consumptive use of water, using air-cooling systems for heat rejection has disadvantages. These systems have higher capital costs, reduced power output (heat is rejected at the higher dry-bulb temperature), increased parasitics (fan power), and greater variability in power generation on both a diurnal and annual basis (larger variation in the dry-bulb temperature). This is an interim report for the task ‘Air-Cooled Condensers in Next- Generation Conversion Systems’. The work performed was specifically aimed at a plant that uses commercially available binary cycle technologies with an EGS resource. Concepts were evaluated that have the potential to increase performance, lower cost, or mitigate the adverse effects of off-design operation. The impact on both cost and performance were determined for the concepts considered, and the scenarios identified where a particular concept is best suited. Most, but not all, of the concepts evaluated are associated with the rejection of heat. This report specifically addresses three of the concepts evaluated: the use of

  3. The urban harvest approach as framework and planning tool for improved water and resource cycles

    NARCIS (Netherlands)

    Leusbrock, I.; Nanninga, T.A.; Lieberg, K.; Agudelo, C.; Keesman, K.J.; Zeeman, G.; Rijnaarts, H.

    2015-01-01

    Water and resource availability in sufficient quantity and quality for anthropogenic needs represents one of the main challenges in the coming decades. To prepare for upcoming challenges such as increased urbanization and climate change related consequences, innovative and improved resource

  4. Life cycle assessment of flexibly fed biogas processes for an improved demand-oriented biogas supply.

    Science.gov (United States)

    Ertem, Funda Cansu; Martínez-Blanco, Julia; Finkbeiner, Matthias; Neubauer, Peter; Junne, Stefan

    2016-11-01

    This paper analyses concepts to facilitate a demand oriented biogas supply at an agricultural biogas plant of a capacity of 500kWhel, operated with the co-digestion of maize, grass, rye silage and chicken manure. In contrast to previous studies, environmental impacts of flexible and the traditional baseload operation are compared. Life Cycle Assessment (LCA) was performed to detect the environmental impacts of: (i) variety of feedstock co-digestion scenarios by substitution of maize and (ii) loading rate scenarios with a focus on flexible feedstock utilization. Demand-driven biogas production is critical for an overall balanced power supply to the electrical grid. It results in lower amounts of emissions; feedstock loading rate scenarios resulted in 48%, 20%, 11% lower global warming (GWP), acidification (AP) and eutrophication potentials, and a 16% higher cumulative energy demand. Substitution of maize with biogenic-waste regarding to feedstock substitution scenarios could create 10% lower GWP and AP.

  5. Mouth Rinsing with Maltodextrin Solutions Fails to Improve Time Trial Endurance Cycling Performance in Recreational Athletes.

    Science.gov (United States)

    Kulaksız, Tuğba Nilay; Koşar, Şükran Nazan; Bulut, Suleyman; Güzel, Yasemin; Willems, Marcus Elisabeth Theodorus; Hazir, Tahir; Turnagöl, Hüseyin Hüsrev

    2016-05-09

    The carbohydrate (CHO) concentration of a mouth rinsing solution might influence the CHO sensing receptors in the mouth, with consequent activation of brain regions involved in reward, motivation and regulation of motor activity. The purpose of the present study was to examine the effects of maltodextrin mouth rinsing with different concentrations (3%, 6% and 12%) after an overnight fast on a 20 km cycling time trial performance. Nine recreationally active, healthy males (age: 24 ± 2 years; V ˙ O 2 m a x : 47 ± 5 mL·kg(-1)·min(-1)) participated in this study. A double-blind, placebo-controlled randomized study was conducted. Participants mouth-rinsed every 2.5 km for 5 s. Maltodextrin mouth rinse with concentrations of 3%, 6% or 12% did not change time to complete the time trial and power output compared to placebo (p > 0.05). Time trial completion times were 40.2 ± 4.0, 40.1 ± 3.9, 40.1 ± 4.4, and 39.3 ± 4.2 min and power output 205 ± 22, 206 ± 25, 210 ± 24, and 205 ± 23 W for placebo, 3%, 6%, and 12% maltodextrin conditions, respectively. Heart rate, lactate, glucose, and rating of perceived exertion did not differ between trials (p > 0.05). In conclusion, mouth rinsing with different maltodextrin concentrations after an overnight fast did not affect the physiological responses and performance during a 20 km cycling time trial in recreationally active males.

  6. Mouth Rinsing with Maltodextrin Solutions Fails to Improve Time Trial Endurance Cycling Performance in Recreational Athletes

    Science.gov (United States)

    Kulaksız, Tuğba Nilay; Koşar, Şükran Nazan; Bulut, Suleyman; Güzel, Yasemin; Willems, Marcus Elisabeth Theodorus; Hazir, Tahir; Turnagöl, Hüseyin Hüsrev

    2016-01-01

    The carbohydrate (CHO) concentration of a mouth rinsing solution might influence the CHO sensing receptors in the mouth, with consequent activation of brain regions involved in reward, motivation and regulation of motor activity. The purpose of the present study was to examine the effects of maltodextrin mouth rinsing with different concentrations (3%, 6% and 12%) after an overnight fast on a 20 km cycling time trial performance. Nine recreationally active, healthy males (age: 24 ± 2 years; V˙O2max: 47 ± 5 mL·kg−1·min−1) participated in this study. A double-blind, placebo-controlled randomized study was conducted. Participants mouth-rinsed every 2.5 km for 5 s. Maltodextrin mouth rinse with concentrations of 3%, 6% or 12% did not change time to complete the time trial and power output compared to placebo (p > 0.05). Time trial completion times were 40.2 ± 4.0, 40.1 ± 3.9, 40.1 ± 4.4, and 39.3 ± 4.2 min and power output 205 ± 22, 206 ± 25, 210 ± 24, and 205 ± 23 W for placebo, 3%, 6%, and 12% maltodextrin conditions, respectively. Heart rate, lactate, glucose, and rating of perceived exertion did not differ between trials (p > 0.05). In conclusion, mouth rinsing with different maltodextrin concentrations after an overnight fast did not affect the physiological responses and performance during a 20 km cycling time trial in recreationally active males. PMID:27171108

  7. Mouth Rinsing with Maltodextrin Solutions Fails to Improve Time Trial Endurance Cycling Performance in Recreational Athletes

    Directory of Open Access Journals (Sweden)

    Tuğba Nilay Kulaksız

    2016-05-01

    Full Text Available The carbohydrate (CHO concentration of a mouth rinsing solution might influence the CHO sensing receptors in the mouth, with consequent activation of brain regions involved in reward, motivation and regulation of motor activity. The purpose of the present study was to examine the effects of maltodextrin mouth rinsing with different concentrations (3%, 6% and 12% after an overnight fast on a 20 km cycling time trial performance. Nine recreationally active, healthy males (age: 24 ± 2 years; V ˙ O 2 m a x : 47 ± 5 mL·kg−1·min−1 participated in this study. A double-blind, placebo-controlled randomized study was conducted. Participants mouth-rinsed every 2.5 km for 5 s. Maltodextrin mouth rinse with concentrations of 3%, 6% or 12% did not change time to complete the time trial and power output compared to placebo (p > 0.05. Time trial completion times were 40.2 ± 4.0, 40.1 ± 3.9, 40.1 ± 4.4, and 39.3 ± 4.2 min and power output 205 ± 22, 206 ± 25, 210 ± 24, and 205 ± 23 W for placebo, 3%, 6%, and 12% maltodextrin conditions, respectively. Heart rate, lactate, glucose, and rating of perceived exertion did not differ between trials (p > 0.05. In conclusion, mouth rinsing with different maltodextrin concentrations after an overnight fast did not affect the physiological responses and performance during a 20 km cycling time trial in recreationally active males.

  8. An evaluation of UO2-CNT composites made by SPS as an accident tolerant nuclear fuel pellet and the feasibility of SPS as an economical fabrication process for the nuclear fuel cycle

    Science.gov (United States)

    Cartas, Andrew R.

    The innovative and advanced purpose of this study is to understand and establish proper sintering procedures for Spark Plasma Sintering process in order to fabricate high density, high thermal conductivity UO2 -CNT pellets. Mixing quality and chemical reactions have been investigated by field emission scanning electron microscopy (FESEM), wavelength dispersive spectroscopy (WDS), and X-ray diffraction (XRD). The effect of various types of CNTs on the mixing and sintering quality of UO2-CNT pellets with SPS processing have been examined. The Archimedes Immersion Method, laser flash method, and FE-SEM will be used to investigate the density, thermal conductivity, grain size, pinning effects, and CNT dispersion of fabricated UO2-CNT pellets. Pre-fabricated CNT's were added to UO 2 powder and dispersed via sonication and/or ball milling and then made into composite nuclear pellets. An investigation of the economic impact of SPS on the nuclear fuel cycle for producing pure and composite UO2 fuels was conducted.

  9. Search for improved surface treatment procedures in fabrication of HgI/sub 2/ X-ray spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Levi, A.; Burger, A.; Nissenbaum, J. (Hebrew Univ., Jerusalem (Israel). School of Applied Science and Technology); Schieber, M. (Hebrew Univ., Jerusalem (Israel). School of Applied Science and Technology; EG and G, Inc., Santa Barbara, CA (USA)); Burshtein, Z. (Israel Atomic Energy Commission, Beersheba. Nuclear Research Center-Negev)

    1983-07-15

    The influence of various fabrication parameters on the surface quality of HgI/sub 2/ X-ray spectrometers has been studied in detail. Exposure of etched HgI/sub 2/ to ambient atmosphere for proportional 24 h may reduce the electron surface recombination velocity by almost an order of magnitude. Reduction of the etching solution temperature (KI in water) to about 0/sup 0/C and an increase of the KI concentration to proportional 20 wt.% are also important.

  10. Search for improved surface treatment procedures in fabrication of HgI/sub 2/ x-ray spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Levi, A.; Burger, A.; Nissenbaum, J.; Schieber, M.; Burshtein, Z.

    1980-01-01

    The influence of various fabrication parameters on the surface quality of HgI/sub 2/ x-ray spectrometers was studied in detail. Exposure of etched HgI/sub 2/ to ambient atmosphere for approx. 24 hours may reduce the electron surface recombination velocity by almost an order of magnitude. Reduction of the etching solution temperature (KI in water) to about 0/sup 0/C and an increase of the KI concentration to approx. 20 wt % are also important.

  11. Quantification of Improvement in Environmental Quality for Old Residential Buildings Using Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Jozef Mitterpach

    2016-12-01

    Full Text Available In Slovakia, 35% of buildings are older than 50 years but most newer buildings built before 1990 have greater energy consumption. Some other countries also have similar problems. The growing importance of energy saving in buildings can be, in the case of new and old residential buildings (RB, achieved by lowering thermal energy consumption most often by application of polystyrene insulation on the external walls and roof and the exchange of wood window frames for PVC (polyvinyl chloride windows. The novelty of the article for Slovakia and some other central European countries consists in using the life cycle assessment (LCA method for the objective assessment of the environmental benefits of the selected systems of wall insulation, as well as of energy savings in various time intervals of insulation functionality (up to 20 years. LCA software SimaPro (LE Amersfoort, The Netherlands was used with ReCiPe and IMPACT 2002+ assessment methods to quantify the total environmental impact at selected endpoints and midpoints (IMPACT 2002+ of basic structural materials of an RB and its energy demand—heat consumption (hot water heating, central heating before the application of insulation and thermal energy saving (TES after application of insulation to its external walls, roof, and the exchange of windows. The data we obtained confirmed that the environmental impact of the polystyrene insulation of external walls, roof, and exchange of windows of one residential building (RB in the first year after insulation is higher than the reduction caused by achieving a TES of 39%. When taking a lifespan of 20 years into consideration, the impact over the life cycle of the building materials is reduced by 25% (global warming: −4792 kg CO2 eq; production of carcinogens: −2479 kg C2H3Cl eq; acidification: −12,045 kg SO2 eq; and aquatic eutrophication: −257 kg PO4 P-lim. The verified LCA methodology will be used for comparative analysis of different variants

  12. The urban harvest approach as framework and planning tool for improved water and resource cycles

    NARCIS (Netherlands)

    Leusbrock, I.; Nanninga, T.A.; Lieberg, K.; Agudelo, C.; Keesman, K.J.; Zeeman, G.; Rijnaarts, H.

    2015-01-01

    Water and resource availability in sufficient quantity and quality for anthropogenic needs represents one of the main challenges in the coming decades. To prepare for upcoming challenges such as increased urbanization and climate change related consequences, innovative and improved resource manageme

  13. The application of a Web-geographic information system for improving urban water cycle modelling.

    Science.gov (United States)

    Mair, M; Mikovits, C; Sengthaler, M; Schöpf, M; Kinzel, H; Urich, C; Kleidorfer, M; Sitzenfrei, R; Rauch, W

    2014-01-01

    Research in urban water management has experienced a transition from traditional model applications to modelling water cycles as an integrated part of urban areas. This includes the interlinking of models of many research areas (e.g. urban development, socio-economy, urban water management). The integration and simulation is realized in newly developed frameworks (e.g. DynaMind and OpenMI) and often assumes a high knowledge in programming. This work presents a Web based urban water management modelling platform which simplifies the setup and usage of complex integrated models. The platform is demonstrated with a small application example on a case study within the Alpine region. The used model is a DynaMind model benchmarking the impact of newly connected catchments on the flooding behaviour of an existing combined sewer system. As a result the workflow of the user within a Web browser is demonstrated and benchmark results are shown. The presented platform hides implementation specific aspects behind Web services based technologies such that the user can focus on his main aim, which is urban water management modelling and benchmarking. Moreover, this platform offers a centralized data management, automatic software updates and access to high performance computers accessible with desktop computers and mobile devices.

  14. Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving PBR Efficiency and Testing Material Compatibility - 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Chang Oh; Thomas Lillo; William Windes; Terry Totemeier; Richard Moore

    2004-10-01

    The U.S. and other countries address major challenges related to energy security and the environmental impacts of fossil fuels. Solutions to these issues include carbon-free electricity generation and hydrogen production for fuel cell car, fertilizer synthesis, petroleum refining, and other applications. The Very High Temperature Gas Reactor (HTGR) has been recognized as a promising technology for high efficiency electricity generation and high temperature process heat applications. Therefore, the U.S. needs to make the HTGR intrinsically safe and proliferation-resistant. The U.S. and the world, however, must still overcome certain technical issues and the cost barrier before it can be built in the U.S. The establishment of a nuclear power cost goal of 3.3 cents/kWh is desirable in order to compete with fossil combined-cycle, gas turbine power generation. This goal requires approximately a 30% reduction in power cost for state-of-the-art nuclear plants. It has been demonstrated that this large cost differential can be overcome only by technology improvements that lead to a combination of better efficiency and more compatible reactor materials. The objectives of this research are (1) to develop a supercritical carbon dioxide Brayton cycle in the secondary power conversion side that can be applied to some Generation-IV reactors such as the HTGR and supercritical water reactor, (2) to improve the plant net efficiency by using the carbon dioxide Brayton cycle, and (3) to test material compatibility at high temperatures and pressures. The reduced volumetric flow rate of carbon dioxide due to higher density compared to helium will reduce compression work, which eventually increase turbine work enhancing the plant net efficiency.

  15. Life cycle assessment as a tool for the environmental improvement of the tannery industry in developing countries.

    Science.gov (United States)

    Rivela, B; Moreira, M T; Bornhardt, C; Méndez, R; Feijoo, G

    2004-03-15

    A representative leather tannery industry in a Latin American developing country has been studied from an environmental point of view, including both technical and economic analysis. Life Cycle Analysis (LCA) methodology has been used for the quantification and evaluation of the impacts of the chromium tanning process as a basis to propose further improvement actions. Four main subsystems were considered: beamhouse, tanyard, retanning, and wood furnace. Damages to human health, ecosystem quality, and resources are mainly produced by the tanyard subsystem. The control and reduction of chromium and ammonia emissions are the critical points to be considered to improve the environmental performance of the process. Technologies available for improved management of chromium tanning were profoundly studied, and improvement actions related to optimized operational conditions and a high exhaustion chrome-tanning process were selected. These actions related to the implementation of internal procedures affected the economy of the process with savings ranging from US dollars 8.63 to US dollars 22.5 for the processing of 1 ton of wet salt hides, meanwhile the global environmental impact was reduced to 44-50%. Moreover, the treatment of wastewaters was considered in two scenarios. Primary treatment presented the largest reduction of the environmental impact of the tanning process, while no significant improvement for the evaluated impact categories was achieved when combining primary and secondary treatments.

  16. Improved Team Performance During Pediatric Resuscitations After Rapid Cycle Deliberate Practice Compared With Traditional Debriefing: A Pilot Study.

    Science.gov (United States)

    Lemke, Daniel S; Fielder, Elaine K; Hsu, Deborah C; Doughty, Cara B

    2016-10-06

    Simulation-based medical education (SBME) improves medical knowledge compared with no intervention. In traditional SBME, more time is spent debriefing than practicing skills. Rapid cycle deliberate practice (RCDP) simulation allows learners to practice skills repetitively, receive brief interspersed feedback, and has been shown to improve individual performance of resuscitation skills in simulation; it has not been compared with traditional simulation methods. The aim of the study was to compare traditional and RCDP SBME. Four pediatric resuscitation cases (3 for teaching and 1 for testing) were developed. For the RCDP arm, traditional cases were deconstructed into sequences of progressively difficult rounds. The last RCDP round served as the traditional arm scenario.Learners received 1 type of instruction on 2 separate days. Pretest and posttest performance during simulation were video recorded and scored using the Simulation Team Assessment Tool; satisfaction surveys were collected. Pretest team performance was similar in both groups. Simulation Team Assessment Tool score improvement for RCDP was 7.2% (95% confidence interval, 3.4% to 11%) and traditional was 0.8% (95% confidence interval, -11% to 13%). The difference in improvement of the human factors subscore was statistically significant; RCDP improved 10.2% and traditional improved 1.7% (P = 0.013). The RCDP technique was well received by learners but caused fatigue. This pilot study showed a trend toward greater improvement in team performance and significantly greater improvement for human factors with RCDP compared with traditional simulation. Future studies comparing RCDP with other methods are needed to identify best practices and applications of RCDP, including which learners and learning objectives are best suited to RCDP.

  17. Improved Environmental Life Cycle Assessment of Crop Production at the Catchment Scale via a Process-Based Nitrogen Simulation Model.

    Science.gov (United States)

    Liao, Wenjie; van der Werf, Hayo M G; Salmon-Monviola, Jordy

    2015-09-15

    One of the major challenges in environmental life cycle assessment (LCA) of crop production is the nonlinearity between nitrogen (N) fertilizer inputs and on-site N emissions resulting from complex biogeochemical processes. A few studies have addressed this nonlinearity by combining process-based N simulation models with LCA, but none accounted for nitrate (NO3(-)) flows across fields. In this study, we present a new method, TNT2-LCA, that couples the topography-based simulation of nitrogen transfer and transformation (TNT2) model with LCA, and compare the new method with a current LCA method based on a French life cycle inventory database. Application of the two methods to a case study of crop production in a catchment in France showed that, compared to the current method, TNT2-LCA allows delineation of more appropriate temporal limits when developing data for on-site N emissions associated with specific crops in this catchment. It also improves estimates of NO3(-) emissions by better consideration of agricultural practices, soil-climatic conditions, and spatial interactions of NO3(-) flows across fields, and by providing predicted crop yield. The new method presented in this study provides improved LCA of crop production at the catchment scale.

  18. Improved effectiveness of artificial insemination of turkey hens associated with ahemeral light-dark cycles and age at photostimulation.

    Science.gov (United States)

    Siopes, T D

    1999-06-01

    In lighting studies with turkey hens, long ahemeral (AH; non-24 h) light-dark cycles have consistently resulted in greater, although not statistically significant, fertility than control 24 h light-dark cycles. The present study was designed to further evaluate AH lighting effects on fertility by an evaluation of the effectiveness of artificial insemination (AI) under less than optimal conditions for normal fertility, that is, single AI and early age at lighting. Turkey hens had greater percentage fertility of eggs when photostimulated at 30 wk (95.0) than 26 wk (76.3) of age following single, but not double, AI. Ahemeral lighting dramatically improved the effectiveness of a single AI of hens photostimulated at 26 wk of age as compared to controls (89.3 vs 76.3% fertility, respectively). However, with multiple AI, benefits of AH lighting on fertility exceeding that of control hens was not significant. It may be concluded that AH lighting can dramatically improve the effectiveness of AI under certain adverse conditions, such as early age at lighting and reduced exposure of the hen to sperm.

  19. Fuel utilization improvement in PWRs using the denatured /sup 233/U-Th cycle

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H.M.; Schwenk, G.A.; Toops, E.C.; Yotinen, V.O.

    1980-06-01

    A number of changes in PWR core design and/or operating strategy were evaluated to assess the fuel utilization improvement achievable by their implementation in a PWR using thorium-based fuel and operating in a recycle mode. The reference PWR for this study was identical to the B and W Standard Plant except that the fuel pellets were of denatured (/sup 233/U//sup 238/U-Th)O/sub 2/. An initial scoping study identified the three most promising improvement concepts as (1) a very tight lattice, (2) thorium blankets, and (3) ThO/sub 2/ rods placed in available guide tubes. A conceptual core design incorporating these changes was then developed, and the fuel utilization of this modified design was compared with that of the reference case.

  20. Endurance training of respiratory muscles improves cycling performance in fit young cyclists

    OpenAIRE

    Holm Paige; Sattler Angela; Fregosi Ralph F

    2004-01-01

    Abstract Background Whether or not isolated endurance training of the respiratory muscles improves whole-body endurance exercise performance is controversial, with some studies reporting enhancements of 50 % or more, and others reporting no change. Twenty fit (VO2 max 56.0 ml/kg/min), experienced cyclists were randomly assigned to three groups. The experimental group (n = 10) trained their respiratory muscles via 20, 45 min sessions of hyperpnea. The placebo group (n = 4) underwent "sham" tra...

  1. Does local endometrial injury in the nontransfer cycle improve the IVF-ET outcome in the subsequent cycle in patients with previous unsuccessful IVF? A randomized controlled pilot study

    Directory of Open Access Journals (Sweden)

    Sachin A Narvekar

    2010-01-01

    Full Text Available Background: Management of repeated implantation failure despite transfer of good-quality embryos still remains a dilemma for ART specialists. Scrapping of endometrium in the nontransfer cycle has been shown to improve the pregnancy rate in the subsequent IVF/ET cycle in recent studies. Aim: The objective of this randomized controlled trial (RCT was to determine whether endometrial injury caused by Pipelle sampling in the nontransfer cycle could improve the probability of pregnancy in the subsequent IVF cycle in patients who had previous failed IVF outcome. Setting: Tertiary assisted conception center. Design: Randomized controlled study. Materials and Methods: 100 eligible patients with previous failed IVF despite transfer of good-quality embryos were randomly allocated to the intervention group and control groups. In the intervention group, Pipelle endometrial sampling was done twice: One in the follicular phase and again in the luteal phase in the cycle preceding the embryo transfer cycle. Outcome Measure: The primary outcome measure was live birth rate. The secondary outcome measures were implantation and clinical pregnancy rates. Results: The live birth rate was significantly higher in the intervention group compared to control group (22.4% and 9.8% P = 0.04. The clinical pregnancy rate in the intervention group was 32.7%, while that in the control group was 13.7%, which was also statistically significant ( P = 0.01. The implantation rate was significantly higher in the intervention group as compared to controls (13.07% vs 7.1% P = 0.04. Conclusions: Endometrial injury in nontransfer cycle improves the live birth rate,clinical pregnancy and implantation rates in the subsequent IVF-ET cycle in patients with previous unsuccessful IVF cycles.

  2. Fabrication Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Fabrication Facilities are a direct result of years of testing support. Through years of experience, the three fabrication facilities (Fort Hood, Fort Lewis, and...

  3. An Improved Dispatching Method (a-HPDB for Automated Material Handling System with Active Rolling Belt for 450 mm Wafer Fabrication

    Directory of Open Access Journals (Sweden)

    Chia-Nan Wang

    2017-07-01

    Full Text Available The semiconductor industry is facing the transition from 300 mm to 450 mm wafer fabrication. Due to the increased size and weight, 450 mm wafers will pose unprecedented challenges on semiconductor wafer fabrication. To better handle and transport 450 mm wafers, an advanced Automated Material Handling System (AMHS is definitely required. Though conveyor-based AMHS is expected to be suitable for 450 mm wafer fabrication, still it faces two main problems, traffic-jam problem and lot-prioritization. To address the two problems, in this research we have proposed an improved dispatching method, termed Heuristic Preemptive Dispatching Method using Activated Roller Belt (a-HPDB. We have developed some effective rules for the a-HPDB based on Activated Roller Belt (ARB. In addition, we have conducted experiments to investigate its effectiveness. Compared with the HPDB and R-HPD, two dispatching rules proposed in previous studies, our experimental results showed the a-HPDB had a better performance in terms of average lot delivery time (ALDT. For hot lots and normal lots, the a-HPDB had advantages of 4.14% and 8.92% over the HPDB and advantages of 4.89% and 8.52% over R-HPD, respectively.

  4. Identification of a keratinase-producing bacterial strain and enzymatic study for its improvement on shrink resistance and tensile strength of wool- and polyester-blended fabric.

    Science.gov (United States)

    Cai, Shao-Bo; Huang, Zheng-Hua; Zhang, Xing-Qun; Cao, Zhang-Jun; Zhou, Mei-Hua; Hong, Feng

    2011-01-01

    A wool-degrading bacterium was isolated from decomposition wool fabrics in China. The strain, named 3096-4, showed excellent capability of removing cuticle layer of wool fibers, as demonstrated by removing cuticle layer completely within 48 h. According to the phenotypic characteristics and 16S rRNA profile, the isolate was classified as Pseudomonas. Bacteria growth and keratinase activity of the isolate were determined during cultivation on raw wool at different temperatures, initial pH, and rotation speed using orthogonal matrix method. Maximum growth and keratinase activity of the bacterium were observed under the condition including 30 °C, initial pH 7.6, and rotational speeds 160 rpm. The keratinase-containing crude enzyme prepared from 3096-4 was evaluated in the treatment of wool fabrics. The optimal condition of our enzymatic improvement of shrink resistance was the combination of 30 °C, initial pH 7.6, and rotation speeds 160 rpm. After the optimized treatment, the wool fabrics felting shrink was 4.1% at 6 h, and textile strength was not lost.

  5. Concentrating solar power (CSP) power cycle improvements through application of advanced materials

    Science.gov (United States)

    Siefert, John A.; Libby, Cara; Shingledecker, John

    2016-05-01

    Concentrating solar power (CSP) systems with thermal energy storage (TES) capability offer unique advantages to other renewable energy technologies in that solar radiation can be captured and stored for utilization when the sun is not shining. This makes the technology attractive as a dispatchable resource, and as such the Electric Power Research Institute (EPRI) has been engaged in research and development activities to understand and track the technology, identify key technical challenges, and enable improvements to meet future cost and performance targets to enable greater adoption of this carbon-free energy resource. EPRI is also involved with technically leading a consortium of manufacturers, government labs, and research organizations to enable the next generation of fossil fired power plants with advanced ultrasupercritical (A-USC) steam temperatures up to 760°C (1400°F). Materials are a key enabling technology for both of these seemingly opposed systems. This paper discusses how major strides in structural materials for A-USC fossil fired power plants may be translated into improved CSP systems which meet target requirements.

  6. Does a Non-Circular Chainring Improve Performance in the Bicycle Motocross Cycling Start Sprint?

    Directory of Open Access Journals (Sweden)

    Manuel Mateo-March

    2014-03-01

    Full Text Available Maximising power output during the initial acceleration phase of a bicycle motocross (BMX race increases the chance to lead the group for the rest of the race. The purpose of this study was to investigate the effect of non-circular chainrings (Q-ring on performance during the initial acceleration phase of a BMX race. Sixteen male cyclists (Spanish National BMX team performed two counterbalanced and randomized initial sprints (3.95s, using Q- ring vs. circular chainring, on a BMX track. The sample was divided into two different groups according to their performance (Elite; n = 8 vs. Cadet; n = 8. Elite group covered a greater distance using Q-ring (+0.26 m, p = 0.02; D = 0.23, whilst the improvement for the Cadet (+0.04 m was not significant (p = 0.87; D = -0.02. Also, there was no significant difference in power output for the Elite group, while the Cadet group revealed larger peak power with the circular chainring. Neither lactate level, nor heart rate showed significant differences due to the different chainring used. The non-circular chainring improved the initial acceleration capacity only in the Elite riders.

  7. Recent Progress on the DUPIC Fuel Fabrication Technology at KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Jung-Won Lee; Ho-Jin Ryu; Geun-Il Park; Kee-Chan Song [Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong-ku, Daejeon, 305-353 (Korea, Republic of)

    2008-07-01

    Since 1991, KAERI has been developing the DUPIC fuel cycle technology. The concept of a direct use of spent PWR fuel in Candu reactors (DUPIC) is based on a dry processing method to re-fabricate Candu fuel from spent PWR fuel without any intentional separation of the fissile materials and fission products. A DUPIC fuel pellet was successfully fabricated and the DUPIC fuel element fabrication processes were qualified on the basis of a Quality Assurance program. Consequently, the DUPIC fuel fabrication technology was verified and demonstrated on a laboratory-scale. Recently, the fuel discharge burn-up of PWRs has been extended to reduce the amount of spent fuel and the fuel cycle costs. Considering this trend of extending the fuel burn-up in PWRs, the DUPIC fuel fabrication technology should be improved to process high burn-up spent fuels. Particularly the release behavior of cesium from the pellet prepared with a high burn-up spent fuel was assessed. an improved DUPIC fuel fabrication technology was experimentally established with a fuel burn-up of 65,000 MWd/tU. (authors)

  8. Fabrication of microfluidic devices: improvement of surface quality of CO2 laser machined poly(methylmethacrylate) polymer

    Science.gov (United States)

    Mohammed, Mazher I.; Nazrul Hisham Zainal Alam, Muhd; Kouzani, Abbas; Gibson, Ian

    2017-01-01

    Laser engraving has considerable potential for the rapid and cost effective manufacturing of polymeric microfluidic devices. However, fabricated devices are hindered by relatively large surface roughness in the engraved areas, which can perturb smooth fluidic flow and can damage sensitive biological components. This effect is exacerbated when engraving at depths beyond the laser focal range, limiting the production of large aspect ratio devices such as microbioreactors. This work aims to overcome such manufacturing limitations and to realise more reproducible and defect free microfluidic channels and structures. We present a strategy of multiple engraving passes alongside solvent polymer reflow for shallow depth (500 µm) features. To examine the proposed methodologies, capillary action and bioreactor microfluidic devices were fabricated and evaluated. Results indicate that the multiple engraving technique could reproduce engraved microfluidic channels to depths between 50-470 µm, both rapidly (6-8 min) and with low average surface roughness (1.5-2.5 µm). The layer cutting approach was effective at manufacturing microfluidic devices with depths  <500 µm, rapidly (<1 min) and with low surface roughness. Ultimately, the proposed methodology is highly beneficial for the rapid development of polymer-based microfluidic devices.

  9. Bragg grating-based Fabry-Perot interferometer fabricated in a polymer fiber for sensing with improved resolution

    Science.gov (United States)

    Statkiewicz-Barabach, G.; Mergo, P.; Urbanczyk, W.

    2017-01-01

    We demonstrate for the first time a Bragg grating-based Fabry-Perot interferometer (FPI) fabricated in the polymer fiber with a core made of PMMA/PS copolymer and pure PMMA cladding. The FPI was formed by two gratings with the same Bragg wavelength, λ B = 1312 nm, separated by a small gap. The FP cavity was created directly during the grating inscription process by placing a narrow blocking aperture, in the center of the UV beam. Good long-term stability was achieved by fabricating the gratings of type II with long irradiation time (8 min). By choosing an appropriate width of the blocking aperture, we could control the number and the width of interference fringes visible in the grating’s reflection spectrum. Sharp fringes were obtained, of 3 dB width within the range of 50-100 pm, allowing for a significant increase in measurement resolution compared to direct interrogation of a single grating. The proposed interferometer was tested in measurements of strain and temperature in the range of 0-20 mstrain and 20 °C-70 °C, showing the sensitivity of 1.074 nm mstrain-1 and -25.1 pm °C-1, respectively.

  10. Cost-effective ways to improve the fabrication and installation of solar heating and cooling systems for residences. Final report, June 1, 1977-September 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, S.B.; Jacobs, P.; Weaver, N.

    1978-10-01

    A Colorado State University Solar Energy Applications Laboratory study investigating cost-effective ways of improving fabrication and installation of residential solar energy heating systems is documented. The study entailed on-site observation of twelve installations focusing on the phase of mounting and manifolding of solar collectors. Time lapse photography and work measurement techniques were employed to record these installations. Generic collector types studied included air and liquid panels both internally and externally manifolded. Principal findings of the study synthesized from field observations, analysis of photographic data, time studies, and discussion with installation personnel and manufacturers' representatives are presented in the technical report.

  11. Significantly improved long-cycle stability in high-rate Li-S batteries enabled by coaxial graphene wrapping over sulfur-coated carbon nanofibers.

    Science.gov (United States)

    Lu, Songtao; Cheng, Yingwen; Wu, Xiaohong; Liu, Jie

    2013-06-12

    Long-term instability of Li-S batteries is one of their major disadvantages compare to other secondary batteries. The reasons for the instability include dissolution of polysulfide intermediates and mechanical instability of the electrode film caused by volume changes during charging/discharging cycles. In this paper, we report a novel graphene-sulfur-carbon nanofibers (G-S-CNFs) multilayer and coaxial nanocomposite for the cathode of Li-S batteries with increased capacity and significantly improved long-cycle stability. Electrodes made with such nanocomposites were able to deliver a reversible capacity of 694 mA h g(-1) at 0.1C and 313 mA h g(-1) at 2C, which are both substantially higher than electrodes assembled without graphene wrapping. More importantly, the long-cycle stability was significantly improved by graphene wrapping. The cathode made with G-S-CNFs with a initial capacity of 745 mA h g(-1) was able to maintain ~273 mA h g(-1) even after 1500 charge-discharge cycles at a high rate of 1C, representing an extremely low decay rate (0.043% per cycle after 1500 cycles). In contrast, the capacity of an electrode assembled without graphene wrapping decayed dramatically with a 10 times high rate (~0.40% per cycle after 200 cycles). These results demonstrate that the coaxial nanocomposites are of great potential as the cathode for high-rate rechargeable Li-S batteries. Such improved rate capability and cycle stability could be attributed to the unique coaxial architecture of the nanocomposite, in which the contributions from graphene and CNFs enable electrodes with improved electrical conductivity, better ability to trap soluble the polysulfides intermediate and accommodate volume expansion/shrinkage of sulfur during repeated charge/discharge cycles.

  12. Intake of Protein Plus Carbohydrate during the First Two Hours after Exhaustive Cycling Improves Performance the following Day.

    Science.gov (United States)

    Rustad, Per I; Sailer, Manuela; Cumming, Kristoffer T; Jeppesen, Per B; Kolnes, Kristoffer J; Sollie, Ove; Franch, Jesper; Ivy, John L; Daniel, Hannelore; Jensen, Jørgen

    2016-01-01

    Intake of protein immediately after exercise stimulates protein synthesis but improved recovery of performance is not consistently observed. The primary aim of the present study was to compare performance 18 h after exhaustive cycling in a randomized diet-controlled study (175 kJ·kg(-1) during 18 h) when subjects were supplemented with protein plus carbohydrate or carbohydrate only in a 2-h window starting immediately after exhaustive cycling. The second aim was to investigate the effect of no nutrition during the first 2 h and low total energy intake (113 kJ·kg(-1) during 18 h) on performance when protein intake was similar. Eight endurance-trained subjects cycled at 237±6 Watt (~72% VO2max) until exhaustion (TTE) on three occasions, and supplemented with 1.2 g carbohydrate·kg(-1)·h(-1) (CHO), 0.8 g carbohydrate + 0.4 g protein·kg(-1)·h(-1) (CHO+PRO) or placebo without energy (PLA). Intake of CHO+PROT increased plasma glucose, insulin, and branch chained amino acids, whereas CHO only increased glucose and insulin. Eighteen hours later, subjects performed another TTE at 237±6 Watt. TTE was increased after intake of CHO+PROT compared to CHO (63.5±4.4 vs 49.8±5.4 min; pintake of CHO+PROT compared to an isocaloric amount of carbohydrate during the first 2 h post exercise. Intake of a similar amount of protein but less carbohydrate during the 18 h recovery period reduced performance.

  13. Environmental impacts of innovative dairy farming systems aiming at improved internal nutrient cycling: A multi-scale assessment.

    Science.gov (United States)

    de Vries, W; Kros, J; Dolman, M A; Vellinga, Th V; de Boer, H C; Gerritsen, A L; Sonneveld, M P W; Bouma, J

    2015-12-01

    Several dairy farms in the Netherlands aim at reducing environmental impacts by improving the internal nutrient cycle (INC) on their farm by optimizing the use of available on-farm resources. This study evaluates the environmental performance of selected INC farms in the Northern Friesian Woodlands in comparison to regular benchmark farms using a Life Cycle Assessment. Regular farms were selected on the basis of comparability in terms of milk production per farm and per hectare, soil type and drainage conditions. In addition, the environmental impacts of INC farming at landscape level were evaluated with the integrated modelling system INITIATOR, using spatially explicit input data on animal numbers, land use, agricultural management, meteorology and soil, assuming that all farms practised the principle of INC farming. Impact categories used at both farm and landscape levels were global warming potential, acidification potential and eutrophication potential. Additional farm level indicators were land occupation and non-renewable energy use, and furthermore all farm level indicators were also expressed per kg fat and protein corrected milk. Results showed that both on-farm and off-farm non-renewable energy use was significantly lower at INC farms as compared with regular farms. Although nearly all other environmental impacts were numerically lower, both on-farm and off-farm, differences were not statistically significant. Nitrogen losses to air and water decreased by on average 5 to 10% when INC farming would be implemented for the whole region. The impact of INC farming on the global warming potential and eutrophication potential was, however, almost negligible (<2%) at regional level. This was due to a negligible impact on the methane emissions and on the surplus and thereby on the soil accumulation and losses of phosphorus to water at INC farms, illustrating the focus of these farms on closing the nitrogen cycle.

  14. Improvement of agricultural life cycle assessment studies through spatial differentiation and new impact categories: case study on greenhouse tomato production.

    Science.gov (United States)

    Antón, Assumpció; Torrellas, Marta; Núñez, Montserrat; Sevigné, Eva; Amores, Maria José; Muñoz, Pere; Montero, Juan I

    2014-08-19

    This paper presents the inclusion of new, relevant impact categories for agriculture life cycle assessments. We performed a specific case study with a focus on the applicability of spatially explicit characterization factors. The main goals were to provide a detailed evaluation of these new impact category methods, compare the results with commonly used methods (ReCiPe and USEtox) and demonstrate how these new methods can help improve environmental assessment in agriculture. As an overall conclusion, the newly developed impact categories helped fill the most important gaps related to land use, water consumption, pesticide toxicity, and nontoxic emissions linked to fertilizer use. We also found that including biodiversity damage due to land use and the effect of water consumption on wetlands represented a scientific advance toward more realistic environmental assessment of agricultural practices. Likewise, the dynamic crop model for assessing human toxicity from pesticide residue in food can lead to better practice in pesticide application. In further life cycle assessment (LCA) method developments, common end point units and normalization units should be agreed upon to make it possible to compare different impacts and methods. In addition, the application of site-specific characterization factors allowed us to be more accurate regarding inventory data and to identify precisely where background flows acquire high relevance.

  15. A Unique Hybrid Quasi-Solid-State Electrolyte for Li-O2 Batteries with Improved Cycle Life and Safety.

    Science.gov (United States)

    Yi, Jin; Zhou, Haoshen

    2016-09-08

    In the context of the development of electric vehicle to solve the contemporary energy and environmental issues, the possibility of pushing future application of Li-O2 batteries as a power source for electric vehicles is particularly attractive. However, safety concerns, mainly derived from the use of flammable organic liquid electrolytes, become a major bottleneck for the strategically crucial applications of Li-O2 batteries. To overcome this issue, rechargeable solid-state Li-O2 batteries with enhanced safety is regarded as an appealing candidate. In this study, a hybrid quasi-solid-state electrolyte combing a polymer electrolyte with a ceramic electrolyte is first designed and explored for Li-O2 batteries. The proposed rechargeable solid-state Li-O2 battery delivers improved cycle life (>100 cycles) and safety. The feasibility study demonstrates that the hybrid quasi-solid-state electrolytes could be employed as a promising alternative strategy for the development of rechargeable Li-O2 batteries, hence encouraging more efforts devoted to explore other hybrid solid-state electrolytes for Li-O2 batteries upon future application.

  16. Solvothermal preparation of ZnO nanorods as anode material for improved cycle life Zn/AgO batteries.

    Directory of Open Access Journals (Sweden)

    Shafiq Ullah

    Full Text Available Nano materials with high surface area increase the kinetics and extent of the redox reactions, thus resulting in high power and energy densities. In this study high surface area zinc oxide nanorods have been synthesized by surfactant free ethylene glycol assisted solvothermal method. The nanorods thus prepared have diameters in the submicron range (300 ~ 500 nm with high aspect ratio. They have uniform geometry and well aligned direction. These nanorods are characterized by XRD, SEM, Specific Surface Area Analysis, solubility in alkaline medium, EDX analysis and galvanostatic charge/discharge studies in Zn/AgO batteries. The prepared zinc oxide nanorods have low solubility in alkaline medium with higher structural stability, which imparts the improved cycle life stability to Zn/AgO cells.

  17. A detailed analysis of entropy production and improvement of the thermodynamic cycle of an adsorption refrigerating plant

    Science.gov (United States)

    Okunev, B. N.; Safonov, M. S.

    2006-07-01

    A thermodynamic analysis of an adsorption refrigerating plant with closed loops for a working substance and auxiliary liquid heat carrier has been carried out in application to the adsorption pair “water-CaCl2 impregnated into the pores of a silica gel.” Using the obtained periodic solutions of the system of energy-balance equations for the heat carrier and the sorbent layer, the most thermodynamically effective modes of operation of the refrigerating plant have been determined as functions of governing parameters. The entropy production in various modules of the plant is calculated, and the main sources of entropy generation are revealed. This made it possible to suggest an improved scheme of an adsorption refrigerating cycle with regenerative heat exchangers connected at the inlet and outlet from the adsorbers. The possibility of a considerable increase in the coefficient of thermodynamic efficiency in such a system has been justified.

  18. The efficiency of active cycle of breathing techniques regarding the improvement the quality of life in cystic fibrosis patients

    Directory of Open Access Journals (Sweden)

    Bogdan Almăjan-Guţă

    2008-12-01

    Full Text Available Background: Physiotherapy is well known as one of the most important part of CF patient’s management. The right choice ofappropriate therapy schema will improve the life’s quality of the patients. The purpose of the study was to prove the efficiencyof Active cycle of breathing techniques at children with cystic fibrosis. The study was performed between September 2006-september 2007 and the lot of study consisted of 20 children (11 girls and 9 boys with an age range between 6 and 18 years(average 14,8 years from the records of the Cystic Fibrosis National Centre Timisoara. The results showed an improvement inall measured values: general well-being, coughing, physical signs, X-ray signs and CT, bacteriological exam, nutritional status,functional respiratory tests. The statistical briefing of data shows the fact that there are significant statistical difference (p<0,05, before and after treatment in all ventilator index. The conclusion of this study was that the chosen technique (ACTBproved to be very efficient, in improving of respiratory symptoms and ventilator parameters

  19. Pilot study: rapidly cycling hypobaric pressure improves pain after 5 days in adiposis dolorosa

    Directory of Open Access Journals (Sweden)

    Karen L Herbst

    2010-08-01

    Full Text Available Karen L Herbst1, Thomas Rutledge21Department of Medicine, University of California, San Diego, California, USA; 2Department of Psychiatry, University of California, San Diego, California, USAAbstract: Adiposis dolorosa (AD is a rare disorder of painful nodular subcutaneous fat ­accompanied by fatigue, difficulty with weight loss, inflammation, increased fluid in ­adipose ­tissue (lipedema and lymphedema, and hyperalgesia. Sequential compression relieves ­lymphedema pain; we therefore hypothesized that whole body cyclic pneumatic hypobaric compression may relieve pain in AD. To avoid exacerbating hyperalgesia, we utilized a touch-free method, which is delivered via a high-performance altitude simulator, the Cyclic Variations in Altitude ConditioningTM (CVACTM process. As a pilot study, 10 participants with AD completed pain and quality of life questionnaires before and after 20–40 minutes of CVAC process daily for 5 days. Participants lost weight (195.5 ± 17.6–193.8 ± 17.3 lb; P = 0.03, and bioimpedance significantly decreased (510 ± 36–490 ± 38 ohm; P = 0.01. There was a significant decrease in scores on the Pain Catastrophizing Scale (P = 0.039, in average (P = 0.002, highest (P = 0.029, lowest (P = 0.04, and current pain severity (P = 0.02 on the Visual Analogue Scale, but there was no change in pain quality by the McGill Pain Questionnaire. There were no significant changes in total and physical SF-36 scores, but the mental score improved significantly (P = 0.049. There were no changes in the Pain Disability Index or Pittsburgh Sleep Quality Index. These data present a potential, new, noninvasive means of treating pain in AD by whole body pneumatic compression as part of the CVAC process. Although randomized, controlled trials are needed to confirm these data, the CVAC process could potentially help in treating AD pain and other chronic pain disorders.Keywords: bioimpedance, chronic pain, lipedema

  20. Low cadence interval training at moderate intensity does not improve cycling performance in highly trained veteran cyclists

    Directory of Open Access Journals (Sweden)

    Morten eKristoffersen

    2014-01-01

    Full Text Available Purpose: The aim of the present study was to investigate effects of low cadence training at moderate intensity on aerobic capacity, cycling performance, gross efficiency, freely chosen cadence and leg strength in veteran cyclists. Method: Twenty-two well trained veteran cyclists (age: 47 ±6 years, maximal oxygen consumption (VO2max: 57.9 ±3.7 ml. kg-1. min-1 were randomized into two groups, a low cadence training group and a freely chose cadence training group. Respiratory variables, power output, cadence and leg strength were tested before and after a 12 weeks training intervention period. The low cadence training group performed 12 weeks of moderate (73-82 % of maximal heart rate (HRmax interval training (5 x 6 min with a cadence of 40 revolutions per minute (rpm two times a week, in addition to their usual training. The freely chosen cadence group added 90 minutes of training at freely chosen cadence at moderate intensity. Results: No significant effects of the low cadence training on aerobic capacity, cycling performance, power output, cadence, gross efficiency or leg strength was found. The freely chosen cadence group significantly improved both VO2max (58.9±2.4 vs. 62.2±3.2 ml. kg-1. min-1, VO2 consumption at lactate threshold (49.4 ±3.8 vs. 51.8±3.5 ml. kg-1. min-1 and during the 30 min performance test (52.8±3.0 vs. 54.7±3.5 ml. kg-1. min-1, and power output at lactate threshold (284 ±47 vs. 294 ±48 W and during the 30 min performance test (284±42 vs. 297±50 W. Conclusion: Twelve weeks of low cadence (40 rpm interval training at moderate intensity (73-82 % of HRmax twice a week does not improve aerobic capacity, cycling performance or leg strength in highly trained veteran cyclists. However, adding training at same intensity (% of HRmax and duration (90 minutes weekly at freely chosen cadence seems beneficial for performance and physiological adaptations.

  1. Alternative Fabrication of Recycling Fast Reactor Metal Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Hwan; Kim, Jong Hwan; Song, Hoon; Kim, Hyung-Tae; Lee, Chan-Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Metal fuels such as U-Zr/U-Pu-Zr alloys have been considered as a nuclear fuel for a sodium-cooled fast reactor (SFR) related to the closed fuel cycle for managing minor actinides and reducing a high radioactivity levels since the 1980s. In order to develop innovative fabrication method of metal fuel for preventing the evaporation of volatile elements such as Am, modified casting under inert atmosphere has been applied for metal fuel slugs for SFR. Alternative fabrication method of fuel slugs has been introduced to develop an improved fabrication process of metal fuel for preventing the evaporation of volatile elements. In this study, metal fuel slugs for SFR have been fabricated by modified casting method, and characterized to evaluate the feasibility of the alternative fabrication method. In order to prevent evaporation of volatile elements such as Am and improve quality of fuel slugs, alternative fabrication methods of metal fuel slugs have been studied in KAERI. U-10Zr-5Mn fuel slug containing volatile surrogate element Mn was soundly cast by modified injection casting under modest pressure. Evaporation of Mn during alternative casting could not be detected by chemical analysis. Mn element was most recovered with prevention of evaporation by alternative casting. Modified injection casting has been selected as an alternative fabrication method in KAERI, considering evaporation prevention, and proven benefits of high productivity, high yield, and good remote control.

  2. A Method to Improve the SGADER Process and Fabricate Ultra-thick Proof Mass Inertial Sensors under the Same DRIE Technique

    Directory of Open Access Journals (Sweden)

    Haifeng DONG

    2010-04-01

    Full Text Available The Silicon Glass Anodic-bonding and Deep Etching Release (SGADER is a standardized MEMS process that has been used to fabricate various MEMS devices, especially accelerometers and gyroscopes. However, the height of SGADER structure is limited by the aspect ratio of the DRIE technique. The effect of the structure height to the resolution of the devices is analyzed. After that, an improvement to the SGADER process, so called Fusion-bonding-added SGADER (F-SGADER process, is proposed, which avoids the aspect ratio limitation, LAG and Footing effect of DRIE and improve the resolution of SGADER devices at the same time. Another advantage of this process is that its structural vibration modes vary linearly with those of the SGADER process, which facilitates the devices’ transition from the SGADER process to the F-SGADER process. Furthermore, FEM simulation is performed to verify this property.

  3. Easy fabrication of a new type of mouthguard incorporating a hard insert and space and offering improved shock absorption ability.

    Science.gov (United States)

    Takeda, Tomotaka; Ishigami, Keiichi; Mishima, Osamu; Karasawa, Kensuke; Kurokawa, Katsuhide; Kajima, Takaki; Nakajima, Kazunori

    2011-12-01

    The positive effects of wearing a mouthguard have been indicated in various epidemiological surveys and experiments, and their usage appears to be increasing in many sports. However, many preventable sports-related dental injuries still occur even with the use of a conventional mouthguard. We have developed a mouthguard (the Hard & Space mouthguard) with sufficient injury prevention ability (more than 95% shock absorption ability against impact with a steel ball carrying 15.2 kg m(2) S(-2) potential energy) and ease of clinical application. This mouthguard consists of an outer and an inner EVA layer and a middle layer of acrylic resin (hard insert), with a space to prevent contact between the inner surface of the mouthguard and the buccal surfaces of the maxillary front teeth or teeth already weakened through prior damage or treatment. The purpose of this article is to describe the method by which the Hard & Space mouthguard may easily be fabricated. We believe that this new type of mouthguard has the potential to reduce sports-related dental injuries.

  4. The improvement of all-solid-state electrochromic devices fabricated with the reactive sputter and cathodic arc technology

    Directory of Open Access Journals (Sweden)

    Min-Chuan Wang

    2016-11-01

    Full Text Available The all-solid-state electrochromic device (ECD with the one substrate structure fabricated by the reactive dc magnetron sputtering (DCMS and cathodic vacuum arc plasma (CVAP technology has been developed for smart electrochromic (EC glass application. The EC layer and ion conductor layer were deposited by reactive DCMS and CVAP technology, respectively. The ion conductor layer Ta2O5 deposited by the CVAP technology has provided the better porous material structure for ion transportation and showed 1.76 times ion conductivity than devices with all sputtering process. At the same time, the EC layer WO3 and NiO deposited by the reactive DCMS have also provided the high quality and uniform characteristic to overcome the surface roughness effect of the CVAP ion conductor layer in multilayer device structure. The all-solid-state ECD with the CVAP ion conductor layer has demonstrated a maximum transmittance variation (ΔT of 55% at 550nm and a faster-switching speed. Furthermore, the lower equipment cost and higher deposition rate could be achieved by the application of CVAP technology.

  5. The improvement of all-solid-state electrochromic devices fabricated with the reactive sputter and cathodic arc technology

    Science.gov (United States)

    Wang, Min-Chuan; Chen, Yung-Chih; Hsieh, Ming-Hao; Li, Yu-Chen; Wang, Jen-Yuan; Wu, Jin-Yu; Tsai, Wen-Fa; Jan, Der-Jun

    2016-11-01

    The all-solid-state electrochromic device (ECD) with the one substrate structure fabricated by the reactive dc magnetron sputtering (DCMS) and cathodic vacuum arc plasma (CVAP) technology has been developed for smart electrochromic (EC) glass application. The EC layer and ion conductor layer were deposited by reactive DCMS and CVAP technology, respectively. The ion conductor layer Ta2O5 deposited by the CVAP technology has provided the better porous material structure for ion transportation and showed 1.76 times ion conductivity than devices with all sputtering process. At the same time, the EC layer WO3 and NiO deposited by the reactive DCMS have also provided the high quality and uniform characteristic to overcome the surface roughness effect of the CVAP ion conductor layer in multilayer device structure. The all-solid-state ECD with the CVAP ion conductor layer has demonstrated a maximum transmittance variation (Δ T ) of 55% at 550nm and a faster-switching speed. Furthermore, the lower equipment cost and higher deposition rate could be achieved by the application of CVAP technology.

  6. A Novel MgO-CaO-SiO2 System for Fabricating Bone Scaffolds with Improved Overall Performance

    Directory of Open Access Journals (Sweden)

    Hang Sun

    2016-04-01

    Full Text Available Although forsterite (Mg2SiO4 possesses good biocompatibility and suitable mechanical properties, the insufficient bioactivity and degradability hinders its further application. In this study, a novel MgO-CaO-SiO2 system was developed by adding wollastonite (CaSiO3 into Mg2SiO4 to fabricate bone scaffolds via selective laser sintering (SLS. The apatite-forming ability and degradability of the scaffolds were enhanced because the degradation of CaSiO3 could form silanol groups, which could offer nucleation sites for apatite. Meanwhile, the mechanical properties of the scaffolds grew with increasing CaSiO3 to 20 wt %. It was explained that the liquid phase of CaSiO3 promoted the densification during sintering due to its low melting point. With the further increase in CaSiO3, the mechanical properties decreased due to the formation of the continuous filling phase. Furthermore, the scaffolds possessed a well-interconnected porous structure and exhibited an ability to support cell adhesion and proliferation.

  7. A Novel MgO-CaO-SiO2 System for Fabricating Bone Scaffolds with Improved Overall Performance

    Science.gov (United States)

    Sun, Hang; He, Shiwei; Wu, Ping; Gao, Chengde; Feng, Pei; Xiao, Tao; Deng, Youwen; Shuai, Cijun

    2016-01-01

    Although forsterite (Mg2SiO4) possesses good biocompatibility and suitable mechanical properties, the insufficient bioactivity and degradability hinders its further application. In this study, a novel MgO-CaO-SiO2 system was developed by adding wollastonite (CaSiO3) into Mg2SiO4 to fabricate bone scaffolds via selective laser sintering (SLS). The apatite-forming ability and degradability of the scaffolds were enhanced because the degradation of CaSiO3 could form silanol groups, which could offer nucleation sites for apatite. Meanwhile, the mechanical properties of the scaffolds grew with increasing CaSiO3 to 20 wt %. It was explained that the liquid phase of CaSiO3 promoted the densification during sintering due to its low melting point. With the further increase in CaSiO3, the mechanical properties decreased due to the formation of the continuous filling phase. Furthermore, the scaffolds possessed a well-interconnected porous structure and exhibited an ability to support cell adhesion and proliferation. PMID:28773411

  8. Management of sleep/wake cycles improves cognitive function in a transgenic mouse model of Huntington's disease.

    Science.gov (United States)

    Pallier, Patrick N; Morton, A Jennifer

    2009-07-01

    Normally, mice sleep during the day and are active at night. In Huntington's disease mice (R6/2 line) this circadian pattern disintegrates progressively over the course of their illness. Cognitive decline and apathy in R6/2 mice can be improved with sleeping drugs, suggesting that sleep disruption contributes to their neurological decline. We wondered if wakefulness was equally important. Here, we used two drugs to manage sleep/wake cycles in R6/2 mice, Alprazolam (to put them to sleep) and Modafinil (to wake them up). We found that both drugs improved cognitive function and apathy, but had a stronger effect when used in combination. Remarkably, beneficial effects on cognitive performance were also seen in vehicle-treated cage-mates of Alprazolam/Modafinil-treated mice, suggesting that behavioral intervention to regularize sleep/wake activity might be therapeutically useful. We suggest that focused management of sleep and wakefulness will slow the progression of cognitive decline and apathy in neurological conditions where sleep is disordered.

  9. Biomechanical muscle stimulation and active-assisted cycling improves active range of motion in individuals with Parkinson's disease.

    Science.gov (United States)

    Corbett, Duane B; Peer, Kimberly S; Ridgel, Angela L

    2013-01-01

    Parkinson's disease (PD) is a neurological disorder which often results in joint rigidity, bradykinesia and decreased range of motion (ROM). Segmental biomechanical muscle stimulation (BMS) can increase ROM in healthy young adults. However, acute effects on ROM in PD have not been examined. To examine whether BMS and active-assisted cycling (AAC) of the legs results in acute changes in ROM in PD. Seventeen individuals with PD completed four sessions. Subjects first came to the lab 'on' PD medications and completed baseline assessments. During session 2, subjects were 'off' PD medications and watched a video describing the interventions. In the 3rd and 4th visits, subjects were 'off' medications and the order of AAC or BMS was counterbalanced. Shoulder and hip ROM was measured prior to and immediately after each intervention and hip kinematics were examined during over-ground walking. There was a significant improvement in hip and shoulder ROM after BMS and AAC. Hip velocity during over-ground walking improved after BMS but not after AAC. Single bouts of BMS and AAC have a positive effect on ROM and hip velocity during over-ground walking. This suggests that BMS and AAC may be altering central motor control processes.

  10. Improving full-cardiac cycle strain estimation from tagged CMR by accurate modeling of 3D image appearance characteristics

    Directory of Open Access Journals (Sweden)

    Matt Nitzken

    2016-03-01

    Full Text Available To improve the tagged cardiac magnetic resonance (CMR image analysis, we propose a 3D (2D space + 1D time energy minimization framework, based on learning first- and second-order visual appearance models from voxel intensities. The former model approximates the marginal empirical distribution of intensities with two linear combinations of discrete Gaussians (LCDG. The second-order model considers an image of a sample from a translation–rotation invariant 3D Markov–Gibbs random field (MGRF with multiple pairwise spatiotemporal interactions within and between adjacent temporal frames. Abilities of the framework to accurately recover noise-corrupted strain slopes were experimentally evaluated and validated on 3D geometric phantoms and independently on in vivo data. In multiple noise and motion conditions, the proposed method outperformed comparative image filtering in restoring strain curves and reliably improved HARP strain tracking during the entirety of the cardiac cycle. According to these results, our framework can augment popular spectral domain techniques, such as HARP, by optimizing the spectral domain characteristics and thereby providing more reliable estimates of strain parameters.

  11. NERI Quarterly Progress Report -- April 1 - June 30, 2005 -- Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving PBR Efficiency and Testing Material Compatibility

    Energy Technology Data Exchange (ETDEWEB)

    Chang Oh

    2005-07-01

    The objective of this research is to improve a helium Brayton cycle and to develop a supercritical carbon dioxide Brayton cycle for the Pebble Bed Reactor (PBR) that can also be applied to the Fast Gas-Cooled Reactor (FGR) and the Very-High-Temperature Gas-Cooled Reactor (VHTR). The proposed supercritical carbon dioxide Brayton cycle will be used to improve the PBR, FGR, and VHTR net plant efficiency. Another objective of this research is to test materials to be used in the power conversion side at supercritical carbon dioxide conditions. Generally, the optimized Brayton cycle and balance of plant (BOP) to be developed from this study can be applied to Generation-IV reactor concepts. Particularly, we are interested in VHTR because it has a good chance of being built in the near future.

  12. The improvement of approaches to marketing testing of ecological innovative products in the stages of innovative cycle

    Directory of Open Access Journals (Sweden)

    Ye.I. Nagornyi

    2013-12-01

    Full Text Available The aim of the article. The aim of the article is theoretical justification and improvement of approaches to marketing testing of ecological innovative production in the stages of innovative cycle, and the sequence of decision-making procedures on its readiness to entry into the market by results of testing. The results of the analysis. Launch of the ecological innovative products on the market and providing its passage through the stages of the innovative cycle requires continuous and high-quality information and analytical support. This support can be reached as a result of marketing testing procedures. The analysis of the existing evolutionary approaches to marketing testing procedure allowed finding out that they are not deprived disadvantages. Separate theoretical and methodological aspects of marketing testing of innovative products are analyzed in the scientific literature. But issues of marketing testing of ecological innovations and introduction of the given procedure at early stages of an innovative cycle are insufficiently investigated. Author's definition of marketing testing concept is reduced to complex process of a choice, an assessment and selection of a subject of the marketing approbation which is carried out at each stage of product development, for stage-by-stage and general definition of progress level of innovative production in the market, and also for the analysis of its readiness degree to entry the market. As a subject of approbation can be used: directions of innovative development of the enterprise, sources of ideas, ideas, concepts, prototypes of new products and their market attributes, and also marketing strategy as a whole. The types of testing taking place at each stage of an innovative cycle of development of goods are allocated in research. Problems (tasks that procedure of marketing testing solves are researched and methodological approaches to its implementation are suggested. Marketing testing is a complex

  13. To Evaluate the Application of Alkoxide Sol-Gel Method in Fabrication of 3YSZ-MWCNTs Nanocomposites, in an Attempt to Improve Its Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Ali Ahmadi

    2014-01-01

    Full Text Available In the present research work, fabrication of YSZ-CNTs composite system through alkoxide sol-gel processing was evaluated, in an attempt to improve its mechanical properties. Nanocomposites containing 0.5–2 wt% MWCNTs were then fabricated through the hydrolysis and condensation processing of the solution mixtures containing alkoxide and inorganic precursors along with the functionalized CNTs under basic condition and its final sintering by the SPS technique at 1400°C. Results showed the formation of a nanocomposite powder based on pure 3YSZ matrix, with well dispersion of CNTs and its good adhesion to the matrix particles in composite containing 0.5 wt% CNTs. The fracture toughness of sintered samples showed around 24% increase for the composite containing 0.5 wt% CNTs. The fracture toughness, hardness, and density decreased due to the agglomeration of CNTs over 0.5 wt%. Toughening mechanisms including pullout and crack bridging were observed on the polished and fractured surfaces.

  14. Simultaneous radiation induced graft polymerization of N-vinyl-2-pyrrolidone onto polypropylene non-woven fabric for improvement of blood compatibility

    Science.gov (United States)

    Li, Rong; Wang, Hengdong; Wang, Wenfeng; Ye, Yin

    2013-07-01

    In this study, N-vinyl-2-pyrrolidone (NVP) was grafted onto polypropylene non-woven fabric (PPNWF) through a simultaneous irradiation induced graft polymerization technique. Effect of the parameters of graft polymerization, i.e., monomer concentration, absorbed dose and dose rate, on the degree of grafting (DG) was investigated. The graft polymerization of NVP was confirmed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). A contact angle goniometry was used to test water contact angle (WCA) of original PPNWF and modified samples. The in vitro blood compatibility, including hemolysis, protein adsorption, platelet adhesion and activated partial thromboplastin time (APTT) of tested specimens, was evaluated. The results demonstrated that the hemocompatibility of PPNWF was improved via graft polymerization of NVP.

  15. Fabrication of a porous fiber cladding material using microsphere templating for improved response time with fiber optic sensor arrays.

    Science.gov (United States)

    Henning, Paul E; Rigo, M Veronica; Geissinger, Peter

    2012-01-01

    A highly porous optical-fiber cladding was developed for evanescent-wave fiber sensors, which contains sensor molecules, maintains guiding conditions in the optical fiber, and is suitable for sensing in aqueous environments. To make the cladding material (a poly(ethylene) glycol diacrylate (PEGDA) polymer) highly porous, a microsphere templating strategy was employed. The resulting pore network increases transport of the target analyte to the sensor molecules located in the cladding, which improves the sensor response time. This was demonstrated using fluorescein-based pH sensor molecules, which were covalently attached to the cladding material. Scanning electron microscopy was used to examine the structure of the templated polymer and the large network of interconnected pores. Fluorescence measurements showed a tenfold improvement in the response time for the templated polymer and a reliable pH response over a pH range of five to nine with an estimated accuracy of 0.08 pH units.

  16. Improvement of multicrystalline silicon wafer solar cells by post-fabrication wet-chemical etching in phosphoric acid

    Indian Academy of Sciences (India)

    A Mefoued; M Fathi; J Bhatt; A Messaoud; B Palahouane; N Benrekaa

    2011-12-01

    In this study, we have improved electrical characteristics such as the efficiency () and the fill factor (FF) of finished multicrystalline silicon (-Si) solar cells by using a new chemical treatment with a hot phosphoric (H3PO4) acidic solution. These -Si solar cells were made by a standard industrial process with screen-printed contacts and a silicon nitride (SiN) antireflection coating. We have deposited SiN thin layer (80 nm) on -type -Si substrate by the mean of plasma enhanced chemical vapour deposition (PECVD) technique. The reactive gases used as precursors inside PECVD chamber are a mixture of silane (SiH4) and ammonia (NH3) at a temperature of 380°C. The developed H3PO4 chemical surface treatment has improved from 5.4 to 7.7% and FF from 50.4 to 70.8%, this means a relative increase of up to 40% from the initial values of and FF. In order to explain these improvements, physical (AFM, EDX), chemical (FTIR) and optical (spectrophotometer) analyses were done.

  17. Valuing Non-market Benefits of Rehabilitation of Hydrologic Cycle Improvements in the Anyangcheon Watershed: Using Mixed Logit Models

    Science.gov (United States)

    Yoo, J.; Kong, K.

    2010-12-01

    This research the findings from a discrete-choice experiment designed to estimate the economic benefits associated with the Anyangcheon watershed improvements in Rep. of Korea. The Anyangcheon watershed has suffered from streamflow depletion and poor stream quality, which often negatively affect instream and near-stream ecologic integrity, as well as water supply. Such distortions in the hydrologic cycle mainly result from rapid increase of impermeable area due to urbanization, decreases of baseflow runoff due to groundwater pumping, and reduced precipitation inputs driven by climate forcing. As well, combined sewer overflows and increase of non-point source pollution from urban regions decrease water quality. The appeal of choice experiments (CE) in economic analysis is that it is based on random utility theory (McFadden, 1974; Ben-Akiva and Lerman, 1985). In contrast to contingent valuation method (CVM), which asks people to choose between a base case and a specific alternative, CE asks people to choice between cases that are described by attributes. The attributes of this study were selected from hydrologic vulnerability components that represent flood damage possibility, instreamflow depletion, water quality deterioration, form of the watershed and tax. Their levels were divided into three grades include status quo. Two grades represented the ideal conditions. These scenarios were constructed from a 35 orthogonal main effect design. This design resulted in twenty-seven choice sets. The design had nine different choice scenarios presented to each respondent. The most popular choice models in use are the conditional logit (CNL). This model provides closed-form choice probability calculation. The shortcoming of CNL comes from irrelevant alternatives (IIA). In this paper, the mixed logit (ML) is applied to allow the coefficient’s variation for random taste heterogeneity in the population. The mixed logit model(with normal distributions for the attributes) fit the

  18. Fabrication of CuInS2-sensitized solar cells via an improved SILAR process and its interface electron recombination.

    Science.gov (United States)

    Xu, Xueqing; Wan, Qingcui; Luan, Chunyan; Mei, Fengjiao; Zhao, Qian; An, Ping; Liang, Zhurong; Xu, Gang; Zapien, Juan Antonio

    2013-11-13

    Tetragonal CuInS2 (CIS) has been successfully deposited onto mesoporous TiO2 films by in-sequence growth of InxS and CuyS via a successive ionic layer absorption and reaction (SILAR) process and postdeposition annealing in sulfur ambiance. X-ray diffraction and Raman measurements showed that the obtained tetragonal CIS consisted of a chalcopyrite phase and Cu-Au ordering, which related with the antisite defect states. For a fixed Cu-S deposition cycle, an interface layer of β-In2S3 formed at the TiO2/CIS interface with suitable excess deposition of In-S. In the meantime, the content of the Cu-Au ordering phase decreased to a reasonable level. These facts resulted in the retardance of electron recombination in the cells, which is proposed to be dominated by electron transfer from the conduction band of TiO2 to the unoccupied defect states in CIS via exponentially distributed surface states. As a result, a relatively high efficiency of ~0.92% (V(oc) = 0.35 V, J(sc) = 8.49 mA cm(-2), and FF = 0.31) has been obtained. Last, but not least, with an overloading of the sensitizers, a decrease in the interface area between the sensitized TiO2 and electrolytes resulted in deceleration of hole extraction from CIS to the electrolytes, leading to a decrease in the fill factor of the solar cells. It is indicated that the unoccupied states in CIS with energy levels below EF0 of the TiO2 films play an important role in the interface electron recombination at low potentials and has a great influence on the fill factor of the solar cells.

  19. Inhibition of the oxygen sensor PHD2 in the liver improves survival in lactic acidosis by activating the Cori cycle.

    Science.gov (United States)

    Suhara, Tomohiro; Hishiki, Takako; Kasahara, Masataka; Hayakawa, Noriyo; Oyaizu, Tomoko; Nakanishi, Tsuyoshi; Kubo, Akiko; Morisaki, Hiroshi; Kaelin, William G; Suematsu, Makoto; Minamishima, Yoji Andrew

    2015-09-15

    Loss of prolyl hydroxylase 2 (PHD2) activates the hypoxia-inducible factor-dependent hypoxic response, including anaerobic glycolysis, which causes large amounts of lactate to be released from cells into the circulation. We found that Phd2-null mouse embryonic fibroblasts (MEFs) produced more lactate than wild-type MEFs, as expected, whereas systemic inactivation of PHD2 in mice did not cause hyperlacticacidemia. This unexpected observation led us to hypothesize that the hypoxic response activated in the liver enhances the Cori cycle, a lactate-glucose carbon recycling system between muscle and liver, and thereby decreases circulating lactate. Consistent with this hypothesis, blood lactate levels measured after a treadmill or lactate tolerance test were significantly lower in Phd2-liver-specific knockout (Phd2-LKO) mice than in control mice. An in vivo (13)C-labeled lactate incorporation assay revealed that the livers of Phd2-LKO mice produce significantly more glucose derived from (13)C-labeled lactate than control mice, suggesting that blockade of PHD2 in the liver ameliorates lactic acidosis by activating gluconeogenesis from lactate. Phd2-LKO mice were resistant to lactic acidosis induced by injection of a lethal dose of lactate, displaying a significant elongation of survival. Moreover, oral administration of a PHD inhibitor improved survival in an endotoxin shock mice model. These data suggest that PHD2 is a potentially novel drug target for the treatment of lactic acidosis, which is a serious and often fatal complication observed in some critically ill patients.

  20. System to improve the Understanding of Collected Logistic Data, to Optimize Cycle-Time and Delivery Performance

    Science.gov (United States)

    van Rooijen, Wim-Jan; Rodriguez, Ben

    2002-12-01

    A complex production mask-house faces the issue of handling and understanding the logistics information from the production process of the masks. We managed to control key performance indicators like cycle-time, flow-factor, line-speed, WIP, etc. To improve the line flow, we set-up rules for optimising batching at operations and forbid batching between operations, we defined maximum and minimum WIP at the operations, scheduled urgency of the different lots and built rules for bottleneck management. Also we restricted the number of "hot lots". By migrating to the modern MES (manufacturing execution system) MaTISSe, which manages the shopfloor control, and a reporting database, we are able to eliminate the time deviations within our data, caused by data-extraction for different reports at different moments. This gives us a better understanding of our fixed bottleneck and a faster recognition of the temporarily bottlenecks caused by missing availability of machines or men. In this paper we describe the features and advantages of our new MES, as well as the migration process. We have already achieved considerable benefits. Our plan is to extend decision support within the MES, to help both managers and operators to make the right decisions. The project behind this paper reaped major benefits described here and we are looking forward to further challenges and successes.

  1. Using the Dipolar and Quadrupolar Moments to Improve Solar-Cycle Predictions Based on the Polar Magnetic Fields

    CERN Document Server

    Muñoz-Jaramillo, Andrés; DeLuca, Edward E

    2013-01-01

    The solar cycle and its associated magnetic activity are the main drivers behind changes in the interplanetary environment and Earth's upper atmosphere (commonly referred to as space weather and climate). In recent years there has been an effort to develop accurate solar cycle predictions, leading to nearly a hundred widely spread predictions for the amplitude of solar cycle 24. Here we show that cycle predictions can be made more accurate if performed separately for each hemisphere, taking advantage of information about both the dipolar and quadrupolar moments of the solar magnetic field during minimum.

  2. Improved Reactive Dye-fixation in Pad-Steam Process of Dyeing Cotton Fabric Using Tetrasodium N, NBiscarboxylatomethyl- L-Glutamate

    Directory of Open Access Journals (Sweden)

    Awais Khatri

    2012-04-01

    Full Text Available Pad steam process of dyeing cotton with reactive dyes is known to give lower levels of dye-fixation on the fiber because of excessive dye-hydrolysis. This research presents improved reactive dye-fixation in padsteam process of dyeing cotton found in an effort of using biodegradable organic salts to improve the effluent quality. The CI Reactive Blue 250, a bissulphatoethylsulphone dye and the Tetrasodium N, Nbiscarboxylatomethyl- L-Glutamate, a biodegradable organic salt, were used. The new dye-bath formulation using the organic salt gave more than 90% dye-fixation. Traditional pad-steam process of dyeing cotton with reactive dyes requires the use of inorganic electrolyte, sodium-chloride, and alkali, sodium-carbonate, to ensure effective dye consumption and fixation. These inorganic chemicals when drained generate heavy contents of dissolved solids and oxygen demand in the effluent leading to environmental pollution. Thus, Tetrasodium N, N-biscarboxylatomethyl-L-Glutamate was used in place of inorganic electrolyte and alkali to improve effluent quality. A significant increase in dye-fixation and ultimate color-yield was obtained with same colorfastness properties of the dyed fabric comparing to the traditional pad-steam dye-bath formulation.

  3. Acute Bouts of Assisted Cycling Improves Cognitive and Upper Extremity Movement Functions in Adolescents with Down Syndrome

    Science.gov (United States)

    Ringenbach, Shannon D. R; Albert, Andrew R.; Chen, Chih-Chia; Alberts, Jay L.

    2014-01-01

    The aim of this study was to examine the effectiveness of 2 modes of exercise on cognitive and upper extremity movement functioning in adolescents with Down syndrome (DS). Nine participants randomly completed 3 interventions over 3 consecutive weeks. The interventions were: (a) voluntary cycling (VC), in which participants cycled at their…

  4. Improved Resistive Switching Characteristics of Ag-Doped ZrO2 Films Fabricated by Sol-Gel Process

    Institute of Scientific and Technical Information of China (English)

    SUN Bing; LIU Li-Feng; HAN De-Dong; WANG Yi; LIU Xiao-Yan; HAN Ru-Qi; KANG Jin-Feng

    2008-01-01

    Ag-doped and pure ZrO2 thin films are prepared on Pt/Ti/SiO2/Si substrates by sol-gel process for resistive random access memory application. The highly reproducible resistive switching is achieved in the 10% Ag-doped ZrO2 devices. The improved resistive switching behaviour in the Ag doped ZrO2 devices could be attributed to Ag doping effect on the formation of the stable filamentary conducting paths. In addition, dual-step reset processes corresponding to three stable resistance states are observed in the 10% Ag doped ZrO2 devices, which may be implemented for the application of multi-bit storage.

  5. Digital fabrication

    CERN Document Server

    2012-01-01

    The Winter 2012 (vol. 14 no. 3) issue of the Nexus Network Journal features seven original papers dedicated to the theme “Digital Fabrication”. Digital fabrication is changing architecture in fundamental ways in every phase, from concept to artifact. Projects growing out of research in digital fabrication are dependent on software that is entirely surface-oriented in its underlying mathematics. Decisions made during design, prototyping, fabrication and assembly rely on codes, scripts, parameters, operating systems and software, creating the need for teams with multidisciplinary expertise and different skills, from IT to architecture, design, material engineering, and mathematics, among others The papers grew out of a Lisbon symposium hosted by the ISCTE-Instituto Universitario de Lisboa entitled “Digital Fabrication – A State of the Art”. The issue is completed with four other research papers which address different mathematical instruments applied to architecture, including geometric tracing system...

  6. Fabrication of genistein-loaded biodegradable TPGS-b-PCL nanoparticles for improved therapeutic effects in cervical cancer cells.

    Science.gov (United States)

    Zhang, Hongling; Liu, Gan; Zeng, Xiaowei; Wu, Yanping; Yang, Chengming; Mei, Lin; Wang, Zhongyuan; Huang, Laiqiang

    2015-01-01

    Genistein is one of the most studied isoflavonoids with potential antitumor efficacy, but its poor water solubility limits its clinical application. Nanoparticles (NPs), especially biodegradable NPs, entrapping hydrophobic drugs have promising applications to improve the water solubility of hydrophobic drugs. In this work, TPGS-b-PCL copolymer was synthesized from ε-caprolactone initiated by d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) through ring-opening polymerization and characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, gel permeation chromatography, and thermogravimetric analysis. The genistein-loaded NPs were prepared by a modified nanoprecipitation method and characterized in the aspects of particle size, surface charge, morphology, drug loading and encapsulation efficiency, in vitro drug release, and physical state of the entrapped drug. The TPGS-b-PCL NPs were found to have higher cellular uptake efficiency than PCL NPs. MTT and colony formation experiments indicated that genistein-loaded TPGS-b-PCL NPs achieved the highest level of cytotoxicity and tumor cell growth inhibition compared with pristine genistein and genistein-loaded PCL NPs. Furthermore, compared with pristine genistein and genistein-loaded PCL NPs, the genistein-loaded TPGS-b-PCL NPs at the same dose were more effective in inhibiting tumor growth in the subcutaneous HeLa xenograft tumor model in BALB/c nude mice. In conclusion, the results suggested that genistein-loaded biodegradable TPGS-b-PCL nanoparticles could enhance the anticancer effect of genistein both in vitro and in vivo, and may serve as a potential candidate in treating cervical cancer.

  7. Lead-acid battery with improved cycle life and increased efficiency for lead leveling application and electric road vehicles

    Science.gov (United States)

    Winsel, A.; Schulz, J.; Guetlich, K. F.

    1983-11-01

    Lifetime and efficiency of lead acid batteries are discussed. A gas lift pump was used to prevent acid stratification and to reduce the charging factor (down to 1.03 to 1.05). A re-expansion method was applied and an expander depot and a compound separation were built in. Cycle life is increased from 700 cycles to 1690 cycles. Efficiency is increased by energy and time saving due to the reduced charging factor and by the use of a recombination stopper and a charge indicator with remote control. It is suggested that the lead acid system is still one of the best possibilities for electric road vehicle applications.

  8. 提高喷气织机产品质量的措施%Measures to Improve the Quality of the Fabrics Weaved on Air-jet Loom

    Institute of Scientific and Technical Information of China (English)

    陈玉凤

    2001-01-01

    介绍了如何进一步发展喷气织机固有的质量优势,对原纱质量,上浆质量,生产过程的质量信息管理学,以及对提高喷织质量的生产经验作了全面分析阐述,为提高喷气织机生产效能提供参考。%The thesis introduces how to make further use of the inherent qualitative advantages of an air-jet loom by analysing the quality of raw yarn,starching quality and the informational administration of quality in production,and by comprehensive introduction to the experince in improving the quality of the fabrics weaved on the air-jet loom,the thesis is for reference with the aim to improve the productive efficacy of air-jet loom.

  9. Engineering fabrics in transportation construction

    Science.gov (United States)

    Herman, S. C.

    1983-11-01

    The following areas are discussed: treatments for reduction of reflective cracking of asphalt overlays on jointed-concrete pavements in Georgia; laboratory testing of fabric interlayers for asphalt concrete paving: interim report; reflection cracking models: review and laboratory evaluation of engineering fabrics; optimum-depth method for design of fabric-reinforced unsurfaced roads; dynamic test to predict field behavior of filter fabrics used in pavement subdrains; mechanism of geotextile performance in soil-fabric systems for drainage and erosion control; permeability tests of selected filter fabrics for use with a loess-derived alluvium; geotextile filter criteria; use of fabrics for improving the placement of till on peat foundation; geotextile earth-reinforced retaining wall tests: Glenwood Canyon, Colorado; New York State Department of Transportation's experience and guidelines for use of geotextiles; evaluation of two geotextile installations in excess of a decade old; and, long-term in situ properties of geotextiles.

  10. Dual-shell hollow polyaniline/sulfur-core/polyaniline composites improving the capacity and cycle performance of lithium–sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    An, Yanling; Wei, Pan; Fan, Meiqiang, E-mail: fanmeiqiang@126.com; Chen, Da; Chen, Haichao; Ju, QiangJian; Tian, Guanglei; Shu, Kangying

    2016-07-01

    Highlights: • A dual core-shell hPANI/S/PANI composite was prepared in situ synthesis. • Cycle performance of the hPANI/S/PANI composite was enhanced. • The improvement was due to fine sulfur particles wrapped by two PANI films. • Some positive effects were elaborated. - Abstract: In this study, a dual-shell hollow polyaniline/sulfur-core/polyaniline (hPANI/S/PANI) composite was prepared by successively depositing PANI, S, and PANI on the surface of a template silicon sphere. The electrochemical properties of this composite were evaluated using a lithium plate as an anode in lithium/sulfur cells. The hPANI/S/PANI composite showed a discharge capacity of 572.2 mAh g{sup −1} after 214 cycles at 0.1 C, and the Coulombic efficiency was above 87% in the whole charge/discharge cycle. The improved cycle property of the hPANI/S/PANI composite can be ascribed to the fine sulfur particles homogeneously deposited on the PANI surface and sprawled inside the two PANI layers during the charge/discharge cycle. This behavior stabilized the nanostructure of sulfur and enhanced its conductivity.

  11. Fabrication of genistein-loaded biodegradable TPGS-b-PCL nanoparticles for improved therapeutic effects in cervical cancer cells

    Directory of Open Access Journals (Sweden)

    Zhang H

    2015-03-01

    Full Text Available Hongling Zhang,1,2* Gan Liu,1,2* Xiaowei Zeng,1,2 Yanping Wu,1,2 Chengming Yang,3 Lin Mei,1,2 Zhongyuan Wang,2,4 Laiqiang Huang1,2 1School of Life Sciences, Tsinghua University, Beijing, People’s Republic of China; 2The Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, People’s Republic of China; 3Xili Hospital, Shenzhen, Guangdong, People’s Republic of China; 4School of Medicine, Shenzhen University, Shenzhen, People’s Republic of China *These authors contributed equally to this work Abstract: Genistein is one of the most studied isoflavonoids with potential antitumor efficacy, but its poor water solubility limits its clinical application. Nanoparticles (NPs, especially biodegradable NPs, entrapping hydrophobic drugs have promising applications to improve the water solubility of hydrophobic drugs. In this work, TPGS-b-PCL copolymer was synthesized from ε-caprolactone initiated by d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS through ring-opening polymerization and characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, gel permeation chromatography, and thermogravimetric analysis. The genistein-loaded NPs were prepared by a modified nanoprecipitation method and characterized in the aspects of particle size, surface charge, morphology, drug loading and encapsulation efficiency, in vitro drug release, and physical state of the entrapped drug. The TPGS-b-PCL NPs were found to have higher cellular uptake efficiency than PCL NPs. MTT and colony formation experiments indicated that genistein-loaded TPGS-b-PCL NPs achieved the highest level of cytotoxicity and tumor cell growth inhibition compared with pristine genistein and genistein-loaded PCL NPs. Furthermore, compared with pristine genistein and genistein-loaded PCL NPs

  12. Fabrication and characterization of nuclear localization signal-conjugated glycol chitosan micelles for improving the nuclear delivery of doxorubicin

    Directory of Open Access Journals (Sweden)

    Zhao J

    2012-09-01

    Full Text Available Jingmou Yu,1 Xin Xie,1 Meirong Zheng,1 Ling Yu,2 Lei Zhang,1 Jianguo Zhao,1 Dengzhao Jiang,1 Xiangxin Che11Key Laboratory of Systems Biology Medicine of Jiangxi Province, College of Basic Medical Science, Jiujiang University, Jiujiang, 2Division of Nursing, 2nd Affiliated Hospital, Yichun University, Yichun, People's Republic of ChinaBackground: Supramolecular micelles as drug-delivery vehicles are generally unable to enter the nucleus of nondividing cells. In the work reported here, nuclear localization signal (NLS-modified polymeric micelles were studied with the aim of improving nuclear drug delivery.Methods: In this research, cholesterol-modified glycol chitosan (CHGC was synthesized. NLS-conjugated CHGC (NCHGC was synthesized and characterized using proton nuclear magnetic resonance spectroscopy, dynamic light scattering, and fluorescence spectroscopy. Doxorubicin (DOX, an anticancer drug with an intracellular site of action in the nucleus, was chosen as a model drug. DOX-loaded micelles were prepared by an emulsion/solvent evaporation method. The cellular uptake of different DOX formulations was analyzed by flow cytometry and confocal laser scanning microscopy. The cytotoxicity of blank micelles, free DOX, and DOX-loaded micelles in vitro was investigated by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay in HeLa and HepG2 cells.Results: The degree of substitution was 5.9 cholesterol and 3.8 NLS groups per 100 sugar residues of the NCHGC conjugate. The critical aggregation concentration of the NCHGC micelles in aqueous solution was 0.0209 mg/mL. The DOX-loaded NCHGC (DNCHGC micelles were observed as being almost spherical in shape under transmission electron microscopy, and the size was determined as 248 nm by dynamic light scattering. The DOX-loading content of the DNCHGC micelles was 10.1%. The DOX-loaded micelles showed slow drug-release behavior within 72 hours in vitro. The DNCHGC micelles exhibited greater

  13. Improved Cycling Performance of a Si Nanoparticle Anode Utilizing Citric Acid as a Surface-Modifying Agent.

    Science.gov (United States)

    Nguyen, Cao Cuong; Seo, Daniel M; Chandrasiri, K W D K; Lucht, Brett L

    2017-09-19

    Citric acid and its analogues have been investigated as surface-modifying agents for Si nanoparticle anodes using electrochemical cycling, attenuated total reflectance infrared (ATR IR), and X-ray photoelectron spectroscopy (XPS). A Si nanoparticle anode prepared with citric acid (CA) has better capacity retention than one containing 1,2,3,4-butanetetracarboxylic acid (BA), but both electrodes outperform Si-PVDF. The Si-CA anode has an initial specific capacity of 3530 mA h/g and a first cycle efficiency of 82%. Surprisingly, the Si-CA electrode maintains a high specific capacity of ∼2200 mA h/g after 250 cycles, corresponding to 64% capacity retention, which is similar to the Si prepared with long-chain poly(acrylic acid) (PAA). On the contrary, the silicon electrode prepared with PVDF has a fast capacity fade and retains only 980 mA h/g after 50 cycles. The IR and XPS data show that the Si-CA electrode has an SEI composed primarily of lithium citrate during the first 50 cycles, resulting from the electrochemical reduction of citric acid. Only low concentrations of electrolyte reduction products are observed. The lithium citrate layer derived from CA stabilizes the silicon surface and suppresses electrolyte reduction, which likely contributes to the enhanced cycling performance of the Si nanoparticle anode.

  14. Multishelled NiO Hollow Spheres Decorated by Graphene Nanosheets as Anodes for Lithium-Ion Batteries with Improved Reversible Capacity and Cycling Stability

    Directory of Open Access Journals (Sweden)

    Lihua Chu

    2016-01-01

    Full Text Available Graphene-based nanocomposites attract many attentions because of holding promise for many applications. In this work, multishelled NiO hollow spheres decorated by graphene nanosheets nanocomposite are successfully fabricated. The multishelled NiO microspheres are uniformly distributed on the surface of graphene, which is helpful for preventing aggregation of as-reduced graphene sheets. Furthermore, the NiO/graphene nanocomposite shows much higher electrochemical performance with a reversible capacity of 261.5 mAh g−1 at a current density of 200 mA g−1 after 100 cycles tripled compared with that of pristine multishelled NiO hollow spheres, implying the potential application in modern science and technology.

  15. Thermomechanical characterization of Ni-rich NiTi fabricated by selective laser melting

    Science.gov (United States)

    Saedi, Soheil; Sadi Turabi, Ali; Taheri Andani, Mohsen; Haberland, Christoph; Elahinia, Mohammad; Karaca, Haluk

    2016-03-01

    This study presents the shape memory behavior of as-fabricated and solution annealed Ni50.8Ti49.2 alloys fabricated using the selective laser melting (SLM) technique. Results were compared to the initial ingot that was used to fabricate powders. Optical microscopy was employed to reveal the microstructure. The shape memory effect under constant compressive stress and isothermal compressive stress cycling tests were utilized to investigate the shape memory characteristics of the initial ingot and fabricated alloys. It was revealed that the SLM method and post heat treatments can be used to tailor the microstructure and shape memory response. Partial superelasticity was observed after the SLM process. Solutionizing the fabricated samples increased the strength and improved the superelasticity but slightly decreased the recoverable strain.

  16. Physical Properties of Polyester Fabrics Treated with Nano, Micro and Macro Emulsion Silicones

    Science.gov (United States)

    Parvinzadeh, M.; Hajiraissi, R.

    2007-08-01

    The processing of textile to achieve a particular handle is one of the most important aspects of finishing technology. Fabrics softeners are liquid composition added to washing machines during the rinse cycle to make clothes feel better to the touch. The first fabric softeners were developed by the textile industry during the early twentieth century. In this research polyester fabrics were treated with nano, micro and macro emulsion silicone softeners. Some of the physical properties of the treated fabric samples are discussed. The drapeability of treated samples was improved after treatment with nano silicone softeners. The colorimetric measurement of softener-treated fabrics is evaluated with a reflectance spectrophotometer. Moisture regain of treated samples is increased due to coating of silicone softeners. There is some increase in the weight of softener-treated samples. Samples treated with nano emulsion silicones gave better results compared to micro- and macro-emulsion treated ones.

  17. Fabrication of cubic spinel MnCo2O4 nanoparticles embedded in graphene sheets with their improved lithium-ion and sodium-ion storage properties

    Science.gov (United States)

    Chen, Chang; Liu, Borui; Ru, Qiang; Ma, Shaomeng; An, Bonan; Hou, Xianhua; Hu, Shejun

    2016-09-01

    Cubic Spinel MnCo2O4/graphene sheets (MCO/GS) nanocomposites are synthesized by a facile hydrothermal method with a subsequent annealing process. Nano-sized MnCo2O4 particles are evenly embedded in paper-like graphene sheets, possessing a unique nanoparticles-on-sheets hybrid nanostructure, with particle size around 20-50 nm. Owing to the special nanoparticles-on-sheets structures, MCO/GS nanocomposites have an outstanding electrochemical performance for rechargeable energy storage devices. As an anode material for lithium-ion batteries, MCO/GS electrodes exhibit high reversible discharge capacities (1350.4 mAh g-1 at the initial rate of 100 mA g-1), excellent rate capability (462.1 mAh g-1 at a current rate of 4000 mA g-1) and outstanding cycling performance (584.3 mAh g-1 at 2000 mA g-1 after 250 cycles). Meanwhile, as an anode material for sodium-ion batteries, MCO/GS electrodes also exhibit comparably promising electrochemical characteristics. Greatly improved electrochemical properties can be assigned to the special advantageous nanostructures. Besides, the existence of graphene sheets is beneficial to the transportation of ions/electrons during battery operation. The outstanding electrochemical performance demonstrates that the lithium/sodium storage capability of MCO/GS nanocomposites is highly promising for high-capacity batteries.

  18. Endurance and Cycle-to-cycle Uniformity Improvement in Tri-Layered CeO2/Ti/CeO2 Resistive Switching Devices by Changing Top Electrode Material

    Science.gov (United States)

    Rana, Anwar Manzoor; Akbar, Tahira; Ismail, Muhammad; Ahmad, Ejaz; Hussain, Fayyaz; Talib, Ijaz; Imran, Muhammad; Mehmood, Khalid; Iqbal, Khalid; Nadeem, M. Younus

    2017-01-01

    Resistance switching characteristics of CeO2/Ti/CeO2 tri-layered films sandwiched between Pt bottom electrode and two different top electrodes (Ti and TaN) with different work functions have been investigated. RRAM memory cells composed of TaN/CeO2/Ti/CeO2/Pt reveal better resistive switching performance instead of Ti/CeO2/Ti/CeO2/Pt memory stacks. As compared to the Ti/CeO2 interface, much better ability of TaN/CeO2 interface to store and exchange plays a key role in the RS performance improvement, including lower forming/SET voltages, large memory window (~102) and no significant data degradation during endurance test of >104 switching cycles. The formation of TaON thinner interfacial layer between TaN TE and CeO2 film is found to be accountable for improved resistance switching behavior. Partial charge density of states is analyzed using density functional theory. It is found that the conductive filaments formed in CeO2 based devices is assisted by interstitial Ti dopant. Better stability and reproducibility in cycle-to-cycle (C2C) resistance distribution and Vset/Vreset uniformity were achieved due to the modulation of current conduction mechanism from Ohmic in low field region to Schottky emission in high field region. PMID:28079056

  19. Endurance and Cycle-to-cycle Uniformity Improvement in Tri-Layered CeO2/Ti/CeO2 Resistive Switching Devices by Changing Top Electrode Material

    Science.gov (United States)

    Rana, Anwar Manzoor; Akbar, Tahira; Ismail, Muhammad; Ahmad, Ejaz; Hussain, Fayyaz; Talib, Ijaz; Imran, Muhammad; Mehmood, Khalid; Iqbal, Khalid; Nadeem, M. Younus

    2017-01-01

    Resistance switching characteristics of CeO2/Ti/CeO2 tri-layered films sandwiched between Pt bottom electrode and two different top electrodes (Ti and TaN) with different work functions have been investigated. RRAM memory cells composed of TaN/CeO2/Ti/CeO2/Pt reveal better resistive switching performance instead of Ti/CeO2/Ti/CeO2/Pt memory stacks. As compared to the Ti/CeO2 interface, much better ability of TaN/CeO2 interface to store and exchange plays a key role in the RS performance improvement, including lower forming/SET voltages, large memory window (~102) and no significant data degradation during endurance test of >104 switching cycles. The formation of TaON thinner interfacial layer between TaN TE and CeO2 film is found to be accountable for improved resistance switching behavior. Partial charge density of states is analyzed using density functional theory. It is found that the conductive filaments formed in CeO2 based devices is assisted by interstitial Ti dopant. Better stability and reproducibility in cycle-to-cycle (C2C) resistance distribution and Vset/Vreset uniformity were achieved due to the modulation of current conduction mechanism from Ohmic in low field region to Schottky emission in high field region.

  20. Endurance and Cycle-to-cycle Uniformity Improvement in Tri-Layered CeO2/Ti/CeO2 Resistive Switching Devices by Changing Top Electrode Material.

    Science.gov (United States)

    Rana, Anwar Manzoor; Akbar, Tahira; Ismail, Muhammad; Ahmad, Ejaz; Hussain, Fayyaz; Talib, Ijaz; Imran, Muhammad; Mehmood, Khalid; Iqbal, Khalid; Nadeem, M Younus

    2017-01-12

    Resistance switching characteristics of CeO2/Ti/CeO2 tri-layered films sandwiched between Pt bottom electrode and two different top electrodes (Ti and TaN) with different work functions have been investigated. RRAM memory cells composed of TaN/CeO2/Ti/CeO2/Pt reveal better resistive switching performance instead of Ti/CeO2/Ti/CeO2/Pt memory stacks. As compared to the Ti/CeO2 interface, much better ability of TaN/CeO2 interface to store and exchange plays a key role in the RS performance improvement, including lower forming/SET voltages, large memory window (~10(2)) and no significant data degradation during endurance test of >10(4) switching cycles. The formation of TaON thinner interfacial layer between TaN TE and CeO2 film is found to be accountable for improved resistance switching behavior. Partial charge density of states is analyzed using density functional theory. It is found that the conductive filaments formed in CeO2 based devices is assisted by interstitial Ti dopant. Better stability and reproducibility in cycle-to-cycle (C2C) resistance distribution and Vset/Vreset uniformity were achieved due to the modulation of current conduction mechanism from Ohmic in low field region to Schottky emission in high field region.

  1. Fabrication and refinement of 6061(p)/6063 aluminum laminate by accumulative roll-bonding (ARB) process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.-H.; Saito, Y.; Sakai, T.; Utsunomiya, H.; Tsuji, N. [Osaka Univ. (Japan). Dept. of Materials Sciences and Engineering

    2000-07-01

    A 6061 aluminum powder compact is fabricated by sheath rolling method using 6063 aluminum tube as a sheath. Accumulative roll-bonding (ARB) process is applied to the powder compact for improvement of its mechanical properties. The ARB process of 8 cycles is performed at ambient temperature under unlubricated conditions without removing the 6063 sheath. The ARB process of 6061 solid aluminum sheet is also performed for comparison to the 6061 powder compact. The tensile strength of the 6061(p)/6063 laminate increases almost linearly with the number of ARB cycles, and reached the maximum of 465MPa at the 6th cycle, which is 2.3 times higher than that of the initial. The elongation drops abruptly at the 1st cycle, and remains at a constant value (about 7%) from the 2nd cycle to the 5th cycle. Both the strength and the elongation decrease with the number of cycles above the 6th cycle. On the other hand, the tensile strength of 6061 sheet increases with the number of cycles gradually. The increase in tensile strength per cycle is greater in the 6061(p)/6063 laminate than that in the ARBed 6061 sheet. This strengthening is probably due to the fine dispersed oxide which was at first oxide film on aluminum. The ultra-fine grains less than 500nm in diameter are developed in the 6061(p)/6063 laminate fabricated by ARB process. (orig.)

  2. Fes cycling

    Directory of Open Access Journals (Sweden)

    Berkelmans Rik

    2008-01-01

    Full Text Available Many research with functional electrical stimulation (FES has been done to regain mobility and for health benefits. Better results have been reported for FES-cycling than for FES-walking. The majority of the subjects during such research are people with a spinal cord injury (SCI, cause they often lost skin sensation. Besides using surface stimulation also implanted stimulators can be used. This solves the skin sensation problem, but needs a surgery. Many physiological effects of FES-cycling has been reported, e.g., increase of muscles, better blood flow, reduction of pressure ulcers, improved self-image and some reduction of bone mineral density (BMD loss. Also people with an incomplete SCI benefit by FES-cycling, e.g. cycling time without FES, muscle strength and also the walking abilities increased. Hybrid exercise gives an even better cardiovascular training. Presently 4 companies are involved in FES-cycling. They all have a stationary mobility trainer. Two of them also use an outdoor tricycle. One combined with voluntary arm cranking. By optimizing the stimulation parameters the power output and fatigue resistance will increase, but will still be less compared to voluntary cycling.

  3. Carbon cost of plant nitrogen acquisition: global carbon cycle impact from an improved plant nitrogen cycle in the Community Land Model.

    Science.gov (United States)

    Shi, Mingjie; Fisher, Joshua B; Brzostek, Edward R; Phillips, Richard P

    2016-03-01

    Plants typically expend a significant portion of their available carbon (C) on nutrient acquisition - C that could otherwise support growth. However, given that most global terrestrial biosphere models (TBMs) do not include the C cost of nutrient acquisition, these models fail to represent current and future constraints to the land C sink. Here, we integrated a plant productivity-optimized nutrient acquisition model - the Fixation and Uptake of Nitrogen Model - into one of the most widely used TBMs, the Community Land Model. Global plant nitrogen (N) uptake is dynamically simulated in the coupled model based on the C costs of N acquisition from mycorrhizal roots, nonmycorrhizal roots, N-fixing microbes, and retranslocation (from senescing leaves). We find that at the global scale, plants spend 2.4 Pg C yr(-1) to acquire 1.0 Pg N yr(-1) , and that the C cost of N acquisition leads to a downregulation of global net primary production (NPP) by 13%. Mycorrhizal uptake represented the dominant pathway by which N is acquired, accounting for ~66% of the N uptake by plants. Notably, roots associating with arbuscular mycorrhizal (AM) fungi - generally considered for their role in phosphorus (P) acquisition - are estimated to be the primary source of global plant N uptake owing to the dominance of AM-associated plants in mid- and low-latitude biomes. Overall, our coupled model improves the representations of NPP downregulation globally and generates spatially explicit patterns of belowground C allocation, soil N uptake, and N retranslocation at the global scale. Such model improvements are critical for predicting how plant responses to altered N availability (owing to N deposition, rising atmospheric CO2 , and warming temperatures) may impact the land C sink.

  4. Washing off intensification of cotton and wool fabrics by ultrasounds.

    Science.gov (United States)

    Peila, R; Actis Grande, G; Giansetti, M; Rehman, S; Sicardi, S; Rovero, G

    2015-03-01

    Wet textile washing processes were set up for wool and cotton fabrics to evaluate the potential of ultrasound transducers (US) in improving dirt removal. The samples were contaminated with an emulsion of carbon soot in vegetable oil and aged for three hours in fan oven. Before washing, the fabrics were soaked for 3 min in a standard detergent solution and subsequently washed in a water bath. The dirt removal was evaluated through colorimetric measurements. The total color differences ΔE of the samples were measured with respect to an uncontaminated fabric, before and after each washing cycle. The percentage of ΔE variation obtained was calculated and correlated to the dirt removal. The results showed that the US transducers enhanced the dirt removal and temperature was the parameter most influencing the US efficiency on the cleaning process. Better results were obtained at a lower process temperature.

  5. Influence of Tencel/cotton blends on knitted fabric performance

    Directory of Open Access Journals (Sweden)

    Alaa Arafa Badr

    2016-09-01

    Full Text Available The requirements in terms of wearing comfort with sportswear, underwear and outerwear are widely linked to the use of new fibers. Today, Tencel fiber is one of the most important developments in regenerated cellulosic fiber. However, the relation between Tencel fiber properties and fabric characteristics has not been enough studied in the literature especially the influence of fiber materials on mechanical, Ultraviolet Protection Factor (UPF and absorption properties. Therefore, in this study, knitted fabric samples were manufactured with eight different yarns with two fabric types (single jersey and single jersey with Lycra. 30/1-Ne yarns from natural and regenerated cellulosic fibers: 50% Tencel-LF/50% cotton, 67% Tencel-LF/33% cotton, 67% Tencel-STD/33% cotton, 70% bamboo/30% cotton, 100% bamboo, 100% Modal, 100% Micro-Modal and 100% cotton were employed. Then, all the produced fabrics were subjected to five cycles laundering and then flat dried. The results show that 67% Tencel-LF/33% cotton has more flexural rigidity and withdrawing handle force than 67% Tencel-STD/33% cotton fabric, while 67% Tencel-STD/33% cotton has a merit of durability during bursting test. Blending Egyptian cotton fibers with bamboo and Tencel as in 70/30% bamboo/cotton and 50/50% Tencel-LF/cotton improve UPF of the produced fabric.

  6. Layer-by-layer fully printed Zn-MnO2 batteries with improved internal resistance and cycle life

    Science.gov (United States)

    Kim, B.; Winslow, R.; Lin, I.; Gururangan, K.; Evans, J.; Wright, P.

    2015-12-01

    This research created direct layer-by-layer printed zinc-based secondary batteries with an ionic liquid-based gel polymer electrolyte to power micro- and meso-scale devices. The use of a gel polymer electrolyte composed of [BMIM][Otf] ionic liquid, ZnOtf salt, and PVDF-HFP polymer binder enabled direct layer-by-layer printing of functional cells. The effects of additive printing methods on cell discharge capacity, cycle life, and internal resistance are discussed. Fully printed cells have demonstrated average discharge capacities of 0.548 mAh/cm2, energy densities of 8.20 mWh/cm3, and specific energies of 2.46 mWh/g with some cells achieving over 1000 cycles without catastrophic failure. Layer-by-layer printed devices exhibited decreased DC internal resistance and longer cycle life over previous mechanically assembled cells.

  7. 提高免烫衬衫袖窿起皱级别的方法%Methods to Improve the Seam Grade of Non-iron Fabric

    Institute of Scientific and Technical Information of China (English)

    宋海燕; 李凤霞

    2012-01-01

    免烫面料由于其特殊的整理方式,容易出现袖窿缝口缩皱的问题,严重影响了衬衣的品质和外观而达不到客户要求。以实例说明改良前后的接缝起皱级别的对比,经检测分析表明:缝纫线的调整;线迹密度的适当调节;对袖窿进行熨烫整理;对衣片含湿率进行调整等有利于提高衬衣袖窿接缝起皱级别,解决了免烫衬衣袖窿接缝起皱低的问题。%The seam pucker is easily appeared in garment processing by using non-iron fabric for its special finishing. It affected the shirtts quality and outlook seriousiy, which could not meet the customls request. The seam grade was contrasted with examples before and after the improvements. The results by examining and analyzing the weak seam pucker showed that: adjusting threads, ad- justing sewing stitches properly, ironing armhole and adjusting the cloth moisture ratio could increase the seam grade, then the weak seam pucker could be solved.

  8. Smart Operation of Gas Turbine Combined Cycle Plants: Prediction and Improvement of Thermal Efficiency at Part Load

    NARCIS (Netherlands)

    Boksteen, S.Z.

    2014-01-01

    This thesis investigates various operational aspects of Gas Turbine Combined Cycle Power Plants (GTCC). GTCC power plants are expected to play an increasingly important role in the balancing of supply and demand in the electricity grid. Although originally meant for predominantly base load operatio

  9. A Closed-Cycle Optical Cryostat and Improved Optical Elements for Studies of Dissipation at the Molecular Scale

    Science.gov (United States)

    2016-02-05

    dependent resistivity of the Au film constituting the wire . The heating is considerably enhanced when the incident polarization is aligned...Zolotavin, Douglas Natelson. Plasmonic Heating in Au nanowires at Low Temperatures, ACS Nano (02 2016) TOTAL: 1 Books Number of Manuscripts: Patents...Inventions (DD882) Scientific Progress See attachment. Technology Transfer Final report: A closed-cycle optical cryostat and

  10. Smart Operation of Gas Turbine Combined Cycle Plants: Prediction and Improvement of Thermal Efficiency at Part Load

    NARCIS (Netherlands)

    Boksteen, S.Z.

    2014-01-01

    This thesis investigates various operational aspects of Gas Turbine Combined Cycle Power Plants (GTCC). GTCC power plants are expected to play an increasingly important role in the balancing of supply and demand in the electricity grid. Although originally meant for predominantly base load

  11. Smart Operation of Gas Turbine Combined Cycle Plants: Prediction and Improvement of Thermal Efficiency at Part Load

    NARCIS (Netherlands)

    Boksteen, S.Z.

    2014-01-01

    This thesis investigates various operational aspects of Gas Turbine Combined Cycle Power Plants (GTCC). GTCC power plants are expected to play an increasingly important role in the balancing of supply and demand in the electricity grid. Although originally meant for predominantly base load operatio

  12. Improvement of Capacity and Cycling Performance of Spinel LiMn2O4 Cathode Materials with TiO2-B Nanobelts

    DEFF Research Database (Denmark)

    Zhang, J.Y.; Shen, J.X.; Wang, T.L.

    2013-01-01

    electron microscopy and transmission electron microscopy. The results show that TiO2-B nanobelts are uniformly distributed in LiMn2O4 particle. Compared with bare LiMn2O4, TiO2-B/LiMn2O4 composite cathode material shows enhanced specific capacity of 129 mA h g−1 and improved cycling stability. After 50...

  13. Corrigendum to "Sinusoidal potential cycling operation of a direct ethanol fuel cell to improving carbon dioxide yields" [J. Power Sources 268 (5 December 2014) 439-442

    Science.gov (United States)

    Majidi, Pasha; Pickup, Peter G.

    2016-09-01

    The authors regret that Equation (5) is incorrect and has resulted in errors in Fig. 4 and the efficiencies stated on p. 442. The corrected equation, figure and text are presented below. In addition, the title should be 'Sinusoidal potential cycling operation of a direct ethanol fuel cell to improve carbon dioxide yields', and the reversible cell potential quoted on p. 441 should be 1.14 V. The authors would like to apologise for any inconvenience caused.

  14. Cycling in Sydney, Australia

    Directory of Open Access Journals (Sweden)

    Alexis Zander

    2013-01-01

    Full Text Available Introduction. Cycling can be an enjoyable way to meet physical activity recommendations and is suitable for older people; however cycling participation by older Australians is low. This qualitative study explored motivators, enablers, and barriers to cycling among older people through an age-targeted cycling promotion program. Methods. Seventeen adults who aged 50–75 years participated in a 12-week cycling promotion program which included a cycling skills course, mentor, and resource pack. Semistructured interviews at the beginning and end of the program explored motivators, enablers, and barriers to cycling. Results. Fitness and recreation were the primary motivators for cycling. The biggest barrier was fear of cars and traffic, and the cycling skills course was the most important enabler for improving participants’ confidence. Reported outcomes from cycling included improved quality of life (better mental health, social benefit, and empowerment and improved physical health. Conclusions. A simple cycling program increased cycling participation among older people. This work confirms the importance of improving confidence in this age group through a skills course, mentors, and maps and highlights additional strategies for promoting cycling, such as ongoing improvement to infrastructure and advertising.

  15. Prospects for energy efficiency improvement and reduction of emissions and life cycle costs for natural gas vehicles

    Science.gov (United States)

    Kozlov, A. V.; Terenchenko, A. S.; Luksho, V. A.; Karpukhin, K. E.

    2017-01-01

    This work is devoted to the experimental investigation of the possibilities to reduce greenhouse gas emissions and to increase energy efficiency of engines that use natural gas as the main fuel and the analysis of economic efficiency of use of dual fuel engines in vehicles compared to conventional diesel. The results of experimental investigation of a 190 kW dual-fuel engine are presented; it is shown that quantitative and qualitative working process control may ensure thermal efficiency at the same level as that of the diesel engine and in certain conditions 5...8% higher. The prospects for reduction of greenhouse gas emissions have been assessed. The technical and economic evaluation of use of dual fuel engines in heavy-duty vehicles has been performed, taking into account the total life cycle. It is shown that it is possible to reduce life cycle costs by two times.

  16. Variable geometry gas turbines for improving the part-load performance of marine combined cycles - Gas turbine performance

    DEFF Research Database (Denmark)

    Haglind, Fredrik

    2010-01-01

    -load performance. Subsequently, in another paper, the effects of variable geometry on the part-load performance for combined cycles used for ship propulsion will be presented. Moreover, this paper is aimed at developing methodologies and deriving models for part-load simulations suitable for energy system analysis......The part-load performance of gas and steam turbine combined cycles intended for naval use is of great importance, and it is influenced by the gas turbine configuration and load control strategy. This paper is aimed at quantifying the effects of variable geometry on the gas turbine part...... of various components within gas turbines. Two different gas turbine configurations are studied, a two-shaft aero-derivative configuration and a single-shaft industrial configuration. When both gas turbine configurations are running in part-load using fuel flow control, the results indicate better part...

  17. Fabrication Technology

    Energy Technology Data Exchange (ETDEWEB)

    Blaedel, K.L.

    1993-03-01

    The mission of the Fabrication Technology thrust area is to have an adequate base of manufacturing technology, not necessarily resident at Lawrence Livermore National Laboratory (LLNL), to conduct the future business of LLNL. The specific goals continue to be to (1) develop an understanding of fundamental fabrication processes; (2) construct general purpose process models that will have wide applicability; (3) document findings and models in journals; (4) transfer technology to LLNL programs, industry, and colleagues; and (5) develop continuing relationships with the industrial and academic communities to advance the collective understanding of fabrication processes. The strategy to ensure success is changing. For technologies in which they are expert and which will continue to be of future importance to LLNL, they can often attract outside resources both to maintain their expertise by applying it to a specific problem and to help fund further development. A popular vehicle to fund such work is the Cooperative Research and Development Agreement with industry. For technologies needing development because of their future critical importance and in which they are not expert, they use internal funding sources. These latter are the topics of the thrust area. Three FY-92 funded projects are discussed in this section. Each project clearly moves the Fabrication Technology thrust area towards the goals outlined above. They have also continued their membership in the North Carolina State University Precision Engineering Center, a multidisciplinary research and graduate program established to provide the new technologies needed by high-technology institutions in the US. As members, they have access to and use of the results of their research projects, many of which parallel the precision engineering efforts at LLNL.

  18. Fabrication Technology

    Energy Technology Data Exchange (ETDEWEB)

    Blaedel, K.L.

    1993-03-01

    The mission of the Fabrication Technology thrust area is to have an adequate base of manufacturing technology, not necessarily resident at Lawrence Livermore National Laboratory (LLNL), to conduct the future business of LLNL. The specific goals continue to be to (1) develop an understanding of fundamental fabrication processes; (2) construct general purpose process models that will have wide applicability; (3) document findings and models in journals; (4) transfer technology to LLNL programs, industry, and colleagues; and (5) develop continuing relationships with the industrial and academic communities to advance the collective understanding of fabrication processes. The strategy to ensure success is changing. For technologies in which they are expert and which will continue to be of future importance to LLNL, they can often attract outside resources both to maintain their expertise by applying it to a specific problem and to help fund further development. A popular vehicle to fund such work is the Cooperative Research and Development Agreement with industry. For technologies needing development because of their future critical importance and in which they are not expert, they use internal funding sources. These latter are the topics of the thrust area. Three FY-92 funded projects are discussed in this section. Each project clearly moves the Fabrication Technology thrust area towards the goals outlined above. They have also continued their membership in the North Carolina State University Precision Engineering Center, a multidisciplinary research and graduate program established to provide the new technologies needed by high-technology institutions in the US. As members, they have access to and use of the results of their research projects, many of which parallel the precision engineering efforts at LLNL.

  19. Taxi Fleet Renewal in Cities with Improved Hybrid Powertrains: Life Cycle and Sensitivity Analysis in Lisbon Case Study

    OpenAIRE

    António P. Castel-Branco; João P. Ribau; Silva, Carla M.

    2015-01-01

    Stringent emissions regulations in cities and the high amount of daily miles driven by taxi vehicles enforce the need to renew these fleets with more efficient and cleaner technologies. Hybrid vehicles are potential candidates due to their enhanced powertrain, and slower battery depletion and fewer lifetime issues, relative to full electric vehicles. This paper proposes a methodology to analyze the best theoretical hybrid powertrain candidate with maximum in-use efficiency, minimum life cycle...

  20. Three cycles of water deficit from seed to young plants of Moringa oleifera woody species improves stress tolerance.

    Science.gov (United States)

    Rivas, Rebeca; Oliveira, Marciel T; Santos, Mauro G

    2013-02-01

    The main objective of this study was to assess whether recurring water stress occurring from seed germination to young plants of Moringa oleifera Lam. are able to mitigate the drought stress effects. Germination, gas exchange and biochemical parameters were analysed after three cycles of water deficit. Young plants were used 50 days after germination under three osmotic potentials (0.0, -0.3 and -0.4 MPa). For each germination treatment, control (irrigated) and stressed (10% of water control) plants were compared for a total of six treatments. There were two cycles of drought interspersed with 10 days of rehydration. The young plants of M. oleifera showed increased tolerance to repeated cycles of drought, maintaining high relative water content (RWC), high water use efficiency (WUE), increased photosynthetic pigments and increased activity of antioxidant enzymes. There was rapid recovery of the photosynthetic rate during the rehydration period. The stressed plants from the -0.3 and -0.4 MPa treatments showed higher tolerance compared to the control plants. The results suggest that seeds of M. oleifera subjected to mild water deficit have had increased the ability for drought tolerance when young plant.

  1. Multifunctional bioactive and improving the performance durability nanocoatings for finishing PET/CO woven fabrics by the sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Kowalczyk, Dorota, E-mail: dkowalczyk@iw.lodz.pl; Brzeziński, Stefan; Kamińska, Irena

    2015-11-15

    The paper presents the results of studies on multifunctional thin-coatings of textiles, simultaneously imparting to them bioactive properties in relations to bacteria and fungi as well as an increased abrasion resistance and anti-pilling effect with the use of modified hybrid materials produced by the sol–gel method from two precursors: (3-glycidoxypropyl)trimethoxysilane (GPTMS) and aluminum isopropoxide (ALIPO). The sol obtained was modified with bioactive particles in the form of nanopowder of metallic silver and copper alloy (Ag/Cu). Al{sub 2}O{sub 3}/SiO{sub 2} sol containing nanoparticles of Ag/Cu alloy was deposited on a polyester/cotton blend woven fabric (PET/CO 67/33) by the padding method. After drying and curing process, a thin and elastic bioactive silica coating was obtained on the fabric fibers surfaces. The fabrics with deposited nanocoatings were characterized by very good bioactive properties and increased resistance to abrasion and formation of pilling. - Highlights: • Multifunctional thin coating layer was prepared on the fabric using sol–gel method. • Modification of the hybrid Al{sub 2}O{sub 3}/SiO{sub 2} sol by Ag/Cu alloy nanoparticles. • Bioactive fabric created by deposition of Al{sub 2}O{sub 3}/SiO{sub 2} sol with Ag/Cu. • 30% increase the abrasion resistance of the thin coating fabric.

  2. Positive-plate gauntlets - the non-woven fabric solution

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, A.L. [Amer-Sil, Kehlen (Luxembourg)

    1998-05-18

    The tubular positive plate has undergone a gradual change in design that has progressed from single tube assembly to the gauntlet concept. The latest step in gauntlet development is the introduction of non-woven fabrics. These latest fabrics offer many advantages to the tubular battery. The advantages are both of a technical as well as of an economic nature. On the technical side, these non-woven fabrics offer structures which are very porous and yet have relatively small pore sizes. This combination of characteristics results in excellent positive active-material retention and low electrical resistance. The surface finish and physical characteristics of the non-woven fabrics also have an impact on the different plate-manufacturing techniques. But the one of the greatest benefits of this type of positive-plate gauntlet is its contribution to an improvement of the electrical output of the cycling battery both in terms of higher capacity (due to the lower electrical resistance) and to longer cycle life (due to the finer pore structure). (orig.)

  3. Work plan for improving the DARWIN2.3 depleted material balance calculation of nuclides of interest for the fuel cycle

    Science.gov (United States)

    Rizzo, Axel; Vaglio-Gaudard, Claire; Martin, Julie-Fiona; Noguère, Gilles; Eschbach, Romain

    2017-09-01

    DARWIN2.3 is the reference package used for fuel cycle applications in France. It solves the Boltzmann and Bateman equations in a coupling way, with the European JEFF-3.1.1 nuclear data library, to compute the fuel cycle values of interest. It includes both deterministic transport codes APOLLO2 (for light water reactors) and ERANOS2 (for fast reactors), and the DARWIN/PEPIN2 depletion code, each of them being developed by CEA/DEN with the support of its industrial partners. The DARWIN2.3 package has been experimentally validated for pressurized and boiling water reactors, as well as for sodium fast reactors; this experimental validation relies on the analysis of post-irradiation experiments (PIE). The DARWIN2.3 experimental validation work points out some isotopes for which the depleted concentration calculation can be improved. Some other nuclides have no available experimental validation, and their concentration calculation uncertainty is provided by the propagation of a priori nuclear data uncertainties. This paper describes the work plan of studies initiated this year to improve the accuracy of the DARWIN2.3 depleted material balance calculation concerning some nuclides of interest for the fuel cycle.

  4. Preexercise energy drink consumption does not improve endurance cycling performance but increases lactate, monocyte, and interleukin-6 response.

    Science.gov (United States)

    Phillips, Melody D; Rola, Kelyn S; Christensen, Kenneth V; Ross, Jacob W; Mitchell, Joel B

    2014-05-01

    The purpose of this study was to investigate the influence of an energy drink (ED) on cycling performance and immune-related variables. Eleven trained male cyclists (33.4 ± 8.9 years; 81 ± 7.6 kg; maximal VO2, 52 ± 3.4 ml·kg(-1)·min(-1)) consumed 500 ml of (a) ED (2.0 g taurine, 1.2 g glucuronolactone, 160 mg caffeine, 56 g carbohydrate [CHO], and B vitamins), (b) cola matched for caffeine and CHO (CC), or (c) flavored placebo (PL: sparking water and flavoring) 50 minutes before racing in a randomized, crossover design. Performance was measured as time to complete (TTC) a 25-mile simulated road race. Blood was collected at baseline, 30 minutes after drink consumption, during exercise at miles 5 (M5), 15 (M15), and immediately (POEX) and 30 minutes (30minPO) after exercise. TTC was not different (p > 0.05) among trials (ED, 68.6 ± 2.7; CC, 68.9 ± 3.8; PL, 69.6 ± 3.8 minutes). Consumption of CC and ED elicited a mild hypoglycemia elicited a mild hypoglycemia during cycling. POEX interleukin-6 (IL-6) was greatest after ED, whereas CC IL-6 was greater than PL (10.2 ± 1.6, 6.7 ± 0.6, and 4.8 ± 0.7 pg·ml(-1), respectively; p Cycling increased leukocyte number in all conditions with ED leukocyte number greater than that of PL at M15 (9.8 ± 0.6, 8.5 ± 0.3 × 10(6) cells·mL(-1)). Energy drink induced an earlier recruitment of monocytes to the blood stream than CC. Mean fat oxidation was greater in PL compared with CC (0.43 ± 0.06 and 0.28 ± 0.04 g·min(-1); p = 0.033) but did not differ between ED (0.32 ± 0.06) and PL. Lactate was higher in ED compared with CC and PL at M5 and M15 (p = 0.003), but there was no significant influence of either ED or CC on performance. Carbohydrate and caffeine consumption before endurance cycling significantly increased the IL-6 release and leukocytosis, and the additional ingredients in ED seem to have further augmented these responses.

  5. Highly conductive bridges between graphite spheres to improve the cycle performance of a graphite anode in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongyu [IM and T Ltd., Advanced Research Center, Saga University, Yoga-machi 1341, Saga 840-0047 (Japan); Umeno, Tatsuo; Mizuma, Koutarou [Research Center, Mitsui Mining Co. Ltd., Hibiki-machi 1-3, Wakamatsu-ku, Kitakyushu 808-0021 (Japan); Yoshio, Masaki [Advanced Research Center, Saga University, Yoga-machi 1341, Saga 840-0047 (Japan)

    2008-01-10

    Spherical carbon-coated natural graphite (SCCNG) is a promising anode material for lithium-ion batteries, but the smooth surface of graphite spheres is difficult to wet with an aqueous binder solution, and lacks electrical contacts. As a result, the cycle performance of such a graphite anode material is not satisfactory. An effective method has been introduced to tightly connect adjacent SCCNG particles by a highly conductive binder, viz. acetylene black bridges. The effect of the conductive bridges on the cyclability of SCCNG electrode has been investigated. (author)

  6. Combined insulin treatment and intense exercise training improved basal cardiac function and Ca(2+)-cycling proteins expression in type 1 diabetic rats.

    Science.gov (United States)

    Le Douairon Lahaye, Solène; Gratas-Delamarche, Arlette; Malardé, Ludivine; Zguira, Sami; Vincent, Sophie; Lemoine Morel, Sophie; Carré, François; Rannou Bekono, Françoise

    2012-02-01

    This study investigated the effects of 8 weeks of intense exercise training combined with insulin treatment on the Ca(2+)-cycling protein complex expression and their functional consequences on cardiac function in type 1 diabetic rat hearts. Diabetic Wistar rats were randomly assigned into the following groups: received no treatment, insulin-treated diabetic, trained diabetic, and trained insulin-treated diabetic. A control group was also included. Insulin treatment and (or) treadmill intense exercise training were conducted over 8 weeks. Basal cardiac function was evaluated by Langendorff technique. Cardiac expression of the main Ca(2+)-cycling proteins (RyR2, FKBP 12.6, SERCA2, PLB, NCX1) was assessed by Western blot. Diabetes altered basal cardiac function (±dP/dt) and decrease the expression of the main Ca(2+)-cycling proteins expression: RyR2, SERCA2, and NCX1 (p < 0.05). Whereas combined treatment was not able to normalize -dP/dt, it succeeded to normalize +dP/dt of diabetic rats (p < 0.05). Moreover, both insulin and intense exercise training, applied solely, increased the expression of the Ca(2+)-cycling proteins: RyR2, SERCA2, PLB. and NCX1 (p < 0.05). But this effect was higher when the 2 treatments were combined. These data are the first to show that combined insulin treatment and intense exercise training during diabetes synergistically act on the expression of the main Ca(2+)-cycling proteins, providing insights into mechanisms by which the dual treatment during diabetes improves cardiac function.

  7. Combined GnRH-agonist and human chorionic gonadotropin trigger improves ICSI cycle outcomes in patients with history of poor fertilization.

    Science.gov (United States)

    Elias, Rony T; Pereira, Nigel; Artusa, Lisa; Kelly, Amelia G; Pasternak, Monica; Lekovich, Jovana P; Palermo, Gianpiero D; Rosenwaks, Zev

    2017-06-01

    The purpose of this study was to investigate the utility of a combined GnRH-agonist (GnRH-a) and human chorionic gonadotropin (hCG) trigger in improving ICSI cycle outcomes in patients with poor fertilization history after standard hCG trigger in prior ICSI cycles. Retrospective cohort study. Patients with a fertilization rate of trigger were compared to those who underwent another ICSI cycle with a combined GnRH-a and hCG trigger. Oocyte maturity, fertilization, clinical pregnancy, and live birth rates were compared. A multiple linear regression model was used to explore the association between combined GnRH-a and hCG trigger (vs hCG trigger alone) and fertilization rate. A total of 427 patients with mean age of 37.3 ± 1.94 years and mean baseline fertilization rate of 17.9 ± 2.03% were included, of which 318 (74.5%) and 109 (25.5%) patients underwent a subsequent ICSI cycle with hCG and combined GnRH-a and hCG trigger, respectively. The baseline parameters of the male and female partner were similar. The mean fertilization rate in the combined trigger group was 16.4% (95% CI: 7.58-25.2%) higher than the hCG trigger group, even after adjustment for confounders. Patients in the combined trigger group had higher oocyte maturity (82.1 vs 69.8%), higher clinical pregnancy (27.5 vs 5.67%), and higher live birth rates (20.2 vs 3.46%) compared to the hCG trigger group. Combined GnRH-a and hCG trigger in ICSI cycles increase oocyte maturity, fertilization, clinical pregnancy, and live birth rates in patients with a history of poor fertilization after standard hCG trigger alone.

  8. Variable geometry gas turbines for improving the part-load performance of marine combined cycles - Gas turbine performance

    Energy Technology Data Exchange (ETDEWEB)

    Haglind, F. [Technical University of Denmark, Department of Mechanical Engineering, DK-2800 Kgs. Lyngby (Denmark)

    2010-02-15

    The part-load performance of gas and steam turbine combined cycles intended for naval use is of great importance, and it is influenced by the gas turbine configuration and load control strategy. This paper is aimed at quantifying the effects of variable geometry on the gas turbine part-load performance. Subsequently, in another paper, the effects of variable geometry on the part-load performance for combined cycles used for ship propulsion will be presented. Moreover, this paper is aimed at developing methodologies and deriving models for part-load simulations suitable for energy system analysis of various components within gas turbines. Two different gas turbine configurations are studied, a two-shaft aero-derivative configuration and a single-shaft industrial configuration. When both gas turbine configurations are running in part-load using fuel flow control, the results indicate better part-load performance for the two-shaft gas turbine. Reducing the load this way is accompanied by a much larger decrease in exhaust gas temperature for the single-shaft gas turbine than for the two-shaft configuration. As used here, the results suggest that variable geometry generally deteriorates the gas turbine part-load performance. (author)

  9. Manganese sequestration and improved high-temperature cycling of Li-ion batteries by polymeric aza-15-crown-5

    Science.gov (United States)

    Li, Zicheng; Pauric, Allen D.; Goward, Gillian R.; Fuller, Timothy J.; Ziegelbauer, Joseph M.; Balogh, Michael P.; Halalay, Ion C.

    2014-12-01

    Mn cation trapping by polymeric aza-15-crown-5 ethers is an effective means for mitigating the consequences of Mn dissolution in Li-ion batteries. Mn cations trapping was investigated in lithium manganese oxide (LMO) spinel-graphite (GR) cells containing 1 M LiPF6 in ethylene carbonate (EC):diethyl carbonate (DEC) 1:2 v/v. A commercial polyolefin separator membrane coated with poly[divinylbenzene-(vinylbenzyl-aza-15-crown-5)-vinylbenzylchloride)] effected a 39% reduction in capacity loss rate during cycling at 50 °C with 100% depth of discharge (DOD) at C/5 rate. Simultaneously, a 50-60% reduction in the Mn deposited at the negative electrode, and a 6× to 10× increase in the Mn on the coated separator were observed for cells with coated separators, over baseline cells with plain separators. X-ray absorption near-edge spectroscopy (XANES) yielded average oxidation states near +3 for Mn cations in graphite electrodes and separators from cycled cells, suggesting that Mn metal or in oxidation state +2 can only be minor fractions of the Mn existing outside the positive electrode. We discuss the implications of these results for choosing an optimal chelating agent. We also show that the cation chelating polymer reported here is compatible with existing manufacturing processes for Li-ion battery separators.

  10. The capacity fading mechanism and improvement of cycling stability in MoS2-based anode materials for lithium-ion batteries.

    Science.gov (United States)

    Shu, Haibo; Li, Feng; Hu, Chenli; Liang, Pei; Cao, Dan; Chen, Xiaoshuang

    2016-02-01

    Two-dimensional (2D) layered MoS2 nanosheets possess great potential as anode materials for lithium ion batteries (LIBs), but they still suffer from poor cycling performance. Improving the cycling stability of electrode materials depends on a deep understanding of their dynamic structural evolution and reaction kinetics in the lithiation process. Herein, thermodynamic phase diagrams and the lithiation dynamics of MoS2-based nanostructures with the intercalation of lithium ions are studied by using first-principles calculations and ab initio molecular dynamics simulations. Our results demonstrate that the continuous intercalation of Li ions induces structural destruction of 2H phase MoS2 nanosheets in the discharge process that follows a layer-by-layer dissociation mechanism. Meanwhile, the intercalation of Li ions leads to a structural transition of MoS2 nanosheets from the 2H to the 1T phase due to the ultralow transition barriers (∼0.1 eV). We find that the phase transition can slow down the dissociation of MoS2 nanosheets during lithiation. The result can be applied to explain extensive experimental observation of the fast capacity fading of MoS2-based anode materials between the first and the subsequent discharges. To suppress the dissociation of MoS2 nanosheets in the lithiation process, we propose a strategy by constructing a sandwich-like graphene/MoS2/graphene structure that indicates high chemical stability, superior conductivity, and high Li-ion mobility in the charge/discharge process, implying the possibility to induce an improvement in the anode cycling performance. This work opens a new route to rational design layered transition-metal disulfide (TMD) anode materials for LIBs with superior cycling stability and electrochemical performance.

  11. 无纺布人工浮岛在改善富营养化水体水质中的应用%Application of Artificial Floating Island with Non-woven Fabric to Eutrophic Water Quality Improvement

    Institute of Scientific and Technical Information of China (English)

    张玲玲; 李昆; 李兆华

    2012-01-01

    The artificial floating island discussed in this paper is made of non-woven fabric and PVC pipes. It is e-conomical, operation-friendly, and stable. The authors analyze the strengths and defects of three different artificial floating islands with non-woven fabric, and discuss the feasibility of non-woven fabric used as artificial floating bed material and its water purification ability. Results show that the floating bed made of strip non-woven fabric is the most convenient and economical structure. If the waste non-woven fabrics can be disposed effectively in the future, artificial floating island with non-woven fabric will be used in wide areas to improve the eutrophic water quality.%无纺布人工浮岛是一种无纺布与PVC管组合式植物水上栽培浮床,具有经济、易操作、稳定等优点.分析了3种不同固定方式的无纺布人工浮岛在应用中的优缺点,以及无纺布作为浮床材料的可行性和无纺布人工浮岛对水体的净化能力.结果表明:3种无纺布浮床结构中,条状无纺布框架结构操作最简单且经济;由于无纺布人工浮岛成本低、易操作,如果今后能为废弃无纺布的处置问题找到出路,无纺布人工浮岛在改善富营养化水体水质领域将会大面积推广使用.

  12. Fabrication of thin silica layer-coated magnetite clusters (nFe{sub 3}O{sub 4}/silica) as anode materials for improved Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Hang-Deok; Lee, Sang-Wha, E-mail: Lswha@gachon.ac.kr

    2013-11-01

    Thin silica layer-coated magnetite clusters (nFe{sub 3}O{sub 4}/silica) were prepared as active anode materials for Li-ion batteries. First, citrate-capped magnetites (C-Fe{sub 3}O{sub 4}) were synthesized by the co-precipitation method. Then, 3-aminopropyl trimethoxysilane (APTMS)-linked magnetite clusters (A-nFe{sub 3}O{sub 4}) were formed via electrostatic interactions between carboxylate groups of C-Fe{sub 3}O{sub 4} and amine groups of APTMS, and the resulting A-nFe{sub 3}O{sub 4} were heat-treated under N{sub 2} flow for 2 h. The calcined A-nFe{sub 3}O{sub 4} at 500 °C exhibited the X-ray diffraction (XRD) patterns mostly attributed to fcc crystalline phases of Fe{sub 3}O{sub 4}, whereas the calcined C-Fe{sub 3}O{sub 4} at 500 °C exhibited the XRD patterns attributed to the mixture of fcc crystalline phases of Fe{sub 3}O{sub 4} and hexagonal crystalline phases of α-Fe{sub 2}O{sub 3}. The calcined A-nFe{sub 3}O{sub 4} (i.e., nFe{sub 3}O{sub 4}/silica) exhibited the improved retention capacity by more than ca. 50% after 50 cycles as compared to the pristine iron oxides. The improved retention capacity of nFe{sub 3}O{sub 4}/silica was attributed to the enhanced chemical stability and large surface area of the thin silica layer-coated iron oxide clusters. - Highlights: • Thin silica layer-coated iron oxides (nFe{sub 3}O{sub 4}/silica) were facilely prepared. • The nFe{sub 3}O{sub 4}/silica exhibited the improved capacity retention by more than 50%. • Inert silica layer minimized the pulverization of iron oxide clusters.

  13. Fabrics China Trends Released in Guangzhou

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ During April 8th-14th, China Textiles Development center, along with China Textile Information Center, released their newly developed "Fabrics China Trends 10 S/S" in China Fabrics & Accessories Center in the city of Guangzhou, aiming to improve the fashion style of China Fabrics & Accessories Center, upgrade the integration of fabrics and fashion trend development, attract more buyers and talent designers, and enhance the quality competitiveness of the trade center significantly.

  14. Improved analysis on multiple recycling of fuel in prototype fast breeder reactor in a closed fuel cycle

    Indian Academy of Sciences (India)

    G Pandikumar; V Gopalakrishnan; P Mohanakrishnan

    2011-08-01

    An FBR closed fuel cycle involves recycling of the discharge fuel, after reprocessing and refabrication, to utilize the unburnt fuel remains and the freshly bred fissile material. Our previous study in this regard for the PFBR indicated a comfortable feasibility of multiple recycling with selfsufficiency. In the present work, more refined estimations are done using the most recent nuclear data, viz. ENDF/B-VII.0, and with the most recent specification of the fuel composition. Among others, this paper brings out the importance of taking into account the energy self-shielding effects in the cross-section averages used in the study. While self-shielded averages lead to realistic predictions, unshielded averages significantly overpredict breeding in the blankets and underpredict loss in the cores.

  15. Stirling Microregenerators Fabricated and Tested

    Science.gov (United States)

    Moran, Matthew E.

    2004-01-01

    A mesoscale Stirling refrigerator patented by the NASA Glenn Research Center is currently under development. This refrigerator has a predicted efficiency of 30 percent of Carnot and potential uses in electronics, sensors, optical and radiofrequency systems, microarrays, and microsystems. The mesoscale Stirling refrigerator is most suited to volume-limited applications that require cooling below the ambient or sink temperature. Primary components of the planar device include two diaphragm actuators that replace the pistons found in traditional-scale Stirling machines and a microregenerator that stores and releases thermal energy to the working gas during the Stirling cycle. Diaphragms are used to eliminate frictional losses and bypass leakage concerns associated with pistons, while permitting reversal of the hot and cold sides of the device during operation to allow precise temperature control. Three candidate microregenerators were fabricated under NASA grants for initial evaluation: two constructed of porous ceramic, which were fabricated by Johns Hopkins Applied Physics Laboratory, and one made of multiple layers of nickel and photoresist, which was fabricated by Polar Thermal Technologies. The candidate regenerators are being tested by Johns Hopkins Applied Physics in a custom piezoelectric-actuated test apparatus designed to produce the Stirling refrigeration cycle. In parallel with the regenerator testing, Johns Hopkins is using deep reactive ion etching to fabricate electrostatically driven, comb-drive diaphragm actuators. These actuators will drive the Stirling cycle in the prototype device. The top photograph shows the porous ceramic microregenerators. Two microregenerators were fabricated with coarse pores and two with fine pores. The bottom photograph shows the test apparatus parts for evaluating the microregenerators, including the layered nickel-and-photoresist regenerator fabricated using LIGA techniques.

  16. 应用PDCA循环提升医院考勤管理水平%Application of PDCA Cycle to Improve Hospital Management Level of Work Attendance

    Institute of Scientific and Technical Information of China (English)

    王洪国; 陈源; 武亚琴; 王晶桐; 王杉

    2015-01-01

    本研究用鱼骨图方法剖析医院考勤管理存在的问题,并探索将PDCA循环理论运用于医院考勤管理项目,以不断提升医院考勤管理水平.3年的实践表明,PDCA循环促进了医院考勤系统建设和考勤休假制度完善,提高了医院人力资源管理和服务水平,为医院发展提供更加坚实的人力资源支持和保障.%This study used the fishbone diagram method to analyze the problems existing in hospital attendance management and explored the application of PDCA cycle theory to improve hospital attendance management. Three years of practice showed that the PDCA cycle can promote the construction of hospital attendance system and improve work and leave policy. It can also improve hospital human resource management and service, which provides stronger human resources support and guarantee for hospital development.

  17. The multiphysics analysis of the metallic bipolar plate by the electrochemical micro-machining fabrication process

    Science.gov (United States)

    Lee, Yu-Ming; Lee, Shuo-Jen; Lee, Chi-Yuan; Chang, Dar-Yuan

    In this study, the flow channels of a PEM fuel cell are fabricated by the EMM process. The parametric effects of the process are studied by both numerical simulation and experimental tests. For the numerical simulation, the multiphysics model, consisting of electrical field, convection, and diffusion phenomena is applied using COMSOL software. COMSOL software is used to predict the parametric effects of the channel fabrication accuracy such as pulse rate, pulse duty cycle, inter-electrode gap and electrolytic inflow velocity. The proper experimental parameters and the relationship between the parameters and the distribution of metal removal are established from the simulated results. The experimental fabrication tests showed that a shorter pulse rate and a higher pulse current improved the fabrication accuracy, and is consistent with the numerical simulation results. The proposed simulation model could be employed as a predictive tool to provide optimal parameters for better machining accuracy and process stability of the EMM process.

  18. Final technical report. A sodium-cycle based organism with improved membrane resistance aimed at increasing the efficiency of energy biotransformations

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Kim

    2001-06-01

    The aim of the project was to express in E. coli components that would allow a formation of oxidative phosphorylation based on a sodium cycle. This would improve the resistance of cells to organic solvents, detergents and other toxins. The author cloned and expressed the nqr operon from H. influenzae in E. coli. Experiments with membrane vesicles indicated the presence of the functional recombinant sodium pumping NADH dehydrogenase. A gene for a hybrid E. coli/P.modestum ATPase was constructed which will enable one to co-express a sodium ATPsynthase together with a sodium NADH dehydrogenase.

  19. Improving the cycle life of lead-acid batteries using three-dimensional reduced graphene oxide under the high-rate partial-state-of-charge condition

    Science.gov (United States)

    Long, Qunying; Ma, Guozheng; Xu, Qiqin; Ma, Cheng; Nan, Junmin; Li, Aiju; Chen, Hongyu

    2017-03-01

    A three-dimensional reduced graphene oxide (3D-RGO) material has been successfully prepared by a facile hydrothermal method and is employed as the negative additive to curb the sulfation of lead-acid battery. When added with 1.0 wt% 3D-RGO, the initial discharge capacity (0.05 C, 185.36 mAh g-1) delivered by the battery is 14.46% higher than that of the control cell (161.94 mAh g-1); and the cycle life under the high-rate partial-state-of-charge (HRPSoC) condition is significantly improved by more than 224% from 8142 to 26,425 cycles. In comparison to the conventional carbon additions like the activated carbon and acetylene black, the 3D-RGO also exhibits the highest initial discharge capacity, the best rate capabilities and the longest HRPSoC cycling life. Finally, we propose a possible mechanism for 3D-RGO to suppress lead-acid battery sulfation, where the abundant pore structure and excellent conductivity of 3D-RGO may have a synergistic effect on facilitating the charge and discharge process of negative plate.

  20. A 12-Week Cycling Training Regimen Improves Gait and Executive Functions Concomitantly in People with Parkinson’s Disease

    Science.gov (United States)

    Nadeau, Alexandra; Lungu, Ovidiu; Duchesne, Catherine; Robillard, Marie-Ève; Bore, Arnaud; Bobeuf, Florian; Plamondon, Réjean; Lafontaine, Anne-Louise; Gheysen, Freja; Bherer, Louis; Doyon, Julien

    2017-01-01

    Background: There is increasing evidence that executive functions and attention are associated with gait and balance, and that this link is especially prominent in older individuals or those who are afflicted by neurodegenerative diseases that affect cognition and/or motor functions. People with Parkinson’s disease (PD) often present gait disturbances, which can be reduced when PD patients engage in different types of physical exercise (PE), such as walking on a treadmill. Similarly, PE has also been found to improve executive functions in this population. Yet, no exercise intervention investigated simultaneously gait and non-motor symptoms (executive functions, motor learning) in PD patients. Objective: To assess the impact of aerobic exercise training (AET) using a stationary bicycle on a set of gait parameters (walking speed, cadence, step length, step width, single and double support time, as well as variability of step length, step width and double support time) and executive functions (cognitive inhibition and flexibility) in sedentary PD patients and healthy controls. Methods: Two groups, 19 PD patients (Hoehn and Yahr ≤2) and 20 healthy adults, matched on age and sedentary level, followed a 3-month stationary bicycle AET regimen. Results: Aerobic capacity, as well as performance of motor learning and on cognitive inhibition, increased significantly in both groups after the training regimen, but only PD patients improved their walking speed and cadence (all p training-related improvements in aerobic capacity correlated positively with improvements in walking speed (r = 0.461, p training and they could be due to indirect action mechanisms (i.e., improvement of cardiovascular capacity). These results are also relevant for the development of targeted AET interventions to improve functional autonomy in PD patients. PMID:28127282

  1. Potential Fuel Economy Improvements from the Implementation of cEGR and CDA on an Atkinson Cycle Engine

    Science.gov (United States)

    Present the implementation of cEGR and CDA on an Atkinson engine and use steady state fuel consumption maps to estimate the technologies’ potential fuel economy improvements over the FTP and Highway tests. In addition to use fuel weighted modes to determine possible fuel economy...

  2. Potential Fuel Economy Improvements from the Implementation of cEGR and CDA on an Atkinson Cycle Engine

    Science.gov (United States)

    Present the implementation of cEGR and CDA on an Atkinson engine and use steady state fuel consumption maps to estimate the technologies’ potential fuel economy improvements over the FTP and Highway tests. In addition to use fuel weighted modes to determine possible fuel economy...

  3. Functional electrical stimulation cycling does not improve mobility in people with acquired brain injury and its effects on strength are unclear: a randomised trial

    Directory of Open Access Journals (Sweden)

    Davide G de Sousa

    2016-10-01

    Full Text Available Question: Does 4 weeks of active functional electrical stimulation (FES cycling in addition to usual care improve mobility and strength more than usual care alone in people with a sub-acute acquired brain injury caused by stroke or trauma? Design: Multi centre, randomised, controlled trial. Participants: Forty patients from three Sydney hospitals with recently acquired brain injury and a mean composite strength score in the affected lower limb of 7 (SD 5 out of 20 points. Intervention: Participants in the experimental group received an incremental, progressive, FES cycling program five times a week over a 4-week period. All participants received usual care. Outcome measures: Outcome measures were taken at baseline and at 4 weeks. Primary outcomes were mobility and strength of the knee extensors of the affected lower limb. Mobility was measured with three mobility items of the Functional Independence Measure and strength was measured with a hand-held dynamometer. Secondary outcomes were strength of the knee extensors of the unaffected lower limb, strength of key muscles of the affected lower limb and spasticity of the affected plantar flexors. Results: All but one participant completed the study. The mean between-group differences for mobility and strength of the knee extensors of the affected lower limb were –0.3/21 points (95% CI –3.2 to 2.7 and 7.5 Nm (95% CI –5.1 to 20.2, where positive values favoured the experimental group. The only secondary outcome that suggested a possible treatment effect was strength of key muscles of the affected lower limb with a mean between-group difference of 3.0/20 points (95% CI 1.3 to 4.8. Conclusion: Functional electrical stimulation cycling does not improve mobility in people with acquired brain injury and its effects on strength are unclear. Trial registration: ACTRN12612001163897. [de Sousa DG, Harvey LA, Dorsch S, Leung J, Harris W (2016 Functional electrical stimulation cycling does not improve

  4. Use of a small molecule cell cycle inhibitor to control cell growth and improve specific productivity and product quality of recombinant proteins in CHO cell cultures.

    Science.gov (United States)

    Du, Zhimei; Treiber, David; McCarter, John D; Fomina-Yadlin, Dina; Saleem, Ramsey A; McCoy, Rebecca E; Zhang, Yuling; Tharmalingam, Tharmala; Leith, Matthew; Follstad, Brian D; Dell, Brad; Grisim, Brent; Zupke, Craig; Heath, Carole; Morris, Arvia E; Reddy, Pranhitha

    2015-01-01

    The continued need to improve therapeutic recombinant protein productivity has led to ongoing assessment of appropriate strategies in the biopharmaceutical industry to establish robust processes with optimized critical variables, that is, viable cell density (VCD) and specific productivity (product per cell, qP). Even though high VCD is a positive factor for titer, uncontrolled proliferation beyond a certain cell mass is also undesirable. To enable efficient process development to achieve consistent and predictable growth arrest while maintaining VCD, as well as improving qP, without negative impacts on product quality from clone to clone, we identified an approach that directly targets the cell cycle G1-checkpoint by selectively inhibiting the function of cyclin dependent kinases (CDK) 4/6 with a small molecule compound. Results from studies on multiple recombinant Chinese hamster ovary (CHO) cell lines demonstrate that the selective inhibitor can mediate a complete and sustained G0/G1 arrest without impacting G2/M phase. Cell proliferation is consistently and rapidly controlled in all recombinant cell lines at one concentration of this inhibitor throughout the production processes with specific productivities increased up to 110 pg/cell/day. Additionally, the product quality attributes of the mAb, with regard to high molecular weight (HMW) and glycan profile, are not negatively impacted. In fact, high mannose is decreased after treatment, which is in contrast to other established growth control methods such as reducing culture temperature. Microarray analysis showed major differences in expression of regulatory genes of the glycosylation and cell cycle signaling pathways between these different growth control methods. Overall, our observations showed that cell cycle arrest by directly targeting CDK4/6 using selective inhibitor compound can be utilized consistently and rapidly to optimize process parameters, such as cell growth, qP, and glycosylation profile in

  5. Improvement of Arbuscular Mycorrhiza Development by Inoculation of Soil with Phosphate-Solubilizing Rhizobacteria To Improve Rock Phosphate Bioavailability ((sup32)P) and Nutrient Cycling

    Science.gov (United States)

    Toro, M.; Azcon, R.; Barea, J.

    1997-01-01

    The interactive effect of phosphate-solubilizing bacteria and arbuscular mycorrhizal (AM) fungi on plant use of soil P sources of low bioavailability (endogenous or added as rock phosphate [RP] material) was evaluated by using soil microcosms which integrated (sup32)P isotopic dilution techniques. The microbial inocula consisted of the AM fungus Glomus intraradices and two phosphate-solubilizing rhizobacterial isolates: Enterobacter sp. and Bacillus subtilis. These rhizobacteria behaved as "mycorrhiza helper bacteria" promoting establishment of both the indigenous and the introduced AM endophytes despite a gradual decrease in bacterial population size, which dropped from 10(sup7) at planting to 10(sup3) CFU g(sup-1) of dry rhizosphere soil at harvest. Dual inoculation with G. intraradices and B. subtilis significantly increased biomass and N and P accumulation in plant tissues. Regardless of the rhizobacterium strain and of the addition of RP, AM plants displayed lower specific activity ((sup32)P/(sup31)P) than their comparable controls, suggesting that the plants used P sources not available in their absence. The inoculated rhizobacteria may have released phosphate ions ((sup31)P), either from the added RP or from the less-available indigenous P sources, which were effectively taken up by the external AM mycelium. Soluble Ca deficiency in the test soil may have benefited P solubilization. At least 75% of the P in dually inoculated plants derived from the added RP. It appears that these mycorrhizosphere interactions between bacterial and fungal plant associates contributed to the biogeochemical P cycling, thus promoting a sustainable nutrient supply to plants. PMID:16535730

  6. Improvement of Arbuscular Mycorrhiza Development by Inoculation of Soil with Phosphate-Solubilizing Rhizobacteria To Improve Rock Phosphate Bioavailability ((sup32)P) and Nutrient Cycling.

    Science.gov (United States)

    Toro, M; Azcon, R; Barea, J

    1997-11-01

    The interactive effect of phosphate-solubilizing bacteria and arbuscular mycorrhizal (AM) fungi on plant use of soil P sources of low bioavailability (endogenous or added as rock phosphate [RP] material) was evaluated by using soil microcosms which integrated (sup32)P isotopic dilution techniques. The microbial inocula consisted of the AM fungus Glomus intraradices and two phosphate-solubilizing rhizobacterial isolates: Enterobacter sp. and Bacillus subtilis. These rhizobacteria behaved as "mycorrhiza helper bacteria" promoting establishment of both the indigenous and the introduced AM endophytes despite a gradual decrease in bacterial population size, which dropped from 10(sup7) at planting to 10(sup3) CFU g(sup-1) of dry rhizosphere soil at harvest. Dual inoculation with G. intraradices and B. subtilis significantly increased biomass and N and P accumulation in plant tissues. Regardless of the rhizobacterium strain and of the addition of RP, AM plants displayed lower specific activity ((sup32)P/(sup31)P) than their comparable controls, suggesting that the plants used P sources not available in their absence. The inoculated rhizobacteria may have released phosphate ions ((sup31)P), either from the added RP or from the less-available indigenous P sources, which were effectively taken up by the external AM mycelium. Soluble Ca deficiency in the test soil may have benefited P solubilization. At least 75% of the P in dually inoculated plants derived from the added RP. It appears that these mycorrhizosphere interactions between bacterial and fungal plant associates contributed to the biogeochemical P cycling, thus promoting a sustainable nutrient supply to plants.

  7. Dyeing fabrics with metals

    Science.gov (United States)

    Kalivas, Georgia

    2002-06-01

    Traditionally, in textile dyeing, metals have been used as mordants or to improve the color produced by a natural or synthetic dye. In biomedical research and clinical diagnostics gold colloids are used as sensitive signals to detect the presence of pathogens. It has been observed that when metals are finely divided, a distinct color may result that is different from the color of the metal in bulk. For example, when gold is finely divided it may appear black, ruby or purple. This can be seen in biomedical research when gold colloids are reduced to micro-particles. Bright color signals are produced by few nanometer-sized particles. Dr. William Todd, a researcher in the Department of Veterinary Science at the Louisiana State University, developed a method of dyeing fabrics with metals. By using a reagent to bond the metal particles deep into the textile fibers and actually making the metal a part of the chemistry of the fiber. The chemicals of the fabric influence the resulting color. The combination of the element itself, the size of the particle, the chemical nature of the particle and the interaction of the metal with the chemistry of the fabric determine the actual hue. By using different elements, reagents, textiles and solvents a broad range of reproducible colors and tones can be created. Metals can also be combined into alloys, which will produce a variety of colors. The students of the ISCC chapter at the Fashion Institute of Technology dyed fabric using Dr. Todd's method and created a presentation of the results. They also did a demonstration of dyeing fabrics with metals.

  8. Final Report: Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen; Jalal Zia

    2013-09-01

    This research and development (R&D) project exemplifies a shared public private commitment to advance the development of energy efficient industrial technologies that will reduce the U.S. dependence upon foreign oil, provide energy savings and reduce greenhouse gas emissions. The purpose of this project was to develop and demonstrate a Direct Evaporator for the Organic Rankine Cycle (ORC) for the conversion of waste heat from gas turbine exhaust to electricity. In conventional ORCs, the heat from the exhaust stream is transferred indirectly to a hydrocarbon based working fluid by means of an intermediate thermal oil loop. The Direct Evaporator accomplishes preheating, evaporation and superheating of the working fluid by a heat exchanger placed within the exhaust gas stream. Direct Evaporation is simpler and up to 15% less expensive than conventional ORCs, since the secondary oil loop and associated equipment can be eliminated. However, in the past, Direct Evaporation has been avoided due to technical challenges imposed by decomposition and flammability of the working fluid. The purpose of this project was to retire key risks and overcome the technical barriers to implementing an ORC with Direct Evaporation. R&D was conducted through a partnership between the Idaho National Laboratory (INL) and General Electric (GE) Global Research Center (GRC). The project consisted of four research tasks: (1) Detailed Design & Modeling of the ORC Direct Evaporator, (2) Design and Construction of Partial Prototype Direct Evaporator Test Facility, (3) Working Fluid Decomposition Chemical Analyses, and (4) Prototype Evaluation. Issues pertinent to the selection of an ORC working fluid, along with thermodynamic and design considerations of the direct evaporator, were identified. The FMEA (Failure modes and effects analysis) and HAZOP (Hazards and operability analysis) safety studies performed to mitigate risks are described, followed by a discussion of the flammability analysis of the

  9. Dual trigger with combination of gonadotropin-releasing hormone agonist and human chorionic gonadotropin significantly improves the live-birth rate for normal responders in GnRH-antagonist cycles

    National Research Council Canada - National Science Library

    Lin, Ming-Huei; Wu, Frank Shao-Ying; Lee, Robert Kuo-Kuang; Li, Sheng-Hsiang; Lin, Shyr-Yeu; Hwu, Yuh-Ming

    2013-01-01

    ...) agonist and human chorionic gonadotropin (hCG) can improve the live-birth rate for normal responders in GnRH-antagonist in vitro fertilization/intracytoplasmic sperm injection (IVF-ICSI) cycles...

  10. An Ethology of Urban Fabric(s)

    DEFF Research Database (Denmark)

    Fritsch, Jonas; Thomsen, Bodil Marie Stavning

    2014-01-01

    The article explores a non-metaphorical understanding of urban fabric(s), shifting the attention from a bird’s eye perspective to the actual, textural manifestations of a variety of urban fabric(s) to be studied in their real, processual, ecological and ethological complexity within urban life. We...... effectuate this move by bringing into resonance a range of intersecting fields that all deal with urban fabric(s) in complementary ways (interaction design and urban design activism, fashion, cultural theory, philosophy, urban computing)....

  11. An Ethology of Urban Fabric(s)

    DEFF Research Database (Denmark)

    Fritsch, Jonas; Thomsen, Bodil Marie Stavning

    2014-01-01

    The article explores a non-metaphorical understanding of urban fabric(s), shifting the attention from a bird’s eye perspective to the actual, textural manifestations of a variety of urban fabric(s) to be studied in their real, processual, ecological and ethological complexity within urban life. We...... effectuate this move by bringing into resonance a range of intersecting fields that all deal with urban fabric(s) in complementary ways (interaction design and urban design activism, fashion, cultural theory, philosophy, urban computing)....

  12. Significant Improvement in Thermal and UV Resistances of UHMWPE Fabric through in Situ Formation of Polysiloxane-TiO2 Hybrid Layers.

    Science.gov (United States)

    Hu, Jiangtao; Gao, Qianhong; Xu, Lu; Zhang, Mingxing; Xing, Zhe; Guo, Xiaojing; Zhang, Kuo; Wu, Guozhong

    2016-09-07

    Anatase nanocrystalline titanium dioxide coatings were produced on ultrahigh molecular weight polyethylene (UHMWPE) fabric by radiation-induced graft polymerization of γ-methacryloxypropyl trimethoxysilane (MAPS) and subsequent cohydrolysis of the graft chains (PMAPS) with tetrabutyl titanate, followed by boiling water treatment for 180 min. The resulting material was coded as UHMWPE-g-PMAPS/TiO2 and characterized by attenuated total reflection infrared spectrometry, differential scanning calorimetry, X-ray diffraction, thermal gravimetry, and ultraviolet absorption spectroscopy, among others. The predominant form of TiO2 in the thin film was anatase. The coating layer was composed of two sublayers: an inner part consisting of an organic-inorganic hybrid layer to prevent photocatalytic degradation of the matrix by TiO2 film, and an outer part consisting of anatase nanocrystalline TiO2 capable of UV absorption. This UHMWPE-g-PMAPS/TiO2 composite exhibited much better thermal resistance than conventional UHMWPE fabric, as reflected by the higher melting point, decreased maximum degradation rate, and higher char yield at 700 °C. Compared with UHMWPE fabric, UHMWPE-g-PMAPS/TiO2 exhibited significantly enhanced UV absorption and excellent duration of UV illumination. Specifically, the UV absorption intensity was 2.4-fold higher than that of UHMWPE fabric; the retention of the break strength of UHMWPE-g-PMAPS/TiO2 reached 92.3% after UV irradiation. This work provides an approach for addressing the issue of self-degradation of TiO2-coated polymeric materials due to the inherent photoactivity of TiO2.

  13. Exercise training comprising of single 20-s cycle sprints does not provide a sufficient stimulus for improving maximal aerobic capacity in sedentary individuals.

    Science.gov (United States)

    Songsorn, P; Lambeth-Mansell, A; Mair, J L; Haggett, M; Fitzpatrick, B L; Ruffino, J; Holliday, A; Metcalfe, R S; Vollaard, N B J

    2016-08-01

    Sprint interval training (SIT) provides a potent stimulus for improving maximal aerobic capacity ([Formula: see text]), which is among the strongest markers for future cardiovascular health and premature mortality. Cycling-based SIT protocols involving six or more 'all-out' 30-s Wingate sprints per training session improve [Formula: see text], but we have recently demonstrated that similar improvements in [Formula: see text] can be achieved with as few as two 20-s sprints. This suggests that the volume of sprint exercise has limited influence on subsequent training adaptations. Therefore, the aim of the present study was to examine whether a single 20-s cycle sprint per training session can provide a sufficient stimulus for improving [Formula: see text]. Thirty sedentary or recreationally active participants (10 men/20 women; mean ± SD age: 24 ± 6 years, BMI: 22.6 ± 4.0 kg m(-2), [Formula: see text]: 33 ± 7 mL kg(-1) min(-1)) were randomised to a training group or a no-intervention control group. Training involved three exercise sessions per week for 4 weeks, consisting of a single 20-s Wingate sprint (no warm-up or cool-down). [Formula: see text] was determined prior to training and 3 days following the final training session. Mean [Formula: see text] did not significantly change in the training group (2.15 ± 0.62 vs. 2.22 ± 0.64 L min(-1)) or the control group (2.07 ± 0.69 vs. 2.08 ± 0.68 L min(-1); effect of time: P = 0.17; group × time interaction effect: P = 0.26). Although we have previously demonstrated that regularly performing two repeated 20-s 'all-out' cycle sprints provides a sufficient training stimulus for a robust increase in [Formula: see text], our present study suggests that this is not the case when training sessions are limited to a single sprint.

  14. Towards a more sustainable transport infrastructure: how spatial geological data can be utilized to improve early stage Life cycle assessment of road infrastructure

    Science.gov (United States)

    Karlsson, Caroline; Miliutenko, Sofiia; Björklund, Anna; Mörtberg, Ulla; Olofsson, Bo; Toller, Susanna

    2017-04-01

    Environmental impacts during the life cycle stages of transport infrastructure are substantial, including among other greenhouse gas (GHG) emissions, as well as resource and energy use. For transport infrastructure to be sustainable, such issues need to be integrated in the planning process. Environmental Impact Assessment (EIA) is required by the European Union (EU) in order to ensure that all environmental aspects are considered during planning of road infrastructure projects. As a part of this process, the European Commission has suggested the use of the tool life cycle assessment (LCA) for assessing life cycle energy use and GHG emissions. When analyzing life cycle impacts of the road infrastructure itself, it was shown that earthworks and materials used for the road construction have a big share in the total energy use and GHG emissions. Those aspects are largely determined by the geological conditions at the site of construction: parameters such as soil thickness, slope, bedrock quality and soil type. The geological parameters determine the amounts of earthworks (i.e. volumes of soil and rock that will be excavated and blasted), transportation need for excavated materials as well as the availability of building materials. The study presents a new geographic information system (GIS)-based approach for utilizing spatial geological data in three dimensions (i.e. length, width and depth) in order to improve estimates on earthworks during the early stages of road infrastructure planning. Three main methodological steps were undertaken: mass balance calculation, life cycle inventory analysis and spatial mapping of greenhouse gas (GHG) emissions and energy use. The proposed GIS-based approach was later evaluated by comparing with the actual values of extracted material of a real road construction project. The results showed that the estimate of filling material was the most accurate, while the estimate for excavated soil and blasted rock had a wide variation from

  15. Why a Combination of WP 631 and Epo B is an Improvement on the Drugs Singly - Involvement in the Cell Cycle and Mitotic Slippage.

    Science.gov (United States)

    Bukowska, Barbara; Rogalska, Aneta; Forma, Ewa; Brys, Magdalena; Marczak, Agnieszka

    2016-01-01

    Our previous studies clearly demonstrated that a combination of WP 631 and Epo B has higher activity against ovarian cancer cells than either of these compounds used separately. In order to fully understand the exact mechanism of action in combination, we assessed effects on the cell cycle of SKOV-3 cells. We evaluated three control points essential for WP 631 and Epo B action to determine which cell cycle-regulating proteins (CDK1/cyclin B complex, EpCAM or HMGB1) mediate activity. The effects of the drug on the cell cycle were measured based on the nuclear DNA content using flow cytometry. Expression of cell cycle-regulating genes was analyzed using real-time PCR. It was discovered that WP 631, at the tested concentration, did not affect the SKOV-3 cell cycle. Epo B caused significant G2/M arrest, whereas the drug combination induced stronger apoptosis and lower mitotic arrest than Epo B alone. This is very important information from the point of view of the fight against cancer, as, while mitotic arrest in Epo B-treated cells could be overcame after DNA damage repair, apoptosis which occurs after mitotic slippage in combination-treated cells is irreversible. It clearly explains the higher activity of the drug combination in comparison to Epo B alone. Epo B acts via the CDK1/cyclin B complex and has the ability to inhibit CDK1, which may be a promising strategy for ovarian cancer treatment in the future. The drug combination diminishes EpCAM and HMGB1 expression to a greater degree than either WP 631 and Epo B alone. Owing to the fact that the high expression of these two proteins is a poor prognostic factor for ovarian cancer, a decrease in their expression, observed in our studies, may result in improved efficacy of cancer therapy. The presented findings show that the combination of WP 631 and Epo B is a better therapeutic option than either of these drugs alone.

  16. Fracture strength of micro-tubular solid oxide fuel cell anode in redox cycling experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pusz, Jakub; Smirnova, Alevtina; Mohammadi, Alidad; Sammes, Nigel M. [Department of Chemical, Materials, and Biomolecular Engineering, University of Connecticut, 44 Weaver Road, Storrs, CT 06269 (United States)

    2007-01-01

    The maximum fracture strength of Ni/8YSZ anodes exposed to several redox cycles is compared. The anodes were fabricated using fine and coarse particle size powders. Fine-structured powders show a 77% increase in mechanical strength after exposure to three redox cycles. The coarse-structured material did not produce similar results and redox cycling resulted in gradual decrease in the mechanical stability of the supports. The impact of redox cycling on the microstructure was evaluated using SEM. Fine-structured anodes tend to agglomerate leading to decreased porosity. Coarse anodes did not show any significant changes in microstructure while exposed to redox cycling. The electrochemical performance evaluated under load conditions, and after the first redox cycle, indicates a 40% improvement for the cell fabricated using a fine-structured anode powder. The increase in performance is believed to be due to better adhesion between the anode material and the Ni current collector. The cell fabricated using a coarse-structured anode powder did not recover after the redox cycle. (author)

  17. Study on the fuel cycle cost of gas turbine high temperature reactor (GTHTR300). Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Takei, Masanobu; Katanishi, Shoji; Nakata, Tetsuo; Kunitomi, Kazuhiko [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Oda, Takefumi; Izumiya, Toru [Nuclear Fuel Industries, Ltd., Tokyo (Japan)

    2002-11-01

    In the basic design of gas turbine high temperature reactor (GTHTR300), reduction of the fuel cycle cost has a large benefit of improving overall plant economy. Then, fuel cycle cost was evaluated for GTHTR300. First, of fuel fabrication for high-temperature gas cooled reactor, since there was no actual experience with a commercial scale, a preliminary design for a fuel fabrication plant with annual processing of 7.7 ton-U sufficient four GTHTR300 was performed, and fuel fabrication cost was evaluated. Second, fuel cycle cost was evaluated based on the equilibrium cycle of GTHTR300. The factors which were considered in this cost evaluation include uranium price, conversion, enrichment, fabrication, storage of spent fuel, reprocessing, and waste disposal. The fuel cycle cost of GTHTR300 was estimated at about 1.07 yen/kWh. If the back-end cost of reprocessing and waste disposal is included and assumed to be nearly equivalent to LWR, the fuel cycle cost of GTHTR300 was estimated to be about 1.31 yen/kWh. Furthermore, the effects on fuel fabrication cost by such of fuel specification parameters as enrichment, the number of fuel types, and the layer thickness were considered. Even if the enrichment varies from 10 to 20%, the number of fuel types change from 1 to 4, the 1st layer thickness of fuel changes by 30 {mu}m, or the 2nd layer to the 4th layer thickness of fuel changes by 10 {mu}m, the impact on fuel fabrication cost was evaluated to be negligible. (author)

  18. Menstrual Cycle

    Science.gov (United States)

    ... Luteal (after egg release) Changes During the Menstrual Cycle The menstrual cycle is regulated by the complex interaction of ... egg release) Luteal (after egg release) The menstrual cycle begins with menstrual bleeding (menstruation), which marks the first day of ...

  19. Using targeted active-learning exercises and diagnostic question clusters to improve students' understanding of carbon cycling in ecosystems.

    Science.gov (United States)

    Maskiewicz, April Cordero; Griscom, Heather Peckham; Welch, Nicole Turrill

    2012-01-01

    In this study, we used targeted active-learning activities to help students improve their ways of reasoning about carbon flow in ecosystems. The results of a validated ecology conceptual inventory (diagnostic question clusters [DQCs]) provided us with information about students' understanding of and reasoning about transformation of inorganic and organic carbon-containing compounds in biological systems. These results helped us identify specific active-learning exercises that would be responsive to students' existing knowledge. The effects of the active-learning interventions were then examined through analysis of students' pre- and postinstruction responses on the DQCs. The biology and non-biology majors participating in this study attended a range of institutions and the instructors varied in their use of active learning; one lecture-only comparison class was included. Changes in pre- to postinstruction scores on the DQCs showed that an instructor's teaching method had a highly significant effect on student reasoning following course instruction, especially for questions pertaining to cellular-level, carbon-transforming processes. We conclude that using targeted in-class activities had a beneficial effect on student learning regardless of major or class size, and argue that using diagnostic questions to identify effective learning activities is a valuable strategy for promoting learning, as gains from lecture-only classes were minimal.

  20. One-pot synthesis of a metal–organic framework as an anode for Li-ion batteries with improved capacity and cycling stability

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Lei, E-mail: Leigou@chd.edu.cn; Hao, Li-Min; Shi, Yong-Xin; Ma, Shou-Long; Fan, Xiao-Yong; Xu, Lei; Li, Dong-Lin, E-mail: dlli@chd.edu.cn; Wang, Kang

    2014-02-15

    Metal–organic framework is a kind of novel electrode materials for lithium ion batteries. Here, a 3D metal–organic framework Co{sub 2}(OH){sub 2}BDC (BDC=1,4-benzenedicarboxylate) was synthesized for the first time by the reaction of Co{sup 2+} with a bio-inspired renewable organic ligand 1,4-benzenedicarboxylic acid through a solvothermal method. As an anode material for lithium ion batteries, this material exhibited an excellent cyclic stability as well as a large reversible capacity of ca. 650 mA h g{sup −1} at a current density of 50 mA g{sup −1} after 100 cycles within the voltage range of 0.02–3.0 V, higher than that of other BDC based anode. - Graphical abstract: The PXRD pattern and the cycleability curves (inset) of Co{sub 2}(OH){sub 2}BDC. Display Omitted - Highlights: • Co{sub 2}(OH){sub 2}BDC was synthesized through a one pot solvothermal process. • The solvent had a great effect on the purity of this material. • This material was used as anode material for lithium ion batteries for the first time. • Co{sub 2}(OH){sub 2}BDC showed improved capacity and cycling stability.

  1. Tensile property improvement of TWIP-cored three-layer steel sheets fabricated by hot-roll-bonding with low-carbon steel or interstitial-free steel

    OpenAIRE

    Park, Jaeyeong; Kim, Jung-Su; Kang, Minju; Sohn, Seok Su; Cho, Won Tae; Kim, Hyoung Seop; Lee, Sunghak

    2017-01-01

    TWIP-cored three-layer steel sheets were newly fabricated by hot rolling of TWIP steel sheet surrounded by low-carbon (LC) or interstitial-free (IF) steel sheets. TWIP/LC or TWIP/IF interfaces were well bonded without pores or voids, while a few pearlites were thinly formed along the interfaces. The strengths and elongation of the TWIP-cored sheets increased as the volume fraction of TWIP-cored region increased, and were also well matched with the ones calculated by a rule of mixtures based o...

  2. Fabrication and Prototyping Lab

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The Fabrication and Prototyping Lab for composite structures provides a wide variety of fabrication capabilities critical to enabling hands-on research and...

  3. ADVANCED MONITORING TO IMPROVE COMBUSTION TURBINE/COMBINED CYCLE CT/(CC) RELIABILITY, AVAILABILITY AND MAINTAINABILITY (RAM)

    Energy Technology Data Exchange (ETDEWEB)

    Leonard Angello

    2004-09-30

    Power generators are concerned with the maintenance costs associated with the advanced turbines that they are purchasing. Since these machines do not have fully established operation and maintenance (O&M) track records, power generators face financial risk due to uncertain future maintenance costs. This risk is of particular concern, as the electricity industry transitions to a competitive business environment in which unexpected O&M costs cannot be passed through to consumers. These concerns have accelerated the need for intelligent software-based diagnostic systems that can monitor the health of a combustion turbine in real time and provide valuable information on the machine's performance to its owner/operators. EPRI, Impact Technologies, Boyce Engineering, and Progress Energy have teamed to develop a suite of intelligent software tools integrated with a diagnostic monitoring platform that will, in real time, interpret data to assess the ''total health'' of combustion turbines. The Combustion Turbine Health Management System (CTHM) will consist of a series of dynamic link library (DLL) programs residing on a diagnostic monitoring platform that accepts turbine health data from existing monitoring instrumentation. The CTHM system will be a significant improvement over currently available techniques for turbine monitoring and diagnostics. CTHM will interpret sensor and instrument outputs, correlate them to a machine's condition, provide interpretative analyses, project servicing intervals, and estimate remaining component life. In addition, it will enable real-time anomaly detection and diagnostics of performance and mechanical faults, enabling power producers to more accurately predict critical component remaining useful life and turbine degradation.

  4. ADVANCED MONITORING TO IMPROVE COMBUSTION TURBINE/COMBINED CYCLE CT/(CC) RELIABILITY, AVAILABILITY AND MAINTAINABILITY (RAM)

    Energy Technology Data Exchange (ETDEWEB)

    Leonard Angello

    2003-09-30

    Power generators are concerned with the maintenance costs associated with the advanced turbines that they are purchasing. Since these machines do not have fully established operation and maintenance (O&M) track records, power generators face financial risk due to uncertain future maintenance costs. This risk is of particular concern, as the electricity industry transitions to a competitive business environment in which unexpected O&M costs cannot be passed through to consumers. These concerns have accelerated the need for intelligent software-based diagnostic systems that can monitor the health of a combustion turbine in real time and provide valuable information on the machine's performance to its owner/operators. Such systems would interpret sensor and instrument outputs, correlate them to the machine's condition, provide interpretative analyses, forward projections of servicing intervals, estimate remaining component life, and identify faults. EPRI, Impact Technologies, Boyce Engineering, and Progress Energy have teamed to develop a suite of intelligent software tools integrated with a diagnostic monitoring platform that will, in real time, interpret data to assess the ''total health'' of combustion turbines. The Combustion Turbine Health Management System (CTHM) will consist of a series of dynamic link library (DLL) programs residing on a diagnostic monitoring platform that accepts turbine health data from existing monitoring instrumentation. The CTHM system will be a significant improvement over currently available techniques for turbine monitoring and diagnostics. CTHM will interpret sensor and instrument outputs, correlate them to a machine's condition, provide interpretative analyses, project servicing intervals, and estimate remaining component life. In addition, it will enable real-time anomaly detection and diagnostics of performance and mechanical faults, enabling power producers to more accurately predict critical

  5. ADVANCED MONITORING TO IMPROVE COMBUSTION TURBINE/COMBINED CYCLE CT/(CC) RELIABILITY, AVAILABILITY AND MAINTAINABILITY (RAM)

    Energy Technology Data Exchange (ETDEWEB)

    Leonard Angello

    2004-03-31

    Power generators are concerned with the maintenance costs associated with the advanced turbines that they are purchasing. Since these machines do not have fully established operation and maintenance (O&M) track records, power generators face financial risk due to uncertain future maintenance costs. This risk is of particular concern, as the electricity industry transitions to a competitive business environment in which unexpected O&M costs cannot be passed through to consumers. These concerns have accelerated the need for intelligent software-based diagnostic systems that can monitor the health of a combustion turbine in real time and provide valuable information on the machine's performance to its owner/operators. EPRI, Impact Technologies, Boyce Engineering, and Progress Energy have teamed to develop a suite of intelligent software tools integrated with a diagnostic monitoring platform that will, in real time, interpret data to assess the ''total health'' of combustion turbines. The Combustion Turbine Health Management System (CTHM) will consist of a series of dynamic link library (DLL) programs residing on a diagnostic monitoring platform that accepts turbine health data from existing monitoring instrumentation. The CTHM system will be a significant improvement over currently available techniques for turbine monitoring and diagnostics. CTHM will interpret sensor and instrument outputs, correlate them to a machine's condition, provide interpretative analyses, project servicing intervals, and estimate remaining component life. In addition, it will enable real-time anomaly detection and diagnostics of performance and mechanical faults, enabling power producers to more accurately predict critical component remaining useful life and turbine degradation.

  6. Automated cold temperature cycling improves in vitro platelet properties and in vivo recovery in a mouse model compared to continuous cold storage.

    Science.gov (United States)

    Skripchenko, Andrey; Gelderman, Monique P; Awatefe, Helen; Turgeon, Annette; Thompson-Montgomery, Dedeene; Cheng, Chunrong; Vostal, Jaroslav G; Wagner, Stephen J

    2016-01-01

    Platelets (PLTs) stored at cold temperatures (CTs) for prolonged time have dramatically reduced bacterial growth but poor survival when infused. A previous study demonstrated that human PLTs stored with manual cycling between 4 °C (12 hr) and 37 °C (30 min) and infused into severe combined immunodeficient (SCID) mice had survivals similar to or greater than those stored at room temperature (RT). In this study, the in vitro and in vivo properties of PLTs stored in an automated incubator programmed to cycle between 5 °C (11 hr) and 37 °C (1 hr) were evaluated. A Trima apheresis unit (n = 12) was aliquoted (60 mL) in CLX bags. One sample was stored with continuous agitation (RT), a second sample was stored at 4-6 °C without agitation (CT), and a third sample was placed in an automated temperature cycler with 5 minutes of agitation during the warm-up period (thermocycling [TC]). PLTs were assayed for several relevant quality variables. On Day 7, PLTs were infused into SCID mice and in vivo recovery was assessed at predetermined time points after transfusion. The glucose consumption rate, morphology score, hypotonic shock recovery level, and aggregation levels were increased and mitochondrial reactive oxygen species accumulations were decreased in TC-PLTs compared to those of CT-PLTs. The pH and Annexin V binding were comparable to those of RT-PLTs. All TC-PLTs had greater recovery than CT-PLTs and were comparable to RT-PLTs. PLTs stored under automated TC conditions have improved in vivo recovery and improved results for a number of in vitro measures compared to CT-PLTs. © 2015 AABB.

  7. Early Damage Detection in Composites during Fabrication and Mechanical Testing

    Directory of Open Access Journals (Sweden)

    Neha Chandarana

    2017-06-01

    Full Text Available Fully integrated monitoring systems have shown promise in improving confidence in composite materials while reducing lifecycle costs. A distributed optical fibre sensor is embedded in a fibre reinforced composite laminate, to give three sensing regions at different levels through-the-thickness of the plate. This study follows the resin infusion process during fabrication of the composite, monitoring the development of strain in-situ and in real time, and to gain better understanding of the resin rheology during curing. Piezoelectric wafer active sensors and electrical strain gauges are bonded to the plate after fabrication. This is followed by progressive loading/unloading cycles of mechanical four point bending. The strain values obtained from the optical fibre are in good agreement with strain data collected by surface mounted strain gauges, while the sensing regions clearly indicate the development of compressive, neutral, and tensile strain. Acoustic emission event detection suggests the formation of matrix (resin cracks, with measured damage event amplitudes in agreement with values reported in published literature on the subject. The Felicity ratio for each subsequent loading cycle is calculated to track the progression of damage in the material. The methodology developed here can be used to follow the full life cycle of a composite structure, from manufacture to end-of-life.

  8. Fabrication of a Terahertz Imaging System

    Science.gov (United States)

    2007-11-02

    portable Stirling Cycle coolers . This SiC-based THz source, or other THz sources still under development, can replace the CO2 laser used in the...1 DARPA PROJECT FINAL REPORT PROJECT TITLE: Fabrication of a Terahertz Imaging System PRINCIPAL INVESTIGATORS: Profs. James Kolodzey and...29 2004 OBJECTIVE: Demonstration of a THz imaging system , constructed using commercial components and devices fabricated at the University of

  9. Properties of honeycomb polyester knitted fabrics

    Science.gov (United States)

    Feng, A. F.

    2016-07-01

    The properties of honeycomb polyester weft-knitted fabrics were studied to understand their advantages. Seven honeycomb polyester weft-knitted fabrics and one common polyester weft-knitted fabric were selected for testing. Their bursting strengths, fuzzing and pilling, air permeability, abrasion resistance and moisture absorption and perspiration were studied. The results show that the honeycomb polyester weft-knitted fabrics have excellent moisture absorption and liberation. The smaller their thicknesses and area densities are, the better their moisture absorption and liberation will be. Their anti-fuzzing and anti-pilling is good, whereas their bursting strengths and abrasion resistance are poorer compared with common polyester fabric's. In order to improve the hygroscopic properties of the fabrics, the proportion of the honeycomb microporous structure modified polyester in the fabrics should not be less than 40%.

  10. Polymorphous computing fabric

    Science.gov (United States)

    Wolinski, Christophe Czeslaw; Gokhale, Maya B.; McCabe, Kevin Peter

    2011-01-18

    Fabric-based computing systems and methods are disclosed. A fabric-based computing system can include a polymorphous computing fabric that can be customized on a per application basis and a host processor in communication with said polymorphous computing fabric. The polymorphous computing fabric includes a cellular architecture that can be highly parameterized to enable a customized synthesis of fabric instances for a variety of enhanced application performances thereof. A global memory concept can also be included that provides the host processor random access to all variables and instructions associated with the polymorphous computing fabric.

  11. Preparation and Characterization of Some Nanometal Oxides Using Microwave Technique and Their Application to Cotton Fabrics

    Directory of Open Access Journals (Sweden)

    M. Gouda

    2015-01-01

    Full Text Available The objective of this paper is the synthesis of some nanometal oxides via microwave irradiation technique and their application to augment multifunctional properties of cotton fabric. Cotton fabrics containing nanometal oxides were prepared via a thiol-modification of cotton fabric samples and then dipped into the metal salt solutions precursors and transferred to the microwave oven. The surface morphology and quantitative analysis of the obtained modified cotton fabrics containing nanometal oxides were studied by scanning electron microscopy coupled with high energy dispersive X-ray (SEM-EDX. The shape and distribution of nanometal oxide inside the fabric samples were analyzed by transmission electron microscopy of cross-section fabric samples. The iron oxide nanoparticles had a nanosphere with particle size diameter 15–20 nm, copper oxide nanoparticles had a nanosphere with particle size diameter 25–30 nm, and cobalt oxide nanoparticles had a nanotube-like shape with a length of 100–150 nanometer and a diameter of ~58 nanometer, whereas the manganese oxide nanoparticles had a linear structure forming nanorods with a diameter of 50–55 nanometer and a length of 70–80 nanometers. Antibacterial activity was evaluated quantitatively against gram-positive bacteria such as Staphylococcus aureus and gram-negative bacteria such as Escherichia coli, UV-protection activity was analyzed using UV-DRS spectroscopy, and flame retardation of prepared fabric samples was evaluated according to the limiting oxygen index (LOI. Results revealed that the prepared fabric sample containing nanometal oxide possesses improved antibacterial, LOI, and UV-absorbing efficiency. Moreover, the metal oxide nanoparticles did not leach out the fabrics by washing even after 30 laundering washing cycles.

  12. Integration of BpMADS4 on various linkage groups improves the utilization of the rapid cycle breeding system in apple.

    Science.gov (United States)

    Weigl, Kathleen; Wenzel, Stephanie; Flachowsky, Henryk; Peil, Andreas; Hanke, Magda-Viola

    2015-02-01

    Rapid cycle breeding in apple is a new approach for the rapid introgression of agronomically relevant traits (e.g. disease resistances) from wild apple species into domestic apple cultivars (Malus × domestica Borkh.). This technique drastically shortens the long-lasting juvenile phase of apple. The utilization of early-flowering apple lines overexpressing the BpMADS4 gene of the European silver birch (Betula pendula Roth.) in hybridization resulted in one breeding cycle per year. Aiming for the selection of non-transgenic null segregants at the end of the breeding process, the flower-inducing transgene and the gene of interest (e.g. resistance gene) that will be introgressed by hybridization need to be located on different chromosomes. To improve the flexibility of the existing approach in apple, this study was focused on the development and characterization of eleven additional BpMADS4 overexpressing lines of four different apple cultivars. In nine lines, the flowering gene was mapped to different linkage groups. The differences in introgressed T-DNA sequences and plant genome deletions post-transformation highlighted the unique molecular character of each line. However, transgenic lines demonstrated no significant differences in flower organ development and pollen functionality compared with non-transgenic plants. Hybridization studies using pollen from the fire blight-resistant wild species accession Malus fusca MAL0045 and the apple scab-resistant cultivar 'Regia' indicated that BpMADS4 introgression had no significant effect on the breeding value of each transgenic line.

  13. Oxygen cycling in conjunction with stem cell transplantation induces NOS3 expression leading to attenuation of fibrosis and improved cardiac function

    Science.gov (United States)

    Khan, Mahmood; Meduru, Sarath; Gogna, Rajan; Madan, Esha; Citro, Lucas; Kuppusamy, Muthulakshmi L.; Sayyid, Muzzammil; Mostafa, Mahmoud; Hamlin, Robert L.; Kuppusamy, Periannan

    2012-01-01

    Aims Myocardial infarction (MI) is associated with irreversible loss of viable cardiomyocytes. Cell therapy is a potential option to replace the lost cardiomyocytes and restore cardiac function. However, cell therapy is faced with a number of challenges, including survival of the transplanted cells in the infarct region, which is characterized by abundant levels of oxidants and lack of a pro-survival support mechanism. The goal of the present study was to evaluate the effect of supplemental oxygenation on cell engraftment and functional recovery in a rat model. Methods and results MI was induced in rats by a 60-min occlusion of the coronary artery, followed by restoration of flow. Mesenchymal stem cells (MSCs), isolated from adult rat bone marrow, were transplanted in the MI region. Rats with transplanted MSCs were exposed to hyperbaric oxygen (HBO: 100% O2, 2 atmospheres absolute) for 90 min, 5 days/week for 4 weeks. The experimental groups were: MI (control), Ox (MI + HBO), MSC (MI + MSC), and MSC + Ox (MI + MSC + HBO). HBO exposure (oxygenation) was started 3 days after induction of MI. MSCs were transplanted 1 week after induction of MI. Echocardiography showed a significant recovery of cardiac function in the MSC + Ox group, when compared with the MI or MSC group. Oxygenation increased the engraftment of MSCs and vascular density in the infarct region. Molecular analysis of infarct tissue showed a four-fold increase in NOS3 expression in the MSC + Ox group compared with the MI group. Conclusions The results showed that post-MI exposure of rats to daily cycles of hyperoxygenation (oxygen cycling) improved stem cell engraftment, cardiac function, and increased NOS3 expression. PMID:22012955

  14. Correlation of radioactive waste treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: fabrication of high-temperature gas-cooled reactor fuel containing uranium-233 and thorium

    Energy Technology Data Exchange (ETDEWEB)

    Roddy, J.W.; Blanco, R.E.; Hill, G.S.; Moore, R.E.; Seagren, R.D.; Witherspoon, J.P.

    1976-06-01

    A cost/benefit study was made to determine the cost and effectiveness of various radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials from model High-Temperature Gas-Cooled (HTGR) fuel fabrication plants and to determine the radiological impact (dose commitment) of the released materials on the environment. The study is designed to assist in defining the term ''as low as reasonably achievable'' as it applies to these nuclear facilities. The base cases of the two model plants, a fresh fuel fabrication plant and a refabrication plant, are representative of current proposed commercial designs or are based on technology that is being developed to fabricate uranium, thorium, and graphite into fuel elements. The annual capacities of the fresh fuel plant and the refabrication plant are 450 and 245 metric tons of heavy metal (where heavy metal is uranium plus thorium), as charged to about fifty 1000-MW(e) HTGRs. Additional radwaste treatment systems are added to the base case plants in a series of case studies to decrease the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The capital and annual costs for the added waste treatment operations and the corresponding reductions in dose commitments are calculated for each case. In the final analysis, the cost/benefit of each case, calculated as additional cost of radwaste system divided by the reduction in dose commitment, is tabulated or the dose commitment is plotted with cost as the variable. The status of each of the radwaste treatment methods is discussed. 48 figures, 74 tables.

  15. Biogeochemical Cycling

    Science.gov (United States)

    Bebout, Brad; Fonda, Mark (Technical Monitor)

    2002-01-01

    This lecture will introduce the concept of biogeochemical cycling. The roles of microbes in the cycling of nutrients, production and consumption of trace gases, and mineralization will be briefly introduced.

  16. Laundering durable antibacterial cotton fabrics grafted with pomegranate-shaped polymer wrapped in silver nanoparticle aggregations

    Science.gov (United States)

    Liu, Hanzhou; Lv, Ming; Deng, Bo; Li, Jingye; Yu, Ming; Huang, Qing; Fan, Chunhai

    2014-08-01

    To improve the laundering durability of the silver functionalized antibacterial cotton fabrics, a radiation-induced coincident reduction and graft polymerization is reported herein where a pomegranate-shaped silver nanoparticle aggregations up to 500 nm can be formed due to the coordination forces between amino group and silver and the wrapping procedure originated from the coincident growth of the silver nanoparticles and polymer graft chains. This pomegranate-shaped silver NPAs functionalized cotton fabric exhibits outstanding antibacterial activities and also excellent laundering durability, where it can inactivate higher than 90% of both E. coli and S. aureus even after 50 accelerated laundering cycles, which is equivalent to 250 commercial or domestic laundering cycles.

  17. Fabrication of High T

    Science.gov (United States)

    Apperley, Miles Hyam

    1992-01-01

    -T_{rm c} and low -T_{rm c} phases in the microstructure. Single filament YBCO and BPSCCO wires was also fabricated by codrawing Ag tubes filled with superconductor powder. Downstream processing of the single filament wire was investigated and included intermediate sintering and redrawing, rolling of wire to form tape, coil fabrication and multifilament fabrication. The deformation and compaction behaviour of single filament wire was examined as a function of wire reduction. The mean particle size, shape and core density varied with total reduction and determine relative wall thinning or thickening behaviour of the cladding metal. Ag-clad BPSCCO tapes were formed by rolling single filament wire. The J_{rm c} of the wire increased markedly, up to 11,900 A.cm ^{-2}, owing to a combination of preferred orientation of the plate-like grains, high density, improved flux pinning and sintering in a partial pressure of oxygen of 0.05 atm. Multifilament wire containing between 7 and 2223 filaments were fabricated by codrawing bundles of single filament wire. (Abstract shortened by UMI.).

  18. Synthesis of vinyl-terminated Au nanoprisms and nanooctahedra mediated by 3-butenoic acid: direct Au@pNIPAM fabrication with improved SERS capabilities.

    Science.gov (United States)

    Casado-Rodriguez, M A; Sanchez-Molina, M; Lucena-Serrano, A; Lucena-Serrano, C; Rodriguez-Gonzalez, B; Algarra, M; Diaz, A; Valpuesta, M; Lopez-Romero, J M; Perez-Juste, J; Contreras-Caceres, R

    2016-02-28

    Here we describe the first seedless synthesis of vinyl-terminated Au nanotriangular prisms (AuNTPs) and nanooctahedra (AuNOC) in aqueous media. This synthesis is performed by chemical reduction of chloroauric acid (HAuCl4) with 3-butenoic acid (3BA) in the presence of benzyldimethylammonium chloride (BDAC). The principal novelties of the presented method are the use of a mixture of 3BA and BDAC, the synthesis of gold prisms and octahedra with controllable size, and the presence of terminal double bonds on the metal surface. Initially this method produces a mixture of triangular gold nanoprisms and octahedra; however, both morphologies are successfully separated by surfactant micelle induced depletion interaction, reaching percentages up to ∼90%. Moreover, the alkene moieties present on the gold surface are exploited for the fabrication of hybrid core@shell particles. Gold octahedra and triangular prisms are easily encapsulated by free radical polymerization of N-isopropylacrylamide (NIPAM). Finally, in order to obtain a gold core with the most number of tips, AuNTP@pNIPAM microgels were subjected to gold core overgrowth, thus resulting in star-shaped nanoparticles (AuSTs@pNIPAM). We use 4-amino-benzenethiol as the model analyte for SERS investigations. As expected, gold cores with tips and high curvature sites produced the highest plasmonic responses.

  19. Tensile property improvement of TWIP-cored three-layer steel sheets fabricated by hot-roll-bonding with low-carbon steel or interstitial-free steel

    Science.gov (United States)

    Park, Jaeyeong; Kim, Jung-Su; Kang, Minju; Sohn, Seok Su; Cho, Won Tae; Kim, Hyoung Seop; Lee, Sunghak

    2017-01-01

    TWIP-cored three-layer steel sheets were newly fabricated by hot rolling of TWIP steel sheet surrounded by low-carbon (LC) or interstitial-free (IF) steel sheets. TWIP/LC or TWIP/IF interfaces were well bonded without pores or voids, while a few pearlites were thinly formed along the interfaces. The strengths and elongation of the TWIP-cored sheets increased as the volume fraction of TWIP-cored region increased, and were also well matched with the ones calculated by a rule of mixtures based on volume fraction or force fraction. According to digital image correlation and electron back-scatter diffraction analyses, very high strain hardening effect in the initial deformation stage and active twin formation in the interfacial region beneficially affected the overall homogeneous deformation in the TWIP-cored sheets without any yield point phenomenon occurring in the LC sheet and serrations occurring in the TWIP sheet, respectively. These TWIP-cored sheets can cover a wide range of yield strength, tensile strength, and ductility levels, e.g., 320~498 MPa, 545~878 MPa, and 48~54%, respectively, by controlling the volume fraction of TWIP-cored region, and thus present new applications to multi-functional automotive steel sheets requiring excellent properties. PMID:28067318

  20. Tensile property improvement of TWIP-cored three-layer steel sheets fabricated by hot-roll-bonding with low-carbon steel or interstitial-free steel

    Science.gov (United States)

    Park, Jaeyeong; Kim, Jung-Su; Kang, Minju; Sohn, Seok Su; Cho, Won Tae; Kim, Hyoung Seop; Lee, Sunghak

    2017-01-01

    TWIP-cored three-layer steel sheets were newly fabricated by hot rolling of TWIP steel sheet surrounded by low-carbon (LC) or interstitial-free (IF) steel sheets. TWIP/LC or TWIP/IF interfaces were well bonded without pores or voids, while a few pearlites were thinly formed along the interfaces. The strengths and elongation of the TWIP-cored sheets increased as the volume fraction of TWIP-cored region increased, and were also well matched with the ones calculated by a rule of mixtures based on volume fraction or force fraction. According to digital image correlation and electron back-scatter diffraction analyses, very high strain hardening effect in the initial deformation stage and active twin formation in the interfacial region beneficially affected the overall homogeneous deformation in the TWIP-cored sheets without any yield point phenomenon occurring in the LC sheet and serrations occurring in the TWIP sheet, respectively. These TWIP-cored sheets can cover a wide range of yield strength, tensile strength, and ductility levels, e.g., 320~498 MPa, 545~878 MPa, and 48~54%, respectively, by controlling the volume fraction of TWIP-cored region, and thus present new applications to multi-functional automotive steel sheets requiring excellent properties.

  1. Improved Reactive Dye-fixation in Pad-Steam Process of Dyeing Cotton Fabric Using Tetrasodium N, NBiscarboxylatomethyl- L-Glutamate

    OpenAIRE

    Awais Khatri; Mazhar Hussain Peerzada

    2012-01-01

    Pad steam process of dyeing cotton with reactive dyes is known to give lower levels of dye-fixation on the fiber because of excessive dye-hydrolysis. This research presents improved reactive dye-fixation in padsteam process of dyeing cotton found in an effort of using biodegradable organic salts to improve the effluent quality. The CI Reactive Blue 250, a bissulphatoethylsulphone dye and the Tetrasodium N, Nbiscarboxylatomethyl- L-Glutamate, a biodegradable organic salt, were used...

  2. Shape memory behavior of SMPU knitted fabric

    Institute of Scientific and Technical Information of China (English)

    LIU Yan; CHUNG Aggie; HU JinLian; LV Jing

    2007-01-01

    A preliminary investigation of shape memory (SM) effects of SMPU (shape memory polyurethane) knitting fabric is presented in this paper. Three SMPU knitted fabrics series with different content of SMPU fibers: 100% SMPU, 50% SMPU and 50% cotton, 16% SMPU and 84% cotton are designed and manufactured in our lab. Their shape memory behaviors at different temperatures are characterized in terms of bagging. Our experimental results showed that shape memory effect can be improved with increasing content of SMPU fibers. A comparison between Lycra and SMPU knitted fabrics was also made to validate the shape memory effects of SMPU knitted fabrics.

  3. [Cycling in Zagreb].

    Science.gov (United States)

    Matos, Stipan; Krapac, Ladislav; Krapac, Josip

    2007-01-01

    Cycling in Zagreb, as means of urban transport inside and outside the city, has a bright past, hazy presence but a promising future. Every day, aggressive citizens who lack urban traffic culture mistreat many cyclists but also many pedestrians. Sedentary way of living, unhealthy eating habits and inadequate recreation would surely be reduced if Zagreb had a network of cycling tracks (190 cm) or lanes (80 cm). Main city roads were constructed at the beginning of the 20th century. Today, the lack of cycling tracks is particularly evident in terms of missing connections between northern and southern parts of the city. Transportation of bikes in public vehicles, parking of bikes as well as cycling along the foot of the mountains Medvednica and Zumberacko gorje is not adequately organized. Better organization is necessary not only because of the present young generation but also because of the young who will shortly become citizens of the EU, where cycling is enormously popular. Cycling tourism is not known in Zagreb, partly due to inadequate roads. The surroundings of Zagreb are more suitable for cycling tourism and attractive brochures and tourist guides offer information to tourists on bikes. Professional, acrobatic and sports cycling do not have a tradition in Zagreb and in Croatia. The same holds true for recreational cycling and indoor exercise cycling. The authors discuss the impact of popularization of cycling using print and electronic media. The role of district and local self-government in the construction and improvement of traffic roads in Zagreb is very important. It is also significant for the implementation of legal regulations that must be obeyed by all traffic participants in order to protect cyclists, the most vulnerable group of traffic participants besides passengers. Multidisciplinary action of all benevolent experts would surely increase safety and pleasure of cycling in the city and its surroundings. This would also help reduce daily stress and

  4. FABRIC QUALITY CONTROL SYSTEMS

    Directory of Open Access Journals (Sweden)

    Özlem KISAOĞLU

    2006-02-01

    Full Text Available Woven fabric quality depends on yarn properties at first, then weaving preparation and weaving processes. Defect control of grey and finished fabric is done manually on the lighted tables or automatically. Fabrics can be controlled by the help of the image analysis method. In image system the image of fabrics can be digitized by video camera and after storing controlled by the various processing. Recently neural networks, fuzzy logic, best wavelet packet model on automatic fabric inspection are developed. In this study the advantages and disadvantages of manual and automatic, on-line fabric inspection systems are given comparatively.

  5. Roscovitine treatment improves synchronization of donor cell cycle in G0/G1 stage and in vitro development of handmade cloned buffalo (Bubalus bubalis) embryos.

    Science.gov (United States)

    Selokar, Naresh L; Saini, Monika; Muzaffer, Mushariffa; Krishnakanth, G; Saha, Ambika P; Chauhan, Manmohan S; Manik, Radheysham; Palta, Prabhat; Madan, Pavneesh; Singla, Suresh K

    2012-04-01

    This study investigated the effects of serum-starvation, total confluence, and roscovitine treatment on cell-cycle synchronization of buffalo ear skin fibroblasts to the G0/G1 stage and on the developmental competence of cloned embryos. Serum starvation of total confluence cultures for 24 h had a higher (proscovitine treatment than that with 10 μM (94.4, 96.4, and 86.6%, respectively), which was similar to that for total confluence (86.0%). MTT assay showed that cell viability decreased as dose of roscovitine increased. The blastocyst rate was significantly higher (proscovitine-treated (20 and 30 μM) groups (48.8, 48.9, 57.9, and 62.9%, respectively) compared to nontreated cyclic cells (20.2%). However, the cleavage rate and total cell number of cloned embryos were similar for all the groups. The number of ICM cells was improved by 30 μM roscovitine treatment (45.25 ± 2.34). The cryosurvival rate of blastocysts derived from cells synchronized with 20 or 30 μM roscovitine was higher compared to that for total confluence group (33.6, 37.8 vs. 23.8%). In conclusion, treatment with 30 μM roscovitine is optimal for harvesting G0/G1 stage cells for producing high quality cloned buffalo embryos, and that it is better than serum-starvation or total confluence for cell synchronization.

  6. An alternative improved method for the homogeneous dispersion of CNTs in Cu matrix for the fabrication of Cu/CNTs composites

    Science.gov (United States)

    Lal, Maneet; Singhal, S. K.; Sharma, Indu; Mathur, R. B.

    2013-02-01

    Copper has a wide range of applications due to its excellent properties (high thermal and electrical conductivity). Carbon nanotubes (CNTs) are widely used as a reinforcing material due to their superior properties. Copper/Carbon nanotube (Cu/CNTs) composites show enhanced mechanical, electrical and thermal properties as compared to pure Cu and Cu composites. Hence, Cu/CNTs composites have tremendous applications. Cu/CNTs are being developed for use as antifungal and antimicrobial agents, which can lead to their further use in biomedical devices and implant materials. The versatility of this material is such that Cu/CNTs are being developed for use in ultra-large scale integrated circuits for use in the latest integrated circuits and semiconductor chips. The composite material is being used as heat sinks for various industries. Cu/CNTs are now also being employed as catalysts for various industrial reactions. Fuel cell electrodes based on Cu/CNTs are being developed to replace expensive Pt/Pd-based electrodes, currently being used. Another application in the energy sector is the use of Cu/CNTs in direct methanol fuel cells and in methanol gas reforming for H2 production. These extensive applications provided motivation for the current work. However, these applications can only be realized if a stable and uniform Cu/CNTs composite powder can be made. The challenges in fabricating Cu/CNTs composites are: (1) homogeneous dispersion of CNTs in Cu matrix, (2) interfacial bonding between CNTs and Cu matrix and (3) retention of structural integrity of CNTs. Powder metallurgy (PM) has been widely used, but dispersion of Cu/CNTs remains an issue. We employed the molecular level mixing method (MLM), coupled with high energy ball milling (BM) to overcome above mentioned issues. To the best of our knowledge, this is a new process for the homogeneous dispersion of CNTs in copper and has been reported for the first time. To produce a homogenous mixture of Cu and CNTs, a

  7. Fabrication of viable centimeter-sized 3D tissue constructs with microchannel conduits for improved tissue properties through assembly of cell-laden microbeads.

    Science.gov (United States)

    Luo, Houyong; Chen, Maiqin; Wang, Xiu; Mei, Yang; Ye, Zhaoyang; Zhou, Yan; Tan, Wen-Song

    2014-06-01

    Bottom-up approaches have emerged as a new philosophy in tissue engineering, enabling precise control over tissue morphogenesis at the cellular level. We previously prepared large bone-like tissues using cell-laden microbeads (microtissues) by following a modular approach to ensure cell viability. However, a long-term culture of such avascular macroscopic tissues (macrotissues) has not been evaluated. In the present study, microtissues were fabricated by cultivating human fibroblasts on Cytopore-2 microbeads in spinner flasks for 16 days. We then examined the long-term perfusion culture for macrotissues. Specifically, following assembly in a perfusion chamber for 15 days, cell death was found to be prominent at a depth of 500 µm from the surface of macrotissues towards the interior, suggesting that there was a new mass transfer limit leading to cell death instead of tissue maturation. Subsequently, we developed a strategy by incorporating microchannel structures in centimeter-sized tissue constructs to promote mass transport. By installing glass rods (1 mm diameter, 1 mm wall-to-wall spacing) in the perfusion chamber, stable microchannel architectures were introduced during the microtissue assembly process. Based on live/dead assay and scanning electron microscopy (SEM), these channelled macrotissues (length × diameter, 1.6 × 2.0 cm) demonstrated high cell viability and compact packing of microbeads. Comparative biochemical analysis further suggested a more homogeneous spatial distribution of cells and extracellular matrix (ECM) in the channelled macrotissues than in solid ones. Viable 3D large tissues can therefore be prepared by assembling cell-laden microbeads in conjunction with microchannel carving, meeting clinical needs in tissue repair.

  8. ITER Central Solenoid Module Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Smith, John [General Atomics, San Diego, CA (United States)

    2016-09-23

    The fabrication of the modules for the ITER Central Solenoid (CS) has started in a dedicated production facility located in Poway, California, USA. The necessary tools have been designed, built, installed, and tested in the facility to enable the start of production. The current schedule has first module fabrication completed in 2017, followed by testing and subsequent shipment to ITER. The Central Solenoid is a key component of the ITER tokamak providing the inductive voltage to initiate and sustain the plasma current and to position and shape the plasma. The design of the CS has been a collaborative effort between the US ITER Project Office (US ITER), the international ITER Organization (IO) and General Atomics (GA). GA’s responsibility includes: completing the fabrication design, developing and qualifying the fabrication processes and tools, and then completing the fabrication of the seven 110 tonne CS modules. The modules will be shipped separately to the ITER site, and then stacked and aligned in the Assembly Hall prior to insertion in the core of the ITER tokamak. A dedicated facility in Poway, California, USA has been established by GA to complete the fabrication of the seven modules. Infrastructure improvements included thick reinforced concrete floors, a diesel generator for backup power, along with, cranes for moving the tooling within the facility. The fabrication process for a single module requires approximately 22 months followed by five months of testing, which includes preliminary electrical testing followed by high current (48.5 kA) tests at 4.7K. The production of the seven modules is completed in a parallel fashion through ten process stations. The process stations have been designed and built with most stations having completed testing and qualification for carrying out the required fabrication processes. The final qualification step for each process station is achieved by the successful production of a prototype coil. Fabrication of the first

  9. 涤及涤氨针织物色渍现状及其改善途径%Current Situation of Color Staining on Polyester and Polyester/Polyurethane Knitted Fabric and Its Improvement

    Institute of Scientific and Technical Information of China (English)

    刘影; 罗艳; 张国兴; 许畅; 刘星磊; 朱金刚

    2015-01-01

    The research situation of color staining on polyester and polyester polyurethane knitted fabric was ex-pounded. The reasons of forming color staining were theoretically analyzed in respects of water-quality, pretreatment, equipments and operation, dyes, low polymer, auxiliaries and so on. And precautions and methods of improving and removing color staining were put forward which combined with the actual situation of factory with aiming at the dif-ferent reasons. It pointed out that making the correct process route, selecting correct process recipes, conditions and equipments are the important premise when dyeing polyester and polyester polyurethane knitted fabric.%阐述了涤及涤氨针织物色渍的研究现状,从水质、前处理、设备及操作、染料、低聚物助剂等方面对色渍形成的原因进行理论分析,并结合工厂实际情况针对不同原因提出预防措施以及改善或消除色渍的方法。指出了涤及涤氨针织物染色时,制定正确的工艺路线,选择正确的工艺配方、工艺条件和工艺设备,是消除色渍的重要前提。

  10. 一种基于改进型PCNN的织物疵点图像自适应分割方法%An Approach for Fabric Defect Image Segmentation Based on the Improved Conventional PCNN Model

    Institute of Scientific and Technical Information of China (English)

    祝双武; 郝重阳

    2012-01-01

    An approach is proposed for fabric defect detection based on the improved conventional pulse coupled neural network (PCNN) model. For these too many parameters of conventional PCNN.it is difficult to get die adaptive parameters. The problem can be solved in the proposed way, in which optimal number of iteration to segment fabric defect image automatically is determined based on minimum difference of uniformity within region. Segmentations on various defect images are implemented with the proposed approach and die experimental results demonstrate its reliability and validity.%针对传统脉冲耦合神经网络(Pulse Coupled Neural Network,PCNN)模型中网络参数多、不易自动选取的问题,本文在对PCNN模型进行改进的基础上,提出了一种基于改进型PCNN织物疵点图像自适应分割方法.采用了一种基于分割区域内均匀度差异最小作为最佳迭代次数判断标准,从而有效地满足了PCNN对织物疵点图像的自动分割要求.通过对不同疵点图像分割实验证明了算法对疵点分割的准确性和有效性.

  11. Fabrication and characterization of woodpile structures

    DEFF Research Database (Denmark)

    Zalkovskij, Maksim; Malureanu, Radu; Andryieuski, Andrei

    2011-01-01

    In this paper we present the whole fabrication and characterization cycle for obtaining 3D metal-dielectric woodpile structures. The optical properties of these structures have been measured using different setups showing the need of considering e.g. border effects when planning their use in real...

  12. Design of Cycle 3 of the National Water-Quality Assessment Program, 2013-23: Part 2: Science plan for improved water-quality information and management

    Science.gov (United States)

    Rowe, Gary L.; Belitz, Kenneth; Demas, Charlie R.; Essaid, Hedeff I.; Gilliom, Robert J.; Hamilton, Pixie A.; Hoos, Anne B.; Lee, Casey J.; Munn, Mark D.; Wolock, David W.

    2013-01-01

    This report presents a science strategy for the third decade of the National Water-Quality Assessment (NAWQA) Program, which since 1991, has been responsible for providing nationally consistent information on the quality of the Nation's streams and groundwater; how water quality is changing over time; and the major natural and human factors that affect current water quality conditions and trends. The strategy is based on an extensive evaluation of the accomplishments of NAWQA over its first two decades, the current status of water-quality monitoring activities by USGS and its partners, and an updated analysis of stakeholder priorities. The plan is designed to address priority issues and national needs identified by NAWQA stakeholders and the National Research Council (2012) irrespective of budget constraints. This plan describes four major goals for the third decade (Cycle 3), the approaches for monitoring, modeling, and scientific studies, key partnerships required to achieve these goals, and products and outcomes that will result from planned assessment activities. The science plan for 2013–2023 is a comprehensive approach to meet stakeholder priorities for: (1) rebuilding NAWQA monitoring networks for streams, rivers, and groundwater, and (2) upgrading models used to extrapolate and forecast changes in water-quality and stream ecosystem condition in response to changing climate and land use. The Cycle 3 plan continues approaches that have been central to the Program’s long-term success, but adjusts monitoring intensities and study designs to address critical information needs and identified data gaps. Restoration of diminished monitoring networks and new directions in modeling and interpretative studies address growing and evolving public and stakeholder needs for water-quality information and improved management, particularly in the face of increasing challenges related to population growth, increasing demands for water, and changing land use and climate

  13. Evaluation of Helping Babies Breathe Quality Improvement Cycle (HBB-QIC) on retention of neonatal resuscitation skills six months after training in Nepal.

    Science.gov (United States)

    Kc, Ashish; Wrammert, Johan; Nelin, Viktoria; Clark, Robert B; Ewald, Uwe; Peterson, Stefan; Målqvist, Mats

    2017-04-11

    Each year 700,000 infants die due to intrapartum-related complications. Implementation of Helping Babies Breathe (HBB)-a simplified neonatal resuscitation protocol in low-resource clinical settings has shown to reduce intrapartum stillbirths and first-day neonatal mortality. However, there is a lack of evidence on the effect of different HBB implementation strategies to improve and sustain the clinical competency of health workers on bag-and-mask ventilation. This study was conducted to evaluate the impact of multi-faceted implementation strategy for HBB, as a quality improvement cycle (HBB-QIC), on the retention of neonatal resuscitation skills in a tertiary hospital of Nepal. A time-series design was applied. The multi-faceted intervention for HBB-QIC included training, daily bag-and-mask skill checks, preparation for resuscitation before every birth, self-evaluation and peer review on neonatal resuscitation skills, and weekly review meetings. Knowledge and skills were assessed through questionnaires, skill checklists, and Objective Structured Clinical Examinations (OSCE) before implementation of the HBB-QIC, immediately after HBB training, and again at 6 months. Means were compared using paired t-tests, and associations between skill retention and HBB-QIC components were analyzed using logistic regression analysis. One hundred thirty seven health workers were enrolled in the study. Knowledge scores were higher immediately following the HBB training, 16.4 ± 1.4 compared to 12.8 ± 1.6 before (out of 17), and the knowledge was retained 6 months after the training (16.5 ± 1.1). Bag-and-mask skills improved immediately after the training and were retained 6 months after the training. The retention of bag-and-mask skills was associated with daily bag-and-mask skill checks, preparation for resuscitation before every birth, use of a self-evaluation checklist, and attendance at weekly review meetings. The implementation strategies with the highest association to skill

  14. Using a combination of weighting factor method and imperialist competitive algorithm to improve speed and enhance process of reloading pattern optimization of VVER-1000 reactors in transient cycles

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, Yashar, E-mail: yashar.rahmani@gmail.com [Department of Physics, Faculty of Engineering, Islamic Azad University, Sari Branch, Sari (Iran, Islamic Republic of); Shahvari, Yaser [Department of Computer Engineering, Payame Noor University (PNU), P.O. Box 19395-3697, Tehran (Iran, Islamic Republic of); Kia, Faezeh [Golestan Institute of Higher Education, Gorgan 49139-83635 (Iran, Islamic Republic of)

    2017-03-15

    Highlights: • This article was an attempt to optimize reloading pattern of Bushehr VVER-1000 reactor. • A combination of weighting factor method and the imperialist competitive algorithm was used. • The speed of optimization and desirability of the proposed pattern increased considerably. • To evaluate arrangements, a coupling of WIMSD5-B, CITATION-LDI2 and WERL codes was used. • Results reflected the considerable superiority of the proposed method over direct optimization. - Abstract: In this research, an innovative solution is described which can be used with a combination of the new imperialist competitive algorithm and the weighting factor method to improve speed and increase globality of search in reloading pattern optimization of VVER-1000 reactors in transient cycles and even obtain more desirable results than conventional direct method. In this regard, to reduce the scope of the assumed searchable arrangements, first using the weighting factor method and based on values of these coefficients in each of the 16 types of loadable fuel assemblies in the second cycle, the fuel assemblies were classified in more limited groups. In consequence, the types of fuel assemblies were reduced from 16 to 6 and consequently the number of possible arrangements was reduced considerably. Afterwards, in the first phase of optimization the imperialist competitive algorithm was used to propose an optimum reloading pattern with 6 groups. In the second phase, the algorithm was reused for finding desirable placement of the subset assemblies of each group in the optimum arrangement obtained from the previous phase, and thus the retransformation of the optimum arrangement takes place from the virtual 6-group mode to the real mode with 16 fuel types. In this research, the optimization process was conducted in two states. In the first state, it was tried to obtain an arrangement with the maximum effective multiplication factor and the smallest maximum power peaking factor. In

  15. Nozzle fabrication technique

    Science.gov (United States)

    Wells, Dennis L. (Inventor)

    1988-01-01

    This invention relates to techniques for fabricating hour glass throat or convergent divergent nozzle shapes, and more particularly to new and improved techniques for forming rocket nozzles from electrically conductive material and forming cooling channels in the wall thereof. The concept of positioning a block of electrically conductive material so that its axis is set at a predetermined skew angle with relation to a travelling electron discharge machine electrode and thereafter revolving the body about its own axis to generate a hyperbolic surface of revolution, either internal or external is novel. The method will generate a rocket nozzle which may be provided with cooling channels using the same control and positioning system. The configuration of the cooling channels so produced are unique and novel. Also the method is adaptable to nonmetallic material using analogous cutting tools, such as, water jet, laser, abrasive wire and hot wire.

  16. FES cycling.

    Science.gov (United States)

    Newham, D J; Donaldson, N de N

    2007-01-01

    Spinal cord injury (SCI) leads to a partial or complete disruption of motor, sensory, and autonomic nerve pathways below the level of the lesion. In paraplegic patients, functional electrical stimulation (FES) was originally widely considered as a means to restore walking function but this was proved technically very difficult because of the numerous degrees of freedom involved in walking. FES cycling was developed for people with SCI and has the advantages that cycling can be maintained for reasonably long periods in trained muscles and the risk of falls is low. In the article, we review research findings relevant to the successful application of FES cycling including the effects on muscle size, strength and function, and the cardiovascular and bone changes. We also describe important practical considerations in FES cycling regarding the application of surface electrodes, training and setting up the stimulator limitations, implanted stimulators and FES cycling including FES cycling in groups and other FES exercises such as FES rowing.

  17. On acyclicity of games with cycles

    DEFF Research Database (Denmark)

    Andersson, Klas Olof Daniel; Hansen, Thomas Dueholm; Gurvich, Vladimir

    2010-01-01

    We study restricted improvement cycles (ri-cycles) in finite positional n-person games with perfect information modeled by directed graphs (di-graphs) that may contain directed cycles (di-cycles). We assume that all these di-cycles form one outcome c, for example, a draw. We obtain criteria of re...

  18. Helium compressors for closed-cycle, 4.5-Kelvin refrigerators

    Science.gov (United States)

    Hanson, T. R.

    1992-01-01

    An improved helium compressor for traveling-wave maser and closed-cycle refrigerator systems was developed and is currently being supplied to the DSN. This new 5-hp compressor package is designed to replace the current 3-hp DSN compressors. The new compressor package was designed to retrofit into the existing 3-hp compressor frame and reuse many of the same components, therefore saving the cost of documenting and fabricating these components when implementing a new 5-hp compressor.

  19. Improving cycle life of layered lithium transition metal oxide (LiMO2) based positive electrodes for Li ion batteries by smart selection of the electrochemical charge conditions

    Science.gov (United States)

    Kasnatscheew, Johannes; Evertz, Marco; Streipert, Benjamin; Wagner, Ralf; Nowak, Sascha; Cekic Laskovic, Isidora; Winter, Martin

    2017-08-01

    Increasing the specific energy of a lithium ion battery and maintaining its cycle life is a predominant goal and major challenge for electrochemical energy storage applications. Focusing on the positive electrode as the specific energy bottleneck, cycle life characteristics of promising layered oxide type active materials (LiMO2) has been thoroughly investigated. Comparing the variety of LiMO2 compositions, it could be shown that the ;Ni-rich; (Ni ≥ 60% for M in LiMO2) electrodes expectably revealed best performance compromises between specific energy and cycle life at 20 °C, but only LiNi0.6Mn0.2Co0.2O2 (NMC622) could also maintain sufficient cycle performance at elevated temperatures. Focusing on NMC622, it could be demonstrated that the applied electrochemical conditions (charge capacity, delithiation amount) in the formation cycles significantly influence the subsequent cycling performance. Moreover, the insignificant transition metal dissolution, demonstrated by means of total X-ray fluorescence (TXRF) technique, and unchanged lithiation degree in the discharged state, determined by the measurement of the Li+ content by means of the inductively coupled plasma optical emission spectroscopy (ICP-OES) technique, pointed to a delithiation (charge) hindrance capacity fade mechanism. Considering these insights, thoughtful modifications of the electrochemical charge conditions could significantly prolong the cycle life.

  20. 90-Day Cycle Handbook

    Science.gov (United States)

    Park, Sandra; Takahashi, Sola

    2013-01-01

    90-Day Cycles are a disciplined and structured form of inquiry designed to produce and test knowledge syntheses, prototyped processes, or products in support of improvement work. With any type of activity, organizations inevitably encounter roadblocks to improving performance and outcomes. These barriers might include intractable problems at…

  1. Application of PDCA Cycle in Hospital Prescription Continuous Quality Improvement%PDCA循环在医院处方持续质量改进中的应用

    Institute of Scientific and Technical Information of China (English)

    郑造乾; 黄萍; 袁雍; 杨秀丽; 辛传伟

    2012-01-01

    目的 探讨PDCA循环理论在医院处方质量持续改进中的应用及可行性,促进临床合理用药.方法 用Epidata 软件录入不合理处方并进行汇总分析评价,然后运用PDCA循环理论对不合理处方进行干预并观察效果.结果 PDCA 循环后,我院不合理处方数和百分率显著下降(P<0.01).①调剂药师组:不合理处方百分率从0.44%下降到0.31%(P<0.01),下降幅度31.01%,其中不规范处方从0.23%下降到0.16%(P<0.01),下降幅度32.98%;用药不适宜处方从0.17%下降到0.12%(P<0.01),下降幅度31.75%;超常处方从0.04%下降到0.03%(P<0.05),下降幅度17.42%.②临床药师组:不合理处方百分率从4.96%下降到3.16%(P<0.01),下降幅度36.38%,其中不规范处方从2.63%下降到1.61%(P<0.01),下降幅度38.23%;用药不适宜处方从1.94%下降到1.19%(P<0.01),下降幅度37.66%;超常处方从2.63%下降到1.61%(P<0.01),下降幅度23.40%.临床诊断不全、剂量和单位不一致处方数和百分率均显著下降(P<0.01),中药注射剂、抗菌药物使用趋于合理.处方质量持续改进达到预期目标.结论 PDCA循环用于医院处方持续质量改进效果显著,可在医院处方质量管理中推广应用.%OBJECTIVE To investigate the application and feasibility of the PDCA cycle theory in the continuous improvement of prescriptions quality and to promote clinical rational use of drugs. METHODS The irrational prescriptions were collected, analyzed and evaluated with Epidata software. Irrational prescriptions were intervened based on the PDCA cycle theory and the results were observed. RESULTS After the application of PDCA, the number and the proportion of the irrational prescriptions in our hospital dropped down significantly(P<0.01). ① Dispensing Pharmacists group: The proportion of irrational prescriptions dropped by 31.01%, from 0.44% to 0.31%(P<0.01). Among them, the proportion of

  2. A biofeedback cycling training to improve locomotion: a case series study based on gait pattern classification of 153 chronic stroke patients

    Directory of Open Access Journals (Sweden)

    Molteni Franco

    2011-08-01

    Full Text Available Abstract Background The restoration of walking ability is the main goal of post-stroke lower limb rehabilitation and different studies suggest that pedaling may have a positive effect on locomotion. The aim of this study was to explore the feasibility of a biofeedback pedaling treatment and its effects on cycling and walking ability in chronic stroke patients. A case series study was designed and participants were recruited based on a gait pattern classification of a population of 153 chronic stroke patients. Methods In order to optimize participants selection, a k-means cluster analysis was performed to subgroup homogenous gait patterns in terms of gait speed and symmetry. The training consisted of a 2-week treatment of 6 sessions. A visual biofeedback helped the subjects in maintaining a symmetrical contribution of the two legs during pedaling. Participants were assessed before, after training and at follow-up visits (one week after treatment. Outcome measures were the unbalance during a pedaling test, and the temporal, spatial, and symmetry parameters during gait analysis. Results and discussion Three clusters, mainly differing in terms of gait speed, were identified and participants, representative of each cluster, were selected. An intra-subject statistical analysis (ANOVA showed that all patients significantly decreased the pedaling unbalance after treatment and maintained significant improvements with respect to baseline at follow-up. The 2-week treatment induced some modifications in the gait pattern of two patients: one, the most impaired, significantly improved mean velocity and increased gait symmetry; the other one reduced significantly the over-compensation of the healthy limb. No benefits were produced in the gait of the last subject who maintained her slow but almost symmetrical pattern. Thus, this study might suggest that the treatment can be beneficial for patients having a very asymmetrical and inefficient gait and for those

  3. Fabrication of zein nanostructure

    Science.gov (United States)

    Luecha, Jarupat

    resins. The soft lithography technique was mainly used to fabricate micro and nanostructures on zein films. Zein material well-replicated small structures with the smallest size at sub micrometer scale that resulted in interesting photonic properties. The bonding method was also developed for assembling portable zein microfluidic devices with small shape distortion. Zein-zein and zein-glass microfluidic devices demonstrated sufficient strength to facilitate fluid flow in a complex microfluidic design with no leakage. Aside from the fabrication technique development, several potential applications of this environmentally friendly microfluidic device were investigated. The concentration gradient manipulation of Rhodamine B solution in zein-glass microfluidic devices was demonstrated. The diffusion of small molecules such as fluorescent dye into the wall of the zein microfluidic channels was observed. However, with this formulation, zein microfluidic devices were not suitable for cell culture applications. This pioneer study covered a wide spectrum of the implementation of the two nanotechnology approaches to advance zein biomaterial which provided proof of fundamental concepts as well as presenting some limitations. The findings in this study can lead to several innovative research opportunities of advanced zein biomaterials with broad applications. The information from the study of zein nanocomposite structure allows the packaging industry to develop the low cost biodegradable materials with physical property improvement. The information from the study of the zein microfluidic devices allows agro-industry to develop the nanotechnology-enabled microfluidic sensors fabricated entirely from biodegradable polymer for on-site disease or contaminant detection in the fields of food and agriculture.

  4. Systematic study on pulse parameters in fabricating porous silicon-layered structures by pulse electrochemical etching

    Science.gov (United States)

    Ge, J.; Yin, W. J.; Ma, L. L.; Obbard, E.; Ding, X. M.; Hou, X. Y.

    2007-08-01

    Pulse electrochemical etching was used to improve the quality of porous silicon (PS) layers. Although alternative PS layers of different porosities have been realized by this etching technique, there is no systematic study on the influence of different etching pulse parameters on PS during the etching process. We test various combinations of pulse parameters, including duty cycle and duration, in fabricating PS-layered structures. The optical thickness and actual thickness of the PS structures fabricated are investigated by means of reflectance spectroscopy and scanning electron microscopy. It is found that reducing the duty cycle and pulse duration of the pulse can promote the formation of PS layers with a large optical thickness and high refractive index. Meanwhile, the uniformity of PS is also improved. The duty cycle of 1:10-1:20 and pulse duration of 0.1-0.2 ms can result in the best uniformity and smoothness for the highly doped p-Si wafers. We believe that our work could set the foundation for further improvement of pulse electrochemical etching.

  5. The Air Force Processes for Approving Air Force Life Cycle Management Center Single-Award Indefinite-Delivery Indefinite-Quantity Contracts Need Improvement

    Science.gov (United States)

    2016-04-29

    IDIQ contract may be used to acquire supplies and services when the exact times and quantities of future deliveries are not known at the time of...Force Processes for Approving Air Force Life Cycle Management Center Single‑Award Indefinite‑ Delivery Indefinite‑Quantity Contracts Need...0147.000) │ i Results in Brief The Air Force Processes for Approving Air Force Life Cycle Management Center Single-Award Indefinite- Delivery Indefinite

  6. The model for the strategic management of technology. The improvement cycle and matrixes deployment QFD; Un modelo para gestion estrategica de los recursos tecnologicos. El ciclo de mejora y despliegue de matrices QFD

    Energy Technology Data Exchange (ETDEWEB)

    Benavides Velasco, C. A.; Quintana Garcia, C.

    2007-07-01

    In spite of the importance of innovative firms, few contributions study in depth the strategic management of their technological resources. After describing the process of strategic management of technology, we propose a model that enables the application of that process and guarantees organizational flexibility in technological companies. For it, such a process has been adapted to She wart cycle (Deeming wheel) and combined with the quality function deployment (QFD). As a result, we propose the improvement cycle of technology. It contains two matrixes that allow identifying and prioritizing with greater clarity the activities related to the management of technological resources. (Authors)

  7. Improvement on fabrication technology of metallic mesh based on ZnS%基于 ZnS 金属网栅制作工艺的改进

    Institute of Scientific and Technical Information of China (English)

    陈赟; 李艳茹; 张红胜

    2014-01-01

    In order to fabricate metallic meshes based on ZnS which can shield electromagnetic wave , a new type of photolithography copy technology process is adopted , in which photoresist is coated firstly and then plated in vacuum machine .But the color of polycrystalline ZnS resembles that of photo-resist, it is hard to es-timate the developing degree of meshes during the process of making metallic meshes , which affects the prepa-ration of metallic meshes film in the process of vacuum plating .A new method by plating a transition film is proposed, in which the processes including vacuum coating , spin-coating, developing, etching, vacuum coating, removing, etching are adopted combining the fabrication technology of metallic meshes .The testing results indicate that the metallic meshes with the line width of 8μm and the line period of 400μm are fabrica-ted successfully .With this technology , the yield of metallic meshes is improved up to 90%.%为了制作基于ZnS的对雷达波高效电磁屏蔽的金属网栅,采用了一种新型的先胶后镀的光刻复制工艺。但在制作过程中,发现影响金属网栅成品率的主要因素为ZnS材料的颜色,即由于多晶ZnS的颜色和所用光刻胶的颜色相似,很难判断网栅是否显影彻底,进而影响真空镀膜过程中金属网栅膜的形成。结合金属网栅的制作工艺,通过采用镀一层过渡膜的方式,即采用镀膜、涂胶、显影、腐蚀、镀膜、去胶、腐蚀的工艺,有效地解决了ZnS颜色带来的影响。实验表明,采用该工艺一次性成功制作出线宽为8μm、周期为400μm的金属网栅。该工艺使基于ZnS金属网栅的成品率在90%以上。

  8. A general strategy for the fabrication of high performance microsupercapacitors

    KAUST Repository

    Kurra, Narendra

    2015-06-04

    We propose a generic strategy for microsupercapacitor fabrication that integrates layers of reduced graphene oxide (rGO) and pseudocapacitive materials to create electrode heterostructures with significantly improved cycling stability and performance. Our approach involves a combination of photolithography and a simple transfer method of free-standing reduced graphene oxide film onto an Au/patterned photoresist bilayer. The resulting stack (rGO/Au/patterned resist/substrate) is then used for the electrochemical deposition of various pseudocapacitive materials before the final step of lift-off. To prove the viability of this method, we have successfully fabricated microsupercapacitors (MSCs) with the following interdigitated electrode heterostructures: MnO2/rGO, Co(OH)2/rGO and PANI/rGO. These MSCs show better performance and cycling stability compared to the single layer, (i.e., rGO-free) counterparts. The interdigitated electrode heterostructures result in MSCs with energy densities in the range of 3–12 mW h/cm3 and power densities in the range of 400–1200 mW/cm3, which is superior to the Li thin film batteries (E=10 mW h/cm3), carbon, and metal oxide based MSCs (E=1–6 mW h/cm3) while device energy densities are in the range of 1.3–5.3 mW h/cm3, corresponding power densities are in the range of 178–533 mW/cm3. These results can be explained by a facilitated nucleation model, where surface topology of the rGO film creates a favorable environment for the nucleation and growth of pseudocapacitive materials with strong interfacial contacts and enhanced surface area. This approach opens up a new avenue in fabricating MSCs involving a variety of heterostructures combining electrical double layer carbon type with Faradaic pseudocapacitive materials for enhanced electrochemical performance.

  9. One-Pot Fabrication of Hollow and Porous Pd-Cu Alloy Nanospheres and Their Remarkably Improved Catalytic Performance for Hexavalent Chromium Reduction.

    Science.gov (United States)

    Han, Shu-He; Bai, Juan; Liu, Hui-Min; Zeng, Jing-Hui; Jiang, Jia-Xing; Chen, Yu; Lee, Jong-Min

    2016-11-16

    Noble metal nanostructures (NMNSs) play a crucial role in many heterogeneous catalytic reactions. Hollow and porous NMNSs possess generally prominent advantages over their solid counterparts due to their unordinary structural features. In this work, we describe a facial one-pot synthesis of hollow and porous Pd-Cu alloy nanospheres (Pd-Cu HPANSs) through a polyethylenimine (PEI)-assisted oxidation-dissolution mechanism. The strong coordination interaction between Cu(II) and PEI facilitates the oxidation-dissolution of the Cu2O nanospheres template under air conditions, which is responsible for the generation of the Pd-Cu alloy and the convenient removal of the Cu2O nanospheres template at room temperature. Compared to the commercial Pd black, the Pd-Cu HPANSs show remarkably improved catalytic activity for the reduction of K2Cr2O7 by HCOOH at room temperature, attributing to the enhanced catalytic activity of the Pd-Cu HPANSs for the dehydrogenation decomposition of HCOOH.

  10. Fabrication of Ce/N co-doped TiO2/diatomite granule catalyst and its improved visible-light-driven photoactivity.

    Science.gov (United States)

    Chen, Yan; Liu, Kuiren

    2017-02-15

    Eliminating antibiotic remnants in aquatic environment has become one of the hottest topics among current research works. Thus, we prepared Ce, N co-doped TiO2/diatomite granule (CNTD-G) catalyst to provide a new method. As one typical antibiotics, oxytetracycline (OTC) was selected as the target pollutant to be degradated under visible light irradiation. The carrier diatomite helped the spread of TiO2 nanoparticles onto its surface, and inhibited their agglomeration. The synergy of Ce and N dopants highly improved the visible-light-driven photoactivity of TiO2. The optimal doping amount and degradation conditions were determined. Besides, the effects of impurity ions were also investigated, including cations: Ca(2+), Mg(2+); or anions: NO3(-), SO4(2-) and PO4(3-). The intermediates generated during degradation process were studied, and the mechanism of the photodegradation process was proposed. CNTD-G could be easily collected from the reactor, and showed excellent recyclability. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Fabrication of Ce/N co-doped TiO{sub 2}/diatomite granule catalyst and its improved visible-light-driven photoactivity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yan; Liu, Kuiren, E-mail: liukr@smm.neu.edu.cn

    2017-02-15

    Highlights: • Ce/N co-doped TiO{sub 2}/diatomite granule (CNTD-G) was prepared via sol-gel method. • The optimal doping amount of Ce was determined. • The effects of impurity ions on photodegradation process were studied. • The intermediates generated during photodegradation process were deduced. • The mechanism of photodegradation process was proposed. - Abstract: Eliminating antibiotic remnants in aquatic environment has become one of the hottest topics among current research works. Thus, we prepared Ce, N co-doped TiO{sub 2}/diatomite granule (CNTD-G) catalyst to provide a new method. As one typical antibiotics, oxytetracycline (OTC) was selected as the target pollutant to be degradated under visible light irradiation. The carrier diatomite helped the spread of TiO{sub 2} nanoparticles onto its surface, and inhibited their agglomeration. The synergy of Ce and N dopants highly improved the visible-light-driven photoactivity of TiO{sub 2}. The optimal doping amount and degradation conditions were determined. Besides, the effects of impurity ions were also investigated, including cations: Ca{sup 2+}, Mg{sup 2+}; or anions: NO{sub 3}{sup −}, SO{sub 4}{sup 2−} and PO{sub 4}{sup 3−}. The intermediates generated during degradation process were studied, and the mechanism of the photodegradation process was proposed. CNTD-G could be easily collected from the reactor, and showed excellent recyclability.

  12. Fabrication of graphene–TiO$_2$ nanocomposite with improved photocatalytic degradation for acid orange 7 dye under solar light irradiation

    Indian Academy of Sciences (India)

    VENKATA RAMANA POSA; VISWADEVARAYALU ANNAVARAM; ADINARAYANA REDDY SOMALA

    2016-06-01

    In this study, photodegradation of the non-biodegradable azo dye acid orange 7 (AO7) was selected as modal target in aqueous solution using graphene–TiO$_2$ (GR–TiO$_2$) hybrid nanocomposite, was well investigatedand elucidated. The crystal phase, special surface area, microscopic analysis of the GR–TiO$_2$ and also, chemical state of the photocatalysts were studied by powdered X-ray diffraction (PXRD), Raman spectrum, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high resolution scanning electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), Brunauere Emmette Teller (BET) method andphotoluminescence spectroscopy (PL). During photocatalysis, the GR–TiO$_2$ nanocomposite improved photocatalytic performance compared with that of pure TiO$_2$ towards AO7 organic azo-dye degradation. The reusability test ofphotocatalytic activity was also examined. A conceivable reaction mechanism was suggested and nattered on the basis of tentative effects. Therefore, the GR–TiO$_2$ nanomaterial can be widely used as a photocatalyst for treatingthe organic dye contaminant in the field of environmental protection.

  13. 等离子体处理对非织造布表面润湿性的效应%IMPROVING THE WETTABILITY OF NONE-WOVEN FABRICS BY PLASMA TREATMENT

    Institute of Scientific and Technical Information of China (English)

    蔡兵; 李瑞霞; 吴大诚

    2001-01-01

    Corona-discharge treatment and low-temperature plasm under atmospheric pressure by glow-discharge can enhance the wettability of none-woven fabrics, but the modification effect of corona-discharge treatment was less than that of the latter. The methods of plasma treatment could improve the surfacial rewettability by reducing the contact angle between water and the none-woven fabric' s surface of PP and PET. The keeping time of enhancing rewettability by plasma treatment is not long.%通过用等离子体处理非织造布的方法来提高其表面润湿性。电晕放电和低压辉光放电都对丙纶非织造布表面的润湿性有改善,低压辉光放电还对涤纶非织造布表面的润湿性有改善。电晕放电处理非织造布的表面改性效果及改善维持时间都不如低压辉光放电。用等离子体处理非织造布来改善其表面润湿性的效果不能维持很长时间。等离子体处理可减小丙纶、涤纶非织造布表面与水的接触角,从而提高其表面的再润湿性。

  14. Monolithic Fuel Fabrication Process Development

    Energy Technology Data Exchange (ETDEWEB)

    C. R. Clark; N. P. Hallinan; J. F. Jue; D. D. Keiser; J. M. Wight

    2006-05-01

    The pursuit of a high uranium density research reactor fuel plate has led to monolithic fuel, which possesses the greatest possible uranium density in the fuel region. Process developments in fabrication development include friction stir welding tool geometry and cooling improvements and a reduction in the length of time required to complete the transient liquid phase bonding process. Annealing effects on the microstructures of the U-10Mo foil and friction stir welded aluminum 6061 cladding are also examined.

  15. Decrease in light/dark cycle of microalgal cells with computational fluid dynamics simulation to improve microalgal growth in a raceway pond.

    Science.gov (United States)

    Yang, Zongbo; Cheng, Jun; Ye, Qing; Liu, Jianzhong; Zhou, Junhu; Cen, Kefa

    2016-11-01

    In this study, computational fluid dynamics (CFD) was used to systemically analyze the movement of algae in a vortex flow field produced by up-down chute baffles. The average cell light/dark (L/D) cycle period, vertical fluid velocity, fraction of time the algae was resides in light zone and the L/D cycle period were investigated under different paddlewheel speeds and microalgal concentrations. Results showed that the L/D cycle period decreased but the vertical fluid velocity increased when the up-down chute baffles were used. The L/D cycle period decreased by 24% (from 5.1s to 3.9s), and vertical fluid velocity increased by 75% when up-down chute baffles were used with paddlewheel speed of 30r/min. The probability of L/D cycle period of 3s increased by 52% from 0.29 to 0.44 with the up-down chute baffles. This led to approximately 22% increase in biomass yield without changing the paddlewheel speed.

  16. Improve Supply Chain Sustainability Using Life Cycle Management%供应链可持续发展改进的工具一生命周期管理

    Institute of Scientific and Technical Information of China (English)

    罗卫

    2011-01-01

    Through case studies, this paper introduces the concept of life-cycle management, analyzes life-cycle management protocols under different scenarios, compares the current use of the different life cycle management tools as well as their advantages and disadvantages compared to the traditional environmental management instruments, and stresses that life cycle management is an important alternative approach to improving the sustainability of products and materials within supply chains. Based on the ahove discussion, the paper finds that different supply chain members will have different choices in life-cycle management tools. In spite of the considerable progress made with regard to their application in extensive supply chains, life cycle management tools still need development and improvement for their management protocols.%通过案例研究,引入了生命周期管理的概念,分析了不同情况下的生命周期管理协议,比较了目前使用的不同生命周期管理工具的优势和劣势,对比传统环境管理工具,强调了生命周期管理工具在改进供应链中产品和材料的可持续性方面是一个重要的替代办法.基于上述讨论,发现不同的供应链成员会选择不同生命周期管理工具,尽管其在较长的供应链中已取得很大进展,现在仍需要对各种生命周期管理的管理协议加以完善.

  17. Implementation of 7e learning cycle model using technology based constructivist teaching (TBCT) approach to improve students' understanding achievment in mechanical wave material

    Science.gov (United States)

    Warliani, Resti; Muslim, Setiawan, Wawan

    2017-05-01

    This study aims to determine the increase in the understanding achievement in senior high school students through the Learning Cycle 7E with technology based constructivist teaching approach (TBCT). This study uses a pretest-posttest control group design. The participants were 67 high school students of eleventh grade in Garut city with two class in control and experiment class. Experiment class applying the Learning Cycle 7E through TBCT approach and control class applying the 7E Learning Cycle through Constructivist Teaching approach (CT). Data collection tools from mechanical wave concept test with totally 22 questions with reability coefficient was found 0,86. The findings show the increase of the understanding achievement of the experiment class is in the amount of 0.51 was higher than the control class that is in the amount of 0.33.

  18. The fabrication and characterization of adjustable nanogaps between gold electrodes on chip for electrical measurement of single molecules

    Energy Technology Data Exchange (ETDEWEB)

    Tian Jinghua; Yang Yang; Liu Bo; Wu Deyin; Tian Zhongqun [State Key Laboratory of Physical Chemistry of Solid Surfaces and LIA CNRS XiamENS ' NanoBioChem' , College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian (China); Schoellhorn, Bernd; Maisonhaute, Emmanuel; Muns, Anna Serra; Chen Yong; Amatore, Christian [UMR CNRS 8640 ' PASTEUR' and LIA CNRS XiamENS ' NanoBioChem' , Ecole Normale Superieure, Universite Pierre et Marie Curie-Paris 6, 24 rue Lhomond, 75231 Paris Cedex 05 (France); Tao, Nong-Jian, E-mail: zqtian@xmu.edu.cn, E-mail: christian.amatore@ens.fr [Ira A Fulton School of Engineering and Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287-6206 (United States)

    2010-07-09

    This work reports on a new method to fabricate mechanically controllable break junctions (MCBJ) with finely adjustable nanogaps between two gold electrodes on solid state chips for characterizing electron transport properties of single molecules. The simple, low cost, robust and reproducible fabrication method combines conventional photolithography, chemical etching and electrodeposition to produce suspended electrodes separated with nanogaps. The MCBJ devices fabricated by the method can undergo many cycles in which the nanogap width can be precisely and repeatedly varied from zero to several nanometers. The method improves the success rate of the MCBJ experiments. Using these devices the electron transport properties of a typical molecular system, commercially available benzene-1,4-dithiol (BDT), have been studied. The I-V and G-V characteristic curves of BDT and the conductance value for a single BDT molecule established the excellent device suitability for molecular electronics research.

  19. Shield fabrication development of ITER primary wall modules by powder HIP. ITER task T216-Subtask 3E1

    Energy Technology Data Exchange (ETDEWEB)

    Lind, A

    1997-12-01

    A research and development program for the blanket shield in the International Thermonuclear Experimental Reactor (ITER) has been implemented to provide input for the design and manufacture of full scale production components. It comprises fabrication and testing of mock-ups and prototype modules. The design, materials, manufacture, examination, testing and inspection of the mock-ups representing future full scale production modules. This work applies to the development of a shield block fabrication method by Hot Isostatic Pressing (HIP) starting from a gas atomised powder and pre-fabricated cooling tube galleries. The size of the block is 1250 x 650 x 250 mm and the weight is about 1400 kg. Examination and testing of the block was performed to determine properties, achieved fabrication tolerances, and quality of bonding. It is concluded that the today`s powder HIP route gives a 316 LN IG material with mechanical properties which fulfills the ITER material specification requirements and a fully dense block which is easy to examine with ultrasonic methods. The joints between tubes and matrix are excellent. In order to achieve and maintain accuracy in positioning of the tubes during fabrication improvements of the standard fabrication route have been identified, such as the positioning of tubes during welding, the powder particle distribution and the powder filling procedure. Modification of the actual HIP cycle may also be required

  20. Quantifying the adaptive cycle

    Science.gov (United States)

    Angeler, David G.; Allen, Craig R.; Garmestani, Ahjond S.; Gunderson, Lance H.; Hjerne, Olle; Winder, Monika

    2015-01-01

    The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994–2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems.

  1. Does intrauterine saline infusion by intrauterine insemination (IUI) catheter as endometrial injury during IVF cycles improve pregnancy outcomes among patients with recurrent implantation failure?: An RCT

    Science.gov (United States)

    Salehpour, Saghar; Zamaniyan, Marzieh; Saharkhiz, Nasrin; Zadeh modares, Shahrzad; Hosieni, Sedighe; Seif, Samira; Malih, Narges; Rezapoor, Parinaz; Sohrabi, Mohammad-Reza

    2016-01-01

    Background: Recurrent implantation failure is one of the most issues in IVF cycles. Some researchers found that beneficial effects of endometrial Scratching in women with recurrent implantation failure, while some authors demonstrated contrary results Objective: The present study aimed to investigate the effect of intrauterine. Saline infusion as a form of endometrial injury, during fresh in vitro fertilization-embryo transfer cycle, among patients with recurrent implantation failure. Materials and Methods: In this clinical trial study 63 women undergoing assisted reproductive technology were divided into two groups either local endometrial injury by intrauterine saline infusion during day 3-5 of the ongoing controlled ovarian stimulation cycle, or IVF protocol performed without any other intervention in Taleghani Hospital, Tehran, Iran. The main outcome measure was clinical pregnancy rates. Results: Patients who received intra uterine saline infusion (n=20), had significantly lower clinical pregnancy numbers (1 vs. 9, p0.05) and multiple pregnancy numbers (1 vs. 3, p>0.05) between groups. Conclusion: When intrauterine saline infusion as a form of endometrial injury is performed during the ongoing IVF cycles it has negative effect on reproductive outcomes among patients with recurrent implantation failure. PMID:27738660

  2. Fabricating architectural volume

    DEFF Research Database (Denmark)

    Feringa, Jelle; Søndergaard, Asbjørn

    2015-01-01

    The 2011 edition of Fabricate inspired a number of collaborations, this article seeks to highlight three of these. There is a common thread amongst the projects presented: sharing the ambition to close the rift between design and fabrication while incorporating structural design aspects early on...

  3. High-Thermal-Conductivity Fabrics

    Science.gov (United States)

    Chibante, L. P. Felipe

    2012-01-01

    Heat management with common textiles such as nylon and spandex is hindered by the poor thermal conductivity from the skin surface to cooling surfaces. This innovation showed marked improvement in thermal conductivity of the individual fibers and tubing, as well as components assembled from them. The problem is centered on improving the heat removal of the liquid-cooled ventilation garments (LCVGs) used by astronauts. The current design uses an extensive network of water-cooling tubes that introduces bulkiness and discomfort, and increases fatigue. Range of motion and ease of movement are affected as well. The current technology is the same as developed during the Apollo program of the 1960s. Tubing material is hand-threaded through a spandex/nylon mesh layer, in a series of loops throughout the torso and limbs such that there is close, form-fitting contact with the user. Usually, there is a nylon liner layer to improve comfort. Circulating water is chilled by an external heat exchanger (sublimator). The purpose of this innovation is to produce new LCVG components with improved thermal conductivity. This was addressed using nanocomposite engineering incorporating high-thermalconductivity nanoscale fillers in the fabric and tubing components. Specifically, carbon nanotubes were added using normal processing methods such as thermoplastic melt mixing (compounding twin screw extruder) and downstream processing (fiber spinning, tubing extrusion). Fibers were produced as yarns and woven into fabric cloths. The application of isotropic nanofillers can be modeled using a modified Nielsen Model for conductive fillers in a matrix based on Einstein s viscosity model. This is a drop-in technology with no additional equipment needed. The loading is limited by the ability to maintain adequate dispersion. Undispersed materials will plug filtering screens in processing equipment. Generally, the viscosity increases were acceptable, and allowed the filled polymers to still be

  4. SURFACE TREATMENT OF POLY(ETHYLENE TEREPHTHALATE) FABRIC WITH POLYETHYLENEIMINE

    Institute of Scientific and Technical Information of China (English)

    O.J. ATEIZA; I. HOLME; J.E. McINTYRE

    1997-01-01

    A branched polyethyleneimine (BPEI) was applied to poly(ethylene terephthalate)(PET) fabric to improve its surface moisture absorption so that the fabric becomes less liable to retention of electrostatic charge. The durability of this treatment was assessed by washing and followed by measurement of charge development on the fabric. The treated samples showed improved surface wetting compared to the untreated. The results are consistent with attachment of the BPEI to the PET surface by a cross-linking mechanism.

  5. Weaving a Stronger Fabric for Improved Outcomes

    Science.gov (United States)

    Lobry de Bruyn, Lisa; Prior, Julian; Lenehan, Jo

    2014-01-01

    Purpose: To explain how training and education events (TEEs) can be designed to increase the likelihood of achieving behavioural objectives. Approach: The approach combined both a quantitative review of evaluation surveys undertaken at the time of the TEE, and qualitative telephone interviews with selected attendees (2025% of the total population…

  6. Glacial cycles

    DEFF Research Database (Denmark)

    Kaufmann, R. K.; Juselius, Katarina

    We use a statistical model, the cointegrated vector autoregressive model, to assess the degree to which variations in Earth's orbit and endogenous climate dynamics can be used to simulate glacial cycles during the late Quaternary (390 kyr-present). To do so, we estimate models of varying complexity...... and compare the accuracy of their in-sample simulations. Results indicate that strong statistical associations between endogenous climate variables are not enough for statistical models to reproduce glacial cycles. Rather, changes in solar insolation associated with changes in Earth's orbit are needed...

  7. Dual trigger with combination of gonadotropin-releasing hormone agonist and human chorionic gonadotropin significantly improves the live-birth rate for normal responders in GnRH-antagonist cycles.

    Science.gov (United States)

    Lin, Ming-Huei; Wu, Frank Shao-Ying; Lee, Robert Kuo-Kuang; Li, Sheng-Hsiang; Lin, Shyr-Yeu; Hwu, Yuh-Ming

    2013-11-01

    To investigate whether dual triggering of final oocyte maturation with a combination of gonadotropin-releasing hormone (GnRH) agonist and human chorionic gonadotropin (hCG) can improve the live-birth rate for normal responders in GnRH-antagonist in vitro fertilization/intracytoplasmic sperm injection (IVF-ICSI) cycles. Retrospective cohort study. Infertility unit of a university-affiliated medical center. Normal responders to controlled ovarian hyperstimulation who were undergoing IVF-ICSI with a GnRH antagonist protocol. Standard dosage of hCG trigger (6,500 IU of recombinant hCG) versus dual trigger (0.2 mg of triptorelin and 6,500 IU of recombinant hCG). Live-birth, clinical pregnancy, and implantation rates per cycle. A total of 376 patients with 378 completed cycles with embryo transfer were enrolled (hCG trigger/control group: n = 187; dual trigger/study group: n = 191). The dual trigger group demonstrated statistically significantly higher implantation (29.6% vs. 18.4%), clinical pregnancy (50.7% vs. 40.1%), and live-birth (41.3% vs. 30.4%) rates as compared with the hCG trigger group. There was no statistically significant difference in terms of patient demographics, cycle parameters, or embryo quality. Dual trigger of final oocyte maturation with a GnRH-agonist and a standard dosage of hCG in normal responders statistically significantly improves implantation, clinical pregnancy, and live-birth rates in GnRH-antagonist IVF cycles. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  8. Measurement of single cycle and sub-cycle pulse duration

    Institute of Scientific and Technical Information of China (English)

    Zhenglie Gong(龚正烈); Wenzhuo Ge(葛文卓); Guizhong Zhang(张贵忠); Wanghua Xiang(向望华)

    2004-01-01

    This paper suggests that the linear interferometric correlation (LFC) can be used to measure pulse duration of a few cycles, single cycle or even sub-cycle light pulse. The relations between pulsewidth and LFC curve are derived for Gaussian- and hyperbolic secant-shaped pules. This new method abandons focusing,frequency doubling and filtering in the traditional second order correlation method, meanwhile the signalto-noise ratio (SNR) is improved.

  9. Improved gene amplification by cell-cycle engineering combined with the Cre-loxP system in Chinese hamster ovary cells.

    Science.gov (United States)

    Matsuyama, Rima; Tsutsui, Tomomi; Lee, Kyoung Ho; Onitsuka, Masayoshi; Omasa, Takeshi

    2015-12-01

    The dihydrofolate reductase gene amplification system is widely used in Chinese hamster ovary (CHO) cells for the industrial production of therapeutic proteins. To enhance the efficiency of conventional gene amplification systems, we previously presented a novel method using cell-cycle checkpoint engineering. Here, we constructed high-producing and stable cells by the conditional expression of mutant cell division cycle 25 homolog B (CDC25B) using the Cre-loxP system. A bispecific antibody-producing CHO DG44-derived cell line was transfected with floxed mutant CDC25B. After inducing gene amplification in the presence of 250 nM methotrexate, mutant CDC25B sequence was removed by Cre recombinase protein expression. Overexpression of the floxed mutant CDC25B significantly enhanced the efficiency of transgene amplification and productivity. Moreover, the specific production rate of the isolated clone CHO Cre-1 and Cre-2 were approximately 11-fold and 15-fold higher than that of mock-transfected clone CHO Mock-S. Chromosomal aneuploidy was increased by mutant CDC25B overexpression, but Cre-1 and Cre-2 did not show any changes in chromosome number during long-term cultivation, as is the case with CHO Mock-S. Our results suggest that high-producing and stable cells can be constructed by conditionally controlling a cell-cycle checkpoint integrated in conventional gene amplification systems.

  10. A Cycle Ergometer Exercise Program Improves Exercise Capacity and Inspiratory Muscle Function in Hospitalized Patients Awaiting Heart Transplantation: a Pilot Study

    Directory of Open Access Journals (Sweden)

    Patrícia Forestieri

    Full Text Available Abstract Objective: The purpose of this study was to evaluate the effect of a cycle ergometer exercise program on exercise capacity and inspiratory muscle function in hospitalized patients with heart failure awaiting heart transplantation with intravenous inotropic support. Methods: Patients awaiting heart transplantation were randomized and allocated prospectively into two groups: 1 Control Group (n=11 - conventional protocol; and 2 Intervention Group (n=7 - stationary cycle ergometer exercise training. Functional capacity was measured by the six-minute walk test and inspiratory muscle strength assessed by manovacuometry before and after the exercise protocols. Results: Both groups demonstrated an increase in six-minute walk test distance after the experimental procedure compared to baseline; however, only the intervention group had a significant increase (P =0.08 and P =0.001 for the control and intervention groups, respectively. Intergroup comparison revealed a greater increase in the intervention group compared to the control (P <0.001. Regarding the inspiratory muscle strength evaluation, the intragroup analysis demonstrated increased strength after the protocols compared to baseline for both groups; statistical significance was only demonstrated for the intervention group, though (P =0.22 and P <0.01, respectively. Intergroup comparison showed a significant increase in the intervention group compared to the control (P <0.01. Conclusion: Stationary cycle ergometer exercise training shows positive results on exercise capacity and inspiratory muscle strength in patients with heart failure awaiting cardiac transplantation while on intravenous inotropic support.

  11. Improvement of a popcorn population using selection indexes from a fourth cycle of recurrent selection program carried out in two different environments.

    Science.gov (United States)

    Amaral Júnior, A T; Freitas Júnior, S P; Rangel, R M; Pena, G F; Ribeiro, R M; Morais, R C; Schuelter, A R

    2010-03-02

    We estimated genetic gains for popcorn varieties using selection indexes in a fourth cycle of intrapopulation recurrent selection developed in the campus of the Universidade Estadual do Norte Fluminense. Two hundred full-sib families were obtained from the popcorn population UNB-2U of the third recurrent selection cycle. The progenies were evaluated in a randomized block design with two replications at sites in two different environments: the Colégio Estadual Agrícola Antônio Sarlo, in Campos dos Goytacazes, and the Empresa de Pesquisa Agropecuária do Estado do Rio de Janeiro (PESAGRO-RIO), in Itaocara, both in the State of Rio de Janeiro. There were significant differences between families within sets in all traits, indicating genetic variability that could be exploited in future cycles. Thirty full-sib families were selected to continue the program. The selection indexes used to predict the gains were those of Mulamba and Mock, Smith and Hazel. The best results were obtained with the Mulamba and Mock index, which allowed the prediction of negative gains for the traits number of diseased ears and ears attacked by pests, number of broken plants and lodging, as well as ears with poor husk cover. It also provided higher gains for popping expansion and grain yield than with the other indexes, giving values of 10.55 and 8.50%, respectively, based on tentatively assigned random weights.

  12. Dexamethasone as a Supplement for Exogenous Gonadotropin to Improve Ovarian Response of Women over 35 Years Undergoing IVF/ICSI Cycles

    Directory of Open Access Journals (Sweden)

    Mahnaz Ashrafi

    2007-01-01

    Full Text Available Background: With aging, the ovarian reserve is decreased and that is a major contributor to poor ovarian response to exogenous gonadotropins. The aim of the present study is to evaluate the role of Dexamethasone on ovarian response in infertile patients aged over 35 years undergoing IVF/ICSI cycles.Materials and Methods: In this triple blind placbo-control clinical trial study, a total of 72 infertile women over age 35, undergoing IVF/ICSI cycles, referred to Royan Institute from May 2000 to May 2002 were selected. Dexamethasone co-treatment (1mg/d was started on the 21st of their preceding menstrual cycle and it was continued until oocyte aspiration. The main outcome measures were number of retrieved oocytes, number of fertilized and transferred embryos, number of used HMG, serum E2 level on HCG injection day, and pregnancy rate.Results: There was no significant statistical difference in age, duration of infertility, Body mass index, hormonal tests, number of retrieved oocytes and transferred embryos. However, the number of used HMG was significantly lower in Dexamethasone group compared to placebo group (30.6±13.39 versus 41.64 ± 18.34 (p<0.05.Conclusion: The addition of dexamethasone 1mg/d to standard long protocol decreased the number of HMG used in patients over 35 years who hold known risk of low ovarian response.

  13. Carbon electrode with NiO and RuO2 nanoparticles improves the cycling life of non-aqueous lithium-oxygen batteries

    Science.gov (United States)

    Tan, P.; Shyy, W.; Wu, M. C.; Huang, Y. Y.; Zhao, T. S.

    2016-09-01

    Carbon has been regarded as one of the most attractive cathode materials for non-aqueous lithium-oxygen batteries due to its excellent conductivity, high specific area, large porosity, and low cost. However, a key disadvantage of carbon electrodes lies in the fact that carbon may react with Li2O2 and electrolyte to form irreversible side products (e.g. Li2CO3) at the active surfaces, leading to a high charge voltage and a short cycling life. In this work, we address this issue by decorating NiO and RuO2 nanoparticles onto carbon surfaces. It is demonstrated that the NiO-RuO2 nanoparticle-decorated carbon electrode not only catalyzes both the oxygen reduction and evolution reactions, but also promotes the decomposition of side products. As a result, the battery fitted with the novel carbon cathode delivers a capacity of 3653 mAh g-1 at a current density of 400 mA g-1, with a charge plateau of 4.01 V. This performance is 440 mV lower than that of the battery fitted with a pristine carbon cathode. The present cathode is also able to operate for 50 cycles without capacity decay at a fixed capacity of 1000 mAh g-1, which is more than twice the cycle number of that of the pristine carbon cathode.

  14. A Cycle Ergometer Exercise Program Improves Exercise Capacity and Inspiratory Muscle Function in Hospitalized Patients Awaiting Heart Transplantation: a Pilot Study

    Science.gov (United States)

    Forestieri, Patrícia; Guizilini, Solange; Peres, Monique; Bublitz, Caroline; Bolzan, Douglas W.; Rocco, Isadora S.; Santos, Vinícius B.; Moreira, Rita Simone L.; Breda, João R.; de Almeida, Dirceu R.; Carvalho, Antonio Carlos de C.; Arena, Ross; Gomes, Walter J.

    2016-01-01

    Objective The purpose of this study was to evaluate the effect of a cycle ergometer exercise program on exercise capacity and inspiratory muscle function in hospitalized patients with heart failure awaiting heart transplantation with intravenous inotropic support. Methods Patients awaiting heart transplantation were randomized and allocated prospectively into two groups: 1) Control Group (n=11) - conventional protocol; and 2) Intervention Group (n=7) - stationary cycle ergometer exercise training. Functional capacity was measured by the six-minute walk test and inspiratory muscle strength assessed by manovacuometry before and after the exercise protocols. Results Both groups demonstrated an increase in six-minute walk test distance after the experimental procedure compared to baseline; however, only the intervention group had a significant increase (P=0.08 and P=0.001 for the control and intervention groups, respectively). Intergroup comparison revealed a greater increase in the intervention group compared to the control (P<0.001). Regarding the inspiratory muscle strength evaluation, the intragroup analysis demonstrated increased strength after the protocols compared to baseline for both groups; statistical significance was only demonstrated for the intervention group, though (P=0.22 and P<0.01, respectively). Intergroup comparison showed a significant increase in the intervention group compared to the control (P<0.01). Conclusion Stationary cycle ergometer exercise training shows positive results on exercise capacity and inspiratory muscle strength in patients with heart failure awaiting cardiac transplantation while on intravenous inotropic support. PMID:27982348

  15. Happy Cycling

    DEFF Research Database (Denmark)

    Geert Jensen, Birgitte; Nielsen, Tom

    2013-01-01

    og Interaktions Design, Aarhus Universitet under opgave teamet: ”Happy Cycling City – Aarhus”. Udfordringen i studieopgaven var at vise nye attraktive løsningsmuligheder i forhold til cyklens og cyklismens integration i byrum samt at påpege relationen mellem design og overordnede diskussioner af...

  16. Glacial cycles

    DEFF Research Database (Denmark)

    Kaufmann, R. K.; Juselius, Katarina

    and compare the accuracy of their in-sample simulations. Results indicate that strong statistical associations between endogenous climate variables are not enough for statistical models to reproduce glacial cycles. Rather, changes in solar insolation associated with changes in Earth's orbit are needed...

  17. Koszul cycles

    CERN Document Server

    Bruns, Winfreid; Römer, Tim

    2010-01-01

    We prove regularity bounds for Koszul cycles holding for every ideal of dimension at most 1 in a polynomial ring. We generalize the lower bound for the Green-Lazarsfeld index of Veronese rings we proved in arXiv:0902.2431 to the multihomogeneous setting.

  18. Fabrication of toroidal composite pressure vessels. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dodge, W.G.; Escalona, A.

    1996-11-24

    A method for fabricating composite pressure vessels having toroidal geometry was evaluated. Eight units were fabricated using fibrous graphite material wrapped over a thin-walled aluminum liner. The material was wrapped using a machine designed for wrapping, the graphite material was impregnated with an epoxy resin that was subsequently thermally cured. The units were fabricated using various winding patterns. They were hydrostatically tested to determine their performance. The method of fabrication was demonstrated. However, the improvement in performance to weight ratio over that obtainable by an all metal vessel probably does not justify the extra cost of fabrication.

  19. New polymorphous computing fabric.

    Energy Technology Data Exchange (ETDEWEB)

    Wolinski, C. (Christophe); Gokhale, M. (Maya); McCabe, K. P. (Kevin P.)

    2002-01-01

    This paper introduces a new polymorphous computing Fabric well suited to DSP and Image Processing and describes its implementation on a Configurable System on a Chip (CSOC). The architecture is highly parameterized and enables customization of the synthesized Fabric to achieve high performance for a specific class of application. For this reason it can be considered to be a generic model for hardware accelerator synthesis from a high level specification. Another important innovation is the Fabric uses a global memory concept, which gives the host processor random access to all the variables and instructions on the Fabric. The Fabric supports different computing models including MIMD, SPMD and systolic flow and permits dynamic reconfiguration. We present a specific implementation of a bank of FIR filters on a Fabric composed of 52 cells on the Altera Excalibur ARM running at 33 MHz. The theoretical performance of this Fabric is 1.8 GMACh. For the FIR application we obtain 1.6 GMAC/s real performance. Some automatic tools have been developed like the tool to provide a host access utility and assembler.

  20. High Energy, Long Cycle Life Lithium-ion Batteries for PHEV Application

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Donghai [Pennsylvania State Univ., University Park, PA (United States); Manthiram, Arumugam [Univ. of Texas, Austin, TX (United States); Wang, Chao-Yang [EC Power LLC, State College, PA (United States); Liu, Gao [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhang, Zhengcheng [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-05-15

    High-loading and high quality PSU Si anode has been optimized and fabricated. The electrochemical performance has been utilized. The PSU Si-graphite anode exhibits the mass loading of 5.8 mg/cm2, charge capacity of 850 mAh/ g and good cycling performance. This optimized electrode has been used for full-cell fabrication. The performance enhancement of Ni-rich materials can be achieved by a diversity of strategies. Higher Mn content and a small amount of Al doping can improve the electrochemical performance by suppressing interfacial side reactions with electrolytes, thus greatly benefiting the cyclability of the samples. Also, surface coatings of Li-rich materials and AlF3 are able to improve the performance stability of Ni-rich cathodes. One kilogram of optimized concentration-gradient LiNi0.76Co0.10Mn0.14O2 (CG) with careful control of composition, morphology and electrochemical performance was delivered to our collaborators. The sample achieved an initial specific capacity close to 190 mA h g-1 at C/10 rate and 180 mA h g-1 at C/3 rate as well as good cyclability in pouch full cells with a 4.4 V upper cut-off voltage at room temperature. Electrolyte additive with Si-N skeleton forms a less resistant SEI on the surface of silicon anode (from PSU) as evidenced by the evolution of the impedance at various lithiation/de-lithiation stages and the cycling data The prelithiation result demonstrates a solution processing method to achieve large area, uniform SLMP coating on well-made anode surface for the prelithiation of lithium-ion batteries. The prelithiation effect with this method is applied both in graphite half cells, graphite/NMC full cells, SiO half cells, SiO/NMC full cells, Si-Graphite half cells and Si-Graphite/NMC full cells with improvements in cycle performance and higher first cycle coulombic efficiency than their corresponding cells without SLMP prelithiation. As to the full

  1. Dyeing of Polyester Woven Fabric with Disperse Dye Using Conventional and Microwave Technique

    Directory of Open Access Journals (Sweden)

    Uzma Syed

    2014-07-01

    Full Text Available Polyester fabric is generally dyed using high temperature dyeing technique and carrier. Both techniques require high energy consumption while few carriers are toxic in nature. In this study, 100% polyester woven fabric was dyed by microwave and conventional dyeing technique with disperse dye; Foron Blue RD GLN by an exhaust method for short dyeing cycle (15 and 30 min. The fabric samples were dyed using conventional high temperature dyeing technique using recommended recipe. Moreover, samples were also dyed using microwave technique with recommended recipe and by the addition of salt and urea, pre-treatment with caustic and organic solvent for improving the dye uptake value and fastness properties. The dyeing assessment; (K/S?max value by Datacolor spectrophotometer, dye uniformity by optical microscope and washing fastness by grey scale were measured. It has been observed that over conventional dyeing method, microwave irradiation dyed sample gives almost 70% high (K/S?max value and uniform dye penetration and good to very good washing fastness property. In addition, microwave dyeing gives excellent dyeing behavior at short dyeing cycle; 15 min; hence saves energy and sustainable dyeing process

  2. PDCA循环在消毒供应中心质量持续改进中的应用%Application of PDCA cycle in continuous quality improvement of central sterile supply department

    Institute of Scientific and Technical Information of China (English)

    陈洁; 李淑君; 李燕妮; 秦建; 翟智超; 董海蛟; 王聪

    2013-01-01

    OBJECTIVE To explore the application of PDCA cycle management mode in continuous quality improvement of the central sterile supply department and further strengthen the central sterile supply quality management so as to ensure zero defect of the sterile supplies.METHODS The quality control management team was established,the PDCA cycle management responsibility system was implemented,the PDCA cycle management approach was employed to set up the key points of the quality control,the PDCA cycle improvement program was developed to constantly improve the systems; the PDCA group was implemented the PDCA cycle management mode in Nov 2011,while the control group was not implemented the PDCA cycle management mode from Nov 2010 to Oct 2011,there were 96 pieces of data in each group,then the satisfaction rate was compared between the two groups.RESULTS After the implementation of the PDCA cycle management mode,the satisfaction rate of the clinical departments was 97.9% in the PDCA group,significantly higher than 91.7% of the control group,the difference was significant(P<0.05); the qualified rates of the hand hinge,monitoring of disinfectant concentration,cleaning and disinfection of surgical equipments,cleaning and disinfection of pipelines,rust removal,sterile supplies of the PDCA group were respectively 99.0%,95.5%,98.0%,97.5%,97.0%,and 100.0%,significantly higher than those of the control group (P<0.05).CONCLUSION Through the application of PDCA cycle management model and the implementation of comprehensively continuous quality improvement,the overall quality of the CSSD staff,service quality,and quality of the sterile supplies have been substantially improved.%目的 探索PDCA循环管理模式在消毒供应中心(CSSD)质量持续改进中的应用,进一步加强CSSD质量管理,保证无菌物品供应零缺陷.方法 成立质量控制管理小组,实行PDCA循环管理责任制,运用PDCA循环管理方法设定质控重

  3. On Acyclicity of Games with Cycles

    DEFF Research Database (Denmark)

    Andersson, Daniel; Gurvich, Vladimir; Hansen, Thomas Dueholm

    2009-01-01

    We study restricted improvement cycles (ri-cycles) in finite positional n-person games with perfect information modeled by directed graphs (digraphs) that may contain cycles. We obtain criteria of restricted improvement acyclicity (ri-acyclicity) in two cases: for n = 2 and for acyclic digraphs. We...

  4. Objective Evaluation of Fabric Drape

    Institute of Scientific and Technical Information of China (English)

    XU Jun; YAO Mu

    2002-01-01

    On the basis of our previous research work, an expressing index was proposed for the lively degree of dynamic fabric drape. Meanwhile, the main factoranalysis for parameters of fabric drape was applied and the 5 main factors, comprehensive indexes of expressing aesthetics of fabric drape, were obtained. Through the scored diagrams of main factors of fabric drape aesthetics, 100 kinds of fabric samples could be identified and catalogued. A new method was found out for the objective evaluation of aesthetics of fabric drape.

  5. Research on fabrication technology for thin film solar cells for practical use. Technological development for qualitative improvement (improvement of conversion efficiency of amorphous silicon solar cells after degradation); Usumaku taiyo denchi seizo gijutsu no jitsuyoka kenkyu. Kohinshitsuka gijutsu (amorphous taiyo denchi no shoki rekkago koritsu kojo no gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on technological development for qualitative improvement of a-Si solar cells after initial degradation in fiscal 1994. On the fabrication technology of light-stable a-Si films, the film formation method possible to control combined hydrogen by repetitive formation/treatment was developed. The obtained high-quality light-stable a-Si film was featured by low defect density in a wide optical band gap range, and defect density of nearly 3 {times} 10{sup 16}/cm{sup -3} after light irradiation. The light degradation rate of the cell where the a-Si film was applied to i layer was relatively stable by 10% or less. The a-Si/a-Si double-layer tandem cell fabricated by this technology produced a high conversion efficiency of 10.5%. By applying {mu}c-Si material to photoactive layer as narrow band gap material, the cell with optical sensitivity even in long wavelength ranges more than 1000nm was obtained. The a-Si/{mu}c-Si double-layer tandem cell produced an initial efficiency of 8.0% and an efficiency after degradation of 7.5%. 12 figs., 3 tabs.

  6. Fabrication of preliminary fuel rods for SFR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Ki; Oh, Seok Jin; Ko, Young Mo; Woo, Youn Myung; Kim, Ki Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Metal fuels was selected for fueling many of the first reactors in the US, including the Experimental Breeder Reactor-I (EBR-I) and the Experimental Breeder Reactor-II (EBR-II) in Idaho, the FERMI-I reactor, and the Dounreay Fast Reactor (DFR) in the UK. Metallic U.Pu.Zr alloys were the reference fuel for the US Integral Fast Reactor (IFR) program. Metallic fuel has advantages such as simple fabrication procedures, good neutron economy, high thermal conductivity, excellent compatibility with a Na coolant and inherent passive safety. U-Zr-Pu alloy fuels have been used for SFR (sodium-cooled fast reactor) related to the closed fuel cycle for managing minor actinides and reducing a high radioactivity levels since the 1980s. Fabrication technology of metallic fuel for SFR has been in development in Korea as a national nuclear R and D program since 2007. For the final goal of SFR fuel rod fabrication with good performance, recently, three preliminary fuel rods were fabricated. In this paper, the preliminary fuel rods were fabricated, and then the inspection for QC(quality control) of the fuel rods was performed

  7. Fabrication and Characterization of SMA Hybrid Composites

    Science.gov (United States)

    Turner, Travis L.; Lach, Cynthia L.; Cano, Robert J.

    2001-01-01

    Results from an effort to fabrication shape memory alloy hybrid composite (SMAHC) test specimens and characterize the material system are presented in this study. The SMAHC specimens are conventional composite structures with an embedded SMA constituent. The fabrication and characterization work was undertaken to better understand the mechanics of the material system, address fabrication issues cited in the literature, and provide specimens for experimental validation of a recently developed thermomechanical model for SMAHC structures. Processes and hardware developed for fabrication of the SMAHC specimens are described. Fabrication of a SMA14C laminate with quasi-isotropic lamination and ribbon-type Nitinol actuators embedded in the 0' layers is presented. Beam specimens are machined from the laminate and are the focus of recent work, but the processes and hardware are readily extensible to more practical structures. Results of thermomechanical property testing on the composite matrix and Nitinol ribbon are presented. Test results from the Nitinol include stress-strain behavior, modulus versus temperature. and constrained recovery stress versus temperature and thermal cycle. Complex thermomechanical behaviors of the Nitinol and composite matrix are demonstrated, which have significant implications for modeling of SMAHC structures.

  8. Revenue cycle management.

    Science.gov (United States)

    Manley, Ray; Satiani, Bhagwan

    2009-11-01

    With the widening gap between overhead expenses and reimbursement, management of the revenue cycle is a critical part of a successful vascular surgery practice. It is important to review the data on all the components of the revenue cycle: payer contracting, appointment scheduling, preregistration, registration process, coding and capturing charges, proper billing of patients and insurers, follow-up of accounts receivable, and finally using appropriate benchmarking. The industry benchmarks used should be those of peers in identical groups. Warning signs of poor performance are discussed enabling the practice to formulate a performance improvement plan.

  9. Ingesting a high-dose carbohydrate solution during the cycle section of a simulated Olympic-distance triathlon improves subsequent run performance.

    Science.gov (United States)

    McGawley, Kerry; Shannon, Oliver; Betts, James

    2012-08-01

    The well-established ergogenic benefit of ingesting carbohydrates during single-discipline endurance sports has only been tested once within an Olympic-distance (OD) triathlon. The aim of the present study was to compare the effect of ingesting a 2:1 maltodextrin/fructose solution with a placebo on simulated OD triathlon performance. Six male and 4 female amateur triathletes (age, 25 ± 7 years; body mass, 66.8 ± 9.2 kg; peak oxygen uptake, 4.2 ± 0.6 L·min(-1)) completed a 1500-m swim time-trial and an incremental cycle test to determine peak oxygen uptake before performing 2 simulated OD triathlons. The swim and cycle sections of the main trials were of fixed intensities, while the run section was completed as a time-trial. Two minutes prior to completing every quarter of the cycle participants consumed 202 ± 20 mL of either a solution containing 1.2 g·min(-1) of maltodextrin plus 0.6 g·min(-1) of fructose at 14.4% concentration (CHO) or a sugar-free, fruit-flavored drink (PLA). The time-trial was 4.0% ± 1.3% faster during the CHO versus PLA trial, with run times of 38:43 ± 1:10 min:s and 40:22 ± 1:18 min:s, respectively (p = 0.010). Blood glucose concentrations were higher in the CHO versus PLA trial (p triathlon enhances subsequent 10-km run performance in triathletes.

  10. Alloy Fabrication Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL’s Alloy Fabrication Facility in Albany, OR, researchers conduct DOE research projects to produce new alloys suited to a variety of applications, from gas...

  11. Experimental Fabrication Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Provides aviation fabrication support to special operations aircraft residing at Fort Eustis and other bases in the United States. Support is also provided to AATD...

  12. Moisture Transport for Reaction Enhancement in Fabrics

    Directory of Open Access Journals (Sweden)

    Phillip Gibson

    2013-01-01

    Full Text Available The role of water in protective fabrics is critical to comfort and material performance. Excessive perspiration in clothing causes discomfort, and bound water can adversely affect the ability of carbon to adsorb chemicals. Yet the presence of water can also improve the moisture vapor transport of protective polymer films, and is essential for the hydrolytic destruction of nerve agents. Reported here are the findings of wicking and drying experiments conducted on various hydrophilic and hydrophobic cover fabrics that demonstrate the influence of wetting on permeation through fabrics. The influence of water content on reactive polymers capable of degrading nerve agent simulant is also discussed, and the importance of a novel “delivery system” for water to the reactive components through the use of a wicking fabric is introduced.

  13. Citric acid based durable and sustainable flame retardant treatment for lyocell fabric.

    Science.gov (United States)

    Mengal, Naveed; Syed, Uzma; Malik, Samander Ali; Ali Sahito, Iftikhar; Jeong, Sung Hoon

    2016-11-20

    Pyrovatex CP New, is a commonly used organophosphorus based flame retardant (FR) reagent for cellulosic materials. However, it has a drawback of high formaldehyde release when used with methylated melamine (MM) based cross-linker, a known carcinogenous compound. In the present approach, a durable and sustainable flame retarding recipe formulation for lyocell fabrics is developed using citric acid (CA) as a cross-linker. The FR finish was applied by pad-dry-cure process. The treated fabrics were characterized for surface morphology, elemental analysis, TG analysis, char study and FT-IR spectroscopy. Furthermore, flame retardancy, washing durability, formaldehyde release and breaking strength were also assessed, and compared with the conventional MM based FR recipe. The fabric samples treated with 400gL(-1) of FR with either 40 or 80gL(-1) of CA demonstrate flame retardancy even after 10 washing cycles. Furthermore, a 75% reduction in formaldehyde release is achieved. Higher char yield and lower decomposition temperature are found compared to untreated and FR+ MM treated lyocell. Such an improved sustainable recipe formulation can be used for lyocell fabric without any health risk in apparel wear.

  14. Fabric Structures Team Overview

    Science.gov (United States)

    2009-11-01

    SUPPLEMENTARY NOTES 6th Bi-Annual DOD JOCOTAS Meeting with Rigid & Soft Wall Shelter Industry & Indoor & Outdoor Exhibition, 2-4 Nov 2009, Panama City...Maintenance Shelter Demonstrated in July 09 • Designed and fabricated by Hunter Defense Technologies/Vertigo Shelters (prime), Johnson Outdoors ...Congressionally directed program with Nemo , Inc., Nashua, NH f• Designs include novel in latable airbeam technology and tensioned fabric/pole

  15. Nuclear Fabrication Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Levesque, Stephen [EWI, Columbus, OH (United States)

    2013-04-05

    This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectively engage with each other and rebuild the capacity of this supply chain by : Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. Supporting industry in helping to create a larger qualified nuclear supplier network. Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication Consortium

  16. Fabrics with tunable oleophobicity

    OpenAIRE

    McKinley, Gareth H.; Choi, Wonjae; Cohen, Robert E.; Tuteja, Anish; Chhatre, Shreerang S.; Mabry, Joseph M.

    2009-01-01

    A simple “dip-coating” process that imbues oleophobicity to various surfaces that inherently possess re-entrant texture, such as commercially available fabrics, is reported. These dip-coated fabric surfaces exhibit reversible, deformation-dependent, tunable wettability, including the capacity to switch their surface wetting properties (between super-repellent and super-wetting) against a wide range of polar and nonpolar liquids.

  17. Sulfur cycle

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.

    :1, the reductive assimilation of sulfate is less important than nitrate. Assimilatory reduction is common among organisms and does not lead to the production of sulfide. The eight-electron reduction of sulfate to sulfide pro- ceeds in different stages. As the ion...; Biogeochemical Approaches to Environmental Risk Assessment; Biogeochemical Models; Biomagnification; Carbon Cycle; Classification and Regression Trees; Climate Change 1: Short-Term Dynamics; Constructed Wetlands, Subsurface Flow; Constructed Wetlands, Surface...

  18. Experimental jetlag disrupts circadian clock genes but improves performance in racehorses after light-dependent rapid resetting of neuroendocrine systems and the rest-activity cycle.

    Science.gov (United States)

    Tortonese, D J; Preedy, D F; Hesketh, S A; Webb, H N; Wilkinson, E S; Allen, W R; Fuller, C J; Townsend, J; Short, R V

    2011-12-01

    Abrupt alterations in the 24-h light : dark cycle, such as those resulting from transmeridian air travel, disrupt circadian biological rhythms in humans with detrimental consequences on cognitive and physical performance. In the present study, a jetlag-simulated phase shift in photoperiod temporally impaired circadian peaks of peripheral clock gene expression in racehorses but acutely enhanced athletic performance without causing stress. Indices of aerobic and anaerobic capacities were significantly increased by a phase-advance, enabling prolonged physical activity before fatigue occurred. This was accompanied by rapid re-entrainment of the molecular clockwork and the circadian pattern of melatonin, with no disturbance of the adrenal cortical axis, but a timely rise in prolactin, which is a hormone known to target organs critical for physical performance. Subsequent studies showed that, unlike the circadian pattern of melatonin, and in contrast to other species, the daily rhythm of locomotor activity was completely eliminated under constant darkness, but it was restored immediately upon the reintroduction of a light : dark cycle. Resetting of the rhythm of locomotion was remarkably fast, revealing a rapid mechanism of adaptation and a species dependency on light exposure for the expression of daily diurnal activity. These results show that horses are exquisitely sensitive to sudden changes in photoperiod and that, unlike humans, can benefit from them; this appears to arise from powerful effects of light underlying a fast and advantageous process of adjustment to the phase shift.

  19. Improved performance of organic light-emitting diodes fabricated on Al-doped ZnO anodes incorporating a homogeneous Al-doped ZnO buffer layer grown by atomic layer deposition.

    Science.gov (United States)

    Choi, Yong-June; Gong, Su Cheol; Park, Chang-Sun; Lee, Hong-Sub; Jang, Ji Geun; Chang, Ho Jung; Yeom, Geun Young; Park, Hyun