WorldWideScience

Sample records for fabricating high density

  1. Development of technology of high density LEU dispersion fuel fabrication

    International Nuclear Information System (INIS)

    Wiencek, T.; Totev, T.

    2007-01-01

    Advanced Materials Fabrication Facilities at Argonne National Laboratory have been involved in development of LEU dispersion fuel for research and test reactors from the beginning of RERTR program. This paper presents development of technology of high density LEU dispersion fuel fabrication for full size plate type fuel elements. A brief description of Advanced Materials Fabrication Facilities where development of the technology was carried out is given. A flow diagram of the manufacturing process is presented. U-Mo powder was manufactured by the rotating electrode process. The atomization produced a U-Mo alloy powder with a relatively uniform size distribution and a nearly spherical shape. Test plates were fabricated using tungsten and depleted U-7 wt.% Mo alloy, 4043 Al and Al-2 wt% Si matrices with Al 6061 aluminum alloy for the cladding. During the development of the technology of manufacturing of full size high density LEU dispersion fuel plates special attention was paid to meet the required homogeneity, bonding, dimensions, fuel out of zone and other mechanical characteristics of the plates.

  2. Characterization of the high density plasma etching process of CCTO thin films for the fabrication of very high density capacitors

    International Nuclear Information System (INIS)

    Altamore, C; Tringali, C; Sparta', N; Marco, S Di; Grasso, A; Ravesi, S

    2010-01-01

    In this work the feasibility of CCTO (Calcium Copper Titanate) patterning by etching process is demonstrated and fully characterized in a hard to etch materials etcher. CCTO sintered in powder shows a giant relative dielectric constant (10 5 ) measured at 1 MHz at room temperature. This feature is furthermore coupled with stability from 10 1 Hz to 10 6 Hz in a wide temperature range (100K - 600K). In principle, this property can allow to fabricate very high capacitance density condenser. Due to its perovskite multi-component structure, CCTO can be considered a hard to etch material. For high density capacitor fabrication, CCTO anisotropic etching is requested by using high density plasma. The behavior of etched CCTO was studied in a HRe- (High Density Reflected electron) plasma etcher using Cl 2 /Ar chemistry. The relationship between the etch rate and the Cl 2 /Ar ratio was also studied. The effects of RF MHz, KHz Power and pressure variation, the impact of HBr addiction to the Cl 2 /Ar chemistry on the CCTO etch rate and on its selectivity to Pt and photo resist was investigated.

  3. Characterization of the high density plasma etching process of CCTO thin films for the fabrication of very high density capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Altamore, C; Tringali, C; Sparta' , N; Marco, S Di; Grasso, A; Ravesi, S [STMicroelectronics, Industial and Multi-segment Sector R and D, Catania (Italy)

    2010-02-15

    In this work the feasibility of CCTO (Calcium Copper Titanate) patterning by etching process is demonstrated and fully characterized in a hard to etch materials etcher. CCTO sintered in powder shows a giant relative dielectric constant (10{sup 5}) measured at 1 MHz at room temperature. This feature is furthermore coupled with stability from 10{sup 1} Hz to 10{sup 6} Hz in a wide temperature range (100K - 600K). In principle, this property can allow to fabricate very high capacitance density condenser. Due to its perovskite multi-component structure, CCTO can be considered a hard to etch material. For high density capacitor fabrication, CCTO anisotropic etching is requested by using high density plasma. The behavior of etched CCTO was studied in a HRe- (High Density Reflected electron) plasma etcher using Cl{sub 2}/Ar chemistry. The relationship between the etch rate and the Cl{sub 2}/Ar ratio was also studied. The effects of RF MHz, KHz Power and pressure variation, the impact of HBr addiction to the Cl{sub 2}/Ar chemistry on the CCTO etch rate and on its selectivity to Pt and photo resist was investigated.

  4. A novel method for the fabrication of a high-density carbon nanotube microelectrode array

    Directory of Open Access Journals (Sweden)

    Adam Khalifa

    2015-09-01

    Full Text Available We present a novel method for fabricating a high-density carbon nanotube microelectrode array (MEA chip. Vertically aligned carbon nanotubes (VACNTs were synthesized by microwave plasma-enhanced chemical vapor deposition and thermal chemical vapor deposition. The device was characterized using electrochemical experiments such as cyclic voltammetry, impedance spectroscopy and potential transient measurements. Through-silicon vias (TSVs were fabricated and partially filled with polycrystalline silicon to allow electrical connection from the high-density electrodes to a stimulator microchip. In response to the demand for higher resolution implants, we have developed a unique process to obtain a high-density electrode array by making the microelectrodes smaller in size and designing new ways of routing the electrodes to current sources. Keywords: Microelectrode array, Neural implant, Carbon nanotubes, Through-silicon via interconnects, Microfabrication

  5. Single-Step Fabrication of High-Density Microdroplet Arrays of Low-Surface-Tension Liquids.

    Science.gov (United States)

    Feng, Wenqian; Li, Linxian; Du, Xin; Welle, Alexander; Levkin, Pavel A

    2016-04-01

    A facile approach for surface patterning that enables single-step fabrication of high-density arrays of low-surface-tension organic-liquid microdroplets is described. This approach enables miniaturized and parallel high-throughput screenings in organic solvents, formation of homogeneous arrays of hydrophobic nanoparticles, polymer micropads of specific shapes, and polymer microlens arrays. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Status of high-density fuel plate fabrication

    International Nuclear Information System (INIS)

    Wiencek, T.C.; Domagala, R.F.; Thresh, H.R.

    1991-01-01

    Progress has continued on the fabrication of fuel plates with equivalent fuel zone loadings approaching 9 gU/cm 3 . Through hot isostatic pressing (HIP), successful diffusion bonds have been made with 1100 Al and 6061 Al alloys. Although additional study is necessary to optimize the procedure, these bonds demonstrated the most critical processing step for proof-of-concept hardware. Two types of prototype highly loaded fuel plates have been fabricated. The first is a fuel plate in which 0.030-in. (0.76-mm) uranium compound wires are bonded within an aluminum cladding; the second, a dispersion fuel plate with uniform cladding and fuel zone thickness. The successful fabrication of these fuel plates derives from the unique ability of the HIP process to produce diffusion bonds with minimal deformation. (orig.)

  7. Ultra-High Density Single Nanometer-Scale Anodic Alumina Nanofibers Fabricated by Pyrophosphoric Acid Anodizing

    Science.gov (United States)

    Kikuchi, Tatsuya; Nishinaga, Osamu; Nakajima, Daiki; Kawashima, Jun; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2014-12-01

    Anodic oxide fabricated by anodizing has been widely used for nanostructural engineering, but the nanomorphology is limited to only two oxides: anodic barrier and porous oxides. Therefore, the discovery of an additional anodic oxide with a unique nanofeature would expand the applicability of anodizing. Here we demonstrate the fabrication of a third-generation anodic oxide, specifically, anodic alumina nanofibers, by anodizing in a new electrolyte, pyrophosphoric acid. Ultra-high density single nanometer-scale anodic alumina nanofibers (1010 nanofibers/cm2) consisting of an amorphous, pure aluminum oxide were successfully fabricated via pyrophosphoric acid anodizing. The nanomorphologies of the anodic nanofibers can be controlled by the electrochemical conditions. Anodic tungsten oxide nanofibers can also be fabricated by pyrophosphoric acid anodizing. The aluminum surface covered by the anodic alumina nanofibers exhibited ultra-fast superhydrophilic behavior, with a contact angle of less than 1°, within 1 second. Such ultra-narrow nanofibers can be used for various nanoapplications including catalysts, wettability control, and electronic devices.

  8. High-density multicore fibers

    DEFF Research Database (Denmark)

    Takenaga, K.; Matsuo, S.; Saitoh, K.

    2016-01-01

    High-density single-mode multicore fibers were designed and fabricated. A heterogeneous 30-core fiber realized a low crosstalk of −55 dB. A quasi-single-mode homogeneous 31-core fiber attained the highest core count as a single-mode multicore fiber.......High-density single-mode multicore fibers were designed and fabricated. A heterogeneous 30-core fiber realized a low crosstalk of −55 dB. A quasi-single-mode homogeneous 31-core fiber attained the highest core count as a single-mode multicore fiber....

  9. Development of fabrication technique of bulk high superconductor

    International Nuclear Information System (INIS)

    Hong, Gye Won; Kim, Chang Joong; Kim, Ki Baik; Lee, Ho Jin; Lee, Hee Gyoun; Kwon, Sun Chil.

    1997-05-01

    In order to realize the commercial application of HTSC materials, it is necessary to develop the fabrication process of high Tc oxide superconductor materials with desired shape and for practical application and high critical current density as well as good mechanical strength which critical current density as well as good mechanical strength which can withstand high lorenz force generated at high magnetic field. Much studies have been concentrated to develop the fabrication technique for high critical current density but still there are a lot of gap which should be overcome for large scale application of HTSC materials at liquid nitrogen temperature. Recently some new fabrication techniques have been developed for YBCO bulk superconductor with high mechanical strength and critical current density. In this project, plastic extrusion and melt process techniques were studied. The components materials for the current lead and the flywheel application were fabricated and their characteristics were investigated from the view point of microstructure and phase formation during heat treatment process. (author). 64 refs., 59 figs

  10. Core-satellite Ag@BaTiO3 nanoassemblies for fabrication of polymer nanocomposites with high discharged energy density, high breakdown strength and low dielectric loss.

    Science.gov (United States)

    Xie, Liyuan; Huang, Xingyi; Li, Bao-Wen; Zhi, Chunyi; Tanaka, Toshikatsu; Jiang, Pingkai

    2013-10-28

    Dielectric polymer nanocomposites with high dielectric constant have wide applications in high energy density electronic devices. The introduction of high dielectric constant ceramic nanoparticles into a polymer represents an important route to fabricate nanocomposites with high dielectric constant. However, the nanocomposites prepared by this method generally suffer from relatively low breakdown strength and high dielectric loss, which limit the further increase of energy density and energy efficiency of the nanocomposites. In this contribution, by using core-satellite structured ultra-small silver (Ag) decorated barium titanate (BT) nanoassemblies, we successfully fabricated high dielectric constant polymer nanocomposites with enhanced breakdown strength and lower dielectric loss in comparison with conventional polymer-ceramic particulate nanocomposites. The discharged energy density and energy efficiency are derived from the dielectric displacement-electric field loops of the polymer nanocomposites. It is found that, by using the core-satellite structured Ag@BT nanoassemblies as fillers, the polymer nanocomposites can not only have higher discharged energy density but also have high energy efficiency. The mechanism behind the improved electrical properties was attributed to the Coulomb blockade effect and the quantum confinement effect of the introduced ultra-small Ag nanoparticles. This study could serve as an inspiration to enhance the energy storage densities of dielectric polymer nanocomposites.

  11. Fabrication and characterization of high impact hybrid matrix composites from thermoset resin and dyneema-glass fabric reinforcement

    Science.gov (United States)

    Patel, R. H.; Sharma, S.; Pansuriya, T.; Malgani, E. V.; Sevkani, V.

    2018-05-01

    Hybrid composites have been fabricated by hand lay-up technique with epoxy resin and diethylene tri amine as a hardener for high impact energy absorption with sandwich stacking of different reinforcements of dyneema and glass fabric. High impact grade composites are nowadays gaining a lot of importance in the field of high mechanical load bearing applications, ballistics and bulletproofing. The present work emphases on the fabrication and mechanical properties of the hybrid composites of cut resistant dyneema fabric along with glass fabric reinforced in the thermosetting resin. i.e. epoxy. The prime importance while fabricating such materials have been given to the processing along with selection of the raw materials. High impact resistive materials with low density and henceforth low weight have been manufactured and characterized by IZOD impact tester, UTM, Archimedes density meter and SEM. Throughout the work, satisfactory results have been obtained. Impact resistance was observed to be boosted three times as that of the reference sample of glass fabric and epoxy. The density of the hybrid composite is observed to be 25% as that of the reference sample.

  12. Critical current density and wire fabrication of high-TC superconductors

    International Nuclear Information System (INIS)

    Schlabach, T.D.; Jin, S.; Sherwood, R.C.; Tiefel, T.H.

    1989-01-01

    In this paper, some of the recent investigations of wire fabrication techniques and critical current behavior in high T c superconductors will be reviewed. In spite of the tremendous interest and research effort, the progress toward major applications of the bulk high-temperature superconductors has been impeded by, among other thins, the low critical currents and their severe deterioration in weak magnetic fields. Significant advances, however, have been made in understanding the causes of the problem as well as in improving the current-carrying capacity through proper microstructural control such as the melt-textured-growth in Y-Ba-Cu-O. The low density of effective flux-pinning sites in bulk Y-Ba-Cu-O limits J c at 77K in high magnetic fields to about 10 4 A/cm 2 even in the absence of weak links. Magnetization measurements on Bi-Sr-Ca-Cu-O and Tl-Ba-Ca-Cu-O at 77K by various researchers indicate even weaker flux pinning capabilities in these materials than in Y-Ba-Cu-O. The challenge in the future is to obtain suitable flux-pinning defects by choosing the right processing and chemistry changes

  13. Indium oxide co-doped with tin and zinc: A simple route to highly conducting high density targets for TCO thin-film fabrication

    Science.gov (United States)

    Saadeddin, I.; Hilal, H. S.; Decourt, R.; Campet, G.; Pecquenard, B.

    2012-07-01

    Indium oxide co-doped with tin and zinc (ITZO) ceramics have been successfully prepared by direct sintering of the powders mixture at 1300 °C. This allowed us to easily fabricate large highly dense target suitable for sputtering transparent conducting oxide (TCO) films, without using any cold or hot pressing techniques. Hence, the optimized ITZO ceramic reaches a high relative bulk density (˜ 92% of In2O3 theoretical density) and higher than the well-known indium oxide doped with tin (ITO) prepared under similar conditions. All X-ray diagrams obtained for ITZO ceramics confirms a bixbyte structure typical for In2O3 only. This indicates a higher solubility limit of Sn and Zn when they are co-doped into In2O3 forming a solid-solution. A very low value of electrical resistivity is obtained for [In2O3:Sn0.10]:Zn0.10 (1.7 × 10-3 Ω cm, lower than ITO counterpart) which could be fabricated to high dense ceramic target suing pressure-less sintering.

  14. Fabrication and characterization of free-standing, high-line-density transmission gratings for the vacuum UV to soft X-ray range

    NARCIS (Netherlands)

    Goh, S.J.; Bastiaens, Hubertus M.J.; Vratzov, B.; Huang, Qiushi; Bijkerk, Frederik; Boller, Klaus J.

    2015-01-01

    We present state-of-the-art high resolution transmission gratings, applicable for spectroscopy in the vacuum ultraviolet (VUV) and the soft X-ray (SRX) wavelength range, fabricated with a novel process using ultraviolet based nano imprint lithography (UV-NIL). Free-standing, high-line-density

  15. High critical current density YBCO films and fabrication of dc-SQUIDs

    CERN Document Server

    Kuriki, S; Kawaguchi, Y; Matsuda, M; Otowa, T

    2002-01-01

    In order to improve the sensitivity of SQUID magnetometers made of high-T sub c films, we have studied the conditions of pulsed-laser deposition of YBCO films. Among the different deposition parameters examined, extensive degassing of the vacuum chamber before and precise control of the substrate temperature during the film deposition were found effective for obtaining high critical temperature T sub c and high critical current density J sub c. It was also found that the residual-resistance ratio has a clear correlation with J sub c , indicating that it can be a good, and easy to measure, index of the film quality. Films having T sub c approx 89-90 K and J sub c >= 5x10 sup 6 A cm sup - sup 2 at 77 K were used to fabricate SQUIDs without a pickup loop. Grain-boundary junctions formed on bicrystal substrates with a 30 deg. misorientation angle exhibited I sub c R sub n values of more than 100 mu V at 77 K. The well-known scaling behaviour of the relation I sub c R sub n propor to (J sup G sup B sub c) sup 1 su...

  16. High energy density capacitors fabricated by thin film technology

    International Nuclear Information System (INIS)

    Barbee, T W; Johnson, G W; Wagner, A V.

    1999-01-01

    Low energy density in conventional capacitors severely limits efforts to miniaturize power electronics and imposes design limitations on electronics in general. We have successfully applied physical vapor deposition technology to greatly increase capacitor energy density. The high dielectric breakdown strength we have achieved in alumina thin films allows high energy density to be achieved with this moderately low dielectric constant material. The small temperature dependence of the dielectric constant, and the high reliability, high resistivity, and low dielectric loss of Al 2 O 3 , make it even more appealing. We have constructed single dielectric layer thin film capacitors and shown that they can be stacked to form multilayered structures with no loss in yield for a given capacitance. Control of film growth morphology is critical for achieving the smooth, high quality interfaces between metal and dielectric necessary for device operation at high electric fields. Most importantly, high rate deposition with extremely low particle generation is essential for achieving high energy storage at a reasonable cost. This has been achieved by reactive magnetron sputtering in which the reaction to form the dielectric oxide has been confined to the deposition surface. By this technique we have achieved a yield of over 50% for 1 cm 2 devices with an energy density of 14 J per cubic centimeter of Al 2 O 3 dielectric material in 1.2 kV, 4 nF devices. By further reducing defect density and increasing the dielectric constant of the material, we will be able to increase capacitance and construct high energy density devices to meet the requirements of applications in power electronics

  17. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes

    Science.gov (United States)

    Cheng, Yingwen; Zhang, Hongbo; Lu, Songtao; Varanasi, Chakrapani V.; Liu, Jie

    2013-01-01

    Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO2, activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of the original capacitance retained when the scan rate was increased from 2 mV s-1 to 500 mV s-1. Owing to the unique composite structure, these supercapacitors were able to deliver high energy density (24 W h kg-1) under high power density (7.8 kW kg-1) conditions. These features could enable supercapacitor based energy storage systems to be very attractive for a variety of critical applications, such as the power sources in hybrid electric vehicles and the back-up powers for wind and solar energy, where both high energy density and high power density are required.Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO2, activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of

  18. Modelling the Effect of Weave Structure and Fabric Thread Density on Mechanical and Comfort Properties of Woven Fabrics

    Directory of Open Access Journals (Sweden)

    Maqsood Muhammad

    2016-09-01

    Full Text Available The paper investigates the effects of weave structure and fabric thread density on the comfort and mechanical properties of various test fabrics woven from polyester/cotton yarns. Three different weave structures, that is, 1/1 plain, 2/1 twill and 3/1 twill, and three different fabric densities were taken as input variables whereas air permeability, overall moisture management capacity, tensile strength and tear strength of fabrics were taken as response variables and a comparison is made of the effect of weave structure and fabric density on the response variables. The results of fabric samples were analysed in Minitab statistical software. The coefficients of determinations (R-sq values of the regression equations show a good predictive ability of the developed statistical models. The findings of the study may be helpful in deciding appropriate manufacturing specifications of woven fabrics to attain specific comfort and mechanical properties.

  19. High density dispersion fuel

    International Nuclear Information System (INIS)

    Hofman, G.L.

    1996-01-01

    A fuel development campaign that results in an aluminum plate-type fuel of unlimited LEU burnup capability with an uranium loading of 9 grams per cm 3 of meat should be considered an unqualified success. The current worldwide approved and accepted highest loading is 4.8 g cm -3 with U 3 Si 2 as fuel. High-density uranium compounds offer no real density advantage over U 3 Si 2 and have less desirable fabrication and performance characteristics as well. Of the higher-density compounds, U 3 Si has approximately a 30% higher uranium density but the density of the U 6 X compounds would yield the factor 1.5 needed to achieve 9 g cm -3 uranium loading. Unfortunately, irradiation tests proved these peritectic compounds have poor swelling behavior. It is for this reason that the authors are turning to uranium alloys. The reason pure uranium was not seriously considered as a dispersion fuel is mainly due to its high rate of growth and swelling at low temperatures. This problem was solved at least for relatively low burnup application in non-dispersion fuel elements with small additions of Si, Fe, and Al. This so called adjusted uranium has nearly the same density as pure α-uranium and it seems prudent to reconsider this alloy as a dispersant. Further modifications of uranium metal to achieve higher burnup swelling stability involve stabilization of the cubic γ phase at low temperatures where normally α phase exists. Several low neutron capture cross section elements such as Zr, Nb, Ti and Mo accomplish this in various degrees. The challenge is to produce a suitable form of fuel powder and develop a plate fabrication procedure, as well as obtain high burnup capability through irradiation testing

  20. Fabrication Flaw Density and Distribution in Weld Repairs

    International Nuclear Information System (INIS)

    Doctor, Steven R.

    2009-01-01

    The Pacific Northwest National Laboratory (PNNL) is developing a generalized flaw distribution for the population of nuclear reactor pressure vessels and for piping welds in the U. S. operating reactors. The purpose of the generalized flaw distribution is to predict component-specific flaw densities. The estimates of fabrication flaws are intended for use in fracture mechanics structural integrity assessments. Structural integrity assessments, such as estimating the frequency of loss-of-coolant accidents, are performed by computer codes that require, as input, accurate estimates of flaw densities. Welds from four different cancelled reactor pressure vessels and a collection of archived pipes have been studied to develop empirical estimates of fabrication flaw densities. This paper describes the fabrication flaw distribution and characterization in the repair weld metal of vessels and piping. This work indicates that large flaws occur in these repairs which are complex in composition and sometimes include cracks on the ends of the repair cavities. Parametric analysis using an exponential fit is performed on the data. Construction records where available were reviewed. It is difficult to make conclusions due to the limited number of construction records reviewed. However, the records reviewed to date show a significant change in repair frequency over the years when the components in this study were fabricated. A description of repair flaw morphology is provided with a discussion of fracture mechanics significance.

  1. Fabrication of ultrahigh density metal-cell-metal crossbar memory devices with only two cycles of lithography and dry-etch procedures

    KAUST Repository

    Zong, Baoyu

    2013-05-20

    A novel approach to the fabrication of metal-cell-metal trilayer memory devices was demonstrated by using only two cycles of lithography and dry-etch procedures. The fabricated ultrahigh density crossbar devices can be scaled down to ≤70 nm in half-pitch without alignment issues. Depending on the different dry-etch mechanisms in transferring high and low density nanopatterns, suitable dry-etch angles and methods are studied for the transfer of high density nanopatterns. Some novel process methods have also been developed to eliminate the sidewall and other conversion obstacles for obtaining high density of uniform metallic nanopatterns. With these methods, ultrahigh density trilayer crossbar devices (∼2 × 1010 bit cm-2-kilobit electronic memory), which are composed of built-in practical magnetoresistive nanocells, have been achieved. This scalable process that we have developed provides the relevant industries with a cheap means to commercially fabricate three-dimensional high density metal-cell-metal nanodevices. © 2013 IOP Publishing Ltd.

  2. Material versatility using replica molding for large-scale fabrication of high aspect-ratio, high density arrays of nano-pillars

    International Nuclear Information System (INIS)

    Li, Y; Menon, C; Ng, H W; Gates, B D

    2014-01-01

    Arrays of high aspect-ratio (AR) nano-pillars have attracted a lot of interest for various applications, such as for use in solar cells, surface acoustic sensors, tissue engineering, bio-inspired adhesives and anti-reflective surfaces. Each application may require a different structural material, which can vary in the required chemical composition and mechanical properties. In this paper, a low cost fabrication procedure is proposed for large scale, high AR and high density arrays of nano-pillars. The proposed method enables the replication of a master with high fidelity, using the subsequent replica molds multiple times, and preparing arrays of nano-pillars in a variety of different materials. As an example applied to bio-inspired dry adhesion, polymeric arrays of nano-pillars are prepared in this work. Thermoset and thermoplastic nano-pillar arrays are examined using an atomic force microscope to assess their adhesion strength and its uniformity. Results indicate the proposed method is robust and can be used to reliably prepare nano-structures with a high AR. (paper)

  3. Development of high temperature superconductors having high critical current density

    International Nuclear Information System (INIS)

    Hong, Gye Wong; Kim, C. J.; Lee, H.G.; Kwon, S. C.; Lee, H. J.; Kim, K. B.; Park, J. Y.; Jung, C. H.

    2000-08-01

    Fabrication of high T c superconductors and its applications for electric power device were carried out for developing superconductor application technologies. High quality YBCO superconductors was fabricated by melt texture growth, top-seeded melt growth process and multi-seeded melt growth process and the properties was compared. The critical current density of the melt processed YBCO superconductors was about few 10,000 A/cm 2 and the levitation force was 50 N. The processing time needed for the growth of the 123 single grain was greatly reduced by applying multi-seeding without no significant degradation of the levitation force. The multi-seeded melt growth process was confirmed as a time-saving and cost-effective method for the fabrication of bulk superconductors with controlled crystallographic orientation

  4. Development of high temperature superconductors having high critical current density

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Gye Wong; Kim, C. J.; Lee, H.G.; Kwon, S. C.; Lee, H. J.; Kim, K. B.; Park, J. Y.; Jung, C. H

    2000-08-01

    Fabrication of high T{sub c} superconductors and its applications for electric power device were carried out for developing superconductor application technologies. High quality YBCO superconductors was fabricated by melt texture growth, top-seeded melt growth process and multi-seeded melt growth process and the properties was compared. The critical current density of the melt processed YBCO superconductors was about few 10,000 A/cm{sup 2} and the levitation force was 50 N. The processing time needed for the growth of the 123 single grain was greatly reduced by applying multi-seeding without no significant degradation of the levitation force. The multi-seeded melt growth process was confirmed as a time-saving and cost-effective method for the fabrication of bulk superconductors with controlled crystallographic orientation.

  5. Methods and systems for fabricating high quality superconducting tapes

    Science.gov (United States)

    Majkic, Goran; Selvamanickam, Venkat

    2018-02-13

    An MOCVD system fabricates high quality superconductor tapes with variable thicknesses. The MOCVD system can include a gas flow chamber between two parallel channels in a housing. A substrate tape is heated and then passed through the MOCVD housing such that the gas flow is perpendicular to the tape's surface. Precursors are injected into the gas flow for deposition on the substrate tape. In this way, superconductor tapes can be fabricated with variable thicknesses, uniform precursor deposition, and high critical current densities.

  6. Fabrication and characterization of nano-particulate PtCo media for ultra-high density perpendicular magnetic recording

    International Nuclear Information System (INIS)

    Newman, Dave M; Wears, M Lesley; Jollie, Michael; Choo, Desmond

    2007-01-01

    The year-on-year growth in areal recording density maintained now for half a century by the hard disk industry has required a corresponding reduction in the size of the magnetic grains comprising the storage media employed. Grain dimensions are now such that the performance of materials which thus far have served the industry well can no longer be maintained as further reduction in their volume risks breaching the superparamagnetic limit with the attendant loss of data integrity. The high magnetocrystalline anisotropy of the Ll 0 phase of PtCo allows particles as small as 4 nm diameter to remain magnetically stable in the elevated temperature environment typical of disk drive systems. A non-interacting dispersion of nanomagnetic particles suspended in an inert non-magnetic host such that each has its anisotropy axis directed perpendicular to the surface of the medium now constitutes the new ideal for a recording medium. Fabrication by a novel combination of conventional sputtering and thermal processing technologies of a medium closely approximating this ideal is demonstrated. An optimized two-stage fabrication process produces a near mono-dispersion of particles with magnetic activation volumes centred about 5 x 10 23 and crystallized in the L1 0 phase with an orientated tetragonal structure. The characteristics of this medium are discussed as a function of composition and crystalline structure. In the absence of a thermally assisted recording head, experiments are conducted on a degraded form of the medium that is shown to support perpendicular recording at linear densities in excess of 240 kfci (D50 point)

  7. Fabrication of highly ordered nanoporous alumina films by stable high-field anodization

    International Nuclear Information System (INIS)

    Li Yanbo; Zheng Maojun; Ma Li; Shen Wenzhong

    2006-01-01

    Stable high-field anodization (1500-4000 A m -2 ) for the fabrication of highly ordered porous anodic alumina films has been realized in a H 3 PO 4 -H 2 O-C 2 H 5 OH system. By maintaining the self-ordering voltage and adjusting the anodizing current density, high-quality self-ordered alumina films with a controllable inter-pore distance over a large range are achieved. The high anodizing current densities lead to high-speed film growth (4-10 μm min -1 ). The inter-pore distance is not solely dependent on the anodizing voltage, but is also influenced by the anodizing current density. This approach is simple and cost-effective, and is of great value for applications in diverse areas of nanotechnology

  8. Methods and systems for fabricating high quality superconducting tapes

    Energy Technology Data Exchange (ETDEWEB)

    Majkic, Goran; Selvamanickam, Venkat

    2018-02-13

    An MOCVD system fabricates high quality superconductor tapes with variable thicknesses. The MOCVD system can include a gas flow chamber between two parallel channels in a housing. A substrate tape is heated and then passed through the MOCVD housing such that the gas flow is perpendicular to the tape's surface. Precursors are injected into the gas flow for deposition on the substrate tape. In this way, superconductor tapes can be fabricated with variable thicknesses, uniform precursor deposition, and high critical current densities.

  9. Quasi-static puncture resistance behaviors of high-strength polyester fabric for soft body armor

    Directory of Open Access Journals (Sweden)

    Qiu-Shi Wang

    Full Text Available A series of economical and flexible fabrics were prepared using high-strength polyester yarns with different fabric structures, weft density and number of layers. The effect of these factors on quasi-static puncture resistance was comparatively studied. The failure mode of the fabrics was analyzed with SEM photographs. Findings indicate that the structure and the weft density affected the quasi-static puncture resistance property of the fabrics, the plain fabrics had better puncture resistance property than twill and satin fabrics. The max puncture force and puncture energy of the plain fabrics with 160 yarn/10 cm reached the max values which were 107.43 N and 0.44 J, respectively. The number of layers had a linear relationship to quasi-static puncture resistance. The contact pressure and friction of the probe against the fibers were the main hindrance during the quasi-static puncture process and the breakage of the fibers during the penetration was caused by the bend and tensile deformation. Keywords: High-strength polyester fabrics, Fabric structure, Multiple-layer fabrics, Quasi-static puncture resistance

  10. High-Current-Density Vertical-Tunneling Transistors from Graphene/Highly Doped Silicon Heterostructures.

    Science.gov (United States)

    Liu, Yuan; Sheng, Jiming; Wu, Hao; He, Qiyuan; Cheng, Hung-Chieh; Shakir, Muhammad Imran; Huang, Yu; Duan, Xiangfeng

    2016-06-01

    Scalable fabrication of vertical-tunneling transistors is presented based on heterostructures formed between graphene, highly doped silicon, and its native oxide. Benefiting from the large density of states of highly doped silicon, the tunneling transistors can deliver a current density over 20 A cm(-2) . This study demonstrates that the interfacial native oxide plays a crucial role in governing the carrier transport in graphene-silicon heterostructures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Highly conductive templated-graphene fabrics for lightweight, flexible and foldable supercapacitors

    Science.gov (United States)

    Zhang, Ping; Zhang, Hanzhi; Yan, Casey; Zheng, Zijian; Yu, You

    2017-07-01

    The templated-rGO fabric, featuring high conductivity (<1.0 Ω □-1) and low density (160 mg cm-2), is prepared by a simple dip-coating technique with sequentially coating nickel via polymer-assisted metal deposition (PAMD) and reduced-graphene oxide (rGO) on textile fabric templates at very mild conditions and is used in the fabrication of energy storage devices. As a proof of concept, both the layered and planar supercapacitors (SCs) are successfully fabricated using the rGO fabrics as templates, and both exhibit excellent electrochemical performance, ultrahigh stability with 2000 charge-discharge cycles and mechanical flexibility at bending (r  =  3 mm) and even folding states. It is found that the material of textile fabric used has a profound effect on the electrochemical property of SCs. The comparison result reveals that loose natural cotton fabrics are more suitable than tight man-made nylon fabrics for preparing high-performance SCs. In addition, such supercapacitor can be sewed into commercial textiles and powers a LED light, indicating promising applications in wearable electronics.

  12. Fabrication technology for lead-alloy Josephson devices for high-density integrated circuits

    International Nuclear Information System (INIS)

    Imamura, T.; Hoko, H.; Tamura, H.; Yoshida, A.; Suzuki, H.; Morohashi, S.; Ohara, S.; Hasuo, S.; Yamaoka, T.

    1986-01-01

    Fabrication technology for lead-alloy Josephson devices was evaluated from the viewpoint of application to large-scale integrated circuits. Metal and insulating layers used in the circuits were evaluated, and optimization of techniques for deposition or formation of these layers was investigated. Metallization of the Pb-In-Au base electrode and the Pb-Bi counterelectrode was studied in terms of optimizing the deposited films, to improve the reliability of junction electrodes. The formation of the oxide barrier was studied by in situ ellipsometry. SiO/sub x/ deposited in oxygen was developed as the insulation layer with less defect density than conventional SiO. A liftoff technique using toluene soaking was developed, and patterns with a minimum line width of 2 μm were consistently reproduced. The characteristics of each element in the circuits were evaluated for test vehicles. For the junction, the following items were evaluated: controllability of the critical current I/sub c/, junction quality, I/sub c/ uniformity, junction yield, and thermal cycling and storage stability. For the peripheral elements, integrity of lines and contacts, and characteristics of resistors were evaluated. 8-kbit memory cell arrays with a full vertical structure were fabricated to evaluate these technologies in combination. The continuity of each metal layer and insulation between metal layers were evaluated with an autoprober at room temperature. For selected chips, cell characteristics have been measured, and their I/sub c/ uniformity and production yields for cells are discussed. Normal operation of the memory cells was confirmed for all of the 24 accessible cells on a chip

  13. High density data storage principle, technology, and materials

    CERN Document Server

    Zhu, Daoben

    2009-01-01

    The explosive increase in information and the miniaturization of electronic devices demand new recording technologies and materials that combine high density, fast response, long retention time and rewriting capability. As predicted, the current silicon-based computer circuits are reaching their physical limits. Further miniaturization of the electronic components and increase in data storage density are vital for the next generation of IT equipment such as ultra high-speed mobile computing, communication devices and sophisticated sensors. This original book presents a comprehensive introduction to the significant research achievements on high-density data storage from the aspects of recording mechanisms, materials and fabrication technologies, which are promising for overcoming the physical limits of current data storage systems. The book serves as an useful guide for the development of optimized materials, technologies and device structures for future information storage, and will lead readers to the fascin...

  14. Wearable supercapacitors on polyethylene terephthalate fabrics with good wash fastness and high flexibility

    Science.gov (United States)

    Wang, Guixia; Babaahmadi, Vahid; He, Nanfei; Liu, Yixin; Pan, Qin; Montazer, Majid; Gao, Wei

    2017-11-01

    All solid-state micro-supercapacitors (MSC) have emerged as attractive energy-storage units for portable and wearable electronics. Here, we describe a textile-based solid-state MSC via laser scribing of graphene oxide (GO) coatings on a flexible polyethylene terephthalate (PET) fabric. The laser-scribed graphene oxide layers (LGO) possess three-dimensionally porous structure suitable for electrochemical-double-layer formation. To improve the wash fastness and the flexibility of the as-prepared MSCs, glutaraldehyde (GA) was employed to crosslink the GO layers and PVA-gel electrolyte onto the PET fabric. The resultant all solid-state MSCs exhibited excellent flexibility, high areal specific capacitance (756 μF·cm-2 at 20 mV·s-1), and good rate capability when subject to bending and laundering. Furthermore, the MSC device showed a high power density of about 1.4 W·cm-3 and an energy density of 5.3 × 10-5 Wh·cm-3, and retained 98.3% of its initial capacitance after 1000 cycles at a current density of 0.5 mA·cm-2. This work is the first demonstration of in-plane MSCs on PET fabric surfaces with enhanced durability and flexibility.

  15. Recent advances in high-temperature superconductor wire fabrication and applications development

    International Nuclear Information System (INIS)

    Hull, J.R.; Uherka, K.L.

    1992-01-01

    In this paper, recent advances in fabrication of high-temperature superconductor wires are summarized and detailed discussion is provided on developments in near- and intermediate-term applications. Near-term applications, using presently obtainable current densities, include liquid-nitrogen depth sensors, cryostat current leads, and magnetic bearings. Intermediate-term applications, using current densities expected to be available in the near future, include fault-current limiters and short transmission lines

  16. High Efficiency, High Density Terrestrial Panel. [for solar cell modules

    Science.gov (United States)

    Wohlgemuth, J.; Wihl, M.; Rosenfield, T.

    1979-01-01

    Terrestrial panels were fabricated using rectangular cells. Packing densities in excess of 90% with panel conversion efficiencies greater than 13% were obtained. Higher density panels can be produced on a cost competitive basis with the standard salami panels.

  17. Technique for fabrication of gradual standards of radiographic image blachening density

    International Nuclear Information System (INIS)

    Borovin, I.V.; Kondina, M.A.

    1987-01-01

    The technique of fabrication of gradual standards of blackening density for industrial radiography by contact printing from a negative is described. The technique is designed for possibilities of industrial laboratoriesof radiation defectoscopy possessing no special-purpose sensitometric equipment

  18. Electrochemical fabrication of interconnected tungsten bronze nanosheets for high performance supercapacitor

    Science.gov (United States)

    Yang, Gan; Liu, Xiao-Xia

    2018-04-01

    Interconnected H0.12WO3ṡH2O nanosheets with high electrochemical performances are fabricated on partial exfoliated graphite substrate (Ex-GF) by potential-limited pulse galvanostatic method (PLPG). The dead volume problem of bulk pesudocapacitive materials is addressed by the novel interconnected nanosheets structure, enabling a large specific capacitance of 5.95 F cm-2 (495.8 F g-1) at 2 mA cm-2. Merited from the fluent electrolyte penetration channels established by the plenty voids among nanosheets, as well as fast electron transportation in the electronic conductive tungsten bronze which is directly grown from graphite substrate, the obtained WO3/Ex-GF demonstrates excellent rate capability. The material can maintain 60.0% of its capacitance when the discharge current density increases from 2 to 100 mA cm-2. Moreover, WO3/Ex-GF doesn't show capacitance decay after 5000 galvanostatic charge-discharge cycles, displaying its super stability. Furthermore, a high performance asymmetric supercapacitor assembled by using WO3/Ex-GF and electrochemical fabricated MnO2/Ex-GF as negative and positive electrodes, respectively displays a high energy density of 2.88 mWh cm-3 at the power density of 11.1 mW cm-3, demonstrating its potential application for energy storage.

  19. Fabrication of a high-density MCM-D for a pixel detector system using a BCB/Cu technology

    CERN Document Server

    Topper, M; Engelmann, G; Fehlberg, S; Gerlach, P; Wolf, J; Ehrmann, O; Becks, K H; Reichl, H

    1999-01-01

    The MCM-D which is described here is a prototype for a pixel detector system for the planned Large Hadron Collider (LHC) at CERN, Geneva. The project is within the ATLAS experiment. The module consists of a sensor tile with an active area of 16.4 mm*60.4 mm, 16 readout chips, each serving 24*160 pixel unit cells, a module controller chip, an optical transceiver and the local signal interconnection and power distribution buses. The extremely high wiring density which is necessary to interconnect the readout chips was achieved using a thin film copper/photo-BCB process above the pixel array. The bumping of the readout chips was done by PbSn electroplating. All dice are then attached by flip-chip assembly to the sensor diodes and the local buses. The focus of this paper is a detailed description of the technologies for the fabrication of this advanced MCM-D. (10 refs).

  20. Process for fabricating composite material having high thermal conductivity

    Science.gov (United States)

    Colella, Nicholas J.; Davidson, Howard L.; Kerns, John A.; Makowiecki, Daniel M.

    2001-01-01

    A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

  1. Manufacture of sintered bricks of high density from beryllium oxide; Fabrication de frittes de forte densite a base d'oxyde de beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Pointud, R; Rispal, Ch; Le Garec, M [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    Beryllium oxide bricks of nuclear purity 100 x 100 x 50 and 100 x 100 x 100 mm of very high density (between 2.85 and 3.00) are manufactured by sintering under pressure in graphite moulds at temperatures between 1,750 and 1,850 deg. C, and under a pressure of 150 kg/cm{sup 2}. The physico-chemical state of the saw material is of considerable importance with regard to the success of the sintering operation. In addition, a study of the sintering of a BeO mixture with 3 to 5 per cent of boron introduced in the form of boric acid, boron carbide or elementary boron shows that high densities can only be obtained by sintering under pressure. For technical reasons of manufacture, only the mixture based on boron carbide is used. The sintering is carried out in graphite moulds at 1500 deg. C under 150 kg/cm{sup 2} pressure, and bricks can be obtained with density between 2,85 and 2,90. Laboratory studies and the industrial manufacture of various sinters are described in detail. (author) [French] La fabrication de briques d'oxyde de beryllium de purete nucleaire de 100 x 100 x 50 et de 100 x 100 x 100 mm de densite tres elevee (comprise entre 2.85 et 3.00) est realisee par frittage sous charge dans des moules en graphite entre 1750 et 1850 deg. C, sous 150 kg/cm{sup 2} de pression. L'etat physico-chimique de la matiere premiere a une importance considerable quant au succes de l'operation de frittage. Par ailleurs, l'etude du frittage du mixte BeO a 3 et 5 pour cent de bore element introduit sous forme d'anhydride borique, soit de carbure de bore ou de bore element, montre que seul le frittage sous charge permet d'obtenir des densites elevees. Pour des raisons techniques de fabrication seul le mixte a base de carbure de bore est retenu. Le frittage s'opere dans des moules de graphite a 1500 deg. C sous 150 kg/cm{sup 2} de pression et permet d'obtenir des briques de densite comprise entre 2.85 et 2.90. Les etudes de laboratoire et la fabrication industrielle des differents

  2. Fabrication and characterization of active nanostructures

    Science.gov (United States)

    Opondo, Noah F.

    Three different nanostructure active devices have been designed, fabricated and characterized. Junctionless transistors based on highly-doped silicon nanowires fabricated using a bottom-up fabrication approach are first discussed. The fabrication avoids the ion implantation step since silicon nanowires are doped in-situ during growth. Germanium junctionless transistors fabricated with a top down approach starting from a germanium on insulator substrate and using a gate stack of high-k dielectrics and GeO2 are also presented. The levels and origin of low-frequency noise in junctionless transistor devices fabricated from silicon nanowires and also from GeOI devices are reported. Low-frequency noise is an indicator of the quality of the material, hence its characterization can reveal the quality and perhaps reliability of fabricated transistors. A novel method based on low-frequency noise measurement to envisage trap density in the semiconductor bandgap near the semiconductor/oxide interface of nanoscale silicon junctionless transistors (JLTs) is presented. Low-frequency noise characterization of JLTs biased in saturation is conducted at different gate biases. The noise spectrum indicates either a Lorentzian or 1/f. A simple analysis of the low-frequency noise data leads to the density of traps and their energy within the semiconductor bandgap. The level of noise in silicon JLT devices is lower than reported values on transistors fabricated using a top-down approach. This noise level can be significantly improved by improving the quality of dielectric and the channel interface. A micro-vacuum electron device based on silicon field emitters for cold cathode emission is also presented. The presented work utilizes vertical Si nanowires fabricated by means of self-assembly, standard lithography and etching techniques as field emitters in this dissertation. To obtain a high nanowire density, hence a high current density, a simple and inexpensive Langmuir Blodgett technique

  3. Effect of fabrication parameters on morphological and optical properties of highly doped p-porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Zare, Maryam, E-mail: mar.zare@gmail.com [Young Researchers Club, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr (Iran, Islamic Republic of); Shokrollahi, Abbas [Young Researchers Club, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr (Iran, Islamic Republic of); Seraji, Faramarz E. [Optical Communication Group, Iran Telecom Research Center, Tehran (Iran, Islamic Republic of)

    2011-09-01

    Porous silicon (PS) layers were fabricated by anodization of low resistive (highly doped) p-type silicon in HF/ethanol solution, by varying current density, etching time and HF concentration. Atomic force microscopy (AFM) and field emission scanning electron microscope (FESEM) analyses were used to investigate the physical properties and reflection spectrum was used to investigate the optical behavior of PS layers in different fabrication conditions. Vertically aligned mesoporous morphology is observed in fabricated films and with HF concentration higher than 20%. The dependence of porosity, layer thickness and rms roughness of the PS layer on current density, etching time and composition of electrolyte is also observed in obtained results. Correlation between reflectivity and fabrication parameters was also explored. Thermal oxidation was performed on some mesoporous layers that resulted in changes of surface roughness, mean height and reflectivity of the layers.

  4. Fabrication and demonstration of high energy density lithium ion microbatteries

    Science.gov (United States)

    Sun, Ke

    Since their commercialization by Sony two decades ago, Li-ion batteries have only experienced mild improvement in energy and power performance, which remains one of the main hurdles for their widespread implementation in applications outside of powering compact portable devices, such as in electric vehicles. Li-ion batteries must be advanced through a disruptive technological development or a series of incremental improvements in chemistry and design in order to be competitive enough for advanced applications. As it will be introduced in this work, achieving this goal by new chemistries and chemical modifications does not seem to be promising in the short term, so efforts to fully optimize existing systems must be pursued at in parallel. This optimization must be mainly relying on the modification and optimizations of micro and macro structures of current battery systems. This kind of battery architecture study will be even more important when small energy storage devices are desired to power miniaturized and autonomous gadgets, such as MEMs, micro-robots, biomedical sensors, etc. In this regime, the limited space available makes requirements on electrode architecture more stringent and the assembly process more challenging. Therefore, the study of battery assembly strategies for Li-ion microbatteries will benefit not only micro-devices but also the development of more powerful and energetic large scale battery systems based on available chemistries. In chapter 2, preliminary research related to the mechanism for the improved rate capability of cathodes by amorphous lithium phosphate surficial films will be used to motivate the potential for structural optimization of existing commercial lithium ion battery electrode. In the following chapters, novel battery assembly techniques will be explored to achieve new battery architectures. In chapter 3, direct ink writing will be used to fabricate 3D interdigitated microbattery structures that have superior areal energy

  5. Research on high energy density plasmas and applications

    International Nuclear Information System (INIS)

    1999-01-01

    Recently, technologies on lasers, accelerators, and pulse power machines have been significantly advanced and input power density covers the intensity range from 10 10 W/cm 2 to higher than 10 20 W/cm 2 . As the results, high pressure gas and solid targets can be heated up to very high temperature to create hot dense plasmas which have never appeared on the earth. The high energy density plasmas opened up new research fields such as inertial confinement fusion, high brightness X-ray radiation sources, interiors of galactic nucleus,supernova, stars and planets, ultra high pressure condensed matter physics, plasma particle accelerator, X-ray laser, and so on. Furthermore, since these fields are intimately connected with various industrial sciences and technologies, the high energy density plasma is now studied in industries, government institutions, and so on. This special issue of the Journal of Plasma Physics and Nuclear Fusion Research reviews the high energy density plasma science for the comprehensive understanding of such new fields. In May, 1998, the review committee for investigating the present status and the future prospects of high energy density plasma science was established in the Japan Society of Plasma Science and Nuclear Fusion Research. We held three committee meetings to discuss present status and critical issues of research items related to high energy density plasmas. This special issue summarizes the understandings of the committee. This special issue consists of four chapters: They are Chapter 1: Physics important in the high energy density plasmas, Chapter 2: Technologies related to the plasma generation; drivers such as lasers, pulse power machines, particle beams and fabrication of various targets, Chapter 3: Plasma diagnostics important in high energy density plasma experiments, Chapter 4: A variety of applications of high energy density plasmas; X-ray radiation, particle acceleration, inertial confinement fusion, laboratory astrophysics

  6. A nitrogen doped low-dislocation density free-standing single crystal diamond plate fabricated by a lift-off process

    Energy Technology Data Exchange (ETDEWEB)

    Mokuno, Yoshiaki, E-mail: mokuno-y@aist.go.jp; Kato, Yukako; Tsubouchi, Nobuteru; Chayahara, Akiyoshi; Yamada, Hideaki; Shikata, Shinichi [Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan)

    2014-06-23

    A nitrogen-doped single crystal diamond plate with a low dislocation density is fabricated by chemical vapor deposition (CVD) from a high pressure high temperature synthetic type IIa seed substrate by ion implantation and lift-off processes. To avoid sub-surface damage, the seed surface was subjected to deep ion beam etching. In addition, we introduced a nitrogen flow during the CVD step to grow low-strain diamond at a relatively high growth rate. This resulted in a plate with low birefringence and a dislocation density as low as 400 cm{sup −2}, which is the lowest reported value for a lift-off plate. Reproducing this lift-off process may allow mass-production of single crystal CVD diamond plates with low dislocation density and consistent quality.

  7. CuO Nanoflowers growing on Carbon Fiber Fabric for Flexible High-Performance Supercapacitors

    International Nuclear Information System (INIS)

    Xu, Weina; Dai, Shuge; Liu, Guanlin; Xi, Yi; Hu, Chenguo; Wang, Xue

    2016-01-01

    Graphical abstract: One of the best electrochemical performances for CuOelectrodes based supercapacitorisachieved by the CuOhierarchical structure growing on the carbon fiber fabric (CuO/CFF) in aqueous electrolyte. Meanwhile, a flexible solid-state supercapacitoris also fabricated as a promising candidate in energy storage for flexible, wearable and lightweight electronics. - Highlights: • The electrodes are fabricated by cupric oxide growing on carbon fiber fabric (CuO/CFF). • The capacitor performance is optimized by the mass loading. • One of the best electrochemical performances is achieved for CuO/CFF supercapacitor. • A highly flexible solid-state supercapacitor can power 3 light-emitting diodes for about 5 min. - Abstract: A hierarchical CuO nano-structure is prepared by directly growing CuO nanoflowers on carbon fiber fabric (CuO/CFF) via a hydrothermal method. The CuO/CFF is used as the electrode material of a supercapacitor for electrochemical energy storage. The supercapacitor displays superior electrochemical performance in aqueous electrolyte with the specific capacitance of 839.9 F/g at the scan rate of 1 mV/s, energy density of 10.05 Wh/kg and power density of 1798.5 W/kg, which are the highest values for the CuO/CFF electrodes. Moreover, a flexible symmetric solid-state symmetric supercapacitor is also fabricated by using the CuO/CFF as electrodes. The solid-state supercapacitor exhibits a specific capacitance of 131.34 F/g at the scan rate of 1 mV/s with a power density of 145.12 W/kg, and 95.8% capacitance retention after 2000 charge-discharge cycles.

  8. High volumetric power density, non-enzymatic, glucose fuel cells.

    Science.gov (United States)

    Oncescu, Vlad; Erickson, David

    2013-01-01

    The development of new implantable medical devices has been limited in the past by slow advances in lithium battery technology. Non-enzymatic glucose fuel cells are promising replacement candidates for lithium batteries because of good long-term stability and adequate power density. The devices developed to date however use an "oxygen depletion design" whereby the electrodes are stacked on top of each other leading to low volumetric power density and complicated fabrication protocols. Here we have developed a novel single-layer fuel cell with good performance (2 μW cm⁻²) and stability that can be integrated directly as a coating layer on large implantable devices, or stacked to obtain a high volumetric power density (over 16 μW cm⁻³). This represents the first demonstration of a low volume non-enzymatic fuel cell stack with high power density, greatly increasing the range of applications for non-enzymatic glucose fuel cells.

  9. Development of Advanced High Uranium Density Fuels for Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, James [Univ. of Wisconsin, Madison, WI (United States); Butt, Darryl [Boise State Univ., ID (United States); Meyer, Mitchell [Idaho National Lab. (INL), Idaho Falls, ID (United States); Xu, Peng [Westinghouse Electric Corporation, Pittsburgh, PA (United States)

    2016-02-15

    This work conducts basic materials research (fabrication, radiation resistance, thermal conductivity, and corrosion response) on U3Si2 and UN, two high uranium density fuel forms that have a high potential for success as advanced light water reactor (LWR) fuels. The outcome of this proposed work will serve as the basis for the development of advance LWR fuels, and utilization of such fuel forms can lead to the optimization of the fuel performance related plant operating limits such as power density, power ramp rate and cycle length.

  10. Toward more efficient fabrication of high-density 2-D VCSEL arrays for spatial redundancy and/or multi-level signal communication

    Science.gov (United States)

    Roscher, Hendrik; Gerlach, Philipp; Khan, Faisal Nadeem; Kroner, Andrea; Stach, Martin; Weigl, Alexander; Michalzik, Rainer

    2006-04-01

    We present flip-chip attached high-speed VCSELs in 2-D arrays with record-high intra-cell packing densities. The advances of VCSEL array technology toward improved thermal performance and more efficient fabrication are reviewed, and the introduction of self-aligned features to these devices is pointed out. The structure of close-spaced wedge-shaped VCSELs is discussed and their static and dynamic characteristics are presented including an examination of the modal structure by near-field measurements. The lasers flip-chip bonded to a silicon-based test platform exhibit 3-dB and 10-dB bandwidths of 7.7 GHz and 9.8 GHz, respectively. Open 12.5 Gbit/s two-level eye patterns are demonstrated. We discuss the uses of high packing densities for the increase of the total amount of data throughput an array can deliver in the course of its life. One such approach is to provide up to two backup VCSELs per fiber channel that can extend the lifetimes of parallel transmitters through redundancy of light sources. Another is to increase the information density by using multiple VCSELs per 50 μm core diameter multimode fiber to generate more complex signals. A novel scheme using three butt-coupled VCSELs per fiber for the generation of four-level signals in the optical domain is proposed. First experiments are demonstrated using two VCSELs butt-coupled to the same standard glass fiber, each modulated with two-level signals to produce four-level signals at the photoreceiver. A four-level direct modulation of one VCSEL within a triple of devices produced first 20.6 Gbit/s (10.3 Gsymbols/s) four-level eyes, leaving two VCSELs as backup sources.

  11. Low-cost flexible supercapacitors with high-energy density based on nanostructured MnO2 and Fe2O3 thin films directly fabricated onto stainless steel

    Science.gov (United States)

    Gund, Girish S.; Dubal, Deepak P.; Chodankar, Nilesh R.; Cho, Jun Y.; Gomez-Romero, Pedro; Park, Chan; Lokhande, Chandrakant D.

    2015-01-01

    The facile and economical electrochemical and successive ionic layer adsorption and reaction (SILAR) methods have been employed in order to prepare manganese oxide (MnO2) and iron oxide (Fe2O3) thin films, respectively with the fine optimized nanostructures on highly flexible stainless steel sheet. The symmetric and asymmetric flexible-solid-state supercapacitors (FSS-SCs) of nanostructured (nanosheets for MnO2 and nanoparticles for Fe2O3) electrodes with Na2SO4/Carboxymethyl cellulose (CMC) gel as a separator and electrolyte were assembled. MnO2 as positive and negative electrodes were used to fabricate symmetric SC, while the asymmetric SC was assembled by employing MnO2 as positive and Fe2O3 as negative electrode. Furthermore, the electrochemical features of symmetric and asymmetric SCs are systematically investigated. The results verify that the fabricated symmetric and asymmetric FSS-SCs present excellent reversibility (within the voltage window of 0–1 V and 0–2 V, respectively) and good cycling stability (83 and 91%, respectively for 3000 of CV cycles). Additionally, the asymmetric SC shows maximum specific capacitance of 92 Fg−1, about 2-fold of higher energy density (41.8 Wh kg−1) than symmetric SC and excellent mechanical flexibility. Furthermore, the “real-life” demonstration of fabricated SCs to the panel of SUK confirms that asymmetric SC has 2-fold higher energy density compare to symmetric SC. PMID:26208144

  12. Low-cost flexible supercapacitors with high-energy density based on nanostructured MnO2 and Fe2O3 thin films directly fabricated onto stainless steel

    Science.gov (United States)

    Gund, Girish S.; Dubal, Deepak P.; Chodankar, Nilesh R.; Cho, Jun Y.; Gomez-Romero, Pedro; Park, Chan; Lokhande, Chandrakant D.

    2015-07-01

    The facile and economical electrochemical and successive ionic layer adsorption and reaction (SILAR) methods have been employed in order to prepare manganese oxide (MnO2) and iron oxide (Fe2O3) thin films, respectively with the fine optimized nanostructures on highly flexible stainless steel sheet. The symmetric and asymmetric flexible-solid-state supercapacitors (FSS-SCs) of nanostructured (nanosheets for MnO2 and nanoparticles for Fe2O3) electrodes with Na2SO4/Carboxymethyl cellulose (CMC) gel as a separator and electrolyte were assembled. MnO2 as positive and negative electrodes were used to fabricate symmetric SC, while the asymmetric SC was assembled by employing MnO2 as positive and Fe2O3 as negative electrode. Furthermore, the electrochemical features of symmetric and asymmetric SCs are systematically investigated. The results verify that the fabricated symmetric and asymmetric FSS-SCs present excellent reversibility (within the voltage window of 0-1 V and 0-2 V, respectively) and good cycling stability (83 and 91%, respectively for 3000 of CV cycles). Additionally, the asymmetric SC shows maximum specific capacitance of 92 Fg-1, about 2-fold of higher energy density (41.8 Wh kg-1) than symmetric SC and excellent mechanical flexibility. Furthermore, the “real-life” demonstration of fabricated SCs to the panel of SUK confirms that asymmetric SC has 2-fold higher energy density compare to symmetric SC.

  13. Fabrication of high aspect ratio through-wafer copper interconnects by reverse pulse electroplating

    International Nuclear Information System (INIS)

    Gu, Changdong; Zhang, Tong-Yi; Xu, Hui

    2009-01-01

    This study aims to fabricate high aspect ratio through-wafer copper interconnects by a simple reverse pulse electroplating technique. High aspect-ratio (∼18) through-wafer holes obtained by a two-step deep reactive ion etching (DRIE) process exhibit a taper profile, which might automatically optimize the local current density distribution during the electroplating process, thereby achieving void-free high aspect-ratio copper vias

  14. Growth and characterization of high current density, high-speed InAs/AlSb resonant tunneling diodes

    Science.gov (United States)

    Soderstrom, J. R.; Brown, E. R.; Parker, C. D.; Mahoney, L. J.; Yao, J. Y.

    1991-01-01

    InAs/AlSb double-barrier resonant tunneling diodes with peak current densities up to 370,000 A/sq cm and high peak-to-valley current ratios of 3.2 at room temperature have been fabricated. The peak current density is well-explained by a stationary-state transport model with the two-band envelope function approximation. The valley current density predicted by this model is less than the experimental value by a factor that is typical of the discrepancy found in other double-barrier structures. It is concluded that threading dislocations are largely inactive in the resonant tunneling process.

  15. Composite material having high thermal conductivity and process for fabricating same

    Science.gov (United States)

    Colella, Nicholas J.; Davidson, Howard L.; Kerns, John A.; Makowiecki, Daniel M.

    1998-01-01

    A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

  16. Application of Inkjet Printing in High-Density Pixelated RGB Quantum Dot-Hybrid LEDs

    KAUST Repository

    Haverinen, Hanna; Jabbour, Ghassan E.

    2012-01-01

    to fabricate high-density, pixelated (quarter video graphics array (QVGA) format), monochromatic and RGB quantum dots light-emitting diodes (QDLEDs), where inkjet printing is used to deposit the light-emitting layer of QDs. It shows some of the factors

  17. High-density polymer microarrays: identifying synthetic polymers that control human embryonic stem cell growth.

    Science.gov (United States)

    Hansen, Anne; Mjoseng, Heidi K; Zhang, Rong; Kalloudis, Michail; Koutsos, Vasileios; de Sousa, Paul A; Bradley, Mark

    2014-06-01

    The fabrication of high-density polymer microarray is described, allowing the simultaneous and efficient evaluation of more than 7000 different polymers in a single-cellular-based screen. These high-density polymer arrays are applied in the search for synthetic substrates for hESCs culture. Up-scaling of the identified hit polymers enables long-term cellular cultivation and promoted successful stem-cell maintenance. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Binder-free three-dimensional high energy density electrodes for ionic-liquid supercapacitors.

    Science.gov (United States)

    Tran, Chau; Lawrence, Daniel; Richey, Francis W; Dillard, Caitlin; Elabd, Yossef A; Kalra, Vibha

    2015-09-18

    We demonstrate a facile methodology to fabricate binder-free porous carbon nanofiber electrodes for room temperature ionic-liquid supercapacitors. The device provides an energy density of 80 W h kg(-1) based on the mass of two electrodes while retaining the high rate capability of supercapacitors with near-ideal CV curves at a high scan rate of 200 mV s(-1).

  19. Highly efficient tandem organic light-emitting devices employing an easily fabricated charge generation unit

    Science.gov (United States)

    Yang, Huishan; Yu, Yaoyao; Wu, Lishuang; Qu, Biao; Lin, Wenyan; Yu, Ye; Wu, Zhijun; Xie, Wenfa

    2018-02-01

    We have realized highly efficient tandem organic light-emitting devices (OLEDs) employing an easily fabricated charge generation unit (CGU) combining 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile with ultrathin bilayers of CsN3 and Al. The charge generation and separation processes of the CGU have been demonstrated by studying the differences in the current density-voltage characteristics of external-carrier-excluding devices. At high luminances of 1000 and 10000 cd/m2, the current efficiencies of the phosphorescent tandem device are about 2.2- and 2.3-fold those of the corresponding single-unit device, respectively. Simultaneously, an efficient tandem white OLED exhibiting high color stability and warm white emission has also been fabricated.

  20. Qualification of high-density fuel manufacturing for research reactors at CNEA

    Energy Technology Data Exchange (ETDEWEB)

    Adelfang, P.; Alvarez, L.; Boero, N.; Calabrese, R.; De La Fuente, M.; Echenique, P.; Markiewicz, M.; Pasqualini, E.; Ruggirello, G.; Taboada, H. [CNEA, Buenos Aires (Argentina)

    2001-07-01

    CNEA, the National Atomic Energy Commission of Argentina, is at the present a qualified supplier of uranium oxide fuel for research reactors. A new objective in this field is to develop and qualify the manufacturing of LEU high-density fuel for this type of reactors. According with the international trend Silicide fuel and U-xMo fuel are included in our program as the most suitable options. The facilities to complete the qualification of high-density MTR fuels, like the manufacturing plant installations, the reactor, the pool side fuel examination station and the hot cells are fully operational and equipped to perform all the activities required within the program. The programs for both type of fuels include similar activities: development and set up of the fuel material manufacturing technology, set up of fuel plate manufacturing, fabrication and irradiation of miniplates, fabrication and irradiation of full scale fuel elements, post-irradiation examination and feedback for manufacturing improvements. For silicide fuels most of these steps have already been completed. For U-xMo fuel the activities also include the development of alternative ways to obtain U-xMo powder, feasibility studies for large-scale manufacturing and the economical assessment. Set up of U-xMo fuel plate manufacturing is also well advanced and the fabrication of the first full scale prototype is foreseen during this year. (author)

  1. Towards neuromorphic electronics: Memristors on foldable silicon fabric

    KAUST Repository

    Ghoneim, Mohamed T.

    2014-11-01

    The advantages associated with neuromorphic computation are rich areas of complex research. We address the fabrication challenge of building neuromorphic devices on structurally foldable platform with high integration density. We present a CMOS compatible fabrication process to demonstrate for the first time memristive devices fabricated on bulk monocrystalline silicon (100) which is next transformed into a flexible thin sheet of silicon fabric with all the pre-fabricated devices. This process preserves the ultra-high integration density advantage unachievable on other flexible substrates. In addition, the memristive devices are of the size of a motor neuron and the flexible/folded architectural form factor is critical to match brain cortex\\'s folded pattern for ultra-compact design.

  2. Reaction of unirradiated high-density fuel with aluminum

    International Nuclear Information System (INIS)

    Wiencek, T.C.; Meyer, M.K.; Prokofiev, I.G.; Keiser, D.D.

    1997-01-01

    Excellent dispersion fuel performance requires that fuel particles remain stable and do not react significantly with the surrounding aluminum matrix. A series of high-density fuels, which contain uranium densities >12 g/cm 3 , have been fabricated into plates. As part of standard processing, all of these fuels were subjected to a blister anneal of 1 h at 485 deg. C. Changes in plate thickness were measured and evaluated. From these results, suppositions about the probable irradiation properties of these fuels have been proposed. In addition, two fuels, U-10 wt% Mo and U 2 Mo, were subjected to various heat treatments and were found to be very stable in an aluminum matrix. On the basis of the experimental data, hypotheses of the irradiation behavior of these fuels are presented. (author)

  3. High density microelectronics package using low temperature cofirable ceramics

    International Nuclear Information System (INIS)

    Fu, S.-L.; Hsi, C.-S.; Chen, L.-S.; Lin, W. K.

    1997-01-01

    Low Temperature Cofired Ceramics (LTCC) is a relative new thick film process and has many engineering and manufacturing advantages over both the sequential thick film process and high temperature cofired ceramic modules. Because of low firing temperature, low sheet resistance metal conductors, commercial thick film resistors, and thick film capacitors can be buried in or printed on the substrates. A 3-D multilayer ceramic substrate can be prepared via laminating and co-firing process. The packing density of the LTCC substrates can be increased by this 3-D packing technology. At Kaohsiung Polytechnic Institute (KPI), a LTCC substrate system has been developed for high density packaging applications, which had buried surface capacitors and resistors. The developed cordierite-glass ceramic substrate, which has similar thermal expansion as silicon chip, is a promising material for microelectronic packaging. When the substrates were sintered at temperatures between 850-900 degree centigrade, a relative density higher than 96 % can be obtained. The substrate had a dielectric constant between 5.5 and 6.5. Ruthenium-based resistor pastes were used for resistors purposes. The resistors fabricated in/on the LTCC substrates were strongly depended on the microstructures developed in the resistor films. Surface resistors were laser trimmed in order to obtain specific values for the resistors. Material with composition Pb(Fe 2/3 W 1/3 ) x (Fe l/2 Nb l/2 ) y Ti 2 O 3 was used as dielectric material of the capacitor in the substrate. The material can be sintered at temperatures between 850-930 degree centigrade, and has dielectric constant as high as 26000. After cofiring, good adhesion between dielectric and substrate layers was obtained. Combing the buried resistors and capacitors together with the lamination of LTCC layer, a 3-dimensional multilayered ceramic package was fabricated. (author)

  4. High density microelectronics package using low temperature cofirable ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Fu, S -L; Hsi, C -S; Chen, L -S; Lin, W K [Kaoshiung Polytechnic Institute Ta-Hsu, Kaoshiung (China)

    1998-12-31

    Low Temperature Cofired Ceramics (LTCC) is a relative new thick film process and has many engineering and manufacturing advantages over both the sequential thick film process and high temperature cofired ceramic modules. Because of low firing temperature, low sheet resistance metal conductors, commercial thick film resistors, and thick film capacitors can be buried in or printed on the substrates. A 3-D multilayer ceramic substrate can be prepared via laminating and co-firing process. The packing density of the LTCC substrates can be increased by this 3-D packing technology. At Kaohsiung Polytechnic Institute (KPI), a LTCC substrate system has been developed for high density packaging applications, which had buried surface capacitors and resistors. The developed cordierite-glass ceramic substrate, which has similar thermal expansion as silicon chip, is a promising material for microelectronic packaging. When the substrates were sintered at temperatures between 850-900 degree centigrade, a relative density higher than 96 % can be obtained. The substrate had a dielectric constant between 5.5 and 6.5. Ruthenium-based resistor pastes were used for resistors purposes. The resistors fabricated in/on the LTCC substrates were strongly depended on the microstructures developed in the resistor films. Surface resistors were laser trimmed in order to obtain specific values for the resistors. Material with composition Pb(Fe{sub 2/3}W{sub 1/3}){sub x}(Fe{sub l/2}Nb{sub l/2}){sub y}Ti{sub 2}O{sub 3} was used as dielectric material of the capacitor in the substrate. The material can be sintered at temperatures between 850-930 degree centigrade, and has dielectric constant as high as 26000. After cofiring, good adhesion between dielectric and substrate layers was obtained. Combing the buried resistors and capacitors together with the lamination of LTCC layer, a 3-dimensional multilayered ceramic package was fabricated. (author)

  5. OSMOSE experiment: high minor actinides contents pellets and pins fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Jankowiak, A.; Leorier, C.; Desmouliere, F.; Donnet, L. [Commissariat a l' Energie Atomique, CEA/DEN/VRH/DTEC/SDTC/LEMA, 30207 Bagnols-sur-Ceze cedex (France); Antony, M. [Commissariat a l' Energie Atomique, CEA/DEN/CAD/DER/SPEX/LPE, 13108 St Paul Lez Durance cedex (France); Bernard, D. [Commissariat a l' Energie Atomique, CEA/DEN/ CAD/DER /SPRC/LEPh, 13108 St Paul Lez Durance cedex (France)

    2008-07-01

    The OSMOSE program aims to provide accurate experimental data on integral neutron cross-sections of isotopes (i.e.: Th{sup 232}, U{sup 233}, U{sup 234}, U{sup 235}, U{sup 236}, U{sup 238}, Np{sup 237}, Pu{sup 238}, Pu{sup 239}, Pu{sup 240}, Pu{sup 241}, Pu{sup 242}, Am{sup 241}, Am{sup 243}, Cm{sup 244} and Cm{sup 245}). The study of these nuclides is performed on a large range of neutron spectra corresponding to specific experimental conditions (thermal, epithermal, moderated/fast, and fast spectra). This program will be used to provide guidance to all nuclear data programs in the world. This program has led to an optimized fabrication process for OSMOSE pellets and pins which were fabricated by the LEMA (Actinide based Materials Study Laboratory) in the ATALANTE facility both in glove box and shielded cell. The fabrication process made possible to obtain the required material characteristics including a high density, a good distribution of the isotopes in the uranium oxide matrices. A particular attention was paid to reduce chemical pollution of the samples. The program has been successfully achieved in July 2007 with the fabrication of the last two Cm doped samples. (authors)

  6. Design & Fabrication of a High-Voltage Photovoltaic Cell

    Energy Technology Data Exchange (ETDEWEB)

    Felder, Jennifer; /North Carolina State U. /SLAC

    2012-09-05

    Silicon photovoltaic (PV) cells are alternative energy sources that are important in sustainable power generation. Currently, applications of PV cells are limited by the low output voltage and somewhat low efficiency of such devices. In light of this fact, this project investigates the possibility of fabricating high-voltage PV cells on float-zone silicon wafers having output voltages ranging from 50 V to 2000 V. Three designs with different geometries of diffusion layers were simulated and compared in terms of metal coverage, recombination, built-in potential, and conduction current density. One design was then chosen and optimized to be implemented in the final device design. The results of the simulation serve as a feasibility test for the design concept and provide supportive evidence of the effectiveness of silicon PV cells as high-voltage power supplies.

  7. Transition metal sulfides grown on graphene fibers for wearable asymmetric supercapacitors with high volumetric capacitance and high energy density

    Science.gov (United States)

    Cai, Weihua; Lai, Ting; Lai, Jianwei; Xie, Haoting; Ouyang, Liuzhang; Ye, Jianshan; Yu, Chengzhong

    2016-06-01

    Fiber shaped supercapacitors are promising candidates for wearable electronics because they are flexible and light-weight. However, a critical challenge of the widespread application of these energy storage devices is their low cell voltages and low energy densities, resulting in limited run-time of the electronics. Here, we demonstrate a 1.5 V high cell voltage and high volumetric energy density asymmetric fiber supercapacitor in aqueous electrolyte. The lightweight (0.24 g cm-3), highly conductive (39 S cm-1), and mechanically robust (221 MPa) graphene fibers were firstly fabricated and then coated by NiCo2S4 nanoparticles (GF/NiCo2S4) via the solvothermal deposition method. The GF/NiCo2S4 display high volumetric capacitance up to 388 F cm-3 at 2 mV s-1 in a three-electrode cell and 300 F cm-3 at 175.7 mA cm-3 (568 mF cm-2 at 0.5 mA cm-2) in a two-electrode cell. The electrochemical characterizations show 1000% higher capacitance of the GF/NiCo2S4 as compared to that of neat graphene fibers. The fabricated device achieves high energy density up to 12.3 mWh cm-3 with a maximum power density of 1600 mW cm-3, outperforming the thin-film lithium battery. Therefore, these supercapacitors are promising for the next generation flexible and wearable electronic devices.

  8. Density improvement of Li{sub 2}TiO{sub 3} pebbles fabricated by wet process

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, K; Kawamura, H [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Fuchinoue, K; Sawada, H; Watarumi, K

    1998-03-01

    Lithium titanate (Li{sub 2}TiO{sub 3}) has attracted the attention of many researchers from a point of tritium recovery at low temperature, chemical stability, etc.. The application of small Li{sub 2}TiO{sub 3} sphere has been proposed in some designs of fusion blanket. On the other hand, the wet process is most advantageous as the fabrication method of Li{sub 2}TiO{sub 3} pebbles from a point of mass production, and of reprocessing necessary for effective use of resources and reduction of radioactive wastes. In the preliminary fabrication test, density of Li{sub 2}TiO{sub 3} pebbles was about 40%T.D.. Therefore, in this study, density improvement tests and preliminary characterization of Li{sub 2}TiO{sub 3} pebbles by wet process were performed, noting the aging condition and sintering condition in the fabrication process of the gel-spheres. This study yielded Li{sub 2}TiO{sub 3} pebbles in target range of 80-85%T.D.. (author)

  9. Proceedings of the twelfth target fabrication specialists` meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    Research in fabrication for inertial confinement fusion (ICF) comprises at least three broad categories: targets for high energy density physics on existing drivers, ignition capsule fabrication, and cryogenic fuel layer formation. The latter two are being pursued primarily for the National Ignition Facility (NIF). Scientists from over 14 laboratories, universities, and businesses contributed over 100 papers on all aspects of ICF target fabrication. The NIF is well along in construction and photos of poured concrete and exposed steel added to the technical excitement. It was clear from the meeting that there has been significant progress toward the fabrication of an ignition target for NIF and that new techniques are resulting in higher quality targets for high energy density research.

  10. Proceedings of the twelfth target fabrication specialists' meeting

    International Nuclear Information System (INIS)

    1999-01-01

    Research in fabrication for inertial confinement fusion (ICF) comprises at least three broad categories: targets for high energy density physics on existing drivers, ignition capsule fabrication, and cryogenic fuel layer formation. The latter two are being pursued primarily for the National Ignition Facility (NIF). Scientists from over 14 laboratories, universities, and businesses contributed over 100 papers on all aspects of ICF target fabrication. The NIF is well along in construction and photos of poured concrete and exposed steel added to the technical excitement. It was clear from the meeting that there has been significant progress toward the fabrication of an ignition target for NIF and that new techniques are resulting in higher quality targets for high energy density research

  11. High yield fabrication of fluorescent nanodiamonds

    International Nuclear Information System (INIS)

    Boudou, Jean-Paul; Curmi, Patrick A; Jelezko, Fedor; Wrachtrup, Joerg; Balasubramanian, Gopalakrischnan; Reuter, Rolf; Aubert, Pascal; Sennour, Mohamed; Thorel, Alain; Gaffet, Eric

    2009-01-01

    A new fabrication method to produce homogeneously fluorescent nanodiamonds with high yields is described. The powder obtained by high energy ball milling of fluorescent high pressure, high temperature diamond microcrystals was converted in a pure concentrated aqueous colloidal dispersion of highly crystalline ultrasmall nanoparticles with a mean size less than or equal to 10 nm. The whole fabrication yield of colloidal quasi-spherical nanodiamonds was several orders of magnitude higher than those previously reported starting from microdiamonds. The results open up avenues for the industrial cost-effective production of fluorescent nanodiamonds with well-controlled properties.

  12. High yield fabrication of fluorescent nanodiamonds

    Energy Technology Data Exchange (ETDEWEB)

    Boudou, Jean-Paul; Curmi, Patrick A [Structure and Activity of Normal and Pathological Biomolecules-INSERM/UEVE U829, Universite d' Evry-Val d' Essonne, Batiment Maupertuis, Rue du pere Andre Jarlan, F-91025 Evry (France); Jelezko, Fedor; Wrachtrup, Joerg; Balasubramanian, Gopalakrischnan; Reuter, Rolf [3.Physikalisches Institut, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart (Germany); Aubert, Pascal [Nanometric Media Laboratory, Universite d' Evry-Val d' Essonne, Batiment Maupertuis, Rue du pere Andre Jarlan, F-91025 Evry (France); Sennour, Mohamed; Thorel, Alain [Centre des Materiaux, Mines Paris, ParisTech, BP 87, F-91000 Evry (France); Gaffet, Eric [Nanomaterials Research Group-UMR 5060, CNRS, UTBM, Site de Sevenans, F-90010 Belfort (France)], E-mail: jpb.cnrs@free.fr, E-mail: pcurmi@univ-evry.fr, E-mail: f.jelezko@physik.uni-stuttgart.de

    2009-06-10

    A new fabrication method to produce homogeneously fluorescent nanodiamonds with high yields is described. The powder obtained by high energy ball milling of fluorescent high pressure, high temperature diamond microcrystals was converted in a pure concentrated aqueous colloidal dispersion of highly crystalline ultrasmall nanoparticles with a mean size less than or equal to 10 nm. The whole fabrication yield of colloidal quasi-spherical nanodiamonds was several orders of magnitude higher than those previously reported starting from microdiamonds. The results open up avenues for the industrial cost-effective production of fluorescent nanodiamonds with well-controlled properties.

  13. An Ultra-High Element Density pMUT Array with Low Crosstalk for 3-D Medical Imaging

    Directory of Open Access Journals (Sweden)

    Tian-Ling Ren

    2013-07-01

    Full Text Available A ~1 MHz piezoelectric micromachined ultrasonic transducer (pMUT array with ultra-high element density and low crosstalk is proposed for the first time. This novel pMUT array is based on a nano-layer spin-coating lead zirconium titanium film technique and can be fabricated with high element density using a relatively simple process. Accordingly, key fabrication processes such as thick piezoelectric film deposition, low-stress Si-SOI bonding and bulk silicon removal have been successfully developed. The novel fine-pitch 6 × 6 pMUT arrays can all work at the desired frequency (~1 MHz with good uniformity, high performance and potential IC integration compatibility. The minimum interspace is ~20 μm, the smallest that has ever been achieved to the best of our knowledge. These arrays can be potentially used to steer ultrasound beams and implement high quality 3-D medical imaging applications.

  14. Fabrication of high-transmission microporous membranes by proton beam writing-based molding technique

    Science.gov (United States)

    Wang, Liping; Meyer, Clemens; Guibert, Edouard; Homsy, Alexandra; Whitlow, Harry J.

    2017-08-01

    Porous membranes are widely used as filters in a broad range of micro and nanofluidic applications, e.g. organelle sorters, permeable cell growth substrates, and plasma filtration. Conventional silicon fabrication approaches are not suitable for microporous membranes due to the low mechanical stability of thin film substrates. Other techniques like ion track etching are limited to the production of randomly distributed and randomly orientated pores with non-uniform pore sizes. In this project, we developed a procedure for fabricating high-transmission microporous membranes by proton beam writing (PBW) with a combination of spin-casting and soft lithography. In this approach, focused 2 MeV protons were used to lithographically write patterns consisting of hexagonal arrays of high-density pillars of few μm size in a SU-8 layer coated on a silicon wafer. After development, the pillars were conformably coated with a thin film of poly-para-xylylene (Parylene)-C release agent and spin-coated with polydimethylsiloxane (PDMS). To facilitate demolding, a special technique based on the use of a laser-cut sealing tape ring was developed. This method facilitated the successful delamination of 20-μm thick PDMS membrane with high-density micropores from the mold without rupture or damage.

  15. WO3–x@Au@MnO2 core–shell nanowires on carbon fabric for high-performance flexible supercapacitors.

    Science.gov (United States)

    Lu, Xihong; Zhai, Teng; Zhang, Xianghui; Shen, Yongqi; Yuan, Longyan; Hu, Bin; Gong, Li; Chen, Jian; Gao, Yihua; Zhou, Jun; Tong, Yexiang; Wang, Zhong Lin

    2012-02-14

    WO3–x@Au@MnO2 core–shell nanowires (NWs) are synthesized on a flexible carbon fabric and show outstanding electrochemical performance in supercapacitors such as high specific capacitance, good cyclic stability, high energy density, and high power density. These results suggest that the WO3–x@Au@MnO2 NWs have promising potential for use in high-performance flexible supercapacitors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Sub-micrometer-thick all-solid-state supercapacitors with high power and energy densities

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Fanhui [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250061 (China); Ding, Yi [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250061 (China); Shandong Applied Research Center for Gold Technology (Au-SDARC), Yantai 264005 (China)

    2011-09-15

    A sub-micrometer-thick, flexible, all-solid-state supercapacitor is fabricated. Through simultaneous realization of high dispersity of pseudocapacitance materials and quick electrode response, the hybrid nanostructures show enhanced volumetric capacitance and excellent stability, as well as very high power and energy densities. This suggests their potential as next-generation, high-performance energy conversion and storage devices for wearable electronics. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. High U-density nuclear fuel development with application of centrifugal atomization technology

    International Nuclear Information System (INIS)

    Kim, Chang Kyu; Kim, Ki Hwan; Lee, Don Bae

    1997-01-01

    In order to simplify the preparation process and improve the properties of uranium silicide fuels prepared by mechanical comminution, a fuel fabrication process applying rotating-disk centrifugal atomization technology was invented in KAERI in 1989. The major characteristic of atomized U 3 Si and U 3 Si 2 powders have been examined. The out-pile properties, including the thermal compatibility between atomized particle and aluminum matrix in uranium silicide dispersion fuels, have generally showed a superiority to the comminuted fuels. Moreover, the RERTR (reduced enrichment for research and test reactors) program, which recently begins to develop very-high-density uranium alloy fuels, including U-Mo fuels, requires the centrifugal atomization process to overcome the contaminations of impurities and the difficulties of the comminution process. In addition, a cooperation with ANL in the U.S. has been performed to develop high-density fuels with an application of atomization technology since December 1996. If the microplate and miniplate irradiation tests of atomized fuels, which have been performed with ANL, demonstrated the stability and improvement of in-reactor behaviors, nuclear fuel fabrication technology by centrifugal atomization could be most-promising to the production method of very-high-uranium-loading fuels. (author). 22 refs., 2 tabs., 12 figs

  18. The importance of carbon nanotube wire density, structural uniformity, and purity for fabricating homogeneous carbon nanotube-copper wire composites by copper electrodeposition

    Science.gov (United States)

    Sundaram, Rajyashree; Yamada, Takeo; Hata, Kenji; Sekiguchi, Atsuko

    2018-04-01

    We present the influence of density, structural regularity, and purity of carbon nanotube wires (CNTWs) used as Cu electrodeposition templates on fabricating homogeneous high-electrical performance CNT-Cu wires lighter than Cu. We show that low-density CNTWs (wires) with regular macro- and microstructures and high CNT content (>90 wt %) are essential for making homogeneous CNT-Cu wires. These homogeneous CNT-Cu wires show a continuous Cu matrix with evenly mixed nanotubes of high volume fractions (˜45 vol %) throughout the wire-length. Consequently, the composite wires show densities ˜5.1 g/cm3 (33% lower than Cu) and electrical conductivities ˜6.1 × 104 S/cm (>100 × CNTW conductivity). However, composite wires from templates with higher densities or structural inconsistencies are non-uniform with discontinuous Cu matrices and poor CNT/Cu mixing. These non-uniform CNT-Cu wires show conductivities 2-6 times lower than the homogeneous composite wires.

  19. Ultra-high density aligned Carbon-nanotube with controled nano-morphology for supercapacitors

    Science.gov (United States)

    Ghaffari, Mehdi; Zhao, Ran; Liu, Yang; Zhou, Yue; Cheng, Jiping; Guzman de Villoria, Roberto; Wardle, B. L.; Zhang, Q. M.

    2012-02-01

    Recent advances in fabricating controlled-morphology vertically aligned carbon nanotubes (VA-CNTs) with ultrahigh volume fractioncreate unique opportunities for developing unconventional supercapacitors with ultra-high energy density, power density, and long charge/discharge cycle life.Continuous paths through inter-VA-CNT channels allow fast ion transport, and high electrical conduction of the aligned CNTs in the composite electrodes lead to fast discharge speed. We investigate the charge-discharge characteristics of VA-CNTs with >20 vol% of CNT and ionic liquids as electrolytes. By employing both the electric and electromechanical spectroscopes, as well as nanostructured materials characterization, the ion transport and storage behaviors in porous electrodes are studied. The results suggest pathways for optimizing the electrode morphology in supercapacitorsusing ultra-high volume fraction VA-CNTs to further enhance performance.

  20. High performance a-Si solar cells and new fabrication methods for a-Si solar cells

    Science.gov (United States)

    Nakano, S.; Kuwano, Y.; Ohnishi, M.

    1986-12-01

    The super chamber, a separated UHV reaction-chamber system has been developed. A conversion efficiency of 11.7% was obtained for an a-Si solar cell using a high-quality i-layer deposited by the super chamber, and a p-layer fabricated by a photo-CVD method. As a new material, amorphous superlattice-structure films were fabricated by the photo-CVD method for the first time. Superlattice structure p-layer a-Si solar cells were fabricated, and a conversion efficiency of 10.5% was obtained. For the fabrication of integrated type a-Si solar cell modules, a laser pattering method was investigated. A thermal analysis of the multilayer structure was done. It was confirmed that selective scribing for a-Si, TCO and metal film is possible by controlling the laser power density. Recently developed a-Si solar power generation systems and a-Si solar cell roofing tiles are also described.

  1. Sub-15 nm nano-pattern generation by spacer width control for high density precisely positioned self-assembled device nanomanufacturing

    KAUST Repository

    Rojas, Jhonathan Prieto; Hussain, Muhammad Mustafa

    2012-01-01

    We present a conventional micro-fabrication based thin film vertical sidewall (spacer) width controlled nano-gap fabrication process to create arrays of nanopatterns for high density precisely positioned self-assembled nanoelectronics device integration. We have used conventional optical lithography to create base structures and then silicon nitride (Si 3N4) based spacer formation via reactive ion etching. Control of Si3N4 thickness provides accurate control of vertical sidewall (spacer) besides the base structures. Nano-gaps are fabricated between two adjacent spacers whereas the width of the gap depends on the gap between two adjacent base structures minus width of adjacent spacers. We demonstrate the process using a 32 nm node complementary metal oxide semiconductor (CMOS) platform to show its compatibility for very large scale heterogeneous integration of top-down and bottom-up fabrication as well as conventional and selfassembled nanodevices. This process opens up clear opportunity to overcome the decade long challenge of high density integration of self-assembled devices with precise position control. © 2012 IEEE.

  2. Sub-15 nm nano-pattern generation by spacer width control for high density precisely positioned self-assembled device nanomanufacturing

    KAUST Repository

    Rojas, Jhonathan Prieto

    2012-08-01

    We present a conventional micro-fabrication based thin film vertical sidewall (spacer) width controlled nano-gap fabrication process to create arrays of nanopatterns for high density precisely positioned self-assembled nanoelectronics device integration. We have used conventional optical lithography to create base structures and then silicon nitride (Si 3N4) based spacer formation via reactive ion etching. Control of Si3N4 thickness provides accurate control of vertical sidewall (spacer) besides the base structures. Nano-gaps are fabricated between two adjacent spacers whereas the width of the gap depends on the gap between two adjacent base structures minus width of adjacent spacers. We demonstrate the process using a 32 nm node complementary metal oxide semiconductor (CMOS) platform to show its compatibility for very large scale heterogeneous integration of top-down and bottom-up fabrication as well as conventional and selfassembled nanodevices. This process opens up clear opportunity to overcome the decade long challenge of high density integration of self-assembled devices with precise position control. © 2012 IEEE.

  3. Microelectromechanical high-density energy storage/rapid release system

    Science.gov (United States)

    Rodgers, M. Steven; Allen, James J.; Meeks, Kent D.; Jensen, Brian D.; Miller, Samuel L.

    1999-08-01

    One highly desirable characteristic of electrostatically driven microelectromechanical systems (MEMS) is that they consume very little power. The corresponding drawback is that the force they produce may be inadequate for many applications. It has previously been demonstrated that gear reduction units or microtransmissions can substantially increase the torque generated by microengines. Operating speed, however, is also reduced by the transmission gear ratio. Some applications require both high speed and high force. If this output is only required for a limited period of time, then energy could be stored in a mechanical system and rapidly released upon demand. We have designed, fabricated, and demonstrated a high-density energy storage/rapid release system that accomplishes this task. Built using a 5-level surface micromachining technology, the assembly closely resembles a medieval crossbow. Energy releases on the order of tens of nanojoules have already been demonstrated, and significantly higher energy systems are under development.

  4. SU-C-213-02: Characterizing 3D Printing in the Fabrication of Variable Density Phantoms

    International Nuclear Information System (INIS)

    Madamesila, J; McGeachy, P; Villarreal-Barajas, J; Khan, R

    2015-01-01

    Purpose: In this work, we present characterization, process flow, quality control and application of 3D fabricated low density phantoms for radiotherapy quality assurance. Methods: A Rostock delta 3D printer using polystyrene filament of diameter 1.75 mm was used to print geometric volumes of 2×2×1 cm 3 of varying densities. The variable densities of 0.1 to 0.75 g/cm 3 were created by modulating the infill. A computed tomography (CT) scan was performed to establish an infill-density calibration curve as well as characterize the quality of the print such as uniformity and the infill pattern. The time required to print these volumes was also recorded. Using the calibration, two low density cones (0.19, 0.52 g/cm 3 ) were printed and benchmarked against commercially available phantoms. The dosimetric validation of the low density scaling of Anisotropic Analytical Algorithm (AAA) was performed by using a 0.5 g/cm 3 slab of 10×10×2.4 cm 3 with EBT3 GafChromic film. The gamma analysis at 3%/3mm criteria were compared for the measured and computed dose planes. Results: Analysis of the volume of air pockets in the infill resulted in a reasonable uniformity for densities 0.4 to 0.75 g/cm 3 . Printed phantoms with densities below 0.4 g/cm 3 exhibited a higher ratio of air to polystyrene resulting in large non-uniformity. Compared to the commercial inserts, good agreement was observed only for the printed 0.52 g/cm 3 cone. Dosimetric comparison for a printed low density volume placed in-between layers of solid water resulted in >95% gamma agreement between AAA calculated dose planes and measured EBT3 films for a 6MV 5×5 cm 2 clinical beam. The comparison showed disagreement in the penumbra region. Conclusion: In conclusion, 3D printing technology opens the door to desktop fabrication of variable density phantoms at economical prices in an efficient manner for the quality assurance needs of a small clinic

  5. Fabrication of ultrahigh density metal-cell-metal crossbar memory devices with only two cycles of lithography and dry-etch procedures

    KAUST Repository

    Zong, Baoyu; Goh, J. Y.; Guo, Zaibing; Luo, Ping; Wang, Chenchen; Qiu, Jinjun; Ho, Pin; Chen, Yunjie; Zhang, Mingsheng; Han, Guchang

    2013-01-01

    A novel approach to the fabrication of metal-cell-metal trilayer memory devices was demonstrated by using only two cycles of lithography and dry-etch procedures. The fabricated ultrahigh density crossbar devices can be scaled down to ≤70 nm in half

  6. Enhanced density of optical data storage using near-field concept: fabrication and test of nanometric aperture array

    International Nuclear Information System (INIS)

    Cha, J.; Park, J. H.; Kim, Myong R.; Jhe, W.

    1999-01-01

    We have tried to enhance the density of the near-field optical memory and to improve the recording/readout speed. The current optical memory has the limitation in both density and speed. This barrier due to the far-field nature can be overcome by the use of near-field. The optical data storage density can be increased by reducing the size of the nanometric aperture where the near-field is obtained. To fabricate the aperture in precise dimension, we applied the orientation-dependent / anisotropic etching property of crystal Si often employed in the field of MEMS. And so we fabricated the 10 x 10 aperture array. This array will be also the indispensable part for speeding up. One will see the possibility of the multi-tracking pickup in the phase changing type memory through this array. This aperture array will be expected to write the bit-mark whose size is about 100 nm. We will show the recent result obtained. (author)

  7. Effect of resin variables on the creep behavior of high density hardwood composite panels

    Science.gov (United States)

    R.C. Tang; Jianhua Pu; C.Y Hse

    1993-01-01

    The flexural creep behavior of oriented strandboards (OSB) fabricated with mixed high, density hardwood flakes was investigated. Three types of adhesives, liquid phenolic-formaldehyde (LPF), melamine modified urea-formaldehyde (MUF), and LPF (face)/MUF (core) were chosen in this investigation. The resin contents (RC) used were 3.5 percent and 5.0 percent. The flakes...

  8. High-Power-Density, High-Energy-Density Fluorinated Graphene for Primary Lithium Batteries

    Directory of Open Access Journals (Sweden)

    Guiming Zhong

    2018-03-01

    Full Text Available Li/CFx is one of the highest-energy-density primary batteries; however, poor rate capability hinders its practical applications in high-power devices. Here we report a preparation of fluorinated graphene (GFx with superior performance through a direct gas fluorination method. We find that the so-called “semi-ionic” C-F bond content in all C-F bonds presents a more critical impact on rate performance of the GFx in comparison with sp2 C content in the GFx, morphology, structure, and specific surface area of the materials. The rate capability remains excellent before the semi-ionic C-F bond proportion in the GFx decreases. Thus, by optimizing semi-ionic C-F content in our GFx, we obtain the optimal x of 0.8, with which the GF0.8 exhibits a very high energy density of 1,073 Wh kg−1 and an excellent power density of 21,460 W kg−1 at a high current density of 10 A g−1. More importantly, our approach opens a new avenue to obtain fluorinated carbon with high energy densities without compromising high power densities.

  9. High-Density Stretchable Electrode Grids for Chronic Neural Recording.

    Science.gov (United States)

    Tybrandt, Klas; Khodagholy, Dion; Dielacher, Bernd; Stauffer, Flurin; Renz, Aline F; Buzsáki, György; Vörös, János

    2018-04-01

    Electrical interfacing with neural tissue is key to advancing diagnosis and therapies for neurological disorders, as well as providing detailed information about neural signals. A challenge for creating long-term stable interfaces between electronics and neural tissue is the huge mechanical mismatch between the systems. So far, materials and fabrication processes have restricted the development of soft electrode grids able to combine high performance, long-term stability, and high electrode density, aspects all essential for neural interfacing. Here, this challenge is addressed by developing a soft, high-density, stretchable electrode grid based on an inert, high-performance composite material comprising gold-coated titanium dioxide nanowires embedded in a silicone matrix. The developed grid can resolve high spatiotemporal neural signals from the surface of the cortex in freely moving rats with stable neural recording quality and preserved electrode signal coherence during 3 months of implantation. Due to its flexible and stretchable nature, it is possible to minimize the size of the craniotomy required for placement, further reducing the level of invasiveness. The material and device technology presented herein have potential for a wide range of emerging biomedical applications. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Facile Fabrication of Electrically Conductive Low-Density Polyethylene/Carbon Fiber Tubes for Novel Smart Materials via Multiaxial Orientation.

    Science.gov (United States)

    Li, Yijun; Nie, Min; Wang, Qi

    2018-01-10

    Electromechanical sensors are indispensable components in functional devices and robotics application. However, the fabrication of the sensors still maintains a challenging issue that high percolation threshold and easy failure of conductive network are derived from uniaxial orientation of conductive fillers in practical melt processing. Herein, we reported a facile fabrication method to prepare a multiaxial low-density polyethylene (LDPE)/carbon fibers (CFs) tube with bidirectional controllable electrical conductivity and sensitive strain-responsive performance via rotation extrusion technology. The multidimensional helical flow is confirmed in the reverse rotation extrusion, and the CFs readily respond to the flow field leading to a multiaxial orientation in the LDPE matrix. In contrast to uniaxial LDPE/CF composites, which perform a "head to head" conjunction, multiaxial-orientated CF networks exhibit a unique multilayer structure in which the CFs with distinct orientation direction intersect in the interface, endowing the LDPE/CF composites with a low percolation threshold (15 wt %) to those of the uniaxial ones (∼35 wt %). The angles between two axes play a vital role in determining the density of the conductive networks in the interface, which is predominant in tuning the bending-responsive behaviors with a gauge factor range from 12.5 to 56.3 and the corresponding linear respond region from ∼15 to ∼1%. Such a superior performance of conductive LDPE/CF tube confirms that the design of multiaxial orientation paves a novel way to facile fabrication of advanced cost-effective CF-based smart materials, shedding light on promising applications such as smart materials and intelligent engineering monitoring.

  11. Effects of Preform Density on Structure and Property of C/C-SiC Composites Fabricated by Gaseous Silicon Infiltration

    Directory of Open Access Journals (Sweden)

    CAO Yu

    2016-07-01

    Full Text Available The 3-D needled C/C preforms with different densities deposited by chemical vapor infiltration (CVI method were used to fabricate C/C-SiC composites by gaseous silicon infiltration (GSI. The porosity and CVI C thickness of the preforms were studied, and the effects of preform density on the mechanical and thermal properties of C/C-SiC composites were analyzed. The results show that with the increase of preform density, the preform porosity decreases and the CVI C thickness increases from several hundred nanometers to several microns. For the C/C-SiC composites, as the preform density increases, the residual C content increases while the density and residual Si content decreases. The SiC content first keeps at a high level of about 40% (volume fraction, which then quickly reduces. Meanwhile, the mechanical properties increase to the highest values when the preform density is 1.085g/cm3, with the flexure strength up to 308.31MP and fracture toughness up to 11.36MPa·m1/2, which then decrease as the preform density further increases. The thermal conductivity and CTE of the composites, however, decrease with the increase of preform density. It is found that when the preform porosity is too high, sufficient infiltration channels lead to more residual Si, and thinner CVI C thickness results in the severe corrosion of the reinforcing fibers by Si and lower mechanical properties. When the preform porosity is relatively low, the contents of Si and SiC quickly reduce since the infiltration channels are rapidly blocked, resulting in the formation of large closed pores and not high mechanical properties.

  12. Highly Oriented Graphene Sponge Electrode for Ultra High Energy Density Lithium Ion Hybrid Capacitors.

    Science.gov (United States)

    Ahn, Wook; Lee, Dong Un; Li, Ge; Feng, Kun; Wang, Xiaolei; Yu, Aiping; Lui, Gregory; Chen, Zhongwei

    2016-09-28

    Highly oriented rGO sponge (HOG) can be easily synthesized as an effective anode for application in high-capacity lithium ion hybrid capacitors. X-ray diffraction and morphological analyses show that successfully exfoliated rGO sponge on average consists of 4.2 graphene sheets, maintaining its three-dimensional structure with highly oriented morphology even after the thermal reduction procedure. Lithium-ion hybrid capacitors (LIC) are fabricated in this study based on a unique cell configuration which completely eliminates the predoping process of lithium ions. The full-cell LIC consisting of AC/HOG-Li configuration has resulted in remarkably high energy densities of 231.7 and 131.9 Wh kg(-1) obtained at 57 W kg(-1) and 2.8 kW kg(-1). This excellent performance is attributed to the lithium ion diffusivity related to the intercalation reaction of AC/HOG-Li which is 3.6 times higher that of AC/CG-Li. This unique cell design and configuration of LIC presented in this study using HOG as an effective anode is an unprecedented example of performance enhancement and improved energy density of LIC through successful increase in cell operation voltage window.

  13. A general strategy for the fabrication of high performance microsupercapacitors

    KAUST Repository

    Kurra, Narendra

    2015-06-04

    We propose a generic strategy for microsupercapacitor fabrication that integrates layers of reduced graphene oxide (rGO) and pseudocapacitive materials to create electrode heterostructures with significantly improved cycling stability and performance. Our approach involves a combination of photolithography and a simple transfer method of free-standing reduced graphene oxide film onto an Au/patterned photoresist bilayer. The resulting stack (rGO/Au/patterned resist/substrate) is then used for the electrochemical deposition of various pseudocapacitive materials before the final step of lift-off. To prove the viability of this method, we have successfully fabricated microsupercapacitors (MSCs) with the following interdigitated electrode heterostructures: MnO2/rGO, Co(OH)2/rGO and PANI/rGO. These MSCs show better performance and cycling stability compared to the single layer, (i.e., rGO-free) counterparts. The interdigitated electrode heterostructures result in MSCs with energy densities in the range of 3–12 mW h/cm3 and power densities in the range of 400–1200 mW/cm3, which is superior to the Li thin film batteries (E=10 mW h/cm3), carbon, and metal oxide based MSCs (E=1–6 mW h/cm3) while device energy densities are in the range of 1.3–5.3 mW h/cm3, corresponding power densities are in the range of 178–533 mW/cm3. These results can be explained by a facilitated nucleation model, where surface topology of the rGO film creates a favorable environment for the nucleation and growth of pseudocapacitive materials with strong interfacial contacts and enhanced surface area. This approach opens up a new avenue in fabricating MSCs involving a variety of heterostructures combining electrical double layer carbon type with Faradaic pseudocapacitive materials for enhanced electrochemical performance.

  14. A general strategy for the fabrication of high performance microsupercapacitors

    KAUST Repository

    Kurra, Narendra; Jiang, Qiu; Alshareef, Husam N.

    2015-01-01

    We propose a generic strategy for microsupercapacitor fabrication that integrates layers of reduced graphene oxide (rGO) and pseudocapacitive materials to create electrode heterostructures with significantly improved cycling stability and performance. Our approach involves a combination of photolithography and a simple transfer method of free-standing reduced graphene oxide film onto an Au/patterned photoresist bilayer. The resulting stack (rGO/Au/patterned resist/substrate) is then used for the electrochemical deposition of various pseudocapacitive materials before the final step of lift-off. To prove the viability of this method, we have successfully fabricated microsupercapacitors (MSCs) with the following interdigitated electrode heterostructures: MnO2/rGO, Co(OH)2/rGO and PANI/rGO. These MSCs show better performance and cycling stability compared to the single layer, (i.e., rGO-free) counterparts. The interdigitated electrode heterostructures result in MSCs with energy densities in the range of 3–12 mW h/cm3 and power densities in the range of 400–1200 mW/cm3, which is superior to the Li thin film batteries (E=10 mW h/cm3), carbon, and metal oxide based MSCs (E=1–6 mW h/cm3) while device energy densities are in the range of 1.3–5.3 mW h/cm3, corresponding power densities are in the range of 178–533 mW/cm3. These results can be explained by a facilitated nucleation model, where surface topology of the rGO film creates a favorable environment for the nucleation and growth of pseudocapacitive materials with strong interfacial contacts and enhanced surface area. This approach opens up a new avenue in fabricating MSCs involving a variety of heterostructures combining electrical double layer carbon type with Faradaic pseudocapacitive materials for enhanced electrochemical performance.

  15. Ultrathin Coaxial Fiber Supercapacitors Achieving High Energy and Power Densities.

    Science.gov (United States)

    Shen, Caiwei; Xie, Yingxi; Sanghadasa, Mohan; Tang, Yong; Lu, Longsheng; Lin, Liwei

    2017-11-15

    Fiber-based supercapacitors have attracted significant interests because of their potential applications in wearable electronics. Although much progress has been made in recent years, the energy and power densities, mechanical strength, and flexibility of such devices are still in need of improvement for practical applications. Here, we demonstrate an ultrathin microcoaxial fiber supercapacitor (μCFSC) with high energy and power densities (2.7 mW h/cm 3 and 13 W/cm 3 ), as well as excellent mechanical properties. The prototype with the smallest reported overall diameter (∼13 μm) is fabricated by successive coating of functional layers onto a single micro-carbon-fiber via a scalable process. Combining the simulation results via the electrochemical model, we attribute the high performance to the well-controlled thin coatings that make full use of the electrode materials and minimize the ion transport path between electrodes. Moreover, the μCFSC features high bending flexibility and large tensile strength (more than 1 GPa), which make it promising as a building block for various flexible energy storage applications.

  16. A biomimic thermal fabric with high moisture permeability

    Directory of Open Access Journals (Sweden)

    Fan Jie

    2013-01-01

    Full Text Available Moisture comfort is an essential factor for functional property of thermal cloth, especially for thick thermal cloth, since thick cloth may hinder effective moisture permeation, and high moisture concentration in the micro-climate between skin and fabric would cause cold feeling. Here, we report a biomimic thermal fabric with excellent warm retention and moisture management properties. In this fabric, the warp yarn system constructs many tree-shaped channel nets in the thickness direction of the fabric. Experimental result indicates that the special hierarchic configuration of warp yarns endows the biomimic thermal fabric with a better warm retention and water vapor management properties compared with the traditional fabrics.

  17. Graphene based integrated tandem supercapacitors fabricated directly on separators

    KAUST Repository

    Chen, Wei; Xia, Chuan; Alshareef, Husam N.

    2015-01-01

    It is of great importance to fabricate integrated supercapacitors with extended operation voltages as high energy density storage devices. In this work, we develop a novel direct electrode deposition on separator (DEDS) process to fabricate graphene

  18. Reflecting and Polarizing Properties of Conductive Fabrics in Ultra-High Frequency Range

    Directory of Open Access Journals (Sweden)

    Oleg Kiprijanovič

    2015-09-01

    Full Text Available The system based on ultra-wide band (UWB signals was employed for qualitative estimation of attenuating, reflecting and polarizing properties of conductive fabrics, capable to prevent local static charge accumulation. Pulsed excitation of triangle monopole antenna of 6.5 cm height by rectangular electric pulses induced radiation of UWB signals with spectral density of power having maximum in ultra-high frequency (UHF range. The same antenna was used for the radiated signal receiving. Filters and amplifiers of different passband were employed to divide UHF range into subranges of 0.3-0.55 GHz, 0.55-1 GHz, 1-2 GHz and 2-4 GHz bands. The free space method, when conductive fabric samples of 50x50 cm2 were placed between transmitting and receiving antennas, was used to imitate a practical application. Received wideband signals corresponding to the defined range were detected by unbiased detectors. The fabrics made of two types of warps, containing different threads with conductive yarns, were investigated. It was estimated attenuation and reflective properties of the fabrics when electric field is collinear or perpendicular to thread direction. In the UHF range it was revealed good reflecting properties of the fabrics containing metallic component in the threads. The system has advantages but not without a certain shortcoming. Adapting it for specific tasks should lead to more effective usage, including yet unused properties of the UWB signals.

  19. SU-C-213-02: Characterizing 3D Printing in the Fabrication of Variable Density Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Madamesila, J; McGeachy, P; Villarreal-Barajas, J; Khan, R [The University of Calgary, Calgary, AB (Canada)

    2015-06-15

    Purpose: In this work, we present characterization, process flow, quality control and application of 3D fabricated low density phantoms for radiotherapy quality assurance. Methods: A Rostock delta 3D printer using polystyrene filament of diameter 1.75 mm was used to print geometric volumes of 2×2×1 cm{sup 3} of varying densities. The variable densities of 0.1 to 0.75 g/cm {sup 3} were created by modulating the infill. A computed tomography (CT) scan was performed to establish an infill-density calibration curve as well as characterize the quality of the print such as uniformity and the infill pattern. The time required to print these volumes was also recorded. Using the calibration, two low density cones (0.19, 0.52 g/cm{sup 3}) were printed and benchmarked against commercially available phantoms. The dosimetric validation of the low density scaling of Anisotropic Analytical Algorithm (AAA) was performed by using a 0.5 g/cm{sup 3} slab of 10×10×2.4 cm{sup 3} with EBT3 GafChromic film. The gamma analysis at 3%/3mm criteria were compared for the measured and computed dose planes. Results: Analysis of the volume of air pockets in the infill resulted in a reasonable uniformity for densities 0.4 to 0.75 g/cm{sup 3}. Printed phantoms with densities below 0.4 g/cm{sup 3} exhibited a higher ratio of air to polystyrene resulting in large non-uniformity. Compared to the commercial inserts, good agreement was observed only for the printed 0.52 g/cm{sup 3} cone. Dosimetric comparison for a printed low density volume placed in-between layers of solid water resulted in >95% gamma agreement between AAA calculated dose planes and measured EBT3 films for a 6MV 5×5 cm{sup 2} clinical beam. The comparison showed disagreement in the penumbra region. Conclusion: In conclusion, 3D printing technology opens the door to desktop fabrication of variable density phantoms at economical prices in an efficient manner for the quality assurance needs of a small clinic.

  20. Qualification of high density aluminide fuels for the BR2 reactor

    International Nuclear Information System (INIS)

    Beeckmans de West-Meerbeeck, Andre; Gubel, Pol; Ponsard, Bernard; Pin, Thomas; Falgoux, Jean Louis

    2005-01-01

    The BR2 operation still relies on the use of 90..93% enriched HEU aluminide fuel. The availability of a limited batch of 73% enriched HEU from reprocessed BR2 uranium in Dounreay justified 10 years ago the qualification and use of this material. After some preliminary test irradiations, various batches of fuel elements were fabricated by the UKAEA-Dounreay and successfully irradiated. Due to their lower 235 U content (0.050 g 235 U/cm 2 ), these elements were always irradiated together with standard 90...93% HEU fuel elements. A mixed-core strategy was developed at this occasion for an optimal utilization, and was reported during the 4th RRFM conference (March 19-21, 2000, Colmar, France). The availability of a new batch of fresh 73% HEU material was the occasion, a few years ago, to initiate the development, fabrication and qualification of a new high density fuel element. An order was placed with CERCA to assess the optimal fabrication methods and tooling required to meet as far as possible the existing BR2 standard specifications and 235 U content (0.060 g 235 U/cm 2 ). This development phase has been already reported during the 7th RRFM conference (March 9-12, 2003, Aix-en-Provence, France). Afterwards, six lead test fuel elements were ordered for qualification by irradiation. The neutronic properties of the fuel elements were adjusted and optimized. After a short summary of the main results of the development program, this paper describes the nuclear characteristics of the high density fuel elements and comments on the nuclear follow-up of the lead test fuel elements during their irradiation for five cycles in the BR2 reactor and the return of experience for CERCA. (author)

  1. Low Defect Density Substrates and High-Quality Epi-Substrate Interfaces for ABCS Devices and Progress Toward Phonon-Mediated THz Lasers

    National Research Council Canada - National Science Library

    Goodhue, William; Bliss, David; Krishnaswami, Kannan; Vangala, Shivashankar; Li, Jin; Zhu, Beihong

    2005-01-01

    ... has been developing technology for producing low defect density substrates and high-quality epi-substrate interfaces for ABCS device applications as well as developing fabrication and device concepts...

  2. Advanced fabrication of hyperbolic metamaterials

    DEFF Research Database (Denmark)

    Shkondin, Evgeniy; Sukham, Johneph; Panah, Mohammad Esmail Aryaee

    2017-01-01

    Hyperbolic metamaterials can provide unprecedented properties in accommodation of high-k (high wave vector) waves and enhancement of the optical density of states. To reach such performance the metamaterials have to be fabricated with as small imperfections as possible. Here we report on our...... advances in two approaches in fabrication of optical metamaterials. We deposit ultrathin ultrasmooth gold layers with the assistance of organic material (APTMS) adhesion layer. The technology supports the stacking of such layers in a multiperiod construction with alumina spacers between gold films, which...

  3. Facile fabrication of ultrathin hybrid membrane for highly flexible supercapacitors via in-situ phase separation of polyethersulfone

    Science.gov (United States)

    Zhao, Xiaoning; Ran, Fen; Shen, Kuiwen; Yang, Yunlong; Wu, Jiayu; Niu, Xiaoqin; Kong, Lingbin; Kang, Long; Chen, Shaowei

    2016-10-01

    In this article, a facile method based on in-situ phase-separation was developed for the fabrication of ultrathin hybrid membranes for highly flexible supercapacitors. The structures and morphologies of the prepared electrodes were characterized by scanning electron microscopy (SEM), Fourier-transformed infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) measurements; and the electrochemical behaviors were examined in 2 M KOH solution. SEM and FTIR characterizations reveal that activated carbon was imbedded into the polymer membrane of polyethersulfone to form a uniform and flexible hybrid membrane. When the thin polymer-carbon membrane (PCM) was used as an electrode material for supercapacitor, a high specific capacitance of 169.4 Fg-1 was obtained at a current density of 0.5 Ag-1 along with good long-term cycle life of 94.6% capacity retention after 2000 charging-discharging cycles. Benefiting from these merits, the as-fabricated PCM//PCM cell shows an excellent electrochemical property. These results suggest a promising route towards the fabrication of highly flexible electrodes for high-performance supercapacitors.

  4. Structure and yarn sensor for fabric

    Science.gov (United States)

    Mee, D.K.; Allgood, G.O.; Mooney, L.R.; Duncan, M.G.; Turner, J.C.; Treece, D.A.

    1998-10-20

    A structure and yarn sensor for fabric directly determines pick density in a fabric thereby allowing fabric length and velocity to be calculated from a count of the picks made by the sensor over known time intervals. The structure and yarn sensor is also capable of detecting full length woven defects and fabric. As a result, an inexpensive on-line pick (or course) density measurement can be performed which allows a loom or knitting machine to be adjusted by either manual or automatic means to maintain closer fiber density tolerances. Such a sensor apparatus dramatically reduces fabric production costs and significantly improves fabric consistency and quality for woven or knitted fabric. 13 figs.

  5. Improvements of fabrication processes and enhancement of critical current densities in (Ba,K)Fe2As2 HIP wires and tapes

    Science.gov (United States)

    Pyon, Sunseng; Suwa, Takahiro; Tamegai, Tsuyoshi; Takano, Katsutoshi; Kajitani, Hideki; Koizumi, Norikiyo; Awaji, Satoshi; Zhou, Nan; Shi, Zhixiang

    2018-05-01

    We fabricated (Ba,K)Fe2As2 superconducting wires and tapes using the powder-in-tube method and hot isostatic pressing (HIP). HIP wires and tapes showed a high value of transport critical current density (J c) exceeding 100 kAcm‑2 at T = 4.2 K and the self-field. Transport J c in the HIP wire reached 38 kAcm‑2 in a high magnetic field of 100 kOe. This value is almost twice larger than the previous highest value of J c among round wires using iron-based superconductors. Enhancement of J c in the wires and tapes was caused by improvement of the drawing process, which caused degradation of the core, formation of microcracks, weak links between grains, and random orientation of grains. Details of the effect of the improved fabrication processes on the J c are discussed.

  6. Development of very high-density low-enriched uranium fuels

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Hofman, G.L.; Trybus, C.L.; Wiencek, T.C.

    1997-02-01

    The RERTR program has recently begun an aggressive effort to develop dispersion fuels for research and test reactors with uranium densities of 8 to 9 g U/cm 3 , based on the use of γ-stabilized uranium alloys. Fabrication development teams and facilities are being put into place and preparations for the first irradiation test are in progress. The first screening irradiations are expected to begin in late April 1997 and first results should be available by end of 1997. Discussions with potential international partners in fabrication development and irradiation testing have begun

  7. In vitro studies of PBT Nonwoven Fabrics adsorbent for the removal of low density lipoprotein from hyperlipemia plasma

    Energy Technology Data Exchange (ETDEWEB)

    Cao Ye; Wang Hong [Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052 (China); Yang Chao [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhong Rui [Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052 (China); Lei Yu [Chengdu Blood Center, Chengdu 610041 (China); Sun Kang [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Liu Jiaxin, E-mail: jxliu8122@vip.sina.com [Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052 (China)

    2011-06-15

    Polyanion ligands such as acrylic acid (AA) and heparin were grafted on PBT Nonwoven Fabrics (PBTNF) to study their effect on the adsorption of low density lipoprotein (LDL). These modified PBTNFs were characterized by Horizontal Attenuated Total Reflectance Fourier Transform Infrared spectroscopy and X-ray Photoelectron spectroscopy. The blood compatibilities of the modified PBTNFs were examined using in vitro hemolysis rate (HR), platelet adhesion, total protein (TP) and activated partial thromboplastin time. The results showed that direct immobilized heparin could improve PBTNF-PAA's blood compatibility and decrease the adsorption capability of useful high density lipoprotein, but would possess so low bioactivity that could not further improve the absorption of LDL and TC. Since the PBTNF-PAA55-Heparin adsorbent had quite good adsorption selectivity for these proteins, it can be an excellent candidate for depletion of LDL with good blood compatibility.

  8. Density match during fabrication process of poly (α-methylstyrene) mandrels by microencapsulation

    International Nuclear Information System (INIS)

    Chen Sufen; Su Lin; Liu Yiyang; Li Bo; Qi Xiaobo; Zhang Zhanwen; Liu Meifang

    2012-01-01

    During the curing process of double emulsions for fabricating poly (α-methylstyrene) (PAMS) capsules by microencapsulation technology, the match of density between the water in oil compound droplet and the outer water phase is vital to the sphericity of PAMS capsules. To investigate the effects of density mismatch on the sphericity of the resulting PAMS capsules, the densities of compound droplets with different inner diameters and polymer oil layer thicknesses were calculated theoretically and measured experimentally during the curing process. Also, the polymer concentrations of the oil phase in the compound droplets during the curing process were further studied. The results show that, the density mismatch between the compound droplets and the outer water phase can be quantitatively controlled by adjusting the compositions of the outer water phase. The curing stage with the polymer concentration of the oil phase increasing from 20% to 60% is the key phase of the curing process. When the density mismatch between the compound droplets and the outer water phase lowering from 0.00495 g/cm 3 to 0.00002 g/cm 3 , the number percentage of PAMS capsules with out of round (OOR) value less than 10 μm in batches can be increased from 14.3% to 93.3%. Thus for the compound droplets with different inner diameters and polymer oil layer thicknesses, the sphericity of the resulting PAMS capsules can be significantly improved, through reducing the density mismatch between the compound droplets and the outer water phase in the key phase of the curing process. (authors)

  9. Reduction in the interface-states density of metal-oxide-semiconductor field-effect transistors fabricated on high-index Si (114) surfaces by using an external magnetic field

    International Nuclear Information System (INIS)

    Molina, J.; De La Hidalga, J.; Gutierrez, E.

    2014-01-01

    After fabrication of Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) devices on high-index silicon (114) surfaces, their threshold voltage (Vth) and interface-states density (Dit) characteristics were measured under the influence of an externally applied magnetic field of B = 6 μT at room temperature. The electron flow of the MOSFET's channel presents high anisotropy on Si (114), and this effect is enhanced by using an external magnetic field B, applied parallel to the Si (114) surface but perpendicular to the electron flow direction. This special configuration results in the channel electrons experiencing a Lorentzian force which pushes the electrons closer to the Si (114)-SiO 2 interface and therefore to the special morphology of the Si (114) surface. Interestingly, Dit evaluation of n-type MOSFETs fabricated on Si (114) surfaces shows that the Si (114)-SiO 2 interface is of high quality so that Dit as low as ∼10 10  cm −2 ·eV −1 are obtained for MOSFETs with channels aligned at specific orientations. Additionally, using both a small positive Vds ≤ 100 mV and B = 6 μT, the former Dit is reduced by 35% in MOSFETs whose channels are aligned parallel to row-like nanostructures formed atop Si (114) surfaces (channels having a 90° rotation), whereas Dit is increased by 25% in MOSFETs whose channels are aligned perpendicular to these nanostructures (channels having a 0° rotation). From these results, the special morphology of a high-index Si (114) plane having nanochannels on its surface opens the possibility to reduce the electron-trapping characteristics of MOSFET devices having deep-submicron features and operating at very high frequencies

  10. High energy and power density asymmetric supercapacitors using electrospun cobalt oxide nanowire anode

    Science.gov (United States)

    Vidyadharan, Baiju; Aziz, Radhiyah Abd; Misnon, Izan Izwan; Anil Kumar, Gopinathan M.; Ismail, Jamil; Yusoff, Mashitah M.; Jose, Rajan

    2014-12-01

    Electrochemical materials are under rigorous search for building advanced energy storage devices. Herein, supercapacitive properties of highly crystalline and ultrathin cobalt oxide (Co3O4) nanowires (diameter ∼30-60 nm) synthesized using an aqueous polymeric solution based electrospinning process are reported. These nanowire electrodes show a specific capacitance (CS) of ∼1110 F g-1 in 6 M KOH at a current density of 1 A g-1 with coulombic efficiency ∼100%. Asymmetric supercapacitors (ASCs) (CS ∼175 F g-1 at 2 A g-1 galvanostatic cycling) are fabricated using the Co3O4 as anode and commercial activated carbon (AC) as cathode and compared their performance with symmetric electrochemical double layer capacitors (EDLCs) fabricated using AC (CS ∼31 F g-1 at 2 A g-1 galvanostatic cycling). The Co3O4//AC ASCs deliver specific energy densities (ES) of 47.6, 35.4, 20 and 8 Wh kg-1 at specific power densities (PS) 1392, 3500, 7000 and 7400 W kg-1, respectively. The performance of ASCs is much superior to the control EDLCs, which deliver ES of 9.2, 8.9, 8.4 and 6.8 Wh kg-1 at PS 358, 695, 1400 and 3500 W kg-1, respectively. The ASCs show nearly six times higher energy density (∼47.6 Wh kg-1) than EDLC (8.4 Wh kg-1) without compromising its power density (∼1400 W kg-1) at similar galvanostatic cycling conditions (2 A g-1).

  11. Fabrication of cermet bearings for the control system of a high temperature lithium cooled nuclear reactor

    Science.gov (United States)

    Yacobucci, H. G.; Heestand, R. L.; Kizer, D. E.

    1973-01-01

    The techniques used to fabricate cermet bearings for the fueled control drums of a liquid metal cooled reference-design reactor concept are presented. The bearings were designed for operation in lithium for as long as 5 years at temperatures to 1205 C. Two sets of bearings were fabricated from a hafnium carbide - 8-wt. % molybdenum - 2-wt. % niobium carbide cermet, and two sets were fabricated from a hafnium nitride - 10-wt. % tungsten cermet. Procedures were developed for synthesizing the material in high purity inert-atmosphere glove boxes to minimize oxygen content in order to enhance corrosion resistance. Techniques were developed for pressing cylindrical billets to conserve materials and to reduce machining requirements. Finishing was accomplished by a combination of diamond grinding, electrodischarge machining, and diamond lapping. Samples were characterized in respect to composition, impurity level, lattice parameter, microstructure and density.

  12. High-density EMG e-textile systems for the control of active prostheses

    DEFF Research Database (Denmark)

    Farina, Dario; Lorrain, Thomas; Negro, Francesco

    2010-01-01

    Myoelectric control of active prostheses requires electrode systems that are easy to apply for daily repositioning of the electrodes by the user. In this study we propose the use of Smart Fabric and Interactive Textile (SFIT) systems as an alternative solution for recording high-density EMG signa...... classified with linear discriminant analysis. The average classification accuracy for the nine tasks was 89.1 1.9 %. These results show that SFIT systems can be used as an effective way for muscle-machine interfacing....

  13. Porous Au-Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis.

    Science.gov (United States)

    Liu, Kai; Bai, Yaocai; Zhang, Lei; Yang, Zhongbo; Fan, Qikui; Zheng, Haoquan; Yin, Yadong; Gao, Chuanbo

    2016-06-08

    Colloidal plasmonic metal nanoparticles have enabled surface-enhanced Raman scattering (SERS) for a variety of analytical applications. While great efforts have been made to create hotspots for amplifying Raman signals, it remains a great challenge to ensure their high density and accessibility for improved sensitivity of the analysis. Here we report a dealloying process for the fabrication of porous Au-Ag alloy nanoparticles containing abundant inherent hotspots, which were encased in ultrathin hollow silica shells so that the need of conventional organic capping ligands for stabilization is eliminated, producing colloidal plasmonic nanoparticles with clean surface and thus high accessibility of the hotspots. As a result, these novel nanostructures show excellent SERS activity with an enhancement factor of ∼1.3 × 10(7) on a single particle basis (off-resonant condition), promising high applicability in many SERS-based analytical and biomedical applications.

  14. Progress on a high current density low cost Niobium3Tin conductor scaleable to modern niobium titanium production

    Science.gov (United States)

    Zeitlin, Bruce A.; Pyon, Taeyoung; Gregory, Eric; Scanlan, R. M.

    2002-05-01

    A number of configurations of a mono element internal tin conductor (MEIT) were fabricated designed to explore the effect of local ratio, niobium content, and tin content on the overall current density. Critical current densities on four configurations were measured, two to 17T. Current density as a function of filament size was also measured with filaments sizes ranging from 1.8 to 7.1 microns. A Nb60wt%Ta barrier was also explored as a means to reduce the high cost of the Tantalum barrier. The effectiveness of radial copper channels in high Nb conductors is also evaluated. Results are used to suggest designs for more optimized conductors.

  15. FBR pellet fabrication - density and dimensional control

    International Nuclear Information System (INIS)

    Rasmussen, D.E.; Schaus, P.S.

    1982-01-01

    The fuel pellet fabricating experience described in this paper involved pellet processing tests using mixed oxide (PuO 2 -UO 2 ) powders to produce fast breeder reactor (FBR) fuel pellets. Objectives of the pellet processing tests were to establish processing parameters for sintered-to-size fuel pellets to be used in an irradiation test in the Fast Flux Test Facility and to establish baseline fabrication control information. 26 figures, 7 tables

  16. High-performance wearable supercapacitors fabricated with surface activated continuous filament graphite fibers

    Science.gov (United States)

    Jia, Dedong; Yu, Xin; Chen, Tinghan; Wang, Shu; Tan, Hua; Liu, Hong; Wang, Zhong Lin; Li, Linlin

    2017-08-01

    Generally, carbon or graphite fibers (GFs) are used as the supporting materials for the preparation of flexible supercapacitors (SCs) by assembling various electrochemically active nanomaterials on them. A facile and rapid electrochemical oxidation method with a voltage of 3 V in a mixed H2SO4-HNO3 solution for 2-15 min is proposed to active continuous filament GFs. Detailed structural characterization, SEM, TEM, XRD, Raman and XPS demonstrate that the GFs-8 (oxidized for 8 min) possessing high specific surface area which provided numerous electrochemical sites and a large number of oxygen-containing functional groups producing pseudocapacitance. Cyclic voltammetric (CV), galvanostatic charge-discharge measurements and electrochemical impedance spectroscopy (EIS) are conducted to test the capacitive of GFs and activated GFs. The capacitance of GFs-8 reaches as high as 570 mF cm-1 at the current density of 1 mA cm-1 in LiCl electrolyte, a 1965-fold enhancement with respect to the pristine GFs (0.29 mF cm-1). The fabricated fiber solid-state supercapacitors (SSCs) provide high energy density of 0.68 mWh cm-3 at the power density 3.3 W cm-3 and have excellent durability with 90% capacitance retention after 10000 cycles. In addition, such fiber SSCs features flexibility and mechanical stability, which may have wide applications in wearable electronic devices.

  17. Fabrication of Nonvolatile Memory Effects in High-k Dielectric Thin Films Using Electron Irradiation

    International Nuclear Information System (INIS)

    Park, Chanrock; Cho, Daehee; Kim, Jeongeun; Hwang, Jinha

    2010-01-01

    Electron Irradiation can be applied towards nano-floating gate memories which are recognized as one of the next-generation nonvolatile memory semiconductors. NFGMs can overcome the preexisting limitations encountered in Dynamic Random Access Memories and Flash memories with the excellent advantages, i. e. high-density information storage, high response speed, high compactness, etc. The traditional nano-floating gate memories are fabricated through multi-layered nano structures of the dissimilar materials where the charge-trapping portions are sandwiched into the high-k dielectrics. However, this work reports the unique nonvolatile responses in single-layered high-k dielectric thin films if irradiated with highly accelerated electron beams. The implications of the electron irradiation will be discussed towards high-performance nano-floating gate memories

  18. Ge nano-layer fabricated by high-fluence low-energy ion implantation

    International Nuclear Information System (INIS)

    Lu Tiecheng; Dun Shaobo; Hu Qiang; Zhang Songbao; An Zhu; Duan Yanmin; Zhu Sha; Wei Qiangmin; Wang Lumin

    2006-01-01

    A Ge nano-layer embedded in the surface layer of an amorphous SiO 2 film was fabricated by high-fluence low-energy ion implantation. The component, phase, nano-structure and luminescence properties of the nano-layer were studied by means of Rutherford backscattering, glancing incident X-ray diffraction, laser Raman scattering, transmission electron microscopy and photoluminescence. The relation between nano-particle characteristics and ion fluence was also studied. The results indicate that nano-crystalline Ge and nano-amorphous Ge particles coexist in the nano-layer and the ratio of nano-crystalline Ge to nano-particle Ge increases with increasing ion fluence. The intensity of photoluminescence from the nano-layer increases with increasing ion fluence also. Prepared with certain ion fluences, high-density nano-layers composed of uniform-sized nano-particles can be observed

  19. Development of very-high-density low-enriched uranium fuels

    International Nuclear Information System (INIS)

    Snegrove, J.L.; Hofmann, G.L.; Trybus, C.L.; Wiencek, T.C.

    1997-01-01

    The RERTR (=Reduced Enrichment for Research and Test Reactors) program has begun an aggressive effort to develop dispersion fuels for research and test reactors with uranium densities of 8 to 9 g U/cm 3 , based on the use of γ-stabilized uranium alloys. Fabrication development teams and facilities are being put into place, and preparations for the first irradiation test are in progress. The first screening irradiations are expected to begin in late April 1997 and the first results should be available by the end of 1997. Discussions with potential international partners in fabrication development and irradiation testing have begun. (author)

  20. On the rolling of hard-to-work iron-cobalt alloys with application of electric current of high density

    International Nuclear Information System (INIS)

    Klimov, K.M.; Mordukhovich, A.M.; Glezer, A.M.; Molotilov, B.V.

    1981-01-01

    Results on experimental fabrication of thin sheets of commercial iron-cobalt 49KF alloy (Se-Co-2%V) without preliminary quenching and intermediate annealings by rolling with application of high-density electric current are considered. It is shown that rolling with application of high-density electric current in the deformation zone permits to obtain thin sheets of difficult-to-form magnetically soft materials without preliminary thermal treatments. Electric current effect on metal in the deformation zone results in the increase of dislocation mobility and facilitates the cross glide [ru

  1. Fabrication of thin TEM sample of ionic liquid for high-resolution ELNES measurements

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Tomohiro, E-mail: tomo-m@iis.u-tokyo.ac.jp; Mizoguchi, Teruyasu, E-mail: teru@iis.u-tokyo.ac.jp

    2017-07-15

    Investigation of the local structure, ionic and molecular behavior, and chemical reactions at high spatial resolutions in liquids has become increasingly important. Improvements in these areas help to develop efficient batteries and improve organic syntheses. Transmission electron microscopy (TEM) and scanning-TEM (STEM) have excellent spatial resolution, and the electron energy-loss near edge structure (ELNES) measured by the accompanied electron energy-loss spectroscopy (EELS) is effective to analyze the liquid local structure owing to reflecting the electronic density of states. In this study, we fabricate a liquid-layer-only sample with thickness of single to tens nanometers using an ionic liquid. Because the liquid film has a thickness much less than the inelastic mean free path (IMFP) of the electron beam, the fine structure of the C-K edge electron energy loss near edge structure (ELNES) can be measured with sufficient resolution to allow meaningful analysis. The ELNES spectrum from the thin liquid film has been interpreted using first principles ELNES calculations. - Highlights: • A fabrication method of thin liquid film samples for STEM-EELS observations is proposed. • The thickness of the fabricated thin liquid film is about 10 nm. • An ELNES is measured from the thin liquid with a high energy resolution. • The peaks of the ELNES are interpreted using first principles calculations.

  2. Fabrication of 4H-SiC Schottky barrier diodes with high breakdown voltages

    CERN Document Server

    Kum, B H; Shin, M W; Park, J D

    1999-01-01

    This paper discusses the fabrication and the breakdown characteristics of 4H-SiC Schottky barrier diodes (SBDs). Optimal processing conditions for the ohmic contacts were extracted using the transmission-line method (TLM) and were applied to the device fabrication. The Ti/4H-SiC SBDs with Si sub x B sub y passivation showed a maximum reverse breakdown voltage of 268 V with a forward current density as high as 70 mA/cm sup 2 at a forward voltage of 2 V. The breakdown of the Pt. 4H-SiC SBDs without any passivation occurred at near 110 V. It is concluded that the breakdown enhancement in the Ti/4H-SiC SBDs can be attributed to the passivation; otherwise, excess surface charge near the edge of the Schottky contact would lead to electric fields of sufficient magnitude to cause field emission.

  3. High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition

    International Nuclear Information System (INIS)

    Du Chunsheng; Pan Ning

    2006-01-01

    Carbon nanotube thin films have been successfully fabricated by the electrophoretic deposition technique. The supercapacitors built from such thin film electrodes have a very small equivalent series resistance, and a high specific power density over 20 kW kg -1 was thus obtained. More importantly, the supercapacitors showed superior frequency response. Our study also demonstrated that these carbon nanotube thin films can serve as coating layers over ordinary current collectors to drastically enhance the electrode performance, indicating a huge potential in supercapacitor and battery manufacturing

  4. High-Thermal-Conductivity Fabrics

    Science.gov (United States)

    Chibante, L. P. Felipe

    2012-01-01

    Heat management with common textiles such as nylon and spandex is hindered by the poor thermal conductivity from the skin surface to cooling surfaces. This innovation showed marked improvement in thermal conductivity of the individual fibers and tubing, as well as components assembled from them. The problem is centered on improving the heat removal of the liquid-cooled ventilation garments (LCVGs) used by astronauts. The current design uses an extensive network of water-cooling tubes that introduces bulkiness and discomfort, and increases fatigue. Range of motion and ease of movement are affected as well. The current technology is the same as developed during the Apollo program of the 1960s. Tubing material is hand-threaded through a spandex/nylon mesh layer, in a series of loops throughout the torso and limbs such that there is close, form-fitting contact with the user. Usually, there is a nylon liner layer to improve comfort. Circulating water is chilled by an external heat exchanger (sublimator). The purpose of this innovation is to produce new LCVG components with improved thermal conductivity. This was addressed using nanocomposite engineering incorporating high-thermalconductivity nanoscale fillers in the fabric and tubing components. Specifically, carbon nanotubes were added using normal processing methods such as thermoplastic melt mixing (compounding twin screw extruder) and downstream processing (fiber spinning, tubing extrusion). Fibers were produced as yarns and woven into fabric cloths. The application of isotropic nanofillers can be modeled using a modified Nielsen Model for conductive fillers in a matrix based on Einstein s viscosity model. This is a drop-in technology with no additional equipment needed. The loading is limited by the ability to maintain adequate dispersion. Undispersed materials will plug filtering screens in processing equipment. Generally, the viscosity increases were acceptable, and allowed the filled polymers to still be

  5. High-quality vertical light emitting diodes fabrication by mechanical lift-off technique

    Science.gov (United States)

    Tu, Po-Min; Hsu, Shih-Chieh; Chang, Chun-Yen

    2011-10-01

    We report the fabrication of mechanical lift-off high quality thin GaN with Hexagonal Inversed Pyramid (HIP) structures for vertical light emitting diodes (V-LEDs). The HIP structures were formed at the GaN/sapphire substrate interface under high temperature during KOH wet etching process. The average threading dislocation density (TDD) was estimated by transmission electron microscopy (TEM) and found the reduction from 2×109 to 1×108 cm-2. Raman spectroscopy analysis revealed that the compressive stress of GaN epilayer was effectively relieved in the thin-GaN LED with HIP structures. Finally, the mechanical lift-off process is claimed to be successful by using the HIP structures as a sacrificial layer during wafer bonding process.

  6. Material engineering to fabricate rare earth erbium thin films for exploring nuclear energy sources

    Science.gov (United States)

    Banerjee, A.; Abhilash, S. R.; Umapathy, G. R.; Kabiraj, D.; Ojha, S.; Mandal, S.

    2018-04-01

    High vacuum evaporation and cold-rolling techniques to fabricate thin films of the rare earth lanthanide-erbium have been discussed in this communication. Cold rolling has been used for the first time to successfully fabricate films of enriched and highly expensive erbium metal with areal density in the range of 0.5-1.0 mg/cm2. The fabricated films were used as target materials in an advanced nuclear physics experiment. The experiment was designed to investigate isomeric states in the heavy nuclei mass region for exploring physics related to nuclear energy sources. The films fabricated using different techniques varied in thickness as well as purity. Methods to fabricate films with thickness of the order of 0.9 mg/cm2 were different than those of 0.4 mg/cm2 areal density. All the thin films were characterized using multiple advanced techniques to accurately ascertain levels of contamination as well as to determine their exact surface density. Detailed fabrication methods as well as characterization techniques have been discussed.

  7. Development of very-high-density low-enriched-uranium fuels

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Hofman, G.L.; Meyer, M.K.; Trybus, C.L.; Wiencek, T.C.

    1997-01-01

    Following a hiatus of several years and following its successful development and qualification of 4.8 g U cm -3 U 3 Si 2 -Al dispersion fuel for application with low-enriched uranium in research and test reactors, the US Reduced Enrichment for Research and Test Reactors program has embarked on the development of even-higher-density fuels. Our goal is to achieve uranium densities of 8-9 g cm -3 in aluminum-based dispersion fuels. Achieving this goal will require the use of high-density, γ-stabilized uranium alloy powders in conjunction with the most-advanced fuel fabrication techniques. Key issues being addressed are the reaction of the fuel alloys with aluminum and the irradiation behavior of the fuel alloys and any reaction products. Test irradiations of candidate fuels in very-small (micro) plates are scheduled to begin in the Advanced Test Reactor during June, 1997. Initial results are expected to be available in early 1998. We are performing out-of-reactor studies on the phase structure of the candidate alloys on diffusion of the matrix material into the aluminum. In addition, we are modifying our current dispersion fuel irradiation behavior model to accommodate the new fuels. Several international partners are participating in various phases of this work. (orig.)

  8. Fabrication and characterization of ZnO nanowires array electrodes with high photocurrent densities: Effects of the seed layer calcination time

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yi-Jing; Liu, Ching-Fang; Hu, Chi-Chang, E-mail: cchu@che.nthu.edu.tw; Kuo, Jen-Hou; Boddula, Rajender

    2017-03-01

    In this work, we demonstrate that vertically grown ZnO nanowire (NW) arrays of the wurzite phase were successfully fabricated on fluorine doped tin oxide (FTO) substrates via a hydrothermal method. The coating of a seed layer onto the FTO substrates was found to favor the growth of a uniform ZnO NWs array which shows saturation in the photocurrent density with a relatively low potential bias. Furthermore, prolonging the calcination time of the seed layer makes the ZnO NWs behave the better charge separation and improve the photo-electrochemical performance. Under the irradiation at a 75 mW cm{sup −2} from a simulated sunlight source, the ZnO NWs array electrode prepared from the seed layer with calcination at 350 °C for 5 h shows a saturated photocurrent density of 514 μA cm{sup −2} and a maximum half-cell solar-to-hydrogen (HC-STH) efficiency of 0.26% was obtained at 0.6 V versus reversible hydrogen electrode (RHE) in neutral electrolyte. - Highlights: • The seed layer annealing time strongly influences the textural and photo-activity of ZnO NWs. • The average diameter and density of ZnO NWs were controlled to 47–70 nm and 46–70 NWs μm{sup −2}, respectively. • ZnO NWs show promising application potential in solar-electrocatalytic water splitting under potential bias. • The ZnO NWs with SL annealing time = 5 h achieve the highest HC-STH efficiency of 0.26% at 0.6 V.

  9. Fabrication of high aspect ratio nanocell lattices by ion beam irradiation

    International Nuclear Information System (INIS)

    Ishikawa, Osamu; Nitta, Noriko; Taniwaki, Masafumi

    2016-01-01

    Highlights: • Nanocell lattice with a high aspect ratio on InSb semiconductor surface was fabricated by ion beam irradiation. • The fabrication technique consisting of top-down and bottom-up processes was performed in FIB. • High aspect ratio of 2 was achieved in nanocell lattice with a 100 nm interval. • The intermediate-flux irradiation is favorable for fabrication of nanocell with a high aspect ratio. - Abstract: A high aspect ratio nanocell lattice was fabricated on the InSb semiconductor surface using the migration of point defects induced by ion beam irradiation. The fabrication technique consisting of the top-down (formation of voids and holes) and bottom-up (growth of voids and holes into nanocells) processes was performed using a focused ion beam (FIB) system. A cell aspect ratio of 2 (cell height/cell diameter) was achieved for the nanocell lattice with a 100 nm dot interval The intermediate-flux ion irradiation during the bottom-up process was found to be optimal for the fabrication of a high aspect ratio nanocell.

  10. Development of very-high-density fuels by the RERTR program

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Hofman, G.L.; Trybus, C.L.; Wiencek, T.C.

    1996-01-01

    The RERTR program has recently begun an aggressive effort to develop dispersion fuels for research and test reactors with uranium densities of 8 to 9 g U/cm 3 , based on the use of γ-stabilized uranium alloys. Fabrication development teams and facilities are being put into place, and preparations for the first irradiation test are in progress. The first screening irradiations are expected to begin in late April 1997 and the first results should be available by the end of 1997. Discussions with potential international partners in fabrication development and irradiation testing have begun

  11. Fabrication method to create high-aspect ratio pillars for photonic coupling of board level interconnects

    Science.gov (United States)

    Debaes, C.; Van Erps, J.; Karppinen, M.; Hiltunen, J.; Suyal, H.; Last, A.; Lee, M. G.; Karioja, P.; Taghizadeh, M.; Mohr, J.; Thienpont, H.; Glebov, A. L.

    2008-04-01

    An important challenge that remains to date in board level optical interconnects is the coupling between the optical waveguides on printed wiring boards and the packaged optoelectronics chips, which are preferably surface mountable on the boards. One possible solution is the use of Ball Grid Array (BGA) packages. This approach offers a reliable attachment despite the large CTE mismatch between the organic FR4 board and the semiconductor materials. Collimation via micro-lenses is here typically deployed to couple the light vertically from the waveguide substrate to the optoelectronics while allowing for a small misalignment between board and package. In this work, we explore the fabrication issues of an alternative approach in which the vertical photonic connection between board and package is governed by a micro-optical pillar which is attached both to the board substrate and to the optoelectronic chips. Such an approach allows for high density connections and small, high-speed detector footprints while maintaining an acceptable tolerance between board and package. The pillar should exhibit some flexibility and thus a high-aspect ratio is preferred. This work presents and compares different fabrication methods and applies different materials for such high-aspect ratio pillars. The different fabrication methods are: photolithography, direct laser writing and deep proton writing. The selection of optical materials that was investigated is: SU8, Ormocers, PU and a multifunctional acrylate polymer. The resulting optical pillars have diameters ranging from 20um up to 80um, with total heights ranging between 30um and 100um (symbol for micron). The aspect-ratio of the fabricated structures ranges from 1.5 to 5.

  12. Chemical mechanical polishing of BTO thin film for vertical sidewall patterning of high-density memory capacitor

    International Nuclear Information System (INIS)

    Kim, Nam-Hoon; Ko, Pil-Ju; Seo, Yong-Jin; Lee, Woo-Sun

    2006-01-01

    Most high-k materials cannot to be etched easily. Problems such as low etch rate, poor sidewall angle, plasma damage, and process complexity have emerged in high-density DRAM fabrication. Chemical mechanical polishing (CMP) by the damascene process has been used to pattern high-k materials for high-density capacitor. Barium titanate (BTO) thin film, a typical high-k material, was polished with three types of silica slurry having different pH values. Sufficient removal rate with adequate selectivity to realize the pattern mask of tetra-ethyl ortho-silicate (TEOS) film for the vertical sidewall angle was obtained. The changes of X-ray diffraction pattern and dielectric constant by CMP process were negligible. Planarization was also achieved for the subsequent multilevel processes. Our new CMP approach will provide a guideline for effective patterning of high-k materials by CMP

  13. Graphene based integrated tandem supercapacitors fabricated directly on separators

    KAUST Repository

    Chen, Wei

    2015-04-09

    It is of great importance to fabricate integrated supercapacitors with extended operation voltages as high energy density storage devices. In this work, we develop a novel direct electrode deposition on separator (DEDS) process to fabricate graphene based integrated tandem supercapacitors for the first time. The DEDS process generates compact graphene-polyaniline electrodes directly on the separators to form integrated supercapacitors. The integrated graphene-polyaniline tandem supercapacitors demonstrate ultrahigh volumetric energy density of 52.5 Wh L^(−1) at power density of 6037 W L^(−1) and excellent gravimetric energy density of 26.1 Wh kg^(−1) at power density of 3002 W kg^(−1) with outstanding electrochemical stability for over 10000 cycles. This study show great promises for the future development of integrated energy storage devices.

  14. Ultra-precision fabrication of high density micro-optical backbone interconnections for data center and mobile application

    Science.gov (United States)

    Lohmann, U.; Jahns, J.; Wagner, T.; Werner, C.

    2012-10-01

    A microoptical 3D interconnection scheme and fabricated samples of this fiberoptical multi-channel interconnec- tion with an actual capacity of 144 channels were shown. Additionally the aspects of micrometer-fabrication of such microoptical interconnection modules in the view of alignment-tolerances were considered. For the realiza- tion of the interconnection schemes, the approach of planar-integrated free space optics (PIFSO) is used with its well known advantages. This approach offers the potential for complex interconnectivity, and yet compact size.

  15. Additive advantage in characteristics of MIMCAPs on flexible silicon (100) fabric with release-first process

    KAUST Repository

    Ghoneim, Mohamed T.

    2013-11-20

    We report the inherent increase in capacitance per unit planar area of state-of-the art high-κ integrated metal/insulator/metal capacitors (MIMCAPs) fabricated on flexible silicon fabric with release-first process. We methodically study and show that our approach to transform bulk silicon (100) into a flexible fabric adds an inherent advantage of enabling higher integration density dynamic random access memory (DRAM) on the same chip area. Our approach is to release an ultra-thin silicon (100) fabric (25 μm thick) from the bulk silicon wafer, then build MIMCAPs using sputtered aluminium electrodes and successive atomic layer depositions (ALD) without break-ing the vacuum of a high-κ aluminium oxide sandwiched between two tantalum nitride layers. This result shows that we can obtain flexible electronics on silicon without sacrificing the high density integration aspects and also utilize the non-planar geometry associated with fabrication process to obtain a higher integration density compared to bulk silicon integration due to an increased normalized capacitance per unit planar area. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Fabrication high-purity Fe nanochains with near theoretical limit value of saturation magnetization of bulk Fe

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Erkang [Henan University, Key Laboratory for Special Functional Materials of Ministry of Education (China); Xu, Yanling [Henan University, The Audit Department (China); Lou, Shiyun, E-mail: lousy@henu.edu.cn [Henan University, Key Laboratory for Special Functional Materials of Ministry of Education (China); Fu, Yunlong, E-mail: yunlongfu@dns.sxnu.edu.cn [Shanxi Normal University, School of Chemistry and Material Science (China); Zhou, Shaomin, E-mail: smzhou@henu.edu.cn [Henan University, Key Laboratory for Special Functional Materials of Ministry of Education (China)

    2016-11-15

    High-yield purity chain-like one-dimensional nanostructures consisting of single crystal Fe nanoparticles have been produced by using solution dispersion approach. Room temperature magnetic measurement shows that the as-fabricated Fe nanochains are ferromagnetic with a high saturation magnetization (203 emu/g) whereas the nanoparticles are single magnetic domains, which indicate that the as-synthesized products have superparamagnetism behavior with the saturation magnetization of about 28 emu/g. Maybe this results from the directional alignment of the nanoparticles. The excellent characteristic may have led to the potential applications in spin filtering, high density magnetic recording, and nanosensors.

  17. Pulse Power Capability Of High Energy Density Capacitors Based on a New Dielectric Material

    Science.gov (United States)

    Winsor, Paul; Scholz, Tim; Hudis, Martin; Slenes, Kirk M.

    1999-01-01

    A new dielectric composite consisting of a polymer coated onto a high-density metallized Kraft has been developed for application in high energy density pulse power capacitors. The polymer coating is custom formulated for high dielectric constant and strength with minimum dielectric losses. The composite can be wound and processed using conventional wound film capacitor manufacturing equipment. This new system has the potential to achieve 2 to 3 J/cu cm whole capacitor energy density at voltage levels above 3.0 kV, and can maintain its mechanical properties to temperatures above 150 C. The technical and manufacturing development of the composite material and fabrication into capacitors are summarized in this paper. Energy discharge testing, including capacitance and charge-discharge efficiency at normal and elevated temperatures, as well as DC life testing were performed on capacitors manufactured using this material. TPL (Albuquerque, NM) has developed the material and Aerovox (New Bedford, MA) has used the material to build and test actual capacitors. The results of the testing will focus on pulse power applications specifically those found in electro-magnetic armor and guns, high power microwave sources and defibrillators.

  18. Preparation of high density (Th, U)O2 pellets by sol-gel microsphere pelletization and 1300 C air sintering

    International Nuclear Information System (INIS)

    Yamagishi, Shigeru; Takahashi, Yoshihisa

    1994-01-01

    The fabrication of high density (Th, U)O 2 pellets by the sol-gel microsphere pelletization (SGMP) process was studied. To prepare source ThO 2 -UO 3 microspheres, isopropyl alcohol was substituted for the water in gel and thereafter removed by evacuating and subsequently by heating at 200 C in air. After humidifying the microspheres up to the moisture content ranging 10-21%, they were compacted into a pellet under 150-500 MPa and sintered in air at 1300 C. Even at the relatively low temperature, the maximum density reached 98% TD or higher for the U/(Th+U) ratios of 5-20 mol%. Such high density products survived as firm pellets with a similarly high density of 99% TD during the reduction into (Th, U)O 2 in Ar-4% H 2 at 1300 C. ((orig.))

  19. Weavable, Conductive Yarn-Based NiCo//Zn Textile Battery with High Energy Density and Rate Capability.

    Science.gov (United States)

    Huang, Yan; Ip, Wing Shan; Lau, Yuen Ying; Sun, Jinfeng; Zeng, Jie; Yeung, Nga Sze Sea; Ng, Wing Sum; Li, Hongfei; Pei, Zengxia; Xue, Qi; Wang, Yukun; Yu, Jie; Hu, Hong; Zhi, Chunyi

    2017-09-26

    With intrinsic safety and much higher energy densities than supercapacitors, rechargeable nickel/cobalt-zinc-based textile batteries are promising power sources for next generation personalized wearable electronics. However, high-performance wearable nickel/cobalt-zinc-based batteries are rarely reported because there is a lack of industrially weavable and knittable highly conductive yarns. Here, we use scalably produced highly conductive yarns uniformly covered with zinc (as anode) and nickel cobalt hydroxide nanosheets (as cathode) to fabricate rechargeable yarn batteries. They possess a battery level capacity and energy density, as well as a supercapacitor level power density. They deliver high specific capacity of 5 mAh cm -3 and energy densities of 0.12 mWh cm -2 and 8 mWh cm -3 (based on the whole solid battery). They exhibit ultrahigh rate capabilities of 232 C (liquid electrolyte) and 116 C (solid electrolyte), which endows the batteries excellent power densities of 32.8 mW cm -2 and 2.2 W cm -3 (based on the whole solid battery). These are among the highest values reported so far. A wrist band battery is further constructed by using a large conductive cloth woven from the conductive yarns by a commercial weaving machine. It powers various electronic devices successfully, enabling dual functions of wearability and energy storage.

  20. Photolithographic Synthesis of High-Density DNA and RNA Arrays on Flexible, Transparent, and Easily Subdivided Plastic Substrates.

    Science.gov (United States)

    Holden, Matthew T; Carter, Matthew C D; Wu, Cheng-Hsien; Wolfer, Jamison; Codner, Eric; Sussman, Michael R; Lynn, David M; Smith, Lloyd M

    2015-11-17

    The photolithographic fabrication of high-density DNA and RNA arrays on flexible and transparent plastic substrates is reported. The substrates are thin sheets of poly(ethylene terephthalate) (PET) coated with cross-linked polymer multilayers that present hydroxyl groups suitable for conventional phosphoramidite-based nucleic acid synthesis. We demonstrate that by modifying array synthesis procedures to accommodate the physical and chemical properties of these materials, it is possible to synthesize plastic-backed oligonucleotide arrays with feature sizes as small as 14 μm × 14 μm and feature densities in excess of 125 000/cm(2), similar to specifications attainable using rigid substrates such as glass or glassy carbon. These plastic-backed arrays are tolerant to a wide range of hybridization temperatures, and improved synthetic procedures are described that enable the fabrication of arrays with sequences up to 50 nucleotides in length. These arrays hybridize with S/N ratios comparable to those fabricated on otherwise identical arrays prepared on glass or glassy carbon. This platform supports the enzymatic synthesis of RNA arrays and proof-of-concept experiments are presented showing that the arrays can be readily subdivided into smaller arrays (or "millichips") using common laboratory-scale laser cutting tools. These results expand the utility of oligonucleotide arrays fabricated on plastic substrates and open the door to new applications for these important bioanalytical tools.

  1. Fabrication of high-performance supercapacitors based on transversely oriented carbon nanotubes

    Science.gov (United States)

    Markoulidis, F.; Lei, C.; Lekakou, C.

    2013-04-01

    High-performance supercapacitors with organic electrolyte 1 M TEABF4 (tetraethyl ammonium tetrafluoroborate) in PC (propylene carbonate) were fabricated and tested, based on multiwall carbon nanotubes (MWNTs) deposited by electrophoresis on three types of alternative substrates: aluminium foil, ITO (indium tin oxide) coated PET (polyethylene terephthalate) film and PET film. In all cases, SEM (scanning electron microscopy) and STEM (scanning transmission electron microscopy) micrographs demonstrated that protruding, transversely oriented MWNT structures were formed, which should increase the transverse conductivity of these MWNT electrodes. The best supercapacitor cell of MWNT electrodes deposited on aluminium foil displayed good transverse orientation of the MWNT structures as well as an in-plane MWNT network at the feet of the protruding structures, which ensured good in-plane conductivity. Capacitor cells with MWNT electrodes deposited either on ITO-coated PET film or on PET film demonstrated lower but still very good performance due to the high density of transversely oriented MWNT structures (good transverse conductivity) but some in-plane inhomogeneities. Capacitor cells with drop-printed MWNTs on aluminium foil, without any transverse orientation, had 16-30 times lower specific capacitance and 5-40 times lower power density than the capacitor cells with the electrophoretically deposited MWNT electrodes.

  2. WO{sub 3-x} rate at Au rate at MnO{sub 2} core-shell nanowires on carbon fabric for high-performance flexible supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xihong; Zhai, Teng [Wuhan National Laboratory for Optoelectronics (WNLO), College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan (China); School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou (China); Zhang, Xianghui; Shen, Yongqi; Yuan, Longyan; Hu, Bin; Gao, Yihua; Zhou, Jun [Wuhan National Laboratory for Optoelectronics (WNLO), College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan (China); Gong, Li; Chen, Jian [Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou (China); Tong, Yexiang [School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou (China); Wang, Zhong Lin [Wuhan National Laboratory for Optoelectronics (WNLO), College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan (China); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States)

    2012-02-14

    WO{sub 3-x} rate at Au rate at MnO{sub 2} core-shell nanowires (NWs) are synthesized on a flexible carbon fabric and show outstanding electrochemical performance in supercapacitors such as high specific capacitance, good cyclic stability, high energy density, and high power density. These results suggest that the WO{sub 3-x} rate at Au rate at MnO{sub 2} NWs have promising potential for use in high-performance flexible supercapacitors. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Next-generation fabrication technologies for optical pickup devices in high-density optical disk storage systems

    Science.gov (United States)

    Hosoe, Shigeru

    1999-05-01

    This paper shows a direction of friction technologies to make aspherical plastic objective lens with higher optical performance for high density optical disk storage systems. Specifically, a low birefringence and low water absorption (less than 0.1%) optical resin, low tool abrasion mold material, high circularity diamond tool which nose circularity is less than 30 nm, and 1 nm axis resolution precision lathe which tool position is stabilized against drift by environmental change are referred. Cut optical surface of a mold sample was constantly attained in less than 5 nmRtm surface roughness. Using these new technologies, aspherical plastic objective lens (NA0.6) for DVD which wave aberration is less than 35 m (lambda) rms was realized.

  4. Longitudinal gas-density profilometry for plasma-wakefield acceleration targets

    Science.gov (United States)

    Schaper, Lucas; Goldberg, Lars; Kleinwächter, Tobias; Schwinkendorf, Jan-Patrick; Osterhoff, Jens

    2014-03-01

    Precise tailoring of plasma-density profiles has been identified as one of the critical points in achieving stable and reproducible conditions in plasma wakefield accelerators. Here, the strict requirements of next generation plasma-wakefield concepts, such as hybrid-accelerators, with densities around 1017 cm-3 pose challenges to target fabrication as well as to their reliable diagnosis. To mitigate these issues we combine target simulation with fabrication and characterization. The resulting density profiles in capillaries with gas jet and multiple in- and outlets are simulated with the fluid code OpenFOAM. Satisfactory simulation results then are followed by fabrication of the desired target shapes with structures down to the 10 μm level. The detection of Raman scattered photons using lenses with large collection solid angle allows to measure the corresponding longitudinal density profiles at different number densities and allows a detection sensitivity down to the low 1017 cm-3 density range at high spatial resolution. This offers the possibility to gain insight into steep density gradients as for example in gas jets and at the plasma-to-vacuum transition.

  5. CMOS compatible fabrication of flexible and semi-transparent FeRAM on ultra-thin bulk monocrystalline silicon (100) fabric

    KAUST Repository

    Ghoneim, Mohamed T.; Hanna, Amir; Hussain, Muhammad Mustafa

    2014-01-01

    Commercialization of flexible electronics requires reliable, high performance, ultra-compact and low power devices. To achieve them, we fabricate traditional electronics on bulk mono-crystalline silicon (100) and transform the top portion into an ultra-thin flexible silicon fabric with prefabricated devices, preserving ultra-large-scale-integration density and same device performance. This can be done in a cost effective manner due to its full compatibility with standard CMOS processes. In this paper, using the same approach, for the first time we demonstrate a ferroelectric random access memory (FeRAM) cell on flexible silicon fabric platform and assess its functionality and practical potential.

  6. CMOS compatible fabrication of flexible and semi-transparent FeRAM on ultra-thin bulk monocrystalline silicon (100) fabric

    KAUST Repository

    Ghoneim, Mohamed T.

    2014-08-01

    Commercialization of flexible electronics requires reliable, high performance, ultra-compact and low power devices. To achieve them, we fabricate traditional electronics on bulk mono-crystalline silicon (100) and transform the top portion into an ultra-thin flexible silicon fabric with prefabricated devices, preserving ultra-large-scale-integration density and same device performance. This can be done in a cost effective manner due to its full compatibility with standard CMOS processes. In this paper, using the same approach, for the first time we demonstrate a ferroelectric random access memory (FeRAM) cell on flexible silicon fabric platform and assess its functionality and practical potential.

  7. High-temperature and high-power-density nanostructured thermoelectric generator for automotive waste heat recovery

    International Nuclear Information System (INIS)

    Zhang, Yanliang; Cleary, Martin; Wang, Xiaowei; Kempf, Nicholas; Schoensee, Luke; Yang, Jian; Joshi, Giri; Meda, Lakshmikanth

    2015-01-01

    Highlights: • A thermoelectric generator (TEG) is fabricated using nanostructured half-Heusler materials. • The TE unicouple devices produce superior power density above 5 W/cm"2. • A TEG system with over 1 kW power output is demonstrated by recovering automotive waste heat. - Abstract: Given increasing energy use as well as decreasing fossil fuel sources worldwide, it is no surprise that interest in promoting energy efficiency through waste heat recovery is also increasing. Thermoelectric generators (TEGs) are one of the most promising pathways for waste heat recovery. Despite recent thermoelectric efficiency improvement in nanostructured materials, a variety of challenges have nevertheless resulted in few demonstrations of these materials for large-scale waste heat recovery. Here we demonstrate a high-performance TEG by combining high-efficiency nanostructured bulk materials with a novel direct metal brazing process to increase the device operating temperature. A unicouple device generates a high power density of 5.26 W cm"−"2 with a 500 °C temperature difference between hot and cold sides. A 1 kW TEG system is experimentally demonstrated by recovering the exhaust waste heat from an automotive diesel engine. The TEG system operated with a 2.1% heat-to-electricity efficiency under the average temperature difference of 339 °C between the TEG hot- and cold-side surfaces at a 550 °C exhaust temperature. The high-performance TEG reported here open up opportunities to use TEGs for energy harvesting and power generation applications.

  8. Fabrication of Ni-Mn Microprobe Structure with Low Internal Stress and High Hardness by Employing DC Electrodeposition

    Directory of Open Access Journals (Sweden)

    Kuan-Hui Cheng

    2014-01-01

    Full Text Available Due to its widely tunable mechanical property and incompatibility with most solders, Ni-Mn alloy can become a viable candidate in the fabrication of testing probe for microelectronic devices. In this study, the electrodeposition of Ni-Mn alloy in nickel sulphamate electrolyte with the addition of manganese sulphate was investigated under direct current (DC power source. The effects of current density and Mn2+ concentration in the electrolyte on the coating composition, cathodic efficiency, microstructure and mechanical properties were explored. The results showed that the raise of the Mn2+ concentration in the electrolyte alone did not effectively increase the Mn content in the coating but reduce the cathodic efficiency. On the other hand, increasing the current density facilitated the codeposition of the Mn and rendered the crystallite from coarse columnar grain to the refined one. Thus, both hardness and internal stress of the coating increased. The fabrication of testing probes at 1 A/dm2 was shown to satisfy the high hardness, low internal stress, reasonable fatigue life, and nonsticking requirements for this microelectronic application.

  9. Comparative study of SOI/Si hybrid substrates fabricated using high-dose and low-dose oxygen implantation

    International Nuclear Information System (INIS)

    Dong Yemin; Chen Meng; Chen Jing; Wang Xiang; Wang Xi

    2004-01-01

    Hybrid substrates comprising both silicon-on-insulator (SOI) and bulk Si regions have been fabricated using the technique of patterned separation by implantation of oxygen (SIMOX) with high-dose (1.5 x 10 18 cm -2 ) and low-dose ((1.5-3.5) x 10 17 cm -2 ) oxygen ions, respectively. Cross-sectional transmission electron microscopy (XTEM) was employed to examine the microstructures of the resulting materials. Experimental results indicate that the SOI/Si hybrid substrate fabricated using high-dose SIMOX is of inferior quality with very large surface height step and heavily damaged transitions between the SOI and bulk regions. However, the quality of the SOI/Si hybrid substrate is enhanced dramatically by reducing the implant dose. The defect density in transitions is reduced considerably. Moreover, the expected surface height difference does not exist and the surface is exceptionally flat. The possible mechanisms responsible for the improvements in quality are discussed

  10. Si nanowires/Cu nanowires bilayer fabric as a lithium ion capacitor anode with excellent performance

    Science.gov (United States)

    Lai, Chien-Ming; Kao, Tzu-Lun; Tuan, Hsing-Yu

    2018-03-01

    A light and binder-free bilayer fabric electrode composed of silicon nanowires and copper nanowires for lithium-ion capacitors (LICs) is reported. A lithium ion capacitor is proposed employing pre-lithiated silicon/copper nanowire fabric and activated carbon as the anode and the cathode, respectively. These LICs show remarkable performance with a specific capacitance of 156 F g-1 at 0.1 A g-1, which is approximately twice of that of activated carbon in electric double-layer capacitors (EDLCs), and still exhibit a fine specific capacitance of 68 F g-1 even at a high current density of 20 A g-1. At a low power density of 193 W kg-1, the Si/Cu fabric//AC LIC can achieve high energy density of 210 W h kg-1. As the power density is increased to 99 kW kg-1, the energy density still remains at 43 W h kg-1, showing the prominent rate performance.

  11. Development of a high-density nonwoven structure to improve the stab resistance of protective clothing material.

    Science.gov (United States)

    Bao, Limin; Wang, Yanling; Baba, Takeichiro; Fukuda, Yasuhiro; Wakatsuki, Kaoru; Morikawa, Hideaki

    2017-12-07

    The purpose of this research was to enhance the stab resistance of protective clothing material by developing a new high-density nonwoven structure. Ice picks often injure Japanese police officers due to the strict regulation of swords in the country. Consequently, this study was designed to improve stab resistance against ice picks. Most existing anti-stab protective clothing research has focused on various fabrics impregnated with resin, an approach that brings with it problems of high cost and complicated processing. Seldom has research addressed the potential for improving stab resistance by using nonwoven structures, which exhibit better stab resistance than fabric. In this research, we prepared a series of nonwoven structures with densities ranging from about 0.14 g/cm 3 to 0.46 g/cm 3 by varying the number of stacked layers of Kevlar/polyester nonwoven under a hot press. We then proposed two methods for producing such hot-press nonwovens: the multilayer hot-press method and the monolayer hot-press method. Stab resistance was evaluated according to NIJ Standard-0115.00. We also investigated the relationship among nonwoven density, stab resistance, and flexural rigidity, and here we discuss the respective properties of the two proposed methods. Our results show that stab resistance and flexural rigidity increase with nonwoven density, but flexural rigidity of nonwovens prepared using the monolayer hot-press method only shows a slight change as nonwoven density increases. Though the two methods exhibit little difference in maximum load, the flexural rigidity of nonwovens prepared using the monolayer hot-press method is much lower, which contributes to superior wear comfort. Finally, we investigated the mechanism behind the stabbing process. Stabbing with an ice pick is a complicated process that involves many factors. Our findings indicate that nonwovens stop penetration primarily in two ways: nonwoven deformation and fiber fractures.

  12. Fabrication of ultrafine manganese oxide-decorated carbon nanofibers for high-performance electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ying; Lee, Sungsik; Brown, Dennis E.; Zhao, Hairui; Li, Xinsong; Jiang, Daqiang; Hao, Shijie; Zhao, Yongxiang; Cong, Daoyong; Zhang, Xin; Ren, Yang

    2016-09-01

    Ultrafine manganese oxide-decorated carbon nanofibers (MnOn-CNF) as a new type of electrode materials are facilely fabricated by direct conversion of Mn, Zn-trimesic acid (H3BTC) metal organic framework fibers (Mn-ZnBTC). The construction and evolution of Mn-ZnBTC precursors are investigated by SEM and in situ high-energy XRD. The manganese oxides are highly dispersed onto the porous carbon nanofibers formed simultaneously, verified by TEM, X-ray absorption fine structure (XAFS), Raman, ICP-AES and N2 adsorption techniques. As expected, the resulting MnOn-CNF composites are highly stable, and can be cycled up to 5000 times with a high capacitance retention ratio of 98% in electrochemical capacitor measurements. They show a high capacitance of up to 179 F g–1 per mass of the composite electrode, and a remarkable capacitance of up to 18290 F g–1 per active mass of the manganese(IV) oxide, significantly exceeding the theoretical specific capacitance of manganese(IV) oxide (1370 F g–1). The maximum energy density is up to 19.7 Wh kg–1 at the current density of 0.25 A g–1, even orders higher than those of reported electric double-layer capacitors and pseudocapacitors. The excellent capacitive performance can be ascribed to the joint effect of easy accessibility, high porosity, tight contact and superior conductivity integrated in final MnOn-CNF composites.

  13. Importing low-density ideas to high-density revitalisation

    DEFF Research Database (Denmark)

    Arnholtz, Jens; Ibsen, Christian Lyhne; Ibsen, Flemming

    2016-01-01

    Why did union officials from a high-union-density country like Denmark choose to import an organising strategy from low-density countries such as the US and the UK? Drawing on in-depth interviews with key union officials and internal documents, the authors of this article argue two key points. Fi...

  14. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities.

    Science.gov (United States)

    Choi, Bong Gill; Yang, Minho; Hong, Won Hi; Choi, Jang Wook; Huh, Yun Suk

    2012-05-22

    In order to develop energy storage devices with high power and energy densities, electrodes should hold well-defined pathways for efficient ionic and electronic transport. Herein, we demonstrate high-performance supercapacitors by building a three-dimensional (3D) macroporous structure that consists of chemically modified graphene (CMG). These 3D macroporous electrodes, namely, embossed-CMG (e-CMG) films, were fabricated by using polystyrene colloidal particles as a sacrificial template. Furthermore, for further capacitance boost, a thin layer of MnO(2) was additionally deposited onto e-CMG. The porous graphene structure with a large surface area facilitates fast ionic transport within the electrode while preserving decent electronic conductivity and thus endows MnO(2)/e-CMG composite electrodes with excellent electrochemical properties such as a specific capacitance of 389 F/g at 1 A/g and 97.7% capacitance retention upon a current increase to 35 A/g. Moreover, when the MnO(2)/e-CMG composite electrode was asymmetrically assembled with an e-CMG electrode, the assembled full cell shows remarkable cell performance: energy density of 44 Wh/kg, power density of 25 kW/kg, and excellent cycle life.

  15. Characterization of new a-Si:H detectors fabricated from amorphous silicon deposited at high rate by helium enhanced PECVD

    International Nuclear Information System (INIS)

    Pochet, T.; Ilie, A.; Foulon, F.

    1993-01-01

    This paper is concerned with the characterization of new detectors fabricated from a-Si:H films deposited at high rates through the dilution of SiH 4 in helium. Rates of up to ten times (5.5 micrometer/h) that of the standard technique are obtained, allowing for the feasible fabrication of detectors having thickness up to 100 micrometers. The electrical characteristics (depletion voltage, residual space charge density) of the helium diluted material, have been investigated and compared to that of the standard material. The response of detectors, made from both materials, to 5.5 MeV alpha particles are compared. 6 figs., 5 tabs., 13 refs

  16. Fabrication of cermet fuel for fast reactor

    International Nuclear Information System (INIS)

    Mishra, Sudhir; Kumar, Arun; Kutty, T.R.G.; Kamath, H.S.

    2011-01-01

    Mixed oxide (MOX) (U,Pu)O 2 , and metallic (U,Pu ,Zr) fuels are considered promising fuels for the fast reactor. The fuel cycle of MOX is well established. The advantages of the oxide fuel are its easy fabricability, good performance in the reactor and a well established reprocessing technology. However the problems lie in low thermal conductivity , low density of the fuel leading to low breeding ratio and consequently longer doubling time. The metallic fuel has the advantages of high thermal conductivity, higher metal density and higher coefficient of linear expansion. The higher coefficient of linear expansion is good from the safety consideration (negative reactivity factor). Because of higher metal density it offers highest breeding ratio and shortest doubling time. Metallic fuel disadvantages comprise large swelling at high burnup, fuel cladding interaction and lower margin between operating and melting temperature. The optimal solution may lie in cermet fuel (U, PuO 2 ), where PuO 2 is dispersed in U metal matrix and combines the favorable features of both the fuel types. The advantages of this fuel include high thermal conductivity, larger margin between melting and operating temperature, ability to retain fission product etc. The matrix being of high density metal the advantage of high breeding ratio is also maintained. In this report some results of fabrication of cermet pellet comprising of UO 2 /PuO 2 dispersed in U metal powder through classical powder metallurgy route and characterization are presented. (author)

  17. Description of ECRI (CNEA'S MTR fuel fabrication plant)

    International Nuclear Information System (INIS)

    Echenique, P.; Fabro, J.; Podesta, D.; Restelli, M.; Rossi, G.; Alvarez, L.; Adelfang, P.

    2002-01-01

    The ECRI Plant is dedicated to the development and fabrication of high-density fuel elements and targets for 99 Mo. In this sector had been done the start up Fuel Elements for the Reactors of Peru, Iran, Algeria and Egypt. All of them were made with U 3 O 8 . The targets for 99 Mo using HEU were fabricated too in the last years. The new material of high-density for Fuel Elements as U 3 Si 2 were done in this sector, three prototypes were fabricated, two are still under irradiation. (P06 and P07). As new developments we are working with U-Mo (7%) Fuel Plates with both material Korean and HMD. This work is under the RERTR Program and two fuel elements, manufactured by us, with both powders, will be irradiated in Petten. For 99 Mo targets, we are fabricating miniplates of LEU with an AlUx powder by pulvi-metallurgy technique. And it is under development the foils targets under the RERTR Program. A general view of the fabrication facilities and control sector will be shown. The different operations that are done in each sector will be explained. All our activities will be certified under the ISO 9000 and we are working hard to get it in the middle of 2003. (author)

  18. Fabrication of intermetallic NiAl by self-propagating high-temperature synthesis reaction using aluminium nanopowder under high pressure

    CERN Document Server

    Dong Shu Shan; Cheng Hai Yong; Yang Hai Bin; Zou Guang Tian

    2002-01-01

    By using aluminium nanopowder prepared by wire electrical explosion, pure monophase NiAl compound with fine crystallites (<=10 mu m) and good densification (98% of the theoretical green density) was successfully fabricated by means of self-propagating high-temperature synthesis (SHS) under a high pressure of 50 MPa. Investigation shows that, due to the physical and chemical characteristics of the nanoparticles, the SHS reaction mode and mechanism are distinct from those when using conventional coarse-grained reactants. The SHS reaction process depends on the thermal conditions related to pressure and can occur at a dramatically low temperature of 308 sup o C, which cannot be expected in conventional SHS reaction. With increasing pressure, the SHS explosive ignition temperature (T sub i sub g) of forming NiAl decreases due to thermal and kinetic effects.

  19. Fabrication and characterisation of fabric supercapacitor

    OpenAIRE

    Yong, Sheng

    2016-01-01

    Fabric supercapacitor is a flexible electrochemical device for energy storage application. It is designed to power up flexible electronic systems used for, for example, information sensing, data computation and communication. The development of a flexible supercapacitor is important for e-textiles since supercapacitor can achieve higher energy density than a standard parallel plate capacitor and a larger power density compared with a battery. This research area is currently facing barriers on...

  20. Chemical influence on the hydro-mechanical behaviour of high-density bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos, E.; Romero, E.; Lioret, A. [Technical Univ. of Catalonia UPC, Barcelona (Spain); Musso, G. [Politecnico di Torino, Torino (Italy)

    2005-07-01

    In radioactive waste disposal schemes, during the operational period of clay barriers, solute transport an d thermal gradients may alter the solute concentration of pore water. These induced changes have important consequences on hydro-mechanical properties and microstructural alterations (mineral composition and pore size distribution changes) of the clay barrier. Chemically induced changes originated by different imbibition fluids and soil mineral compositions have been a subject with a long research tradition. These researches have been mainly focused on the behaviour of reconstituted soils starting from slurry and saturated wit h saline solutions at elevated concentrations, where hydro-mechanical changes (soil compressibility and water permeability changes) are clearly detected. In contrast, available information concerning the response of high-density clays subjected to chemically induced actions with a wide range of pore solution concentrations is very limited in spite of its practical relevance to environmental geotechnics. This situation has been caused, at least in part, by the difficulties in detecting important hydro-mechanical changes when clays with low water storage capacity have been used. Nevertheless, this paper will demonstrate that even in the case of high-density fabrics, considerable changes can be observed when high-activity clays (bentonites) are imbibed with different pore fluid compositions. (authors)

  1. Research on High Layer Thickness Fabricated of 316L by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Shuo Wang

    2017-09-01

    Full Text Available Selective laser melting (SLM is a potential additive manufacturing (AM technology. However, the application of SLM was confined due to low efficiency. To improve efficiency, SLM fabrication with a high layer thickness and fine powder was systematically researched, and the void areas and hollow powders can be reduced by using fine powder. Single-track experiments were used to narrow down process parameter windows. Multi-layer fabrication relative density can be reached 99.99% at the exposure time-point distance-hatch space of 120 μs-40 μm-240 μm. Also, the building rate can be up to 12 mm3/s, which is about 3–10 times higher than the previous studies. Three typical defects were found by studying deeply, including the un-melted defect between the molten pools, the micro-pore defect within the molten pool, and the irregular distribution of the splashing phenomenon. Moreover, the microstructure is mostly equiaxed crystals and a small amount of columnar crystals. The averages of ultimate tensile strength, yield strength, and elongation are 625 MPa, 525 MPa, and 39.9%, respectively. As exposure time increased from 80 μs to 200 μs, the grain size is gradually grown up from 0.98 μm to 2.23 μm, the grain aspect ratio is close to 1, and the tensile properties are shown as a downward trend. The tensile properties of high layer thickness fabricated are not significantly different than those with a coarse-powder layer thickness of low in previous research.

  2. Research on High Layer Thickness Fabricated of 316L by Selective Laser Melting.

    Science.gov (United States)

    Wang, Shuo; Liu, Yude; Shi, Wentian; Qi, Bin; Yang, Jin; Zhang, Feifei; Han, Dong; Ma, Yingyi

    2017-09-08

    Selective laser melting (SLM) is a potential additive manufacturing (AM) technology. However, the application of SLM was confined due to low efficiency. To improve efficiency, SLM fabrication with a high layer thickness and fine powder was systematically researched, and the void areas and hollow powders can be reduced by using fine powder. Single-track experiments were used to narrow down process parameter windows. Multi-layer fabrication relative density can be reached 99.99% at the exposure time-point distance-hatch space of 120 μs-40 μm-240 μm. Also, the building rate can be up to 12 mm³/s, which is about 3-10 times higher than the previous studies. Three typical defects were found by studying deeply, including the un-melted defect between the molten pools, the micro-pore defect within the molten pool, and the irregular distribution of the splashing phenomenon. Moreover, the microstructure is mostly equiaxed crystals and a small amount of columnar crystals. The averages of ultimate tensile strength, yield strength, and elongation are 625 MPa, 525 MPa, and 39.9%, respectively. As exposure time increased from 80 μs to 200 μs, the grain size is gradually grown up from 0.98 μm to 2.23 μm, the grain aspect ratio is close to 1, and the tensile properties are shown as a downward trend. The tensile properties of high layer thickness fabricated are not significantly different than those with a coarse-powder layer thickness of low in previous research.

  3. Influence of fabrication parameter on the nanostructure and photoluminescence of highly doped p-porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shaoyuan [National Engineering Laboratory for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093 (China); Faculty of Metallurgical and energy engineering, Kunming University of Science and Technology, Kunming 650093 (China); Ma, Wenhui, E-mail: mwhsilicon@163.com [National Engineering Laboratory for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093 (China); Faculty of Metallurgical and energy engineering, Kunming University of Science and Technology, Kunming 650093 (China); Zhou, Yang, E-mail: zhouyangnano@163.com [National Engineering Laboratory for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093 (China); Faculty of Metallurgical and energy engineering, Kunming University of Science and Technology, Kunming 650093 (China); Chen, Xiuhua [Faculty of Physical Science and Technology, Yunnan University, Kunming 650091 (China); Ma, Mingyu [National Engineering Laboratory for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093 (China); Faculty of Metallurgical and energy engineering, Kunming University of Science and Technology, Kunming 650093 (China); Xiao, Yongyin [Faculty of Physical Science and Technology, Yunnan University, Kunming 650091 (China); Xu, Yaohui [National Engineering Laboratory for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093 (China); Faculty of Metallurgical and energy engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2014-02-15

    Porous silicon (PS) was prepared by anodizing highly doped p-type silicon in the solution of H{sub 2}O/ethanol/HF. The effects of key fabrication parameters (HF concentration, etching time and current density) on the nanostructure of PS were carefully investigated by AFM, SEM and TEM characterization. According to the experimental results, a more full-fledged model was developed to explain the crack behaviors on PS surface. The photoluminescence (PL) of resulting PS was studied by a fluorescence spectrophotometer and the results show that PL peak positions shift to shorter wavelength with the increasing current density, anodisation time and dilution of electrolyte. The PL spectra blue shift of the sample with higher porosity is confirmed by HRTEM results that the higher porosity results in smaller Si nanocrystals. A linear model (λ{sub PL/nm}=620.3–0.595P, R=0.905) was established to describe the correlation between PL peak positions and porosity of PS. -- Highlights: • The effect of fabrication parameter on the nanostructure of PS is investigated. • The influence of nanostructure on the photoluminescence behaviors is studied • A full-fledged model for expounding the crack behaviors of PS is presented. • The correlation between the porosity and PL peak blue shift is described by a linear model.

  4. Manipulation of radicals and ions in LFICP-aided fabrication of high efficiency solar cells

    International Nuclear Information System (INIS)

    Xu, S.

    2013-01-01

    In this talk, we report on the development and diagnostics of low frequency inductively coupled plasma (LFICP) reactor for fabrication of high efficiency silicon solar cells. Chemically active, thermally non-equilibrium plasma possess unique advantages for manipulation of plasma-generated radicals/ions and overall control of growth and self-organization processes that are crucial for fabrication of photovoltaic materials and solar cells. In low frequency inductively coupled plasmas, generation, selection and control of densities and fluxes of the radicals and ions can easily be controlled by the electron energy distributions and other plasma parameters. The electric field and thermal forces guide selective delivery of the radicals to the surface. Specific substrate activation and temperature determine the ion/heat fluxes from the gas phase to the charged surfaces. Detailed discussion includes the inter-connection between in-situ plasma diagnostics (Optical Emission Spectroscopy, Langmuir Probe diagnostics, and Quadruple Mass Spectrometry) and ex-situ material characterization (XRD, Raman, FTIR EDX, UV/Vis, SEM, Hall-effect and others). Special emphasis is paid to the identification and control strategies of the plasma-generated radicals/ions existed in both the ionized gas phase and on the deposition surfaces. We will show how radicals and ions can be manipulated to meet the structural, optical and electronic requirements for high efficiency photovoltaic cells. Solar cell fabricated by the LFICP plasma exhibits an extraordinarily photovoltaic performance with energy conversion efficiency exceeding 18%. (author)

  5. High Energy Density Laboratory Astrophysics

    CERN Document Server

    Lebedev, Sergey V

    2007-01-01

    During the past decade, research teams around the world have developed astrophysics-relevant research utilizing high energy-density facilities such as intense lasers and z-pinches. Every two years, at the International conference on High Energy Density Laboratory Astrophysics, scientists interested in this emerging field discuss the progress in topics covering: - Stellar evolution, stellar envelopes, opacities, radiation transport - Planetary Interiors, high-pressure EOS, dense plasma atomic physics - Supernovae, gamma-ray bursts, exploding systems, strong shocks, turbulent mixing - Supernova remnants, shock processing, radiative shocks - Astrophysical jets, high-Mach-number flows, magnetized radiative jets, magnetic reconnection - Compact object accretion disks, x-ray photoionized plasmas - Ultrastrong fields, particle acceleration, collisionless shocks. These proceedings cover many of the invited and contributed papers presented at the 6th International Conference on High Energy Density Laboratory Astrophys...

  6. Process development and fabrication for sphere-pac fuel rods

    International Nuclear Information System (INIS)

    Welty, R.K.; Campbell, M.H.

    1981-06-01

    Uranium fuel rods containing sphere-pac fuel have been fabricated for in-reactor tests and demonstrations. A process for the development, qualification, and fabrication of acceptable sphere-pac fuel rods is described. Special equipment to control fuel contamination with moisture or air and the equipment layout needed for rod fabrication is described and tests for assuring the uniformity of the fuel column are discussed. Fuel retainers required for sphere-pac fuel column stability and instrumentation to measure fuel column smear density are described. Results of sphere-pac fuel rod fabrication campaigns are reviewed and recommended improvements for high throughput production are noted

  7. High short-circuit current density CdTe solar cells using all-electrodeposited semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Echendu, O.K., E-mail: oechendu@yahoo.com; Fauzi, F.; Weerasinghe, A.R.; Dharmadasa, I.M.

    2014-04-01

    CdS/CdTe and ZnS/CdTe n–n heterojunction solar cells have been fabricated using all-electrodeposited semiconductors. The best devices show remarkable high short-circuit current densities of 38.5 mAcm{sup −2} and 47.8 mAcm{sup −2}, open-circuit voltages of 630 mV and 646 mV and conversion efficiencies of 8.0% and 12.0% respectively. The major strength of these device structures lies in the combination of n–n heterojunction with a large Schottky barrier at the n-CdTe/metal back contact which provides the required band bending for the separation of photo-generated charge carriers. This is in addition to the use of a high quality n-type CdTe absorber layer with high electron mobility. The potential barrier heights estimated for these devices from the current–voltage characteristics exceed 1.09 eV and 1.13 eV for CdS/CdTe and ZnS/CdTe cells respectively. The diode rectification factors of both devices are in excess of four orders of magnitude with reverse saturation current densities of 1.0 × 10{sup −7} Acm{sup −2} and 4.0 × 10{sup −7} Acm{sup −2} respectively. These all-electrodeposited solar cell device structures are currently being studied and developed as an alternative to the well-known p–n junction structures which utilise chemical bath-deposited CdS. The preliminary material growth, device fabrication and assessment results are presented in this paper. - Highlights: • Two-electrode deposition. • High J{sub sc} Schottky barrier solar cells. • CdCl{sub 2} + CdF{sub 2} treatment.

  8. Longitudinal gas-density profilometry for plasma-wakefield acceleration targets

    Energy Technology Data Exchange (ETDEWEB)

    Schaper, Lucas, E-mail: lschaper01@qub.ac.uk [Universität Hamburg, FB Physik, Institut für Experimentalphysik, Luruper Chaussee 149, 22761 Hamburg (Germany); Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg (Germany); Goldberg, Lars; Kleinwächter, Tobias; Schwinkendorf, Jan-Patrick; Osterhoff, Jens [Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg (Germany)

    2014-03-11

    Precise tailoring of plasma-density profiles has been identified as one of the critical points in achieving stable and reproducible conditions in plasma wakefield accelerators. Here, the strict requirements of next generation plasma-wakefield concepts, such as hybrid-accelerators, with densities around 10{sup 17} cm{sup −3} pose challenges to target fabrication as well as to their reliable diagnosis. To mitigate these issues we combine target simulation with fabrication and characterization. The resulting density profiles in capillaries with gas jet and multiple in- and outlets are simulated with the fluid code OpenFOAM. Satisfactory simulation results then are followed by fabrication of the desired target shapes with structures down to the 10 µm level. The detection of Raman scattered photons using lenses with large collection solid angle allows to measure the corresponding longitudinal density profiles at different number densities and allows a detection sensitivity down to the low 10{sup 17} cm{sup −3} density range at high spatial resolution. This offers the possibility to gain insight into steep density gradients as for example in gas jets and at the plasma-to-vacuum transition.

  9. High-field, high-density tokamak power reactor

    International Nuclear Information System (INIS)

    Cohn, D.R.; Cook, D.L.; Hay, R.D.; Kaplan, D.; Kreischer, K.; Lidskii, L.M.; Stephany, W.; Williams, J.E.C.; Jassby, D.L.; Okabayashi, M.

    1977-11-01

    A conceptual design of a compact (R 0 = 6.0 m) high power density (average P/sub f/ = 7.7 MW/m 3 ) tokamak demonstration power reactor has been developed. High magnetic field (B/sub t/ = 7.4 T) and moderate elongation (b/a = 1.6) permit operation at the high density (n(0) approximately 5 x 10 14 cm -3 ) needed for ignition in a relatively small plasma, with a spatially-averaged toroidal beta of only 4%. A unique design for the Nb 3 Sn toroidal-field magnet system reduces the stress in the high-field trunk region, and allows modularization for simpler disassembly. The modest value of toroidal beta permits a simple, modularized plasma-shaping coil system, located inside the TF coil trunk. Heating of the dense central plasma is attained by the use of ripple-assisted injection of 120-keV D 0 beams. The ripple-coil system also affords dynamic control of the plasma temperature during the burn period. A FLIBE-lithium blanket is designed especially for high-power-density operation in a high-field environment, and gives an overall tritium breeding ratio of 1.05 in the slowly pumped lithium

  10. Fabrication and thermal conductivity of boron carbide/copper cermet

    International Nuclear Information System (INIS)

    Maruyama, Tadashi; Onose, Shoji

    1999-01-01

    Studies on fabrication and thermal conductivity of B 4 C/Cu cermet were made to obtain high performance neutron absorber materials for Liquid Metal-cooled Fast Breeder Reactor (LMFBR). A mixed powder of B 4 C and Cu was mechanically blended at high speed thereby a coating layer of Cu was formed on the surface of B 4 C powder. Then the B 4 C powder with Cu coating was hot pressed at temperatures from 950 to 1,050degC to form a B 4 C cermet. A high density B 4 C/Cu cermet with 70 vol% of B 4 C and relative density higher than 90% was successfully fabricated. In spite of the low volume fraction of Cu, the B 4 C/Cu cermet exhibited high thermal conductivity which originated from the existence of continuous metallic phase Cu in B 4 C/Cu cermet. (author)

  11. Fabrication of High Temperature Cermet Materials for Nuclear Thermal Propulsion

    Science.gov (United States)

    Hickman, Robert; Panda, Binayak; Shah, Sandeep

    2005-01-01

    Processing techniques are being developed to fabricate refractory metal and ceramic cermet materials for Nuclear Thermal Propulsion (NTP). Significant advances have been made in the area of high-temperature cermet fuel processing since RoverNERVA. Cermet materials offer several advantages such as retention of fission products and fuels, thermal shock resistance, hydrogen compatibility, high conductivity, and high strength. Recent NASA h d e d research has demonstrated the net shape fabrication of W-Re-HfC and other refractory metal and ceramic components that are similar to UN/W-Re cermet fuels. This effort is focused on basic research and characterization to identify the most promising compositions and processing techniques. A particular emphasis is being placed on low cost processes to fabricate near net shape parts of practical size. Several processing methods including Vacuum Plasma Spray (VPS) and conventional PM processes are being evaluated to fabricate material property samples and components. Surrogate W-Re/ZrN cermet fuel materials are being used to develop processing techniques for both coated and uncoated ceramic particles. After process optimization, depleted uranium-based cermets will be fabricated and tested to evaluate mechanical, thermal, and hot H2 erosion properties. This paper provides details on the current results of the project.

  12. High density harp for SSCL linac

    International Nuclear Information System (INIS)

    Fritsche, C.T.; Krogh, M.L.; Crist, C.E.

    1993-01-01

    AlliedSignal Inc., Kansas City Division, and the Superconducting Super Collider Laboratory (SSCL) are collaboratively developing a high density harp for the SSCL linac. This harp is designed using hybrid microcircuit (HMC) technology to obtain a higher wire density than previously available. The developed harp contains one hundred twenty-eight 33-micron-diameter carbon wires on 0.38-mm centers. The harp features an onboard broken wire detection circuit. Carbon wire preparation and attachment processes were developed. High density surface mount connectors were located. The status of high density harp development will be presented along with planned future activities

  13. High density harp for SSCL linac

    International Nuclear Information System (INIS)

    Fritsche, C.T.; Krogh, M.L.

    1993-05-01

    AlliedSignal Inc., Kansas City Division, and the Superconducting Super Collider Laboratory (SSCL) are collaboratively developing a high density harp for the SSCL linac. This harp is designed using hybrid microcircuit (HMC) technology to obtain a higher wire density than previously available. The developed harp contains one hundred twenty-eight 33-micron-diameter carbon wires on 0.38-mm centers. The harp features an onboard broken wire detection circuit. Carbon wire preparation and attachment processes were developed. High density surface mount connectors were located. The status of high density harp development will be presented along with planned future activities

  14. Polyaniline nanowire arrays aligned on nitrogen-doped carbon fabric for high-performance flexible supercapacitors.

    Science.gov (United States)

    Yu, Pingping; Li, Yingzhi; Yu, Xinyi; Zhao, Xin; Wu, Lihao; Zhang, Qinghua

    2013-09-24

    A combination of vertical polyaniline (PANI) nanowire arrays and nitrogen plasma etched carbon fiber cloths (eCFC) was fabricated to create 3D nanostructured PANI/eCFC composites. The small size of the highly ordered PANI nanowires can greatly reduce the scale of the diffusion length, allowing for the improved utilization of electrode materials. A two-electrode flexible supercapacitor based on PANI/eCFC demonstrates a high specific capacitance (1035 F g(-1) at a current density of 1 A g(-1)), good rate capability (88% capacity retention at 8 A g(-1)), and long-term cycle life (10% capacity loss after 5000 cycles). The lightweight, low-cost, flexible composites are promising candidates for use in energy storage device applications.

  15. Wafer-scale high-throughput ordered arrays of Si and coaxial Si/Si(1-x)Ge(x) wires: fabrication, characterization, and photovoltaic application.

    Science.gov (United States)

    Pan, Caofeng; Luo, Zhixiang; Xu, Chen; Luo, Jun; Liang, Renrong; Zhu, Guang; Wu, Wenzhuo; Guo, Wenxi; Yan, Xingxu; Xu, Jun; Wang, Zhong Lin; Zhu, Jing

    2011-08-23

    We have developed a method combining lithography and catalytic etching to fabricate large-area (uniform coverage over an entire 5-in. wafer) arrays of vertically aligned single-crystal Si nanowires with high throughput. Coaxial n-Si/p-SiGe wire arrays are also fabricated by further coating single-crystal epitaxial SiGe layers on the Si wires using ultrahigh vacuum chemical vapor deposition (UHVCVD). This method allows precise control over the diameter, length, density, spacing, orientation, shape, pattern and location of the Si and Si/SiGe nanowire arrays, making it possible to fabricate an array of devices based on rationally designed nanowire arrays. A proposed fabrication mechanism of the etching process is presented. Inspired by the excellent antireflection properties of the Si/SiGe wire arrays, we built solar cells based on the arrays of these wires containing radial junctions, an example of which exhibits an open circuit voltage (V(oc)) of 650 mV, a short-circuit current density (J(sc)) of 8.38 mA/cm(2), a fill factor of 0.60, and an energy conversion efficiency (η) of 3.26%. Such a p-n radial structure will have a great potential application for cost-efficient photovoltaic (PV) solar energy conversion. © 2011 American Chemical Society

  16. High regression rate, high density hybrid fuels, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR program will investigate high energy density novel nanofuels combined with high density binders for use with an N2O oxidizer. Terves has developed...

  17. Design, Fabrication, and Properties of High Damping Metal Matrix Composites—A Review

    Directory of Open Access Journals (Sweden)

    Qianfeng Fang

    2009-08-01

    Full Text Available Nowadays it is commonly considered that high damping materials which have both the good mechanical properties as structural materials and the high damping capacity for vibration damping are the most direct vibration damping solution. In metals and alloys however, exhibiting simultaneously high damping capacity and good mechanical properties has been noted to be normally incompatible because the microscopic mechanisms responsible for internal friction (namely damping capacity are dependent upon the parameters that control mechanical strength. To achieve a compromise, one of the most important methods is to develop two-phase composites, in which each phase plays a specific role: damping or mechanical strength. In this review, we have summarized the development of the design concept of high damping composite materials and the investigation of their fabrication and properties, including mechanical and damping properties, and suggested a new design concept of high damping composite materials where the hard ceramic additives exhibit high damping capacity at room temperature owing to the stress-induced reorientation of high density point defects in the ceramic phases and the high damping capacity of the composite comes mainly from the ceramic phases.

  18. Design of robust hollow fiber membranes with high power density for osmotic energy production

    KAUST Repository

    Zhang, Sui

    2014-04-01

    This study highlights the design strategy of highly asymmetric hollow fiber membranes that possess both characteristics of high flux and high mechanical strength to effectively reap the osmotic energy from seawater brine with an ultrahigh power density. An advanced co-extrusion technology was employed to fabricate the polyethersulfone (PES) hollow fiber supports with diversified structures from macrovoid to sponge-like. The microstructure of the supports is found critical for the stability and water permeability of the thin film composite (TFC) membranes. A high porosity in the porous layer is needed to reduce internal concentration polarization, while a thick and relatively dense skin layer underneath the TFC layer is required to maintain good mechanical stability and stress dissipation. The pore size of the supporting layer underneath the TFC layer must be small with a narrow pore size distribution to ensure the formation of a less-defective, highly permeable and mechanically stable TFC layer. The newly developed hollow fiber comprising high asymmetry, high porosity, and a thick skin layer with a small and narrow pore size distribution underneath the TFC layer produces a maximum power density of 24.3W/m2 at 20.0bar by using 1M NaCl as the concentrated brine and deionized (DI) water as the feed. The proposed design strategy for ultrahigh power density membranes clearly advances the osmotic energy production close to commercialization with a quite cost-effective and practicable approach. © 2013 Elsevier B.V.

  19. Design of robust hollow fiber membranes with high power density for osmotic energy production

    KAUST Repository

    Zhang, Sui; Sukitpaneenit, Panu; Chung, Neal Tai-Shung

    2014-01-01

    This study highlights the design strategy of highly asymmetric hollow fiber membranes that possess both characteristics of high flux and high mechanical strength to effectively reap the osmotic energy from seawater brine with an ultrahigh power density. An advanced co-extrusion technology was employed to fabricate the polyethersulfone (PES) hollow fiber supports with diversified structures from macrovoid to sponge-like. The microstructure of the supports is found critical for the stability and water permeability of the thin film composite (TFC) membranes. A high porosity in the porous layer is needed to reduce internal concentration polarization, while a thick and relatively dense skin layer underneath the TFC layer is required to maintain good mechanical stability and stress dissipation. The pore size of the supporting layer underneath the TFC layer must be small with a narrow pore size distribution to ensure the formation of a less-defective, highly permeable and mechanically stable TFC layer. The newly developed hollow fiber comprising high asymmetry, high porosity, and a thick skin layer with a small and narrow pore size distribution underneath the TFC layer produces a maximum power density of 24.3W/m2 at 20.0bar by using 1M NaCl as the concentrated brine and deionized (DI) water as the feed. The proposed design strategy for ultrahigh power density membranes clearly advances the osmotic energy production close to commercialization with a quite cost-effective and practicable approach. © 2013 Elsevier B.V.

  20. Rapid and high throughput fabrication of high temperature stable structures through PDMS transfer printing

    Science.gov (United States)

    Hohenberger, Erik; Freitag, Nathan; Korampally, Venumadhav

    2017-07-01

    We report on a facile and low cost fabrication approach for structures—gratings and enclosed nanochannels, through simple solution processed chemistries in conjunction with nanotransfer printing techniques. The ink formulation primarily consisting of an organosilicate polymeric network with a small percentage of added 3-aminopropyl triethoxysilane crosslinker allows one to obtain robust structures that are not only stable towards high temperature processing steps as high as 550 °C but also exhibit exceptional stability against a host of organic solvent washes. No discernable structure distortion was observed compared to the as-printed structures (room temperature processed) when printed structures were subjected to temperatures as high as 550 °C. We further demonstrate the applicability of this technique towards the fabrication of more complex nanostructures such as enclosed channels through a double transfer method, leveraging the exceptional room temperature cross-linking ability of the printed structures and their subsequent resistance to dissolution in organic solvent washes. The exceptional temperature and physico-chemical stability of the nanotransfer printed structures makes this a useful fabrication tool that may be applied as is, or integrated with conventional lithographic techniques for the large area fabrication of functional nanostructures and devices.

  1. HIGH-DENSITY, BIO-COMPATIBLE, AND HERMETIC ELECTRICAL FEEDTHROUGHS USING EXTRUDED METAL VIAS

    Energy Technology Data Exchange (ETDEWEB)

    Shah, K G; Delima, T; Felix, S; Sheth, H; Tolosa, V; Tooker, A; Pannu, S S

    2012-03-28

    Implanted medical devices such as pacemakers and neural prosthetics require that the electronic components that power these devices are protected from the harsh chemical and biological environment of the body. Typically, the electronics are hermetically sealed inside a bio-compatible package containing feedthroughs that transmit electrical signals, while being impermeable to particles or moisture. We present a novel approach for fabricating one of the highest densities of biocompatible hermetic feedthroughs in alumina (Al{sub 2}O{sub 3}). Alumina substrates with laser machined vias of 200 {micro}m pitch were conformally metallized and lithographically patterned. Hermetic electrical feedthroughs were formed by extruding metal stud-bumps partially through the vias. Hermeticity testing showed leak rates better than 9 x 10{sup -10} torr-l/s. Based on our preliminary results and process optimization, this extruded metal via approach is a high-density, low temperature, cost-effective, and robust method of miniaturizing electrical feedthroughs for a wide range of implantable bio-medical device applications.

  2. HIGH-DENSITY, BIO-COMPATIBLE, AND HERMETIC ELECTRICAL FEEDTHROUGHS USING EXTRUDED METAL VIAS

    Energy Technology Data Exchange (ETDEWEB)

    Tooker, A; Shah, K; Tolosa, V; Sheth, H; Felix, S; Delima, T; Pannu, S

    2012-03-29

    Implanted medical devices such as pacemakers and neural prosthetics require that the electronic components that power these devices are protected from the harsh chemical and biological environment of the body. Typically, the electronics are hermetically sealed inside a bio-compatible package containing feedthroughs that transmit electrical signals, while being impermeable to particles or moisture. We present a novel approach for fabricating one of the highest densities of biocompatible hermetic feedthroughs in alumina (Al{sub 2}O{sub 3}). Alumina substrates with laser machined vias of 200 {mu}m pitch were conformally metallized and lithographically patterned. Hermetic electrical feedthroughs were formed by extruding metal studbumps partially through the vias. Hermeticity testing showed leak rates better than 9x10{sup -10} torr-l/s. Based on our preliminary results and process optimization, this extruded metal via approach is a high-density, low temperature, cost-effective, and robust method of miniaturizing electrical feedthroughs for a wide range of implantable bio-medical device applications.

  3. Pulsed high-density plasmas for advanced dry etching processes

    International Nuclear Information System (INIS)

    Banna, Samer; Agarwal, Ankur; Cunge, Gilles; Darnon, Maxime; Pargon, Erwine; Joubert, Olivier

    2012-01-01

    Plasma etching processes at the 22 nm technology node and below will have to satisfy multiple stringent scaling requirements of microelectronics fabrication. To satisfy these requirements simultaneously, significant improvements in controlling key plasma parameters are essential. Pulsed plasmas exhibit considerable potential to meet the majority of the scaling challenges, while leveraging the broad expertise developed over the years in conventional continuous wave plasma processing. Comprehending the underlying physics and etching mechanisms in pulsed plasma operation is, however, a complex undertaking; hence the full potential of this strategy has not yet been realized. In this review paper, we first address the general potential of pulsed plasmas for plasma etching processes followed by the dynamics of pulsed plasmas in conventional high-density plasma reactors. The authors reviewed more than 30 years of academic research on pulsed plasmas for microelectronics processing, primarily for silicon and conductor etch applications, highlighting the potential benefits to date and challenges in extending the technology for mass-production. Schemes such as source pulsing, bias pulsing, synchronous pulsing, and others in conventional high-density plasma reactors used in the semiconductor industry have demonstrated greater flexibility in controlling critical plasma parameters such as ion and radical densities, ion energies, and electron temperature. Specifically, plasma pulsing allows for independent control of ion flux and neutral radicals flux to the wafer, which is key to eliminating several feature profile distortions at the nanometer scale. However, such flexibility might also introduce some difficulty in developing new etching processes based on pulsed plasmas. Therefore, the main characteristics of continuous wave plasmas and different pulsing schemes are compared to provide guidelines for implementing different schemes in advanced plasma etching processes based on

  4. Fabrication of Titanium Diboride-Cu Composite by Self-High Temperature Synthesis plus Quick Press

    Institute of Scientific and Technical Information of China (English)

    Jinyong ZHANG; Zhengyi FU; Weimin WANG

    2005-01-01

    Titanium diboride based composites, good candidates for contact materials, have high hardness, Young's modulus,high temperature stability, and excellent electrical, thermal conductivity. However a good interface of TiB2/Cu is very difficult to achieve for oxidation of TiB2. To avoid this oxidation behavior, the in situ combusting synthesis technology, SHS, was used to prepare TiB2/Cu composite. Thecharacters of Ti-B-xCu SHS were studied in detail,such as combustion temperature, products phases and grain size. Based on the experimental results a proper technology way of self-high temperature synthesis plus quick press (SHS/QP) was determined and compact TiB2/Cu composites with relative density over than 97 pct of the theoretical were fabricated by this method. The properties and microstructures of these TiB2 based composites were also investigated.

  5. Basic research on high-uranium density fuels for research and test reactors

    International Nuclear Information System (INIS)

    Ugajin, M.; Itoh, A.; Akabori, M.

    1992-01-01

    High-uranium density fuels, uranium silicides (U 3 Si 2 , U 3 Si) and U 6 Me-type uranium alloys (Me = Fe, Mn, Ni), were prepared and examined metallurgically as low-enriched uranium (LEU) fuels for research and test reactors. Miniature aluminum-dispersion plate-type fuel (miniplate) and aluminum-clad disk-type fuel specimens were fabricated and subjected to the neutron irradiation in JMTR (Japan Materials Testing Reactor). Fuel-aluminum compatibility tests were conducted to elucidate the extent of reaction and to identify reaction products. The relative stability of the fuels in an aluminum matrix was established at 350degC or above. Experiments were also performed to predict the chemical form of the solid fission-products in the uranium silicide (U 3 Si 2 ) simulating a high burnup anticipated for reactor service. (author)

  6. Fabrication of high efficacy selective solar absorbers

    CSIR Research Space (South Africa)

    Tile, N

    2012-03-01

    Full Text Available High efficiency tandem selective solar absorber materials of carbon in nickel oxide (C-NiO) composite were fabricated on an aluminium substrate using a simple and cost effective sol-gel process. The process involved preparation of carbon and nickel...

  7. Fabrication of chamfered uranium-plutonium mixed carbide pellets

    International Nuclear Information System (INIS)

    Arai, Yasuo; Iwai, Takashi; Shiozawa, Kenichi; Handa, Muneo

    1985-10-01

    Chamfered uranium-plutonium mixed carbide pellets for high burnup irradiation test in JMTR were fabricated in glove boxes with purified argon gas. The size of die and punch in a press was decided from pellet densities and dimensions including the angle of chamfered parts. No chip or crack caused by adopting chamfered pellets was found in both pressing and sintering stages. In addition to mixed carbide pellets, uranium carbide pellets used as insulators were also successfully fabricated. (author)

  8. Achieving precision in high density batch mode micro-electro-discharge machining

    International Nuclear Information System (INIS)

    Richardson, Mark T; Gianchandani, Yogesh B

    2008-01-01

    This paper reports a parametric study of batch mode micro-electro-discharge machining (µEDM) of high density features in stainless steel. Lithographically fabricated copper tools with single cross, parallel line and 8 × 8 circle/square array features of 5–100 µm width and 5–75 µm spacing were used to quantify trends in machining tolerance and the impact of debris accumulation. As the tool feature density is increased, debris accumulation effects begin to dominate, eventually degrading both tool and workpiece. Two independent techniques for mitigating this debris buildup are separately investigated. The first is a passivation coating which suppresses spurious discharges triggered from the sidewalls of the machining tool. By this method, the mean tool wear rate decreases from a typical of about 34% to 1.7% and machining non-uniformity reduces from 4.9 µm to 1.1 µm across the workpiece. The second technique involves a two-step machining process that enhances the hydrodynamic removal of machining debris compared to standard methods. This improves surface and edge finish, machining time and tool wear

  9. Binder-free Si nanoparticles@carbon nanofiber fabric as energy storage material

    International Nuclear Information System (INIS)

    Liu, Yuping; Huang, Kai; Fan, Yu; Zhang, Qing; Sun, Fu; Gao, Tian; Wang, Zhongzheng; Zhong, Jianxin

    2013-01-01

    A nonwoven nanofiber fabric with paper-like qualities composed of Si nanoparticles and carbon as binder-free anode electrode is reported. The nanofiber fabrics are prepared by convenient electrospinning technique, in which, the Si nanoparticles are uniformly confined in the carbon nanofibers. The high strength and flexibility of the nanofiber fabrics are beneficial for alleviating the structural deformation and facilitating ion transports throughout the whole composited electrodes. Due to the absence of binder, the less weight, higher energy density, and excellent electrical conductivity anodes can be attained. These traits make the composited nanofiber fabrics excellent used as a binder-free, mechanically flexible, high energy storage anode material in the next generation of rechargeable lithium ions batteries

  10. Qualitative Investigation of Some Locally Produced Printed Fabrics ...

    African Journals Online (AJOL)

    The results obtained showed that the locally produced fabrics exhibited comparably better end – use performance characteristics in terms of fabric weight per square meter, fabric flammability, and linear density. While the foreign fabrics are better in terms of Crease recovery, fabric handle, fabric sett, fabric shrinkage, and ...

  11. Magnetization of High Density Hadronic Fluid

    DEFF Research Database (Denmark)

    Bohr, Henrik; Providencia, Constanca; da Providencia, João

    2012-01-01

    In the present paper the magnetization of a high density relativistic fluid of elementary particles is studied. At very high densities, such as may be found in the interior of a neutron star, when the external magnetic field is gradually increased, the energy of the normal phase of the fluid...... in the particle fluid. For nuclear densities above 2 to 3 rho(0), where rho(0) is the equilibrium nuclear density, the resulting magnetic field turns out to be rather huge, of the order of 10(17) Gauss....

  12. A novel fabrication method for suspended high-aspect-ratio microstructures

    Science.gov (United States)

    Yang, Yao-Joe; Kuo, Wen-Cheng

    2005-11-01

    Suspended high-aspect-ratio structures (suspended HARS) are widely used for MEMS devices such as micro-gyroscopes, micro-accelerometers, optical switches and so on. Various fabrication methods, such as SOI, SCREAM, AIM, SBM and BELST processes, were proposed to fabricate HARS. However, these methods focus on the fabrication of suspended microstructures with relatively small widths of trench opening (e.g. less than 10 µm). In this paper, we propose a novel process for fabricating very high-aspect-ratio suspended structures with large widths of trench opening using photoresist as an etching mask. By enhancing the microtrenching effect, we can easily release the suspended structure without thoroughly removing the floor polymer inside the trenches for the cases with a relatively small trench aspect ratio. All the process steps can be integrated into a single-run single-mask ICP-RIE process, which effectively reduces the process complexity and fabrication cost. We also discuss the phenomenon of corner erosion, which results in the undesired etching of silicon structures during the structure-releasing step. By using the proposed process, 100 µm thick suspended structures with the trench aspect ratio of about 20 are demonstrated. Also, the proposed process can be used to fabricate devices for applications which require large in-plane displacement. This paper was orally presented in the Transducers'05, Seoul, Korea (paper ID: 3B1.3).

  13. The fabrication of high sensitivity gold nanorod H2S gas sensors utilizing the highly uniform anodic aluminum oxide template

    Directory of Open Access Journals (Sweden)

    Chien-Yu Li

    2016-12-01

    Full Text Available Gold nanorod were fabricated using anodic alumina oxide template for H2S gas detection. The nanorod gas sensor exhibits high surface density and contact area, which can increase detection sensitivity. The anodic alumina oxide template contains an array of pores, with a width of 70 nm and a length of 27μm. Au nanorod were obtained through electro-deposition under a pulse bias of −1 V. The resistance of the Au nanorod was recorded upon exposure to various concentrations of H2S. The resistance could be attributed to the high electron affinity between sulfide and Au nanorod. Au–sulfide bonds provide strong bonding, which could alter the conductivity of the sensor. The gas sensor exhibits high sensitivity and short response time for H2S detection at room temperature.

  14. Advanced fuel fabrication

    International Nuclear Information System (INIS)

    Bernard, H.

    1989-01-01

    This paper deals with the fabrication of advanced fuels, such as mixed oxides for Pressurized Water Reactors or mixed nitrides for Fast Breeder Reactors. Although an extensive production experience exists for the mixed oxides used in the FBR, important work is still needed to improve the theoretical and technical knowledge of the production route which will be introduced in the future European facility, named Melox, at Marcoule. Recently, the feasibility of nitride fuel fabrication in existing commercial oxide facilities was demonstrated in France. The process, based on carbothermic reduction of oxides with subsequent comminution of the reaction product, cold pressing and sintering provides (U, Pu)N pellets with characteristics suitable for irradiation testing. Two experiments named NIMPHE 1 and 2 fabricated in collaboration with ITU, Karlsruhe, involve 16 nitride and 2 carbide pins, operating at a linear power of 45 and 73 kW/m with a smear density of 75-80% TD and a high burn-up target of 15 at%. These experiments are currently being irradiated in Phenix, at Marcoule. (orig.)

  15. CRADA/NFE-15-05779 Report: Fabrication of Large Area Printable Composite Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Paranthaman, M Parans [ORNL

    2016-09-29

    The technical objective of this technical collaboration phase I proposal was to fabricate large area NdFeB composite magnets at the Oak Ridge National Laboratory Manufacturing Demonstration Facility (ORNL MDF). The goal was to distribute domestically produced isotropic and highly anisotropic high energy density magnetic particles throughout the composite structure in order to enable site specific placement of magnetic phases and minimize the generated waste associated with permanent magnet manufacturing. Big area additive manufacturing (BAAM) and magnet composite fabrication methods were used in this study. BAAM was used to fabricate 65 vol % isotropic MQP NdFeB magnets in nylon polymer matrix. BAAM magnet cylinder was sliced to two magnetic arc-shaped braces. The density of the small BAAM magnet pieces reached 4.1 g/cm3, and the room temperature magnetic properties are: Intrinsic coercivity Hci = 8.8 kOe, Remanence Br = 4.2 kG, and energy product (BH)max = 3.7 MGOe. Also, 1.5” x 1.5” composite magnets with anisotropic MQA NdFeB magnet in a resin were also fabricated under magnetic field. The unaligned sample had a density of 3.75 g/cm3. However, aligned sample possessed a density of 4.27 g/cm3. The magnetic properties didn’t degrade during this process. This study provides a pathway for preparing composite magnets for various magnetic applications.

  16. Large-scale fabrication of linear low density polyethylene/layered double hydroxides composite films with enhanced heat retention, thermal, mechanical, optical and water vapor barrier properties

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Jiazhuo; Zhang, Kun; Zhao, Qinghua [College of Chemistry and Material Science, Shandong Agricultural University, 61 Daizong Street, Tai' an 271018 (China); Wang, Qingguo, E-mail: wqgyyy@126.com [College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai' an 271018 (China); Xu, Jing, E-mail: jiaxu@sdau.edu.cn [College of Chemistry and Material Science, Shandong Agricultural University, 61 Daizong Street, Tai' an 271018 (China)

    2016-11-15

    Novel LDH intercalated with organic aliphatic long-chain anion was large-scale synthesized innovatively by high-energy ball milling in one pot. The linear low density polyethylene (LLDPE)/layered double hydroxides (LDH) composite films with enhanced heat retention, thermal, mechanical, optical and water vapor barrier properties were fabricated by melt blending and blowing process. FT IR, XRD, SEM results show that LDH particles were dispersed uniformly in the LLDPE composite films. Particularly, LLDPE composite film with 1% LDH exhibited the optimal performance among all the composite films with a 60.36% enhancement in the water vapor barrier property and a 45.73 °C increase in the temperature of maximum mass loss rate compared with pure LLDPE film. Furthermore, the improved infrared absorbance (1180–914 cm{sup −1}) of LLDPE/LDH films revealed the significant enhancement of heat retention. Therefore, this study prompts the application of LLDPE/LDH films as agricultural films with superior heat retention. - Graphical abstract: The fabrication process of LLDPE/LDH composite films. - Highlights: • LDH with basal spacing of 4.07 nm was synthesized by high-energy ball milling. • LLDPE composite films with homogeneous LDH dispersion were fabricated. • The properties of LLDPE/LDH composite films were improved. • LLDPE/LDH composite films show superior heat retention property.

  17. Large-scale fabrication of linear low density polyethylene/layered double hydroxides composite films with enhanced heat retention, thermal, mechanical, optical and water vapor barrier properties

    International Nuclear Information System (INIS)

    Xie, Jiazhuo; Zhang, Kun; Zhao, Qinghua; Wang, Qingguo; Xu, Jing

    2016-01-01

    Novel LDH intercalated with organic aliphatic long-chain anion was large-scale synthesized innovatively by high-energy ball milling in one pot. The linear low density polyethylene (LLDPE)/layered double hydroxides (LDH) composite films with enhanced heat retention, thermal, mechanical, optical and water vapor barrier properties were fabricated by melt blending and blowing process. FT IR, XRD, SEM results show that LDH particles were dispersed uniformly in the LLDPE composite films. Particularly, LLDPE composite film with 1% LDH exhibited the optimal performance among all the composite films with a 60.36% enhancement in the water vapor barrier property and a 45.73 °C increase in the temperature of maximum mass loss rate compared with pure LLDPE film. Furthermore, the improved infrared absorbance (1180–914 cm −1 ) of LLDPE/LDH films revealed the significant enhancement of heat retention. Therefore, this study prompts the application of LLDPE/LDH films as agricultural films with superior heat retention. - Graphical abstract: The fabrication process of LLDPE/LDH composite films. - Highlights: • LDH with basal spacing of 4.07 nm was synthesized by high-energy ball milling. • LLDPE composite films with homogeneous LDH dispersion were fabricated. • The properties of LLDPE/LDH composite films were improved. • LLDPE/LDH composite films show superior heat retention property.

  18. High-Performance Carbon Dioxide Electrocatalytic Reduction by Easily Fabricated Large-Scale Silver Nanowire Arrays.

    Science.gov (United States)

    Luan, Chuhao; Shao, Yang; Lu, Qi; Gao, Shenghan; Huang, Kai; Wu, Hui; Yao, Kefu

    2018-05-17

    An efficient and selective catalyst is in urgent need for carbon dioxide electroreduction and silver is one of the promising candidates with affordable costs. Here we fabricated large-scale vertically standing Ag nanowire arrays with high crystallinity and electrical conductivity as carbon dioxide electroreduction catalysts by a simple nanomolding method that was usually considered not feasible for metallic crystalline materials. A great enhancement of current densities and selectivity for CO at moderate potentials was achieved. The current density for CO ( j co ) of Ag nanowire array with 200 nm in diameter was more than 2500 times larger than that of Ag foil at an overpotential of 0.49 V with an efficiency over 90%. The origin of enhanced performances are attributed to greatly increased electrochemically active surface area (ECSA) and higher intrinsic activity compared to those of polycrystalline Ag foil. More low-coordinated sites on the nanowires which can stabilize the CO 2 intermediate better are responsible for the high intrinsic activity. In addition, the impact of surface morphology that induces limited mass transportation on reaction selectivity and efficiency of nanowire arrays with different diameters was also discussed.

  19. Advanced asymmetric supercapacitors based on Ni(OH){sub 2}/graphene and porous graphene electrodes with high energy density

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jun; Fan, Zhuangjun; Sun, Wei; Wei, Tong [Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Ning, Guoqing [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249 (China); Zhang, Qiang; Zhang, Rufan; Wei, Fei [Beijing Key Laboratory of Green Chemical Reaction, Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China); Zhi, Linjie [National Center for Nanoscience and Technology of China, Zhongguancun, Beiyitiao 11, Beijing 100190 (China)

    2012-06-20

    Hierarchical flowerlike nickel hydroxide decorated on graphene sheets has been prepared by a facile and cost-effective microwave-assisted method. In order to achieve high energy and power densities, a high-voltage asymmetric supercapacitor is successfully fabricated using Ni(OH){sub 2}/graphene and porous graphene as the positive and negative electrodes, respectively. Because of their unique structure, both of these materials exhibit excellent electrochemical performances. The optimized asymmetric supercapacitor could be cycled reversibly in the high-voltage region of 0-1.6 V and displays intriguing performances with a maximum specific capacitance of 218.4 F g{sup -1} and high energy density of 77.8 Wh kg{sup -1}. Furthermore, the Ni(OH){sub 2}/graphene//porous graphene supercapacitor device exhibits an excellent long cycle life along with 94.3% specific capacitance retained after 3000 cycles. These fascinating performances can be attributed to the high capacitance and the positive synergistic effects of the two electrodes. The impressive results presented here may pave the way for promising applications in high energy density storage systems. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Deep-blue efficient OLED based on NPB with little efficiency roll-off under high current density

    Science.gov (United States)

    Liu, Jian

    2017-03-01

    NPB usually is used as a hole-transport layer in OLED. In fact, it is a standard pure blue-emission material. However, its light-emitting efficiency in OLED is low due to emissive nature of organic material. Herein, a deep-blue OLDE based on NPB was fabricated. The light-emitting efficiency of the device demonstrates a moderate value, and efficiency roll-off is little under high current density. The device demonstrates that the electroplex's emission decreases with increasing electric field intensity.

  1. Analysis of the current density characteristics in through-mask electrochemical micromachining (TMEMM for fabrication of micro-hole arrays on invar alloy film

    Directory of Open Access Journals (Sweden)

    Da-som JIN

    2017-06-01

    Full Text Available Invar alloy consisting of 64% iron and 36% nickel has been widely used for the production of shadow masks for organic light emitting diodes (OLEDs because of its low thermal expansion coefficient (1.86 × 10−6 cm/°C. To fabricate micro-hole arrays on 30 μm invar alloy film, through-mask electrochemical micromachining (TMEMM was developed and combined with a portion of the photolithography etching process. For precise hole shapes, patterned photoresist (PR film was applied as an insulating mask. To investigate the relationship between the current density and the material removal rate, the principle of the electrochemical machining was studied with a focus on the equation. The finite element method (FEM was used to verify the influence of each parameter on the current density on the invar alloy film surface. The parameters considered were the thickness of the PR mask, inter-electrode gap (IEG, and electrolyte concentration. Design of experiments (DOE was used to figure out the contribution of each parameter. A simulation was conducted with varying parameters to figure out their relationships with the current density. Optimization was conducted to select the suitable conditions. An experiment was carried out to verify the simulation results. It was possible to fabricate micro-hole arrays on invar alloy film using TMEMM, which is a promising method that can be applied to fabrications of OLEDs shadow masks.

  2. Development of high-density ceramic composites for ballistic applications

    International Nuclear Information System (INIS)

    Rupert, N.L.; Burkins, M.S.; Gooch, W.A.; Walz, M.J.; Levoy, N.F.; Washchilla, E.P.

    1993-01-01

    The application of ceramic composites for ballistic application has been generally developed with ceramics of low density, between 2.5 and 4.5 g/cm 2 . These materials have offered good performance in defeating small-caliber penetrators, but can suffer time-dependent degradation effects when thicker ceramic tiles are needed to defeat modem, longer, heavy metal penetrators that erode rather than break up. This paper addresses the ongoing development, fabrication procedures, analysis, and ballistic evaluation of thinner, denser ceramics for use in armor applications. Nuclear Metals Incorporated (NMI) developed a process for the manufacture of depleted uranium (DU) ceramics. Samples of the ceramics have been supplied to the US Army Research Laboratory (ARL) as part of an unfunded cooperative study agreement. The fabrication processes used, characterization of the ceramic, and a ballistic comparison between the DU-based ceramic with baseline Al 2 O 3 will be presented

  3. Polarization-independent high-index contrast grating and its fabrication tolerances

    DEFF Research Database (Denmark)

    Ikeda, Kazuhiro; Takeuchi, Kazuma; Takayose, Kentaro

    2013-01-01

    also investigated the fabrication tolerances of the structure and found that, assuming careful optimizations of electron beam lithography for the precise grating width and dry-etching for the vertical sidewall, the suggested polarization-independent HCG can be fabricated using standard technologies.......A polarization-independent, high-index contrast grating (HCG) with a single layer of cross stripes allowing simple fabrication is proposed. Since the cross stripes structure can be suspended in air by selectively wet-etching the layer below, all the layers can be grown at once when implemented...

  4. High volume fabrication of laser targets using MEMS techniques

    International Nuclear Information System (INIS)

    Spindloe, C; Tomlinson, S; Green, J; Booth, N.; Tolley, M K; Arthur, G; Hall, F; Potter, R; Kar, S; Higginbotham, A

    2016-01-01

    The latest techniques for the fabrication of high power laser targets, using processes developed for the manufacture of Micro-Electro-Mechanical System (MEMS) devices are discussed. These laser targets are designed to meet the needs of the increased shot numbers that are available in the latest design of laser facilities. Traditionally laser targets have been fabricated using conventional machining or coarse etching processes and have been produced in quantities of 10s to low 100s. Such targets can be used for high complexity experiments such as Inertial Fusion Energy (IFE) studies and can have many complex components that need assembling and characterisation with high precision. Using the techniques that are common to MEMS devices and integrating these with an existing target fabrication capability we are able to manufacture and deliver targets to these systems. It also enables us to manufacture novel targets that have not been possible using other techniques. In addition, developments in the positioning systems that are required to deliver these targets to the laser focus are also required and a system to deliver the target to a focus of an F2 beam at 0.1Hz is discussed. (paper)

  5. Application of Inkjet Printing in High-Density Pixelated RGB Quantum Dot-Hybrid LEDs

    KAUST Repository

    Haverinen, Hanna

    2012-05-23

    Recently, an intriguing solution to obtain better color purity has been to introduce inorganic emissive quantum dots (QDs) into an otherwise OLED structure. The emphasis of this chapter is to present a simple discussion of the first attempts to fabricate high-density, pixelated (quarter video graphics array (QVGA) format), monochromatic and RGB quantum dots light-emitting diodes (QDLEDs), where inkjet printing is used to deposit the light-emitting layer of QDs. It shows some of the factors that have to be considered in order to achieve the desired accuracy and printing quality. The successful operation of the RGB printed devices indicates the potential of the inkjet printing approach in the fabrication of full-color QDLEDs for display application. However, further optimization of print quality is still needed in order to eliminate the formation of pinholes, thus maximizing energy transfer from organic layers to the QDs and in turn increasing the performance of the devices. Controlled Vocabulary Terms: ink jet printing; LED displays; LED lamps; organic light emitting diodes; quantum dots

  6. Fabrication of large diameter alumino-silicate K+ sources

    International Nuclear Information System (INIS)

    Baca, D.; Chacon-Golcher, E.; Kwan, J.W.; Wu, J.K.

    2003-01-01

    Alumino-silicate K + sources have been used in HIF experiments for many years. For example the Neutralized Transport Expt. (NTX) and the High Current Transport Expt. (HCX) are now using this type of ion source with diameters of 2.54 cm and 10 cm respectively. These sources have demonstrated ion currents of 80 mA and 700 mA, for typical HIF pulse lengths of 5-10 (micro)s. The corresponding current density is ∼ 10-15 mA/cm 2 , but much higher current density has been observed using smaller size sources. Recently we have improved our fabrication techniques and, therefore, are able to reliably produce large diameter ion sources with high quality emitter surface without defects. This note provides a detailed description of the procedures employed in the fabrication process. The variables in the processing steps affecting surface quality, such as substrate porosity, powder size distribution, coating technique on large area concave surfaces, drying, and heat firing temperature have been investigated

  7. Wearable Fabrics with Self-Branched Bimetallic Layered Double Hydroxide Coaxial Nanostructures for Hybrid Supercapacitors.

    Science.gov (United States)

    Nagaraju, Goli; Chandra Sekhar, S; Krishna Bharat, L; Yu, Jae Su

    2017-11-28

    We report a flexible battery-type electrode based on binder-free nickel cobalt layered double hydroxide nanosheets adhered to nickel cobalt layered double hydroxide nanoflake arrays on nickel fabric (NC LDH NFAs@NSs/Ni fabric) using facile and eco-friendly synthesis methods. Herein, we utilized discarded polyester fabric as a cost-effective substrate for in situ electroless deposition of Ni, which exhibited good flexibility, light weight, and high conductivity. Subsequently, the vertically aligned NC LDH NFAs were grown on Ni fabric by means of a hot-air oven-based method, and fluffy-like NC LDH NS branches are further decorated on NC LDH NFAs by a simple electrochemical deposition method. The as-prepared core-shell-like nanoarchitectures improve the specific surface area and electrochemical activity, which provides the ideal pathways for electrolyte diffusion and charge transportation. When the electrochemical performance was tested in 1 M KOH aqueous solution, the core-shell-like NC LDH NFAs@NSs/Ni fabric electrode liberated a maximum areal capacity of 536.96 μAh/cm 2 at a current density of 2 mA/cm 2 and excellent rate capability of 78.3% at 30 mA/cm 2 (420.5 μAh/cm 2 ) with a good cycling stability. Moreover, a fabric-based hybrid supercapacitor (SC) was assembled, which achieves a stable operational potential window of 1.6 V, a large areal capacitance of 1147.23 mF/cm 2 at 3 mA/cm 2 , and a high energy density of 0.392 mWh/cm 2 at a power density of 2.353 mW/cm 2 . Utilizing such high energy storage abilities and flexible properties, the fabricated hybrid SC operated the wearable digital watch and electric motor fan for real-time applications.

  8. Influence of Fabric Parameters on Thermal Comfort Performance of Double Layer Knitted Interlock Fabrics

    Directory of Open Access Journals (Sweden)

    Afzal Ali

    2017-03-01

    Full Text Available The aim of this study was to analyse the effects of various fabric parameters on the thermal resistance, thermal conductivity, thermal transmittance, thermal absorptivity and thermal insulation of polyester/cotton double layer knitted interlock fabrics. It was found that by increasing fibre content with higher specific heat increases the thermal insulation while decreases the thermal transmittance and absorptivity of the fabric. It was concluded that double layer knitted fabrics developed with higher specific heat fibres, coarser yarn linear densities, higher knitting loop length and fabric thickness could be adequately used for winter clothing purposes.

  9. High efficiency pump combiner fabricated by CO2 laser splicing system

    Science.gov (United States)

    Zhu, Gongwen

    2018-02-01

    High power combiners are of great interest for high power fiber lasers and fiber amplifiers. With the advent of CO2 laser splicing system, power combiners are made possible with low manufacturing cost, low loss, high reliability and high performance. Traditionally fiber optical components are fabricated with flame torch, electrode arc discharge or filament heater. However, these methods can easily leave contamination on the fiber, resulting inconsistent performance or even catching fire in high power operations. The electrodes or filaments also degrade rapidly during the combiner manufacturing process. The rapid degradation will lead to extensive maintenance, making it unpractical or uneconomic for volume production. By contrast, CO2 laser is the cleanest heating source which provides reliable and repeatable process for fabricating fiber optic components including high power combiners. In this paper we present an all fiber end pumped 7x1 pump combiner fabricated by CO2 laser splicing system. The input pump fibers are 105/125 (core/clad diameters in μm) fibers with a core NA of 0.22. The output fiber is a 300/320 fiber with a core NA of 0.22. The average efficiency is 99.4% with all 7 ports more than 99%. The process is contamination-free and highly repeatable. To our best knowledge, this is the first report in the literature on power combiners fabricated by CO2 laser splicing system. It also has the highest reported efficiency of its kind.

  10. Realization of a diamond based high density multi electrode array by means of Deep Ion Beam Lithography

    International Nuclear Information System (INIS)

    Picollo, F.; Battiato, A.; Bernardi, E.; Boarino, L.; Enrico, E.; Forneris, J.; Gatto Monticone, D.; Olivero, P.

    2015-01-01

    In the present work we report about a parallel-processing ion beam fabrication technique whereby high-density sub-superficial graphitic microstructures can be created in diamond. Ion beam implantation is an effective tool for the structural modification of diamond: in particular ion-damaged diamond can be converted into graphite, therefore obtaining an electrically conductive phase embedded in an optically transparent and highly insulating matrix. The proposed fabrication process consists in the combination of Deep Ion Beam Lithography (DIBL) and Focused Ion Beam (FIB) milling. FIB micromachining is employed to define micro-apertures in the contact masks consisting of thin (<10 μm) deposited metal layers through which ions are implanted in the sample. A prototypical single-cell biosensor was realized with the above described technique. The biosensor has 16 independent electrodes converging inside a circular area of 20 μm diameter (typical neuroendocrine cells size) for the simultaneous recording of amperometric signals

  11. Three-Dimensional Grain Shape-Fabric from Unconsolidated Pyroclastic Density Current Deposits: Implications for Extracting Flow Direction and Insights on Rheology

    Science.gov (United States)

    Hawkins, T. T.; Brand, B. D.; Sarrochi, D.; Pollock, N.

    2016-12-01

    One of the greatest challenges volcanologists face is the ability to extrapolate information about eruption dynamics and emplacement conditions from deposits. Pyroclastic density current (PDC) deposits are particularly challenging given the wide range of initial current conditions, (e.g., granular, fluidized, concentrated, dilute), and rapid flow transformations due to interaction with evolving topography. Analysis of particle shape-fabric can be used to determine flow direction, and may help to understand the rheological characteristics of the flows. However, extracting shape-fabric information from outcrop (2D) apparent fabric is limited, especially when outcrop exposure is incomplete or lacks context. To better understand and quantify the complex flow dynamics reflected in PDC deposits, we study the complete shape-fabric data in 3D using oriented samples. In the field, the prospective sample is carved from the unconsolidated deposit in blocks, the dimensions of which depend on the average clast size in the sample. The sample is saturated in situ with a water-based sodium silicate solution, then wrapped in plaster-soaked gauze to form a protective cast. The orientation of the sample is recorded on the block faces. The samples dry for five days and are then extracted in intact blocks. In the lab, the sample is vacuum impregnated with sodium silicate and cured in an oven. The fully lithified sample is first cut along the plan view to identify orientations of the long axes of the grains (flow direction), and then cut in the two plains perpendicular to grain elongation. 3D fabric analysis is performed using high resolution images of the cut-faces using computer assisted image analysis software devoted to shape-fabric analysis. Here we present the results of samples taken from the 18 May 1980 PDC deposit facies, including massive, diffuse-stratified and cross-stratified lapilli tuff. We show a relationship between the strength of iso-orientation of the elongated

  12. Structural and electrical characteristics of high-k/metal gate metal oxide semiconductor capacitors fabricated on flexible, semi-transparent silicon (100) fabric

    KAUST Repository

    Rojas, Jhonathan Prieto

    2013-02-12

    In pursuit of flexible computers with high performance devices, we demonstrate a generic process to fabricate 10 000 metal-oxide-semiconductor capacitors (MOSCAPs) with semiconductor industry\\'s most advanced high-k/metal gate stacks on widely used, inexpensive bulk silicon (100) wafers and then using a combination of iso-/anisotropic etching to release the top portion of the silicon with the already fabricated devices as a mechanically flexible (bending curvature of 133 m−1), optically semi-transparent silicon fabric (1.5 cm × 3 cm × 25 μm). The electrical characteristics show 3.7 nm effective oxide thickness, −0.2 V flat band voltage, and no hysteresis from the fabricated MOSCAPs.

  13. Structural and electrical characteristics of high-k/metal gate metal oxide semiconductor capacitors fabricated on flexible, semi-transparent silicon (100) fabric

    KAUST Repository

    Rojas, Jhonathan Prieto; Hussain, Muhammad Mustafa; Sevilla, Galo T.

    2013-01-01

    In pursuit of flexible computers with high performance devices, we demonstrate a generic process to fabricate 10 000 metal-oxide-semiconductor capacitors (MOSCAPs) with semiconductor industry's most advanced high-k/metal gate stacks on widely used, inexpensive bulk silicon (100) wafers and then using a combination of iso-/anisotropic etching to release the top portion of the silicon with the already fabricated devices as a mechanically flexible (bending curvature of 133 m−1), optically semi-transparent silicon fabric (1.5 cm × 3 cm × 25 μm). The electrical characteristics show 3.7 nm effective oxide thickness, −0.2 V flat band voltage, and no hysteresis from the fabricated MOSCAPs.

  14. Cellulose/inorganic-composite fibers for producing textile fabrics of high X-ray absorption properties

    Energy Technology Data Exchange (ETDEWEB)

    Günther, Karoline; Giebing, Christina; Askani, Antonia [FTB, Hochschule Niederrhein – University of Applied Science, Faculty of Textile and Clothing Technology, Webschulstr. 31, 41065 Mönchengladbach (Germany); Leisegang, Tilmann [Saxray GmbH, Maria-Reiche-Str. 1, 01109 Dresden (Germany); Krieg, Marcus [TITK, Thüringisches Institut für Textil- und Kunststoff-Forschung e.V., Breitscheidstraße 97, 07407 Rudolstadt (Germany); Kyosev, Yordan; Weide, Thomas [FTB, Hochschule Niederrhein – University of Applied Science, Faculty of Textile and Clothing Technology, Webschulstr. 31, 41065 Mönchengladbach (Germany); Mahltig, Boris, E-mail: Boris.Mahltig@hs-niederrhein.de [FTB, Hochschule Niederrhein – University of Applied Science, Faculty of Textile and Clothing Technology, Webschulstr. 31, 41065 Mönchengladbach (Germany)

    2015-11-01

    Common textile materials as cotton or polyester do not possess reliable X-ray absorption properties. This is due to their morphology and chemical composition in particular. Common fibers are built up from organic polymers containing mainly the elements carbon, hydrogen, oxygen and nitrogen. These “light” elements only have low X-ray absorption coefficients. In contrast, inorganic materials composed of “heavy” elements with high atomic numbers, e.g. barium or bismuth, exhibit X-ray absorption coefficients higher by up to two orders of magnitude. To obtain a flexible yarn with high X-ray absorption properties both these materials, the organic polymer and the inorganic X-ray absorber, are combined to an inorganic/organic composite fiber material. Hence, as the organic component cellulose from modified Lyocell-process is used as carrier fiber and blended with inorganic absorber particles of low toxicity and high absorption coefficients, as bariumsulphate, bariumtitanate or bismuthoxide. A content of inorganic absorber particles equally distributed in the whole fiber of up to 20% is achieved. The composite fibers are produced as staple or filament fibers and processed to multifilament or staple fiber yarns. The staple fiber yarns are rotor-spinned to increase the comfort of the subsequent textile material. Several woven fabrics, considering multilayer structure and different warp/weft density, are developed. The energy dependent X-ray shielding properties are determined in dependence on the different yarn compositions, yarn types and structural parameters of the woven fabrics. As a result, a production process of textile materials with comfortable and dedicated X-ray absorption properties is established. It offers a promising opportunity for manufacturing of specialized textiles, working clothes or uniforms applicable for medicine, air craft and security personal, mining as well as for innovative composite materials. - Highlights: • Preparation of cellulosic

  15. Cellulose/inorganic-composite fibers for producing textile fabrics of high X-ray absorption properties

    International Nuclear Information System (INIS)

    Günther, Karoline; Giebing, Christina; Askani, Antonia; Leisegang, Tilmann; Krieg, Marcus; Kyosev, Yordan; Weide, Thomas; Mahltig, Boris

    2015-01-01

    Common textile materials as cotton or polyester do not possess reliable X-ray absorption properties. This is due to their morphology and chemical composition in particular. Common fibers are built up from organic polymers containing mainly the elements carbon, hydrogen, oxygen and nitrogen. These “light” elements only have low X-ray absorption coefficients. In contrast, inorganic materials composed of “heavy” elements with high atomic numbers, e.g. barium or bismuth, exhibit X-ray absorption coefficients higher by up to two orders of magnitude. To obtain a flexible yarn with high X-ray absorption properties both these materials, the organic polymer and the inorganic X-ray absorber, are combined to an inorganic/organic composite fiber material. Hence, as the organic component cellulose from modified Lyocell-process is used as carrier fiber and blended with inorganic absorber particles of low toxicity and high absorption coefficients, as bariumsulphate, bariumtitanate or bismuthoxide. A content of inorganic absorber particles equally distributed in the whole fiber of up to 20% is achieved. The composite fibers are produced as staple or filament fibers and processed to multifilament or staple fiber yarns. The staple fiber yarns are rotor-spinned to increase the comfort of the subsequent textile material. Several woven fabrics, considering multilayer structure and different warp/weft density, are developed. The energy dependent X-ray shielding properties are determined in dependence on the different yarn compositions, yarn types and structural parameters of the woven fabrics. As a result, a production process of textile materials with comfortable and dedicated X-ray absorption properties is established. It offers a promising opportunity for manufacturing of specialized textiles, working clothes or uniforms applicable for medicine, air craft and security personal, mining as well as for innovative composite materials. - Highlights: • Preparation of cellulosic

  16. Density measurements of small amounts of high-density solids by a floatation method

    International Nuclear Information System (INIS)

    Akabori, Mitsuo; Shiba, Koreyuki

    1984-09-01

    A floatation method for determining the density of small amounts of high-density solids is described. The use of a float combined with an appropriate floatation liquid allows us to measure the density of high-density substances in small amounts. Using the sample of 0.1 g in weight, the floatation liquid of 3.0 g cm -3 in density and the float of 1.5 g cm -3 in apparent density, the sample densities of 5, 10 and 20 g cm -3 are determined to an accuracy better than +-0.002, +-0.01 and +-0.05 g cm -3 , respectively that correspond to about +-1 x 10 -5 cm 3 in volume. By means of appropriate degassing treatments, the densities of (Th,U)O 2 pellets of --0.1 g in weight and --9.55 g cm -3 in density were determined with an accuracy better than +-0.05 %. (author)

  17. USHPRR FUEL FABRICATION PILLAR: FABRICATION STATUS, PROCESS OPTIMIZATIONS, AND FUTURE PLANS

    Energy Technology Data Exchange (ETDEWEB)

    Wight, Jared M.; Joshi, Vineet V.; Lavender, Curt A.

    2018-03-12

    The Fuel Fabrication (FF) Pillar, a project within the U.S. High Performance Research Reactor Conversion program of the National Nuclear Security Administration’s Office of Material Management and Minimization, is tasked with the scale-up and commercialization of high-density monolithic U-Mo fuel for the conversion of appropriate research reactors to use of low-enriched fuel. The FF Pillar has made significant steps to demonstrate and optimize the baseline co-rolling process using commercial-scale equipment at both the Y-12 National Security Complex (Y-12) and BWX Technologies (BWXT). These demonstrations include the fabrication of the next irradiation experiment, Mini-Plate 1 (MP-1), and casting optimizations at Y-12. The FF Pillar uses a detailed process flow diagram to identify potential gaps in processing knowledge or demonstration, which helps direct the strategic research agenda of the FF Pillar. This paper describes the significant progress made toward understanding the fuel characteristics, and models developed to make informed decisions, increase process yield, and decrease lifecycle waste and costs.

  18. Flexible Electrode Design: Fabrication of Freestanding Polyaniline-Based Composite Films for High-Performance Supercapacitors.

    Science.gov (United States)

    Khosrozadeh, Ali; Darabi, Mohammad Ali; Xing, Malcolm; Wang, Quan

    2016-05-11

    Polyaniline (PANI) is a promising pseudocapacitance electrode material. However, its structural instability leads to low cyclic stability and limited rate capability which hinders its practical applications. In view of the limitations, flexible PANI-based composite films are developed to improve the electrochemical performance of electrode materials. We report in the research a facile and cost-effective approach for fabrication of a high-performance supercapacitor (SC) with excellent cyclic stability and tunable energy and power densities. SC electrode containing a very high mass loading of active materials is a flexible film of PANI, tissue wiper-based cellulose, graphite-based exfoliated graphite (ExG), and silver nanoparticles with potential applications in wearable electronics. The optimum preparation weight ratios of silver nitrate/aniline and ExG/aniline used in the research are estimated to be 0.18 and 0.65 (or higher), respectively. Our results show that an ultrahigh capacitance of 3.84 F/cm(2) (240.10 F/g) at a discharge rate of 5 mA can be achieved. In addition, our study shows that the power density can be increased from 1531.3 to 3000 W/kg by selecting the weight ratio of ExG/aniline to be more than 0.65, with a sacrifice in the energy density. The obtained promising electrochemical properties are found to be mainly attributed to an effective combination of PANI, ExG, cushiony cellulose scaffold, and silver as well as the porosity of the composite.

  19. Characterization of high-purity niobium structures fabricated using the electron beam melting process

    Science.gov (United States)

    Terrazas Najera, Cesar Adrian

    Additive Manufacturing (AM) refers to the varied set of technologies utilized for the fabrication of complex 3D components from digital data in a layer-by-layer fashion. The use of these technologies promises to revolutionize the manufacturing industry. The electron beam melting (EBM) process has been utilized for the fabrication of fully dense near-net-shape components from various metallic materials. This process, catalogued as a powder bed fusion technology, consists of the deposition of thin layers (50 - 120microm) of metallic powder particles which are fused by the use of a high energy electron beam and has been commercialized by Swedish company Arcam AB. Superconducting radio frequency (SRF) cavities are key components that are used in linear accelerators and other light sources for studies of elemental physics. Currently, cavity fabrication is done by employing different forming processes including deep-drawing and spinning. In both of the latter techniques, a feedstock high-purity niobium sheet with a thickness ranging from 3-4 mm is mechanically deformed and shaped into the desired geometry. In this manner, half cavities are formed that are later joined by electron beam welding (EBW). The welding step causes variability in the shape of the cavity and can also introduce impurities at the surface of the weld interface. The processing route and the purity of niobium are also of utmost importance since the presence of impurities such as inclusions or defects can be detrimental for the SRF properties of cavities. The focus of this research was the use of the EBM process in the manufacture of high purity niobium parts with potential SRF applications. Reactor grade niobium was plasma atomized and used as the precursor material for fabrication using EBM. An Arcam A2 system was utilized for the fabrication. The system had all internal components of the fabrication chamber replaced and was cleaned to prevent contamination of niobium powder. A mini-vat, developed at

  20. RF plasma cleaning of silicon substrates with high-density polyethylene contamination

    Science.gov (United States)

    Cagomoc, Charisse Marie D.; De Leon, Mark Jeffry D.; Ebuen, Anna Sophia M.; Gilos, Marlo Nicole R.; Vasquez, Magdaleno R., Jr.

    2018-01-01

    Upon contact with a polymeric material, microparticles from the polymer may adhere to a silicon (Si) substrate during device processing. The adhesion contaminates the surface and, in turn, leads to defects in the fabricated Si-based microelectronic devices. In this study, Si substrates with artificially induced high-density polyethylene (HDPE) contamination was exposed to 13.56 MHz radio frequency (RF) plasma utilizing argon and oxygen gas admixtures at a power density of 5.6 W/cm2 and a working pressure of 110 Pa for up to 6 min of treatment. Optical microscopy studies revealed the removal of up to 74% of the polymer contamination upon plasma exposure. Surface free energy (SFE) increased owing to the removal of contaminants as well as the formation of polar groups on the Si surface after plasma treatment. Atomic force microscopy scans showed a decrease in surface roughness from 12.25 nm for contaminated samples to 0.77 nm after plasma cleaning. The smoothening effect can be attributed to the removal of HDPE particles from the surface. In addition, scanning electron microscope images showed that there was a decrease in the amount of HDPE contaminants adhering onto the surface after plasma exposure.

  1. Advanced methods for fabrication of PHWR and LMFBR fuels

    International Nuclear Information System (INIS)

    Ganguly, C.

    1988-01-01

    For self-reliance in nuclear power, the Department of Atomic Energy (DAE), India is pursuing two specific reactor systems, namely the pressurised heavy water reactors (PHWR) and the liquid metal cooled fast breeder reactors (LMFBR). The reference fuel for PHWR is zircaloy-4 clad high density (≤ 96 per cent T.D.) natural UO 2 pellet-pins. The advanced PHWR fuels are UO 2 -PuO 2 (≤ 2 per cent), ThO 2 -PuO 2 (≤ 4 per cent) and ThO 2 -U 233 O 2 (≤ 2 per cent). Similarly, low density (≤ 85 per cent T.D.) (UPu)O 2 pellets clad in SS 316 or D9 is the reference fuel for the first generation of prototype and commercial LMFBRs all over the world. However, (UPu)C and (UPu)N are considered as advanced fuels for LMFBRs mainly because of their shorter doubling time. The conventional method of fabrication of both high and low density oxide, carbide and nitride fuel pellets starting from UO 2 , PuO 2 and ThO 2 powders is 'powder metallurgy (P/M)'. The P/M route has, however, the disadvantage of generation and handling of fine powder particles of the fuel and the associated problem of 'radiotoxic dust hazard'. The present paper summarises the state-of-the-art of advanced methods of fabrication of oxide, carbide and nitride fuels and highlights the author's experience on sol-gel-microsphere-pelletisation (SGMP) route for preparation of these materials. The SGMP process uses sol gel derived, dust-free and free-flowing microspheres of oxides, carbide or nitride for direct pelletisation and sintering. Fuel pellets of both low and high density, excellent microhomogeneity and controlled 'open' or 'closed' porosity could be fabricated via the SGMP route. (author). 5 tables, 14 figs., 15 refs

  2. Design and fabrication of metal-insulator-metal diode for high frequency applications

    Science.gov (United States)

    Azad, Ibrahim; Ram, Manoj K.; Goswami, D. Yogi; Stefanakos, Elias

    2017-02-01

    Metal-insulator-metal (MIM) diodes play significant role in high speed electronics where high frequency rectification is needed. Quantum based tunneling mechanism helps MIM diodes to rectify at high frequency signals. Rectenna, antenna coupled MIM diodes are becoming popular due to their potential use as IR detectors and energy harvesters. Because of small active area, MIM diodes could easily be incorporated into integrated circuits (IC's). The objective of the work is to design and develop MIM diodes for high frequency rectification. In this work, thin insulating layer of ZnO was fabricated using Langmuir-Blodgett (LB) technique which facilitates ultrathin thin, uniform and pinhole free fabrication of insulating layer. The ZnO layer was synthesized from organic precursor of zinc acetate layer. The optimization in the LB technique of fabrication process led to fabricate MIM diodes with high non-linearity and sensitivity. Moreover, the top and bottom electrodes as well as active area of the diodes were patterned using UV-tunneling conduction mechanism. The highest sensitivity of the diode was measured around 37 (A/W), and the rectification ratio was found around 36 under low applied bias at +/-100 mV.

  3. Carbon nanofibers with radially grown graphene sheets derived from electrospinning for aqueous supercapacitors with high working voltage and energy density

    Science.gov (United States)

    Zhao, Lei; Qiu, Yejun; Yu, Jie; Deng, Xianyu; Dai, Chenglong; Bai, Xuedong

    2013-05-01

    Improvement of energy density is an urgent task for developing advanced supercapacitors. In this paper, aqueous supercapacitors with high voltage of 1.8 V and energy density of 29.1 W h kg-1 were fabricated based on carbon nanofibers (CNFs) and Na2SO4 electrolyte. The CNFs with radially grown graphene sheets (GSs) and small average diameter down to 11 nm were prepared by electrospinning and carbonization in NH3. The radially grown GSs contain between 1 and a few atomic layers with their edges exposed on the surface. The CNFs are doped with nitrogen and oxygen with different concentrations depending on the carbonizing temperature. The supercapacitors exhibit excellent cycling performance with the capacity retention over 93.7% after 5000 charging-discharging cycles. The unique structure, possessing radially grown GSs, small diameter, and heteroatom doping of the CNFs, and application of neutral electrolyte account for the high voltage and energy density of the present supercapacitors. The present supercapacitors are of high promise for practical application due to the high energy density and the advantages of neutral electrolyte including low cost, safety, low corrosivity, and convenient assembly in air.

  4. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries

    Science.gov (United States)

    Li, Jianlin; Du, Zhijia; Ruther, Rose E.; AN, Seong Jin; David, Lamuel Abraham; Hays, Kevin; Wood, Marissa; Phillip, Nathan D.; Sheng, Yangping; Mao, Chengyu; Kalnaus, Sergiy; Daniel, Claus; Wood, David L.

    2017-09-01

    Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by 70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. This article discusses three major aspects for cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.

  5. Dielectric properties of polycarbonate coated natural fabric Grewia tilifolia

    CSIR Research Space (South Africa)

    Ramana, CHVV

    2011-12-01

    Full Text Available attraction of bio-fiber reinforced composites lie in their low density and high strength. Polymer composites of a polycarbonate coated with natural fabric Grewia tilifolia were studied by means of dielectric properties in the frequency range 100 Hz to 1 MHz...

  6. Properties of matter at ultra-high densities

    International Nuclear Information System (INIS)

    Banerjee, B.; Chitre, S.M.

    1975-01-01

    The recent discovery of pulsars and their subsequent identification with neutron stars has given a great impetus to the study of the behaviour of matter at ultra high densities. The object of these studies is to calculate the equation of state as a function of density. In this paper, the properties of electrically neutral, cold (T=0) matter at unusually high densities has been reviewed. The physics of the equation of state of such matter divides quite naturally in four density ranges. (i) At the very lowest densities the state of minimum energy is a lattice of 56 Fe atoms. This state persists upto 10 7 g/cm 3 . (ii) In the next density region the nuclei at the lattice sites become neutron rich because the high electron Fermi energy makes inverse beta decay possible. (iii) At a density 4.3 x 10 11 the nuclei become so neutron rich that the neutrons start 'dripping' out of the nuclei and form a gas. This density range is characterised by large, neutron-rich nuclei immersed in a neutron gas. (iv) At a density 2.4 x 10 14 g/cm 3 , the nuclei disappear and a fluid of uniform neutron matter with a small percentage of protons and electrons results. The above four density ranges have been discussed in detail as the equation of state is now well established upto the nuclear density 3 x 10 14 g/cm 3 . The problems of extending the equation of state beyond this density are also touched upon. (author)

  7. Influence of key processing parameters and seeding density effects of microencapsulated chondrocytes fabricated using electrohydrodynamic spraying.

    Science.gov (United States)

    Gansau, Jennifer; Kelly, Lara; Buckley, Conor

    2018-06-11

    Cell delivery and leakage during injection remains a challenge for cell-based intervertebral disc regeneration strategies. Cellular microencapsulation may offer a promising approach to overcome these limitations by providing a protective niche during intradiscal injection. Electrohydrodynamic spraying (EHDS) is a versatile one-step approach for microencapsulation of cells using a high voltage electric field. The primary objective of this work was to characterise key processing parameters such as applied voltage (0, 5, 10 or 15kV), emitter needle gauge (21, 26 or 30G), alginate concentration (1, 2 or 3%) and flow rate (50, 100, 250 or 500 µl/min) to regulate the morphology of alginate microcapsules and subsequent cell viability when altering these parameters. The effect of initial cell seeding density (5, 10 and 20x106 cells/ml) on subsequent matrix accumulation of microencapsulated articular chondrocytes was also evaluated. Results showed that increasing alginate concentration and thus viscosity increased overall microcapsule size but also affected the geometry towards ellipsoidal-shaped gels. Altering the electric field strength and needle diameter regulated microcapsule size towards a smaller diameter with increasing voltage and smaller needle diameter. Needle size did not appear to affect cell viability when operating with lower alginate concentrations (1% and 2%), although higher concentrations (3%) and thus higher viscosity hydrogels resulted in diminished viability with decreasing needle diameter. Increasing cell density resulted in decreased cell viability and a concomitant decrease in DNA content, perhaps due to competing nutrient demands as a result of more closely packed cells. However, higher cell densities resulted in increased levels of extracellular matrix accumulated. Overall, this work highlights the potential of EHDS as a controllable and versatile approach to fabricate microcapsules for injectable delivery which can be used in a

  8. The growth of high density network of MOF nano-crystals across macroporous metal substrates - Solvothermal synthesis versus rapid thermal deposition

    Science.gov (United States)

    Maina, James W.; Gonzalo, Cristina Pozo; Merenda, Andrea; Kong, Lingxue; Schütz, Jürg A.; Dumée, Ludovic F.

    2018-01-01

    Fabrication of metal organic framework (MOF) films and membranes across macro-porous metal substrates is extremely challenging, due to the large pore sizes across the substrates, poor wettability, and the lack of sufficient reactive functional groups on the surface, which prevent high density nucleation of MOF crystals. Herein, macroporous stainless steel substrates (pore size 44 × 40 μm) are functionalized with amine functional groups, and the growth of ZIF-8 crystals investigated through both solvothermal synthesis and rapid thermal deposition (RTD), to assess the role of synthesis routes in the resultant membranes microstructure, and subsequently their performance. Although a high density of well interconnected MOF crystals was observed across the modified substrates following both techniques, RTD was found to be a much more efficient route, yielding high quality membranes under 1 h, as opposed to the 24 h required for solvothermal synthesis. The RTD membranes also exhibited high gas permeance, with He permeance of up to 2.954 ± 0.119 × 10-6 mol m-2 s-1 Pa-1, and Knudsen selectivities for He/N2, Ar/N2 and CO2/N2, suggesting the membranes were almost defect free. This work opens up route for efficient fabrication of MOF films and membranes across macro-porous metal supports, with potential application in electrically mediated separation applications.

  9. Dense Pure Tungsten Fabricated by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Dianzheng Wang

    2017-04-01

    Full Text Available Additive manufacturing using tungsten, a brittle material, is difficult because of its high melting point, thermal conductivity, and oxidation tendency. In this study, pure tungsten parts with densities of up to 18.53 g/cm3 (i.e., 96.0% of the theoretical density were fabricated by selective laser melting. In order to minimize balling effects, the raw polyhedral tungsten powders underwent a spheroidization process before laser consolidation. Compared with polyhedral powders, the spherical powders showed increased laser absorptivity and packing density, which helped in the formation of a continuous molten track and promoted densification.

  10. Fabrication and thermoelectric properties of highly textured NaCo2O4 ceramic

    International Nuclear Information System (INIS)

    Cheng Jinguang; Sui Yu; Fu Haijin; Lu Zhe; Wei Bo; Qian Zhengnan; Miao Jipeng; Liu Zhiguo; Huang Xiqiang; Zhu Ruibin; Wang Xianjie; Su Wenhui

    2006-01-01

    Highly textured NaCo 2 O 4 polycrystalline sample was fabricated by means of the cold high-pressure compacting followed by the solid-state reaction. X-ray diffraction and scanning electron microscope were employed to show that the plate-like grains within the sample are aligned along the pressing direction. The resistivity ρ and thermoelectric power S along the preferred {0 0 1} plane were measured in the whole temperature range from 15 to 973 K in air and the correlation between thermoelectric properties and texture was investigated. It was found that both ρ and S exhibit metallic behavior in the whole temperature range and the above sample exhibits lower ρ and higher S due to high texture and density. The power factor exhibits a steep rise above 400 K and reaches 761 μW m -1 K -2 at 973 K, suggesting a promising candidate for thermoelectric application at higher temperature. The change of slope in both resistivity and thermoelectric power curves at about 450 K might arise from the spin-state transition of Co ions in the CoO 2 blocks

  11. Nondestructive assay of special nuclear material for uranium fuel-fabrication facilities

    International Nuclear Information System (INIS)

    Smith, H.A. Jr.; Schillebeeckx, P.

    1997-01-01

    A high-quality materials accounting system and effective international inspections in uranium fuel-fabrication facilities depend heavily upon accurate nondestructive assay measurements of the facility's nuclear materials. While item accounting can monitor a large portion of the facility inventory (fuel rods, assemblies, storage items), the contents of all such items and mass values for all bulk materials must be based on quantitative measurements. Weight measurements, combined with destructive analysis of process samples, can provide highly accurate quantitative information on well-characterized and uniform product materials. However, to cover the full range of process materials and to provide timely accountancy data on hard-to-measure items and rapid verification of previous measurements, radiation-based nondestructive assay (NDA) techniques play an important role. NDA for uranium fuel fabrication facilities relies on passive gamma spectroscopy for enrichment and U isotope mass values of medium-to-low-density samples and holdup deposits; it relies on active neutron techniques for U-235 mass values of high-density and heterogeneous samples. This paper will describe the basic radiation-based nondestructive assay techniques used to perform these measurements. The authors will also discuss the NDA measurement applications for international inspections of European fuel-fabrication facilities

  12. High-Density Superconducting Cables for Advanced ACTPol

    Science.gov (United States)

    Pappas, C. G.; Austermann, J.; Beall, J. A.; Duff, S. M.; Gallardo, P. A.; Grace, E.; Henderson, S. W.; Ho, S. P.; Koopman, B. J.; Li, D.; McMahon, J.; Nati, F.; Niemack, M. D.; Niraula, P.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-07-01

    Advanced ACTPol (AdvACT) is an upcoming Atacama Cosmology Telescope (ACT) receiver upgrade, scheduled to deploy in 2016, that will allow measurement of the cosmic microwave background polarization and temperature to the highest precision yet with ACT. The AdvACT increase in sensitivity is partly provided by an increase in the number of transition-edge sensors (TESes) per array by up to a factor of two over the current ACTPol receiver detector arrays. The high-density AdvACT TES arrays require 70 \\upmu m pitch superconducting flexible cables (flex) to connect the detector wafer to the first-stage readout electronics. Here, we present the flex fabrication process and test results. For the flex wiring layer, we use a 400-nm-thick sputtered aluminum film. In the center of the cable, the wiring is supported by a polyimide substrate, which smoothly transitions to a bare (uncoated with polyimide) silicon substrate at the ends of the cable for a robust wedge wire-bonding interface. Tests on the first batch of flex made for the first AdvACT array show that the flex will meet the requirements for AdvACT, with a superconducting critical current above 1 mA at 500 mK, resilience to mechanical and cryogenic stress, and a room temperature yield of 97 %.

  13. Ductile long range ordered alloys with high critical ordering temperature and wrought articles fabricated therefrom

    Science.gov (United States)

    Liu, Chain T.; Inouye, Henry

    1979-01-01

    Malleable long range ordered alloys having high critical ordering temperatures exist in the V(Fe, Co).sub.3 and V(Fe, Co, Ni).sub.3 systems. These alloys have the following compositions comprising by weight: 22-23% V, 14-30% Fe, and the remainder Co or Co and Ni with an electron density no more than 7.85. The maximum combination of high temperature strength, ductility and creep resistance are manifested in the alloy comprising by weight 22-23% V, 14-20% Fe and the remainder Co and having an atomic composition of V(Fe .sub.0.20-0.26 C Co.sub.0.74-0.80).sub.3. The alloy comprising by weight 22-23% V, 16-17% Fe and 60-62% Co has excellent high temperature properties. The alloys are fabricable into wrought articles by casting, deforming, and annealing for sufficient time to provide ordered structure.

  14. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    International Nuclear Information System (INIS)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

    2015-01-01

    A recent low gas-fill density (0.6 mg/cc 4 He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc 4 He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth

  15. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    Science.gov (United States)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

    2015-04-01

    A recent low gas-fill density (0.6 mg/cc 4He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc 4He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  16. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    Energy Technology Data Exchange (ETDEWEB)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2015-04-15

    A recent low gas-fill density (0.6 mg/cc {sup 4}He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc {sup 4}He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  17. Silicon micromachining using a high-density plasma source

    International Nuclear Information System (INIS)

    McAuley, S.A.; Ashraf, H.; Atabo, L.; Chambers, A.; Hall, S.; Hopkins, J.; Nicholls, G.

    2001-01-01

    Dry etching of Si is critical in satisfying the demands of the micromachining industry. The micro-electro-mechanical systems (MEMS) community requires etches capable of high aspect ratios, vertical profiles, good feature size control and etch uniformity along with high throughput to satisfy production requirements. Surface technology systems' (STS's) high-density inductively coupled plasma (ICP) etch tool enables a wide range of applications to be realized whilst optimizing the above parameters. Components manufactured from Si using an STS ICP include accelerometers and gyroscopes for military, automotive and domestic applications. STS's advanced silicon etch (ASE TM ) has also allowed the first generation of MEMS-based optical switches and attenuators to reach the marketplace. In addition, a specialized application for fabricating the next generation photolithography exposure masks has been optimized for 200 mm diameter wafers, to depths of ∼750 μm. Where the profile is not critical, etch rates of greater than 8 μm min -1 have been realized to replace previous methods such as wet etching. This is also the case for printer applications. Specialized applications that require etching down to pyrex or oxide often result in the loss of feature size control at the interface; this is an industry wide problem. STS have developed a technique to address this. The rapid progression of the industry has led to development of the STS ICP etch tool, as well as the process. (author)

  18. A review of low density porous materials used in laser plasma experiments

    Science.gov (United States)

    Nagai, Keiji; Musgrave, Christopher S. A.; Nazarov, Wigen

    2018-03-01

    This review describes and categorizes the synthesis and properties of low density porous materials, which are commonly referred to as foams and are utilized for laser plasma experiments. By focusing a high-power laser on a small target composed of these materials, high energy and density states can be produced. In the past decade or so, various new target fabrication techniques have been developed by many laboratories that use high energy lasers and consequently, many publications and reviews followed these developments. However, the emphasis so far has been on targets that did not utilize low density porous materials. This review therefore, attempts to redress this balance and endeavors to review low density materials used in laser plasma experiments in recent years. The emphasis of this review will be on aspects of low density materials that are of relevance to high energy laser plasma experiments. Aspects of low density materials such as densities, elemental compositions, macroscopic structures, nanostructures, and characterization of these materials will be covered. Also, there will be a brief mention of how these aspects affect the results in laser plasma experiments and the constrictions that these requirements put on the fabrication of low density materials relevant to this field. This review is written from the chemists' point of view to aid physicists and the new comers to this field.

  19. On the Feasibility of Very-Low-Density Pure Metal Foams as Bright High-Energy X-ray Sources

    Science.gov (United States)

    Colvin, Jeffrey; Felter, Thomas

    2003-10-01

    We have used the Busquet approximation (M. Busquet, Phys. Fluids B 5(11), 4191 (1993)) to explore calculationally what the possible x-ray conversion efficiencies into the K-band would be from irradiating very-low-density pure metal foams with tens of kilojoules of 1/3-micron laser light. We will discuss the advantages of pure metal foams as bright high-energy x-ray sources, and some results of this calculational study. We will also present our ideas for how to fabricate pure metal foams with densities of a few milligrams per cubic centimeter. This work was performed under the auspices of the US Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  20. Current developments of fuel fabrication technologies at the plutonium fuel production facility, PFPF

    International Nuclear Information System (INIS)

    Asakura, K.; Aono, S.; Yamaguchi, T.; Deguchi, M.

    2000-01-01

    The Japan Nuclear Cycle Development Institute, JNC, designed, constructed and has operated the Plutonium Fuel Production Facility, PFPF, at the JNC Tokai Works to supply MOX fuels to the proto-type Fast Breeder Reactor, FBR, 'MONJU' and the experimental FBR 'JOYO' with 5 tonMOX/year of fabrication capability. Reduction of personal radiation exposure to a large amount of plutonium is one of the most important subjects in the development of MOX fabrication facility on a large scale. As the solution of this issue, the PFPF has introduced automated and/or remote controlled equipment in conjunction with computer controlled operation scheme. The PFPF started its operation in 1988 with JOYO reload fuel fabrication and has demonstrated MOX fuel fabrication on a large scale through JOYO and MONJU fuel fabrication for this decade. Through these operations, it has become obvious that several numbers of equipment initially installed in the PFPF need improvements in their performance and maintenance for commercial utilization of plutonium in the future. Furthermore, fuel fabrication of low density MOX pellets adopted in the MONJU fuel required a complete inspection because of difficulties in pellet fabrication compared with high density pellet for JOYO. This paper describes new pressing equipment with a powder recovery system, and pellet finishing and inspection equipment which has multiple functions, such as grinding measurements of outer diameter and density, and inspection of appearance to improve efficiency in the pellet finishing and inspection steps. Another development of technology concerning an annular pellet and an innovative process for MOX fuel fabrication are also described in this paper. (author)

  1. Bismuth Titanate Fabricated by Spray-on Deposition and Microwave Sintering For High-Temperature Ultrasonic Transducers.

    Science.gov (United States)

    Searfass, Clifford T; Pheil, C; Sinding, K; Tittmann, B R; Baba, A; Agrawal, D K

    2016-01-01

    Thick films of ferroelectric bismuth titanate (Bi4Ti3O12) have been fabricated by spray-on deposition in conjunction with microwave sintering for use as high-temperature ultrasonic transducers. The elastic modulus, density, permittivity, and conductivity of the films were characterized. Electro-mechanical properties of the films were estimated with a commercial d33 meter which gave 16 pC/N. This value is higher than typically reported for bulk bismuth titanate; however, these films withstand higher field strengths during poling which is correlated with higher d33 values. Films were capable of operating at 650 °C for roughly 5 min before depoling and can operate at 600 °C for at least 7 days.

  2. Microstructure and Mechanical Properties of Highly Alloyed FeCrMoVC Steel Fabricated by Spark Plasma Sintering

    Science.gov (United States)

    Oh, Seung-Jin; Jun, Joong-Hwan; Lee, Min-Ha; Shon, In-Jin; Lee, Seok-Jae

    2018-05-01

    In this study, we successfully fabricated highly alloyed FeCrMoVC specimens within 2 min by using the spark plasma sintering (SPS) method. The densities of the sintered specimens were almost identical to their theoretical values. Fine (Mo, V)-rich carbides with lamellar structure were precipitated along the grain boundaries of the as-sintered specimen, whereas relatively large carbides were formed additionally in the transgranular region during the tempering treatment. Compared with the specimen produced by a conventional casting method, the FeCrMoVC specimens from SPS showed smaller grain size with finer carbides and higher hardness values.

  3. Photoionization and High Density Gas

    Science.gov (United States)

    Kallman, T.; Bautista, M.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present results of calculations using the XSTAR version 2 computer code. This code is loosely based on the XSTAR v.1 code which has been available for public use for some time. However it represents an improvement and update in several major respects, including atomic data, code structure, user interface, and improved physical description of ionization/excitation. In particular, it now is applicable to high density situations in which significant excited atomic level populations are likely to occur. We describe the computational techniques and assumptions, and present sample runs with particular emphasis on high density situations.

  4. Highly ordered uniform single-crystal Bi nanowires: fabrication and characterization

    International Nuclear Information System (INIS)

    Bisrat, Y; Luo, Z P; Davis, D; Lagoudas, D

    2007-01-01

    A mechanical pressure injection technique has been used to fabricate uniform bismuth (Bi) nanowires in the pores of an anodic aluminum oxide (AAO) template. The AAO template was prepared from general purity aluminum by a two-step anodization followed by heat treatment to achieve highly ordered nanochannels. The nanowires were then fabricated by an injection technique whereby the molten Bi was injected into the AAO template using a hydraulic pressure method. The Bi nanowires prepared by this method were found to be dense and continuous with uniform diameter throughout the length. Electron diffraction experiments using the transmission electron microscope on cross-sectional and free-standing longitudinal Bi nanowires showed that the majority of the individual nanowires were single crystalline, with preferred orientation of growth along the [011] zone axis of the pseudo-cubic structure. The work presented here provides an inexpensive and effective way of fabricating highly ordered single-crystalline Bi nanowires, with uniform size distributions

  5. Fabrication of wound capacitors using flexible alkali-free glass

    International Nuclear Information System (INIS)

    Wilke, Rudeger H. T.; Baker, Amanda; Brown-Shaklee, Harlan; Johnson-Wilke, Raegan; Hettler, Chad

    2016-01-01

    Here, alkali-free glasses, which exhibit high energy storage densities (~35 J/cc), present a unique opportunity to couple high temperature stability with high breakdown strength, and thus provide an avenue for capacitor applications with stringent temperature and power requirements. Realizing the potential of these materials in kilovolt class capacitors with >1 J/cc recoverable energy density requires novel packaging strategies that incorporate these extremely fragile dielectrics. In this paper, we demonstrate the feasibility of fabricating wound capacitors using 50-μm-thick glass. Two capacitors were fabricated from 2.8-m-long ribbons of thin (50 μm) glass wound into 125-140-mm-diameter spools. The capacitors exhibit a capacitance of 70-75 nF with loss tangents below 1%. The wound capacitors can operate up to 1 kV and show excellent temperature stability to 150 °C. By improving the end terminations, the self-resonance can be shifted to above 1 MHz, indicating that these materials may be useful for pulsed power applications with microsecond discharge times.

  6. High energy density supercapacitors from lignin derived submicron activated carbon fibers in aqueous electrolytes

    Science.gov (United States)

    Hu, Sixiao; Zhang, Sanliang; Pan, Ning; Hsieh, You-Lo

    2014-12-01

    Highly porous submicron activated carbon fibers (ACFs) were robustly generated from low sulfonated alkali lignin and fabricated into supercapacitors for capacitive energy storage. The hydrophilic and high specific surface ACFs exhibited large-size nanographites and good electrical conductivity to demonstrate outstanding electrochemical performance. ACFs from KOH activation, in particular, showed very high 344 F g-1 specific capacitance at low 1.8 mg cm-2 mass loading and 10 mV s-1 scan rate in aqueous electrolytes. Even at relatively high scan rate of 50 mV s-1 and mass loading of 10 mg cm-2, a decent specific capacitance of 196 F g-1 and a remarkable areal capacitance of 0.55 F cm-2 was obtained, leading to high energy density of 8.1 Wh kg-1 based on averaged electrodes mass. Furthermore, over 96% capacitance retention rates were achieved after 5000 charge/discharge cycles. Such excellent performance demonstrated great potential of lignin derived carbons for electrical energy storage.

  7. Fabrication of antireflective nanostructures for crystalline silicon solar cells by reactive ion etching

    International Nuclear Information System (INIS)

    Lin, Hsin-Han; Chen, Wen-Hua; Wang, Chi-Jen; Hong, Franklin Chau-Nan

    2013-01-01

    In this study we have fabricated large-area (15 × 15 cm 2 ) subwavelength antireflection structure on poly-Si substrates to reduce their solar reflectivity. A reactive ion etching system was used to fabricate nanostructures on the poly-silicon surface. Reactive gases, composed of chlorine (Cl 2 ), sulfur hexafluoride (SF 6 ) and oxygen (O 2 ), were activated to fabricate nanoscale pyramids by RF plasma. The poly-Si substrates were etched in various gas compositions for 6–10 min to form nano-pyramids. The sizes of pyramids were about 200–300 nm in heights and about 100 nm in width. Besides the nanoscale features, the high pyramid density on the poly-Si surface is another important factor to reduce the reflectivity. Low-reflectivity surface was fabricated with reflectivity significantly reduced down to < 2% for photons in a wavelength range of 500–900 nm. - Highlights: ► Large-area (15 × 15 cm 2 ) antireflection structures fabricated on poly-Si substrates ► Si nano-pyramids produced by utilizing self-masked reactive ion etching process ► High density of nanoscale pyramids was formed on the entire substrate surface. ► Surface reflectivity below 2% was achieved in the wavelength range of 500–900 nm

  8. A distributed current stimulator ASIC for high density neural stimulation.

    Science.gov (United States)

    Jeong Hoan Park; Chaebin Kim; Seung-Hee Ahn; Tae Mok Gwon; Joonsoo Jeong; Sang Beom Jun; Sung June Kim

    2016-08-01

    This paper presents a novel distributed neural stimulator scheme. Instead of a single stimulator ASIC in the package, multiple ASICs are embedded at each electrode site for stimulation with a high density electrode array. This distributed architecture enables the simplification of wiring between electrodes and stimulator ASIC that otherwise could become too complex as the number of electrode increases. The individual ASIC chip is designed to have a shared data bus that independently controls multiple stimulating channels. Therefore, the number of metal lines is determined by the distributed ASICs, not by the channel number. The function of current steering is also implemented within each ASIC in order to increase the effective number of channels via pseudo channel stimulation. Therefore, the chip area can be used more efficiently. The designed chip was fabricated with area of 0.3 mm2 using 0.18 μm BCDMOS process, and the bench-top test was also conducted to validate chip performance.

  9. Electronic DC transformer with high power density

    NARCIS (Netherlands)

    Pavlovský, M.

    2006-01-01

    This thesis is concerned with the possibilities of increasing the power density of high-power dc-dc converters with galvanic isolation. Three cornerstones for reaching high power densities are identified as: size reduction of passive components, reduction of losses particularly in active components

  10. Irradiation testing of high density uranium alloy dispersion fuels

    International Nuclear Information System (INIS)

    Hayes, S.L.; Trybus, C.L.; Meyer, M.K.

    1997-10-01

    Two irradiation test vehicles have been designed, fabricated, and inserted into the Advanced Test Reactor in Idaho. Irradiation of these experiments began in August 1997. These irradiation tests were designed to obtain irradiation performance information on a variety of potential new, high-density dispersion fuels. Each of the two irradiation vehicles contains 32 microplates. Each microplate is aluminum clad, having an aluminum matrix phase and containing one of the following compositions as the fuel phase: U-10Mo, U-8Mo, U-6Mo, U-4Mo, U-9Nb-3Zr, U-6Nb-4Zr, U-5Nb-3Zr, U-6Mo-1Pt, U-6Mo-0.6Ru, U-10Mo-0.05Sn, U 2 Mo, or U 3 Si 2 . These experiments will be discharged at peak fuel burnups of 40% and 80%. Of particular interest is the fission gas retention/swelling characteristics of these new fuel alloys. This paper presents the design of the irradiation vehicles and the irradiation conditions

  11. Fabrication of High-Aspect-Ratio 3D Hydrogel Microstructures Using Optically Induced Electrokinetics

    Directory of Open Access Journals (Sweden)

    Yi Li

    2016-04-01

    Full Text Available We present a rapid hydrogel polymerization and prototyping microfabrication technique using an optically induced electrokinetics (OEK chip, which is based on a non-UV hydrogel curing principle. Using this technique, micro-scale high-aspect-ratio three-dimensional polymer features with different geometric sizes can be fabricated within 1–10 min by projecting pre-defined visible light image patterns onto the OEK chip. This method eliminates the need for traditional photolithography masks used for patterning and fabricating polymer microstructures and simplifies the fabrication processes. This technique uses cross-link hydrogels, such as poly(ethylene glycol (PEG-diacrylate (PEGDA, as fabrication materials. We demonstrated that hydrogel micropillar arrays rapidly fabricated using this technique can be used as molds to create micron-scale cavities in PDMS (polydimethylsiloxane substrates. Furthermore, hollow, circular tubes with controllable wall thicknesses and high-aspect ratios can also be fabricated. These results show the potential of this technique to become a rapid prototyping technology for producing microfluidic devices. In addition, we show that rapid prototyping of three-dimensional suspended polymer structures is possible without any sacrificial etching process.

  12. Fabrication of Foam Shells for ICF Experiments

    Science.gov (United States)

    Czechowicz, D. G.; Acenas, O.; Flowers, J. S.; Nikroo, A.; Paguio, R. R.; Schroen, D. G.; Streit, J.; Takagi, M.

    2004-11-01

    The General Atomics/Schafer team has developed processes to fabricate foam shells targets suitable for ICF experiments. The two most common chemical systems used to produce foam shells have been resorcinol-formaldehyde (R/F) aerogel and divinylbenzene (DVB). Spherical targets have been made in the form of shells and beads having diameters ranging from approximately 0.5 mm to 4.0 mm, and having densities from approximately 100 mg/cc to 250 mg/cc. The work on R/F foam shells has been concentrated on 1) shell fabrication process improvement to obtain high yields ( ˜25%) and 2) depositing a reliable permeation barrier to provide shells for ongoing direct drive experiments at LLE. Development of divinylbenzene foam shells has been mainly directed towards Inertial Fusion Energy applications (at densities as low as 30 mg/cc) and recently for shells for experiments at LLE. Details of the relevant metrology and properties of these foams as well as the range of targets currently available will be discussed.

  13. Relative neutronic performance of proposed high-density dispersion fuels in water-moderated and D2O-reflected research reactors

    International Nuclear Information System (INIS)

    Bretscher, M.M.; Matos, J.E.; Snelgrove, J.L.

    1996-01-01

    This paper provides an overview of the neutronic performance of an idealized research reactor using several high density LEU fuels that are being developed by the RERTR program. High-density LEU dispersion fuels are needed for new and existing high-performance research reactors and to extend the lifetime of fuel elements in other research reactors. This paper discusses the anticipated neutronic behavior of proposed advanced fuels containing dispersions of U 3 Si 2 , UN, U 2 Mo and several uranium alloys with Mo, or Zr and Nb. These advanced fuels are ranked based on the results of equilibrium depletion calculations for a simplified reactor model having a small H 2 O-cooled core and a D 2 O reflector. Plans have been developed to fabricate and irradiate several uranium alloy dispersion fuels in order to test their stability and compatibility with the matrix material and to establish practical loading limits

  14. Relative neutronic performance of proposed high-density dispersion fuels in water-moderated and D2O-reflected research reactors

    International Nuclear Information System (INIS)

    Bretscher, M.M.; Matos, J.E.; Snelgrove, J.L.

    1996-01-01

    This paper provides an overview of the neutronic performance of an idealized research reactor using several high density Leu fuels that are being developed by the Rarita program. High-density Leu dispersion fuels are needed for new and existing high-performance research reactors and to extend the lifetime of fuel elements in other research reactors. This paper discusses the anticipated neutronic behavior of proposed advanced fuels containing dispersions of U 3 Si 2 , UN, U 2 Mo and several uranium alloys with Mo, or Zr and Nb. These advanced fuels are ranked based on the results of equilibrium depletion calculations for a simplified reactor model having a small H 2 O-cooled core and a D 2 O reflector. Plans have been developed to fabricate and irradiate several uranium alloy dispersion fuels in order to test their stability and compatibility with the matrix material and to establish practical loading limits. (author)

  15. Spontaneous magnetization in high-density quark matter

    DEFF Research Database (Denmark)

    Tsue, Yasuhiko; da Providência, João; Providência, Constanca

    2015-01-01

    It is shown that spontaneous magnetization occurs due to the anomalous magnetic moments of quarks in high-density quark matter under the tensor-type four-point interaction. The spin polarized condensate for each flavor of quark appears at high baryon density, which leads to the spontaneous magnet...

  16. High energy density supercapacitors using macroporous kitchen sponges

    KAUST Repository

    Chen, Wei

    2012-01-01

    Macroporous, low-cost and recyclable kitchen sponges are explored as effective electrode platforms for supercapacitor devices. A simple and scalable process has been developed to fabricate MnO 2-carbon nanotube (CNT)-sponge supercapacitor electrodes using ordinary kitchen sponges. Two organic electrolytes (1 M of tetraethylammonium tetrafluoroborate (Et 4NBF 4) in propylene carbonate (PC), 1 M of LiClO 4 in PC) are utilized with the sponge-based electrodes to improve the energy density of the symmetrical supercapacitors. Compared to aqueous electrolyte (1 M of Na 2SO 4 in H 2O), the energy density of supercapacitors tripled in Et 4NBF 4 electrolyte, and further increased by six times in LiClO 4 electrolyte. The long-term cycling performance in different electrolytes was examined and the morphology changes of the electrode materials were also studied. The good electrochemical performance in both aqueous and organic electrolytes indicates that the MnO 2-CNT-sponge is a promising low-cost electrode for energy storage systems. © 2012 The Royal Society of Chemistry.

  17. High Energy Density Sciences with High Power Lasers at SACLA

    Science.gov (United States)

    Kodama, Ryosuke

    2013-10-01

    One of the interesting topics on high energy density sciences with high power lasers is creation of extremely high pressures in material. The pressures of more than 0.1 TPa are the energy density corresponding to the chemical bonding energy, resulting in expectation of dramatic changes in the chemical reactions. At pressures of more than TPa, most of material would be melted on the shock Hugoniot curve. However, if the temperature is less than 1eV or lower than a melting point at pressures of more than TPa, novel solid states of matter must be created through a pressured phase transition. One of the interesting materials must be carbon. At pressures of more than TPa, the diamond structure changes to BC and cubic at more than 3TPa. To create such novel states of matter, several kinds of isentropic-like compression techniques are being developed with high power lasers. To explore the ``Tera-Pascal Science,'' now we have a new tool which is an x-ray free electron laser as well as high power lasers. The XFEL will clear the details of the HED states and also efficiently create hot dense matter. We have started a new project on high energy density sciences using an XFEL (SACLA) in Japan, which is a HERMES (High Energy density Revolution of Matter in Extreme States) project.

  18. Spatiotemporal norepinephrine mapping using a high-density CMOS microelectrode array.

    Science.gov (United States)

    Wydallis, John B; Feeny, Rachel M; Wilson, William; Kern, Tucker; Chen, Tom; Tobet, Stuart; Reynolds, Melissa M; Henry, Charles S

    2015-10-21

    A high-density amperometric electrode array containing 8192 individually addressable platinum working electrodes with an integrated potentiostat fabricated using Complementary Metal Oxide Semiconductor (CMOS) processes is reported. The array was designed to enable electrochemical imaging of chemical gradients with high spatiotemporal resolution. Electrodes are arranged over a 2 mm × 2 mm surface area into 64 subarrays consisting of 128 individual Pt working electrodes as well as Pt pseudo-reference and auxiliary electrodes. Amperometric measurements of norepinephrine in tissue culture media were used to demonstrate the ability of the array to measure concentration gradients in complex media. Poly(dimethylsiloxane) microfluidics were incorporated to control the chemical concentrations in time and space, and the electrochemical response at each electrode was monitored to generate electrochemical heat maps, demonstrating the array's imaging capabilities. A temporal resolution of 10 ms can be achieved by simultaneously monitoring a single subarray of 128 electrodes. The entire 2 mm × 2 mm area can be electrochemically imaged in 64 seconds by cycling through all subarrays at a rate of 1 Hz per subarray. Monitoring diffusional transport of norepinephrine is used to demonstrate the spatiotemporal resolution capabilities of the system.

  19. Flexible semi-transparent silicon (100) fabric with high-k/metal gate devices

    KAUST Repository

    Rojas, Jhonathan Prieto

    2013-01-07

    Can we build a flexible and transparent truly high performance computer? High-k/metal gate stack based metal-oxide-semiconductor capacitor devices are monolithically fabricated on industry\\'s most widely used low-cost bulk single-crystalline silicon (100) wafers and then released as continuous, mechanically flexible, optically semi-transparent and high thermal budget compatible silicon fabric with devices. This is the first ever demonstration with this set of materials which allows full degree of freedom to fabricate nanoelectronics devices using state-of-the-art CMOS compatible processes and then to utilize them in an unprecedented way for wide deployment over nearly any kind of shape and architecture surfaces. Electrical characterization shows uncompromising performance of post release devices. Mechanical characterization shows extra-ordinary flexibility (minimum bending radius of 1 cm) making this generic process attractive to extend the horizon of flexible electronics for truly high performance computers. Schematic and photograph of flexible high-k/metal gate MOSCAPs showing high flexibility and C-V plot showing uncompromised performance. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Fabrication of silicon condenser microphones using single wafer technology

    NARCIS (Netherlands)

    Scheeper, P.R.; van der Donk, A.G.H.; Olthuis, Wouter; Bergveld, Piet

    1992-01-01

    A condenser microphone design that can be fabricated using the sacrificial layer technique is proposed and tested. The microphone backplate is a 1-¿m plasma-enhanced chemical-vapor-deposited (PECVD) silicon nitride film with a high density of acoustic holes (120-525 holes/mm2), covered with a thin

  1. Threshold-voltage modulated phase change heterojunction for application of high density memory

    International Nuclear Information System (INIS)

    Yan, Baihan; Tong, Hao; Qian, Hang; Miao, Xiangshui

    2015-01-01

    Phase change random access memory is one of the most important candidates for the next generation non-volatile memory technology. However, the ability to reduce its memory size is compromised by the fundamental limitations inherent in the CMOS technology. While 0T1R configuration without any additional access transistor shows great advantages in improving the storage density, the leakage current and small operation window limit its application in large-scale arrays. In this work, phase change heterojunction based on GeTe and n-Si is fabricated to address those problems. The relationship between threshold voltage and doping concentration is investigated, and energy band diagrams and X-ray photoelectron spectroscopy measurements are provided to explain the results. The threshold voltage is modulated to provide a large operational window based on this relationship. The switching performance of the heterojunction is also tested, showing a good reverse characteristic, which could effectively decrease the leakage current. Furthermore, a reliable read-write-erase function is achieved during the tests. Phase change heterojunction is proposed for high-density memory, showing some notable advantages, such as modulated threshold voltage, large operational window, and low leakage current

  2. Threshold-voltage modulated phase change heterojunction for application of high density memory

    Science.gov (United States)

    Yan, Baihan; Tong, Hao; Qian, Hang; Miao, Xiangshui

    2015-09-01

    Phase change random access memory is one of the most important candidates for the next generation non-volatile memory technology. However, the ability to reduce its memory size is compromised by the fundamental limitations inherent in the CMOS technology. While 0T1R configuration without any additional access transistor shows great advantages in improving the storage density, the leakage current and small operation window limit its application in large-scale arrays. In this work, phase change heterojunction based on GeTe and n-Si is fabricated to address those problems. The relationship between threshold voltage and doping concentration is investigated, and energy band diagrams and X-ray photoelectron spectroscopy measurements are provided to explain the results. The threshold voltage is modulated to provide a large operational window based on this relationship. The switching performance of the heterojunction is also tested, showing a good reverse characteristic, which could effectively decrease the leakage current. Furthermore, a reliable read-write-erase function is achieved during the tests. Phase change heterojunction is proposed for high-density memory, showing some notable advantages, such as modulated threshold voltage, large operational window, and low leakage current.

  3. The high density and high βpol disruption mechanism on TFTR

    International Nuclear Information System (INIS)

    Fredrickson, E.D.; Manickam, J.; McGuire, K.M.; Monticello, D.; Nagayama, Y.; Park, W.; Taylor, G.

    1992-01-01

    Studies of disruptions on TFTR have been extended to include high density disruptions as well as the high β pol disruptions. The data strongly suggests that the (m,n)=(1,1) mode plays an important role in both types of disruptions. Further, for the first time, it is unambiguously shown, using a fast electron cyclotron emission (ECE) instrument for the electron temperature profile measurements, that the (m,n)=(1,1) precursor to the high density disruptions has a 'cold bubble' structure. The precursor to the major disruption at high density resembles the 'vacuum bubble' model of disruptions first proposed by Kadomtsev and Pogutse. (author) 2 refs., 2 figs

  4. New technique for fabrication of high frequency piezoelectric Micromachined Ultrasound Transducers

    DEFF Research Database (Denmark)

    Pedersen, T; Thomsen, Erik Vilain; Zawada, T

    2008-01-01

    A novel technique for fabrication of linear arrays of high frequency piezoelectric Micromachined Ultrasound Transducers (pMUT) on silicon substrates is presented. Piezoelectric elements are formed by deposition of PZT ((PbZrxTi1-x)O3) into etched features of the silicon substrate such that the de......A novel technique for fabrication of linear arrays of high frequency piezoelectric Micromachined Ultrasound Transducers (pMUT) on silicon substrates is presented. Piezoelectric elements are formed by deposition of PZT ((PbZrxTi1-x)O3) into etched features of the silicon substrate...

  5. Fabrication of lithium titanate/graphene composites with high rate capability as electrode materials for hybrid electrochemical supercapacitors

    International Nuclear Information System (INIS)

    Xue, Rong; Yan, Jingwang; Jiang, Liang; Yi, Baolian

    2015-01-01

    A lithium titanate (Li 4 Ti 5 O 12 )/graphene composite (LTO/graphene) is fabricated with a one-pot sol–gel method. Graphite oxide is dispersed in an aqueous solution of lithium acetate and tetrabutyl titanate followed by heat treatment in H 2 /Ar. The LTO/graphene composite with reduced aggregation and improved homogeneity is investigated as an anode material for electrochemical capacitors. Electron transport is improved by the conductive graphene network in the insulating Li 4 Ti 5 O 12 particles. The charge transfer resistance at the particle/electrolyte interface is reduced from 83.1 Ω to 55.4 Ω. The specific capacity of LTO/graphene composite is 126 mAh g −1 at 20C. The energy density and power density of a hybrid electrochemical supercapacitor with a LTO/graphene negative electrode and an activated carbon positive electrode are 120.8 Wh kg −1 and 1.5 kW kg −1 , respectively, which is comparable to that of conventional electrochemical double layer capacitors (EDLCs). The LTO/graphene composite fabricated by the one-pot sol–gel method is a promising anode material for hybrid electrochemical supercapacitors. - Highlights: • A Li 4 Ti 5 O 12 /graphene composite was fabricated with a one-pot sol–gel method. • The Li 4 Ti 5 O 12 /graphene composite showed a reduced aggregation and an improved homogeneity. • The Li 4 Ti 5 O 12 /graphene based hybrid supercapacitor exhibited higher energy and power densities

  6. Electrode/Dielectric Strip For High-Energy-Density Capacitor

    Science.gov (United States)

    Yen, Shiao-Ping S.

    1994-01-01

    Improved unitary electrode/dielectric strip serves as winding in high-energy-density capacitor in pulsed power supply. Offers combination of qualities essential for high energy density: high permittivity of dielectric layers, thinness, and high resistance to breakdown of dielectric at high electric fields. Capacitors with strip material not impregnated with liquid.

  7. High-temperature compatibility between liquid metal as PWR fuel gap filler and stainless steel and high-density concrete

    Science.gov (United States)

    Wongsawaeng, Doonyapong; Jumpee, Chayanit; Jitpukdee, Manit

    2014-08-01

    In conventional nuclear fuel rods for light-water reactors, a helium-filled as-fabricated gap between the fuel and the cladding inner surface accommodates fuel swelling and cladding creep down. Because helium exhibits a very low thermal conductivity, it results in a large temperature rise in the gap. Liquid metal (LM; 1/3 weight portion each of lead, tin, and bismuth) has been proposed to be a gap filler because of its high thermal conductivity (∼100 times that of He), low melting point (∼100 °C), and lack of chemical reactivity with UO2 and water. With the presence of LM, the temperature drop across the gap is virtually eliminated and the fuel is operated at a lower temperature at the same power output, resulting in safer fuel, delayed fission gas release and prevention of massive secondary hydriding. During normal reactor operation, should an LM-bonded fuel rod failure occurs resulting in a discharge of liquid metal into the bottom of the reactor pressure vessel, it should not corrode stainless steel. An experiment was conducted to confirm that at 315 °C, LM in contact with 304 stainless steel in the PWR water chemistry environment for up to 30 days resulted in no observable corrosion. Moreover, during a hypothetical core-melt accident assuming that the liquid metal with elevated temperature between 1000 and 1600 °C is spread on a high-density concrete basement of the power plant, a small-scale experiment was performed to demonstrate that the LM-concrete interaction at 1000 °C for as long as 12 h resulted in no penetration. At 1200 °C for 5 h, the LM penetrated a distance of ∼1.3 cm, but the penetration appeared to stop. At 1400 °C the penetration rate was ∼0.7 cm/h. At 1600 °C, the penetration rate was ∼17 cm/h. No corrosion based on chemical reactions with high-density concrete occurred, and, hence, the only physical interaction between high-temperature LM and high-density concrete was from tiny cracks generated from thermal stress. Moreover

  8. Few-layered MnO2/SWCNT hybrid in-plane supercapacitor with high energy density

    Science.gov (United States)

    Dutta, Shibsankar; Pal, Shreyasi; De, Sukanta

    2018-05-01

    In this present work we have synthesized few layered MnO2 nanosheets by mixed solvent exfoliation process for the application as electrode material of in-plane supercapacitor. The Structure and surface morphology of the as prepared samples are characterized by Raman, Transmission electron microscopy and Scanning electron microscopy. The patterns of the hybrids were directly fabricated by (50: 50 wt %) mixture of MnO2 and SWCNT dispersions with the help of a customized mask, and directly transferred onto a flexible PET substrate. Remarkably, the prepared in-plane supercapacitors deliver high energy density of 2.62mWh/cm2. Furthermore, our supercapacitors shows exceptional flexibility and stable performance under bending conditions

  9. Micro/Nano Fabricated Solid-State Thermoelectric Generator Devices for Integrated High Voltage Power Sources

    Science.gov (United States)

    Fleurial, J.-P.; Ryan, M. A.; Snyder, G. J.; Huang, C.-K.; Whitacre, J. F.; Patel, J.; Lim, J.; Borshchevsky, A.

    2002-01-01

    Deep space missions have a strong need for compact, high power density, reliable and long life electrical power generation and storage under extreme temperature conditions. Except for electrochemical batteries and solar cells, there are currently no available miniaturized power sources. Conventional power generators devices become inefficient in extreme environments (such as encountered in Mars, Venus or outer planet missions) and rechargeable energy storage devices can only be operated in a narrow temperature range thereby limiting mission duration. The planned development of much smaller spacecrafts incorporating a variety of micro/nanodevices and miniature vehicles will require novel, reliable power technologies. It is also expected that such micro power sources could have a wide range of terrestrial applications, in particular when the limited lifetime and environmental limitations of batteries are key factors. Advanced solid-state thermoelectric combined with radioisotope or waste heat sources and low profile energy storage devices are ideally suited for these applications. The Jet Propulsion Laboratory has been actively pursuing the development of thermoelectric micro/nanodevices that can be fabricated using a combination of electrochemical deposition and integrated circuit processing techniques. Some of the technical challenges associated with these micro/nanodevice concepts, their expected level of performance and experimental fabrication and testing results to date are presented and discussed.

  10. Displacement Talbot lithography: an alternative technique to fabricate nanostructured metamaterials

    Science.gov (United States)

    Le Boulbar, E. D.; Chausse, P. J. P.; Lis, S.; Shields, P. A.

    2017-06-01

    Nanostructured materials are essential for many recent electronic, magnetic and optical devices. Lithography is the most common step used to fabricate organized and well calibrated nanostructures. However, feature sizes less than 200 nm usually require access to deep ultraviolet photolithography, e-beam lithography or soft lithography (nanoimprinting), which are either expensive, have low-throughput or are sensitive to defects. Low-cost, high-throughput and low-defect-density techniques are therefore of interest for the fabrication of nanostructures. In this study, we investigate the potential of displacement Talbot lithography for the fabrication of specific structures of interest within plasmonic and metamaterial research fields. We demonstrate that nanodash arrays and `fishnet'-like structures can be fabricated by using a double exposure of two different linear grating phase masks. Feature sizes can be tuned by varying the exposure doses. Such lithography has been used to fabricate metallic `fishnet'-like structures using a lift-off technique. This proof of principle paves the way to a low-cost, high-throughput, defect-free and large-scale technique for the fabrication of structures that could be useful for metamaterial and plasmonic metasurfaces. With the development of deep ultraviolet displacement Talbot lithography, the feature dimensions could be pushed lower and used for the fabrication of optical metamaterials in the visible range.

  11. High-speed micro electrode tool fabrication by a twin-wire EDM system

    International Nuclear Information System (INIS)

    Sheu, Dong-Yea

    2008-01-01

    This paper describes a new machining process which combines twin-electro-wire together with two electro discharge circuits to rapidly fabricate micro electrode tools. The results show that transistor electro discharge and RC electro discharge circuits coexist to fabricate micro tools with rough and finish machining both on the same machine. Compared to conventional wire electro discharge grinding (WEDG) technology, a twin-wire EDM system that combines rough and finish machining into one process allows the efficient fabrication of micro tools. This high-speed micro tool fabrication process can be applied not only to micro electrode machining but also to micro punching tool and micro probing tips machining

  12. Laser fusion and high energy density science

    International Nuclear Information System (INIS)

    Kodama, Ryosuke

    2005-01-01

    High-power laser technology is now opening a variety of new fields of science and technology using laser-produced plasmas. The laser plasma is now recognized as one of the important tools for the investigation and application of matter under extreme conditions, which is called high energy density science. This chapter shows a variety of applications of laser-produced plasmas as high energy density science. One of the more attractive industrial and science applications is the generation of intense pulse-radiation sources, such as the generation of electro-magnetic waves in the ranges of EUV (Extreme Ultra Violet) to gamma rays and laser acceleration of charged particles. The laser plasma is used as an energy converter in this regime. The fundamental science applications of high energy density physics are shown by introducing laboratory astrophysics, the equation of state of high pressure matter, including warm dense matter and nuclear science. Other applications are also presented, such as femto-second laser propulsion and light guiding. Finally, a new systematization is proposed to explore the possibility of the high energy density plasma application, which is called high energy plasma photonics''. This is also exploration of the boundary regions between laser technology and beam optics based on plasma physics. (author)

  13. A digital miniature x-ray tube with a high-density triode carbon nanotube field emitter

    International Nuclear Information System (INIS)

    Jeong, Jin-Woo; Kang, Jun-Tae; Choi, Sungyoul; Kim, Jae-Woo; Song, Yoon-Ho; Ahn, Seungjoon

    2013-01-01

    We have fabricated a digital miniature x-ray tube (6 mm in diameter and 32 mm in length) with a high-density triode carbon nanotube (CNT) field emitter for special x-ray applications. The triode CNT emitter was densely formed within a diameter of below 4 mm with the focusing-functional gate. The brazing process enables us to obtain and maintain a desired vacuum level for the reliable electron emission from the CNT emitters after the vacuum packaging. The miniature x-ray tube exhibited a stable and reliable operation over 250 h in a pulse mode at an anode voltage of above 25 kV.

  14. Fabrication of a novel aluminum surface covered by numerous high-aspect-ratio anodic alumina nanofibers

    Science.gov (United States)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2015-11-01

    The formation behavior of anodic alumina nanofibers via anodizing in a concentrated pyrophosphoric acid under various conditions was investigated using electrochemical measurements and SEM/TEM observations. Pyrophosphoric acid anodizing at 293 K resulted in the formation of numerous anodic alumina nanofibers on an aluminum substrate through a thin barrier oxide and honeycomb oxide with narrow walls. However, long-term anodizing led to the chemical dissolution of the alumina nanofibers. The density of the anodic alumina nanofibers decreased as the applied voltage increased in the 10-75 V range. However, active electrochemical dissolution of the aluminum substrate occurred at a higher voltage of 90 V. Low temperature anodizing at 273 K resulted in the formation of long alumina nanofibers measuring several micrometers in length, even though a long processing time was required due to the low current density during the low temperature anodizing. In contrast, high temperature anodizing easily resulted in the formation and chemical dissolution of alumina nanofibers. The structural nanofeatures of the anodic alumina nanofibers were controlled by choosing of the appropriate electrochemical conditions, and numerous high-aspect-ratio alumina nanofibers (>100) can be successfully fabricated. The anodic alumina nanofibers consisted of a pure amorphous aluminum oxide without anions from the employed electrolyte.

  15. Electrochemically fabricated polypyrrole-cobalt-oxygen coordination complex as high-performance lithium-storage materials.

    Science.gov (United States)

    Guo, Bingkun; Kong, Qingyu; Zhu, Ying; Mao, Ya; Wang, Zhaoxiang; Wan, Meixiang; Chen, Liquan

    2011-12-23

    Current lithium-ion battery (LIB) technologies are all based on inorganic electrode materials, though organic materials have been used as electrodes for years. Disadvantages such as limited thermal stability and low specific capacity hinder their applications. On the other hand, the transition metal oxides that provide high lithium-storage capacity by way of electrochemical conversion reaction suffer from poor cycling stability. Here we report a novel high-performance, organic, lithium-storage material, a polypyrrole-cobalt-oxygen (PPy-Co-O) coordination complex, with high lithium-storage capacity and excellent cycling stability. Extended X-ray absorption fine structure and Raman spectroscopy and other physical and electrochemical characterizations demonstrate that this coordination complex can be electrochemically fabricated by cycling PPy-coated Co(3)O(4) between 0.0 V and 3.0 V versus Li(+)/Li. Density functional theory (DFT) calculations indicate that each cobalt atom coordinates with two nitrogen atoms within the PPy-Co coordination layer and the layers are connected with oxygen atoms between them. Coordination weakens the C-H bonds on PPy and makes the complex a novel lithium-storage material with high capacity and high cycling stability. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Operation and control of high density tokamak reactors

    International Nuclear Information System (INIS)

    Attenberger, S.E.; McAlees, D.G.

    1976-01-01

    The incentive for high density operation of a tokamak reactor was discussed. It is found that high density permits ignition in a relatively small, moderately elongated plasma with a moderate magnetic field strength. Under these conditions, neutron wall loadings approximately 4 MW/m 2 must be tolerated. The sensitivity analysis with respect to impurity effects shows that impurity control will most likely be necessary to achieve the desired plasma conditions. The charge exchange sputtered impurities are found to have an important effect so that maintaining a low neutral density in the plasma is critical. If it is assumed that neutral beams will be used to heat the plasma to ignition, high energy injection is required (approximately 250 keV) when heating is accompished at full density. A scenario is outlined where the ignition temperature is established at low density and then the fueling rate is increased to attain ignition. This approach may permit beams with energies being developed for use in TFTR to be successfully used to heat a high density device of the type described here to ignition

  17. Towards the definition of AMS facies in the deposits of pyroclastic density currents

    Science.gov (United States)

    Ort, M.H.; Newkirk, T.T.; Vilas, J.F.; Vazquez, J.A.; Ort, M.H.; Porreca, Massimiliano; Geissman, J.W.

    2014-01-01

    Anisotropy of magnetic susceptibility (AMS) provides a statistically robust technique to characterize the fabrics of deposits of pyroclastic density currents (PDCs). AMS fabrics in two types of pyroclastic deposits (small-volume phreatomagmatic currents in the Hopi Buttes volcanic field, Arizona, USA, and large-volume caldera-forming currents, Caviahue Caldera, Neuquén, Argentina) show similar patterns. Near the vent and in areas of high topographical roughness, AMS depositional fabrics are poorly grouped, with weak lineations and foliations. In a densely welded proximal ignimbrite, this fabric is overprinted by a foliation formed as the rock compacted and deformed. Medial deposits have moderate–strong AMS lineations and foliations. The most distal deposits have strong foliations but weak lineations. Based on these facies and existing models for pyroclastic density currents, deposition in the medial areas occurs from the strongly sheared, high-particle-concentration base of a density-stratified current. In proximal areas and where topography mixes this denser base upwards into the current, deposition occurs rapidly from a current with little uniformity to the shear, in which particles fall and collide in a chaotic fashion. Distal deposits are emplaced by a slowing or stalled current so that the dominant particle motion is vertical, leading to weak lineation and strong foliation.

  18. Bacterial-cellulose-derived carbon nanofiber@MnO₂ and nitrogen-doped carbon nanofiber electrode materials: an asymmetric supercapacitor with high energy and power density.

    Science.gov (United States)

    Chen, Li-Feng; Huang, Zhi-Hong; Liang, Hai-Wei; Guan, Qing-Fang; Yu, Shu-Hong

    2013-09-14

    A new kind of high-performance asymmetric supercapacitor is designed with pyrolyzed bacterial cellulose (p-BC)-coated MnO₂ as a positive electrode material and nitrogen-doped p-BC as a negative electrode material via an easy, efficient, large-scale, and green fabrication approach. The optimal asymmetric device possesses an excellent supercapacitive behavior with quite high energy and power density. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. High density high-TC ceramic superconductors by hot pressing

    International Nuclear Information System (INIS)

    Mak, S.; Chaklader, A.C.D.

    1989-01-01

    High density and high T C superconductor specimens, YBa 2 Cu 3 O x , have been produced by hot-pressing. The factors studied are the effect of hot pressing on the density, the oxygen stoichiometry, the crystal structure, and the critical temperature. Hot pressing followed by heat treatment increased the density of the specimen to 93%. The hot pressing itself did not significantly affect the oxygen content in the specimen, and although the crystal structure appeared to be orthorhombic, the specimens were not superconducting above liquid nitrogen temperature. The superconductivity was restored after head treatment in oxygen. The highest critical temperature (T C ) of the hot pressed pellets was 82K, which was slightly lower than the T C that could be obtained with the cold pressed/sintered pellets. (6 refs., 5 figs., tab.)

  20. High-Density Superconducting Cables for Advanced ACTPol

    Science.gov (United States)

    Pappas, C. G.; Austermann, J.; Beall, J. A.; Duff, S. M.; Gallardo, P. A.; Grace, E.; Henderson, S. W.; Ho, S. P.; Koopman, B. J.; Li, D.; hide

    2016-01-01

    Advanced ACTPol (AdvACT) is an upcoming Atacama Cosmology Telescope (ACT) receiver upgrade, scheduled to deploy in 2016, that will allow measure- ment of the cosmic microwave background polarization and temperature to the highest precision yet with ACT. The AdvACT increase in sensitivity is partly provided by an increase in the number of transition-edge sensors (TESes) per array by up to a factor of two over the current ACTPol receiver detector arrays. The high-density AdvACT TES arrays require 70 µ m pitch superconducting flexible cables (flex) to connect the detec- tor wafer to the first-stage readout electronics. Here, we present the flex fabrication process and test results. For the flex wiring layer, we use a 400-nm-thick sputtered alu- minum film. In the center of the cable, the wiring is supported by a polyimide substrate, which smoothly transitions to a bare (uncoated with polyimide) silicon substrate at the ends of the cable for a robust wedge wire-bonding interface. Tests on the first batch of flex made for the first AdvACT array show that the flex will meet the requirements for AdvACT, with a superconducting critical current above 1 mA at 500 mK, resilience to mechanical and cryogenic stress, and a room temperature yield of 97%.

  1. Feedback controlled, reactor relevant, high-density, high-confinement scenarios at ASDEX Upgrade

    Science.gov (United States)

    Lang, P. T.; Blanken, T. C.; Dunne, M.; McDermott, R. M.; Wolfrum, E.; Bobkov, V.; Felici, F.; Fischer, R.; Janky, F.; Kallenbach, A.; Kardaun, O.; Kudlacek, O.; Mertens, V.; Mlynek, A.; Ploeckl, B.; Stober, J. K.; Treutterer, W.; Zohm, H.; ASDEX Upgrade Team

    2018-03-01

    One main programme topic at the ASDEX Upgrade all-metal-wall tokamak is development of a high-density regime with central densities at reactor grade level while retaining high-confinement properties. This required development of appropriate control techniques capable of coping with the pellet tool, a powerful means of fuelling but one which presented challenges to the control system for handling of related perturbations. Real-time density profile control was demonstrated, raising the core density well above the Greenwald density while retaining the edge density in order to avoid confinement losses. Recently, a new model-based approach was implemented that allows direct control of the central density. Investigations focussed first on the N-seeding scenario owing to its proven potential to yield confinement enhancements. Combining pellets and N seeding was found to improve the divertor buffering further and enhance the operational range accessible. For core densities up to about the Greenwald density, a clear improvement with respect to the non-seeding reference was achieved; however, at higher densities this benefit is reduced. This behaviour is attributed to recurrence of an outward shift of the edge density profile, resulting in a reduced peeling-ballooning stability. This is similar to the shift seen during strong gas puffing, which is required to prevent impurity influx in ASDEX Upgrade. First tests indicate that highly-shaped plasma configurations like the ITER base-line scenario, respond very well to pellet injection, showing efficient fuelling with no measurable impact on the edge density profile.

  2. Neutronic performance of high-density LEU fuels in water-moderated and water-reflected research reactors

    International Nuclear Information System (INIS)

    Bretscher, M.M.; Matos, J.E.

    1996-01-01

    At the Reduced Enrichment for Research and Test Reactors (RERTR) meeting in September 1994, Durand reported that the maximum uranium loading attainable with U 3 Si 2 fuel is about 6.0 g U/cm 3 . The French Commissariat a l'Energie Atomique (CEA) plan to perform irradiation tests with 5 plates at this loading. Compagnie pour L'Etude et La Realisation de Combustibles Atomiques (CERCA) has also fabricated a few uranium nitride (UN) plates with a uranium density in the fuel meat of 7.0 g/cm 3 and found that UN is compatible with the aluminum matrix at temperatures below 500 C. High density dispersion fuels proposed for development include U-Zr(4 wt%)-Nb(2 wt%), U-Mo(5 wt%), and U-Mo(9 wt%). The purpose of this note is to examine the relative neutronic behavior of these high density fuels in a typical light water-reflected and water-moderated MTR-type research reactor. The results show that a dispersion of the U-Zr-Nb alloy has the most favorable neutronic properties and offers the potential for uranium densities greater than 8.0 g/cm 3 . On the other hand, UN is the least reactive fuel because of the relatively large 14 N(n,p) cross section. For a fixed value of k eff , the required 235 U loading per fuel element is least for the U-Zr-Nb fuel and steadily increases for the U-Mo(5%), U-Mo(9%), and UN fuels. Because of volume fraction limitations, the UO 2 dispersions are only useful for uranium densities below 5.0 g/cm 3 . In this density range, however, UO 2 is more reactive than U 3 Si 2

  3. High Density Digital Data Storage System

    Science.gov (United States)

    Wright, Kenneth D., II; Gray, David L.; Rowland, Wayne D.

    1991-01-01

    The High Density Digital Data Storage System was designed to provide a cost effective means for storing real-time data from the field-deployable digital acoustic measurement system. However, the high density data storage system is a standalone system that could provide a storage solution for many other real time data acquisition applications. The storage system has inputs for up to 20 channels of 16-bit digital data. The high density tape recorders presently being used in the storage system are capable of storing over 5 gigabytes of data at overall transfer rates of 500 kilobytes per second. However, through the use of data compression techniques the system storage capacity and transfer rate can be doubled. Two tape recorders have been incorporated into the storage system to produce a backup tape of data in real-time. An analog output is provided for each data channel as a means of monitoring the data as it is being recorded.

  4. In-situ growth of high-performance all-solid-state electrode for flexible supercapacitors based on carbon woven fabric/ polyaniline/ graphene composite

    Science.gov (United States)

    Lin, Yingxi; Zhang, Haiyan; Deng, Wentao; Zhang, Danfeng; Li, Na; Wu, Qibai; He, Chunhua

    2018-04-01

    For the development of wearable electronic devices, it is crucial to develop energy storage components combining high-capacity and flexibility. Herein, an all-solid-state supercapacitor is prepared through an in-situ "growth and wrapping" method. The electrode contains polyaniline deposited on a carbon woven fabric and wrapped with a graphene-based envelop. The hybrid electrode exhibits excellent mechanical and electrochemical performance. The optimized few layer graphene wrapping layer provides for a conductive network, which effectively enhances the cycling stability as 88.9% of the starting capacitance is maintained after 5000 charge/discharge cycles. Furthermore, the assembled device delivers a high areal capacity (of 790 F cm-2) at the current density of 1 A cm-2, a high areal energy (28.21 uWh cm-2) at the power densities of 0.12 mW cm-2 and shows no significant decrease in the performance with a bending angle of 180°. This unique flexible supercapacitor thus exhibits great potential for wearable electronics.

  5. High-density-plasma diagnostics in magnetic-confinement fusion

    International Nuclear Information System (INIS)

    Jahoda, F.C.

    1982-01-01

    The lectures will begin by defining high density in the context of magnetic confinement fusion research and listing some alternative reactor concepts, ranging from n/sub e/ approx. 2 x 10 14 cm -3 to several orders of magnitude greater, that offer potential advantages over the main-line, n/sub e/ approx. 1 x 10 14 cm -3 , Tokamak reactor designs. The high density scalings of several major diagnostic techniques, some favorable and some disadvantageous, will be discussed. Special emphasis will be given to interferometric methods, both electronic and photographic, for which integral n/sub e/dl measurements and associated techniques are accessible with low wavelength lasers. Reactor relevant experience from higher density, smaller dimension devices exists. High density implies high β, which implies economies of scale. The specialized features of high β diagnostics will be discussed

  6. Fabrication of control rods for the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Sease, J.D.

    1998-01-01

    The High Flux Isotope Reactor (HFIR) is a research-type nuclear reactor that was designed and built in the early 1960s and has been in continuous operation since its initial criticality in 1965. Under current plans, the HFIR is expected to continue in operation until 2035. This report updates ORNL/TM-9365, Fabrication Procedure for HFIR Control Plates, which was mainly prepared in the early 1970's but was not issued until 1984, and reflects process changes, lessons learned in the latest control rod fabrication campaign, and suggested process improvements to be considered in future campaigns. Most of the personnel involved with the initial development of the processes and in part campaigns have retired or will retire soon. Because their unlikely availability in future campaigns, emphasis has been placed on providing some explanation of why the processes were selected and some discussions about the importance of controlling critical process parameters. Contained in this report is a description of the function of control rods in the reactor, the brief history of the development of control rod fabrication processes, and a description of procedures used in the fabrication of control rods. A listing of the controlled documents and procedures used in the last fabrication campaigns is referenced in Appendix A

  7. Fabrication of control rods for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sease, J.D.

    1998-03-01

    The High Flux Isotope Reactor (HFIR) is a research-type nuclear reactor that was designed and built in the early 1960s and has been in continuous operation since its initial criticality in 1965. Under current plans, the HFIR is expected to continue in operation until 2035. This report updates ORNL/TM-9365, Fabrication Procedure for HFIR Control Plates, which was mainly prepared in the early 1970's but was not issued until 1984, and reflects process changes, lessons learned in the latest control rod fabrication campaign, and suggested process improvements to be considered in future campaigns. Most of the personnel involved with the initial development of the processes and in part campaigns have retired or will retire soon. Because their unlikely availability in future campaigns, emphasis has been placed on providing some explanation of why the processes were selected and some discussions about the importance of controlling critical process parameters. Contained in this report is a description of the function of control rods in the reactor, the brief history of the development of control rod fabrication processes, and a description of procedures used in the fabrication of control rods. A listing of the controlled documents and procedures used in the last fabrication campaigns is referenced in Appendix A.

  8. Supportability of a High-Yield-Stress Slurry in a New Stereolithography-Based Ceramic Fabrication Process

    Science.gov (United States)

    He, Li; Song, Xuan

    2018-03-01

    In recent years, ceramic fabrication using stereolithography (SLA) has gained in popularity because of its high accuracy and density that can be achieved in the final part of production. One of the key challenges in ceramic SLA is that support structures are required for building overhanging features, whereas removing these support structures without damaging the components is difficult. In this research, a suspension-enclosing projection-stereolithography process is developed to overcome this challenge. This process uses a high-yield-stress ceramic slurry as the feedstock material and exploits the elastic force of the material to support overhanging features without the need for building additional support structures. Ceramic slurries with different solid loadings are studied to identify the rheological properties most suitable for supporting overhanging features. An analytical model of a double doctor-blade module is established to obtain uniform and thin recoating layers from a high-yield-stress slurry. Several test cases highlight the feasibility of using a high-yield-stress slurry to support overhanging features in SLA.

  9. An investigation on fuel meats extruded with atomized U-10wt% Mo powder for uranium high-density dispersion fuel

    International Nuclear Information System (INIS)

    Kim, Chang-Kyu; Kim, Ki-Hwan; Park, Jong-Man; Lee, Don-Bae; Sohn, Dong-Seong

    1997-01-01

    The RERTR program has been making an effort to develop dispersion fuels with uranium densities of 8 to 9 g U/cm3 for research and test reactors. Using atomized U-10wt%Mo powder, fuel meats have been fabricated successfully up to 55 volume % of fuel powder. The uranium density of an extruded meat with a 55 volume % of fuel powder was obtained to be 7.7 g/cm3. A relatively high porosity of 7.3% was formed due to cracking of particles, presumably induced by the impingement among agglomerated particles. Tensile test results indicated that the strength of fuel meats with 55% volume fraction decreased some and a little of ductility was maintained. Examination on the fracture surface revealed that some U-10%Mo particles appeared to be broken by the tensile force in brittle rupture mode. The increase of broken particles in high fuel fraction is considered to be induced mainly by the impingement among agglomerated particles. Uranium loading density is assumed to be improved through the development of the better homogeneous dispersion technology. (author)

  10. Structure and performance of anisotropic nanocrystalline Nd-Fe-B magnets fabricated by high-velocity compaction followed by deformation

    Science.gov (United States)

    Zhao, L. Z.; Deng, X. X.; Yu, H. Y.; Guan, H. J.; Li, X. Q.; Xiao, Z. Y.; Liu, Z. W.; Greneche, J. M.

    2017-12-01

    High-velocity compaction (HVC) has been proposed as an effective approach for the fabrication of nanocrystalline Nd-Fe-B magnets. In this work, the effect of powder size on the density of HVCed magnets has been studied and the anisotropic nanocrystalline Nd-Fe-B magnets were prepared by HVC followed by hot deformation (HD). It is found that a proper particle size range is beneficial to high density. The investigations on the microstructure, magnetic domain structure, and hyperfine structure, indicate that the deformed grain structure and the magnetic domain structure with uniform paramagnetic grain boundary phase give good magnetic properties of HVC + HDed magnets. These magnets also have good mechanical and anti-corrosion properties. The results indicate that HVC is not only a near-net-shape, room temperature and binder-free process but is also able to maintain uniform nanostructure and to achieve good magnetic properties in both isotropic and anisotropic magnets. As a result, HVC can be employed as an ideal alternative process for bonding or hot pressing for the conventional MQI, MQII and MQIII magnets.

  11. Design and fabrication of inner-selective thin-film composite (TFC) hollow fiber modules for pressure retarded osmosis (PRO)

    KAUST Repository

    Wan, Chun Feng

    2016-08-03

    Pressure retarded osmosis (PRO) is a promising technology to harvest the renewable osmotic energy from salinity gradients. There are great progresses in the fabrication of PRO membranes in the last decade. Thin-film composite (TFC) hollow fibers have been widely studied and demonstrated superior performance. However, the lack of effective TFC hollow fiber modules hinders the commercialization of the PRO technology. Knowledge and experiences to fabricate TFC hollow fiber modules remain limited in the open literature. In this study, we aim to reveal the engineering and science on how to fabricate TFC hollow fiber modules including the formation of inner-selective polyamide layers and the repair of leakages. TFC-PES hollow fiber modules with 30% and 50% packing densities have been successfully fabricated, showing peak power densities of 20.0 W/m2 and 19.4 W/m2, respectively, at 20 bar using 1 M NaCl solution and DI water as feeds. The modules may be damaged during handling and high pressure testing. The repaired modules have a power density of 18.2 W/m2, 91% of the power densities of the undamaged ones. This study would make up the gap between TFC membrane fabrication and TFC membrane module fabrication in the membrane industry. © 2016 Elsevier B.V.

  12. Design and fabrication of inner-selective thin-film composite (TFC) hollow fiber modules for pressure retarded osmosis (PRO)

    KAUST Repository

    Wan, Chun Feng; Li, Bofan; Yang, Tianshi; Chung, Neal Tai-Shung

    2016-01-01

    Pressure retarded osmosis (PRO) is a promising technology to harvest the renewable osmotic energy from salinity gradients. There are great progresses in the fabrication of PRO membranes in the last decade. Thin-film composite (TFC) hollow fibers have been widely studied and demonstrated superior performance. However, the lack of effective TFC hollow fiber modules hinders the commercialization of the PRO technology. Knowledge and experiences to fabricate TFC hollow fiber modules remain limited in the open literature. In this study, we aim to reveal the engineering and science on how to fabricate TFC hollow fiber modules including the formation of inner-selective polyamide layers and the repair of leakages. TFC-PES hollow fiber modules with 30% and 50% packing densities have been successfully fabricated, showing peak power densities of 20.0 W/m2 and 19.4 W/m2, respectively, at 20 bar using 1 M NaCl solution and DI water as feeds. The modules may be damaged during handling and high pressure testing. The repaired modules have a power density of 18.2 W/m2, 91% of the power densities of the undamaged ones. This study would make up the gap between TFC membrane fabrication and TFC membrane module fabrication in the membrane industry. © 2016 Elsevier B.V.

  13. Fast electrochemical deposition of Ni(OH)2 precursor involving water electrolysis for fabrication of NiO thin films

    Science.gov (United States)

    Koyama, Miki; Ichimura, Masaya

    2018-05-01

    Ni(OH)2 precursor films were deposited by galvanostatic electrochemical deposition (ECD), and NiO thin films were fabricated by annealing in air. The effects of the deposition current densities were studied in a range that included current densities high enough to electrolyze water and generate hydrogen bubbles. The films fabricated by ECD involving water electrolysis had higher transparency and smoother surface morphology than those deposited with lower current densities. In addition, the annealed NiO films clearly had preferred (111) orientation when the deposition was accompanied by water electrolysis. p-type conduction was confirmed for the annealed films.

  14. Probing topological relations between high-density and low-density regions of 2MASS with hexagon cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yongfeng [American Physical Society, San Diego, CA (United States); Xiao, Weike, E-mail: yongfeng.wu@maine.edu [Department of Astronautics Engineering, Harbin Institute of Technology, P.O. Box 345, Heilongjiang Province 150001 (China)

    2014-02-01

    We introduced a new two-dimensional (2D) hexagon technique for probing the topological structure of the universe in which we mapped regions of the sky with high and low galaxy densities onto a 2D lattice of hexagonal unit cells. We defined filled cells as corresponding to high-density regions and empty cells as corresponding to low-density regions. The numbers of filled cells and empty cells were kept the same by controlling the size of the cells. By analyzing the six sides of each hexagon, we could obtain and compare the statistical topological properties of high-density and low-density regions of the universe in order to have a better understanding of the evolution of the universe. We applied this hexagonal method to Two Micron All Sky Survey data and discovered significant topological differences between the high-density and low-density regions. Both regions had significant (>5σ) topological shifts from both the binomial distribution and the random distribution.

  15. Fabrication and surface characterization of photopatterned encapsulated micromagnets for microrobotics and microfluidics applications

    Science.gov (United States)

    Li, Hui; Leachman, William; Kershaw, Joe

    2016-11-01

    In this paper, encapsulated micromagnets with magnetic core surrounded by pure SU-8 were fabricated utilizing multilayer photolithography with a middle NdFeB magnetic composite layer. Various geometries of micromagnets were fabricated with high density magnetic core and high resolution features, showing magnetically response while still being biocompatible and chemically resistant and making them suitable for a wide range of microrobotics and microfluidics applications. Especially, crescent and C-channel micromagnets showed potential of microtransportation devices because of their interior reservoirs. Surface characterization of the micromagnets was conducted using closed-form solutions derived from the general biplanar surface characterization method. The fabrication method was evaluated and the process errors were found less than 1%.

  16. Towards high-density matter with relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Nagamiya, Shoji.

    1990-04-01

    Recent progress in nucleus-nucleus collisions at BNL and CERN suggests a hint that the formation of high-density nuclear matter could be possible with relativistic heavy-ion beams. What is the maximum density that can be achieved by heavy-ion collisions? Are there data which show evidence or hints on the formation of high density matter? Why is the research of high-density interesting? How about the future possibilities on this subject? These points are discussed. (author)

  17. Three-dimensional metallic opals fabricated by double templating

    International Nuclear Information System (INIS)

    Yan Qingfeng; Nukala, Pavan; Chiang, Yet-Ming; Wong, C.C.

    2009-01-01

    We report a simple and cost-effective double templating method for fabricating large-area three-dimensional metallic photonic crystals of controlled thickness. A self-assembled polystyrene opal was used as the first template to fabricate a silica inverse opal on a gold-coated glass substrate via sol-gel processing. Gold was subsequently infiltrated to the pores of the silica inverse opal using electrochemical deposition. A high-quality three-dimensional gold photonic crystal was obtained after removal of the secondary template (silica inverse opal). The effects of template sphere size and deposition current density on the gold growth rate, and the resulting morphology and growth mechanism of the gold opal, were investigated.

  18. New aspects of high energy density plasma

    International Nuclear Information System (INIS)

    Hotta, Eiki

    2005-10-01

    The papers presented at the symposium on 'New aspects of high energy density plasma' held at National Institute for Fusion Science are collected in this proceedings. The papers reflect the present status and recent progress in the experiments and theoretical works on high energy density plasma produced by pulsed power technology. The 13 of the presented papers are indexed individually. (J.P.N.)

  19. Fabrication of multi-emitter array of CNT for enhancement of current density

    Energy Technology Data Exchange (ETDEWEB)

    Chouhan, Vijay, E-mail: vchouhan@post.kek.jp [Department of Accelerator Science, Graduate University for Advanced Studies, 1-1 Oho, Tsukuba, Ibaraki (Japan); Noguchi, Tsuneyuki [High Energy Accelerator Research Organization-KEK, 1-1 Oho, Tsukuba, Ibaraki (Japan); Kato, Shigeki [Department of Accelerator Science, Graduate University for Advanced Studies, 1-1 Oho, Tsukuba, Ibaraki (Japan); High Energy Accelerator Research Organization-KEK, 1-1 Oho, Tsukuba, Ibaraki (Japan)

    2011-11-11

    We studied and compared field emission properties of two kinds of emitters of randomly oriented multi-wall carbon nanotubes (MWNTs), viz. continuous film emitter (CFE) and multi-emitter array (MEA). The CFE has a continuous film of MWNTs while the MEA consists of many equidistant small circular emitters. Both types of emitters were prepared by dispersing MWNTs over a titanium (Ti) film (for CFEs) or Ti circular islands (for MEAs) deposited on tantalum (Ta) followed by rooting of MWNTs into the Ti film or the Ti islands at high temperature. Emission properties of both types of emitters were analyzed with changing their emission areas. In case of the CFEs, current density decreased with an increase in emission area whereas consistent current densities were achieved from MEAs with different emission areas. In other words, the total emission current was achieved in proportion to the emission area in the case of MEAs. Additionally a high current density of 22 A/cm{sup 2} was achieved at an electric field of 8 V/{mu}m from MEAs, which was far better than that obtained from CFEs. The high current density in MEAs was attributed to edge effect, in which higher emission current is achieved from the edge of film emitter. The results indicate that the field emission characteristics can be greatly improved if a cathode contains many small equidistant circular emitters instead of a continuous film. The outstanding stability of the CFE and the MEA has been demonstrated for 2100 and 1007 h, respectively.

  20. High current density ion source

    International Nuclear Information System (INIS)

    King, H.J.

    1977-01-01

    A high-current-density ion source with high total current is achieved by individually directing the beamlets from an electron bombardment ion source through screen and accelerator electrodes. The openings in these screen and accelerator electrodes are oriented and positioned to direct the individual beamlets substantially toward a focus point. 3 figures, 1 table

  1. Plasma Photonic Devices for High Energy Density Science

    International Nuclear Information System (INIS)

    Kodama, R.

    2005-01-01

    High power laser technologies are opening a variety of attractive fields of science and technology using high energy density plasmas such as plasma physics, laboratory astrophysics, material science, nuclear science including medical applications and laser fusion. The critical issues in the applications are attributed to the control of intense light and enormous density of charged particles including efficient generation of the particles such as MeV electrons and protons with a current density of TA/cm2. Now these application possibilities are limited only by the laser technology. These applications have been limited in the control of the high power laser technologies and their optics. However, if we have another device consisted of the 4th material, i.e. plasma, we will obtain a higher energy density condition and explore the application possibilities, which could be called high energy plasma device. One of the most attractive devices has been demonstrated in the fast ignition scheme of the laser fusion, which is cone-guiding of ultra-intense laser light in to high density regions1. This is one of the applications of the plasma device to control the ultra-intense laser light. The other role of the devices consisted of transient plasmas is control of enormous energy-density particles in a fashion analogous to light control with a conventional optical device. A plasma fibre (5?m/1mm), as one example of the devices, has guided and deflected the high-density MeV electrons generated by ultra-intense laser light 2. The electrons have been well collimated with either a lens-like plasma device or a fibre-like plasma, resulting in isochoric heating and creation of ultra-high pressures such as Giga bar with an order of 100J. Plasmas would be uniquely a device to easily control the higher energy density particles like a conventional optical device as well as the ultra-intense laser light, which could be called plasma photonic device. (Author)

  2. Irradiation testing of high-density uranium alloy dispersion fuels

    International Nuclear Information System (INIS)

    Hayes, S.L.; Trybus, C.L.; Meyer, M.K.

    1997-01-01

    Two irradiation test vehicles have been designed, fabricated, and inserted into the Advanced Test Reactor in Idaho. Irradiation of these experiments began in August 1997. These irradiation tests were designed to obtain irradiation performance information on a variety of potential new, high-density dispersion fuels. Each of the two irradiation vehicles contains 32 'microplates'. Each microplate is aluminum clad, having an aluminum matrix phase and containing one of the following compositions as the fuel phase: U-10Mo, U-8Mo, U-6Mo, U-4Mo, U-9Nb-3Zr, U-6Nb-4Zr, U-5Nb-3Zr, U-6Mo-1Pt, U-6Mo-0.6Ru, U10Mo-0.05Sn, U2Mo, or U 3 Si 2 . These experiments will be discharged at peak fuel burnups of approximately 40 and 80 at.% U 235 . Of particular interest are the extent of reaction of the fuel and matrix phases and the fission gas retention/swelling characteristics of these new fuel alloys. This paper presents the design of the irradiation vehicles and the irradiation conditions. (author)

  3. A high speed PE-ALD ZnO Schottky diode rectifier with low interface-state density

    Science.gov (United States)

    Jin, Jidong; Zhang, Jiawei; Shaw, Andrew; Kudina, Valeriya N.; Mitrovic, Ivona Z.; Wrench, Jacqueline S.; Chalker, Paul R.; Balocco, Claudio; Song, Aimin; Hall, Steve

    2018-02-01

    Zinc oxide (ZnO) has recently attracted attention for its potential application to high speed electronics. In this work, a high speed Schottky diode rectifier was fabricated based on a ZnO thin film deposited by plasma-enhanced atomic layer deposition and a PtOx Schottky contact deposited by reactive radio-frequency sputtering. The rectifier shows an ideality factor of 1.31, an effective barrier height of 0.79 eV, a rectification ratio of 1.17  ×  107, and cut-off frequency as high as 550 MHz. Low frequency noise measurements reveal that the rectifier has a low interface-state density of 5.13  ×  1012 cm-2 eV-1, and the noise is dominated by the mechanism of a random walk of electrons at the PtO x /ZnO interface. The work shows that the rectifier can be used for both noise sensitive and high frequency electronics applications.

  4. Fabrication of high aspect ratio micro electrode by using EDM

    International Nuclear Information System (INIS)

    Elsiti, Nagwa Mejid; Noordin, M.Y.; Alkali, Adam Umar

    2016-01-01

    The electrical discharge machining (EDM) process inherits characteristics that make it a promising micro-machining technique. Micro electrical discharge machining (micro- EDM) is a derived form of EDM, which is commonly used to manufacture micro and miniature parts and components by using the conventional electrical discharge machining fundamentals. Moving block electro discharge grinding (Moving BEDG) is one of the processes that can be used to fabricate micro-electrode. In this study, a conventional die sinker EDM machine was used to fabricate the micro-electrode. Modifications are made to the moving BEDG, which include changing the direction of movements and control gap in one electrode. Consequently current was controlled due to the use of roughing, semi-finishing and finishing parameters. Finally, a high aspect ratio micro-electrode with a diameter of 110.49μm and length of 6000μm was fabricated. (paper)

  5. Fabrication, characterization and gamma rays shielding properties of nano and micro lead oxide-dispersed-high density polyethylene composites

    Science.gov (United States)

    Mahmoud, Mohamed E.; El-Khatib, Ahmed M.; Badawi, Mohamed S.; Rashad, Amal R.; El-Sharkawy, Rehab M.; Thabet, Abouzeid A.

    2018-04-01

    Polymer composites of high-density polyethylene (HD-PE) filled with powdered lead oxide nanoparticles (PbO NPs) and bulk lead oxide (PbO Blk) were prepared with filler weight fraction [10% and 50%]. These polymer composites were investigated for radiation-shielding of gamma-rays emitted from radioactive point sources [241Am, 133Ba, 137Cs, and 60Co]. The polymer was found to decrease the heaviness of the shielding material and increase the flexibility while the metal oxide fillers acted as principle radiation attenuators in the polymer composite. The prepared composites were characterized by Fourier transform infrared spectrophotometer (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscope (SEM), Brunauer-Emmett-Teller surface area (BET) and field emission transmission electron microscope (FE-TEM). The morphological analysis of the assembled composites showed that, PbO NPs and PbO Blk materials exhibited homogenous dispersion in the polymer-matrix. Thermogravimetric analysis (TGA) demonstrated that the thermal-stability of HD-PE was enhanced in the presence of both PbO Blk and PbO NPs. The results declared that, the density of polymer composites was increase with the percentage of filler contents. The highest density value was identified as 1.652 g cm-3 for 50 wt% of PbO NPs. Linear attenuation coefficients (μ) have been estimated from the use of XCOM code and measured results. Reasonable agreement was attended between theoretical and experimental results. These composites were also found to display excellent percentage of heaviness with respect to other conventional materials.

  6. Models for Experimental High Density Housing

    Science.gov (United States)

    Bradecki, Tomasz; Swoboda, Julia; Nowak, Katarzyna; Dziechciarz, Klaudia

    2017-10-01

    The article presents the effects of research on models of high density housing. The authors present urban projects for experimental high density housing estates. The design was based on research performed on 38 examples of similar housing in Poland that have been built after 2003. Some of the case studies show extreme density and that inspired the researchers to test individual virtual solutions that would answer the question: How far can we push the limits? The experimental housing projects show strengths and weaknesses of design driven only by such indexes as FAR (floor attenuation ratio - housing density) and DPH (dwellings per hectare). Although such projects are implemented, the authors believe that there are reasons for limits since high index values may be in contradiction to the optimum character of housing environment. Virtual models on virtual plots presented by the authors were oriented toward maximising the DPH index and DAI (dwellings area index) which is very often the main driver for developers. The authors also raise the question of sustainability of such solutions. The research was carried out in the URBAN model research group (Gliwice, Poland) that consists of academic researchers and architecture students. The models reflect architectural and urban regulations that are valid in Poland. Conclusions might be helpful for urban planners, urban designers, developers, architects and architecture students.

  7. Low operating voltage InGaZnO thin-film transistors based on Al2O3 high-k dielectrics fabricated using pulsed laser deposition

    International Nuclear Information System (INIS)

    Geng, G. Z.; Liu, G. X.; Zhang, Q.; Shan, F. K.; Lee, W. J.; Shin, B. C.; Cho, C. R.

    2014-01-01

    Low-voltage-driven amorphous indium-gallium-zinc-oxide (IGZO) thin-film transistors (TFTs) with an Al 2 O 3 dielectric were fabricated on a Si substrate by using pulsed laser deposition. Both Al 2 O 3 and IGZO thin films are amorphous, and the thin films have very smooth surfaces. The Al 2 O 3 gate dielectric exhibits a very low leakage current density of 1.3 x 10 -8 A/cm 2 at 5 V and a high capacitance density of 60.9 nF/cm 2 . The IGZO TFT with a structure of Ni/IGZO/Al 2 O 3 /Si exhibits high performance with a low threshold voltage of 1.18 V, a high field effect mobility of 20.25 cm 2 V -1 s -1 , an ultra small subthreshold swing of 87 mV/decade, and a high on/off current ratio of 3 x 10 7 .

  8. High density operation in pulsator

    International Nuclear Information System (INIS)

    Klueber, O.; Cannici, B.; Engelhardt, W.; Gernhardt, J.; Glock, E.; Karger, F.; Lisitano, G.; Mayer, H.M.; Meisel, D.; Morandi, P.

    1976-03-01

    This report summarizes the results of experiments at high electron densities (>10 14 cm -3 ) which have been achieved by pulsed gas inflow during the discharge. At these densities a regime is established which is characterized by βsub(p) > 1, nsub(i) approximately nsub(e), Tsub(i) approximately Tsub(e) and tausub(E) proportional to nsub(e). Thus the toroidal magnetic field contributes considerably to the plasma confinement and the ions constitute almost half of the plasma pressure. Furthermore, the confinement is appreciably improved and the plasma becomes impermeable to hot neutrals. (orig.) [de

  9. High Temperature Resin/Carbon Nanotube Composite Fabrication

    Science.gov (United States)

    Ghose, Sayata; Watson, Kent A.; Sun, Keun J.; Criss, Jim M.; Siochi, Emilie J.; Connell, John W.

    2006-01-01

    For the purpose of incorporating multifunctionality into advanced composites, blends of phenylethynyl terminated imides-330 (PETI-330) and multi-walled carbon nanotubes (MWCNTs) were prepared, characterized and fabricated into moldings. PETI-330/MWCNT mixtures were prepared at concentrations ranging from 3 to 25 weight percent by dry mixing the components in a ball mill. The resulting powders were characterized for degree of mixing, thermal and rheological properties. Based on the characterization results, PETI-330/MWCNT samples were scaled up to approximately 300 g and used to fabricate moldings by injecting the mixtures at 260-280 deg C into a stainless steel tool followed by curing for 1 h at 371 deg C. The tool was designed to impart a degree of shear during the injection process in an attempt to achieve some alignment of the MWCNTs in the flow direction. Obtained moldings were subsequently characterized for thermal, mechanical, and electrical properties. The degree of dispersion and alignment of MWCNTs were investigated using high-resolution scanning electron microscopy. The preparation and preliminary characterization of PETI-330/MWCNT composites will be discussed.

  10. Fabrication of enhancement-mode AlGaN/GaN high electron mobility transistors using double plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jong-Won, E-mail: jwlim@etri.re.kr [Photonic/Wireless Convergence Components Dept., IT Materials and Components Lab., Electronics and Telecommunications Research Institute, Daejeon 305-700 (Korea, Republic of); Ahn, Ho-Kyun; Kim, Seong-il; Kang, Dong-Min; Lee, Jong-Min; Min, Byoung-Gue; Lee, Sang-Heung; Yoon, Hyung-Sup; Ju, Chull-Won; Kim, Haecheon; Mun, Jae-Kyoung; Nam, Eun-Soo [Photonic/Wireless Convergence Components Dept., IT Materials and Components Lab., Electronics and Telecommunications Research Institute, Daejeon 305-700 (Korea, Republic of); Park, Hyung-Moo [Photonic/Wireless Convergence Components Dept., IT Materials and Components Lab., Electronics and Telecommunications Research Institute, Daejeon 305-700 (Korea, Republic of); Division of Electronics and Electrical Engineering, Dongguk University, Seoul (Korea, Republic of)

    2013-11-29

    We report the fabrication and DC and microwave characteristics of 0.5 μm AlGaN/GaN high electron mobility transistors using double plasma treatment process. Silicon nitride layers 700 and 150 Å thick were deposited by plasma-enhanced chemical vapor deposition at 260 °C to protect the device and to define the gate footprint. The double plasma process was carried out by two different etching techniques to obtain enhancement-mode AlGaN/GaN high electron mobility transistors with 0.5 μm gate lengths. The enhancement-mode AlGaN/GaN high electron mobility transistor was prepared in parallel to the depletion-mode AlGaN/GaN high electron mobility transistor device on one wafer. Completed double plasma treated 0.5 μm AlGaN/GaN high electron mobility transistor devices fabricated by dry etching exhibited a peak transconductance, gm, of 330 mS/mm, a breakdown voltage of 115 V, a current-gain cutoff frequency (f{sub T}) of 18 GHz, and a maximum oscillation frequency (f{sub max}) of 66 GHz. - Highlights: • The double plasma process was carried out by two different etching techniques. • Double plasma treated device exhibited a transconductance of 330 mS/mm. • Completed 0.5 μm gate device exhibited a current-gain cutoff frequency of 18 GHz. • The off-state breakdown voltage of 115 V for 0.5 μm gate device was obtained. • Continuous-wave output power density of 4.3 W/mm was obtained at 2.4 GHz.

  11. Fabrication of enhancement-mode AlGaN/GaN high electron mobility transistors using double plasma treatment

    International Nuclear Information System (INIS)

    Lim, Jong-Won; Ahn, Ho-Kyun; Kim, Seong-il; Kang, Dong-Min; Lee, Jong-Min; Min, Byoung-Gue; Lee, Sang-Heung; Yoon, Hyung-Sup; Ju, Chull-Won; Kim, Haecheon; Mun, Jae-Kyoung; Nam, Eun-Soo; Park, Hyung-Moo

    2013-01-01

    We report the fabrication and DC and microwave characteristics of 0.5 μm AlGaN/GaN high electron mobility transistors using double plasma treatment process. Silicon nitride layers 700 and 150 Å thick were deposited by plasma-enhanced chemical vapor deposition at 260 °C to protect the device and to define the gate footprint. The double plasma process was carried out by two different etching techniques to obtain enhancement-mode AlGaN/GaN high electron mobility transistors with 0.5 μm gate lengths. The enhancement-mode AlGaN/GaN high electron mobility transistor was prepared in parallel to the depletion-mode AlGaN/GaN high electron mobility transistor device on one wafer. Completed double plasma treated 0.5 μm AlGaN/GaN high electron mobility transistor devices fabricated by dry etching exhibited a peak transconductance, gm, of 330 mS/mm, a breakdown voltage of 115 V, a current-gain cutoff frequency (f T ) of 18 GHz, and a maximum oscillation frequency (f max ) of 66 GHz. - Highlights: • The double plasma process was carried out by two different etching techniques. • Double plasma treated device exhibited a transconductance of 330 mS/mm. • Completed 0.5 μm gate device exhibited a current-gain cutoff frequency of 18 GHz. • The off-state breakdown voltage of 115 V for 0.5 μm gate device was obtained. • Continuous-wave output power density of 4.3 W/mm was obtained at 2.4 GHz

  12. Modeling, fabrication and high power optical characterization of plasmonic waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Lysenko, Oleg

    2015-01-01

    This paper describes modeling, fabrication and high power optical characterization of thin gold films embedded in silicon dioxide. The propagation vector of surface plasmon polaritons has been calculated by the effective index method for the wavelength range of 750-1700 nm and film thickness of 15......, 30 and 45 nm. The fabrication process of such plasmonic waveguides with width in the range of 1-100 μm and their quality inspection are described. The results of optical characterization of plasmonic waveguides using a high power laser with the peak power wavelength 1064 nm show significant deviation...... from the linear propagation regime of surface plasmon polaritons at the average input power of 100 mW and above. Possible reasons for this deviation are heating of the waveguides and subsequent changes in the coupling and propagation losses....

  13. Fabrication of artificial gemstones from glasses: From waste to jewelry

    Science.gov (United States)

    Srisittipokakun, N.; Ruangtaweep, Y.; Horprathum, M.; Kaewkhao, J.

    2014-09-01

    In this review, several aspects of artificial gemstones from glasses have been addressed from the advantages, the fabrication process, the coloration, their properties and finally the use of RHA as the glass former for the simulant gemstones. The silica sources for preparation of glasses were locally obtained from sand and biomass ashes in Thailand. The refractive index, density and hardness values of the glass gemstones reported in these researches had been meet the standard of EU-regulation for crystal. The glass gemstones were fabricated in a variety of colors with some special features such as color changing when exposed under different light sources. Barium was used instead of lead to increase the density and refractive index of the glasses. The developments of high refractive index lead-free glasses are also leave non-toxically impact to our environment.

  14. Some recent efforts toward high density implosions

    International Nuclear Information System (INIS)

    McClellan, G.E.

    1980-01-01

    Some recent Livermore efforts towards achieving high-density implosions are presented. The implosion dynamics necessary to compress DT fuel to 10 to 100 times liquid density are discussed. Methods of diagnosing the maximum DT density for a specific design are presented along with results to date. The dynamics of the double-shelled target with an exploding outer shell are described, and some preliminary experimental results are presented

  15. Improved GAMMA 10 tandem mirror confinement in high density plasma

    International Nuclear Information System (INIS)

    Yatsu, K.; Cho, T.; Higaki, H.; Hirata, M.; Hojo, H.; Ichimura, M.; Ishii, K.; Ishimoto, Y.; Itakura, A.; Katanuma, I.; Kohagura, J.; Minami, R.; Nakashima, Y.; Numakura, T.; Saito, T.; Saosaki, S.; Takemura, Y.; Tatematsu, Y.; Yoshida, M.; Yoshikawa, M.

    2003-01-01

    GAMMA 10 experiments have advanced in high density experiments after the last IAEA fusion energy conference in 2000 where we reported the production of the high density plasma through use of ion cyclotron range of frequency heating at a high harmonic frequency and neutral beam injection in the anchor cells. However, the diamagnetic signal of the plasma decreased when electron cyclotron resonance heating was applied for the potential formation. Recently a high density plasma has been obtained without degradation of the diamagnetic signal and with much improved reproducibility than before. The high density plasma was attained through adjustment of the spacing of the conducting plates installed in the anchor transition regions. The potential confinement of the plasma has been extensively studied. Dependences of the ion confinement time, ion-energy confinement time and plasma confining potential on plasma density were obtained for the first time in the high density region up to a density of 4x10 18 m -3 . (author)

  16. Fabrication and characterization of 6Li-enriched Li2TiO3 pebbles for a high Li-burnup irradiation test

    International Nuclear Information System (INIS)

    Tsuchiya, Kunihiko; Kawamura, Hiroshi

    2006-10-01

    Lithium titanate (Li 2 TiO 3 ) pebbles are considered to be a candidate material of tritium breeders for fusion reactor from viewpoints of easy tritium release at low temperatures (about 300degC) and chemical stability. In the present study, trial fabrication tests of 6 Li-enriched Li 2 TiO 3 pebbles of 1mm in diameter were carried out by a wet process with a dehydration reaction, and characteristics of the 6 Li-enriched Li 2 TiO 3 pebbles were evaluated for preparation of a high Li-burnup test in a testing reactor. Powder of 96at% 6 Li-enriched Li 2 TiO 3 was prepared by a solid state reaction, and two kinds of 6 Li-enriched Li 2 TiO 3 pebbles, namely un-doped and TiO 2 -doped Li 2 TiO 3 pebbles, were fabricated by the wet process. Based on results of the pebble fabrication tests, two kinds of 6 Li-enriched Li 2 TiO 3 pebbles were successfully fabricated with target values (density: 80-85%T.D., grain size: 2 TiO 3 pebbles was a satisfying value of about 1.05. Contact strength of these pebbles was about 6300MPa, which was almost the same as that of the Li 2 TiO 3 pebbles with natural Li. (author)

  17. Density controlled carbon nanotube array electrodes

    Science.gov (United States)

    Ren, Zhifeng F [Newton, MA; Tu, Yi [Belmont, MA

    2008-12-16

    CNT materials comprising aligned carbon nanotubes (CNTs) with pre-determined site densities, catalyst substrate materials for obtaining them and methods for forming aligned CNTs with controllable densities on such catalyst substrate materials are described. The fabrication of films comprising site-density controlled vertically aligned CNT arrays of the invention with variable field emission characteristics, whereby the field emission properties of the films are controlled by independently varying the length of CNTs in the aligned array within the film or by independently varying inter-tubule spacing of the CNTs within the array (site density) are disclosed. The fabrication of microelectrode arrays (MEAs) formed utilizing the carbon nanotube material of the invention is also described.

  18. Conformal coating of amorphous silicon and germanium by high pressure chemical vapor deposition for photovoltaic fabrics

    Science.gov (United States)

    Ji, Xiaoyu; Cheng, Hiu Yan; Grede, Alex J.; Molina, Alex; Talreja, Disha; Mohney, Suzanne E.; Giebink, Noel C.; Badding, John V.; Gopalan, Venkatraman

    2018-04-01

    Conformally coating textured, high surface area substrates with high quality semiconductors is challenging. Here, we show that a high pressure chemical vapor deposition process can be employed to conformally coat the individual fibers of several types of flexible fabrics (cotton, carbon, steel) with electronically or optoelectronically active materials. The high pressure (˜30 MPa) significantly increases the deposition rate at low temperatures. As a result, it becomes possible to deposit technologically important hydrogenated amorphous silicon (a-Si:H) from silane by a simple and very practical pyrolysis process without the use of plasma, photochemical, hot-wire, or other forms of activation. By confining gas phase reactions in microscale reactors, we show that the formation of undesired particles is inhibited within the microscale spaces between the individual wires in the fabric structures. Such a conformal coating approach enables the direct fabrication of hydrogenated amorphous silicon-based Schottky junction devices on a stainless steel fabric functioning as a solar fabric.

  19. Fabrication and metallization of 3D electrospun nanofiberous architecture with gold and silver coating for applications related to electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Park, Keon Young [University of Pennsylvania, 3451 Walnut Street, Philadelphia, PA 19104 (United States); Ramaraj, B. [Research and Development Department, Central Institute of Plastics Engineering and Technology (CIPET), 630, Phase IV, GIDC, Vatva, Ahmedabad 382445 (India); Choi, Won Suk [Department of Chemistry, Hannam University, 461-6 Jeon min-dong, Yuseoung-gu, Daejeon 305-811 (Korea, Republic of); Yoon, Kuk Ro, E-mail: kryoon@hannam.ac.kr [Department of Chemistry, Hannam University, 461-6 Jeon min-dong, Yuseoung-gu, Daejeon 305-811 (Korea, Republic of)

    2013-11-01

    We have engineered a metallic architecture with high surface area and ultralow density for applications related to electrochemical supercapacitors. This is achieved first by design and fabrication of new annular collector template for electrospinning process, then the extrusion of polystyrene (PS) nanofiber through the fabricated annulus collector template followed by electroless plating of nanofiber assembly with gold and silver. The resultant three dimensional structures were characterized by optical microscopy (OM), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM). The OM images suggest that the fabrication process causes the electrospun fibers to be hinged to one another, maximizing contact junctions enhancing mechanical stability. The coated structure has a superior surface area, is robust, and is freestanding – making it an attractive architectural design for an electrode. The SEM images show interlocking of nanofibers to one another, further indicating the potential application for this system as a high surface area, low density charge collector ideal for nanostructured growths. - Graphical abstract: A new annular collector template was designed and fabricated to create a 3D electrospun nanofiber assembly. This ultralight 3D architecture with high surface was electroless plated with silver and gold to assess its suitability for applications related to electrochemical supercapacitors. This structure is highly conductive leading us to believe that this product can be utilized as an alternate electrode charge collector. - Highlights: • A metallic architecture with high surface area and ultralow density was fabricated. • A new annular collector template for electrospinning was designed and fabricated. • Electrospun PS nanofibers with 3D structure were coated with silver and gold. • The coated structure is

  20. Fabrication and metallization of 3D electrospun nanofiberous architecture with gold and silver coating for applications related to electrochemical supercapacitors

    International Nuclear Information System (INIS)

    Park, Keon Young; Ramaraj, B.; Choi, Won Suk; Yoon, Kuk Ro

    2013-01-01

    We have engineered a metallic architecture with high surface area and ultralow density for applications related to electrochemical supercapacitors. This is achieved first by design and fabrication of new annular collector template for electrospinning process, then the extrusion of polystyrene (PS) nanofiber through the fabricated annulus collector template followed by electroless plating of nanofiber assembly with gold and silver. The resultant three dimensional structures were characterized by optical microscopy (OM), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM). The OM images suggest that the fabrication process causes the electrospun fibers to be hinged to one another, maximizing contact junctions enhancing mechanical stability. The coated structure has a superior surface area, is robust, and is freestanding – making it an attractive architectural design for an electrode. The SEM images show interlocking of nanofibers to one another, further indicating the potential application for this system as a high surface area, low density charge collector ideal for nanostructured growths. - Graphical abstract: A new annular collector template was designed and fabricated to create a 3D electrospun nanofiber assembly. This ultralight 3D architecture with high surface was electroless plated with silver and gold to assess its suitability for applications related to electrochemical supercapacitors. This structure is highly conductive leading us to believe that this product can be utilized as an alternate electrode charge collector. - Highlights: • A metallic architecture with high surface area and ultralow density was fabricated. • A new annular collector template for electrospinning was designed and fabricated. • Electrospun PS nanofibers with 3D structure were coated with silver and gold. • The coated structure is

  1. Design and fabrication of Si-HDPE hybrid Fresnel lenses for infrared imaging systems.

    Science.gov (United States)

    Manaf, Ahmad Rosli Abdul; Sugiyama, Tsunetoshi; Yan, Jiwang

    2017-01-23

    In this work, novel hybrid Fresnel lenses for infrared (IR) optical applications were designed and fabricated. The Fresnel structures were replicated from an ultraprecision diamond-turned aluminum mold to an extremely thin layer (tens of microns) of high-density polyethylene polymer, which was directly bonded onto a flat single-crystal silicon wafer by press molding without using adhesives. Night mode imaging results showed that the fabricated lenses were able to visualize objects in dark fields with acceptable image quality. The capability of the lenses for thermography imaging was also demonstrated. This research provides a cost-effective method for fabricating ultrathin IR optical components.

  2. High-Strength Composite Fabric Tested at Structural Benchmark Test Facility

    Science.gov (United States)

    Krause, David L.

    2002-01-01

    Large sheets of ultrahigh strength fabric were put to the test at NASA Glenn Research Center's Structural Benchmark Test Facility. The material was stretched like a snare drum head until the last ounce of strength was reached, when it burst with a cacophonous release of tension. Along the way, the 3-ft square samples were also pulled, warped, tweaked, pinched, and yanked to predict the material's physical reactions to the many loads that it will experience during its proposed use. The material tested was a unique multi-ply composite fabric, reinforced with fibers that had a tensile strength eight times that of common carbon steel. The fiber plies were oriented at 0 and 90 to provide great membrane stiffness, as well as oriented at 45 to provide an unusually high resistance to shear distortion. The fabric's heritage is in astronaut space suits and other NASA programs.

  3. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array.

    Science.gov (United States)

    Wang, Sihong; Xu, Jie; Wang, Weichen; Wang, Ging-Ji Nathan; Rastak, Reza; Molina-Lopez, Francisco; Chung, Jong Won; Niu, Simiao; Feig, Vivian R; Lopez, Jeffery; Lei, Ting; Kwon, Soon-Ki; Kim, Yeongin; Foudeh, Amir M; Ehrlich, Anatol; Gasperini, Andrea; Yun, Youngjun; Murmann, Boris; Tok, Jeffery B-H; Bao, Zhenan

    2018-03-01

    Skin-like electronics that can adhere seamlessly to human skin or within the body are highly desirable for applications such as health monitoring, medical treatment, medical implants and biological studies, and for technologies that include human-machine interfaces, soft robotics and augmented reality. Rendering such electronics soft and stretchable-like human skin-would make them more comfortable to wear, and, through increased contact area, would greatly enhance the fidelity of signals acquired from the skin. Structural engineering of rigid inorganic and organic devices has enabled circuit-level stretchability, but this requires sophisticated fabrication techniques and usually suffers from reduced densities of devices within an array. We reasoned that the desired parameters, such as higher mechanical deformability and robustness, improved skin compatibility and higher device density, could be provided by using intrinsically stretchable polymer materials instead. However, the production of intrinsically stretchable materials and devices is still largely in its infancy: such materials have been reported, but functional, intrinsically stretchable electronics have yet to be demonstrated owing to the lack of a scalable fabrication technology. Here we describe a fabrication process that enables high yield and uniformity from a variety of intrinsically stretchable electronic polymers. We demonstrate an intrinsically stretchable polymer transistor array with an unprecedented device density of 347 transistors per square centimetre. The transistors have an average charge-carrier mobility comparable to that of amorphous silicon, varying only slightly (within one order of magnitude) when subjected to 100 per cent strain for 1,000 cycles, without current-voltage hysteresis. Our transistor arrays thus constitute intrinsically stretchable skin electronics, and include an active matrix for sensory arrays, as well as analogue and digital circuit elements. Our process offers a

  4. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array

    Science.gov (United States)

    Wang, Sihong; Xu, Jie; Wang, Weichen; Wang, Ging-Ji Nathan; Rastak, Reza; Molina-Lopez, Francisco; Chung, Jong Won; Niu, Simiao; Feig, Vivian R.; Lopez, Jeffery; Lei, Ting; Kwon, Soon-Ki; Kim, Yeongin; Foudeh, Amir M.; Ehrlich, Anatol; Gasperini, Andrea; Yun, Youngjun; Murmann, Boris; Tok, Jeffery B.-H.; Bao, Zhenan

    2018-03-01

    Skin-like electronics that can adhere seamlessly to human skin or within the body are highly desirable for applications such as health monitoring, medical treatment, medical implants and biological studies, and for technologies that include human-machine interfaces, soft robotics and augmented reality. Rendering such electronics soft and stretchable—like human skin—would make them more comfortable to wear, and, through increased contact area, would greatly enhance the fidelity of signals acquired from the skin. Structural engineering of rigid inorganic and organic devices has enabled circuit-level stretchability, but this requires sophisticated fabrication techniques and usually suffers from reduced densities of devices within an array. We reasoned that the desired parameters, such as higher mechanical deformability and robustness, improved skin compatibility and higher device density, could be provided by using intrinsically stretchable polymer materials instead. However, the production of intrinsically stretchable materials and devices is still largely in its infancy: such materials have been reported, but functional, intrinsically stretchable electronics have yet to be demonstrated owing to the lack of a scalable fabrication technology. Here we describe a fabrication process that enables high yield and uniformity from a variety of intrinsically stretchable electronic polymers. We demonstrate an intrinsically stretchable polymer transistor array with an unprecedented device density of 347 transistors per square centimetre. The transistors have an average charge-carrier mobility comparable to that of amorphous silicon, varying only slightly (within one order of magnitude) when subjected to 100 per cent strain for 1,000 cycles, without current-voltage hysteresis. Our transistor arrays thus constitute intrinsically stretchable skin electronics, and include an active matrix for sensory arrays, as well as analogue and digital circuit elements. Our process offers a

  5. High-density limit of quantum chromodynamics

    International Nuclear Information System (INIS)

    Alvarez, E.

    1983-01-01

    By means of a formal expansion of the partition function presumably valid at large baryon densities, the propagator of the quarks is expressed in terms of the gluon propagator. This result is interpreted as implying that correlations between quarks and gluons are unimportant at high enough density, so that a kind of mean-field approximation gives a very accurate description of the physical system

  6. Fabrication of fuel elements interplay between typical SNR Mark Ia specifications and the fuel element fabrication

    International Nuclear Information System (INIS)

    Biermann, W.K.; Heuvel, H.J.; Pilate, S.; Vanderborck, Y.; Pelckmans, E.; Vanhellemont, G.; Roepenack, H.; Stoll, W.

    1987-01-01

    The core and fuel were designed for the SNR-300 first core by Interatom GmbH and Belgonucleaire. The fuel was fabricated by Alkem/RBU and Belgonucleaire. Based on the preparation of drawings and specifications and on the results of the prerun fabrication, an extensive interplay took place between design requirements, specifications, and fabrication processes at both fuel plants. During start-up of pellet and pin fabrication, this solved such technical questions as /sup 239/Pu equivalent linear weight, pellet density, stoichiometry of the pellets, and impurity content. Close cooperation of designers and manufacturers has allowed manufacture of 205 fuel assemblies without major problems

  7. Fueling with edge recycling to high-density in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, A.W., E-mail: leonard@fusion.gat.com [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Elder, J.D. [University of Toronto Institute of Aerospace Studies, Toronto, Canada M3H 5T6 (Canada); Canik, J.M. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Groebner, R.J.; Osborne, T.H. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States)

    2013-07-15

    Pedestal fueling through edge recycling is examined with the interpretive OEDGE code for high-density discharges in DIII-D. A high current, high-density discharge is found to have a similar radial ion flux profile through the pedestal to a lower current, lower density discharge. The higher density discharge, however, has a greater density gradient indicating a pedestal particle diffusion coefficient that scales near linear with 1/I{sub p}. The time dependence of density profile is taken into account in the analysis of a discharge with low frequency ELMs. The time-dependent analysis indicates that the inferred neutral ionization source is inadequate to account for the increase in the density profile between ELMs, implying an inward density convection, or density pinch, near the top of the pedestal.

  8. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    International Nuclear Information System (INIS)

    Bieniosek, F.M.; Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2008-01-01

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state

  9. Fabrication of porous aluminium with directional pores through thermal decomposition method

    International Nuclear Information System (INIS)

    Nakajima, H; Kim, S Y; Park, J S

    2009-01-01

    Lotus-type porous metals were fabricated by unidirectional solidification in pressurized gas atmosphere. The elongated pres are evolved by insoluble gas resulted from the solubility gap between liquid and solid when the melt is solidified. Recently we developed a novel fabrication technique, in which gas compounds are used as a source of dissolving gas instead of the high pressure. In the present work this gas compound method was applied to fabrication of lotus aluminium. Hydrogen decomposed from calcium hydroxide, sodium bicarbonate and titanium hydride evolves cylindrical pores in aluminium. The porosity is about 20%. The pore size decreases and the pore number density increases with increasing amount of calcium hydroxide, which is explained by increase in pore nucleation sites.

  10. A novel approach for fabricating highly tunable and fluffy bioinspired 3D poly(vinyl alcohol) (PVA) fiber scaffolds.

    Science.gov (United States)

    Roy, Sunanda; Kuddannaya, Shreyas; Das, Tanya; Lee, Heng Yeong; Lim, Jacob; Hu, Xiao 'Matthew'; Chee Yoon, Yue; Kim, Jaehwan

    2017-06-01

    The excellent biocompatibility, biodegradability and chemo-thermal stability of poly(vinyl alcohol) (PVA) have been harnessed in diverse practical applications. These properties have motivated the fabrication of high performance PVA based nanofibers with adequate control over the micro and nano-architectures and surface chemical interactions. However, the high water solubility and hydrophilicity of the PVA polymer limits the application of the electrospun PVA nanofibers in aqueous environments owing to instantaneous dissolution. In this work, we report a novel yet facile concept for fabricating extremely light, fluffy, insoluble and stable three dimensional (3D) PVA fibrous scaffolds with/without coating for multifunctional purposes. While the solubility, morphology, fiber density and mechanical properties of nanofibers could be tuned by optimizing the cross-linking conditions, the surface chemical reactivity could be readily enhanced by coating with a polydopamine (pDA) bioinspired polymer without compromising the stability and innate properties of the native PVA fiber. The 3D pDA-PVA scaffolds exhibited super dye adsorption and constructive synergistic cell-material interactions by promoting healthy adhesion and viability of the human mesenchymal stem cells (hMSCs) within 3D micro-niches. We foresee the application of tunable PVA 3D as a highly adsorbent material and a scaffold material for tissue regeneration and drug delivery with close consideration of realistic in vivo parameters.

  11. Development of high uranium-density fuels for use in research reactors

    International Nuclear Information System (INIS)

    Ugajin, Mitsuhiro; Akabori, Mitsuo; Itoh, Akinori

    1996-01-01

    The uranium silicide U 3 Si 2 possesses uranium density 11.3 gU/cm 3 with a congruent melting point of 1665degC, and is now successfully in use as a research reactor fuel. Another uranium silicide U 3 Si and U 6 Me-type uranium alloys (Me=Fe,Mn,Ni) have been chosen as new fuel materials because of the higher uranium densities 14.9 and 17.0 gU/cm 3 , respectively. Experiments were carried out to fabricate miniature aluminum-dispersion plate-type and aluminum-clad disk-type fuels by using the conventional picture-frame method and a hot-pressing technique, respectively. These included the above-mentioned new fuel materials as well as U 3 Si 2 . Totally 14 miniplates with uranium densities from 4.0 to 6.3 gU/cm 3 of fuel meat were prepared together with 28 disk-type fuel containing structurally-modified U 3 Si, and subjected to the neutron irradiation in JMTR (Japan Materials Testing Reactor). Some results of postirradiation examinations are presented. (author)

  12. Diagnostic Spectrometers for High Energy Density X-Ray Sources

    International Nuclear Information System (INIS)

    Hudson, L. T.; Henins, A.; Seely, J. F.; Holland, G. E.

    2007-01-01

    A new generation of advanced laser, accelerator, and plasma confinement devices are emerging that are producing extreme states of light and matter that are unprecedented for laboratory study. Examples of such sources that will produce laboratory x-ray emissions with unprecedented characteristics include megajoule-class and ultrafast, ultraintense petawatt laser-produced plasmas; tabletop high-harmonic-generation x-ray sources; high-brightness zeta-pinch and magnetically confined plasma sources; and coherent x-ray free electron lasers and compact inverse-Compton x-ray sources. Characterizing the spectra, time structure, and intensity of x rays emitted by these and other novel sources is critical to assessing system performance and progress as well as pursuing the new and unpredictable physical interactions of interest to basic and applied high-energy-density (HED) science. As these technologies mature, increased emphasis will need to be placed on advanced diagnostic instrumentation and metrology, standard reference data, absolute calibrations and traceability of results.We are actively designing, fabricating, and fielding wavelength-calibrated x-ray spectrometers that have been employed to register spectra from a variety of exotic x-ray sources (electron beam ion trap, electron cyclotron resonance ion source, terawatt pulsed-power-driven accelerator, laser-produced plasmas). These instruments employ a variety of curved-crystal optics, detector technologies, and data acquisition strategies. In anticipation of the trends mentioned above, this paper will focus primarily on optical designs that can accommodate the high background signals produced in HED experiments while also registering their high-energy spectral emissions. In particular, we review the results of recent laboratory testing that explores off-Rowland circle imaging in an effort to reclaim the instrumental resolving power that is increasingly elusive at higher energies when using wavelength

  13. Fabrication of lithium titanate/graphene composites with high rate capability as electrode materials for hybrid electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Rong, E-mail: xuerongsmile@qq.com; Yan, Jingwang, E-mail: yanjw@dicp.ac.cn; Jiang, Liang, E-mail: jiangliang@dicp.ac.cn; Yi, Baolian, E-mail: blyi@dicp.ac.cn

    2015-06-15

    A lithium titanate (Li{sub 4}Ti{sub 5}O{sub 12})/graphene composite (LTO/graphene) is fabricated with a one-pot sol–gel method. Graphite oxide is dispersed in an aqueous solution of lithium acetate and tetrabutyl titanate followed by heat treatment in H{sub 2}/Ar. The LTO/graphene composite with reduced aggregation and improved homogeneity is investigated as an anode material for electrochemical capacitors. Electron transport is improved by the conductive graphene network in the insulating Li{sub 4}Ti{sub 5}O{sub 12} particles. The charge transfer resistance at the particle/electrolyte interface is reduced from 83.1 Ω to 55.4 Ω. The specific capacity of LTO/graphene composite is 126 mAh g{sup −1} at 20C. The energy density and power density of a hybrid electrochemical supercapacitor with a LTO/graphene negative electrode and an activated carbon positive electrode are 120.8 Wh kg{sup −1} and 1.5 kW kg{sup −1}, respectively, which is comparable to that of conventional electrochemical double layer capacitors (EDLCs). The LTO/graphene composite fabricated by the one-pot sol–gel method is a promising anode material for hybrid electrochemical supercapacitors. - Highlights: • A Li{sub 4}Ti{sub 5}O{sub 12}/graphene composite was fabricated with a one-pot sol–gel method. • The Li{sub 4}Ti{sub 5}O{sub 12}/graphene composite showed a reduced aggregation and an improved homogeneity. • The Li{sub 4}Ti{sub 5}O{sub 12}/graphene based hybrid supercapacitor exhibited higher energy and power densities.

  14. Low density, variation in sintered density and high nitrogen in uranium dioxide

    International Nuclear Information System (INIS)

    Balakrishna, Palanki; Murty, B.N.; Anuradha, M.; Nageshwara Rao, P.; Jayaraj, R.N.; Ganguly, C.

    2000-01-01

    Low sintered density and density variation in sintered UO 2 were found to have been caused by non uniformity in the granule feed characteristics to the compacting press. The nitrogen impurity content of sintered UO 2 was found to be sintering furnace related and associated with low sintered density pellets. The problems of low density, variation in sintered density and high nitrogen could be solved by the replacement of the prevailing four punch precompaction by a single punch process; by the introduction of a vibro-sieve for the separation of fine particles from the press feed granules; by innovation in the powder feed shoe design for simultaneous and uniform dispensing of powder in all the die holes; by increasing the final compaction pressure and by modifying the gas flows and preheat temperature in the sintering furnace. (author)

  15. Fabricating high-resolution offset color-filter black matrix by integrating heterostructured substrate with inkjet printing

    International Nuclear Information System (INIS)

    Lu, Guo-Shin; You, Po-Chin; Lin, Kai-Lun; Hong, Chien-Chong; Liou, Tong-Miin

    2014-01-01

    This paper presents a self-aligning ink by integrating an inkjet printing technique and heterostructures to fabricate a black matrix with a micrometer-scale tunable thickness. The black matrix is a grid-like structure used in color filters. Traditionally, a black matrix has been fabricated using photolithography techniques, the disadvantages of which are high material consumption, less fabrication flexibility, complex processing procedures, and high chemical pollution. Inkjet printing technology has garnered attention because of its low material costs, high fabrication flexibility, and reduced processing procedures and pollution. In this study, a fabricating process combining an inkjet printing technique with heterostructures to form stripe-arranged and delta-arranged thickness-tunable black matrices has been demonstrated. The deformation and self-aligning process of ink droplet impingement onto gutters are driven by designed heterogeneous surface properties. The minimum track width attained is 10 µm, which is competitive for color filter resolutions for thin-film transistor liquid crystal displays. The developed technology surmounts the bottlenecks of inkjet printing resolution, and saves more than 75% black material than modern photolithography. (paper)

  16. High throughput nonparametric probability density estimation.

    Science.gov (United States)

    Farmer, Jenny; Jacobs, Donald

    2018-01-01

    In high throughput applications, such as those found in bioinformatics and finance, it is important to determine accurate probability distribution functions despite only minimal information about data characteristics, and without using human subjectivity. Such an automated process for univariate data is implemented to achieve this goal by merging the maximum entropy method with single order statistics and maximum likelihood. The only required properties of the random variables are that they are continuous and that they are, or can be approximated as, independent and identically distributed. A quasi-log-likelihood function based on single order statistics for sampled uniform random data is used to empirically construct a sample size invariant universal scoring function. Then a probability density estimate is determined by iteratively improving trial cumulative distribution functions, where better estimates are quantified by the scoring function that identifies atypical fluctuations. This criterion resists under and over fitting data as an alternative to employing the Bayesian or Akaike information criterion. Multiple estimates for the probability density reflect uncertainties due to statistical fluctuations in random samples. Scaled quantile residual plots are also introduced as an effective diagnostic to visualize the quality of the estimated probability densities. Benchmark tests show that estimates for the probability density function (PDF) converge to the true PDF as sample size increases on particularly difficult test probability densities that include cases with discontinuities, multi-resolution scales, heavy tails, and singularities. These results indicate the method has general applicability for high throughput statistical inference.

  17. High-density plasma etching of III-nitrides: Process development, device applications and damage remediation

    Science.gov (United States)

    Singh, Rajwinder

    Plasma-assisted etching is a key technology for III-nitride device fabrication. The inevitable etch damage resulting from energetic pattern transfer is a challenge that needs to be addressed in order to optimize device performance and reliability. This dissertation focuses on the development of a high-density inductively-coupled plasma (ICP) etch process for III-nitrides, the demonstration of its applicability to practical device fabrication using a custom built ICP reactor, and development of techniques for remediation of etch damage. A chlorine-based standard dry etch process has been developed and utilized in fabrication of a number of electronic and optoelectronic III-nitride devices. Annealing studies carried out at 700°C have yielded the important insight that the annealing time necessary for making good-quality metal contacts to etch processed n-GaN is very short (water, prior to metallization, removes some of the etch damage and is helpful in recovering contact quality. In-situ treatment consisting of a slow ramp-down of rf bias at the end of the etch is found to achieve the same effect as the ex-situ treatment. This insitu technique is significantly advantageous in a large-scale production environment because it eliminates a process step, particularly one involving treatment in hydrochloric acid. ICP equipment customization for scaling up the process to full 2-inch wafer size is described. Results on etching of state of the art 256 x 256 AlGaN focal plane arrays of ultraviolet photodetectors are reported, with excellent etch uniformity over the wafer area.

  18. Silicone Adhesives for High Temperature Inflatable Fabrics and Polymer Films, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Thin films, elastomeric materials, high temperature fabrics and adhesives that are capable of withstanding thermal extremes (-130oC to 500oC) are highly desirable...

  19. Fabrication and electrical characterization of a MOS memory device containing self-assembled metallic nanoparticles

    Science.gov (United States)

    Sargentis, Ch.; Giannakopoulos, K.; Travlos, A.; Tsamakis, D.

    2007-04-01

    Floating gate devices with nanoparticles embedded in dielectrics have recently attracted much attention due to the fact that these devices operate as non-volatile memories with high speed, high density and low power consumption. In this paper, memory devices containing gold (Au) nanoparticles have been fabricated using e-gun evaporation. The Au nanoparticles are deposited on a very thin SiO 2 layer and are then fully covered by a HfO 2 layer. The HfO 2 is a high- k dielectric and gives good scalability to the fabricated devices. We studied the effect of the deposition parameters to the size and the shape of the Au nanoparticles using capacitance-voltage and conductance-voltage measurements, we demonstrated that the fabricated device can indeed operate as a low-voltage memory device.

  20. Highly efficient red electrophosphorescent devices at high current densities

    International Nuclear Information System (INIS)

    Wu Youzhi; Zhu Wenqing; Zheng Xinyou; Sun, Runguang; Jiang Xueyin; Zhang Zhilin; Xu Shaohong

    2007-01-01

    Efficiency decrease at high current densities in red electrophosphorescent devices is drastically restrained compared with that from conventional electrophosphorescent devices by using bis(2-methyl-8-quinolinato)4-phenylphenolate aluminum (BAlq) as a hole and exciton blocker. Ir complex, bis(2-(2'-benzo[4,5-α]thienyl) pyridinato-N,C 3' ) iridium (acetyl-acetonate) is used as an emitter, maximum external quantum efficiency (QE) of 7.0% and luminance of 10000cd/m 2 are obtained. The QE is still as high as 4.1% at higher current density J=100mA/cm 2 . CIE-1931 co-ordinates are 0.672, 0.321. A carrier trapping mechanism is revealed to dominate in the process of electroluminescence

  1. High-Efficiency InGaN/GaN Quantum Well-Based Vertical Light-Emitting Diodes Fabricated on β-Ga2O3 Substrate

    KAUST Repository

    Muhammed, Mufasila

    2017-09-11

    We demonstrate a state-of-the-art high-efficiency GaN-based vertical light-emitting diode (VLED) grown on a transparent and conductive (-201)-oriented (β-Ga2O3) substrate, obtained using a straightforward growth process that does not require a high cost lift-off technique or complex fabrication process. The high-resolution scanning transmission electron microscopy (STEM) images confirm that we produced high quality upper layers, including a multi-quantum well (MQW) grown on the masked β-Ga2O3 substrate. STEM imaging also shows a well-defined MQW without InN diffusion into the barrier. Electroluminescence (EL) measurements at room temperature indicate that we achieved a very high internal quantum efficiency (IQE) of 78%; at lower temperatures, IQE reaches ~ 86%. The photoluminescence (PL) and time-resolved PL analysis indicate that, at a high carrier injection density, the emission is dominated by radiative recombination with a negligible Auger effect; no quantum-confined Stark effect is observed. At low temperatures, no efficiency droop is observed at a high carrier injection density, indicating the superior VLED structure obtained without lift-off processing, which is cost-effective for large-scale devices.

  2. High-Efficiency InGaN/GaN Quantum Well-Based Vertical Light-Emitting Diodes Fabricated on β-Ga2O3 Substrate.

    Science.gov (United States)

    Muhammed, Mufasila M; Alwadai, Norah; Lopatin, Sergei; Kuramata, Akito; Roqan, Iman S

    2017-10-04

    We demonstrate a state-of-the-art high-efficiency GaN-based vertical light-emitting diode (VLED) grown on a transparent and conductive (-201)-oriented (β-Ga 2 O 3 ) substrate, obtained using a straightforward growth process that does not require a high-cost lift-off technique or complex fabrication process. The high-resolution scanning transmission electron microscopy (STEM) images confirm that we produced high quality upper layers, including a multiquantum well (MQW) grown on the masked β-Ga 2 O 3 substrate. STEM imaging also shows a well-defined MQW without InN diffusion into the barrier. Electroluminescence (EL) measurements at room temperature indicate that we achieved a very high internal quantum efficiency (IQE) of 78%; at lower temperatures, IQE reaches ∼86%. The photoluminescence (PL) and time-resolved PL analysis indicate that, at a high carrier injection density, the emission is dominated by radiative recombination with a negligible Auger effect; no quantum-confined Stark effect is observed. At low temperatures, no efficiency droop is observed at a high carrier injection density, indicating the superior VLED structure obtained without lift-off processing, which is cost-effective for large-scale devices.

  3. High-Efficiency InGaN/GaN Quantum Well-Based Vertical Light-Emitting Diodes Fabricated on β-Ga2O3 Substrate

    KAUST Repository

    Muhammed, Mufasila; Alwadai, Norah Mohammed Mosfer; Lopatin, Sergei; Kuramata, Akito; Roqan, Iman S.

    2017-01-01

    We demonstrate a state-of-the-art high-efficiency GaN-based vertical light-emitting diode (VLED) grown on a transparent and conductive (-201)-oriented (β-Ga2O3) substrate, obtained using a straightforward growth process that does not require a high cost lift-off technique or complex fabrication process. The high-resolution scanning transmission electron microscopy (STEM) images confirm that we produced high quality upper layers, including a multi-quantum well (MQW) grown on the masked β-Ga2O3 substrate. STEM imaging also shows a well-defined MQW without InN diffusion into the barrier. Electroluminescence (EL) measurements at room temperature indicate that we achieved a very high internal quantum efficiency (IQE) of 78%; at lower temperatures, IQE reaches ~ 86%. The photoluminescence (PL) and time-resolved PL analysis indicate that, at a high carrier injection density, the emission is dominated by radiative recombination with a negligible Auger effect; no quantum-confined Stark effect is observed. At low temperatures, no efficiency droop is observed at a high carrier injection density, indicating the superior VLED structure obtained without lift-off processing, which is cost-effective for large-scale devices.

  4. 1D Ni-Co oxide and sulfide nanoarray/carbon aerogel hybrid nanostructures for asymmetric supercapacitors with high energy density and excellent cycling stability.

    Science.gov (United States)

    Hao, Pin; Tian, Jian; Sang, Yuanhua; Tuan, Chia-Chi; Cui, Guanwei; Shi, Xifeng; Wong, C P; Tang, Bo; Liu, Hong

    2016-09-15

    The fabrication of supercapacitor electrodes with high energy density and excellent cycling stability is still a great challenge. A carbon aerogel, possessing a hierarchical porous structure, high specific surface area and electrical conductivity, is an ideal backbone to support transition metal oxides and bring hope to prepare electrodes with high energy density and excellent cycling stability. Therefore, NiCo 2 S 4 nanotube array/carbon aerogel and NiCo 2 O 4 nanoneedle array/carbon aerogel hybrid supercapacitor electrode materials were synthesized by assembling Ni-Co precursor needle arrays on the surface of the channel walls of hierarchical porous carbon aerogels derived from chitosan in this study. The 1D nanostructures grow on the channel surface of the carbon aerogel vertically and tightly, contributing to the enhanced electrochemical performance with ultrahigh energy density. The energy density of NiCo 2 S 4 nanotube array/carbon aerogel and NiCo 2 O 4 nanoneedle array/carbon aerogel hybrid asymmetric supercapacitors can reach up to 55.3 Wh kg -1 and 47.5 Wh kg -1 at a power density of 400 W kg -1 , respectively. These asymmetric devices also displayed excellent cycling stability with a capacitance retention of about 96.6% and 92% over 5000 cycles.

  5. Fundamental properties of high-quality carbon nanofoam: from low to high density

    Directory of Open Access Journals (Sweden)

    Natalie Frese

    2016-12-01

    Full Text Available Highly uniform samples of carbon nanofoam from hydrothermal sucrose carbonization were studied by helium ion microscopy (HIM, X-ray photoelectron spectroscopy (XPS, and Raman spectroscopy. Foams with different densities were produced by changing the process temperature in the autoclave reactor. This work illustrates how the geometrical structure, electron core levels, and the vibrational signatures change when the density of the foams is varied. We find that the low-density foams have very uniform structure consisting of micropearls with ≈2–3 μm average diameter. Higher density foams contain larger-sized micropearls (≈6–9 μm diameter which often coalesced to form nonspherical μm-sized units. Both, low- and high-density foams are comprised of predominantly sp2-type carbon. The higher density foams, however, show an advanced graphitization degree and a stronger sp3-type electronic contribution, related to the inclusion of sp3 connections in their surface network.

  6. Sputtered thin films for high density tape recording

    NARCIS (Netherlands)

    Nguyen, L.T.

    This thesis describes the investigation of sputtered thin film media for high density tape recording. As discussed in Chapter 1, to meet the tremendous demand of data storage, the density of recording tape has to be increased continuously. For further increasing the bit density the key factors are:

  7. Change in physical properties of high density isotropic graphites irradiated in the ?JOYO? fast reactor

    Science.gov (United States)

    Maruyama, T.; Kaito, T.; Onose, S.; Shibahara, I.

    1995-08-01

    Thirteen kinds of isotropic graphites with different density and maximum grain size were irradiated in the experimental fast reactor "JOYO" to fluences from 2.11 to 2.86 × 10 26 n/m 2 ( E > 0.1 MeV) at temperatures from 549 to 597°C. Postirradiation examination was carried out on the dimensional changes, elastic modulus, and thermal conductivity of these materials. Dimensional change results indicate that the graphites irradiated at lower fluences showed shrinkage upon neutron irradiation followed by increase with increasing neutron fluences, irrespective of differences in material parameters. The Young's modulus and Poisson's ratio increased by two to three times the unirradiated values. The large scatter found in Poisson's ratio of unirradiated materials became very small and a linear dependence on density was obtained after irradiation. The thermal conductivity decreased to one-fifth to one-tenth of unirradiated values, with a negligible change in specific heat. The results of postirradiation examination indicated that the changes in physical properties of high density, isotropic graphites were mainly dominated by the irradiation condition rather than their material parameters. Namely, the effects of irradiation induced defects on physical properties of heavily neutron-irradiated graphites are much larger than that of defects associated with as-fabricated specimens.

  8. Change in physical properties of high density isotropic graphites irradiated in the ''JOYO'' fast reactor

    International Nuclear Information System (INIS)

    Maruyama, T.; Kaito, T.; Onose, S.; Shibahara, I.

    1995-01-01

    Thirteen kinds of isotropic graphites with different density and maximum grain size were irradiated in the experimental fast reactor ''JOYO'' to fluences from 2.11 to 2.86x10 26 n/m 2 (E>0.1 MeV) at temperatures from 549 to 597 C. Postirradiation examination was carried out on the dimensional changes, elastic modulus, and thermal conductivity of these materials. Dimensional change results indicate that the graphites irradiated at lower fluences showed shrinkage upon neutron irradiation followed by increase with increasing neutron fluences, irrespective of differences in material parameters. The Young's modulus and Poisson's ratio increased by two to three times the unirradiated values. The large scatter found in Poisson's ratio of unirradiated materials became very small and a linear dependence on density was obtained after irradiation. The thermal conductivity decreased to one-fifth to one-tenth of unirradiated values, with a negligible change in specific heat. The results of postirradiation examination indicated that the changes in physical properties of high density, isotropic graphites were mainly dominated by the irradiation condition rather than their material parameters. Namely, the effects of irradiation induced defects on physical properties of heavily neutron-irradiated graphites are much larger than that of defects associated with as-fabricated specimens. (orig.)

  9. High-density housing that works for all

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Arif

    2010-03-15

    In an urbanising world, the way people fit into cities is vastly important - socially, economically, environmentally, even psychologically. So density, or the number of people living in a given area, is central to urban design and planning. Both governments and markets tend to get density wrong, leading to overcrowding, urban sprawl or often both. A case in point are the high-rise buildings springing up throughtout urban Asia - perceived as key features of that widely touted concept, the 'world-class city'. While some may offer a viable solution to land pressures and density requirements, many built to house evicted or resettled 'slum' dwellers are a social and economic nightmare - inconveniently sited, overcrowded and costly. New evidence from Karachi, Pakistan, reveals a real alternative. Poor people can create liveable high-density settlements as long as community control, the right technical assistance and flexible designs are in place. A city is surely 'world-class' only when it is cosmopolitan – built to serve all, including the poorest.

  10. Design and fabrication of highly open nickel cobalt sulfide nanosheets on Ni foam for asymmetric supercapacitors with high energy density and long cycle-life

    Science.gov (United States)

    Zha, Daosong; Fu, Yongsheng; Zhang, Lili; Zhu, Junwu; Wang, Xin

    2018-02-01

    Nickel cobalt sulfides (NiCo-S) are promising electrode materials for high-performance supercapacitors but normally show poor rate capability and unsatisfactory long-term endurance. To overcome these disadvantages, a properly constructed electrode architecture with abundant electron transport channels, excellent electronic conductivity and robust structural stability is required. Herein, considering that in situ transformation can mostly retain the specific structural advantages of the precursors, a two-step strategy is purposefully developed to construct a binder-free electrode composed of interconnected NiCo-S nanosheets on Ni foam (NiCo-S/NF), in which NiCo-S/NF is synthesized via the in situ sulfuration of networked acetate anion-intercalated nickel cobalt layered double hydroxide nanosheets loaded on Ni foam (A-NiCo-LDH/NF). Noticeably, the optimized Ni1Co1-S/NF exhibits an ultrahigh specific capacitance of 2553.9 F g-1 at 0.5 A g-1, excellent rate capability (1898.1 F g-1 at 50 A g-1) and superior cycling stability (nearly 90% capacitance retention after 10,000 cycles). Furthermore, the assembled asymmetric supercapacitor based on Ni1Co1-S/NF demonstrates a high energy density of 58.1 Wh kg-1 at a power density of 796 W kg-1 and impressive long-term durability even after a repeated charge/discharge process as long as 70,000 cycles (∼92% capacitance retention). The attractive properties endow the Ni1Co1-S/NF electrode with significant potential for high-performance energy storage devices.

  11. High density high performance plasma with internal diffusion barrier in Large Helical Device

    International Nuclear Information System (INIS)

    Sakamoto, R.; Kobayashi, M.; Miyazawa, J.

    2008-10-01

    A attractive high density plasma operational regime, namely an internal diffusion barrier (IDB), has been discovered in the intrinsic helical divertor configuration on the Large Helical Device (LHD). The IDB which enables core plasma to access a high density/high pressure regime has been developed. It is revealed that the IDB is reproducibly formed by pellet fueling in the magnetic configurations shifted outward in major radius. Attainable central plasma density exceeds 1x10 21 m -3 . Central pressure reaches 1.5 times atmospheric pressure and the central β value becomes fairly high even at high magnetic field, i.e. β(0)=5.5% at B t =2.57 T. (author)

  12. Fabrication of High-Frequency pMUT Arrays on Silicon Substrates

    DEFF Research Database (Denmark)

    Pedersen, Thomas; Zawada, Tomasz; Hansen, Karsten

    2010-01-01

    A novel technique based on silicon micromachining for fabrication of linear arrays of high-frequency piezoelectric micromachined ultrasound transducers (pMUT) is presented. Piezoelectric elements are formed by deposition of lead zirconia titanate into etched features of a silicon substrate...

  13. Pressure vessels fabricated with high-strength wire and electroformed nickel

    Science.gov (United States)

    Roth, B.

    1966-01-01

    Metal pressure vessels of various shapes having high strength-to-weight ratios are fabricated by using known techniques of filament winding and electroforming. This eliminates nonuniform wall thickness and unequal wall strength which resulted from welding formed vessel segments together.

  14. High density data recording for SSCL linac

    International Nuclear Information System (INIS)

    VanDeusen, A.L.; Crist, C.

    1993-01-01

    The Superconducting Super Collider Laboratory and AlliedSignal Aerospace have collaboratively developed a high density data monitoring system for beam diagnostic activities. The 128 channel data system is based on a custom multi-channel high speed digitizer card for the VXI bus. The card is referred to as a Modular Input VXI (MIX) digitizer. Multiple MIX cards are used in the complete system to achieve the necessary high channel density requirements. Each MIX digitizer card also contains programmable signal conditioning, and enough local memory to complete an entire beam scan without assistance from the host processor

  15. Advances and highlights of the CNEA qualification program as high density fuel manufacturer for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Adelfang, P.; Alvarez, L.; Boero, N.; Calabrese, R.; Echenique, P.; Markiewicz, M.; Pasqualini, E.; Ruggirello, G.; Taboada, H. [Unidad de Actividad Combustibles Nucleares Comision Nacional de Energia Atomica (CNE4), Avda. del Libertador, 8250 C1429BNO Buenos Aires (Argentina)

    2002-07-01

    One of the main objectives of CNEA regarding the fuel for research reactors is the development and qualification of the manufacturing of LEU high-density fuels. The qualification programs for both types of fuels, Silicide fuel and U- x Mo fuel, are similar. They include the following activities: development and set up of the fissile compound manufacturing technology, set up of fuel plate manufacturing, fabrication and irradiation of mini plates and plates, design and fabrication of fuel assembly prototypes for irradiation, post-irradiation examination and feedback for manufacturing improvements. This paper describes the different activities performed within each program during the last year and the main advances and achievements of the programs within this period. The main achievements may be summarized in the following activities: Continuation of the irradiation of the first silicide fuel element in the R A3. Completion of the manufacturing of the second silicide fuel element, licensing and beginning of its irradiation in the R A3. Development of the HMD Process to manufacture U-Mo powder (pUMA project). Set up of fuel plates manufacturing at industrial level using U-Mo powder. Preliminary studies and the design for the irradiation of mini plates, plates and full scale fuel elements with U-Mo and 7 g U/cm{sup 3}. PIE destructive studies for the P-04 silicide fuel prototype (accurate burnup determination through chemical analysis, metallography and SEM of samples from the irradiated fuel plates). Improvement and development of new characterization techniques for high density fuel plates quality control including US testing and densitometric analysis of X-ray examinations. The results obtained in this period are encouraging and also allow to foresee a wider participation of CNEA in the international effort to qualify U-Mo as a new material for the manufacturing of research reactor fuels. (author)

  16. Advances and highlights of the CNEA qualification program as high density fuel manufacturer for research reactors

    International Nuclear Information System (INIS)

    Adelfang, P.; Alvarez, L.; Boero, N.; Calabrese, R.; Echenique, P.; Markiewicz, M.; Pasqualini, E.; Ruggirello, G.; Taboada, H.

    2002-01-01

    One of the main objectives of CNEA regarding the fuel for research reactors is the development and qualification of the manufacturing of LEU high-density fuels. The qualification programs for both types of fuels, Silicide fuel and U- x Mo fuel, are similar. They include the following activities: development and set up of the fissile compound manufacturing technology, set up of fuel plate manufacturing, fabrication and irradiation of mini plates and plates, design and fabrication of fuel assembly prototypes for irradiation, post-irradiation examination and feedback for manufacturing improvements. This paper describes the different activities performed within each program during the last year and the main advances and achievements of the programs within this period. The main achievements may be summarized in the following activities: Continuation of the irradiation of the first silicide fuel element in the R A3. Completion of the manufacturing of the second silicide fuel element, licensing and beginning of its irradiation in the R A3. Development of the HMD Process to manufacture U-Mo powder (pUMA project). Set up of fuel plates manufacturing at industrial level using U-Mo powder. Preliminary studies and the design for the irradiation of mini plates, plates and full scale fuel elements with U-Mo and 7 g U/cm 3 . PIE destructive studies for the P-04 silicide fuel prototype (accurate burnup determination through chemical analysis, metallography and SEM of samples from the irradiated fuel plates). Improvement and development of new characterization techniques for high density fuel plates quality control including US testing and densitometric analysis of X-ray examinations. The results obtained in this period are encouraging and also allow to foresee a wider participation of CNEA in the international effort to qualify U-Mo as a new material for the manufacturing of research reactor fuels. (author)

  17. Directed light fabrication of refractory metals

    International Nuclear Information System (INIS)

    Lewis, G.K.; Thoma, D.J.; Nemec, R.B.; Milewski, J.O.

    1997-01-01

    Directed Light Fabrication (DLF) is a metal, rapid fabrication process that fuses metal powders to full density into a solid replica of a computer modeled component. It has been shown feasible for forming nearly any metal and also intermetallics to near net shape with a single process. DLF of refractory pure metals is feasible, bypassing the extensive series of conventional processing steps used for processing these high melting point materials. Tungsten, tantalum, and rhenium were processed and show a continuous resolidified microstructure. Porosity was a problem for the tantalum and rhenium powders produced by chemical reduction processes but not for the tungsten powder spherodized in a plasma arc. Chemical analysis of powder compared to the DLF deposit showed reductions in carbon, oxygen and hydrogen, indicating that process parameters may also be optimized for evolution of residual gases in the deposits

  18. A Very High Uranium Density Fission Mo Target Suitable for LEU Using atomization Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C. K.; Kim, K. H.; Lee, Y. S.; Ryu, H. J.; Woo, Y. M.; Jang, S. J.; Park, J. M.; Choi, S. J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    Currently HEU minimization efforts in fission Mo production are underway in connection with the global threat reduction policy. In order to convert HEU to LEU for the fission Mo target, higher uranium density material could be applied. The uranium aluminide targets used world widely for commercial {sup 99}Mo production are limited to 3.0 g-U/cc in uranium density of the target meat. A consideration of high uranium density using the uranium metal particles dispersion plate target is taken into account. The irradiation burnup of the fission Mo target are as low as 8 at.% and the irradiation period is shorter than 7 days. Pure uranium material has higher thermal conductivity than uranium compounds or alloys. It is considered that the degradation by irradiation would be almost negligible. In this study, using the computer code of the PLATE developed by ANL the irradiation behavior was estimated. Some considerations were taken into account to improve the irradiation performance further. It has been known that some alloying elements of Si, Cr, Fe, and Mo are beneficial for reducing the swelling by grain refinement. In the RERTR program recently the interaction problem could be solved by adding a small amount of Si to the aluminum matrix phase. The fabrication process and the separation process for the proposed atomized uranium particles dispersion target were reviewed

  19. Compensated readout for high-density MOS-gated memristor crossbar array

    KAUST Repository

    Zidan, Mohammed A.

    2015-01-01

    Leakage current is one of the main challenges facing high-density MOS-gated memristor arrays. In this study, we show that leakage current ruins the memory readout process for high-density arrays, and analyze the tradeoff between the array density and its power consumption. We propose a novel readout technique and its underlying circuitry, which is able to compensate for the transistor leakage-current effect in the high-density gated memristor array.

  20. Design, fabrication, and characterization of high-efficiency extreme ultraviolet diffusers

    Energy Technology Data Exchange (ETDEWEB)

    Naulleau, Patrick P.; Liddle, J. Alexander; Salmassi, Farhad; Anderson, Erik H.; Gullikson, Eric M.

    2004-02-19

    As the development of extreme ultraviolet (EUV) lithography progresses, interest grows in the extension of traditional optical components to the EUV regime. The strong absorption of EUV by most materials and its extremely short wavelength, however, makes it very difficult to implement many components that are commonplace in the longer wavelength regimes. One such example is the diffuser often implemented with ordinary ground glass in the visible light regime. Here we demonstrate the fabrication of reflective EUV diffusers with high efficiency within a controllable bandwidth. Using these techniques we have fabricated diffusers with efficiencies exceeding 10% within a moderate angular single-sided bandwidth of approximately 0.06 radians.

  1. Gel-sphere-pac fuel for thermal reactors: assessment of fabrication technology and irradiation performance

    Energy Technology Data Exchange (ETDEWEB)

    Beatty, R.L. Norman, R.E.; Notz, K.J. (comps.)

    1979-11-01

    Recent interest in proliferation-resistant fuel cycles for light-water reactors has focused attention on spiked plutonium and /sup 233/U-Th fuels, requiring remote refabrication. The gel-sphere-pac process for fabricating metal-clad fuel elements has drawn special attention because it involves fewer steps. Gel-sphere-pac fabrication technology involves two major areas: the preparation of fuel spheres of high density and loading these spheres into rods in an efficiently packed geometry. Gel sphere preparation involves three major steps: preparation of a sol or of a special solution (broth), gelation of droplets of sol or broth to give semirigid spheres of controlled size, and drying and sintering these spheres to a high density. Gelation may be accomplished by water extraction (suitable only for sols) or ammonia gelation (suitable for both sols and broths but used almost exclusively with broths). Ammonia gelation can be accomplished either externally, via ammonia gas and ammonium hydroxide, or internally via an added ammonia generator such as hexamethylenetetramine. Sphere-pac fuel rod fabrication involves controlled blending and metering of three sizes of spheres into the rod and packing by low- to medium-energy vibration to achieve about 88% smear density; these sizes have diametral ratios of about 40:10:1 and are blended in size fraction amounts of about 60% coarse, 18% medium, and 22% fine. Irradiation test results indicate that sphere-pac fuel performs at least as well as pellet fuel, and may in fact offer an advantage in significantly reducing mechanical and chemical interaction between the fuel and cladding. The normal feed for gel sphere preparation, heavy metal nitrate solution, is the usual product of fuel reprocessing, so that fabrication of gel spheres performs all the functions performed by both conversion and pellet fabrication in the case of pellet technology.

  2. Gel-sphere-pac fuel for thermal reactors: assessment of fabrication technology and irradiation performance

    International Nuclear Information System (INIS)

    Beatty, R.L.; Norman, R.E.; Notz, K.J.

    1979-11-01

    Recent interest in proliferation-resistant fuel cycles for light-water reactors has focused attention on spiked plutonium and 233 U-Th fuels, requiring remote refabrication. The gel-sphere-pac process for fabricating metal-clad fuel elements has drawn special attention because it involves fewer steps. Gel-sphere-pac fabrication technology involves two major areas: the preparation of fuel spheres of high density and loading these spheres into rods in an efficiently packed geometry. Gel sphere preparation involves three major steps: preparation of a sol or of a special solution (broth), gelation of droplets of sol or broth to give semirigid spheres of controlled size, and drying and sintering these spheres to a high density. Gelation may be accomplished by water extraction (suitable only for sols) or ammonia gelation (suitable for both sols and broths but used almost exclusively with broths). Ammonia gelation can be accomplished either externally, via ammonia gas and ammonium hydroxide, or internally via an added ammonia generator such as hexamethylenetetramine. Sphere-pac fuel rod fabrication involves controlled blending and metering of three sizes of spheres into the rod and packing by low- to medium-energy vibration to achieve about 88% smear density; these sizes have diametral ratios of about 40:10:1 and are blended in size fraction amounts of about 60% coarse, 18% medium, and 22% fine. Irradiation test results indicate that sphere-pac fuel performs at least as well as pellet fuel, and may in fact offer an advantage in significantly reducing mechanical and chemical interaction between the fuel and cladding. The normal feed for gel sphere preparation, heavy metal nitrate solution, is the usual product of fuel reprocessing, so that fabrication of gel spheres performs all the functions performed by both conversion and pellet fabrication in the case of pellet technology

  3. High-Performance Screen-Printed Thermoelectric Films on Fabrics.

    Science.gov (United States)

    Shin, Sunmi; Kumar, Rajan; Roh, Jong Wook; Ko, Dong-Su; Kim, Hyun-Sik; Kim, Sang Il; Yin, Lu; Schlossberg, Sarah M; Cui, Shuang; You, Jung-Min; Kwon, Soonshin; Zheng, Jianlin; Wang, Joseph; Chen, Renkun

    2017-08-04

    Printing techniques could offer a scalable approach to fabricate thermoelectric (TE) devices on flexible substrates for power generation used in wearable devices and personalized thermo-regulation. However, typical printing processes need a large concentration of binder additives, which often render a detrimental effect on electrical transport of the printed TE layers. Here, we report scalable screen-printing of TE layers on flexible fiber glass fabrics, by rationally optimizing the printing inks consisting of TE particles (p-type Bi 0.5 Sb 1.5 Te 3 or n-type Bi 2 Te 2.7 Se 0.3 ), binders, and organic solvents. We identified a suitable binder additive, methyl cellulose, which offers suitable viscosity for printability at a very small concentration (0.45-0.60 wt.%), thus minimizing its negative impact on electrical transport. Following printing, the binders were subsequently burnt off via sintering and hot pressing. We found that the nanoscale defects left behind after the binder burnt off became effective phonon scattering centers, leading to low lattice thermal conductivity in the printed n-type material. With the high electrical conductivity and low thermal conductivity, the screen-printed TE layers showed high room-temperature ZT values of 0.65 and 0.81 for p-type and n-type, respectively.

  4. Microsystem for remote sensing of high energy radiation with associated extremely low photon flux densities

    Science.gov (United States)

    Otten, A.; Jain, V. K.

    2015-08-01

    This paper presents a microsystem for remote sensing of high energy radiation in extremely low flux density conditions. With wide deployment in mind, potential applications range from nuclear non-proliferation, to hospital radiation-safety. The daunting challenge is the low level of photon flux densities - emerging from a Scintillation Crystal (SC) on to a ~1 mm-square detector, which are a factor of 10000 or so lower than those acceptable to recently reported photonic chips (including `single-photon detection' chips), due to a combination of low Lux, small detector size, and short duration SC output pulses - on the order of 1 μs. These challenges are attempted to be overcome by the design of an innovative `System on a Chip' type microchip, with high detector sensitivity, and effective coupling from the SC to the photodetector. The microchip houses a tiny n+ diff p-epi photodiode (PD) as well as the associated analog amplification and other related circuitry, all fabricated in 0.5micron, 3-metal 2-poly CMOS technology. The amplification, together with pulse-shaping of the photocurrent-induced voltage signal, is achieved through a tandem of two capacitively coupled, double-cascode amplifiers. Included in the paper are theoretical estimates and experimental results.

  5. Fabrication of high edge-definition steel-tape gratings for optical encoders

    Science.gov (United States)

    Ye, Guoyong; Liu, Hongzhong; Yan, Jiawei; Ban, Yaowen; Fan, Shanjin; Shi, Yongsheng; Yin, Lei

    2017-10-01

    High edge definition of a scale grating is the basic prerequisite for high measurement accuracy of optical encoders. This paper presents a novel fabrication method of steel tape gratings using graphene oxide nanoparticles as anti-reflective grating strips. Roll-to-roll nanoimprint lithography is adopted to manufacture the steel tape with hydrophobic and hydrophilic pattern arrays. Self-assembly technology is employed to obtain anti-reflective grating strips by depositing the graphene oxide nanoparticles on hydrophobic regions. A thin SiO2 coating is deposited on the grating to protect the grating strips. Experimental results confirm that the proposed fabrication process enables a higher edge definition in making steel-tape gratings, and the new steel tape gratings offer better performance than conventional gratings.

  6. Numerical analysis of energy density and particle density in high energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Fu Yuanyong; Lu Zhongdao

    2004-01-01

    Energy density and particle density in high energy heavy-ion collisions are calculated with infinite series expansion method and Gauss-Laguerre formulas in numerical integration separately, and the results of these two methods are compared, the higher terms and linear terms in series expansion are also compared. The results show that Gauss-Laguerre formulas is a good method in calculations of high energy heavy-ion collisions. (author)

  7. High density regimes and beta limits in JET

    International Nuclear Information System (INIS)

    Smeulders, P.

    1990-01-01

    Results are first presented on the density limit in JET discharges with graphite (C), Be gettered graphite and Be limiters. There is a clear improvement in the case of Be limiters. The Be gettered phase showed no increase in the gas fueled density limit, except with Ion Cyclotron Resonance Heating (ICRH), but, the limit changed character. During MARFE-formation, any further increase in density was prevented, leading to a soft density limit. The soft density limit was a function of input power and impurity content with a week dependence on q. Helium and pellet fuelled discharges exceeded the gas-fuelled global density limits, but essentially had the same edge limit. In the second part, results are presented of high β operation in low-B Double-Null (DN) X-point configurations with Be-gettered carbon target plates. The Troyon limit was reached during H-mode discharges and toroidal β values of 5.5% were obtained. At high beta, the sawteeth were modified and characterised by very rapid heat-waves and fishbone-like pre- and post-cursors with strongly ballooning character. 17 refs., 5 figs

  8. The use of low density high accuracy (LDHA) data for correction of high density low accuracy (HDLA) point cloud

    Science.gov (United States)

    Rak, Michal Bartosz; Wozniak, Adam; Mayer, J. R. R.

    2016-06-01

    Coordinate measuring techniques rely on computer processing of coordinate values of points gathered from physical surfaces using contact or non-contact methods. Contact measurements are characterized by low density and high accuracy. On the other hand optical methods gather high density data of the whole object in a short time but with accuracy at least one order of magnitude lower than for contact measurements. Thus the drawback of contact methods is low density of data, while for non-contact methods it is low accuracy. In this paper a method for fusion of data from two measurements of fundamentally different nature: high density low accuracy (HDLA) and low density high accuracy (LDHA) is presented to overcome the limitations of both measuring methods. In the proposed method the concept of virtual markers is used to find a representation of pairs of corresponding characteristic points in both sets of data. In each pair the coordinates of the point from contact measurements is treated as a reference for the corresponding point from non-contact measurement. Transformation enabling displacement of characteristic points from optical measurement to their match from contact measurements is determined and applied to the whole point cloud. The efficiency of the proposed algorithm was evaluated by comparison with data from a coordinate measuring machine (CMM). Three surfaces were used for this evaluation: plane, turbine blade and engine cover. For the planar surface the achieved improvement was of around 200 μm. Similar results were obtained for the turbine blade but for the engine cover the improvement was smaller. For both freeform surfaces the improvement was higher for raw data than for data after creation of mesh of triangles.

  9. Fabrication of Metallic Fuel Slugs for Irradiation Experiments in Fast Breeder Test Reactor

    International Nuclear Information System (INIS)

    Saify, M.T.; Jha, S.K.; Abdulla, K.K.; Kumar, Arun; Prasad, G.J.

    2013-01-01

    Advantages of Metallic fuels for future FBR: → High heavy metal atom density; → Higher thermal conductivity at room temperature that increases with temperature; → Metal fuels can be relatively easily fabricated with close dimensional tolerances; → They have excellent compatibility with liquid metal coolants

  10. HIGH DENSITY QCD WITH HEAVY-IONS

    CERN Multimedia

    The Addendum 1 to Volume 2 of the CMS Physics TDR has been published The Heavy-Ion analysis group completed the writing of a TDR summarizing the CMS plans in using heavy ion collisions to study high density QCD. The document was submitted to the LHCC in March and presented in the Open Session of the LHCC on May 9th. The study of heavy-ion physics at the LHC is promising to be very exciting. LHC will open a new energy frontier in ultra-relativistic heavy-ion physics. The collision energy of heavy nuclei at sNN = 5.5 TeV will be thirty times larger than what is presently available at RHIC. We will certainly probe quark and gluon matter at unprecedented values of energy density. The prime goal of this research programme is to study the fundamental theory of the strong interaction - Quantum Chromodynamics (QCD) - in extreme conditions of temperature, density and parton momentum fraction (low-x). Such studies, with impressive experimental and theoretical advances in recent years thanks to the wealth of high-qua...

  11. Flexible MEMS: A novel technology to fabricate flexible sensors and electronics

    Science.gov (United States)

    Tu, Hongen

    This dissertation presents the design and fabrication techniques used to fabricate flexible MEMS (Micro Electro Mechanical Systems) devices. MEMS devices and CMOS(Complementary Metal-Oxide-Semiconductor) circuits are traditionally fabricated on rigid substrates with inorganic semiconductor materials such as Silicon. However, it is highly desirable that functional elements like sensors, actuators or micro fluidic components to be fabricated on flexible substrates for a wide variety of applications. Due to the fact that flexible substrate is temperature sensitive, typically only low temperature materials, such as polymers, metals, and organic semiconductor materials, can be directly fabricated on flexible substrates. A novel technology based on XeF2(xenon difluoride) isotropic silicon etching and parylene conformal coating, which is able to monolithically incorporate high temperature materials and fluidic channels, was developed at Wayne State University. The technology was first implemented in the development of out-of-plane parylene microneedle arrays that can be individually addressed by integrated flexible micro-channels. These devices enable the delivery of chemicals with controlled temporal and spatial patterns and allow us to study neurotransmitter-based retinal prosthesis. The technology was further explored by adopting the conventional SOI-CMOS processes. High performance and high density CMOS circuits can be first fabricated on SOI wafers, and then be integrated into flexible substrates. Flexible p-channel MOSFETs (Metal-Oxide-Semiconductor Field-Effect-Transistors) were successfully integrated and tested. Integration of pressure sensors and flow sensors based on single crystal silicon has also been demonstrated. A novel smart yarn technology that enables the invisible integration of sensors and electronics into fabrics has been developed. The most significant advantage of this technology is its post-MEMS and post-CMOS compatibility. Various high

  12. An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics

    Science.gov (United States)

    Valdivia, M. P.; Stutman, D.; Stoeckl, C.; Theobald, W.; Mileham, C.; Begishev, I. A.; Bromage, J.; Regan, S. P.

    2016-02-01

    X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 1023 cm-3 in a low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of x-ray source-size, similar to conventional radiography.

  13. Fabrication, properties, and microstructures of high Tc tapes and coils made from Ag-clad Bi-2223 superconductors

    International Nuclear Information System (INIS)

    Balachandran, U.; Iyer, A.N.; Youngdahl, C.A.; Motowidlo, L.R.; Hoehn, J.G.; Haldar, P.

    1993-07-01

    Bi-2223 precursor powders were prepared via a solid-state reaction using carbonates and oxides of Bi, Pb, Sr, Ca, and Cu. Results indicate that an in-situ reaction between constituent phases with tho formation of a transient liquid that is consumed during final heat treatment, is essential to obtain increased density with greater connectivity between the 2223 grains. Relative amounts of the constituent phases were adjusted in the powder by varying the calcination conditions, and the powder was then used to fabricate Ag-clad tapes by a powder-in-tube technique. By improving process conditions, transport critical current density (J c ) values greater than 4 x 10 4 A/cm 2 at 77 K and 2 x 10 5 A/cm 2 at 4.2 and 27 K have been obtained in short tape samples. Long tapes were cut into lengths upto 10 m long and used in parallel to fabricate small superconducting pancake coils. The coils were characterized at 77, 27 and 4.2 K and results are discussed

  14. Low temperature high-mobility InZnO thin-film transistors fabricated by excimer laser annealing

    NARCIS (Netherlands)

    Fujii, M.; Ishikawa, Y.; Ishihara, R.; Van der Cingel, J.; Mofrad, M.R.T.; Horita, M.; Uraoka, Y.

    2013-01-01

    In this study, we successfully achieved a relatively high field-effect mobility of 37.7?cm2/Vs in an InZnO thin-film transistor (TFT) fabricated by excimer layer annealing (ELA). The ELA process allowed us to fabricate such a high-performance InZnO TFT at the substrate temperature less than 50?°C

  15. Chapter 7: High-Density H-Mode Operation in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Stober, Joerg Karl; Lang, Peter Thomas; Mertens, Vitus

    2003-01-01

    Recent results are reported on the maximum achievable H-mode density and the behavior of pedestal density and central density peaking as this limit is approached. The maximum achievable H-mode density roughly scales as the Greenwald density, though a dependence on B t is clearly observed. In contrast to the stiff temperature profiles, the density profiles seem to allow more shape variation and especially with high-field-side pellet-injection, strongly peaked profiles with good confinement have been achieved. Also, spontaneous density peaking at high densities is observed in ASDEX Upgrade, which is related to the generally observed large time constants for the density profile equilibration. The equilibrated density profile shapes depend strongly on the heat-flux profile in the sense that central heating leads to significantly flatter profiles

  16. Experimental study of high density foods for the Space Operations Center

    Science.gov (United States)

    Ahmed, S. M.

    1981-01-01

    The experimental study of high density foods for the Space Operations Center is described. A sensory evaluation of the high density foods was conducted first to test the acceptability of the products. A shelf-life study of the high density foods was also conducted for three different time lengths at three different temperatures. The nutritional analysis of the high density foods is at present incomplete.

  17. Method for fabricating boron carbide articles

    International Nuclear Information System (INIS)

    Ardary, Z.; Reynolds, C.

    1980-01-01

    Described is a method for fabricating an essentially uniformly dense boron carbide article of a length-to-diameter or width ratio greater than 2 to 1 comprising the steps of providing a plurality of article segments to be joined together to form the article with each of said article segments having a length-to-diameter or width ratio less than 1.5 to 1. Each segment is fabricated by hot pressing a composition consisting of boron carbide powder at a pressure and temperature effective to provide the article segment with a density greater than about 85% of theoretical density, providing each article segment with parallel planar end surfaces, placing a plurality of said article segments in a hot-pressing die in a line with the planar surfaces of adjacent article segments being disposed in intimate contact, and hot pressing the aligned article segments at a temperature and pressure effective to provide said article with a density over the length thereof in the range of about 94 to 98 percent theoretical density and greater than the density provided in the discrete hot pressing of each of the article segments and to provide a bond between adjacent article segments with said bond being at least equivalent in hardness, strength and density to a remainder of said article

  18. Fluorescent Fe K Emission from High Density Accretion Disks

    Science.gov (United States)

    Bautista, Manuel; Mendoza, Claudio; Garcia, Javier; Kallman, Timothy R.; Palmeri, Patrick; Deprince, Jerome; Quinet, Pascal

    2018-06-01

    Iron K-shell lines emitted by gas closely orbiting black holes are observed to be grossly broadened and skewed by Doppler effects and gravitational redshift. Accordingly, models for line profiles are widely used to measure the spin (i.e., the angular momentum) of astrophysical black holes. The accuracy of these spin estimates is called into question because fitting the data requires very high iron abundances, several times the solar value. Meanwhile, no plausible physical explanation has been proffered for why these black hole systems should be so iron rich. The most likely explanation for the super-solar iron abundances is a deficiency in the models, and the leading candidate cause is that current models are inapplicable at densities above 1018 cm-3. We study the effects of high densities on the atomic parameters and on the spectral models for iron ions. At high densities, Debye plasma can affect the effective atomic potential of the ions, leading to observable changes in energy levels and atomic rates with respect to the low density case. High densities also have the effec of lowering energy the atomic continuum and reducing the recombination rate coefficients. On the spectral modeling side, high densities drive level populations toward a Boltzman distribution and very large numbers of excited atomic levels, typically accounted for in theoretical spectral models, may contribute to the K-shell spectrum.

  19. Phenomenology of high density disruptions in the TFTR tokamak

    International Nuclear Information System (INIS)

    Fredrickson, E.D.; McGuire, K.M.; Bell, M.G.

    1993-01-01

    Studies of high density disruptions on TFTR, including a comparison of minor and major disruptions at high density, provide important new information regarding the nature of the disruption mechanism. Further, for the first time, an (m,n)=(1,1) 'cold bubble' precursor to high density disruptions has been experimentally observed in the electron temperature profile. The precursor to major disruptions resembles the 'vacuum bubble' model of disruptions first proposed by B.B. Kadomtsev and O.P. Pogutse (Sov. Phys. - JETP 38 (1974) 283). (author). Letter-to-the-editor. 25 refs, 3 figs

  20. Direct fabrication of high-resolution three-dimensional polymeric scaffolds using electrohydrodynamic hot jet plotting

    International Nuclear Information System (INIS)

    Wei, Chuang; Dong, Jingyan

    2013-01-01

    This paper presents the direct three-dimensional (3D) fabrication of polymer scaffolds with sub-10 µm structures using electrohydrodynamic jet (EHD-jet) plotting of melted thermoplastic polymers. Traditional extrusion-based fabrication approaches of 3D periodic porous structures are very limited in their resolution, due to the excessive pressure requirement for extruding highly viscous thermoplastic polymers. EHD-jet printing has become a high-resolution alternative to other forms of nozzle deposition-based fabrication approaches by generating micro-scale liquid droplets or a fine jet through the application of a large electrical voltage between the nozzle and the substrate. In this study, we successfully apply EHD-jet plotting technology with melted biodegradable polymer (polycaprolactone, or PCL) for the fabrication of 2D patterns and 3D periodic porous scaffold structures in potential tissue engineering applications. Process conditions (e.g. electrical voltage, pressure, plotting speed) have been thoroughly investigated to achieve reliable jet printing of fine filaments. We have demonstrated for the first time that the EHD-jet plotting process is capable of the fabrication of 3D periodic structures with sub-10 µm resolution, which has great potential in advanced biomedical applications, such as cell alignment and guidance. (paper)

  1. High Energy Density Polymer Film Capacitors

    National Research Council Canada - National Science Library

    Boufelfel, Ali

    2006-01-01

    High-energy-density capacitors that are compact and light-weight are extremely valuable in a number of critical DoD systems that include portable field equipment, pulsed lasers, detection equipment...

  2. Industrialization of nanocrystalline Fe–Si–B–P–Cu alloys for high magnetic flux density cores

    International Nuclear Information System (INIS)

    Takenaka, Kana; Setyawan, Albertus D.; Sharma, Parmanand; Nishiyama, Nobuyuki; Makino, Akihiro

    2016-01-01

    Nanocrystalline Fe–Si–B–P–Cu alloys exhibit high saturation magnetic flux density (B s ) and extremely low magnetic core loss (W), simultaneously. Low amorphous-forming ability of these alloys hinders their application potential in power transformers and motors. Here we report a solution to this problem. Minor addition of C is found to be effective in increasing the amorphous-forming ability of Fe–Si–B–P–Cu alloys. It allows fabrication of 120 mm wide ribbons (which was limited to less than 40 mm) without noticeable degradation in magnetic properties. The nanocrystalline (Fe 85.7 Si 0.5 B 9.5 P 3.5 Cu 0.8 ) 99 C 1 ribbons exhibit low coercivity (H c )~4.5 A/m, high B s ~1.83 T and low W~0.27 W/kg (@ 1.5 T and 50 Hz). Success in fabrication of long (60–100 m) and wide (~120 mm) ribbons, which are made up of low cost elements is promising for mass production of energy efficient high power transformers and motors - Highlights: • Minor addition of C in FeSiBPCu alloy increases amorphous-forming ability. • The FeSiBPCuC alloy exhibits B s close to Si-steel and Core loss lower than it. • Excellent soft magnetic properties were obtained for 120 mm wide ribbons. • Nanocrystalline FeSiBPCuC alloy can be produced at industrial scale with low cost. • The alloy is suitable for making low energy loss power transformers and motors.

  3. Quality assurance during fabrication of high-damping rubber isolation bearings

    Energy Technology Data Exchange (ETDEWEB)

    Way, D.; Greaves, W.C. [Base Isolation Consultants, Inc., San Francisco, CA (United States)

    1995-12-01

    Successful implementation of a high-damping rubber (HDR) base isolation project requires the application of Quality Assurance/Quality Control (QA/QC) methodology through all phases of the bearing fabrication process. HDR base isolation bearings must be fabricated with uniform physical characteristics while being produced in large quantities. To satisfy this requirement, manufacturing processes must be controlled. Prototype tests that include dynamic testing of small samples of rubber are necessary. Stringent full scale bearing testing must be carried out prior to beginning production, during which manufacturing is strictly regulated by small rubber sample and production bearing testing. All such activities should be supervised and continuously inspected by independent and experienced QA/QC personnel.

  4. High density matter at RHIC

    Indian Academy of Sciences (India)

    QCD predicts a phase transition between hadronic matter and a quark-gluon plasma at high energy density. The relativistic heavy ion collider (RHIC) at Brookhaven National Laboratory is a new facility dedicated to the experimental study of matter under extreme conditions. Already the first round of experimental results at ...

  5. Development of high uranium-density fuels for use in research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ugajin, Mitsuhiro; Akabori, Mitsuo; Itoh, Akinori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-02-01

    The uranium silicide U{sub 3}Si{sub 2} possesses uranium density 11.3 gU/cm{sup 3} with a congruent melting point of 1665degC, and is now successfully in use as a research reactor fuel. Another uranium silicide U{sub 3}Si and U{sub 6}Me-type uranium alloys (Me=Fe,Mn,Ni) have been chosen as new fuel materials because of the higher uranium densities 14.9 and 17.0 gU/cm{sup 3}, respectively. Experiments were carried out to fabricate miniature aluminum-dispersion plate-type and aluminum-clad disk-type fuels by using the conventional picture-frame method and a hot-pressing technique, respectively. These included the above-mentioned new fuel materials as well as U{sub 3}Si{sub 2}. Totally 14 miniplates with uranium densities from 4.0 to 6.3 gU/cm{sup 3} of fuel meat were prepared together with 28 disk-type fuel containing structurally-modified U{sub 3}Si, and subjected to the neutron irradiation in JMTR (Japan Materials Testing Reactor). Some results of postirradiation examinations are presented. (author)

  6. Flame-resistant pure and hybrid woven fabrics from basalt

    Science.gov (United States)

    Jamshaid, H.; Mishra, R.; Militky, J.

    2017-10-01

    This work has been formulated to investigate the burning behavior of different type of fabrics. The main concentration is to see how long the fabric resists after it catches the fire and the propagation of fire can be reduced by using flame resistant fiber i.e basalt. Basalt fiber is an environmental friendly material with low input, high output, low energy consumption and less emission. The goal of present investigations is to show the dependence of fabric flammability on its structure parameters i.e weave type, blend type etc. Fabric weaves have strong effect on flammability properties. Plain weave has the lowest burning rate as the density of the plain weave fabric is more and the structure is tight which gives less chances of flame passing through the fabric. Thermal stability is evaluated with TGA of all hybrid and nonhybrid fabrics and compared. The thermal stability of the basalt fiber is excellent. When comparing thermal analysis curves for hybrid samples it demonstrates that thermal stability of the samples containing basalt is much higher than the non- hybrid samples. Percentage weight loss is less in hybrid samples as compared to non-hybrid samples. The effectiveness of hybridization on samples may be indicated by substantial lowering of the decomposition mass. Correlation was made between flammability with the infrared radiations (IR)

  7. 3D Freeze-Casting of Cellular Graphene Films for Ultrahigh-Power-Density Supercapacitors.

    Science.gov (United States)

    Shao, Yuanlong; El-Kady, Maher F; Lin, Cheng-Wei; Zhu, Guanzhou; Marsh, Kristofer L; Hwang, Jee Youn; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi; Kaner, Richard B

    2016-08-01

    3D cellular graphene films with open porosity, high electrical conductivity, and good tensile strength, can be synthesized by a method combining freeze-casting and filtration. The resulting supercapacitors based on 3D porous reduced graphene oxide (RGO) film exhibit extremely high specific power densities and high energy densities. The fabrication process provides an effective means for controlling the pore size, electronic conductivity, and loading mass of the electrode materials, toward devices with high energy-storage performance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. High-resolution and high-conductive electrode fabrication on a low thermal resistance flexible substrate

    International Nuclear Information System (INIS)

    Kang, Bongchul; Kno, Jinsung; Yang, Minyang

    2011-01-01

    Processes based on the liquid-state pattern transfer, like inkjet printing, have critical limitations including low resolution and low electrical conductivity when fabricating electrodes on low thermal resistance flexible substrates such as polyethylene terephthalate (PET). Those are due to the nonlinear transfer mechanism and the limit of the sintering temperature. Although the laser direct curing (LDC) of metallic inks is an alternative process to improve the resolution, it is also associated with the disadvantages of causing thermal damage to the polymer substrate. This paper suggests the laser induced pattern adhesion transfer method to fabricate electrodes of both high electrical conductivity and high resolution on a PET substrate. First, solid patterns are cost-effectively created by the LDC of the organometallic silver ink on a glass that is optically and thermally stable. The solid patterns sintered on the glass are transferred to the PET substrate by the photo-thermally generated adhesion force of the substrate. Therefore, we achieved electrodes with a minimum line width of 10 µm and a specific resistance of 3.6 μΩcm on the PET substrate. The patterns also showed high mechanical reliability

  9. High-resolution and high-conductive electrode fabrication on a low thermal resistance flexible substrate

    Science.gov (United States)

    Kang, Bongchul; Kno, Jinsung; Yang, Minyang

    2011-07-01

    Processes based on the liquid-state pattern transfer, like inkjet printing, have critical limitations including low resolution and low electrical conductivity when fabricating electrodes on low thermal resistance flexible substrates such as polyethylene terephthalate (PET). Those are due to the nonlinear transfer mechanism and the limit of the sintering temperature. Although the laser direct curing (LDC) of metallic inks is an alternative process to improve the resolution, it is also associated with the disadvantages of causing thermal damage to the polymer substrate. This paper suggests the laser induced pattern adhesion transfer method to fabricate electrodes of both high electrical conductivity and high resolution on a PET substrate. First, solid patterns are cost-effectively created by the LDC of the organometallic silver ink on a glass that is optically and thermally stable. The solid patterns sintered on the glass are transferred to the PET substrate by the photo-thermally generated adhesion force of the substrate. Therefore, we achieved electrodes with a minimum line width of 10 µm and a specific resistance of 3.6 μΩcm on the PET substrate. The patterns also showed high mechanical reliability.

  10. Engineering shadows to fabricate optical metasurfaces.

    Science.gov (United States)

    Nemiroski, Alex; Gonidec, Mathieu; Fox, Jerome M; Jean-Remy, Philip; Turnage, Evan; Whitesides, George M

    2014-11-25

    Optical metasurfaces-patterned arrays of plasmonic nanoantennas that enable the precise manipulation of light-matter interactions-are emerging as critical components in many nanophotonic materials, including planar metamaterials, chemical and biological sensors, and photovoltaics. The development of these materials has been slowed by the difficulty of efficiently fabricating patterns with the required combinations of intricate nanoscale structure, high areal density, and/or heterogeneous composition. One convenient strategy that enables parallel fabrication of periodic nanopatterns uses self-assembled colloidal monolayers as shadow masks; this method has, however, not been extended beyond a small set of simple patterns and, thus, has remained incompatible with the broad design requirements of metasurfaces. This paper demonstrates a technique-shadow-sphere lithography (SSL)-that uses sequential deposition from multiple angles through plasma-etched microspheres to expand the variety and complexity of structures accessible by colloidal masks. SSL harnesses the entire, relatively unexplored, space of shadow-derived shapes and-with custom software to guide multiangled deposition-contains sufficient degrees of freedom to (i) design and fabricate a wide variety of metasurfaces that incorporate complex structures with small feature sizes and multiple materials and (ii) generate, in parallel, thousands of variations of structures for high-throughput screening of new patterns that may yield unexpected optical spectra. This generalized approach to engineering shadows of spheres provides a new strategy for efficient prototyping and discovery of periodic metasurfaces.

  11. Edge operational space for high density/high confinement ELMY H-modes in JET

    International Nuclear Information System (INIS)

    Sartori, R.; Saibene, G.; Loarte, A.

    2002-01-01

    This paper discusses how the proximity to the L-H threshold affects the confinement of ELMy H-modes at high density. The largest reduction in confinement at high density is observed at the transition from the Type I to the Type III ELMy regime. At medium plasma triangularity, δ≅0.3 (where δ is the average triangularity at the separatrix), JET experiments show that by increasing the margin above the L-H threshold power and maintaining the edge temperature above the critical temperature for the transition to Type III ELMs, it is possible to avoid the degradation of the pedestal pressure with density, normally observed at lower power. As a result, the range of achievable densities (both in the core and in the pedestal) is increased. At high power above the L-H threshold power the core density was equal to the Greenwald limit with H97≅0.9. There is evidence that a mixed regime of Type I and Type II ELMs has been obtained at this intermediate triangularity, possibly as a result of this increase in density. At higher triangularity, δ≅0.5, the power required to achieve similar results is lower. (author)

  12. Development of a high density fuel based on uranium-molybdenum alloys with high compatibility in high temperatures

    International Nuclear Information System (INIS)

    Oliveira, Fabio Branco Vaz de

    2008-01-01

    This work has as its objective the development of a high density and low enriched nuclear fuel based on the gamma-UMo alloys, for utilization where it is necessary satisfactory behavior in high temperatures, considering its utilization as dispersion. For its accomplishment, it was started from the analysis of the RERTR ('Reduced Enrichment for Research and Test Reactors') results and some theoretical works involving the fabrication of gamma-uranium metastable alloys. A ternary addition is proposed, supported by the properties of binary and ternary uranium alloys studied, having the objectives of the gamma stability enhancement and an ease to its powder fabrication. Alloys of uranium-molybdenum were prepared with 5 to 10% Mo addition, and 1 and 3% of ternary, over a gamma U7Mo binary base alloy. In all the steps of its preparation, the alloys were characterized with the traditional techniques, to the determination of its mechanical and structural properties. To provide a process for the alloys powder obtention, its behavior under hydrogen atmosphere were studied, in thermo analyser-thermo gravimeter equipment. Temperatures varied from the ambient up to 1000 deg C, and times from 15 minutes to 16 hours. The results validation were made in a semi-pilot scale, where 10 to 50 g of powders of some of the alloys studied were prepared, under static hydrogen atmosphere. Compatibility studies were conducted by the exposure of the alloys under oxygen and aluminum, to the verification of possible reactions by means of differential thermal analysis. The alloys were exposed to a constant heat up to 1000 deg C, and their performances were evaluated in terms of their reaction resistance. On the basis of the results, it was observed that ternary additions increases the temperatures of the reaction with aluminum and oxidation, in comparison with the gamma UMo binaries. A set of conditions to the hydration of the alloys were defined, more restrictive in terms of temperature, time and

  13. Polymorphous computing fabric

    Science.gov (United States)

    Wolinski, Christophe Czeslaw [Los Alamos, NM; Gokhale, Maya B [Los Alamos, NM; McCabe, Kevin Peter [Los Alamos, NM

    2011-01-18

    Fabric-based computing systems and methods are disclosed. A fabric-based computing system can include a polymorphous computing fabric that can be customized on a per application basis and a host processor in communication with said polymorphous computing fabric. The polymorphous computing fabric includes a cellular architecture that can be highly parameterized to enable a customized synthesis of fabric instances for a variety of enhanced application performances thereof. A global memory concept can also be included that provides the host processor random access to all variables and instructions associated with the polymorphous computing fabric.

  14. Graphene-based in-plane micro-supercapacitors with high power and energy densities.

    Science.gov (United States)

    Wu, Zhong-Shuai; Parvez, Khaled; Feng, Xinliang; Müllen, Klaus

    2013-01-01

    Micro-supercapacitors are important on-chip micro-power sources for miniaturized electronic devices. Although the performance of micro-supercapacitors has been significantly advanced by fabricating nanostructured materials, developing thin-film manufacture technologies and device architectures, their power or energy densities remain far from those of electrolytic capacitors or lithium thin-film batteries. Here we demonstrate graphene-based in-plane interdigital micro-supercapacitors on arbitrary substrates. The resulting micro-supercapacitors deliver an area capacitance of 80.7 μF cm⁻² and a stack capacitance of 17.9 F cm⁻³. Further, they show a power density of 495 W cm⁻³ that is higher than electrolytic capacitors, and an energy density of 2.5 mWh cm⁻³ that is comparable to lithium thin-film batteries, in association with superior cycling stability. Such microdevices allow for operations at ultrahigh rate up to 1,000 V s⁻¹, three orders of magnitude higher than that of conventional supercapacitors. Micro-supercapacitors with an in-plane geometry have great promise for numerous miniaturized or flexible electronic applications.

  15. Graphene-based in-plane micro-supercapacitors with high power and energy densities

    Science.gov (United States)

    Wu, Zhong–Shuai; Parvez, Khaled; Feng, Xinliang; Müllen, Klaus

    2013-01-01

    Micro-supercapacitors are important on-chip micro-power sources for miniaturized electronic devices. Although the performance of micro-supercapacitors has been significantly advanced by fabricating nanostructured materials, developing thin-film manufacture technologies and device architectures, their power or energy densities remain far from those of electrolytic capacitors or lithium thin-film batteries. Here we demonstrate graphene-based in-plane interdigital micro-supercapacitors on arbitrary substrates. The resulting micro-supercapacitors deliver an area capacitance of 80.7 μF cm−2 and a stack capacitance of 17.9 F cm−3. Further, they show a power density of 495 W cm−3 that is higher than electrolytic capacitors, and an energy density of 2.5 mWh cm−3 that is comparable to lithium thin-film batteries, in association with superior cycling stability. Such microdevices allow for operations at ultrahigh rate up to 1,000 V s−1, three orders of magnitude higher than that of conventional supercapacitors. Micro-supercapacitors with an in-plane geometry have great promise for numerous miniaturized or flexible electronic applications. PMID:24042088

  16. Growth limitation of Lemna minor due to high plant density

    NARCIS (Netherlands)

    Driever, S.M.; Nes, van E.H.; Roijackers, R.M.M.

    2005-01-01

    The effect of high population densities on the growth rate of Lemna minor (L.) was studied under laboratory conditions at 23°C in a medium with sufficient nutrients. At high population densities, we found a non-linear decreasing growth rate with increasing L. minor density. Above a L. minor biomass

  17. Density-dependent phonoriton states in highly excited semiconductors

    International Nuclear Information System (INIS)

    Nguyen Hong Quang; Nguyen Minh Khue; Nguyen Que Huong

    1995-09-01

    The dynamical aspects of the phonoriton state in highly-photoexcited semiconductors is studied theoretically. The effect of the exciton-exciton interaction and nonbosonic character of high-density excitons are taken into account. Using Green's function method and within the Random Phase Approximation it is shown that the phonoriton dispersion and damping are very sensitive to the exciton density, characterizing the excitation degree of semiconductors. (author). 18 refs, 3 figs

  18. Biaxial Testing of High-Strength Fabric Improves Design of Inflatable Radar Domes

    Science.gov (United States)

    Krause, David L.; Bartolotta, Paul A.

    2001-01-01

    Large radar installations around the globe continuously watch the skies, unobtrusively providing security to the United States; these systems have been in active use for the past 50 years. Often situated in extreme environments, the radar dishes require shielding from the harsh elements. Air-inflated domes (over 100 ft in diameter) are one structure of choice for providing this essential protection. The radomes are constructed from highstrength fabric that is strong enough to withstand the inflation pressure, high winds, and other environmental loads, yet transparent to the microwave signal to allow precise radar mapping. This fabric is woven from glass fibers for high strength and embedded in a polytetrafluoroethylene resin matrix, akin to the nonstick coatings used on cookware.

  19. High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Daniel A. Mosher; Xia Tang; Ronald J. Brown; Sarah Arsenault; Salvatore Saitta; Bruce L. Laube; Robert H. Dold; Donald L. Anton

    2007-07-27

    This final report describes the motivations, activities and results of the hydrogen storage independent project "High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides" performed by the United Technologies Research Center under the Department of Energy Hydrogen Program, contract # DE-FC36-02AL67610. The objectives of the project were to identify and address the key systems technologies associated with applying complex hydride materials, particularly ones which differ from those for conventional metal hydride based storage. This involved the design, fabrication and testing of two prototype systems based on the hydrogen storage material NaAlH4. Safety testing, catalysis studies, heat exchanger optimization, reaction kinetics modeling, thermochemical finite element analysis, powder densification development and material neutralization were elements included in the effort.

  20. Progress in the fabrication of high aspect ratio zone plates by soft x-ray lithography

    International Nuclear Information System (INIS)

    Divan, R.; Mancini, D. C.; Moldovan, N. A.; Lai, B.; Assoufid, L.; Leondard, Q.; Cerrina, F.

    2002-01-01

    Fabrication of Fresnel zone plates for the hard x-ray spectral region combines the challenge of high lateral resolution (∼100 nm) with a large thickness requirement for the phase-shifting material (0.5-3 (micro)m). For achieving a high resolution, the initial mask was fabricated by e-beam lithography and gold electroforming. To prevent the collapse of the structures between the developing and electroforming processes, drying was completely eliminated. Fabrication errors, such as nonuniform gold electroplating and collapse of structures, were systematically analyzed and largely eliminated. We optimized the exposure and developing processes for 950k and 2200k polymethylmethacrylate of different thicknesses and various adhesion promoters. We discuss the effects of these fabrication steps on the zone plate's resolution and aspect ratio. Fresnel zone plates with 110 nm outermost zone width, 150 (micro)m diameter, and 1.3 (micro)m gold thickness were fabricated. Preliminary evaluation of the FZPs was done by scanning electron microscopy and atomic force microscopy. The FZP focusing performance was characterized at the Advanced Photon Source at Argonne National Laboratory

  1. Plasma-enhanced chemical vapor deposition for YBCO film fabrication of superconducting fault-current limiter

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Byung Hyuk; Kim, Chan Joong

    2006-05-15

    Since the high-temperature superconductor of oxide type was founded, many researches and efforts have been performed for finding its application field. The YBCO superconducting film fabricated on economic metal substrate with uniform critical current density is considered as superconducting fault-current limiter (SFCL). There are physical and chemical processes to fabricate superconductor film, and it is understood that the chemical methods are more economic to deposit large area. Among them, chemical vapor deposition (CVD) is a promising deposition method in obtaining film uniformity. To solve the problems due to the high deposition temperature of thermal CVD, plasma-enhanced chemical vapor deposition (PECVD) is suggested. This report describes the principle and fabrication trend of SFCL, example of YBCO film deposition by PECVD method, and principle of plasma deposition.

  2. Multiplexed, high density electrophysiology with nanofabricated neural probes.

    Directory of Open Access Journals (Sweden)

    Jiangang Du

    Full Text Available Extracellular electrode arrays can reveal the neuronal network correlates of behavior with single-cell, single-spike, and sub-millisecond resolution. However, implantable electrodes are inherently invasive, and efforts to scale up the number and density of recording sites must compromise on device size in order to connect the electrodes. Here, we report on silicon-based neural probes employing nanofabricated, high-density electrical leads. Furthermore, we address the challenge of reading out multichannel data with an application-specific integrated circuit (ASIC performing signal amplification, band-pass filtering, and multiplexing functions. We demonstrate high spatial resolution extracellular measurements with a fully integrated, low noise 64-channel system weighing just 330 mg. The on-chip multiplexers make possible recordings with substantially fewer external wires than the number of input channels. By combining nanofabricated probes with ASICs we have implemented a system for performing large-scale, high-density electrophysiology in small, freely behaving animals that is both minimally invasive and highly scalable.

  3. Study of transport properties of copper/zinc-oxide-nanorods-based Schottky diode fabricated on textile fabric

    International Nuclear Information System (INIS)

    Khan, Azam; Hussain, Mushtaque; Abbasi, Mazhar Ali; Ibupoto, Zafar Hussain; Nur, Omer; Willander, Magnus

    2013-01-01

    In this work, a copper/zinc-oxide (ZnO)-nanorods-based Schottky diode was fabricated on the textile fabric substrate. ZnO nanorods were grown on a silver-coated textile fabric substrate by using the hydrothermal route. Scanning electron microscopy and x-ray diffraction techniques were used for the structural study. The electrical characterization of copper/ZnO-nanorods-based Schottky diodes was investigated by using a semiconductor parameter analyzer and an impedance spectrometer. The current density–voltage (J–V) and capacitance–voltage (C–V) measurements were used to estimate the electrical parameters. The threshold voltage (V th ), ideality factor (η), barrier height (ϕ b ), reverse saturation current density (J s ), carrier concentration (N D ) and built-in potential (V bi ) were determined by using experimental data and (simulated) curve fitting. This study describes the possible fabrication of electronic and optoelectronic devices on textile fabric substrate with an acceptable performance. (paper)

  4. Double trouble at high density:

    DEFF Research Database (Denmark)

    Gergs, André; Palmqvist, Annemette; Preuss, Thomas G

    2014-01-01

    Population size is often regulated by negative feedback between population density and individual fitness. At high population densities, animals run into double trouble: they might concurrently suffer from overexploitation of resources and also from negative interference among individuals...... regardless of resource availability, referred to as crowding. Animals are able to adapt to resource shortages by exhibiting a repertoire of life history and physiological plasticities. In addition to resource-related plasticity, crowding might lead to reduced fitness, with consequences for individual life...... history. We explored how different mechanisms behind resource-related plasticity and crowding-related fitness act independently or together, using the water flea Daphnia magna as a case study. For testing hypotheses related to mechanisms of plasticity and crowding stress across different biological levels...

  5. Effect of Seams on Drape of Fabrics | Sukumar | African Research ...

    African Journals Online (AJOL)

    In this study drape of ten fabrics are analyzed with three types of seams and three stitch densities. Sample without seam is a control sample and drape of seamed samples are compared with control sample to analyse the drape behavior of seamed fabrics. This paper presents a fundamental drape analysis of seamed fabrics ...

  6. Low operating voltage InGaZnO thin-film transistors based on Al{sub 2}O{sub 3} high-k dielectrics fabricated using pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Geng, G. Z.; Liu, G. X.; Zhang, Q.; Shan, F. K. [Qingdao University, Qingdao (China); DongEui University, Busan (Korea, Republic of); Lee, W. J.; Shin, B. C. [DongEui University, Busan (Korea, Republic of); Cho, C. R. [Pusan National University, Busan (Korea, Republic of)

    2014-05-15

    Low-voltage-driven amorphous indium-gallium-zinc-oxide (IGZO) thin-film transistors (TFTs) with an Al{sub 2}O{sub 3} dielectric were fabricated on a Si substrate by using pulsed laser deposition. Both Al{sub 2}O{sub 3} and IGZO thin films are amorphous, and the thin films have very smooth surfaces. The Al{sub 2}O{sub 3} gate dielectric exhibits a very low leakage current density of 1.3 x 10{sup -8} A/cm{sup 2} at 5 V and a high capacitance density of 60.9 nF/cm{sup 2}. The IGZO TFT with a structure of Ni/IGZO/Al{sub 2}O{sub 3}/Si exhibits high performance with a low threshold voltage of 1.18 V, a high field effect mobility of 20.25 cm{sup 2}V{sup -1}s{sup -1}, an ultra small subthreshold swing of 87 mV/decade, and a high on/off current ratio of 3 x 10{sup 7}.

  7. Investigation on Shielding and Mechanical Behavior of Carbon/Stainless Steel Hybrid Yarn Woven Fabrics and Their Composites

    Science.gov (United States)

    Jagatheesan, Krishnasamy; Ramasamy, Alagirusamy; Das, Apurba; Basu, Ananjan

    2017-08-01

    This study investigates the shielding characteristics of carbon/stainless steel/polypropylene (C/SS/PP) hybrid woven fabrics and their composites in low frequency (50 MHz-1.5 GHz) and C band (4-6 GHz) regions. The hybrid yarns prepared from carbon and SS filaments using a direct twisting machine have been made into woven fabric samples using a sample loom. The composite has been made by sandwiching a hybrid yarn fabric between the polypropylene films in a compression molding machine at 180°C for 5 min. The shielding behavior of the fabric and the composites has been tested using a coaxial transmission holder for the low frequency range and a wave guide method for the C band frequency range. It has been observed that a 1 end float composite showed a higher SE of 81.4 dB than the 4 end float (76.2 dB) and the 8 end float composites (64 dB) at the low frequency region. However, at the C band frequency, the effect of fabric structures on shielding effectiveness (SE) of fabric composite depends on thread density. For example, at low thread density, (i.e.) 3.93 ppcm, the 8 end float fabric composite showed the highest SE of 22.7 dB than did the 4 end (20.4 dB) and the 1 end float (16.5 dB) fabric composite. However, at high thread density (6.3 ppcm), the case was the reverse. The 1 end float fabric composite showed the highest SE of 29.7 dB rather than 4 end and 8 end float fabric composites (25.9 dB). In addition, all the composites showed less SE than their fabric forms. The increase in thread density also increased the shielding behavior of composites in both frequency ranges. A nonlinear regression model was developed using the Box-Behnken design for predicting the shielding behavior of fabric composites in C band region. In addition to shielding behavior, mechanical strength of C/SS/PP hybrid yarn, the fabric and composite has been tested using a Zwick Roell tensile tester. It has been observed that the work of rupture of C/SS/PP hybrid yarn is higher (6830.3 g

  8. Fifth International Conference on High Energy Density Physics

    Energy Technology Data Exchange (ETDEWEB)

    Beg, Farhat

    2017-07-05

    The Fifth International Conference on High Energy Density Physics (ICHED 2015) was held in the Catamaran Hotel in San Diego from August 23-27, 2015. This meeting was the fifth in a series which began in 2008 in conjunction with the April meeting of the American Physical Society (APS). The main goal of this conference has been to bring together researchers from all fields of High Energy Density Science (HEDS) into one, unified meeting.

  9. The Mechanical Properties and In Vitro Biocompatibility of PM-Fabricated Ti-28Nb-35.4Zr Alloy for Orthopedic Implant Applications.

    Science.gov (United States)

    Xu, Wei; Li, Ming; Wen, Cuie; Lv, Shaomin; Liu, Chengcheng; Lu, Xin; Qu, Xuanhui

    2018-03-30

    A biocompatible Ti-28Nb-35.4Zr alloy used as bone implant was fabricated through the powder metallurgy process. The effects of mechanical milling and sintering temperatures on the microstructure and mechanical properties were investigated systematically, before in vitro biocompatibility of full dense Ti-28Nb-35.4Zr alloy was evaluated by cytotoxicity tests. The results show that the mechanical milling and sintering temperatures have significantly effects on the density and mechanical properties of the alloys. The relative density of the alloy fabricated by the atomized powders at 1500 °C is only 83 ± 1.8%, while the relative density of the alloy fabricated by the ball-milled powders can rapidly reach at 96.4 ± 1.3% at 1500 °C. When the temperature was increased to 1550 °C, the alloy fabricated by ball-milled powders achieve full density (relative density is 98.1 ± 1.2%). The PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C can achieve a wide range of mechanical properties, with a compressive yield strength of 1058 ± 35.1 MPa, elastic modulus of 50.8 ± 3.9 GPa, and hardness of 65.8 ± 1.5 HRA. The in vitro cytotoxicity test suggests that the PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C has no adverse effects on MC3T3-E1 cells with cytotoxicity ranking of 0 grade, which is nearly close to ELI Ti-6Al-4V or CP Ti. These properties and the net-shape manufacturability makes PM-fabricated Ti-28Nb-35.4Zr alloy a low-cost, highly-biocompatible, Ti-based biomedical alloy.

  10. The Mechanical Properties and In Vitro Biocompatibility of PM-Fabricated Ti-28Nb-35.4Zr Alloy for Orthopedic Implant Applications

    Science.gov (United States)

    Xu, Wei; Li, Ming; Wen, Cuie; Lv, Shaomin; Liu, Chengcheng; Lu, Xin

    2018-01-01

    A biocompatible Ti-28Nb-35.4Zr alloy used as bone implant was fabricated through the powder metallurgy process. The effects of mechanical milling and sintering temperatures on the microstructure and mechanical properties were investigated systematically, before in vitro biocompatibility of full dense Ti-28Nb-35.4Zr alloy was evaluated by cytotoxicity tests. The results show that the mechanical milling and sintering temperatures have significantly effects on the density and mechanical properties of the alloys. The relative density of the alloy fabricated by the atomized powders at 1500 °C is only 83 ± 1.8%, while the relative density of the alloy fabricated by the ball-milled powders can rapidly reach at 96.4 ± 1.3% at 1500 °C. When the temperature was increased to 1550 °C, the alloy fabricated by ball-milled powders achieve full density (relative density is 98.1 ± 1.2%). The PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C can achieve a wide range of mechanical properties, with a compressive yield strength of 1058 ± 35.1 MPa, elastic modulus of 50.8 ± 3.9 GPa, and hardness of 65.8 ± 1.5 HRA. The in vitro cytotoxicity test suggests that the PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C has no adverse effects on MC3T3-E1 cells with cytotoxicity ranking of 0 grade, which is nearly close to ELI Ti-6Al-4V or CP Ti. These properties and the net-shape manufacturability makes PM-fabricated Ti-28Nb-35.4Zr alloy a low-cost, highly-biocompatible, Ti-based biomedical alloy. PMID:29601517

  11. High performance H-mode plasmas at densities above the Greenwald limit

    International Nuclear Information System (INIS)

    Mahdavi, M.A.; Osborne, T.H.; Leonard, A.W.

    2001-01-01

    Densities up to 40 percent above the Greenwald limit are reproducibly achieved in high confinement (H ITER89p =2) ELMing H-mode discharges. Simultaneous gas fueling and divertor pumping were used to obtain these results. Confinement of these discharges, similar to moderate density H-mode, is characterized by a stiff temperature profile, and therefore sensitive to the density profile. A particle transport model is presented that explains the roles of divertor pumping and geometry for access to high densities. Energy loss per ELM at high density is a factor of five lower than predictions of an earlier scaling, based on data from lower density discharges. (author)

  12. Novel nanostructured materials for high energy density supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, C.Z.; Zhang, X.G. [Nanjing Univ. of Aeronautics and Astronautics (China). College of Material Science and Engineering

    2010-07-01

    Researchers are currently examining methods of improving energy density while not sacrificing the high power density of supercapacitors. In this study, nanostructured materials assembled from nanometer-sized building blocks with mesoporosity were synthesized in order investigate diffusion time, kinetics, and capacitances. Petal-like cobalt hydroxide Co(OH){sub 2} mesocrystals, urchin-like Co(OH){sub 2} and dicobalt tetroxide (Co{sub 2}O{sub 4}) ordered arrays as well as N{sub i}O microspheres were assembled from 0-D nanoparticles, 1-D mesoporous nanowires and nanobelts, and 2-D mesoporous nanopetals. The study showed that all the synthesized nanostructured materials delivered larger energy densities while showing electrochemical stability at high rates.

  13. Program for in-pile qualification of high density silicide dispersion fuel at IPEN/CNEN-SP

    International Nuclear Information System (INIS)

    Silva, Jose E.R. da; Silva, Antonio T. e; Terremoto, Luis A.A.; Durazzo, Michelangelo

    2009-01-01

    The development of high density nuclear fuel (U 3 Si 2 -Al) with 4,8 gU/cm 3 is on going at IPEN, at this time. This fuel has been considered to be utilized at the new Brazilian Multipurpose Reactor (RMB), planned to be constructed up to 2014. As Brazil does not have hot-cell facilities available for post-irradiation analysis, an alternative qualifying program for this fuel is proposed based on the same procedures used at IPEN since 1988 for qualifying its own U 3 O 8 -Al (1,9 and 2,3 gU/cm 3 ) and U 3 Si 2 -Al (3,0 gU/cm 3 ) dispersion fuels. The fuel miniplates and full-size fuel elements irradiations should be tested at IEA-R1 core. The fuel characterization along the irradiation time should be made by means of non-destructive methods, including periodical visual inspections with an underwater video camera system, sipping tests for fuel elements suspected of leakage, and underwater dimensional measurements for swelling evaluation, performed inside the reactor pool. This work presents the program description for the qualification of the high density nuclear fuel (U 3 Si 2 -Al) with 4,8 gU/cm 3 , and describes the IPEN fuel fabrication infrastructure and some basic features of the available systems for non-destructive tests at IEA-R1 research reactor. (author)

  14. Fabrication of Composite Filaments with High Dielectric Permittivity for Fused Deposition 3D Printing.

    Science.gov (United States)

    Wu, Yingwei; Isakov, Dmitry; Grant, Patrick S

    2017-10-23

    Additive manufacturing of complex structures with spatially varying electromagnetic properties can enable new applications in high-technology sectors such as communications and sensors. This work presents the fabrication method as well as microstructural and dielectric characterization of bespoke composite filaments for fused deposition modeling (FDM) 3D printing of microwave devices with a high relative dielectric permittivity ϵ = 11 in the GHz frequency range. The filament is composed of 32 vol % of ferroelectric barium titanate (BaTiO 3 ) micro-particles in a polymeric acrylonitrile butadiene styrene (ABS) matrix. An ionic organic ester surfactant was added during formulation to enhance the compatibility between the polymer and the BaTiO 3 . To promote reproducible and robust printability of the fabricated filament, and to promote plasticity, dibutyl phthalate was additionally used. The combined effect of 1 wt % surfactant and 5 wt % plasticizer resulted in a uniform, many hundreds of meters, continuous filament of commercial quality capable of many hours of uninterrupted 3D printing. We demonstrate the feasibility of using the high dielectric constant filament for 3D printing through the fabrication of a range of optical devices. The approach herein may be used as a guide for the successful fabrication of many types of composite filament with varying functions for a broad range of applications.

  15. ON THE ORIGIN OF THE HIGH COLUMN DENSITY TURNOVER IN THE H I COLUMN DENSITY DISTRIBUTION

    International Nuclear Information System (INIS)

    Erkal, Denis; Gnedin, Nickolay Y.; Kravtsov, Andrey V.

    2012-01-01

    We study the high column density regime of the H I column density distribution function and argue that there are two distinct features: a turnover at N H I ≈ 10 21 cm –2 , which is present at both z = 0 and z ≈ 3, and a lack of systems above N H I ≈ 10 22 cm –2 at z = 0. Using observations of the column density distribution, we argue that the H I-H 2 transition does not cause the turnover at N H I ≈ 10 21 cm –2 but can plausibly explain the turnover at N H I ∼> 10 22 cm –2 . We compute the H I column density distribution of individual galaxies in the THINGS sample and show that the turnover column density depends only weakly on metallicity. Furthermore, we show that the column density distribution of galaxies, corrected for inclination, is insensitive to the resolution of the H I map or to averaging in radial shells. Our results indicate that the similarity of H I column density distributions at z = 3 and 0 is due to the similarity of the maximum H I surface densities of high-z and low-z disks, set presumably by universal processes that shape properties of the gaseous disks of galaxies. Using fully cosmological simulations, we explore other candidate physical mechanisms that could produce a turnover in the column density distribution. We show that while turbulence within giant molecular clouds cannot affect the damped Lyα column density distribution, stellar feedback can affect it significantly if the feedback is sufficiently effective in removing gas from the central 2-3 kpc of high-redshift galaxies. Finally, we argue that it is meaningful to compare column densities averaged over ∼ kpc scales with those estimated from quasar spectra that probe sub-pc scales due to the steep power spectrum of H I column density fluctuations observed in nearby galaxies.

  16. The Effect Of Weave Construction On Tear Strength Of Woven Fabrics

    Directory of Open Access Journals (Sweden)

    Eryuruk Selin Hanife

    2015-09-01

    Full Text Available The tear strength of a woven fabric is very important, since it is more closely related to serviceability of the fabric. Tearing strength of the fabrics depend on the mobility of the yarn within the fabric structure. In this study, the tearing strength of four types of fabrics warp rib, weft rib, ripstop and plain weave were analysed, which were produced in different densities and with filament and texturised polyester yarns.

  17. Effect of mix proportion of high density concrete on compressive strength, density and radiation absorption

    International Nuclear Information System (INIS)

    Noor Azreen Masenwat; Mohamad Pauzi Ismail; Suhairy Sani; Ismail Mustapha; Nasharuddin Isa; Mohamad Haniza Mahmud; Mohammad Shahrizan Samsu

    2014-01-01

    To prevent radiation leaks at nuclear reactors, high-density concrete is used as an absorbent material for radiation from spreading into the environment. High-density concrete is a mixture of cement, sand, aggregate (usually high-density minerals) and water. In this research, hematite stone is used because of its mineral density higher than the granite used in conventional concrete mixing. Mix concrete in this study were divided into part 1 and part 2. In part 1, the concrete mixture is designed with the same ratio of 1: 2: 4 but differentiated in terms of water-cement ratio (0.60, 0.65, 0.70, 0.75, 0.80 ). Whereas, in part 2, the concrete mixture is designed to vary the ratio of 1: 1: 2, 1: 1.5: 3, 1: 2: 3, 1: 3: 6, 1: 2: 6 with water-cement ratio (0.7, 0.8, 0.85, 0.9). In each section, the division has also performed in a mixture of sand and fine sand hematite. Then, the physical characteristics of the density and the compressive strength of the mixture of part 1 and part 2 is measured. Comparisons were also made in terms of absorption of radiation by Cs-137 and Co-60 source for each mix. This paper describes and discusses the relationship between the concrete mixture ratio, the relationship with the water-cement ratio, compressive strength, density, different mixture of sand and fine sand hematite. (author)

  18. High-Performance Vertical Organic Electrochemical Transistors.

    Science.gov (United States)

    Donahue, Mary J; Williamson, Adam; Strakosas, Xenofon; Friedlein, Jacob T; McLeod, Robert R; Gleskova, Helena; Malliaras, George G

    2018-02-01

    Organic electrochemical transistors (OECTs) are promising transducers for biointerfacing due to their high transconductance, biocompatibility, and availability in a variety of form factors. Most OECTs reported to date, however, utilize rather large channels, limiting the transistor performance and resulting in a low transistor density. This is typically a consequence of limitations associated with traditional fabrication methods and with 2D substrates. Here, the fabrication and characterization of OECTs with vertically stacked contacts, which overcome these limitations, is reported. The resulting vertical transistors exhibit a reduced footprint, increased intrinsic transconductance of up to 57 mS, and a geometry-normalized transconductance of 814 S m -1 . The fabrication process is straightforward and compatible with sensitive organic materials, and allows exceptional control over the transistor channel length. This novel 3D fabrication method is particularly suited for applications where high density is needed, such as in implantable devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Preliminary studies on fabrication routes for SYNROC

    International Nuclear Information System (INIS)

    Evans, J.P.; Paige, E.L.

    1980-12-01

    The use of Synroc as a disposal medium for magnox waste has been evaluated and three possible methods of fabrication have been investigated. Hot pressing in graphite dies has produced the highest densities - further work is proceeding on sintering and hot isostatic pressing. The leach test results have indicated that the lowest density samples have adequate leach resistance while the higher density samples are an order of magnitude better. (author)

  20. Fabricating High-Quality 3D-Printed Alloys for Dental Applications

    Directory of Open Access Journals (Sweden)

    Min-Ho Hong

    2017-07-01

    Full Text Available Metal additive manufacturing (AM, especially selective laser melting (SLM, has been receiving particular attention because metallic functional structures with complicated configurations can be effectively fabricated using the technique. However, there still exist some future challenges for the fabrication of high-quality SLM products for dental applications. First, the surface quality of SLM products should be further improved by standardizing the laser process parameters or by appropriately post-treating the surface. Second, it should be guaranteed that dental SLM restorations have good dimensional accuracy and, in particular, a good marginal fit. Third, a definitive standard regarding building and scanning strategies, which affect the anisotropy, should be established to optimize the mechanical properties and fatigue resistance of SLM dental structures. Fourth, the SLM substructure’s bonding and support to veneering ceramic should be further studied to facilitate the use of esthetic dental restorations. Finally, the biocompatibility of SLM dental alloys should be carefully examined and improved to minimize the potential release of toxic metal ions from the alloys. Future research of SLM should focus on solving the above challenges, as well as on fabricating dental structures with “controlled” porosity.

  1. Layer-by-Layer Assembly of Polyelectrolyte Multilayer onto PET Fabric for Highly Tunable Dyeing with Water Soluble Dyestuffs

    Directory of Open Access Journals (Sweden)

    Shili Xiao

    2017-12-01

    Full Text Available Poly(ethyleneterephthalate (PET is a multi-purpose and widely used synthetic polymer in many industrial fields because of its remarkable advantages such as low cost, light weight, high toughness and resistance to chemicals, and high abrasion resistance. However, PET suffers from poor dyeability due to its non-polar nature, benzene ring structure as well as high crystallinity. In this study, PET fabrics were firstly treated with an alkaline solution to produce carboxylic acid functional groups on the surface of the PET fabric, and then was modified by polyelectrolyte polymer through the electrostatic layer-by-layer self-assembly technology. The polyelectrolyte multilayer-deposited PET fabric was characterized using scanning electron microscopy SEM, contact angle, Fourier transform infrared (FTIR and X-ray photoelectron spectroscopy (XPS. The dyeability of PET fabrics before and after surface modification was systematically investigated. It showed that the dye-uptake of the polyelectrolyte multilayer-deposited PET fabric has been enhanced compared to that of the pristine PET fabric. In addition, its dyeability is strongly dependent on the surface property of the polyelectrolyte multilayer-deposited PET fabric and the properties of dyestuffs.

  2. High density fuel storage rack

    International Nuclear Information System (INIS)

    Zezza, L.J.

    1980-01-01

    High storage density for spent nuclear fuel assemblies in a pool achieved by positioning fuel storage cells of high thermal neutron absorption materials in an upright configuration in a rack. The rack holds the cells at required pitch. Each cell carries an internal fuel assembly support, and most cells are vertically movable in the rack so that they rest on the pool bottom. Pool water circulation through the cells and around the fuel assemblies is permitted by circulation openings at the top and bottom of the cells above and below the fuel assemblies

  3. The Impact of Dopant Segregation on the Maximum Carrier Density in Si:P Multilayers.

    Science.gov (United States)

    Keizer, Joris G; McKibbin, Sarah R; Simmons, Michelle Y

    2015-07-28

    Abrupt dopant profiles and low resistivity are highly sought after qualities in the silicon microelectronics industry and, more recently, in the development of an all epitaxial Si:P based quantum computer. If we increase the active carrier density in silicon to the point where the material becomes superconducting, while maintaining a low thermal budget, it will be possible to fabricate nanoscale superconducting devices using the highly successful technique of depassivation lithography. In this work, we investigate the dopant profile and activation in multiple high density Si:P δ-layers fabricated by stacking individual layers with intervening silicon growth. We determine that dopant activation is ultimately limited by the formation of P-P dimers due to the segregation of dopants between multilayers. By increasing the encapsulation thickness between subsequent layers, thereby minimizing the formation of these deactivating defects, we are able to achieve an active carrier density of ns = 4.5 ×10(14) cm(-2) for a triple layer. The results of electrical characterization are combined with those of secondary ion mass spectroscopy to construct a model that accurately describes the impact of P segregation on the final active carrier density in Si:P multilayers. Our model predicts that a 3D active carrier density of 8.5 × 10(20) cm(-3) (1.7 atom %) can be achieved.

  4. Low-temperature fabrication of sputtered high-k HfO2 gate dielectric for flexible a-IGZO thin film transistors

    Science.gov (United States)

    Yao, Rihui; Zheng, Zeke; Xiong, Mei; Zhang, Xiaochen; Li, Xiaoqing; Ning, Honglong; Fang, Zhiqiang; Xie, Weiguang; Lu, Xubing; Peng, Junbiao

    2018-03-01

    In this work, low temperature fabrication of a sputtered high-k HfO2 gate dielectric for flexible a-IGZO thin film transistors (TFTs) on polyimide substrates was investigated. The effects of Ar-pressure during the sputtering process and then especially the post-annealing treatments at low temperature (≤200 °C) for HfO2 on reducing the density of defects in the bulk and on the surface were systematically studied. X-ray reflectivity, UV-vis and X-ray photoelectron spectroscopy, and micro-wave photoconductivity decay measurements were carried out and indicated that the high quality of optimized HfO2 film and its high dielectric properties contributed to the low concentration of structural defects and shallow localized defects such as oxygen vacancies. As a result, the well-structured HfO2 gate dielectric exhibited a high density of 9.7 g/cm3, a high dielectric constant of 28.5, a wide optical bandgap of 4.75 eV, and relatively low leakage current. The corresponding flexible a-IGZO TFT on polyimide exhibited an optimal device performance with a saturation mobility of 10.3 cm2 V-1 s-1, an Ion/Ioff ratio of 4.3 × 107, a SS value of 0.28 V dec-1, and a threshold voltage (Vth) of 1.1 V, as well as favorable stability under NBS/PBS gate bias and bending stress.

  5. High Density GEOSAT/GM Altimeter Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The high density Geosat/GM altimeter data south of 30 S have finally arrived. In addition, ERS-1 has completed more than 6 cycles of its 35-day repeat track. These...

  6. Aloe vera Derived Activated High-Surface-Area Carbon for Flexible and High-Energy Supercapacitors.

    Science.gov (United States)

    Karnan, M; Subramani, K; Sudhan, N; Ilayaraja, N; Sathish, M

    2016-12-28

    Materials which possess high specific capacitance in device configuration with low cost are essential for viable application in supercapacitors. Herein, a flexible high-energy supercapacitor device was fabricated using porous activated high-surface-area carbon derived from aloe leaf (Aloe vera) as a precursor. The A. vera derived activated carbon showed mesoporous nature with high specific surface area of ∼1890 m 2 /g. A high specific capacitance of 410 and 306 F/g was achieved in three-electrode and symmetric two-electrode system configurations in aqueous electrolyte, respectively. The fabricated all-solid-state device showed a high specific capacitance of 244 F/g with an energy density of 8.6 Wh/kg. In an ionic liquid electrolyte, the fabricated device showed a high specific capacitance of 126 F/g and a wide potential window up to 3 V, which results in a high energy density of 40 Wh/kg. Furthermore, it was observed that the activation temperature has significant role in the electrochemical performance, as the activated sample at 700 °C showed best activity than the samples activated at 600 and 800 °C. The electron microscopic images (FE-SEM and HR-TEM) confirmed the formation of pores by the chemical activation. A fabricated supercapacitor device in ionic liquid with 3 V could power up a red LED for 30 min upon charging for 20s. Also, it is shown that the operation voltage and capacitance of flexible all-solid-state symmetric supercapacitors fabricated using aloe-derived activated carbon could be easily tuned by series and parallel combinations. The performance of fabricated supercapacitor devices using A. vera derived activated carbon in all-solid-state and ionic liquid indicates their viable applications in flexible devices and energy storage.

  7. Fabrication of superhydrophobic cotton fabrics using crosslinking polymerization method

    Science.gov (United States)

    Jiang, Bin; Chen, Zhenxing; Sun, Yongli; Yang, Huawei; Zhang, Hongjie; Dou, Haozhen; Zhang, Luhong

    2018-05-01

    With the aim of removing and recycling oil and organic solvent from water, a facile and low-cost crosslinking polymerization method was first applied on surface modification of cotton fabrics for water/oil separation. Micro-nano hierarchical rough structure was constructed by triethylenetetramine (TETA) and trimesoyl chloride (TMC) that formed a polymeric layer on the surface of the fabric and anchored Al2O3 nanoparticles firmly between the fabric surface and the polymer layer. Superhydrophobic property was further obtained through self-assembly grafting of hydrophobic groups on the rough surface. The as-prepared cotton fabric exhibited superoleophilicity in atmosphere and superhydrophobicity both in atmosphere and under oil with the water contact angle of 153° and 152° respectively. Water/oil separation test showed that the as-prepared cotton fabric can handle with various oil-water mixtures with a high separation efficiency over 99%. More importantly, the separation efficiency remained above 98% over 20 cycles of reusing without losing its superhydrophobicity which demonstrated excellent reusability in oil/water separation process. Moreover, the as-prepared cotton fabric possessed good contamination resistance ability and self-cleaning property. Simulation washing process test showed the superhydrophobic cotton fabric maintained high value of water contact angle above 150° after 100 times washing, indicating great stability and durability. In summary, this work provides a brand-new way to surface modification of cotton fabric and makes it a promising candidate material for oil/water separation.

  8. Enhancing DNA binding rate using optical trapping of high-density gold nanodisks

    International Nuclear Information System (INIS)

    Lin, En-Hung; Pan, Ming-Yang; Lee, Ming-Chang; Wei, Pei-Kuen

    2014-01-01

    We present the dynamic study of optical trapping of fluorescent molecules using high-density gold nanodisk arrays. The gold nanodisks were fabricated by electron beam lithography with a diameter of 500 nm and a period of 1 μm. Dark-field illumination showed ∼15 times enhancement of fluorescence near edges of nanodisks. Such enhanced near-field generated an optical trapping force of ∼10 fN under 3.58 × 10 3 W/m 2 illumination intensity as calculated from the Brownian motions of 590 nm polystyrene beads. Kinetic observation of thiolated DNA modified with Cy5 dye showed different binding rates of DNA under different illumination intensity. The binding rate increased from 2.14 × 10 3 s −1 (I = 0.7 × 10 3 W/m 2 ) to 1.15 × 10 5 s −1 (I = 3.58 × 10 3 W/m 2 ). Both enhanced fluorescence and binding rate indicate that gold nanodisks efficiently improve both detection limit and interaction time for microarrays

  9. The creation of high energy densities with antimatter beams

    International Nuclear Information System (INIS)

    Gibbs, W.R.; Kruk, J.W.; Rice Univ., Houston, TX

    1989-01-01

    The use of antiprotons (and antideuterons) for the study of the behavior of nuclear matter at high energy density is considered. It is shown that high temperatures and high energy densities can be achieved for small volumes. Also investigated is the strangeness production in antimatter annihilation. It is found that the high rate of Lambda production seen in a recent experiment is easily understood. The Lambda and K-short rapidity distributions are also reproduced by the model considered. 11 refs., 6 figs

  10. High baryon density from relativistic heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Y.; Kahana, S.H. [Brookhaven National Lab., Upton, NY (United States); Schlagel, T.J. [Brookhaven National Lab., Upton, NY (United States)]|[State Univ. of New York, Stony Brook, NY (United States)

    1993-10-01

    A quantitative model, based on hadronic physics, is developed and applied to heavy ion collisions at BNL-AGS energies. This model is in excellent agreement with observed particle spectra in heavy ion collisions using Si beams, where baryon densities of three and four times the normal nuclear matter density ({rho}{sub 0}) are reached. For Au on Au collisions, the authors predict the formation of matter at very high densities (up to 10 {rho}{sub 0}).

  11. Serum osteoprotegerin levels and mammographic density among high-risk women.

    Science.gov (United States)

    Moran, Olivia; Zaman, Tasnim; Eisen, Andrea; Demsky, Rochelle; Blackmore, Kristina; Knight, Julia A; Elser, Christine; Ginsburg, Ophira; Zbuk, Kevin; Yaffe, Martin; Narod, Steven A; Salmena, Leonardo; Kotsopoulos, Joanne

    2018-06-01

    Mammographic density is a risk factor for breast cancer but the mechanism behind this association is unclear. The receptor activator of nuclear factor κB (RANK)/RANK ligand (RANKL) pathway has been implicated in the development of breast cancer. Given the role of RANK signaling in mammary epithelial cell proliferation, we hypothesized this pathway may also be associated with mammographic density. Osteoprotegerin (OPG), a decoy receptor for RANKL, is known to inhibit RANK signaling. Thus, it is of interest to evaluate whether OPG levels modify breast cancer risk through mammographic density. We quantified serum OPG levels in 57 premenopausal and 43 postmenopausal women using an enzyme-linked immunosorbent assay (ELISA). Cumulus was used to measure percent density, dense area, and non-dense area for each mammographic image. Subjects were classified into high versus low OPG levels based on the median serum OPG level in the entire cohort (115.1 pg/mL). Multivariate models were used to assess the relationship between serum OPG levels and the measures of mammographic density. Serum OPG levels were not associated with mammographic density among premenopausal women (P ≥ 0.42). Among postmenopausal women, those with low serum OPG levels had higher mean percent mammographic density (20.9% vs. 13.7%; P = 0.04) and mean dense area (23.4 cm 2 vs. 15.2 cm 2 ; P = 0.02) compared to those with high serum OPG levels after covariate adjustment. These findings suggest that low OPG levels may be associated with high mammographic density, particularly in postmenopausal women. Targeting RANK signaling may represent a plausible, non-surgical prevention option for high-risk women with high mammographic density, especially those with low circulating OPG levels.

  12. Fabrication of detectors and transistors on high-resistivity silicon

    International Nuclear Information System (INIS)

    Holland, S.

    1988-06-01

    A new process for the fabrication of silicon p-i-n diode radiation detectors is described. The utilization of backside gettering in the fabrication process results in the actual physical removal of detrimental impurities from critical device regions. This reduces the sensitivity of detector properties to processing variables while yielding low diode reverse-leakage currents. In addition, gettering permits the use of processing temperatures compatible with integrated-circuit fabrication. P-channel MOSFETs and silicon p-i-n diodes have been fabricated simultaneously on 10 kΩ/centerreverse arrowdot/cm silicon using conventional integrated-circuit processing techniques. 25 refs., 5 figs

  13. High temperature SU-8 pyrolysis for fabrication of carbon electrodes

    DEFF Research Database (Denmark)

    Hassan, Yasmin Mohamed; Caviglia, Claudia; Hemanth, Suhith

    2017-01-01

    In this work, we present the investigation of the pyrolysis parameters at high temperature (1100 °C) for the fabrication of two-dimensional pyrolytic carbon electrodes. The electrodes were fabricated by pyrolysis of lithographically patterned negative epoxy based photoresist SU-8. A central...... composite experimental design was used to identify the influence of dwell time at the highest pyrolysis temperature and heating rate on electrical, electrochemical and structural properties of the pyrolytic carbon: Van der Pauw sheet resistance measurements, cyclic voltammetry, electrochemical impedance...... spectroscopy and Raman spectroscopy were used to characterize the pyrolytic carbon. The results show that the temperature increase from 900 °C to 1100 °C improves the electrical and electrochemical properties. At 1100 °C, longer dwell time leads to lower resistivity, while the variation of the pyrolysis...

  14. High-performance supercapacitors based on nanocomposites of Nb{sub 2}O{sub 5} nanocrystals and carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaolei; Chen, Zheng; Lu, Yunfeng [Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA (United States); Li, Ge [Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA (United States); Department of Physics, East China Normal University, Shanghai (China); Augustyn, Veronica; Dunn, Bruce [Department of Material Science and Engineering, University of California, Los Angeles, CA (United States); Ma, Xueming [Department of Physics, East China Normal University, Shanghai (China); Wang, Ge [School of Materials Science and Engineering, University of Science and Technology, Beijing (China)

    2011-11-15

    Nanocomposites of CNTs and Nb{sub 2}O{sub 5} nanocrystals were fabricated exhibiting excellent conductivity, high specific capacitance, and large voltage window, which led to successful fabrication of asymmetric supercapacitors with high energy densities, power densities, and cycling stability. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Density Functional Methods for Shock Physics and High Energy Density Science

    Science.gov (United States)

    Desjarlais, Michael

    2017-06-01

    Molecular dynamics with density functional theory has emerged over the last two decades as a powerful and accurate framework for calculating thermodynamic and transport properties with broad application to dynamic compression, high energy density science, and warm dense matter. These calculations have been extensively validated against shock and ramp wave experiments, are a principal component of high-fidelity equation of state generation, and are having wide-ranging impacts on inertial confinement fusion, planetary science, and shock physics research. In addition to thermodynamic properties, phase boundaries, and the equation of state, one also has access to electrical conductivity, thermal conductivity, and lower energy optical properties. Importantly, all these properties are obtained within the same theoretical framework and are manifestly consistent. In this talk I will give a brief history and overview of molecular dynamics with density functional theory and its use in calculating a wide variety of thermodynamic and transport properties for materials ranging from ambient to extreme conditions and with comparisons to experimental data. I will also discuss some of the limitations and difficulties, as well as active research areas. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Characterization of a silica-PVA hybrid for high density and stable silver dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Dorin, Bryce, E-mail: bryce.dorin@postgrad.manchester.ac.uk [The Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); School of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Zhu, Guangyu, E-mail: g.zhu@liverpool.ac.uk [Lairdside Laser Engineering Centre, The University of Liverpool, Campbeltown Road, Merseyside, CH41 9HP (United Kingdom); Parkinson, Patrick, E-mail: patrick.parkinson@manchester.ac.uk [The Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Perrie, Walter, E-mail: wpfemto1@liverpool.ac.uk [Lairdside Laser Engineering Centre, The University of Liverpool, Campbeltown Road, Merseyside, CH41 9HP (United Kingdom); Benyezzar, Med, E-mail: med.benyezzar@manchester.ac.uk [The Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Scully, Patricia, E-mail: patricia.scully@manchester.ac.uk [The Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); School of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)

    2016-07-01

    A silica and polyvinyl alcohol (PVA) hybrid material mixed with a high density of silver ions is synthesised and characterized in this work. The hybrid material can be cast into thick films, which we determined to be homogeneous using Raman spectroscopy. We observed that the silver ions remain stable in the material over time and at temperatures of 100 °C, which represents a marked improvement over previous solid solutions of silver. Differential scanning calorimetry and thermogravimetric analysis indicate the rapid activation of silver at 173 °C, resulting in a dense formation of silver nanoparticles within the hybrid. The activation of silver was also demonstrated in 3-dimensional geometries using femtosecond duration laser pulses. These results illustrate the silica-PVA hybrid is an attractive material for developing silver-insulator composites. - Highlights: • A novel PVA-silica hybrid is developed for silver ion dissolution. • The hybrid exhibits a high silver saturation point and good silver stability. • Heating and laser irradiation are capable of converting the silver ions to metal. • The hybrid material enables the fabrication of 3D metal-insulator composites.

  17. Superhydrophilicity of a nanofiber-covered aluminum surface fabricated via pyrophosphoric acid anodizing

    Science.gov (United States)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2016-12-01

    A superhydrophilic aluminum surface covered by numerous alumina nanofibers was fabricated via pyrophosphoric acid anodizing. High-density anodic alumina nanofibers grow on the bottom of a honeycomb oxide via anodizing in concentrated pyrophosphoric acid. The water contact angle on the nanofiber-covered aluminum surface decreased with time after a 4 μL droplet was placed on the surface, and a superhydrophilic behavior with a contact angle measuring 2.2° was observed within 2 s; this contact angle is considerably lower than those observed for electropolished and porous alumina-covered aluminum surfaces. There was no dependence of the superhydrophilicity on the density of alumina nanofibers fabricated via different constant voltage anodizing conditions. The superhydrophilic property of the surface covered by anodic alumina nanofibers was maintained during an exposure test for 359 h. The quick-drying and snow-sliding behaviors of the superhydrophilic aluminum covered with anodic alumina nanofibers were demonstrated.

  18. Method to fabricate block fuel elements for high temperature reactors

    International Nuclear Information System (INIS)

    Hrovat, M.; Rachor, L.

    1977-01-01

    The fabrication of block fuel elements for gas-cooled high temperature reactors can be improved upon by adding 0.2 to 2 wt.% of a hydrocarbon compound to the lubricating mixture prior to pressing. Hexanol or octanol are named as substances. The dimensional accuracy of the block is thus improved. 2 examples illustrate the method. (RW) [de

  19. Method to fabricate block fuel elements for high temperature reactors

    International Nuclear Information System (INIS)

    Hrovat, M.; Rachor, L.

    1978-01-01

    The fabrication of block fuel elements for gas-cooled high temperature reactors can be improved upon by adding 0.2 to 2 wt.% of a hydrocarbon compound to the lubricating mixture prior to pressing. Hexanol or octanol are named as substances. The dimensional accuracy of the block is thus improved. 2 examples illustrate the method. (orig./PW)

  20. Morphodynamics of supercritical high-density turbidity currents

    NARCIS (Netherlands)

    Cartigny, M.

    2012-01-01

    Seafloor and outcrop observations combined with numerical and physical experiments show that turbidity currents are likely 1) to be in a supercritical flow state and 2) to carry high sediment concentrations (being of high-density). The thesis starts with an experimental study of bedforms

  1. Foldable, High Energy Density Lithium Ion Batteries

    Science.gov (United States)

    Suresh, Shravan

    Lithium Ion Batteries (LIBs) have become ubiquitous owing to its low cost, high energy density and, power density. Due to these advantages, LIBs have garnered a lot of attention as the primary energy storage devices in consumer electronics and electric vehicles. Recent advances in the consumer electronics research and, the drive to reduce greenhouse gases have created a demand for a shape conformable, high energy density batteries. This thesis focuses on the aforementioned two aspects of LIBs: (a) shape conformability (b) energy density and provides potential solutions to enhance them. This thesis is divided into two parts viz. (i) achieving foldability in batteries and, (ii) improving its energy density. Conventional LIBs are not shape conformable due to two limitations viz. inelasticity of metallic foils, and delamination of the active materials while bending. In the first part of the thesis (in Chapter 3), this problem is solved by replacing metallic current collector with Carbon Nanotube Macrofilms (CNMs). CNMs are superelastic films comprising of porous interconnected nanotube network. Using Molecular Dynamics (MD) simulation, we found that in the presence of an interconnected nanotube network CNMs can be fully folded. This is because the resultant stress due to bending and, the effective bending angle at the interface is reduced due to the network of nanotubes. Hence, unlike an isolated nanotube (which ruptures beyond 120 degrees of bending), a network of nanotubes can be completely folded. Thus, by replacing metallic current collector foils with CNMs, the flexibility limitation of a conventional LIB can be transcended. The second part of this thesis focusses on enhancing the energy density of LIBs. Two strategies adopted to achieve this goal are (a) removing the dead weight of the batteries, and (b) incorporating high energy density electrode materials. By incorporating CNMs, the weight of the batteries was reduced by 5-10 times due to low mass loading of

  2. New polymorphous computing fabric

    International Nuclear Information System (INIS)

    Wolinski, Christophe; Gokhale, Maya; McCabe, Kevin P.

    2002-01-01

    This paper introduces a new polymorphous computing Fabric well suited to DSP and Image Processing and describes its implementation on a Configurable System on a Chip (CSOC). The architecture is highly parameterized and enables customization of the synthesized Fabric to achieve high performance for a specific class of application. For this reason it can be considered to be a generic model for hardware accelerator synthesis from a high level specification. Another important innovation is the Fabric uses a global memory concept, which gives the host processor random access to all the variables and instructions on the Fabric. The Fabric supports different computing models including MIMD, SPMD and systolic flow and permits dynamic reconfiguration. We present a specific implementation of a bank of FIR filters on a Fabric composed of 52 cells on the Altera Excalibur ARM running at 33 MHz. The theoretical performance of this Fabric is 1.8 GMACh. For the FIR application we obtain 1.6 GMAC/s real performance. Some automatic tools have been developed like the tool to provide a host access utility and assembler.

  3. Fabrication of combinatorial nm-planar electrode array for high throughput evaluation of organic semiconductors

    International Nuclear Information System (INIS)

    Haemori, M.; Edura, T.; Tsutsui, K.; Itaka, K.; Wada, Y.; Koinuma, H.

    2006-01-01

    We have fabricated a combinatorial nm-planar electrode array by using photolithography and chemical mechanical polishing processes for high throughput electrical evaluation of organic devices. Sub-nm precision was achieved with respect to the average level difference between each pair of electrodes and a dielectric layer. The insulating property between the electrodes is high enough to measure I-V characteristics of organic semiconductors. Bottom-contact field-effect-transistors (FETs) of pentacene were fabricated on this electrode array by use of molecular beam epitaxy. It was demonstrated that the array could be used as a pre-patterned device substrate for high throughput screening of the electrical properties of organic semiconductors

  4. 3D direct writing fabrication of electrodes for electrochemical storage devices

    Science.gov (United States)

    Wei, Min; Zhang, Feng; Wang, Wei; Alexandridis, Paschalis; Zhou, Chi; Wu, Gang

    2017-06-01

    Among different printing techniques, direct ink writing is commonly used to fabricate 3D battery and supercapacitor electrodes. The major advantages of using the direct ink writing include effectively building 3D structure for energy storage devices and providing higher power density and higher energy density than traditional techniques due to the increased surface area of electrode. Nevertheless, direct ink writing has high standards for the printing inks, which requires high viscosity, high yield stress under shear and compression, and well-controlled viscoelasticity. Recently, a number of 3D-printed energy storage devices have been reported, and it is very important to understand the printing process and the ink preparation process for further material design and technology development. We discussed current progress of direct ink writing technologies by using various electrode materials including carbon nanotube-based material, graphene-based material, LTO (Li4Ti5O12), LFP (LiFePO4), LiMn1-xFexPO4, and Zn-based metallic oxide. Based on achieve electrochemical performance, these 3D-printed devices deliver performance comparable to the energy storage device fabricated using traditional methods still leaving large room for further improvement. Finally, perspectives are provided on the potential future direction of 3D printing for all solid-state electrochemical energy storage devices.

  5. MEMS based fabrication of high-frequency integrated inductors on Ni–Cu–Zn ferrite substrates

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, Ricky, E-mail: ricky.anthony@tyndall.ie; Wang, Ningning, E-mail: ning.wang@tyndall.ie; Casey, Declan P.; Ó Mathúna, Cian; Rohan, James F.

    2016-05-15

    A surface micro-machining process is described to realize planar inductors on ferrite (Ni{sub 0.49}Zn{sub 0.33}Cu{sub 0.18} Fe{sub 2}O{sub 4}) for high-frequency applications (<30 MHz). The highly resistive nature (~10{sup 8} Ω m) of the Ni–Cu–Zn substrate allows direct conductor patterning by electroplating of Cu windings through a photoresist mold on a sputtered seed layer and eliminates the need for a dielectric layer to isolate the windings from the bottom magnetic core. Measured inductances~367 nH (DC resistance~1.16 Ω and Q-value>14 at 30 MHz) and ~244 nH (DC resistance~0.86 Ω and Q-value~18 at 30 MHz) at 1 MHz for elongated racetrack (10.75 nH/mm{sup 2}) and racetrack inductors (12.5 nH/mm{sup 2}), respectively show good agreement with simulated finite element method analysis. This device can be integrated with power management ICs PMICs for cost-effective, high-performance realization of power-supply in package (PSiP) or on-chip (PSoC). This simple process lays the foundation for fabricating closed core ferrite nano-crystalline core micro-inductors. - Graphical abstract: Material Characterization of Ni–Cu–Zn ferrite substrate and process developed for on-ferrite integrated micro-inductor fabrication. - Highlights: • High-frequency microinductors have been fabricated on Ni-Cu-Zn substrates. • High-resistive ferrite substrates assist direct conductor patterning on the surface. • Uniform inductances ~365 nH over 30 MHz frequency have been achieved. • High Q-values (>18 at 30 MHz) attained are applicable for high-frequency DC–DC conversion applications. • The described process lays the foundation for fabricating closed core ferrite nano-crystalline core.

  6. The Flexible Fabric of Space

    Science.gov (United States)

    VanNorsdall, Erin Leigh

    2015-08-01

    This poster will clearly illustrate my understanding of how the fabric of space behaves. The poster will be on a large trampoline with a heavy bowling ball in the center. The observer will be able to clearly understand the much more complicated property of how an object in space, such as a star, literally bends the fabric of the space around as a result of its density. This will also help to explain, in very simple terms, how space-time is bendable, and therefore, travel in space can be as well.

  7. The fabrication, characterisation and electrochemical investigation of screen-printed graphene electrodes.

    Science.gov (United States)

    Randviir, Edward P; Brownson, Dale A C; Metters, Jonathan P; Kadara, Rashid O; Banks, Craig E

    2014-03-14

    We report the fabrication, characterisation (SEM, Raman spectroscopy, XPS and ATR) and electrochemical implementation of novel screen-printed graphene electrodes. Electrochemical characterisation of the fabricated graphene electrodes is undertaken using an array of electroactive redox probes and biologically relevant analytes, namely: potassium ferrocyanide(II), hexaammine-ruthenium(III) chloride, N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), β-nicotinamide adenine dinucleotide (NADH), L-ascorbic acid (AA), uric acid (UA) and dopamine hydrochloride (DA). The electroanalytical capabilities of the fabricated electrodes are also considered towards the sensing of AA and DA. The electrochemical and (electro)analytical performances of the fabricated screen-printed graphene electrodes are considered with respect to the relative surface morphologies and material compositions (elucidated via SEM, Raman, XPS and ATR spectroscopy), the density of electronic states (% global coverage of edge-plane like sites/defects) and the specific fabrication conditions utilised. Comparisons are made between two screen-printed graphene electrodes and alternative graphite based screen-printed electrodes. The graphene electrodes are fabricated utilising two different commercially prepared 'graphene' inks, which have long screen ink lifetimes (>3 hours), thus this is the first report of a true mass-reproducible screen-printable graphene ink. Through employment of appropriate controls/comparisons we are able to report a critical assessment of these screen-printed graphene electrodes. This work is of high importance and demonstrates a proof-of-concept approach to screen-printed graphene electrodes that are highly reproducible, paving the way for mass-producible graphene sensing platforms in the future.

  8. Biopolymer-nanocarbon composite electrodes for use as high-energy high-power density electrodes

    Science.gov (United States)

    Karakaya, Mehmet; Roberts, Mark; Arcilla-Velez, Margarita; Zhu, Jingyi; Podila, Ramakrishna; Rao, Apparao

    2014-03-01

    Supercapacitors (SCs) address our current energy storage and delivery needs by combining the high power, rapid switching, and exceptional cycle life of a capacitor with the high energy density of a battery. Although activated carbon is extensively used as a supercapacitor electrode due to its inexpensive nature, its low specific capacitance (100-120 F/g) fundamentally limits the energy density of SCs. We demonstrate that a nano-carbon based mechanically robust, electrically conducting, free-standing buckypaper electrode modified with an inexpensive biorenewable polymer, viz., lignin increases the electrode's specific capacitance (~ 600-700 F/g) while maintaining rapid discharge rates. In these systems, the carbon nanomaterials provide the high surface area, electrical conductivity and porosity, while the redox polymers provide a mechanism for charge storage through Faradaic charge transfer. The design of redox polymers and their incorporation into nanomaterial electrodes will be discussed with a focus on enabling high power and high energy density electrodes. Research supported by US NSF CMMI Grant 1246800.

  9. Breast density estimation from high spectral and spatial resolution MRI

    Science.gov (United States)

    Li, Hui; Weiss, William A.; Medved, Milica; Abe, Hiroyuki; Newstead, Gillian M.; Karczmar, Gregory S.; Giger, Maryellen L.

    2016-01-01

    Abstract. A three-dimensional breast density estimation method is presented for high spectral and spatial resolution (HiSS) MR imaging. Twenty-two patients were recruited (under an Institutional Review Board--approved Health Insurance Portability and Accountability Act-compliant protocol) for high-risk breast cancer screening. Each patient received standard-of-care clinical digital x-ray mammograms and MR scans, as well as HiSS scans. The algorithm for breast density estimation includes breast mask generating, breast skin removal, and breast percentage density calculation. The inter- and intra-user variabilities of the HiSS-based density estimation were determined using correlation analysis and limits of agreement. Correlation analysis was also performed between the HiSS-based density estimation and radiologists’ breast imaging-reporting and data system (BI-RADS) density ratings. A correlation coefficient of 0.91 (pdensity estimations. An interclass correlation coefficient of 0.99 (pdensity estimations. A moderate correlation coefficient of 0.55 (p=0.0076) was observed between HiSS-based breast density estimations and radiologists’ BI-RADS. In summary, an objective density estimation method using HiSS spectral data from breast MRI was developed. The high reproducibility with low inter- and low intra-user variabilities shown in this preliminary study suggest that such a HiSS-based density metric may be potentially beneficial in programs requiring breast density such as in breast cancer risk assessment and monitoring effects of therapy. PMID:28042590

  10. Fabrication and characterization of anatase/rutile–TiO2 thin films by magnetron sputtering: a review

    Directory of Open Access Journals (Sweden)

    Sakae Tanemura, Lei Miao, Wilfried Wunderlich, Masaki Tanemura, Yukimasa Mori, Shoichi Toh and Kenji Kaneko

    2005-01-01

    Full Text Available This review article summarizes briefly some important achievements of our recent reserach on anatase and/or rutile TiO2 thin films, fabricated by helicon RF magnetron sputtering, with good crystal quality and high density, and gives the-state-of-the-art of the knowledge on systematic interrelationship for fabrication conditions, crystal structure, composition, optical properties, and bactericidal abilities, and on the effective surface treatment to improve the optical reactivity of the obtained films.

  11. Fabrication of high precision metallic freeform mirrors with magnetorheological finishing (MRF)

    Science.gov (United States)

    Beier, Matthias; Scheiding, Sebastian; Gebhardt, Andreas; Loose, Roman; Risse, Stefan; Eberhardt, Ramona; Tünnermann, Andreas

    2013-09-01

    The fabrication of complex shaped metal mirrors for optical imaging is a classical application area of diamond machining techniques. Aspherical and freeform shaped optical components up to several 100 mm in diameter can be manufactured with high precision in an acceptable amount of time. However, applications are naturally limited to the infrared spectral region due to scatter losses for shorter wavelengths as a result of the remaining periodic diamond turning structure. Achieving diffraction limited performance in the visible spectrum demands for the application of additional polishing steps. Magnetorheological Finishing (MRF) is a powerful tool to improve figure and finish of complex shaped optics at the same time in a single processing step. The application of MRF as a figuring tool for precise metal mirrors is a nontrivial task since the technology was primarily developed for figuring and finishing a variety of other optical materials, such as glasses or glass ceramics. In the presented work, MRF is used as a figuring tool for diamond turned aluminum lightweight mirrors with electroless nickel plating. It is applied as a direct follow-up process after diamond machining of the mirrors. A high precision measurement setup, composed of an interferometer and an advanced Computer Generated Hologram with additional alignment features, allows for precise metrology of the freeform shaped optics in short measuring cycles. Shape deviations less than 150 nm PV / 20 nm rms are achieved reliably for freeform mirrors with apertures of more than 300 mm. Characterization of removable and induced spatial frequencies is carried out by investigating the Power Spectral Density.

  12. GaN-Ready Aluminum Nitride Substrates for Cost-Effective, Very Low Dislocation Density III-Nitride LEDs

    International Nuclear Information System (INIS)

    Schujman, Sandra; Schowalter, Leo

    2011-01-01

    The objective of this project was to develop and then demonstrate the efficacy of a cost effective approach for a low defect density substrate on which AlInGaN LEDs can be fabricated. The efficacy of this 'GaN-ready' substrate would then be tested by growing high efficiency, long lifetime InxGa1-xN blue LEDs. The approach used to meet the project objectives was to start with low dislocation density AlN single-crystal substrates and grow graded Al x Ga 1-x N layers on top. Pseudomorphic Al x Ga 1-x N epitaxial layers grown on bulk AlN substrates were used to fabricate light emitting diodes and demonstrate better device performance as a result of the low defect density in these layers when benched marked against state-of-the-art LEDs fabricated on sapphire substrates. The pseudomorphic LEDs showed excellent output powers compared to similar wavelength devices grown on sapphire substrates, with lifetimes exceeding 10,000 hours (which was the longest time that could reliably be estimated). In addition, high internal quantum efficiencies were demonstrated at high driving current densities even though the external quantum efficiencies were low due to poor photon extraction. Unfortunately, these pseudomorphic LEDs require high Al content so they emit in the ultraviolet. Sapphire based LEDs typically have threading dislocation densities (TDD) > 10 8 cm -2 while the pseudomorphic LEDs have TDD (le) 10 5 cm -2 . The resulting TDD, when grading the Al x Ga 1-x N layer all the way to pure GaN to produce a 'GaN-ready' substrate, has varied between the mid 10 8 down to the 10 6 cm -2 . These inconsistencies are not well understood. Finally, an approach to improve the LED structures on AlN substrates for light extraction efficiency was developed by thinning and roughening the substrate.

  13. Reversed preparation of low-density poly(divinylbenzene/styrene) foam columns coated with gold films

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Yinhai; Wang, Ni; Li, Yaling; Yao, Mengqi; Gan, Haibo; Hu, Wencheng, E-mail: huwc@uestc.edu.cn

    2016-06-15

    Highlights: • A reversed fabrication of low density foam columns coated with gold films was proposed. • The uniformity in thickness and purity of gold film are easy to be controlled. • A compact layer is prepared through an electrophoretic deposition method. • A low density (12 mg/cc) foam column coated with gold film is obtained. - Abstract: This work aims to fabricate low-density, porous, non-conductive, structural poly(divinylbenzene/styrene) foam columns by high-internal-phase emulsion templating. We prepare these non-conductive foam columns coated with a thin gold layer by electrochemical deposition and the reversed preparation technique. As expected, the density of the foam obtained through this novel method was about 12 mg cm{sup −3}, and the thickness of the gold coating was about 3 μm. We performed field emission scanning electron microscopy to morphologically and microstructurally characterize the products and X-ray diffraction and energy dispersive spectroscopy to determine the composition of the gold coating.

  14. High dislocation density of tin induced by electric current

    International Nuclear Information System (INIS)

    Liao, Yi-Han; Liang, Chien-Lung; Lin, Kwang-Lung; Wu, Albert T.

    2015-01-01

    A dislocation density of as high as 10 17 /m 2 in a tin strip, as revealed by high resolution transmission electron microscope, was induced by current stressing at 6.5 x 10 3 A/ cm 2 . The dislocations exist in terms of dislocation line, dislocation loop, and dislocation aggregates. Electron Backscattered Diffraction images reflect that the high dislocation density induced the formation of low deflection angle subgrains, high deflection angle Widmanstätten grains, and recrystallization. The recrystallization gave rise to grain refining

  15. Electrochemical fabrication of Sn nanowires on titania nanotube guide layers

    International Nuclear Information System (INIS)

    Djenizian, Thierry; Hanzu, Ilie; Premchand, Yesudas D; Vacandio, Florence; Knauth, Philippe

    2008-01-01

    We describe a novel approach for the fabrication of tailored nanowires using a two-step electrochemical process. It is demonstrated that self-organized TiO 2 nanotubes can be used to activate and guide the electrochemical growth of Sn crystallites, leading to the formation of vertical features with a high aspect ratio. We show that the dimensions and the density of Sn crystallites depend on the electrodeposition parameters

  16. Open-cellular copper structures fabricated by additive manufacturing using electron beam melting

    International Nuclear Information System (INIS)

    Ramirez, D.A.; Murr, L.E.; Li, S.J.; Tian, Y.X.; Martinez, E.; Martinez, J.L.; Machado, B.I.; Gaytan, S.M.; Medina, F.; Wicker, R.B.

    2011-01-01

    Highlights: → Relative stiffness versus relative density measurements for reticulated mesh and stochastic open cellular copper were shown to follow the Gibson-Ashby foam model. → Microstructures for the mesh struts and foam ligaments illustrated a propensity of copper oxide precipitates which provided structural hardness and strength. → These components, fabricated by electron beam melting, exhibit interesting prospects for specialized, complex heat-transfer devices. - Abstract: Cu reticulated mesh and stochastic open cellular foams were fabricated by additive manufacturing using electron beam melting. Fabricated densities ranged from 0.73 g/cm 3 to 6.67 g/cm 3 . The precursor Cu powder contained Cu 2 O precipitates and the fabricated components contained arrays of Cu 2 O precipitates and interconnected dislocation microstructures having average spacings of ∼2 μm, which provide hardness values ∼75% above commercial Cu products. Plots of stiffness (Young's modulus) versus density and relative stiffness versus relative density were in very close agreement with the Gibson-Ashby model for open cellular foams. These open cellular structure components exhibit considerable potential for novel, complex, multi-functional electrical and thermal management systems, especially complex, monolithic heat exchange devices.

  17. Preparation and characterization of high-Tc superconducting thin films with high critical current densities

    International Nuclear Information System (INIS)

    Vase, P.

    1991-08-01

    The project was carried out in relation to possible cable and electronics applications of high-T c materials. Laser ablation was used as the deposition technique because of its stoichiometry conservation. Films were made in the YBa 2 Cu 3 O 7 compound due to its relatively simple stoichiometry compared to other High-T c compounds. Much attention was paid to the critical current density. A very high critical current density was reached. By using texture analysis by X-ray diffraction, it was found that films with high critical current densities were epitaxial, while films with low critical current densities contained several crystalline orientations. Four techniques for patterning the films were used - photo lithography and wet etch, laser ablation lithography, laser writing and electron beam lithography and ion milling. Sub-micron patterning has been demonstrated without degradation of the superconducting properties. The achieved patterning resolution is sufficient for preparation of many superconducting components. (AB)

  18. Changing perceptions of hunger on a high nutrient density diet

    Directory of Open Access Journals (Sweden)

    Glaser Dale

    2010-11-01

    Full Text Available Abstract Background People overeat because their hunger directs them to consume more calories than they require. The purpose of this study was to analyze the changes in experience and perception of hunger before and after participants shifted from their previous usual diet to a high nutrient density diet. Methods This was a descriptive study conducted with 768 participants primarily living in the United States who had changed their dietary habits from a low micronutrient to a high micronutrient diet. Participants completed a survey rating various dimensions of hunger (physical symptoms, emotional symptoms, and location when on their previous usual diet versus the high micronutrient density diet. Statistical analysis was conducted using non-parametric tests. Results Highly significant differences were found between the two diets in relation to all physical and emotional symptoms as well as the location of hunger. Hunger was not an unpleasant experience while on the high nutrient density diet, was well tolerated and occurred with less frequency even when meals were skipped. Nearly 80% of respondents reported that their experience of hunger had changed since starting the high nutrient density diet, with 51% reporting a dramatic or complete change in their experience of hunger. Conclusions A high micronutrient density diet mitigates the unpleasant aspects of the experience of hunger even though it is lower in calories. Hunger is one of the major impediments to successful weight loss. Our findings suggest that it is not simply the caloric content, but more importantly, the micronutrient density of a diet that influences the experience of hunger. It appears that a high nutrient density diet, after an initial phase of adjustment during which a person experiences "toxic hunger" due to withdrawal from pro-inflammatory foods, can result in a sustainable eating pattern that leads to weight loss and improved health. A high nutrient density diet provides

  19. High power density yeast catalyzed microbial fuel cells

    Science.gov (United States)

    Ganguli, Rahul

    Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density

  20. Analysis of Mechanical Properties of Fabrics of Different Raw Material

    Directory of Open Access Journals (Sweden)

    Aušra ADOMAITIENĖ

    2011-07-01

    Full Text Available The study analyzes dependence of mechanical properties (breaking force, elongation at break, static friction force and static friction coefficient on integrated fabric structure factor j and raw material density r, among the fabrics of different raw material (cotton, wool, polypropylene, polyester and polyacrylnitrile and woven in different conditions. The received results demonstrate that sometimes strong dependences exist (wool, polypropylene and polyacrylnitrile, whereas in some cases (cotton and polyester there is no correlation. It was also discovered that the breaking force and elongation at break in the direction of weft increase, when fabric structure becomes more rigid. In the meantime variations of the curves in the direction of warp are insignificant. Regarding static friction force and static friction coefficient (found in two cases, when fabrics were rubbing against leather and materials, it was discovered that consistency of the curves is irregular, i. e. they either increase or decrease, when integrated fabric structure factor j growth. It was also identified that some dependences are not strong and relationship between explored and analyzed factors does not exist. Variation of all these mechanical properties with respect to material density r enables to conclude that increase of material density r results in poor dependences or they are whatsoever non-existent.http://dx.doi.org/10.5755/j01.ms.17.2.487

  1. The Influence of Decreased Levels of High Density Lipoprotein ...

    African Journals Online (AJOL)

    very low density lipoprotein cholesterol, and triglyceride were assayed. ... Abiodun and Gwarzo: Association of high density lipoprotein cholesterol with haemolysis in sickle cell disease ... analyses were carried out to determine the correlation.

  2. Fabrication of Composite Filaments with High Dielectric Permittivity for Fused Deposition 3D Printing

    Directory of Open Access Journals (Sweden)

    Yingwei Wu

    2017-10-01

    Full Text Available Additive manufacturing of complex structures with spatially varying electromagnetic properties can enable new applications in high-technology sectors such as communications and sensors. This work presents the fabrication method as well as microstructural and dielectric characterization of bespoke composite filaments for fused deposition modeling (FDM 3D printing of microwave devices with a high relative dielectric permittivity ϵ = 11 in the GHz frequency range. The filament is composed of 32 vol % of ferroelectric barium titanate (BaTiO 3 micro-particles in a polymeric acrylonitrile butadiene styrene (ABS matrix. An ionic organic ester surfactant was added during formulation to enhance the compatibility between the polymer and the BaTiO 3 . To promote reproducible and robust printability of the fabricated filament, and to promote plasticity, dibutyl phthalate was additionally used. The combined effect of 1 wt % surfactant and 5 wt % plasticizer resulted in a uniform, many hundreds of meters, continuous filament of commercial quality capable of many hours of uninterrupted 3D printing. We demonstrate the feasibility of using the high dielectric constant filament for 3D printing through the fabrication of a range of optical devices. The approach herein may be used as a guide for the successful fabrication of many types of composite filament with varying functions for a broad range of applications.

  3. High Power Density Power Electronic Converters for Large Wind Turbines

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk

    . For these VSCs, high power density is required due to limited turbine nacelle space. Also, high reliability is required since maintenance cost of these remotely located wind turbines is quite high and these turbines operate under harsh operating conditions. In order to select a high power density and reliability......In large wind turbines (in MW and multi-MW ranges), which are extensively utilized in wind power plants, full-scale medium voltage (MV) multi-level (ML) voltage source converters (VSCs) are being more preferably employed nowadays for interfacing these wind turbines with electricity grids...... VSC solution for wind turbines, first, the VSC topology and the switch technology to be employed should be specified such that the highest possible power density and reliability are to be attained. Then, this qualitative approach should be complemented with the power density and reliability...

  4. Fabrication and properties of La2-xGdxHf2O7 transparent ceramics

    International Nuclear Information System (INIS)

    Wang, Zhengjuan; Zhou, Guohong; Zhang, Fang; Qin, Xianpeng; Ai, Jianping; Wang, Shiwei

    2016-01-01

    La 2-x Gd x Hf 2 O 7 (x=0–2.0) transparent ceramics were fabricated through vacuum sintering from nano-powders synthesized by a simple combustion method. The phase composition of the powders and final ceramics, the in-line transmittance, microstructures and density of the ceramics were investigated. With the increasing of Gd content, the ceramics maintained the cubic pyrochlore structure, and the lattice parameters decreased, whilst the densities increased linearly. All the ceramics were transparent. The highest in-line transmittance was 76.1% at 800 nm (x=1.2). With high density (7.91–8.88 g/cm 3 ) and effective atomic number, some of the La 2-x Gd x Hf 2 O 7 (x=0–2.0) transparent ceramics are promising candidates for scintillator hosts. - Highlights: • A new series of La 2-x Gd x Hf 2 O 7 transparent ceramics were fabricated by vacuum sintering using combustion-synthesized powders. • All the ceramics are transparent and the in-line transmittance can reach to 76.1% at 800 nm when x=1.2. • The Gd content has effects on the crystal structure, in-line transmittance, microstructures and densities of the ceramics. • With high density (7.91~8.88 g/cm3) and effective atomic number, some of the La2-xGdxHf2O7 transparent ceramics are promising candidates for scintillator hosts.

  5. High density implosion experiments at Nova

    International Nuclear Information System (INIS)

    Cable, M.D.; Hatchett, S.P.; Nelson, M.B.; Lerche, R.A.; Murphy, T.J.; Ress, D.B.

    1994-01-01

    Deuterium filled glass microballoons are used as indirectly driven targets for implosion experiments at the Nova Laser Fusion Facility. High levels of laser precision were required to achieve fuel densities and convergences to an ignition scale hot spot. (AIP) copyright 1994 American Institute of Physics

  6. A comparative study on the direct deposition of μc-Si:H and plasma-induced recrystallization of a-Si:H: Insight into Si crystallization in a high-density plasma

    Science.gov (United States)

    Zhou, H. P.; Xu, M.; Xu, S.; Feng, Y. Y.; Xu, L. X.; Wei, D. Y.; Xiao, S. Q.

    2018-03-01

    Deep insight into the crystallization mechanism of amorphous silicon is of theoretical and technological significance for the preparation of high-quality microcrystalline/polycrystalline silicon. In this work, we intensively compare the present two plasma-involved routes, i.e., the direct deposition and recrystallization of precursor amorphous silicon (a-Si) films, to fabricate microcrystalline silicon. Both the directly deposited and recrystallized samples show multi-layered structures as revealed by electronic microscopy. High-density hydrogen plasma involved recrystallization process, which is mediated by the hydrogen diffusion into the deep region of the precursor a-Si film, displays significantly different nucleation configuration, interface properties, and crystallite shape. The underlying mechanisms are analyzed in combination with the interplay of high-density plasma and growing or treated surface.

  7. Easy fabrication of high quality nickel mold for deep polymer microfluidic channels

    International Nuclear Information System (INIS)

    Wong, Ten It; Tan, Christina Yuan Ling; Zhou, Xiaodong; Limantoro, Julian; Fong, Kin Phang; Quan, Chenggen; Sun, Ling Ling

    2016-01-01

    Mass fabrication of disposable microfluidic chips with hot embossing is a key technology for microfluidic chip based biosensors. In this work, we develop a new method of fabricating high quality and highly durable nickel molds for hot embossing polymer chips. The process involves the addition of a thick, patterned layer of negative photoresist AZ-125nxT to a 4″ silicon wafer, followed by nickel electroplating and delamination of the nickel mold. Our investigations found that compared to a pillar mask, a hole mask can minimize the diffraction effect in photolithography of a thick photoresist, reduce the adhesion of the AZ-125nxT to the photomask in photolithography, and facilitate clean development of the photoresist patterns. By optimizing the hot embossing and chip bonding parameters, microfluidic chips with deep channels are achieved. (paper)

  8. Fabrication and properties of hot pressed bismuth tungstate

    International Nuclear Information System (INIS)

    Streicher, W.L.

    1978-01-01

    Bi 2 WO 6 is a synthetic polar material that is a possible candidate for energy conversion and detection systems. Previous research on this material has been concerned with crystal growth and sintering characteristics of polycrystalline compacts. This study involves itself with the fabrication of polycrystalline compacts by hot pressing techniques. Densities approaching theoretical crystal density were achieved by hot pressing at 850 0 C for one hour with pressures exceeding 35 MPa. Before hot pressing, the sintering range was determined by high temperature dilatometry of unfired Bi 2 WO 6 ceramics. Hot pressed discs were characterized by scanning electron microscopy, differential scanning calorimetry, and x-ray diffraction. Electrical properties were determined by dc resistivity, capacitance, and conductance measurements, ac poling, dc poling, and current-voltage measurements

  9. Nanofiber-deposited porous platinum enables glucose fuel cell anodes with high current density in body fluids

    Science.gov (United States)

    Frei, Maxi; Erben, Johannes; Martin, Julian; Zengerle, Roland; Kerzenmacher, Sven

    2017-09-01

    The poisoning of platinum anodes by body-fluid constituents such as amino acids is currently the main hurdle preventing the application of abiotic glucose fuel cells as battery-independent power supply for medical implants. We present a novel anode material that enables continuous operation of glucose oxidation anodes in horse serum for at least 30 days at a current density of (7.2 ± 1.9) μA cm-2. The fabrication process is based on the electro-deposition of highly porous platinum onto a 3-dimensional carbon nanofiber support, leading to approximately 2-fold increased electrode roughness factors (up to 16500 ± 2300). The material's superior performance is not only related to its high specific surface area, but also to an improved catalytic activity and/or poisoning resistance. Presumably, this results from the micro- and nanostructure of the platinum deposits. This represents a major step forward in the development of implantable glucose fuel cells based on long-term stable platinum electrodes.

  10. Fabrication and microstructural analysis of UN-U_3Si_2 composites for accident tolerant fuel applications

    International Nuclear Information System (INIS)

    Johnson, Kyle D.; Raftery, Alicia M.; Lopes, Denise Adorno; Wallenius, Janne

    2016-01-01

    In this study, U_3Si_2 was synthesized via the use of arc-melting and mixed with UN powders, which together were sintered using the SPS method. The study revealed a number of interesting conclusions regarding the stability of the system – namely the formation of a probable but as yet unidentified ternary phase coupled with the reduction of the stoichiometry in the nitride phase – as well as some insights into the mechanics of the sintering process itself. By milling the silicide powders and reducing its particle size ratio compared to UN, it was possible to form a high density UN-U_3Si_2 composite, with desirable microstructural characteristics for accident tolerant fuel applications. - Highlights: • U_3Si_2 fabricated from elemental uranium and silicon through arc melting. • Homogeneity of the silicides assessed through densitometry, XRD, SEM and EDS, chemical etching and optical microscopy. • UN powder fabricated using hydriding-nitriding method. • No phase transformations detected when sintering using silicide particle sizes less than UN particle size. • High density composite (98%TD) fabricated with silicide grain coating using spark plasma sintering at 1450 °C.

  11. High energy ballistic and fracture comparison between multilayered armor systems using non-woven curaua fabric composites and aramid laminates

    Directory of Open Access Journals (Sweden)

    Fábio de Oliveira Braga

    2017-10-01

    Full Text Available For personal protection against high kinetic energy projectiles, multilayered armor systems (MAS are usually the best option. They combine synergistically the properties of different materials such as ceramics, composites and metals. In the present work, ballistic tests were performed to evaluate multilayered armor systems (MAS using curaua non-woven fabric epoxy composites as second layer. A comparison to a MAS using aramid (Kevlar™ fabric laminates was made. The results showed that the curaua non-woven fabric composites are suitable to the high ballistic applications, and are promising substitutes for aramid fabric laminates. Keywords: Composite, Natural fiber, Curaua fiber, Non-woven fabric, Aramid laminate, Ballistic test

  12. Fabrication of novel cryomill for synthesis of high purity metallic nanoparticles

    Science.gov (United States)

    Kumar, Nirmal; Biswas, Krishanu

    2015-08-01

    The successful preparation of free standing metal nanoparticles with high purity in bulk quantity is the pre-requisite for any potential application. This is possible by using ball milling at cryogenic temperature. However, the most of ball mills available in the market do not allow preparing high purity metal nanoparticles by this route. In addition, it is not possible to carry out in situ measurements of process parameters as well as diagnostic of the process. In the present investigation, we present a detailed study on the fabrication of a cryomill, which is capable of avoiding contaminations in the product. It also provides in situ measurements and diagnostic of the low temperature milling process. Online monitoring of the milling temperature and observation of ball motion are the important aspects in the newly designed mill. The nanoparticles prepared using this fabricated mill have been found to be free standing and also free from contaminations.

  13. High capacitance density MIS capacitor using Si nanowires by MACE and ALD alumina dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Leontis, I.; Nassiopoulou, A. G., E-mail: A.Nassiopoulou@inn.demokritos.gr [INN, NCSR Demokritos, Patriarchou Grigoriou and Neapoleos, Aghia Paraskevi, 153 10 Athens (Greece); Botzakaki, M. A.; Georga, S. N. [Department of Physics, University of Patras, 26 504 Rion (Greece)

    2016-06-28

    High capacitance density three-dimensional (3D) metal-insulator-semiconductor (MIS) capacitors using Si nanowires (SiNWs) by metal-assisted chemical etching and atomic-layer-deposited alumina dielectric film were fabricated and electrically characterized. A chemical treatment was used to remove structural defects from the nanowire surface, in order to reduce the density of interface traps at the Al{sub 2}O{sub 3}/SiNW interface. SiNWs with two different lengths, namely, 1.3 μm and 2.4 μm, were studied. A four-fold capacitance density increase compared to a planar reference capacitor was achieved with the 1.3 μm SiNWs. In the case of the 2.4 μm SiNWs this increase was ×7, reaching a value of 4.1 μF/cm{sup 2}. Capacitance-voltage (C-V) measurements revealed that, following a two-cycle chemical treatment, frequency dispersion at accumulation regime and flat-band voltage shift disappeared in the case of the 1.3 μm SiNWs, which is indicative of effective removal of structural defects at the SiNW surface. In the case of the 2.4 μm SiNWs, frequency dispersion at accumulation persisted even after the two-step chemical treatment. This is attributed to a porous Si layer at the SiNW tops, which is not effectively removed by the chemical treatment. The electrical losses of MIS capacitors in both cases of SiNW lengths were studied and will be discussed.

  14. High capacitance density MIS capacitor using Si nanowires by MACE and ALD alumina dielectric

    International Nuclear Information System (INIS)

    Leontis, I.; Nassiopoulou, A. G.; Botzakaki, M. A.; Georga, S. N.

    2016-01-01

    High capacitance density three-dimensional (3D) metal-insulator-semiconductor (MIS) capacitors using Si nanowires (SiNWs) by metal-assisted chemical etching and atomic-layer-deposited alumina dielectric film were fabricated and electrically characterized. A chemical treatment was used to remove structural defects from the nanowire surface, in order to reduce the density of interface traps at the Al_2O_3/SiNW interface. SiNWs with two different lengths, namely, 1.3 μm and 2.4 μm, were studied. A four-fold capacitance density increase compared to a planar reference capacitor was achieved with the 1.3 μm SiNWs. In the case of the 2.4 μm SiNWs this increase was ×7, reaching a value of 4.1 μF/cm"2. Capacitance-voltage (C-V) measurements revealed that, following a two-cycle chemical treatment, frequency dispersion at accumulation regime and flat-band voltage shift disappeared in the case of the 1.3 μm SiNWs, which is indicative of effective removal of structural defects at the SiNW surface. In the case of the 2.4 μm SiNWs, frequency dispersion at accumulation persisted even after the two-step chemical treatment. This is attributed to a porous Si layer at the SiNW tops, which is not effectively removed by the chemical treatment. The electrical losses of MIS capacitors in both cases of SiNW lengths were studied and will be discussed.

  15. High-energy density physics at Los Alamos

    International Nuclear Information System (INIS)

    Byrnes, P.; Younger, S.M.

    1993-03-01

    This brochure describes the facilities of the Above Ground Experiments II (AGEX II) and the Inertial Confinement Fusion (ICF) programs at Los Alamo. Combined, these programs represent, an unparalleled capability to address important issues in high-energy density physics that are critical to the future defense, energy, and research needs of th e United States. The mission of the AGEX II program at Los Alamos is to provide additional experimental opportunities for the nuclear weapons program. For this purpose we have assembled at Los Alamos the broadest array of high-energy density physics facilities of any laboratory in the world. Inertial confinement fusion seeks to achieve thermonuclear burn on a laboratory scale through the implosion of a small quantity of deuterium and tritium fuel to very high Pressure and temperature.The Los Alamos ICF program is focused on target physics. With the largest scientific computing center in the world, We can perform calculations of unprecedented sophistication and precision. We field experiments at facilities worldwide-including our own Trident and Mercury lasers-to confirm our understanding and to provide the necessary data base to proceed toward the historic goal of controlled fusion in the laboratory. In addition to direct programmatic high-energy density physics is a nc scientific endeavor in itself. The ultrahigh magnetic fields produced in our high explosive pulsed-power generators can be used in awide variety of solid state physics and temperature superconductor studies. The structure and dynamics of planetary atmospheres can be simulated through the compression of gas mixtures

  16. Workshop on High Power ICH Antenna Designs for High Density Tokamaks

    Science.gov (United States)

    Aamodt, R. E.

    1990-02-01

    A workshop in high power ICH antenna designs for high density tokamaks was held to: (1) review the data base relevant to the high power heating of high density tokamaks; (2) identify the important issues which need to be addressed in order to ensure the success of the ICRF programs on CIT and Alcator C-MOD; and (3) recommend approaches for resolving the issues in a timely realistic manner. Some specific performance goals for the antenna system define a successful design effort. Simply stated these goals are: couple the specified power per antenna into the desired ion species; produce no more than an acceptable level of RF auxiliary power induced impurities; and have a mechanical structure which safely survives the thermal, mechanical and radiation stresses in the relevant environment. These goals are intimately coupled and difficult tradeoffs between scientific and engineering constraints have to be made.

  17. Analysis and fabrication of tungsten CERMET materials for ultra-high temperature reactor applications via pulsed electric current sintering

    Science.gov (United States)

    Webb, Jonathan A.

    The optimized development path for the fabrication of ultra-high temperature W-UO2 CERMET fuel elements were explored within this dissertation. A robust literature search was conducted, which concluded that a W-UO 2 fuel element must contain a fine tungsten microstructure and spherical UO2 kernels throughout the entire consolidation process. Combined Monte Carlo and Computational Fluid Dynamics (CFD) analysis were used to determine the effects of rhenium and gadolinia additions on the performance of W-UO 2 fuel elements at refractory temperatures and in dry and water submerged environments. The computational analysis also led to the design of quasi-optimized fuel elements that can meet thermal-hydraulic and neutronic requirements A rigorous set of experiments were conducted to determine if Pulsed Electric Current Sintering (PECS) can fabricate tungsten and W-Ce02 specimens to the required geometries, densities and microstructures required for high temperature fuel elements as well as determine the mechanisms involved within the PECS consolidation process. The CeO2 acts as a surrogate for UO 2 fuel kernels in these experiments. The experiments seemed to confirm that PECS consolidation takes place via diffusional mass transfer methods; however, the densification process is rapidly accelerated due to the effects of current densities within the consolidating specimen. Fortunately the grain growth proceeds at a traditional rate and the PECS process can yield near fully dense W and W-Ce02 specimens with a finer microstructure than other sintering techniques. PECS consolidation techniques were also shown to be capable of producing W-UO2 segments at near-prototypic geometries; however, great care must be taken to coat the fuel particles with tungsten prior to sintering. Also, great care must be taken to ensure that the particles remain spherical in geometry under the influence of a uniaxial stress as applied during PECS, which involves mixing different fuel kernel sizes in

  18. Fast and eco-friendly fabrication of uniform Ag substrates for highly sensitive surface-enhanced Raman scattering

    Science.gov (United States)

    Xu, Yongda; Li, Xin; Jiang, Lan; Meng, Ge; Ran, Peng; Lu, Yongfeng

    2017-05-01

    This study proposed a fast, simple, eco-friendly method for obtaining highly sensitive and uniform surface-enhanced Raman scattering (SERS) of silver (Ag) nanotextured substrates decorated with silver nanoparticles in open air. By splitting conventional femtosecond pulses (subpulse delay Δt = 0 ps) into pulse trains (subpulse delay Δt = 3 ps), the mean diameter of Ag nanoparticles was reduced by almost half and the amount of Ag nanoparticles with a diameter ranging from 20 to 60 nm was increased by more than 11 times. The substrate fabricated by femtosecond pulse trains has four main merits as follows: (1) High sensitivity: the maximum SERS enhancement factor is 1.26 × 109; (2) High efficiency: the fabrication rate can be up to 1600 μm2/s, which is 20-40 times faster than femtosecond photochemical reduction; (3) Good reproducibility: the relative standard deviation of the Raman signal intensity is 10.7%, which is one-third of that for conventional femtosecond laser; (4) Eco-friendly fabrication: neither chemical reagents nor vacuum conditions are needed during the fabrication process.

  19. Fabrication of integrated metallic MEMS devices

    DEFF Research Database (Denmark)

    Yalcinkaya, Arda Deniz; Ravnkilde, Jan Tue; Hansen, Ole

    2002-01-01

    A simple and complementary metal oxide semiconductor (CMOS) compatible fabrication technique for microelectromechanical (MEMS) devices is presented. The fabrication technology makes use of electroplated metal layers. Among the fabricated devices, high quality factor microresonators are characteri......A simple and complementary metal oxide semiconductor (CMOS) compatible fabrication technique for microelectromechanical (MEMS) devices is presented. The fabrication technology makes use of electroplated metal layers. Among the fabricated devices, high quality factor microresonators...

  20. Fabrication of Bi2223 bulks with high critical current properties sintered in Ag tubes

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Yasuaki, E-mail: ytakeda@g.ecc.u-tokyo.ac.jp [Department of Applied Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Shimoyama, Jun-ichi; Motoki, Takanori [Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258 (Japan); Kishio, Kohji [Department of Applied Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Nakashima, Takayoshi; Kagiyama, Tomohiro; Kobayashi, Shin-ichi; Hayashi, Kazuhiko [Sumitomo Electric Industries, Ltd. 1-1-3 Shimaya, Konohana-ku, Osaka 554-0024 (Japan)

    2017-03-15

    Highlights: • Fabrication conditions of Bi2223 bulks was reconsidered in terms of high J{sub c}. • Pressure of uniaxial pressing and heat treatment conditions were investigated. • The best sample showed higher J{sub c} than that of practically used Bi2223 bulks. - Abstract: Randomly grain oriented Bi2223 sintered bulks are one of the representative superconducting materials having weak-link problem due to very short coherence length particularly along the c-axis, resulting in poor intergrain J{sub c} properties. In our previous studies, sintering and/or post-annealing under moderately reducing atmospheres were found to be effective for improving grain coupling in Bi2223 sintered bulks. Further optimizations of the synthesis process for Bi2223 sintered bulks were attempted in the present study to enhance their intergrain J{sub c}. Effects of applied pressure of uniaxial pressing and sintering conditions on microstructure and superconducting properties have been systematically investigated. The best sample showed intergrain J{sub c} of 2.0 kA cm{sup −2} at 77 K and 8.2 kA cm{sup −2} at 20 K, while its relative density was low ∼65%. These values are quite high as for a randomly oriented sintered bulk of cuprate superconductors.

  1. High numerical aperture imaging by using multimode fibers with micro-fabricated optics

    KAUST Repository

    Bianchi, Silvio; Rajamanickam, V.; Ferrara, Lorenzo; Di Fabrizio, Enzo M.; Di Leonardo, Roberto; Liberale, Carlo

    2014-01-01

    Controlling light propagation into multimode optical fibers through spatial light modulators provides highly miniaturized endoscopes and optical micromanipulation probes. We increase the numerical aperture up to nearly 1 by micro-optics fabricated on the fiber-end.

  2. Flexible semi-transparent silicon (100) fabric with high-k/metal gate devices

    KAUST Repository

    Rojas, Jhonathan Prieto; Hussain, Muhammad Mustafa

    2013-01-01

    (100) wafers and then released as continuous, mechanically flexible, optically semi-transparent and high thermal budget compatible silicon fabric with devices. This is the first ever demonstration with this set of materials which allows full degree

  3. Fabrication of high-aspect-ratio nano structures using a nano x-ray shadow mask

    International Nuclear Information System (INIS)

    Kim, Yong Chul; Lee, Seung S

    2008-01-01

    This paper describes a novel method for the fabrication of high-aspect-ratio nano structures (HAR-nano structures) using a nano x-ray shadow mask and deep x-ray lithography (DXRL). The nano x-ray shadow mask is fabricated by depositing an x-ray absorber layer (Au, 3 µm) onto the back side of a nano shadow mask. The nano shadow mask is produced with nano-sized apertures whose dimensions are reduced to several tens of nanometers by the accumulation of low-stress silicon nitride (Si x N y ) using the LPCVD process on the shadow mask. A shadow mask containing apertures with a size of 1 µm is fabricated on a bulk micromachined Si x N y membrane. The thickness of an absorber layer must be in the range of several tens of micrometers in order to obtain a contrast of more than 100 for the conventional DXRL process at the Pohang Light Source (PLS). However, a 3 µm thick absorber layer can provide a sufficient contrast if the modified DXRL of the central beam-stop method is used, which blocks high-energy x-rays. A nano shadow mask with 30 nm sized apertures is fabricated and a nano x-ray shadow mask with 250 nm sized apertures is fabricated by depositing a 3 µm thick absorber layer on a nano shadow mask with 500 nm sized apertures. HAR-nano structures (circles with a diameter of 420 nm and lines with a width of 274 nm) with aspect ratios of over 10:1 on a 3.2 µm SU-8 are successfully fabricated by using the nano x-ray shadow mask and the central beam-stop method

  4. Plasma Diagnostics in High Density Reactors

    International Nuclear Information System (INIS)

    Daltrini, A. M.; Moshkalyov, S.; Monteiro, M. J. R.; Machida, M.; Kostryukov, A.; Besseler, E.; Biasotto, C.; Diniz, J. A.

    2006-01-01

    Langmuir electric probes and optical emission spectroscopy diagnostics were developed for applications in high density plasmas. These diagnostics were employed in two plasma sources: an electron cyclotron resonance (ECR) plasma and an RF driven inductively coupled plasma (ICP) plasma. Langmuir probes were tested using a number of probing dimensions, probe tip materials, circuits for probe bias and filters. Then, the results were compared with the optical spectroscopy measurements. With these diagnostics, analyses of various plasma processes were performed in both reactors. For example, it has been shown that species like NH radicals generated in gas phase can have critical impact on films deposited by ECR plasmas. In the ICP source, plasmas in atomic and molecular gases were shown to have different spatial distributions, likely due to nonlocal electron heating. The low-to-high density transitions in the ICP plasma were also studied. The role of metastables is shown to be significant in Ar plasmas, in contrast to plasmas with additions of molecular gases

  5. Fabrication and characterization of Cu/YSZ cermet high temperature electrolysis cathode material prepared by high-energy ball-milling method

    International Nuclear Information System (INIS)

    Lee, Sungkyu; Kim, Jong-Min; Hong, Hyun Seon; Woo, Sang-Kook

    2009-01-01

    Cu/YSZ cermet (40 and 60 vol.% Cu powder with balance YSZ) is a more economical cathode material than the conventional Ni/YSZ cermet for high temperature electrolysis (HTE) of water vapor and it was successfully fabricated by high-energy ball-milling of Cu and YSZ powders, pressing into pellets (o 13 mm x 2 mm) and subsequent sintering process at 700 deg. C under flowing 5%-H 2 /Ar gas. The Cu/YSZ composite material thus fabricated was characterized using various analytical tools such as XRD, SEM, and laser diffraction and scattering method. Electrical conductivity of sintered Cu/YSZ cermet pellets thus fabricated was measured by using 4-probe technique for comparison with that of conventional Ni/YSZ cermets. The effect of composite composition on the electrical conductivity was investigated and a marked increase in electrical conductivity for copper contents greater than 40 vol.% in the composite was explained by percolation threshold. Also, Cu/YSZ cermet was selected as a candidate for HTE cathode of self-supporting planar unit cell and its electrochemical performance was investigated, paving the way for preliminary correlation of high-energy ball-milling parameters with observed physical and electrochemical performance of Cu/YSZ cermets

  6. Possible new form of matter at high density

    International Nuclear Information System (INIS)

    Lee, T.D.

    1974-01-01

    As a preliminary to discussion of the possibility of new forms of matter at high density, questions relating to the vacuum and vacuum excitation are considered. A quasi-classical approach to the development of abnormal nuclear states is undertaken using a Fermi gas of nucleons of uniform density. Discontinuous transitions are considered in the sigma model (tree approximation) followed by brief consideration of higher order loop diagrams. Production and detection of abnormal nuclear states are discussed in the context of high energy heavy ion collisions. Remarks are made on motivation for such research. 8 figures

  7. Hierarchical Ni-Co layered double hydroxide nanosheets on functionalized 3D-RGO films for high energy density asymmetric supercapacitor

    Science.gov (United States)

    Jiang, Liyang; Sui, Yanwei; Qi, Jiqiu; Chang, Yuan; He, Yezeng; Meng, Qingkun; Wei, Fuxiang; Sun, Zhi; Jin, Yunxue

    2017-12-01

    In this paper, ultrathin reduced graphene oxide films on nickel foam were fabricated via a facile dip-coating method combined with thermal reduction. Hierarchical Ni-Co layered double hydroxide nanosheets with network structure were electrodeposited on the ultrathin reduced graphene oxide films in a simple three-electrode system. The thickness of Ni-Co layered double hydroxide nanosheets can be controlled through adjusting the deposition temperature. The as-prepared electrode exhibited excellent electrochemical performance with specific capacitance of 1454.2 F g-1 at a current density of 1 A g-1. An asymmetric supercapacitor device was designed with the as-prepared composites as positive electrode material and Nitrogen-doped reduced graphene oxide as negative electrode material. This device could be operated in a working voltage range of 0-1.8 V in 1 M KOH aqueous electrolyte, delivering a high energy density of 56.4 W h kg-1 at a power density of 882.5 W kg-1. One supercapacitor can power two LEDs with rated voltage of 1.8-2.0 V. After 10,000 consecutive charge-discharge tests at 10 A g-1, this asymmetric supercapacitor revealed an excellent cycle life with 98.3% specific capacitance retention. These excellent electrochemical performances make it become one of most promising candidates for high energy supercapacitor device.

  8. Fabrication Technologies of the High Gradient Accelerator Structures at 100MV/m Range

    CERN Document Server

    Wang, Juwen; Van Pelt, John; Yoneda, Charles; Gudkov, D; Riddone, Germana; Higo, Toshiyasu; Takatomi, Toshikazu

    2010-01-01

    A CERN-SLAC-KEK collaboration on high gradient X-band structure research has been established in order to demonstrate the feasibility of the CLIC baseline design for the main linac stably operating at more than 100 MV/m loaded accelerating gradient. Several prototype CLIC structures were successfully fabricated and high power tested. They operated at 105 MV/m with a breakdown rate that meets the CLIC linear collider specifications of <5×10-7/pulse/m. This paper summarizes the fabrication technologies including the mechanical design, precision machining, chemical cleaning, diffusion bonding as well as vacuum baking and all related assembly technologies. Also, the tolerances control, tuning and RF characterization will be discussed

  9. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage

    Science.gov (United States)

    El-Kady, Maher F.; Kaner, Richard B.

    2013-02-01

    The rapid development of miniaturized electronic devices has increased the demand for compact on-chip energy storage. Microscale supercapacitors have great potential to complement or replace batteries and electrolytic capacitors in a variety of applications. However, conventional micro-fabrication techniques have proven to be cumbersome in building cost-effective micro-devices, thus limiting their widespread application. Here we demonstrate a scalable fabrication of graphene micro-supercapacitors over large areas by direct laser writing on graphite oxide films using a standard LightScribe DVD burner. More than 100 micro-supercapacitors can be produced on a single disc in 30 min or less. The devices are built on flexible substrates for flexible electronics and on-chip uses that can be integrated with MEMS or CMOS in a single chip. Remarkably, miniaturizing the devices to the microscale results in enhanced charge-storage capacity and rate capability. These micro-supercapacitors demonstrate a power density of ~200 W cm-3, which is among the highest values achieved for any supercapacitor.

  10. Design, fabrication, and evaluation of on-chip micro-supercapacitors

    Science.gov (United States)

    Beidaghi, Majid; Chen, Wei; Wang, Chunlei

    2011-06-01

    Development of miniaturized electronic systems has stimulated the demand for miniaturized power sources that can be integrated into such systems. Among the different micro power sources micro electrochemical energy storage and conversion devices are particularly attractive because of their high efficiency and relatively high energy density. Electrochemical micro-capacitors or micro-supercapacitors offer higher power density compared to micro-batteries and micro-fuel cells. In this paper, development of on-chip micro-supercapacitors based on interdigitated C-MEMS electrode microarrays is introduced. C-MEMS electrodes are employed both as electrode material for electric double layer capacitor (EDLC) or as three dimensional (3D) current collectors of EDLC or pseudo-capacitive materials. Recent advancements in fabrication methods of C-MEMS based micro-supercapacitors are discussed and electrochemical properties of C-MEMS electrodes and it composites are reviewed.

  11. The high density effects in the Drell-Yan process

    International Nuclear Information System (INIS)

    Betemps, M.A.; Gay Ducati, M.B.; Ayala Filho, A.L.

    2003-01-01

    The high density effects in the Drell-Yan process (q q-bar → γ * →l + l - ) are investigated for pA collisions at RHIC and LHC energies. In particular, we use a set of nuclear parton distributions that describes the present nuclear eA and pA data in the DGLAP approach including the high density effects introduced in the perturbative Glauber-Mueller approach. (author)

  12. BCS Theory of Hadronic Matter at High Densities

    DEFF Research Database (Denmark)

    Bohr, Henrik; Panda, Prafulla K.; Providencia, Constanca

    2012-01-01

    The equilibrium between the so-called 2SC and CFL phases of strange quark matter at high densities is investigated in the framework of a simple schematic model of the NJL type. Equal densities are assumed for quarks u, d and s. The 2SC phase is here described by a color-flavor symmetric state, in...

  13. Microactuator production via high aspect ratio, high edge acuity metal fabrication technology

    Science.gov (United States)

    Guckel, H.; Christenson, T. R.

    1993-01-01

    LIGA is a procession sequence which uses x-ray lithography on photoresist layers of several hundred micrometers to produce very high edge acuity photopolymer molds. These plastic molds can be converted to metal molds via electroplating of many different metals and alloys. The end results are high edge acuity metal parts with large structural heights. The LIGA process as originally described by W. Ehrfeld can be extended by adding a surface micromachining phase to produce precision metal parts which can be assembled to form three-dimensional micromechanisms. This process, SLIGA, has been used to fabricate a dynamometer on a chip. The instrument has been fully implemented and will be applied to tribology issues, speed-torque characterization of planar magnetic micromotors and a new family of sensors.

  14. Sr-doped Lanthanum Nickelate Nanofibers for High Energy Density Supercapacitors

    International Nuclear Information System (INIS)

    Cao, Yi; Lin, Baoping; Sun, Ying; Yang, Hong; Zhang, Xueqin

    2015-01-01

    Highlights: • The electrode made by LNF-0.7 possessed excellent performance (719 F g −1 ) at Na 2 SO 4 electrolyte • LNF-0.7//LNF-0.7 symmetric supercapacitor device were firstly prepared • The maximum energy density of 81.4 Wh·kg −1 are achieved at a power density of 500W·kg −1 • This symmetric supercapacitor also shows an excellent cycling life - Abstract: The series La x Sr 1−x NiO 3−δ (0.3≤x≤1) nanofibers (LNF-x) samples are prepared by using electrospun method. We investigate the structure and the electrochemical properties of LNF-x in detail. As a result, LNF-x nanofibers present a perovskite structure, and the LNF-0.7 sample with high specific surface area display remarkable performance as an electrode material for supercapacitors. The maximum specific capacitance value of 719 F·g −1 at a current density of 2 A·g −1 , which retains 505 F·g −1 at a high current density of 20 A·g −1 , is obtained for LNF-0.7 electrode in 1 M Na 2 SO 4 aqueous electrolyte. Moreover, the LNF-0.7//LNF-0.7 symmetric supercapacitor device using 1 M Na 2 SO 4 aqueous solution is successfully demonstrated. The capacitor device can operate at a cell voltage as high as 2 V, and it exhibits an energy density of 30.5 Wh·kg −1 at a high power density of 10 kW·kg −1 and a high energy density of 81.4 Wh·kg −1 at a low power density of 500 W·kg −1 . More importantly, this symmetric supercapacitor also shows an excellent cycling performance with 90% specific capacitance retention after 2000 charging and discharging cycles. Those results offer a suitable design of electrode materials for high-performance supercapacitors

  15. High-Stacking-Density, Superior-Roughness LDH Bridged with Vertically Aligned Graphene for High-Performance Asymmetric Supercapacitors.

    Science.gov (United States)

    Guo, Wei; Yu, Chang; Li, Shaofeng; Yang, Juan; Liu, Zhibin; Zhao, Changtai; Huang, Huawei; Zhang, Mengdi; Han, Xiaotong; Niu, Yingying; Qiu, Jieshan

    2017-10-01

    The high-performance electrode materials with tuned surface and interface structure and functionalities are highly demanded for advanced supercapacitors. A novel strategy is presented to conFigure high-stacking-density, superior-roughness nickel manganese layered double hydroxide (LDH) bridged by vertically aligned graphene (VG) with nickel foam (NF) as the conductive collector, yielding the LDH-NF@VG hybrids for asymmetric supercapacitors. The VG nanosheets provide numerous electron transfer channels for quick redox reactions, and well-developed open structure for fast mass transport. Moreover, the high-stacking-density LDH grown and assembled on VG nanosheets result in a superior hydrophilicity derived from the tuned nano/microstructures, especially microroughness. Such a high stacking density with abundant active sites and superior wettability can be easily accessed by aqueous electrolytes. Benefitting from the above features, the LDH-NF@VG can deliver a high capacitance of 2920 F g -1 at a current density of 2 A g -1 , and the asymmetric supercapacitor with the LDH-NF@VG as positive electrode and activated carbon as negative electrode can deliver a high energy density of 56.8 Wh kg -1 at a power density of 260 W kg -1 , with a high specific capacitance retention rate of 87% even after 10 000 cycles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Design and fabrication of a micro zinc/air battery

    International Nuclear Information System (INIS)

    Fu, L; Luo, J K; Huber, J E; Lu, T J

    2006-01-01

    Micro-batteries are one of the key components that restrict the application of autonomous Microsystems. However little efforts were made to solve the problem. We have proposed a new planar zinc/air micro-battery, suitable for autonomous microsystem applications. The micro-battery has a layered structure of zinc electrode/alkaline electrolyte/air cathode. A 3D zinc electrode with a high density of posts was designed to obtain a high porosity, hence to offer a best performance. A model of the micro-battery is developed and the device performances were simulated and discussed. A four-mask process was developed to fabricate the prototype micro-batteries. The preliminary testing results showed the micro-batteries is able to deliver a maximum power up to 5 mW, and with an average power of 100 μW at a steady period for up to 2hrs. Fabrication process is still under optimization for further improvement

  17. Fabrication of Li_2TiO_3 pebbles by a selective laser sintering process

    International Nuclear Information System (INIS)

    Zhou, Qilai; Gao, Yue; Liu, Kai; Xue, Lihong; Yan, Youwei

    2015-01-01

    Highlights: • Selective laser sintering (SLS) is employed to fabricate ceramic pebbles. • Quantities and diameter of the pebbles could be easily controlled by adjusting the model of pebbles. • All the pebbles could be prepared at a time within several minutes. • The Li_2TiO_3 pebbles sintered at 1100 °C show a notable crush load of 43 N. - Abstract: Lithium titanate, Li_2TiO_3, is an important tritium breeding material for deuterium (D)–tritium (T) fusion reactor. In test blanket module (TBM) design of China, Li_2TiO_3 is considered as one candidate material of tritium breeders. In this study, selective laser sintering (SLS) technology was introduced to fabricate Li_2TiO_3 ceramic pebbles. This fabrication process is computer assisted and has a high level of flexibility. Li_2TiO_3 powder with a particle size of 1–3 μm was used as the raw material, whilst epoxy resin E06 was adopted as a binder. Green Li_2TiO_3 pebbles with certain strengths were successfully prepared via SLS. Density of the green pebbles was subsequently increased by cold isostatic pressing (CIP) process. Li_2TiO_3 pebbles with a diameter of about 2 mm were obtained after high temperature sintering. Density of the pebbles reaches 80% of theoretical density (TD) with a comparable crush load of 43 N. This computer assisted approach provides a new efficient route for the production of Li_2TiO_3 ceramic pebbles.

  18. TPX foams for inertial fusion laser experiments: foam preparation, machining, characterization, and discussion of density issues

    International Nuclear Information System (INIS)

    Grosse, M.; Guillot, L.; Reneaume, B.; Fleury, E.; Hermerel, C.; Choux, A.; Jeannot, L.; Geoffray, I.; Faivre, A.; Breton, O.; Andre, J.; Collier, R.; Legaie, O.

    2011-01-01

    Low density foams (in this work, foam density refers to apparent density) are materials of interest for fusion experiments. Low density poly(4-methyl-1-pentene)(commercial name TPX) foams have been produced for 30 years. TPX foams have been shown to have densities as low as 3 mg.cm -3 , which is very close to air density (1.2 mg.cm -3 ). Around this density foams are very light and highly fragile. Their fabrication is thus a real technological challenge. However, shrinking always appears in ranges ranking from 25% to almost 200%. As a result, the apparent density of the final foam never matches the expected value given by the precursor solution concentration. Besides, even if the mold dimensions are precisely known, shrinkage is never linear, and foams have to be machined for precise density measurement. In our work we present a fabrication process for TPX foams and discuss machining and density measuring issues. Particularly, we have found that there are volume and weight limits for a determination of density within the range of 3% uncertainty. This raises the question whether density should rather be determined directly on millimeter-sized targets or should be performed on a bigger scale sample prepared from the same batch. (authors)

  19. Direct Laser Writing of Low-Density Interdigitated Foams for Plasma Drive Shaping [Direct Laser Writing of Low Density Nanostitched Foams for Plasma Drive Shaping

    International Nuclear Information System (INIS)

    Oakdale, James S.; Smith, Raymond F.; Forien, Jean-Baptiste; Smith, William L.; Ali, Suzanne J.

    2017-01-01

    Monolithic porous bulk materials have many promising applications ranging from energy storage and catalysis to high energy density physics. High resolution additive manufacturing techniques, such as direct laser writing via two photon polymerization (DLW-TPP), now enable the fabrication of highly porous microlattices with deterministic morphology control. In this work, DLW-TPP is used to print millimeter-sized foam reservoirs (down to 0.06 g cm –3 ) with tailored density-gradient profiles, where density is varied by over an order of magnitude (for instance from 0.6 to 0.06 g cm –3 ) along a length of <100 µm. Taking full advantage of this technology, however, is a multiscale materials design problem that requires detailed understanding of how the different length scales, from the molecular level to the macroscopic dimensions, affect each other. The design of these 3D-printed foams is based on the brickwork arrangement of 100 × 100 × 16 µm 3 log-pile blocks constructed from sub-micrometer scale features. A block-to-block interdigitated stitching strategy is introduced for obtaining high density uniformity at all length scales. Lastly, these materials are used to shape plasma-piston drives during ramp-compression of targets under high energy density conditions created at the OMEGA Laser Facility.

  20. Fabrication of uranium carbide/beryllium carbide/graphite experimental-fuel-element specimens

    International Nuclear Information System (INIS)

    Muenzer, W.A.

    1978-01-01

    A method has been developed for fabricating uranium carbide/beryllium carbide/graphite fuel-element specimens for reactor-core-meltdown studies. The method involves milling and blending the raw materials and densifying the resulting blend by conventional graphite-die hot-pressing techniques. It can be used to fabricate specimens with good physical integrity and material dispersion, with densities of greater than 90% of the theoretical density, and with a uranium carbide particle size of less than 10 μm