WorldWideScience

Sample records for fabricating fuel compacts

  1. Anisotropic Material Behavior of Uni-axially Compacted Graphite Matrix for HTGR Fuel Compact Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Woo; Yeo, Seunghwan; Yoon, Ji-Hae; Cho, Moon Sung [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In developing the fuel compact fabrication technology, and fuel graphite material to meet the required material properties, it is essential to investigate the relationship among the process parameters of the matrix graphite powder preparation, the fabrication parameters of fuel element green compact and the heat treatments conditions and the material properties of fuel element. It was observed, during this development, that the pressing technique employed for the compaction fabrication prior to the two successive heat treatments (carbonization and final high temperature heat treatment) was of extreme importance in determining the material properties of the final compact product. In this work, the material behavior of the uni-axially pressed graphite matrix during the carbonization and final heat treatment are evaluated and summarized along the different directions, viz., perpendicular and parallel directions to pressing direction. In this work, the dimensional variations and variations in thermal expansion, thermal conductivity and Vickers hardness of the graphite matrix compact samples in the axial and radial directions prepared by uni-axial pressing are evaluated, and compared with those of samples prepared by cold isostatic pressing with the available data. From this work, the followings are observed. 1) Dimensional changes of matrix graphite green compacts during carbonization show that the difference in radial and axial variations shows a large anisotropic behavior in shrinkage. The radial variation is very small while the axial variation is large. During carbonization, the stresses caused by the force would be released in to the axial direction together with the phenolic resin vapor. 2) Dimensional variation of compact samples in perpendicular and parallel directions during carbonization shows a large difference in behavior when compact sample is prepared by uni-axial pressing. However, when compact sample is prepared by cold isostatic pressing, there is

  2. Anisotropic Material Behavior of Uni-axially Compacted Graphite Matrix for HTGR Fuel Compact Fabrication

    International Nuclear Information System (INIS)

    Lee, Young-Woo; Yeo, Seunghwan; Yoon, Ji-Hae; Cho, Moon Sung

    2016-01-01

    In developing the fuel compact fabrication technology, and fuel graphite material to meet the required material properties, it is essential to investigate the relationship among the process parameters of the matrix graphite powder preparation, the fabrication parameters of fuel element green compact and the heat treatments conditions and the material properties of fuel element. It was observed, during this development, that the pressing technique employed for the compaction fabrication prior to the two successive heat treatments (carbonization and final high temperature heat treatment) was of extreme importance in determining the material properties of the final compact product. In this work, the material behavior of the uni-axially pressed graphite matrix during the carbonization and final heat treatment are evaluated and summarized along the different directions, viz., perpendicular and parallel directions to pressing direction. In this work, the dimensional variations and variations in thermal expansion, thermal conductivity and Vickers hardness of the graphite matrix compact samples in the axial and radial directions prepared by uni-axial pressing are evaluated, and compared with those of samples prepared by cold isostatic pressing with the available data. From this work, the followings are observed. 1) Dimensional changes of matrix graphite green compacts during carbonization show that the difference in radial and axial variations shows a large anisotropic behavior in shrinkage. The radial variation is very small while the axial variation is large. During carbonization, the stresses caused by the force would be released in to the axial direction together with the phenolic resin vapor. 2) Dimensional variation of compact samples in perpendicular and parallel directions during carbonization shows a large difference in behavior when compact sample is prepared by uni-axial pressing. However, when compact sample is prepared by cold isostatic pressing, there is

  3. Dimensional Behavior of Matrix Graphite Compacts during Heat Treatments for HTGR Fuel Element Fabrication

    International Nuclear Information System (INIS)

    Lee, Young-Woo; Yeo, Seunghwan; Cho, Moon Sung

    2015-01-01

    The carbonization is a process step where the binder that is incorporated during the matrix graphite powder preparation step is evaporated and the residue of the binder is carbonized during the heat treatment at about 1073 K. This carbonization step is followed by the final high temperature heat treatment where the carbonized compacts are heat treated at 2073-2173 K in vacuum for a relatively short time (about 2 hrs). In order to develop a fuel compact fabrication technology, and for fuel matrix graphite to meet the required material properties, it is essential to investigate the relationship among the process parameters of the matrix graphite powder preparation, the fabrication parameters of fuel element green compact and the heat treatments conditions, which has a strong influence on the further steps and the material properties of fuel element. In this work, the dimensional changes of green compacts during the carbonization and final heat treatment are evaluated when compacts have different densities from different pressing conditions and different final heat treatment temperatures are employed, keeping other process parameters constant, such as the binder content, carbonization time, temperature and atmosphere (two hours ant 1073K and N2 atmosphere). In this work, the dimensional variations of green compacts during the carbonization and final heat treatment are evaluated when compacts have different densities from different pressing conditions and different final heat treatment temperatures are employed

  4. Compact nuclear fuel storage

    International Nuclear Information System (INIS)

    Kiselev, V.V.; Churakov, Yu.A.; Danchenko, Yu.V.; Bylkin, B.K.; Tsvetkov, S.V.

    1983-01-01

    Different constructions of racks for compact storage of spent fuel assemblies (FA) in ''coolin''g pools (CP) of NPPs with the BWR and PWR type reactors are described. Problems concerning nuclear and radiation safety and provision of necessary thermal conditions arising in such rack design are discussed. It is concluded that the problem of prolonged fuel storage at NPPs became Very actual for many countries because of retapdation of the rates of fuel reprocessing centers building. Application of compact storage racks is a promising solution of the problem of intermediate FA storage at NPPs. Such racks of stainless boron steel and with neutron absorbers in the from of boron carbide panels enable to increase the capacity of the present CP 2-2.6 times, and the period of FA storage in them up to 5-10 years

  5. Fabrication of HTTR first loading fuel

    International Nuclear Information System (INIS)

    Kato, S.; Yoshimuta, S.; Hasumi, T.; Sato, K.; Sawa, K.; Suzuki, S.; Mogi, H.; Shiozawa, S.; Tanaka, T.

    2001-01-01

    This paper summarizes the fabrication of the first loading fuel for HTTR, High Temperature engineering Test Reactor constructed by JAERI, Japan Atomic Energy Research Institute. The fuel fabrication started at the HTR fuel facility of NFI, Nuclear Fuel Industries, Ltd., June 1995. 4,770 fuel rods were fabricated through the fuel kernel, coated fuel particle and fuel compaction process, then 150 fuel elements were assembled in the reactor building December 1997. Fabrication technology for the fuel was established through a lot of R and D activities and fabrication experience of irradiation examination samples spread over about 30 years. Most of all, very high quality and production efficiency of fuel were achieved by the development of the fuel kernel process using the vibration dropping technology, the continuous 4-layer coating process and the automatic compaction process. As for the inspection technology, the development of the automatic measurement equipment for coated layer thickness of a coated fuel particle and uranium content of a fuel compact contributed to the higher reliability and rationalization of the inspection process. The data processing system for the fabrication and quality control, which was originally developed by NFI, made possible not only quick feedback of statistical quality data to the fabrication processes, but also automatic document preparation, such as inspection certificates and accountability control reports. The quality of the first loading fuel fully satisfied the design specifications for the fuel. In particular, average bare uranium fraction and SiC defective fraction of fuel compacts were 2x10 -6 and 8x10 -5 , respectively. According to the preceding irradiation examinations being performed at JMTR, Japan Materials Testing Reactor of JAERI, the specimen sampled from the first loading fuel shows good irradiation performance. (author)

  6. Roll compaction and granulation system for nuclear fuel material

    International Nuclear Information System (INIS)

    Goldmann, L.H. Jr.; Holley, C.C.

    1981-01-01

    A roll compaction and roll granulation system has been designed and fabricated to replace conventional preslugging and crushing operations typically used in the fabrication of mixed oxide nuclear fuel pellets. This equipment will be of maintenance advantage with only the compaction and granulation rolls inside containment. The prototype is being tested and the results will be reported within a year

  7. Chilean fuel elements fabrication progress report

    International Nuclear Information System (INIS)

    Baeza, J.; Contreras, H.; Chavez, J.; Klein, J.; Mansilla, R.; Marin, J.; Medina, R.

    1993-01-01

    Due to HEU-LEU core conversion necessity for the Chilean MTR reactors, the Fuel Elements Plant is being implemented to LEU nuclear fuel elements fabrication. A glove box line for powder-compact processing designed at CCHEN, which supposed to operate under an automatic control system, is at present under initial tests. Results of first natural uranium fuel plates manufacturing runs are shown

  8. Fabrication of simulated DUPIC fuel

    Science.gov (United States)

    Kang, Kweon Ho; Song, Ki Chan; Park, Hee Sung; Moon, Je Sun; Yang, Myung Seung

    2000-12-01

    Simulated DUPIC fuel provides a convenient way to investigate the DUPIC fuel properties and behavior such as thermal conductivity, thermal expansion, fission gas release, leaching, and so on without the complications of handling radioactive materials. Several pellets simulating the composition and microstructure of DUPIC fuel are fabricated by resintering the powder, which was treated through OREOX process of simulated spent PWR fuel pellets, which had been prepared from a mixture of UO2 and stable forms of constituent nuclides. The key issues for producing simulated pellets that replicate the phases and microstructure of irradiated fuel are to achieve a submicrometre dispersion during mixing and diffusional homogeneity during sintering. This study describes the powder treatment, OREOX, compaction and sintering to fabricate simulated DUPIC fuel using the simulated spent PWR fuel. The homogeneity of additives in the powder was observed after attrition milling. The microstructure of the simulated spent PWR fuel agrees well with the other studies. The leading structural features observed are as follows: rare earth and other oxides dissolved in the UO2 matrix, small metallic precipitates distributed throughout the matrix, and a perovskite phase finely dispersed on grain boundaries.

  9. Automated breeder fuel fabrication

    International Nuclear Information System (INIS)

    Goldmann, L.H.; Frederickson, J.R.

    1983-01-01

    The objective of the Secure Automated Fabrication (SAF) Project is to develop remotely operated equipment for the processing and manufacturing of breeder reactor fuel pins. The SAF line will be installed in the Fuels and Materials Examination Facility (FMEF). The FMEF is presently under construction at the Department of Energy's (DOE) Hanford site near Richland, Washington, and is operated by the Westinghouse Hanford Company (WHC). The fabrication and support systems of the SAF line are designed for computer-controlled operation from a centralized control room. Remote and automated fuel fabriction operations will result in: reduced radiation exposure to workers; enhanced safeguards; improved product quality; near real-time accountability, and increased productivity. The present schedule calls for installation of SAF line equipment in the FMEF beginning in 1984, with qualifying runs starting in 1986 and production commencing in 1987. 5 figures

  10. Advanced fuel fabrication

    International Nuclear Information System (INIS)

    Bernard, H.

    1989-01-01

    This paper deals with the fabrication of advanced fuels, such as mixed oxides for Pressurized Water Reactors or mixed nitrides for Fast Breeder Reactors. Although an extensive production experience exists for the mixed oxides used in the FBR, important work is still needed to improve the theoretical and technical knowledge of the production route which will be introduced in the future European facility, named Melox, at Marcoule. Recently, the feasibility of nitride fuel fabrication in existing commercial oxide facilities was demonstrated in France. The process, based on carbothermic reduction of oxides with subsequent comminution of the reaction product, cold pressing and sintering provides (U, Pu)N pellets with characteristics suitable for irradiation testing. Two experiments named NIMPHE 1 and 2 fabricated in collaboration with ITU, Karlsruhe, involve 16 nitride and 2 carbide pins, operating at a linear power of 45 and 73 kW/m with a smear density of 75-80% TD and a high burn-up target of 15 at%. These experiments are currently being irradiated in Phenix, at Marcoule. (orig.)

  11. Development of the fabrication technology of the simulated DUPIC fuel

    International Nuclear Information System (INIS)

    Kang, Kweon Ho; Yang, M. S.; Bae, K. K. and others

    2000-06-01

    It is important to get basic data to analysis physical properties, behavior in reactor and performance of the DUPIC fuel because physical properties of the DUPIC fuel is different from the commercial UO 2 fuel. But what directly measures physical properties et al. of DUPIC fuel being resinterred simulated spent fuel through OREOX process is very difficult in laboratory owing to its high level radiation. Then fabrication of simulated DUPIC fuel is needed to measure its properties. In this study, processes on powder treatment, OREOX, compaction and sintering to fabricate simulated DUPIC fuel using simulated spent fuel are discribed. To fabricate simulated DUPIC fuel, the powder from 3 times OREOX and 5 times attrition milling simulated spent fuel is compacted with 1.3 ton/cm 2 . Pellets are sintered in 100% H 2 atmosphere over 10 h at 1800 deg C. Sintered densities of pellets are 10.2-10.5 g/cm 3

  12. Vibratory-compacted (vipac/sphere-pac) nuclear fuels - a comparison with pelletized nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Chidester, K.; Rubin, J. [Los Alamos National Lab., NM (United States); Thompson, M

    2001-07-01

    In order to achieve the packing densities required for nuclear fuel stability, economy and performance, the fuel material must be densified. This has traditionally been performed by high-temperature sintering. (At one time, fuel densification was investigated using cold/hot swaging. However, this fabrication method has become uncommon.) Alternatively, fuel can be densified by vibratory compaction (VIPAC). During the late 1950's and into the 1970's, in the U.S., vibratory compaction fuel was fabricated and test irradiated to evaluate its applicability compared to the more traditional pelletized fuel for nuclear reactors. These activities were primarily focused on light water reactors (LWR) but some work was performed for fast reactors. This paper attempts to summarize these evaluations and proposes to reconsider VIPAC fuel for future use. (author)

  13. Vibratory-compacted (vipac/sphere-pac) nuclear fuels - a comparison with pelletized nuclear fuels

    International Nuclear Information System (INIS)

    Chidester, K.; Rubin, J.; Thompson, M.

    2001-01-01

    In order to achieve the packing densities required for nuclear fuel stability, economy and performance, the fuel material must be densified. This has traditionally been performed by high-temperature sintering. (At one time, fuel densification was investigated using cold/hot swaging. However, this fabrication method has become uncommon.) Alternatively, fuel can be densified by vibratory compaction (VIPAC). During the late 1950's and into the 1970's, in the U.S., vibratory compaction fuel was fabricated and test irradiated to evaluate its applicability compared to the more traditional pelletized fuel for nuclear reactors. These activities were primarily focused on light water reactors (LWR) but some work was performed for fast reactors. This paper attempts to summarize these evaluations and proposes to reconsider VIPAC fuel for future use. (author)

  14. Readiness Review of BWXT for Fabrication of AGR 5/6/7 Compacts

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Douglas William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sharp, Michelle Tracy [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-02-01

    In support of preparations for fabricating compacts for the Advanced Gas Reactor (AGR) fuel qualification irradiation experiments (AGR-5/6/7), Idaho National Laboratory (INL) conducted a readiness review of the BWX Technology (BWXT) procedures, processes, and equipment associated with compact fabrication activities at the BWXT Nuclear Operations Group (BWXT-NOG) facility outside Lynchburg, VirginiaVA. The readiness review used quality assurance requirements taken from the American Society of Mechanical Engineers (ASME) Nuclear Quality Assurance Standard (NQA-1-2008/1a-2009) as a basis to assess readiness to start compact fabrication.

  15. MOX fuel fabrication at AECL

    International Nuclear Information System (INIS)

    Dimayuga, F.C.; Jeffs, A.T.

    1995-01-01

    Atomic Energy of Canada Limited's mixed-oxide (MOX) fuel fabrication activities are conducted in the Recycle Fuel Fabrication Laboratories (RFFL) at the Chalk River Laboratories. The RFFL facility is designed to produce experimental quantities of CANDU MOX fuel for reactor physics tests or demonstration irradiations. From 1979 to 1987, several MOX fuel fabrication campaigns were run in the RFFL, producing various quantities of fuel with different compositions. About 150 bundles, containing over three tonnes of MOX, were fabricated in the RFFL before operations in the facility were suspended. In late 1987, the RFFL was placed in a state of active standby, a condition where no fuel fabrication activities are conducted, but the monitoring and ventilation systems in the facility are maintained. Currently, a project to rehabilitate the RFFL and resume MOX fuel fabrication is nearing completion. This project is funded by the CANDU Owners' Group (COG). The initial fabrication campaign will consist of the production of thirty-eight 37-element (U,Pu)O 2 bundles containing 0.2 wt% Pu in Heavy Element (H.E.) destined for physics tests in the zero-power ZED-2 reactor. An overview of the Rehabilitation Project will be given. (author)

  16. Treat upgrade fuel fabrication

    International Nuclear Information System (INIS)

    Davidson, K.V.; Schell, D.H.

    1979-01-01

    An extrusion and thermal treatment process was developed to produce graphite fuel rods containing a dispersion of enriched UO 2 . These rods will be used in an upgraded version of the Transient Reactor Test Facility (TREAT). The improved fuel provides a higher graphite matrix density, better fuel dispersion and higher thermal capabilities than the existing fuel

  17. Fabrication and characterization of fully ceramic microencapsulated fuels

    Energy Technology Data Exchange (ETDEWEB)

    Terrani, K.A., E-mail: kurt.terrani@gmail.com [Fuel Cycle and Isotopes Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Kiggans, J.O.; Katoh, Y. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Shimoda, K. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Montgomery, F.C.; Armstrong, B.L.; Parish, C.M. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Hinoki, T. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Hunn, J.D. [Fuel Cycle and Isotopes Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Snead, L.L. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2012-07-15

    The current generation of fully ceramic microencapsulated fuels, consisting of Tristructural Isotropic fuel particles embedded in a silicon carbide matrix, is fabricated by hot pressing. Matrix powder feedstock is comprised of alumina-yttria additives thoroughly mixed with silicon carbide nanopowder using polyethyleneimine as a dispersing agent. Fuel compacts are fabricated by hot pressing the powder-fuel particle mixture at a temperature of 1800-1900 Degree-Sign C using compaction pressures of 10-20 MPa. Detailed microstructural characterization of the final fuel compacts shows that oxide additives are limited in extent and are distributed uniformly at silicon carbide grain boundaries, at triple joints between silicon carbide grains, and at the fuel particle-matrix interface.

  18. Compact fuel storage rack for fuel pools

    International Nuclear Information System (INIS)

    Parras, F.; Louvat, J.P.

    1986-01-01

    ETS LEMER and FRAMATOME propose a new compact storage rack. This rack permits a considerable increase of the storage capacity of cooling pools. A short description of the structure and the components is presented, to propose racks that are: . Inalterable, . Compact, . Insensitive to earthquakes. Installation in pools already in operation is simplified by their light structure and the bearing device [fr

  19. Metallic Reactor Fuel Fabrication for SFR

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hoon; Kim, Jong-Hwan; Ko, Young-Mo; Woo, Yoon-Myung; Kim, Ki-Hwan; Lee, Chan-Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The metal fuel for an SFR has such advantages such as simple fabrication procedures, good neutron economy, high thermal conductivity, excellent compatibility with a Na coolant, and inherent passive safety 1. U-Zr metal fuel for SFR is now being developed by KAERI as a national R and D program of Korea. The fabrication technology of metal fuel for SFR has been under development in Korea as a national nuclear R and D program since 2007. The fabrication process for SFR fuel is composed of (1) fuel slug casting, (2) loading and fabrication of the fuel rods, and (3) fabrication of the final fuel assemblies. Fuel slug casting is the dominant source of fuel losses and recycled streams in this fabrication process. Fabrication on the rod type metallic fuel was carried out for the purpose of establishing a practical fabrication method. Rod-type fuel slugs were fabricated by injection casting. Metallic fuel slugs fabricated showed a general appearance was smooth.

  20. LEU fuel fabrication in Argentina

    International Nuclear Information System (INIS)

    Giorsetti, D.R.; Gomez, J.O.; Marajofsky, A.; Kohut, C.

    1985-01-01

    As an Institution, aiming to meet with its own needs, CNEA has been intensively developing reduced enriched fuel to use in its own research and test reactors. Development of the fabrication technology as well as the design, installation and operation of the manufacturing plant, have been carried out with its own funds. Irradiation and post-irradiation of test miniplates have been taking place within the framework of the RERTR program. During the last years, CNEA has developed three LEU fuel types. In the previous RERTR meetings, we presented the technological results obtained with these fuel types. This paper focuses on CNEA LEU fuel element manufacturing status and the trained personnel we can offer in design and manufacture fuel capability. CNEA has its own fuel manufacturing technology; the necessary facilities to start the fuel fabrication; qualified technicians and professionals for: fuel design and behaviour analysis; fuel manufacturing and QA; international recognition of its fuel development and manufacturing capability through its ORR miniplate irradiation; its own natural uranium and the future possibility to enrich up to 20% U 235 ; the probability to offer a competitive fuel manufacturing cost in the international market; the disposition to cooperate with all countries that wish to take part and aim to reach an self-sufficiency in their own fuel supply needs

  1. Nuclear fuel fabrication in India

    Energy Technology Data Exchange (ETDEWEB)

    Kondal Rao, N

    1975-01-01

    The important role of a nuclear power program in meeting the growing needs of power in India is explained. The successful installation of Tarapur Atomic Power Station and Rajasthan Atomic Power Station as well as the work at Madras Atomic Power Station are described. The development of the Atomic Fuels Division and the Nuclear Fuel Complex, Hyderabad which is mainly concerned with the fabrication of fuel elements and the reprocessing of fuels are explained. The N.F.C. essentially has the following constituent units : Zirconium Plant (ZP) comprising of Zirconium Oxide Plant, Zirconium Sponge Plant and Zirconium Fabrication Plant; Natural Uranium Oxide Plant (UOP); Ceramic Fuel Fabrication Plant (CFFP); Enriched Uranium Oxide Plant (EUOP); Enriched Fuel Fabrication Plant (EEFP) and Quality Control Laboratory for meeting the quality control requirements of all plants. The capacities of various plants at the NFC are mentioned. The work done on mixed oxide fuels and FBTR core with blanket assemblies, nickel and steel assemblies, thermal research reactor of 100 MW capacity, etc. are briefly mentioned.

  2. Nuclear fuel fabrication in India

    International Nuclear Information System (INIS)

    Kondal Rao, N.

    1975-01-01

    The important role of a nuclear power programme in meeting the growing needs of power in India is explained. The successful installation of Tarapur Atomic Power Station and Rajasthan Atomic Power Station as well as the work at Madras Atomic Power Station are described. The development of the Atomic Fuels Division and the Nuclear Fuel Complex, Hyderabad which is mainly concerned with the fabrication of fuel elements and the reprocessing of fuels are explained. The N.F.C. essentially has the following constituent units : Zirconium Plant (ZP) comprising of Zirconium Oxide Plant, Zirconium Sponge Plant and Zirconium Fabrication Plant; Natural Uranium Oxide Plant (UOP); Ceramic Fuel Fabrication Plant (CFFP); Enriched Uranium Oxide Plant (EUOP); Enriched Fuel Fabrication Plant (EEFP) and Quality Control Laboratory for meeting the quality control requirements of all plants. The capacities of various plants at the NFC are mentioned. The work done on mixed oxide fuels and FBTR core with blanket assemblies, nickel and steel assemblies, thermal research reactor of 100 MW capacity, etc. are briefly mentioned. (K.B.)

  3. FABRICATION OF TUBE TYPE FUEL ELEMENT FOR NUCLEAR REACTORS

    Science.gov (United States)

    Loeb, E.; Nicklas, J.H.

    1959-02-01

    A method of fabricating a nuclear reactor fuel element is given. It consists essentially of fixing two tubes in concentric relationship with respect to one another to provide an annulus therebetween, filling the annulus with a fissionablematerial-containing powder, compacting the powder material within the annulus and closing the ends thereof. The powder material is further compacted by swaging the inner surface of the inner tube to increase its diameter while maintaining the original size of the outer tube. This process results in reduced fabrication costs of powdered fissionable material type fuel elements and a substantial reduction in the peak core temperatures while materially enhancing the heat removal characteristics.

  4. Compaction of spent nuclear fuel cans

    International Nuclear Information System (INIS)

    Sullivan, H.

    1985-01-01

    Hydraulic press apparatus for compacting waste material eg. spent nuclear fuel cans comprises a fixed frame, a movable cross head, a press crown and three groups of piston/cylinder devices; having their pistons connected to the cross head and their cylinders secured to the press crown. A control means connects the first group of devices to hydraulic fluid in a reservoir which is pressurised initially by gas from gas accumulators to move the cross head and a quill secured thereto towards the frame base to compact the waste at a first high rate under a first high loading. Compaction then proceeds at a lower second rate at a lower second loading as the hydraulic fluid in the reservoir is pressurised by a pump. At two subsequent stages of compaction of the waste at which resistance increases causing a pressure rise in cylinders the control means causes hydraulic fluid to be passed to the second group of devices and thence to the third group of devices, the compaction rate reducing at each stage but the compaction force increasing. (author)

  5. An Experiment on the Carbonization of Fuel Compact Matrix Graphite for HTGR

    International Nuclear Information System (INIS)

    Lee, Young Woo; Kim, Joo Hyoung; Cho, Moon Sung

    2012-01-01

    The fuel element for HTGR is manufactured by mixing coated fuel particles with matrix graphite powder and forming into either pebble type or cylindrical type compacts depending on their use in different HTGR cores. The coated fuel particle, the so-called TRISO particle, consists of 500-μm spherical UO 2 particles coated with the low density buffer Pyrolytic Carbon (PyC) layer, the inner and outer high density PyC layer and SiC layer sandwiched between the two inner and outer PyC layers. The coated TRISO particles are mixed with a properly prepared matrix graphite powder, pressed into a spherical shape or a cylindrical compact, and finally heat-treated at about 1800 .deg. C. These fuel elements can have different sizes and forms of compact. The basic steps for manufacturing a fuel element include preparation of graphite matrix powder, over coating the fuel particles, mixing the fuel particles with a matrix powder, carbonizing green compact, and the final high-temperature heat treatment of the carbonized fuel compact. The carbonization is a process step where the binder that is incorporated during the matrix graphite powder preparation step is evaporated and the residue of the binder is carbonized during the heat treatment at about 1073 K, In order to develop a fuel compact fabrication technology, and for fuel matrix graphite to meet the required material properties, it is of extreme importance to investigate the relationship among the process parameters of the matrix graphite powder preparation, fabrication parameters of fuel element green compact and the carbonization condition, which has a strong influence on further steps and the material properties of fuel element. In this work, the carbonization behavior of green compact samples prepared from the matrix graphite powder mixtures with different binder materials was investigated in order to elucidate the behavior of binders during the carbonization heat treatment by analyzing the change in weight, density and its

  6. Nuclear fuel elements design, fabrication and performance

    CERN Document Server

    Frost, Brian R T

    1982-01-01

    Nuclear Fuel Elements: Design, Fabrication and Performance is concerned with the design, fabrication, and performance of nuclear fuel elements, with emphasis on fast reactor fuel elements. Topics range from fuel types and the irradiation behavior of fuels to cladding and duct materials, fuel element design and modeling, fuel element performance testing and qualification, and the performance of water reactor fuels. Fast reactor fuel elements, research and test reactor fuel elements, and unconventional fuel elements are also covered. This volume consists of 12 chapters and begins with an overvie

  7. Fabrication of Fast Reactor Fuel Pins for Test Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Karsten, G. [Institute for Applied Reactor Physics, Kernforschungszentrum Karlsruhe, Karlsruhe, Federal Republic of Germany (Germany); Dippel, T. [Institute for Radiochemistry, Kernforschungszentrum Karlsruhe, Karlsruhe, Federal Republic of Germany (Germany); Laue, H. J. [Institute for Applied Reactor Physics, Kernforschungszentrum Karlsruhe, Karlsruhe, Federal Republic of Germany (Germany)

    1967-09-15

    An extended irradiation programme is being carried out for the fuel element development of the Karlsruhe fast breeder project. A very important task within the programme is the testing of plutonium-containing fuel pins in a fast-reactor environment. This paper deals with fabrication of such pins by our laboratories at Karlsruhe. For the fast reactor test positions at present envisaged a fuel with 15% plutonium and the uranium fully enriched is appropriate. Hie mixed oxide is both pelletized and vibro-compacted with smeared densities between 80 and 88% theoretical. The pin design is, for example, such that there are two gas plena at the top and bottom, and one blanket above the fuel with the fuel zone fitting to the test reactor core length. The specifications both for fuel and cladding have been adapted to the special purpose of a fast-breeder reactor - the outer dimensions, the choice of cladding and fuel types, the data used and the kind of tests outline the targets of the development. The fuel fabrication is described in detail, and also the powder line used for vibro-compaction. The source materials for the fuel are oxalate PuO{sub 2} and UO{sub 2} from the UF{sub 6} process. The special problems of mechanical mixing and of plutonium homogeneity have been studied. The development of the sintering technique and grain characteristics for vibratory compactive fuel had to overcome serious problems in order to reach 82-83% theoretical. The performance of the pin fabrication needed a major effort in welding, manufacturing of fits and decontamination of the pin surfaces. This was a stimulation for the development of some very subtle control techniques, for example taking clear X-ray photographs and the tube testing. In general the selection of tests was a special task of the production routine. In conclusion the fabrication of the pins resulted in valuable experiences for the further development of fast reactor fuel elements. (author)

  8. Deformation and Fabric in Compacted Clay Soils

    Science.gov (United States)

    Wensrich, C. M.; Pineda, J.; Luzin, V.; Suwal, L.; Kisi, E. H.; Allameh-Haery, H.

    2018-05-01

    Hydromechanical anisotropy of clay soils in response to deformation or deposition history is related to the micromechanics of platelike clay particles and their orientations. In this article, we examine the relationship between microstructure, deformation, and moisture content in kaolin clay using a technique based on neutron scattering. This technique allows for the direct characterization of microstructure within representative samples using traditional measures such as orientation density and soil fabric tensor. From this information, evidence for a simple relationship between components of the deviatoric strain tensor and the deviatoric fabric tensor emerge. This relationship may provide a physical basis for future anisotropic constitutive models based on the micromechanics of these materials.

  9. Development of compaction technique for spent fuel skeletons

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ji Sup; Kim, Young Hwan; Jung, Jae Hoo [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-12-01

    To increase the utilization of uranium resources contained in the spent fuel, the spent fuel is reused. For this, the spent fuel is dismantled or spent fuel rod is extracted from the spent fuel assembly. When the rod is extracted, the remaining components of spent fuel assembly, so called a NFBC(Non-Fuel Bearing Components), should be compacted for the final disposal. To this end, several companies developed the NFBC compactors. German company, named as GNS has developed the direct compression devices of the NFBCs for the rod consolidation and installed it at the PKA(2) of pilot conditioning plant. B and W (Babcock and Wilcox) in USA adopted cutting method rather than the compression method and developed the special cutting devices of NFBC which can be applied underwater environment. In this study the characteristics of these two methods was investigated, in terms of fabrication cost of devices, maintainability in a high radioactive environment, required power and work volume for operation. Also, the optimal power source is selected by comparing the maximum power versus the work volume for operation. In addition to these, the reduction ratio of the bulk volume is obtained while varying the cutting length of the NFBC through a series of experiments. Based on the results of analysis and experiments, the cutting method after compression is selected as an optimal volume reduction method and its design specification is obtained. 8 refs., 62 figs., 32 tabs. (Author)

  10. Quality assurance for breeder reactor fuel fabrication

    International Nuclear Information System (INIS)

    Marx, E.R.

    1978-01-01

    Fuel performance in the Fast Flux Test Facility (FFTF) depends on fabrication of fuel to rigorous quality standards. The quality program including Management, Procurement, Fabrication, Inspection, Records, and Audits is discussed as well as unique mixed oxide fuel inspections such as homogeneity inspection, analytical chemistry, and nondestructive fissile assay

  11. Breeder reactor fuel fabrication system development

    International Nuclear Information System (INIS)

    Bennett, D.W.; Fritz, R.L.; McLemore, D.R.; Yatabe, J.M.

    1981-01-01

    Significant progress has been made in the design and development of remotely operated breeder reactor fuel fabrication and support systems (e.g., analytical chemistry). These activities are focused by the Secure Automated Fabrication (SAF) Program sponsored by the Department of Energy to provide: a reliable supply of fuel pins to support US liquid metal cooled breeder reactors and at the same time demonstrate the fabrication of mixed uranium/plutonium fuel by remotely operated and automated methods

  12. Nuclear fuel control in fuel fabrication plants

    International Nuclear Information System (INIS)

    Seki, Yoshitatsu

    1976-01-01

    The basic control problems of measuring uranium and of the environment inside and outside nuclear fuel fabrication plants are reviewed, excluding criticality prevention in case of submergence. The occurrence of loss scraps in fabrication and scrap-recycling, the measuring error, the uranium going cut of the system, the confirmation of the presence of lost uranium and the requirement of the measurement control for safeguard make the measurement control very complicated. The establishment of MBA (material balance area) and ICA (item control area) can make clearer the control of inventories, the control of loss scraps and the control of measuring points. Besides the above basic points, the following points are to be taken into account: 1) the method of confirmation of inventories, 2) the introduction of reliable NDT instruments for the rapid check system for enrichment and amount of uranium, 3) the introduction of real time system, and 4) the clarification of MUF analysis and its application to the reliability check of measurement control system. The environment control includes the controls of the uranium concentration in factory atmosphere, the surface contamination, the space dose rate, the uranium concentration in air and water discharged from factories, and the uranium in liquid wastes. The future problems are the practical restudy of measurement control under NPT, the definite plan of burglary protection and the realization of the disposal of solid wastes. (Iwakiri, K.)

  13. Fabrication of particulate metal fuel for fast burner reactors

    International Nuclear Information System (INIS)

    Ryu, Ho Jin; Lee, Sun Yong; Kim, Jong Hwan; Woo, Yoon Myung; Ko, Young Mo; Kim, Ki Hwan; Park, Jong Man; Lee, Chan Bok

    2012-01-01

    U Zr metallic fuel for sodium cooled fast reactors is now being developed by KAERI as a national R and D program of Korea. In order to recycle transuranic elements (TRU) retained in spent nuclear fuel, remote fabrication capability in a shielded hot cell should be prepared. Moreover, generation of long lived radioactive wastes and loss of volatile species should be minimized during the recycled fuel fabrication step. Therefore, innovative fuel concepts should be developed to address the fabrication challenges pertaining to TRU while maintaining good performances of metallic fuel. Particulate fuel concepts have already been proposed and tested at several experimental fast reactor systems and vipac ceramic fuel of RIAR, Russia is one of the examples. However, much less work has been reported for particulate metallic fuel development. Spherical uranium alloy particles with various diameters can be easily produced by the centrifugal atomization technique developed by KAERI. Using the atomized uranium and uranium zirconium alloy particles, we fabricated various kinds of powder pack, powder compacts and sintered pellets. The microstructures and properties of the powder pack and pellets are presented

  14. The quality challenge for fuel fabrication

    International Nuclear Information System (INIS)

    Lannegrace, J.-P.

    1990-01-01

    Fuel fabrication is a key segment of the nuclear fuel cycle, since safe and economic operation of reactors is highly dependent on the quality of the fuel. Achieving and controlling quality is, therefore, of paramount importance to fuel fabricators dominating nearly every aspect of the business. The quality policy, concepts and assurance system at three French plants are outlined. The need for integrated inspection, process optimization and good employee motivation is stressed. (author)

  15. Study on the nitride fuel fabrication for FBR cycle (1)

    International Nuclear Information System (INIS)

    Shinkai, Yasuo; Ono, Kiyoshi; Tanaka, Kenya

    2002-07-01

    In the phase-II of JNC's 'Feasibility Study on Commercialized Fuel Reactor Cycle System (the F/S)', the nitride fuels are selected as candidate for fuels for heavy metal cooled reactor, gas cooled reactor, and small scale reactor. In particular, the coated fuel particles are a promising concept for gas cooled reactor. In addition, it is necessary to study in detail the application possibility of pellet nitride fuel and vibration compaction nitride fuel for heavy metal cooled reactor and small scale reactor in the phase-II. In 2001, we studied more about additional equipments for the nitride fuel fabrication in processes from gelation to carbothermic reduction in the vibration compaction method. The result of reevaluation of off-gas mass flow around carbothermic reduction equipment in the palletizing method, showed that quantity of off-gas flow reduced and its reduction led the operation cost to decrease. We studied the possibility of fabrication of large size particles in the coated fuel particles for helium gas cooled reactor and we made basic technical issues clear. (author)

  16. Microscopic analysis of irradiated AGR-1 coated particle fuel compacts

    Energy Technology Data Exchange (ETDEWEB)

    Ploger, Scott A., E-mail: scott.ploger@inl.gov [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3855 (United States); Demkowicz, Paul A. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3855 (United States); Hunn, John D.; Kehn, Jay S. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6093 (United States)

    2014-05-01

    The AGR-1 experiment involved irradiation of 72 TRISO-coated particle fuel compacts to a peak compact-average burnup of 19.5% FIMA with no in-pile failures observed out of 3 × 10{sup 5} total particles. Irradiated AGR-1 fuel compacts have been cross-sectioned and analyzed with optical microscopy to characterize kernel, buffer, and coating behavior. Six compacts have been examined, spanning a range of irradiation conditions (burnup, fast fluence, and irradiation temperature) and including all four TRISO coating variations irradiated in the AGR-1 experiment. The cylindrical specimens were sectioned both transversely and longitudinally, then polished to expose from 36 to 79 individual particles near midplane on each mount. The analysis focused primarily on kernel swelling and porosity, buffer densification and fracturing, buffer–IPyC debonding, and fractures in the IPyC and SiC layers. Characteristic morphologies have been identified, 981 particles have been classified, and spatial distributions of particle types have been mapped. No significant spatial patterns were discovered in these cross sections. However, some trends were found between morphological types and certain behavioral aspects. Buffer fractures were found in 23% of the particles, and these fractures often resulted in unconstrained kernel protrusion into the open cavities. Fractured buffers and buffers that stayed bonded to IPyC layers appear related to larger pore size in kernels. Buffer–IPyC interface integrity evidently factored into initiation of rare IPyC fractures. Fractures through part of the SiC layer were found in only four classified particles, all in conjunction with IPyC–SiC debonding. Compiled results suggest that the deliberate coating fabrication variations influenced the frequencies of IPyC fractures and IPyC–SiC debonds.

  17. Secure Automated Fabrication: an overview of remote breeder fuel fabrication

    International Nuclear Information System (INIS)

    Nyman, D.H.; Graham, R.A.

    1983-10-01

    The Secure Automated Fabrication (SAF) line is an automated, remotely controlled breeder fuel pin fabrication process which is to be installed in the Fuels and Materials Examination Facility (FMEF). The FMEF is presently under construction at Hanford and is scheduled for completion in 1984. The SAF line is scheduled for startup in 1987 and will produce mixed uranium-plutonium fuel pins for the Fast Flux Test Facility (FFTF) and the Clinch River Breeder Reactor Plant (CRBRP). The fabrication line and support systems are described

  18. Overview of MOX fuel fabrication achievements

    International Nuclear Information System (INIS)

    Bairiot, H.; Vliet, J. van; Chiarelli, G.; Edwards, J.; Nagai, S.H.; Reshetnikov, F.

    2000-01-01

    Such overview having been adequately covered in an OECD/NEA publication providing the situation as of end 1994, this paper is mainly devoted to an update as of end 1998. The Belgian plant, Belgonucleaire/Dessel, is now dedicated exclusively to the fabrication of MOX fuel and has operated consistently around its nameplate capacity (35tHM/a) through the 1990s involving a large variety of PWR and BWR fuels. The two French plants have also achieved routine operation during the 1990s. CFCa, historically the largest FBR MOX fuel manufacturer, is utilizing the genuine COCA process for that type of fuel and the MIMAS process for LWR fuel: a nominal capacity (40 tHM/a) has been gradually approached. MELOX has operated at 100 tHM/a, as defined in the operating licence granted originally. The British plant, MDF/Sellafield with 8tHM/a nameplate capacity is devoted to fuel and has manufactured several small fabrication campaigns. In Japan, JNC operates three facilities located at Tokai: PFDF, devoted to basic research and fabrication of test fuels, PFFF/ATR line, for the fabrication of Fugen fuel and of corresponding fuel for the critical facility DCA, and PFPF for the fabrication of FBR fuel. In Russia, fabrication techniques have been developed to fuel four BN-800 FBRs contemplated to be constructed and be fuelled with the civilian Pu stockpile. Two demonstration facilities Paket (Mayak) and RIAR (Dimitrovgrad) fabricated respectively pellet and vipac type FBR MOX fuel for BR-5, BOR-60, BN-350 and BN-600. The paper includes a brief description of each of the fabrication routes mentioned, as well as the production of respectively LWR and FBR MOX fuel in each fabrication facility, since the start-up of the plant, since 1 January 1993 and since 1 January 1998 up to 31 December 1998. (author)

  19. Fuel Fabrication Capability Research and Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    Senor, David J.; Burkes, Douglas

    2013-06-28

    The purpose of this document is to provide a comprehensive review of the mission of the Fuel Fabrication Capability (FFC) within the Global Threat Reduction Initiative (GTRI) Convert Program, along with research and development (R&D) needs that have been identified as necessary to ensuring mission success. The design and fabrication of successful nuclear fuels must be closely linked endeavors.

  20. Cermet fuel for fast reactor – Fabrication and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Sudhir, E-mail: sudhir@barc.gov.in [Radiometallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Kutty, P.S.; Kutty, T.R.G. [Radiometallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Das, Shantanu [Uranium Extraction Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Kumar, Arun [Radiometallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2013-11-15

    (U, Pu)O{sub 2} ceramic fuel is the well-established fuel for the fast reactors and (U, Pu, Zr) metallic fuel is the future fuel. Both the fuels have their own merits and demerits. Optimal solution may lie in opting for a fuel which combines the favorable features of both fuel systems. The choice may be the use of cermet fuel which can be either (U, PuO{sub 2}) or (Enriched U, UO{sub 2}). In the present study, attempt has been made to fabricate (Natural U, UO{sub 2}) cermet fuel by powder metallurgy route. Characterization of the fuel has been carried out using dilatometer, differential thermal analyzer, X-ray diffractometer, and Scanning Electron Microscope. The results show a high solidus temperature, high thermal expansion, presence of porosities, etc. in the fuel. The thermal conductivity of the fuel has also been measured. X-ray diffraction study on the fuel compact reveals presence of α U and UO{sub 2} phases in the matrix of the fuel.

  1. Fabrication of preliminary fuel rods for SFR

    International Nuclear Information System (INIS)

    Kim, Sun Ki; Oh, Seok Jin; Ko, Young Mo; Woo, Youn Myung; Kim, Ki Hwan

    2012-01-01

    Metal fuels was selected for fueling many of the first reactors in the US, including the Experimental Breeder Reactor-I (EBR-I) and the Experimental Breeder Reactor-II (EBR-II) in Idaho, the FERMI-I reactor, and the Dounreay Fast Reactor (DFR) in the UK. Metallic U.Pu.Zr alloys were the reference fuel for the US Integral Fast Reactor (IFR) program. Metallic fuel has advantages such as simple fabrication procedures, good neutron economy, high thermal conductivity, excellent compatibility with a Na coolant and inherent passive safety. U-Zr-Pu alloy fuels have been used for SFR (sodium-cooled fast reactor) related to the closed fuel cycle for managing minor actinides and reducing a high radioactivity levels since the 1980s. Fabrication technology of metallic fuel for SFR has been in development in Korea as a national nuclear R and D program since 2007. For the final goal of SFR fuel rod fabrication with good performance, recently, three preliminary fuel rods were fabricated. In this paper, the preliminary fuel rods were fabricated, and then the inspection for QC(quality control) of the fuel rods was performed

  2. Interfacing robotics with plutonium fuel fabrication

    International Nuclear Information System (INIS)

    Bowen, W.W.; Moore, F.W.

    1986-01-01

    Interfacing robotic systems with nuclear fuel fabrication processes resulted in a number of interfacing challenges. The system not only interfaces with the fuel process, but must also interface with nuclear containment, radiation control boundaries, criticality control restrictions, and numerous other safety systems required in a fuel fabrication plant. The robotic system must be designed to allow operator interface during maintenance and recovery from an upset as well as normal operations

  3. Fabrication of internally instrumented reactor fuel rods

    International Nuclear Information System (INIS)

    Schmutz, J.D.; Meservey, R.H.

    1975-01-01

    Procedures are outlined for fabricating internally instrumented reactor fuel rods while maintaining the original quality assurance level of the rods. Instrumented fuel rods described contain fuel centerline thermocouples, ultrasonic thermometers, and pressure tubes for internal rod gas pressure measurements. Descriptions of the thermocouples and ultrasonic thermometers are also contained

  4. Fabrication of PWR fuel assembly and CANDU fuel bundle

    International Nuclear Information System (INIS)

    Lee, G.S.; Suh, K.S.; Chang, H.I.; Chung, S.H.

    1980-01-01

    For the project of localization of nuclear fuel fabrication, the R and D to establish the fabrication technology of CANDU fuel bundle as well as PWR fuel assembly was carried out. The suitable boss height and the prober Beryllium coating thickness to get good brazing condition of appendage were studied in the fabrication process of CANDU fuel rod. Basic Studies on CANLUB coating method also were performed. Problems in each fabrication process step and process flow between steps were reviewed and modified. The welding conditions for top and bottom nozzles, guide tube, seal and thimble screw pin were established in the fabrication processes of PWR fuel assembly. Additionally, some researches for a part of PWR grid brazing problems are also carried out

  5. Nuclear fuel conversion and fabrication chemistry

    International Nuclear Information System (INIS)

    Lerch, R.E.; Norman, R.E.

    1984-01-01

    Following irradiation and reprocessing of nuclear fuel, two operations are performed to prepare the fuel for subsequent reuse as fuel: fuel conversion, and fuel fabrication. These operations complete the classical nuclear fuel cycle. Fuel conversion involves generating a solid form suitable for fabrication into nuclear fuel. For plutonium based fuels, either a pure PuO 2 material or a mixed PuO 2 -UO 2 fuel material is generated. Several methods are available for preparation of the pure PuO 2 including: oxalate or peroxide precipitation; or direct denitration. Once the pure PuO 2 is formed, it is fabricated into fuel by mechanically blending it with ceramic grade UO 2 . The UO 2 can be prepared by several methods which include direct denitration. ADU precipitation, AUC precipitation, and peroxide precipitation. Alternatively, UO 2 -PuO 2 can be generated directly using coprecipitation, direct co-denitration, or gel sphere processes. In coprecipitation, uranium and plutonium are either precipitated as ammonium diuranate and plutonium hydroxide or as a mixture of ammonium uranyl-plutonyl carbonate, filtered and dried. In direct thermal denitration, solutions of uranium and plutonium nitrates are heated causing concentration and, subsequently, direct denitration. In gel sphere conversion, solutions of uranium and plutonium nitrate containing additives are formed into spherical droplets, gelled, washed and dried. Refabrication of these UO 3 -PuO 2 starting materials is accomplished by calcination-reduction to UO 2 -PuO 2 followed by pellet fabrication. (orig.)

  6. Method for compacting spent nuclear reactor fuel rods

    International Nuclear Information System (INIS)

    Wachter, W.J.

    1988-01-01

    In a nuclear reactor system which requires periodic physical manipulation of spent fuel rods, the method of compacting fuel rods from a fuel rod assembly is described. The method consists of: (1) removing the top end from the fuel rod assembly; (2) passing each of multiple fuel rod pulling elements in sequence through a fuel rod container and thence through respective consolidating passages in a fuel rod directing chamber; (3) engaging one of the pulling elements to the top end of each of the fuel rods; (4) drawing each of the pulling elements axially to draw the respective engaged fuel rods in one axial direction through the respective the passages in the chamber to thereby consolidate the fuel rods into a compacted configuration of a cross-sectional area smaller than the cross-sectional area occupied thereby within the fuel rod assembly; and (5) drawing all of the engaged fuel rods concurrently and substantially parallel to one another in the one axial direction into the fuel rod container while maintaining the compacted configuration whereby the fuel rods are aligned within the container in a fuel rod density of the the fuel rod assembly

  7. Improvements in fabrication of metallic fuels

    International Nuclear Information System (INIS)

    Tracy, D.B.; Henslee, S.P.; Dodds, N.E.; Longua, K.J.

    1989-12-01

    Argonne National Laboratory is currently developing a new liquid- metal cooled breeder reactor known as the Integral Fast Reactor (IFR). IFR fuels represent the state-of-the-art in metal-fueled reactor technology. Improvements in the fabrication of metal fuel, to be discussed below, will support the fully remote fuel cycle facility that as an integral part of the IFR concept will be demonstrated at the EBR-II site. 3 refs

  8. Developments in MOX fuel pellet fabrication technology: Indian experience

    International Nuclear Information System (INIS)

    Kamath, H.S.; Majumdar, S.; Purusthotham, D.S.C.

    1998-01-01

    India is interested in mixed oxide (MOX) fuel technology for better utilisation of its nuclear fuel resources. In view of this, a programme involving MOX fuel design, fabrication and irradiation in research and power reactors has been taken up. A number of experimental irradiations in research reactors have been carried out and a few MOX assemblies of ''All Pu'' type have been loaded in our commercial BWRs at Tarapur. An island type of MOX fuel design is under study for use in PHWRs which can increase the burn-up of the fuel by more than 30% compared to natural UO 2 fuel. The MOX fuel pellet fabrication technology for the above purpose and R and D efforts in progress for achieving better fuel performance are described in the paper. The standard MOX fuel fabrication route involves mechanical mixing and milling of UO 2 and PuO 2 powders. After detailed investigations with several types of mixing and milling equipments, dry attritor milling has been found to be the most suitable for this operation. Neutron Coincident Counting (NCC) technique was found to be the most convenient and appropriate technique for quick analysis of Pu content in milled MOX powder and to know Pu mixing is homogenous or not. Both mechanical and hydraulic presses have been used for powder compaction for green pellet production although the latter has been preferred for better reproducibility. Low residue admixed lubricants have been used to facilitate easy compaction. The normal sintering temperature used in Nitrogen-Hydrogen atmosphere is between 1600 deg. C to 1700 deg. C. Low temperature sintering (LTS) using oxidative atmospheres such as carbon dioxide, Nitrogen and coarse vacuum have also been investigated on UO 2 and MOX on experimental scale and irradiation behaviour of such MOX pellets is under study. Ceramic fibre lined batch furnaces have been found to be the most suitable for MOX pellet production as they offer very good flexibility in sintering cycle, and ease of maintainability

  9. Progress on KMRR fuel fabrication

    International Nuclear Information System (INIS)

    Kuk, I.H.; Lee, J.B.; Rhee, C.K.; Kim, K.W.

    1991-01-01

    In order to increase the practical applicability of powder heat-treatment in KMRR fuel fabrication, efforts were made to reduce the critical size. Primary U 3 Si 2 particle size was reviewed in terms of cooling rate. Temperature dependence of peritectoid reaction was reviewed as well. (1) Cooling rate of U 3 Si molten alloy was calculated by ADINA program. In practice, particle size of the primary U 3 Si 2 varies radially. U 3 Si 2 size increases as it goes deeper from the surface. As cooling rate increases, primary U 3 Si 2 size decreases. (2) Peritectoid reaction occurs in two unique groups of temperature; one is below 790 C where β-U and U 3 Si 2 reaction occurs, and the other above 790 C where γ-U and U 3 Si 2 reaction occurs. 780 C is most completely reacting temperature in β-U region, and 810 C is so in γ-U region. Reaction is completed more perfectly in γ-U region than in β-U region. 810 C is found to be the optimized heat-treatment temperature, but it is desirable not to approach to 790 C in heat-treatment. (3) The critical powder size in powder heat-treatment is dependent on the primary U 3 Si 2 particle size. The smaller the primary U 3 Si 2 particle size, the smaller the critical particle size of the powder. At present, the primary U 3 Si 2 particle size can be reduced to 3∝5 μm at 4∝5 mm deep from surface in Cu mold. This may be reduced further by rapid solidification process. (orig.)

  10. Technical study report on fuel fabrication system

    International Nuclear Information System (INIS)

    Kono, Shusaku; Tanaka, Kenya; Ono, Kiyoshi; Iwasa, Katsuyoshi; Hoshino, Yasushi; Shinkai, Yasuo

    2000-07-01

    The feasibility study of FBR and related fuel cycle is performed for developing the FBR recycle system which ensures safety, economic competitiveness, efficient utilization of resources, reduction of environmental burden and enhancement of nuclear non-proliferation under consistency of FBR reactor and fuel cycle systems. In this study, a conceptual design study and system characteristics evaluation are conducted for fuel fabrication systems of pellet process, vibropack process for oxide and nitride fuel and casting process for metal fuel. Technical issues in each process are also extracted. In 1999 fiscal year, a conceptual design study were conducted for the fuel fabrication plants adopting (1) the short pellet process which simplifies the conventional MOX pellet fabrication processes, (2) vibropack processes of aqueous gelation process, improved RIAR process, improved ANL process and fluoride volatility process, (3) casting processes of injection process, centrifuging process. As a result, attainable perspective was obtained for each fuel fabrication system through the evaluation of apparatuses, layout and facility volume, etc. In each fuel fabrication system, technical issues for practical use were made clear. Hereafter, more detailed study will be performed for each system, and research programs for phase II study will be planned. (author)

  11. Reprocessing and fuel fabrication systems

    International Nuclear Information System (INIS)

    Field, F.R.; Tooper, F.E.

    1978-01-01

    The study of alternative fuel cycles was initiated to identify a fuel cycle with inherent technical resistance to proliferation; however, other key features such as resource use, cost, and development status are major elements in a sound fuel cycle strategy if there is no significant difference in proliferation resistance. Special fuel reprocessing techniques such as coprocessing or spiking provide limited resistance to diversion. The nuclear fuel cycle system that will be most effective may be more dependent on the institutional agreements that can be implemented to supplement the technical controls of fuel cycle materials

  12. Development of Nuclear Fuel Remote Fabrication Technology

    International Nuclear Information System (INIS)

    Lee, Jung Won; Yang, M. S.; Kim, S. S. and others

    2005-04-01

    The aim of this study is to develop the essential technology of dry refabrication using spent fuel materials in a laboratory scale on the basis of proliferation resistance policy. The emphasis is placed on the assessment and the development of the essential technology of dry refabrication using spent fuel materials. In this study, the remote fuel fabrication technology to make a dry refabricated fuel with an enhanced quality was established. And the instrumented fuel pellets and mini-elements were manufactured for the irradiation testing in HANARO. The design and development technology of the remote fabrication equipment and the remote operating and maintenance technology of the equipment in hot cell were also achieved. These achievements will be used in and applied to the future back-end fuel cycle and GEN-IV fuel cycle and be a milestone for Korea to be an advanced nuclear country in the world

  13. Method and apparatus for compacting spent nuclear reactor fuel rods

    International Nuclear Information System (INIS)

    Wachter, W.J.

    1988-01-01

    In a nuclear reactor system requiring periodic physical manipulation of spent fuel rods, the method of compacting fuel rods from a fuel rod assembly is described comprising the steps of: (1) removing the top end from pulling members having electrodes of weld elements in leading ends thereof in sequence through a fuel rod container and thence through respective consolidating passages in a fuel-rod directing chamber; (3) welding the weld elements of the pulling members to the top end of respective fuel rods corresponding to the respective pulling members; (4) drawing each of the pulling members axially to draw the respective engaged fuel rods in one axial direction through the respective passages in the chamber to thereby consolidate the fuel rods into a compacted configuration of a cross-sectional area smaller than the cross-sectional area occupied thereby within the fuel rod assembly; and (5) drawing all of the engaged fuel rods concurrently and substantially parallel to one another to the one axial direction into the fuel rod container while maintaining the compacting configuration in a fuel rod density which is greater than that of the fuel rod density of the fuel rod assembly

  14. Remote fabrication of breeder reactor fuel

    International Nuclear Information System (INIS)

    Gerber, E.W.; Hoitink, N.C.; Graham, R.A.

    1984-06-01

    The Secure Automated Fabrication (SAF) Line, a remotely operable plutonium fuel fabrication facility, incorporates advanced automation techniques. Included in the plant are 24 robots used to perform complex operations, and to enhance equipment standardization and ease of maintenance. Automated equipment is controlled remotely from centrally located supervisory computer control consoles or alternatively from control consoles dedicated to individual systems

  15. Fabrication of fuel elements interplay between typical SNR Mark Ia specifications and the fuel element fabrication

    International Nuclear Information System (INIS)

    Biermann, W.K.; Heuvel, H.J.; Pilate, S.; Vanderborck, Y.; Pelckmans, E.; Vanhellemont, G.; Roepenack, H.; Stoll, W.

    1987-01-01

    The core and fuel were designed for the SNR-300 first core by Interatom GmbH and Belgonucleaire. The fuel was fabricated by Alkem/RBU and Belgonucleaire. Based on the preparation of drawings and specifications and on the results of the prerun fabrication, an extensive interplay took place between design requirements, specifications, and fabrication processes at both fuel plants. During start-up of pellet and pin fabrication, this solved such technical questions as /sup 239/Pu equivalent linear weight, pellet density, stoichiometry of the pellets, and impurity content. Close cooperation of designers and manufacturers has allowed manufacture of 205 fuel assemblies without major problems

  16. Review of qualifications for fuel assembly fabrication

    International Nuclear Information System (INIS)

    Slabu, Dan; Zemek, Martin; Hellwig, Christian

    2013-01-01

    The required quality of nuclear fuel in industrial production can only be assured by applying processes in fabrication and inspection, which are well mastered and have been proven by an appropriate qualification. The present contribution shows the understanding and experiences of Axpo with respect to qualifications in the frame of nuclear fuel manufacturing and reflects some related expectations of the operator. (orig.)

  17. Fuel fabrication and post-irradiation examination

    Energy Technology Data Exchange (ETDEWEB)

    Venter, P J; Aspeling, J C [Atomic Energy Corporation of South Africa Ltd., Pretoria (South Africa)

    1990-06-01

    This paper provides an overview of the A/c's Bevan and Eldopar facilities for the fabrication of nuclear fuel. It also describes the sophisticated Hot Cell Complex, which is capable of accommodating pressurised water reactor fuel and various other irradiated samples. Some interesting problems and their solutions are discussed. (author)

  18. Fuel fabrication and post-irradiation examination

    International Nuclear Information System (INIS)

    Venter, P.J.; Aspeling, J.C.

    1990-01-01

    This paper provides an overview of the A/c's Bevan and Eldopar facilities for the fabrication of nuclear fuel. It also describes the sophisticated Hot Cell Complex, which is capable of accommodating pressurised water reactor fuel and various other irradiated samples. Some interesting problems and their solutions are discussed. (author)

  19. Fabrication of nano-structured UO2 fuel pellets

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kang, Ki Won; Rhee, Young Woo; Kim, Dong Joo; Kim, Jong Heon; Kim, Keon Sik; Song, Kun Woo

    2007-01-01

    Nano-structured materials have received much attention for their possibility for various functional materials. Ceramics with a nano-structured grain have some special properties such as super plasticity and a low sintering temperature. To reduce the fuel cycle costs and the total mass of spent LWR fuels, it is necessary to extend the fuel discharged burn-up. In order to increase the fuel burn-up, it is important to understand the fuel property of a highly irradiated fuel pellet. Especially, research has focused on the formation of a porous and small grained microstructure in the rim area of the fuel, called High Burn-up Structure (HBS). The average grain size of HBS is about 300nm. This paper deals with the feasibility study on the fabrication of nano-structured UO 2 pellets. The nano sized UO 2 particles are prepared by a combined process of a oxidation-reducing and a mechanical milling of UO 2 powder. Nano-structured UO 2 pellets (∼300nm) with a density of ∼93%TD can be obtained by sintering nano-sized UO 2 compacts. The SEM study reveals that the microstructure of the fabricated nano-structure UO 2 pellet is similar to that of HBS. Therefore, this bulk nano-structured UO 2 pellet can be used as a reference pellet for a measurement of the physical properties of HBS

  20. Improvements in the fabrication of metallic fuels

    International Nuclear Information System (INIS)

    Tracy, D.B.; Henslee, S.P.; Dodds, N.E.; Longua, K.J.

    1989-01-01

    Argonne National Laboratory (ANL) is currently developing a new liquid-metal-cooled breeder reactor known as the Integral Fast Reactor (IFR). The IFR represents the state of the art in metal-fueled reactor technology. Improvements in the fabrication of metal fuel, discussed in this paper, will support ANL-West's (ANL-W) fully remote fuel cycle facility, which is an integral part of the IFR concept

  1. Design of the MOX fuel fabrication facility

    International Nuclear Information System (INIS)

    Johnson, J.V.; Brabazon, E.J.

    2001-01-01

    A consortium of Duke Engineering and Services, Inc., COGEMA, Inc. and Stone and Webster (DCS) are designing a mixed oxide fuel fabrication facility (MFFF) for the U.S. Department of Energy (DOE) to convert surplus plutonium to mixed oxide (MOX) fuel to be irradiated in commercial nuclear power plants based on the proven European technology of COGEMA and BELGONUCLEAIRE. This paper describes the MFFF processes, and how the proven MOX fuel fabrication technology is being adapted as required to comply with U.S. requirements. (author)

  2. Design of the MOX fuel fabrication facility

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.V. [MFFF Technical Manager, U.S. dept. of Energy, Washington, DC (United States); Brabazon, E.J. [MFFF Engineering Manager, Duke Cogema Stone and Webster, Charlotte, NC (United States)

    2001-07-01

    A consortium of Duke Engineering and Services, Inc., COGEMA, Inc. and Stone and Webster (DCS) are designing a mixed oxide fuel fabrication facility (MFFF) for the U.S. Department of Energy (DOE) to convert surplus plutonium to mixed oxide (MOX) fuel to be irradiated in commercial nuclear power plants based on the proven European technology of COGEMA and BELGONUCLEAIRE. This paper describes the MFFF processes, and how the proven MOX fuel fabrication technology is being adapted as required to comply with U.S. requirements. (author)

  3. Fabrication of FFTF fuel pin wire wrap

    International Nuclear Information System (INIS)

    Epperson, E.M.

    1980-06-01

    Lateral spacing between FFTF fuel pins is required to provide a passageway for the sodium coolant to flow over each pin to remove heat generated by the fission process. This spacing is provided by wrapping each fuel pin with type 316 stainless steel wire. This wire has a 1.435mm (0.0565 in.) to 1.448mm (0.0570 in.) diameter, contains 17 +- 2% cold work and was fabricated and tested to exacting RDT Standards. About 500 kg (1100 lbs) or 39 Km (24 miles) of fuel pin wrap wire is used in each core loading. Fabrication procedures and quality assurance tests are described

  4. Fabrication of Uranium Oxycarbide Kernels for HTR Fuel

    International Nuclear Information System (INIS)

    Barnes, Charles; Richardson, Clay; Nagley, Scott; Hunn, John; Shaber, Eric

    2010-01-01

    Babcock and Wilcox (B and W) has been producing high quality uranium oxycarbide (UCO) kernels for Advanced Gas Reactor (AGR) fuel tests at the Idaho National Laboratory. In 2005, 350-(micro)m, 19.7% 235U-enriched UCO kernels were produced for the AGR-1 test fuel. Following coating of these kernels and forming the coated-particles into compacts, this fuel was irradiated in the Advanced Test Reactor (ATR) from December 2006 until November 2009. B and W produced 425-(micro)m, 14% enriched UCO kernels in 2008, and these kernels were used to produce fuel for the AGR-2 experiment that was inserted in ATR in 2010. B and W also produced 500-(micro)m, 9.6% enriched UO2 kernels for the AGR-2 experiments. Kernels of the same size and enrichment as AGR-1 were also produced for the AGR-3/4 experiment. In addition to fabricating enriched UCO and UO2 kernels, B and W has produced more than 100 kg of natural uranium UCO kernels which are being used in coating development tests. Successive lots of kernels have demonstrated consistent high quality and also allowed for fabrication process improvements. Improvements in kernel forming were made subsequent to AGR-1 kernel production. Following fabrication of AGR-2 kernels, incremental increases in sintering furnace charge size have been demonstrated. Recently small scale sintering tests using a small development furnace equipped with a residual gas analyzer (RGA) has increased understanding of how kernel sintering parameters affect sintered kernel properties. The steps taken to increase throughput and process knowledge have reduced kernel production costs. Studies have been performed of additional modifications toward the goal of increasing capacity of the current fabrication line to use for production of first core fuel for the Next Generation Nuclear Plant (NGNP) and providing a basis for the design of a full scale fuel fabrication facility.

  5. Fabrication of cermet fuel for fast reactor

    International Nuclear Information System (INIS)

    Mishra, Sudhir; Kumar, Arun; Kutty, T.R.G.; Kamath, H.S.

    2011-01-01

    Mixed oxide (MOX) (U,Pu)O 2 , and metallic (U,Pu ,Zr) fuels are considered promising fuels for the fast reactor. The fuel cycle of MOX is well established. The advantages of the oxide fuel are its easy fabricability, good performance in the reactor and a well established reprocessing technology. However the problems lie in low thermal conductivity , low density of the fuel leading to low breeding ratio and consequently longer doubling time. The metallic fuel has the advantages of high thermal conductivity, higher metal density and higher coefficient of linear expansion. The higher coefficient of linear expansion is good from the safety consideration (negative reactivity factor). Because of higher metal density it offers highest breeding ratio and shortest doubling time. Metallic fuel disadvantages comprise large swelling at high burnup, fuel cladding interaction and lower margin between operating and melting temperature. The optimal solution may lie in cermet fuel (U, PuO 2 ), where PuO 2 is dispersed in U metal matrix and combines the favorable features of both the fuel types. The advantages of this fuel include high thermal conductivity, larger margin between melting and operating temperature, ability to retain fission product etc. The matrix being of high density metal the advantage of high breeding ratio is also maintained. In this report some results of fabrication of cermet pellet comprising of UO 2 /PuO 2 dispersed in U metal powder through classical powder metallurgy route and characterization are presented. (author)

  6. Remote fabrication of nuclear fuel: a secure automated fabrication overview

    International Nuclear Information System (INIS)

    Nyman, D.H.; Benson, E.M.; Yatabe, J.M.; Nagamoto, T.T.

    1981-01-01

    An automated line for the fabrication of breeder reactor fuel pins is being developed. The line will be installed in the Fuels and Materials Examination Facility (FMEF) presently under construction at the Hanford site near Richland, Washington. The application of automation and remote operations to fuel processing technology is needed to meet program requirements of reduced personnel exposure, enhanced safeguards, improved product quality, and increased productivity. Commercially available robots are being integrated into operations such as handling of radioactive material within a process operation. These and other automated equipment and chemistry analyses systems under development are described

  7. Fuel Fabrication and Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    The uranium from the enrichment plant is still in the form of UF6. UF6 is not suitable for use in a reactor due to its highly corrosive chemistry as well as its phase diagram. UF6 is converted into UO2 fuel pellets, which are in turn placed in fuel rods and assemblies. Reactor designs are variable in moderators, coolants, fuel, performance etc.The dream of energy ‘too-cheap to meter’ is no more, and now the nuclear power industry is pushing ahead with advanced reactor designs.

  8. Development of metallic fuel fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Young Ho; Lee, Chong Yak; Lee, Myung Ho and others

    1999-03-01

    With the vacuum melting and casting of the U-10wt%Zr alloy which is metallic fuel for liquid metal fast breeder reactor, we studied the microstructure of the alloy and the parameters of the melting and casting for the fuel rods. Internal defects of the U-10wt%Zr fuel by gravity casting, were inspected by non-destructive test. U-10wt%Zr alloy has been prepared for the thermal stability test in order to estimate the decomposition of the lamellar structure with relation to swelling under irradiation condition. (author)

  9. Development of PHWR fuel fabrication in Korea

    International Nuclear Information System (INIS)

    Suh, K.S.; Yang, M.S.; Kim, D.H.; Rim, C.S.

    1988-01-01

    Korea Advanced Energy Research Institute (KAERI) started a research project to develop the PHWR (CANDU) nuclear fuel fabrication technology in 1981. Based on the results of the intensive developmental work, several prototype fuel bundles were fabricated and tested in the Hot Test Loop at KAERI continuously in 1983 and 1984. After that, irradiation test and post-irradiation examination were carried out for two KAERI-made fuel bundles at Chalk River Nuclear Laboratories in Canada in 1984. Since the results of in-pile and out-of-pile tests with prototype fuel bundles proved to be satisfactory, 48 additional fuel bundles were loaded in Wolsung reactor (CANDU) in 1984 and 1985, and all of them were discharged without a defect after excellent performance in the power reactor. In 1985, the Korean government decided that KAERI supplies all the fuel necessary for the Wolsung reactor. For the mass production of nuclear fuel bundle, several process equipment, facilities and automation methods have been improved making use of experience accumulated during research. A quality assurance program was also established, and quality inspection technology was reviewed and improved to fit the mass production. This paper deals with the development experience so far obtained with the design and fabrication of the Korean PHWR fuel

  10. Fuel reprocessing/fabrication interface

    International Nuclear Information System (INIS)

    Benistan, G.; Blanchon, T.; Galimberti, M.; Mignot, E.

    1987-01-01

    EDF has conducted a major research, development and experimental programme concerning the recycling of plutonium and reprocessed uranium in pressurized water reactors, in collaboration with its major partners in the nuclear fuel cycle industry. Studies already conducted have demonstrated the technical and economic advantages of this recycling, as also its feasibility with due observance of the safety and reliability criteria constantly applied throughout the industrial development of the nuclear power sector in France. Data feedback from actual experience will make it possible to control the specific technical characteristics of MOX and reprocessed uranium fuels to a higher degree, as also management, viewed from the economic standpoint, of irradiated fuels and materials recovered from reprocessing. The next step will be to examine the reprocessing of MOX for reprocessed uranium fuels, either for secondary recycling in the PWR units, or, looking further ahead, in the fast breeders or later generation PWR units, after a storage period of a few years

  11. Irradiation-induced dimensional changes of fuel compacts and graphite sleeves of OGL-1 fuel assemblies

    International Nuclear Information System (INIS)

    Hayashi, Kimio; Minato, Kazuo; Kobayashi, Fumiaki; Tobita, Tsutomu; Kikuchi, Teruo; Kurobane, Shiro; Adachi, Mamoru; Fukuda, Kousaku

    1988-06-01

    Experimental data are summarized on irradiation-induced dimensional changes of fuel compacts and graphite sleeves of the first to ninth OGL-1 fuel assemblies. The range of fast-neutron fluence is up to 4 x 10 24 n/m 2 (E > 0.18 MeV); and that of irradiation temperature is 900 - 1400 deg C for fuel compacts and 800 - 1050 deg C for graphite sleeves. The dimensional change of the fuel compacts was shrinkage under these test conditions, and the shrinkage fraction increased almost linearly with fast-neutron fluence. The shrinkage fraction of the fuel compacts was larger by 20 % in the axial direction than in the radial direction. Influence of the irradiation temperature on the dimensional-change behavior of the fuel compacts was not observed clearly; presumably the influence was hidden by scatter of the data because of low level of the fast-neutron fluence and the resultant small dimensional changes. (author)

  12. Sol-gel process for thermal reactor fuel fabrication

    International Nuclear Information System (INIS)

    Mukerjee, S.K.

    2008-01-01

    Full text: Sol-gel processes have revolutionized conventional ceramic technology by providing extremely fine and uniform powders for the fabrication of ceramics. The use of this technology for nuclear fuel fabrication has also been explored in many countries. Unlike the conventional sol-gel process, sol-gel process for nuclear fuels tries to eliminate the preparation of powders in view of the toxic nature of the powders particularly those of plutonium and 233 U. The elimination of powder handling thus makes this process more readily amenable for use in glove boxes or for remote handling. In this process, the first step is the preparation of microspheres of the fuel material from a solution which is then followed by vibro-compaction of these microspheres of different sizes to obtain the required smear density of fuel inside a pin. The maximum achievable packing density of 92 % makes it suitable for fast reactors only. With a view to extend the applicability of sol-gel process for thermal reactor fuel fabrication the concept of converting the gel microspheres derived from sol-gel process, to the pellets, has been under investigation for several years. The unique feature of this process is that it combines the advantages of sol-gel process for the preparation of fuel oxide gel microspheres of reproducible quality with proven irradiation behavior of the pellet fuel. One of the important pre-requisite for the success of this process is the preparation of soft oxide gel microspheres suitable for conversion to dense pellets free from berry structure. Studies on the internal gelation process, one of the many variants of sol-gel process, for obtaining soft oxide gel microspheres suitable for gel pelletisation is now under investigation at BARC. Some of the recent findings related to Sol-Gel Microsphere Pelletisation (SGMP) in urania-plutonia and thoria-urania systems will be presented

  13. Fuel fabrication and reprocessing at UKAEA Dounreay

    International Nuclear Information System (INIS)

    Anderson, B.

    1994-01-01

    The Dounreay fuel plants, which are the most flexible anywhere in the world, will continue to carry out work for foreign commercial customers. A number of German companies are important customers of UKAEA and examples of the wide variety of the work currently being carried out for them in the Dounreay plants is given (reprocessing and fabrication of fuel elements from and for research reactors). (orig./HP) [de

  14. Process development and fabrication for sphere-pac fuel rods

    International Nuclear Information System (INIS)

    Welty, R.K.; Campbell, M.H.

    1981-06-01

    Uranium fuel rods containing sphere-pac fuel have been fabricated for in-reactor tests and demonstrations. A process for the development, qualification, and fabrication of acceptable sphere-pac fuel rods is described. Special equipment to control fuel contamination with moisture or air and the equipment layout needed for rod fabrication is described and tests for assuring the uniformity of the fuel column are discussed. Fuel retainers required for sphere-pac fuel column stability and instrumentation to measure fuel column smear density are described. Results of sphere-pac fuel rod fabrication campaigns are reviewed and recommended improvements for high throughput production are noted

  15. Automated fuel fabrication- a vision comes true

    International Nuclear Information System (INIS)

    Hemantha Rao, G.V.S.; Prakash, M.S.; Setty, C.R.P.; Gupta, U.C.

    1997-01-01

    When New Uranium Fuel Assembly Project at Nuclear Fuel Complex (NFC) begins production, its operator will have equipment provided with intramachine handling systems working automatically by pressing a single button. Additionally simple low cost inter machine handling systems will further help in critical areas. All these inter and intra machine handling systems will result in improved reliability, productivity and quality. The fault diagnostics, mimics and real time data acquisition systems make the plant more operator friendly. The paper deals with the experience starting from layout, selection of product carriers, different handling systems, the latest technology and the integration of which made the vision on automation in fuel fabrication come true. (author)

  16. MOX fuel fabrication: Technical and industrial developments

    International Nuclear Information System (INIS)

    Lebastard, G.; Bairiot, H.

    1990-01-01

    The plutonium available in the near future is generally estimated rather precisely on the basis of the reprocessing contracts and the performance of the reprocessing plants. A few years ago, decision makers were convinced that a significant share of this fissile material would be used as the feed material for fast breeder reactors (FBRs) or other advanced reactors. The facts today are that large reprocessing plants are coming into commercial operations: UP3 and soon UP2-800 and THORP, but that FBR deployment is delayed worldwide. As a consequence, large quantities of plutonium will be recycled in light water reactors as mixed oxide (MOX) fuels. MOX fuel technology has been properly demonstrated in the past 25 years. All specific problems have been addressed, efficient fabrication processes and engineering background have been implemented to a level of maturity which makes MOX fuel behaving as well as Uranium fuel. The paper concentrates on todays MOX fabrication expertise and presents the technical and industrial developments prepared by the MOX fuel fabrication industry for this last decade of the century

  17. Nuclear fuel fabrication - developing indigenous capability

    International Nuclear Information System (INIS)

    Gupta, U.C.; Jayaraj, R.N.; Meena, R.; Sastry, V.S.; Radhakrishna, C.; Rao, S.M.; Sinha, K.K.

    1997-01-01

    Nuclear Fuel Complex (NFC), established in early 70's for production of fuel for PHWRs and BWRs in India, has made several improvements in different areas of fuel manufacturing. Starting with wire-wrap type of fuel bundles, NFC had switched over to split spacer type fuel bundle production in mid 80's. On the upstream side slurry extraction was introduced to prepare the pure uranyl nitrate solution directly from the MDU cake. Applying a thin layer of graphite to the inside of the tube was another modification. The Complex has developed cost effective and innovative techniques for these processes, especially for resistance welding of appendages on the fuel elements which has been a unique feature of the Indian PHWR fuel assemblies. Initially, the fuel fabrication plants were set-up with imported process equipment for most of the pelletisation and assembly operations. Gradually with design and development of indigenous equipment both for production and quality control, NFC has demonstrated total self reliance in fuel production by getting these special purpose machines manufactured indigenously. With the expertise gained in different areas of process development and equipment manufacturing, today NFC is in a position to offer know-how and process equipment at very attractive prices. The paper discusses some of the new processes that are developed/introduced in this field and describes different features of a few PLC based automatic equipment developed. Salient features of innovative techniques being adopted in the area Of UO 2 powder production are also briefly indicated. (author)

  18. Fuel Fabrication Capability Research and Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    Senor, David J.; Burkes, Douglas

    2014-04-17

    The purpose of this document is to provide a comprehensive review of the mission of the Fuel Fabrication Capability (FFC) within the Global Threat Reduction Initiative Convert Program, along with research and development (R&D) needs that have been identified as necessary to ensuring mission success. The design and fabrication of successful nuclear fuels must be closely linked endeavors. Therefore, the overriding motivation behind the FFC R&D program described in this plan is to foster closer integration between fuel design and fabrication to reduce programmatic risk. These motivating factors are all interrelated, and progress addressing one will aid understanding of the others. The FFC R&D needs fall into two principal categories, 1) baseline process optimization, to refine the existing fabrication technologies, and 2) manufacturing process alternatives, to evaluate new fabrication technologies that could provide improvements in quality, repeatability, material utilization, or cost. The FFC R&D Plan examines efforts currently under way in regard to coupon, foil, plate, and fuel element manufacturing, and provides recommendations for a number of R&D topics that are of high priority but not currently funded (i.e., knowledge gaps). The plan ties all FFC R&D efforts into a unified vision that supports the overall Convert Program schedule in general, and the fabrication schedule leading up to the MP-1 and FSP-1 irradiation experiments specifically. The fabrication technology decision gates and down-selection logic and schedules are tied to the schedule for fabricating the MP-1 fuel plates, which will provide the necessary data to make a final fuel fabrication process down-selection. Because of the short turnaround between MP-1 and the follow-on FSP-1 and MP-2 experiments, the suite of specimen types that will be available for MP-1 will be the same as those available for FSP-1 and MP-2. Therefore, the only opportunity to explore parameter space and alternative processing

  19. Measurement of Weight of Kernels in a Simulated Cylindrical Fuel Compact for HTGR

    International Nuclear Information System (INIS)

    Kim, Woong Ki; Lee, Young Woo; Kim, Young Min; Kim, Yeon Ku; Eom, Sung Ho; Jeong, Kyung Chai; Cho, Moon Sung; Cho, Hyo Jin; Kim, Joo Hee

    2011-01-01

    The TRISO-coated fuel particle for the high temperature gas-cooled reactor (HTGR) is composed of a nuclear fuel kernel and outer coating layers. The coated particles are mixed with graphite matrix to make HTGR fuel element. The weight of fuel kernels in an element is generally measured by the chemical analysis or a gamma-ray spectrometer. Although it is accurate to measure the weight of kernels by the chemical analysis, the samples used in the analysis cannot be put again in the fabrication process. Furthermore, radioactive wastes are generated during the inspection procedure. The gamma-ray spectrometer requires an elaborate reference sample to reduce measurement errors induced from the different geometric shape of test sample from that of reference sample. X-ray computed tomography (CT) is an alternative to measure the weight of kernels in a compact nondestructively. In this study, X-ray CT is applied to measure the weight of kernels in a cylindrical compact containing simulated TRISO-coated particles with ZrO 2 kernels. The volume of kernels as well as the number of kernels in the simulated compact is measured from the 3-D density information. The weight of kernels was calculated from the volume of kernels or the number of kernels. Also, the weight of kernels was measured by extracting the kernels from a compact to review the result of the X-ray CT application

  20. Design study and evaluation of fuel fabrication systems for FR fuel cycle

    International Nuclear Information System (INIS)

    Namekawa, Takashi; Tanaka, Kenya; Kawaguchi, Koichi; Koike, Kazuhiro; Shimuta, Hiroshi; Suzuki, Yoshihiro

    2004-01-01

    The plant concept for each FBR fuel fabrication system has been constructed and evaluated, which achieves economical improvement, decrease in the environmental burden, better resource utilization, and proliferation resistance by the various innovative techniques employed. The results are as follows: (1) For oxide fuels, the simplified pelletizing method has a high technical feasibility, and it is possible to apply this method to practical process at early stage, because this method is based on wealth results of a conventional method. (2) For oxide fuels, the sphere packing fuel fabrication system by gelation and vibro-compaction processes has the advantage of lesser dispersion of the fine powder due to the use of solution and granule in the process. However this system shoulders additional cost for the liquid waste treatment process to dispose a large bulk of process liquid waste. (3) For the metal fuel, the casting system is generally expected to have high economical efficiency even for small-scale facilities, although verification for fabrication of the TRU alloy slug is required. (author)

  1. Material control in nuclear fuel fabrication facilities. Part I. Fuel descriptions and fabrication processes, P.O. 1236909 Final report

    International Nuclear Information System (INIS)

    Borgonovi, G.M.; McCartin, T.J.; Miller, C.L.

    1978-12-01

    The report presents information on foreign nuclear fuel fabrication facilities. Fuel descriptions and fuel fabrication information for three basic reactor types are presented: The information presented for LWRs assumes that Pu--U Mixed Oxide Fuel (MOX) will be used as fuel

  2. Sintered nuclear fuel compact and method for its production

    International Nuclear Information System (INIS)

    Peehs, M.; Dorr, W.

    1988-01-01

    This patent describes a method of producing a sintered nuclear fuel compact with which reactivity losses in a nuclear reactor having long fuel element cycles are avoided, which comprises, forming a compact of a mixture of powders containing at least one nuclear fuel oxide selected from the group consisting of UO/sub 2/, PuO/sub 2/, ThO/sub 2/, mixed oxide (U, Pu)O/sub 2/ and mixed oxide (U, Th)O/sub 2/, at least one neutron poison selected from the group consisting of UB/sub x/, where x=2; 4 and/or 12 and B/sub 4/C, and sintering the compact of the mixture of powders so that the neutron piston is embedded in a sintered matrix of the nuclear fuel oxide at a treatment temperature in a range from 1000 0 C to 1400 0 C in an oxidizing sintering atmosphere, and then heat treating the sintered compact in a reducing gas atmosphere

  3. Status of Research on Pebble Bed HTR Fuel Fabrication Technology in Indonesia

    International Nuclear Information System (INIS)

    Rachmawati, M.; Sarjono; Ridwan; Langenati, R.

    2014-01-01

    Research on pebble bed HTR fuel fabrication is conducted in Indonesia. One of the aims is to build a knowledge base on pebble bed HTR fuel element fabrication technology for fuel procurement. The steps of research strategies are firstly to understand the basic design research of TRISO fuel, properties, and requirements, and secondly to understand the TRISO fuel manufacturing technology, which comprises fabrication and quality control, including its facility. Both steps are adopted from research and experiences of the countries with HTR fuel element fabrication technology. From the knowledge gained in the research, an experimental design of the process and a set of prototype process equipment for fabrication are developed, namely kernels production using external gelation process, TRISO coating of the kernel, and pebble compacting. Experiments using the prototypes have been conducted. Characterization of the kernel product, i.e. diameter, sphericity, density and O/U ratio, shows that the kernel product is still not in compliance with the specification requirements. These are deemed to be caused mainly by the selected vibrating system and the viscosity adjustment. Another major cause is the selected NH3 and air feeding method for both NH3 and air layer in the preparation for spherical droplets of liquid. The FB-CVD TRISO coating of the kernel has been experimented but unsuccessful by using an FB-CVD once‐through continuous coating process. For the pebble compacting, the process is still in the early stage of setting-up compaction equipment. This paper summarizes the current status of research on HTR fuel fabrication technology in Indonesia, the proposed process and its equipment setting-up for improvement of the kernel production. The knowledge and lessons learned gained from the research is useful and can be an assistance in planning for fuel development laboratory facilities procurement, formulating User Requirement Document and Bid Invitation Specification for

  4. Study of nuclear fuel powders forming by axial compaction

    International Nuclear Information System (INIS)

    Fourcade, J.

    2002-12-01

    Nuclear fuel powders forming, although perfectly dominated, fail to make compacts without density gradients. Density heterogeneities induce diametric deformations during firing which force manufacturers to adjust shape with a high cost machining stage. Manufacturing process improvement is a major project to obtain perfectly shaped pellets and reduce their cost. One way of investigation of this project is the study of powders compaction mechanisms to understand and improve their behaviour. The goal of this study is to identify the main mechanisms linked with powder properties that act on pressing. An empirical model is developed to predict pellet deformations from a single compaction test. This model has to link powder properties with their compaction behaviour. Then, compaction tests identify the main mechanisms whereas a contact dynamic program is used to explain them. These works, done to improve the understanding in powders behaviour, focus on powders agglomeration state and macroscopic particles arrangement during the die filling stage. Actually, for granulated powders, granules cohesion act on the powder bed behaviour under pressure. The first particles arrangement is responsible for the first transfer directions into the powder and so for its transfer homogeneity and isotropy. As a consequence, the knowledge of all the macroscopic powder properties is essential to understand and improve the manufacturing process. Moreover, tests on UO 2 powders have shown that it is better to use granulated powders with spherical granules, short size distribution and granules cohesion according with compaction pressure to improve compact homogeneity of densification. (author)

  5. Development of CANFLEX fuel fabrication technology

    Energy Technology Data Exchange (ETDEWEB)

    Kang, M. S.; Choi, C. B.; Park, C. H.; Kwon, W. J.; Kim, C. H.; Kim, B. J.; Koo, C. H.; Cho, D. S.; So, D. Y.; Suh, S. W.; Park, C. J.; Chang, D. H.; Yun, S. H. [KEPCO Nuclear Fuel Company, Taejeon (Korea)

    2000-04-01

    Wolsong Unit 1 as the first heavy water reactor in Korea has been in service for 17 years since 1983. It would be about the time to prepare a plan for the solution of problems due to aging of the reactor. The aging of CANDU reactor could lead especially to the steam generator cruding and pressure tube sagging and creep and then decreases the operation margin to make some problems on reactor operations and safety. The counterplan could be made in two ways. One is to repair or modify reactor itself. The other is to develop new advanced fuel to increase of CANDU operation margin effectively, so as to compensate the reduced operation margin. Therefore, the first objectives in the present R and D is to develop the CANFLEX-NU(CANDU Flexible fuelling-Natural Uranium) fuel as a CANDU advanced fuel. One of the improvements in CANDU fuel fabrication technology, and advanced method of Zr-Be brazing was developed. For the formation of Zr-Be alloy, preheating and main heating temperature in the furnace is 700 deg C, 1200 deg C respectively. In order to find an appropriate material for the brazing joints in the CANDU fuel, the composition of Zr based amorphous metals were designed. And, the effect of hydrogen on the mechanical properties of cladding sheath and feasibility of the eddy current test to evaluate quality of end cap weld were also studied for the fundamental research purpose. As a preliminary study to suggest optimal way for the mass production of CANFLEX-NU fuel at KNFC the existing CANDU fuel facilities and fabrication/inspection processes were reviewed. The best way is that the current CANDU facility shall be modified to produce small diametrial CANFLEX elements and a new facility shall be constructed to produce large diametrial CANFLEX fuel elements. 46 refs., 99 figs., 10 tabs. (Author)

  6. Informal presentations by fuel fabricators and others [contributed by A. Nishiyama, Nuclear Fuel Industries, Ltd.

    International Nuclear Information System (INIS)

    Nishiyama, A.

    1993-01-01

    This paper contains a brief summary of activities in the field of research reactor fuel fabrication in Nuclear Fuel Industries Sumitomo and Furukawa Industries. Since 1956 2 million dollars were spent for development of nuclear fuels and plant facilities including complete manufacturing and testing capabilities. Now this company is the only fuel supplier for the research reactors in Japan. The fabrication process starts with the melting, alloying, and casting of U-Al. The uranium billets are prepared by foreign fabricators. The uranium content varies from 13 to 22 wt % according to the purchaser's specifications. In making fuel plates, the picture frame method is applied. In this case, the original procedure is sufficiently effective in avoiding dogboning. The plates are finished by hot and cold roll milling and inspected dimensionally, metallurgically, and mechanically, and at the same time the blister test and X-ray radiographic tests are performed. Fuel elements are assembled by rolling flat or curved plates into side plate grooves and end-fit welding. Finished elements are tested dimensionally and hydraulically. Nominal losses during operation are less than 1% of the uranium metal. Our present capacity licensed by the Japanese Government is approximately 950 fuel elements a year. About 35 employees including engineers are engaged in development and manufacturing of fuels. Owing to the small limited demand of the research reactor fuels in Japan during the past 20 years (mostly in last 10 years), we processed only about 350 kg of highly enriched uranium and supplied approximately 1000 fuel elements to JAERI, Kyoto University, and others, and we have been suffering red-ink balance of budget every year. Some of trials in development are briefly discussed. In case of UO 2 -Al metal fuel plates, the vibratory compacting method was very popular among many researchers about 10 years ago. A lot of time and money was spent to study the economic fabrication process of

  7. Compact hydrogen production systems for solid polymer fuel cells

    Science.gov (United States)

    Ledjeff-Hey, K.; Formanski, V.; Kalk, Th.; Roes, J.

    Generally there are several ways to produce hydrogen gas from carbonaceous fuels like natural gas, oil or alcohols. Most of these processes are designed for large-scale industrial production and are not suitable for a compact hydrogen production system (CHYPS) in the power range of 1 kW. In order to supply solid polymer fuel cells (SPFC) with hydrogen, a compact fuel processor is required for mobile applications. The produced hydrogen-rich gas has to have a low level of harmful impurities; in particular the carbon monoxide content has to be lower than 20 ppmv. Integrating the reaction step, the gas purification and the heat supply leads to small-scale hydrogen production systems. The steam reforming of methanol is feasible at copper catalysts in a low temperature range of 200-350°C. The combination of a small-scale methanol reformer and a metal membrane as purification step forms a compact system producing high-purity hydrogen. The generation of a SPFC hydrogen fuel gas can also be performed by thermal or catalytic cracking of liquid hydrocarbons such as propane. At a temperature of 900°C the decomposition of propane into carbon and hydrogen takes place. A fuel processor based on this simple concept produces a gas stream with a hydrogen content of more than 90 vol.% and without CO and CO2.

  8. Compacting biomass waste materials for use as fuel

    Science.gov (United States)

    Zhang, Ou

    Every year, biomass waste materials are produced in large quantity. The combustibles in biomass waste materials make up over 70% of the total waste. How to utilize these waste materials is important to the nation and the world. The purpose of this study is to test optimum processes and conditions of compacting a number of biomass waste materials to form a densified solid fuel for use at coal-fired power plants or ordinary commercial furnaces. Successful use of such fuel as a substitute for or in cofiring with coal not only solves a solid waste disposal problem but also reduces the release of some gases from burning coal which cause health problem, acid rain and global warming. The unique punch-and-die process developed at the Capsule Pipeline Research Center, University of Missouri-Columbia was used for compacting the solid wastes, including waste paper, plastics (both film and hard products), textiles, leaves, and wood. The compaction was performed to produce strong compacts (biomass logs) under room temperature without binder and without preheating. The compaction conditions important to the commercial production of densified biomass fuel logs, including compaction pressure, pressure holding time, back pressure, moisture content, particle size, binder effects, and mold conditions were studied and optimized. The properties of the biomass logs were evaluated in terms of physical, mechanical, and combustion characteristics. It was found that the compaction pressure and the initial moisture content of the biomass material play critical roles in producing high-quality biomass logs. Under optimized compaction conditions, biomass waste materials can be compacted into high-quality logs with a density of 0.8 to 1.2 g/cm3. The logs made from the combustible wastes have a heating value in the range 6,000 to 8,000 Btu/lb which is only slightly (10 to 30%) less than that of subbituminous coal. To evaluate the feasibility of cofiring biomass logs with coal, burn tests were

  9. Development of CANDU high-burnup fuel fabrication technology

    International Nuclear Information System (INIS)

    Sim, Ki Seob; Suk, H. C.; Kwon, H. I.; Ji, C. G.; Cho, M. S.; Chang, H. I.

    1997-07-01

    This study is focused on the achievement of the fabrication process improvement of CANFLEX-NU and for this purpose, following two areas of basic research were executed this year. 1) development of amorphous alloy for use in brazing of nuclear materials. 2) development of ECT techniques for the end-cap weld inspection. Also, preliminary feasibility analyses on the characteristics and handling techniques of CANFLEX-RU fuel were executed this year. - Selection of optimum conversion process of RU power -Characterization of the composition of RU power - Radiological characterization of RU power and sintered pellets - Compaction and sintering characteristics of RU power - Required special process for the production of CANFLEX-RU fuel - Development of technical specification for RU powder and pellets. In addition, technical support activities were performed for in-pile and out-pile fuel performance tests such as precision measurement of out-pile test fuel dimensions, establishment of quality control technique on fuel bundle by providing bundle kits to AECL for use in-pile irradiation tests in the NRU research reactor. (author). 57 refs., 16 tabs.,40 figs

  10. Compact toroid fueling of the TdeV tokamak

    International Nuclear Information System (INIS)

    Martin, F.; Raman, R.; Xiao, C.; Thomas, J.

    1993-01-01

    Compact toroids have been proposed as a means of centrally fueling tokamak reactors because of the high velocity to which they can be accelerated. These are cold (T e ∼ 10 eV), high density (n e > 10 20 m -3 ) spheromak plasmoids that are accelerated in a magnetized Marshall gun. As a proof of principle experiment, a compact toroid fueler (CTF) has been developed for injection into the TdeV tokamak. The engineering goals of the experiment are to measure and minimize the impurity content of the CT plasma and the neutral gas remaining after CT formation. Also of importance is the effect of CT central fueling on the tokamak density profile and bootstrap current, and the relaxation rate of the density profile providing information on the confinement time of the CT fuel

  11. Fuel fabrication instrumentation and control system overview

    International Nuclear Information System (INIS)

    Bennett, D.W.; Fritz, R.L.

    1980-10-01

    A process instrumentation and control system is being developed for automated fabrication of breeder reactor fuel at the Hanford Engineering Development Laboratory (HEDL) in Richland, Washington. The basic elements of the control system are a centralized computer system linked to distributed local computers, which direct individual process applications. The control philosophy developed for the equipment automation program stresses system flexibility and inherent levels of redundant control capabilities. Four different control points have been developed for each unit process operation

  12. Waste management in MOX fuel fabrication plants

    International Nuclear Information System (INIS)

    Schneider, V.

    1982-01-01

    After a short description of a MOX fuel fabrication plant's activities the waste arisings in such a plant are discussed according to nature, composition, Pu-content. Experience has shown that proper recording leads to a reduction of waste arisings by waste awareness. Aspects of the treatment of α-waste are given and a number of treatment processes are reviewed. Finally, the current waste management practice and the α-waste treatment facility under construction at ALKEM are outlined. (orig./RW)

  13. Fuel consolidation and compaction and storage of NFBC

    International Nuclear Information System (INIS)

    Fuierer, T.

    1992-01-01

    Rochester Gas and Electric Corporation (RG ampersand E) has been involved in two separate fuel consolidation demonstration programs. One of those programs resulted in identifying some problems that may be resolved in consolidation hardware compaction and storage in order for consolidation to be attractive. In conjunction with the Electric Power Research Institute (EPRI), a study was recently performed on hardware compaction and storage. Consolidation is probably not a commercial alternative at this point in time because there are still several problems that must be resolved. There are some potential advantages of fuel consolidation. Consolidation has attractive economics and can minimize the institutional impacts of expanding spent fuel storage by internalizing spent fuel storage operations. The licensing effort is fairly simple. Consolidation may be less likely to have public intervention since the storage expansion will occur inside the plant. Consolidation can be subcontracted and the equipment is temporary. It can be used in conjunction with other storage expansion technologies such as dry storage. Fewer dry storage casks would be needed to store consolidated fuel than would be necessary for intact spent fuel

  14. Detection and Analysis of Particles with Failed SiC in AGR-1 Fuel Compacts

    International Nuclear Information System (INIS)

    Hunn, John D.; Baldwin, Charles A.; Gerczak, Tyler J.; Montgomery, Fred C.; Morris, Robert N.; Silva, Chinthaka M.; Demkowicz, Paul A.; Harp, Jason M.; Ploger, Scott A.

    2014-01-01

    As the primary barrier to release of radioactive isotopes emitted from the fuel kernel, retention performance of the SiC layer in tristructural isotropic (TRISO) coated particles is critical to the overall safety of reactors that utilize this fuel design. Most isotopes are well-retained by intact SiC coatings, so pathways through this layer due to cracking, structural defects, or chemical attack can significantly contribute to radioisotope release. In the US TRISO fuel development effort, release of "1"3"4Cs and "1"3"7Cs are used to detect SiC failure during fuel compact irradiation and safety testing because the amount of cesium released by a compact containing one particle with failed SiC is typically ten or more times higher than that released by compacts without failed SiC. Compacts with particles that released cesium during the AGR-1 irradiation test or post-irradiation safety testing at 1600– 1800°C were identified, and individual particles with abnormally low cesium retention were sorted out with the ORNL Irradiated Microsphere Gamma Analyzer (IMGA). X-ray tomography was used for three-dimensional imaging of the internal coating structure to locate low-density pathways through the SiC layer and guide subsequent materialography by optical and scanning electron microscopy. All three cesium-releasing particles recovered from as-irradiated compacts showed a region where the inner pyrocarbon (IPyC) had cracked due to radiation-induced dimensional changes in the shrinking buffer and the exposed SiC had experienced concentrated attack by palladium; SiC failures observed in particles subjected to safety testing were related to either fabrication defects or showed extensive Pd corrosion through the SiC where it had been exposed by similar IPyC cracking. (author)

  15. Development of advanced fabrication technology for high-temperature gas-cooled reactor fuel. Reduction of coating failure fraction

    International Nuclear Information System (INIS)

    Minato, Kazuo; Kikuchi, Hironobu; Fukuda, Kousaku; Tobita, Tsutomu; Yoshimuta, Sigeharu; Suzuki, Nobuyuki; Tomimoto, Hiroshi; Nishimura, Kazuhisa; Oda, Takafumi

    1998-11-01

    The advanced fabrication technology for high-temperature gas-cooled reactor fuel has been developed to reduce the coating failure fraction of the fuel particles, which leads to an improvement of the reactor safety. The present report reviews the results of the relevant work. The mechanisms of the coating failure of the fuel particles during coating and compaction processes of the fuel fabrication were studied to determine a way to reduce the coating failure fraction of the fuel. The coating process was improved by optimizing the mode of the particle fluidization and by developing the process without unloading and loading of the particles at intermediate coating process. The compaction process was improved by optimizing the combination of the pressing temperature and the pressing speed of the overcoated particles. Through these modifications of the fabrication process, the quality of the fuel was improved outstandingly. (author)

  16. Durability Properties of Palm Oil Fuel Ash Self Compacting Concrete

    Directory of Open Access Journals (Sweden)

    T. Ofuyatan

    2015-02-01

    Full Text Available Self Compacting Concrete (SCC is a new innovation in technology that can flow readily into place under its own self weight and fill corner areas of reinforcement structures without the need to vibrate and without segregation of its constitute. The problem of durability of concrete structures due to inadequate compaction by skilled workers has become a source of concern globally. The shortage of skilled manpower, noise and vibration of equipment on construction sites has led to the development of self compacting concrete. This paper presents an experimental study on the durability properties of Self Compacting Concrete with partial placement of Palm Oil Fuel Ash (POFA. Twelve POFA self-compacting concretes of various strength grades were designed at varying percentages of 0, 5, 10, 15, 20, 25 and 30%. The concrete with no placement of ash served as control. Conplast SP432MS was used as superplasticiser in the mix. The experiments are carried out by adopting a water-powder ratio of 0.36. Workability of the fresh concrete is determined by using tests such as: slump flow, T50, V-funnel and L-Box tests. The durability of concrete is tested by acid resistance, sulphate attack and saturated water absorption at the age of 14, 28, 56 and 90 days.

  17. TRIGA International, a new TRIGA fuel fabrication facility at CERCA

    International Nuclear Information System (INIS)

    Harbonnier, G.

    1997-01-01

    At the time when General Atomics expressed its intention to cease fuel fabrication on its site of San Diego, CERCA has been chosen to carry on the fabrication of TRIGA fuel. After negotiations in 1994 and 1995, a partnership 50%/50% was decided and on July 1995, a new company was founded, with the name TRIGA INTERNATIONAL SAS, head office in Paris and fuel fabrication facility at CERCA in Romans. The intent of this presentation is, after a short reminder about TRIGA fuel design and fabrication to describe the new facility with special emphasis on the safety features associated with the modification of existing fabrication buildings. (author)

  18. Compacted spent-fuel storage--designs and problems

    International Nuclear Information System (INIS)

    Rubinstein, H.J.; Gilcrest, J.D.; Kendall, W.R.

    1979-01-01

    Typical rack designs, licensing, contracting methods, installation and operational problems are described. Due to the lack of reprocessing and independent fuel storage facilities, new plants built in the United States will continue to install high-density spent-fuel storage racks. As to the rack designs, the most significant feature is the introduction of freestanding rack designs. The trends in spent-fuel storage appear to be toward the use of high-density racks, either with or without absorber, for all plants in the design, construction, or operation phase; the use of freestanding rack designs; and the separation of engineering and fabrication during procurement

  19. Property-process relationships in nuclear fuel fabrication

    International Nuclear Information System (INIS)

    Tikare, V.

    2015-01-01

    Nuclear fuels are fabricated using many different techniques as they come in a large variety of shapes and compositions. The design and composition of nuclear fuels are predominantly dictated by the engineering requirements necessary for their function in reactors of various designs. Other engineering properties requirements originate from safety and security concerns, and the easy of handling, storing, transporting and disposing of the radioactive materials. In this chapter, the more common of these fuels will be briefly reviewed and the methods used to fabricate them will be presented. The fuels considered in this paper are oxide fuels used in LWRs and FRs, metal fuels in FRs and particulate fuels used in HTGRs. Fabrication of alternative fuel forms and use of standard fuels in alternative reactors will be discussed briefly. The primary motivation to advance fuel fabrication is to improve performance, reduce cost, reduce waste or enhance safety and security of the fuels. To achieve optimal performance, developing models to advance fuel fabrication has to be done in concert with developing fuel performance models. The specific properties and microstructures necessary for improved fuel performance must be identified using fuel performance models, while fuel fabrication models that can determine processing variables to give the desired microstructure and materials properties must be developed. (author)

  20. Recent Progress on the DUPIC Fuel Fabrication Technology at KAERI

    International Nuclear Information System (INIS)

    Jung-Won Lee; Ho-Jin Ryu; Geun-Il Park; Kee-Chan Song

    2008-01-01

    Since 1991, KAERI has been developing the DUPIC fuel cycle technology. The concept of a direct use of spent PWR fuel in Candu reactors (DUPIC) is based on a dry processing method to re-fabricate Candu fuel from spent PWR fuel without any intentional separation of the fissile materials and fission products. A DUPIC fuel pellet was successfully fabricated and the DUPIC fuel element fabrication processes were qualified on the basis of a Quality Assurance program. Consequently, the DUPIC fuel fabrication technology was verified and demonstrated on a laboratory-scale. Recently, the fuel discharge burn-up of PWRs has been extended to reduce the amount of spent fuel and the fuel cycle costs. Considering this trend of extending the fuel burn-up in PWRs, the DUPIC fuel fabrication technology should be improved to process high burn-up spent fuels. Particularly the release behavior of cesium from the pellet prepared with a high burn-up spent fuel was assessed. an improved DUPIC fuel fabrication technology was experimentally established with a fuel burn-up of 65,000 MWd/tU. (authors)

  1. Introduction to Exxon nuclear fuel fabrication plant

    International Nuclear Information System (INIS)

    Schneider, R.A.

    1985-01-01

    The Exxon Nuclear low-enriched uranium fuel fabrication plant in Richland, Washington produces fuel assemblies for both pressurized water and boiling water reactors. The Richland plant was the first US bulk-handling facility selected by the IAEA for inspection under the US-IAEA Safeguards Agreement. The plant was under IAEA inspection from March 1981 through October 1983. This text provides a written description of the plant layout, operation and process. The text also includes a one ton-a-day model (or reference) plant which was adapted from the Exxon Nuclear plant. The Model Plant provides a generic example of a low-enriched uranium (LEU) bulk-handling facility. The Model Plant is used to illustrate in a more quantitative way some of the key safeguards requirements for a bulk-handling facility

  2. Zero risk fuel fabrication: a systems analysis

    International Nuclear Information System (INIS)

    1979-01-01

    Zero risk is a concept used to ensure that system requirements are developed through a systems approach such that the choice(s) among alternatives represents the balanced viewpoints of performance, achievability and risk. Requirements to ensure characteristics such as stringent accountability, low personnel exposure and etc. are needed to guide the development of component and subsystems for future LMFBR fuel supply systems. To establish a consistent and objective set of requirements, RF and M-TMC has initiated a systems requirements analysis activity. This activity pivots on judgement and experience provided by a Task Force representing industrial companies engaged in fuel fabrication in licensed facilities. The Task Force members are listed in Appendix A. Input developed by this group is presented as a starting point for the systems requirements analysis

  3. Ceramographic Examinations of Irradiated AGR-1 Fuel Compacts

    Energy Technology Data Exchange (ETDEWEB)

    Paul Demkowicz; Scott Ploger; John Hunn

    2012-05-01

    The AGR 1 experiment involved irradiating 72 cylindrical fuel compacts containing tri-structural isotropic (TRISO)-coated particles to a peak burnup of 19.5% fissions per initial metal atom with no in-pile failures observed out of almost 300,000 particles. Five irradiated AGR 1 fuel compacts were selected for microscopy that span a range of irradiation conditions (temperature, burnup, and fast fluence). These five compacts also included all four TRISO coating variations irradiated in the AGR experiment. The five compacts were cross-sectioned both transversely and longitudinally, mounted, ground, and polished after development of careful techniques for preserving particle structures against preparation damage. Approximately 40 to 80 particles within each cross section were exposed near enough to mid-plane for optical microscopy of kernel, buffer, and coating behavior. The microstructural analysis focused on kernel swelling and porosity, buffer densification and fracture, debonding between the buffer and inner pyrolytic carbon (IPyC) layers, and fractures in the IPyC and SiC layers. Three basic particle morphologies were established according to the extent of bonding between the buffer and IPyC layers: complete debonding along the interface (Type A), no debonding along the interface (Type B), and partial debonding (Type AB). These basic morphologies were subdivided according to whether the buffer stayed intact or fractured. The resulting six characteristic morphologies were used to classify particles within each cross section, but no spatial patterns were clearly observed in any of the cross-sectional morphology maps. Although positions of particle types appeared random within compacts, examining a total of 830 classified particles allowed other relationships among morphological types to be established.

  4. Ceramographic Examinations of Irradiated AGR-1 Fuel Compacts

    International Nuclear Information System (INIS)

    Demkowicz, Paul; Ploger, Scott; Hunn, John

    2012-01-01

    The AGR 1 experiment involved irradiating 72 cylindrical fuel compacts containing tri-structural isotropic (TRISO)-coated particles to a peak burnup of 19.5% fissions per initial metal atom with no in-pile failures observed out of almost 300,000 particles. Five irradiated AGR 1 fuel compacts were selected for microscopy that span a range of irradiation conditions (temperature, burnup, and fast fluence). These five compacts also included all four TRISO coating variations irradiated in the AGR experiment. The five compacts were cross-sectioned both transversely and longitudinally, mounted, ground, and polished after development of careful techniques for preserving particle structures against preparation damage. Approximately 40 to 80 particles within each cross section were exposed near enough to mid-plane for optical microscopy of kernel, buffer, and coating behavior. The microstructural analysis focused on kernel swelling and porosity, buffer densification and fracture, debonding between the buffer and inner pyrolytic carbon (IPyC) layers, and fractures in the IPyC and SiC layers. Three basic particle morphologies were established according to the extent of bonding between the buffer and IPyC layers: complete debonding along the interface (Type A), no debonding along the interface (Type B), and partial debonding (Type AB). These basic morphologies were subdivided according to whether the buffer stayed intact or fractured. The resulting six characteristic morphologies were used to classify particles within each cross section, but no spatial patterns were clearly observed in any of the cross-sectional morphology maps. Although positions of particle types appeared random within compacts, examining a total of 830 classified particles allowed other relationships among morphological types to be established.

  5. Quality control in nuclear fuel fabrication

    International Nuclear Information System (INIS)

    Abdelhalim, A.S.; Elsayed, A.A.; Shaaban, H.I.

    1988-01-01

    The department of metallurgy, NRC Inchass is embarking on a programme of on a laboratory scale, fuel pins containing uranium dioxide pellets are going to be produced. The department is making use of the expertise and equipment at present available and is going to utilize the new fuel pin fabrication unit which would be shortly in operation. The fabrication and testing of uranium dioxide pellets then gradually adapt them and develop, a national know how in this field. This would also involve building up of indigenous experience through proper training of qualified personnel. That are applied to ensure quality of U o 2 pellets, the techniques implemented, the equipment used and the specifications of the equipment presently available. The following parameters are subject to quality control tests: density. O/U ration, hydrogen content, microstructure, each property will be discussed, measurements related to U o 2 powders, including flow ability, bulk density, O/U ratio, bet surface area and water content will be critically discussed. Relevant tests to ensure Q C of pellets are reviewed. These include surface integrity, density, dimensions, microstructure.4 fig., 1 tab

  6. Demonstration of Subscale Cermet Fuel Specimen Fabrication Approach Using Spark Plasma Sintering and Diffusion Bonding

    Science.gov (United States)

    Barnes, Marvin W.; Tucker, Dennis S.; Benensky, Kelsa M.

    2018-01-01

    Nuclear thermal propulsion (NTP) has the potential to expand the limits of human space exploration by enabling crewed missions to Mars and beyond. The viability of NTP hinges on the development of a robust nuclear fuel material that can perform in the harsh operating environment (> or = 2500K, reactive hydrogen) of a nuclear thermal rocket (NTR) engine. Efforts are ongoing to develop fuel material and to assemble fuel elements that will be stable during the service life of an NTR. Ceramic-metal (cermet) fuels are being actively pursued by NASA Marshall Space Flight Center (MSFC) due to their demonstrated high-temperature stability and hydrogen compatibility. Building on past cermet fuel development research, experiments were conducted to investigate a modern fabrication approach for cermet fuel elements. The experiments used consolidated tungsten (W)-60vol%zirconia (ZrO2) compacts that were formed via spark plasma sintering (SPS). The consolidated compacts were stacked and diffusion bonded to assess the integrity of the bond lines and internal cooling channel cladding. The assessment included hot hydrogen testing of the manufactured surrogate fuel and pure W for 45 minutes at 2500 K in the compact fuel element environmental test (CFEET) system. Performance of bonded W-ZrO2 rods was compared to bonded pure W rods to access bond line integrity and composite stability. Bonded surrogate fuels retained structural integrity throughout testing and incurred minimal mass loss.

  7. CEA and AREVA R and D on V/HTR fuel fabrication with the CAPRI experimental manufacturing line

    International Nuclear Information System (INIS)

    Charollais, Francois; Fonquernie, Sophie; Perrais, Christophe; Perez, Marc; Cellier, Francois; Vitali, Marie-Pierre

    2006-01-01

    In the framework of the French V/HTR fuel development and qualification program, the Commissariat a l'Energie Atomique (CEA) and AREVA through its program called ANTARES (Areva New Technology for Advanced Reactor Energy Supply) conduct R and D projects covering the mastering of UO 2 coated particle and fuel compact fabrication technology. To fulfill this task, a review of past knowledge, of existing technologies and a preliminary laboratory scale work program have been conducted with the aim of retrieving the know-how on HTR coated particle and compact manufacture: - The different stages of UO 2 kernel fabrication GSP Sol-Gel process have been reviewed, reproduced and improved; - The experimental conditions for the chemical vapour deposition (CVD) of coatings have been defined on dummy kernels and development of innovative characterization methods has been carried out; - Former CERCA compacting process has been reviewed and updated. In parallel, an experimental manufacturing line for coated particles, named GAIA, and a compacting line based on former CERCA compacting experience have been designed, constructed and are in operation since early 2005 at CEA Cadarache and CERCA Romans, respectively. These two facilities constitute the CAPRI line (CEA and AREVA PRoduction Integrated line). The major objectives of the CAPRI line are: - to recover and validate past knowledge; - to permit the optimisation of reference fabrication processes for kernels and coatings and the investigation of alternative and innovative fuel design (UCO kernel, ZrC coating); - to test alternative compact process options; - to fabricate and characterize fuel required for irradiation and qualification purpose; - to specify needs for the fabrication of representative V/HTR TRISO fuel meeting industrial standards. This paper presents the progress status of the R and D conducted on V/HTR fuel particle and compact manufacture by mid 2005. (authors)

  8. Typical IAEA operations at a fuel fabrication plant

    International Nuclear Information System (INIS)

    Morsy, S.

    1984-01-01

    The IAEA operations performed at a typical Fuel Fabrication Plant are explained. To make the analysis less general the case of Low Enriched Uranium (LEU) Fuel Fabrication Plants is considered. Many of the conclusions drawn from this analysis could be extended to other types of fabrication plants. The safeguards objectives and goals at LEU Fuel Fabrication Plants are defined followed by a brief description of the fabrication process. The basic philosophy behind nuclear material stratification and the concept of Material Balance Areas (MBA's) and Key Measurement Points (KMP's) is explained. The Agency operations and verification methods used during physical inventory verifications are illustrated

  9. Alternative Fabrication of Recycling Fast Reactor Metal Fuel

    International Nuclear Information System (INIS)

    Kim, Ki-Hwan; Kim, Jong Hwan; Song, Hoon; Kim, Hyung-Tae; Lee, Chan-Bock

    2015-01-01

    Metal fuels such as U-Zr/U-Pu-Zr alloys have been considered as a nuclear fuel for a sodium-cooled fast reactor (SFR) related to the closed fuel cycle for managing minor actinides and reducing a high radioactivity levels since the 1980s. In order to develop innovative fabrication method of metal fuel for preventing the evaporation of volatile elements such as Am, modified casting under inert atmosphere has been applied for metal fuel slugs for SFR. Alternative fabrication method of fuel slugs has been introduced to develop an improved fabrication process of metal fuel for preventing the evaporation of volatile elements. In this study, metal fuel slugs for SFR have been fabricated by modified casting method, and characterized to evaluate the feasibility of the alternative fabrication method. In order to prevent evaporation of volatile elements such as Am and improve quality of fuel slugs, alternative fabrication methods of metal fuel slugs have been studied in KAERI. U-10Zr-5Mn fuel slug containing volatile surrogate element Mn was soundly cast by modified injection casting under modest pressure. Evaporation of Mn during alternative casting could not be detected by chemical analysis. Mn element was most recovered with prevention of evaporation by alternative casting. Modified injection casting has been selected as an alternative fabrication method in KAERI, considering evaporation prevention, and proven benefits of high productivity, high yield, and good remote control

  10. Natural uranium metallic fuel elements: fabrication and operating experience

    International Nuclear Information System (INIS)

    Hammad, F.H.; Abou-Zahra, A.A.; Sharkawy, S.W.

    1980-01-01

    The main reactor types based on natural uranium metallic fuel element, particularly the early types, are reviewed in this report. The reactor types are: graphite moderated air cooled, graphite moderated gas cooled and heavy water moderated reactors. The design features, fabrication technology of these reactor fuel elements and the operating experience gained during reactor operation are described and discussed. The interrelation between operating experience, fuel design and fabrication was also discussed with emphasis on improving fuel performance. (author)

  11. LOFT fuel modules design, characterization, and fabrication program

    International Nuclear Information System (INIS)

    Russell, M.L.

    1977-06-01

    The loss-of-fluid test [LOFT) fuel modules have evolved from a comprehensive five-year design, characterization, and fabrication program which has resulted in the accomplishment of many technical activities of interest in pressurized water reactor fuel design development and safety research. Information is presented concerning: determination of fundamental high-temperature reactor material properties; design invention related to in-core instrumentation attachment; implementation of advanced and/or unique fuel bundle characterization techniques; implementation of improved fuel bundle fabrication techniques; and planning and execution of a multimillion dollar design, characterization, and fabrication program for pressurized water reactor fuel

  12. 35-We polymer electrolyte membrane fuel cell system for notebook computer using a compact fuel processor

    Science.gov (United States)

    Son, In-Hyuk; Shin, Woo-Cheol; Lee, Yong-Kul; Lee, Sung-Chul; Ahn, Jin-Gu; Han, Sang-Il; kweon, Ho-Jin; Kim, Ju-Yong; Kim, Moon-Chan; Park, Jun-Yong

    A polymer electrolyte membrane fuel cell (PEMFC) system is developed to power a notebook computer. The system consists of a compact methanol-reforming system with a CO preferential oxidation unit, a 16-cell PEMFC stack, and a control unit for the management of the system with a d.c.-d.c. converter. The compact fuel-processor system (260 cm 3) generates about 1.2 L min -1 of reformate, which corresponds to 35 We, with a low CO concentration (notebook computers.

  13. 35-We polymer electrolyte membrane fuel cell system for notebook computer using a compact fuel processor

    Energy Technology Data Exchange (ETDEWEB)

    Son, In-Hyuk; Shin, Woo-Cheol; Lee, Sung-Chul; Ahn, Jin-Gu; Han, Sang-Il; kweon, Ho-Jin; Kim, Ju-Yong; Park, Jun-Yong [Energy 1 Group, Energy Laboratory at Corporate R and D Center in Samsung SDI Co., Ltd., 575, Shin-dong, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-731 (Korea); Lee, Yong-Kul [Department of Chemical Engineering, Dankook University, Youngin 448-701 (Korea); Kim, Moon-Chan [Department of Environmental Engineering, Chongju University, Chongju 360-764 (Korea)

    2008-10-15

    A polymer electrolyte membrane fuel cell (PEMFC) system is developed to power a notebook computer. The system consists of a compact methanol-reforming system with a CO preferential oxidation unit, a 16-cell PEMFC stack, and a control unit for the management of the system with a d.c.-d.c. converter. The compact fuel-processor system (260 cm{sup 3}) generates about 1.2 L min{sup -1} of reformate, which corresponds to 35 We, with a low CO concentration (<30 ppm, typically 0 ppm), and is thus proven to be capable of being targetted at notebook computers. (author)

  14. Compact approach to monitored retrievable storage of spent fuel

    International Nuclear Information System (INIS)

    Muir, D.W.

    1984-09-01

    Recent federal waste-management legislation has raised national interest in monitored retrievable storage (MRS) of unprocessed spent fuel from civilian nuclear power plants. We have reviewed the current MRS design approaches, and we have examined an alternative concept that is extremely compact in terms of total land use. This approach may offer substantial advantages in the areas of monitoring and in safeguards against theft, as well as in reducing the chances of groundwater contamination. Total facility costs are roughly estimated and found to be generally competitive with other MRS concepts. 4 references, 3 figures, 3 tables

  15. International light water nuclear fuel fabrication supply. Are fabrication services assured?

    International Nuclear Information System (INIS)

    Rothwell, Geoffrey

    2010-01-01

    This paper examines the cost structure of fabricating light water reactor (LWR) fuel with low-enriched uranium (LEU, with less than 5% enrichment). The LWR-LEU fuel industry is decades old, and (except for the high entry cost of designing and licensing a fuel fabrication facility and its fuel), labor and additional fabrication lines can be added at Nth-of-a-Kind cost to the maximum capacity allowed by a site license. The industry appears to be competitive: nuclear fuel fabrication capacity is assured with many competitors and reasonable prices. However, nuclear fuel assurance has become an important issue for nations now to considering new nuclear power plants. To provide this assurance many proposals equate 'nuclear fuel banks' (which would require fuel for specific reactors) with 'LEU banks' (where LEU could be blended into nuclear fuel with the proper enrichment) with local fuel fabrication. The policy issues (which are presented, but not answered in this paper) become (1) whether the construction of new nuclear fuel fabrication facilities in new nuclear power nations could lead to the proliferation of nuclear weapons, and (2) whether nuclear fuel quality can be guaranteed under current industry arrangements, given that fuel failure at one reactor can lead to forced shutdowns at many others. (author)

  16. Application of robotics in remote fuel fabrication operations

    International Nuclear Information System (INIS)

    Nyman, D.H.; Nagamoto, T.T.

    1984-01-01

    The Secure Automated Fabrication (SAF) line, an automated and remotely controlled manufacturing process, is scheduled for startup in 1987 and will produce mixed uranium/plutonium oxide fuel pins for the Fast Flux Test Facility (FFTF). The application of robotics in the fuel fabrication and supporting operations is described

  17. Detection and analysis of particles with failed SiC in AGR-1 fuel compacts

    Energy Technology Data Exchange (ETDEWEB)

    Hunn, John D., E-mail: hunnjd@ornl.gov [Oak Ridge National Laboratory (ORNL), P.O. Box 2008, Oak Ridge, TN 37831-6093 (United States); Baldwin, Charles A.; Gerczak, Tyler J.; Montgomery, Fred C.; Morris, Robert N.; Silva, Chinthaka M. [Oak Ridge National Laboratory (ORNL), P.O. Box 2008, Oak Ridge, TN 37831-6093 (United States); Demkowicz, Paul A.; Harp, Jason M.; Ploger, Scott A. [Idaho National Laboratory (INL), P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States)

    2016-09-15

    Highlights: • Cesium release was used to detect SiC failure in HTGR fuel. • Tristructural-isotropic particles with SiC failure were isolated by gamma screening. • SiC failure was studied by X-ray tomography and SEM. • SiC degradation was observed after irradiation and subsequent safety testing. - Abstract: As the primary barrier to release of radioactive isotopes emitted from the fuel kernel, retention performance of the SiC layer in tristructural isotropic (TRISO) coated particles is critical to the overall safety of reactors that utilize this fuel design. Most isotopes are well-retained by intact SiC coatings, so pathways through this layer due to cracking, structural defects, or chemical attack can significantly contribute to radioisotope release. In the US TRISO fuel development effort, release of {sup 134}Cs and {sup 137}Cs are used to detect SiC failure during fuel compact irradiation and safety testing because the amount of cesium released by a compact containing one particle with failed SiC is typically ten or more times higher than that released by compacts without failed SiC. Compacts with particles that released cesium during irradiation testing or post-irradiation safety testing at 1600–1800 °C were identified, and individual particles with abnormally low cesium retention were sorted out with the Oak Ridge National Laboratory (ORNL) Irradiated Microsphere Gamma Analyzer (IMGA). X-ray tomography was used for three-dimensional imaging of the internal coating structure to locate low-density pathways through the SiC layer and guide subsequent materialography by optical and scanning electron microscopy. All three cesium-releasing particles recovered from as-irradiated compacts showed a region where the inner pyrocarbon (IPyC) had cracked due to radiation-induced dimensional changes in the shrinking buffer and the exposed SiC had experienced concentrated attack by palladium; SiC failures observed in particles subjected to safety testing were

  18. Hydrogen fueling demonstration projects using compact PSA purification

    International Nuclear Information System (INIS)

    Ng, E.; Smith, T.

    2004-01-01

    'Full text:' Hydrogen fueling demonstration projects are critical to the success of hydrogen as an automotive fuel by building public awareness and demonstrating the technology required to produce, store, and dispense hydrogen. Over 75 of these demonstration projects have been undertaken or are in the planning stages world-wide, sponsored by both the public and private sectors. Each of these projects represents a unique combination of sponsors, participants, geographic location, and hydrogen production pathway. QuestAir Technologies Inc., as the industry leader in compact pressure swing adsorption equipment for purifying hydrogen, has participated in four hydrogen fueling demonstration projects with a variety of partners and in North America and Japan. QuestAir's experiences as a participant in the planning, construction, and commissioning of these demonstration projects will be presented in this paper. The unique challenges of each project and the critical success factors that must to be considered for successful deployment of high-profile, international, and multi-vendor collaborations will also be discussed. The paper will also provide insights on the requirements for hydrogen fueling demonstration projects in the future. (author)

  19. Compact Submillimeter-Wave Receivers Made with Semiconductor Nano-Fabrication Technologies

    Science.gov (United States)

    Jung, C.; Thomas, B.; Lee, C.; Peralta, A.; Chattopadhyay, G.; Gill, J.; Cooper, K.; Mehdi, I.

    2011-01-01

    Advanced semiconductor nanofabrication techniques are utilized to design, fabricate and demonstrate a super-compact, low-mass (<10 grams) submillimeter-wave heterodyne front-end. RF elements such as waveguides and channels are fabricated in a silicon wafer substrate using deep-reactive ion etching (DRIE). Etched patterns with sidewalls angles controlled with 1 deg precision are reported, while maintaining a surface roughness of better than 20 nm rms for the etched structures. This approach is being developed to build compact 2-D imaging arrays in the THz frequency range.

  20. Status of high-density fuel plate fabrication

    International Nuclear Information System (INIS)

    Wiencek, T.C.; Domagala, R.F.; Thresh, H.R.

    1991-01-01

    Progress has continued on the fabrication of fuel plates with equivalent fuel zone loadings approaching 9 gU/cm 3 . Through hot isostatic pressing (HIP), successful diffusion bonds have been made with 1100 Al and 6061 Al alloys. Although additional study is necessary to optimize the procedure, these bonds demonstrated the most critical processing step for proof-of-concept hardware. Two types of prototype highly loaded fuel plates have been fabricated. The first is a fuel plate in which 0.030-in. (0.76-mm) uranium compound wires are bonded within an aluminum cladding; the second, a dispersion fuel plate with uniform cladding and fuel zone thickness. The successful fabrication of these fuel plates derives from the unique ability of the HIP process to produce diffusion bonds with minimal deformation. (orig.)

  1. Estimates of Canadian fuel fabrication costs for alternative fuel cycles and systems

    International Nuclear Information System (INIS)

    Blahnik, C.

    1979-04-01

    Unit fuel fabrication costs are estimated for alternate fuel cycles and systems that may be of interest in Ontario Hydro's strategy analyses. A method is proposed for deriving the unit fuel fabrication price to be paid by a Canadian utility as a function of time (i.e. the price that reflects the changing demand/supply situation in the particular scenario considered). (auth)

  2. Experimental Measurement and Numerical Modeling of the Effective Thermal Conductivity of TRISO Fuel Compacts

    International Nuclear Information System (INIS)

    Folsom, Charles

    2015-01-01

    Accurate modeling capability of thermal conductivity of tristructural-isotropic (TRISO) fuel compacts is important to fuel performance modeling and safety of Generation IV reactors. To date, the effective thermal conductivity (ETC) of tristructural-isotropic (TRISO) fuel compacts has not been measured directly. The composite fuel is a complicated structure comprised of layered particles in a graphite matrix. In this work, finite element modeling is used to validate an analytic ETC model for application to the composite fuel material for particle-volume fractions up to 40%. The effect of each individual layer of a TRISO particle is analyzed showing that the overall ETC of the compact is most sensitive to the outer layer constituent. In conjunction with the modeling results, the thermal conductivity of matrix-graphite compacts and the ETC of surrogate TRISO fuel compacts have been successfully measured using a previously developed measurement system. The ETC of the surrogate fuel compacts varies between 50-30 W m -1 K -1 over a temperature range of 50-600°C. As a result of the numerical modeling and experimental measurements of the fuel compacts, a new model and approach for analyzing the effect of compact constituent materials on ETC is proposed that can estimate the fuel compact ETC with approximately 15-20% more accuracy than the old method. Using the ETC model with measured thermal conductivity of the graphite matrix-only material indicate that, in the composite form, the matrix material has a much greater thermal conductivity, which is attributed to the high anisotropy of graphite thermal conductivity. Therefore, simpler measurements of individual TRISO compact constituents combined with an analytic ETC model, will not provide accurate predictions of overall ETC of the compacts emphasizing the need for measurements of composite, surrogate compacts.

  3. Failure mechanisms for compacted uranium oxide fuel cores

    International Nuclear Information System (INIS)

    Berghaus, D.G.; Peacock, H.B.

    1980-01-01

    Tension, compression, and shear tests were performed on test specimens of aluminum-clad, compacted powder fuel cores to determine failure mechanisms of the core material. The core, which consists of 70% uranium oxide in an aluminum matrix, frequently fails during post-extrusion drawing. Tests were conducted to various strain levels up to failure of the core. Sections were made of tested specimens to microscopically study initiation of failure. Two failure modes wee observed. Tensile failure mode is initiated by prior tensile failure of uranium oxide particles with the separation path strongly influenced by the arrangement of particles. Delamination mode consists of the separation of laminae formed during extrusion of tubes. Separation proceeds from fine cracks formed parallel to the laminae. Tensile failure mode was experienced in tension and shear tests. Delamination mode was produced in compression tests

  4. Radiological and environmental safety aspects of uranium fuel fabrication plants at Nuclear Fuel Complex, Hyderabad

    International Nuclear Information System (INIS)

    Viswanathan, S.; Surya Rao, B.; Lakshmanan, A.R.; Krishna Rao, T.

    1991-01-01

    Nuclear Fuel Complex, Hyderabad manufactures uranium dioxide fuel assemblies for PHWRs and BWRs operating in India. Starting materials are magnesium diuranate received from UCIL, Jaduguda and imported UF. Both of these are converted to UO 2 pellets by identical chemical processes and mechanical compacting. Since the uranium handled here is free of daughter product activities, external radiation is not a problem. Inhalation of airborne U compounds is one of the main source of exposure. Engineered protective measures like enclosures around U bearing powder handling equipment and local exhausts reduce worker's exposure. Installation of pre-filters, wet rotoclones and electrostatic precipitators in the ventillation system reduces the release of U into the environment. The criticality hazard in handling slightly enriched uranium is very low due to the built-in control based on geometry and inventory. Where airborne uranium is significant, workers are provided with protective respirators. The workers are regularly monitored for external exposure and also for internal exposure. The environmental releases from the NFC facility is well controlled. Soil, water and air from the NFC environment are routinely collected and analysed for all the possible pollutants. The paper describes the Health Physics experience during the last five years on occupational exposures and on environmental surveillance which reveals the high quality of safety observed in our nuclear fuel fabricating installations. (author). 4 refs., 6 tabs

  5. Minor Actinide Laboratory at JRC-ITU: Fuel fabrication facility

    International Nuclear Information System (INIS)

    Fernandez, A.; McGinley, J.; Somers, J.

    2008-01-01

    The Minor Actinide Laboratory (MA-lab) of the Institute for Transuranium Elements is a unique facility for the fabrication of fuels and targets containing minor actinides (MA). It is of key importance for research on Partitioning and Transmutation in Europe, as it is one of the only dedicated facilities for the fabrication of MA containing materials, either for property measurements or for the production of test pins for irradiation experiments. In this paper a detailed description of the MA-Lab facility and the fabrication processes developed to fabricate fuels and samples containing high content of minor actinides is given. In addition, experience gained and improvements are also outlined. (authors)

  6. Re-qualification of MTR-type fuel plates fabrication process

    International Nuclear Information System (INIS)

    Elseaidy, I.M.; Ghoneim, M.M.

    2010-01-01

    The fabricability issues with increased uranium loading due to use low enrichment of uranium (LEU), i.e. less than 20 % of U 235 , increase the problems which occur during compact manufacturing, roll bonding of the fuel plates, potential difficulty in forming during rolling process, mechanical integrity of the core during fabrication, potential difficulty in meat homogeneity, and the ability to fabricate plates with thicker core as a means of increasing total uranium loading. To produce MTR- type fuel plates with high uranium loading (HUL) and keep the required quality of these plates, many of qualification process must be done in the commissioning step of fuel fabrication plant. After that any changing of the fabrication parameters, for example changing of any of the raw materials, devises, operators, and etc., a re- qualification process should be done in order to keep the quality of produced plates. Objective of the present work is the general description of the activities to be accomplished for re-qualification of manufacturing MTR- type nuclear fuel plates. For each process to be re-qualified, a detailed of re-qualification process were established. (author)

  7. Reproduction of the RA reactor fuel element fabrication

    International Nuclear Information System (INIS)

    Novakovic, M.

    1961-12-01

    This document includes the following nine reports: Final report on task 08/12 - testing the Ra reactor fuel element; design concept for fabrication of RA reactor fuel element; investigation of the microstructure of the Ra reactor fuel element; Final report on task 08/13 producing binary alloys with Al, Mo, Zr, Nb and B additions; fabrication of U-Al alloy; final report on tasks 08/14 and 08/16; final report on task 08/32 diffusion bond between the fuel and the cladding of the Ra reactor fuel element; Final report on task 08/33, fabrication of the RA reactor fuel element cladding; and final report on task 08/36, diffusion of solid state metals [sr

  8. Gas Tungsten Arc Welding for Fabrication of SFR Fuel Rodlet

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Won; Woo, Yoon Myeng; Kim, Bong Goo; Park, Jeong Yong; Kim, Sung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    To evaluate the PGSFR fuel performance, the irradiation test in HANARO research reactor was planned and the fuel rodlet to be used for irradiation test should be fabricated under the appropriate Quality Assurance (QA) program. For the fabrication of PGSFR metallic fuel rodlets, the end plug welding is a crucial process. The sealing of end plug to cladding tube should be hermetically perfect to prevent a leakage of fission gases and to maintain a good reactor performance. In this study, the end plug welding of fuel rodlet for irradiation test in HANARO was carried out based on the qualified welding technique as reported in the previous paper. The end plug welding of fuel rodlets for irradiation test in HANARO was successfully carried out under the appropriate QA program. The results of the quality inspections on the end plug weld satisfied well the quality criteria on the weld. Consequently the fabricated fuel rodlets are ready for irradiation test in HANARO.

  9. Advances in AGR fuel fabrication - now and the future

    International Nuclear Information System (INIS)

    Bleasdale, P.A.

    1995-01-01

    To date, over 3 million AGR fuel pins have been manufactured at Springfields for the UK AGR programme. During this time, AGR fuel design and manufacture has developed and evolved in response to the needs of the reactor operators to enhance fuel reliability and performance. More recently, major advances have been made in the systems and organisational culture which support fuel manufacture at Fuel Division. The introduction of MRP II in 1989 into Fuel Division enabled significant reductions in stock and work-in-progress, together with reductions in manufacturing lead times. Other successful initiatives introduced into Fuel Division have been Just-in-Time (JIT) and AST (Additional Skills Training) which have built on the success of MRP II. All of these initiatives are evidence of Fuel Division's ''Total Quality'' approach to fabricating fuel. Fuel Division is currently in the final stages of commissioning the New Oxide Fuels Complex (NOFC) where both AGR and PWR fuel will be manufactured to the highest standards of quality, safety and environmental protection. NOFC is a totally integrated plant which represents a Pound 200M investment, demonstrating Fuel Division's commitment to building on its 40+ years of fuel fabrication experience and ensuring secure supply of fuel to its customers for years to come. (author)

  10. Present state and problems of uranium fuel fabrication businesses

    International Nuclear Information System (INIS)

    Yuki, Akio

    1981-01-01

    The businesses of uranium fuel fabrication converting uranium hexafluoride to uranium dioxide powder and forming fuel assemblies are the field of most advanced industrialization among nuclear fuel cycle industries in Japan. At present, five plants of four companies engage in this business, and their yearly sales exceeded 20 billion yen. All companies are planning the augmentation of installation capacity to meet the growth of nuclear power generation. The companies of uranium fuel fabrication make the nuclear fuel of the specifications specified by reactor manufacturers as the subcontractors. In addition to initially loaded fuel, the fuel for replacement is required, therefore the demand of uranium fuel is relatively stable. As for the safety of enriched uranium flowing through the farbicating processes, the prevention of inhaling uranium powder by workers and the precaution against criticality are necessary. Also the safeguard measures are imposed so as not to convert enriched uranium to other purposes than peacefull ones. The strict quality control and many times of inspections are carried out to insure the soundness of nuclear fuel. The growth of the business of uranium fuel fabrication and the regulation of the businesses by laws are described. As the problems for the future, the reduction of fabrication cost, the promotion of research and development and others are pointed out. (Kako, I.)

  11. Fabrication technology of spherical fuel element for HTR-10

    International Nuclear Information System (INIS)

    He Jun; Zou Yanwen; Liang Tongxiang; Qiu Xueliang

    2002-01-01

    R and D on the fabrication technology of the spherical fuel elements for the 10 MW HTR Test Module (HTR-10) began from 1986. Cold quasi-isostatic molding with a silicon rubber die is used for manufacturing the spherical fuel elements.The fabrication technology and the graphite matrix materials were investigated and optimized. Twenty five batches of fuel elements, about 11000 of the fuel elements, have been produced. The cold properties of the graphite matrix materials satisfied the design specifications. The mean free uranium fraction of 25 batches was 5 x 10 -5

  12. Research on plant of metal fuel fabrication using casting process

    International Nuclear Information System (INIS)

    Senda, Yasuhide; Mori, Yukihide

    2003-12-01

    This document presents the plant concept of metal fuel fabrication system (38tHM/y) using casting process in electrolytic recycle, which based on recent studies of its equipment design and quality control system. And we estimate the cost of its construction and operation, including costs of maintenance, consumed hardware and management of waste. The content of this work is as follows. (1) Designing of fuel fabrication equipment: We make material flow diagrams of the fuel fabrication plant and rough designs of the injection casting furnace, demolder and inspection equipment. (2) Designing of resolution system of liquid waste, which comes from analytical process facility. Increased analytical items, we rearrange analytical process facility, estimate its chemicals and amount of waste. (3) Arrangement of equipments: We made a arrangement diagram of the metal fuel fabrication equipments in cells. (4) Estimation of cost data: We estimated cost to construct the facility and to operate it. (author)

  13. Fuel Accident Condition Simulator (FACS) Furnace for Post-Irradiation Heating Tests of VHTR Fuel Compacts

    Energy Technology Data Exchange (ETDEWEB)

    Paul A Demkowicz; Paul Demkowicz; David V Laug

    2010-10-01

    Abstract –Fuel irradiation testing and post-irradiation examination are currently in progress as part of the Next Generation Nuclear Plant Fuels Development and Qualification Program. The PIE campaign will include extensive accident testing of irradiated very high temperature reactor fuel compacts to verify fission product retention characteristics at high temperatures. This work will be carried out at both the Idaho National Laboratory (INL) and the Oak Ridge National Laboratory, beginning with accident tests on irradiated fuel from the AGR-1 experiment in 2010. A new furnace system has been designed, built, and tested at INL to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000°C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, Eu, and I) and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator (FACS) furnace system, as well as preliminary system calibration results.

  14. Prototype fuel fabrication for nuclear reactors of Laguna Verde

    International Nuclear Information System (INIS)

    Nocetti, C.; Torres, J.; Medrano, A.

    1996-01-01

    Four prototype fuel bundles for the Laguna Verde Nuclear Power Plant have been fabricated. the type of nuclear fuel produced is described and the process used is commented. As an example of the fabrication criteria adopted, the production model to determine the density of the U O 2 pellets for the different batches of ceramic powder is described. the results are evaluated using the statistical indexes C p and C pk . (author)

  15. Mixed U/Pu oxide fuel fabrication facility co-processed feed, pelletized fuel

    International Nuclear Information System (INIS)

    1978-09-01

    Two conceptual MOX fuel fabrication facilities are discussed in this study. The first facility in the main body of the report is for the fabrication of LWR uranium dioxide - plutonium dioxide (MOX) fuel using co-processed feed. The second facility in the addendum is for the fabrication of co-processed MOX fuel spiked with 60 Co. Both facilities produce pellet fuel. The spiked facility uses the same basic fabrication process as the conventional MOX plant but the fuel feed incorporates a high energy gamma emitter as a safeguard measure against diversion; additional shielding is added to protect personnel from radiation exposure, all operations are automated and remote, and normal maintenance is performed remotely. The report describes the fuel fabrication process and plant layout including scrap and waste processing; and maintenance, ventilation and safety measures

  16. Impact of fuel fabrication and fuel management technologies on uranium management

    International Nuclear Information System (INIS)

    Arnsberger, P.L.; Stucker, D.L.

    1994-01-01

    Uranium utilization in commercial pressurized water reactors is a complex function of original NSSS design, utility energy requirements, fuel assembly design, fuel fabrication materials and fuel fabrication materials and fuel management optimization. Fuel design and fabrication technologies have reacted to the resulting market forcing functions with a combination of design and material changes. The technologies employed have included ever-increasing fuel discharge burnup, non-parasitic structural materials, burnable absorbers, and fissile material core zoning schemes (both in the axial and radial direction). The result of these technological advances has improved uranium utilization by roughly sixty percent from the infancy days of nuclear power to present fuel management. Fuel management optimization technologies have also been developed in recent years which provide fuel utilization improvements due to core loading pattern optimization. This paper describes the development and impact of technology advances upon uranium utilization in modern pressurized water reactors. 10 refs., 3 tabs., 10 figs

  17. MOX fuel fabrication, in reactor performance and improvement

    International Nuclear Information System (INIS)

    Vliet, J. van; Deramaix, P.; Nigon, J.L.; Fournier, W.

    1998-01-01

    In Europe, MOX fuel for light water reactors (LWRs) has first been manufactured in Belgium and Germany. Belgonucleaire (BN) loaded the first MOX assembly in the BR3 Pressurised Water Reactor (PWR) in 1963. In June 1998, more than 750 tHM LWR MOX fuel assemblies were manufactured on a industrial scale in Europe without any particular difficulty relating to fuel fabrication, reactor operation or fuel behaviour. So, today plutonium recycling through MOX fuel is a mature industry, with successful operational experience and large-scale fabrication plants. In this field, COGEMA and BELGONUCLEAIRE are the main actors by operating simultaneously three complete multidesign fuel production plants: MELOX plant (in Marcoule), CADARACHE plant and P0 plant (in Dessel, Belgium). Present MOX production capacity available to COGEMA and BN fits 175 tHM per year and is to be extended to reach about 325 tHM in the year 2000. This will represent 75% of the total MOX fabrication capacity in Europe. The industrial mastery and the high production level in MOX fabrication assured by high technology processes confer to these companies a large expertise for Pu recycling. This allows COGEMA and BN to be major actors in Pu-based fuels in the coming second nuclear era with advanced fuel cycles. (author)

  18. Prototypic fabrication of TRIGA irradiated fuel shipping casks

    International Nuclear Information System (INIS)

    Kim, B.K.; Lee, Y.W.; Whang, C.K.; Lee, J.B.

    1980-01-01

    This is the safety analysis report on the prototypic fabrication of ''TRIGA Irradiated Fuel Shipping Cask'' conducted by KAERI in 1980. The results of the evaluation show that the shipping cask is in compliance with the applicable regulation for the normal conditions of transport as well as hypothetical accident conditions. The prototypic fabrication of the shipping cask (type B) was carried out for the first time in Korea after getting technical experience from fabrication of the ''TRIGA Spent Fuel Shipping Cask'' and ''the KO-RI Unit 1 surveillance capsule shipping cask'' in 1979. This report contains structural evaluation, thermal evaluation, shielding, criticality, quality assurance, and handling procedures of the shipping cask

  19. Shield requirement estimation for pin storage room in fuel fabrication plant

    International Nuclear Information System (INIS)

    Shanthi, M.M.; Keshavamurthy, R.S.; Sivashankaran, G.

    2012-01-01

    Fast Reactor Fuel Cycle Facility (FRFCF) is an upcoming project in Kalpakkam. It has the facility to recycle the fuel from PFBR. It is an integrated facility, consists of fuel reprocessing plant, fuel fabrication plant (FFP), core subassembly plant, Reprocessed Uranium plant (RUP) and waste management plant. The spent fuel from PFBR would be reprocessed in fuel reprocessing plant. The reprocessed fuel material would be sent to fuel fabrication plant. The main activity of fuel fabrication plant is the production of MOX fuel pins. The fuel fabrication plant has a fuel pin storage room. The shield requirement for the pin storage room has been estimated by Monte Carlo method. (author)

  20. Fabrication of the Spent Fuel Elements Rack on the ISFSF

    International Nuclear Information System (INIS)

    Slamet Wiranto; Sigit Purwanto; Safrul, H.

    2004-01-01

    The Interim Storage For Spent Fuel elements (ISFSF) was designed to be able to store the 33 spent fuel element racks with capacity of 1386 of normal spent fuel elements and 2 racks for 36 of defected ones. Until now, only 9 out of 33 racks of normal spent fuel elements and lout of 2 racks of defected fuel elements are available. Five of them have suffered from corrosion so that they are not fulfilled the requirements of the spent fuel elements storage anymore. Meanwhile, the spent fuel storage racks in the reactor are almost full. It means, the transfer of the spent fuel from reactor spent fuel storage to the ISFSF pool are compulsory needed. Therefore, it is necessary to provide the new ISFSF spent fuel storage rack with better material and fabrication method than the old one. In this design all materials consist of SS 316 L that are welded with the Argon TIG-welding. Right now there has been one new spent fuel storage rack fabricated with capacity of 42 normal spent fuel elements. (author)

  1. Coated U(Mo) Fuel: As-Fabricated Microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Emmanuel Perez; Dennis D. Keiser, Jr.; Ann Leenaers; Sven Van den Berghe; Tom Wiencek

    2014-04-01

    As part of the development of low-enriched uranium fuels, fuel plates have recently been tested in the BR-2 reactor as part of the SELENIUM experiment. These fuel plates contained fuel particles with either Si or ZrN thin film coating (up to 1 µm thickness) around the U-7Mo fuel particles. In order to best understand irradiation performance, it is important to determine the starting microstructure that can be observed in as-fabricated fuel plates. To this end, detailed microstructural characterization was performed on ZrN and Si-coated U-7Mo powder in samples taken from AA6061-clad fuel plates fabricated at 500°C. Of interest was the condition of the thin film coatings after fabrication at a relatively high temperature. Both scanning electron microscopy and transmission electron microscopy were employed. The ZrN thin film coating was observed to consist of columns comprised of very fine ZrN grains. Relatively large amounts of porosity could be found in some areas of the thin film, along with an enrichment of oxygen around each of the the ZrN columns. In the case of the pure Si thin film coating sample, a (U,Mo,Al,Si) interaction layer was observed around the U-7Mo particles. Apparently, the Si reacted with the U-7Mo and Al matrix during fuel plate fabrication at 500°C to form this layer. The microstructure of the formed layer is very similar to those that form in U-7Mo versus Al-Si alloy diffusion couples annealed at higher temperatures and as-fabricated U-7Mo dispersion fuel plates with Al-Si alloy matrix fabricated at 500°C.

  2. Fabrication and characterization of CeO{sub 2} pellets for simulation of nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    García-Ostos, C.; Rodríguez-Ortiz, J.A. [Department of Mechanical and Materials Engineering, School of Engineering, University of Seville, Seville (Spain); Arévalo, C., E-mail: carevalo@us.es [Department of Mechanical and Materials Engineering, School of Engineering, University of Seville, Seville (Spain); Cobos, J. [CIEMAT, Avenida Complutense, 40, Madrid (Spain); Gotor, F.J. [Materials Science Institute of Seville (CSIC-US), Av. Américo Vespucio, 49, 41092 Seville (Spain); Torres, Y. [Department of Mechanical and Materials Engineering, School of Engineering, University of Seville, Seville (Spain)

    2016-03-15

    Highlights: • CeO{sub 2} is presented as a surrogate material for UO{sub 2} to study nuclear fuel. • Powder-metallurgy methods are applied to fabricate CeO{sub 2} pellets with controlled porosity. • An optimization of the fabrication parameters is established. • Microstructural and tribo-mechanical characterizations are performed. • Properties are compared to those of the nuclear fuel. - Abstract: Cerium Oxide, CeO{sub 2}, has been shown as a surrogate material to understand irradiated Mixed Oxide (MOX) based matrix fuel for nuclear power plants due to its similar structure, chemical and mechanical properties. In this work, CeO{sub 2} pellets with controlled porosity have been developed through conventional powder-metallurgy process. Influence of the main processing parameters (binder content, compaction pressure, sintering temperature and sintering time) on porosity and volumetric contraction values has been studied. Microstructure and physical properties of sintered compacts have also been characterized through several techniques. Mechanical properties such as dynamic Young's modulus, hardness and fracture toughness have been determined and connected to powder-metallurgy parameters. Simulation of nuclear fuel after reactor utilization with radial gradient porosity is proposed.

  3. Transmutation Fuel Fabrication-Fiscal Year 2016

    Energy Technology Data Exchange (ETDEWEB)

    Fielding, Randall Sidney [Idaho National Lab. (INL), Idaho Falls, ID (United States); Grover, Blair Kenneth [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-12-01

    ABSTRACT Nearly all of the metallic fuel that has been irradiated and characterized by the Advanced Fuel Campaign, and its earlier predecessors, has been arc cast. Arc casting is a very flexible method of casting lab scale quantities of materials. Although the method offers flexibility, it is an operator dependent process. Small changes in parameter space or alloy composition may affect how the material is cast. This report provides a historical insight in how the casting process has been modified over the history of the advanced fuels campaign as well as the physical parameters of the fuels cast in fiscal year 2016.

  4. Competition still fierce in the US fuel fabrication market

    International Nuclear Information System (INIS)

    Schwartz, M.H.

    1990-01-01

    The US market for nuclear fuel fabrication services is characterized by an annual production capacity significantly in excess of both current and anticipated demand. The trends toward longer operating cycle lengths and higher burnup fuel continue in the United States. This, together with the lack of any prospects for new light water reactors coming on line in the US during the next ten years, is expected to hold the annual demand for fuel fabrication services from US LWRs at around 2000t of uranium into the next century. (author)

  5. Coated fuel particles: requirements and status of fabrication technology

    International Nuclear Information System (INIS)

    Huschka, H.; Vygen, P.

    1977-01-01

    Fuel cycle, design, and irradiation performance requirements impose restraints on the fabrication processes. Both kernel and coating fabrication processes are flexible enough to adapt to the needs of the various existing and proposed high-temperature gas-cooled reactors. Extensive experience has demonstrated that fuel kernels with excellent sphericity and uniformity can be produced by wet chemical processes. Similarly experience has shown that the various multilayer coatings can be produced to fully meet design and specification requirements. Quality reliability of coated fuel particles is ensured by quality control and quality assurance programs operated by an aduiting system that includes licensing officials and the customer

  6. MOX fuel fabrication technology in J-MOX

    International Nuclear Information System (INIS)

    Osaka, Shuichi; Yoshida, Ryouichi; Yamazaki, Yukiko; Ikeda, Hiroyuki

    2014-01-01

    Japan Nuclear Fuel Ltd. (JNFL) has constructed JNFL MOX Fuel Fabrication Plant (J-MOX) since 2010. The MIMAS process has been introduced in the powder mixing process from AREVA NC considering a lot of MOX fuel fabrication experiences at MELOX plant in France. The feed material of Pu for J-MOX is MH-MOX powder from Rokkasho Reprocessing Plant (RRP) in Japan. The compatibility of the MH-MOX powder with the MIMAS process was positively evaluated and confirmed in our previous study. This paper describes the influences of the UO2 powder and the recycled scrap powder on the MOX pellet density. (author)

  7. Scalable, Economical Fabrication Processes for Ultra-Compact Warm-White LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Lowes, Ted [Cree, Inc., Durham, NC (United States)

    2016-01-31

    Conventional warm-white LED component fabrication consists of a large number of sequential steps which are required to incorporate electrical, mechanical, and optical functionality into the component. Each of these steps presents cost and yield challenges which multiply throughout the entire process. Although there has been significant progress in LED fabrication over the last decade, significant advances are needed to enable further reductions in cost per lumen while not sacrificing efficacy or color quality. Cree conducted a focused 18-month program to develop a new low-cost, high-efficiency light emitting diode (LED) architecture enabled by novel large-area parallel processing technologies, reduced number of fabrication steps, and minimized raw materials use. This new scheme is expected to enable ultra-compact LED components exhibiting simultaneously high efficacy and high color quality. By the end of the program, Cree fabricated warm-white LEDs with a room-temperature “instant on” efficacy of >135 lm/W at ~3500K and 90 CRI (when driven at the DOE baseline current density of 35 A/cm2). Cree modified the conventional LED fabrication process flow in a manner that is expected to translate into simultaneously high throughput and yield for ultra-compact packages. Building on its deep expertise in LED wafer fabrication, Cree developed these ultra-compact LEDs to have no compromises in color quality or efficacy compared to their conventional counterparts. Despite their very small size, the LEDs will also be robustly electrically integrated into luminaire systems with the same attach yield as conventional packages. The versatility of the prototype high-efficacy LED architecture will likely benefit solid-state lighting (SSL) luminaire platforms ranging from bulbs to troffers. We anticipate that the prototype LEDs will particularly benefit luminaires with large numbers of distributed compact packages, such as linear and area luminaires (e.g. troffers). The fraction of

  8. Quality assurance in the fuel fabrication

    International Nuclear Information System (INIS)

    Darmayan, P.

    1995-01-01

    The paper concentrates on the evolutions that FBFC Franco Belge de Fabrication de Combustible has initiated in order to make a further step in improving quality: 1. Improving each personnel's involment and responsability towards quality. 2. Incorporating quality assurance in a total quality management policy, involving both the fabrication teams of FBFC and the design teams of Framatome in order to improve quality. (orig./HP)

  9. Chemical aspects of nuclear fuel fabrication processes

    Energy Technology Data Exchange (ETDEWEB)

    Naylor, A; Ellis, J F; Watson, R H

    1986-04-01

    Processes used by British Nuclear Fuels plc for the conversion of uranium ore concentrates to uranium metal and uranium hexafluoride, are reviewed. Means of converting the latter compound, after enrichment, to sintered UO/sub 2/ fuel bodies are also described. An overview is given of the associated chemical engineering technology.

  10. Moisture desorption in mechanically masticated fuels: effects of particle fracturing and fuelbed compaction

    Science.gov (United States)

    Jesse K. Kreye; J.Morgan Varner; Eric E. Knapp

    2012-01-01

    Mechanical mastication is increasingly used as a wildland fuel treatment, reducing standing trees and shrubs to compacted fuelbeds of fractured woody fuels. One major shortcoming in our understanding of these fuelbeds is how particle fracturing influences moisture gain or loss, a primary determinant of fire behaviour. To better understand fuel moisture dynamics, we...

  11. Milling Behavior of Matrix Graphite Powders with Different Binder Materials in HTGR Fuel Element Fabrication: I. Variation in Particle Size Distribution

    International Nuclear Information System (INIS)

    Lee, Young Woo; Cho, Moon Sung

    2011-01-01

    The fuel element for HTGR is manufactured by mixing coated fuel particles with matrix graphite powder and forming into either pebble type or cylindrical type compacts depending on their use in different HTGR cores. The coated fuel particle, the so-called TRISO particle, consists of 500-μm spherical UO 2 particles coated with the low density buffer Pyrolytic Carbon (PyC) layer, the inner and outer high density PyC layer and SiC layer sandwiched between the two inner and outer PyC layers. The coated TRISO particles are mixed with a matrix graphite powder properly prepared and pressed into a spherical shape or a cylindrical compact finally heat-treated at about 1900 .deg. C. These fuel elements can have different sizes and forms of compact. The basic steps for manufacturing a fuel element include preparation of graphite matrix powder, overcoating the fuel particles, mixing the fuel particles with a matrix powder, carbonizing green compact, and the final high-temperature heat treatment of the carbonized fuel compact. In order to develop a fuel compact fabrication technology, it is important to develop a technology to prepare the matrix graphite powder (MGP) with proper characteristics, which has a strong influence on further steps and the material properties of fuel element. In this work, the milling behavior of matrix graphite powder mixture with different binder materials and their contents was investigated by analyzing the change in particle size distribution with different milling time

  12. Results of fuel elements fabrication on the basis of increased concentration dioxide fuel for research reactors

    International Nuclear Information System (INIS)

    Alexandrov, A.B.; Afanasiev, V.L.; Enin, A.A.; Suprun, V.B.

    1996-01-01

    According to the Russian Reduced Enrichment for Research and Test Reactors (RERTR) program, that were constructed under the Russian projects, at the Novosibirsk Chemical Concentrates Plant the pilot series of different configuration (WR-M2, MR, IRT-4M) fuel elements, based on increased concentration uranium dioxide fuel, have been fabricated for reactor tests. Comprehensive fabricated fuel elements quality estimation has been carried out. (author)

  13. Technical report: fabrication of PWR type rodlet fuel

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Uno, Hisao; Sasajima, Hideo

    1990-06-01

    With respect to the simulated reactivity initiated accident (RIA) experiments with pre-irradiated LWR type fuel rods at nuclear safety research reactor (NSRR), there were principally three technical difficulties which should be overcome: (1) Fabrication of the rodlet fuel; Fuel rods from the commercial power reactors had an active column length by 3.6m. To utilize this for NSRR pulse experiment, rodlet fuel having an active column length by 0.12m (reduced to one thirtieth) is requested to fabricate without changing the inside fuel conditions. (2) Development of in-core instrumentations: During pre-irradiation stages, a long-sized fuel rod had dimensional changes by waterside corrosion, bowing, creep down and so on. The fuel also had greater amount of radioactive fission products. This condition is significant to in-core instrumentations to be attached to the fuel rods. Well characterized data to be obtained from these, however, are quite necessary and important from research point of view. Remote handling techniques to attach the rod pressure sensor, the cladding extensometer, the fuel extensometer, and the cladding surface thermocouple to pre-irradiated fuel rods are, therefore, requested to develop. (3) Installation of PIE equipments for pulsed rodlet fuels: PIE on the pulsed rodlet fuels are necessary to better understanding the fuel performance detaily. Equipments which can easily detect the data related to PCMI type fuel failure are matter of concern. Since 1986, the technical difficulties have been tried to overcome by all staffs belonging to Reactivity Accident Laboratory, NSRR Operation Division, Department of Reactor Fuel Examination and Hot Laboratory. This report describes the technical achievements obtained through four years work. (author)

  14. Description of ECRI (CNEA'S MTR fuel fabrication plant)

    International Nuclear Information System (INIS)

    Echenique, P.; Fabro, J.; Podesta, D.; Restelli, M.; Rossi, G.; Alvarez, L.; Adelfang, P.

    2002-01-01

    The ECRI Plant is dedicated to the development and fabrication of high-density fuel elements and targets for 99 Mo. In this sector had been done the start up Fuel Elements for the Reactors of Peru, Iran, Algeria and Egypt. All of them were made with U 3 O 8 . The targets for 99 Mo using HEU were fabricated too in the last years. The new material of high-density for Fuel Elements as U 3 Si 2 were done in this sector, three prototypes were fabricated, two are still under irradiation. (P06 and P07). As new developments we are working with U-Mo (7%) Fuel Plates with both material Korean and HMD. This work is under the RERTR Program and two fuel elements, manufactured by us, with both powders, will be irradiated in Petten. For 99 Mo targets, we are fabricating miniplates of LEU with an AlUx powder by pulvi-metallurgy technique. And it is under development the foils targets under the RERTR Program. A general view of the fabrication facilities and control sector will be shown. The different operations that are done in each sector will be explained. All our activities will be certified under the ISO 9000 and we are working hard to get it in the middle of 2003. (author)

  15. Redundancy of Supply in the International Nuclear Fuel Fabrication Market: Are Fabrication Services Assured?

    International Nuclear Information System (INIS)

    Seward, Amy M.; Toomey, Christopher; Ford, Benjamin E.; Wood, Thomas W.; Perkins, Casey J.

    2011-01-01

    For several years, Pacific Northwest National Laboratory (PNNL) has been assessing the reliability of nuclear fuel supply in support of the U.S. Department of Energy/National Nuclear Security Administration. Three international low enriched uranium reserves, which are intended back up the existing and well-functioning nuclear fuel market, are currently moving toward implementation. These backup reserves are intended to provide countries credible assurance that of the uninterrupted supply of nuclear fuel to operate their nuclear power reactors in the event that their primary fuel supply is disrupted, whether for political or other reasons. The efficacy of these backup reserves, however, may be constrained without redundant fabrication services. This report presents the findings of a recent PNNL study that simulated outages of varying durations at specific nuclear fuel fabrication plants. The modeling specifically enabled prediction and visualization of the reactors affected and the degree of fuel delivery delay. The results thus provide insight on the extent of vulnerability to nuclear fuel supply disruption at the level of individual fabrication plants, reactors, and countries. The simulation studies demonstrate that, when a reasonable set of qualification criteria are applied, existing fabrication plants are technically qualified to provide backup fabrication services to the majority of the world's power reactors. The report concludes with an assessment of the redundancy of fuel supply in the nuclear fuel market, and a description of potential extra-market mechanisms to enhance the security of fuel supply in cases where it may be warranted. This report is an assessment of the ability of the existing market to respond to supply disruptions that occur for technical reasons. A forthcoming report will address political disruption scenarios.

  16. Burnable poison fuel element and its fabrication

    International Nuclear Information System (INIS)

    Zukeran, Atsushi; Inoue, Kotaro; Aizawa, Hiroko.

    1985-01-01

    Purpose: To enable to optionally vary the excess reactivity and fuel reactivity. Method: Burnable poisons with a large neutron absorption cross section are contained in fuel material, by which the excess reactivity at the initial stage in the reactor is suppressed by the burnable poisons and the excess reactivity is released due to the reduction in the atomic number density of the burnable poisons accompanying the burning. The burnable poison comprises spherical or rod-like body made of a single material or spherical or rod-like member made of a plurality kind of materials laminated in a layer. These spheres or rods are dispersed in the fuel material. By adequately selecting the shape, combination and the arrangement of the burnable poisons, the axial power distribution of the fuel rods are flattened. (Moriyama, K.)

  17. Interfuel: development of fuel fabrication techniques

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    On July 5 1972, an understanding was reached between Rijn-Schelde-Verolme NV(RSV), Shell Kernenergie NV, Gemeenschappelijke Kernenergiecentrale Nederland NV (GKN), Comprimo BV and Stichting Reactor Centrum Nederland (RCN), regarding the formation of a company to co-operate concerning the fuel cycle for nuclear reactors-special emphasis being given to the production of fuel elements for light water reactor systems. (Auth.)

  18. Role of ion chromatograph in nuclear fuel fabrication process at Nuclear Fuel Complex

    International Nuclear Information System (INIS)

    Balaji Rao, Y.; Prasada Rao, G.; Prahlad, B.; Saibaba, N.

    2012-01-01

    The present paper discusses the different applications of ion chromatography followed in nuclear fuel fabrication process at Nuclear Fuel Complex. Some more applications of IC for characterization of nuclear materials and which are at different stages of method development at Control Laboratory, Nuclear Fuel Complex are also highlighted

  19. Gel-sphere-pac reactor fuel fabrication and its application to a variety of fuels

    International Nuclear Information System (INIS)

    Olsen, A.R.; Judkins, R.R.

    1979-12-01

    The gel-sphere-pac fuel fabrication option was evaluated for its possible application to commercial scale fuel fabrication for 19 fuel element designs that use oxide fuel in metal clad rods. The dry gel spheres are prepared at the reprocessing plant and are then calcined, sintered, inspected, and loaded into fuel rods and packed by low-energy vibration. A fuel smear density of 83 to 88% theoretical can be obtained. All fuel fabrication process steps were defined and evaluated from fuel receiving to finished fuel element shipping. The evaluation also covers the feasibility of the process, the current status of technology, estimates of the required time and cost to develop the technology to commercial status, and the safety and licensability of commercial scale plants. The primary evaluation was for a Light-Water Reactor fuel element containing (U,Pu)O 2 fuel. The other 18 fuel element types - 3 for Light-Water Reactors, 1 for a Heavy-Water Reactor, 1 for a Gas-Cooled Fast Reactor, 7 for Liquid-Metal-Cooled Fast Breeder Reactors, and 3 pairs for Light-Water Prebreeder and Breeder Reactors - were compared with the Light-Water Reactor. The gel-sphere-pac option was found applicable to 17 of the 19 element types; the characteristics of a commercial scale plant were defined for these for making cost estimates for such plants. The evaluation clearly shows the gel-sphere-pac process to be a viable fuel fabrication option. Estimates indicate a significant potential fabrication cost advantage for the gel-sphere-pac process if a remotely operated and remotely maintained fuel fabrication plant is required

  20. Sintering furnace for remote fuel fabrication

    International Nuclear Information System (INIS)

    Bowen, W.W.

    1978-10-01

    Component testing and evaluation of a chemical vapor deposition Re/W muffle has been initiated. Hydrogen permeation testing and thermal cycling behavior will be evaluated. Fabrication of prototype 10-12 Kg furnace is scheduled for completion late in 1979, at which time testing of the system will be initiated

  1. JP-8 Catalytic Cracking for Compact Fuel Processors

    National Research Council Canada - National Science Library

    Campbell, Timothy

    2004-01-01

    ...), kerosene, and diesel to produce hydrogen for fuel cell use, several issues arise. First, these fuels have high sulfur content, which can poison and deactivate components of the reforming process and the fuel cell stack...

  2. Regulations concerning the fabricating business of nuclear fuel materials

    International Nuclear Information System (INIS)

    1985-01-01

    In the Law for the Regulations of Nuclear Source Material, Nuclear Fuel Material and Reactors, the regulations have all been revised on the fabrication business of nuclear fuel materials. The revised regulations are given : application for permission of the fabrication business, application for permission of the alteration, application for approval of the design and the construction methods, application for approval of the alteration, application for the facilities inspection, facilities inspection, recordings, entry limitations etc. for controlled areas, measures concerning exposure radiation doses etc., operation of the fabrication facilities, transport within the site of the business, storage, disposal within the site of the business, security regulations, designation etc. of the licensed engineer of nuclear fuels, collection of reports, etc. (Mori, K.)

  3. Fabrication of the instrumented fuel rods for the 3-Pin Fuel Test Loop at HANARO

    International Nuclear Information System (INIS)

    Sohn, Jae Min; Park, Sung Jae; Shin, Yoon Tag; Lee, Jong Min; Ahn, Sung Ho; Kim, Soo Sung; Kim, Bong Goo; Kim, Young Ki; Lee, Ki Hong; Kim, Kwan Hyun

    2008-09-01

    The 3-Pin Fuel Test Loop(hereinafter referred to as the '3-Pin FTL') facility has been installed at HANARO(High-flux Advanced Neutron Application Reactor) and the 3-Pin FTL is under a test operation. The purpose of this report is to fabricate the instrumented fuel rods for the 3-Pin FTL. The fabrication of these fuel rods was based on experiences and technologies of the instrumented fuel rods for an irradiation fuel capsule. The three instrumented fuel rods of the 3-Pin FTL have been designed. The one fuel rod(180 .deg. ) was designed to measure the centerline temperature of the nuclear fuels and the internal pressure of the fuel rod, and others(60 .deg. and 300 .deg. ) were designed to measure the centerline temperature of the fuel pellets. The claddings were made of the reference material 1 and 2 and new material 1 and 2. And nuclear fuel was used UO 2 (2.0w/o) pellet type with large grain and standard grain. The major procedures of fabrication are followings: (1) the assembling and weld of fuel rods with the pellet mockups and the sensor mockups for the qualification tests, (2) the qualification tests(dimension measurements, tensile tests, metallography examinations and helium leak tests) of weld, (3) the assembling and weld of instrumented fuel rods with the nuclear pellets and the sensors for the irradiation test, and (4) the qualification tests(the helium leak test, the dimensional measurement, electric resistance measurements of sensors) of test fuel rods. Satisfactory results were obtained for all the qualification tests of the instrumented fuel rods for the 3-Pin FTL. Therefore the three instrumented fuel rods for the 3-Pin FTL have been fabricated successfully. These will be installed in the In-Pile Section of 3-Pin FTL. And the irradiation test of these fuel rods is planned from the early next year for about 3 years at HANARO

  4. Hybrid pellets: an improved concept for fabrication of nuclear fuel

    International Nuclear Information System (INIS)

    Matthews, R.B.; Hart, P.E.

    1979-09-01

    The feasibility of fabricating fuel pellets using gel-derived microspheres as press feed was evaluated. By using gel-derived microspheres as press feed, the potential exists for eliminating dusty operations like milling, slugging, and granulation, from the pelleting process. The free-flowing character of the spheres should also result in limited dust generation during powder transport and pressing operations. The results of this study clearly demonstrate that fuel pellets can be successfully fabricated on a laboratory scale using UO 2 gel microspheres as press feed. Under moderate sintering conditions, 1,500 0 C for 4 h in Ar-4% H 2 , UO 2 pellets with densities up to 96% TD were fabricated. A range of pellet microstructures and densities were achieved depending on sphere forming and calcining conditions. Based on these results, a set of necessary sphere properties are suggested: O/U less than 2.20, crystallite size less than 500 A, specific surface area greater than 8 m 2 /g, and sphere size 200 and 400 μm. Preliminary attempts to fabricate ThO 2 and ThO 2 -UO 2 pellets using microspheres were unsuccessful because the requisite sphere properties were not achieved. Areas requiring additional development include: demonstration of the process on scaled-up equipment suitable for use in a remote fuel fabrication facility and evaluation of the irradiation performance of pellet fuels from gel-spheres

  5. Description of a reference mixed oxide fuel fabrication plant (MOFFP)

    International Nuclear Information System (INIS)

    1978-01-01

    In order to evaluate the environment impact, due to the Mixed Oxide Fuel Fabrication Plants, work has been initiated to describe the general design and operating conditions of a reference Mixed Oxide Fuel Fabrication Plant (MOFFP) for the 1990 time frame. The various reference data and basic assumptions for the reference MOFFP plant have been defined after discussion with experts. The data reported in this document are only made available to allow an evaluation of the environmental impact due to a reference MOFFP plant. These data have therefore not to be used as recommandation, standards, regulatory guides or requirements

  6. Review of training methods employed in nuclear fuel fabrication plants

    International Nuclear Information System (INIS)

    Box, W.D.; Browder, F.N.

    1975-01-01

    A search of the literature through the Nuclear Safety Information Center revealed that 86 percent of the incidents that have occurred in fuel fabrication plants can be traced directly or indirectly to insufficient operator training. In view of these findings, a review was made of the training programs now employed by the nuclear fuel fabrication industry. Most companies give the new employee approximately 20 hours of orientation courses, followed by 60 to 80 hours of on-the-job training. It was concluded that these training programs should be expanded in both scope and depth. A proposed program is outlined to offer guidance in improving the basic methods currently in use

  7. New fabrication techniques for the nuclear fuels of tomorrow

    International Nuclear Information System (INIS)

    Babelot, J.F.; Bokelund, H.; Gerontopoulos, P.; Gueugnon, J.F.; Richter, K.

    1995-01-01

    The shift of the emphasis of the work at the Institute for Transuranium Elements (ITU) from the development of fuels based on uranium and plutonium to safety aspects concerning the use of plutonium and other of actinides, necessitates the production of targets containing appreciable amounts of minor actinides for irradiation experiments. The handling of minor actinides requires additional protective measures, combined with improved fuel fabrication techniques. The boundary conditions for a suitable process are flexibility, adaptability to remote control, and minimization of dust formation. A method based on the sol-gel fabrication technique meets these criteria, and was selected for the present developments at ITU. (author)

  8. Greenfield Alternative Study LEU-Mo Fuel Fabrication Facility

    Energy Technology Data Exchange (ETDEWEB)

    Washington Division of URS

    2008-07-01

    This report provides the initial “first look” of the design of the Greenfield Alternative of the Fuel Fabrication Capability (FFC); a facility to be built at a Greenfield DOE National Laboratory site. The FFC is designed to fabricate LEU-Mo monolithic fuel for the 5 US High Performance Research Reactors (HPRRs). This report provides a pre-conceptual design of the site, facility, process and equipment systems of the FFC; along with a preliminary hazards evaluation, risk assessment as well as the ROM cost and schedule estimate.

  9. Development of technology of high density LEU dispersion fuel fabrication

    International Nuclear Information System (INIS)

    Wiencek, T.; Totev, T.

    2007-01-01

    Advanced Materials Fabrication Facilities at Argonne National Laboratory have been involved in development of LEU dispersion fuel for research and test reactors from the beginning of RERTR program. This paper presents development of technology of high density LEU dispersion fuel fabrication for full size plate type fuel elements. A brief description of Advanced Materials Fabrication Facilities where development of the technology was carried out is given. A flow diagram of the manufacturing process is presented. U-Mo powder was manufactured by the rotating electrode process. The atomization produced a U-Mo alloy powder with a relatively uniform size distribution and a nearly spherical shape. Test plates were fabricated using tungsten and depleted U-7 wt.% Mo alloy, 4043 Al and Al-2 wt% Si matrices with Al 6061 aluminum alloy for the cladding. During the development of the technology of manufacturing of full size high density LEU dispersion fuel plates special attention was paid to meet the required homogeneity, bonding, dimensions, fuel out of zone and other mechanical characteristics of the plates.

  10. Develpment of quality assurance manual for fabrication of DUPIC fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Gun; Lee, J. W.; Kim, S. S. and others

    2001-09-01

    The Quality Assurance Manual for the fabrication of DUPIC fuel with high quality was developed. The Quality Assurance Policy established by this manual is to assure that the DUPIC fuel element supplied to customer conform to the specified requirements of customer, applicable codes and standards. The management of KAERI is committed to implementation and maintenance of the program described by this manual. This manual describes the quality assurance program for DUPIC fuel fabrication to comply with CAN3-Z299.2-85 to the extent as needed and appropriate. This manual describes the methods which DUPIC Fuel Development Team(DFDT) personnel must follow to achieve and assure high quality of our product. This manual also describes the quality management system applicable to the activities performed at DFDT.

  11. Develpment of quality assurance manual for fabrication of DUPIC fuel

    International Nuclear Information System (INIS)

    Lee, Young Gun; Lee, J. W.; Kim, S. S. and others

    2001-09-01

    The Quality Assurance Manual for the fabrication of DUPIC fuel with high quality was developed. The Quality Assurance Policy established by this manual is to assure that the DUPIC fuel element supplied to customer conform to the specified requirements of customer, applicable codes and standards. The management of KAERI is committed to implementation and maintenance of the program described by this manual. This manual describes the quality assurance program for DUPIC fuel fabrication to comply with CAN3-Z299.2-85 to the extent as needed and appropriate. This manual describes the methods which DUPIC Fuel Development Team(DFDT) personnel must follow to achieve and assure high quality of our product. This manual also describes the quality management system applicable to the activities performed at DFDT

  12. Powder compaction characteristics and tube dimensions in PIT fabrication of Ag/BPSCCO superconducting tapes

    International Nuclear Information System (INIS)

    Sarma, M.S.; Syamaprasad, U.; Guruswamy, P.; Warrier, K.G.K.; Damodaran, A.D.; Mukherjee, P.S.

    1997-01-01

    Density variations of the superconductor core during the powder-in-tube (PIT) fabrication of Ag/BPSCCO monolayer tapes have been studied. The PIT procedure involved steps such as filling the tubes with precursor powder, rich in 2212 phase, with packing densities in the range 20-55% of theoretical density, groove rolling, flat rolling and finally a four-stage repeated rolling-annealing cycle. The two types of precursor powders used in this study were prepared by a conventional ceramic route and an amorphous acrylate route (AR). The core density was found to saturate after a few passes of just groove rolling for both powders. However, better compaction was achieved by rolling for the AR powder which also exhibited a better uniaxial compaction response. A further increase in core density was observed only during the final annealing step. Based on the experimentally observed constancy of core density through most of the mechanical working steps, a relation connecting silver sheath thickness, total thickness and cross-section ratio at saturation of compaction has been worked out. Apart from explaining the influence of starting packing density and compaction response of powder in determining the sheath thickness of the final tapes, the relationship was found to be useful in choosing the starting packing density appropriate to the silver tube dimensions and prevailing rolling conditions. (author)

  13. Experiences in transferring of AFA 3G fuel assembly fabrication

    International Nuclear Information System (INIS)

    Yang Xiaodong; Wu Zhiming; Luo Jiankang

    2002-01-01

    Implementation program is developed for the transferring of AFA 3G technology, together with the project management experts designated by Framatome Company, to facilitate the technology import under the guidance of strict program. Technical documents and quality insurance management documents are developed based on the full understanding of the information provided by Framatome to guide the fabrication of AFA 3G fuel elements. Technical requirement suggested by Framatome is adopted as much as possible, considering the practical process capability of YFP. The focus is the technology about fabrication difficulties in the AFA 3G technology, to insure the successful transfer of the AFA 3G fabrication technology

  14. Fabrication of mixed oxide fuel using plutonium from dismantled weapons

    International Nuclear Information System (INIS)

    Blair, H.T.; Chidester, K.; Ramsey, K.B.

    1996-01-01

    A very brief summary is presented of experimental studies performed to support the use of plutonium from dismantled weapons in fabricating mixed oxide (MOX) fuel for commercial power reactors. Thermal treatment tests were performed on plutonium dioxide powder to determine if an effective dry gallium removal process could be devised. Fabrication tests were performed to determine the effects of various processing parameters on pellet quality. Thermal tests results showed that the final gallium content is highly dependent on the treatment temperature. Fabrication tests showed that the milling process, sintering parameters, and uranium feed did effect pellet properties. 1 ref., 1 tab

  15. Fuel management strategy for the compact core design of RSG GAS (MPR-30)

    Energy Technology Data Exchange (ETDEWEB)

    Sembiring, T.M.; Liem, P.H.; Tukiran, S. [National Nuclear Energy Agency (Batan), PUSPIPTEK-Serpong Tangerang (Indonesia)

    2000-07-01

    The rearrangement of the core configuration of the RSG GAS reactor to obtain a compact core is in progress. A fuel management strategy is proposed for the equilibrium compact core of this reactor by reducing the number of in-core irradiation positions. The reduced irradiation positions are based on the activities during 12 years operation. The obtained compact core gives significant extension of the operation cycle length so that the reactor availability and utilization can be enhanced. The equilibrium compact silicide core obtained met the imposed design constraints and safety requirements. (author)

  16. Fuel management strategy for the compact core design of RSG GAS (MPR-30)

    International Nuclear Information System (INIS)

    Sembiring, T.M.; Liem, P.H.; Tukiran, S.

    2000-01-01

    The rearrangement of the core configuration of the RSG GAS reactor to obtain a compact core is in progress. A fuel management strategy is proposed for the equilibrium compact core of this reactor by reducing the number of in-core irradiation positions. The reduced irradiation positions are based on the activities during 12 years operation. The obtained compact core gives significant extension of the operation cycle length so that the reactor availability and utilization can be enhanced. The equilibrium compact silicide core obtained met the imposed design constraints and safety requirements. (author)

  17. Fabrication of metallic fuel for fast breeder reactor

    International Nuclear Information System (INIS)

    Saify, M.T.; Jha, S.K.; Abdulla, K.K.; Kumar, Arbind; Mittal, R.K.; Prasad, R.S.; Mahule, N.; Kumar, Arun; Prasad, G.J.

    2012-01-01

    Natural uranium oxide fuelled PHWRs comprises of first stage of Indian nuclear power programme. Liquid metal fast breeder reactors fuelled by Pu (from PHWR's) form the second stage. A shorter reactor doubling time is essential in order to accelerate the nuclear power growth in India. Metallic fuels are known to provide shorter doubling times, necessitating to be used as driver fuel for fast breeder reactors. One of the fabrication routes for metallic fuels having random grain orientation, is injection casting technique. The technique finds its basis in an elementary physical concept - the possibility of supporting a liquid column within a tube, by the application of a pressure difference across the liquid interface inside and outside the tube. At AFD, BARC a facility has been set-up for injection casting of uranium rods in quartz tube moulds, demoulding of cast rods, end-shearing of rods and an automated inspection system for inspection of fuel rods with respect to mass, length, diameter and diameter variation along the length and internal and external porosities/voids. All the above facilities have been set-up in glove boxes and have successfully been used for fabrication of uranium bearing fuel rods. The facility has been designed for fabrication and inspection of Pu-bearing metallic fuels also, if required

  18. Development of equipment for fabricating DUPIC fuel powder

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Ho; Yang, M. S.; Park, J. J.; Lee, J. W.; Kim, J. H.; Cho, K. H.; Lee, D. Y.; Lee, Y. S.; Na, S. H

    1999-06-01

    The powder fabrication processes, as the first stage of manufacturing DUPIC (Direct Use of PWR spent fuel In CANDU) fuel, consist of the slitting of spent PWR fuel rods, REOX (Oxidation and REduction of Oxide Fuels) processing to produce the powder feedstock, the milling of the produced powder, the granulation of the milled powder, and the mixing of the granulated powder with pressing lubricants. All these processes should be conducted by remote means in a hot-cell environment where the direct human access is limited to the strictest minimum due to the high radioactivity. This report describe the development of the equipment for fabricating DUPIC fuel powder. These equipment are Slitting Machine, Oxidation and Reduction (OREOX) Furnace, Mill, Roll Compactor, and Mixer. Remote design concept was applied to all the equipment for use in the M6 hot-cell of the IMEF. Mechanical design considerations and capabilities of the equipment for remote operation and maintenance are presented. First prototypes were developed and installed in the DUPIC full scale mock-up and tested using a master-slave manipulator. Redesign and reconstruction were made on each equipment based on mock-up test results. The remote technology acquired through this research was utilized in developing other equipment for DUPIC fuel fabrication, thereby improving safety and increasing productivity. This technology could also be extended to the area of remote handling equipment development for use in hazardous environments. (author). 14 refs., 9 tabs., 21 figs.

  19. Development of equipment for fabricating DUPIC fuel powder

    International Nuclear Information System (INIS)

    Kim, Ki Ho; Yang, M. S.; Park, J. J.; Lee, J. W.; Kim, J. H.; Cho, K. H.; Lee, D. Y.; Lee, Y. S.; Na, S. H.

    1999-06-01

    The powder fabrication processes, as the first stage of manufacturing DUPIC (Direct Use of PWR spent fuel In CANDU) fuel, consist of the slitting of spent PWR fuel rods, REOX (Oxidation and REduction of Oxide Fuels) processing to produce the powder feedstock, the milling of the produced powder, the granulation of the milled powder, and the mixing of the granulated powder with pressing lubricants. All these processes should be conducted by remote means in a hot-cell environment where the direct human access is limited to the strictest minimum due to the high radioactivity. This report describe the development of the equipment for fabricating DUPIC fuel powder. These equipment are Slitting Machine, Oxidation and Reduction (OREOX) Furnace, Mill, Roll Compactor, and Mixer. Remote design concept was applied to all the equipment for use in the M6 hot-cell of the IMEF. Mechanical design considerations and capabilities of the equipment for remote operation and maintenance are presented. First prototypes were developed and installed in the DUPIC full scale mock-up and tested using a master-slave manipulator. Redesign and reconstruction were made on each equipment based on mock-up test results. The remote technology acquired through this research was utilized in developing other equipment for DUPIC fuel fabrication, thereby improving safety and increasing productivity. This technology could also be extended to the area of remote handling equipment development for use in hazardous environments. (author). 14 refs., 9 tabs., 21 figs

  20. Brazing process in nuclear fuel element fabrication

    International Nuclear Information System (INIS)

    Katam, K.; Sudarsono

    1982-01-01

    The purpose of the brazing process is to join the spacers and pads of fuel pins, so that the process is meant as a soldering technique and not only as a hardening or reinforcing process such as in common brazing purposes. There are some preliminary processes before executing the brazing process such as: materials preparation, sand blasting, brazing metal coating tack welding the spacers and pads on the fuel cladding. The metal brazing used is beryllium in strip form which will be evaporated in vacuum condition to coat the spacers and pads. The beryllium vapor and dust is very hazardous to the workers, so all the line process of brazing needs specials safety protection and equipment to protect the workers and the processing area. Coating process temperature is 2470 deg C with a vacuum pressure of 10 -5 mmHg. Brazing process temperature process is 1060 deg C with a vacuum pressure of 10 -6 mmHg. The brazing process with beryllium coating probably will give metallurgical structural change in the fuel cladding metal at the locations of spacers and pads. The quality of brazing is highly influenced by and is depending on the chemical composition of the metal and the brazing metal, materials preparations, temperature, vacuum pressure, time of coating and brazing process. The quality control of brazing could be performed with methods of visuality geometry, radiography and metallography. (author)

  1. Artificial vision in nuclear fuel fabrication

    International Nuclear Information System (INIS)

    Dorado, P.

    2007-01-01

    The development of artificial vision techniques opens a door to the optimization of industrial processes which the nuclear industry cannot miss out on. Backing these techniques represents a revolution in security and reliability in the manufacturing of a highly technological products as in nuclear fuel. Enusa Industrias Avanzadas S. A. has successfully developed and implemented the first automatic inspection equipment for pellets by artificial vision in the European nuclear industry which is nowadays qualified and is already developing the second generation of this machine. There are many possible applications for the techniques of artificial vision in the fuel manufacturing processes. Among the practices developed by Enusa Industrias Avanzadas are, besides the pellets inspection, the rod sealing drills detection and positioning in the BWR products and the sealing drills inspection in the PWR fuel. The use of artificial vision in the arduous and precise processes of full inspection will allow the absence of human error, the increase of control in the mentioned procedures, the reduction of doses received by the personnel, a higher reliability of the whole of the operations and an improvement in manufacturing costs. (Author)

  2. Literature search on Light Water Reactor (LWR) fuel and absorber rod fabrication, 1960--1976

    International Nuclear Information System (INIS)

    Sample, C.R.

    1977-02-01

    A literature search was conducted to provide information supporting the design of a conceptual Light Water Reactor (LWR) Fuel Fabrication plant. Emphasis was placed on fuel processing and pin bundle fabrication, effects of fuel impurities and microstructure on performance and densification, quality assurance, absorber and poison rod fabrication, and fuel pin welding. All data have been taken from publicly available documents, journals, and books. This work was sponsored by the Finishing Processes-Mixed Oxide (MOX) Fuel Fabrication Studies program at HEDL

  3. Literature search on Light Water Reactor (LWR) fuel and absorber rod fabrication, 1960--1976

    Energy Technology Data Exchange (ETDEWEB)

    Sample, C R [comp.

    1977-02-01

    A literature search was conducted to provide information supporting the design of a conceptual Light Water Reactor (LWR) Fuel Fabrication plant. Emphasis was placed on fuel processing and pin bundle fabrication, effects of fuel impurities and microstructure on performance and densification, quality assurance, absorber and poison rod fabrication, and fuel pin welding. All data have been taken from publicly available documents, journals, and books. This work was sponsored by the Finishing Processes-Mixed Oxide (MOX) Fuel Fabrication Studies program at HEDL.

  4. PHWR fuel fabrication with imported uranium - procedures and processes

    International Nuclear Information System (INIS)

    Rao, R.V.R.L.V.; Rameswara Rao, A.; Hemantha Rao, G.V.S.; Jayaraj, R.N.

    2010-01-01

    Following the 123 agreement and subsequent agreements with IAEA & NSG, Government of India has entered into bilateral agreements with different countries for nuclear trade. Department of Atomic Energy (DAE), Government of India, has entered into contract with few countries for supply of uranium material for use in the safeguarded PHWRs. Nuclear Fuel Complex (NFC), an industrial unit of DAE, established in the early seventies, is engaged in the production of Nuclear Fuel and Zircaloy items required for Nuclear Power Reactors operating in the country. NFC has placed one of its fuel fabrication facilities (NFC, Block-A, INE-) under safeguards. DAE has opted to procure uranium material in the form of ore concentrate and fuel pellets. Uranium ore concentrate was procured as per the ASTM specifications. Since no international standards are available for PHWR fuel pellets, Specifications have to be finalized based on the present fabrication and operating experience. The process steps have to be modified and fine tuned for handling the imported uranium material especially for ore concentrate. Different transportation methods are to be employed for transportation of uranium material to the facility. Cost of the uranium material imported and the recoveries at various stages of fuel fabrication have impact on the fuel pricing and in turn the unit energy costs. Similarly the operating procedures have to be modified for safeguards inspections by IAEA. NFC has successfully manufactured and supplied fuel bundles for the three 220 MWe safeguarded PHWRs. The paper describes various issues encountered while manufacturing fuel bundles with different types of nuclear material. (author)

  5. The silicon sensor for the compact muon solenoid tracker. Control of the fabrication process

    International Nuclear Information System (INIS)

    Manolescu, Florentina; Mihul, Alexandru; Macchiolo, Anna

    2005-01-01

    The Compact Muon Solenoid (CMS) is one of the experiments at the Large Hadron Collider (LHC) under construction at CERN. The inner tracking system of this experiment consists of the world largest Silicon Strip Tracker (SST). In total, 24,244 silicon sensors are implemented covering an area of 206 m 2 . To construct this large system and to ensure its functionality for the full lifetime of ten years under the hard LHC condition, a detailed quality assurance program has been developed. This paper describes the strategy of the Process Qualification Control to monitor the stability of the fabrication process throughout the production phase and the results obtained are shown. (authors)

  6. Nuclear Fuel Test Rod Fabrication for Data Acquisition Test

    International Nuclear Information System (INIS)

    Joung, Chang-Young; Hong, Jin-Tae; Kim, Ka-Hye; Huh, Sung-Ho

    2014-01-01

    A nuclear fuel test rod must be fabricated with precise welding and assembly technologies, and confirmed for their soundness. Recently, we have developed various kinds of processing systems such as an orbital TIG welding system, a fiber laser welding system, an automated drilling system and a helium leak analyzer, which are able to fabricate the nuclear fuel test rods and rigs, and keep inspection systems to confirm the soundness of the nuclear fuel test rods and rids. The orbital TIG welding system can be used with two kinds of welding methods. One can perform the round welding for end-caps of a nuclear fuel test rod by an orbital head mounted in a low-pressure chamber. The other can do spot welding for a pin-hole of a nuclear fuel test rod in a high-pressure chamber to fill up helium gas of high pressure. The fiber laser welding system can weld cylindrical and 3 axis samples such as parts of a nuclear fuel test rod and instrumentation sensors which is moved by an index chuck and a 3 axis (X, Y, Z) servo stage controlled by the CNC program. To measure the real-time temperature change at the center of the nuclear fuel during the irradiation test, a thermocouple should be instrumented at that position. Therefore, a hole needs to be made at the center of fuel pellet to instrument the thermocouple. An automated drilling system can drill a fine hole into a fuel pellet without changing tools or breaking the work-piece. The helium leak analyzer (ASM-380 model of DEIXEN Co.) can check the leak of the nuclear fuel test rod filled with helium gas. This paper describes not only the assembly and fabrication methods used by the process systems, but also the results of the data acquisition test for the nuclear fuel test rod. A nuclear fuel test rod for the data acquisition test was fabricated using the welding and assembling echnologies acquired from previous tests

  7. Nuclear Fuel Test Rod Fabrication for Data Acquisition Test

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Chang-Young; Hong, Jin-Tae; Kim, Ka-Hye; Huh, Sung-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    A nuclear fuel test rod must be fabricated with precise welding and assembly technologies, and confirmed for their soundness. Recently, we have developed various kinds of processing systems such as an orbital TIG welding system, a fiber laser welding system, an automated drilling system and a helium leak analyzer, which are able to fabricate the nuclear fuel test rods and rigs, and keep inspection systems to confirm the soundness of the nuclear fuel test rods and rids. The orbital TIG welding system can be used with two kinds of welding methods. One can perform the round welding for end-caps of a nuclear fuel test rod by an orbital head mounted in a low-pressure chamber. The other can do spot welding for a pin-hole of a nuclear fuel test rod in a high-pressure chamber to fill up helium gas of high pressure. The fiber laser welding system can weld cylindrical and 3 axis samples such as parts of a nuclear fuel test rod and instrumentation sensors which is moved by an index chuck and a 3 axis (X, Y, Z) servo stage controlled by the CNC program. To measure the real-time temperature change at the center of the nuclear fuel during the irradiation test, a thermocouple should be instrumented at that position. Therefore, a hole needs to be made at the center of fuel pellet to instrument the thermocouple. An automated drilling system can drill a fine hole into a fuel pellet without changing tools or breaking the work-piece. The helium leak analyzer (ASM-380 model of DEIXEN Co.) can check the leak of the nuclear fuel test rod filled with helium gas. This paper describes not only the assembly and fabrication methods used by the process systems, but also the results of the data acquisition test for the nuclear fuel test rod. A nuclear fuel test rod for the data acquisition test was fabricated using the welding and assembling echnologies acquired from previous tests.

  8. Fabrication of oxide dispersion strengthened ferritic clad fuel pins

    International Nuclear Information System (INIS)

    Zirker, L.R.; Bottcher, J.H.; Shikakura, S.; Tsai, C.L.

    1991-01-01

    A resistance butt welding procedure was developed and qualified for joining ferritic fuel pin cladding to end caps. The cladding are INCO MA957 and PNC ODS lots 63DSA and 1DK1, ferritic stainless steels strengthened by oxide dispersion, while the end caps are HT9 a martensitic stainless steel. With adequate parameter control the weld is formed without a residual melt phase and its strength approaches that of the cladding. This welding process required a new design for fuel pin end cap and weld joint. Summaries of the development, characterization, and fabrication processes are given for these fuel pins. 13 refs., 6 figs., 1 tab

  9. Design and fabrication procedures of Super-Phenix fuel elements

    International Nuclear Information System (INIS)

    Leclere, J.; Vialard, J.-L.; Delpeyroux, P.

    1975-01-01

    For Super-Phenix fuel assemblies, Phenix technological arrangements will be used again, but they will be simplified as far as possible. The maximum fuel can temperature has been lowered in order to obtain a good behavior of hexagonal tubes and cans at high irradiation levels. An important experimental programme and the experience gained from Phenix operation will confirm the merits of the options retained. The fuel element fabrication is envisaged to take place in the plutonium workshop at Cadarache. Usual procedures will be employed and both reliability and automation will be increased [fr

  10. Current developments of fuel fabrication technologies at the plutonium fuel production facility, PFPF

    International Nuclear Information System (INIS)

    Asakura, K.; Aono, S.; Yamaguchi, T.; Deguchi, M.

    2000-01-01

    The Japan Nuclear Cycle Development Institute, JNC, designed, constructed and has operated the Plutonium Fuel Production Facility, PFPF, at the JNC Tokai Works to supply MOX fuels to the proto-type Fast Breeder Reactor, FBR, 'MONJU' and the experimental FBR 'JOYO' with 5 tonMOX/year of fabrication capability. Reduction of personal radiation exposure to a large amount of plutonium is one of the most important subjects in the development of MOX fabrication facility on a large scale. As the solution of this issue, the PFPF has introduced automated and/or remote controlled equipment in conjunction with computer controlled operation scheme. The PFPF started its operation in 1988 with JOYO reload fuel fabrication and has demonstrated MOX fuel fabrication on a large scale through JOYO and MONJU fuel fabrication for this decade. Through these operations, it has become obvious that several numbers of equipment initially installed in the PFPF need improvements in their performance and maintenance for commercial utilization of plutonium in the future. Furthermore, fuel fabrication of low density MOX pellets adopted in the MONJU fuel required a complete inspection because of difficulties in pellet fabrication compared with high density pellet for JOYO. This paper describes new pressing equipment with a powder recovery system, and pellet finishing and inspection equipment which has multiple functions, such as grinding measurements of outer diameter and density, and inspection of appearance to improve efficiency in the pellet finishing and inspection steps. Another development of technology concerning an annular pellet and an innovative process for MOX fuel fabrication are also described in this paper. (author)

  11. Standard model for safety analysis report of fuel fabrication plants

    International Nuclear Information System (INIS)

    1980-09-01

    A standard model for a safety analysis report of fuel fabrication plants is established. This model shows the presentation format, the origin, and the details of the minimal information required by CNEN (Comissao Nacional de Energia Nuclear) aiming to evaluate the requests of construction permits and operation licenses made according to the legislation in force. (E.G.) [pt

  12. Facility safeguards at an LEU fuel fabrication facility in Japan

    International Nuclear Information System (INIS)

    Kuroi, H.; Osabe, T.

    1984-01-01

    A facility description of a Japanese LEU BWR-type fuel fabrication plant focusing on safeguards viewpoints is presented. Procedures and practices of MC and A plan, measurement program, inventory taking, and the report and record system are described. Procedures and practices of safeguards inspection are discussed and lessons learned from past experiences are reviewed

  13. Estimation and control in HTGR fuel rod fabrication

    International Nuclear Information System (INIS)

    Downing, D.J.; Bailey, J.M.

    1980-01-01

    A control algorithm has been derived for an HTGR Fuel Rod Fabrication Process utilizing the method of G.E.P. Box and G.M. Jenkins. The estimator is a Kalman filter and is compared with a Least Square estimator and a standard control chart. The effects of system delays are presented. 1 ref

  14. LWR fuel fabrication: a mature and competitive industry

    International Nuclear Information System (INIS)

    Schwartz, M.H.

    1997-01-01

    The pressures on fuel fabricators - to avoid losing existing clients as well as to win any new business that is put up to tender in this overly supplied market - is driving them to reduce costs and to improve designs and performance. (author)

  15. Fabrication details for wire wrapped fuel assembly components

    International Nuclear Information System (INIS)

    Bosy, B.J.

    1978-09-01

    Extensive hydraulic testing of simulated LMFBR blanket and fuel assemblies is being carried out under this MIT program. The fabrication of these test assemblies has involved development of manufacturing procedures involving the wire wrapped pins and the flow housing. The procedures are described in detail in the report

  16. Zirconia based inert matrix fuel: fabrication concepts and feasibility studies

    International Nuclear Information System (INIS)

    Ingold, F.; Burghartz, M.; Ledergerber, G.

    1999-01-01

    The internal gelation process has traditionally been applied to fabricate standard fuel based on uranium, typically UO2 and MOX. To meet the recent aim to destroy plutonium in the most effective way, a uranium free fuel was evaluated. The fuel development programme at PSI has been redirected toward a fuel based on zirconium oxide or a mixture of zirconia and a conducting material to form ceramic/metal (CERMET) or ceramic/ceramic (CERCER) combinations. A feasibility study was carried out to demonstrate that microspheres based on zirconia and spinel can be fabricated with the required properties. The gelation parameters were investigated to optimise compositions of the starting solutions. Studies to fabricate a composite material (from zirconia and spinel) are ongoing. If the zirconia/spinel ratio is chosen appropriately, the low thermal conductivity of pure zirconia can be compensated by the higher thermal conductivity of spinel. Another solution to offset the low thermal conductivity of zirconia is the development of a CERMET, which consists of fine particles bearing plutonium in a cubic zirconia lattice dispersed in a metallic matrix. The fabrication of such a CERMET is also being studied. (author)

  17. Method to fabricate block fuel elements for high temperature reactors

    International Nuclear Information System (INIS)

    Hrovat, M.; Rachor, L.

    1977-01-01

    The fabrication of block fuel elements for gas-cooled high temperature reactors can be improved upon by adding 0.2 to 2 wt.% of a hydrocarbon compound to the lubricating mixture prior to pressing. Hexanol or octanol are named as substances. The dimensional accuracy of the block is thus improved. 2 examples illustrate the method. (RW) [de

  18. Estimation and control in HTGR fuel rod fabrication

    International Nuclear Information System (INIS)

    Downing, D.J.; Bailey, M.J.

    1980-01-01

    A control algorithm has been derived for a HTGR Fuel Rod Fabrication Process utilizing the method of Box and Jenkins. The estimator is a Kalman filter and is compared with a Least Square estimator and a standard control chart. The effects of system delays are presented

  19. Method to fabricate block fuel elements for high temperature reactors

    International Nuclear Information System (INIS)

    Hrovat, M.; Rachor, L.

    1978-01-01

    The fabrication of block fuel elements for gas-cooled high temperature reactors can be improved upon by adding 0.2 to 2 wt.% of a hydrocarbon compound to the lubricating mixture prior to pressing. Hexanol or octanol are named as substances. The dimensional accuracy of the block is thus improved. 2 examples illustrate the method. (orig./PW)

  20. Product Conversion: The Link between Separations and Fuel Fabrication

    International Nuclear Information System (INIS)

    Felker, L.K.; Vedder, R.J.; Walker, E.A.; Collins, E.D.

    2008-01-01

    Several chemical processing flowsheets are under development for the separation and isolation of the actinide, lanthanide, and fission product streams in spent nuclear fuel. The conversion of these product streams to solid forms, typically oxides, is desired for waste disposition and recycle of product fractions back into transmutation fuels or targets. The modified direct denitration (MDD) process developed at Oak Ridge National Laboratory (ORNL) in the 1980's offers significant advantages for the conversion of the spent fuel products to powder form suitable for direct fabrication into recycle fuels. A glove-box-contained MDD system and a fume-hood-contained system have been assembled at ORNL for the purposes of testing the co-conversion of uranium and mixed-actinide products. The current activities are focused on the conversion of the first products from the processing of spent nuclear fuel in the Coupled End-to-End Demonstration currently being conducted at ORNL. (authors)

  1. Advanced methods for fabrication of PHWR and LMFBR fuels

    International Nuclear Information System (INIS)

    Ganguly, C.

    1988-01-01

    For self-reliance in nuclear power, the Department of Atomic Energy (DAE), India is pursuing two specific reactor systems, namely the pressurised heavy water reactors (PHWR) and the liquid metal cooled fast breeder reactors (LMFBR). The reference fuel for PHWR is zircaloy-4 clad high density (≤ 96 per cent T.D.) natural UO 2 pellet-pins. The advanced PHWR fuels are UO 2 -PuO 2 (≤ 2 per cent), ThO 2 -PuO 2 (≤ 4 per cent) and ThO 2 -U 233 O 2 (≤ 2 per cent). Similarly, low density (≤ 85 per cent T.D.) (UPu)O 2 pellets clad in SS 316 or D9 is the reference fuel for the first generation of prototype and commercial LMFBRs all over the world. However, (UPu)C and (UPu)N are considered as advanced fuels for LMFBRs mainly because of their shorter doubling time. The conventional method of fabrication of both high and low density oxide, carbide and nitride fuel pellets starting from UO 2 , PuO 2 and ThO 2 powders is 'powder metallurgy (P/M)'. The P/M route has, however, the disadvantage of generation and handling of fine powder particles of the fuel and the associated problem of 'radiotoxic dust hazard'. The present paper summarises the state-of-the-art of advanced methods of fabrication of oxide, carbide and nitride fuels and highlights the author's experience on sol-gel-microsphere-pelletisation (SGMP) route for preparation of these materials. The SGMP process uses sol gel derived, dust-free and free-flowing microspheres of oxides, carbide or nitride for direct pelletisation and sintering. Fuel pellets of both low and high density, excellent microhomogeneity and controlled 'open' or 'closed' porosity could be fabricated via the SGMP route. (author). 5 tables, 14 figs., 15 refs

  2. Cost update: Technology, safety, and costs of decommissioning a reference uranium fuel fabrication plant

    International Nuclear Information System (INIS)

    Miles, T.L.; Liu, Y.

    1994-06-01

    The cost estimates originally developed in NUREG/CR-1266 for commissioning a reference low-enrichment uranium fuel fabrication plant are updated from 1978 to early 1993 dollars. During this time, the costs for labor and materials increased approximately at the rate of inflation, the cost of energy increased more slowly than the rate of inflation, and the cost of low-level radioactive waste disposal increased much more rapidly than the rate of inflation. The results of the analysis indicate that the estimated costs for the immediate dismantlement and decontamination for unrestricted facility release (DECON) of the reference plant have increased from the mid-1978 value of $3.57 million to $8.08 million in 1993 with in-compact low-level radioactive waste disposal at the US Ecoloay facility near Richland, Washington. The cost estimate rises to $19.62 million with out-of-compact radioactive waste disposal at the Chem-Nuclear facility near Barnwell, South Carolina. A methodology and a formula are presented for estimating the cost of decommissioning the reference uranium fuel fabrication plant at some future time, based on these early 1993 cost estimates. The formula contains essentially the same elements as the formula given in 10 CFR 50.75 for escalating the decommissioning costs for nuclear power reactors to some future time

  3. Radiological surveillance in the nuclear fuel fabrication in Mexico

    International Nuclear Information System (INIS)

    Garcia A, J.; Reynoso V, R.; Delgado A, G.

    1996-01-01

    The objective of this report is to present the obtained results related to the application of the radiological safety programme established at the Nuclear Fuel Fabrication Pilot Plant (NFFPF) in Mexico, such as: surveillance methods, radiological protection criteria and regulations, radiation control and records and the application of ALARA recommendation. During the starting period from April 1994 to April 1995, at the NFFPF were made two nuclear fuel bundles a Dummy and other to be burned up in a BWR the mainly process activities are: UO 2 powder receiving, powder pressing for the pellets formation, pellets grinding, cleaning and drying, loading into a rod, Quality Control testing, nuclear fuel bundles assembly. The NFFPF is divided into an unsealed source area (pellets manufacturing plant) and into a sealed source area (rods fabrication plant). The control followed have helped to detect failures and to improve the safety programme and operation. (authors). 1 ref., 3 figs

  4. DUPIC fuel fabrication using spent PWR fuels at KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Dong; Yang, Myung Seung; Ko, Won Il and others

    2000-12-01

    This document contains DUPIC fuel cycle R and D activities to be carried out for 5 years beyond the scope described in the report KAERI/AR-510/98, which was attached to Joint Determination for Post-Irradiation Examination of irradiated nuclear fuel, by MOST and US Embassy in Korea, signed on April 8, 1999. This document is purposely prepared as early as possible to have ample time to review that the over-all DUPIC activities are within the scope and contents in compliance to Article 8(C) of ROK-U.S. cooperation agreement, and also maintain the current normal DUPIC project without interruption. Manufacturing Program of DUPIC Fuel in DFDF and Post Irradiation Examination of DUPIC Fuel are described in Chapter I and Chapter II, respectively. In Chapter III, safeguarding procedures in DFDF and on-going R and D on DUPIC safeguards such as development of nuclear material accounting system and development of containment/surveillance system are described in details.

  5. Compact Fuel-Cell System Would Consume Neat Methanol

    Science.gov (United States)

    Narayanan, Sekharipuram; Kindler, Andrew; Valdez, Thomas

    2007-01-01

    In a proposed direct methanol fuel-cell electric-power-generating system, the fuel cells would consume neat methanol, in contradistinction to the dilute aqueous methanol solutions consumed in prior direct methanol fuel-cell systems. The design concept of the proposed fuel-cell system takes advantage of (1) electro-osmotic drag and diffusion processes to manage the flows of hydrogen and water between the anode and the cathode and (2) evaporative cooling for regulating temperature. The design concept provides for supplying enough water to the anodes to enable the use of neat methanol while ensuring conservation of water for the whole fuel-cell system.

  6. Radioactive waste management of experimental DUPIC fuel fabrication process

    International Nuclear Information System (INIS)

    Lee, H. H.; Park, J. J.; Shin, J. M.; Yang, M. S.; Hong, K. P.

    2001-01-01

    The concept of DUPIC(Direct Use of Spent PWR Fuel in CANDU Reactors) is a dry processing technology to manufacture CANDU compatible DUPIC fuel from spent PWR fuel material. Real spent PWR fuel was used in IMEF M6 hot cell to carry out DUPIC experiment. Afterwards, about 200 kg-U of spent PWR fuel is supposed to be used till 2006. This study has been conducted in some hot cells of PIEF and M6 cell of IMEF. There are various forms of nuclear material such as rod cut, powder, green pellet, sintered pellet, fabrication debris, fuel rod, fuel bundle, sample, and process waste produced from various manufacturing experiment of DUPIC fuel. After completing test, the above nuclear wastes and test equipment etc. will be classified as radioactive waste, transferred to storage facility and managed rigorously according to domestic and international laws until the final management policy is determined. It is desirable to review management options in advance for radioactive waste generated from manufacturing experiment of DUPIC nuclear fuel as well as residual nuclear material and dismantled equipment. This paper includes basic plan for DUPIC radwaste, arising source and estimated amount of radioactive waste, waste classification and packing, transport cask, transport procedures

  7. Material control in nuclear fuel fabrication facilities. Part II. Accountability, instrumentation and measurement techniques in fuel fabrication facilities

    International Nuclear Information System (INIS)

    Borgonovi, G.M.; McCartin, T.J.; McDaniel, T.; Miller, C.L.; Nguyen, T.

    1978-01-01

    This report describes the measurement techniques, the instrumentation, and the procedures used in accountability and control of nuclear materials, as they apply to fuel fabrication facilities. A general discussion is given of instrumentation and measurement techniques which are presently used being considered for fuel fabrication facilities. Those aspects which are most significant from the point of view of satisfying regulatory constraints have been emphasized. Sensors and measurement devices have been discussed, together with their interfacing into a computerized system designed to permit real-time data collection and analysis. Estimates of accuracy and precision of measurement techniques have been given, and, where applicable, estimates of associated costs have been presented. A general description of material control and accounting is also included. In this section, the general principles of nuclear material accounting have been reviewed first (closure of material balance). After a discussion of the most current techniques used to calculate the limit of error on inventory difference, a number of advanced statistical techniques are reviewed. The rest of the section deals with some regulatory aspects of data collection and analysis, for accountability purposes, and with the overall effectiveness of accountability in detecting diversion attempts in fuel fabrication facilities. A specific example of application of the accountability methods to a model fuel fabrication facility is given. The effect of random and systematic errors on the total material uncertainty has been discussed, together with the effect on uncertainty of the length of the accounting period

  8. Material control in nuclear fuel fabrication facilities. Part II. Accountability, instrumentation and measurement techniques in fuel fabrication facilities

    Energy Technology Data Exchange (ETDEWEB)

    Borgonovi, G.M.; McCartin, T.J.; McDaniel, T.; Miller, C.L.; Nguyen, T.

    1978-01-01

    This report describes the measurement techniques, the instrumentation, and the procedures used in accountability and control of nuclear materials, as they apply to fuel fabrication facilities. A general discussion is given of instrumentation and measurement techniques which are presently used being considered for fuel fabrication facilities. Those aspects which are most significant from the point of view of satisfying regulatory constraints have been emphasized. Sensors and measurement devices have been discussed, together with their interfacing into a computerized system designed to permit real-time data collection and analysis. Estimates of accuracy and precision of measurement techniques have been given, and, where applicable, estimates of associated costs have been presented. A general description of material control and accounting is also included. In this section, the general principles of nuclear material accounting have been reviewed first (closure of material balance). After a discussion of the most current techniques used to calculate the limit of error on inventory difference, a number of advanced statistical techniques are reviewed. The rest of the section deals with some regulatory aspects of data collection and analysis, for accountability purposes, and with the overall effectiveness of accountability in detecting diversion attempts in fuel fabrication facilities. A specific example of application of the accountability methods to a model fuel fabrication facility is given. The effect of random and systematic errors on the total material uncertainty has been discussed, together with the effect on uncertainty of the length of the accounting period.

  9. U-10Mo Baseline Fuel Fabrication Process Description

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Lance R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Arendt, Christina L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dye, Daniel F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clayton, Christopher K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lerchen, Megan E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lombardo, Nicholas J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zacher, Alan H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-09-27

    This document provides a description of the U.S. High Power Research Reactor (USHPRR) low-enriched uranium (LEU) fuel fabrication process. This document is intended to be used in conjunction with the baseline process flow diagram (PFD) presented in Appendix A. The baseline PFD is used to document the fabrication process, communicate gaps in technology or manufacturing capabilities, convey alternatives under consideration, and as the basis for a dynamic simulation model of the fabrication process. The simulation model allows for the assessment of production rates, costs, and manufacturing requirements (manpower, fabrication space, numbers and types of equipment, etc.) throughout the lifecycle of the USHPRR program. This document, along with the accompanying PFD, is updated regularly

  10. Assesment On The Possibility To Modify Fabrication Equipment For Fabrication Of HWR And LWR Fuel Elements

    International Nuclear Information System (INIS)

    Tri-Yulianto

    1996-01-01

    Based on TOR BATAN for PELITA VI. On of BATAN program in the fuel element production technology section is the acquisition of the fuel element fabrication technology for research reactor as well as power reactor. The acquisition can be achieved using different strategies, e.g. by utilizing the facility owned for research and development of the technology desired or by transferring the technology directly from the source. With regards to the above, PEBN through its facility in BEBE has started the acquisition of the fuel element fabrication technology for power reactor by developing the existing equipment initially designed to fabricate HWR Cinere fuel element. The development, by way of modifying the equipment, is intended for the production of HWR (Candu) and LWR (PWR and BWR) fuel elements. To achieve above objective, at the early stage of activity, an assesment on the fabrication equipment for pelletizing, component production and assembly. The assesment was made by comparing the shape and the size of the existing fuel element with those used in the operating reactors such as Candu reactors, PWR and BWR. Equipment having the potential to be modified for the production of HWR fuel elements are as followed: For the pelletizing equipment, the punch and dies can be used of the pressing machine for making green pellet can be modified so that different sizes of punch and dies can be used, depending upon the size of the HWR and LWR pellets. The equipment for component production has good potential for modification to produce the HWR Candu fuel element, which has similar shape and size with those of the existing fuel element, while the possibility of producing the LWR fuel element component is small because only a limited number of the required component can be made with the existing equipment. The assembly equipment has similar situation whit that of the component production, that is, to assemble the HWR fuel element modification of few assembly units very probable

  11. Development of challengeable reprocessing and fuel fabrication technologies for advanced fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Nomura, S.; Aoshima, T.; Myochin, M.

    2001-01-01

    R and D in the next five years in Feasibility Study Phase-2 are focused on selected key technologies for the advanced fuel cycle. These are the reference technology of simplified aqueous extraction and fuel pellet short process based on the oxide fuel and the innovative technology of oxide-electrowinning and metal- electrorefining process and their direct particle/metal fuel fabrication methods in a hot cell. Automatic and remote handling system operation in both reprocessing and fuel manufacturing can handle MA and LLFP concurrently with Pu and U attaining the highest recovery and an accurate accountability of these materials. (author)

  12. Fabrication of metallic channel-containing UO2 fuels

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Song, Kun Woo; Kim, Keon Sik; Jung, Youn Ho

    2004-01-01

    The uranium dioxide is widely used as a fuel material in the nuclear industry, owing to many advantages. But it has a disadvantage of having the lowest thermal conductivity of all kinds of nuclear fuels; metal, carbide, nitride. It is well known that the thermal conductivity of UO 2 fuel is enhanced by making, so called, the CERMET (ceramic-metal) composite which consists of both continuous body of highly thermal-conducting metal and UO 2 islands. The CERMET fuel fabrication technique needs metal phase of at least 30%, mostly more than 50%, of the volume of the pellet in order to keep the metal phase interconnected. This high volume fraction of metal requires such a high enrichment of U that the parasitic effect of metal should be compensated. Therefore, it is attractive to develop an innovative composite fuel that can form continuous metal phase with a small amount of metal. In this investigation, a feasibility study was made on how to make such an innovative fuel. Candidate metals (W, Mo, Cr) were selected, and fabrication process was conceptually designed from thermodynamic calculations. We have experimentally found that a metal phase envelops perfectly UO 2 grains, forming continuous channel throughout the pellet, and improving the thermal conductivity of pellet

  13. Fabrication routes for Thorium and Uranium233 based AHWR fuel

    International Nuclear Information System (INIS)

    Danny, K.M.; Saraswat, Anupam; Chakraborty, S.; Somayajulu, P.S.; Kumar, Arun

    2011-01-01

    India's economic growth is on a fast growth track. The growth in population and economy is creating huge demand for energy which has to be met with environmentally benign technologies. Nuclear Energy is best suited to meet this demand without causing undue environmental impact. Considering the large thorium reserves in India, the future nuclear power program will be based on Thorium- Uranium 233 fuel cycle. The major characteristic of thorium as the fuel of future comes from its superior fuel utilization. 233 U produced in a reactor is always contaminated with 232 U. This 232 U undergoes a decay to produce 228 Th and it is followed by decay chain including 212 Bi and 208 Tl. Both 212 Bi and 208 Tl are hard gamma emitters ranging from 0.6 MeV-1.6 MeV and 2.6 MeV respectively, which necessitates its handling in hot cell. The average concentration of 232 U is expected to exceed 1000 ppm after a burn-up of 24,000 MWD/t. Work related to developing the fuel fabrication technology including automation and remotization needed for 233 U based fuels is in progress. Various process for fuel fabrication have been developed i.e. Coated Agglomerate Pelletisation (CAP), impregnation technique (Pellet/Gel), Sol Gel Micro-sphere Pelletisation (SGMP) apart from Powder to Pellet (POP) route. This paper describes each process with respect to its advantages, disadvantages and its amenability to automation and remotisation. (author)

  14. Water reactor fuel element fabrication, with special emphasis on its effects on fuel performance

    International Nuclear Information System (INIS)

    1979-01-01

    Full text: The performance of nuclear fuel has improved over the years and is now a minor cause of outages and of power limitations in nuclear power plants. On the other hand, an increasing number of countries are in the process of developing or implementing their own capability for manufacturing fuel elements. In this context, the IAEA International Working Group on Water Reactor Fuel Performance and Technology (IWGFPT) advised that a symposium be organized devoted to the relationship between fuel fabrication and performance The Czechoslovak Atomic Energy Commission agreed to co-operate in the organization of this symposium and to host it in Prague. Those factors which influence fuel fabrication requirements are now well ascertained: as little reactor primary circuit contamination as possible, the tendency to increased burnups, reactor manoeuverability to match power grid demands, the desirability of an autonomous fabrication capability. It is the general experience of fuel element suppliers that fuel quality and performance has increased over the years, the importance of quality assurance and process monitoring has been decisive in this respect The ever increasing mass-production aspect of nuclear fuel leads to some processing steps being revised and alternatives being developed. The relation between fabrication processes and fuel performance characteristics, although generally well perceived, are still the subject of a large amount of experiment and assessment in most countries, both industrial and developing This evidence is most encouraging; it means indeed that nuclear power, which is already amongst the cheapest and safest sources of energy, will continue to be improved. The performance of Zircaloy fuel cladding - presently the material used in most water reactors - is under particular consideration. Better understanding of this quite recent alloy will pave the way for broader fuel utilization limits in the future. The panel discussion, which noted some

  15. The fabrication of nuclear fuel elements in Mexico

    International Nuclear Information System (INIS)

    Guerrero Morillo, H.L.

    1977-01-01

    The situation of nuclear electricity generation in Mexico in 1976 is described: two nuclear reactors were under construction but no definite programme on the type and start-up dates for the next power plants existed. However, the existence of a general plan on nuclear power plants is mentioned, which, according to the latest estimates, will provide 10,000MW installed by 1990. The national intention, as laid down in an appropriate Law, is to supply domestic nuclear fuel to the power reactors operating in the country, starting with the first reloading of the two BWRs at the first national station in Laguna Verde, required at the end of 1981 and 1982, respectively. Before this can be achieved and to provide the relatively small amounts of fuel elements for the two reactors, Mexico must adopt a strategy of fuel elements fabrication. The two main options are analysed: (1) to delay local fabrication until a national nuclear programme has been defined, meanwhile purchasing abroad the necessary initial cores and refuelling; (2) to start local fabrication of fuel elements as soon as possible in order to provide the first refuelling of the first unit of Laguna Verde, confronting the economic risks of such a decision with the advantages of immediate action. Both options are analysed in detail, comparing them especially from the economic point of view. Current information from potential licensors for design and manufacture are used in the analysis. (author)

  16. Advanced methods of quality control in nuclear fuel fabrication

    International Nuclear Information System (INIS)

    Onoufriev, Vladimir

    2004-01-01

    Under pressure of current economic and electricity market situation utilities implement more demanding fuel utilization schemes including higher burn ups and thermal rates, longer fuel cycles and usage of Mo fuel. Therefore, fuel vendors have recently initiated new R and D programmes aimed at improving fuel quality, design and materials to produce robust and reliable fuel. In the beginning of commercial fuel fabrication, emphasis was given to advancements in Quality Control/Quality Assurance related mainly to product itself. During recent years, emphasis was transferred to improvements in process control and to implementation of overall Total Quality Management (TQM) programmes. In the area of fuel quality control, statistical control methods are now widely implemented replacing 100% inspection. This evolution, some practical examples and IAEA activities are described in the paper. The paper presents major findings of the latest IAEA Technical Meetings (TMs) and training courses in the area with emphasis on information received at the TM and training course held in 1999 and other latest publications to provide an overview of new developments in process/quality control, their implementation and results obtained including new approaches to QC

  17. Fabrication of fuel elements on the basis of increased concentration fuel composition

    International Nuclear Information System (INIS)

    Alexandrov, A.B.; Afanasiev, V.L.; Enin, A.A.; Suprun, V.B.

    2004-01-01

    As a part of Russian Program RERTR Reduced Enrichment for Research and Test Reactors), at NCCP, Inc. jointly with the State Scientific Centre VNIINM the mastering in industrial environment of design and fabrication process of fuel elements (FE) with increased concentration fuel compositions is performed. Fuel elements with fuel composition on the basis of dioxide uranium with nearly 4 g/cm 3 fuel concentration have been produced thus confirming the principal possibility of fuel enrichment reduction down to 20% for research reactors which were built up according to the projects of the former USSR, by increasing the oxide fuel concentration in fuel assemblies (FAs). The form and geometrical dimensions of FEs and FAs shall remain unchanged, only uranium mass in FA shall be increased. (author)

  18. Process for the fabrication of a nuclear fuel

    International Nuclear Information System (INIS)

    Hirose, Yasuo.

    1970-01-01

    Herein disclosed is a process for fabricating a nuclear fuel incorporating either uranium or plutonium. A pellet-like substrate consisting of a packed powder ceramic fuel such as uranium or plutonium is prepared with the horizontal surface of the body provided with a masking. Next, after impregnating the substrate voids with a solution consisting of a fissile material or mixture of fissile material and poison, the solvent is removed by a chemical deposition process which causes the impregnated material to migrate through capillary action toward the vicinity of the fuel body surface. Sintering and pyrolysis of the deposited material and masking are subsequently carried out to yield a fuel body having adjacent to its surface an intensely concentrated layer of either fissile material or a mixture of fissile material and poison. (Owens, K.J.)

  19. Microencapsulation and fabrication of fuel pellets for inertial confinement fusion

    International Nuclear Information System (INIS)

    Nolen, R.L. Jr.; Kool, L.B.

    1981-01-01

    Various microencapsulation techniques were evaluated for fabrication of thermonuclear fuel pellets for use in existing experimental facilities studying inertial confinement fusion and in future fusion-power reactors. Coacervation, spray drying, in situ polymerization, and physical microencapsulation methods were employed. Highly spherical, hollow polymeric shells were fabricated ranging in size from 20 to 7000 micron. In situ polymerization microencapsulation with poly(methyl methacrylate) provided large shells, but problems with local wall defects still must be solved. Extension to other polymeric systems met with limited success. Requirements for inertial confinement fusion targets are described, as are the methods that were used

  20. AGR-1 Fuel Compact 6-3-2 Post-Irradiation Examination Results

    Energy Technology Data Exchange (ETDEWEB)

    Paul demkowicz; jason Harp; Scott Ploger

    2012-12-01

    Destructive post-irradiation examination was performed on fuel Compact 6-3-2, which was irradiated in the AGR-1 experiment to a final compact average burnup of 11.3% FIMA and a time-average, volume-average temperature of 1070°C. The analysis of this compact was focused on characterizing the extent of fission product release from the particles and examining particles to determine the condition of the kernels and coating layers. The work included deconsolidation of the compact and leach-burn-leach analysis, visual inspection and gamma counting of individual particles, measurement of fuel burnup by several methods, metallurgical preparation of selected particles, and examination of particle cross-sections with optical microscopy. A single particle with a defective SiC layer was identified during deconsolidation-leach-burn-leach analysis, which is in agreement with previous measurements showing elevated cesium in the Capsule 6 graphite fuel holder associated with this fuel compact. The fraction of the compact europium inventory released from the particles and retained in the matrix was relatively high (approximately 6E-3), indicating release from intact particle coatings. The Ag-110m inventory in individual particles exhibited a very broad distribution, with some particles retaining =80% of the predicted inventory and others retaining less than 25%. The average degree of Ag-110m retention in 60 gamma counted particles was approximately 50%. This elevated silver release is in agreement with analysis of silver on the Capsule 6 components, which indicated an average release of 38% of the Capsule 6 inventory from the fuel compacts. In spite of the relatively high degree of silver release from the particles, virtually none of the Ag-110m released was found in the compact matrix, and presumably migrated out of the compact and was deposited on the irradiation capsule components. Release of all other fission products from the particles appears to be less than a single

  1. State of the art of UO2 fuel fabrication processes

    International Nuclear Information System (INIS)

    Henke, M.; Klemm, U.

    1980-01-01

    Starting from the need of UO 2 for thermal power reactors in the period from 1980 to 1990 and the role of UF 6 conversion into UO 2 within the fuel cycle, the state-of-the-art of the three established industrial processes - ADU process, AUC process, IDR process - is assessed. The number of process stages and requirements on process management are discussed. In particular, the properties of the fabricated UO 2 powders, their influence on the following pellet production and on operational behaviour of the fuel elements under reactor conditions are described. Hence, an evaluation of the three essential conversion processes is derived. (author)

  2. Regulations concerning the fabricating business of nuclear fuel materials

    International Nuclear Information System (INIS)

    1977-01-01

    As regards an application for permission of an fabricating business of nuclear fuel materials, it should describe the site of the fabricating facilities and the structure and equipments of buildings (fire-resistant, aseismatic, waterproof, ventilating and air-tight structures), etc. The business plan to be attached to the foregoing application should contain 1) scheduled date when the fabricating business starts, 2) scheduled amounts of products classified by the kinds in each business year within 5 years since the business starts, 3) the amount and the procurement plan of funds necessary for the operation, etc. For the permission of change of a fabricating business, an application must be filed. One who wants to obtain the permission of design and construction of fabricating facilities must file an application. One who wants to undergo inspection of the construction of fabricating facilities must file an application in which various items must be written. After such inspection has been done and it is regarded as passable, a certificate of passing inspection will be given. (Rikitake, Y.)

  3. Evaluation of bioassay program at uranium fuel fabrication plants

    International Nuclear Information System (INIS)

    Biggs, D.

    1981-03-01

    Results of a comprehensive study of urinalysis, lung burden and personal air sample measurements for workers at a uranium fuel fabrication plant are presented. Correlations between measurements were found and regression models used to explain the relationship between lung burden, daily intakes and urinary excretions of uranium. Assuming the ICRP lung model, the lung burden histories of ten workers were used to estimate the amounts in each of the long-term compartments of the lung. Estimates of the half lives of each compartment and of the maximum relative contributions to the urine from each compartment are given. These values were then used to predict urinary excretions from the long-term compartments for workers at another fuel fabrication plant. The standard error of estimate compared well with the daily variation in urinary excretion. (author)

  4. Review of training methods employed in nuclear fuel fabrication plants

    International Nuclear Information System (INIS)

    Box, W.D.; Browder, F.N.

    A search of the literature through the Nuclear Safety Information Center revealed that approximately 86 percent of the incidents that have occurred in fuel fabrication plants can be traced directly or indirectly to insufficient operator training. In view of these findings, a review was made of the training programs now employed by the nuclear fuel fabrication industry. Most companies give the new employee approximately 20 h of orientation courses, followed by 60 to 80 h of on-the-job training. It was concluded that these training programs should be expanded in both scope and depth. A proposed program is outlined to offer guidance in improving the basic methods currently in use. (U.S.)

  5. MELOX fuel fabrication plant: Operational feedback and future prospects

    International Nuclear Information System (INIS)

    Hugelmann, D.; Greneche, D.

    2000-01-01

    As of December 1, 1998, 32 Europeans LWRs are loaded with MOX fuel. It clearly means that plutonium recycling in MOX fuels is a mature industry, with successful operational experience in fabrication plants in some European countries, especially in France. Indeed, the recycling of plutonium generated in LWRs is one of the objectives of the full Reprocessing-Conditioning-Recycling (RCR) strategy chosen by France in the 70's. The most impressive results of this strategy, is the fact that 31 of the 32 reactors are loaded with MOX fuels supplied by the COGEMA Group from the same efficient fabrication process, the MIMAS process, improved for the MELOX plant to become the A-MIMAS process. In France, 17 reactors are already loaded and 11 additional reactors are technically suited to do so. Indeed, the EDF MOX program plans to use MOX in 28 of its 57 reactors. An EDF 900 MWe reactor core contains 157 assemblies of 264 rods each. 52 fuel assemblies per year are necessary for a 'UO 2 3-batches-MOX 3-batches' core management. In this case, a third of the UO 2 and a third of the MOX assemblies are replaced yearly, that means 36 UO 2 fuel assemblies and 16 MOX fuel assemblies. Some MOX fuelled reactors have now switched from the previously described core management to a so-called 'hybrid core management'. In this case, a quarter of UO 2 assemblies is replaced yearly. The first EDF reactor loaded with MOX fuel was Saint-Laurent B1, in 1987. The in-core experience, based on several hundred assemblies loaded, with reloading on a 1/3 cycle basis, shows that there is no operational difference between UO 2 and MOX fuels, both in terms of performance and safety. MOX fueling of 900 MWe EDF's PWRs, with a limited in-core MOX ratio of 30%, has needed only minor adaptations, such as addition of control rods, modification of the boron concentration in the cooling system and precaution against radiation exposure, easy to set up (optimisation of the fresh MOX fuel handling process, remote

  6. Normal and compact spent fuel storage in light water reactor power plants

    International Nuclear Information System (INIS)

    Kuenel, R.R.

    1978-01-01

    The compact storage of light water reactor spent fuel is a safe, cheap and reliable contribution towards overcoming the momentarily existing shortage in spent fuel reprocessing. The technical concept is described and physical behaviour discussed. The introduction of compact storage racks in nuclear power plants increases the capacity from 100 to about 240 %. The increase in decay heat is not more than about 14%, the increase in activity inventory and hazard potential does not exceed 20%. In most cases the existing power plant equipment fulfils the new requirements. (author)

  7. Method to fabricate high performance tubular solid oxide fuel cells

    Science.gov (United States)

    Chen, Fanglin; Yang, Chenghao; Jin, Chao

    2013-06-18

    In accordance with the present disclosure, a method for fabricating a solid oxide fuel cell is described. The method includes forming an asymmetric porous ceramic tube by using a phase inversion process. The method further includes forming an asymmetric porous ceramic layer on a surface of the asymmetric porous ceramic tube by using a phase inversion process. The tube is co-sintered to form a structure having a first porous layer, a second porous layer, and a dense layer positioned therebetween.

  8. Decision fundamentals for emergencies in fuel fabrication plants

    International Nuclear Information System (INIS)

    Thomas, W.; Pfeffer, W.; Wiesemes, J.

    1995-01-01

    This report is a compilation of fundamental physical and chemical data for emergencies in fuel element fabrication facilities. The release of uranium and plutonium and a criticality accident constitute the main hazards to be considered. In addition information related to the chemical risk of a release of toxic uranium hexafluoride is included in the report. This fundamental information is to be applied in planning emergency measures and could be useful as advisory material for the emergency staff. (orig.) [de

  9. Fabrication of small-orifice fuel injectors for diesel engines.

    Energy Technology Data Exchange (ETDEWEB)

    Woodford, J. B.; Fenske, G. R.

    2005-04-08

    Diesel fuel injector nozzles with spray hole diameters of 50-75 {micro}m have been fabricated via electroless nickel plating of conventionally made nozzles. Thick layers of nickel are deposited onto the orifice interior surfaces, reducing the diameter from {approx}200 {micro}m to the target diameter. The nickel plate is hard, smooth, and adherent, and covers the orifice interior surfaces uniformly.

  10. Process and device for fabricating nuclear fuel assembly grids

    International Nuclear Information System (INIS)

    Thiebaut, B.; Duthoo, D.; Germanaz, J.J.; Angilbert, B.

    1991-01-01

    The method for fabricating PWR fuel assembly grids consists to place the grid of which the constituent parts are held firmly in place within a frame into a sealed chamber full of inert gas. This chamber can rotate about an axis. The welding on one face at a time is carried out with a laser beam orthogonal to the axis orientation of the device. The laser source is outside of the chamber and the beam penetrates via a transparent view port

  11. Waste management state-of-the-art review for mixed-oxide fuel fabrication facilities

    International Nuclear Information System (INIS)

    Woodsum, H.C.; Goodman, J.

    1977-11-01

    This report provides a state-of-the-art review of the waste management for mixed-oxide (MOX) fuel fabrication facilities. The intent of this report is to focus on those processes and regulatory issues which have a direct bearing on existing and anticipated future management of transuranic (TRU) wastes from a commercial MOX fuel fabrication faciity. Recent government agency actions are reviewed with regard to their impact on existing and projected waste management regulations; and it is concluded that acceleration in the development of regulations, standards, and criteria is one of the most important factors in the implementation of improved MOX plant waste management techniques. ERDA development programs pertaining to the management of TRU wastes have been reviewed and many promising methods for volume reduction of both solid and liquid wastes are discussed. For solid wastes, these methods include compaction, shredding and baling, combustion, acid digestion, and decontamination by electropolishing or by electrolytic treatment. For liquid wastes, treatment options include evaporation, drying, calcination, flocculation, ion exchange, filtration, reverse osmosis, combustion (of combustible organics), and bioprocessing. Based on this review, it is recommended that ERDA continue with its combustible solid waste volume reduction program and complete these development activities by 1979. Following this, a critical evaluation of solid waste volume reduction techniques should be made to select the most promising systems for a commercial MOX fuel facility

  12. Comparative Study of Laboratory-Scale and Prototypic Production-Scale Fuel Fabrication Processes and Product Characteristics

    International Nuclear Information System (INIS)

    2014-01-01

    An objective of the High Temperature Gas Reactor fuel development and qualification program for the United States Department of Energy has been to qualify fuel fabricated in prototypic production-scale equipment. The quality and characteristics of the tristructural isotropic coatings on fuel kernels are influenced by the equipment scale and processing parameters. Some characteristics affecting product quality were suppressed while others have become more significant in the larger equipment. Changes to the composition and method of producing resinated graphite matrix material has eliminated the use of hazardous, flammable liquids and enabled it to be procured as a vendor-supplied feed stock. A new method of overcoating TRISO particles with the resinated graphite matrix eliminates the use of hazardous, flammable liquids, produces highly spherical particles with a narrow size distribution, and attains product yields in excess of 99%. Compact fabrication processes have been scaled-up and automated with relatively minor changes to compact quality to manual laboratory-scale processes. The impact on statistical variability of the processes and the products as equipment was scaled are discussed. The prototypic production-scale processes produce test fuels that meet fuel quality specifications.

  13. Compact gasoline fuel processor for passenger vehicle APU

    Science.gov (United States)

    Severin, Christopher; Pischinger, Stefan; Ogrzewalla, Jürgen

    Due to the increasing demand for electrical power in today's passenger vehicles, and with the requirements regarding fuel consumption and environmental sustainability tightening, a fuel cell-based auxiliary power unit (APU) becomes a promising alternative to the conventional generation of electrical energy via internal combustion engine, generator and battery. It is obvious that the on-board stored fuel has to be used for the fuel cell system, thus, gasoline or diesel has to be reformed on board. This makes the auxiliary power unit a complex integrated system of stack, air supply, fuel processor, electrics as well as heat and water management. Aside from proving the technical feasibility of such a system, the development has to address three major barriers:start-up time, costs, and size/weight of the systems. In this paper a packaging concept for an auxiliary power unit is presented. The main emphasis is placed on the fuel processor, as good packaging of this large subsystem has the strongest impact on overall size. The fuel processor system consists of an autothermal reformer in combination with water-gas shift and selective oxidation stages, based on adiabatic reactors with inter-cooling. The configuration was realized in a laboratory set-up and experimentally investigated. The results gained from this confirm a general suitability for mobile applications. A start-up time of 30 min was measured, while a potential reduction to 10 min seems feasible. An overall fuel processor efficiency of about 77% was measured. On the basis of the know-how gained by the experimental investigation of the laboratory set-up a packaging concept was developed. Using state-of-the-art catalyst and heat exchanger technology, the volumes of these components are fixed. However, the overall volume is higher mainly due to mixing zones and flow ducts, which do not contribute to the chemical or thermal function of the system. Thus, the concept developed mainly focuses on minimization of those

  14. Quality control in nuclear fuel fabrication on the inspection basis

    International Nuclear Information System (INIS)

    Fuentes S, A.

    1997-01-01

    Every plant productive of electric power requires the use of energetics for the transformation to electricity. In the nucleo electric plant the energetic is the uranium, in which it makes ensembles and is used as fuel in the reactor. To assure that the fuel ensembles fulfill the specifications and requirements of design stipulated in the nucleo electric plant is that under a quality control through inspections during the fabrication process. The purpose of this work is to study and verify that the lineaments of the standard 10 CFR 50 appendix B 'Quality assurement for nuclear plants' specially in the criteria 'Inspections' that is used to guarantee the quality of the ensembles. This standard is the one that rules every activity and operation inside the pilot plant and its established in the quality program in the production of nuclear fuel for the Laguna Verde plant. The quality of the assemble is verified through each one of the tests or inspections due to the importance of it in the fabrication of fuel. (Author)

  15. Fuels planning: science synthesis and integration; environmental consequences fact sheet 14: Fuels reduction and compaction

    Science.gov (United States)

    Deborah Page-Dumroese

    2005-01-01

    Moving equipment and logs over the surface of forest soils causes gouges and ruts in the mineral soil, displaces organic matter, and can cause compaction. Compaction is the component of soil productivity most influenced by forest management, but the degree to which soils may be compacted depends on initial soil bulk density. For example, low bulk density soils (such as...

  16. Development of fabrication technology for CANDU advanced fuel -Development of the advanced CANDU technology-

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Beom; Kim, Hyeong Soo; Kim, Sang Won; Seok, Ho Cheon; Shim, Ki Seop; Byeon, Taek Sang; Jang, Ho Il; Kim, Sang Sik; Choi, Il Kwon; Cho, Dae Sik; Sheo, Seung Won; Lee, Soo Cheol; Kim, Yoon Hoi; Park, Choon Ho; Jeong, Seong Hoon; Kang, Myeong Soo; Park, Kwang Seok; Oh, Hee Kwan; Jang, Hong Seop; Kim, Yang Kon; Shin, Won Cheol; Lee, Do Yeon; Beon, Yeong Cheol; Lee, Sang Uh; Sho, Dal Yeong; Han, Eun Deok; Kim, Bong Soon; Park, Cheol Joo; Lee, Kyu Am; Yeon, Jin Yeong; Choi, Seok Mo; Shon, Jae Moon [Korea Atomic Energy Res. Inst., Taejon (Korea, Republic of)

    1994-07-01

    The present study is to develop the advanced CANDU fuel fabrication technologies by means of applying the R and D results and experiences gained from localization of mass production technologies of CANDU fuels. The annual portion of this year study includes following: 1. manufacturing of demo-fuel bundles for out-of-pile testing 2. development of technologies for the fabrication and inspection of advanced fuels 3. design and munufacturing of fuel fabrication facilities 4. performance of fundamental studies related to the development of advanced fuel fabrication technology.

  17. Compact Layers of Hybrid Halide Perovskites Fabricated via the Aerosol Deposition Process-Uncoupling Material Synthesis and Layer Formation.

    Science.gov (United States)

    Panzer, Fabian; Hanft, Dominik; Gujar, Tanaji P; Kahle, Frank-Julian; Thelakkat, Mukundan; Köhler, Anna; Moos, Ralf

    2016-04-08

    We present the successful fabrication of CH₃NH₃PbI₃ perovskite layers by the aerosol deposition method (ADM). The layers show high structural purity and compactness, thus making them suitable for application in perovskite-based optoelectronic devices. By using the aerosol deposition method we are able to decouple material synthesis from layer processing. Our results therefore allow for enhanced and easy control over the fabrication of perovskite-based devices, further paving the way for their commercialization.

  18. Fabrication drawings of fuel pins for FUJI project among PSI, JNC and NRG. Revised version 2

    International Nuclear Information System (INIS)

    Ozawa, Takayuki; Nakazawa, Hiroaki; Abe, Tomoyuki; Nagayama, Masahiro

    2002-10-01

    Irradiation tests and post-irradiation examinations in the framework of JNC-PSI-NRG collaboration project will be performed in 2003-2005. Irradiation fuel pins will be fabricated by the middle of 2003. The fabrication procedure for irradiation fuel pins has been started in 2001. Several fabrication tests and qualification tests in JNC and PSI (Paul Scherrer Institut, Switzerland) have been performed before the fuel pin fabrication. According to the design assignment between PSI and JNC in the frame of this project, PSI should make specification documents for the fuel pellet, the sphere-pac fuel particles, the vipac fuel fragments, and the fuel segment fabrication. JNC should make the fabrication drawings for irradiation pins. JNC has been performed the fuel design in cooperation with PSI and NRG (Nuclear Research and Consultancy Group, Holland). In this project, the pelletized fuel, the sphere-pac fuel, and the vipac fuel will be simultaneously irradiated on HFR (High Flux Reactor, Holland). The fabrication drawings have been made under the design assignment with PSI, and consist of the drawings of MOX pellet, thermal insulator pellet, pin components, fuel segments, and the constructed pin. The fabrication drawings were approved in October 2001, but after that, the optimization of specifications was discussed and agreed among all partners. According to this agreement, the fabrication drawings were revised in January 2002. After the earlier revision, the shape of particle retainer to be made by PSI was modified from its drawing beforehand delivered. In this report, the fabrication drawings revised again will be shown, and the fabrication procedure (welding Qualification Tests) will be modified in accordance with the result of discussion on the 3rd technical meeting held in September 2002. These design works have been performed in Fuel Design and Evaluation Group, Plutonium Fuel Fabrication Division, Plutonium Fuel Center under the commission of Plutonium Fuel

  19. Minimization of waste from uranium purification, enrichment and fuel fabrication

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-01

    As any industry, nuclear industry generates a diverse range of waste which has to be managed in a safe manner to be acceptable to the public and the environment. The cost of waste management, the risks to the public and employees, and the detriment to the environment are dependent on the quantity and radioactive content of the waste generated. Waste minimization is a necessary activity needed to reduce the impact from nuclear fuel cycle operations and it is included in the national policy of some countries. In recognition of the importance of the subject, the IAEA has decided to review the current status of the work aimed at waste minimization in the nuclear fuel cycle. The waste minimization issues related to the back end of the nuclear fuel cycle are covered in Technical Reports Series No. 377 'Minimization of Radioactive Waste from Nuclear Power Plants and the Back End of the Nuclear Fuel Cycle' published in 1995. The present report deals with the front end of the nuclear fuel cycle, including existing options, approaches, developments and some specific considerations to be taken into account in decision making on waste minimization. It has been recognized that, in comparison with the back end of the nuclear fuel cycle, much less information is available, and this report should be considered as a first attempt to analyse waste minimization practices and opportunities in uranium purification, conversion, enrichment and fuel fabrication. Although mining and milling is an important part of the front end of the nuclear fuel cycle, these activities are excluded from consideration since relevant activities are covered in other IAEA publications.

  20. Minimization of waste from uranium purification, enrichment and fuel fabrication

    International Nuclear Information System (INIS)

    1999-10-01

    As any industry, nuclear industry generates a diverse range of waste which has to be managed in a safe manner to be acceptable to the public and the environment. The cost of waste management, the risks to the public and employees, and the detriment to the environment are dependent on the quantity and radioactive content of the waste generated. Waste minimization is a necessary activity needed to reduce the impact from nuclear fuel cycle operations and it is included in the national policy of some countries. In recognition of the importance of the subject, the IAEA has decided to review the current status of the work aimed at waste minimization in the nuclear fuel cycle. The waste minimization issues related to the back end of the nuclear fuel cycle are covered in Technical Reports Series No. 377 'Minimization of Radioactive Waste from Nuclear Power Plants and the Back End of the Nuclear Fuel Cycle' published in 1995. The present report deals with the front end of the nuclear fuel cycle, including existing options, approaches, developments and some specific considerations to be taken into account in decision making on waste minimization. It has been recognized that, in comparison with the back end of the nuclear fuel cycle, much less information is available, and this report should be considered as a first attempt to analyse waste minimization practices and opportunities in uranium purification, conversion, enrichment and fuel fabrication. Although mining and milling is an important part of the front end of the nuclear fuel cycle, these activities are excluded from consideration since relevant activities are covered in other IAEA publications

  1. Advanced high throughput MOX fuel fabrication technology and sustainable development

    International Nuclear Information System (INIS)

    Krellmann, Juergen

    2005-01-01

    The MELOX plant in the south of France together with the La Hague reprocessing plant, are part of the two industrial facilities in charge of closing the nuclear fuel cycle in France. Started up in 1995, MELOX has since accumulated a solid know-how in recycling plutonium recovered from spent uranium fuel into MOX: a fuel blend comprised of both uranium and plutonium oxides. Converting recovered Pu into a proliferation-resistant material that can readily be used to power a civil nuclear reactor, MOX fabrication offers a sustainable solution to safely take advantage of the plutonium's high energy content. Being the first large-capacity industrial facility dedicated to MOX fuel fabrication, MELOX distinguishes itself from the first generation MOX plants with high capacity (around 200 tHM versus around 40 tHM) and several unique operational features designed to improve productivity, reliability and flexibility while maintaining high safety standards. Providing an exemplary reference for high throughput MOX fabrication with 1,000 tHM produced since start-up, the unique process and technologies implemented at MELOX are currently inspiring other MOX plant construction projects (in Japan with the J-MOX plant, in the US and in Russia as part of the weapon-grade plutonium inventory reduction). Spurred by the growing international demand, MELOX has embarked upon an ambitious production development and diversification plan. Starting from an annual level of 100 tons of heavy metal (tHM), MELOX demonstrated production capacity is continuously increasing: MELOX is now aiming for a minimum of 140 tHM by the end of 2005, with the ultimate ambition of reaching the full capacity of the plant (around 200 tHM) in the near future. With regards to its activity, MELOX also remains deeply committed to sustainable development in a consolidated involvement within AREVA group. The French minister of Industry, on August 26th 2005, acknowledged the benefits of MOX fuel production at MELOX: 'In

  2. Fabrication of fully ceramic microencapsulated fuel by hot pressing

    International Nuclear Information System (INIS)

    Lee, H. G.; Kim, D. J; Park, J. Y.; Kim, W. J.; Lee, S. J

    2014-01-01

    Fully ceramic microencapsulated(FCM) nuclear fuel is one of the recently suggested concept to enhance stability nuclear fuel itself. The requirements to increase the accident tolerance of nuclear fuel are mainly two parts: First, the performance has to be maintained compared to the existing UO 2 nuclear fuel and zircaloy cladding system under the normal operation condition. Second, under the severe accident condition, the high temperature structural integrity has to be kept and the generation rate of hydrogen has to be decrease largely. FCM nuclear fuel consists of tristructural isotropic(TRISO) fuel particle and SiC matrix. The relative thermal conductivity of the SiC matrix as compared to UO 2 is quite good, yielding as-irradiated fuel centerline temperature compared to high temperature for the existing fuel leading to reduced stored energy in the core and reduced operational release of fission products from the fuel. Generally SiC ceramics are fabricated via liquid phase sintering due to strong covalent bonding property and low self-diffusivity coefficient. Hot pressing is very effective method to conduct sintering of SiC powder including different second phase. In this study, SiC-matrix composite including TRISO particles were sintered by hot pressing with Al 2 O 3 -Y 2 O 3 additive system. Various sintering condition were investigated to obtain high relative density above 95%. The internal distribution of TRISO particles within SiC-matrix composite was observed by x-ray radiograph. From the analysis of the cross-section of SiC-matrix composite, the fracture of TRISO particles was investigated. In order to uniform distribution of TRISO particle embedded in the SiC matrix, SiC powder overcoating is considered. SiC matrix composite including TRISO was fabricated by hot pressing. FCM pallets with full density were obtained with Al 2 O 3 -Y 2 O 3 additive system. From the microstructure image, the effect of the sintering additive contents and sintering mechanism

  3. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    International Nuclear Information System (INIS)

    Souza, Jose Antonio Batista de

    2011-01-01

    IPEN-CNEN/SP developed the technology to produce the dispersion type fuel elements for research reactors and made it available for routine production. Today, the fuel produced in IPEN-CNEN/SP is limited to the uranium concentration of 3.0 gU/cm 3 for U 3 Si 2 -Al dispersion-based and 2.3 gU/cm 3 for U 3 O 8 -Al dispersion. The increase of uranium concentration in fuel plates enables the reactivity of the reactor core reactivity to be higher and extends the fuel life. Concerning technology, it is possible to increase the uranium concentration in the fuel meat up to the limit of 4.8 gU/cm 3 in U 3 Si 2 -Al dispersion and 3.2 gU/cm 3 U 3 O 8 -Al dispersion. These dispersions are well qualified worldwide. This work aims to develop the manufacturing process of both fuel meats with high uranium concentrations, by redefining the manufacturing procedures currently adopted in the Nuclear Fuel Center of IPEN-CNEN/SP. Based on the results, it was concluded that to achieve the desired concentration, it is necessary to make some changes in the established procedures, such as in the particle size of the fuel powder and in the feeding process inside the matrix, before briquette pressing. These studies have also shown that the fuel plates, with a high concentration of U 3 Si 2 -Al, met the used specifications. On the other hand, the appearance of the microstructure obtained from U 3 O 8 -Al dispersion fuel plates with 3.2 gU/cm 3 showed to be unsatisfactory, due to the considerably significant porosity observed. The developed fabrication procedure was applied to U 3 Si 2 production at 4.8 gU/cm 3 , with enriched uranium. The produced plates were used to assemble the fuel element IEA-228, which was irradiated in order to check its performance in the IEA-R1 reactor at IPEN-CNEN/SP. These new fuels have potential to be used in the new Brazilian Multipurpose Reactor - RMB. (author)

  4. Compact reformer for the solid polymer fuel cell policy and best

    Energy Technology Data Exchange (ETDEWEB)

    Goulding, P.S.; Deegan, M.; Gough, A. [Newcastle University (United Kingdom)

    1998-07-01

    This report summarises the results of a study investigating the feasibility of the Compact Reformer concept, and examining its design and manufacture. The development and testing of a hybrid reformer and thin coat catalyst systems are described, and details of the modeling of the reactor, and the optimisation and costing of the solid polymer fuel cell are given. (UK)

  5. U.S. technology for mechanized/automated fabrication of fast reactor fuel

    International Nuclear Information System (INIS)

    Nyman, D.H.; Bennett, D.W.; Claudson, T.T.; Dahl, R.E.; Graham, R.A.; Keating, J.J.; Yatabe, J.M.

    1978-01-01

    The status of the U.S. fast reactor Fuel Fabrication Development Program is discussed. The objectives of the program are to develop and evaluate a high throughput pilot fuel fabrication line including close-coupled chemistry and wet scrap recycle operations. The goals of the program are to demonstrate by mechanized/automated and remote processes: reduced personnel exposure, enhanced safegurads/accountability, improved fuel performance, representative fabrication rates and reduced fuel costs

  6. USHPRR FUEL FABRICATION PILLAR: FABRICATION STATUS, PROCESS OPTIMIZATIONS, AND FUTURE PLANS

    Energy Technology Data Exchange (ETDEWEB)

    Wight, Jared M.; Joshi, Vineet V.; Lavender, Curt A.

    2018-03-12

    The Fuel Fabrication (FF) Pillar, a project within the U.S. High Performance Research Reactor Conversion program of the National Nuclear Security Administration’s Office of Material Management and Minimization, is tasked with the scale-up and commercialization of high-density monolithic U-Mo fuel for the conversion of appropriate research reactors to use of low-enriched fuel. The FF Pillar has made significant steps to demonstrate and optimize the baseline co-rolling process using commercial-scale equipment at both the Y-12 National Security Complex (Y-12) and BWX Technologies (BWXT). These demonstrations include the fabrication of the next irradiation experiment, Mini-Plate 1 (MP-1), and casting optimizations at Y-12. The FF Pillar uses a detailed process flow diagram to identify potential gaps in processing knowledge or demonstration, which helps direct the strategic research agenda of the FF Pillar. This paper describes the significant progress made toward understanding the fuel characteristics, and models developed to make informed decisions, increase process yield, and decrease lifecycle waste and costs.

  7. The fabrication of nuclear fuel elements in Mexico

    International Nuclear Information System (INIS)

    Guerrero Morillo, H.L.

    1977-01-01

    The situation of the nucleoelectrical generation in Mexico by 1976 is described: two nuclear reactors under construction but no defined program on the type and start-up dates for the next power plants. However the existence of a general plan on nuclear power plants is mentioned, which, according to the last estimates reaches to 10,000 MW installed by 1990. The national intension, definitely expressed in the Law, is to supply domestic nuclear fuel to the power reactors operating in the country, starting with the first reload for the two BWR's at the first national station in Laguna Verde, which will be required at the end of 1981 and of 1982, respectively. Before such circumstances and the relatively short amounts of fuel elements that should be produced for those two unique reactors, Mexico already has to adopt a strategy to follow in respect to fuel elements fabrication. The two main options are analyzed: 1. To delay the local fabrication until a National Nuclear Program may be defined, meanwhile purchasing abroad the necessary reloads and initial cores; and 2. To start as soon as possible the local fuel elements fabrication in order to supply fuel for the first reload of the first unit of Laguna Verde, confronting the economical risks of such posture with the advantages of an immediate action. Both options are analyzed in detail comparing them specially under the economic point of view, standing out immediately the big effect of some factors which are economically imponderable, as experience and independance that would be gained with the second option. Emphasis is made on the advantages and risks of any case. According to the first option and once a National Program is defined, the work would be heavy but of simple strategy. On the contrary, the second option requires the adoption of a more complicated strategy, as either the project of the factory as its initial operation should be made under transient conditions, in view of the expected future expansion still

  8. Full size U-10Mo monolithic fuel foil and fuel plate fabrication-technology development

    International Nuclear Information System (INIS)

    Moore, G.A.; Jue, J-F.; Rabin, B.H.; Nilles, M.J.

    2010-01-01

    Full-size U-10Mo foils are being developed for use in high density LEU monolithic fuel plates. The application of a zirconium barrier layer to the foil is performed using a hot co-rolling process. Aluminium clad fuel plates are fabricated using Hot Isostatic Pressing (HIP) or a Friction Bonding (FB) process. An overview is provided of ongoing technology development activities, including: the co-rolling process, foil shearing/slitting and polishing, cladding bonding processes, plate forming, plate-assembly swaging, and fuel plate characterization. Characterization techniques being employed include, Ultrasonic Testing (UT), radiography, and microscopy. (author)

  9. Safety aspects of LWR fuel reprocessing and mixed oxide fuel fabrication plants

    International Nuclear Information System (INIS)

    Fischer, M.; Leichsenring, C.H.; Herrmann, G.W.; Schueller, W.; Hagenberg, W.; Stoll, W.

    1977-01-01

    The paper is focused on the safety and the control of the consequences of credible accidents in LWR fuel reprocessing plants and in mixed oxide fuel fabrication plants. Each of these plants serve for many power reactor (about 50.000 Mwel) thus the contribution to the overall risk of nuclear energy is correspondingly low. Because of basic functional differences between reprocessing plants, fuel fabrication plants and nuclear power reactors, the structure and safety systems of these plants are different in many respects. The most important differences that influence safety systems are: (1) Both fuel reprocessing and fabrication plants do not have the high system pressure that is associated with power reactors. (2) A considerable amount of the radioactivity of the fuel, which is in the form of short-lived radionuclides has decayed. Therefore, fuel reprocessing plants and mixed oxide fuel fabrication plants are designed with multiple confinement barriers for control of radioactive materials, but do not require the high-pressure containment systems that are used in LWR plants. The consequences of accidents which may lead to the dispersion of radioactive materials such as chemical explosions, nuclear excursions, fires and failure of cooling systems are considered. A reasonable high reliability of the multiple confinement approach can be assured by design. In fuel reprocessing plants, forced cooling is necessary only in systems where fission products are accumulated. However, the control of radioactive materials can be maintained during normal operation and during the above mentioned accidents, if the dissolver off-gas and vessel off-gas treatment systems provide for effective removal of radioactive iodine, radioactive particulates, nitrogen oxides, tritium and krypton 85. In addition, the following incidents in the dissolver off-gas system itself must be controlled: failures of iodine filters, hydrogen explosion in O 2 - and NOsub(x)-reduction component, decomposition of

  10. Determination of uranium in coated fuel particle compact by potassium fluoride fusion-gravimetric method

    International Nuclear Information System (INIS)

    Ito, Mitsuo; Iso, Shuichi; Hoshino, Akira; Suzuki, Shuichi.

    1992-03-01

    Potassium fluoride-gravimetric method has been developed for the determination of uranium in TRISO type-coated fuel particle compact. Graphite matrix in the fuel compact is burned off by heating it in a platinum crucible at 850degC. The coated fuel particles thus obtained are decomposed by fusion with potassium fluoride at 900degC. The melt was dissolved with sulfuric acid. Uranium is precipitated as ammonium diuranate, by passing ammonia gas through the solution. The resulting precipitate is heated in a muffle furnace at 850degC, to convert uranium into triuranium octoxide. Uranium in the triuranium octoxide was determined gravimetrically. Ten grams of caoted fuel particles were completely decomposed by fusion with 50 g of potassium fluoride at 900degC for 3 hrs. Analytical result for uranium in the fuel compact by the proposed method was 21.04 ± 0.05 g (n = 3), and was in good agreement with that obtained by non-destructive γ-ray measurement method : 21.01 ± 0.07 g (n = 3). (author)

  11. Development of fabrication technology for ceramic nuclear fuel

    International Nuclear Information System (INIS)

    Lee, Young Woo; Sohn, D. S.; Na, S. H.

    2003-05-01

    The purpose of the study is to develop the fabrication technology of MOX fuel. The researches carried out during the last stage(1997. 4.∼2003. 3.) mainly consisted of ; study of MOX pellet fabrication technology for application and development of characterization technology for the aim of confirming the development of powder treatment technology and sintering technology and of the optimization of the above technologies and fabrication of Pu-MOX pellet specimens through an international joint collaboration between KAERI and PSI based on the fundamental technologies developed in KAERI. Based on the studies carried out and the results obtained during the last stage, more extensive studies for the process technologies of the unit processes were performed, in this year, for the purpose of development of indigenous overall MOX pellet fabrication process technology, relating process parameters among the unit processes and integrating these unit process technologies. Furthermore, for the preparation of transfer of relevant technologies to the industries, a feasibility study was performed on the commercialization of the technology developed in KAERI with the relevant industry in close collaboration

  12. Application of plasma deposition technology for nuclear fuel fabrication

    International Nuclear Information System (INIS)

    Jung, I. H.; Moon, J. S.; Park, H. S.; Song, K. C.; Lee, C. Y.; Kang, K. H.; Ryu, H. J.; Kim, H. S.; Yang, M. S.

    2001-01-01

    Yttria-stabilized-zirconia (m.p. 2670.deg. C), was deposited by induction plasma spraying system with a view to develop a new nuclear fuel fabrication technology. To fabricate the dense pellets, the spraying condition was optimized through the process parameters such as, chamber pressure, plasma plate power, powder spraying distance, sheath gas composition, probe position particle size and its morphology. The results with a 5mm thick deposit on rectangular planar graphite substrates showed 97.11% theoretical density, when the sheath gas flow rate was Ar/H 2 120/20 L/min, probe position 8cm, particle size-75 μm and spraying distance 22cm. The microstructure of YSZ deposit by ICP was lamellae and columnar perpendicular to the spraying direction. In the bottom part near the substrate, small equiaxed grains bounded in a layer. In the middle part, relatively regular size of columnar grains with excellent bonding each other were distinctive

  13. Concept of automated system for spent fuel utilization ('Reburning') from compact nuclear reactors

    International Nuclear Information System (INIS)

    Ianovski, V.V.; Lozhkin, O.V.; Nesterov, M.M.; Tarasov, N.A.; Uvarov, V.I.

    1997-01-01

    On the basic concept of an automated system of nuclear power installation safety is developed the utilization project of spent fuel from compact nuclear reactors. The main features of this project are: 1. design and creation of the mobile model-industrial installation; 2. development of the utilization and storage diagram of the spent fuel from compact nuclear reactors, with the specific recommendation for the natatorial means using both for the nuclear fuel reburning, for its transportation in places of the storage; 3. research of an opportunity during the utilization process to obtain additional power resources, ozone and others to increase of justifying expenses at the utilization; 4. creation of new generation engineering for the automation of remote control processes in the high radiation background conditions. 7 refs., 1 fig

  14. Numerical studies of a compact gasoline reformer for fuel cell vehicle applications

    International Nuclear Information System (INIS)

    McIntyre, C.S.; Harrison, S.J.; Oosthuizen, P.H.; Peppley, B.A.

    2004-01-01

    There has been recent interest in the development of compact fuel processors to produce hydrogen for fuel cell powered vehicles. Gasoline is a promising candidate for distributed or on-board processing because of its high energy density and well-developed infrastructure. A compact fuel processor is under development which utilizes autothermal reforming (ATR) to extract hydrogen from iso-octane, which is used as a surrogate for gasoline. The processor consists of a double-pass packed-bed catalytic reactor to promote partial oxidation, steam reforming, and water-gas-shift reactions. As part of this system development, a commercial computational fluid dynamics (CFD) package was used to model flow and chemical reactions. Reformer performance is presented in terms of hydrogen content in the product stream, reformer efficiency (LHV efficiency) and iso-octane conversion. Results are compared to on-going experimental studies. (author)

  15. Airborne effluent control at fuel enrichment, conversion, and fabrication plants

    International Nuclear Information System (INIS)

    Mitchell, M.E.

    1976-01-01

    Uranium conversion, enrichment, and fuel fabrication facilities generate gaseous wastes that must be treated prior to being discharged to the atmosphere. Since all three process and/or handle similar compounds, they also encounter similar gaseous waste disposal problems, the majority of which are treated in a similar manner. Ventilation exhausts from personnel areas and equipment off-gases that do not contain corrosive gases (such as HF) are usually passed through roughening and/or HEPA filters prior to release. Ventilation exhausts that contain larger quantities of particles, such as the conversion facilities' U 3 O 8 sampling operation, are passed through bag filters or cyclone separators, while process off-gases containing corrosive materials are normally treated by sintered metal filters or scrubbers. The effectiveness of particle removal varies from about 90 percent for a scrubber alone to more than 99.9 percent for HEPA filters or a combination of the various filters and scrubbers. The removal of nitrogen compounds (N 2 , HNO 3 , NO/sub x/, and NH 3 ) is accomplished by scrubbers in the enrichment and fuel fabrication facilities. The conversion facility utilizes a nitric acid recovery facility for both pollution control and economic recovery of raw materials. Hydrogen removal from gaseous waste streams is generally achieved with burners. Three different systems are currently utilized by the conversion, enrichment, and fuel fabrication plants to remove gaseous fluorides from airborne effluents. The HF-rich streams, such as those emanating from the hydrofluorination and fluorine production operations of the conversion plant, are passed through condensers to recover aqueous hydrofluoric acid

  16. Process for the fabrication of nuclear fuel oxide pellets

    International Nuclear Information System (INIS)

    Francois, Bernard; Paradis, Yves.

    1977-01-01

    Process for the fabrication of nuclear fuel oxide pellets of the type for which particles charged with an organic binder -selected from the group that includes polyvinyl alcohol, carboxymethyl cellulose, polyvinyl compounds and methyl cellulose- are prepared from a powder of such an oxide, for instance uranium dioxide. These particles are then compressed into pellets which are then sintered. Under this process the binder charged particles are prepared by stirring the powder with a gas, spraying on to the stirred powder a solution or a suspension in a liquid of this organic binder in order to obtain these particles and then drying the particles so obtained with this gas [fr

  17. Implications of plutonium and americium recycling on MOX fuel fabrication

    International Nuclear Information System (INIS)

    Renard, A.; Pilate, S.; Maldague, Th.; La Fuente, A.; Evrard, G.

    1995-01-01

    The impact of the multiple recycling of plutonium in power reactors on the radiation dose rates is analyzed for the most critical stage in a MOX fuel fabrication plant. The limitation of the number of Pu recycling in light water reactors would rather stem from reactor core physics features. The case of recovering americium with plutonium is also considered and the necessary additions of shielding are evaluated. A comparison between the recycling of Pu in fast reactors and in light water reactors is presented. (author)

  18. Advanced accounting techniques in automated fuel fabrication facilities

    International Nuclear Information System (INIS)

    Carlson, R.L.; DeMerschman, A.W.; Engel, D.W.

    1977-01-01

    The accountability system being designed for automated fuel fabrication facilities will provide real-time information on all Special Nuclear Material (SNM) located in the facility. It will utilize a distributed network of microprocessors and minicomputers to monitor material movement and obtain nuclear materials measurements directly from remote, in-line Nondestructive Assay instrumentation. As SNM crosses an accounting boundary, the accountability computer will update the master files and generate audit trail records. Mass balance accounting techniques will be used around each unit process step, while item control will be used to account for encapsulated material, and SNM in transit

  19. Radiation shielding calculation for the MOX fuel fabrication plant Melox

    International Nuclear Information System (INIS)

    Lee, Y.K.; Nimal, J.C.; Chiron, M.

    1994-01-01

    Radiation shielding calculation is an important engineering work in the design of the MOX fuel fabrication plant MELOX. Due to the recycle of plutonium and uranium from UO2 spent fuel reprocessing and the large capacity of production (120t HM/yr.), the shielding design requires more attention in this LWR fuel plant. In MELOX, besides several temporary storage facilities of massive fissile material, about one thousand radioactive sources with different geometries, forms, densities, quantities and Pu concentrations, are distributed through different workshops from the PuO 2 powder reception unit to the fuel assembly packing room. These sources, with or without close shield, stay temporarily in different locations, containers and glove boxes. In order to optimize the dimensions, the material and the cost of shield as well as to limit the calculation work in a reasonable engineer-hours, a calculation scheme for shielding design of MELOX is developed. This calculation scheme has been proved to be useful in consideration of the feedback from the evolutionary design and construction. The validated shielding calculations give a predictive but reliable radiation doses information. (authors). 2 figs., 10 refs

  20. Role of wall heat transfer and other system variables on fuel compaction and recriticality

    International Nuclear Information System (INIS)

    Dhir, V.K.; Castle, J.N.; Catton, I.; Kastenberg, W.E.; Doshi, J.B.

    1976-01-01

    The assessment of the molten fuel gaining recriticality after a hypothetical core disruptive accident in a fast reactor is an important safety consideration. Recriticality of the disrupted core can be envisioned to occur, if the fuel rearranges itself into a denser configuration either due to gravity slumping of the molten fuel or due to pressure or heat transfer driven compaction of the earlier dispersed fuel. In this paper the role played by wall heat transfer, internal radiation and the bottle pressure on the physical state of the molten fuel pool is discussed. It is suggested that in the absence of a solid crust the heat transfer process from the molten fuel to the surrounding steel will be very efficient because of melting and buoyancy driven removal of less dense steel through the pool of heavier UO 2 . The internal radiation at the high fuel temperature significantly increase the effective thermal conductivity of the molten fuel and lead to increased heat transfer in situations where a solid crust of UO 2 exists between molten UO 2 and molten steel. IN a boiled-up bottled pool, the pool pressure is shown to increase very rapidly with time and thus necessitate higher fission heating of the fuel to maintain it in a certain boiled up state. Finally, the results of the above discussion are applied to study the recriticality of a fuel pool formed during a hypothetical core disrupted accident in a fast reactor

  1. Fabrication drawings of fuel pins for FUJI project among PSI, JNC and NRG. Revised version

    International Nuclear Information System (INIS)

    Ozawa, Takayuki; Nakazawa, Hiroaki; Abe, Tomoyuki; Nagayama, Masahiro

    2002-02-01

    Irradiation tests and post-irradiation examinations in the framework of JNC-PSI-NRG collaboration project will be performed in 2003-2005. Irradiation fuel pins will be fabricated by the middle of 2003. The fabrication procedure for irradiation fuel pins has been started in 2001. Several fabrication tests and qualification tests in JNC and PSI (Paul Scherrer Institute, Switzerland) have been performed before the fuel pin fabrication. According to the design assignment between PSI and JNC in the frame of this project, PSI should make a specification document for the fuel pellet, the sphere-pac fuel particles, the vipac fuel particles, and the fuel pin. JNC should make a fabrication drawing for irradiation pins. JNC has been performed the fuel design in cooperation with PSI and NRG (Nuclear Research and Consultancy Group, Netherlands). In this project, the pelletized fuel, the sphere-pac fuel, and the vipac fuel will be simultaneously irradiated on HFR (High Flux Reactor, Netherlands). This fabrication drawing has been made under the design assignment with PSI, and consists of the drawing of MOX pellet, thermal insulator pellet, pin components, fuel segments, and the constructed pin. The fabrication drawings were approved in October 2001, but after that, the optimization of specifications has been discussed and agreed among all partners. In this report, the revised fabrication drawings will be shown. Based on the commission of Plutonium Fuel Technology Group, Advanced Fuel Recycle Technology Division, this design work has been performed in Fuel Design and Evaluation Group, Plutonium Fuel Fabrication Division, Plutonium Fuel Center. (author)

  2. Regulations concerning the fabricating business of nuclear fuel materials

    International Nuclear Information System (INIS)

    1979-01-01

    The regulations are entirely revised under the law for the regulations of nuclear materials, nuclear fuel materials and reactors and provisions concerning the fabricating business in the order for execution of the law. Basic concepts and terms are defined, such as: exposure dose; accumulative dose; controlled area; inspected surrounding area; employee and radioactive waste. The application for permission of the fabricating business shall include: location of processing facilities; structure of building structure and equipment of chemical processing facilities; molding facilities; structure and equipment of covering and assembling facilities, storage facilities of nuclear fuel materials and disposal facilities of radioactive waste, etc. Records shall be made and kept for particular periods in each works and place of enterprise on inspection of processing facilities, control of dose, operation, maintenance, accident of processing facilities and weather. Specified measures shall be taken in controlled area and inspected surrounding area to restrict entrance. Measures shall be made not to exceed permissible exposure dose for employees defined by the Director General of Science and Technology Agency. Inspection and check up of processing facilities shall be carried on by employees more than once a day. Operation of processing facilities, transportation in the works and enterprise, storage, disposal, safety securing, report and measures in dangerous situations, etc. are in detail prescribed. (Okada, K.)

  3. Direct fabrication of 238PuO2 fuel forms

    International Nuclear Information System (INIS)

    Burney, G.A.; Congdon, J.W.

    1982-07-01

    The current process for the fabrication of 238 PuO 2 heat sources includes precipitation of small particle plutonium oxalate crystals (4 to 6 μm diameter), a calcination to PuO 2 , ball milling, cold pressing, granulation (60 to 125 μm), and granule sintering prior to hot pressing the fuel pellet. A new two-step direct-strike Pu(III) oxalate precipitation method which yields mainly large well-developed rosettes (50 to 100 μm diameter) has been demonstrated in the laboratory and in the plant. These large rosettes are formed by agglomeration of small (2 to 4 μm) crystals, and after calcining and sintering, were directly hot pressed into fuel forms, thus eliminating several of the powder conditioning steps. Conditions for direct hot pressing of the large heat-treated rosettes were determined and a full-scale General Purpose Heat Source pellet was fabricated. The pellet had the desired granule-type microstructure to provide dimensional stability at high temperature. 27 figures

  4. Reduced enrichment fuels for Canadian research reactors - Fabrication and performance

    Energy Technology Data Exchange (ETDEWEB)

    Wood, J C; Foo, M T; Berthiaume, L C; Herbert, L N; Schaefer, J D; Hawley, D [Atomic Energy of Canada Limited, Chalk River Nuclear Laboratories, Chalk River, ON KOJ 1JO (Canada)

    1985-07-01

    Our facilities have been upgraded to manufacture fuel rods comprising dispersions of U{sub 3}Si in aluminum, to complement the dispersions of U{sub 3}Si alloyed with 1.5 and 3.0 wt% Al fabricated and tested previously. Further advances have been made in process optimization particularly in core extrusion where production rate has been doubled while maintaining high quality standards. Our mini-element irradiations of Al-61.5 wt% (U,3.5 wt% Si, 1.5 wt% Al) and Al-62.4 wt% (U,3.2 wt% Si, 30 wt% Al) have been completed successfully up to the terminal burnup of 93 atomic percent. Fuel core swelling remained marginally below 1% per 10 atomic percent burnup over the whole irradiation. Also mini-elements containing Al-72.4 wt% USiAl and Al-73.4 wt% USi*Al have been irradiated to 82 atomic percent burnup, their swelling rate marginally exceeding 1% per 10 atomic percent burnup. Three full-size 12-element NRU assemblies containing Al-62.4 wt% USi*Al have been fabricated and installed in the NRU reactor where they have performed normally without problems. The cores for four more full-size 12-element NRU assemblies containing Al-61.0 wt% U{sub 3}Si have been manufactured. (author)

  5. Reduced enrichment fuels for Canadian research reactors - Fabrication and performance

    International Nuclear Information System (INIS)

    Wood, J.C.; Foo, M.T.; Berthiaume, L.C.; Herbert, L.N.; Schaefer, J.D.; Hawley, D.

    1985-01-01

    Our facilities have been upgraded to manufacture fuel rods comprising dispersions of U 3 Si in aluminum, to complement the dispersions of U 3 Si alloyed with 1.5 and 3.0 wt% Al fabricated and tested previously. Further advances have been made in process optimization particularly in core extrusion where production rate has been doubled while maintaining high quality standards. Our mini-element irradiations of Al-61.5 wt% (U,3.5 wt% Si, 1.5 wt% Al) and Al-62.4 wt% (U,3.2 wt% Si, 30 wt% Al) have been completed successfully up to the terminal burnup of 93 atomic percent. Fuel core swelling remained marginally below 1% per 10 atomic percent burnup over the whole irradiation. Also mini-elements containing Al-72.4 wt% USiAl and Al-73.4 wt% USi*Al have been irradiated to 82 atomic percent burnup, their swelling rate marginally exceeding 1% per 10 atomic percent burnup. Three full-size 12-element NRU assemblies containing Al-62.4 wt% USi*Al have been fabricated and installed in the NRU reactor where they have performed normally without problems. The cores for four more full-size 12-element NRU assemblies containing Al-61.0 wt% U 3 Si have been manufactured. (author)

  6. Prototypical fabrication of PWR spent fuel shipping cask

    International Nuclear Information System (INIS)

    Kwack, Eun Ho; Kim, Byung Ku; Kang, Hee Yung; Lee, Chung Young; Jeon, Kyeong Lak; Lee, Bum Soo

    1985-02-01

    This report describes about the safety analysis for the spent fuel shipping cask, which is used to transfer a single fuel assembly discharged from PWR in operation in Korea. The contents cover the methods and the results of structural, thermal, thermo-hydraulic, radiation shield and criticality detail analysis. The safety evaluation has been made under the normal transportation and hypothetical accident conditions such as 30ft free drop, puncture, fire, immersion, penetration, corner drop, etc,. Some corrections in design are made, and a brief information for fabrication and transportation are obtained by the use of a 1/6 scale model. The design is based on one year cooling time of the spent fuel with 40,000 MWT/MTU maximum burnup, which gives 7.2KW decay heat and 1.6x10 6 ci/hr radiation intensity. The cask is composed of main body with the double closures, impact limiter and fuel basket. The inner shell, inner closure and valves constitute the pressure boundary of the containment. The inner, intermediate and outer shells, upper and lower forgings are made of stainless steel which compose the main body with lead for gamma shield and 50% ethylene glycol for neutron shield. The impact limiters are made of balsa wood on both end sides of the cask to protect the cask from a sudden shocks in accident during the transportation. The analysis results show that the cask is proved to retain its structural integrity within allowable stress and to be safe under the normal and hypothetical accident conditions, and the maximum dose rates of radiation at 2m distance from the surface of the cask are less than the required values. The weight will be 23.2tons in dry and 27.8 tons in wet with fuel loaded. All the design data, calculated results for the structural integrity, shield and thermal analysis are shown in this report with the basic drawings. (Author)

  7. Mixed U/Pu oxide fabrication facility for gel-sphere-pac fuel

    International Nuclear Information System (INIS)

    1978-09-01

    This paper describes a conceptual plant which uses the gel-sphere-pac process to fabricate mixed oxide (MOX) fuel and covers (1) fabrication of co-processed MOX fuel and (2) fabrication of co-processed spiked MOX fuel, using 60 Co. The report describes: the fuel fabrication process and plant layout, including scrap and waste processing; and maintenance safety and ventilation measures. A description of the conversion of U and Pu nitrate using a gel sphere process is given in Appendix A

  8. Advanced accountability techniques for breeder fuel fabrication facilities

    International Nuclear Information System (INIS)

    Bennion, S.I.; Carlson, R.L.; DeMerschman, A.W.; Sheely, W.F.

    1978-01-01

    The United States Department of Energy (DOE) has assigned the Hanford Engineering Development Laboratory (HEDL), operated by the Westinghouse Hanford Company, the project lead in developing a uniform nuclear materials reporting system for all contractors on the Hanford Reservation. The Hanford Nuclear Inventory System (HANISY) is based upon HEDL's real-time accountability system, originally developed in 1968. The HANISY system will receive accountability data either from entry by process operators at remote terminals or from nondestructive assay instruments connected to the computer network. Nuclear materials will be traced from entry, through processing to final shipment through the use of minicomputer technology. Reports to DOE will be formed directly from the realtime files. In addition, HEDL has established a measurement program that will complement the HANISY system, providing direct interface to the computer files with a minimum of operator intervention. This technology is being developed to support the High Performance Fuels Laboratory (HPFL) which is being designed to assess fuel fabrication techniques for proliferation-resistant fuels

  9. Hydrothermal synthesis for fabrication and reprocessing of MOX nuclear fuel

    International Nuclear Information System (INIS)

    Ohta, Suguru; Yamamura, Tomoo; Shirasaki, Kenji; Satoh, Isamu; Shikama, Tatsuo

    2011-01-01

    To improve the nuclear proliferation resistance and to minimize use of chemicals, a new reprocessing and fabrication process of 'mixed oxide' (MOX) fuel was proposed and studied by using simulated spent fuel solutions. The process is consisting of the two steps, i.e. the removal of fission product (FP) from dissolved spent fuel by using carbonate solutions (Step-1), and hydrothermal synthesis of uranium dioxides (Step-2). In Step-1, rare earth (the precipitation ratio: 90%) and alkaline earth (10-50% for Sr) as FP were removed based on their low solubility of hydroxides and carbonate salts, with uranium kept dissolved for the certain carbonate solutions of weak base (Type 2) or mixtures of relatively strong base and weak base (Type 3). In Step-2, the features of uranium dioxides UO 2+x particles, i.e. stoichiometry (x=0.05-0.2), size (0.2-3 μm) and shape (cubic, spherical, rectangular parallelpiped, etc.), were controlled, and the cesium was removed down to 40 ppm by an addition of organic additives. The decontamination factors (DF) for cesium exceeds 10 5 , whereas the total DF of all the simulated FP were as low as the order of 10 which requires future studies for removal of alkaline earth, Re and Tc etc. (author)

  10. Monitoring of homogeneity of fuel compacts for high-temperature reactors

    International Nuclear Information System (INIS)

    Mottet, P.; Guery, M.; Chegne, J.

    Apparatus using either gamma transmission or gamma scintillation spectrometry (with NaI(Tl) detector) was developed for monitoring the homogeneity of distribution of fissile and fertile particles in fuel compacts for high-temperature reactors. Three methods were studied: Longitudinal gamma transmission which gives a total distribution curve of heavy metals (U and Th); gamma spectrometry with a well type scintillator, which rapidly gives the U and Th count rates per fraction of compact; and longitudinal gamma spectrometry, giving axial distribution curves for uranium and thorium; apparatus with four scintillators and optimization of the parameters for the measurement, permitting significantly decreasing the duration of the monitoring. These relatively simple procedures should facilitate the industrial monitoring of high-temperature reactor fuel

  11. Criticality safety studies for plutonium–uranium metal fuel pin fabrication facility

    International Nuclear Information System (INIS)

    Stephen, Neethu Hanna; Reddy, C.P.

    2013-01-01

    Highlights: ► Criticality safety limits for PUMP-F facility is identified. ► The fissile mass which can be handled safely during alloy preparation is 10.5 kg. ► The number of fuel slugs which can be handled safely during injection casting is 53. ► The number of fuel slugs which can be handled safely after fuel fabrication is 71. - Abstract: This study focuses on the criticality safety during the fabrication of fast reactor metal fuel pins comprising of the fuel type U–15Pu, U–19Pu and U–19Pu–6Zr in the Plutonium–Uranium Metal fuel Pin fabrication Facility (PUMP-F). Maximum amount of fissile mass which can be handled safely during master alloy preparation, Injection casting and fuel slug preparation following fuel pin fabrication were identified and fixed based on this study. In the induction melting furnace, the fissile mass can be limited to 10.5 kg. During fuel slug preparation and fuel pin fabrication, fuel slugs and pins were arranged in hexagonal and square lattices to identify the most reactive configuration. The number of fuel slugs which can be handled safely after injection casting can be fixed to be 53, whereas after fuel fabrication it is 71

  12. Fabrication and control of fuels made of mixed carbides (U, Pu)C

    International Nuclear Information System (INIS)

    Lorenzelli, R.; Delaroche, P.

    1980-01-01

    Fabrication of this type of advanced fuel is described. The fuel is prepared by reduction of oxides with carbon and natural sintering. Density, thermal stability and thermal conductibility are more particularly studied [fr

  13. FRM-II project status and safety of its compact fuel element

    International Nuclear Information System (INIS)

    Nuding, M.; Rottmann, M.; Axmann, A.; Boening, K.

    2000-01-01

    The construction of the new research reactor FRM-II is close to completion and the nuclear start-up is scheduled to begin in January 2001. This contribution provides an overview on the concept of the facility and the safety features of the reactor. It also describes some of the tests performed during the licensing procedure of the compact fuel element and their results. At the end a short status report is given. (author)

  14. FRM-II project status and safety of its compact fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Nuding, M.; Rottmann, M.; Axmann, A.; Boening, K. [Technical University of Munich, D-85747 Garching (Germany)

    2000-07-01

    The construction of the new research reactor FRM-II is close to completion and the nuclear start-up is scheduled to begin in January 2001. This contribution provides an overview on the concept of the facility and the safety features of the reactor. It also describes some of the tests performed during the licensing procedure of the compact fuel element and their results. At the end a short status report is given. (author)

  15. Compact approach to long-term monitored retrievable storage of spent fuel

    International Nuclear Information System (INIS)

    Muir, D.W.

    1986-01-01

    We examine a new approach to monitored retrievable storage (MRS) that is extremely compact in terms of total land use and may offer increased security and reduced environmental impact, relative to current designs. This approach involves embedding the spent fuel assemblies in monolithic blocks of metallic aluminum. While this would clearly require increased effort in the spent-fuel packaging phase, it would offer in return the above-mentioned environmental advantages, plus the option of easily extending the surface-storage time scale from several years to several decades if a need for longer storage times should arise in the future

  16. Concept of safe tank-type water cooled and moderated reactor with HTGR microparticle fuel compacts

    International Nuclear Information System (INIS)

    Gol'tsev, A.O.; Kukharkin, N.E.; Mosevitskij, I.S.; Ponomarev-Stepnoj, N.N.; Popov, S.V.; Udyanskij, Yu.N.; Tsibul'skij, V.F.

    1993-01-01

    Concept of safe tank-type water-cooled and moderated reactor on the basis of HTGR fuel microparticles which enable to avoid environment contamination with radioactive products under severe accidents, is proposed. Results of neutron-physical and thermal-physical studies of water cooled and moderated reactor with HTGR microparticle compacts are presented. Characteristics of two reactors with thermal power of 500 and 1500 MW are indicated within the concept frames. The reactor behaviour under severe accident connected with complete loss of water coolant is considered. It is shown that under such an accident the fission products release from fuel microparticles does not occur

  17. Fabrication, fabrication control and in-core follow up of 4 LEU leader fuel elements based on U3Si2 in RECH-1

    International Nuclear Information System (INIS)

    Chavez, J.C.; Barrera, M.; Olivares, L.; Lisboa, J.

    1999-01-01

    The RECH-1 MTR reactor has been converted from HEU to MEU (45% enrichment) and the decision to a LEU (20% enrichment) conversion was taken some years ago. This LEU conversion decision involved a local fuel development and fabrication based on U 3 Si 2 -Al dispersion fuel, and a fabrication qualification stage that resulted in four fuel elements fully complying with established fabrication standards for this type of fuel. This report-presents relevant points of these four leaders fuel elements fabrication, in particular a fuel plate core homogeneity control development. A summary of the intended in core follow-up studies for the leaders fuel elements is also presented here. (author)

  18. Temperature effect on mechanical and tribological characterization of Mg-SiC nanocomposite fabricated by high rate compaction

    Science.gov (United States)

    Majzoobi, G. H.; Rahmani, K.; Atrian, A.

    2018-01-01

    In this paper, dynamic compaction is employed to produce Mg-SiC nanocomposite samples using a mechanical drop hammer. Different volume fractions of SiC nano reinforcement and magnesium (Mg) micron-size powder as the matrix are mechanically milled and consolidated at different temperatures. It is found that with the increase of temperature the sintering requirements is satisfied and higher quality samples are fabricated. The density, hardness, compressive strength and the wear resistance of the compacted specimens are characterized in this work. It was found that by increasing the content of nano reinforcement, the relative density of the compacted samples decreases, whereas, the micro-hardness and the strength of the samples enhance. Furthermore, higher densification temperatures lead to density increase and hardness reduction. Additionally, it is found that the wear rate of the nanocomposite is increased remarkably by increasing the SiC nano reinforcement.

  19. Compact Layers of Hybrid Halide Perovskites Fabricated via the Aerosol Deposition Process—Uncoupling Material Synthesis and Layer Formation

    Directory of Open Access Journals (Sweden)

    Fabian Panzer

    2016-04-01

    Full Text Available We present the successful fabrication of CH3NH3PbI3 perovskite layers by the aerosol deposition method (ADM. The layers show high structural purity and compactness, thus making them suitable for application in perovskite-based optoelectronic devices. By using the aerosol deposition method we are able to decouple material synthesis from layer processing. Our results therefore allow for enhanced and easy control over the fabrication of perovskite-based devices, further paving the way for their commercialization.

  20. LEU fuel fabrication program for the RECH-1 reactor. Status report

    International Nuclear Information System (INIS)

    Chavez, J.C.; Barrera, M.; Jimenez, O.; Lisboa, J.; Marin, J.

    2000-01-01

    In 1995 a 50 LEU U 3 Si 2 fuel elements fabrication program for the RECH-1 research reactor was established at the Comision Chilena de Energia Nuclear, CCHEN. After a fabrication process qualification stage, in 1998, four elements were early delivered to the reactor in order to start an irradiation qualification stage. The irradiation has reached an estimated 10% burn-up and no fabrication problems have been detected up to this burn-up level. During 1999 and up to the first quarter of 2000, 19 fuel elements were produced and 7 fuel elements are expected for the end of 2000. This report presents an updated summary of the main results obtained in this fuel fabrication program. A summary of other activities generated by this program, such as in core follow-up of the four leader fuel elements, ISO 9001 implementation for the fabrication process and a fabrication and qualification optimization planning, is also presented here. (author)

  1. Role of thermal analysis in uranium oxide fuel fabrication process

    International Nuclear Information System (INIS)

    Balaji Rao, Y.; Yadav, R.B.

    2006-01-01

    The present paper discusses the application of thermal analysis, particularly, differential thermal analysis (Dta) at various stages of fuel fabrication process. The useful role of Dta in knowing the decomposition pattern and calcination temperature of Adu along with de-nitration temperature is explained. The decomposition pattern depends upon the type of drying process adopted for wet ADU cake (ADU C). Also, the paper highlights the utility of DTA in determining the APS and SSA of UO 2+x and U 3 O 8 powders as an alternate technique. Further, the temperature difference (ΔT max ) between the two exothermic peaks obtained in UO 2+x powder oxidation is related to sintered density of UO 2 pellets. (author)

  2. Support of the radioactive waste treatment nuclear fuel fabrication facility

    International Nuclear Information System (INIS)

    Park, H.H.; Han, K.W.; Lee, B.J.; Shim, G.S.; Chung, M.S.

    1982-01-01

    Technical service of radioactive waste treatment in Daeduck Engineering Center includes; 1) Treatment of radioactive wastes from the nuclear fuel fabrication facility and from laboratories. 2) Establishing a process for intermediate treatment necessary till the time when RWTF is in completion. 3) Technical evaluation of unit processes and equipments concerning RWTF. About 35 drums (8 m 3 ) of solid wastes were treated and stored while more than 130 m 3 of liquid wastes were disposed or stored. A process with evaporators of 10 1/hr in capacity, a four-stage solvent washer, storage tanks and disposal system was designed and some of the equipments were manufactured. Concerning RWTF, its process was reviewed technically and emphasis were made on stability of the bituminization process against explosion, function of PAAC pump, decontamination, and finally on problems to be solved in the comming years. (Author)

  3. Environmental assessment for radioisotope heat source fuel processing and fabrication

    International Nuclear Information System (INIS)

    1991-07-01

    DOE has prepared an Environmental Assessment (EA) for radioisotope heat source fuel processing and fabrication involving existing facilities at the Savannah River Site (SRS) near Aiken, South Carolina and the Los Alamos National Laboratory (LANL) near Los Alamos, New Mexico. The proposed action is needed to provide Radioisotope Thermoelectric Generators (RTG) to support the National Aeronautics and Space Administration's (NASA) CRAF and Cassini Missions. Based on the analysis in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an Environmental Impact Statement is not required. 30 refs., 5 figs

  4. Fabrication of electroslag welded Magnox fuel transport flasks

    International Nuclear Information System (INIS)

    Tuliani, S.S.

    1979-01-01

    The high weld metal deposition rate of the electroslag welding process offers an attractive method of fabricating nuclear fuel transport flasks from 370 mm (14.5in) thick steel plates. The paper describes pre-production trials carried out on full scale corner-section joints to establish that the weld metal meets the exacting mechanical property requirements for the Nuclear Industry. The paper presents results obtained on welds produced using two base metal compositions and two wires, one recommended for submerged-arc and the other for electroslag welding processes. Details of mechanical tests and metallographic examinations are given which led to the selection of the latter type of wire. It was found that while the weld metal deposited by this process may be sensitive to cracking, this can be avoided by careful selection of welding consumables and sound joints can be obtained under production conditions. (author)

  5. Liquid waste treatment at plutonium fuels fabrication facility, 2

    International Nuclear Information System (INIS)

    Matsumoto, Ken-ichi; Itoh, Ichiroh; Ohuchi, Jin; Miyo, Hiroaki

    1974-01-01

    The economics in the management of the radioactive liquid waste from Plutonium Fuels Fabrication Facility with sludge-blanket type flocculators has been evaluated. (1) Cost calculation: The cost of chemicals and electricity to treat 1 cubic meter of liquid waste is about 876 yen, while the total operating cost is 250 thousand yen per cubic meter in the case of 140 m 3 /year treatment. These figures are much higher than those for ordinary wastes, due to the particular operation against plutonium. (2) Proposal of the closed system for liquid waste treatment at PFFF: In the case of a closed system using evaporator, ion exchange column and rotary-kiln calciner, the operating cost is estimated at 40 thousand yen per cubic meter of liquid waste. Final radioactivity of treated liquid is below 10 -8 micro curies/ml. (Mori, K.)

  6. Interpretation of bioassay data from nuclear fuel fabrication workers

    International Nuclear Information System (INIS)

    Melo, D.; Xavier, M.

    2005-01-01

    Full text: In nuclear fuel fabrication facilities, workers are exposed to different compounds of enriched uranium. Although in this kind of facility the main route of intake is inhalation, ingestion may occur in some situations. The interpretation of the bioassay data is very complex, since it is necessary taking into account all the different parameters, which is a big challenge. Due to the high cost of the individual monitoring programme for internal dose assessment in the routine monitoring programmes, usually only one type of measurement is assigned. In complex situations like the one described in this paper, where several parameters can compromise the accuracy of the bioassay interpretation it is need to have a combination of techniques to evaluate the internal dose. According to ICRP 78 (1997), the general order of preference in terms of accuracy of interpretation is: body activity measurement, excreta analysis and personal air sampling. Results of monitoring of working environment may provide information that assists in interpretation on particle size, chemical form and solubility, time of intake. A group of seventeen workers from controlled area of the fuel fabrication facility was selected to evaluate the internal dose using all different available techniques during a certain period. The workers were monitored for determination of uranium content in the daily urinary and faecal excretion (collected over a period of 3 consecutive days), chest counting and personal air sampling. The results have shown that at least two types of sensitivity techniques must be used, since there are some sources of uncertainties on the bioassay interpretation, like mixture of uranium compounds intake and different routes of intake. The combination of urine and faeces analysis has shown to be the more appropriate methodology for assessing internal dose in this situation. (author)

  7. Material control in nuclear fuel fabrication facilities. Part II. Accountability, instrumntation, and measurement techniques in fuel fabrication facilities, P.O.1236909. Final report

    International Nuclear Information System (INIS)

    Borgonovi, G.M.; McCartin, T.J.; McDaniel, T.; Miller, C.L.; Nguyen, T.

    1978-12-01

    This report describes the measurement techniques, the instrumentation, and the procedures used in accountability and control of nuclear materials, as they apply to fuel fabrication facilities. Some of the material included has appeared elswhere and it has been summarized. An extensive bibliography is included. A spcific example of application of the accountability methods to a model fuel fabrication facility which is based on the Westinghouse Anderson design

  8. Material control in nuclear fuel fabrication facilities. Part II. Accountability, instrumntation, and measurement techniques in fuel fabrication facilities, P. O. 1236909. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Borgonovi, G.M.; McCartin, T.J.; McDaniel, T.; Miller, C.L.; Nguyen, T.

    1978-12-01

    This report describes the measurement techniques, the instrumentation, and the procedures used in accountability and control of nuclear materials, as they apply to fuel fabrication facilities. Some of the material included has appeared elswhere and it has been summarized. An extensive bibliography is included. A spcific example of application of the accountability methods to a model fuel fabrication facility which is based on the Westinghouse Anderson design.

  9. Constrained Sintering in Fabrication of Solid Oxide Fuel Cells.

    Science.gov (United States)

    Lee, Hae-Weon; Park, Mansoo; Hong, Jongsup; Kim, Hyoungchul; Yoon, Kyung Joong; Son, Ji-Won; Lee, Jong-Ho; Kim, Byung-Kook

    2016-08-09

    Solid oxide fuel cells (SOFCs) are inevitably affected by the tensile stress field imposed by the rigid substrate during constrained sintering, which strongly affects microstructural evolution and flaw generation in the fabrication process and subsequent operation. In the case of sintering a composite cathode, one component acts as a continuous matrix phase while the other acts as a dispersed phase depending upon the initial composition and packing structure. The clustering of dispersed particles in the matrix has significant effects on the final microstructure, and strong rigidity of the clusters covering the entire cathode volume is desirable to obtain stable pore structure. The local constraints developed around the dispersed particles and their clusters effectively suppress generation of major process flaws, and microstructural features such as triple phase boundary and porosity could be readily controlled by adjusting the content and size of the dispersed particles. However, in the fabrication of the dense electrolyte layer via the chemical solution deposition route using slow-sintering nanoparticles dispersed in a sol matrix, the rigidity of the cluster should be minimized for the fine matrix to continuously densify, and special care should be taken in selecting the size of the dispersed particles to optimize the thermodynamic stability criteria of the grain size and film thickness. The principles of constrained sintering presented in this paper could be used as basic guidelines for realizing the ideal microstructure of SOFCs.

  10. Constrained Sintering in Fabrication of Solid Oxide Fuel Cells

    Science.gov (United States)

    Lee, Hae-Weon; Park, Mansoo; Hong, Jongsup; Kim, Hyoungchul; Yoon, Kyung Joong; Son, Ji-Won; Lee, Jong-Ho; Kim, Byung-Kook

    2016-01-01

    Solid oxide fuel cells (SOFCs) are inevitably affected by the tensile stress field imposed by the rigid substrate during constrained sintering, which strongly affects microstructural evolution and flaw generation in the fabrication process and subsequent operation. In the case of sintering a composite cathode, one component acts as a continuous matrix phase while the other acts as a dispersed phase depending upon the initial composition and packing structure. The clustering of dispersed particles in the matrix has significant effects on the final microstructure, and strong rigidity of the clusters covering the entire cathode volume is desirable to obtain stable pore structure. The local constraints developed around the dispersed particles and their clusters effectively suppress generation of major process flaws, and microstructural features such as triple phase boundary and porosity could be readily controlled by adjusting the content and size of the dispersed particles. However, in the fabrication of the dense electrolyte layer via the chemical solution deposition route using slow-sintering nanoparticles dispersed in a sol matrix, the rigidity of the cluster should be minimized for the fine matrix to continuously densify, and special care should be taken in selecting the size of the dispersed particles to optimize the thermodynamic stability criteria of the grain size and film thickness. The principles of constrained sintering presented in this paper could be used as basic guidelines for realizing the ideal microstructure of SOFCs. PMID:28773795

  11. Quality control of CANDU6 fuel element in fabrication process

    International Nuclear Information System (INIS)

    Li Yinxie; Zhang Jie

    2012-01-01

    To enhance the fine control over all aspects of the production process, improve product quality, fuel element fabrication process for CANDU6 quality process control activities carried out by professional technical and management technology combined mode, the quality of the fuel elements formed around CANDU6 weak links - - end plug , and brazing processes and procedures associated with this aspect of strict control, in improving staff quality consciousness, strengthening equipment maintenance, improved tooling, fixtures, optimization process test, strengthen supervision, fine inspection operations, timely delivery carry out aspects of the quality of information and concerns the production environment, etc., to find the problem from the improvement of product quality and factors affecting the source, and resolved to form the active control, comprehensive and systematic analysis of the problem of the quality management concepts, effectively reducing the end plug weld microstructure after the failure times and number of defects zirconium alloys brazed, improved product quality, and created economic benefits expressly provided, while staff quality consciousness and attention to detail, collaboration department, communication has been greatly improved and achieved very good management effectiveness. (authors)

  12. Fabrication and testing of ceramic UO2 fuel - I-III. Part I

    International Nuclear Information System (INIS)

    Novakovic, M.

    1961-12-01

    The task described consists of the following: fabrication of UO 2 with different granulation from uranyl nitrate by ammonia diuranate; determination of size and shape distributions of metal and ceramic powders; fabrication of sintered pressed samples UO 2 ; investigating the properties of sintered uranium dioxide dependent on the fabrication process; producing a vibrator for compacting UO 2 powder. This volume includes reports on the first two tasks

  13. Modern methods of material accounting for mixed oxide fuel fabrication facility

    International Nuclear Information System (INIS)

    Eggers, R.F.; Pindak, J.L.; Brouns, R.J.; Williams, R.C.; Brite, D.W.; Kinnison, R.R.; Fager, J.E.

    1981-01-01

    The generic requirements loss detection, and response to alarms of a contemporary material control and accounting (MCandA) philosophy have been applied to a mixed oxide fuel fabrication plant to produce a detailed preliminary MCandA system design that is generally applicable to facilities of this type. This paper summarizes and discusses detailed results of the mixed oxide fuel fabrication plant study

  14. Description of fuel element brush assembly's fabrication for 105-K west

    International Nuclear Information System (INIS)

    Maassen, D.P.

    1997-01-01

    This report is a description of the process to redesign and fabricate, as well as, describe the features of the Fuel Element Brush Assembly used in the 105-K West Basin. This narrative description will identify problems that occurred during the redesigning and fabrication of the 105-K West Basin Fuel Element Brush Assembly and specifically address their solutions

  15. Application of vacuum technology during nuclear fuel fabrication, inspection and characterization

    International Nuclear Information System (INIS)

    Majumdar, S.

    2003-01-01

    Full text: Vacuum technology plays very important role during various stages of fabrication, inspection and characterization of U, Pu based nuclear fuels. Controlled vacuum is needed for melting and casting of U, Pu based alloys, picture framing of the fuel meat for plate type fuel fabrication, carbothermic reduction for synthesis of (U-Pu) mixed carbide powder, dewaxing of green ceramic fuel pellets, degassing of sintered pellets and encapsulation of fuel pellets inside clad tube. Application of vacuum technology is also important during inspection and characterization of fuel materials and fuel pins by way of XRF and XRD analysis, Mass spectrometer Helium leak detection etc. A novel method of low temperature sintering of UO 2 developed at BARC using controlled vacuum as sintering atmosphere has undergone successful irradiation testing in Cirus. The paper will describe various fuel fabrication flow sheets highlighting the stages where vacuum applications are needed

  16. Numerical model of a thermoelectric generator with compact plate-fin heat exchanger for high temperature PEM fuel cell exhaust heat recovery

    DEFF Research Database (Denmark)

    Xin, Gao; Andreasen, Søren Juhl; Chen, Min

    2012-01-01

    on a finite-element approach. On each discretized segment, fluid properties, heat transfer process and TEG performance are locally calculated for higher model precision. To benefit both the system design and fabrication, the way to model TEG modules is herein reconsidered; a database of commercialized compact......This paper presents a numerical model of an exhaust heat recovery system for a high temperature polymer electrolyte membrane fuel cell (HTPEMFC) stack. The system is designed as thermoelectric generators (TEGs) sandwiched in the walls of a compact plate-fin heat exchanger. Its model is based...... plate-fin heat exchangers is adopted. Then the model is validated against experimental data and the main variables are identified by means of a sensitivity analysis. Finally, the system configuration is optimized for recovering heat from the exhaust gas. The results exhibit the crucial importance...

  17. Study on the Applicability of Electron Beam Welding Methods to Assembly a Fuel Compact and Al Cover Plate of Research Reactor Plate Type Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae In; Lee, Yoon Sang; Lee, Don Dae; Jeong, Yong Jin; Kwon, Sun Chil; Kim, Soo Sung; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Among the research reactor plate type fuel fabrication processes, there is an assembly process between fuel meat compact and Al cover plates using a welding method prior to rolling process. The assembly process is such as the Al frame and Al cover plate should be welded properly as shown in Fig. 1. For welding, TIG(Tungsten Inert Gas) welding methods has been used conventionally, but in this study an electron beam welding(EB welding) technique which uses the electron beam of a high velocity for joining two materials is introduced to the assembly. The work pieces are melted as the kinetic energy of the electron beam is transformed into heat to join the two parts of the weld. The welding is often done in the conditions in a vacuum to prevent dispersion of the electron beam. The electron beam welding process has many ad-vantages such as contamination of the welds could be prevented, the penetration of the weld is deep, and also the strain of the welding area is less than other methods. In this study, to find optimal condition of the EB welding process, a welding speed, a beam current and an acceleration voltage were changed. To analyzing the welding results, the shape of the beads and defects of welding area was used. The width and depth of the beads were measured as well

  18. Study on the Applicability of Electron Beam Welding Methods to Assembly a Fuel Compact and Al Cover Plate of Research Reactor Plate Type Fuel

    International Nuclear Information System (INIS)

    Lee, Hae In; Lee, Yoon Sang; Lee, Don Dae; Jeong, Yong Jin; Kwon, Sun Chil; Kim, Soo Sung; Park, Jong Man

    2012-01-01

    Among the research reactor plate type fuel fabrication processes, there is an assembly process between fuel meat compact and Al cover plates using a welding method prior to rolling process. The assembly process is such as the Al frame and Al cover plate should be welded properly as shown in Fig. 1. For welding, TIG(Tungsten Inert Gas) welding methods has been used conventionally, but in this study an electron beam welding(EB welding) technique which uses the electron beam of a high velocity for joining two materials is introduced to the assembly. The work pieces are melted as the kinetic energy of the electron beam is transformed into heat to join the two parts of the weld. The welding is often done in the conditions in a vacuum to prevent dispersion of the electron beam. The electron beam welding process has many ad-vantages such as contamination of the welds could be prevented, the penetration of the weld is deep, and also the strain of the welding area is less than other methods. In this study, to find optimal condition of the EB welding process, a welding speed, a beam current and an acceleration voltage were changed. To analyzing the welding results, the shape of the beads and defects of welding area was used. The width and depth of the beads were measured as well

  19. Development of DIPRES feed for the fabrication of mixed-oxide fuels for fast breeder reactors

    International Nuclear Information System (INIS)

    Griffin, C.W.; Rasmussen, D.E.; Lloyd, M.H.

    1983-01-01

    The DIrect PREss Spheroidized feed process combines the conversion of uranium-plutonium solutions into spheres by internal gelation with conventional pellet fabrication techniques. In this manner, gel spheres could replace conventional powders as the feed material for pellet fabrication of nuclear fuels. Objective of the DIPRES feed program is to develop and qualify a process to produce mixed-oxide fuel pellets from gel spheres for fast breeder reactors. This process development includes both conversion and fabrication activities

  20. Control in fabrication of PWR and BWR type reactor fuel elements

    International Nuclear Information System (INIS)

    Gorskij, V.V.

    1981-01-01

    Both destructive and non-destructive testing methods now in use in fabrication of BWR and PWR type reactor fuel elements at foreign plants are reviewed. Technological procedures applied in fabrication of fuel elements and fuel assemblies are described. Major attention is paid to radiographic, ultrasonic, metallographic, visual and autoclavic testings. A correspondence of the methods applied to the ASTM standards is discussed. The most part of the countries are concluded the apply similar testing methods enabling one to reliably evaluate the quality of primary materials and fabricated fuel elements and thus meeting the demands to contemporary PWR and BWR type reactor fuel elements. Practically all fuel element and pipe fabrication plants in Western Europe, Asia and America use the ASTM standards as the basis for the quality contr [ru

  1. Fabrication and characterization of MX-type fuels and fuel pins

    International Nuclear Information System (INIS)

    Richter, K.; Bartscher, W.; Benedict, U.; Gueugnon, J.F.; Kutter, H.; Sari, C.; Schmidt, H.E.

    1978-01-01

    This paper summarizes the most important fabrication parameters and characterization of fuel and fuel pins obtained during the investigation of uranium-plutonium carbides, oxicarbides, carbonitrides and nitrides in the past years at the European Institute for Transuranium Elements at Karlsruhe. All preparation methods discussed are based on carbothermic reduction of a mechanical blend of uranium-plutonium oxide and carbon powder. General data for carbothermic reduction processes are discussed (influence of starting material, homogeneity, control of degree of reaction, etc). A survey of different preparation methods investigated is given. Limitations with respect to temperature and atmosphere for both carbothermic reduction processes and sintering conditions for the different compounds are summarized. A special preparation process for mixed carbonitrides with low nitrogen content (U,Pu)sub(1-x)Nsub(x) in the range 0.1 0 C to 1400 0 C by means of a modulated electron beam technique. A scheme is proposed, which allows to predict the thermal properties of MX fuels on the basis of their chemical composition and porosity. Preparation, preirradiation characterization and final controls of fuel test pins for pellet and vibrocompacted type of pins are described and the most important data summarized for all advanced fuels irradiated at Dounreay (DN1) and Rapsodie Fast Reactor (DN2) within the TU irradiation programme

  2. Probabilistic safety analysis for nuclear fuel cycle facilities, an exemplary application for a fuel fabrication plant

    International Nuclear Information System (INIS)

    Gmal, B.; Gaenssmantel, G.; Mayer, G.; Moser, E.F.

    2013-01-01

    In order to assess the risk of complex technical systems, the application of the Probabilistic Safety Assessment (PSA) in addition to the Deterministic Safety Analysis becomes of increasing interest. Besides nuclear installations this applies to e. g. chemical plants. A PSA is capable of expanding the basis for the risk assessment and of complementing the conventional deterministic analysis, by which means the existing safety standards of that facility can be improved if necessary. In the available paper, the differences between a PSA for a nuclear power plant and a nuclear fuel cycle facility (NFCF) are discussed in shortness and a basic concept for a PSA for a nuclear fuel cycle facility is described. Furthermore, an exemplary PSA for a partial process in a fuel assembly fabrication facility is described. The underlying data are partially taken from an older German facility, other parts are generic. Moreover, a selected set of reported events corresponding to this partial process is taken as auxiliary data. The investigation of this partial process from the fuel fabrication as an example application shows that PSA methods are in principle applicable to nuclear fuel cycle facilities. Here, the focus is on preventing an initiating event, so that the system analysis is directed to the modeling of fault trees for initiating events. The quantitative results of this exemplary study are given as point values for the average occurrence frequencies. They include large uncertainties because of the limited documentation and data basis available, and thus have only methodological character. While quantitative results are given, further detailed information on process components and process flow is strongly required for robust conclusions with respect to the real process. (authors)

  3. Irradiation-induced creep in fuel compacts for high-temperature reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Veringa, H; Blackstone, R [Stichting Energieonderzoek Centrum Nederland, Petten; Loelgen, R

    1977-01-01

    Restrained shrinkage experiments at neutron fluences up to 3 x 10/sup 21/ n cm/sup -2/ DNE in the temperature range 600 to 1200/sup 0/C were performed on three different dummy coated-particle fuel compacts in the high-flux reactor at Petten. The data were evaluated to obtain the steady-state radiation creep coefficient of the compacts. It was found that, for the materials investigated, the creep coefficient is temperature dependent, but no clear relationship with Young's modulus could be established. Under certain conditions this irradiation-induced plasticity influences the elastic properties, with the concomitant increase of the creep coefficient. This effect coincides with the formation and further opening up of cracks due to stresses caused by irradiation-induced shrinkage of matrix material.

  4. Irradiation-induced creep in fuel compacts for high-temperature reactor applications

    International Nuclear Information System (INIS)

    Veringa, H.; Blackstone, R.; Loelgen, R.

    1977-01-01

    Restrained shrinkage experiments at neutron fluences up to 3 x 10 21 n cm -2 DNE in the temperature range 600 to 1200 0 C were performed on three different dummy coated-particle fuel compacts in the high-flux reactor at Petten. The data were evaluated to obtain the steady-state radiation creep coefficient of the compacts. It was found that, for the materials investigated, the creep coefficient is temperature dependent, but no clear relationship with Young's modulus could be established. Under certain conditions this irradiation-induced plasticity influences the elastic properties, with the concomitant increase of the creep coefficient. This effect coincides with the formation and further opening up of cracks due to stresses caused by irradiation-induced shrinkage of matrix material. (author)

  5. The irradiation induced creep in fuel compact materials for H.T.R. applications

    International Nuclear Information System (INIS)

    Veringa, H.; Blackstone, R.; Loelgen, R.

    1976-01-01

    Restrained shrinkage experiments up to 3 x 10 21 ncm -2 (DNE) in the temperature range of 600-1,200 0 C on three different dummy coated particle fuel compact materials were performed in the High Flux Reactor at Petten, the Netherlands. The data were evaluated to obtain the steady state irradiation creep coefficient of the compacts. It was found that for the materials investigated, the creep coefficient is temperature-dependent, but no clear relationship to the Young's modulus could be established. Under certain conditions, this irradiation-induced plasticity influences the elastic properties, while also the creep coefficient increases. This effect coincides with the formation and further opening of cracks due to stresses caused by irradiation shrinkage of the matrix material. (orig.) [de

  6. Fabrication of U-10wt.%Zr Fuel slug for SFR by Injection Casting

    International Nuclear Information System (INIS)

    Kim, Jong Hwan; Song, Hoon; Kim, Hyung Tae; Ko, Young Mo; Kim, Ki Hwan; Lee, Chan B.

    2013-01-01

    The fabrication technology of metal fuel has been developed by various methods such as rolling, swaging, wire drawing, and co-extrusion, but each of these methods had process limitations requiring an additional subsequent process, and needing the fabrication equipment is complex, which is not favorable for remote use. A practical process of metallic fuel fabrication for an SFR needs to be cost efficient, suitable for remote operation, and capable of mass production while reducing the amount of radioactive waste. Injection casting was chosen as the most promising technique, in the early 1950s, and this technique has been applied to fuel slug fabrication for the Experimental Breeder Reactor-II (EBR-II) driver and the Fast Flux Test Facility (FFTF) fuel pins. Because of the simplistic nature of the process and equipment, compared to other processes examined, this process has been successfully used in a remote operation environment for fueling of the EBR-II reactor. In this study, vacuum injection casting suitable for remote operation has been developed to fabricate metallic fuel for an SFR. Vacuum injection casting technique was developed to fabricate metallic fuel for an SFR. The appearance of the fabricated U-10wt.%Zr fuel was generally sound and the internal integrity was found to be satisfactory through gamma-ray radiography. Minimum fuel losses after casting relative to the initial charge amount of U-10wt.%Zr fuel slugs met the proposed goal of less than 0.1% fuel losses during fabrication. Modifications of the current facility system and advanced casting techniques are underway to produce higher quality fuel slugs

  7. Fabrication of U-10wt.%Zr Fuel slug for SFR by Injection Casting

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Hwan; Song, Hoon; Kim, Hyung Tae; Ko, Young Mo; Kim, Ki Hwan; Lee, Chan B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The fabrication technology of metal fuel has been developed by various methods such as rolling, swaging, wire drawing, and co-extrusion, but each of these methods had process limitations requiring an additional subsequent process, and needing the fabrication equipment is complex, which is not favorable for remote use. A practical process of metallic fuel fabrication for an SFR needs to be cost efficient, suitable for remote operation, and capable of mass production while reducing the amount of radioactive waste. Injection casting was chosen as the most promising technique, in the early 1950s, and this technique has been applied to fuel slug fabrication for the Experimental Breeder Reactor-II (EBR-II) driver and the Fast Flux Test Facility (FFTF) fuel pins. Because of the simplistic nature of the process and equipment, compared to other processes examined, this process has been successfully used in a remote operation environment for fueling of the EBR-II reactor. In this study, vacuum injection casting suitable for remote operation has been developed to fabricate metallic fuel for an SFR. Vacuum injection casting technique was developed to fabricate metallic fuel for an SFR. The appearance of the fabricated U-10wt.%Zr fuel was generally sound and the internal integrity was found to be satisfactory through gamma-ray radiography. Minimum fuel losses after casting relative to the initial charge amount of U-10wt.%Zr fuel slugs met the proposed goal of less than 0.1% fuel losses during fabrication. Modifications of the current facility system and advanced casting techniques are underway to produce higher quality fuel slugs.

  8. Coupled 3D neutronic and thermohydraulic calculations for a compact fuel element with disperse UMo fuel at FRM II

    International Nuclear Information System (INIS)

    Breitkreutz, H.; Roehrmoser, A.; Petry, W.

    2010-01-01

    The newly developed X 2 program system is intended to be used for high-detail 3D calculations on compact research reactor cores. Using this system, the efforts to calculate scenarios for a new fuel element for FRM II using disperse UMo (8wt% Mo, 50% enrichment) are continued. By now, a radial symmetric core model with averaged built-in components for the D 2 O tank is used. Two different scenarios are compared: The minimum fuel density of 7.5 g U/cm 3 and 8.0 g U/cm 3 with 60 days cycle length. In addition, two 'flux loss compensating' scenarios based on 8.0 g U/cm 3 with 10% higher power/longer reactor cycles are regarded. (author)

  9. Functioning of blocks of compacted bentonite in a repository for spent nuclear fuels

    International Nuclear Information System (INIS)

    Boergesson, Lennart; Kalbantner, P.; Sjoeblom, R.

    2001-12-01

    The main purpose of the presented work is to provide The Swedish Nuclear Fuel and Waste Management Company (SKB) with a proposed set of requirements regarding the functioning of the blocks of compacted bentonite. These blocks are intended to constitute the bentonite envelope which after uptake of water will form the buffer between the canister and the rock. The purpose is also to provide a basis for SKB for their direction of the continued development work for the selection of a reference technology and for creating a quality system for the buffer material. No attempts are made in the report to derive the functional requirements. Instead, such requirements are postulated based on realistic scenarios regarding the chain of processes from excavation - transport - preparation of press powder - compaction - handling and emplacement in the deposition hole. It is the strategy of SKB to use a natural material which after the above-mentioned processes forms a buffer with properties which closely resemble those of the original material. This implies that all process steps must be designed in such a way that the properties of the bentonite do not change to any significant degree with respect to the disposal function. The main results in the report are as follows: A set of functional requirements are compiled and presented. These concord with the different descriptions given on the process steps. The requirements are generic and are assessed to be relatively invariant for various operational requirements and process controls. The process chain comprising excavation of bentonite - transport - preparation of press powder - compaction - handling and emplacement are explained. The presentations of functional requirements and processes are foreseen to constitute a basis for a comparison between uniaxial and isostatic compaction and can be an important basis for SKB's quality work. The development of cracks in the bentonite blocks has been identified as an important aspect for the

  10. Fabrication procedures for manufacturing High Flux Isotope Reactor fuel elements - 2

    International Nuclear Information System (INIS)

    Knight, R.W.; Morin, R.A.

    1999-01-01

    The original fabrication procedures written in 1968 delineated the manufacturing procedures at that time. Since 1968, there have been a number of procedural changes. This rewrite of the fabrication procedures incorporates these changes. The entire fuel core of this reactor is made up of two fuel elements. Each element consists of one annular array of fuel plates. These annuli are identified as the inner and outer fuel elements, since one fits inside the other. The inner element consists of 171 identical fuel plates, and the outer element contains 369 identical fuel plates differing slightly from those in the inner element. Both sets of fuel plates contain U 3 O 8 powder as the fuel, dispersed in an aluminum powder matrix and clad with aluminum. Procedures for manufacturing and inspection of the fuel elements are described and illustrated

  11. Fabrication procedures for manufacturing High Flux Isotope Reactor fuel elements - 2

    Energy Technology Data Exchange (ETDEWEB)

    Knight, R.W.; Morin, R.A.

    1999-12-01

    The original fabrication procedures written in 1968 delineated the manufacturing procedures at that time. Since 1968, there have been a number of procedural changes. This rewrite of the fabrication procedures incorporates these changes. The entire fuel core of this reactor is made up of two fuel elements. Each element consists of one annular array of fuel plates. These annuli are identified as the inner and outer fuel elements, since one fits inside the other. The inner element consists of 171 identical fuel plates, and the outer element contains 369 identical fuel plates differing slightly from those in the inner element. Both sets of fuel plates contain U{sub 3}O{sub 8} powder as the fuel, dispersed in an aluminum powder matrix and clad with aluminum. Procedures for manufacturing and inspection of the fuel elements are described and illustrated.

  12. A fast and compact Fuel Rod Performance Simulator code for predictive, interpretive and educational purpose

    International Nuclear Information System (INIS)

    Lorenzen, J.

    1990-01-01

    A new Fuel rod Performance Simulator code FRPS has been developed, tested and benchmarked and is now available in different versions. The user may choose between the batch version INTERPIN producing results in form of listings or beforehand defined plots, or the interactive simulator code SIMSIM which is stepping through a power history under the control of user. Both versions are presently running on minicomputers and PC:s using EGA-Graphics. A third version is the implementation in a Studsvik Compact Simulator with FRPS being one of its various modules receiving the dynamic inputs from the simulator

  13. Development, Fabrication and Characterization of Fuels for Indian Fast Reactor Programme

    International Nuclear Information System (INIS)

    Kumar, Arun

    2013-01-01

    Development of Fast Reactor fuels in India started in early Seventies. The successful development of Mixed Carbide fuels for FBTR and MOX fuel for PFBR have given confidence in manufacture of fuels for Fast Reactors. Effort is being put to develop high Breeding Ratio Metallic fuel (binary/ternary). Few fuel pins have been fabricated and is under test irradiation. However, this is only a beginning and complete fuel cycle activities are under development. Metal fuelled Fast Reactors will provide high growth rate in Indian Fast Reactor programme

  14. Induction plasma deposition technology for nuclear fuel fabrication

    International Nuclear Information System (INIS)

    Jung, I. H.; Bae, K. K.; Lee, J. W.; Kim, T. K.; Yang, M. S.

    1998-01-01

    A study on induction plasma deposition with ceramic materials, yttria-stabilized-zirconia ZrO 2 -Y 2 O 3 (m.p. 2640 degree C), was conducted with a view of developing a new method for nuclear fuel fabrication. Before making dense pellets of more than 96%T.D., the spraying condition was optimized through the process parameters, such as chamber pressure, plasma plate power, powder spraying distance, sheath gas composition, probe position, particle size and powders of different morphology. The results with a 5mm thick deposit on rectangular planar graphite substrates showed a 97.11% theoretical density when the sheath gas flow rate was Ar/H 2 120/20 l/min, probe position 8cm, particle size -75 μm and spraying distance 22cm by AMDRY146 powder. The degree of influence of the main effects on density were powder morphology, particle size, sheath gas composition, plate power and spraying distance, in that order. Among the two parameter interactions, the sheath gas composition and chamber pressure affects density greatly. By using the multi-pellets mold of wheel type, the pellet density did not exceed 94%T.D., owing to the spraying angle

  15. An Overview of Current and Past W-UO[2] CERMET Fuel Fabrication Technology

    International Nuclear Information System (INIS)

    Douglas E. Burkes; Daniel M. Wachs; James E. Werner; Steven D. Howe

    2007-01-01

    Studies dating back to the late 1940s performed by a number of different organizations and laboratories have established the major advantages of Nuclear Thermal Propulsion (NTP) systems, particularly for manned missions. A number of NTP projects have been initiated since this time; none have had any sustained fuel development work that appreciably contributed to fuel fabrication or performance data from this era. As interest in these missions returns and previous space nuclear power researchers begin to retire, fuel fabrication technologies must be revisited, so that established technologies can be transferred to young researchers seamlessly and updated, more advanced processes can be employed to develop successful NTP fuels. CERMET fuels, specifically W-UO2, are of particular interest to the next generation NTP plans since these fuels have shown significant advantages over other fuel types, such as relatively high burnup, no significant failures under severe transient conditions, capability of accommodating a large fission product inventory during irradiation and compatibility with flowing hot hydrogen. Examples of previous fabrication routes involved with CERMET fuels include hot isostatic pressing (HIPing) and press and sinter, whereas newer technologies, such as spark plasma sintering, combustion synthesis and microsphere fabrication might be well suited to produce high quality, effective fuel elements. These advanced technologies may address common issues with CERMET fuels, such as grain growth, ductile to brittle transition temperature and UO2 stoichiometry, more effectively than the commonly accepted 'traditional' fabrication routes. Bonding of fuel elements, especially if the fabrication process demands production of smaller element segments, must be investigated. Advanced brazing techniques and compounds are now available that could produce a higher quality bond segment with increased ease in joining. This paper will briefly address the history of CERMET

  16. Ultra-compact broadband higher order-mode pass filter fabricated in a silicon waveguide for multimode photonics

    DEFF Research Database (Denmark)

    Guan, Xiaowei; Ding, Yunhong; Frandsen, Lars Hagedorn

    2015-01-01

    An ultra-compact and broadband higher order-mode pass filter in a 1D photonic crystal silicon waveguide is proposed and experimentally demonstrated. The photonic crystal is designed for the lower order mode to work in the photonic band gap, while the higher order mode is located in the air band....... Consequently, light on the lower order mode is prohibited to pass through the filter, while light on a higher order mode can be converted to a Bloch mode in the photonic crystal and pass through the filter with low insertion loss. As an example, we fabricate a similar to 15-mu m-long first-order-mode pass...

  17. Development of advanced spent fuel management process. The fabrication and oxidation behavior of simulated metallized spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ro, Seung Gy; Shin, Y.J.; You, G.S.; Joo, J.S.; Min, D.K.; Chun, Y.B.; Lee, E.P.; Seo, H.S.; Ahn, S.B

    1999-03-01

    The simulated metallized spent fuel ingots were fabricated and evaluated the oxidation rates and the activation energies under several temperature conditions to develop an advanced spent fuel management process. It was also checked the alloying characteristics of the some elements with metal uranium. (Author). 3 refs., 1 tab., 36 figs.

  18. Main trends and content of works on fabrication of fuel rods with MOX fuel for the WWER-1000 reactor

    International Nuclear Information System (INIS)

    Tsykanov, V.A.; Golovanov, V.N.; Mayorshin, A.A.; Yurchenko, A.D.; Ilyenko, S.A.; Syuzev, V.N.

    2000-01-01

    The main trends of production of pellet MOX-fuel for the WWER reactors using the trial-experimental equipment at SSC RF RIAR are set forth. The main realized parameters of fabrication of MOX-fuel pellets are presented. The content of the reactor tests program is considered with allowance for their licensing requirements for the WWER reactors. (author)

  19. A review on the development of the MOX fuel fabrication technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, See Hyung; Lee, Yung Woo; Sohn, Dong Sung; Yang, Myung Seung; Bae, Kee Kwang; Nah, Sang Hoh; Kim, Han Soo; Lee, Jung Won; Kim, Bong Koo; Song, Keun Woo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    Development of the Mixed Oxide(MOX) fuel fabrication technology was reviewed in this study. Firstly, the feasibility of Pu utilization for nuclear fuel was analyzed by comparison of nuclear characteristics between U and Pu. Secondly, the feature and problem of processes developed so far was revealed and analyzed by reviewing each process in terms of technical difficulties and in connection with the pellet characteristics. Also, fabrication facilities currently existing were analyzed to understand particularities and circumstances in view of Pu handling, and finally, in-reactor behaviors of MOX fuel was compared with those of U fuel to understand how the Pu has an effect on fuel was compared with those of U fuel to understand how the Pu has an effect on fuel pellet structure and fuel rod. 73 figs., 15 tabs., 58 refs. (Author).

  20. History of research reactor fuel fabrication at Babcock and Wilcox

    International Nuclear Information System (INIS)

    Freim, James B.

    1983-01-01

    B and W Research Reactor Fuel Element facility at Lynchburg, Virginia now produces national laboratory and university fuel assemblies. The Company's 201000 square foot facility is devoted entirely to supplying research fuel and related products. B and W re-entered the research reactor fuel market in 1981

  1. AECL's progress in developing the DUPIC fuel fabrication process

    International Nuclear Information System (INIS)

    Sullivan, J.D.; Cox, D.S.

    1995-01-01

    Spent Pressurized Water Reactor (PWR) fuel can be used directly in CANDU reactors without the need for wet chemical reprocessing or reenrichment. Considerable experimental progress has been made in verifying the practicality of this fuel cycle, including hot-cell experiments using spent PWR fuels and out-cell trials using surrogate fuels. This paper describes the current status of these experiments. (author)

  2. Design and fuel fabrication processes for the AC-3 mixed-carbide irradiation test

    International Nuclear Information System (INIS)

    Latimer, T.W.; Chidester, K.M.; Stratton, R.W.; Ledergerber, G.; Ingold, F.

    1992-01-01

    The AC-3 test was a cooperative U.S./Swiss irradiation test of 91 wire-wrapped helium-bonded U-20% Pu carbide fuel pins irradiated to 8.3 at % peak burnup in the Fast Flux Test Facility. The test consisted of 25 pins that contained spherepac fuel fabricated by the Paul Scherrer Institute (PSI) and 66 pins that contained pelletized fuel fabricated by the Los Alamos National Laboratory. Design of AC-3 by LANL and PSI was begun in 1981, the fuel pins were fabricated from 1983 to 1985, and the test was irradiated from 1986 to 1988. The principal objective of the AC-3 test was to compare the irradiation performance of mixed-carbide fuel pins that contained either pelletized or sphere-pac fuel at prototypic fluence and burnup levels for a fast breeder reactor

  3. Basic tendencies of restructured UO2 nuclear fuels fabrication industry for water-moderated reactors

    International Nuclear Information System (INIS)

    Makhova, V.A.; Bokshitskij, V.I.; Blinova, I.V.

    2002-01-01

    Processes of reformation and consolidation of firms and frontier nuclear fuels fabrication industry associated with processes of globalization and deregulation of electric power market are analyzed. Current state of nuclear fuel market and basic factors influenced on the market are presented. The role of nuclear fuel in increasing competition of NPP and fundamental directions of innovation action on the creation of perspective kinds of fuel were considered [ru

  4. Fabrication and characterization of powder metallurgy tantalum components prepared by high compaction pressure technique

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youngmoo [Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Agency for Defense Development, Yuseong, P.O. Box 35, Yuseong-gu, Daejeon 34186, Republic of Korea. (Korea, Republic of); Lee, Dongju [Korea Atomic Energy Research Institute, 111 Daedeok-daero, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Hwang, Jaewon [Samsung Electronics, 129 Samsung-ro, Youngtong-gu, Suwon 16677 (Korea, Republic of); Ryu, Ho Jin, E-mail: hojinryu@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Hong, Soon Hyung, E-mail: shhong@kaist.ac.kr [Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of)

    2016-04-15

    The present study has investigated the consolidation behaviors of tantalum powders during compaction and sintering, and the characteristics of sintered components. For die compaction, the densification behaviors of the powders are simulated by finite element analyses based on the yield function proposed by Shima and Oyane. Accordingly, the green density distribution for coarser particles is predicted to be more uniform because they exhibits higher initial relative tap density owing to lower interparticle friction. It is also found that cold isostatic pressing is capable of producing higher dense compacts compared to the die pressing. However, unlike the compaction behavior, the sintered density of smaller particles is found to be higher than those of coarser ones owing to their higher specific surface area. The maximum sintered density was found to be 0.96 of theoretical density where smaller particles were pressed isostatically at 400 MPa followed by sintering at 2000 °C. Moreover, the effects of processing conditions on grain size and texture were also investigated. The average grain size of the sintered specimen is 30.29 μm and its texture is less than 2 times random intensity. Consequently, it is concluded that the higher pressure compaction technique is beneficial to produce high dense and texture-free tantalum components compared to hot pressing and spark plasma sintering. - Highlights: • Higher Ta density is obtained from higher pressure and sintering temperature. • High compaction method enables P/M Ta to achieve the density of 16.00 g·cm{sup −3}. • A P/M Ta component with fine microstructure and random orientation is developed.

  5. A review on the development of the advanced fuel fabrication technology

    International Nuclear Information System (INIS)

    Lee, Jung Won; Lee, Yung Woo; Sohn, Dong Sung; Yang, Myung Seung; Bae, Kee Kwang; Nah, Sang Hoh; Kim, Han Soo; Kim, Bong Koo; Song, Keun Woo; Kim, See Hyung

    1995-07-01

    In this state-of art report, the development status of the advanced nuclear fuel was investigated. The current fabrication technology for coated particle fuel and non-oxide fuel such as sol-gel technology, coating technology, and carbothermic reduction reaction has also been examined. In the view point of inherent safety and efficiency in the operation of power plant, the coated particle fuel will keep going on its reputation as nuclear fuel for a high temperature gas cooled reactor, and the nitride fuel is very prospective for the next liquid metal fast breeder reactor. 43 figs., 17 tabs., 96 refs. (Author)

  6. A review on the development of the advanced fuel fabrication technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Won; Lee, Yung Woo; Sohn, Dong Sung; Yang, Myung Seung; Bae, Kee Kwang; Nah, Sang Hoh; Kim, Han Soo; Kim, Bong Koo; Song, Keun Woo; Kim, See Hyung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    In this state-of art report, the development status of the advanced nuclear fuel was investigated. The current fabrication technology for coated particle fuel and non-oxide fuel such as sol-gel technology, coating technology, and carbothermic reduction reaction has also been examined. In the view point of inherent safety and efficiency in the operation of power plant, the coated particle fuel will keep going on its reputation as nuclear fuel for a high temperature gas cooled reactor, and the nitride fuel is very prospective for the next liquid metal fast breeder reactor. 43 figs., 17 tabs., 96 refs. (Author).

  7. Fabrication of MOX fuel element clusters for irradiation in PWL, CIRUS

    International Nuclear Information System (INIS)

    Roy, P.R.; Purushotham, D.S.C.; Majumdar, S.

    1983-01-01

    Three clusters, each containing 6 zircaloy-2 clad short length fuel elements of either MOX or UO 2 fuel pellets were fabricated for irradiation in pressurized water loop of CIRUS. The major objectives of the programme were: (a) to optimize the various fabrication parameters for developing a flow sheet for MOX fuel element fabrication; (b) to study the performance of the MOX fuel elements at a peak heat flux of 110 W/cm 2 ; and (c) to study the effect of various fuel pellet design changes on the behaviour of the fuel element under irradiation. Two clusters, one each of UO 2 and MOX, have been successfully irradiated to the required burn-up level and are now awaiting post irradiation examinations. The third MOX cluster is still undergoing irradiation. Fabrication of these fuel elements involved considerable amount of developing work related to the fabrication of the MOX fuel pellets and the element welding technique and is reported in detail in this report. (author)

  8. Fuel canister and blockage pin fabrication for SLSF Experiment P4

    International Nuclear Information System (INIS)

    Rhude, H.V.; Folkrod, J.R.; Noland, R.A.; Schaus, P.S.; Benecke, M.W.; Delucchi, T.A.

    1983-01-01

    As part of its fast breeder reactor safety research program, Argonne National Laboratory (ANL) has conducted an experiment (SLSF Experiment P4) to determine the extent of fuel-failure propagation resulting from the release of molten fuel from one or more heat-generating fuel canisters. The test conditions consisted of 37 full-length FTR fuel pins operating at FTR rated core nominal peak fuel/reduced coolant conditions. Thirty-four of the the fuel pins were prototypical FTR mixed-oxide fuel pins. The other three fuel pins were fabricated with a mid-core section having an enlarged canister containing fully enriched UO 2 . Two of the canisters were cylindrical and one was fluted. The cylindrical canisters were designed to fail and release molten fuel into the 37-pin fuel cluster at near full power

  9. Development of an engineered safeguards system concept for a mixed-oxide fuel fabrication facility

    International Nuclear Information System (INIS)

    Chapman, L.D.; de Montmollin, J.M.; Deveney, J.E.; Fienning, W.C.; Hickman, J.W.; Watkins, L.D.; Winblad, A.E.

    1976-08-01

    An initial concept of an Engineered Safeguards System for a representative commercial mixed-oxide fuel fabrication facility is presented. Computer simulation techniques for evaluation and further development of the concept are described. An outline of future activity is included

  10. Fabrication and Installation of Radiation Shielded Spent Fuel Fusion System

    International Nuclear Information System (INIS)

    Park, Soon Dal; Park, Yang Soon; Kim, Jong Goo; Ha, Yeong Keong; Song, Kyu Seok

    2010-02-01

    Most of the generated fission gases are retained in the fuel matrix in supersaturated state, thus alter the original physicochemical properties of the fuel. And some of them are released into free volume of a fuel rod and that cause internal pressure increase of a fuel rod. Furthermore, as extending fuel burnup, the data on fission gas generation(FGG) and fission gas release(FGR) are considered very important for fuel safety investigation. Consequently, it is required to establish an experimental facility for handling of highly radioactive sample and to develop an analytical technology for measurement of retained fission gas in a spent fuel. This report describes not only on the construction of a shielded glove box which can handle highly radioactive materials but also on the modifications and instrumentations of spent fuel fusion facilities and collection apparatuses of retained fission gas

  11. Improvements in the consistency of fabrication and the reliability of nuclear fuels through quality assurance

    International Nuclear Information System (INIS)

    Sifferlen, R.

    1976-01-01

    By establishing correlations between rejection level and fabrication parameters, quality assurance can guide corrective action for improving the consistency of fabrication and the reliability of fuel elements. The author cites examples relating to the quality of the uranium in metallic fuels, the influence of the parent metal on the welding of zirconium alloys, the behaviour of the springs inside the cladding during the welding of plugs and the behaviour of uranium oxide pellets. (author)

  12. Plant overview of JNFL MOX fuel fabrication plant (J-MOX)

    International Nuclear Information System (INIS)

    Hiruta, Kazuhiko; Suzuki, Masataka; Shimizu, Junji; Suzuki, Kazumi; Yamamoto, Yutaka; Deguchi, Morimoto; Fujimaki, Kazunori

    2005-01-01

    In April 2005, JNFL submitted METI an application for the permission of MOX fuel fabrication business for JNFL MOX Fuel Fabrication Plant (J-MOX). Accordingly, safeguards formalities and discussion with the Agency have been also started for J-MOX as an official project. This report describes J-MOX plant overview and also presents outline of J-MOX by focusing on safeguards features and planned material accountancy method. (author)

  13. Application of Self-Propagating High Temperature Synthesis to the Fabrication of Actinide Bearing Nitride and Other Ceramic Nuclear Fuels

    International Nuclear Information System (INIS)

    Moore, John J.; Reigel, Marissa M.; Donohoue, Collin D.

    2009-01-01

    The project uses an exothermic combustion synthesis reaction, termed self-propagating high-temperature synthesis (SHS), to produce high quality, reproducible nitride fuels and other ceramic type nuclear fuels (cercers and cermets, etc.) in conjunction with the fabrication of transmutation fuels. The major research objective of the project is determining the fundamental SHS processing parameters by first using manganese as a surrogate for americium to produce dense Zr-Mn-N ceramic compounds. These fundamental principles will then be transferred to the production of dense Zr-Am-N ceramic materials. A further research objective in the research program is generating fundamental SHS processing data to the synthesis of (i) Pu-Am-Zr-N and (ii) U-Pu-Am-N ceramic fuels. In this case, Ce will be used as the surrogate for Pu, Mn as the surrogate for Am, and depleted uranium as the surrogate for U. Once sufficient fundamental data has been determined for these surrogate systems, the information will be transferred to Idaho National Laboratory (INL) for synthesis of Zr-Am-N, Pu-Am-Zr-N and U-Pu-Am-N ceramic fuels. The high vapor pressures of americium (Am) and americium nitride (AmN) are cause for concern in producing nitride ceramic nuclear fuel that contains Am. Along with the problem of Am retention during the sintering phases of current processing methods, are additional concerns of producing a consistent product of desirable homogeneity, density and porosity. Similar difficulties have been experienced during the laboratory scale process development stage of producing metal alloys containing Am wherein compact powder sintering methods had to be abandoned. Therefore, there is an urgent need to develop a low-temperature or low-heat fuel fabrication process for the synthesis of Am-containing ceramic fuels. Self-propagating high temperature synthesis (SHS), also called combustion synthesis, offers such an alternative process for the synthesis of Am nitride fuels. Although SHS

  14. Babcock and Wilcox plate fabrication experience with uranium silicide spherical fuel

    International Nuclear Information System (INIS)

    Todd, Lawrence E.; Pace, Brett W.

    1996-01-01

    This report is written to present the fuel fabrication experience of Babcock and Wilcox using atomized spherical uranium silicide powder. The intent is to demonstrate the ability to fabricate fuel plates using spherical powder and to provide useful information proceeding into the next phase of work using this type of fuel. The limited quantity of resources- spherical powder and time, did not allow for much process optimizing in this work scope. However, the information contained within provides optimism for the future of spherical uranium silicide fuel plate fabrication at Babcock and Wilcox.The success of assembling fuel elements with spherical powder will enable Babcock and Wilcox to reduce overall costs to its customers while still maintaining our reputation for providing high quality research and test reactor products. (author)

  15. Prediction of dose and field mapping around a shielded plutonium fuel fabrication glovebox

    International Nuclear Information System (INIS)

    Strode, J.N.; Soldat, K.L.; Brackenbush, L.W.

    1984-01-01

    Westinghouse Hanford Company, as the Department of Energy's (DOE) prime contractor for the operation of the Hanford Engineering Development Laboratory (HEDL), is responsible for the development of the Secure Automated Fabrication (SAF) Line which is to be installed in the recently constructed Fuels and Materials Examination Facility (FMEF). The SAF Line will fabricate mixed-oxide (MOX) fuel pins for the Fast Flux Test Facility (FFTF) at an annual throughput rate of six (6) metric tons (MT) of MOX. The SAF Line will also demonstrate the automated manufacture of fuel pins on a production-scale. This paper describes some of the techniques used to reduce personnel exposure on the SAF Line, as well as the prediction and field mapping of doses from a shielded fuel fabrication glovebox. Tables are also presented from which exposure rate estimates can be made for plutonium recovered from fuels having different isotopic compositions as a result of varied burnup

  16. Structure, conduct, and sustainability of the international low-enriched fuel fabrication industry

    International Nuclear Information System (INIS)

    Rothwell, Geoffrey

    2008-01-01

    This paper examines the cost structures of fabricating Low-Enriched Uranium fuel (LEU, enriched to 5% enrichment) light water reactor fuels. The LEU industry is decades old, and (except for high entry cost, i.e., the cost of designing and licensing a fuel fabrication facility and its fuel), labor and additional fabrication lines can be added by industry incumbents at Nth-of-a-Kind cost to the maximum capacity allowed by the license. On the other hand, new entrants face higher First-of-a-Kind costs and high new-facility licensing costs, increasing the scale required for entry thus discouraging small scale entry by countries with only a few nuclear power plants. Therefore, the industry appears to be competitive with sustainable investment in fuel-cycle states, and structural barriers-to-entry increase its proliferation resistance. (author)

  17. Economic Analysis on Direct Use of Spent Pressurized Water Reactor Fuel in CANDU Reactors - I: DUPIC Fuel Fabrication Cost

    International Nuclear Information System (INIS)

    Choi, Hangbok; Ko, Won Il; Yang, Myung Seung

    2001-01-01

    A preliminary conceptual design of a Direct Use of spent Pressurized water reactor (PWR) fuel In Canada deuterium uranium (CANDU) reactors (DUPIC) fuel fabrication plant was studied, which annually converts spent PWR fuel of 400 tonnes heavy element (HE) into CANDU fuel. The capital and operating costs were estimated from the viewpoint of conceptual design. Assuming that the annual discount rate is 5% during the construction (5 yr) and operation period (40 yr) and contingency is 25% of the capital cost, the levelized unit cost (LUC) of DUPIC fuel fabrication was estimated to be 616 $/kg HE, which is mostly governed by annual operation and maintenance costs that correspond to 63% of LUC. Among the operation and maintenance cost components being considered, the waste disposal cost has the dominant effect on LUC (∼49%). From sensitivity analyses of production capacity, discount rate, and contingency, it was found that the production capacity of the plant is the major parameter that affects the LUC

  18. Study on the properties of the fuel compact for High Temperature Gas-cooled Reactor

    International Nuclear Information System (INIS)

    Lee, Chung-yong; Lee, Sung-yong; Choi, Min-young; Lee, Seung-jae; Jo, Young-ho; Lee, Young-woo; Cho, Moon-sung

    2015-01-01

    High Temperature Gas-cooled Reactors (HTGR), one of the Gen-IV reactors, have been using the fuel element which is manufactured by the graphite matrix, surrounding Tristructural-isotropic (TRISO)-coated Uranium particles. Factors with these characteristics effecting on the matrix of fuel compact are chosen and their impacts on the properties are studied. The fuel elements are considered with two types of concepts for HTGR, which are the block type reactor and the pebble bed reactor. In this paper, the cylinder-formed fuel element for the block type reactor is focused on, which consists of the large part of graphite matrix. One of the most important properties of the graphite matrix is the mechanical strength with the high reliability because the graphite matrix should be enabled to protect the TRISO particles from the irradiation environment and the impact from the outside. In this study, the three kinds of candidate graphites and the two kinds of candidate binder (Phenol and Polyvinyl butyral) were chosen and mixed with each other, formed and heated to measure mechanical properties. The objective of this research is to optimize the materials and composition of the mixture and the forming process by evaluating the mechanical properties before/after carbonization and heat treatment. From the mechanical test results, the mechanical properties of graphite pellets was related to the various conditions such as the contents and kinds of binder, the kinds of graphite and the heat treatments. In the result of the compressive strength and Vicker's hardness, the 10 wt% phenol binder added R+S graphite pellet was relatively higher mechanical properties than other pellets. The contents of Phenol binder, the kinds of graphite powder and the temperature of carbonization and heat treatment are considered important factors for the properties. To optimize the mechanical properties of fuel elements, the role of binders and the properties of graphites will be investigated as

  19. Fabrication of the fuel elements cladding for utilization in the fluidized bed nuclear reactor

    International Nuclear Information System (INIS)

    Schaeffer, L.; Sefidvash, F.

    1986-01-01

    A method for the fabrication of cladding of the spherical fuel elements for the utilization in the fluidized bed nuclear reactor is presented. Some prelimminary experiments were performed to adopt a method which adapt itself to mass production with the desired high quality. Still methods for cladding fabrication are under study. (Author) [pt

  20. Key differences in the fabrication of US and German TRISO-coated particle fuel, and their implications on fuel performance

    International Nuclear Information System (INIS)

    Petti, D.A.; Buongiorno, J.; Maki, J.T.; Miller, G.K.; Hobbins, R.R.

    2002-01-01

    Historically, the irradiation performance of TRISO-coated gas reactor particle fuel in Germany has been superior to that in the US. German fuel generally displayed in-pile gas release values that were three orders of magnitude lower than US fuel. Thus, we have critically examined the TRISO-coated fuel fabrication processes in the US and German and the associated irradiation database with a goal of understanding why the German fuel behaves acceptably, why the US fuel has not faired as well, and what process/production parameters impart the reliable performance to this fuel form. The postirradiation examination results are also reviewed to identify failure mechanisms that may be the cause of the poorer US irradiation performance. This comparison will help determine the roles that particle fuel process/product attributes and irradiation conditions (burnup, fast neutron fluence, temperature, degree of acceleration, power per particle) have on the behavior of the fuel during irradiation and provide a more quantitative linkage between acceptable processing parameters, as-fabricated fuel properties and subsequent in-reactor performance. (author)

  1. Hydrogen from methanol for fuel cells in mobile systems: development of a compact reformer

    Energy Technology Data Exchange (ETDEWEB)

    Hoehlein, B [Forschungszentrum Juelich GmbH (Germany); Boe, M [H. Topsoee A/S, Lyngby (Denmark); Boegild-Hansen, J [H. Topsoee A/S, Lyngby (Denmark); Broeckerhoff, P [Forschungszentrum Juelich GmbH (Germany); Colsman, G [Forschungszentrum Juelich GmbH (Germany); Emonts, B [Forschungszentrum Juelich GmbH (Germany); Menzer, R [Forschungszentrum Juelich GmbH (Germany); Riedel, E

    1996-07-01

    On-board generation of hydrogen from methanol with a reformer in connection with the use of a proton-exchange membrane fuel cell (PEMFC) is an attractive option for a passenger car drive. Special considerations are required to obtain low weight and volume. Furthermore, the PEMFC of today cannot tolerate more than 10 ppm of carbon monoxide in the fuel. Therefore a gas conditioning step is needed after the methanol reformer. Our main research activities focus on the conceptual design of a drive system for a passenger car with methanol reformer and PEMFC: Engineering studies with regard to different aspects of this design including reformer, catalytic burner, gas conditioning, balances of the fuel cycles and basic design of a compact methanol reformer. The work described here was carried out within the framework of a JOULE II project of the European Union (1993-1995). Extensive experimental studies have been carried out at the Forschungszentrum Juelich GmbH (KFA) in Germany and at Haldor Topsoee A/S in Denmark. (orig.)

  2. Transport and leaching of technetium and uranium from spent UO2 fuel in compacted bentonite clay

    International Nuclear Information System (INIS)

    Ramebaeck, H.; Albinsson, Y.; Skaalberg, M.; Eklund, U.B.; Kjellberg, L.; Werme, L.

    2000-01-01

    The transport properties of Tc and U in compacted bentonite clay and the leaching behaviour of these elements from spent nuclear fuel in the same system were investigated. Pieces of spent UO 2 fuel were embedded in bentonite clay (ρ d =2100 kg/m 3 ). A low saline synthetic groundwater was used as the aqueous phase. After certain experimental times, the bentonite clay was cut into 0.1 mm thick slices, which were analysed for their content of Tc and U. Measurements were made using inductively coupled plasma mass spectrometry. Tc analysis comprised chemical separation. The analysis of U was done by means of detecting 236 U, since the natural content of U in bentonite clay made it impossible to distinguish between U originating from the fuel and the clay. The influence of different additives mixed into the clay was studied. The results showed an influence on both transport and leaching behaviour when metallic Fe was mixed into the clay. This indicates that Tc and U are reduced to their lower oxidation states as a result of this additive

  3. Cost evaluation of a commercial-scale DUPIC fuel fabrication facility (Part I) -Summary

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Choi, Hang Bok; Yang, Myung Seung [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-08-01

    A conceptual design of a commercial scale DUPIC fuel fabrication facility was initiated to provide some insights into the costs associated with construction, operation, and decommissioning. The primary conclusion of this report is that it is feasible to design, license, construct, test, and operate a facility that will process 400 MTHE/yr of spent PWR fuel and reconfigure the fuel into CANDU fuel bundles at a reasonable unit cost of the fuel material. Although DUPIC fuel fabrication by vibropacking method is clearly cheaper than that of the pellet method, the feasibility of vibropac technology for DUPIC fuel fabrication and use of vibroac fuel in CANDU reactors may has to be studied in depth in order to use as an alternative to the conventional pellet fuel method. Especially, there are some questions on meeting the CANDU requirements in thermal and mechanical terms as well as density of fuel. Wherever possible, this report used representative costs of currently available technologies as the bases for cost estimation. It should also be noted that the conceptual design and cost information contained in this report was extracted from the public domain and general open literature. Later studies have to focus on other important areas of concern such as safety, security, safeguards, process optimization etc. 7 figs., 6 tabs. (Author)

  4. Simulation of facility operations and materials accounting for a combined reprocessing/MOX fuel fabrication facility

    International Nuclear Information System (INIS)

    Coulter, C.A.; Whiteson, R.; Zardecki, A.

    1991-01-01

    We are developing a computer model of facility operations and nuclear materials accounting for a facility that reprocesses spent fuel and fabricates mixed oxide (MOX) fuel rods and assemblies from the recovered uranium and plutonium. The model will be used to determine the effectiveness of various materials measurement strategies for the facility and, ultimately, of other facility safeguards functions as well. This portion of the facility consists of a spent fuel storage pond, fuel shear, dissolver, clarifier, three solvent-extraction stages with uranium-plutonium separation after the first stage, and product concentrators. In this facility area mixed oxide is formed into pellets, the pellets are loaded into fuel rods, and the fuel rods are fabricated into fuel assemblies. These two facility sections are connected by a MOX conversion line in which the uranium and plutonium solutions from reprocessing are converted to mixed oxide. The model of the intermediate MOX conversion line used in the model is based on a design provided by Mike Ehinger of Oak Ridge National Laboratory (private communication). An initial version of the simulation model has been developed for the entire MOX conversion and fuel fabrication sections of the reprocessing/MOX fuel fabrication facility, and this model has been used to obtain inventory difference variance estimates for those sections of the facility. A significant fraction of the data files for the fuel reprocessing section have been developed, but these data files are not yet complete enough to permit simulation of reprocessing operations in the facility. Accordingly, the discussion in the following sections is restricted to the MOX conversion and fuel fabrication lines. 3 tabs

  5. Structural design concept and static analysis of CANDU spent fuel compact dry storage system

    International Nuclear Information System (INIS)

    Choi, K. S.; Yang, K. H.; Paek, C. R.; Jung, J. S.; Lee, H. Y.

    2003-01-01

    In this study, an structural design concept on CANDU spent fuel compact dry storage system MACSTOR/KN-400 module has been established with a view to optimally design the structural members of the system. Design loads, loading combination and structural safety criteria of the module were reviewed assuming W olsung Site. The static analysis of the module showed that compressive stress concentration due to dead load and live load occurred around the center of roof slab. Maximum stress resulted from dead load is about twice as much as the stress from live load, and structural behavior of module caused by wind load was not significant. The static analysis results will have influence on the reinforcement bar design of structural members with other structural analyses

  6. Fabrication of Metallic Fuel Slugs for Irradiation Experiments in Fast Breeder Test Reactor

    International Nuclear Information System (INIS)

    Saify, M.T.; Jha, S.K.; Abdulla, K.K.; Kumar, Arun; Prasad, G.J.

    2013-01-01

    Advantages of Metallic fuels for future FBR: → High heavy metal atom density; → Higher thermal conductivity at room temperature that increases with temperature; → Metal fuels can be relatively easily fabricated with close dimensional tolerances; → They have excellent compatibility with liquid metal coolants

  7. The Fabrication Problem Of U3Si2-Al Fuel With Uranium High Loading

    International Nuclear Information System (INIS)

    Supardjo

    1996-01-01

    The quality of U 3 Si 2 -Al dispersion fuel product is the main aim for each fabricator. Low loading of uranium fuel element is easily fabricated, but with the increased, uranium loading, homogeneity of uranium distribution is difficult to achieve and it always formed white spots, blister, and dogboning in the fuel plates. The problem can be eliminated by the increasing treatment of the fuel/Al powder. The precise selection of fuel/Al particles diameter is needed indeed to make easier in the homogeneous process of powder and the porosities arrangement in the fuel plates. The increasing of uranium loading at constant meat thickness will increase the meat hardness, therefore to withdraw the dogboning forming, the use of harder cladding materials is necessity

  8. Fabrication and testing of uranium nitride fuel for space power reactors

    Science.gov (United States)

    Matthews, R. B.; Chidester, K. M.; Hoth, C. W.; Mason, R. E.; Petty, R. L.

    1988-02-01

    Uranium nitride fuel was selected for previous space power reactors because of its attractive thermal and physical properties; however, all UN fabrication and testing activities were terminated over ten years ago. An accelerated irradiation test, SP-1, was designed to demonstrate the irradiation performance of Nb-1 Zr clad UN fuel pins for the SP-100 program. A carbothermic-reduction/nitriding process was developed to synthesize UN powders. These powders were fabricated into fuel pellets by conventional cold-pressing and sintering. The pellets were loaded into Nb-1 Zr cladding tubes, irradiated in a fast-test reactor, and destructively examined after 0.8 at% burnup. Preliminary postirradiation examination (PIE) results show that the fuel pins behaved as designed. Fuel swelling, fission-gas release, and microstructural data are presented, and suggestions to enhance the reliability of UN fuel pins are discussed.

  9. Development of automation and remotisation systems for fabrication of (Th-233U)O2 MOX fuel for AHWR

    International Nuclear Information System (INIS)

    Saraswat, Anupam; Danny, K.M.; Chakraborty, S.; Somayajulu, P.S.; Kumar, Arun; Mittal, R.; Prasad, R.S.; Mahule, K.N.; Panda, S.; Jayarajan, K.

    2011-01-01

    into sintered pellets performing various operations like weighing, mixing and milling, compaction and finally sintering. In the system various operations are integrated to reduce the overall size and improve the performance of the system. Similarly efforts are carried out to develop systems for various pin handling operations required in fuel fabrication process. These operations will be performed in simulated hot cells remotely with the provision of master slave manipulators for maintenance and troubleshooting. After gaining experience from this mock up facility, actual (Th- 233 U)O 2 fuel will be fabricated on laboratory basis in another facility with the heavy shielding in place. Hence a large thrust is being given to demonstrate the front end of AHWR thorium fuel cycle facility which will help in success of the Indian third stage nuclear program. (author)

  10. Investigation into rationalization of low decontamination pellet fuel fabrication plant configuration

    International Nuclear Information System (INIS)

    Maekawa, Kazuhiko; Yoshimura, Tadahiro; Hoshino, Yasushi; Munekata, Hideki; Tamaki, Yoshihisa

    2005-02-01

    In feasibility studies on commercialized FBR cycle system, a comprehensive system investigation and properties evaluation for candidate FBR cycle systems has been implemented through view point of safety, economics, environmental burden reduction, non-proliferation resistivity, etc. As part of these studies, an investigation into rationalization of low decontamination pellet fuel fabrication plant configuration was carried out. Until last fiscal year, conceptual design studies of the fuel fabrication plant in 200t-HM/y scale were conducted, and system properties data concerning economics and environmental burden reduction of fuel fabrication plant was acquired. In addition to this, 50t-HM/y scale plant was also schematically studied. In this fiscal year, a rationalization study on conceptual design of 50t-HM/y scale plant was conducted with main aim of economic improvement, and the 200t-HM/y scale plant design was revised based on the recent R and D progress. The system properties data concerning economics and environmental burden reduction of fuel fabrication plant was also acquired. In both case of the 50t-HM/y and 200t-HM/y scale plant, it was suggested that the equipment costs were reduced in several percentages because of reduction of maintenance equipments and cut in line number at the pellet fabrication process although granulation process fro denitration converted powder and O/M control process for pellets were added. System properties data for comparative evaluation of candidate fuel fabrication systems was also prepared. (author)

  11. Fuel-pellet-fabrication experience using direct-denitration-recycle-PuO2-coprecipitated mixed oxide

    International Nuclear Information System (INIS)

    Rasmussen, D.E.; Schaus, P.S.

    1980-01-01

    The fuel pellet fabrication experience described in this paper involved three different feed powders: coprecipitated PuO 2 -UO 2 which was flash calcined in a fluidized bed; co-direct denitrated PuO 2 -UO 2 ; and direct denitrated LWR recycle PuO 2 which was mechanically blended with natural UO 2 . The objectives of this paper are twofold; first, to demonstrate that acceptable quality fuel pellets were fabricated using feed powders manufactured by processes other than the conventional oxalate process; and second, to highlight some pellet fabrication difficulties experienced with the direct denitration LWR recycle PuO 2 feed material, which did not produce acceptable pellets. The direct denitration LWR recycle PuO 2 was available as a by-product and was not specifically produced for use in fuel pellet fabrication. Nevertheless, its characteristics and pellet fabrication behavior serve to re-emphasize the importance of continued process development involving both powder suppliers and fuel fabricators to close the fuel cycle in the future

  12. Environmental control aspects for fabrication, reprocessing and waste disposal of alternative LWR and LMFBR fuels

    International Nuclear Information System (INIS)

    Nolan, A.M.; Lewallen, M.A.; McNair, G.W.

    1979-11-01

    Environmental control aspects of alternative fuel cycles have been analyzed by evaluating fabrication, reprocessing, and waste disposal operations. Various indices have been used to assess potential environmental control requirements. For the fabrication and reprocessing operations, 50-year dose commitments were used. Waste disposal was evaluated by comparing projected nuclide concentrations in ground water at various time periods with maximum permissible concentrations (MPCs). Three different fabrication plants were analyzed: a fuel fabrication plant (FFP) to produce low-activity uranium and uranium-thorium fuel rods; a plutonium fuel refabrication plant (PFRFP) to produce plutonium-uranium and plutonium-thorium fuel rods; and a uranium fuel refabrication plant (UFRFP) to produce fuel rods containing the high-activity isotopes 232 U and 233 U. Each plant's dose commitments are discussed separately. Source terms for the analysis of effluents from the fuel reprocessing plant (FRP) were calculated using the fuel burnup codes LEOPARD, CINDER and ORIGEN. Effluent quantities are estimated for each fuel type. Bedded salt was chosen for the waste repository analysis. The repository site is modeled on the Waste Isolation Pilot Program site in New Mexico. Wastes assumed to be stored in the repository include high-level vitrified waste from the FRP, packaged fuel residue from the FRP, and transuranic (TRU) contaminated wastes from the FFP, PFRFP, and UFRFP. The potential environmental significance was determined by estimating the ground-water concentrations of the various nuclides over a time span of a million years. The MPC for each nuclide was used along with the estimated ground-water concentration to generate a biohazard index for the comparison among fuel compositions

  13. Radiological safety aspects in the fabrication of mixed oxide fuel elements

    International Nuclear Information System (INIS)

    Krishnamurthi, T.N.; Janardhanan, S.; Soman, S.D.

    1981-01-01

    The problems of radiological safety in the fabrication of (U, Pu)O 2 fuel assemblies for fast reactors utilising high exposure plutonium are discussed. Derived working limits for plutonium as a function of the burn-up of RAPS (Rajasthan Atomic Power Station) fuel, external gamma and neutron exposures from feed product batches, finished fuel pins and assemblies are presented. Shielding requirements for the various glove box operations are also indicated. In general, high exposure plutonium handling calls for remote fabrication and automation at various stages would play a key role in minimising exposures to personnel in a large production plant. (author)

  14. Dissolution of mixed oxide fuel as a function of fabrication variables

    International Nuclear Information System (INIS)

    Lerch, R.E.

    1979-08-01

    Dissolution properties of mechanically blended mixed oxide fuel were very dependent on the six fuel fabrication variables studied. Fuel sintering temperature, source of PuO 2 and PuO 2 content of the fuel had major effects: (1) as the sintering temperature was increased from 1400 to 1700 0 C, pellet dissolution was more complete; (2) pellets made from burned metal derived PuO 2 were more completely dissolved than pellets made from calcined nitrate derived PuO 2 which in turn were more completely dissolved than pellets made from calcined nitrate derived PuO 2 ; (3) as the PuO 2 content decreased from 25 to 15 wt % PuO 2 , pellet dissolution was more complete. Preferential dissolution of uranium occurred in all the mechanically blended mixed oxide. Unirradiated mixed oxide fuel pellets made by the Sol Gel process were generally quite soluble in nitric acid. Unirradiated mixed oxide fuel pellets made by the coprecipitation process dissolved completely and rapidly in nitric acid. Fuel made by the coprecipitation process was more completely dissolved than fuel made by the Sol Gel process which, in turn, was more completely dissolved than fuel made by mechanically blending UO 2 and PuO 2 as shown below. Addition of uncomplexed fluoride to nitric acid during fuel dissolution generally rendered all fuel samples completely dissolvable. In boiling 12M nitric acid, 95 to 99% of the plutonium which was going to dissolve did so in the first hour. Irradiated mechanically blended mixed oxide fuel with known fuel fabrication conditions was also subjected to fuel dissolution tests. While irradiation was shown to increase completeness of plutonium dissolution, poor dissolubility due to adverse fabrication conditions (e.g., low sintering temperature) remained after irradiation

  15. Low temperature fabrication of ZnO compact layer for high performance plastic dye-sensitized ZnO solar cells

    International Nuclear Information System (INIS)

    Hu Fangyi; Xia Yujing; Guan Zisheng; Yin Xiong; He Tao

    2012-01-01

    Highlights: ► ZnO compact layer is prepared via simple electrochemical method at low temperature. ► Compact layer can effectively block electron transfer from TCO to electrolyte. ► DSC PCE is improved by 17% when ZnO compact layer is introduced. ► Plastic DSCs with ZnO compact layer show a PCE of 3.29% under AM1.5 100 mW cm −2 . ► The above efficiency is comparable to that with high temperature sintering step. - Abstract: ZnO compact layer has been fabricated on transparent conducting oxide glass and plastic polymer substrates at low temperature via electrodeposition. The results of dark current and cyclic voltammetric measurements demonstrate that the compact layer can effectively reduce the short circuit from transparent conducting oxide to electrolyte in dye-sensitized ZnO solar cells, leading to an increase of open-circuit photovoltage and fill factor of the devices and, thereby, the power conversion efficiency. The resultant plastic dye-sensitized ZnO solar cell presents an efficiency of 3.29% under illumination of 100 mW cm −2 , AM 1.5G. This indicates that electrodeposition is a viable method to fabricate ZnO compact layer for high performance flexible devices.

  16. Thermomechanical evaluation of the fuel assemblies fabricated in the ININ

    International Nuclear Information System (INIS)

    Hernandez L, H.; Ortiz V, J.

    2005-01-01

    The pilot plant of fuel production of the National Institute of Nuclear Research (ININ) provided to the Laguna Verde Nuclear Power Plant (CNLV) four fuel assemblies type GE9B. The fuel irradiation was carried out in the unit 1 of the CNLV during four operation cycles, highlighting the fact that in their third cycle the four assemblies were placed in the center of the reactor core. In the Nuclear Systems Department (DSN) of the ININ it has been carried out studies to evaluate their neutron performance and to be able to determine the exposure levels of this fuels. Its also outlines the necessity to carry out a study of the thermomechanical behavior of the fuel rods that compose the assemblies, through computational codes that simulate their performance so much thermal as mechanical. For such purpose has been developing in the DSN the FETMA code, together with the codes that compose the system Fuel Management System (FMS), which evaluates the thermomechanical performance of fuel elements. In this work were used the FETMA and FEMAXI codes (developed by JAERI) to study the thermomechanical performance of the fuel elements manufactured in the ININ. (Author)

  17. Operational results of WWER fuel fabricated by MSZ (Elektrostal, Russia)

    International Nuclear Information System (INIS)

    Asatiani, I.; Balabanov, S.; Beglov, A.; Khryashchev, D.

    2009-01-01

    The presentation brings forth a statistical analysis of the WWER fuel manufactured by OAO MSZ, operational experience. A necessity of such an analysis is determined by the fact that objective operational results prove the appropriateness of the solutions and decisions made by vendor, designer, manufacturer and utility, as well as motivates further fuel improvements. (authors)

  18. Method for the fabrication of nuclear fuel bodies

    International Nuclear Information System (INIS)

    Davis, D.E.; Leary, D.F.

    1976-01-01

    According to the method, graphite particles are treated with a liquid impregnating agent containing heat-hardenable resin components; the resulting particles are mixed with nuclear fuel particles, and a nuclear fuel body is formed by binding the mixture of particles into a cohesive mass by means of a carbon-contained binder. The claim concerns the details of the process. (UA) [de

  19. Compacted and Sintered Microstructure Depending on Uranium Powder Size in Zr-U Metallic Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Chang Gun; Jun, Hyun-Joon; Ju, Jung Hwan; Lee, Ho Jin; Lee, Chong-Tak; Kim, Hyung Lae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-03-15

    In case of the uranium (U) and zirconium (Zr) powders which have been utilized for the production of a metallic fuel in the various nuclear applications, the homogenous distribution of U powders in the Zr-U pellet has influenced significantly on the nuclear fuel performance. The inhomogeneity in a powder process was changed by various intricate factors, e.g. powder size, shape, distribution and so on. Particularly, the U inhomogeneity in the Zr-U pellets occurs by segregation derived from the great gaps of densities between Zr and U during compaction of the mixed powders. In this study, the relationship between powder size and homogeneity was investigated by using the different-sized U powders. The microstructure in Zr-U pellets reveals more homogeneity when the weight ration of Zr and U powders are close to 1. In addition, homogeneous pellets which were produced by fine U powders have higher density because the homogeneity affects the alloying reaction during sintering and the densification behavior of pore induced by powder size.

  20. Electron Microscopic Examination of Irradiated TRISO Coated Particles of Compact 6-3-2 of AGR-1 Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Van Rooyen, Isabella Johanna [Idaho National Lab. (INL), Idaho Falls, ID (United States); Demkowicz, Paul Andrew [Idaho National Lab. (INL), Idaho Falls, ID (United States); Riesterer, Jessica Lori [Idaho National Lab. (INL), Idaho Falls, ID (United States); Miller, Brandon Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Janney, Dawn Elizabeth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Harp, Jason Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ploger, Scott Arden [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2012-12-01

    The electron microscopic examination of selected irradiated TRISO coated particles of the AGR-1 experiment of fuel compact 6-3-2 are presented in this report. Compact 6-3-2 refers to the compact in Capsule 6 at level 3 of Stack 2. The fuel used in capsule 6 compacts, are called the “baseline” fuel as it is fabricated with refined coating process conditions used to fabricate historic German fuel, because of its excellent irradiation performance with UO2 kernels. The AGR-1 fuel is however made of low-enriched uranium oxycarbide (UCO). Kernel diameters are approximately 350 µm with a U-235 enrichment of approximately 19.7%. Compact 6-3-2 has been irradiated to 11.3% FIMA compact average burn-up with a time average, volume average temperature of 1070.2°C and with a compact average fast fluence of 2.38E21 n/cm

  1. Fabrication of uranium-plutonium mixed nitride fuel pins (88F-5A) for first irradiation test at JMTR

    International Nuclear Information System (INIS)

    Suzuki, Yasufumi; Iwai, Takashi; Arai, Yasuo; Sasayama, Tatsuo; Shiozawa, Ken-ichi; Ohmichi, Toshihiko; Handa, Muneo

    1990-07-01

    A couple of uranium-plutonium mixed nitride fuel pins was fabricated for the first irradiation tests at JMTR for the purpose of understanding the irradiation behavior and establishing the feasibility of nitride fuels as advanced FBR fuels. The one of the pins was fitted with thermocouples in order to observe the central fuel temperature. In this report, the fabrication procedure of the pins such as pin design, fuel pellet fabrication and characterizations, welding of fuel pins, and inspection of pins are described, together with the outline of the new TIG welder installed recently. (author)

  2. Gel-sphere-pac fuel for thermal reactors: assessment of fabrication technology and irradiation performance

    Energy Technology Data Exchange (ETDEWEB)

    Beatty, R.L. Norman, R.E.; Notz, K.J. (comps.)

    1979-11-01

    Recent interest in proliferation-resistant fuel cycles for light-water reactors has focused attention on spiked plutonium and /sup 233/U-Th fuels, requiring remote refabrication. The gel-sphere-pac process for fabricating metal-clad fuel elements has drawn special attention because it involves fewer steps. Gel-sphere-pac fabrication technology involves two major areas: the preparation of fuel spheres of high density and loading these spheres into rods in an efficiently packed geometry. Gel sphere preparation involves three major steps: preparation of a sol or of a special solution (broth), gelation of droplets of sol or broth to give semirigid spheres of controlled size, and drying and sintering these spheres to a high density. Gelation may be accomplished by water extraction (suitable only for sols) or ammonia gelation (suitable for both sols and broths but used almost exclusively with broths). Ammonia gelation can be accomplished either externally, via ammonia gas and ammonium hydroxide, or internally via an added ammonia generator such as hexamethylenetetramine. Sphere-pac fuel rod fabrication involves controlled blending and metering of three sizes of spheres into the rod and packing by low- to medium-energy vibration to achieve about 88% smear density; these sizes have diametral ratios of about 40:10:1 and are blended in size fraction amounts of about 60% coarse, 18% medium, and 22% fine. Irradiation test results indicate that sphere-pac fuel performs at least as well as pellet fuel, and may in fact offer an advantage in significantly reducing mechanical and chemical interaction between the fuel and cladding. The normal feed for gel sphere preparation, heavy metal nitrate solution, is the usual product of fuel reprocessing, so that fabrication of gel spheres performs all the functions performed by both conversion and pellet fabrication in the case of pellet technology.

  3. SEM and TEM Characterization of As-Fabricated U-7Mo Disperson Fuel Plates

    International Nuclear Information System (INIS)

    Keiser, D.D. Jr.; Yao, B.; Perez, E.; Sohn, Y.H.

    2009-01-01

    The starting microstructure of a dispersion fuel plate can have a dramatic impact on the overall performance of the plate during irradiation. To improve the understanding of the as-fabricated microstructures of dispersion fuel plates, SEM and TEM analysis have been performed on RERTR-9A archive fuel plates, which went through an additional hot isostatic procsssing (HIP) step during fabrication. The fuel plates had depleted U-7Mo fuel particles dispersed in either Al-2Si or 4043 Al alloy matrix. For the characterized samples, it was observed that a large fraction of the ?-phase U-7Mo alloy particles had decomposed during fabrication, and in areas near the fuel/matrix interface where the transformation products were present significant fuel/matrix interaction had occurred. Relatively thin Si-rich interaction layers were also observed around the U-7Mo particles. In the thick interaction layers, (U)(Al,Si)3 and U6Mo4Al43 were identified, and in the thin interaction layers U(Al,Si)3, U3Si3Al2, U3Si5, and USi1.88-type phases were observed. The U3Si3Al2 phase contained some Mo. Based on the results of this work, exposure of dispersion fuel plates to relatively high temperatures during fabrication impacts the overall microstructure, particularly the nature of the interaction layers around the fuel particles. The time and temperature of fabrication should be carefully controlled in order to produce the most uniform Si-rich layers around the U-7Mo particles.

  4. Gel-sphere-pac fuel for thermal reactors: assessment of fabrication technology and irradiation performance

    International Nuclear Information System (INIS)

    Beatty, R.L.; Norman, R.E.; Notz, K.J.

    1979-11-01

    Recent interest in proliferation-resistant fuel cycles for light-water reactors has focused attention on spiked plutonium and 233 U-Th fuels, requiring remote refabrication. The gel-sphere-pac process for fabricating metal-clad fuel elements has drawn special attention because it involves fewer steps. Gel-sphere-pac fabrication technology involves two major areas: the preparation of fuel spheres of high density and loading these spheres into rods in an efficiently packed geometry. Gel sphere preparation involves three major steps: preparation of a sol or of a special solution (broth), gelation of droplets of sol or broth to give semirigid spheres of controlled size, and drying and sintering these spheres to a high density. Gelation may be accomplished by water extraction (suitable only for sols) or ammonia gelation (suitable for both sols and broths but used almost exclusively with broths). Ammonia gelation can be accomplished either externally, via ammonia gas and ammonium hydroxide, or internally via an added ammonia generator such as hexamethylenetetramine. Sphere-pac fuel rod fabrication involves controlled blending and metering of three sizes of spheres into the rod and packing by low- to medium-energy vibration to achieve about 88% smear density; these sizes have diametral ratios of about 40:10:1 and are blended in size fraction amounts of about 60% coarse, 18% medium, and 22% fine. Irradiation test results indicate that sphere-pac fuel performs at least as well as pellet fuel, and may in fact offer an advantage in significantly reducing mechanical and chemical interaction between the fuel and cladding. The normal feed for gel sphere preparation, heavy metal nitrate solution, is the usual product of fuel reprocessing, so that fabrication of gel spheres performs all the functions performed by both conversion and pellet fabrication in the case of pellet technology

  5. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    International Nuclear Information System (INIS)

    Souza, J.A.B.; Durazzo, M.

    2010-01-01

    IPEN developed and made available for routine production the technology for manufacturing dispersion type fuel elements for use in research reactors. However, the fuel produced at IPEN is limited to the uranium concentration of 3.0 gU/cm 3 by using the U 3 Si 2 -Al dispersion. Increasing the uranium concentration of the fuel is interesting by the possibility of increasing the reactor core reactivity and lifetime of the fuel. It is possible to increase the concentration of uranium in the fuel up to the technological limit of 4.8 gU/cm 3 for the U 3 Si 2 -Al dispersion, which is well placed around the world. This new fuel will be applicable in the new Brazilian-Multipurpose Reactor RMB. This study aimed to develop the manufacturing process of high uranium concentration fuel, redefining the procedures currently used in the manufacture of IPEN. This paper describes the main procedures adjustments that will be necessary. (author)

  6. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Jose Antonio Batista de; Durazzo, Michelangelo, E-mail: jasouza@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    IPEN developed and made available for routine production the technology for manufacturing dispersion type fuel elements for use in research reactors. However, the fuel produced at IPEN is limited to the uranium concentration of 3.0 g U/c m3 by using the U{sub 3}Si{sub 2}-Al dispersion. Increasing the uranium concentration of the fuel is interesting by the possibility of increasing the reactor core reactivity and lifetime of the fuel. It is possible to increase the concentration of uranium in the fuel up to the technological limit of 4.8 g U/c m3 for the U{sub 3}Si{sub 2}-Al dispersion, which is well placed around the world. This new fuel will be applicable in the new Brazilian- Multipurpose Reactor RMB. This study aimed to develop the manufacturing process of high uranium concentration fuel, redefining the procedures currently used in the manufacture of IPEN. This paper describes the main procedures adjustments that will be necessary. (author)

  7. Self reliance in equipment building for PHWR fuel fabrication

    International Nuclear Information System (INIS)

    Sastry, V.S.; Hemantha Rao, G.V.S.; Jayaraj, R.N.

    2009-01-01

    Full text: Keeping in tune with the policy of self-reliance and indigenisation adopted from the very inception of nuclear power programme in India during the mid 1960, Nuclear Fuel Complex, established in the year 1971, developed its own processes, equipment and technologies based on both in-house experience and the expertise available in the indigenous industry. Starting from the basic raw materials, Nuclear Fuel Complex (NFC) manufactures and supplies finished fuel assemblies, apart from zircaloy core components, to all the nuclear power stations in India. Out of several products manufactured by NFC, 19 and 37 element fuel bundles for Pressurised Heavy Water Reactors (PHWRs) is vital for operation of several PHWRs being operated by Nuclear Power Corporation of India Limited (NPCIL). Starting from the manufacturing of half-charge for RAPS-1, more than 3.8 lakh fuel bundles were made till now. Several process improvements were taken up over the years for improving the quality of the fuel. PHWR fuel bundles manufactured by NFC has adopted an unique feature of joining appendages on zirconium alloy tubes by resistance welding before loading natural uranium dioxide pellets. Graphite coating on the inner surface of the zirconium alloy tube and vacuum baking, use of profiled end caps, use of bio-degradable cleaning agents are some of the processes adopted in the manufacturing of PHWR fuel bundles. With the recent opening up of international nuclear trade for India and the enhanced growth of nuclear power, exciting opportunities and challenges confront NFC. This paper presents salient features of some important special purpose equipment developed in-house at NFC for production of PHWR fuel bundles. It looks ahead to develop many more such special purpose equipment towards meeting the diverse demands now showing up to meet the indigenous as well as international requirements

  8. Topical papers on heavy water, fuel fabrication and reactors

    International Nuclear Information System (INIS)

    1978-01-01

    A total of four papers is presented. The first contribution of the Federal Republic of Germany reviews the market situation for reactors and the relations between reactor producers and buyers as reflected in sales agreements. The second West German contribution gives a world-wide survey of fuel element production as well as of fuel and fuel element demand up to the year 2000. The Canadian paper discusses the future prospects of heavy-water production, while the Ecuador contribution deals with small and medium-sized nuclear power plants

  9. The Role of Friction Stir Welding in Nuclear Fuel Plate Fabrication

    International Nuclear Information System (INIS)

    Burkes, D.; Medvedev, P.; Chapple, M.; Amritkar, A.; Wells, P.; Charit, I

    2009-01-01

    The friction bonding process combines desirable attributes of both friction stir welding and friction stir processing. The development of the process is spurred on by the need to fabricate thin, high density, reduced enrichment fuel plates for nuclear research reactors. The work seeks to convert research and test reactors currently operating on highly enriched uranium fuel to operate on low enriched uranium fuel without significant loss in reactor performance, safety characteristics, or significant increase in cost. In doing so, the threat of global nuclear material proliferation will be reduced. Feasibility studies performed on the process show that this is a viable option for mass production of plate-type nuclear fuel. Adapting the friction stir weld process for nuclear fuel fabrication has resulted in the development of several unique ideas and observations. Preliminary results of this adaptation and process model development are discussed

  10. Development of the advanced CANDU technology -Development of CANDU advanced fuel fabrication technology-

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Bum; Park, Choon Hoh; Park, Chul Joo; Kwon, Woo Joo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    This project is carrying out jointly with AECL to develop CANFLEX fuel which can enhance reactor safety, fuel economy and can be used with various fuel cycles (natural U, slightly enriched U, other advanced fuel). The final goal of this research is to load the CANFLEX fuel in commercial CANDU reactor for demonstration irradiation. The annual portion of research activities performed during this year are followings ; The detail design of CANFLEX-NU fuel was determined. Based on this design, various fabrication drawings and process specifications were revised. The seventeen CANFLEX-NU fuel bundles for reactivity test in ZED-2 and out-pile test, two CANFLEX-SEU fuel bundles for demo-irradiation in NRU were fabricated. Advanced tack welding machine was designed and sequence control software of automatic assembly welder was developed. The basic researches related to fabrication processes, such as weld evaluation by ECT, effect of additives in UO{sub 2}, thermal stabilities of Zr based metallic glasses, were curried out. 51 figs, 22 tabs, 42 refs. (Author).

  11. Estimation of costs for fabrication of pressurized-water reactor fuel

    International Nuclear Information System (INIS)

    Judkins, R.R.; Olsen, A.R.

    1979-01-01

    To provide a reference case on which to base cost estimates of the several fuel cycles to be considered, the facility, equipment, and operating requirements for the fabrication of fuel for current-design pressurized-water reactors were examined. From an analysis of these requirements, the capital and operating costs of a plant with a capacity of two metric tons of heavy metal per day (MTHM/day) were estimated. In a cash flow analysis, the lifetime of the plant was assumed to be 20 y, and the income from the sale of nuclear fuel assemblies over this period was equated to the total capital and operating expenses of the plant, including a specified 15% return on investment. In this way a levelized unit price for the fuel was obtained. The effects of inflation were not considered since the purpose of these estimates and the determination of unit price was to permit comparison of different types of fuels. The capital costs of the fuel fabrication plant were estimated at $32 million for the facility--land, site preparation, building--and $34 million for equipment. Annual operating costs including labor, management, materials, and utilities were estimated to be $36.5 million. From these estimates, the unit price for fabricating the fuel for the reference pressurized-water reactor was determined to be $138/kg of heavy metal or $63,600 per fuel assembly

  12. Characterization of candidate DOE sites for fabricating MOX fuel for lead assemblies

    International Nuclear Information System (INIS)

    Holdaway, R.F.; Miller, J.W.; Sease, J.D.; Moses, R.J.; O'Connor, D.G.; Carrell, R.D.; Jaeger, C.D.; Thompson, M.L.; Strasser, A.A.

    1998-03-01

    The Office of Fissile Materials Disposition (MD) of the Department of Energy (DOE) is directing the program to disposition US surplus weapons-usable plutonium. For the reactor option for disposition of this surplus plutonium, MD is seeking to contract with a consortium, which would include a mixed-oxide (MOX) fuel fabricator and a commercial US reactor operator, to fabricate and burn MOX fuel in existing commercial nuclear reactors. This option would entail establishing a MOX fuel fabrication facility under the direction of the consortium on an existing DOE site. Because of the lead time required to establish a MOX fuel fabrication facility and the need to qualify the MOX fuel for use in a commercial reactor, MD is considering the early fabrication of lead assemblies (LAs) in existing DOE facilities under the technical direction of the consortium. The LA facility would be expected to produce a minimum of 1 metric ton heavy metal per year and must be operational by June 2003. DOE operations offices were asked to identify candidate sites and facilities to be evaluated for suitability to fabricate MOX fuel LAs. Savannah River Site, Argonne National Laboratory-West, Hanford, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory were identified as final candidates to host the LA project. A Site Evaluation Team (SET) worked with each site to develop viable plans for the LA project. SET then characterized the suitability of each of the five plans for fabricating MOX LAs using 28 attributes and documented the characterization to aid DOE and the consortium in selecting the site for the LA project. SET concluded that each option has relative advantages and disadvantages in comparison with other options; however, each could meet the requirements of the LA project as outlined by MD and SET

  13. Characterization of candidate DOE sites for fabricating MOX fuel for lead assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Holdaway, R.F.; Miller, J.W.; Sease, J.D.; Moses, R.J.; O`Connor, D.G. [Oak Ridge National Lab., TN (United States); Carrell, R.D. [Technical Resources International, Inc., Richland, WA (United States); Jaeger, C.D. [Sandia National Labs., Albuquerque, NM (United States); Thompson, M.L.; Strasser, A.A. [Delta-21 Resources, Inc., Oak Ridge, TN (United States)

    1998-03-01

    The Office of Fissile Materials Disposition (MD) of the Department of Energy (DOE) is directing the program to disposition US surplus weapons-usable plutonium. For the reactor option for disposition of this surplus plutonium, MD is seeking to contract with a consortium, which would include a mixed-oxide (MOX) fuel fabricator and a commercial US reactor operator, to fabricate and burn MOX fuel in existing commercial nuclear reactors. This option would entail establishing a MOX fuel fabrication facility under the direction of the consortium on an existing DOE site. Because of the lead time required to establish a MOX fuel fabrication facility and the need to qualify the MOX fuel for use in a commercial reactor, MD is considering the early fabrication of lead assemblies (LAs) in existing DOE facilities under the technical direction of the consortium. The LA facility would be expected to produce a minimum of 1 metric ton heavy metal per year and must be operational by June 2003. DOE operations offices were asked to identify candidate sites and facilities to be evaluated for suitability to fabricate MOX fuel LAs. Savannah River Site, Argonne National Laboratory-West, Hanford, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory were identified as final candidates to host the LA project. A Site Evaluation Team (SET) worked with each site to develop viable plans for the LA project. SET then characterized the suitability of each of the five plans for fabricating MOX LAs using 28 attributes and documented the characterization to aid DOE and the consortium in selecting the site for the LA project. SET concluded that each option has relative advantages and disadvantages in comparison with other options; however, each could meet the requirements of the LA project as outlined by MD and SET.

  14. Fabrication and testing of U–7Mo monolithic plate fuel with Zircaloy cladding

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, E.E. [Laboratorio de Nanotecnología Nuclear, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. General Paz 1499, B1650KNA, San Martín, Prov. Buenos Aires (Argentina); Robinson, A.B. [Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID, 83415-6188 (United States); Porter, D.L., E-mail: Douglas.Porter@inl.gov [Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID, 83415-6188 (United States); Wachs, D.M. [Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID, 83415-6188 (United States); Finlay, M.R. [Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW, 2234 (Australia)

    2016-10-15

    Nuclear fuel designs are being developed to replace highly enriched fuel used in research and test reactors with fuels of low enrichment. In the most challenging cases, U–(7–10 wt%)Mo monolithic plate fuels are proposed. One of the considered designs includes aluminum-alloy cladding, which provides some challenges in fabrication and fuel/cladding interaction during service. Zircaloy cladding, specifically Zry–4, was investigated as an alternative cladding, and development of a fabrication method was performed by researchers with the Comisión Nacionalde Energia Atómica (CNEA) in Argentina, resulting in test fuel plates (Zry–4 clad U–7Mo) which were subsequently tested in the Advanced Test Reactor in Idaho. Because Zry–4 and U–(7–10)Mo have similar high-temperature mechanical properties, fabrication was simplified in that the fuel foil and cladding could be co-rolled and bonded. The challenge was to prevent a thermal-expansion mismatch, which could destroy the fuel/cladding bond before complete bonding was achieved; the solution was to prevent the composites from cooling significantly during or between roll passes. The final product performed very well in-reactor, showing good bonding, very little fuel/cladding interaction—either from fabrication or in-reactor testing—and little swelling, especially no detectable heterogeneous bubble formation at the fuel/cladding interface tested to a fission density of up to 2.7E+21 (average) fissions/cm{sup 3}, 3.8E+21 (peak).

  15. Fabrication of high-uranium-loaded U{sub 3}O{sub 8}-Al developmental fuel plates

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, G L; Martin, M M [Oak Ridge National Laboratory, TN (United States)

    1983-08-01

    A common plate-type fuel for Research and Test Reactors (RERTR) is U{sub 3}0{sub 8} dispersed in aluminum and clad with an aluminum alloy. There is an impetus to reduce the {sup 235}U enrichment from above 90% to below 20% for these fuels to lessen the risk of diversion of the uranium for non-peaceful uses. Thus, the uranium content of the fuel plates has to be increased to maintain the performance of the reactors. This paper describes work at ORNL to determine the maximal uranium loading for these fuels that can be fabricated with commercially proven materials and techniques and that can be expected to perform satisfactorily in service. We fabricated developmental fuel plates with cores containing from 60 to 100 wt U{sub 3}0{sub 8} in aluminum encapsulated in 6061 aluminum alloy and evaluated them for aspects of fabricability, nondestructive testing, and expected performance. We recommend 75 wt U{sub 3}0{sub 8}-Al 3.1 Mg U/m{sup 3}) as the highest loading in the initial irradiation test. This upper limit is based on a qualitative assessment of the mechanical integrity of the core made by using current fabrication techniques and materials. As the oxide loading is increased beyond this point, planar areas and extensive stringers of oxide and voids develop, which leave little strength in the thickness direction. Fuel plates may then blister over these areas as fission gases collect during irradiation. Current size plates are easily fabricable to the 75 wt % U{sub 3}0{sub 8}-Al core loading by current fabrication techniques. Dogboning is a potential problem at this loading for some applications; however, this can be easily solved by using tapered compact ends. Current nondestructive radiography and transmission x-ray scanning are applicable to the highly loaded plates. Ultrasonic testing for non-bonds is marginal because of the abrupt change in conductance at the cladding-core interface. Plate thickness can be increased if desired; we fabricated 75 wt % plates with

  16. Investigation of small scale sphere-pac fuel fabrication plant with external gelation process

    International Nuclear Information System (INIS)

    Maekawa, Kazuhiko; Yoshimura, Tadahiro; Kikuchi, Toshiaki; Hoshino, Yasushi; Munekata, Hideki; Shimizu, Makoto

    2005-02-01

    In feasibility studies on commercialized FBR cycle system, comprehensive system investigation and properties evaluation for candidate FBR cycle systems have been implemented through view point of safety, economics, environmental burden reduction, non-proliferation resistivity, etc. As part of these studies, an investigation of small scale sphere-pac fuel fabrication plant with external gelation process was conducted. Until last fiscal year, equipment layout in cells and overall layout design of the 200t-HM/y scale fuel fabrication plant were conducted as well as schematical design studies on main equipments in gelation and reagent recovery processes of the plant. System property data concerning economics and environmental burden reduction of fuel fabrication plant was also acquired. In this fiscal year, the processes from vibropacking to fuel assemblies storage were added to the investigation range, and a conceptual design of whole fuel fabrication plant was studied as well as deepening the design study on main equipments. The conceptual design study was mainly conducted for small 50t-HM/y scale plant and a revising investigation was done for 200t-HM/y scale plant. Taking the planed comparative evaluation with pellet fuel fabrication system into account, design of equipments which should be equivalent with pellet system, especially in post-vibropacking processes, were standardized in each system. Based on these design studies, system properties data concerning economics and environmental burden reduction of the plant was also acquired. In comparison with existing design, the cell height was lowered on condition that plug type pneumatic system was adopted and fuel fabrication building was downsized by applying rationalized layout design of pellet system to post-vibropacking processes. Reduction of reagent usage at gelation process and rationalization of sintering and O/M controlling processes etc., are foremost tasks. (author)

  17. Regulations concerning the fabricating business of nuclear fuel materials

    International Nuclear Information System (INIS)

    1978-01-01

    The Regulation is revised on the basis of ''The law for the regulations of nuclear source materials, nuclear fuel materials and reactors'' and the ''Provisions concerning the enterprises processing nuclear fuel materials'' in the Enforcement Ordinance for the Law, to enforce such provisions. This is the complete revision of the regulation of the same name in 1957. Terms are explained, such as exposure radiation dose, cumulative dose, control area, surrounding inspection area, persons engaged in works, radioactive wastes, area for incoming and outgoing of materials, fluctuation of stocks, batch, real stocks, effective value and main measuring points. For the applications for the permission of the enterprises processing nuclear fuel materials, the location of an enterprise, the construction of buildings and the construction of and the equipments for facilities of chemical processing, forming, coating, assembling, storage of nuclear fuel materials, disposal of radioactive wastes and radiation control must be written. Records shall be made and maintained for the periods specified on the inspection of processing facilities, nuclear fuel materials, radiation control, operation, maintainance, accidents of processing facilities and weather. Limit to entrance into the control area, measures for exposure radiation dose, patrol and inspection, operation of processing facilities, transport of materials, disposal of radioactive wastes, safety regulations are provided for. Reports to be filed by the persons engaging in the enterprises processing nuclear fuel materials are prescribed. (Okada, K.)

  18. Fabrication of HTR fuel elements by a gaseous impregnation process

    International Nuclear Information System (INIS)

    Blin, J.C.; Berthier, J.; Devillard, J.

    1976-01-01

    The results obtained with the gaseous impregnation process are described. The successive steps of the fabrication in their present state of realization are given together with the results obtained after irradiation. A comparison between this process and a classical method is presented

  19. Modern methods of material accounting for mixed-oxide fuel-fabrication facility

    International Nuclear Information System (INIS)

    Eggers, R.F.; Brouns, R.J.; Brite, D.W.; Pindak, J.L.

    1981-07-01

    The generic requirements loss detection, and response to alarms of a contemporary material control and accounting (MC and A) philosophy have been applied to a mixed-oxide fuel-fabrication plant to produce a detailed preliminary MC and A system design that is generally applicable to facilities of this type. This paper summarizes and discusses detailed results of the mixed-oxide fuel-fabrication plant study. Topics covered in this paper include: mixed-oxide fuel-fabrication process description, process disaggregation into MC and A system control units, quantitative results of analysis of control units for abrupt and recurring loss-detection capability, impact of short- and long-term holdup on loss-detection capability, response to alarms for abrupt loss, and response to alarms for recurring loss

  20. Development of the fabrication technology of the simulated fuel-I, 15,000MWd/tU

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kweon Ho; Kim, D. J.; Kim, H. S.; Lee, J. W.; Yang, M. S

    2001-04-01

    It is important to get basic data to analysis physical properties, behavior in reactor and performance of the DUPIC fuel because physical properties, fission gas release, grain growth and et al. of the DUPIC fuel is different from the commercial UO2 fuel. But what directly measures physical properties et al. of DUPIC fuel being resinterred simulated spent fuel through OREOX process is very difficult in laboratory owing to its high level radiation. Then fabrication of simulated DUPIC fuel is needed to measure its properties. In this study, the sintering characterization of wet milled powder for 24 hours to fabricate 15,000MWd/tU equivalent burnup simulated fuel.

  1. Radiation protection training at uranium hexafluoride and fuel fabrication plants

    International Nuclear Information System (INIS)

    Brodsky, A.; Soong, A.L.; Bell, J.

    1985-05-01

    This report provides general information and references useful for establishing or operating radiation safety training programs in plants that manufacture nuclear fuels, or process uranium compounds that are used in the manufacture of nuclear fuels. In addition to a brief summary of the principles of effective management of radiation safety training, the report also contains an appendix that provides a comprehensive checklist of scientific, safety, and management topics, from which appropriate topics may be selected in preparing training outlines for various job categories or tasks pertaining to the uranium nuclear fuels industry. The report is designed for use by radiation safety training professionals who have the experience to utilize the report to not only select the appropriate topics, but also to tailor the specific details and depth of coverage of each training session to match both employee and management needs of a particular industrial operation. 26 refs., 3 tabs

  2. MOX fuel fabrication and utilisation in LWRs worldwide

    International Nuclear Information System (INIS)

    Provost, J.-L.; Schrader, M.; Nomura, S.

    2000-01-01

    Early in the development of the nuclear programme, a large part of the countries using nuclear energy has studied the reprocessing and recycling option in order to develop a safe conditioning of fission products and to recycle fissile materials in reactors. In the sixties, the feasibility of recycling plutonium in LWRs has been successfully demonstrated by several experimentations of MOX rod irradiations in different countries. Based on the background of the MOX behaviour collected during the seventies and on the results of the important MOX experimentation program implemented during this period, a large part of the European utilities decided at the beginning of the eighties to use MOX fuel in LWRs on an industrial scale. The main goals of the utilities were to use as a fuel an available fissile material and to control the stockpile of separated plutonium. Today, the understanding of the behaviour of plutonium fuel has grown significantly since the launch of the first R and D programmes on LWR and FR MOX fuels. Plutonium oxide physical and neutron behaviour is well known, its modelling is now available as well as experimentally validated. Up to now, more than 750 tHM MOX fuel (more than 2000 FAs) have been loaded in 29 PWRs and in 2 BWRs in Europe, corresponding to the recycling of about 35 t of plutonium. Reprocessing/recycling technology has reached maturity in the main nuclear industry countries. Spent fuel reprocessing and recycling of the separated fissile materials remains the main option for the back-end cycle. Today, the operation of MOX-recycling LWRs is considered satisfactory. Experience feedback shows that, in global terms, MOX cores behaviour is equivalent to that of UO 2 cores in terms of operation and safety. (author)

  3. Fabrication and Testing of CERMET Fuel Materials for Nuclear Thermal Propulsion

    Science.gov (United States)

    Hickman, Robert; Broadway, Jeramie; Mireles, Omar

    2012-01-01

    A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on Nuclear Thermal Propulsion (NTP) is currently being developed for Advanced Space Exploration Systems. The overall goal of the project is to address critical NTP technology challenges and programmatic issues to establish confidence in the affordability and viability of NTP systems. The current technology roadmap for NTP identifies the development of a robust fuel form as a critical near term need. The lack of a qualified nuclear fuel is a significant technical risk that will require a considerable fraction of program resources to mitigate. Due to these risks and the cost for qualification, the development and selection of a primary fuel must begin prior to Authority to Proceed (ATP) for a specific mission. The fuel development is a progressive approach to incrementally reduce risk, converge the fuel materials, and mature the design and fabrication process of the fuel element. A key objective of the current project is to advance the maturity of CERMET fuels. The work includes fuel processing development and characterization, fuel specimen hot hydrogen screening, and prototypic fuel element testing. Early fuel materials development is critical to help validate requirements and fuel performance. The purpose of this paper is to provide an overview and status of the work at Marshall Space Flight Center (MSFC).

  4. Fabrication experience with mixed-oxide LWR fuels at the BELGONUCLEAIRE plant

    International Nuclear Information System (INIS)

    Vanhellemont, G.

    1979-01-01

    For nearly 20 years BELGONUCLEAIRE has been involved in a steadily growing effort to increase its production of mixed oxides. This programme has ranged from basic research and process development through a pilot-scale unit to today's mixed-oxide fuel fabrication plant at Dessel, which has been in operation for just over 5 years. The reference fabrication flow sheet includes UO 2 , PuO 2 and a scraped powder preparation, sintered ground pellets as well as rod fabrication and assembling. With regard to quality, attention is especially paid to the process monitoring and quality controls at the qualification step and during the routine production. Entirely different types of thermal UO 2 -PuO 2 fuel pellets, rods and assemblies have been manufactured for PWR and BWR operation. For these fabrications, some diagrams of the results with regard to the required technical specifications are presented. Special emphasis is placed on the occasional deviations of some finished products from the specifications and on the solutions applied to avoid such problems. Concerning the actual capacity of the mixed-oxide fuel fabrication plant, several limiting factors due to the nature of plutonium itself are discussed. Taking into account all these ambient limitations, a reference PWR mixed-oxide fuel output of nominally 18 t/a is obtained. The industrial feasibility of UO 2 -PuO 2 fuel fabrication has been thoroughly demonstrated by the present BELGONUCLEAIRE plant. The experience obtained has led to progressive improvements of the fabrication process and adaptation of the product controls in order to ensure the requested quality levels. (author)

  5. Modernization of RTC for fabrication of MOX fuel, Vibropac fuel pins and BN-600 FA with weapon grade plutonium

    International Nuclear Information System (INIS)

    Grachyov, A.F.; Kalygin, V.V.; Skiba, O.V.; Mayorshin, A. A.; Bychkov, A.V.; Kisly, V.A.; Ovsyannikov, Y.F.; Bobrov, D.A.; Mamontov, S.I.; Tsyganov, A.N.; Churutkin, E.I.; Davydov, P.I.; Samosenko, E.A; Shalak, A.R.; Ojima, Hisao

    2004-01-01

    Since mid 70's RIAR has been performing activities on plutonium involvement in fuel cycle. These activities are considered a stage within the framework of the closed fuel cycle development. Developed at RIAR fuel cycle is based on two technologies: 'dry' process of fuel reprocessing and vibro-packing method for fuel pin fabrication. Due to the available scientific capabilities and a gained experience in operating the technological facilities (ORYOL, SIC) for plutonium (various grade) blending into fuel for fast reactors, RIAR is a participant of the activities aimed at solving these tasks. Under international program RIAR with financial support of JNC (Japan) is modernizing the facility for granulated fuel production, vibro-pac fuel pins and FA fabrication to provide the BN-600 'hybrid' core. In order to provide 'hybrid' core it is necessary to produce (per year): - 1775 kg of granulated MOX-fuel, 6500 fuel pins, 50 fuel assemblies. Potential output of the facility under construction is as follows: - 1800 kg of granulated MOX-fuel per year, 40 fuel pins per shift, 200 FAs for the BN-600 reactor per year. Taking into account domestic and foreign experience in MOX-fuel production, different options were discussed of the equipment layouts in the available premises of chemical technological division of RIAR: - in the shielded manipulator boxes, in the existing hot cells. During construction of the facility in the building under operation the following requirements should be met: - facility must meet all standards and regulations set for nuclear facilities, installation work at the facility must not influence other production programs implemented in the building, engineering supply lines of the facility must be connected to the existing service lines of the building, cost of the activities must not exceed amount of JNC funding. The paper presents results of comparison between two options of the process equipment layout: in boxes and hot cells. This equipment is intended

  6. Atomics International fuel fabrication facility and low enrichment program [contributed by T.A. Moss, AI

    International Nuclear Information System (INIS)

    Moss, T.A.

    1993-01-01

    The AI facility is approximately 30,000 square feet in area and consists of four general areas. One area is devoted to the production of UAl x powder. It consists of a series of arc melting furnaces, crushing lines, glove boxes, and compacting presses. The second area is used for the rolling of fuel plates. The third area is used for the machining of the plates to final size and also the machining of the fuel elements. In the fourth area the fuel plates are swaged into assemblies, and all welding and inspection operations are performed. As part of the lower enrichment program we are scheduled to put a second UAl x powder line into operation and we have had to expand some of our storage area. Under the low enrichment program the AI fuel facility will be modified to accommodate a separate low enrichment Al x production line and compacting line. This facility modification should be done by the end of the fiscal year. We anticipate producing fuel with an enrichment slightly less than 20% We anticipate powder being available for plate production shortly after the facility is completed. Atomics International is scheduled to conduct plate LEU verification work using fully enriched material in the June-July time period, at which time we will investigate what level of uranium loadings we can go to using the current process. It is anticipated that 55 volume percent uranium compound in our fuel form can be achieved

  7. Lessons learned from MELOX plant operation and support to design of new MOX fuel fabrication plants

    International Nuclear Information System (INIS)

    Tourre, Joel; Gattegno, Robert; Guay, Philippe; Bariteau, Jean-Pierre

    2005-01-01

    AREVA is participating in the design of the US MOX Fuel Fabrication Facility (MFFF). To support this project and allow the U.S. Department of Energy (DOE) client to reap full benefit from the MELOX operating experience, AREVA, through COGEMA and its engineering subsidiary SGN have implemented a rigorous process to prudently apply MELOX Lessons Learned to the MFFF design. This paper describes the Lessons Learned process, how the process supports the advancement of fuel fabrication technology and, how the results of the process are benefiting the client. (author)

  8. Pneumatic conveying of sensitive compounds during nuclear fuel fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Sielck, Franz-Christian; Braehler, Georg [NUKEM Technologies GmbH (Germany)

    2009-07-01

    Any transport of nuclear material is associated with the risk of contamination after release into working areas or environment. stationary installed safe geometry vessels with pneumatic transfer between them offer unique safety features and reduce operating costs. The article describes the case of HTR fuel spheres, where a specially designed conveying system has been developed and the prototype conveyor has been tested.

  9. Pneumatic conveying of sensitive compounds during nuclear fuel fabrication

    International Nuclear Information System (INIS)

    Sielck, Franz-Christian; Braehler, Georg

    2009-01-01

    Any transport of nuclear material is associated with the risk of contamination after release into working areas or environment. stationary installed safe geometry vessels with pneumatic transfer between them offer unique safety features and reduce operating costs. The article describes the case of HTR fuel spheres, where a specially designed conveying system has been developed and the prototype conveyor has been tested.

  10. History of Research Reactor Fuel Fabrication at Babcock and Wilcox

    International Nuclear Information System (INIS)

    Freim, J.B.

    1983-01-01

    1982 was a year of tremendous growth for Babcock and Wilcox and its Research Reactor Fuel Facility. The Division has progressed from essentially being a non-competitor to a position where we are growing in strength. This paper describes some of the general aspects of past history and where B and W is now

  11. Design Evolutuion of Hot Isotatic Press Cans for NTP Cermet Fuel Fabrication

    Science.gov (United States)

    Mireles, O. R.; Broadway, J.; Hickman, R.

    2014-01-01

    Nuclear Thermal Propulsion (NTP) is under consideration for potential use in deep space exploration missions due to desirable performance properties such as a high specific impulse (> 850 seconds). Tungsten (W)-60vol%UO2 cermet fuel elements are under development, with efforts emphasizing fabrication, performance testing and process optimization to meet NTP service life requirements [1]. Fuel elements incorporate design features that provide redundant protection from crack initiation, crack propagation potentially resulting in hot hydrogen (H2) reduction of UO2 kernels. Fuel erosion and fission product retention barriers include W coated UO2 fuel kernels, W clad internal flow channels and fuel element external W clad resulting in a fully encapsulated fuel element design as shown.

  12. Procedure for the fabrication of ceramic fuel pellets with an adjustable structure

    International Nuclear Information System (INIS)

    Henke, M.; Klemm, U.; Sobek, D.

    1986-01-01

    The invention concerns a procedure for the fabrication of ceramic fuel pellets of UO 2 , PuO 2 , ThO 2 and their mixtures with an adjustable structure. Before or during the milling the particle shaped fuel pellets have been added polyethylenglycol in a 20 - 60 % aqueous solution with an amount of 0.5 - 2.0 % in weight. This additive has an effect on a controlled pore formation and grain growth advancement

  13. Literature on fabrication of tungsten for application in pyrochemical processing of spent nuclear fuels

    International Nuclear Information System (INIS)

    Edstrom, C.M.; Phillips, A.G.; Johnson, L.D.; Corle, R.R.

    1980-01-01

    The pyrochemical processing of nuclear fuels requires crucibles, stirrers, and transfer tubing that will withstand the temperature and the chemical attack from molten salts and metals used in the process. This report summarizes the literature that pertains to fabrication (joining, chemical vapor deposition, plasma spraying, forming, and spinning) is the main theme. This report also summarizes a sampling of literature on molbdenum and the work previously performed at Argonne National Laboratory on other container materials used for pyrochemical processing of spent nuclear fuels

  14. Continuous process of powder production for MOX fuel fabrication according to ''granat'' technology

    International Nuclear Information System (INIS)

    Morkovnikov, V.E.; Raginskiy, L.S.; Pavlinov, A.P.; Chernov, V.A.; Revyakin, V.V.; Varykhanov, V.S.; Revnov, V.N.

    2000-01-01

    During last years the problem of commercial MOX fuel fabrication for nuclear reactors in Russia was solved in a number of directions. The paper deals with the solution of the problem of creating a continuous pilot plant for the production of MOX fuel powders on the basis of the home technology 'Granat', that was tested before on a small-scale pilot-commercial batch-operated plant of the same name and confirmed good results. (authors)

  15. Summary report on fuel development and miniplate fabrication for the RERTR Program, 1978 to 1990

    International Nuclear Information System (INIS)

    Wiencek, T.C.

    1995-08-01

    This report summarizes the efforts of the Fabrication Technology Section at Argonne National Laboratory in the program of Reduced Enrichment Research and Test Reactors (RERTR). The main objective of this program was to reduce the amount of high enriched (∼93% 235 U) uranium (HEU) used in nonpower reactors. Conversion from low-density (0.8--1.6 g U/cm 3 ) HEU fuel elements to highly loaded (up to 7 g U/cm 3 ) low-enrichment ( 235 U) uranium (LEU) fuel elements allows the same reactor power levels, core designs and sizes to be retained while greatly reducing the possibility of illicit diversion of HEU nuclear fuel. This document is intended as an overview of the period 1978--1990, during which the Section supported this project by fabricating mainly powder metallurgy uranium-silicide dispersion fuel plates. Most of the subjects covered in detail are fabrication-related studies of uranium silicide fuels and fuel plate properties. Some data are included for out-of-pile experiments such as corrosion and compatibility tests. Also briefly covered are most other aspects of the RERTR program such as irradiation tests, full-core demonstrations, and technology transfer. References included are for further information on most aspects of the entire program. A significant portion of the report is devoted to data that were never published in their entirety. The appendices contain a list of previous RERTR reports, ANL fabrication procedures, calculations for phases present in two-phase fuels, chemical analysis of fuels, miniplate characteristics, and a summary of bonding runs made by hot isostatic pressing

  16. Summary report on fuel development and miniplate fabrication for the RERTR Program, 1978 to 1990

    Energy Technology Data Exchange (ETDEWEB)

    Wiencek, T.C. [Argonne National Lab., IL (United States). Energy Technology Div.

    1995-08-01

    This report summarizes the efforts of the Fabrication Technology Section at Argonne National Laboratory in the program of Reduced Enrichment Research and Test Reactors (RERTR). The main objective of this program was to reduce the amount of high enriched ({approx}93% {sup 235}U) uranium (HEU) used in nonpower reactors. Conversion from low-density (0.8--1.6 g U/cm{sup 3}) HEU fuel elements to highly loaded (up to 7 g U/cm{sup 3}) low-enrichment (<20% {sup 235}U) uranium (LEU) fuel elements allows the same reactor power levels, core designs and sizes to be retained while greatly reducing the possibility of illicit diversion of HEU nuclear fuel. This document is intended as an overview of the period 1978--1990, during which the Section supported this project by fabricating mainly powder metallurgy uranium-silicide dispersion fuel plates. Most of the subjects covered in detail are fabrication-related studies of uranium silicide fuels and fuel plate properties. Some data are included for out-of-pile experiments such as corrosion and compatibility tests. Also briefly covered are most other aspects of the RERTR program such as irradiation tests, full-core demonstrations, and technology transfer. References included are for further information on most aspects of the entire program. A significant portion of the report is devoted to data that were never published in their entirety. The appendices contain a list of previous RERTR reports, ANL fabrication procedures, calculations for phases present in two-phase fuels, chemical analysis of fuels, miniplate characteristics, and a summary of bonding runs made by hot isostatic pressing.

  17. Establishing QC/QA system in the fabrication of nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Suh, K.S.; Choi, S.K.; Park, H.G.; Park, T.G.; Chung, J.S.

    1980-01-01

    Quality control instruction manuals and inspection methods for UO 2 powder and zircaloy materials as the material control, and for UO 2 pellets and nuclear fuel rods as the process control were established. And for the establishment of Q.A programme, the technical specifications of the purchased materials, the control regulation of the measuring and testing equipments, and traceability chart as a part of document control have also been provided and practically applied to the fuel fabrication process

  18. Simulated physical inventory verification exercise at a mixed-oxide fuel fabrication facility

    International Nuclear Information System (INIS)

    Reilly, D.; Augustson, R.

    1985-01-01

    A physical inventory verification (PIV) was simulated at a mixed-oxide fuel fabrication facility. Safeguards inspectors from the International Atomic Energy Agency (IAEA) conducted the PIV exercise to test inspection procedures under ''realistic but relaxed'' conditions. Nondestructive assay instrumentation was used to verify the plutonium content of samples covering the range of material types from input powders to final fuel assemblies. This paper describes the activities included in the exercise and discusses the results obtained. 5 refs., 1 fig., 6 tabs

  19. Compact, Wearable Antennas for Battery-Less Systems Exploiting Fabrics and Magneto-Dielectric Materials

    Directory of Open Access Journals (Sweden)

    Alessandra Costanzo

    2014-08-01

    Full Text Available In this paper, we describe some promising solutions to the modern need for wearable, energy-aware, miniaturized, wireless systems, whose typical envisaged application is a body area network (BAN. To reach this goal, novel materials are adopted, such as fabrics, in place of standard substrates and metallizations, which require a systematic procedure for their electromagnetic characterization. Indeed, the design of such sub-systems represents a big issue, since approximate approaches could result in strong deviations from the actual system performance. To face this problem, we demonstrate our design procedure, which is based on the concurrent use of electromagnetic software tools and nonlinear circuit-level techniques, able to simultaneously predict the actual system behavior of an antenna system, consisting of the radiating and of the nonlinear blocks, at the component level. This approach is demonstrated for the design of a fully-wearable tri-band rectifying antenna (rectenna and of a button-shaped, electrically-small antenna deploying a novel magneto-dielectric substrate. Simulations are supported by measurements, both in terms of antenna port parameters and far-field results.

  20. Advanced fuel for fast breeder reactors: Fabrication and properties and their optimization

    International Nuclear Information System (INIS)

    1988-06-01

    The present design for FBR fuel rods includes usually MOX fuel pellets cladded into stainless steel tubes, together with UO 2 axial blanket and stainless steel hexagonal wrappers. Mixed carbide, nitride and metallic fuels have been tested as alternative fuels in test reactors. Among others, the objectives to develop these alternative fuels are to gain a high breeding ratio, short doubling time and high linear ratings. Fuel rod and assembly designers are now concentrating on finding the combination of optimized fuel, cladding and wrapper materials which could result in improvement of fuel operational reliability under high burnups and load-follow mode of operation. The purpose of the meeting was to review the experience of advanced FBR fuel fabrication technology, its properties before, under and after irradiation, peculiarities of the back-end of the nuclear fuel cycle, and to outline future trends. As a result of the panel discussion, the recommendations on future Agency activities in the area of advanced FBR fuels were developed. A separate abstract was prepared for each of the 10 presentations of this meeting. Refs, figs and tabs

  1. Caramel fuel for research reactors: experience acquired in the fabrication, monitoring and irradiation of Osiris core

    International Nuclear Information System (INIS)

    Contenson, Ghislain de; Foulquier, Henri; Trotabas, Maria; Vignesoult, Nicole; Cerles, J.-M.; Delafosse, Jacques.

    1981-06-01

    A plate type nuclear fuel (Caramel fuel) has been developed in France in the framework of the various activities pursued in the design, fabrication and development of nuclear fuels by the CEA. This fuel can be adapted to various different categories of water cooled reactor (power reactors, marine propulsion reactors, urbain heating reactors, research reactors). The successful work conducted in this field led the realization of a complete core and reloads for the high performance research reactor, Osiris, at Saclay. The existing highly enriched U-Al alloy fuel was replaced by a non-proliferating low enrichment (7%) caramel fuel. This new core has been operating successfully since january 1980. A brief description of Caramel and its main advantages is given. The way in which it is fabricated is described together with the quality controls to which it is subjected. The qualification program and the main results deduced from it are also presented. The program used to monitor its in-pile behavior is described. The essential purpose of this program is to ensure the high performance of the fuel under irradiation. The successful operation of Osiris, which terminated 11 irradiation cycles on the 21st of April 1981 confirmed the correctness of the decisions made and the excellent performance that could be achieved with these fuel elements under the severe conditions encountered in a high performance research reactor [fr

  2. Reproduction of the RA reactor fuel element fabrication; Reprodukcija izrade gorivnog elementa za reaktor RA

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, M [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    This document includes the following nine reports: Final report on task 08/12 - testing the Ra reactor fuel element; design concept for fabrication of RA reactor fuel element; investigation of the microstructure of the Ra reactor fuel element; Final report on task 08/13 producing binary alloys with Al, Mo, Zr, Nb and B additions; fabrication of U-Al alloy; final report on tasks 08/14 and 08/16; final report on task 08/32 diffusion bond between the fuel and the cladding of the Ra reactor fuel element; Final report on task 08/33, fabrication of the RA reactor fuel element cladding; and final report on task 08/36, diffusion of solid state metals. Ovaj rad sadrzi devet priloga: 1. Zavrsni izvestaj o podzadatku 08/12, ispitivanje elementa goriva reaktora RA; 2. Koncepcija izrade gorivnog elementa reaktora RA; 3. Ispitivanje mikrostrukture gorivnog elementa reaktora RA; 4. Zavrsni izvestaj o podzadatku 08/13, dobijanje binarnih legura urana sa legirajucim komponentama Al, Mo, Zr, Nb i B; 5. Dobijanje legure U-Al; 6. Zavrsni izvestaj o podzadacima 08/14 i 08/16; 7. Zavrsni izvestaj o podzadatku 08/32, difuziona veza goriva i kosuljice gorivnog elementa reaktora RA; 8. Zavrsni izvestaj o podzadatku 08/33, izrada kosuljice gorivnog elementa reaktora RA; 9. Zavrsni izvestaj o podzadatku 08/36, difuzija kod metala u cvrstom stanju.

  3. Design, fabrication and operating experience of Monju ex-vessel fuel storage tank

    International Nuclear Information System (INIS)

    Yokota, Yoshio; Yamagishi, Yoshiaki; Kuroha, Mitsuo; Inoue, Tatsuya

    1995-01-01

    In FBRs there are two methods of storing and cooling the spent fuel - the in-vessel storage and the ex-vessel storage. Because of the sodium leaks through the tank at the beginning of pre-operation, the utilization of the ex-vessel fuel storage tank (EVST) of some FBR plant has been changed from the ex-vessel fuel storage to the interim fuel transfer tank. This led to reactor designers focusing on the material, structure and fabrication of the carbon steel sodium storage tanks worldwide. The Monju EVST was at the final stage of the design, when the leaks occurred. The lesson learned from that experience and the domestic fabrication technology are reflected to the design and fabrication of the Monju EVST. This paper describes the design, fabrication and R and D results for the tank, and operating experience in functional test. The items to be examined are as follows: (1) Overall structure of the tank and design philosophy on the function, (2) Structure of the cover shielding plug and its design philosophy, (3) Structures of the rotating rack and its bearings, and their design philosophy, (4) Cooling method and its design philosophy, (5) Structure and fabrication of the cooling coil support inside EVST with comparison of leaked case, (6) R and D effort for items above. The fabrication of the Monju EVST started in August 1986 and it was shipped to the site in March 1990. Installation was completed in November 1990, and sodium fill after pre-heating started in 1991. The operation has been continued since September 1992. In 1996 when the first spent fuel is stored, its total functions will be examined. (author)

  4. Quantifying Tc-99 contamination in a fuel fabrication plant - 59024

    International Nuclear Information System (INIS)

    Darbyshire, Carol; Burgess, Pete

    2012-01-01

    The Springfields facility manufactures nuclear fuel products for the UK's nuclear power stations and for international customers. Fuel manufacture is scheduled to continue into the future. In addition to fuel manufacture, Springfields is also undertaking decommissioning activities. Today it is run and operated by Springfields Fuels Limited, under the management of Westinghouse Electric UK Limited. The site has been operating since 1946 manufacturing nuclear fuel. As part of the decommissioning activities, there was a need was to quantify contamination in a large redundant building. This building had been used to process uranium derived from uranium ore concentrate but had also processed a limited quantity of recycled uranium. The major non-uranic contaminant was Tc-99. The aim was to be able to identify any areas where the bulk activity exceeded 0.4 Bq/g Tc-99 as this would preclude the demolition rubble being sent to the local disposal facility. The problems associated with this project were the presence of significant uranium contamination, the realisation that both the Tc-99 and the uranium had diffused into the brickwork to a significant depth and the relatively low beta energy of Tc-99. The uranium was accompanied by Pa-234m, an energetic beta emitter. The concentration/depth profile was determined for several areas on the plant for Tc-99 and for uranium. The radiochemical analysis was performed locally but the performance of the local laboratory was checked during the initial investigation by splitting samples three ways and having confirmation analyses performed by 2 other laboratories. The results showed surprisingly consistent concentration gradients for Tc-99 and for uranium across the samples. Using that information, the instrument response was calculated for Tc-99 using the observed diffusion gradient and averaged through the full 225 mm of brick wall, as agreed by the regulator. The Tc-99 and uranium contributions to the detector signal were separated

  5. Cobalt-doped Ti–48Al–2Cr–2Nb alloy fabricated by cold compaction and pressureless sintering

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Y. [The University of Queensland, School of Mechanical and Mining Engineering, ARC Centre of Excellence for Design in Light Metals, Brisbane, Qld 4072 (Australia); Yu, P. [Department of Micro-Nano Material and Device, The South University of Science and Technology of China, Shenzhen, 518055 (China); Schaffer, G.B. [The University of Queensland, School of Mechanical and Mining Engineering, ARC Centre of Excellence for Design in Light Metals, Brisbane, Qld 4072 (Australia); Qian, M., E-mail: ma.qian@uq.edu.au [The University of Queensland, School of Mechanical and Mining Engineering, ARC Centre of Excellence for Design in Light Metals, Brisbane, Qld 4072 (Australia)

    2013-07-01

    An addition of 1.5 at% Co to Ti–48Al–2Cr–2Nb (in at%) transformed the alloy from essentially unsinterable to fully sinterable at 1300 °C. This, together with a simple powder coating process developed recently, has allowed near-net shape fabrication of the alloy for the first time by cold compaction and pressureless sintering. The addition of Co results in the formation of an intermediate face centred cubic (fcc) CoAl{sub 2}Ti phase prior to 1220 °C during heating. It subsequently reacts with an α phase leading to the formation of a Co-containing, wettable sintering liquid through a two-step process, CoAl{sub 2}Ti+α→Liquid at 1256.2 °C and CoAl{sub 2}Ti+α→γ-TiAl+Liquid at 1267.2 °C, and therefore full densification of the alloy. Without Co, sintering of the Ti–48Al–2Cr–2Nb alloy powder at 1300 °C is controlled by the slow self-diffusion of Ti and interdiffusion of Ti and Al according to the activation energy determined. Transmission electron microscopy (TEM) identified an fcc CoAl{sub 2}Ti phase and a hexagonal close packed (hcp) Co-enriched Ti(Al, Co, Cr, Nb) phase in the final as-sintered Ti–48Al–2Cr–2Nb–1.5Co alloy. They both form during cooling at 1240 °C through Liquid+α→CoAl{sub 2}Ti+Ti (Al, Co, Cr, Nb). The tensile and compressive properties of the as-sintered Ti–48Al–2Cr–2Nb–1.5Co alloy were compared to the original General Electric (GE) Ti–48Al–2Cr–2Nb alloy fabricated by casting or metal injection moulding.

  6. Romanian nuclear fuel fabrication and in-reactor fuel operational experience

    International Nuclear Information System (INIS)

    Budan, O.

    2003-01-01

    A review of the Romanian nuclear program since mid 60's is made. After 1990, the new Romanian nuclear power authority, RENEL-GEN, elaborated a realistic Nuclear Fuel Program. This program went through the Romanian nuclear fuel plant qualification with the Canadian (AECL and ZPI) support, restarting in January 1995 of the industrial nuclear fuel production, quality evaluation of the fuel produced before 1990 and the recovery of this fuel. This new policy produced good results. FCN is since 1995 the only CANDU fuel supplier from outside Canada recognised by AECL as an authorised CANDU fuel manufacturer. The in-reactor performances and behaviour of the fuel manufactured by FCN after its qualification have been excellent. Very low - more then five times lesser than the design value - fuel defect rate has been recorded up to now and the average discharge of this fuel was with about 9% greater than the design value. Since mid 1998 when SNN took charge of the production of nuclear generated electricity, FCN made significant progresses in development and procurement of new and more efficient equipment and is now very close to double its fuel production capacity. After the completion of the recovery of the fuel produced before June 1990, FCN is already prepared to shift its fuel production to the so-called 'heavy' bundle containing about 19.3 kg of Uranium per bundle

  7. Compact PEM fuel cell system combined with all-in-one hydrogen generator using chemical hydride as a hydrogen source

    International Nuclear Information System (INIS)

    Kim, Jincheol; Kim, Taegyu

    2015-01-01

    Highlights: • Compact fuel cell system was developed for a portable power generator. • Novel concept using an all-in-one reactor for hydrogen generation was proposed. • Catalytic reactor, hydrogen chamber and separator were combined in a volume. • The system can be used to drive fuel cell-powered unmanned autonomous systems. - Abstract: Compact fuel cell system was developed for a portable power generator. The power generator features a polymer electrolyte membrane fuel cell (PEMFC) using a chemical hydride as a hydrogen source. The hydrogen generator extracted hydrogen using a catalytic hydrolysis from a sodium borohydride alkaline solution. A novel concept using an all-in-one reactor was proposed in which a catalyst, hydrogen chamber and byproduct separator were combined in a volume. In addition, the reactor as well as a pump, cooling fans, valves and controller was integrated in a single module. A 100 W PEMFC stack was connected with the hydrogen generator and was evaluated at various load conditions. It was verified that the stable hydrogen supply was achieved and the developed system can be used to drive fuel cell-powered unmanned autonomous systems.

  8. Fabrication of zero power reactor fuel elements containing 233U3O8 powder

    International Nuclear Information System (INIS)

    Nicol, R.G.; Parrott, J.R.; Krichinsky, A.M.; Box, W.D.; Martin, C.W.; Whitson, W.R.

    1982-05-01

    Oak Ridge National Laboratory, under contract with Argonne National Laboratory, completed the fabrication of 1743 fuel elements for use in their Zero Power Reactor. The contract also included recovery of 20 kg of 233 U from rejected elements. This report describes the steps associated with conversion of purified uranyl nitrate (as solution) to U 3 O 8 powder (suitable for fuel) and subsequent charging, sealing, decontamination, and testing of the fuel elements (packets) preparatory to shipment. The nuclear safety, radiation exposures, and quality assurance aspects of the program are discussed

  9. Evaluation of methods for seismic analysis of nuclear fuel reprocessing and fabrication facilities

    International Nuclear Information System (INIS)

    Arthur, D.F.; Dong, R.G.; Murray, R.C.; Nelson, T.A.; Smith, P.D.; Wight, L.H.

    1978-01-01

    Methods of seismic analysis for critical structures and equipment in nuclear fuel reprocessing plants (NFRPs) and mixed oxide fuel fabrication plants (MOFFPs) are evaluated. The purpose of this series of reports is to provide the NRC with a technical basis for assessing seismic analysis methods and for writing regulatory guides in which methods ensuring the safe design of nuclear fuel cycle facilities are recommended. The present report evaluates methods of analyzing buried pipes and wells, sloshing effects in large pools, earth dams, multiply supported equipment, pile foundations, and soil-structure interactions

  10. A high-temperature, short-duration method of fabricating surrogate fuel microkernels for carbide-based TRISO nuclear fuels

    International Nuclear Information System (INIS)

    Vasudevamurthy, G.; Radecka, A.; Massey, C.

    2015-01-01

    High-temperature gas-cooled reactor technology is a frontrunner among generation IV nuclear reactor designs. Among the advanced nuclear fuel forms proposed for these reactors, dispersion-type fuel consisting of microencapsulated uranium di-oxide kernels, popularly known as tri-structural isotropic (TRISO) fuel, has emerged as the fuel form of choice. Generation IV gas-cooled fast reactors offer the benefit of recycling nuclear waste with increased burn-ups in addition to producing the required power and hydrogen. Uranium carbide has shown great potential to replace uranium di-oxide for use in these fast spectrum reactors. Uranium carbide microkernels for fast reactor TRISO fuel have traditionally been fabricated by long-duration carbothermic reduction and sintering of precursor uranium dioxide microkernels produced using sol-gel techniques. These long-duration conversion processes are often plagued by issues such as final product purity and process parameters that are detrimental to minor actinide retention. In this context a relatively simple, high-temperature but relatively quick-rotating electrode arc melting method to fabricate microkernels directly from a feedstock electrode was investigated. The process was demonstrated using surrogate tungsten carbide on account of its easy availability, accessibility and the similarity of its melting point relative to uranium carbide and uranium di-oxide.

  11. A high-temperature, short-duration method of fabricating surrogate fuel microkernels for carbide-based TRISO nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevamurthy, G.; Radecka, A.; Massey, C. [Virginia Commonwealth Univ., Richmond, VA (United States). High Temperature Materials Lab.

    2015-07-01

    High-temperature gas-cooled reactor technology is a frontrunner among generation IV nuclear reactor designs. Among the advanced nuclear fuel forms proposed for these reactors, dispersion-type fuel consisting of microencapsulated uranium di-oxide kernels, popularly known as tri-structural isotropic (TRISO) fuel, has emerged as the fuel form of choice. Generation IV gas-cooled fast reactors offer the benefit of recycling nuclear waste with increased burn-ups in addition to producing the required power and hydrogen. Uranium carbide has shown great potential to replace uranium di-oxide for use in these fast spectrum reactors. Uranium carbide microkernels for fast reactor TRISO fuel have traditionally been fabricated by long-duration carbothermic reduction and sintering of precursor uranium dioxide microkernels produced using sol-gel techniques. These long-duration conversion processes are often plagued by issues such as final product purity and process parameters that are detrimental to minor actinide retention. In this context a relatively simple, high-temperature but relatively quick-rotating electrode arc melting method to fabricate microkernels directly from a feedstock electrode was investigated. The process was demonstrated using surrogate tungsten carbide on account of its easy availability, accessibility and the similarity of its melting point relative to uranium carbide and uranium di-oxide.

  12. Fabrication of catalytic electrodes for molten carbonate fuel cells

    Science.gov (United States)

    Smith, James L.

    1988-01-01

    A porous layer of catalyst material suitable for use as an electrode in a molten carbonate fuel cell includes elongated pores substantially extending across the layer thickness. The catalyst layer is prepared by depositing particulate catalyst material into polymeric flocking on a substrate surface by a procedure such as tape casting. The loaded substrate is heated in a series of steps with rising temperatures to set the tape, thermally decompose the substrate with flocking and sinter bond the catalyst particles into a porous catalytic layer with elongated pores across its thickness. Employed as an electrode, the elongated pores provide distribution of reactant gas into contact with catalyst particles wetted by molten electrolyte.

  13. 76 FR 65544 - Standard Format and Content of License Applications for Mixed Oxide Fuel Fabrication Facilities

    Science.gov (United States)

    2011-10-21

    ... NUCLEAR REGULATORY COMMISSION [NRC-2009-0323] Standard Format and Content of License Applications... revision to regulatory guide (RG) 3.39, ``Standard Format and Content of License Applications for Mixed Oxide Fuel Fabrication Facilities.'' This guide endorses the standard format and content for license...

  14. Standard format and content of license applications for plutonium processing and fuel fabrication plants

    International Nuclear Information System (INIS)

    1976-01-01

    The standard format suggested for use in applications for licenses to possess and use special nuclear materials in Pu processing and fuel fabrication plants is presented. It covers general description of the plant, summary safety assessment, site characteristics, principal design criteria, plant design, process systems, waste confinement and management, radiation protection, accident safety analysis, conduct of operations, operating controls and limits, and quality assurance

  15. Fabrication of inert matrix fuel for the incineration of plutonium - a feasibility study

    International Nuclear Information System (INIS)

    Burghartz, M.; Ledergerber, G.; Ingold, F.; Xie, T.; Botta, F.; Idemitsu, K.

    1998-01-01

    The internal gelation process has been applied to fabricate classical fuel based on uranium like UO 2 and MOX. For recent aims to destroy plutonium in the most effective way, a uranium free fuel was evaluated. The fuel development at PSI has been redirected to a fuel based on zirconium oxide or a mixture of zirconia and a conducting material leading to ceramic/metal (CERMET) or ceramic/ceramic (CERCER) combinations. A feasibility study was carried out to demonstrate that microspheres based on zirconia and spinel can be fabricated. The gelation parameters were investigated leading to optimised compositions for the starting solutions. Studies to fabricate a composite material (from zirconia and spinel) are ongoing. If the zirconia/spinel ratio is chosen appropriately, the low thermal conductivity of pure zirconia could be compensated by the higher thermal conductivity of spinel. Another solution to improve the low thermal conductivity of zirconia is the development of a CERMET, which consists of fine particles bearing plutonium in a cubic zirconia dispersed in a metallic matrix. The fabrication of such a CERMET is also being studied. (author)

  16. Design of an engineered safeguards system for a mixed-oxide fuel fabrication facility

    International Nuclear Information System (INIS)

    Winblad, A.E.; McKnight, R.P.; Fienning, W.C.; Fenchel, B.R.

    1977-06-01

    Several Engineered Safeguards System concepts and designs are described that provide increased protection against a wide spectrum of adversary threats. An adversary sequence diagram that outlines all possible adversary paths through the safeguards elements in a mixed-oxide fuel fabrication facility is shown. An example of a critical adversary path is given

  17. Fabrication of a pressurized water reactor fuel element prototype with Zy-control rod guide tubes

    International Nuclear Information System (INIS)

    Bezold, H.; Romeiser, H.J.

    1978-10-01

    A prototype fuel assembly with zircaloy guide was fabricated by mass production methods. The fastening of the Inconel spacer grids to the guide tubes and the transition joint for fixing the tubes to the stainless stell upper end-fitting of the assembly were investigated. Tools and welding devices were developed for the construction of the skeleton. (orig.) [de

  18. Structure and performance of anisotropic nanocrystalline Nd-Fe-B magnets fabricated by high-velocity compaction followed by deformation

    Science.gov (United States)

    Zhao, L. Z.; Deng, X. X.; Yu, H. Y.; Guan, H. J.; Li, X. Q.; Xiao, Z. Y.; Liu, Z. W.; Greneche, J. M.

    2017-12-01

    High-velocity compaction (HVC) has been proposed as an effective approach for the fabrication of nanocrystalline Nd-Fe-B magnets. In this work, the effect of powder size on the density of HVCed magnets has been studied and the anisotropic nanocrystalline Nd-Fe-B magnets were prepared by HVC followed by hot deformation (HD). It is found that a proper particle size range is beneficial to high density. The investigations on the microstructure, magnetic domain structure, and hyperfine structure, indicate that the deformed grain structure and the magnetic domain structure with uniform paramagnetic grain boundary phase give good magnetic properties of HVC + HDed magnets. These magnets also have good mechanical and anti-corrosion properties. The results indicate that HVC is not only a near-net-shape, room temperature and binder-free process but is also able to maintain uniform nanostructure and to achieve good magnetic properties in both isotropic and anisotropic magnets. As a result, HVC can be employed as an ideal alternative process for bonding or hot pressing for the conventional MQI, MQII and MQIII magnets.

  19. Characterization of aerosols from industrial fabrication of mixed-oxide nuclear reactor fuels

    International Nuclear Information System (INIS)

    Hoover, M.D.; Newton, G.J.

    1997-01-01

    Recycling plutonium into mixed-oxide (MOX) fuel for nuclear reactors is being given serious consideration as a safe and environmentally sound method of managing plutonium from weapons programs. Planning for the proper design and safe operation of the MOX fuel fabrication facilities can take advantage of studies done in the 1970s, when recycling of plutonium from nuclear fuel was under serious consideration. At that time, it was recognized that the recycle of plutonium and uranium in irradiated fuel could provide a significant energy source and that the use of 239 Pu in light water reactor fuel would reduce the requirements for enriched 235 U as a reactor fuel. It was also recognized that the fabrication of uranium and plutonium reactor fuels would not be risk-free. Despite engineered safety precautions such as the handling of uranium and plutonium in glove-box enclosures, accidental releases of radioactive aerosols from normal containment might occur. Workers might then be exposed to the released materials by inhalation

  20. Development of joining techniques for fabrication of fuel rod simulators

    International Nuclear Information System (INIS)

    Moorhead, A.J.; McCulloch, R.W.; Reed, R.W.; Woodhouse, J.J.

    1980-10-01

    Much of the safety-related thermal-hydraulic tests on nuclear reactors are conducted not in the reactor itself, but in mockup segments of a core that uses resistance-heated fuel rod simulators (FRS) in place of the radioactive fuel rods. Laser welding and furnace brazing techniques are described for joining subassemblies for FRS that have survived up to 1000 h steady-state operation at 700 to 1100 0 C cladding temperatures and over 5000 thermal transients, ranging from 10 to 100 0 C/s. A pulsed-laser welding procedure that includes use of small-diameter filler wire is used to join one end of a resistance heating element of Pt-8 W, Fe-22 Cr-5.5 Al-0.5 Co, or 80 Ni-20 Cr (wt %) to a tubular conductor of an appropriate intermediate material. The other end of the heating element is laser welded to an end plug, which in turn is welded to a central conductor rod

  1. Regulations concerning the fabricating business of nuclear fuel materials

    International Nuclear Information System (INIS)

    1987-01-01

    Regulations specified here cover application for such matters as permission for an undertaking of processing, alteration (of location, structure, arrangements, processing method, etc.), approval of design and construction plan, approval of alteration (of design and construction plan of processing facilities), and inspection of the facilities. The regulations also cover execution of facilities inspection, certificate of facilities inspection, processing facilities subject to welding inspection, application for welding inspection, execution of welding inspection, facilities not subject to welding inspection, approval of welding method, welding inspection for imported equipment, certificate of welding inspection, application for approval of joint management, notice of alteration, etc., cancellation of permission, record keeping, restriction on access to areas under management measures concerning exposure to radioactive rays, patrol and checking in processing facilities, operation of processing equipment, transportation within plant or operation premises, storage, waste disposal within plant or operation premises, safety rules, public notification concerning examination and successful applicants, procedure for application for examination, reissue of certificate for nuclear fuel handling expert, return of certificate for nuclear fuel handling expert, submission of report, measures for emergency, notice of abolition of business, measures concerning cancellation of permission, identification card, etc. (Nogami, K.)

  2. Development of ISA procedure for uranium fuel fabrication and enrichment facilities

    International Nuclear Information System (INIS)

    Yamate, Kazuki; Arakawa, Tomoyuki; Yamashita, Masahiro; Sasaki, Noriaki; Hirano, Mitsumasa

    2011-01-01

    The integrated safety analysis (ISA) procedure has been developed to apply risk-informed regulation to uranium fuel fabrication and enrichment facilities. The major development efforts are as follows: (a) preparing the risk level matrix as an index for items-relied-on-for-safety (IROFS) identification, (b) defining requirements of IROFS, and (c) determining methods of IROFS importance based on the results of risk- and scenario-based analyses. For the risk level matrix, the consequence and likelihood categories have been defined by taking into account the Japanese regulatory laws, rules, and safety standards. The trial analyses using the developed procedure have been performed for several representative processes of the reference uranium fuel fabrication and enrichment facilities. This paper presents the results of the ISA for the sintering process of the reference fabrication facility. The results of the trial analyses have demonstrated the applicability of the procedure to the risk-informed regulation of these facilities. (author)

  3. Thoria-based nuclear fuels thermophysical and thermodynamic properties, fabrication, reprocessing, and waste management

    CERN Document Server

    Bharadwaj, S R

    2013-01-01

    This book presents the state of the art on thermophysical and thermochemical properties, fabrication methodologies, irradiation behaviours, fuel reprocessing procedures, and aspects of waste management for oxide fuels in general and for thoria-based fuels in particular. The book covers all the essential features involved in the development of and working with nuclear technology. With the help of key databases, many of which were created by the authors, information is presented in the form of tables, figures, schematic diagrams and flow sheets, and photographs. This information will be useful for scientists and engineers working in the nuclear field, particularly for design and simulation, and for establishing the technology. One special feature is the inclusion of the latest information on thoria-based fuels, especially on the use of thorium in power generation, as it has less proliferation potential for nuclear weapons. Given its natural abundance, thorium offers a future alternative to uranium fuels in nuc...

  4. Powder metallurgy and fabricating processes of cermet and metmet fuel in Russia

    International Nuclear Information System (INIS)

    Vatulin, A.; Konovalov, I.; Savchenco, A.; Stetsky, Y.; Trifonov, Y.; Bochvar, A.A.

    2000-01-01

    Methods of powder metallurgy are widely used for manufacturing of various components of reactor core: beryllium reflectors, absorbers, parts of controlling and safety systems, fuel pellets for fuel elements of power reactors and etc. The new problems arising before atomic engineering associated with increasing requirements to safe operation of reactors, non-proliferation of the nuclear weapons and utilization of plutonium stockpile in the world, served as a push to development of new kinds of dispersion nuclear fuel CERMET, CERCER, METMET. The bases of fabricating processes of such compositions are the methods of powder metallurgy. In this report some results of research activities on the development of new kinds of CERMET and METMET fuel and fuel elements for different type reactors are presented. (author)

  5. Special equipment for the fabrication and quality control of nuclear fuel elements

    International Nuclear Information System (INIS)

    Guse, K.; Herbert, W.; Jaeger, K.

    1989-01-01

    For the fabrication of LWR fuel elements, columns are packed of up to 4 m in length, consisting of fuel pellets with different uranium enrichment, their weight and total length to be measured prior to further processing to fuel rods. An automated column packing device has been developed for this purpose. The packing jobs and other tasks are computer-controlled, measured data are stored and are printed out for quality documentation. The forces in the springs of fuel spacers of LWR fuel elements are to be measured and compared with the standard requirements, deviations to be documented. For this task, another computer-controlled, automated device has been developed for measuring the spring forces at all required positions after positioning and fixation of the spacers. (orig./DG) [de

  6. Criticality Calculations for a Typical Nuclear Fuel Fabrication Plant with Low Enriched Uranium

    International Nuclear Information System (INIS)

    Elsayed, Hade; Nagy, Mohamed; Agamy, Said; Shaat, Mohmaed

    2013-01-01

    The operations with the fissile materials such as U 235 introduce the risk of a criticality accident that may be lethal to nearby personnel and can lead the facility to shutdown. Therefore, the prevention of a nuclear criticality accident should play a major role in the design of a nuclear facility. The objectives of criticality safety are to prevent a self-sustained nuclear chain reaction and to minimize the consequences. Sixty criticality accidents were occurred in the world. These are accidents divided into two categories, 22 accidents occurred in process facilities and 38 accidents occurred during critical experiments or operations with research reactor. About 21 criticality accidents including Japan Nuclear Fuel Conversion Co. (JCO) accident took place with fuel solution or slurry and only one accident occurred with metal fuel. In this study the nuclear criticality calculations have been performed for a typical nuclear fuel fabrication plant producing nuclear fuel elements for nuclear research reactors with low enriched uranium up to 20%. The calculations were performed for both normal and abnormal operation conditions. The effective multiplication factor (k eff ) during the nuclear fuel fabrication process (Uranium hexafluoride - Ammonium Diuranate conversion process) was determined. Several accident scenarios were postulated and the criticalities of these accidents were evaluated. The computer code MCNP-4B which based on Monte Carlo method was used to calculate neutron multiplication factor. The criticality calculations Monte Carlo method was used to calculate neutron multiplication factor. The criticality calculations were performed for the cases of, change of moderator to fuel ratio, solution density and concentration of the solute in order to prevent or mitigate criticality accidents during the nuclear fuel fabrication process. The calculation results are analyzed and discussed

  7. Fabrication of simulated plate fuel elements: Defining role of out-of-plane residual shear stress

    Energy Technology Data Exchange (ETDEWEB)

    Rakesh, R., E-mail: rakesh.rad87@gmail.com [DAE Graduate Fellows, IIT Bombay, Powai, Mumbai 400076 (India); Metallic Fuels Division, BARC, Trombay, Mumbai 400085 (India); Kohli, D. [DAE Graduate Fellows, IIT Bombay, Powai, Mumbai 400076 (India); Metallic Fuels Division, BARC, Trombay, Mumbai 400085 (India); Sinha, V.P.; Prasad, G.J. [Metallic Fuels Division, BARC, Trombay, Mumbai 400085 (India); Samajdar, I. [Department of Metallurgical Engineering and Materials Science, IIT Bombay, Powai, Mumbai 400076 (India)

    2014-02-01

    Bond strength and microstructural developments were investigated during fabrication of simulated plate fuel elements. The study involved roll bonding of aluminum–aluminum (case A) and aluminum–aluminum + yttria (Y{sub 2}O{sub 3}) dispersion (case B). Case B approximated aluminum–uranium silicide (U{sub 3}Si{sub 2}) ‘fuel-meat’ in an actual plate fuel. Samples after different stages of fabrication, hot and cold rolling, were investigated through peel and pull tests, micro-hardness, residual stresses, electron and micro-focus X-ray diffraction. Measurements revealed a clear drop in bond strength during cold rolling: an observation unique to case B. This was related to significant increase in ‘out-of-plane’ residual shear stresses near the clad/dispersion interface, and not from visible signatures of microstructural heterogeneities.

  8. Method of fabricating zirconium metal for use in composite type fuel cans

    International Nuclear Information System (INIS)

    Imahashi, Hiromichi; Inagaki, Masatoshi; Akabori, Kimihiko; Tada, Naofumi; Yasuda, Tetsuro.

    1985-01-01

    Purpose: To mass produce zirconium metal for fuel cans with less radiation hardening. Method: Zirconium sponges as raw material are inserted in a hearth mold and a procedure of melting the zirconium sponges portionwise by using a melting furnace having electron beams as a heat source while moving the hearth is repeated at least for once. Then, the rod-like ingot after melting is melted again in a vacuum or inert gas atmosphere into an ingot of a low oxygen density capable of fabrication. A composite fuel can billet is formed by using the thus obtained zirconium ingot and a zircalloy, and a predetermined composite type fuel can is manufactured by way of hot extrusion and pipe drawing fabrication. The raw material usable herein is zirconium sponge with an oxygen density of 400 ppm or higher and the content of impurity other than oxygen is between 1000 - 5000 ppm in total, or the molten material thereof. (Kamimura, M.)

  9. Development of IAEA safeguards at low enrichment uranium fuel fabrication plants

    International Nuclear Information System (INIS)

    Badawy, I.

    1988-01-01

    In this report the nuclear material at low enrichment uranium fuel fabrication plants under IAEA safeguards is studied. The current verification practices of the nuclear material and future improvements are also considered. The problems met during the implementation of the the verification measures of the nuclear material - particularly for the fuel assemblies are discussed. The additional verification activities as proposed for future improvements are also discussed including the physical inventory verification and the verification of receipts and shipments. It is concluded that the future development of the present IAEA verification practices at low enrichment uranium fuel fabrication plants would necessitate the application of quantitative measures of the nuclear material and the implementation of advanced measurement techniques and instruments. 2 fig., 4 tab

  10. Compact toroid injection fueling in a large field-reversed configuration

    Science.gov (United States)

    Asai, T.; Matsumoto, T.; Roche, T.; Allfrey, I.; Gota, H.; Sekiguchi, J.; Edo, T.; Garate, E.; Takahashi, Ts.; Binderbauer, M.; Tajima, T.

    2017-07-01

    A repetitively driven compact toroid (CT) injector has been developed for the large field-reversed configuration (FRC) facility of the C-2/C-2U, primarily for particle refueling. A CT is formed and injected by a magnetized coaxial plasma gun (MCPG) exclusively developed for the C-2/C-2U FRC. To refuel the particles of long-lived FRCs, multiple CT injections are required. Thus, a multi-stage discharge circuit was developed for a multi-pulsed CT injection. The drive frequency of this system can be adjusted up to 1 kHz and the number of CT shots per injector is two; the system can be further upgraded for a larger number of injection pulses. The developed MCPG can achieve a supersonic ejection velocity in the range of ~100 km s-1. The key plasma parameters of electron density, electron temperature and the number of particles are ~5  ×  1021 m-3, ~30 eV and 0.5-1.0  ×  1019, respectively. In this project, single- and double-pulsed counter CT injection fueling were conducted on the C-2/C-2U facility by two CT injectors. The CT injectors were mounted 1 m apart in the vicinity of the mid-plane. To avoid disruptive perturbation on the FRC, the CT injectors were operated at the lower limit of the particle inventory. The experiments demonstrated successful refueling with a significant density build-up of 20-30% of the FRC particle inventory per single CT injection without any deleterious effects on the C-2/C-2U FRC.

  11. Rework of process effluents from the fabrication of HTR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lasberg, Ingo; Braehler, Georg [NUKEM Technologies GmbH (Germany); Boyes, David [Pebble Bed Modular Reactor (Pty) Ltd., Centurion (South Africa)

    2008-07-01

    HTR fuel facilities require the application of several liquid chemicals and accordingly they produce significant amounts of Uranium contaminated/potentially contaminated effluents. The main effluents are (amounts for a 3 t Uranium/a plant): aqueous solutions including tetrahydrofurfuryl alcohol THFA, ammonium hydroxide NH4OH, and ammonium nitrate NH4NO3 (180 m{sup 3}/a), isopropanol IPA/water mixtures (130 m{sup 3}/a); Non-Process Water NPW (300 m{sup 3}/a); methanol (7m{sup 3}/a); additionally off-gas streams, containing ammonia (9 t/a) have to be treated. In an industrial scale facility all such effluents/gases need to be processed for recycling, decontamination prior to release to the environment (as waste or as valuable material). Thermal decomposition is applied to dispose of burnable residues.

  12. Decommissioning of a mixed oxide fuel fabrication facility

    International Nuclear Information System (INIS)

    Buck, S.; Colquhoun, A.

    1990-01-01

    Decommissioning of the coprecipitation plant, which made plutonium/uranium oxide fuel, is a lead project in the BNFL Sellafield decommissioning programme. The overall programme has the objectives of gaining data and experience in a wide range of decommissioning operations and hence in this specific project to pilot the decommissioning of plant heavily contaminated with plutonium and other actinides. Consequently the operations have been used to test improvements in temporary containment, contamination control and decontamination methods and also to develop in situ plutonium assay, plutonium recovery and size-reduction methods. Finally the project is also yielding data on manpower requirements, personnel radiation uptake and waste arisings to help in the planning of future decommissioning projects

  13. Rework of process effluents from the fabrication of HTR fuel

    International Nuclear Information System (INIS)

    Lasberg, Ingo; Braehler, Georg; Boyes, David

    2008-01-01

    HTR fuel facilities require the application of several liquid chemicals and accordingly they produce significant amounts of Uranium contaminated/potentially contaminated effluents. The main effluents are (amounts for a 3 t Uranium/a plant): aqueous solutions including tetrahydrofurfuryl alcohol THFA, ammonium hydroxide NH4OH, and ammonium nitrate NH4NO3 (180 m 3 /a), isopropanol IPA/water mixtures (130 m 3 /a); Non-Process Water NPW (300 m 3 /a); methanol (7m 3 /a); additionally off-gas streams, containing ammonia (9 t/a) have to be treated. In an industrial scale facility all such effluents/gases need to be processed for recycling, decontamination prior to release to the environment (as waste or as valuable material). Thermal decomposition is applied to dispose of burnable residues.

  14. Quality assurance in the course of fabrication of LWR fuel

    International Nuclear Information System (INIS)

    Dressler, G.; Perry, J.A.

    1982-01-01

    A high quality level of LWR fuel elements can only be assured by a system of Quality Assurance measures purposefully designed, balanced, and appropriately applied. This includes application of and the appropriate balance between both system and product oriented measures. A prerequisite to the establishment of these measures is a precise analysis of the various influences of the individual process steps on the quality characteristics of the starting materials, semi-finished and finished products. In addition, these characteristics require classification criteria relative to their significance. The described classification is used to establish sampling plans and to disposition non-conformances. The EXXON Nuclear Quality Assurance system which is based on these principles is described and illustrated with some examples. (orig.)

  15. Fabrication of fuel cell electrodes and other catalytic structures

    Science.gov (United States)

    Smith, J.L.

    1987-02-11

    A porous layer of catalyst material suitable for use as an electrode in a molten carbonate fuel cell includes elongated pores substantially extending across the layer thickness. The catalyst layer is prepared by depositing particulate catalyst material into polymeric flocking on a substrate surface by a procedure such as tape casting. The loaded substrate is heated in a series of steps with rising temperatures to set the tape, thermally decompose the substrate with flocking and sinter bond the catalyst particles into a porous catalytic layer with elongated pores across its thickness. Employed as an electrode, the elongated pores provide distribution of reactant gas into contact with catalyst particles wetted by molten electrolyte. 1 fig.

  16. Report on fabrication of pin components for fuel fabrication in FUJI project (Co-operation in the research and development of advanced sphere-pac fuel among PSI, JNC, and NRG)

    International Nuclear Information System (INIS)

    Suzuki, Masahiro; Hinai, Hiroshi; Shigetome, Yoshiaki; Kono, Shusaku; Matsuzaki, Masaaki

    2003-03-01

    Japan Nuclear Cycle Development Institute (JNC) has conducted the co-operation concerning vibro-packed fuels with Paul Scherrer Institut (PSI) in Switzerland and Nuclear Research and consultancy Group (NRG) in the Netherlands. The project 'Research and Development of advanced Sphere-pac Fuel' is called FUJI (FUel irradiations for JNC and PSI) Project. In this project, three types of fuels that are sphere-pac fuels, vipac fuels, and pellet fuels will be irradiated in the High Flux Reactor (HFR) to compare their performance. Based on the drawing which has been agreed among three parties, fabrication of the pin components and welding of the upper and lower connection end plugs were performed in accordance with ISO9001 in JNC. This report describes data of the fabricated pin components, results of welding qualification tests, and quality assurance of the welded components. The fabrication of pin components was successfully completed and they were delivered to PSI in October 2002. (author)

  17. Fabrication and properties of carbon network reinforced composite fuel

    International Nuclear Information System (INIS)

    Umer, Malik Adeel; Mistarihi, Qusai Mahmoud; Kim, Joon Hui; Hong, Soon Hyung; Ryu, Ho Jin

    2014-01-01

    Zirconium dioxide composites reinforced with 3D glassy carbon foam was fabricated using Spark Plasma Sintering (SPS) with a heating rate of 100degC/min and a uniaxial pressure of 50 MPa at 1500degC, 1600degC, and 1700degC, respectively. The effect of carbon foam on the thermal properties of the ZrO 2 composites was investigated. In addition, the effect of the sintering temperature on the densification of the composites was also investigated and the optimized sintering temperature was identified. The microstructures of 3D carbon foam reinforced ZrO 2 composites showed that the 3D shape of carbon foam was retained after the sintering process, and the ZrO 2 was homogeneously distributed within the 3D carbon foam. At the interfaces between the 3D carbon foam and ZrO 2 , neither a chemical reaction nor a new phase formation was detected by Scanning Electron Microscopy (SEM) and X-ray Diffractometry (XRD). The thermal diffusivity of carbon foam reinforced ZrO 2 composites measured at 1100degC was increased by 47% and reached to 0.66 mm 2 s -1 and the thermal conductivity was increased by 50% and reached to 2.428 W/m-K. (author)

  18. Fuel fabrication and reprocessing for nuclear fuel cycle with inherent safety demands

    Energy Technology Data Exchange (ETDEWEB)

    Shadrin, Andrey Yurevich; Dvoeglazov, Konstantin Nikolaevich; Ivanov, Valentine Borisovich; Volk, Vladimir Ivanovich; Skupov, Mikhail Vladimirovich; Glushenkov, Alexey Evgenevich [Joint Stock Company ' ' The High Technological Research Institute of Inorganic Materials' ' , Moscow (Russian Federation); Troyanov, Vladimir Mihaylovich; Zherebtsov, Alexander Anatolievich [Innovation and Technology Center of Project ' ' PRORYV' ' , State Atomic Energy Corporation ' ' Rosatom' ' , Moscow (Russian Federation)

    2015-06-01

    The strategies adopted in Russia for a closed nuclear fuel cycle with fast reactors (FR), selection of fuel type and recycling technologies of spent nuclear fuel (SNF) are discussed. It is shown that one of the possible technological solutions for the closing of a fuel cycle could be the combination of pyroelectrochemical and hydrometallurgical methods of recycling of SNF. This combined scheme allows: recycling of SNF from FR with high burn-up and short cooling time; decreasing the volume of stored SNF and the amount of plutonium in a closed fuel cycle in FR; recycling of any type of SNF from FR; obtaining the high pure end uranium-plutonium-neptunium end-product for fuel refabrication using pellet technology.

  19. Development of remote equipment for a DUPIC fuel fabrication at KAERI

    International Nuclear Information System (INIS)

    Lee, Jungwon; Kim, Kiho; Park, Geunil; Yang, Myungseung; Song, Keechan

    2007-01-01

    The DUPIC (Direct Use of spent PWR fuel In CANDU reactors) technology is to directly refabricate CANDU fuel from spent PWR fuel without any separation of the fissile materials and fission products. Thus, the DUPIC fuel material always remains in a highly radioactive state, which requires a remote fuel fabrication in a hot-cell. About 25 pieces of remote equipment including auxiliary systems such as a hot-cell shield plug were developed and installed in a hot cell. In order to supply a high electric current to a sintering furnace in-cell from an outside cell, a shield plug was developed. It consists of three components - a steel shield plug with an embedded spiral cooling line, stepped copper bus bars, and a shielding lead block. Experiments to evaluate the performance of the sintering furnace with the developed shield plug were carried out. It was concluded that, from the experimental results, the newly developed hot-cell shield plug satisfied all the requirements for a remote operation on a sintering furnace. DUPIC fuel pellets and elements were successfully fabricated with the developed remote equipment. (authors)

  20. Binder Jetting: A Novel Solid Oxide Fuel-Cell Fabrication Process and Evaluation

    Science.gov (United States)

    Manogharan, Guha; Kioko, Meshack; Linkous, Clovis

    2015-03-01

    With an ever-growing concern to find a more efficient and less polluting means of producing electricity, fuel cells have constantly been of great interest. Fuel cells electrochemically convert chemical energy directly into electricity and heat without resorting to combustion/mechanical cycling. This article studies the solid oxide fuel cell (SOFC), which is a high-temperature (100°C to 1000°C) ceramic cell made from all solid-state components and can operate under a wide range of fuel sources such as hydrogen, methanol, gasoline, diesel, and gasified coal. Traditionally, SOFCs are fabricated using processes such as tape casting, calendaring, extrusion, and warm pressing for substrate support, followed by screen printing, slurry coating, spray techniques, vapor deposition, and sputter techniques, which have limited control in substrate microstructure. In this article, the feasibility of engineering the porosity and configuration of an SOFC via an additive manufacturing (AM) method known as binder jet printing was explored. The anode, cathode and oxygen ion-conducting electrolyte layers were fabricated through AM sequentially as a complete fuel cell unit. The cell performance was measured in two modes: (I) as an electrolytic oxygen pump and (II) as a galvanic electricity generator using hydrogen gas as the fuel. An analysis on influence of porosity was performed through SEM studies and permeability testing. An additional study on fuel cell material composition was conducted to verify the effects of binder jetting through SEM-EDS. Electrical discharge of the AM fabricated SOFC and nonlinearity of permeability tests show that, with additional work, the porosity of the cell can be modified for optimal performance at operating flow and temperature conditions.

  1. The KNK II/1 fuel assembly NY-205: Compilation of the irradiation history and the fuel and fuel pin fabrication data of the INTERATOM data bank system BESEX

    International Nuclear Information System (INIS)

    Patzer, G.; Geier, F.

    1988-01-01

    The fuel assembly NY-205 has been irradiated during the first and the second core of KNK II with a total residence time of 832 equivalent full-power days. A maximum burnup of 175.000 MWd/tHM or 18.6 % was reached with a maximum steel damage of 66 dpa-NRT. For the cladding the materials 1.4970 and 1.4981 have been used in different metallurgical conditions, and for the Uranium/Plutonium mixed- oxide fuel the most important variants of the major fabrication parameters had been realized. The assembly will be brought to the Hot Cells of the KfK Karlsruhe for post-irradiation examination in February 1988, so that the knowledge of the fabrication data is of interest for the selection of fuel pins and for the evaluation of the examination results. Therefore this report compiles the fuel and fuel pin fabrication data from the INTERATOM data bank system BESEX and additionally, an overview of the irradiation history of the assembly is given [de

  2. A review of the environmental impact of mining and milling of radioactive ores, upgrading processes, and fabrication of nuclear fuels

    International Nuclear Information System (INIS)

    Costello, J.M.; Davy, D.R.; Cattell, F.C.R.; Cook, J.E.

    1980-01-01

    The subject is discussed under the headings: uranium mining; milling of uranium ores; manufacture of uranium hexafluoride; uranium enrichment; fuel manufacture and fabrication; environmental impact (use of natural resources; effluents from fuel cycle operations; occupational health; public health); alternative fuel cycles; additional waste treatment. (U.K.)

  3. Nondestructive assay of special nuclear material for uranium fuel-fabrication facilities

    International Nuclear Information System (INIS)

    Smith, H.A. Jr.; Schillebeeckx, P.

    1997-01-01

    A high-quality materials accounting system and effective international inspections in uranium fuel-fabrication facilities depend heavily upon accurate nondestructive assay measurements of the facility's nuclear materials. While item accounting can monitor a large portion of the facility inventory (fuel rods, assemblies, storage items), the contents of all such items and mass values for all bulk materials must be based on quantitative measurements. Weight measurements, combined with destructive analysis of process samples, can provide highly accurate quantitative information on well-characterized and uniform product materials. However, to cover the full range of process materials and to provide timely accountancy data on hard-to-measure items and rapid verification of previous measurements, radiation-based nondestructive assay (NDA) techniques play an important role. NDA for uranium fuel fabrication facilities relies on passive gamma spectroscopy for enrichment and U isotope mass values of medium-to-low-density samples and holdup deposits; it relies on active neutron techniques for U-235 mass values of high-density and heterogeneous samples. This paper will describe the basic radiation-based nondestructive assay techniques used to perform these measurements. The authors will also discuss the NDA measurement applications for international inspections of European fuel-fabrication facilities

  4. Integrated planning for a fuel industry with emphasis on minimum size to fabricate own fuel

    International Nuclear Information System (INIS)

    Kondal Rao, N.; Katiyar, H.C.; Rajendran, R.; Sinha, K.K.; Swaminathan, N.; Subramanyam, R.B.; Pande, B.P.; Krishnan, T.S.; Agarwala, G.C.; Chandramouli, V.A.

    1977-01-01

    The Indian nuclear energy programme is based on the utilization of indigenous resources for the economic generation of power, developing its own know-how. In order to gain time, the first nuclear power station at Tarapur is a turn-key job based on enriched uranium fuel. Taking into consideration the established resources of uranium and thorium in the country, a strategy for nuclear power programme has been drawn up. The first phase is based on natural uranium fuel, the second phase on the recycle of plutonium and conversion of thorium and the third phase is the breeder system based on utilization of U 233 and conversion of thorium. This programme is specially significant for India in view of its vast resources of thorium. After the experience and confidence gained with the manufacture of metallic uranium fuel for the research reactors and about 40 tonnes of fuel for the initial loading of the Rajasthan Reactor, the fuel manufacturing programme within the country has been implemented to meet the entire initial and reload fuel requirements. The plant capacities are small compared to similar activities in developed countries. Further, by planning for an integrated fuel and component manufacturing complex, any draw-back in smaller scale of some of the operations is off-set. At the Nuclear Fuel Complex, set up on the above principles, production plants are in operation for the manufacture of reload fuel for the 400 MW Tarapur station, natural uranium oxide fuel, various zircaloy components such as fuel sheaths, pressure tubes, calandria tubes, channels and various other zircaloy components. Provisions have been made to expand the production facilities as the demand for reload fuel grows. With the facilities provided, the production programme can be diversified to take up the production of fast breeder reactor components of stainless steel and also the blanket thorium elements. The unitary control of all aspects of the manufacture and quality control of different types

  5. Fabrication of uranium carbide/beryllium carbide/graphite experimental-fuel-element specimens

    International Nuclear Information System (INIS)

    Muenzer, W.A.

    1978-01-01

    A method has been developed for fabricating uranium carbide/beryllium carbide/graphite fuel-element specimens for reactor-core-meltdown studies. The method involves milling and blending the raw materials and densifying the resulting blend by conventional graphite-die hot-pressing techniques. It can be used to fabricate specimens with good physical integrity and material dispersion, with densities of greater than 90% of the theoretical density, and with a uranium carbide particle size of less than 10 μm

  6. Environmental aspects based on operation performance of nuclear fuel fabrication facilities

    International Nuclear Information System (INIS)

    2001-07-01

    This publication was prepared within the framework of the IAEA Project entitled Development and Upgrading of Guidelines, Databases and Tools for Integrating Comparative Assessment into Energy System Analysis and Policy Making, which included the collection, review and input of data into a database on health and environmental impacts related to operation of nuclear fuel cycle facilities. The objectives of the report included assembling environmental data on operational performance of nuclear fabrication facilities in each country; compiling and arranging the data in a database, which will be easily available to experts and the public; and presenting data that may be of value for future environmental assessment of nuclear fabrication facilities

  7. Research on plant of metal fuel fabrication using casting process (2)

    International Nuclear Information System (INIS)

    Senda, Yasuhide; Yamada, Seiya

    2005-02-01

    In this research work for the metal fuel fabrication system (38 tHM/y), the studies of the concept of the main process equipments were performed based on the previous studies on the process design and the quality control system design. In this study the handling equipment of the products were also designed, according to these designs the handling periods were evaluated. Consequently the numbers of the equipments were assessed taking into account for the method of the blending the fuel composition. (1) Structural concept design of the major equipments, the fuel handling machine and the gravimetries in the main fabrication process. The structural concept were designed for the fuel composition blending equipment, the fuel pin assembling equipment, the sodium bonding equipment, the handling equipment for fuel slug palettes, the handling equipment for fuel pins and the gravimetries. (2) Re-assessment of the numbers of the equipments taking account of the handling periods. Based on the results of item (1) the periods were evaluated for the fuel slug and pin handling. Processing time of demolder is short, then the number of it is increased to two. Three vehicles are also added to transfer the slugs and a heel smoothly. (3) Design of the buffer storages. The buffer storages among the equipments were designed through the comparison of the process speed between the equipments taking into account for the handling periods. The required amount of the structural parts (for example cladding materials) was assessed for the buffer in the same manner and the amount of the buffer facilities were optimized. (author)

  8. The industrial production of fuel elements; La fabrication en france des elements combustibles

    Energy Technology Data Exchange (ETDEWEB)

    Boussard, R [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires; Nadal, J [Societe Industrielle de Combustible Nucleaire (SICN), 75 - Paris (France); Pellen, A [Compagnie pour l' Etude et la Realisation de Combustibles Atomiques (CERCA), 75 - Paris (France)

    1964-07-01

    -pool type reactors. The authors show how the problem of the industrial production of rolled fuel elements has been solved in France, and give the three steps involved: 1 - Assembly of the plates made in the U.S.A., 2 - Rolling of the cores made in the U.S.A. to obtain the plates, 3 - Fabrication of the U-Al alloy and production of the cores. They then recall briefly the characteristics of the different fuel elements now in production. A description is given of the various stages of the production including information about the equipment; stress is laid on the extent of the controls carried out at each stage. In conclusion the authors consider the future development of this type of production taking into account the improvements planned and those which are possible. (authors) [French] Les auteurs traitent successivement de la fabrication industrielle des elements combustibles pour reacteurs de puissance de la filiere U naturel graphite-gaz et plus particulierement pour les centrales energetiques d'E.D.F. et de celle des elements combustibles a base d'U enrichi destines aux reacteurs experimentaux du type 'piscine'. 1ere Partie - LES ELEMENTS COMBUSTIBLES AVANCES POUR LES REACTEURS E.D.F.: Apres un bref rappel des caracteristiques des elements combustibles actuellement fabriques industriellement pour les reacteurs de MARCOULE et de CHINON, les auteurs indiquent les differentes etapes suivies pour aboutir au stade de la fabrication industrielle d'un element combustible nouveau, tant en ce qui concerne la gaine et eventuellement la chemise de graphite que le combustible lui-meme. Pour ce qui est de l'elaboration du combustible, ils decrivent les differentes operations en insistant sur les points originaux de la fabrication et de l'appareillage tels que: - coulees en moules chauds, - traitement thermique des alliages U.Mo 1 p. 100, - soudure des pastilles de fermeture des tubes, - gainage - controle aux differents stades. En ce qui concerne la fabrication des gaines, ils

  9. The series production in a standardized fabrication line for silicide fuels and commercial aspects

    International Nuclear Information System (INIS)

    Wehner, E.L.; Hassel, H.W.

    1987-01-01

    NUKEM has been responsible for the development and fabrication of LEU fuel elements for MTR reactors under the frame of the German AF program since 1979. The AF program is part of the international RERTR efforts, which were initiated by the INFCE Group in 1978. This paper describes the actual status of development and the transition from the prototype to the series production in a standardized manufacturing line for silicide fuels at NUKEM. Technical provisions and a customer oriented standardized product range aim at an economized manufacturing. (Author)

  10. Field characterization of plutonium aerosols in mixed-oxide fuel fabrication

    International Nuclear Information System (INIS)

    Newton, G.J.; Teague, S.V.; Yeh, H.C.

    1976-01-01

    Nuclear reactor fuel pellets of PuO 2 and UO 2 are fabricated within safety enclosures at Babcock and Wilcox's Parker Township Site near Apolla, Pa. Nineteen sample runs were taken from within glove boxes of aerosols formed during powder comminution and blending. Eight sampling runs were also taken of a centerless grinding operation during routine industrial operations. A small seven-stage cascade impactor and the Lovelace Aerosol Particle Separator (LAPS) were used to determine aerodynamic size distribution and gross alpha aerosol concentrations. The potential toxicity of inhaled plutonium originating in the nuclear fuel cycle following accidental releases of these aerosols and possible inhalation by industrial workers is considered

  11. One year of operation of the Belgonucleaire (Dessel) plutonium fuel fabrication plant

    International Nuclear Information System (INIS)

    Leblanc, J.M.

    1975-01-01

    Based on experience with plutonium since 1958, Belgonucleaire has successively launched a pilot plant and then a fuel fabrication plant for mixed uranium and plutonium oxides in 1968 and 1973 respectively. After describing briefly the plants and the most important stages in the planning, construction and operation of the Dessel plant, the present document describes the principal problems which were met during the course of operation of the plant and their direct incidence on the capacity and quality of the production of fuel elements

  12. Program of quality management when fabricating fast reactor vibropack oxide fuel pins

    International Nuclear Information System (INIS)

    Mayorshin, A.A.; Kisly, V.A.; Sudakov, L.V.

    2000-01-01

    There are presented main principles of creation and operation of Quality Management Program in fabricating vibropack oxide fuel pins for BOR-60 and BN-600 being in force in SSC RF RIAR. There is given structure of documentation for QS principal elements. Under Quality System there are defined all the procedures, assuring that fuel pin meets the normative requirements. The system model is complied with the standard model IS 9001. There are shown technologic flowchart and check operation, statistic results of pin critical parameter check as well as main results of in-pile tests. (author)

  13. Fabrication of uranium alloy fuel slug for sodium-cooled fast reactor by injection casting

    International Nuclear Information System (INIS)

    Jong Hwan Kim; Hoon Song; Ki Hwan Kim; Chan Bock Lee

    2014-01-01

    Metal fuel slugs of U-Zr alloys for a sodium-cooled fast reactor (SFR) have been fabricated using an injection casting method. However, casting alloys containing volatile radioactive constituents such as Am can cause problems in a conventional injection casting method. Therefore, in this study, several injection-casting methods were applied to evaluate the volatility of the metal-fuel elements and control the transport of volatile elements. Mn was selected as a volatile surrogate alloy since it possesses a total vapor pressure equivalent to that of minor actinide-bearing fuels for SFRs. U-10 wt% Zr and U-10 wt% Zr-5 wt% Mn metal fuels were prepared, and the casting processes were evaluated. The casting soundness of the fuel slugs was characterized by gamma-ray radiography and immersion density measurements. Inductively coupled plasma atomic emission spectroscopy was used to determine the chemical composition of fuel slugs. Fuel losses after casting were also evaluated according to the casting conditions. (author)

  14. An overview of the regulation of uranium mining, milling, refining and fuel fabrication

    International Nuclear Information System (INIS)

    Smythe, W.D.

    1980-07-01

    The mining, milling, refining and fabrication of uranium into nuclear fuel are activities that have in common the handling of natural uranium. The occupational and environmental hazards resulting from these activities vary widely. Uranium presents a radiological hazard throughout, but the principal culprit is radium which creates an occupational hazard in the mine and mill and an environmental hazard in the waste products produced in both the mill and the refinery. The chemicals used in both these latter processes also present hazards. Fuel fabrication presents the least potential for occupational and environmental hazards. The Canadian Atomic Energy Control Board licenses eight plants, and one plant for the extraction of uranium from phosphoric acid. The licensing process is characterised by approval in stages, the placing of the burden of proof on the applicant, inspection at all stages, and joint review by all regulatory agencies involved

  15. Uranium accountability for ATR fuel fabrication. Part I. A description of the existing system

    International Nuclear Information System (INIS)

    Dolan, C.A.; Nieschmidt, E.B.; Vegors, S.H. Jr.; Wagner, E.P. Jr.

    1977-06-01

    An evaluation of the materials accountability program at the Atomics International fuel fabrication facility in Canoga Park, California, with regard to the fabrication of highly enriched uranium fuel for the Advanced Test Reactor is presented. An analysis is given of the existing standards program, the existing measurements program and the existing statistical analysis procedures. In addition a short discussion is given of our evaluation of the safeguards procedures at Atomics International together with suggestions for possible modifications and improvements. Appendices of this report contain a rather complete description of the Atomics International plant and the flow of highly enriched uranium through the plant as well as the principal documents used for material accountability records

  16. Calculation of parameters for inspection planning and evaluation: mixed-oxide fuel fabrication facilities

    International Nuclear Information System (INIS)

    Reardon, P.T.; Mullen, M.F.

    1982-08-01

    As part of Task C.35 (Calculation of Parameters for Inspection Planning and Evaluation) of the US Program of Technical Assistance to IAEA Safeguards, Pacific Northwest Laboratory has performed some quantitative analyses of IAEA inspection activities for mixed-oxide fuel fabrication facilities. There were four distinct efforts involved in this task. These were as follows: show the effect on a material balance verification of using two variables measurement methods in some strata; perform additional calculations for the reference facility described in STR-89; modify the INSPECT computer programs to be used as an after-inspection analysis tool, as well as a preinspection planning tool; provide written comments and explantations of text and graphs of the first draft of STR-89, Safeguards Considerations for Mixed-Oxide Fuel Element Fabrication Facilities, by W. Bahm, T. Shea, and D. Tolchenkov, System Studies Section, IAEA

  17. Recent advances in fuel fabrication techniques and prospects for the nineties

    International Nuclear Information System (INIS)

    Frain, R.G.; Caudill, H.L.; Faulhaber, R.

    1987-01-01

    Advanced Nuclear Fuels Corporation's approach and experience with the application of a flexible, just-in-time manufacturing philosophy to the production of customized nuclear fuel is described. Automation approaches to improve productivity are described. The transfer of technology across product lines is discussed as well as the challenges presented by a multiple product fabrication facility which produces a wide variety of BWR and PWR designs. This paper also describes the method of managing vendor quality control programs in support of standardization and clarity of documentation. Process simplification and the ensuing experience are discussed. Prospects for fabrication process advancements in the nineties are given with emphasis on the benefits of dry conversion of UF 6 to UO 2 powder, and increased use of automated and computerized inspection techniques. (author)

  18. Calculation of parameters for inspection planning and evaluation: low enriched uranium conversion and fuel fabrication facilities

    International Nuclear Information System (INIS)

    Reardon, P.T.; Mullen, M.F.; Harms, N.L.

    1981-02-01

    As part of Task C.35 (Calculation of Parameters for Inspection Planning and Evaluation) of the US Program of Technical Assistance to IAEA Safeguards, Pacific Northwest Laboratory has performed some quantitative analyses of IAEA inspection activities at low-enriched uranium (LEU) conversion and fuel fabrication facilities. This report presents the results and conclusions of those analyses. Implementation of IAEA safeguards at LEU conversion and fuel fabrication facilities must take into account a variety of practical problems and constraints. One of the key concerns is the problem of flow verification, especially product verification. The objective of this report is to help put the problem of flow verification in perspective by presenting the results of some specific calculations of inspection effort and probability of detection for various product measurement strategies. In order to provide quantitative information about the advantages and disadvantages of the various strategies, eight specific cases were examined

  19. Observed Changes in As-Fabricated U-10Mo Monolithic Fuel Microstructures After Irradiation in the Advanced Test Reactor

    Science.gov (United States)

    Keiser, Dennis; Jue, Jan-Fong; Miller, Brandon; Gan, Jian; Robinson, Adam; Madden, James

    2017-12-01

    A low-enriched uranium U-10Mo monolithic nuclear fuel is being developed by the Material Management and Minimization Program, earlier known as the Reduced Enrichment for Research and Test Reactors Program, for utilization in research and test reactors around the world that currently use high-enriched uranium fuels. As part of this program, reactor experiments are being performed in the Advanced Test Reactor. It must be demonstrated that this fuel type exhibits mechanical integrity, geometric stability, and predictable behavior to high powers and high fission densities in order for it to be a viable fuel for qualification. This paper provides an overview of the microstructures observed at different regions of interest in fuel plates before and after irradiation for fuel samples that have been tested. These fuel plates were fabricated using laboratory-scale fabrication methods. Observations regarding how microstructural changes during irradiation may impact fuel performance are discussed.

  20. Estimation of radiation exposure for hot cell workers during DUPIC fuel fabrication process in IMEF M6 cell

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Yong Bum; Baek, Sang Yeol; Park, Dae Kyu

    1997-06-01

    DUPIC(Direct Use of spent PWR fuel In CANDU) fuel cycle to utilize the PWR spent fuel in fabricating CANDU fuel, which is expected to reduce not only the total amount of high level radwastes but the energy sources is underway. IMEF M6 cell to be used as DUPIC fuel fabrication facility is refurbished and retrofitted. Radiation exposure for the hot cell worker by dispersion of the radioactive materials during the DUPIC process were estimated on the basis of the hot cell design information. According to the estimation results, DUPIC fuel fabrication process could be run without any severe impacts to the hot cell workers when the ventilation system to maintain the sufficient pressure difference between hotcell and working area and radiation monitoring system is supports the hot cell operation properly. (author). 4 tabs., 6 figs.

  1. Fire criticality probability analysis for 300 Area N Reactor fuel fabrication and storage facility. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, J.E.

    1995-02-08

    Uranium fuel assemblies and other uranium associated with the shutdown N Reactor are stored in the 300 Area N Reactor Fuel Fabrication and Storage Facility (Facility). The 3712 Building, where the majority of the fuel assemblies and other uranium is stored, is where there could be a potential for a criticality bounding case. The purpose of this study is to evaluate the probability of potential fires in the Facility 3712 Building that could lead to criticality. This study has been done to support the criticality update. For criticality to occur, the wooden fuel assembly containers would have to burn such that the fuel inside would slump into a critical geometry configuration, a sufficient number of containers burn to form an infinite wide configuration, and sufficient water (about a 17 inch depth) be placed onto the slump. To obtain the appropriate geometric configuration, enough fuel assembly containers to form an infinite array on the floor would have to be stacked at least three high. Administrative controls require the stacks to be limited to two high for 1.25 wt% enriched finished fuel. This is not sufficient to allow for a critical mass regardless of the fire and accompanying water moderation. It should be noted that 0.95 wt% enriched fuel and billets are stacked higher than only two high. In this analysis, two initiating events will be considered. The first is a random fire that is hot enough and sufficiently long enough to burn away the containers and fuel separators such that the fuel can establish a critical mass. The second is a seismically induced fire with the same results.

  2. Case study application of the IAEA safeguards assessment methodology to a mixed oxide fuel fabrication facility

    International Nuclear Information System (INIS)

    Swartz, J.; McDaniel, T.

    1981-01-01

    Science Applications, Inc. has prepared a case study illustrating the application of an assessment methodology to an international system for safeguarding mixed oxide (MOX) fuel fabrication facilities. This study is the second in a series of case studies which support an effort by the International Atomic Energy Agency (IAEA) and an international Consultant Group to develop a methodology for assessing the effectiveness of IAEA safeguards. 3 refs

  3. Proportioning equipment for vibration filling and compacting of grain materials in pipe containers, especially of fuel elements

    International Nuclear Information System (INIS)

    Pinkas, V.; Filip, Z.; Beranek, J.

    1981-01-01

    The equipment consists of a base plate to which are attached the fastening collar fo the pipe container and the guide column with the height-adjustable support. The filling pipe is fixed to the support. The proportioning equipment prevents particles of grain material from segregation, thus allowing to achieve homogeneity of the material in the whole volume to be compacted. It also allows determining the height of the column of material in the pipe container without destructive effects on the stacked material. The equipment is designed for the manufacture of shortened fuel elements. (J.B.)

  4. Paper-based membraneless hydrogen peroxide fuel cell prepared by micro-fabrication

    Science.gov (United States)

    Mousavi Ehteshami, Seyyed Mohsen; Asadnia, Mohsen; Tan, Swee Ngin; Chan, Siew Hwa

    2016-01-01

    A paper-based membraneless single-compartment hydrogen peroxide power source prepared by micro-electromechanical systems (MEMS) technology is reported. The cell utilizes hydrogen peroxide as both fuel and oxidant in a low volume cell fabricated on paper. The fabrication method used is a simple method where precise, small-sized patterns are produced which include the hydrophilic paper bounded by hydrophobic resin. Open circuit potentials of 0.61 V and 0.32 V are achieved for the cells fabricated with Prussian Blue as the cathode and aluminium/nickel as the anode materials, respectively. The power produced by the cells is 0.81 mW cm-2 at 0.26 V and 0.38 mW cm-2 at 0.14 V, respectively, even after the cell is bent or distorted. Such a fuel cell provides an easily fabricated, environmentally friendly, flexible and cost saving power source. The cell may be integrated within a self-sustained diagnostic system to provide the on-demand power for future bio-sensing applications.

  5. Evaluation of fuel fabrication and the back end of the fuel cycle for light-water- and heavy-water-cooled nuclear power reactors

    International Nuclear Information System (INIS)

    Carter, W.L.; Olsen, A.R.

    1979-06-01

    The classification of water-cooled nuclear reactors offers a number of fuel cycles that present inherently low risk of weapons proliferation while making power available to the international community. Eight fuel cycles in light water reactor (LWR), heavy water reactor (HWR), and the spectral shift controlled reactor (SSCR) systems have been proposed to promote these objectives in the International Fuel Cycle Evaluation (INFCE) program. Each was examined in an effort to provide technical and economic data to INFCE on fuel fabrication, refabrication, and reprocessing for an initial comparison of alternate cycles. The fuel cycles include three once-through cycles that require only fresh fuel fabrication, shipping, and spent fuel storage; four cycles that utilize denatured uranium--thorium and require all recycle operations; and one cycle that considers the LWR--HWR tandem operation requiring refabrication but no reprocessing

  6. Evaluation of fuel fabrication and the back end of the fuel cycle for light-water- and heavy-water-cooled nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Carter, W.L.; Olsen, A.R.

    1979-06-01

    The classification of water-cooled nuclear reactors offers a number of fuel cycles that present inherently low risk of weapons proliferation while making power available to the international community. Eight fuel cycles in light water reactor (LWR), heavy water reactor (HWR), and the spectral shift controlled reactor (SSCR) systems have been proposed to promote these objectives in the International Fuel Cycle Evaluation (INFCE) program. Each was examined in an effort to provide technical and economic data to INFCE on fuel fabrication, refabrication, and reprocessing for an initial comparison of alternate cycles. The fuel cycles include three once-through cycles that require only fresh fuel fabrication, shipping, and spent fuel storage; four cycles that utilize denatured uranium--thorium and require all recycle operations; and one cycle that considers the LWR--HWR tandem operation requiring refabrication but no reprocessing.

  7. 25 years of NDE in fabrication of zirconium alloy mill products and nuclear fuel in the Nuclear Fuel Complex

    International Nuclear Information System (INIS)

    Mistry, R.K.; Laxminarayana, B.; Srivastava, R.K.

    1996-01-01

    Failure of nuclear fuel is highly undesirable from both economic and operational aspects. Hence all the components require rigorous QC and inspection checks. NDT plays a major role in assuring the quality of the products both at final and intermediate stages. This paper gives an overall review of NDT methods employed in achieving the integrity of nuclear products. The NDE procedures followed in NFC are visual inspection, radiography, penetrant testing, eddy current testing, ultrasonic testing and helium leak testing. NFC's quality assurance programme is organised to achieve the desired objectives by carrying out in process and final inspection at all critical steps of fabrication. (author)

  8. Report of the collaboration project for research and development of sphere-pac fuel among JNC-PSI-NRG (1). Planning, fuel design, pin fabrication

    International Nuclear Information System (INIS)

    Morihira, Masayuki; Ozawa, Takayuki; Tomita, Yutaka; Suzuki, Masahiro; Kihara, Yoshiyuki; Shigetome, Yoshiaki; Kohno, Shusaku

    2004-07-01

    The collaboration project concerning sphere-pac fuel among JNC, Swiss PSI (Paul Scherrer Institut) and Dutch NRG (Nuclear Research and Consultancy Group) is in progress. Final target of the project is comparative irradiation tests of sphere-pac fuel in the HFR (High Flux Reactor) in Petten in the Netherlands with pellet type fuel and vipack fuel. Total 16 fuel segments (8 pins) of these three types of fuel are planned to be irradiated. Two sphere-pac fuel segments contain 5%Np in addition to 20%Pu-MOX. Other segments contain no Np. The objective of the irradiation tests is to obtain the restructuring data in the early beginning of life for SPF as well as power-to-melt test data for the potential study of SPF. At the same time introduction of modeling technique for irradiation performance analysis, fuel design, fuel fabrication is also important objective for JNC. Fabrication of irradiation test pins was completed till May 2003 in PSI. After transportation of the fuel pins to Petten, two times of irradiation were performed in January to March in 2004 and now post irradiation tests are in progress. Later two irradiations will be done till the autumn in 2004. This report summarized the basic plan, fuel design, and fabrication of irradiation test pins concerning this collaboration project. (author)

  9. Development and fabrication of seamless Aluminium finned clad tubes for metallic uranium fuel rods for research reactor

    International Nuclear Information System (INIS)

    Singh, A.K.; Hussain, M.M.; Jayachandran, N.K.; Abdulla, K.K.

    2012-01-01

    Natural uranium metal or its alloy is used as fuel in nuclear reactors. Usually fuel is clad with compatible material to prevent its direct contact with coolant which prevents spread of activity. One of the methods of producing fuel for nuclear reactor is by co-drawing finished uranium rods with aluminum clad tube to develop intimate contact for effective heat removal during reactor operation. Presently seam welded Aluminium tubes are used as clad for Research Reactor fuel. The paper will highlight entire fabrication process followed for the fabrication of seamless Aluminium finned tubes along with relevant characterisation results

  10. DEM simulation of particle mixing for optimizing the overcoating drum in HTR fuel fabrication

    Science.gov (United States)

    Liu, Malin; Lu, Zhengming; Liu, Bing; Shao, Youlin

    2013-06-01

    The rotating drum was used for overcoating coated fuel particles in HTR fuel fabrication process. All the coated particles should be adhered to equal amount of graphite powder, which means that the particle should be mixed quickly in both radial and axial directions. This paper investigated the particle flow dynamics and mixing behavior in different regimes using the discrete element method (DEM). By varying the rotation speed, different flow regimes such as slumping, rolling, cascading, cataracting, centrifuging were produced. The mixing entropy based on radial and axial grid was introduced to describe the radial and axial mixing behaviors. From simulation results, it was found that the radial mixing can be achieved in the cascading regime more quickly than the slumping, rolling and centrifuging regimes, but the traditional rotating drum without internal components can not achieve the requirements of axial mixing and should be improved. Three different structures of internal components are proposed and simulated. The new V-shaped deflectors were found to achieve a quick axial mixing behavior and uniform axial distribution in the rotating drum based on simulation results. At last, the superiority was validated by experimental results, and the new V-shaped deflectors were used in the industrial production of the overcoating coated fuel particles in HTR fuel fabrication process.

  11. Powder fabrication of U-Mo alloys for nuclear dispersion fuels

    International Nuclear Information System (INIS)

    Durazzo, Michelangelo; Rocha, Claudio Jose da; Mestnik Filho, Jose; Leal Neto, Ricardo Mendes

    2011-01-01

    For the last 30 years high uranium density dispersion fuels have been developed in order to accomplish the low enrichment goals of the Reduced Enrichment for Research and Test Reactors (RERTR) Program. Gamma U-Mo alloys, particularly with 7 to 10 wt% Mo, as a fuel phase dispersed in aluminum matrix, have shown good results concerning its performance under irradiation tests. That's why this fissile phase is considered to be used in the nuclear fuel of the Brazilian Multipurpose Research Reactor (RMB), currently being designed. Powder production from these ductile alloys has been attained by atomization, mechanical (machining, grinding, cryogenic milling) and chemical (hydriding-de hydriding) methods. This work is a part of the efforts presently under way at IPEN to investigate the feasibility of these methods. Results on alloy fabrication by induction melting and gamma-stabilization of U-10Mo alloys are presented. Some results on powder production and characterization are also discussed. (author)

  12. Method and device for fabricating dispersion fuel comprising fission product collection spaces

    Science.gov (United States)

    Shaber, Eric L; Fielding, Randall S

    2015-05-05

    A method of fabricating a nuclear fuel comprising a fissile material, one or more hollow microballoons, a phenolic resin, and metal matrix. The fissile material, phenolic resin and the one or more hollow microballoons are combined. The combined fissile material, phenolic resin and the hollow microballoons are heated sufficiently to form at least some fissile material carbides creating a nuclear fuel particle. The resulting nuclear fuel particle comprises one or more fission product collection spaces. In a preferred embodiment, the fissile material, phenolic resin and the one or more hollow microballoons are combined by forming the fissile material into microspheres. The fissile material microspheres are then overcoated with the phenolic resin and microballoon. In another preferred embodiment, the fissile material, phenolic resin and the one or more hollow microballoons are combined by overcoating the microballoon with the fissile material, and phenolic resin.

  13. Powder fabrication of U-Mo alloys for nuclear dispersion fuels

    Energy Technology Data Exchange (ETDEWEB)

    Durazzo, Michelangelo; Rocha, Claudio Jose da; Mestnik Filho, Jose; Leal Neto, Ricardo Mendes, E-mail: mdurazzo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    For the last 30 years high uranium density dispersion fuels have been developed in order to accomplish the low enrichment goals of the Reduced Enrichment for Research and Test Reactors (RERTR) Program. Gamma U-Mo alloys, particularly with 7 to 10 wt% Mo, as a fuel phase dispersed in aluminum matrix, have shown good results concerning its performance under irradiation tests. That's why this fissile phase is considered to be used in the nuclear fuel of the Brazilian Multipurpose Research Reactor (RMB), currently being designed. Powder production from these ductile alloys has been attained by atomization, mechanical (machining, grinding, cryogenic milling) and chemical (hydriding-de hydriding) methods. This work is a part of the efforts presently under way at IPEN to investigate the feasibility of these methods. Results on alloy fabrication by induction melting and gamma-stabilization of U-10Mo alloys are presented. Some results on powder production and characterization are also discussed. (author)

  14. Accident safety analysis for 300 Area N Reactor Fuel Fabrication and Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.J.; Brehm, J.R.

    1994-01-01

    The purpose of the accident safety analysis is to identify and analyze a range of credible events, their cause and consequences, and to provide technical justification for the conclusion that uranium billets, fuel assemblies, uranium scrap, and chips and fines drums can be safely stored in the 300 Area N Reactor Fuel Fabrication and Storage Facility, the contaminated equipment, High-Efficiency Air Particulate filters, ductwork, stacks, sewers and sumps can be cleaned (decontaminated) and/or removed, the new concretion process in the 304 Building will be able to operate, without undue risk to the public, employees, or the environment, and limited fuel handling and packaging associated with removal of stored uranium is acceptable.

  15. Accident safety analysis for 300 Area N Reactor Fuel Fabrication and Storage Facility

    International Nuclear Information System (INIS)

    Johnson, D.J.; Brehm, J.R.

    1994-01-01

    The purpose of the accident safety analysis is to identify and analyze a range of credible events, their cause and consequences, and to provide technical justification for the conclusion that uranium billets, fuel assemblies, uranium scrap, and chips and fines drums can be safely stored in the 300 Area N Reactor Fuel Fabrication and Storage Facility, the contaminated equipment, High-Efficiency Air Particulate filters, ductwork, stacks, sewers and sumps can be cleaned (decontaminated) and/or removed, the new concretion process in the 304 Building will be able to operate, without undue risk to the public, employees, or the environment, and limited fuel handling and packaging associated with removal of stored uranium is acceptable

  16. Status of plutonium recycle from mixed oxide fuel fabrication wastes (U,Pu)O2 facility activities

    International Nuclear Information System (INIS)

    Quesada, Calixto A.; Adelfang, Pablo; Greiner, G.; Orlando, Oscar S.; Mathot, Sergio R.

    1999-01-01

    Within the specific subject of mixed oxides corresponding to the Fuel Cycle activities performed at CNEA, the recovery of plutonium from wastes originated during tests and pre-fabrication stages is performed. (author)

  17. Technology, safety and costs of decommissioning a reference small mixed oxide fuel fabrication plant. Volume 2. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, C. E.; Murphy, E. S.; Schneider, K. J.

    1979-01-01

    Volume 2 contains appendixes on small MOX fuel fabrication facility description, site description, residual radionuclide inventory estimates, decommissioning, financing, radiation dose methodology, general considerations, packaging and shipping of radioactive materials, cost assessment, and safety (JRD)

  18. Statistical methods to assess and control processes and products during nuclear fuel fabrication

    International Nuclear Information System (INIS)

    Weidinger, H.

    1999-01-01

    Very good statistical tools and techniques are available today to access the quality and the reliability of fabrication process as the original sources for a good and reliable quality of the fabricated processes. Quality control charts of different types play a key role and the high capability of modern electronic data acquisition technologies proved, at least potentially, a high efficiency in the more or less online application of these methods. These techniques focus mainly on stability and the reliability of the fabrication process. In addition, relatively simple statistical tolls are available to access the capability of fabrication process, assuming they are stable, to fulfill the product specifications. All these techniques can only result in as good a product as the product design is able to describe the product requirements necessary for good performance. Therefore it is essential that product design is strictly and closely performance oriented. However, performance orientation is only successful through an open and effective cooperation with the customer who uses or applies those products. During the last one to two decades in the west, a multi-vendor strategy has been developed by the utility, sometimes leading to three different fuel vendors for one reactor core. This development resulted in better economic conditions for the user but did not necessarily increase an open attitude with the vendor toward the using utility. The responsibility of the utility increased considerably to ensure an adequate quality of the fuel they received. As a matter of fact, sometimes the utilities had to pay a high price because of unexpected performance problems. Thus the utilities are now learning that they need to increase their knowledge and experience in the area of nuclear fuel quality management and technology. This process started some time ago in the west. However, it now also reaches the utilities in the eastern countries. (author)

  19. Development of Automatic Quality Check Software in Mailbox Declaration For Nuclear Fuel Fabrication Plants

    International Nuclear Information System (INIS)

    Kim, Minsu; Shim, Hye Won; Jo, Seong Yeon; Lee, Kwang Yeol; Ban, Myoung Jin

    2014-01-01

    Short Notice Random Inspection (SNRI) is a new IAEA safeguards inspection regime for bulk handing facility, which utilities random inspection through a mailbox system. Its main objective is to verify 100% of the flow components of the safeguarded nuclear material at such a facility. To achieve the SNRI objective, it is required to provide daily mailbox declaration, by a facility's operator, to the IAEA with regard to information, such as the receipt and shipment of nuclear materials. Mailbox declarations are then later compared with accounting records so as to examine the accuracy and consistency of the facility operator's declaration at the time of the SNRI. The IAEA has emphasized the importance of accurate mailbox declarations and recommended that the ROK initiate its own independent quality control system in order to improve and maintain its mailbox declarations as a part of the SSAC activities. In an effort to improve the transparency of operational activities at fuel fabrication plants and to satisfy IAEA recommendation, an automatic quality check software application has been developed to improve mailbox declarations at fabrication plants in Korea. The ROK and the IAEA have recognized the importance of providing good quality mailbox declaration for an effective and efficient SNRI at fuel fabrication plants in Korea. The SRA developed an automatic quality check software program in order to provide an independent QC system of mailbox declaration, as well as to improve the quality of mailbox declaration. Once the automatic QC system is implemented, it will improve the quality of an operator's mailbox declaration by examining data before sending it to the IAEA. The QC system will be applied to fuel fabrication plants in the first half of 2014

  20. Fractional release of short-lived noble gases and iodine from HTGR fuel compact containing a fraction of coated fuel particles with through-coating defects

    International Nuclear Information System (INIS)

    Ogawa, Toru; Fukuda, Kosaku; Kobayashi, Fumiaki; Kikuchi, Teruo; Tobita, Tsutomu; Kashimura, Satoru; Kikuchi, Hironobu; Yamamoto, Katsumune.

    1986-10-01

    Fractional release (R/B) data of short-lived noble gases and iodine from sweep-gas irradiated HTGR fuel compacts were analyzed. Empirical formulas to predict R/B of 88 Kr as a function of temperature and fraction through-coating defects, and to calculate ratios of R/B's of other shortlived gases to that of 88 Kr were proposed. A method to predict R/B of iodine was also proposed. As for 131 I, a fission product of major safety concern, (R/B) I 131 ≅ (R/B) Xe 133 was predicted. Applying those methods, R/B from OGL-1 fuel element (5th and 6th) was predicted to show a good agreement with observation. (author)

  1. UN TRISO Compaction in SiC for FCM Fuel Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Trammell, Michael P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kiggans, James O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jolly, Brian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Skitt, Darren J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-11-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE) Advanced Fuels Campaign (AFC) is conducting research and development to elevate the technology readiness level of Fully Ceramic Microencapsulated (FCM) fuels, a candidate nuclear fuel with potentially enhanced accident tolerance due to very high fission product retention. One of the early activities in FY17 was to demonstrate production of FCM pellets with uranium nitride TRISO particles. This was carried out in preparation of the larger pellet production campaign in support of the upcoming irradiation testing of this fuel form at INL’s Advanced Test Reactor.

  2. Fabrication of an improved tube-to-pipe header heat exchanger for the Fuel Failure Mockup (FFM) Facility

    International Nuclear Information System (INIS)

    Prislinger, J.J.; Jones, R.H.

    1977-05-01

    The procedure used in fabricating an improved tube-to-pipe header heat exchanger for the Fuel Failure Mockup (FFM) Facility is described. Superior performance is accomplished at reduced cost with adherence to the ASME Boiler and Pressure Vessel Code. The techniques used and the method of fabrication are described in detail

  3. Status report - expert knowledge of operators in fuel reprocessing plants, enrichment plants and fuel fabrication plants

    International Nuclear Information System (INIS)

    Preuss, W.; Kramer, J.; Wildberg, D.

    1987-01-01

    The necessary qualifications of the responsible personnel and the knowledge required by personnel otherwise employed in nuclear plants are among the requirements for licensing laid down in paragraph 7 of the German Atomic Energy Act. The formal regulations for nuclear power plants are not directly applicable to plants in the fuel cycle because of the differences in the technical processes and the plant and work organisation. The aim of the project was therefore to establish a possible need for regulations for the nuclear plants with respect to the qualification of the personnel, and to determine a starting point for the definition of the required qualifications. An extensive investigation was carried out in the Federal Republic of Germany into: the formal requirements for training; the plant and personnel organisation structures; the tasks carried out by the responsible and otherwise employed personnel; and the state of training. For this purpose plant owners and managers were interviewed and the literature and plant specific documentation (e.g. plant rules) were reviewed. On the basis of literature research, foreign practices were determined and used to make comparative evaluations. The status report is divided into three separate parts for the reprocessing, the uranium enrichment, and the manufacture of the fuel elements. On the basis of the situation for reprocessing plants (particularly that of the WAK) and fuel element manufacturing plants, the development of a common (not uniform) regulation for all the examined plants in the fuel cycle was recommended. The report gives concrete suggestions for the content of the regulations. (orig.) [de

  4. Design of a quality assurance system in the nuclear fuel fabrication

    International Nuclear Information System (INIS)

    Garcia Rojas Palacios, L.

    1992-01-01

    A)For the first time a project on nuclear fuel fabrication is going to be lead in this country. For this reason the work is oriented to establish a quality assurance system for the different stages of fuel fabrication. C) The work of this thesis was developed first by means of an analysis of quality philosophies of Deming, Ishikawa, Juran and Crosby from which several important points were stracted to be used in the designed quality system. Metrology and normalization are so important for quality control that a study of them is made considering definitions, unit systems and type of errors (for Metrology) as well as standards for quality systems, qualification, destructive and non destructive tests, shipment, packing for nuclear power plants. With the standards as a basis, the working strategy for the system was reached, as well as the design of control cards and the design of documents for inspection control, personnel and its documentation and finally the diagrams for each one of the fabrication stages

  5. A Flexible Ascorbic Acid Fuel Cell with a Microchannel Fabricated using MEMS Techniques

    Science.gov (United States)

    Mogi, Hiroshi; Fukushi, Yudai; Koide, Syohei; Sano, Ryohei; Sasaki, Tsubasa; Nishioka, Yasushiro

    2013-12-01

    We fabricated a miniature ascorbic acid fuel cells equipped with a microchannel for the circulation of ascorbic acid (AA) solution using micro electronic mechanical system techniques. The fuel cell was fabricated on a flexible polyimide substrate, and its porous carbon-coated aluminium (Al) electrodes of 2.8 mm in width and 11 mm in length were formed using photolithography and screen-printing techniques. The porous carbon was deposited by screen-printing of carbon-black ink on the Al electrode surfaces in order to increase the effective electrode surface area and to absorb more enzymes on the cathode surface. The microchannel with a depth of 200 μm was fabricated using a hot-embossing technique. A maximum power of 0.60 μW at 0.58 V that corresponds to a power density of 1.83 μW/cm2 was realized by introducing a 200 mM concentrated AA solution at room temperature.

  6. Development of likelihood estimation method for criticality accidents of mixed oxide fuel fabrication facilities

    International Nuclear Information System (INIS)

    Tamaki, Hitoshi; Yoshida, Kazuo; Kimoto, Tatsuya; Hamaguchi, Yoshikane

    2010-01-01

    A criticality accident in a MOX fuel fabrication facility may occur depending on several parameters, such as mass inventory and plutonium enrichment. MOX handling units in the facility are designed and operated based on the double contingency principle to prevent criticality accidents. Control failures of at least two parameters are needed for the occurrence of criticality accident. To evaluate the probability of such control failures, the criticality conditions of each parameter for a specific handling unit are necessary for accident scenario analysis to be clarified quantitatively with a criticality analysis computer code. In addition to this issue, a computer-based control system for mass inventory is planned to be installed into MOX handling equipment in a commercial MOX fuel fabrication plant. The reliability analysis is another important issue in evaluating the likelihood of control failure caused by software malfunction. A likelihood estimation method for criticality accident has been developed with these issues been taken into consideration. In this paper, an example of analysis with the proposed method and the applicability of the method are also shown through a trial application to a model MOX fabrication facility. (author)

  7. Glucose Fuel Cells with a MicroChannel Fabricated on Flexible Polyimide Film

    Science.gov (United States)

    Sano, Ryohei; Fukushi, Yudai; Sasaki, Tsubasa; Mogi, Hiroshi; Koide, Syohei; Ikoma, Ryuta; Akatsuka, Wataru; Tsujimura, Seiya; Nishioka, Yasushiro

    2013-12-01

    In this work, a glucose fuel cell was fabricated using microfabrication processes assigned for microelectromechanical systems. The fuel cell was equipped with a microchannel to flow an aqueous solution of glucose. The cell was fabricated on a flexible polyimide substrate, and its porous carbon-coated aluminum (Al) electrodes of 2.8 mm in width and 11 mm in length were formed using photolithography and screen printing techniques. Porous carbon was deposited by screen printing of carbon black ink on the Al electrode surfaces in order to increase the effective electrode surface area and to absorb more enzymes on the electrode surfaces. The microchannel with a depth of 200 μm was fabricated using a hot embossing technique. A maximum power of 0.45 μW at 0.5 V that corresponds to a power density of 1.45 μW/cm2 was realized by introducing a 200 mM concentrated glucose solution at room temperature.

  8. Glucose Fuel Cells with a MicroChannel Fabricated on Flexible Polyimide Film

    International Nuclear Information System (INIS)

    Sano, Ryohei; Fukushi, Yudai; Sasaki, Tsubasa; Mogi, Hiroshi; Koide, Syohei; Ikoma, Ryuta; Nishioka, Yasushiro; Akatsuka, Wataru; Tsujimura, Seiya

    2013-01-01

    In this work, a glucose fuel cell was fabricated using microfabrication processes assigned for microelectromechanical systems. The fuel cell was equipped with a microchannel to flow an aqueous solution of glucose. The cell was fabricated on a flexible polyimide substrate, and its porous carbon-coated aluminum (Al) electrodes of 2.8 mm in width and 11 mm in length were formed using photolithography and screen printing techniques. Porous carbon was deposited by screen printing of carbon black ink on the Al electrode surfaces in order to increase the effective electrode surface area and to absorb more enzymes on the electrode surfaces. The microchannel with a depth of 200 μm was fabricated using a hot embossing technique. A maximum power of 0.45 μW at 0.5 V that corresponds to a power density of 1.45 μW/cm 2 was realized by introducing a 200 mM concentrated glucose solution at room temperature

  9. IAEA physical inventory verification procedures implemented at US and Canadian fuel fabrication plants

    International Nuclear Information System (INIS)

    Gough, J.; Wredberg, L.; Zobor, E.; Zuccaro-Labellarte, G.

    1988-01-01

    IAEA has implemented safeguards at three Low Enriched Uranium (LEU) fuel fabrication plants in the USA during the period 1982 to 1987, and it is in the process of safeguarding a fourth plant from 01 January 1988. In Canada IAEA safeguards inspections were implemented at all Natural Uranium (NU) fuel fabrication plants form 1972 onwards, and there are, at present, three plants under safeguards. The direct responsibility for the implementation of safeguards inspections in the USA and Canada lies with the Division of Operations B (SGOB) within the IAEA Department of Safeguards. The senior staff that is at present directly engaged in the implementation activities has accumulated supervising inspection experience at about 50 Physical Inventory Verification (PIV) inspections at the Canadian and US fabrication plants during the period 1978 to 1987. This experience has been gained in close cooperation with the facility operators and with the support of the state authorities. The paper describes the latest PIV inspections at the Westinghouse Columbia plant and the Zircatec Precision Industries Inc. Port Hope plant. Furthermore, the paper describes the initial activities for the 1988 PIV inspection at the General Electric Wilmington plant including computerized book audit activities

  10. Atomics international fuel fabrication facility and low enrichment program [contributed by H.W. Hassel, NUKEM

    International Nuclear Information System (INIS)

    Hassel, H.W.

    1993-01-01

    NUKEM handles around almost two tons of highly enriched uranium a year and it was necessary to satisfy all the new physical protection philosophies. That means that we have to install storage and safe fabrication sites for a lot of money, 25 meter thick concrete walls, and different alarm systems. So just to demonstrate how silly this business is, we have just overcome this for highly enriched uranium, and now we speak about low enriched uranium for which we don't need all of these investments to make this business safe. I would-just like to concentrate my words on the status of fabrication and considerations in my company concerning the medium enriched uranium and low enriched uranium. In the table are the different fuel types (see column) and then we have the fabrication in column 2 the experience of my comp any in kg. In column 3 is the irradiation experience of these fuels types. Column 4 shows the studies and calculations made in our company for lower and medium enriched fuels. The preliminary fabrication tests and calculations are in column 5, and in column 6 we have the delivery time for a prototype core in months after UF 6 supply. Column 7 shows the time for the development of specifications including irradiation time in years for 6 and 7 and column is the estimated cost of 6 and 7 There is just one fuel that is not in this summary and that is U-Zr. We now see how complex and sophisticated this business is. I have told you already that we have installed for a lot of millions of Deutsche Mark the physical protection, storage vaults and things like that. Now we have to investigate all these different types of fuels for, as you see, a lot of money. Maybe these are a lot of optimistic figures; anyway the question is, does this make all the overall nuclear situation worldwide easier or not. One cannot answer for the moment, but anyway we have a lot of problems

  11. Experiences in the application of quality control and quality assurance programmes in water reactor fuel fabrication

    International Nuclear Information System (INIS)

    Balaramamoorthy, K.; Vijayaraghavan, R.; Kulkarni, P.G.; Raghavan, S.V.; Bandyopadhyay, A.K.

    1984-01-01

    Nuclear fuel for Research Reactors and Pressurised Heavy Water Reactors (PHWRs) is being fabricated in India for a period of over two decades. The fuel is produced to conform to stringent quality control specifications. Generally, the performance of the fuel has been very good in the reactors. This is not only due to the high quality workmanship in the various stages of production but also to the meticulous care exercised in the planning and application of quality control and quality assurance procedures. For the nuclear fuel used in Water Reactors, extensive material specifications have been compiled and they are periodically reviewed and revised. The specifications cover various aspects such as metallurgical and mechanical properties, non-destructive testing, dimensional and visual standard requirements. Similarly, detailed manufacturing engineering instructions (MEIs) and quality control instructions (QCIs) have been drawn. For any deviations from the specified requirements, design concession committee considers all deviations and acceptance or rejection criteria are evolved. In this task, the design concession committee is supported by experimentation in various laboratories of the Department of Atomic Energy. The Quality Assurance procedures have been evolved over a long period of time. They generally conform to the latest code and recommended guides of IAEA regarding Quality Assurance in the manufacture of fuel. (orig.)

  12. Practical experience in the application of quality control in water-reactor fuel fabrication

    International Nuclear Information System (INIS)

    Vollath, D.

    1984-07-01

    Highly industrialized countries have gained vast experience in manufacturing water reactor fuel. Manufacturing is followed by a stringent system of quality assurance and quality control. The Seminar on Practical Experience in the Application of Quality Control in Water-Reactor Fuel Fabrication provided a forum for an exchange of information on methods and systems of quality assurance and quality control for reactor fuel. In addition, many developing countries which have started or intend to set up a nuclear fuel industry are interested in the application of quality assurance and quality control. This meeting has been preceded by two different series of conferences: the IAEA meetings 1976 in Oslo, 1978 in Prague and 1979 in Buenos Aires, and the Karlsruhe meetings on Characterization and Quality Control of Nuclear Fuel held in 1978 and 1981. Quality control and quality assurance has many different facets. Unlike the purely technical aspects, covered by the Karlsruhe conference series, the IAEA meetings always relate to a wider field of topics. They include governmental regulations and codes for practical quality assurance. This volume contains the papers presented at the seminar and a record of the discussions. (orig.)

  13. Design and development on automated control system of coated fuel particle fabrication process

    International Nuclear Information System (INIS)

    Liu Malin; Shao Youlin; Liu Bing

    2013-01-01

    With the development trend of the large-scale production of the HTR coated fuel particles, the original manual control system can not meet the requirement and the automation control system of coated fuel particle fabrication in modern industrial grade is needed to develop. The comprehensive analysis aiming at successive 4-layer coating process of TRISO type coated fuel particles was carried out. It was found that the coating process could be divided into five subsystems and nine operating states. The establishment of DCS-type (distributed control system) of automation control system was proposed. According to the rigorous requirements of preparation process for coated particles, the design considerations of DCS were proposed, including the principle of coordinated control, safety and reliability, integration specification, practical and easy to use, and open and easy to update. A complete set of automation control system for coated fuel particle preparation process was manufactured based on fulfilling the requirements of these principles in manufacture practice. The automated control system was put into operation in the production of irradiated samples for HTRPM demonstration project. The experimental results prove that the system can achieve better control of coated fuel particle preparation process and meet the requirements of factory-scale production. (authors)

  14. A Review on the Fabrication of Electro spun Polymer Electrolyte Membrane for Direct Methanol Fuel Cell

    International Nuclear Information System (INIS)

    Junoh, H.; Jaafar, J.; Norddin, M.N.A.M.; Ismail, A.F.; Othman, M.H.D.; Rahman, M.A.; Yusof, N.; Salleh, W.N.W.; Junoh, H.; Jaafar, J.; Norddin, M.N.A.M.; Ismail, A.F.; Othman, M.H.D.; Rahman, M.A.; Yusof, N.; Salleh, W.N.W.; Hamid Ilbeygi, H.

    2014-01-01

    Proton exchange membrane (PEM) is an electrolyte which behaves as important indicator for fuel cell’s performance. Research and development (R and D) on fabrication of desirable PEM have burgeoned year by year, especially for direct methanol fuel cell (DMFC). However, most of the R and Ds only focus on the parent polymer electrolyte rather than polymer inorganic composites. This might be due to the difficulties faced in producing good dispersion of inorganic filler within the polymer matrix, which would consequently reduce the DMFC’s performance. Electro spinning is a promising technique to cater for this arising problem owing to its more widespread dispersion of inorganic filler within the polymer matrix, which can reduce the size of the filler up to nano scale. There has been a huge development on fabricating electrolyte nano composite membrane, regardless of the effect of electro spun nano composite membrane on the fuel cell’s performance. In this present paper, issues regarding the R and D on electro spun sulfonated poly (ether ether ketone) (SPEEK)/inorganic nano composite fiber are addressed.

  15. Design impacts of safeguards and security requirements for a US MOX fuel fabrication facility

    International Nuclear Information System (INIS)

    Erkkila, B.H.; Rinard, P.M.; Thomas, K.E.; Zack, N.R.; Jaeger, C.D.

    1998-01-01

    The disposition of plutonium that is no longer required for the nation's defense is being structured to mitigate risks associated with the material's availability. In the 1997 Record of Decision, the US Government endorsed a dual-track approach that could employ domestic commercial reactors to effect the disposition of a portion of the plutonium in the form of mixed oxide (MOX) reactor fuels. To support this decision, the Office of Materials Disposition requested preparation of a document that would review US requirements for safeguards and security and describe their impact on the design of a MOX fuel fabrication facility. The intended users are potential bidders for the construction and operation of the facility. The document emphasizes the relevant DOE Orders but also considers the Nuclear Regulatory Commission (NRC) requirements. Where they are significantly different, the authors have highlighted this difference and provided guidance on the impact to the facility design. Finally, the impacts of International Atomic Energy Agency (IAEA) safeguards on facility design are discussed. Security and materials control and accountability issues that influence facility design are emphasized in each area of discussion. This paper will discuss the prepared report and the issues associated with facility design for implementing practical, modern safeguards and security systems into a new MOX fuel fabrication facility

  16. Facility effluent monitoring plan for the 300 Area Fuels Fabrication Facility

    International Nuclear Information System (INIS)

    Nickels, J.M.; Brendel, D.F.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP- 0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring system by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years. The Fuel Fabrication Facility in the Hanford 300 Area supported the production reactors from the 1940's until they were shut down in 1987. Prior to 1987 the Fuel Fabrication Facility released both airborne and liquid radioactive effluents. In January 1987 the emission of airborne radioactive effluents ceased with the shutdown of the fuels facility. The release of liquid radioactive effluents have continued although decreasing significantly from 1987 to 1990

  17. Fabrication of AA6061-T6 Plate Type Fuel Assembly Using Electron Beam Welding Process

    International Nuclear Information System (INIS)

    Kim, Soosung; Seo, Kyoungseok; Lee, Donbae; Park, Jongman; Lee, Yoonsang; Lee, Chongtak

    2014-01-01

    AA6061-T6 aluminum alloy is easily welded by conventional GTAW (Gas Tungsten Arc Welding), LBW (Laser Beam Welding) and EBW. However, certain characteristics, such as solidification cracking, porosity, HAZ (Heat-affected Zone) degradation must be considered during welding. Because of high energy density and low heat input, especially LBW and EBW processes possess the advantage of minimizing the fusing zone and HAZ and producing deeper penetration than arc welding processes. In present study, to apply for the nuclear fuel plate fabrication and assembly, a fundamental EBW experiment using AA6061-T6 aluminum alloy specimens was conducted. Furthermore, to establish the welding process, and satisfy the requirements of the weld quality, EBW apparatus using an electron welding gun and vacuum chamber was developed, and preliminary investigations for optimizing the welding parameters of the specimens using AA6061-T6 aluminum plates were also performed. The EB weld quality of AA6061-T6 aluminum alloy for the fuel plate assembly has been also studied by the shrinkage measurement and weld inspection using computed tomography. This study was carried out to determine the suitable welding parameters and to evaluate tensile strength of AA6061-T6 aluminum alloy. In the present experiment, satisfactory electron beam welding process of the full-sized sample was being developed. Based on this fundamental study, fabrication of the plate-type fuel assembly will be provided for the future Ki-Jang research reactor project

  18. A Review on the Fabrication of Electrospun Polymer Electrolyte Membrane for Direct Methanol Fuel Cell

    Directory of Open Access Journals (Sweden)

    Hazlina Junoh

    2015-01-01

    Full Text Available Proton exchange membrane (PEM is an electrolyte which behaves as important indicator for fuel cell’s performance. Research and development (R&D on fabrication of desirable PEM have burgeoned year by year, especially for direct methanol fuel cell (DMFC. However, most of the R&Ds only focus on the parent polymer electrolyte rather than polymer inorganic composites. This might be due to the difficulties faced in producing good dispersion of inorganic filler within the polymer matrix, which would consequently reduce the DMFC’s performance. Electrospinning is a promising technique to cater for this arising problem owing to its more widespread dispersion of inorganic filler within the polymer matrix, which can reduce the size of the filler up to nanoscale. There has been a huge development on fabricating electrolyte nanocomposite membrane, regardless of the effect of electrospun nanocomposite membrane on the fuel cell’s performance. In this present paper, issues regarding the R&D on electrospun sulfonated poly (ether ether ketone (SPEEK/inorganic nanocomposite fiber are addressed.

  19. Pressure analysis in the fabrication process of TRISO UO2-coated fuel particle

    International Nuclear Information System (INIS)

    Liu Malin; Shao Youlin; Liu Bing

    2012-01-01

    Highlights: ► The pressure signals during the real TRISO UO2-coated fuel particle fabrication process. ► A new relationship about the pressure drop change and the coated fuel particles properties. ► The proposed relationship is validated by experimental results during successive coating. ► A convenient method for monitoring the fluidized state during coating process. - Abstract: The pressure signals in the coating furnace are obtained experimentally from the TRISO UO 2 -coated fuel particle fabrication process. The pressure signals during the coating process are analyzed and a simplified relationship about the pressure drop change due to the coated layer is proposed based on the spouted bed hydrodynamics. The change of pressure drop is found to be consistent with the change of the combination factor about particle density, bed density, particle diameter and static bed height, during the successive coating process of the buffer PyC, IPyC, SiC and OPyC layer. The newly proposed relationship is validated by the experimental values. Based on this relationship, a convenient method is proposed for real-time monitoring the fluidized state of the particles in a high-temperature coating process in the spouted bed. It can be found that the pressure signals analysis is an effective method to monitor the fluidized state on-line in the coating process at high temperature up to 1600 °C.

  20. Recycling of nuclear fuel swarf at the fabrication of UO sub(2)-pellets and its influence on the irradiation behavior

    International Nuclear Information System (INIS)

    Dias, M.S.; Lameiras, F.S.; Santos, A.M.M. dos

    1991-01-01

    From the fabrication of UO sub(2) pellets for light water reactor fuel rods, nuclear fuel scraps results in form of UO sub(2) grinding swarf and UO sub(2) sinter scraps oxidized to U sub(3)O sub(8) powder. Detailed investigations on five types of UO sub(2) pellets fabricated with different portions of this scrap kinds added to the UO sub(2) press powder showed that there is only a small influence of such scrap additions on the irradiation behavior, especially for the fission gas release. This allows to recycle the fabrication scrap in a simple and economic way. (author)