WorldWideScience

Sample records for fabricated tio2 x nx

  1. Thermal behavior of TiO2-xNx nanostructured powder

    Czech Academy of Sciences Publication Activity Database

    Balek, V.; Šubrt, Jan; Irie, H.; Hashimoto, K.

    -, - (2008), No267345 ISSN 1110-662X Institutional research plan: CEZ:AV0Z40320502 Keywords : titanium-oxide photocatalysis * s-doped TiO2 Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 0.881, year: 2008

  2. Photo-induced hydrophilicity of TiO2-xNx thin films on PET plates

    International Nuclear Information System (INIS)

    Chou, H.-Y.; Lee, E.-K.; You, J.-W.; Yu, S.-S.

    2007-01-01

    TiO 2-x N x thin films were deposited on PET (polyethylene terephthalate) plates by sputtering a TiN target in a N 2 /O 2 plasma and without heating. X-ray photoemission spectroscopy (XPS) was used to investigate the N 1s, Ti 2p core levels and the nitrogen composition in the TiO 2-x N x films. The results indicate that Ti-O-N bonds are formed in the thin films. Two nitrogen states, substitution and interstitial nitrogen atoms, were attributed to peaks at 396 and 399 eV, respectively. It was observed that the nitrogen atoms occupy both the substitutive and interstitial sites in respective of the nitrogen content in the thin films. UV-VIS absorption spectroscopy of PET coated thin films shows a significant shift of the absorption edge to lower energy in the visible-light region. UV and visible-light irradiation are used to activate PET coated thin films for the development of hydrophilicity. The photo-induced surface wettability conversion reaction of the thin films has been investigated by means of water contact angle measurement. PET plates coated with TiO 2-x N x thin films are found to exhibit lower water contact angle than non-coated plates when the surface is illuminated with UV and visible light. The effects of nitrogen doping on photo-generated hydrophilicity of the thin films are investigated in this work

  3. Fabrication of mesoporus TiO_2 from TiOSO_4 from leached ilmenite

    International Nuclear Information System (INIS)

    Wahyuningsih S; Ramelan AH; Rinawati L; Munifa RMI; Saputri LNMZ; Hanif QA; Pranata HP; Ismoyo YA

    2016-01-01

    The fabrication of mesoporous TiO_2 from TiOSO_4 precursor through roasted process, leaching, and homogeneous hydrolysis of ilmenite had been done. Analysis of X-ray Diffraction (XRD) showed the characteristics of ilmenite, hematite and rutile. After roasting the mineral ilmenite with the addition of Na_2S at a temperature of 800°C the XRD characterization showed peaks characteristic for hematite, TiO_2 anatase, TiO_2 rutile, Na_2SO_4, NaFeS_2, and NaFeO_2. Leaching processes of roasted ilmenite which maintained with an addition of strong acid H_2SO_4 6; 7.2; 9; 12, and 18 N were obtained TiOSO_4 filtrate. The results indicated that the more concentration of H_2SO_4 the more solubility of ilmenite, where optimum solubility was achieved when H_2SO_4 concentration was 12 N. The fabrication of mesoporous TiO_2 from TiOSO_4 was conducted with homogeneous hydrolysis method used urea and surfactant template F-127. XRD characterization results indicated the dominant peak of TiO_2 anatase. Crystallite size of 3.2 nm was obtained and the results of Scanning Electron Microscopy (SEM) showed that the presence of urea and surfactant be able to arrange porosity. (author)

  4. Fabrication of TiO2 Nanotanks Embedded in a Nanoporous Alumina Template

    Directory of Open Access Journals (Sweden)

    C. Massard

    2015-01-01

    Full Text Available The feasibility of surface nanopatterning with TiO2 nanotanks embedded in a nanoporous alumina template was investigated. Self-assembled anodized aluminium oxide (AAO template, in conjunction with sol gel process, was used to fabricate this nanocomposite object. Through hydrolysis and condensation of the titanium alkoxide, an inorganic TiO2 gel was moulded within the nanopore cavities of the alumina template. The nanocomposite object underwent two thermal treatments to stabilize and crystallize the TiO2. The morphology of the nanocomposite object was characterized by Field Emission Scanning Electron Microscopy (FESEM. The TiO2 nanotanks obtained have cylindrical shapes and are approximately 69 nm in diameter with a tank-to-tank distance of 26 nm. X-ray diffraction analyses performed by Transmission Electron Microscopy (TEM with selected area electron diffraction (SAED were used to investigate the TiO2 structure. The optical properties were studied using UV-Vis spectroscopy.

  5. What can we learn from the decay of $ N_X(1625)$ in molecule picture?

    OpenAIRE

    Liu, Xiang; Zhang, Bo

    2007-01-01

    Considering two molecular state assumptions, i.e. S-wave $\\bar{\\Lambda}-K^-$ and S-wave $\\bar{\\Sigma}^0-K^-$ molecular states, we study the possible decays of $\\bar N_X(1625)$ that include $\\bar N_X(1625)\\to K^{-}\\bar{\\Lambda}, \\pi^{0}\\bar{p}, \\eta\\bar{p}, \\pi^{-}\\bar{n}$. Our results indicate: (1) if $\\bar N_{X}(1625)$ is $\\bar{\\Lambda}-K^-$ molecular state, $K^{-}\\bar{\\Lambda}$ is the main decay modes of $\\bar N_{X}(1625)$, and the branching ratios of the rest decay modes are tiny; (2) if $...

  6. Visible-Light-Driven, Dye-Sensitized TiO2 Photo-Catalyst for Self-Cleaning Cotton Fabrics

    Directory of Open Access Journals (Sweden)

    Ishaq Ahmad

    2017-11-01

    Full Text Available We report here the photo-catalytic properties of dye-sensitized TiO2-coated cotton fabrics. In this study, visible-light-driven, self-cleaning cotton fabrics were developed by coating the cotton fabrics with dye-sensitized TiO2. TiO2 nano-sol was prepared via the sol-gel method and the cotton fabric was coated with this nano-sol by the dip-pad–dry-cure method. In order to enhance the photo-catalytic properties of this TiO2-coated cotton fabric under visible light irradiation, the TiO2-coated cotton fabric was dyed with a phthalocyanine-based reactive dye, C.I. Reactive Blue 25 (RB-25, as a dye sensitizer for TiO2. The photo-catalytic self-cleaning efficiency of the resulting dye/TiO2-coated cotton fabrics was evaluated by degradation of Rhodamine B (RhB and color co-ordinate measurements. Dye/TiO2-coated cotton fabrics show very good photo-catalytic properties under visible light.

  7. Love Wave Ultraviolet Photodetector Fabricated on a TiO2/ST-Cut Quartz Structure

    Directory of Open Access Journals (Sweden)

    Walter Water

    2014-01-01

    Full Text Available A TiO2 thin film deposited on a 90° rotated 42°45′ ST-cut quartz substrate was applied to fabricate a Love wave ultraviolet photodetector. TiO2 thin films were grown by radio frequency magnetron sputtering. The crystalline structure and surface morphology of TiO2 thin films were examined using X-ray diffraction, scanning electron microscope, and atomic force microscope. The effect of TiO2 thin film thickness on the phase velocity, electromechanical coupling coefficient, temperature coefficient of frequency, and sensitivity of ultraviolet of devices was investigated. TiO2 thin film increases the electromechanical coupling coefficient but decreases the temperature coefficient of frequency for Love wave propagation on the 90° rotated 42°45′ ST-cut quartz. For Love wave ultraviolet photodetector application, the maximum insertion loss shift and phase shift are 2.81 dB and 3.55 degree at the 1.35-μm-thick TiO2 film.

  8. Low temperature fabrication of perovskite solar cells with TiO2 nanoparticle layers

    International Nuclear Information System (INIS)

    Kanayama, Masato; Oku, Takeo; Suzuki, Atsushi; Yamada, Masahiro; Sakamoto, Hiroki; Minami, Satoshi; Kohno, Kazufumi

    2016-01-01

    TiO 2 /CH 3 NH 3 PbI 3 -based photovoltaic devices were fabricated by a spin-coating method using a mixture solution. TiO 2 require high-temperature processing to achieve suitably high carrier mobility. TiO 2 electron transport layers and TiO 2 scaffold layers for the perovskite were fabricated from TiO 2 nanoparticles with different grain sizes. The photovoltaic properties and microstructures of solar cells were characterized. Nanoparticle sizes of these TiO 2 were 23 nm and 3 nm and the performance of solar cells was improved by combination of two TiO 2 nanoparticles

  9. Highly photocatalytic TiO_2 interconnected porous powder fabricated by sponge-templated atomic layer deposition

    International Nuclear Information System (INIS)

    Pan, Shengqiang; Zhao, Yuting; Huang, Gaoshan; Li, Menglin; Mei, Yongfeng; Wang, Jiao; Zheng, Lirong; Baunack, Stefan; Schmidt, Oliver G; Gemming, Thomas

    2015-01-01

    A titanium dioxide (TiO_2) interconnected porous structure has been fabricated by means of atomic layer deposition of TiO_2 onto a reticular sponge template. The obtained freestanding TiO_2 with large surface area can be easily taken out of the water to solve a complex separation procedure. A compact and conformal nanocoating was evidenced by morphologic characterization. A phase transition, as well as production of oxygen vacancies with increasing annealing temperature, was detected by x-ray diffraction and x-ray photoelectron spectroscopy, respectively. The photocatalytic experimental results demonstrated that the powder with appropriate annealing treatment possessed excellent photocatalytic ability due to the co-action of high surface area, oxygen vacancies and the optimal crystal structure. (paper)

  10. Crystal and Electronic Structures, Photoluminescence Properties of Eu2+-Doped Novel Oxynitride Ba4Si6O16-3x/2Nx

    Directory of Open Access Journals (Sweden)

    Takashi Takeda

    2010-03-01

    Full Text Available The crystal structure and the photoluminescence properties of novel green Ba4-yEuySi6O16-3x/2Nx phosphors were investigated. The electronic structures of the Ba4Si6O16 host were calculated by first principles pseudopotential method based on density functional theory. The results reveal that the top of the valence bands are dominated by O-2p states hybridized with Ba-6s and Si-3p states, while the conduction bands are mainly determined by Ba-6s states for the host, which is an insulator with a direct energy gap of 4.6 eV at Γ. A small amount of nitrogen can be incorporated into the host to replace oxygen and forms Ba4-yEuySi6O16-3x/2Nx solid solutions crystallized in a monoclinic (space group P21/c, Z = 2 having the lattice parameters a = 12.4663(5 Å, b = 4.6829(2 Å, c = 13.9236(6 Å, and β = 93.61(1°, with a maximum solubility of nitrogen at about x = 0.1. Ba4Si6O16-3x/2Nx:Eu2+ exhibits efficient green emission centered at 515–525 nm varying with the Eu2+ concentration when excited under UV to 400 nm. Furthermore, the incorporation of nitrogen can slightly enhance the photoluminescence intensity. Excitation in the UV-blue spectral range (λexc = 375 nm, the absorption and quantum efficiency of Ba4-yEuySi6O16-3x/2Nx (x = 0.1, y = 0.2 reach about 80% and 46%, respectively. Through further improvement of the thermal stability, novel green phosphor of Ba4-yEuySi6O16-3x/2Nx is promising for application in white UV-LEDs.

  11. Cotton fabric finishing with TiO2/SiO2 composite hydrosol based on ionic cross-linking method

    International Nuclear Information System (INIS)

    Xu, Z.J.; Tian, Y.L.; Liu, H.L.; Du, Z.Q.

    2015-01-01

    Highlights: • We studied the cotton finishing with TiO 2 /SiO 2 based on ionic cross-linking method. • The samples treated with CHTAC had lower value of whiteness. • The samples treated with BTCA achieved higher crease recovery angle and lower tensile strength. • The ionic cross-linking treatment (CHTAC + BTCA + TiO 2 /SiO 2 ) was better than with TiO 2 /SiO 2 sol alone. - Abstract: Cotton fabric was successfully modified by 3-chloro-2-hydroxypropyl trimethyl ammonium chloride (CHTAC), 1,2,3,4-butanetetracarboxylic acid (BTCA) and TiO 2 /SiO 2 sol. Self-cleaning characteristic was investigated using a Color Measuring and Matching System with 6 h sunlight irradiation. And the stability of TiO 2 /SiO 2 coatings was explored by measuring the washing fastness and wrinkle resistance of treated cotton samples. In addition, whiteness index, crease recovery angle and tensile strength retention (%) of treated samples were evaluated. Moreover, the morphology, structure change and crystallinity of samples were observed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD), respectively. The results revealed that the samples treated with CHTAC had lower value of whiteness index as compared with original cotton fabric. It was also found that samples treated with BTCA achieved higher crease recovery angle and lower tensile strength. Moreover, the treatment of CHTAC and BTCA had adverse effect on the crystallinity of cotton samples, as treated samples had lower crystallinity in comparison with raw cotton fabrics. Nevertheless, the stability of self-cleaning coatings was better for samples treated with ionic cross-linking treatment (CHTAC + BTCA + TiO 2 /SiO 2 ) than samples treated with TiO 2 /SiO 2 sol alone. Furthermore, compared with original samples the UV-blocking property of ionic cross-linking treated samples was obviously enhanced

  12. Properties of Sn-doped TiO2 nanotubes fabricated by anodization of co-sputtered Ti–Sn thin films

    International Nuclear Information System (INIS)

    Kyeremateng, Nana Amponsah; Hornebecq, Virginie; Knauth, Philippe; Djenizian, Thierry

    2012-01-01

    Self-organized Sn-doped TiO 2 nanotubes (nts) were fabricated for the first time, by anodization of co-sputtered Ti and Sn thin films. This nanostructured material was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, UV–vis spectroscopy and transmission electron microscopy. Due to their remarkable properties, Sn-doped TiO 2 nts can find potential applications in Li-ion microbatteries, photovoltaics, and catalysis. Particularly, the electrochemical performance as an anode material for Li-ion microbatteries was evaluated in Li test cells. With current density of 70 μA cm −2 (1 C) and cut-off potential of 1 V, Sn-doped TiO 2 nts showed improved performance compared to simple TiO 2 nts, and differential capacity plots revealed that the material undergoes full electrochemical reaction as a Rutile-type TiO 2 .

  13. Fabrication of a TiO2-P25/(TiO2-P25+TiO2 nanotubes junction for dye sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Nguyen Huy Hao

    2016-08-01

    Full Text Available The dye sensitized solar cell (DSSC, which converts solar light into electric energy, is expected to be a promising renewable energy source for today's world. In this work, dye sensitized solar cells, one containing a single layer and one containing a double layer, were fabricated. In the double layer DSSC structure, the under-layer was TiO2-P25 film, and the top layer consisted of a mixture of TiO2-P25 and TiO2 nanotubes. The results indicated that the efficiency of the DSSC with the double layer structure was a significant improvement in comparison to the DSSC consisting of only a single film layer. The addition of TiO2-P25 in the top layer caused an improvement in the adsorption of dye molecules on the film rather than on the TiO2 nanotubes only. The presence of the TiO2 nanotubes together with TiO2-P25 in the top layer revealed the enhancement in harvesting the incident light and an improvement of electron transport through the film.

  14. Fabrication of TiO_2 nanorod assembly grafted rGO (rGO@TiO_2-NR) hybridized flake-like photocatalyst

    International Nuclear Information System (INIS)

    Lv, Kangle; Fang, Shun; Si, Lingling; Xia, Yang; Ho, Wingkei; Li, Mei

    2017-01-01

    Highlights: • TiO_2 nanorod assembly grafted with GO hybrid was successfully fabricated. • TiO_2 nanorods can reduce the aggregation of TiO_2 nanoparticles on graphene. • This unique structure facilitates the injection of electron from TiO_2 to graphene. - Abstract: To efficiently separate the photo-generated electron–hole pairs of TiO_2 hybrid, anatase TiO_2 nanorod assembly grafted reduced graphene oxides (rGO@TiO_2-NR) hybrid was successfully fabricated using potassium titanium oxalate (PTO) and graphene oxides (GO) as starting materials and diethylene glycol (DEG) as reductant. The effect of GO content on the structure and photocatalytic activity of rGO@TiO_2-NR composite was systematically studied. Results show that, in the absence of GO, only TiO_2 microsphere assembly is obtained from TiO_2 nanorods. The presence of GO results in the formation of a flake-like TiO_2-nanorod-assembled grafted rGO hybrid. The photocatalytic activity of rGO@TiO_2-NR composite increases first and then decreases with increase in the amount of GO from 0 wt.% to 10 wt.%. The hybridized S4 sample prepared with 4 wt.% GO possesses the highest photocatalytic activity with a constant rate of 0.039 min"−"1 in the photocataytic degradation of Brilliant X-3B dye (X3B); this sample was enhanced more than three times when compared with pure TiO_2 sample (0.012 min"−"1). The enhanced photocatalytic activity of the rGO@TiO_2-NR hybrid was attributed to the strong interaction between TiO_2 nanorods and rGO. The unique hierarchical structure of 1D nanorod assembly TiO_2–rGO flakes facilitates the injection and transfer of photo-generated electrons from TiO_2 to graphene, thus retarding the recombination of electron–hole pairs and enhancing the photocatalytic activity. The enlarged BET surface areas, not only increasing the number of active sites, but also facilitating the adsorption of the dye, and improved light-harvesting ability also contribute to the enhanced photoreactivity

  15. Electrical response of electron selective atomic layer deposited TiO2x heterocontacts on crystalline silicon substrates

    Science.gov (United States)

    Ahiboz, Doğuşcan; Nasser, Hisham; Aygün, Ezgi; Bek, Alpan; Turan, Raşit

    2018-04-01

    Integration of oxygen deficient sub-stoichiometric titanium dioxide (TiO2x) thin films as the electron transporting-hole blocking layer in solar cell designs are expected to reduce fabrication costs by eliminating high temperature processes while maintaining high conversion efficiencies. In this paper, we conducted a study to reveal the electrical properties of TiO2x thin films grown on crystalline silicon (c-Si) substrates by atomic layer deposition (ALD) technique. Effect of ALD substrate temperature, post deposition annealing, and doping type of the c-Si substrate on the interface states and TiO2x bulk properties were extracted by performing admittance (C-V, G-V) and current-voltage (J-V) measurements. Moreover, the asymmetry in C-V and J-V measurements between the p-n type and n-n TiO2x-c-Si heterojunction types were examined and the electron transport selectivity of TiO2x was revealed.

  16. Fabrication of TiO2/Carbon Photocatalyst using Submerged DC Arc Discharged in Ethanol/Acetic Acid Medium

    Science.gov (United States)

    Saraswati, T. E.; Nandika, A. O.; Andhika, I. F.; Patiha; Purnawan, C.; Wahyuningsih, S.; Rahardjo, S. B.

    2017-05-01

    This study aimed to fabricate a modified photocatalyst of TiO2/C to enhance its performance. The fabrication was achieved using the submerged direct current (DC) arc-discharge method employing two graphite electrodes, one of which was filled with a mixture of carbon powder, TiO2, and binder, in ethanol with acetic acid added in various concentrations. The arc-discharge method was conducted by flowing a current of 10-20 A (~20 V). X-ray diffraction (XRD) patterns showed significant placements of the main peak characteristics of TiO2, C graphite, and titanium carbide. The surface analysis using Fourier transform infrared spectroscopy (FTIR) revealed that fabricated TiO2/C nanoparticles had stretching vibrations of Ti-O, C-H, C═O, C-O, O-H and C═C in the regions of 450-550 cm-1, 2900-2880 cm-1, 1690-1760 cm-1, 1050-1300 cm-1, 3400-3700 cm-1 and ~1600 cm-1, respectively. In addition, the study investigated the photocatalysts of unmodified and modified TiO2/C for photodegradation of methylene blue (MB) dye solution under mercury lamp irradiation. The effectiveness of the degradation was defined by the decrease in 60-minute absorbance under a UV-Vis spectrophotometer. Modified TiO2/C proved to be significantly more efficient in reducing dye concentrations, reaching ~70%. It indicated that the oxygen-containing functional groups have been successfully attached to the surface of the nanoparticles and played a role in enhancing photocatalytic activity.

  17. Surface Coatings of TiO2 Nanoparticles onto the Designed Fabrics for Enhanced Self-Cleaning Properties

    Directory of Open Access Journals (Sweden)

    Mudassar Abbas

    2018-01-01

    Full Text Available Herein, the hydrophobic and self-cleaning properties of three different fabric surfaces have been evaluated after applying titanium dioxide (TiO2 nanofinishes. The nanoparticles were prepared by sol-gel techniques and were characterized by using X-ray diffraction (XRD, scanning electron microscopy (SEM and dynamic light scattering (DLS methods. The ultra-refined particles were applied over three different fabric substrates having similar weave of Z-twill (3/1. The yarns of 100% polyester, blend of viscose with mod-acrylic and high performance polyethylene containing 16 yarn count (Ne and 31.496 and 15.748 ends/cm and picks/cm, respectively, were used for required fabric preparation. The different fabric structures were applied with self-cleaning finish of TiO2 nanoparticles prepared in our laboratory and the results were compared with commercially available finish Rucoguard AFR. The static contact angles, UV-protection factor, air permeability and hydrophobic activity of nanofinished fabric helped in evaluating their breathability and self-cleaning properties.

  18. Synthesis variables effect on TiO2/polyester fabrics photoactivity and stability

    Directory of Open Access Journals (Sweden)

    Camilo Castro

    2016-12-01

    Full Text Available TiO2-SiO2 coatings on fabric samples were obtained by immersion of 9cm2 of commercial polyester in a TiO2-SiO2 suspension. This suspension was prepared by adding TiO2 P25 to a silica matrix obtained from the hydrolysis of tetraethyl orthosilicate (TEOS. The aim of this work was to study the relationship between the immersion time of the fabric on the photocatalytic activity and stability of the coating against several cycles of use and washing. Obtained samples were characterized by scanning electron microscopy (SEM, energy dispersive spectroscopy (EDS and infrared spectroscopy (FTIR-ATR. Evaluation of modified fabrics was performed by self-disinfection tests under 250W/m2 of simulated sunlight using E. coli as model bacteria. In general, all modified fabrics (except that obtained at 2h immersion time inactivated bacteria in less than 120min and its regrowth was prevented for at least 24h after the disinfection tests. It was determined that low immersion time (3-4h lead to active and stable fabrics to 3 cycles of use and washing, whereas higher immersion times (12h lead to more active but unstable fabrics.

  19. Facile fabrication of robust TiO2@SnO2@C hollow nanobelts for outstanding lithium storage

    Science.gov (United States)

    Tian, Qinghua; Li, Lingxiangyu; Chen, Jizhang; Yang, Li; Hirano, Shin-ichi

    2018-02-01

    Elaborate fabrication of state-of-the-art nanostructure SnO2@C-based composites greatly contributes to alleviate the huge volume expansion issue of the SnO2 anodes. But the preparation processes of most of them are complicated and tedious, which is generally adverse to the development of SnO2@C-based composite anodes. Herein, a unique nanostructure of TiO2@SnO2@C hollow nanobelts (TiO2@SnO2@C HNBs), including the characteristics of one-dimensional architecture, sandwich protection, hollow structure, carbon coating, and a mechanically robust TiO2 support, has been fabricated by a facile approach for the first time. As anodes for lithium-ion batteries, the as-fabricated TiO2@SnO2@C HNBs exhibit an outstanding lithium storage performance, delivering capacity of 804.6 and 384. 5 mAh g-1 at 200 and even 1000 mA g-1 after 500 cycles, respectively. It is demonstrated that thus outstanding performance is mainly attributed to the unique nanostructure of TiO2@SnO2@C HNBs.

  20. Bactericidal activity under UV and visible light of cotton fabrics coated with anthraquinone-sensitized TiO2

    KAUST Repository

    Rahal, Raed

    2013-06-01

    This study describes a method derived from ISO/TC 206/SC specifications to assess the bactericidal activity against a bacterial strain, Pseudomonas fluorescens, of various photocatalytic fabrics, under UVA and filtered visible light. The experimental method allowed the accurate quantification of bacteria survival on photoactive surfaces and films under UVA and UV-free visible irradiation. Cotton fabrics coated with TiO2, anthraquinone or anthraquinone-sensitized TiO2 display a significant bactericidal efficiency. TiO2-coated fabrics are very efficient against P. fluorescens after 4 h UVA irradiation (bacteria survival below the detection limit). Under UVA-free visible light, anthraquinone-sensitized TiO2 coated fabrics induced a significant bactericidal activity after 2 h irradiation, while anthraquinone alone-coated fabrics were not as efficient and TiO2 coated fabrics were almost inefficient. These results show that although exhibiting a weak n-π* band in the 350-420 nm range, anthraquinone is a good candidate as an efficient visible light photosensitizer. A synergy effect between anthraquinone and TiO2 was demonstrated. A possible reaction mechanism, involving a synergy effect for singlet oxygen formation with anthraquinone-sensitized TiO2 is proposed to account for these results. © 2012 Elsevier B.V. All rights reserved.

  1. The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures

    Directory of Open Access Journals (Sweden)

    Arghya Narayan Banerjee

    2011-02-01

    Full Text Available Arghya Narayan BanerjeeSchool of Mechanical Engineering, Yeungnam University, Gyeongsan, South KoreaAbstract: Recent advances in basic fabrication techniques of TiO2-based nanomaterials such as nanoparticles, nanowires, nanoplatelets, and both physical- and solution-based techniques have been adopted by various research groups around the world. Our research focus has been mainly on various deposition parameters used for fabricating nanostructured materials, including TiO2-organic/inorganic nanocomposite materials. Technically, TiO2 shows relatively high reactivity under ultraviolet light, the energy of which exceeds the band gap of TiO2. The development of photocatalysts exhibiting high reactivity under visible light allows the main part of the solar spectrum to be used. Visible light-activated TiO2 could be prepared by doping or sensitizing. As far as doping of TiO2 is concerned, in obtaining tailored material with improved properties, metal and nonmetal doping has been performed in the context of improved photoactivity. Nonmetal doping seems to be more promising than metal doping. TiO2 represents an effective photocatalyst for water and air purification and for self-cleaning surfaces. Additionally, it can be used as an antibacterial agent because of its strong oxidation activity and superhydrophilicity. Therefore, applications of TiO2 in terms of photocatalytic activities are discussed here. The basic mechanisms of the photoactivities of TiO2 and nanostructures are considered alongside band structure engineering and surface modification in nanostructured TiO2 in the context of doping. The article reviews the basic structural, optical, and electrical properties of TiO2, followed by detailed fabrication techniques of 0-, 1-, and quasi-2-dimensional TiO2 nanomaterials. Applications and future directions of nanostructured TiO2 are considered in the context of various photoinduced phenomena such as hydrogen production, electricity generation via

  2. Fabrication of Li_2TiO_3 pebbles by a selective laser sintering process

    International Nuclear Information System (INIS)

    Zhou, Qilai; Gao, Yue; Liu, Kai; Xue, Lihong; Yan, Youwei

    2015-01-01

    Highlights: • Selective laser sintering (SLS) is employed to fabricate ceramic pebbles. • Quantities and diameter of the pebbles could be easily controlled by adjusting the model of pebbles. • All the pebbles could be prepared at a time within several minutes. • The Li_2TiO_3 pebbles sintered at 1100 °C show a notable crush load of 43 N. - Abstract: Lithium titanate, Li_2TiO_3, is an important tritium breeding material for deuterium (D)–tritium (T) fusion reactor. In test blanket module (TBM) design of China, Li_2TiO_3 is considered as one candidate material of tritium breeders. In this study, selective laser sintering (SLS) technology was introduced to fabricate Li_2TiO_3 ceramic pebbles. This fabrication process is computer assisted and has a high level of flexibility. Li_2TiO_3 powder with a particle size of 1–3 μm was used as the raw material, whilst epoxy resin E06 was adopted as a binder. Green Li_2TiO_3 pebbles with certain strengths were successfully prepared via SLS. Density of the green pebbles was subsequently increased by cold isostatic pressing (CIP) process. Li_2TiO_3 pebbles with a diameter of about 2 mm were obtained after high temperature sintering. Density of the pebbles reaches 80% of theoretical density (TD) with a comparable crush load of 43 N. This computer assisted approach provides a new efficient route for the production of Li_2TiO_3 ceramic pebbles.

  3. Fabrication and Characteristics of Macroporous TiO2 Photocatalyst

    Directory of Open Access Journals (Sweden)

    Guiyun Yi

    2014-01-01

    Full Text Available Macroporous TiO2 photocatalyst was synthesized by a facile nanocasting method using polystyrene (PS spherical particles as the hard template. The synthesized photocatalyst was characterized by transmission electron microscope (TEM, scanning electron microscopy (SEM, thermogravimetry-differential thermogravimetry (TG-DTG, X-ray diffraction (XRD, and N2-sorption. TEM, SEM, and XRD characterizations confirmed that the macroporous TiO2 photocatalyst is composed of anatase phase. The high specific surface area of 87.85 m2/g can be achieved according to the N2-sorption analysis. Rhodamine B (RhB was chosen as probe molecule to evaluate the photocatalytic activity of the TiO2 catalysts. Compared with the TiO2 materials synthesized in the absence of PS spherical template, the macroporous TiO2 photocatalyst sintered at 500°C exhibits much higher activity on the degradation of RhB under the UV irradiation, which can be assigned to the well-structured macroporosity. The macroporous TiO2 material presents great potential in the fields of environmental remediation and energy conversion and storage.

  4. Fabrication of predominantly Mn4+ -doped TiO2 nanoparticles under equilibrium conditions and their application as visible-light photocatalyts.

    Science.gov (United States)

    Wang, Lijie; Fan, Jiajie; Cao, Zetan; Zheng, Yichao; Yao, Zhiqiang; Shao, Guosheng; Hu, Junhua

    2014-07-01

    The chemical state of a transition-metal dopant in TiO(2) can intrinsically determine the performance of the doped material in applications such as photocatalysis and photovoltaics. In this study, manganese-doped TiO2 is fabricated by a near-equilibrium process, in which the TiO(2) precursor powder precipitates from a hydrothermally obtained transparent mother solution. The doping level and subsequent thermal treatment influence the morphology and crystallization of the TiO(2) samples. FTIR spectroscopy and X-ray photoelectron spectroscopy analyses indicate that the manganese dopant is substitutionally incorporated by replacing Ti(4+) cations. The absorption band edge can be gradually shifted to 1.8 eV by increasing the nominal manganese content to 10 at %. Manganese atoms doped into the titanium lattice are associated with the dominant 4+ valence oxidation state, which introduces two curved, intermediate bands within the band gap and results in a significant enhancement in photoabsorption and the quantity of photogenerated hydroxyl radicals. Additionally, the high photocatalytic performance of manganese-doped TiO(2) is also attributed to the low oxygen content, owing to the equilibrium fabrication conditions. This work provides an important strategy to control the chemical and defect states of dopants by using an equilibrium fabrication process. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Realization of Colored Multicrystalline Silicon Solar Cells with SiO2/SiNx:H Double Layer Antireflection Coatings

    Directory of Open Access Journals (Sweden)

    Minghua Li

    2013-01-01

    Full Text Available We presented a method to use SiO2/SiNx:H double layer antireflection coatings (DARC on acid textures to fabricate colored multicrystalline silicon (mc-Si solar cells. Firstly, we modeled the perceived colors and short-circuit current density (Jsc as a function of SiNx:H thickness for single layer SiNx:H, and as a function of SiO2 thickness for the case of SiO2/SiNx:H (DARC with fixed SiNx:H (refractive index n=2.1 at 633 nm, and thickness = 80 nm. The simulation results show that it is possible to achieve various colors by adjusting the thickness of SiO2 to avoid significant optical losses. Therefore, we carried out the experiments by using electron beam (e-beam evaporation to deposit a layer of SiO2 over the standard SiNx:H for 156×156 mm2 mc-Si solar cells which were fabricated by a conventional process. Semisphere reflectivity over 300 nm to 1100 nm and I-V measurements were performed for grey yellow, purple, deep blue, and green cells. The efficiency of colored SiO2/SiNx:H DARC cells is comparable to that of standard SiNx:H light blue cells, which shows the potential of colored cells in industrial applications.

  6. The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures

    Science.gov (United States)

    Banerjee, Arghya Narayan

    2011-01-01

    Recent advances in basic fabrication techniques of TiO2-based nanomaterials such as nanoparticles, nanowires, nanoplatelets, and both physical- and solution-based techniques have been adopted by various research groups around the world. Our research focus has been mainly on various deposition parameters used for fabricating nanostructured materials, including TiO2-organic/inorganic nanocomposite materials. Technically, TiO2 shows relatively high reactivity under ultraviolet light, the energy of which exceeds the band gap of TiO2. The development of photocatalysts exhibiting high reactivity under visible light allows the main part of the solar spectrum to be used. Visible light-activated TiO2 could be prepared by doping or sensitizing. As far as doping of TiO2 is concerned, in obtaining tailored material with improved properties, metal and nonmetal doping has been performed in the context of improved photoactivity. Nonmetal doping seems to be more promising than metal doping. TiO2 represents an effective photocatalyst for water and air purification and for self-cleaning surfaces. Additionally, it can be used as an antibacterial agent because of its strong oxidation activity and superhydrophilicity. Therefore, applications of TiO2 in terms of photocatalytic activities are discussed here. The basic mechanisms of the photoactivities of TiO2 and nanostructures are considered alongside band structure engineering and surface modification in nanostructured TiO2 in the context of doping. The article reviews the basic structural, optical, and electrical properties of TiO2, followed by detailed fabrication techniques of 0-, 1-, and quasi-2-dimensional TiO2 nanomaterials. Applications and future directions of nanostructured TiO2 are considered in the context of various photoinduced phenomena such as hydrogen production, electricity generation via dye-sensitized solar cells, photokilling and self-cleaning effect, photo-oxidation of organic pollutant, wastewater management, and

  7. TiO2 Nanoparticles as a Soft X-ray Molecular Probe

    Energy Technology Data Exchange (ETDEWEB)

    Larabell, Carolyn; Ashcroft, Jared M.; Gu, Weiwei; Zhang, Tierui; Hughes, Steven M.; Hartman, Keith B.; Hofmann, Cristina; Kanaras, Antonios G.; Kilcoyne, David A.; Le Gros, Mark; Yin, Yadong; Alivisatos, A. Paul; Larabell, Carolyn A.

    2007-06-30

    With the emergence of soft x-ray techniques for imaging cells, there is a pressing need to develop protein localization probes that can be unambiguously identified within the region of x-ray spectrum used for imaging. TiO2 nanocrystal colloids, which have a strong absorption cross-section within the "water-window" region of x-rays, areideally suited as soft x-ray microscopy probes. To demonstrate their efficacy, TiO2-streptavidin nanoconjugates were prepared and subsequently labeled microtubules polymerized from biotinylated tubulin. The microtubules were imaged using scanning transmission x-ray microscopy (STXM), and the TiO2 nanoparticle tags were specifically identified using x-ray absorption near edge spectroscopy (XANES). These experiments demonstrate that TiO2 nanoparticles are potential probes for protein localization analyses using soft x-ray microscopy.

  8. Fabrication and optical properties of TiO sub 2 nanowire arrays made by sol-gel electrophoresis deposition into anodic alumina membranes

    CERN Document Server

    Lin, Y; Yuan, X Y; Xie, T; Zhang, L D

    2003-01-01

    Ordered TiO sub 2 nanowire arrays have been successfully fabricated into the nanochannels of a porous anodic alumina membrane by sol-gel electrophoretic deposition. After annealing at 500 deg. C, the TiO sub 2 nanowire arrays and the individual nanowires were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and x-ray diffraction (XRD). SEM and TEM images show that these nanowires are dense and continuous with a uniform diameter throughout their entire length. XRD and SAED analysis together indicate that these TiO sub 2 nanowires crystallize in the anatase polycrystalline structure. The optical absorption band edge of TiO sub 2 nanowire arrays exhibits a blue shift with respect of that of the bulk TiO sub 2 owing to the quantum size effect.

  9. Characterization and Comparison of Photocatalytic Activity Silver Ion doped on TiO2(TiO2/Ag+) and Silver Ion doped on Black TiO2(Black TiO2/Ag+)

    Science.gov (United States)

    Kim, Jin Yi; Sim, Ho Hyung; Song, Sinae; Noh, Yeoung Ah; Lee, Hong Woon; Taik Kim, Hee

    2018-03-01

    Titanium dioxide (TiO2) is one of the representative ceramic materials containing photocatalyst, optic and antibacterial activity. The hydroxyl radical in TiO2 applies to the intensive oxidizing agent, hence TiO2 is suitable to use photocatalytic materials. Black TiO2was prepared through reduction of amorphous TiO2 conducting under H2 which leads to color changes. Its black color is proven that absorbs 100% light across the whole-visible light, drawing enhancement of photocatalytic property. In this study, we aimed to compare the photocatalytic activity of silver ion doped on TiO2(TiO2/Ag+) and silver ion doped on black TiO2(black TiO2/Ag+) under visible light range. TiO2/Ag+ was fabricated following steps. 1) TiO2 was synthesized by a sol-gel method from Titanium tetraisopropoxide (TTIP). 2) Then AgNO3 was added during an aging process step for silver ion doping on the surface of TiO2. Moreover, Black TiO2/Ag+ was obtained same as TiO2/Ag+ except for calcination under H2. The samples were characterized X-ray diffraction (XRD), UV-visible reflectance (UV-vis DRS), and Methylene Blue degradation test. XRD analysis confirmed morphology of TiO2. The band gap of black TiO2/Ag+ was confirmed (2.6 eV) through UV-vis DRS, which was lower than TiO2/Ag+ (2.9 eV). The photocatalytic effect was conducted by methylene blue degradation test. It demonstrated that black TiO2/Ag+ had a photocatalytic effect under UV light also visible light.

  10. Fabrication of TiO2 nanorod assembly grafted rGO (rGO@TiO2-NR) hybridized flake-like photocatalyst

    Science.gov (United States)

    Lv, Kangle; Fang, Shun; Si, Lingling; Xia, Yang; Ho, Wingkei; Li, Mei

    2017-01-01

    To efficiently separate the photo-generated electron-hole pairs of TiO2 hybrid, anatase TiO2 nanorod assembly grafted reduced graphene oxides (rGO@TiO2-NR) hybrid was successfully fabricated using potassium titanium oxalate (PTO) and graphene oxides (GO) as starting materials and diethylene glycol (DEG) as reductant. The effect of GO content on the structure and photocatalytic activity of rGO@TiO2-NR composite was systematically studied. Results show that, in the absence of GO, only TiO2 microsphere assembly is obtained from TiO2 nanorods. The presence of GO results in the formation of a flake-like TiO2-nanorod-assembled grafted rGO hybrid. The photocatalytic activity of rGO@TiO2-NR composite increases first and then decreases with increase in the amount of GO from 0 wt.% to 10 wt.%. The hybridized S4 sample prepared with 4 wt.% GO possesses the highest photocatalytic activity with a constant rate of 0.039 min-1 in the photocataytic degradation of Brilliant X-3B dye (X3B); this sample was enhanced more than three times when compared with pure TiO2 sample (0.012 min-1). The enhanced photocatalytic activity of the rGO@TiO2-NR hybrid was attributed to the strong interaction between TiO2 nanorods and rGO. The unique hierarchical structure of 1D nanorod assembly TiO2-rGO flakes facilitates the injection and transfer of photo-generated electrons from TiO2 to graphene, thus retarding the recombination of electron-hole pairs and enhancing the photocatalytic activity. The enlarged BET surface areas, not only increasing the number of active sites, but also facilitating the adsorption of the dye, and improved light-harvesting ability also contribute to the enhanced photoreactivity of rGO@TiO2-NR hybrid.

  11. Highly uniform bipolar resistive switching characteristics in TiO2/BaTiO3/TiO2 multilayer

    International Nuclear Information System (INIS)

    Ma, W. J.; Zhang, X. Y.; Wang, Ying; Zheng, Yue; Lin, S. P.; Luo, J. M.; Wang, B.; Li, Z. X.

    2013-01-01

    Nanoscale multilayer structure TiO 2 /BaTiO 3 /TiO 2 has been fabricated on Pt/Ti/SiO 2 /Si substrate by chemical solution deposition method. Highly uniform bipolar resistive switching (BRS) characteristics have been observed in Pt/TiO 2 /BaTiO 3 /TiO 2 /Pt cells. Analysis of the current-voltage relationship demonstrates that the space-charge-limited current conduction controlled by the localized oxygen vacancies should be important to the resistive switching behavior. X-ray photoelectron spectroscopy results indicated that oxygen vacancies in TiO 2 play a crucial role in the resistive switching phenomenon and the introduced TiO 2 /BaTiO 3 interfaces result in the high uniformity of bipolar resistive switching characteristics

  12. Ultrafast Flame Annealing of TiO2 Paste for Fabricating Dye-Sensitized and Perovskite Solar Cells with Enhanced Efficiency.

    Science.gov (United States)

    Kim, Jung Kyu; Chai, Sung Uk; Cho, Yoonjun; Cai, Lili; Kim, Sung June; Park, Sangwook; Park, Jong Hyeok; Zheng, Xiaolin

    2017-11-01

    Mesoporous TiO 2 nanoparticle (NP) films are broadly used as electrodes in photoelectrochemical cells, dye-sensitized solar cells (DSSCs), and perovskite solar cells (PSCs). State-of-the-art mesoporous TiO 2 NP films for these solar cells are fabricated by annealing TiO 2 paste-coated fluorine-doped tin oxide glass in a box furnace at 500 °C for ≈30 min. Here, the use of a nontraditional reactor, i.e., flame, is reported for the high throughput and ultrafast annealing of TiO 2 paste (≈1 min). This flame-annealing method, compared to conventional furnace annealing, exhibits three distinct benefits. First, flame removes polymeric binders in the initial TiO 2 paste more completely because of its high temperature (≈1000 °C). Second, flame induces strong interconnections between TiO 2 nanoparticles without affecting the underlying transparent conducting oxide substrate. Third, the flame-induced carbothermic reduction on the TiO 2 surface facilitates charge injection from the dye/perovskite to TiO 2 . Consequently, when the flame-annealed mesoporous TiO 2 film is used to fabricate DSSCs and PSCs, both exhibit enhanced charge transport and higher power conversion efficiencies than those fabricated using furnace-annealed TiO 2 films. Finally, when the ultrafast flame-annealing method is combined with a fast dye-coating method to fabricate DSSC devices, its total fabrication time is reduced from over 3 h to ≈10 min. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Cotton fabric coated with nano TiO2-acrylate copolymer for photocatalytic self-cleaning by in-situ suspension polymerization

    International Nuclear Information System (INIS)

    Jiang Xue; Tian Xiuzhi; Gu Jian; Huang Dan; Yang Yiqi

    2011-01-01

    Two kinds of nano TiO 2 -polyacrylate hybrid dispersions, TBM-w and TBM-e were synthesized by in-situ suspension polymerization and solution polymerization respectively, in order to fix the nano TiO 2 on fabrics. The photocatalytic self-cleaning fabrics have received much attention in recent years for its water-saving and environment-protection advantages. However, the fixation of the photocatalyst on fabrics is still a key problem that inhibits industrialization of these eco-friendly fabrics. The cotton fabric was treated by the two hybrid dispersions. The photocatalytic self-cleaning property was characterized. Infrared spectroscopy, burning loss test and thermogravimetry showed that some copolymer chains entangled with the nano TiO 2 . Transmission electron microscope illustrated that there was a polymeric layer on the surface of nano TiO 2 . The average diameter of TBM-w was smaller than that of TBM-e based on size analysis. The photocatalytic decoloration of the grape syrup indicated that the fabric with TiO 2 -polymer hybrid had excellent self-cleaning property.

  14. Luminescence properties of Eu2+-doped MAl2-xSixO4-xNx (M = Ca, Sr, Ba) conversion phosphor for white LED applications

    NARCIS (Netherlands)

    Li, Y.Q.; With, de G.; Hintzen, H.T.J.M.

    2006-01-01

    Undoped and Eu-doped MAl2-xSixO4-2Nx (M = Ca, Sr, Ba) were synthesized by a solid-state reaction method at 1300 - 1400 ¿C under nitrogen-hydrogen atmosphere. The solubility of (SiN)+, in MAl2O4 was determined. Nitrogen can be incorporated into MAl2O4 by replacement of (AlO)+ by (SiN)+, whose amount

  15. Tuning the resistive switching properties of TiO2-x films

    Science.gov (United States)

    Ghenzi, N.; Rozenberg, M. J.; Llopis, R.; Levy, P.; Hueso, L. E.; Stoliar, P.

    2015-03-01

    We study the electrical characteristics of TiO2-x-based resistive switching devices fabricated with different oxygen/argon flow ratio during the oxide thin film sputtering deposition. Upon minute changes in this fabrication parameter, three qualitatively different device characteristics were accessed in the same system, namely, standard bipolar resistive switching, electroforming-free devices, and devices with multi-step breakdown. We propose that small variations in the oxygen/ argon flow ratio result in relevant changes of the oxygen vacancy concentration, which is the key parameter determining the resistive switching behavior. The coexistence of percolative or non-percolative conductive filaments is also discussed. Finally, the hypothesis is verified by means of the temperature dependence of the devices in low resistance state.

  16. Titanium Dioxide (TiO2) Dye-Sensitized Solar Cells

    Science.gov (United States)

    Alseadi, Anwar Abdulaziz

    With the increasing global energy consumption and diminishing fossil fuels, various renewable and sustainable energies have been harvested in past decades and related devices have been fabricated. Dye-sensitized solar cells (DSSCs) are the most efficient third-generation solar cells to harvest solar energy into electricity directly. Titanium dioxide (TiO2) based DSSCs were invented in 1988 and have attracted more and more attention since then because of low-cost and high efficiency. TiO2 nanoparticles are one kind of popular anode materials of DSSC because of stability, abundance, environment safety, non-toxicity, and excellent photovoltaic properties. In the project, TiO2 nanoparticles with different crystallographic sizes were produced by ball-milling. Physical properties of the produced TiO 2 nanoparticles were characterized by X-ray powder diffraction, UV-visible spectroscopy, and Raman scattering. TiO2-based DSSCs were fabricated and their photovoltaic performances were tested. The effects of TiO2 layer thickness, crystallographic size, and microsphere fillings were investigated. The project enriched our understanding of TiO2-based DSSCs.

  17. Fabrication and characterization of 6Li-enriched Li2TiO3 pebbles for a high Li-burnup irradiation test

    International Nuclear Information System (INIS)

    Tsuchiya, Kunihiko; Kawamura, Hiroshi

    2006-10-01

    Lithium titanate (Li 2 TiO 3 ) pebbles are considered to be a candidate material of tritium breeders for fusion reactor from viewpoints of easy tritium release at low temperatures (about 300degC) and chemical stability. In the present study, trial fabrication tests of 6 Li-enriched Li 2 TiO 3 pebbles of 1mm in diameter were carried out by a wet process with a dehydration reaction, and characteristics of the 6 Li-enriched Li 2 TiO 3 pebbles were evaluated for preparation of a high Li-burnup test in a testing reactor. Powder of 96at% 6 Li-enriched Li 2 TiO 3 was prepared by a solid state reaction, and two kinds of 6 Li-enriched Li 2 TiO 3 pebbles, namely un-doped and TiO 2 -doped Li 2 TiO 3 pebbles, were fabricated by the wet process. Based on results of the pebble fabrication tests, two kinds of 6 Li-enriched Li 2 TiO 3 pebbles were successfully fabricated with target values (density: 80-85%T.D., grain size: 2 TiO 3 pebbles was a satisfying value of about 1.05. Contact strength of these pebbles was about 6300MPa, which was almost the same as that of the Li 2 TiO 3 pebbles with natural Li. (author)

  18. Facile fabrication of Si-doped TiO2 nanotubes photoanode for enhanced photoelectrochemical hydrogen generation

    Science.gov (United States)

    Dong, Zhenbiao; Ding, Dongyan; Li, Ting; Ning, Congqin

    2018-04-01

    Photoelectrochemical (PEC) water splitting based doping modified one dimensional (1D) titanium dioxide (TiO2) nanostructures provide an efficient method for hydrogen generation. Here we first successfully fabricated 1D Si-doped TiO2 (Ti-Si-O) nanotube arrays through anodizing Ti-Si alloys with different Si amount, and reported the PEC properties for water splitting. The Ti-Si-O nanotube arrays fabricated on Ti-5 wt.% Si alloy and annealed at 600 °C possess higher PEC activity, yielding a higher photocurrent density of 0.83 mA/cm2 at 0 V vs. Ag/AgCl. The maximum photoconversion efficiency was 0.54%, which was 2.7 times the photoconversion efficiency of undoped TiO2.

  19. Digital selective fabrication of micro/nano-composite structured TiO2 nanorod arrays by laser direct writing

    Science.gov (United States)

    Jiang, Wei; He, Xiaoning; Liu, Hongzhong; Yin, Lei; Shi, Yongsheng; Ding, Yucheng

    2014-11-01

    In this article, we report on the digital selective fabrication of micro/nano-composite structured TiO2 nanorod arrays by laser direct writing. The pattern of TiO2 nanorod arrays can be easily designed and fabricated by laser scanning technology integrated with a computer-aided design system, which allows a high degree of freedom corresponding to the various pattern design demands. The approach basically involves the hydrothermal growth of TiO2 nanorod arrays on a transparent conductive substrate, the micropattern of TiO2 nanorod arrays and surface fluorination treatment. With these micro/nano-composite TiO2 nanorod array based films, we have demonstrated superhydrophilic patterned TiO2 nanorod arrays with rapid water spreading ability and superhydrophobic patterned TiO2 nanorod arrays with an excellent droplet bouncing effect and a good self-cleaning performance. The dynamic behaviours of the water droplets observed on the patterned TiO2 nanorod arrays were demonstrated by experiments and simulated by a finite element method. The approaches we will show are expected to provide potential applications in fields such as self-cleaning, surface protection, anticrawling and microfluidic manipulation.

  20. Autonomous BBOBS-NX (NX-2G) for New Era of Ocean Bottom Broadband Seismology

    Science.gov (United States)

    Shiobara, H.; Ito, A.; Sugioka, H.; Shinohara, M.

    2017-12-01

    The broadband ocean bottom seismometer (BBOBS) and its new generation system (BBOBS-NX) have been developed in Japan, and we performed several test and practical observations to create and establish a new category of the ocean floor broadband seismology, since 1999. Now, the data obtained by our BBOBS and BBOBS-NX is proved to be adequate for broadband seismic analyses. Especially, the BBOBS-NX can obtain the horizontal data comparable to land sites in longer periods (10 s -). Moreover, the BBOBST-NX is in practical evaluation for the mobile tilt observation that enables dense geodetic monitoring. The BBOBS-NX system is a powerful tool, although, it has intrinsic limitation of the ROV operation. If this system can be used without the ROV, like as the BBOBS, it should lead us a true breakthrough of ocean bottom seismology. Hereafter, the new autonomous BBOBS-NX is noted as NX-2G in short. The main problem to realize the NX-2G is a tilt of the sensor unit on landing, which exceed the acceptable limit (±8°) in about 50%. As we had no evidence at which moment and how this tilt occurred, we tried to observe it during the BBOBST-NX landing in 2015 by attaching a video camera and an acceleration logger. The result shows that the tilt on landing was determined by the final posture of the system at the penetration into the sediment, and the large oscillating tilt more than ±10° was observed in descending. The function of the NX-2G system is based on 3 stage operations as shown in the image. The glass float is aimed not only to obtain enough buoyancy to extract the sensor unit, but also to suppress the oscillating tilt of the system in descending. In Oct. 2016, we made the first in-situ test of the NX-2G system with a ROV. It was dropped from the sea surface with the video camera and the acceleration logger. The ROV was used to watch the operation of the system at the seafloor. The landing looked well and it was examined from the acceleration data. As the maximum tilt in

  1. Photocatalytic activity of self-assembled porous TiO2 nano-columns array fabricated by oblique angle sputter deposition

    Science.gov (United States)

    Shi, Pengjun; Li, Xibo; Zhang, Qiuju; Yi, Zao; Luo, Jiangshan

    2018-04-01

    A well-separated and oriented TiO2 nano-columns arrays with porous structure were fabricated by the oblique angle sputter deposition technique and subsequently annealing at 450 °C in Ar/O2 mixed atmosphere. The deposited substrate was firstly modified by a template of self-assembled close-packed arrays of 500 nm-diameter silica (SiO2) spheres. Scanning electronic microscopic (SEM) images show that the porous columnar nanostructure is formed as a result of the geometric shadowing effect and surface diffusion of the adatoms in oblique angle deposition (OAD). X-ray diffraction (XRD) measurements reveal that the physically OAD film with annealing treatment are generally mixed phase of rutile and anatase TiO2 polymorphic forms. The morphology induced absorbance and band gap tuning by different substrates was demonstrated by the UV–vis spectroscopy. The well-separated one-dimensional (1D) nano-columns array with specific large porous surface area is beneficial for charge separation in photocatalytic degradation. Compared with compact thin film, such self-assembled porous TiO2 nano-columns array fabricated by oblique angle sputter deposition performed an enhanced visible light induced photocatalytic activity by decomposing methyl orange (MO) solution. The well-designed periodic array-structured porous TiO2 films by using modified patterned substrates has been demonstrated significantly increased absorption edge in the UV-visible light region with a narrower optical band gap, which are expected to be favorable for application in photovoltaic, lithium-ion insertion and photocatalytic, etc.

  2. Fabrication of TiO2-Reduced Graphene Oxide Nanorod Composition Spreads Using Combinatorial Hydrothermal Synthesis and Their Photocatalytic and Photoelectrochemical Applications.

    Science.gov (United States)

    Lu, Wen-Chung; Tseng, Li-Chun; Chang, Kao-Shuo

    2017-09-11

    This study is the first to employ combinatorial hydrothermal synthesis and facile spin-coating technology to fabricate TiO 2 -reduced graphene oxide (rGO) nanorod composition spreads. The features of this study are (1) the development of a self-designed spin-coating wedge, (2) the systemic investigation of the structure-property relationship of the system, (3) the high-throughput screening of the optimal ratio from a wide range of compositions for photocatalytic and photoelectrochemical (PEC) applications, and (4) the effective coupling between the density gradient TiO 2 nanorod array and the thickness gradient rGO. The formation of rGO in the fabricated TiO 2 -rGO sample was monitored through Fourier transform infrared spectrometry. Transmission electron microscopy images also suggested that the TiO 2 nanorod surfaces were covered with a thin layer of amorphous rGO. The rutile TiO 2 plane evolution along the composition variation was verified through X-ray diffraction. 7% TiO 2 -93% rGO on the nanorod composition spread exhibited the most promising photocatalytic ability; the corresponding photodegradation kinetics, denoted by the photodegradation rate constant (k), was determined to be approximately 12.7 × 10 -3 min -1 . The excellent performance was attributed to the effective coupling between the TiO 2 and rGO, which improved the charge carrier transport, thus inhibiting electron-hole pair recombination. A cycling test implied that 7% TiO 2 -93% rGO is a reliable photocatalyst. A photoluminescence spectroscopy study also supported the superior photocatalytic ability of the sample, which was attributed to its markedly poorer recombination behavior. In addition, without further treatment, the sample exhibited excellent PEC stability; the photocurrent density was more than three times higher than that exhibited by the density gradient TiO 2 nanorods.

  3. TiO2-TiO2 composite resistive humidity sensor: ethanol crosssensitivity

    International Nuclear Information System (INIS)

    Ghalamboran, Milad; Saedi, Yasin

    2016-01-01

    The fabrication method and characterization results of a TiO 2 -TiO 2 composite bead used for humidity sensing along with its negative cross-sensitivity to ethanol vapor are reported. The bead shaped resistive sample sensors are fabricated by the drop-casting of a TiO 2 slurry on two Pt wire segments. The dried bead is pre-fired at 750°C and subsequently impregnated with a Ti-based sol. The sample is ready for characterization after a thermal annealing at 600°C in air. Structurally, the bead is a composite of the micron-sized TiO 2 crystallites embedded in a matrix of nanometric TiO 2 particle aggregates. The performance of the beads as resistive humidity sensors is recorded at room temperature in standard humidity level chambers. Results evince the wide dynamic range of the sensors fabricated in the low relative humidity range. While the sensor conductance is not sensitive to ethanol vapor in dry air, in humid air, sensor's responses are negatively affected by the contaminant. (paper)

  4. Development of Multi-functional Properties on Cotton Fabric by In Situ Application of TiO2 and ZnO Nanoparticles

    Science.gov (United States)

    Butola, B. S.; Garg, Aayush; Garg, Aman; Chauhan, Indu

    2018-06-01

    Cotton fabrics functionalized with different combinations of TiO2 and ZnO were evaluated for multifunctional properties including UV protection, antimicrobial and self-cleaning. The ZnO nanoparticles synthesized using sol gel method were applied on cotton fabric by pad-dry-cure method and TiO2 was deposited in situ. The deposition of both TiO2 and ZnO was examined and confirmed by SEM and EDX analysis. Application of both metal oxides resulted in good improvement in UV protection of treated fabrics. The fabrics which were finished with combination of both Zinc and Titanium oxides, showed UPF rating of 50+ as compared to UPF rating of untreated cotton, which was only 5. The same fabrics also showed higher self-cleaning extent as compared to untreated cotton fabric. It was found that the sequence of application of ZnO and TiO2 affected the antimicrobial activity of the finished fabric and also the durability. When application of TiO2 was followed by ZnO, the combination resulted in development of excellent antimicrobial property against Escherichia coli ( 99% colony reduction) which was retained after 10 wash cycles. However, when application of ZnO nanoparticles was followed by application of TiO2, the improvement in antimicrobial activity was found to be moderate ( 48% colony reduction) and had poor wash durability. Hence, the specific sequence of application of these metals oxides can be utilized for obtaining good durability of the multifunctional properties on cotton fabric.

  5. Development of Multi-functional Properties on Cotton Fabric by In Situ Application of TiO2 and ZnO Nanoparticles

    Science.gov (United States)

    Butola, B. S.; Garg, Aayush; Garg, Aman; Chauhan, Indu

    2018-05-01

    Cotton fabrics functionalized with different combinations of TiO2 and ZnO were evaluated for multifunctional properties including UV protection, antimicrobial and self-cleaning. The ZnO nanoparticles synthesized using sol gel method were applied on cotton fabric by pad-dry-cure method and TiO2 was deposited in situ. The deposition of both TiO2 and ZnO was examined and confirmed by SEM and EDX analysis. Application of both metal oxides resulted in good improvement in UV protection of treated fabrics. The fabrics which were finished with combination of both Zinc and Titanium oxides, showed UPF rating of 50+ as compared to UPF rating of untreated cotton, which was only 5. The same fabrics also showed higher self-cleaning extent as compared to untreated cotton fabric. It was found that the sequence of application of ZnO and TiO2 affected the antimicrobial activity of the finished fabric and also the durability. When application of TiO2 was followed by ZnO, the combination resulted in development of excellent antimicrobial property against Escherichia coli ( 99% colony reduction) which was retained after 10 wash cycles. However, when application of ZnO nanoparticles was followed by application of TiO2, the improvement in antimicrobial activity was found to be moderate ( 48% colony reduction) and had poor wash durability. Hence, the specific sequence of application of these metals oxides can be utilized for obtaining good durability of the multifunctional properties on cotton fabric.

  6. The Effect of Titanium Dioxide (TiO2) Nanoparticles on Hydroxyapatite (HA)/TiO2 Composite Coating Fabricated by Electrophoretic Deposition (EPD)

    Science.gov (United States)

    Amirnejad, M.; Afshar, A.; Salehi, S.

    2018-05-01

    Composite coatings of Hydroxyapatite (HA) with ceramics, polymers and metals are used to modify the surface structure of implants. In this research, HA/TiO2 composite coating was fabricated by electrophoretic deposition (EPD) on 316 stainless steel substrate. HA/TiO2 composite coatings with 5, 10 and 20 wt.% of TiO2, deposited at 40 V and 90 s as an optimum condition. The samples coated at this condition led to an adherent, continuous and crack-free coating. The influence of TiO2 content was studied by performing different characterization methods such as scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), corrosion resistance in simulated body fluid (SBF), coating's dissolution rate in physiological solution and bond strength to the substrate. The results showed that the higher amount of TiO2 in the composite coating led to increase in bond strength of coating to stainless steel substrate from 3 MPa for HA coating to 5.5 MPa for HA-20 wt.% TiO2 composite coating. In addition, it caused to reduction of corrosion current density of samples in the SBF solution from 18.92 μA/cm2 for HA coating to 6.35 μA/cm2 for HA-20 wt.% TiO2 composite coating.

  7. The Effect of Titanium Dioxide (TiO2) Nanoparticles on Hydroxyapatite (HA)/TiO2 Composite Coating Fabricated by Electrophoretic Deposition (EPD)

    Science.gov (United States)

    Amirnejad, M.; Afshar, A.; Salehi, S.

    2018-04-01

    Composite coatings of Hydroxyapatite (HA) with ceramics, polymers and metals are used to modify the surface structure of implants. In this research, HA/TiO2 composite coating was fabricated by electrophoretic deposition (EPD) on 316 stainless steel substrate. HA/TiO2 composite coatings with 5, 10 and 20 wt.% of TiO2, deposited at 40 V and 90 s as an optimum condition. The samples coated at this condition led to an adherent, continuous and crack-free coating. The influence of TiO2 content was studied by performing different characterization methods such as scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), corrosion resistance in simulated body fluid (SBF), coating's dissolution rate in physiological solution and bond strength to the substrate. The results showed that the higher amount of TiO2 in the composite coating led to increase in bond strength of coating to stainless steel substrate from 3 MPa for HA coating to 5.5 MPa for HA-20 wt.% TiO2 composite coating. In addition, it caused to reduction of corrosion current density of samples in the SBF solution from 18.92 μA/cm2 for HA coating to 6.35 μA/cm2 for HA-20 wt.% TiO2 composite coating.

  8. Fabrication, characterization and photocatalytic properties of Ag nanoparticles modified TiO2 NTs

    International Nuclear Information System (INIS)

    Wang Qingyao; Yang Xiuchun; Liu Dan; Zhao Jianfu

    2012-01-01

    Graphical abstract: The TiO 2 NTs were first treated with bi-functional mercaptoacetic acid linkers (HOOC–R–S). The –OH group on the surface of TiO 2 NT provides a strong affinity with the carboxylate group in the linker molecules. The thiol functional group in the linker molecules facilitates the binding with Ag from AgNO 3 solution. After Ag + ions were reduced by NaBH 4 , Ag nanoparticles formed by nucleation and growth. Highlights: ► Ag nanoparticles with an average diameter of 9.2 nm were filled in the TiO 2 nanotubes by a successive ionic layer adsorption and reaction (SILAR) technique. ► Bi-functional mercaptoacetic acid linkers were used to bind TiO 2 nanotubes with Ag nanoparticles. ► Ag nanoparticles modification of TiO 2 NTs largely enhanced the photocatalytic degradation of methyl orange under ultraviolet light irradiation. - Abstract: Ordered anatase TiO 2 nanotubes (TiO 2 NTs) on Ti substrate were synthesized by electrochemical anodization and subsequently vapor-thermal treatment. Ag nanoparticles were decorated on TiO 2 NTs by successive ionic layer adsorption and reaction (SILAR) technique. Raman spectroscopy, X-ray absorption near edge spectroscopy (XANES), X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used for the characterization of surface morphology, phase composition, and microstructure of the original TiO 2 NTs, the vapor-thermally treated TiO 2 NTs and the Ag nanoparticles decorated TiO 2 NTs. The results indicate that vapor-thermal treatment favors to the transformation of amorphous TiO 2 into anatase phase. Increasing the SILAR cycle times favors to increase the loaded amounts of Ag nanoparticles in TiO 2 NTs. Ag nanoparticles are uniformly distributed in the TiO 2 NTs, and the SILAR process does not damage the ordered tubular structure. A possible formation mechanism of Ag/TiO 2 NTs has also been proposed. The

  9. A multifunctional cotton fabric using TiO2 and PCMs: introducing thermal comfort and self-cleaning properties

    Science.gov (United States)

    Scacchetti, F. A. P.; Pinto, E.; Soares, G.

    2017-10-01

    The development of materials with multiple functionalities is a market imperative that places new challenges on textile processing. The purpose of this study was to establish the conditions to obtain a cotton material that is comfortable, with self-cleaning and antimicrobial properties. For this purpose, microcapsules of phase change materials (mPCM) and titanium dioxide nanoparticles (TiO2 NP) were applied. The resulting fabrics were characterized with resource to infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), contact angle and scanning electron microscopy (SEM). The self-cleaning properties of treated fabrics were also analysed based on the photocatalytic ability of coated fabrics. Therefore, the decomposition of methyl orange (MO) and the degradation of red wine and curry spots under the irradiation of a solar simulator were analysed. Thus, the incorporation of TiO2 particles into the cotton fabric promoted self-cleaning and antibacterial characteristics, but the presence of PCM combined with TiO2 increases the bioactivity of materials.

  10. Bactericidal activity under UV and visible light of cotton fabrics coated with anthraquinone-sensitized TiO2

    KAUST Repository

    Rahal, Raed; Le Bé chec, Mickaë l; Guyoneaud, Ré my; Pigot, Thierry; Paolacci, H.; Lacombe, Sylvie M.

    2013-01-01

    . The experimental method allowed the accurate quantification of bacteria survival on photoactive surfaces and films under UVA and UV-free visible irradiation. Cotton fabrics coated with TiO2, anthraquinone or anthraquinone-sensitized TiO2 display a significant

  11. Fast fabrication of long TiO2 nanotube array with high photoelectrochemical property on flexible stainless steel.

    Science.gov (United States)

    Tao, Jie; Wu, Tao; Gao, Peng

    2012-03-01

    Oriented highly ordered long TiO2 nanotube array films with nanopore structure and high photoelectrochemical property were fabricated on flexible stainless steel substrate (50 microm) by anodization treatment of titanium thin films in a short time. The samples were characterized by means of field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and photoelectrochemical methods, respectively. The results showed that Ti films deposited at the condition of 0.7 Pa Ar pressure and 96 W sputtering power at room temperature was uniform and dense with good homogeneity and high crystallinity. The voltage and the anodization time both played significant roles in the formation of TiO2 nanopore-nanotube array film. The optimal voltage was 60 V and the anodization time is less than 30 min by anodizing Ti films in ethylene glycerol containing 0.5% (w) NH4F and 3% (w) H2O. The growth rate of TiO2 nanotube array was as high as 340 nm/min. Moreover, the photocurrent-potential curves, photocurrent response curves and electrochemical impedance spectra results indicated that the TiO2 nanotube array film with the nanoporous structure exhibited a better photo-response ability and photoelectrochemical performance than the ordinary TiO2 nanotube array film. The reason is that the nanoporous structure on the surface of the nanotube array can separate the photo electron-hole pairs more efficiently and completely than the tubular structure.

  12. Co-electrospinning fabrication and photocatalytic performance of TiO2/SiO2 core/sheath nanofibers with tunable sheath thickness

    International Nuclear Information System (INIS)

    Cao, Houbao; Du, Pingfan; Song, Lixin; Xiong, Jie; Yang, Junjie; Xing, Tonghai; Liu, Xin; Wu, Rongrong; Wang, Minchao; Shao, Xiaoli

    2013-01-01

    Graphical abstract: - Highlights: • The core–sheath TiO 2 /SiO 2 nanofibers were fabricated by co-electrospinning technique. • The catalytic property of nanofibers with different sheath thickness was studied. • The potential methods of improving catalytic efficiency are suggested. - Abstract: In this paper, core/sheath TiO 2 /SiO 2 nanofibers with tunable sheath thickness were directly fabricated via a facile co-electrospinning technique with subsequent calcination at 500 °C. The morphologies and structures of core/sheath TiO 2 /SiO 2 nanofibers were characterized by TGA, FESEM, TEM, FTIR, XPS and BET. It was found that the 1D core/sheath nanofibers are made up of anatase–rutile TiO 2 core and amorphous SiO 2 sheath. The influences of SiO 2 sheath and its thickness on the photoreactivity were evaluated by observing photo-degradation of methylene blue aqueous solution under the irradiation of UV light. Compared with pure TiO 2 nanofibers, the core/sheath TiO 2 /SiO 2 nanofibers performed a better catalytic performance. That was attributed to not only efficient separation of hole–electron pairs resulting from the formation of heterojunction but also larger surface area and surface silanol group which will be useful to provide higher capacity for oxygen adsorption to generate more hydroxyl radicals. And the optimized core/sheath TiO 2 /SiO 2 nanofibers with a sheath thickness of 37 nm exhibited the best photocatalytic performance

  13. Improved conversion efficiency of dye sensitized solar cell using Zn doped TiO_2-ZrO_2 nanocomposite

    International Nuclear Information System (INIS)

    Tomar, Laxmi J.; Bhatt, Piyush J.; Desai, Rahul K.; Chakrabarty, B. S.; Panchal, C. J.

    2016-01-01

    TiO_2-ZrO_2 and Zn doped TiO_2-ZrO_2 nanocomposites were prepared by hydrothermal method for dye sensitized solar cell (DSSC) application. The structural and optical properties were investigated by X –ray diffraction (XRD) and UV-Visible spectroscopy respectively. XRD results revealed the formation of material in nano size. The average crystallite size is 22.32 nm, 17.41 nm and 6.31 nm for TiO_2, TiO_2-ZrO_2 and Zn doped TiO_2-ZrO_2 nanocomposites respectively. The optical bandgap varies from 2.04 eV to 3.75 eV. Dye sensitized solar cells were fabricated using the prepared material. Pomegranate juice was used as a sensitizer and graphite coated conducting glass plate was used as counter electrode. The I – V characteristics were recorded to measure photo response of DSSC. Photovoltaic parameter like open circuit voltage, power conversion efficiency, and fill factor were evaluated for fabricated solar cell. The power conversion efficiency of DSSC fabricated with TiO_2, TiO_2-ZrO_2 and Zn doped TiO_2-ZrO_2 nanocomposites were found 0.71%, 1.97% and 4.58% respectively.

  14. Improved conversion efficiency of dye sensitized solar cell using Zn doped TiO2-ZrO2 nanocomposite

    Science.gov (United States)

    Tomar, Laxmi J.; Bhatt, Piyush J.; Desai, Rahul K.; Chakrabarty, B. S.; Panchal, C. J.

    2016-05-01

    TiO2-ZrO2 and Zn doped TiO2-ZrO2 nanocomposites were prepared by hydrothermal method for dye sensitized solar cell (DSSC) application. The structural and optical properties were investigated by X -ray diffraction (XRD) and UV-Visible spectroscopy respectively. XRD results revealed the formation of material in nano size. The average crystallite size is 22.32 nm, 17.41 nm and 6.31 nm for TiO2, TiO2-ZrO2 and Zn doped TiO2-ZrO2 nanocomposites respectively. The optical bandgap varies from 2.04 eV to 3.75 eV. Dye sensitized solar cells were fabricated using the prepared material. Pomegranate juice was used as a sensitizer and graphite coated conducting glass plate was used as counter electrode. The I - V characteristics were recorded to measure photo response of DSSC. Photovoltaic parameter like open circuit voltage, power conversion efficiency, and fill factor were evaluated for fabricated solar cell. The power conversion efficiency of DSSC fabricated with TiO2, TiO2-ZrO2 and Zn doped TiO2-ZrO2 nanocomposites were found 0.71%, 1.97% and 4.58% respectively.

  15. Development of Cotton Fabrics with Durable UV Protective and Self-cleaning Property by Deposition of Low TiO2 Levels through Sol-gel Process.

    Science.gov (United States)

    Mishra, Anu; Butola, Bhupendra Singh

    2018-01-19

    In this article, the deposition of TiO 2 on cotton fabric using sol-gel technique has been described. Various process routes (pad-dry-cure, pad-dry-hydrothermal and pad-dry-solvothermal) were examined to impart a stable coating of TiO 2 on fabric. The role of precursor concentration, process temperature and time of treatment were studied to aim at a wash durable, UV protective and self-cleaning property in the treated fabric. EDX and ICP-MS techniques were used to examine the add-on percentage of TiO 2 on cotton fabrics treated via different routes. It has been found that the TiO 2 remains largely amorphous and nondurable if it is given a short thermal treatment. To convert the deposited TiO 2 to its anatase crystal form, a prolonged hydrothermal treatment for at least 3 h needs to be given. TiO 2 deposition levels of less than 0.1% were found to be effective in imparting reasonable degree of UV protection and self-cleaning property to the cotton fabric. The self-cleaning ability of the treated fabric against coffee stain was also studied and was found to be related to the process route and the deposition levels of TiO 2 . © 2018 The American Society of Photobiology.

  16. Solvothermal fabrication of activated semi-coke supported TiO2-rGO nanocomposite photocatalysts and application for NO removal under visible light

    Science.gov (United States)

    Yang, Weiwei; Li, Chunhu; Wang, Liang; Sun, ShengNan; Yan, Xin

    2015-10-01

    The photocatalysts of activated semi-coke supported TiO2-rGO nanocomposite (TiO2-rGO/ASC) with different contents of reduced graphene oxide were fabricated by one-step solvothermal method for NO removal under visible light irradiation. It was confirmed that 8% content of reduced graphene oxide presented the best NO photooxidation performance under visible light irradiation at 70 °C with 350-400 mg/m3 NO,5% O2 and 5% relative humidity. The reasons for improved activity were discussed, alloyed with the mechanism of producing CO. Detailed structural information of TiO2-rGO/ASC photocatalysts was characterized by scanning electron microscope (SEM), energy dispersive X-ray Spectroscopy (EDX), X-ray diffraction analysis (XRD), UV-Vis diffuse reflectance spectra (UV-Vis DRS) and photoluminescence (PL), which indicated that the introduction of rGO was responsible for well dispersion, smaller crystalline size, red shift of absorption band and suppressing quick photo-induced charges recombination of TiO2-rGO/ASC photocatalysts. Optimization of operational parameters with 70 °C, 8% O2 and 8% relative humidity were also obtained. Deactivation of TiO2-rGO/ASC photocatalysts for NO removal was investigated by Fourier-transform infrared (FTIR) analysis. Regeneration experiments showed that thermal vapor regeneration would be optimal method owing to excellent regenerative capacity and inexpensive procedure.

  17. Enhanced properties of nanostructured TiO2-graphene composites by rapid sintering

    Science.gov (United States)

    Shon, In-Jin; Yoon, Jin-Kook; Hong, Kyung-Tae

    2018-01-01

    Despite of many attractive properties of TiO2, the drawback of TiO2 ceramic is low fracture toughness for widely industrial application. The method to improve the fracture toughness and hardness has been reported by addition of reinforcing phase to fabricate a nanostructured composite. In this regard, graphene has been evaluated as an ideal second phase in ceramics. Nearly full density of nanostructured TiO2-graphene composite was achieved within one min using pulsed current activated sintering. The effect of graphene on microstructure, fracture toughness and hardness of TiO2-graphene composite was evaluated using Vickers hardness tester and field emission scanning electron microscopy. The grain size of TiO2 in the TiO2-x vol% (x = 0, 1, 3, and 5) graphene composite was greatly reduced with increase in addition of graphene. Both hardness and fracture toughness of TiO2-graphene composites simultaneously increased in the addition of graphene.

  18. Fabrication of high aspect ratio TiO2 and Al2O3 nanogratings by atomic layer deposition

    DEFF Research Database (Denmark)

    Shkondin, Evgeniy; Takayama, Osamu; Michael-Lindhard, Jonas

    2016-01-01

    The authors report on the fabrication of TiO2 and Al2O3 nanostructured gratings with an aspect ratio of up to 50. The gratings were made by a combination of atomic layer deposition (ALD) and dry etch techniques. The workflow included fabrication of a Si template using deep reactive ion etching...... spectroscopy. The approach presented opens the possibility to fabricate high quality optical metamaterials and functional nanostructures....

  19. Fabrication of TiO_2-modified polytetrafluoroethylene ultrafiltration membranes via plasma-enhanced surface graft pretreatment

    International Nuclear Information System (INIS)

    Qian, Yingjia; Chi, Lina; Zhou, Weili; Yu, Zhenjiang; Zhang, Zhongzhi; Zhang, Zhenjia; Jiang, Zheng

    2016-01-01

    Graphical abstract: - Highlights: • Multifunctional TiO_2/PAA/PTFE ultrafiltration membrane was fabricated via tight coating of TiO_2 functional layer onto the plasma-assisted graft of PAA on PTFE. • The high water flux rate, remarkable enhanced ultrafiltration performance and excellent self-cleaning ability were demonstrated. • The formation of COO−Ti bidentate coordination between TiO_2 and PAA was responsible for the successful coating. - Abstract: Surface hydrophilic modification of polymer ultrafiltration membrane using metal oxide represents an effective yet highly challenging solution to improve water flux and antifouling performance. Via plasma-enhanced graft of poly acryl acid (PAA) prior to coating TiO_2, we successfully fixed TiO_2 functional thin layer on super hydrophobic polytetrafluoroethylene (PTFE) ultrafiltration (UF) membranes. The characterization results evidenced TiO_2 attached on the PTFE-based UF membranes through the chelating bidentate coordination between surface-grafted carboxyl group and Ti"4"+. The TiO_2 surface modification may greatly reduce the water contact angle from 115.8° of the PTFE membrane to 35.0° without degradation in 30-day continuous filtration operations. The novel TiO_2/PAA/PTFE membranes also exhibited excellent antifouling and self-cleaning performance due to the intrinsic hydrophilicity and photocatalysis properties of TiO_2, which was further confirmed by the photo-degradation of MB under Xe lamp irradiation.

  20. Fabrication of TiO2/MoS2@zeolite photocatalyst and its photocatalytic activity for degradation of methyl orange under visible light

    International Nuclear Information System (INIS)

    Zhang, Weiping; Xiao, Xinyan; Zheng, Lili; Wan, Caixia

    2015-01-01

    Graphical abstract: A novel approach was developed for fabrication of TiO 2 /MoS 2 @zeolite photocatalyst using bulk MoS 2 as a photosensitizer and zeolite as carrier. The as-prepared TiO 2 /MoS 2 @zeolite composite exhibited excellent photocatalytic performance for degradation of methyl orange under visible-light irradiation. - Highlights: • Ultrasound-exfoliation and hydrothermal reforming technique were employed for generating nano-MoS 2 from micro-MoS 2 . • The embedded sensitizer composite mode of (TiO 2 /MoS 2 /TiO 2 ) was used in the fabrication of TiO 2 /MoS 2 @zeolite composite photocatalyst. • The photocatalytic mechanism of TiO 2 /MoS 2 @zeolite photocatalyst was presented. - Abstract: TiO 2 /MoS 2 @zeolite composite photocatalysts with visible-light activity were fabricated via a simple ultrasonic-hydrothermal synthesis method, using TiCl 4 as Ti source, MoS 2 as a direct sensitizer, glycerol water solution with certain dispersion agent as hydrolytic agent, and zeolite as carrier. The structure, morphology, composition, optical properties, and specific surface area of the as-prepared photocatalysts were characterized by using XRD, FTIR, SEM–EDS, TEM, XPS, UV–vis, PL and BET analyzer, respectively. And the photocatalytic degradation of methyl orange (MO) in aqueous suspension has been employed to evaluate the photocatalytic activity and degradation kinetics of as-prepared photocatalysts with xenon lamp as irradiation source. The results indicate that: (1) TiO 2 /MoS 2 @zeolite composite photocatalysts exhibit enhanced photocatalytic activities for methyl orange (MO) degradation compared to Degussa P25; (2) photocatalytic degradation of MO obeys Langmuir–Hinshelwood kinetic model (pseudo-first order reaction), and its degradation rate constant (k app ) (2.304 h −1 ) is higher than that of Degussa P25 (0.768 h −1 ); (3) the heterostructure consisted of zeolite, MoS 2 and TiO 2 nanostructure could provide synergistic effect for degradation

  1. Fabrication of Li2TiO3 pebbles by a freeze drying process

    International Nuclear Information System (INIS)

    Lee, Sang-Jin; Park, Yi-Hyun; Yu, Min-Woo

    2013-01-01

    Li 2 TiO 3 pebbles were successfully fabricated by using a freeze drying process. The Li 2 TiO 3 slurry was prepared using a commercial powder of particle size 0.5–1.5 μm and the pebble pre-form was prepared by dropping the slurry into liquid nitrogen through a syringe needle. The droplets were rapidly frozen, changing their morphology to spherical pebbles. The frozen pebbles were dried at −10 °C in vacuum. To make crack-free pebbles, some glycerin was employed in the slurry, and long drying time and a low vacuum condition were applied in the freeze drying process. In the process, the solid content in the slurry influenced the spheroidicity of the pebble green body. The dried pebbles were sintered at 1200 °C in an air atmosphere. The sintered pebbles showed almost 40% shrinkage. The sintered pebbles revealed a porous microstructure with a uniform pore distribution and the sintered pebbles were crushed under an average load of 50 N in a compressive strength test. In the present study, a freeze drying process for fabrication of spherical Li 2 TiO 3 pebbles is introduced. The processing parameters, such as solid content in the slurry and the conditions of freeze drying and sintering, are also examined

  2. H irradiation effects on the GaAs-like Raman modes in GaAs1-xNx/GaAs1-xNx:H planar heterostructures

    Science.gov (United States)

    Giulotto, E.; Geddo, M.; Patrini, M.; Guizzetti, G.; Felici, M.; Capizzi, M.; Polimeni, A.; Martelli, F.; Rubini, S.

    2014-12-01

    The GaAs-like longitudinal optical phonon frequency in two hydrogenated GaAs1-xNx/GaAs1-xNx:H microwire heterostructures—with similar N concentration, but different H dose and implantation conditions—has been investigated by micro-Raman mapping. In the case of GaAs0.991N0.009 wires embedded in barriers where GaAs-like properties are recovered through H irradiation, the phonon frequency in the barriers undergoes a blue shift with respect to the wires. In GaAs0.992N0.008 wires embedded in less hydrogenated barriers, the phonon frequency exhibits an opposite behavior (red shift). Strain, disorder, phonon localization effects induced by H-irradiation on the GaAs-like phonon frequency are discussed and related to different types of N-H complexes formed in the hydrogenated barriers. It is shown that the red (blue) character of the frequency shift is related to the dominant N-2H (N-3H) type of complexes. Moreover, for specific experimental conditions, an all-optical determination of the uniaxial strain field is obtained. This may improve the design of recently presented devices that exploit the correlation between uniaxial stress and the degree of polarization of photoluminescence.

  3. Rapid fabrication of mesoporous TiO2 thin films by pulsed fibre laser for dye sensitized solar cells

    Science.gov (United States)

    Hadi, Aseel; Alhabradi, Mansour; Chen, Qian; Liu, Hong; Guo, Wei; Curioni, Michele; Cernik, Robert; Liu, Zhu

    2018-01-01

    In this paper we demonstrate for the first time that a fibre laser with a wavelength of 1070 nm and a pulse width of milliseconds can be applied to generate mesoporous nanocrystalline (nc) TiO2 thin films on ITO coated glass in ambient atmosphere, by complete vaporisation of organic binder and inter-connection of TiO2 nanoparticles, without thermally damaging the ITO layer and the glass substrate. The fabrication of the mesoporous TiO2 thin films was achieved by stationary laser beam irradiation of 1 min. The dye sensitized solar cell (DSSC) with the laser-sintered TiO2 photoanode reached higher power conversion efficiency (PCE) of 3.20% for the TiO2 film thickness of 6 μm compared with 2.99% for the furnace-sintered. Electrochemical impedance spectroscopy studies revealed that the laser sintering under the optimised condition effectively decreased charge transfer resistance and increased electron lifetime of the TiO2 thin films. The use of the fibre laser with over 40% wall-plug efficiency offers an economically-feasible, industrial viable solution to the major challenge of rapid fabrication of large scale, mass production of mesoporous metal oxide thin film based solar energy systems, potentially for perovskite and monolithic tandem solar cells, in the future.

  4. Fabrication and tritium release property of Li2TiO3-Li4SiO4 biphasic ceramics

    Science.gov (United States)

    Yang, Mao; Ran, Guangming; Wang, Hailiang; Dang, Chen; Huang, Zhangyi; Chen, Xiaojun; Lu, Tiecheng; Xiao, Chengjian

    2018-05-01

    Li2TiO3-Li4SiO4 biphasic ceramic pebbles have been developed as an advanced tritium breeder due to the potential to combine the advantages of both Li2TiO3 and Li4SiO4. Wet method was developed for the pebble fabrication and Li2TiO3-Li4SiO4 biphasic ceramic pebbles were successfully prepared by wet method using the powders synthesized by hydrothermal method. The tritium release properties of the Li2TiO3-Li4SiO4 biphasic ceramic pebbles were evaluated. The biphasic pebbles exhibited good tritium release property at low temperatures and the tritium release temperature was around 470 °C. Because of the isotope exchange reaction between H2 and tritium, the addition of 0.1%H2 to purge gas He could significantly enhance the tritium gas release and the fraction of molecular form of tritium increased from 28% to 55%. The results indicate that the Li2TiO3-Li4SiO4 biphasic ceramic pebbles fabricated by wet method exhibit good tritium release property and hold promising potential as advanced breeder pebbles.

  5. Designed fabrication of fluorine-doped carbon coated mesoporous TiO2 hollow spheres for improved lithium storage

    International Nuclear Information System (INIS)

    Geng, Hongbo; Ming, Hai; Ge, Danhua; Zheng, Junwei; Gu, Hongwei

    2015-01-01

    Graphical abstract: Hollow TiO 2 with mesoporous shell (MHTO) was successfully fabricated by a novel and controllable route, followed by fluorine-doped carbon coating the MHTO (MHTO-C/F), with the aim of enhancing the conductivity and stability of structures. - Highlights: • Anatase TiO 2 hollow spheres with mesoporous shells (MHTO) was fabricated via a facile and controllable route, to improve the lithium ion mobility as well as the stability of the architecture. • Fluorine-doped carbon derived from polyvinylidene difluoride was further encapsulated onto TiO 2 hollow spheres to improve the conductivity. • The composites could provide excellent electrochemical performance, which was desirable for the application of TiO 2 as an anode material in lithium ion batteries. - Abstract: In this manuscript, we demonstrated a facile route for the controllable design of “Fluorine (F)-doped carbon” (C/F)-treated TiO 2 hollow spheres with mesoporous shells (MHTO-C/F). The fabrication of this distinct mesoporous hollow structures and the C/F coating could effectively improve the electrolyte permeability and architectural stability, as well as electrical conductivity and lithium ion mobility. As anticipated, MHTO-C/F has several remarkable electrochemical properties, such as a high specific reversible capacity of 252 mA h g −1 , outstanding cycling stability of more than 210 mA h g −1 after 100 cycles at 0.5 C, and good rate performance of around 123 mA h g −1 at 5 C (1 C = 168 mA g −1 ). These properties are highly beneficial for lithium storage

  6. Enhanced photocatalytic activity of wool-ball-like TiO2 microspheres on carbon fabric and FTO substrates

    Science.gov (United States)

    Zhang, Yu; Gu, Jian; Zhang, Mengqi

    2018-06-01

    The wool-ball-like TiO2 microspheres on carbon fabric (TiO2-CF) and FTO substrates (TiO2-FTO) have been synthesized by a facile hydrothermal method in alkali environment, using commercial TiO2 (P25) as precursors. The XRD results indicate that the as-prepared TiO2 have good crystallinity. And the SEM images show that the wool-ball-like TiO2 microspheres with a diameter of 2-3 μm are composed of TiO2 nanowires, which have a diameter of 50 nm. The photocatalytic behavior of the wool-ball-like TiO2 microspheres, TiO2-CF and TiO2-FTO under ultraviolet light was investigated by a pseudo first-order kinetic model, using methyl orange (MO) as pollutant. The wool-ball-like TiO2 microspheres obtained a degradation rate constant (Kap) of 6.91×10-3 min-1 . The Kap values of TiO2-FTO and TiO2-CF reach 13.97×10-3 min-1 and 11.80×10-3 min-1, which are 2.0 and 1.7 times higher than that of pristine wool-ball-like TiO2 microspheres due to the "sum effect" between TiO2 and substrates. This study offers a facile hydrothermal method to prepare wool-ball-like TiO2 microspheres on CF and FTO substrates, which will improve the recyclability of phtocatalysts and can be extended to other fields.

  7. Optical properties of TiO2 nanotube arrays fabricated by the electrochemical anodization method

    International Nuclear Information System (INIS)

    Ly, Ngoc Tai; Nguyen, Van Chien; Dao, Thi Hoa; Hoang To, Le Hong; Pham, Duy Long; Do, Hung Manh; Vu, Dinh Lam; Le, Van Hong

    2014-01-01

    Perpendicularly self-aligned TiO 2 nanotube samples of size of 3 × 5 cm 2 were fabricated by the electrochemical anodization method using a solution containing NH 4 F. Influences of the technological conditions such as NH 4 F concentration and anodization voltage were studied. It was found that NH 4 F concentration in the solution and anodization voltage significantly affect the diameter and length of a TiO 2 nanotube. The diameter and the length of a TiO 2 nanotube were observed and estimated by using scanning electron microscopy. It has shown that the largest diameter and the longest length of about 80 nm and 20 μm, respectively, were obtained for the sample anodized in a solution containing 0.4% of NH 4 F, under a voltage of 48 V. Photoluminescence spectra excited by laser lights having wavelengths of 325 and 442 nm (having energies higher and lower than the band gap energy of TiO 2 ) was recorded at room temperature for the TiO 2 nanotube arrays. An abnormal luminescence result was observed. It is experimental evidence that the manufactured TiO 2 nanotube array is an expected material for hydrogen splitting from water by photochemical effect under sunlight as well as for the nano solar cells. (paper)

  8. TiO2 coated SnO2 nanosheet films for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Cai Fengshi; Yuan Zhihao; Duan Yueqing; Bie Lijian

    2011-01-01

    TiO 2 -coated SnO 2 nanosheet (TiO 2 -SnO 2 NS) films about 300 nm in thickness were fabricated on fluorine-doped tin oxide glass by a two-step process with facile solution-grown approach and subsequent hydrolysis of TiCl 4 aqueous solution. The as-prepared TiO 2 -SnO 2 NSs were characterized by scanning electron microscopy and X-ray diffraction. The performances of the dye-sensitized solar cells (DSCs) with TiO 2 -SnO 2 NSs were analyzed by current-voltage measurements and electrochemical impedance spectroscopy. Experimental results show that the introduction of TiO 2 -SnO 2 NSs can provide an efficient electron transition channel along the SnO 2 nanosheets, increase the short current density, and finally improve the conversion efficiency for the DSCs from 4.52 to 5.71%.

  9. Pt Catalyst Supported within TiO2 Mesoporous Films for Oxygen Reduction Reaction

    International Nuclear Information System (INIS)

    Huang, Dekang; Zhang, Bingyan; Bai, Jie; Zhang, Yibo; Wittstock, Gunther; Wang, Mingkui; Shen, Yan

    2014-01-01

    In this study, dispersed Pt nanoparticles into mesoporous TiO 2 thin films are fabricated by a facile electrochemical deposition method as electro-catalysts for oxygen reduction reaction. The mesoporous TiO 2 thin films coated on the fluorine-doped tin oxide glass by screen printing allow a facile transport of reactants and products. The structural properties of the resulted Pt/TiO 2 electrode are evaluated by field emission scanning electron microscopy, energy dispersive X-ray spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy. Cyclic voltammetry measurements are performed to study the electrochemical properties of the Pt/TiO 2 electrode. Further study demonstrates the stability of the Pt catalyst supported within TiO 2 mesoporous films for the oxygen reduction reaction

  10. Effect Of Ti Powder Addition On The Fabrication Of TiO2 Nanopowders

    Directory of Open Access Journals (Sweden)

    Raihanuzzaman R.M.

    2015-06-01

    Full Text Available Sintered samples of Ti added TiO2 nanopowders were fabricated by combined application of magnetic pulsed compaction (MPC and sintering. The effect of Ti nano powder on density, shrinkage and hardness of the samples were investigated as part of the study. The optimum processing conditions were found to be around 0.5 GPa MPC pressure and 1450°C sintering temperature, illustrating maximum density, hardness and minimum shrinkage. High pressure compaction using MPC was found to enhance density with increasing MPC pressure up to 0.9 GPa, and significantly reduce the total shrinkage (about 16% in this case in the sintered bulks compared to other general processes (about 18%. While sintered samples blended with micro Ti showed presence of microstructural cracks, the samples with 1-2% nano Ti had less or no cracks on them. Overall, the inclusion of nano Ti indicated improvement in mechanical properties of TiO2 nanopowders sintered preforms as opposed to micro Ti-added TiO2.

  11. Thiourea-Modified TiO2 Nanorods with Enhanced Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Xiaofeng Wu

    2016-02-01

    Full Text Available Semiconductor TiO2 photocatalysis has attracted much attention due to its potential application in solving the problems of environmental pollution. In this paper, thiourea (CH4N2S modified anatase TiO2 nanorods were fabricated by calcination of the mixture of TiO2 nanorods and thiourea at 600 °C for 2 h. It was found that only N element was doped into the lattice of TiO2 nanorods. With increasing the weight ratio of thiourea to TiO2 (R from 0 to 8, the light-harvesting ability of the photocatalyst steady increases. Both the crystallization and photocatalytic activity of TiO2 nanorods increase first and then decrease with increase in R value, and R2 sample showed the highest crystallization and photocatalytic activity in degradation of Brilliant Red X3B (X3B and Rhodamine B (RhB dyes under visible light irradiation (λ > 420 nm. The increased visible-light photocatalytic activity of the prepared N-doped TiO2 nanorods is due to the synergistic effects of the enhanced crystallization, improved light-harvesting ability and reduced recombination rate of photo-generated electron-hole pairs. Note that the enhanced visible photocatalytic activity of N-doped nanorods is not based on the scarification of their UV photocatalytic activity.

  12. Experimental and theoretical studies on X-ray induced secondary electron yields in Ti and TiO2

    International Nuclear Information System (INIS)

    Iyasu, Takeshi; Tamura, Keiji; Shimizu, Ryuichi; Vlaicu, Mihai Aurel; Yoshikawa, Hideki

    2006-01-01

    Generation of X-ray induced secondary electrons in Ti and TiO 2 was studied from both experimental and theoretical approaches, using X-ray photoelectron spectroscopy (XPS) attached to a synchrotron radiation facility and Monte Carlo simulation, respectively. The experiment revealed that the yields of secondary electrons induced by X-rays (electrons/photon) at photon energies to 4950 and 5000eV for Ti and TiO 2 are δ Ti (4950eV)=0.002 and δ Ti (5000eV)=0.014 while those for TiO 2 are δ TiO 2 (4950eV)=0.003 and δ TiO 2 (5000eV)=0.018. A novel approach to obtain the escape depth of secondary electrons has been proposed and applied to Ti and TiO 2 . The approach agreed very well with the experimental data reported so far. The Monte Carlo simulation predicted; δ Ti * (4950eV)=0.002 and δ Ti * (5000eV)=0.011 while δ TiO 2 * (4950eV)=0.003 and δ TiO 2 * (5000eV)=0.015. An experimental examination on the contribution of X-ray induced secondary electrons to photocatalysis in TiO 2 has also been proposed

  13. Fabrication and characterization of mesoporous TiO2/polypyrrole-based nanocomposite for electrorheological fluid

    International Nuclear Information System (INIS)

    Wei Chuan; Zhu Yihua; Jin Yi; Yang Xiaoling; Li Chunzhong

    2008-01-01

    Mesoporous TiO 2 /polypyrrole (PPy)-based nanocomposite for electrorheological fluid was synthesized through one-pot method. By exploiting the combination conductivity of PPy and high dielectric constant of TiO 2 , the ER fluid exhibited an enhanced effect. The shear stress was 3.3 times as high as that of mesoporous TiO 2 . Powder X-ray diffraction (XRD), TEM and Fourier transform infrared (FT-IR) spectroscopy were employed to characterize the as-made samples. Using a modified rotational viscometer, the electrorheological effect was measured. Dielectric spectra were also given to explain the mechanism

  14. Preparation and characterization of doped TiO2 nanofibers by coaxial electrospining combined with sol–gel process

    International Nuclear Information System (INIS)

    Tong, Haixia; Tao, Xican; Wu, Daoxin; Zhang, Xiongfei; Li, Dan; Zhang, Ling

    2014-01-01

    Graphical abstract: The surface of the precursor of Fe/TiO 2 nanofibers are smoother than that of Fe /TiO 2 nanofibers. After calcined at 500 °C, the tubers on the surface of the nanofibers become more obvious, and which also provides a direct proof for the dopant of Fe element. -- Highlights: • N, Fe, and W doped TiO 2 nanofibers have been fabricated by coaxial electrospining. • The dopant has obvious influences on the surface topographies and crystal structures. • Fe doping can make remarkable topography changes and easy formation of rutile TiO 2 . • The maximum doping amount of W in TiO 2 nanofibers is less than 10% under 500 °C. -- Abstract: N, Fe, and W doped TiO 2 nanofibers were fabricated by coaxial electrospining and directly annealing polyvinylpyrrolidone (PVP)/Tetrabutyl titanate (TBT) composite nanofibers. The crystal structure, morphology, and surface composition of the doped TiO 2 nanofibers were investigated by the X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) respectively. The results show that the dopants have different influence on the surface topographies, the crystal structures and the transformation of anatase to rutile of TiO 2 nanofibers. Fe dopant promotes bigger influence on topographies, phase transformation and crystallite growth of TiO 2 nanofibers than that of either N or W dopant

  15. Concurrent ionic migration and electronic effects at the memristive TiO x /La1/3Ca2/3MnO3-x interface

    Science.gov (United States)

    Román Acevedo, W.; Ferreyra, C.; Sánchez, M. J.; Acha, C.; Gay, R.; Rubi, D.

    2018-03-01

    The development of reliable redox-based resistive random-access memory devices requires understanding and disentangling concurrent effects present at memristive interfaces. We report on the fabrication and electrical characterization of TiO x /La1/3Ca2/3MnO3-x microstructured interfaces and on the modeling of their memristive behavior. We show that a careful tuning of the applied external electrical stimuli allows controlling the redox process between both layers, obtaining multilevel non-volatile resistance states. We simulate the oxygen vacancies dynamics at the interface between both oxides, and successfully reproduce the experimental electrical behavior after the inclusion of an electronic effect, related to the presence of an n-p diode at the interface. The formation of the diode is due to the n- and p-character of TiO x and La1/3Ca2/3MnO3-x , respectively. Our analysis indicates that oxygen vacancies migration between both layers is triggered after the diode is polarized either in forward mode or in reverse mode above breakdown. Electrical measurements at different temperatures suggest that the diode can be characterized as Zener-type. The advantages of our junctions for their implementation in RRAM devices are finally discussed.

  16. Structure and dye-sensitized solar cell application of TiO2 nanotube arrays fabricated by the anodic oxidation method

    Science.gov (United States)

    Ok, Seon-Yeong; Cho, Kwon-Koo; Kim, Ki-Won; Ryu, Kwang-Sun

    2010-05-01

    Well-ordered TiO2 nanotube arrays were fabricated by the potentiostatic anodic oxidation method using pure Ti foil as a working electrode and ethylene glycol solution as an electrolyte with the small addition of NH4F and H2O. The influence of anodization temperature and time on the morphology and formation of TiO2 nanotube arrays was examined. The TiO2 nanotube arrays were applied as a photoelectrode to dye-sensitized solar cells. Regardless of anodizing temperature and time, the average diameter and wall thickness of TiO2 nanotube arrays show a similar value, whereas the length increases with decreasing reaction temperature. The conversion efficiency is very low, which is due to a morphology breaking of the TiO2 nanotube arrays in the manufacturing process of a photoelectrode.

  17. Preparation of 13X from Waste Quartz and Photocatalytic Reaction of Methyl Orange on TiO2/ZSM-5, 13X and Y-Zeolite.

    Science.gov (United States)

    Wang, Jia-Jie; Jing, You-Hai; Ouyang, Tong; Chang, Chang-Tang

    2015-08-01

    TiO2 photocatalytic reactions not only remove a variety of organic pollutants via complete mineralization, but also destroy the bacterial cell wall and cell membrane, thus playing an important bactericidal role. However, the post-filtration procedures to separate nanometer-levels of TiO2 and the gradual inactivity of photocatalyst during continuous use are defects that limit its application. In this case, we propose loading TiO2 on zeolite for easy separation and 13X is considered as a promising one. In our study, 13X-zeolite was prepared by a hydrothermal method and the source of Si was extracted from waste quartz sand. For comparison, commercial zeolite with different microporous and mesoporous diameters (ZSM-5 and Y-zeolites) were also used as TiO2 supports. The pore size of the three kinds of zeolites are as follows: Y-zeolite > 13X > ZSM-5. Different TiO2 loading content over ZSM-5, 13X and Y-zeolite were prepared by the sol-gel method. XRD, FTIR, BET, UV-vis, TGA and SEM were used for investigation of material characteristics. In addition, the efficiencies of mineralization and photodegradation were studied in this paper. The effects of the loading ratio of TiO2 over zeolites, initial pH, and concentration on photocatalytic performance are investigated. The relationship between best loading content of TiO2 and pore size of the zeolite was studied. The possible roles of the ZSM-5, 13X-zeolites and Y-zeolites support on the reactions and the possible mechanisms of effects were also explored. The best loading content of TiO2 over ZSM-5, 13X and Y-zeolite was found to be 50 wt%, 12.5 wt% and 7 wt%, respectively. The optimum pH condition is 3 with TiO2 over ZSM-5, 13X-zeolites and Y-zeolites. The results showed that the degradation and mineralization efficiency of 12.5 wt%GT13X (TiO2 over 13X) after 90 min irradiation reached 57.9% and 22.0%, which was better than that of 7 wt%GTYZ (TiO2 over Y-zeolites) while much lower than that of 50 wt%GTZ (TiO2 over ZSM-5

  18. THE APPLICATION AND CHARACTERIZATION OF GRAPHENE DECORATED WITH TiO2 –Fe (1%-N ON COTTON FABRICS

    Directory of Open Access Journals (Sweden)

    DUMITRESCU Iuliana

    2017-05-01

    Full Text Available Doped TiO2/graphene nanocomposites are studied due to their capacity to absorb the visible rays and large applicability in photo-catalytic applications. In this paper, we summarize our experiments on the development of photocatalytic fabrics based on deposition of doped TiO2/graphene nanocomposites by ultrasound method. We have investigated the surface morphology by scanning electron microscopy (SEM and elemental composition was determinate through EDX. Other information were obtained from electrical resistivity analysis measured on Prostat PRS-801 instrument, evaluation of the cotton fabrics wettability by measuring the contact angle on a VCA Optima instrument and evaluation of the photo-catalytic properties of the treated fabrics under solar and visible light (Xenotest by measuring the trichromatic coordinates of the treated and untreated textile materials. The results demonstrated that the ultrasound is an effective method to deposit nanoparticles on textile materials and that the uniform dispersion of TiO2- graphene composites depends on sonication parameters. Also, the treatment used on textile materials doesn’t improve the electrical properties of the knit. The results obtain after evaluation of the photo-catalytic activity by photo degradation of methylene blue under visible and solar light show the performance of the developed fabrics and also that the photo-catalytic activity is high under visible light and solar light.

  19. Ultra-fine structural characterization and bioactivity evaluation of TiO2 nanotube layers.

    Science.gov (United States)

    Jang, JaeMyung; Kwon, TaeYub; Kim, KyoHan

    2008-10-01

    For an application as biomedical materials of high performance with a good biocompatibility, the TiO2 nanotube-type oxide film on Ti substrate has been fabricated by electrochemical method, and the effects of surface characteristics of TiO2 naotube layer have been investigated. The surface morphology of TiO2 nanotube layer depends on factors such as anodizing time, current density, and electrolyte temperature. Moreover, the cell and pore size gradually were increased with the passage of anodizing time. X-ray diffraction (XRD) results indicated that the TiO2 nanotube layer formed in acidic electrolytes was mainly composed of anatase structure containing rutile. From the analysis of chemical states of TiO2 nanotube layer using X-ray photoelectron spectroscopy (XPS), Ti2p, P2p and O1s were observed in the nanotubes layer, which were penetrated from the electrolyte into the oxide layer during anodic process. The incorporated phosphate species were found mostly in the forms of HPO4-, PO4-, and PO3-. From the result of biological evaluation in simulated body fluid (SBF) the TiO2 nanotube layer was effective for bioactive property.

  20. Solar cells with PbS quantum dot sensitized TiO2-multiwalled carbon nanotube composites, sulfide-titania gel and tin sulfide coated C-fabric.

    Science.gov (United States)

    Kokal, Ramesh K; Deepa, Melepurath; Kalluri, Ankarao; Singh, Shrishti; Macwan, Isaac; Patra, Prabir K; Gilarde, Jeff

    2017-10-04

    Novel approaches to boost quantum dot solar cell (QDSC) efficiencies are in demand. Herein, three strategies are used: (i) a hydrothermally synthesized TiO 2 -multiwalled carbon nanotube (MWCNT) composite instead of conventional TiO 2 , (ii) a counter electrode (CE) that has not been applied to QDSCs until now, namely, tin sulfide (SnS) nanoparticles (NPs) coated over a conductive carbon (C)-fabric, and (iii) a quasi-solid-state gel electrolyte composed of S 2- , an inert polymer and TiO 2 nanoparticles as opposed to a polysulfide solution based hole transport layer. MWCNTs by virtue of their high electrical conductivity and suitably positioned Fermi level (below the conduction bands of TiO 2 and PbS) allow fast photogenerated electron injection into the external circuit, and this is confirmed by a higher efficiency of 6.3% achieved for a TiO 2 -MWCNT/PbS/ZnS based (champion) cell, compared to the corresponding TiO 2 /PbS/ZnS based cell (4.45%). Nanoscale current map analysis of TiO 2 and TiO 2 -MWCNTs reveals the presence of narrowly spaced highly conducting domains in the latter, which equips it with an average current carrying capability greater by a few orders of magnitude. Electron transport and recombination resistances are lower and higher respectively for the TiO 2 -MWCNT/PbS/ZnS cell relative to the TiO 2 /PbS/ZnS cell, thus leading to a high performance cell. The efficacy of SnS/C-fabric as a CE is confirmed from the higher efficiency achieved in cells with this CE compared to the C-fabric based cells. Lower charge transfer and diffusional resistances, slower photovoltage decay, high electrical conductance and lower redox potential impart high catalytic activity to the SnS/C-fabric assembly for sulfide reduction and thus endow the TiO 2 -MWCNT/PbS/ZnS cell with a high open circuit voltage (0.9 V) and a large short circuit current density (∼20 mA cm -2 ). This study attempts to unravel how simple strategies can amplify QDSC performances.

  1. Superhydrophobicity construction with dye-sensitised TiO2 on fabric surface for both oil/water separation and water bulk contaminants purification

    Science.gov (United States)

    Yu, Linfeng; Zhang, Shengmiao; Zhang, Meng; Chen, Jianding

    2017-12-01

    For the promising material for both oil/water separation and water-soluble contaminants, the Dye@TiO2-TEOS/VTEO hybrid modified polyester fabric is developed by a simple dip-coating process, which combines Dye-sensitised TiO2 with silicon contained superhydrophobic coating to guarantee the long-term stability of Dye-sensitised TiO2 system as well as material's sustainability. The modified fabric possesses selective oil/water seperation properties towards water and oil, besides, mechanical, acid and alkali durability shows this material's appropriate performance on oil/water separation. UV-Vis absorption spectrum reveals the Dye 4-(2H-imidazol-2-ylazo) benzoic acid could sensitize the semiconductor TiO2 for visible light catalytic organic pollutant degradation that is also confirmed by methylene blue degradation experiment. Density Functional calculation (DFT) witnesses that HOMO, HOMO-1 of Dye contributed by oxygen bonding to TiO2 can insert into TiO2 band gap and result in low energy electron excitation. The ability of oil/water separation and water-soluble contaminants purification provides the material opportunity to practical applications in environmental restoration and human life.

  2. Photodegradation of oxytetracycline in aqueous by 5A and 13X loaded with TiO2 under UV irradiation

    International Nuclear Information System (INIS)

    Zhao Chun; Deng Huiping; Li Yuan; Liu Zhenzhong

    2010-01-01

    The photocatalysis degradation, mineralization and detoxification of oxytetracycline (OTC) in aqueous were investigated by 5A and 13X zeolite with nano-TiO 2 loaded under UV light. The composite photocatalysts are characterized by X-ray diffraction (XRD) and field emission scanning (FESEM) technologies. The adsorption isotherms of OTC by 5A and 13X with different pH are evaluated. The results show that 654 and 1497 mg/g OTC of saturation adsorption capacity is reached by 5A and 13X at pH 7, respectively. Then the effect of TiO 2 with 5A and 13X support and different wt% of TiO 2 over the support on the resultant OTC removal, net photocatalytic degradation and influence factors such as TiO 2 loading, initial pH, concentration of OTC and adding anion on degradation are investigated. The 15 wt% TiO 2 /5A and 10 wt% TiO 2 /13X photocatalysts are found optimum for OTC removal and degradation in aqueous. The mineralization was measured by total organic carbon (TOC) while combined toxicity change during OTC degradation was tested with standardized bioluminescence assay of inhibition rate on Vibrio qinghaiensis sp.-Q67 (Q67). The results suggest that TiO 2 /5A and TiO 2 /13X composite systems are effective photocatalysts for treatment of OTC in aqueous.

  3. Photodecomposition of volatile organic compounds using TiO2 nanoparticles.

    Science.gov (United States)

    Jwo, Ching-Song; Chang, Ho; Kao, Mu-Jnug; Lin, Chi-Hsiang

    2007-06-01

    This study examined the photodecomposition of volatile organic compounds (VOCs) using TiO2 catalyst fabricated by the Submerged Arc Nanoparticle Synthesis System (SANSS). TiO2 catalyst was employed to decompose volatile organic compounds and compare with Degussa-P25 TiO2 in terms of decomposition efficiency. In the electric discharge manufacturing process, a Ti bar, applied as the electrode, was melted and vaporized under high temperature. The vaporized Ti powders were then rapidly quenched under low-temperature and low-pressure conditions in deionized water, thus nucleating and forming nanocrystalline powders uniformly dispersed in the base solvent. The average diameter of the TiO2 nanoparticles was 20 nm. X-ray diffraction analysis confirmed that the nanoparticles in the deionized water were Anatase type TiO2. It was found that gaseous toluene exposed to UV irradiation produced intermediates that were even harder to decompose. After 60-min photocomposition, Degussa-P25 TiO2 reduced the concentration of gaseous toluene to 8.18% while the concentration after decomposition by SANSS TiO2 catalyst dropped to 0.35%. Under UV irradiation at 253.7 +/- 184.9 nm, TiO2 prepared by SANSS can produce strong chemical debonding energy, thus showing great efficiency, superior to that of Degussa-P25 TiO2, in decomposing gaseous toluene and its intermediates.

  4. Fabrication and assembly of two-dimensional TiO2/WO3·H2O heterostructures with type II band alignment for enhanced photocatalytic performance

    Science.gov (United States)

    Xu, Tao; Wang, Yun; Zhou, Xiaofang; Zheng, Xiaoli; Xu, Qun; Chen, Zhimin; Ren, Yumei; Yan, Bo

    2017-05-01

    The recombination of photo-induced charges is one of the main issues to limit the large-scale applications in photocatalysis and photoelectrocatalysis. To improve the charge separation, we fabricate a novel type II 2D ultrathin TiO2/WO3·H2O heterostructures with the assistance of supercritical CO2 (SC CO2) in this work. The as-fabricated heterostructures possess high photocatalytic activity for the degradation of methyl orange(MO) and high photocurrent response under simulated solar light (AM 1.5). For the TiO2/WO3·H2O heterostructures, the MO solution could be degraded by 95.5% in 150 min, and the photocurrent density reaches to 6.5 μA cm-2, exhibiting a significant enhancement compared with pure TiO2 and WO3·H2O nanosheets.

  5. Adsorption and photodegradation of methylene blue on TiO_2-halloysite adsorbents

    International Nuclear Information System (INIS)

    Du, Yuanyuan; Zheng, Pengwu

    2014-01-01

    TiO_2-halloysite (TiO_2-HNT) composites were fabricated by depositing anatase TiO_2 on the halloysite (HNT) surfaces with calcination treatment at 100, 200, 300 and 500 .deg. C. The obtained composites were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and X-Ray diffraction (XRD). HNT was attached with TiO_2 particles or clusters in sizes of 10-30 nm. With the increasing of calcination temperature, the crystalline of anatase became more perfect, but the structure of HNT could be destroyed at 500 .deg. C. The adsorption and photodegradation of methylene blue (MB) by TiO_2-HNTs were investigated. The kinetic adsorption fit the pseudo second-order, and the isotherm data followed the Langmuir model. The maximum adsorption capacities of MB were in the range of 38.57 to 54.29 mg/g. TiO_2-HNTs exhibited an efficient photocatalytic activity in the decomposition of MB. For TiO_2-HNT calcined at 300 .deg. C, 81.6% MB were degraded after 4 h treatment of UV irradiation

  6. CdSxSe1−x alloyed quantum dots-sensitized solar cells based on different architectures of anodic oxidation TiO2 film

    International Nuclear Information System (INIS)

    Li, Zhen; Yu, Libo; Liu, Yingbo; Sun, Shuqing

    2014-01-01

    Nanostructured TiO 2 translucent films with different architectures including TiO 2 nanotube (NT), TiO 2 nanowire (NW), and TiO 2 nanowire/nanotube (NW/NT) have been produced by second electrochemical oxidization of TiO 2 NT with diameter around 90–110 nm via modulation of applied voltage. These TiO 2 architectures are sensitized with CdS x Se 1−x alloyed quantum dots (QDs) in sizes of around 3–5 nm aiming to tune the response of the photoelectrochemical properties in the visible region. One-step hydrothermal method facilitates the deposition of CdS x Se 1−x QDs onto TiO 2 films. These CdS x Se 1−x QDs exhibit a tunable range of light absorption with changing the feed molar ratio of S:Se in precursor solution, and inject electrons into TiO 2 films upon excitation with visible light, enabling their application as photosensitizers in sensitized solar cells. Power conversion efficiency (PCE) of 2.00, 1.72, and 1.06 % are achieved with CdS x Se 1−x (obtained with S:Se = 0:4) alloyed QDs sensitized solar cells based on TiO 2 NW/NT, TiO 2 NW, and TiO 2 NT architectures, respectively. The significant enhancement of power conversion efficiency obtained with the CdS x Se 1−x /TiO 2 NW/NT solar cell can be attributed to the extended absorption of light region tuned by CdS x Se 1−x alloyed QDs and enlarged deposition of QDs and efficient electrons transport provided by TiO 2 NW/NT architecture

  7. TiO2/beads as a photocatalyst for the degradation of X3B azo dye

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The feasibility of photocatalytic degradation of X3B azo dye by TiO2/beads photocatalyst was studied. The effects of parameters such as the amount of TiO2/beads, airflow, as well as the concentrations of H2O2, Fe3+, Mg2+ and Na+ on the photocatalytic degradation of X3B azo dye were also studied. The results showed that 25 mg/dm3 X3B azo dye can be photocatalytically degraded completely by 30 min illumination with a 375W medium pressure mercury lamp. Adding a small amount of H2O2 or Fe3+, the efficiencies of photocatalytic degradation of X3B azo dye were increased rapidly. The mechanisms of the reaction and the role of the additives were also investigated. After 120 hours TiO2/beads showed no significant loss of the photocatalytic activity.

  8. Template-Directed Fabrication of Anatase TiO2 Hollow Nanoparticles and Their Application in Photocatalytic Degradation of Methyl Orange

    Institute of Scientific and Technical Information of China (English)

    Jie Chang; Wenjian Zhang; Chunyan Hong

    2017-01-01

    Polymerization-induced self-assembly (PISA) was used to fabricate polymeric nanoparticles via reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization of benzyl methacrylate (BzMA) using diblock copolymer poly(glycerol monomethacrylate)-block-poly(2-dimethylaminoethyl methacrylate) (PGMMA-PDMAEMA-CTA) as the macro RAFT agent.The dispersion of polymeric nanoparticles with a final concentration of about 210 mg/g (solid content of 21%) was obtained via this efficient method (PISA).The resultant polymeric nanoparticles consisting of corona-shell-core three layers with weak polyelectrolyte PDMAEMA as the shell were used as sacrificial template to fabricate TiO2 hollow nanoparticles.The negatively charged titanium precursor was absorbed into the PDMAEMA shell via the electrostatic interaction,and hydrolyzed to form polymer/TiO2 hybrid nanoparticles.Anatase TiO2 hollow nanoparticles were formed after removing the polymeric templates by calcination at 550 ℃.The experiments of photocatalytic degradation of methyl orange showed that the resultant anatase TiO2 hollow nanoparticles had high photocatalytic activity and good reusability.

  9. Characterization of TiO2 Thin Films on Glass Substrate Growth Using DC Sputtering Technique

    International Nuclear Information System (INIS)

    Agus Santoso; Tjipto Sujitno; Sayono

    2002-01-01

    It has been fabricated and characterization a TiO 2 thin films deposited on glass substrate using DC sputtering technique. Fabrication of TiO 2 thin films were carried out at electrode voltage 4 kV, sputtering current 5 mA, vacuum pressure 5 x 10 -4 torr, deposition time 150 minutes, and temperature of the substrate were varied from 150 -350 o C, while as a gas sputter was argon. The results was tested their micro structure using SEM, and crystal structure using XRD and found that the crystal structure of TiO 2 powder before deposited on glass substrate was rutile and anatase with orientation (110) and (200) for anatase and (100) and (111) rutile structure. While the crystal structure which deposited at temperature 150 o C and deposition time 2.5 hours was anatase with orientation (001) and (200). (author)

  10. A pressure tuned stop-flow atomic layer deposition process for MoS2 on high porous nanostructure and fabrication of TiO2/MoS2 core/shell inverse opal structure

    Science.gov (United States)

    Li, Xianglin; Puttaswamy, Manjunath; Wang, Zhiwei; Kei Tan, Chiew; Grimsdale, Andrew C.; Kherani, Nazir P.; Tok, Alfred Iing Yoong

    2017-11-01

    MoS2 thin films are obtained by atomic layer deposition (ALD) in the temperature range of 120-150 °C using Mo(CO)6 and dimethyl disulfide (DMDS) as precursors. A pressure tuned stop-flow ALD process facilitates the precursor adsorption and enables the deposition of MoS2 on high porous three dimensional (3D) nanostructures. As a demonstration, a TiO2/MoS2 core/shell inverse opal (TiO2/MoS2-IO) structure has been fabricated through ALD of TiO2 and MoS2 on a self-assembled multilayer polystyrene (PS) structure template. Due to the self-limiting surface reaction mechanism of ALD and the utilization of pressure tuned stop-flow ALD processes, the as fabricated TiO2/MoS2-IO structure has a high uniformity, reflected by FESEM and FIB-SEM characterization. A crystallized TiO2/MoS2-IO structure can be obtained through a post annealing process. As a 3D photonic crystal, the TiO2/MoS2-IO exhibits obvious stopband reflecting peaks, which can be adjusted through changing the opal diameters as well as the thickness of MoS2 layer.

  11. Low temperature fabrication of V-doped TiO2 nanoparticles, structure and photocatalytic studies

    International Nuclear Information System (INIS)

    Liu Baoshun; Wang Xuelai; Cai Guofa; Wen Liping; Song Yanbao; Zhao Xiujian

    2009-01-01

    V-doped TiO 2 nanoparticles were synthesized at low temperature and characterized by X-ray diffraction (XRD), Raman spectroscopy (RS), transmission electron microscopy (TEM), Brunauer-Emmet-Teller (BET), X-ray photoelectron spectroscopy (XPS), UV-vis spectroscopy, and photoluminescence (PL) spectroscopy, respectively. It is found the nanoparticle shape changed from needle, to short stick and then to cubic with the increase of doped V concentration, which was also accompanied by the improvement of crystallinity. The specific surface area (S BET ) decreased with increasing V content. It is confirmed that V ions can be doped in TiO 2 by substituting Ti 4+ ions, which suppressed the CB → VB and surface recombination of photoinduced electrons and holes, and a relation was found between the PL spectra and the UV photocatalytic activity. There was an optimum V content for the V-doped TiO 2 to present the best UV-light induced photoactivity, but they were visible-inactive. At last, the effect of the doping V as trapping centers on photocatalysis was investigated in detail, and used to explain the difference between the photocatalysis under the illumination of UV light and visible light.

  12. Growth and characterization of hydroxyapatite nanorice on TiO2 nanofibers

    KAUST Repository

    Chetibi, Loubna

    2014-04-01

    Hydroxyapatite (HA) coating with nanoparticles like nanorice is fabricated on chemically pretreated titanium (Ti) surface, through an electrochemical deposition approach, for biomaterial applications. The Ti surface was chemically patterned with anatase TiO2 nanofibers. These nanofibers were prepared by in situ oxidation of Ti foils in a concentrated solution of H 2O2 and NaOH, followed by proton exchange and calcinations. Afterward, TiO2 nanofibers on Ti substrate were coated with HA nanoparticles like nanorice. The obtained samples were annealed at high temperature to produce inter diffusion between TiO2 and HA layers. The resultant layers were characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD), Infrared Spectroscopy (FTIR), corrosion tests in SBF solution, and Electron Probe Micro Analysis (EPMA). It was found that only Ti from the titanium substrate diffuses into the HA coating and a good corrosion resistance in simulated body fluid was obtained. © 2014 Elsevier B.V. All rights reserved.

  13. Crystal structures of orthorhombic, hexagonal, and cubic compounds of the Sm(x)Yb(2x)TiO5 series

    International Nuclear Information System (INIS)

    Aughterson, Robert D.; Lumpkin, Gregory R.; Reyes, Massey de los; Sharma, Neeraj; Ling, Christopher D.; Gault, Baptiste; Smith, Katherine L.; Avdeev, Maxim; Cairney, Julie M.

    2014-01-01

    A series of single phase compounds with nominal stoichiometry Sm (x) Yb (2x) TiO 5 (x=2, 1.4, 1, 0.6, and 0) have been successfully fabricated to generate a range of crystal structures covering the most common polymorphs previously discovered in the Ln 2 TiO 5 series (Ln=lanthanides and yttrium). Four of the five samples have not been previously fabricated in bulk, single phase form so their crystal structures are refined and detailed using powder synchrotron and single crystal x-ray diffraction, neutron diffraction and transmission electron microscopy. Based on the phase information from diffraction data, there are four crystal structure types in this series; orthorhombic Pnma, hexagonal P6 3 /mmc, cubic (pyrochlore-like) Fd-3m and cubic (fluorite-like) Fm-3m. The cubic materials show modulated structures with variation between long and short range ordering and the variety of diffraction techniques were used to describe these complex crystal structure types. - Graphical abstract: A high resolution image of the compound Sm 0.6 Yb 1.4 TiO 5 showing contrast from lattice fringes and the corresponding fast Fourier transform (FFT) of the HREM image with pyrochlore related diffraction spots marked “P” and fluorite marked “F”. The crystal is oriented down the [1 1 0] zone axis based on the Fd-3m structure. The ideal crystal structure (no vacancies) of the cubic, pyrochlore-like (Sm 0.6 Yb 1.4 TiO 5 ). - Highlights: • First fabrication of bulk single-phase material with stoichiometry Sm 2 TiO 5 . • Systematic study of crystal structure types within Ln 2 TiO 5 series (Ln=lanthanides). • A novel technique using IFFT of HREM images to study cubic structures

  14. Thermoelectric Properties in the TiO2/SnO2 System

    Science.gov (United States)

    Dynys, F.; Sayir, A.; Sehirlioglu, A.; Berger, M.

    2009-01-01

    Nanotechnology has provided a new interest in thermoelectric technology. A thermodynamically driven process is one approach in achieving nanostructures in bulk materials. TiO2/SnO2 system exhibits a large spinodal region with exceptional stable phase separated microstructures up to 1400 C. Fabricated TiO2/SnO2 nanocomposites exhibit n-type behavior with Seebeck coefficients greater than -300 .V/K. Composites exhibit good thermal conductance in the range of 7 to 1 W/mK. Dopant additions have not achieved high electrical conductivity (<1000 S/m). Formation of oxygen deficient composites, TixSn1-xO2-y, can change the electrical conductivity by four orders of magnitude. Achieving higher thermoelectric ZT by oxygen deficiency is being explored. Seebeck coeffcient, thermal conductivity, electrical conductance and microstructure will be discussed in relation to composition and doping.

  15. Fabricating TiO2 nanocolloids by electric spark discharge method at normal temperature and pressure.

    Science.gov (United States)

    Tseng, Kuo-Hsiung; Chang, Chaur-Yang; Chung, Meng-Yun; Cheng, Ting-Shou

    2017-11-17

    In this study, TiO 2 nanocolloids were successfully fabricated in deionized water without using suspending agents through using the electric spark discharge method at room temperature and under normal atmospheric pressure. This method was exceptional because it did not create nanoparticle dispersion and the produced colloids contained no derivatives. The proposed method requires only traditional electrical discharge machines (EDMs), self-made magnetic stirrers, and Ti wires (purity, 99.99%). The EDM pulse on time (T on ) and pulse off time (T off ) were respectively set at 50 and 100 μs, 100 and 100 μs, 150 and 100 μs, and 200 and 100 μs to produce four types of TiO 2 nanocolloids. Zetasizer analysis of the nanocolloids showed that a decrease in T on increased the suspension stability, but there were no significant correlations between T on and particle size. Colloids produced from the four production configurations showed a minimum particle size between 29.39 and 52.85 nm and a zeta-potential between -51.2 and -46.8 mV, confirming that the method introduced in this study can be used to produce TiO 2 nanocolloids with excellent suspension stability. Scanning electron microscopy with energy dispersive spectroscopy also indicated that the TiO 2 colloids did not contain elements other than Ti and oxygen.

  16. Fabricating TiO2 nanocolloids by electric spark discharge method at normal temperature and pressure

    Science.gov (United States)

    Tseng, Kuo-Hsiung; Chang, Chaur-Yang; Chung, Meng-Yun; Cheng, Ting-Shou

    2017-11-01

    In this study, TiO2 nanocolloids were successfully fabricated in deionized water without using suspending agents through using the electric spark discharge method at room temperature and under normal atmospheric pressure. This method was exceptional because it did not create nanoparticle dispersion and the produced colloids contained no derivatives. The proposed method requires only traditional electrical discharge machines (EDMs), self-made magnetic stirrers, and Ti wires (purity, 99.99%). The EDM pulse on time (T on) and pulse off time (T off) were respectively set at 50 and 100 μs, 100 and 100 μs, 150 and 100 μs, and 200 and 100 μs to produce four types of TiO2 nanocolloids. Zetasizer analysis of the nanocolloids showed that a decrease in T on increased the suspension stability, but there were no significant correlations between T on and particle size. Colloids produced from the four production configurations showed a minimum particle size between 29.39 and 52.85 nm and a zeta-potential between -51.2 and -46.8 mV, confirming that the method introduced in this study can be used to produce TiO2 nanocolloids with excellent suspension stability. Scanning electron microscopy with energy dispersive spectroscopy also indicated that the TiO2 colloids did not contain elements other than Ti and oxygen.

  17. Dielectric and microwave absorption properties of TiO_2/Al_2O_3 coatings and improved microwave absorption by FSS incorporation

    International Nuclear Information System (INIS)

    Yang, Zhaoning; Luo, Fa; Hu, Yang; Duan, Shichang; Zhu, Dongmei; Zhou, Wancheng

    2016-01-01

    In this paper, TiO_2/Al_2O_3 ceramic coatings were prepared by atmospheric plasma spraying (APS) technique. The phase composition and morphological characterizations of the synthesized TiO_2/Al_2O_3 powders and coatings were performed by X-ray diffraction and scanning electron microscopy (SEM), respectively. The dielectric properties of these coatings were discussed in the frequency range from 8.2 to 12.4 GHz (X-band). By calculating the microwave-absorption as a single-layer absorber, their microwave absorption properties were investigated at different content and thickness in details. Furthermore, by combination of the Frequency selective surface (FSS) and ceramic coatings, a double absorption band of the reflection loss spectra had been observed. The microwave absorbing properties of coatings both in absorbing intensity and absorbing bandwidth were improved. The reflection loss values of TiO_2/Al_2O_3 coatings exceeding −10 dB (larger than 90% absorption) can be obtained in the whole frequency range of X-band with 17 wt% TiO_2 content when the coating thickness is 2.3 mm. - Highlights: • Dielectric properties of TiO_2/Al_2O_3 ceramics fabricated by APS technique are reported for the first time. • Microwave absorption properties of TiO_2/Al_2O_3 composites are improved by FSS. • Reflection loss values exceeding −10 dB can be obtained in the whole X-band when coating thickness is 2.3 mm.

  18. Hierarchical architectures of ZnS–In2S3 solid solution onto TiO2 nanofibers with high visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Liu, Chengbin; Meng, Deshui; Li, Yue; Wang, Longlu; Liu, Yutang; Luo, Shenglian

    2015-01-01

    Graphical abstract: A unique hierarchical architecture of ZnS–In 2 S 3 solid solution onto TiO 2 nanofibers was fabricated. The hierarchical heterostructures exhibit high visible light photocatalytic activity and outstanding recycling performance. - Highlights: • Novel hierarchical heterostructure of TiO 2 @ZnS–In 2 S 3 solid solution. • Efficient inhibition of ZnS–In 2 S 3 solid solution aggregation. • High visible light photocatalytic activity. • Highly stable recycling performance. - Abstract: A unique hierarchical architecture of ZnS–In 2 S 3 solid solution nanostructures onto TiO 2 nanofibers (TiO 2 @ZnS–In 2 S 3 ) has been successfully fabricated by simple hydrothermal method. The ZnS–In 2 S 3 solid solution nanostructures exhibit a diversity of morphologies: nanosheet, nanorod and nanoparticle. The porous TiO 2 nanofiber templates effectively inhibit the aggregation growth of ZnS–In 2 S 3 solid solution. The formation of ZnS–In 2 S 3 solid solution is proved by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) and the intimate contact between TiO 2 nanofibers and ZnS–In 2 S 3 solid solution favors fast transfer of photogenerated electrons. The trinary TiO 2 @ZnS–In 2 S 3 heterostructures exhibit high adsorption capacity and visible light photocatalytic activity for the degradation of rhodamine B dye (RhB), remarkably superior to pure TiO 2 nanofibers or binary structures (ZnS/TiO 2 nanofibers, In 2 S 3 /TiO 2 nanofibers and ZnS–In 2 S 3 solid solution). Under visible light irradiation the RhB photocatalytic degradation rate over TiO 2 @ZnS–In 2 S 3 heterostructures is about 16.7, 12.5, 6.3, 5.9, and 2.2 times that over pure TiO 2 nanofibers, ZnS nanoparticles, In 2 S 3 /TiO 2 nanofibers, ZnS/TiO 2 nanofibers, and ZnS-In 2 S 3 solid solution, respectively. Furthermore, the TiO 2 @ZnS–In 2 S 3 heterostructures show highly stable recycling performance

  19. Simple fabrication of TiO2/C nanocomposite with enhanced electrochemical performance for lithium-ion batteries

    International Nuclear Information System (INIS)

    Bai, Xue; Li, Tao; Qi, Yong-Xin; Gao, Xue-Ping; Yin, Long-Wei; Li, Hui; Zhu, Hui-Ling; Lun, Ning; Bai, Yu-Jun

    2015-01-01

    TiO 2 /C nanocomposites were fabricated by simple hydrolysis of tetrabutyl titanate to yield TiO 2 nanoparticles followed by carbonizing the mixture of glucose and TiO 2 at 600 °C. By merely varying the weight ratio of glucose:TiO 2 , the electrochemical performance of the composites could be optimized significantly. At a ratio of 0.8, the composite exhibits a high reversible capacity of 283.7 mA h g −1 after cycling 100 times at a current density of 100 mA g −1 , as well as the capacities of 245.1, 213.6, 179.9 and 136.6 mA h g −1 at the corresponding densities of 200, 400, 800 and 1600 mA g −1 . After cycling 1000 times at 500 mA g −1 , a capacity of 122.8 mA h g −1 was retained for the composite with a ratio of 0.8, and even a capacity of 149.1 mA h g −1 for the composite with a ratio of 0.7. The enhanced performance is ascribed to the carbon-coated TiO 2 nanoparticles uniformly embedding in the carbon matrix with appropriate carbon content

  20. Nanoscale self-recovery of resistive switching in Ar+ irradiated TiO2-x films

    Science.gov (United States)

    Barman, A.; Saini, C. P.; Sarkar, P. K.; Das, D.; Dhar, S.; Singh, M.; Sinha, A. K.; Kanjilal, D.; Gupta, M.; Phase, D. M.; Kanjilal, A.

    2017-11-01

    Nanoscale evidence of self-recovery in resistive switching (RS) behavior was found in TiO2-x film by conductive atomic force microscopy when exposed to Ar+-ions above a threshold fluence of 1  ×  1016 ions cm-2. This revealed an evolution and gradual disappearance of bipolar RS-loops, followed by reappearance with increasing number of voltage sweep. This was discussed in the realm of oxygen vacancy (OV) driven formation, dissolution and reformation of conducting filaments. The presence of OVs in ion-beam irradiated TiO2-x films was evidenced by decreasing trend of work function in scanning-Kelvin probe microscopy, and was further verified by x-ray absorption near edge spectroscopy at Ti and O-K edges.

  1. Rapid fabrication of TiO2@carboxymethyl cellulose coatings capable of shielding UV, antifog and delaying support aging.

    Science.gov (United States)

    Li, Xiaozhou; Lv, Junping; Li, Dehuai; Wang, Lin

    2017-08-01

    Agricultural plastic films capable of shielding UV, filtering visible light and antifog are important to prolong their life and protect safeties of agriculturists and crops. In this work, high stable and small size TiO 2 @polymer nanoparticles (NPs) were prepared by an efficient one-pot microwave synthesis using titanic sulfate as Ti resource, carboxymethyl cellulose sodium (CMC) as complexing agent and stabilizer. The TiO 2 @CMC NPs obtained were then utilized to fabricate poly(ethylene imine) (PEI)/TiO 2 @CMC coatings on the surface of polypropylene films by a layer-by-layer assembly technique. The TiO 2 @CMC NPs show rapid deposition rate because small, spherical and anion-rich TiO 2 @CMC NPs possess large specific surface area and fast diffusion rate. More importantly, property experiments confirm that (PEI/TiO 2 @CMC)*15 coatings can not only effectively shield UV rays, filter visible light and prevent fogging but also delay the aging of their supports. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Efficient planar n-i-p type heterojunction flexible perovskite solar cells with sputtered TiO2 electron transporting layers.

    Science.gov (United States)

    Mali, Sawanta S; Hong, Chang Kook; Inamdar, A I; Im, Hyunsik; Shim, Sang Eun

    2017-03-02

    The development of hybrid organo-lead trihalide perovskite solar cells (PSCs) comprising an electron transporting layer (ETL), a perovskite light absorber and a hole transporting layer (HTL) has received significant attention for their potential in efficient PSCs. However, the preparation of a compact and uniform ETL and the formation of a uniform light absorber layer suffer from a high temperature processing treatment and the formation of unwanted perovskite islands, respectively. A low temperature/room temperature processed ETL is one of the best options for the fabrication of flexible PSCs. In the present work, we report the implementation of a room temperature processed compact TiO 2 ETL and the synthesis of extremely uniform flexible planar PSCs based on methylammonium lead mixed halides MAPb(I 1-x Br x ) 3 (x = 0.1) via RF-magnetron sputtering and a toluene dripping treatment, respectively. The compact TiO 2 ETLs with different thicknesses (30 to 100 nm) were directly deposited on a flexible PET coated ITO substrate by varying the RF-sputtering time and used for the fabrication of flexible PSCs. The photovoltaic properties revealed that flexible PSC performance is strongly dependent on the TiO 2 ETL thickness. The open circuit voltage (V OC ) and fill factor (FF) are directly proportional to the TiO 2 ETL thickness while the 50 nm thick TiO 2 ETL shows the highest current density (J SC ) of 20.77 mA cm -2 . Our controlled results reveal that the room temperature RF-magnetron sputtered 50 nm-thick TiO 2 ETL photoelectrode exhibits a power conversion efficiency (PCE) in excess of 15%. The use of room temperature synthesis of the compact TiO 2 ETL by RF magnetron sputtering results in an enhancement of the device performance for cells prepared on flexible substrates. The champion flexible planar PSC based on this architecture exhibited a promising power conversion efficiency as high as 15.88%, featuring a high FF of 0.69 and V OC of 1.108 V with a negligible

  3. TiO2 thin-films on polymer substrates and their photocatalytic activity

    International Nuclear Information System (INIS)

    Yang, Jae-Hun; Han, Yang-Su; Choy, Jin-Ho

    2006-01-01

    We have developed dip-coating process for TiO 2 -thin film on polymer substrates (acrylonitrile-butadiene-styrene polymer: ABS, polystyrene: PS). At first, a monodispersed and transparent TiO 2 nano-sol solution was prepared by the controlled hydrolysis of titanium iso-propoxide in the presence of acetylacetone and nitric acid catalyst at 80 deg. C. Powder X-ray diffraction patterns of the dried particles are indicative of crystalline TiO 2 with anatase-type structure. According to the XRD and transmission electron microscopy (TEM) studies, the mean particle size was estimated to be ca. 5 nm. The transparent thin films on ABS and PS substrates were fabricated by dip-coating process by changing the processing variables, such as the number of dip-coating and TiO 2 concentration in nano-sol solution. Scanning electron microscopic (SEM) analysis for the thin film samples reveals that the acetylacetone-modified TiO 2 nano-sol particles are effective for enhancing the interfacial adherence between films and polymeric substrates compared to the unmodified one. Photocatalytic degradation of methylene blue (MB) on the TiO 2 thin-films has also been systematically investigated

  4. Icariin-Loaded TiO2 Nanotubes for Regulation of the Bioactivity of Bone Marrow Cells

    Directory of Open Access Journals (Sweden)

    Yanli Zhang

    2018-01-01

    Full Text Available To explore the effects of icariin on the biocompatibility of dental implants, icariin- (ICA- loaded TiO2 nanotubes were fabricated on Ti substrates via anodic oxidation and physical absorption. The surface characteristics of the specimens were monitored by field emission scanning electron microscopy (FE-SEM, X-ray diffractometry (XRD, contact angle measurements (CA, and high-pressure liquid chromatography. Additionally, the activities of bone marrow cells, such as cytoskeletal, proliferative activities, mineralization, and osteogenesis-related gene expression on the substrates were investigated in detail. The characterization results demonstrated that ICA-loaded TiO2 nanotubes were successfully fabricated and the hydrophilicity of these TiO2 nanotubes was significantly higher than that of the pure Ti groups. The results also showed that ICA-loaded TiO2 nanotubes might not have enhanced effects on cell proliferation and ALP expression. However, it seemed to significantly promote differentiation of bone marrow cells, demonstrated by enhancing the formation of mineralized nodule and the upregulation of the gene expression such as OC, BSP, OPN, and COL-1. The results indicated that ICA-loaded TiO2 nanotubes can modulate bioactivity of bone marrow cells, which is promising for potential applications in the orthopedics field.

  5. The comparison of photocatalytic activity of synthesized TiO2 and ZrO2 nanosize onto wool fibers

    International Nuclear Information System (INIS)

    Moafi, Hadi Fallah; Shojaie, Abdollah Fallah; Zanjanchi, Mohammad Ali

    2010-01-01

    TiO 2 and ZrO 2 nanocrystals were successfully synthesized and deposited onto wool fibers using the sol-gel technique at low temperature. The photocatalytic activities of TiO 2 -coated and ZrO 2 -coated wool fibers were measured by studying photodegradation of methylene blue and eosin yellowish dyes. The initial and the treated samples were characterized by several techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS) and X-ray diffraction. The TEM study shows dispersed particles with 10-30 nm in size for TiO 2 -coated and 20-40 nm in size for ZrO 2 -coated samples on the fiber surface. Comparison of the photocatalytic activity of the coated samples reveals superiority of TiO 2 modified sample with respect to that of ZrO 2 for degradation of both dyes. Our observations indicate that by applying this technique to the fabrics, self-cleaning materials could be designed for practical application.

  6. Electron Beam Evaporated TiO2 Layer for High Efficiency Planar Perovskite Solar Cells on Flexible Polyethylene Terephthalate Substrates

    KAUST Repository

    Qiu, Weiming

    2015-09-30

    The TiO2 layer made by electron beam (e-beam) induced evaporation is demonstrated as electron transport layer (ETL) in high efficiency planar junction perovskite solar cells. The temperature of the substrate and the thickness of the TiO2 layer can be easily controlled with this e-beam induced evaporation method, which enables the usage of different types of substrates. Here, Perovskite solar cells based on CH3NH3PbI3-xClx achieve power conversion efficiencies of 14.6% on glass and 13.5% on flexible plastic substrates. The relationship between the TiO2 layer thickness and the perovskite morphology is studied with scanning electron microscope (SEM), atomic force microscope (AFM), and X-ray photoelectron spectroscopy (XPS). Our results indicate that pinholes in thin TiO2 layer lead to pinholes in the perovskite layer. By optimizing the TiO2 thickness, perovskite layers with substantially increased surface coverage and reduced pinhole areas are fabricated, increasing overall device performance.

  7. Enhancement in dye-sensitized solar cells based on MgO-coated TiO2 electrodes by reactive DC magnetron sputtering

    International Nuclear Information System (INIS)

    Wu Sujuan; Han Hongwei; Tai Qidong; Zhang Jing; Xu Sheng; Zhou Conghua; Yang Ying; Hu Hao; Chen Bolei; Sebo, Bobby; Zhao Xingzhong

    2008-01-01

    A surface modification method was carried out by reactive DC magnetron sputtering to fabricate TiO 2 electrodes coated with insulating MgO for dye-sensitized solar cells. The MgO-coated TiO 2 electrode had been characterized by x-ray photoelectron spectroscopy (XPS), energy-dispersive x-ray spectroscopy (EDX), scanning electron microscopy (SEM), UV-vis spectrophotometer, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The study results revealed that the TiO 2 modification increases dye adsorption, decreases trap states and suppresses interfacial recombination. The effects of sputtering MgO for different times on the performance of DSSCs were investigated. It indicated that sputtering MgO for 3 min on TiO 2 increases all cell parameters, resulting in increasing efficiency from 6.45% to 7.57%

  8. A photocatalytic approach in micro arc oxidation of WO3-TiO2 nano porous semiconductors under pulse current

    International Nuclear Information System (INIS)

    Bayati, M.R.; Golestani-Fard, F.; Moshfegh, A.Z.; Molaei, R.

    2011-01-01

    Graphical abstract: WO3-TiO2 layers were fabricated via microarc oxidation process and effect of the electrical current type on their photocatalytic performance under UV and visible illuminations was investigated. Highlights: → WO3-TiO2 layers were grown by MAO under pulse current for the first time. → Effect of the frequency and duty cycle on properties of the layers was studied. → A correlation between catalytic performance and growth conditions was proposed. - Abstract: Since ultraviolet (UV) irradiation cannot be applied for a long time in practical applications, it is necessary to develop a narrow band gap photocatalyst to decompose environmental pollutants under visible irradiation. In this research, (WO 3 ) x -(TiO 2 ) 1-x nano-porous layers were fabricated by micro arc oxidation (MAO) and influence of the electrical current type on their physical and chemical properties was investigated. Morphological studies, performed by SEM technique, revealed that pore size and roughness decreased with the frequency and increased with the duty cycle. The pulse-grown layers had a finer structure when compared to those fabricated under direct current. XRD and XPS results showed that the layers consisted of anatase, rutile, and tungsten oxide phases. Applying pulse current resulted in higher anatase relative contents. Band gap energies of the MAO-grown TiO 2 and WO 3 -TiO 2 layers were respectively measured as 3.14 and 2.96 eV. The layers fabricated under pulse current exhibited higher photoactivity under ultraviolet and visible illuminations as compared to the layers grown under direct current. Methylene blue (MB) was used as a model material to examine photocatalytic performance of the layers. Maximum MB-photodegradation reaction rate constants over the pulse-synthesized WO 3 -TiO 2 layers were measured as 0.0269 and 0.0129 min -1 for ultraviolet and visible irradiations. For layers grown under direct current, the rate constants were lower, i.e. 0.0228 and 0

  9. Formation of hydroxyl radicals and kinetic study of 2-chlorophenol photocatalytic oxidation using C-doped TiO2, N-doped TiO2, and C,N Co-doped TiO2 under visible light.

    Science.gov (United States)

    Ananpattarachai, Jirapat; Seraphin, Supapan; Kajitvichyanukul, Puangrat

    2016-02-01

    This work reports on synthesis, characterization, adsorption ability, formation rate of hydroxyl radicals (OH(•)), photocatalytic oxidation kinetics, and mineralization ability of C-doped titanium dioxide (TiO2), N-doped TiO2, and C,N co-doped TiO2 prepared by the sol-gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy were used to analyze the titania. The rate of formation of OH(•) for each type of titania was determined, and the OH-index was calculated. The kinetics of as-synthesized TiO2 catalysts in photocatalytic oxidation of 2-chlorophenol (2-CP) under visible light irradiation were evaluated. Results revealed that nitrogen was incorporated into the lattice of titania with the structure of O-Ti-N linkages in N-doped TiO2 and C,N co-doped TiO2. Carbon was joined to the Ti-O-C bond in the C-doped TiO2 and C,N co-doped TiO2. The 2-CP adsorption ability of C,N co-doped TiO2 and C-doped TiO2 originated from a layer composed of a complex carbonaceous mixture at the surface of TiO2. C,N co-doped TiO2 had highest formation rate of OH(•) and photocatalytic activity due to a synergistic effect of carbon and nitrogen co-doping. The order of photocatalytic activity per unit surface area was the same as that of the formation rate of OH(•) unit surface area in the following order: C,N co-doped TiO2 > C-doped TiO2 > N-doped TiO2 > undoped TiO2.

  10. Hydrothermal synthesis of TiO2-ZnO-graphene nanocomposite towards photocatalytic and photovoltaic applications

    Science.gov (United States)

    Gayathri, S.; Jayabal, P.; Ramakrishnan, V.

    2015-06-01

    Titanium dioxide (TiO2) - Zinc oxide (ZnO) - Graphene (G) nanocomposite was successfully synthesized through facile hydrothermal method. The X-ray diffraction (XRD) pattern and the micro-Raman spectroscopic technique revealed the formation of TiO2-ZnO-Graphene (TZG) nanocomposite. The ZnO and TiO2 nanoparticles decorated graphene sheets were clearly noticeable in the Field Emission Scanning Electron Micrograph (FE-SEM). The UV-Visible absorption spectra clearly indicated that the formation of TZG nanocomposite enriched the absorption in the visible region. Hence, the prepared nanocomposite can be used as photocatalyst to remove organic dyes from water and as photoanode in the fabrication of dye sensitized solar cells (DSSCs).

  11. Hydrothermal synthesis of TiO2-ZnO-graphene nanocomposite towards photocatalytic and photovoltaic applications

    International Nuclear Information System (INIS)

    Gayathri, S.; Jayabal, P.; Ramakrishnan, V.

    2015-01-01

    Titanium dioxide (TiO 2 ) - Zinc oxide (ZnO) - Graphene (G) nanocomposite was successfully synthesized through facile hydrothermal method. The X-ray diffraction (XRD) pattern and the micro-Raman spectroscopic technique revealed the formation of TiO 2 -ZnO-Graphene (TZG) nanocomposite. The ZnO and TiO 2 nanoparticles decorated graphene sheets were clearly noticeable in the Field Emission Scanning Electron Micrograph (FE-SEM). The UV-Visible absorption spectra clearly indicated that the formation of TZG nanocomposite enriched the absorption in the visible region. Hence, the prepared nanocomposite can be used as photocatalyst to remove organic dyes from water and as photoanode in the fabrication of dye sensitized solar cells (DSSCs)

  12. Sol-gel synthesis of TiO2 nanoparticles and photocatalytic degradation of methyl orange in aqueous TiO2 suspensions

    International Nuclear Information System (INIS)

    Yang Huaming; Zhang Ke; Shi Rongrong; Li Xianwei; Dong Xiaodan; Yu Yongmei

    2006-01-01

    Anatase TiO 2 nanoparticles of about 16 nm in crystal size have been successfully synthesized via a sol-gel method. Thermal treatment of the precursor at 500-600 deg. C results in the formation of different TiO 2 phase compositions. The samples were characterized by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Effects of the pH value of the solution, H 2 O 2 addition, TiO 2 phase composition and recycled TiO 2 on the photocatalytic degradation of methyl orange (MeO) in TiO 2 suspensions under ultraviolet (UV) illumination were primarily investigated. The results indicate that a low pH value, proper amount of H 2 O 2 and pure anatase TiO 2 will facilitate the photocatalytic oxidation of the MeO solution. The photodegradation degree decreases with increasing the pH value of the solution and varies with different amounts of H 2 O 2 . Pure anatase TiO 2 shows better photocatalytic activity for MeO decolorization than biphase TiO 2 . The photocatalytic mechanism of the as-synthesized TiO 2 nanoparticles was discussed

  13. ALD TiO x as a top-gate dielectric and passivation layer for InGaZnO115 ISFETs

    Science.gov (United States)

    Pavlidis, S.; Bayraktaroglu, B.; Leedy, K.; Henderson, W.; Vogel, E.; Brand, O.

    2017-11-01

    The suitability of atomic layer deposited (ALD) titanium oxide (TiO x ) as a top gate dielectric and passivation layer for indium gallium zinc oxide (InGaZnO115) ion sensitive field effect transistors (ISFETs) is investigated. TiO x is an attractive barrier material, but reports of its use for InGaZnO thin film transistor (TFT) passivation have been conflicting thus far. In this work, it is found that the passivated TFT’s behavior depends on the TiO x deposition temperature, affecting critical device characteristics such as threshold voltage, field-effect mobility and sub-threshold swing. An O2 annealing step is required to recover TFT performance post passivation. It is also observed that the positive bias stress response of the passivated TFTs improves compared the original bare device. Secondary ion mass spectroscopy excludes the effects of hydrogen doping and inter-diffusion as sources of the temperature-dependent performance change, therefore indicating that oxygen gettering induced by TiO x passivation is the likely source of oxygen vacancies and, consequently, carriers in the InGaZnO film. It is also shown that potentiometric sensing using ALD TiO x exhibits a near Nernstian response to pH change, as well as minimizes V TH drift in TiO x passivated InGaZnO TFTs immersed in an acidic liquid. These results add to the understanding of InGaZnO passivation effects and underscore the potential for low-temperature fabricated InGaZnO ISFETs to be used as high-performance mobile chemical sensors.

  14. Synthesis of two-dimensional nanowall of Cu-Doped TiO2 and its application as photoanode in DSSCs

    Science.gov (United States)

    Dahlan, Dahyunir; Md Saad, Siti Khatijah; Berli, Ade Usra; Bajili, Abdil; Umar, Akrajas Ali

    2017-07-01

    Two-dimensional nanowall of Cu-doped TiO2 (CuTNW) has been prepared in this work to study the role of Cu doping on its photoactivity properties and its photovoltaic performance as photoanode in a dye-sensitized solar cell (DSSC). TiO2 nanowall with five Cu ion doping, i.e. 6.25, 12.5, 25.0, 50.0 and 100.0 mM, were prepared via a liquid-phase deposition method using ammoniumhexafluorotitanate and hexamethylenetetramine as the reagents with a growth temperature of 90 °C. The X-Ray Diffraction (XRD), X-ray energy dispersion (EDX) and diffuse optical reflectance spectroscopy analysis results confirmed the successfulness of the Cu doping process in the TiO2 nanowall and effective modification on the photoactivity of the TiO2 nanowall. We found that the power conversion efficiency of the DSSC utilizing TiO2 nanowall as photoanode can be enhanced up to 2 times, i.e. from 0.2% to 0.44%, when the TiO2 nanowall doped with Cu ion. The nanostructure preparation, device fabrication and the mechanism for the device performance enhancement will be discussed.

  15. Neutron induced reactions II: (n,x) reactions on medium and heavy nuclei

    International Nuclear Information System (INIS)

    Cindro, N.

    1976-01-01

    Recent interest in (n,x) reactions in the MeV and above range of energies is concentrated on two main subjects: the mechanism of nucleon emission (precompound in particular) and the possible role of clustering in the emission of complex particles. Hence the first two sections of this paper will be devoted to these two subjects. In the last section some other subjects that have recently emerged in the field are discussed

  16. Influence of coating steps of perovskite on low-temperature amorphous compact TiO x upon the morphology, crystallinity, and photovoltaic property correlation in planar perovskite solar cells

    Science.gov (United States)

    Shahiduzzaman, Md.; Furumoto, Yoshikazu; Yamamoto, Kohei; Yonezawa, Kyosuke; Azuma, Yosuke; Kitamura, Michinori; Matsuzaki, Hiroyuki; Karakawa, Makoto; Kuwabara, Takayuki; Takahashi, Kohshin; Taima, Tetsuya

    2018-03-01

    The fabrication of high-efficiency solution-processable perovskite solar cells has been achieved using mesostructured films and compact titanium dioxide (TiO2) layers in a process that involves high temperatures and cost. Here, we present an efficient approach for fabricating chemical-bath-deposited, low-temperature, and low-cost amorphous compact TiO x -based planar heterojunction perovskite solar cells by one-step and two-step coatings of the perovskite layer. We also investigate the effect of the number of perovskite coating steps on the compact TiO x layer. The grazing incidence wide-angle X-ray scattering technique is used to clarify the relationship between morphology, crystallinity, and photovoltaic properties of the resulting devices. Analysis of the films revealed that one-step spin-coating of perovskite exhibited an enhancement of film quality and crystallization that correlates to photovoltaic performance 1.5 times higher than that of a two-step-coated device. Our findings show that the resulting morphology, crystallinity, and device performances are strongly dependent on the number of coating steps of the perovskite thin layer on the compact TiO x layer. This result is useful knowledge for the low-cost production of planar perovskite solar cells.

  17. Polyaniline nanowires on TiO2 nano/microfiber hierarchical nano/microstructures: Preparation and their photocatalytic properties

    International Nuclear Information System (INIS)

    Yu Qiaozhen; Wang Mang; Chen Hongzheng; Dai Zhengwei

    2011-01-01

    Highlights: → We fabricate PANI nanowire-on-TiO 2 nano/microfiber hierarchical nano/microstructure composite fiber films by electrospinning, calcinations and in situ polymerization. → PANI/TiO 2 composite fiber film exhibits high photocatalytic activity for the degradation of dye MB. → The photocatalytic activity and reusability of PANI/TiO 2 composite fiber film were lower than those of pure TiO 2 fiber film. - Abstract: TiO 2 /PANI composite fiber films were fabricated by electrospinning, calcinations and in situ polymerization. The morphology and structure of the resulting composites were analyzed by scanning electron micrograph, transmission electron micrograph, Fourier transform infrared spectroscopy and X-ray diffraction. It was found that this composite fiber film has a PANI nanowire-on-TiO 2 nano/microfiber hierarchical nano/microstructure. The surface morphology of this hierarchical nano/microstructure was related to the structure of TiO 2 nano/microfiber film, the time and temperature of in situ polymerization. Its photocatalytic property on methylene blue (MB) was studied, and the results showed that TiO 2 /PANI composite fiber film with this hierarchical nano/microstructure exhibited high photocatalytic activity for the degradation of MB under natural light. But both its photocatalytic activity and reusability were lower than those of pure TiO 2 fiber film. To improve the stability and reusability of TiO 2 /PANI composite fiber film, a direct chemical bonding of PANI chains onto TiO 2 surface, such as, the surface-initiated graft polymerization, is a useful method.

  18. Dye-Sensitized Solar Cells with Anatase TiO2 Nanorods Prepared by Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Ming-Jer Jeng

    2013-01-01

    Full Text Available The hydrothermal method provides an effective reaction environment for the synthesis of nanocrystalline materials with high purity and well-controlled crystallinity. In this work, we started with various sizes of commercial TiO2 powders and used the hydrothermal method to prepare TiO2 thin films. We found that the synthesized TiO2 nanorods were thin and long when smaller TiO2 particles were used, while larger TiO2 particles produced thicker and shorter nanorods. We also found that TiO2 films prepared by TiO2 nanorods exhibited larger surface roughness than those prepared by the commercial TiO2 particles. It was found that a pure anatase phase of TiO2 nanorods can be obtained from the hydrothermal method. The dye-sensitized solar cells fabricated with TiO2 nanorods exhibited a higher solar efficiency than those fabricated with commercial TiO2 nanoparticles directly. Further, triple-layer structures of TiO2 thin films with different particle sizes were investigated to improve the solar efficiency.

  19. Sb2S3 surface modification induced remarkable enhancement of TiO2 core/shell nanowries solar cells

    International Nuclear Information System (INIS)

    Meng, Xiuqing; Wang, Xiaozhou; Zhong, Mianzeng; Wu, Fengmin; Fang, Yunzhang

    2013-01-01

    This study presents the fabrication of a novel dye-sensitized solar cell with Sb 2 S 3 -modified TiO 2 nanowire (NW) arrays/TiO 2 nanoparticles (NP) (TiO 2(NWs) /TiO 2(NPs) /Sb 2 S 3 ) as the anodes and N719 dye as the sensitizer. A solar conversion efficiency of 4.91% at 1 sun illumination was achieved for the composite cell, which is markedly higher than the efficiency rates obtained using TiO 2 and TiO 2(NWs) /Sb 2 S 3 /TiO 2(NPs) NW cells, calculated at 2.36% and 3.11%, respectively. The improved efficiency results from the large surface area of the NPs, as well as the expansion of the light absorption region and high absorption coefficient by Sb 2 S 3 surface modification. - Graphical abstract: A novel TiO 2(NWs) /TiO 2(NPs) /Sb 2 S 3 dye sensitized solar cells (DSSCs) is fabricated, a solar conversion efficiency of 4.91 % at 1 sun illumination is achieved. Highlights: ► We fabricate sandwich structured TiO 2 dye-sensitized solar cells. ► The anode of the solar cells consist of Sb 2 S 3 modified TiO 2 nanowire arrays/TiO 2 nanopartices. ► A solar conversion efficiency of 4.91% at 1 sun illumination is achieved. ► The high efficiency results from large surface area and expanded light adsorption of the anode

  20. Growth of TiO2 Thin Film on Various Substrates using RF Magnetron Sputtering

    International Nuclear Information System (INIS)

    Ali, Riyaz Ahmad Mohamed; Nayan, Nafarizal

    2011-01-01

    The conductivity of Titanium Dioxide (TiO 2 ) thin film fabricated using Radio Frequency (RF) Magnetron Sputtering on Silicon (Si), Indium doped--Tin Oxide (ITO) and microscope glass (M) substrates is presented in this paper. The dependant of thin film thickness and type of substrate been discussed. TiO 2 was deposited using Ti target in Ar+O 2 (45:10) mixture at 250 W for 45, 60, 75, 90, 105 and 120 minute. Resultant thickness varies from 295 nm to 724 nm with deposition rate 6.4 nm/min. On the other hand, resistivity, Rs value for ITO substrate is between 5.72x10 -7 to 1.54x10 -6 Ω.m, Si substrate range is between 3.52x10 -6 to 1.76x10 -5 Ω.m and M substrate range is between 99 to 332 Ω.m. The value of resistivity increases with the thickness of the thin film.

  1. Au Nanoclusters Sensitized Black TiO2-x Nanotubes for Enhanced Photodynamic Therapy Driven by Near-Infrared Light.

    Science.gov (United States)

    Yang, Dan; Gulzar, Arif; Yang, Guixin; Gai, Shili; He, Fei; Dai, Yunlu; Zhong, Chongna; Yang, Piaoping

    2017-12-01

    The low reactive oxygen species production capability and the shallow tissue penetration of excited light (UV) are still two barriers in photodynamic therapy (PDT). Here, Au cluster anchored black anatase TiO 2- x nanotubes (abbreviated as Au 25 /B-TiO 2- x NTs) are synthesized by gaseous reduction of anatase TiO 2 NTs and subsequent deposition of noble metal. The Au 25 /B-TiO 2- x NTs with thickness of about 2 nm exhibit excellent PDT performance. The reduction process increased the density of Ti 3+ on the surface of TiO 2 , which effectively depresses the recombination of electron and hole. Furthermore, after modification of Au 25 nanoclusters, the PDT efficiency is further enhanced owing to the changed electrical distribution in the composite, which forms a shallow potential well on the metal-TiO 2 interface to further hamper the recombination of electron and hole. Especially, the reduction of anatase TiO 2 can expend the light response range (UV) of TiO 2 to the visible and even near infrared (NIR) light region with high tissue penetration depth. When excited by NIR light, the nanoplatform shows markedly improved therapeutic efficacy attributed to the photocatalytic synergistic effect, and promotes separation or restrained recombination of electron and hole, which is verified by experimental results in vitro and in vivo. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Synthesis of titanate, TiO2 (B), and anatase TiO2 nanofibers from natural rutile sand

    International Nuclear Information System (INIS)

    Pavasupree, Sorapong; Suzuki, Yoshikazu; Yoshikawa, Susumu; Kawahata, Ryoji

    2005-01-01

    Titanate nanofibers were synthesized by hydrothermal method (150 deg. C for 72 h) using natural rutile sand as the starting materials. TiO 2 (B) and anatase TiO 2 (high crystallinity) nanofibers with the diameters of 20-100 nm and the lengths of 10-100 μm were obtained by calcined titanate nanofibers for 4 h at 400 and 700 deg. C (in air), respectively. The samples characterized by XRD, SEM, TEM, SAED, HRTEM, and BET surface area. This synthesis method provides a simple route to fabricate one-dimensional nanostructured TiO 2 from low cost material. -- Graphical abstract: Titanate nanofibers (b) were synthesized by hydrothermal method (150 deg. C for 72 h) using natural rutile sand (a) as the starting materials. TiO 2 (B) (c) and anatase TiO 2 (d) nanofibers with the diameters of 20-50 nm and the lengths of 10-100 μm were obtained by calcined titanate nanofibers for 4 h at 400 deg. C and 700 deg. C (in air), respectively

  3. Hollow TiO2 modified reduced graphene oxide microspheres encapsulating hemoglobin for a mediator-free biosensor.

    Science.gov (United States)

    Liu, Hui; Guo, Kai; Duan, Congyue; Dong, Xiaonan; Gao, Jiaojiao

    2017-01-15

    Hollow TiO 2 modified reduced graphene oxide microspheres (hollow TiO 2 -rGO microspheres or H-TiO 2 -rGO MS) have been synthesized and then be used to immobilize hemoglobin (Hb) to fabricate a mediator-free biosensor. The morphology and structure of hollow TiO 2 -rGO microspheres were characterized by scanning electron microscopy, transmission electronic microscopy and X-ray diffraction. Results of spectroscopy and electrochemistry tests revealed that hollow TiO 2 -rGO microsphere is an excellent immobilization matrix with biocompatibility for redox protein, affording good protein bioactivity and stability. The hollow TiO 2 -rGO microspheres with special structure and component enhance the immobilization efficiency of proteins and facilitate the direct electron transfer, which result in the better H 2 O 2 detection performance-the wide linear range of 0.1-360μM for H 2 O 2 (sensitivity of 417.6 μA mM -1 cm -2 ) and the extremely low detection limit of 10nM for H 2 O 2 . Moreover, the hollow microsphere can provide a protective microenvironment for Hb to make the as-prepared biosensor improve long-term stability. The as-prepared biosensor retains 95.4% of the initial response to H 2 O 2 after 60-d storage. Hence, this work suggests that if can be fabricated a mediator-free biosensor, hollow TiO 2 -rGO microspheres will find wide potential applications in environmental analysis and biomedical detection. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Structural, electronic, mechanical, thermal and optical properties of B(P,As)1-xNx; (x = 0, 0.25, 0.5, 0.75, 1) alloys and hardness of B(P,As) under compression using DFT calculations

    Science.gov (United States)

    Viswanathan, E.; Sundareswari, M.; Jayalakshmi, D. S.; Manjula, M.; Krishnaveni, S.

    2017-09-01

    First principles calculations are carried out in order to analyze the structural, electronic, mechanical, thermal and optical properties of BP and BAs compounds by ternary alloying with nitrogen namely B(P,As)1-xNx (x = 0.25, 0.5, 0.75) alloys at ambient condition. Thereby we report the mechanical and thermal properties of B(P,As)1-xNx (x = 0.25, 0.5, 0.75) alloys namely bulk modulus, shear modulus, Young's modulus, hardness, ductile-brittle nature, elastic wave velocity, Debye temperature, melting point, etc.; optical properties of B(P)1-xNx (x = 0.25, 0.5, 0.75) and B(As)1-xNx (x = 0.25, 0.75) alloys namely the dielectric function of real and imaginary part, refractive index, extinction coefficient and reflectivity and the hardness profile of the parent compounds BP and BAs under compression. The charge density plot, density of states histograms and band structures are plotted and discussed for all the ternary alloys of the present study. The calculated results agree very well with the available literature. Analysis of the present study reveals that the ternary alloy combinations namely BP.25N.75 and BAs.25N.75 could be superhard materials; hardness of BP and BAs increases with compression.

  5. Fabrication and properties of an immobilized P25TiO2-montmorillonite bilayer system for the synergistic photocatalytic–adsorption removal of methylene blue

    International Nuclear Information System (INIS)

    Ngoh, Y.S.; Nawi, M.A.

    2016-01-01

    Highlights: • P25TiO 2 and montmorillonite was integrated via an immobilized bilayer approach. • Synergistic dual photocatalytic–adsorptive removal of MB was observed. • Removal rate of MB was 4 times better than P25TiO 2 alone. • Excellent reusability with sustainable rate of removal of MB. • Treated water can be discharged directly without the need of a filtration system. - Abstract: A bilayer immobilized system consisting of a mesoporous montmorillonite (MT) as the sublayer and a porous P25TiO 2 toplayer was successfully fabricated on a glass plate. The MT sublayer was immobilized onto the glass plate by means of a glutaraldehyde (GLA) cross-linked poly (vinyl) alcohol (PVA) as the binder (MT-PVAB) while the top layer constituted of nano-sized TiO 2 bound by the ENR-PVC polymer blends (P-25TiO 2 ). The incorporation of MT-PVAB to P-25TiO 2 caused a reduction in the band gap energy while PLS emission spectra suggested higher separation rate for the photo-generated electron–hole pairs in the P-25TiO 2 /MT-PVAB/GP. The photocatalytic–adsorption removal experiments showed that the P-25TiO 2 /MT-PVAB/GP enhanced removal rate of MB by an average of 4 times as compared with the immobilized monolayer P-25TiO 2 on a glass plate (P-25TiO 2 /GP).

  6. Chalcogenide Sensitized Carbon Based TiO2 Nanomaterial For Solar Driven Applications

    Science.gov (United States)

    Pathak, Pawan

    The demand for renewable energy is growing because fossils fuels are depleting at a rapid pace. Solar energy an abundant green energy resource. Utilizing this resource in a smart manner can resolve energy-crisis related issues. Sun light can be efficiently harvested using semiconductor based materials by utilizing photo-generated charges for numerous beneficial applications. The main goal of this thesis is to synthesize different nanostructures of TiO2, develop a novel method of coupling and synthesizing chalcogenide nanocrystals with TiO2 and to study the charge transportation effects of the various carbon allotropes in the chalcogenide nanocrystal sensitized TiO2 nanostructure. We have fabricated different nanostructures of TiO2 as solar energy harvesting materials. Effects of the different phases of TiO2 have also been studied. The anatase phase of TiO2 is more photoactive than the rutile phase of TiO2, and the higher dimension of the TiO2 can increase the surface area of the material which can produce higher photocurrent. Since TiO2 only absorbs in the UV range; to increase the absorbance TiO2 should be coupled to visible light absorbing materials. This dissertation presents a simple approach to synthesize and couple chalcogenide nanocrystals with TiO2 nanostructure to form a heterostructured composite. An atmospheric pressure based, single precursor, one-pot approach has been developed and tested to assemble chalcogenide nanocrystal on the TiO2 surface. Surface characterization using microscopy, X-ray diffraction, and elemental analysis indicates the formation of nanocrystals along the nanotube walls and inter-tubular spacing. Optical measurements indicate that the chalcogenide nanocrystals absorb in the visible region and demonstrate an increase in photocurrent in comparison to bare TiO2 nanostructure. The CdS synthesized TiO2 nanostructure produced the highest photocurrent as measured in the three electrode system. We have also assembled the PbS nanocrystal

  7. Effect of Annealing Process on CH3NH3PbI3-XClX Film Morphology of Planar Heterojunction Perovskite Solar Cells with Optimal Compact TiO2 Layer

    Directory of Open Access Journals (Sweden)

    Dan Chen

    2017-01-01

    Full Text Available The morphology of compact TiO2 film used as an electron-selective layer and perovskite film used as a light absorption layer in planar perovskite solar cells has a significant influence on the photovoltaic performance of the devices. In this paper, the spin coating speed of the compact TiO2 is investigated in order to get a high-quality film and the compact TiO2 film exhibits pinhole- and crack-free films treated by 2000 rpm for 60 s. Furthermore, the effect of annealing process, including annealing temperature and annealing program, on CH3NH3PbI3-XClX film morphology is studied. At the optimal annealing temperature of 100°C, the CH3NH3PbI3-XClX morphology fabricated by multistep slow annealing method has smaller grain boundaries and holes than that prepared by one-step direct annealing method, which results in the reduction of grain boundary recombination and the increase of Voc. With all optimal procedures, a planar fluorine-doped tin oxide (FTO substrate/compact TiO2/CH3NH3PbI3-XClX/Spiro-MeOTAD/Au cell is prepared for an active area of 0.1 cm2. It has achieved a power conversion efficiency (PCE of 14.64%, which is 80.3% higher than the reference cell (8.12% PCE without optimal perovskite layer. We anticipate that the annealing process with optimal compact TiO2 layer would possibly become a promising method for future industrialization of planar perovskite solar cells.

  8. Evaluate humidity sensing properties of novel TiO2–WO3 composite material

    International Nuclear Information System (INIS)

    Lin, Wang-De; Lai, De-Sheng; Chen, Min-Hung; Wu, Ren-Jang; Chen, Fu-Chou

    2013-01-01

    Graphical abstract: TiO 2 –WO 3 (1:1) showed better humidity sensing properties than others within the range of 12–90% relative humidity (RH), the response and recovery time were about 20 s and 160 s, respectively. Compared to the previous studies, the prepared sensor exhibits higher sensitivity (S = 451) and the low hysteresis value was around 0.13% at 32% RH. - Highlights: • Novel TiO 2 –WO 3 composite material was prepared for humidity sensor. • The sensor exhibits higher sensitivity (S = 451). • Low hysteresis value was around 0.13% at 32% RH. - Abstract: A novel TiO 2 –WO 3 composite material was prepared using a different proportion of TiO 2 and WO 3 to that investigated in previous studies. The obtained mesoporous material was characterized using X-ray diffraction, Fourier transform infrared spectrometry, transmission electron microscopy, energy dispersive X-ray spectroscopy, and N 2 adsorption-desorption techniques. The humidity-sensing properties were measured using an inductance, capacitance and resistance analyzer. The results demonstrated that the TiO 2 –WO 3 sample with a ratio of 1:1 showed better humidity sensing properties. Compared to previous studies, the prepared sensor exhibited higher sensitivity (S = 451) and the lower hysteresis value was around 0.13% at 32% RH. Complex impedance analysis indicated that the enhanced humidity sensitivity was probably due to spherical Brunauer–Emmett–Teller surface area and the hetero-junction between TiO 2 –WO 3 thin films, while the impedance varied about three orders of magnitude. Our results demonstrated the potential application of TiO 2 –WO 3 composite for fabricating high performance humidity sensors

  9. Nanoporous TiO_2 electrode grown by laser ablation of titanium in air at atmospheric pressure and room temperature

    International Nuclear Information System (INIS)

    Białous, Anna; Gazda, Maria; Grochowska, Katarzyna; Atanasov, Petar; Dikovska, Anna; Nedyalkov, Nikolay; Reszczyńska, Joanna; Zaleska-Medynska, Adriana; Śliwiński, Gerard

    2016-01-01

    Recently, fabrication of the nanoporous TiO_2 photoelectrode on metal foils by means of sputtering of the Ti film on preheated metal substrate followed by the TiO_2 deposition (doctor blade technique) and sintering represents the frequently applied technique. This is despite the relatively complicated procedure and number of parameters to be controlled in order to fabricate films of required properties. In this work an approach is applied and discussed in which the nanoporous TiO_2 electrode is fabricated under conditions similar to pulsed laser deposition but with the deposit formed directly on the ablated target at atmospheric pressure and room temperature. The titanium dioxide thin film is grown by ablation of the Ti foil with the nanosecond UV laser (266 nm) at fluence up to 1.5 J/cm"2. The rutile–anatase phase transformation takes place during this one-step process and no thermal pre-and post-treatment of the deposit is needed. In samples produced in air, the presence of mixed phases of the non-stoichiometric anatase (> 70%), rutile and negligible amount of TiN is consistently confirmed by the X-ray diffraction, energy-dispersive X-ray and Raman spectra. For applications of the reported films as electrode material in the third generation photovoltaic cells, the use of industrial lasers could significantly improve the process efficiency. - Highlights: • TiO_2 films via laser ablation of Ti in air under standard temperature and pressure conditions • Nanoporous crystalline structure from one-step process • Anatase content > 70% in the mixed phase film

  10. Synergistic effects between TiO2 and carbon nanotubes (CNTs) in a TiO2/CNTs system under visible light irradiation.

    Science.gov (United States)

    Wu, Chung-Hsin; Kuo, Chao-Yin; Chen, Shih-Ting

    2013-01-01

    This study synthesized a TiO2/carbon nanotubes (CNTs) composite via the sol-gel method. The surface characteristics of the TiO2/CNTs composite were determined by X-ray diffraction, transmission electron microscopy, specific surface area analyser, ultraviolent (UV)-vis spectroscopy, X-ray photoelectron spectroscopy and Raman spectrometer. The photocatalytic activity ofthe TiO2/CNTs composite was evaluated by decolourizing C.I. Reactive Red 2 (RR2) under visible light irradiation. Furthermore, the effects of calcination temperature, pH, RR2 concentration, and the TiO2/CNTs composite dosage on RR2 decolourization were determined simultaneously. The optimal calcination temperature to generate TiO2 and the TiO2/CNTs composite was 673 K, as the percentage of anatase crystallization at this temperature was highest. The specific surface area of the TiO2/CNTs composite and TiO2 were 45 and 42 m2/g, respectively. The band gap of TiO2 and the TiO2/CNTs composite was 2.97 and 2.71 eV by UV-vis measurements, respectively. Experimental data indicate that the Ti-O-C bond formed in the TiO2/CNTs composite. The RR2 decolourization rates can be approximated by pseudo-first-order kinetics; moreover, only the TiO2/CNTs composite had photocatalytic activity under visible light irradiation. At pH 7, the RR2 decolourization rate constant of 0.5, 1 and 2 g/L TiO2/CNTs addition was 0.005, 0.0015, and 0.0047 min(-1), respectively. Decolourization rate increased as pH and the RR2 concentration decreased. The CNTs functioned as electron acceptors, promoting separation of photoinduced electron-hole pairs to retard their recombination; thus, photocatalytic activity of the TiO2/CNTs composite exceeded that of TiO2.

  11. Fabrication of TiO2 nanoparticles/nanorod composite arrays via a two-step method for efficient dye-sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Jingyang Wang

    2014-12-01

    Full Text Available TiO2 nanoparticles/nanorod composite arrays were prepared on the F-doped tin oxide (FTO substrate through a two-step method of hydrothermal and d.c. magnetron sputtering. The microstructure and optical properties of the samples were characterized respectively by means of X-ray diffraction (XRD, field-emission scanning electron microscopy (FESEM and UV–vis spectrometer. The results showed that the TiO2 composite nanorod arrays possess the nature of high surface area for more dye molecule absorption and the strong light scattering effects. The dye sensitized solar cells (DSSCs based on TiO2 composite nanorod arrays exhibited a 80% improvement in the overall energy conversion efficiency compared with the pure TiO2 nanorod arrays photoanode.

  12. Enhanced photoelectrochemical properties of TiO2 nanorod arrays decorated with CdS nanoparticles

    International Nuclear Information System (INIS)

    Xie, Zheng; Wang, Weipeng; Liu, Can; Li, Zhengcao; Liu, Xiangxuan; Zhang, Zhengjun

    2014-01-01

    TiO 2 nanorod arrays (TiO 2 NRAs) sensitized with CdS nanoparticles were fabricated via successive ion layer adsorption and reaction (SILAR), and TiO 2 NRAs were obtained by oxidizing Ti NRAs obtained through oblique angle deposition. The TiO 2 NRAs decorated with CdS nanoparticles exhibited excellent photoelectrochemical and photocatalytic properties under visible light, and the one decorated with 20 SILAR cycles CdS nanoparticles shows the best performance. This can be attributed to the enhanced separation of electrons and holes by forming heterojunctions of CdS nanoparticles and TiO 2 NRAs. This provides a promising way to fabricate the material for solar energy conversion and wastewater degradation. (paper)

  13. Fabrication of efficient TiO2-RGO heterojunction composites for hydrogen generation via water-splitting: Comparison between RGO, Au and Pt reduction sites

    Science.gov (United States)

    El-Bery, Haitham M.; Matsushita, Yoshihisa; Abdel-moneim, Ahmed

    2017-11-01

    A facile one-step synthesis approach of M/TiO2/RGO (M = Au or Pt) ternary composite by hydrothermal treatment for hydrogen generation via water-splitting was investigated. Photocurrent response measurements revealed that TiO2 (P25) nanoparticles anchored on the reduced graphene oxide (RGO) surface exhibited a p-n heterojunction interface by changing the photocurrent direction with the applied bias from reverse to forward potential. H2 evolution rate of TiO2/RGO (5 wt.%) composite was substantially enhanced by 12-fold in comparison to bare TiO2 under simulated solar light irradiation. Cyclic volatmmetry measurements manifested, that the optimized 0.3 wt.% of platinum metal loaded on TiO2/RGO composite was the most active catalytic reduction sites for hydrogen generation reaction with an initial hydrogen rate of 670 μmol h-1. This study sheds the light on the tunable semiconductor type of TiO2/RGO composite fabricated by solution mixing pathway and its merits to improve the photocatalytic activity.

  14. Study of Sn and Mg doping effects on TiO2/Ge stack structure by combinatorial synthesis

    Science.gov (United States)

    Nagata, Takahiro; Suzuki, Yoshihisa; Yamashita, Yoshiyuki; Ogura, Atsushi; Chikyow, Toyohiro

    2018-04-01

    The effects of Sn and Mg doping of a TiO2 film on a Ge substrate were investigated to improve leakage current properties and Ge diffusion into the TiO2 film. For systematic analysis, dopant-composition-spread TiO2 samples with dopant concentrations of up to 20.0 at. % were fabricated by RF sputtering and a combinatorial method. X-ray photoelectron spectroscopy revealed that the instability of Mg doping of TiO2 at dopant concentrations above 10.5 at. %. Both Sn and Mg dopants reduced Ge diffusion into TiO2. Sn doping enhanced the crystallization of the rutile phase, which is a high-dielectric-constant phase, although the Mg-doped TiO2 film indicated an amorphous structure. Sn-doping indicated systematic leakage current reduction with increasing dopant concentration. Doping at Sn concentrations higher than 16.8 at. % improved the leakage properties (˜10-7 A/cm2 at -3.0 V) and capacitance-voltage properties of metal-insulator-semiconductor (MIS) operation. The Sn doping of TiO2 may be useful for interface control and as a dielectric material for Ge-based MIS capacitors.

  15. Photocatalytic decomposition of N2O over TiO2/g-C3N4 photocatalysts heterojunction

    Science.gov (United States)

    Kočí, K.; Reli, M.; Troppová, I.; Šihor, M.; Kupková, J.; Kustrowski, P.; Praus, P.

    2017-02-01

    TiO2/g-C3N4 photocatalysts with the various TiO2/g-C3N4 weight ratios from 1:2 to 1:6 were fabricated by mechanical mixing in water suspension followed by calcination. Pure TiO2 was prepared by thermal hydrolysis and pure g-C3N4 was prepared from commercial melamine by thermal annealing at 620 °C. All the nanocomposites were characterized by X-ray powder diffraction, UV-vis diffuse reflectance spectroscopy, Raman spectroscopy, infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, photoelectrochemical measurements and nitrogen physisorption. The prepared mixtures along with pure TiO2 and g-C3N4 were tested for the photocatalytic decomposition of nitrous oxide under UVC (λ = 254 nm), UVA (λ = 365 nm) and Vis (λ > 400 nm) irradiation. The TiO2/g-C3N4 nanocomposites showed moderate improvement compared to pure g-C3N4 but pure TiO2 proved to be a better photocatalyst under UVC irradiation. However, under UVA irradiation conditions, the photocatalytic activity of TiO2/g-C3N4 (1:2) nanocomposite exhibited an increase compared to pure TiO2. Nevertheless, further increase of g-C3N4 amount leads/led to a decrease in reactivity. These results are suggesting the nanocomposite with the optimal weight ratio of TiO2 and g-C3N4 have shifted absorption edge energy towards longer wavelengths and decreased the recombination rate of charge carriers compared to pure g-C3N4. This is probably due to the generation of heterojunction on the TiO2/g-C3N4 interface.

  16. Microwave dielectric properties of (1 − x)Mg0.95Zn0.05TiO3–(x)Ca0.6La0.8/3TiO3 ceramic composites

    International Nuclear Information System (INIS)

    Rajput, Shailendra Singh; Keshri, Sunita; Gupta, Vibha Rani

    2013-01-01

    Highlights: ► This report presents the microwave dielectric properties of (1 − x)MZT–(x)CLT samples. ► The 0.79MZT-0.21CLT composite sample shows a nearly zero τ f ∼ −0.8 ppm/°C. ► A dielectric resonator antenna has been fabricated using 0.79MZT-0.21CLT sample. ► The probe fed DRA provides higher gain as compared to the microstrip line fed DRA. -- Abstract: In this paper the structural and microwave dielectric properties of the (1 − x)(Mg 0.95 Zn 0.05 )TiO 3 –(x)(Ca 0.6 La 0.8/3 )TiO 3 ceramic composites have been investigated with the variation of x as well as sintering temperature. The grown samples have been characterized by means of X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray (EDX) spectroscopy analysis. The Rietveld analysis of the XRD data has been carried out for structure refinement of the phases. The relative permittivity (∊ r ), quality factor (Q) and temperature coefficient of resonant frequency τ f of the grown samples have been thoroughly studied. Out of all samples of this series, the sample with x = 0.21 shows excellent dielectric properties with ∊ r ∼26.26, Q × f ∼ 60,738 GHz (at 6.44 GHz) and a nearly zero τ f ∼ −0.8 ppm/°C. Two types of dielectric resonator antennas with different feeding mechanisms have been fabricated using this sample to study their performance. The experimental results have been compared with the simulated results obtained using Ansoft High Frequency Structure Simulator software

  17. Influence of annealing on X-ray radiation sensing properties of TiO2 thin film

    Science.gov (United States)

    Sarma, M. P.; Kalita, J. M.; Wary, G.

    2018-03-01

    A recent study shows that the titanium dioxide (TiO2) thin film synthesised by a chemical bath deposition technique is a very useful material for the X-ray radiation sensor. In this work, we reported the influence of annealing on the X-ray radiation detection sensitivity of the TiO2 film. The films were annealed at 333 K, 363 K, 393 K, 473 K, and 573 K for 1 hour. Structural analyses showed that the microstrain and dislocation density decreased whereas the average crystallite size increased with annealing. The band gap of the films also decreased from 3.26 eV to 3.10 eV after annealing. The I-V characteristics record under the dark condition and under the X-ray irradiation showed that the conductivity increased with annealing. The influence of annealing on the detection sensitivity was negligible if the bias voltage applied across the films was low (within 0.2 V‒1.0 V). At higher bias voltage (>1.0 V), the contribution of electrons excited by X-ray became less significant which affected the detection sensitivity.

  18. Dye-sensitized solar cells based on Cr-doped TiO2 nanotube photoanodes

    Institute of Scientific and Technical Information of China (English)

    M.M.Momeni

    2017-01-01

    The effect of chromium doping on the photovoltaic efficiency of dye-sensitized solar cells (DSSCs) with anodized TiO2 nanotubes followed by an annealing process was investigated.Cr-doped TiO2 nanotubes (CrTNs) with different amounts of chromium were obtained by anodizing of titanium foils in a single-step process using potassium chromate as the chromium source.Film features were investigated by scanning electron microscopy (SEM),X-ray diffraction (XRD),energy-dispersive X-ray spectroscopy (EDX),and ultraviolet-visible (UV-Vis) spectroscopy.It is clearly seen that highly ordered TiO2 nanotubes are formed in an anodizing solution free of potassium chromate,and with a gradual increase in the potassium chromate concentration,these nanotube structures change to nanoporous and compact films without porosity.The photovoltaic efficiencies of fabricated DSSCs were characterized by a solar cell measurement system via the photocurrent-voltage (Ⅰ-Ⅴ) curves.It is found that the photovoltaic efficiency of DSSCs with CrTNsl sample is improved by more than three times compared to that of DSSCs with undoped TNs.The energy conversion efficiency increases from 1.05 % to 3.89 % by doping of chromium.

  19. Alcohol solvents evaporation-induced self-assembly synthesis of mesoporous TiO2- x- y C x N y nanoparticles toward visible-light driven photocatalytic activity

    Science.gov (United States)

    Liu, Shou-Heng; Syu, Han-Ren; Wu, Chung-Yi

    2014-12-01

    A one-step solvent evaporation-induced self-assembly (SEISA) process was demonstrated to prepare carbon and nitrogen co-doping mesoporous TiO2 nanoparticles (MesoTiO2- x- y C x N y - S) using an ionic liquid as carbon and nitrogen sources as well as mesoporous template. After the evaporation of different solvents (methanol, ethanol, and isopropanol) and subsequent calcinations at 773 K, the obtained MesoTiO2- x- y C x N y - S samples were systematically characterized by a variety of spectroscopic and analytical techniques, including small- and large-angle X-ray diffraction (XRD), Raman, transmission electron microscopy (TEM), N2 adsorption-desorption isotherms, Fourier transform infrared (FTIR), and X-ray photoelectron (XPS) spectroscopies. The results indicate that the solvents play an essential role on the chemical microstructure, doping elemental states, and photocatalytic performance of catalysts. The MesoTiO2- x- y C x N y -I samples have the lowest band gap of ca. 2.75 eV and strongest absorbance of visible light in the range of 400-600 nm. Among the MesoTiO2- x- y C x N y - S photocatalysts, the MesoTiO2- x- y C x N y -M catalysts show superior photocatalytic activity of hydrogen generation in methanol aqueous solution under visible light irradiation as compared to MesoTiO2- x- y C x N y -E, MesoTiO2- x- y C x N y -I, and commercial Degussa TiO2. This result could be attributed to the moderate C,N co-doping amounts on their developed mesoporous texture (pore size = 8.0 nm) and high surface area (107 m2 g-1) of TiO2 (crystallite size = 9.9 nm) in the MesoTiO2- x- y C x N y -M catalysts.

  20. Fabrication, structure, and enhanced photocatalytic properties of hierarchical CeO2 nanostructures/TiO2 nanofibers heterostructures

    International Nuclear Information System (INIS)

    Cao, Tieping; Li, Yuejun; Wang, Changhua; Wei, Liming; Shao, Changlu; Liu, Yichun

    2010-01-01

    Combining the versatility of electrospinning technique and hydrothermal growth of nanostructures enabled the fabrication of hierarchical CeO 2 /TiO 2 nanofibrous mat. The as-prepared hierarchical heterostructure consisted of CeO 2 nanostructures growing on the primary TiO 2 nanofibers. Interestingly, not only were secondary CeO 2 nanostructures successfully grown on TiO 2 nanofibers substrates, but also the CeO 2 nanostructures were uniformly distributed without aggregation on TiO 2 nanofibers. By selecting different alkaline source, CeO 2 /TiO 2 heterostructures with CeO 2 nanowalls or nanoparticles were facilely fabricated. The photocatalytic studies suggested that the CeO 2 /TiO 2 heterostructures showed enhanced photocatalytic efficiency of photodegradation of dye pollutants compared with bare TiO 2 nanofibers under UV light irradiation.

  1. D-sorbitol-induced phase control of TiO2 nanoparticles and its application for dye-sensitized solar cells

    Science.gov (United States)

    Shaikh, Shoyebmohamad F.; Mane, Rajaram S.; Min, Byoung Koun; Hwang, Yun Jeong; Joo, Oh-Shim

    2016-02-01

    Using a simple hydrothermal synthesis, the crystal structure of TiO2 nanoparticles was controlled from rutile to anatase using a sugar alcohol, D-sorbitol. Adding small amounts of D-sorbitol to an aqueous TiCl4 solution resulted in changes in the crystal phase, particle size, and surface area by affecting the hydrolysis rate of TiCl4. These changes led to improvements of the solar-to-electrical power conversion efficiency (η) of dye-sensitized solar cells (DSSC) fabricated using these nanoparticles. A postulated reaction mechanism concerning the role of D-sorbitol in the formation of rutile and anatase was proposed. Fourier-transform infrared spectroscopy, 13C NMR spectroscopy, and dynamic light scattering analyses were used to better understand the interaction between the Ti precursor and D-sorbitol. The crystal phase and size of the synthesized TiO2 nanocrystallites as well as photovoltaic performance of the DSSC were examined using X-ray diffraction, Raman spectroscopy, field-emission scanning electron microscopy, high-resolution transmission electron microscopy, and photocurrent density-applied voltage spectroscopy measurement techniques. The DSSC fabricated using the anatase TiO2 nanoparticles synthesized in the presence of D-sorbitol, exhibited an enhanced η (6%, 1.5-fold improvement) compared with the device fabricated using the rutile TiO2 synthesized without D-sorbitol.

  2. Preparation of Nanoporous TiO2 Electrodes for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Hsiue-Hsyan Wang

    2011-01-01

    Full Text Available Nano-porous TiO2 thin films have been widely used as the working electrodes in dye-sensitized solar cells (DSSCs. In this work, the phase-pure anatase TiO2 (a-TiO2 and rutile TiO2 (r-TiO2 have been prepared using hydrothermal processes. The investigation of photo-to-electron conversion efficiency of DSSCs fabricated from mixed-TiO2 with a-TiO2 and r-TiO2 ratio of 80 : 20 (A8R2 was performed and compared to that from commercial TiO2 (DP-25. The results showed higher efficiency of DSSC for A8R2 cells with same dependence of cell efficiency on the film thickness for both A8R2 and DP-25 cells. The best efficiency obtained in this work is 5.2% from A8R2 cell with TiO2 film thickness of 12.0 μm. The correlation between the TiO2 films thickness and photoelectron chemical properties of DSSCs fabricated from A8R2 and DP-25 was compared and discussed.

  3. The effect of CO2 on the plasma remediation of NxOy

    Science.gov (United States)

    Gentile, Ann C.; Kushner, Mark J.

    1996-04-01

    Plasma remediation is being investigated for the removal of oxides of nitrogen (NxOy) from atmospheric pressure gas streams. In previous works we have investigated the plasma remediation of NxOy from N2/O2/H2O mixtures using repetitively pulsed dielectric barrier discharges. As combustion effluents contain large percentages of CO2, in this paper we discuss the consequences of CO2 in the gas mixture on the efficiency of remediation and on the end products. We find that there is a small increase in the efficiency of total NxOy remediation (molecules/eV) with increasing CO2 fraction, however the efficiency of NO remediation alone generally decreases with increasing CO2. This differential is more pronounced at low energy deposition per pulse. More remediation occurs through the reduction channel with increasing CO2 while less NO2 and HNOx are produced through the oxidation channel. CO is produced by electron impact of CO2 though negligible amounts of cyanides are generated.

  4. Effect of Atomic Hydrogen on Preparation of Highly Moisture-Resistive SiNx Films at Low Substrate Temperatures

    Science.gov (United States)

    Heya, Akira; Niki, Toshikazu; Takano, Masahiro; Yonezawa, Yasuto; Minamikawa, Toshiharu; Muroi, Susumu; Minami, Shigehira; Izumi, Akira; Masuda, Atsushi; Umemoto, Hironobu; Matsumura, Hideki

    2004-12-01

    Highly moisture-resistive SiNx films on a Si substrate are obtained at substrate temperatures of 80°C by catalytic chemical vapor deposition (Cat-CVD) using a source gas with H2. Atomic hydrogen effected the selective etching of a weak-bond regions and an increase in atomic density induced by the energy of the surface reaction. It is concluded that Cat-CVD using H2 is a promising candidate for the fabrication of highly moisture-resistive SiNx films at low temperatures.

  5. Influence of in-situ deposited SiNx interlayer on crystal quality of GaN epitaxial films

    Science.gov (United States)

    Fan, Teng; Jia, Wei; Tong, Guangyun; Zhai, Guangmei; Li, Tianbao; Dong, Hailiang; Xu, Bingshe

    2018-05-01

    GaN epitaxial films with SiNx interlayers were prepared by metal organic chemical vapor deposition (MOCVD) on c-plane sapphire substrates. The influences of deposition times and locations of SiNx interlayers on crystal quality of GaN epitaxial films were studied. Under the optimal growth time of 120 s for the SiNx interlayer, the dislocation density of GaN film is reduced to 4.05 × 108 cm-2 proved by high resolution X-ray diffraction results. It is found that when the SiNx interlayer deposits on the GaN nucleation islands, the subsequent GaN film has the lowest dislocation density of only 2.89 × 108 cm-2. Moreover, a model is proposed to illustrate the morphological evolution and associated propagation processes of TDs in GaN epi-layers with SiNx interlayers for different deposition times and locations.

  6. Preparation and Photocatalytic Property of Sr(Zr1-xYx)O3/TiO2/CdS heterojunction photocatalysts

    International Nuclear Information System (INIS)

    Chen Yonggang; Liu Suwen; Zhang Haiping; Xiu Zhiliang; Yu Xiaojun; Wang Enhua; Li Tanggang

    2010-01-01

    A novel composite heterojunction photocatalysts Sr(Zr 1-x Y x )O 3 /TiO 2 /CdS was prepared by sol-gel combustion method. Its photoatalytic properties under visible light were investigated through degradation of methyl orange. XRD, SEM, Uv-Vis and PL techniques were used to characterize the structure and optical properties of the sample. The results showed that the photocatalytic activity of prepared composite photocatalysts under visible light is 2.85 times of that of pure TiO 2 .

  7. Enhanced conversion efficiency of dye-sensitized solar cells using a CNT-incorporated TiO2 slurry-based photoanode

    Directory of Open Access Journals (Sweden)

    Jiaoping Cai

    2015-02-01

    Full Text Available A new titanium dioxide (TiO2 slurry formulation is herein reported for the fabrication of TiO2 photoanode for use in dye-sensitized solar cells (DSSCs. The prepared TiO2 photoanode featured a highly uniform mesoporous structure with well-dispersed TiO2 nanoparticles. The energy conversion efficiency of the resulting TiO2 slurry-based DSSC was ∼63% higher than that achieved by a DSSC prepared using a commercial TiO2 slurry. Subsequently, the incorporation of acid-treated multi-walled carbon nanotubes (CNTs into the TiO2 slurry was examined. More specifically, the effect of varying the concentration of the CNTs in this slurry on the performance of the resulting DSSCs was studied. The chemical state of the CNTs-incorporated TiO2 photoanode was investigated by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. A high energy conversion efficiency of 6.23% was obtained at an optimum CNT concentration of ∼0.06 wt.%. The obtained efficiency corresponds to a 63% enhancement when compared with that obtained from a DSSC based on a commercial TiO2 slurry. The higher efficiency was attributed to the improvement in the collection and transport of excited electrons in the presence of the CNTs.

  8. Enhanced conversion efficiency of dye-sensitized solar cells using a CNT-incorporated TiO2 slurry-based photoanode

    Science.gov (United States)

    Cai, Jiaoping; Chen, Zexiang; Li, Jun; Wang, Yan; Xiang, Dong; Zhang, Jijun; Li, Hai

    2015-02-01

    A new titanium dioxide (TiO2) slurry formulation is herein reported for the fabrication of TiO2 photoanode for use in dye-sensitized solar cells (DSSCs). The prepared TiO2 photoanode featured a highly uniform mesoporous structure with well-dispersed TiO2 nanoparticles. The energy conversion efficiency of the resulting TiO2 slurry-based DSSC was ˜63% higher than that achieved by a DSSC prepared using a commercial TiO2 slurry. Subsequently, the incorporation of acid-treated multi-walled carbon nanotubes (CNTs) into the TiO2 slurry was examined. More specifically, the effect of varying the concentration of the CNTs in this slurry on the performance of the resulting DSSCs was studied. The chemical state of the CNTs-incorporated TiO2 photoanode was investigated by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. A high energy conversion efficiency of 6.23% was obtained at an optimum CNT concentration of ˜0.06 wt.%. The obtained efficiency corresponds to a 63% enhancement when compared with that obtained from a DSSC based on a commercial TiO2 slurry. The higher efficiency was attributed to the improvement in the collection and transport of excited electrons in the presence of the CNTs.

  9. Synthesis and photocatalytic activity of Ce-doped TiO2 and TiO2 nanotubes

    International Nuclear Information System (INIS)

    Arruda, L.B.; Pereira, E.A.; Paula, F.R.; Lisboa Filho, P.N.

    2016-01-01

    Full text: One-dimensional nanostructures have been intensively studied, from the point of view of their synthesis and mechanisms of formation, as well as their applications in photonics, solar energy conversion, environmental and photocatalysis, since their properties due high surface area, electrical conductivity and light dispersion effects. Titanium dioxide (TiO2) nanoparticles have been demonstrated to be an effective multifunctional material especially when the particle size is less than 50 nm exhibit photoinduced activities that originate from the semiconductor band gap. TiO2 is semiconductor more used in photocatalysis, for this reason various properties have been thoroughly investigated in order to show that the photocatalytic activity and TiO2 reaction mechanism are influenced by structure, defects and impurities, surface morphology. and interfaces in addition to the concentration of dopants, such as rare-earth elements. Cerium ions, for example, vary between Ce4+ and Ce3 + oxidation state making the cerium oxide appear as CeO2 and Ce2O3 under oxidation and reduction conditions. These different electronic structures of Ce3+ (4f15d0) and Ce4+ (4f05d0) provide different catalytic and optical properties at the TiO2. In this work, samples of Ce-doped TiO2 and TiO2 were synthesized by alkali route, and its photocatalytic activity analyzed in order to create a relationship between the response obtained and the structure and morphology of each sample. Alkali route consists in submitting TiO2 (anatase) powder directly in medium of the NaOH (10M) and maintained at 120°C/20 hours by a glycerin bath with subsequent washed with water and HCl (0.1M) until reaching the desired pH. The synthesized samples were then studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The photocatalytic decomposition of rhodamine B (Rh.B) it was performed under UV irradiation and visible light in air. For the obtained

  10. Synthesis and photocatalytic activity of Ce-doped TiO2 and TiO2 nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Arruda, L.B.; Pereira, E.A.; Paula, F.R.; Lisboa Filho, P.N. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), SP (Brazil)

    2016-07-01

    Full text: One-dimensional nanostructures have been intensively studied, from the point of view of their synthesis and mechanisms of formation, as well as their applications in photonics, solar energy conversion, environmental and photocatalysis, since their properties due high surface area, electrical conductivity and light dispersion effects. Titanium dioxide (TiO2) nanoparticles have been demonstrated to be an effective multifunctional material especially when the particle size is less than 50 nm exhibit photoinduced activities that originate from the semiconductor band gap. TiO2 is semiconductor more used in photocatalysis, for this reason various properties have been thoroughly investigated in order to show that the photocatalytic activity and TiO2 reaction mechanism are influenced by structure, defects and impurities, surface morphology. and interfaces in addition to the concentration of dopants, such as rare-earth elements. Cerium ions, for example, vary between Ce4+ and Ce3 + oxidation state making the cerium oxide appear as CeO2 and Ce2O3 under oxidation and reduction conditions. These different electronic structures of Ce3+ (4f15d0) and Ce4+ (4f05d0) provide different catalytic and optical properties at the TiO2. In this work, samples of Ce-doped TiO2 and TiO2 were synthesized by alkali route, and its photocatalytic activity analyzed in order to create a relationship between the response obtained and the structure and morphology of each sample. Alkali route consists in submitting TiO2 (anatase) powder directly in medium of the NaOH (10M) and maintained at 120°C/20 hours by a glycerin bath with subsequent washed with water and HCl (0.1M) until reaching the desired pH. The synthesized samples were then studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The photocatalytic decomposition of rhodamine B (Rh.B) it was performed under UV irradiation and visible light in air. For the obtained

  11. VO2/TiO2 Nanosponges as Binder-Free Electrodes for High-Performance Supercapacitors

    Science.gov (United States)

    Hu, Chenchen; Xu, Henghui; Liu, Xiaoxiao; Zou, Feng; Qie, Long; Huang, Yunhui; Hu, Xianluo

    2015-11-01

    VO2/TiO2 nanosponges with easily tailored nanoarchitectures and composition were synthesized by electrostatic spray deposition as binder-free electrodes for supercapacitors. Benefiting from the unique interconnected pore network of the VO2/TiO2 electrodes and the synergistic effect of high-capacity VO2 and stable TiO2, the as-formed binder-free VO2/TiO2 electrode exhibits a high capacity of 86.2 mF cm-2 (~548 F g-1) and satisfactory cyclability with 84.3% retention after 1000 cycles. This work offers an effective and facile strategy for fabricating additive-free composites as high-performance electrodes for supercapacitors.

  12. VO2/TiO2 Nanosponges as Binder-Free Electrodes for High-Performance Supercapacitors.

    Science.gov (United States)

    Hu, Chenchen; Xu, Henghui; Liu, Xiaoxiao; Zou, Feng; Qie, Long; Huang, Yunhui; Hu, Xianluo

    2015-11-04

    VO2/TiO2 nanosponges with easily tailored nanoarchitectures and composition were synthesized by electrostatic spray deposition as binder-free electrodes for supercapacitors. Benefiting from the unique interconnected pore network of the VO2/TiO2 electrodes and the synergistic effect of high-capacity VO2 and stable TiO2, the as-formed binder-free VO2/TiO2 electrode exhibits a high capacity of 86.2 mF cm(-2) (~548 F g(-1)) and satisfactory cyclability with 84.3% retention after 1000 cycles. This work offers an effective and facile strategy for fabricating additive-free composites as high-performance electrodes for supercapacitors.

  13. Electronic structure and magnetic anisotropy of Sm2Fe17Nx

    Science.gov (United States)

    Akai, Hisazumi; Ogura, Masako

    2014-03-01

    Electronic structure and magnetic properties of Sm2Fe17Nx are studies on the basis of the first-principles electronic structure calculation in the framework of the density functional theory within the local density and coherent potential approximations. The magnetic anisotropy of the system as a function of nitrogen concentration x is discussed by taking account not only of the crystal field effects but also of the effects of the f-electron transfer from Sm to the neighboring sites. Also discussed is the magnetic transition temperature that is estimated by mapping the system into a Heisenberg model. The results show the crystalline magnetic anisotropy changes its direction from in-plane to uniaxial ones as x increases. It takes the maximum value near x ~ 2 . 8 and then decreases slightly towards x = 3 . The mechanism for these behaviors is discussed in the light of the results of detailed calculations on the bonding properties between Sm and its neighboring N. This work was partly supported by Elements Strategy Initiative Center for Magnetic Materials Project, the Ministry of Education, Culture, Sports, Science and Technology, Japan.

  14. Raman scattering and x-ray diffractometry studies of epitaxial TiO2 and VO2 thin films and multilayers on α-Al2O3(11 bar 20)

    International Nuclear Information System (INIS)

    Foster, C.M.; Chiarello, R.P.; Chang, H.L.M.; You, H.; Zhang, T.J.; Frase, H.; Parker, J.C.; Lam, D.J.

    1993-01-01

    Epitaxial thin films of TiO 2 and VO 2 single layers and TiO 2 /VO 2 multilayers were grown on (11 bar 20) sapphire (α-Al 2 O 3 ) substrates using the metalorganic chemical vapor deposition technique and were characterized using Raman scattering and four x-ray diffractometry. X-ray diffraction results indicate that the films are high quality single crystal material with well defined growth plane and small in-plane and out-of-plane mosaic. Single-layer films are shown to obey the Raman selection rules of TiO 2 and VO 2 single crystals. The close adherence to the Raman selection rules indicates the high degree of orientation of the films, both parallel and perpendicular to the growth plane. Selection rule spectra of two and three layer TiO 2 /VO 2 multilayers are dominated by the VO 2 layers with only minimal signature of the TiO 2 layers. Due to the low band gap of semiconducting vanadium dioxide, we attribute the strong signature of the VO 2 layers to resonant enhancement of the VO 2 Raman component accompanied with absorption of the both the incident and scattered laser light from the TiO 2 layers

  15. X-ray and EPR study of reactions between B4C and TiO2

    International Nuclear Information System (INIS)

    Kakazey, M.; Vlasova, M.; Gonzalez-Rodriguez, J.G.; Dominguez-Patino, M.; Leder, R.

    2006-01-01

    X-ray diffraction and electron paramagnetic resonance (EPR) methods have been used to study the reaction process in a system of 95 wt.% of B 4 C + 5 wt.% TiO 2 . The addition of TiO 2 to B 4 C was effective in accelerating the removal of carbon inclusions. Two types of reactions between B 4 C and TiO 2 , starting at temperatures ∼1173 K, took place: (a) gas-transport exchange and (b) diffusion of Ti atoms into the B 4 C lattice. These reactions modify the number and type of donor centers in the B 4 C. The dependence of EPR line width on the number of donor centers in B 4 C (from conditions of sample treatment) is a useful method for investigating the formation of powders and ceramics based on B 4 C

  16. Solution-Processed Ultrathin TiO2 Compact Layer Hybridized with Mesoporous TiO2 for High-Performance Perovskite Solar Cells.

    Science.gov (United States)

    Jeong, Inyoung; Park, Yun Hee; Bae, Seunghwan; Park, Minwoo; Jeong, Hansol; Lee, Phillip; Ko, Min Jae

    2017-10-25

    The electron transport layer (ETL) is a key component of perovskite solar cells (PSCs) and must provide efficient electron extraction and collection while minimizing the charge recombination at interfaces in order to ensure high performance. Conventional bilayered TiO 2 ETLs fabricated by depositing compact TiO 2 (c-TiO 2 ) and mesoporous TiO 2 (mp-TiO 2 ) in sequence exhibit resistive losses due to the contact resistance at the c-TiO 2 /mp-TiO 2 interface and the series resistance arising from the intrinsically low conductivity of TiO 2 . Herein, to minimize such resistive losses, we developed a novel ETL consisting of an ultrathin c-TiO 2 layer hybridized with mp-TiO 2 , which is fabricated by performing one-step spin-coating of a mp-TiO 2 solution containing a small amount of titanium diisopropoxide bis(acetylacetonate) (TAA). By using electron microscopies and elemental mapping analysis, we establish that the optimal concentration of TAA produces an ultrathin blocking layer with a thickness of ∼3 nm and ensures that the mp-TiO 2 layer has a suitable porosity for efficient perovskite infiltration. We compare PSCs based on mesoscopic ETLs with and without compact layers to determine the role of the hole-blocking layer in their performances. The hybrid ETLs exhibit enhanced electron extraction and reduced charge recombination, resulting in better photovoltaic performances and reduced hysteresis of PSCs compared to those with conventional bilayered ETLs.

  17. Non Isolated and Non-Inverting Cockcroft Walton Multiplier Based Hybrid 2Nx Interleaved Boost Converter For Renewable Energy Applications

    DEFF Research Database (Denmark)

    Bhaskar, Mahajan Sagar; Padamanaban, Sanjeevi Kumar; Blaabjerg, Frede

    2016-01-01

    In this paper hybrid non isolated and non-invertingCockcroft-Walton multiplier based 2Nx InterleavedBoost converter (2Nx IBC) for renewable energy applications is presented. The presented hybrid boost converter topology is derived from non-inverting Nx Multilevel Boost Converter (Nx MBC......) and inverting Nx Multilevel Boost Converter (Nx MBC). In renewable energy applications, generated voltage needs to be stepped up with high conversion ratio using a DC-DC converter at voltage levels as per the application requirement. The advantages of the presentedtopology of interleaved converter are high...

  18. TiO2-ITO and TiO2-ZnO nanocomposites: application on water treatment

    Directory of Open Access Journals (Sweden)

    Bessais B.

    2012-06-01

    Full Text Available One of the most promising ideas to enhance the photocatalytic efficiency of the TiO2 is to couple this photocatalyst with other semiconductors. In this work, we report on the development of photo-catalytic properties of two types of composites based on TiO2 – ITO (Indium Tin Oxide and TiO2 – ZnO deposited on conventional ceramic substrates. The samples were characterized by X-ray diffraction (XRD and transmission Electron Microscopy (TEM. The photo-catalytic test was carried out under UV light in order to reduce/oxidize a typical textile dye (Cibacron Yellow. The experiment was carried out in a bench scale reactor using a solution having a known initial dye concentration. After optimization, we found that both nanocomposites exhibit better photocatalytic activity compared to the standard photocatalyst P25 TiO2.

  19. Effect of oxygen on tuning the TiNx metal gate work function on LaLuO3

    International Nuclear Information System (INIS)

    Mitrovic, I.Z.; Przewlocki, H.M.; Piskorski, K.; Simutis, G.; Dhanak, V.R.; Sedghi, N.; Hall, S.

    2012-01-01

    This paper presents experimental evidence on effective work function tuning due to the presence of oxygen at the TiNx/LaLuO 3 interface. Two complementary techniques, internal photoemission and X-ray photoelectron spectroscopy, show good agreement on the position of the metal gate Fermi level to conduction (2.79 ± 0.25 eV) and valence (2.65 ± 0.08 eV) band edge for TiNx/bulk LaLuO 3 gate stacks. The chemical shifts of Ti2p and N1s core levels and different degree in ionicity of TiNx metal gates correlate with the observed valence band offset shifts. The results have significance for setting the band edge work function and resulting low threshold voltage for ultimately scaled LaLuO 3 -based p-metal oxide semiconductor field effect transistor devices. - Highlights: ► The conduction band offset measured by internal photoemission. ► The valence band offset (VBO) measured by X-ray photoelectron spectroscopy. ► Different degree in ionicity of TiNx correlates with the VBO shifts. ► The effective work function of the gate stacks varies from 4.6 to 5.2 eV. ► Oxygen at the TiNx/LaLuO 3 interface increases effective work function.

  20. TiO2 Photocatalyst Nanoparticle Separation: Flocculation in Different Matrices and Use of Powdered Activated Carbon as a Precoat in Low-Cost Fabric Filtration

    Directory of Open Access Journals (Sweden)

    Carlos F. Liriano-Jorge

    2014-01-01

    Full Text Available Separation of photocatalyst nanoparticles is a problem impeding widespread application of photocatalytic oxidation. As sedimentation of photocatalyst particles is facilitated by their flocculation, the influence of common constituents of biologically pretreated wastewaters (NaCl, NaHCO3, and their combination with humic acid sodium salt on flocculation was tested by the pipet method. Results showed that the impact of these substances on TiO2 nanoparticle flocculation is rather complex and strongly affected by pH. When humic acid was present, TiO2 particles did not show efficient flocculation in the neutral and slightly basic pH range. As an alternative to photocatalyst separation by sedimentation, precoat vacuum filtration with powdered activated carbon (PAC over low-cost spunbond polypropylene fabrics was tested in the presence of two PAC types in aqueous NaCl and NaHCO3 solutions as well as in biologically treated greywater and in secondary municipal effluent. PAC concentrations of ≥2 g/L were required in order to achieve a retention of nearly 95% of the TiO2 nanoparticles on the fabric filter when TiO2 concentration was 1 g/L. Composition of the aqueous matrix and PAC type had a slight impact on precoat filtration. PAC precoat filtration represents a potential pretreatment for photocatalyst removal by micro- or ultrafiltration.

  1. Fabrication of transparent TiO2 nanotube-based photoanodes for CdS/CdTe quantum co-sensitized solar cells

    Science.gov (United States)

    Gualdrón-Reyes, A. F.; Cárdenas-Arenas, A.; Martínez, C. A.; Kouznetsov, V. V.; Meléndez, A. M.

    2017-01-01

    In order to fabricate a solar cell, ordered TiO2 nanotube (TNT) arrays were prepared by double anodization. TNT arrays with variable lengths were obtained by changing the duration of the anodizing process of up to 3h. TNT membranes were transferred to indium tin oxide substrates and attached with a B-TiO2 sol. TNT photoanode with the best photoelectrochemical performance was sensitized with CdS by SILAR method. On other hand, CdTe quantum dots prepared via colloidal synthesis were deposited on TNT photoanodes for 2h, 4h and 6h. In addition, TNT/CdS was loaded with CdTe quantum dots for 4 h. Morphology and chemical modification of TiO2 were characterized by FESEM and XPS, while their photoelectrochemical performance was measured by open-circuit photopotential and photovoltammetry under visible light. TiO2 nanotubes grown during 2.5h showed the highest photocurrent due to presence of Ti3+ donor states by N and F co-doping, increasing the number of photogenerated electrons transported to back collector. TNT/CdS/CdTe photoanode reach the highest conversion efficiency under AM 1.5G simulated solar illumination.

  2. Band structure of TiO sub 2 -doped yttria-stabilized zirconia probed by soft-x-ray spectroscopy

    CERN Document Server

    Higuchi, T; Kobayashi, K; Yamaguchi, S; Fukushima, A; Shin, S

    2003-01-01

    The electronic structure of TiO sub 2 -doped yttria-stabilized zirconia (YSZ) has been studied by soft-X-ray emission spectroscopy (SXES) and X-ray absorption spectroscopy (XAS). The valence band is mainly composed of the O 2p state. The O 1s XAS spectrum exhibits the existence of the Ti 3d unoccupied state under the Zr 4d conduction band. The intensity of the Ti 3d unoccupied state increases with increasing TiO sub 2 concentration. The energy separation between the top of the valence band and the bottom of the Ti 3d unoccupied state is in accord with the energy gap, as expected from dc-polarization and total conductivity measurements. (author)

  3. Role of SiNx Barrier Layer on the Performances of Polyimide Ga2O3-doped ZnO p-i-n Hydrogenated Amorphous Silicon Thin Film Solar Cells

    Science.gov (United States)

    Wang, Fang-Hsing; Kuo, Hsin-Hui; Yang, Cheng-Fu; Liu, Min-Chu

    2014-01-01

    In this study, silicon nitride (SiNx) thin films were deposited on polyimide (PI) substrates as barrier layers by a plasma enhanced chemical vapor deposition (PECVD) system. The gallium-doped zinc oxide (GZO) thin films were deposited on PI and SiNx/PI substrates at room temperature (RT), 100 and 200 °C by radio frequency (RF) magnetron sputtering. The thicknesses of the GZO and SiNx thin films were controlled at around 160 ± 12 nm and 150 ± 10 nm, respectively. The optimal deposition parameters for the SiNx thin films were a working pressure of 800 × 10−3 Torr, a deposition power of 20 W, a deposition temperature of 200 °C, and gas flowing rates of SiH4 = 20 sccm and NH3 = 210 sccm, respectively. For the GZO/PI and GZO-SiNx/PI structures we had found that the GZO thin films deposited at 100 and 200 °C had higher crystallinity, higher electron mobility, larger carrier concentration, smaller resistivity, and higher optical transmittance ratio. For that, the GZO thin films deposited at 100 and 200 °C on PI and SiNx/PI substrates with thickness of ~000 nm were used to fabricate p-i-n hydrogenated amorphous silicon (α-Si) thin film solar cells. 0.5% HCl solution was used to etch the surfaces of the GZO/PI and GZO-SiNx/PI substrates. Finally, PECVD system was used to deposit α-Si thin film onto the etched surfaces of the GZO/PI and GZO-SiNx/PI substrates to fabricate α-Si thin film solar cells, and the solar cells’ properties were also investigated. We had found that substrates to get the optimally solar cells’ efficiency were 200 °C-deposited GZO-SiNx/PI. PMID:28788494

  4. Role of SiNx Barrier Layer on the Performances of Polyimide Ga2O3-doped ZnO p-i-n Hydrogenated Amorphous Silicon Thin Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Fang-Hsing Wang

    2014-02-01

    Full Text Available In this study, silicon nitride (SiNx thin films were deposited on polyimide (PI substrates as barrier layers by a plasma enhanced chemical vapor deposition (PECVD system. The gallium-doped zinc oxide (GZO thin films were deposited on PI and SiNx/PI substrates at room temperature (RT, 100 and 200 °C by radio frequency (RF magnetron sputtering. The thicknesses of the GZO and SiNx thin films were controlled at around 160 ± 12 nm and 150 ± 10 nm, respectively. The optimal deposition parameters for the SiNx thin films were a working pressure of 800 × 10−3 Torr, a deposition power of 20 W, a deposition temperature of 200 °C, and gas flowing rates of SiH4 = 20 sccm and NH3 = 210 sccm, respectively. For the GZO/PI and GZO-SiNx/PI structures we had found that the GZO thin films deposited at 100 and 200 °C had higher crystallinity, higher electron mobility, larger carrier concentration, smaller resistivity, and higher optical transmittance ratio. For that, the GZO thin films deposited at 100 and 200 °C on PI and SiNx/PI substrates with thickness of ~1000 nm were used to fabricate p-i-n hydrogenated amorphous silicon (α-Si thin film solar cells. 0.5% HCl solution was used to etch the surfaces of the GZO/PI and GZO-SiNx/PI substrates. Finally, PECVD system was used to deposit α-Si thin film onto the etched surfaces of the GZO/PI and GZO-SiNx/PI substrates to fabricate α-Si thin film solar cells, and the solar cells’ properties were also investigated. We had found that substrates to get the optimally solar cells’ efficiency were 200 °C-deposited GZO-SiNx/PI.

  5. Facile synthesis of 3D few-layered MoS2 coated TiO2 nanosheet core-shell nanostructures for stable and high-performance lithium-ion batteries

    Science.gov (United States)

    Chen, Biao; Zhao, Naiqin; Guo, Lichao; He, Fang; Shi, Chunsheng; He, Chunnian; Li, Jiajun; Liu, Enzuo

    2015-07-01

    Uniform transition metal sulfide deposition on a smooth TiO2 surface to form a coating structure is a well-known challenge, caused mainly due to their poor affinities. Herein, we report a facile strategy for fabricating mesoporous 3D few-layered (glucose as a binder. The core-shell structure has been systematically examined and corroborated by transmission electron microscopy, scanning transmission electron microscopy, and X-ray photoelectron spectroscopy analyses. It is found that the resultant 3D FL-MoS2@TiO2 as a lithium-ion battery anode delivers an outstanding high-rate capability with an excellent cycling performance, relating to the unique structure of 3D FL-MoS2@TiO2. The 3D uniform coverage of few-layered (glucose as a binder. The core-shell structure has been systematically examined and corroborated by transmission electron microscopy, scanning transmission electron microscopy, and X-ray photoelectron spectroscopy analyses. It is found that the resultant 3D FL-MoS2@TiO2 as a lithium-ion battery anode delivers an outstanding high-rate capability with an excellent cycling performance, relating to the unique structure of 3D FL-MoS2@TiO2. The 3D uniform coverage of few-layered (<4 layers) MoS2 onto the TiO2 can remarkably enhance the structure stability and effectively shortens the transfer paths of both lithium ions and electrons, while the strong synergistic effect between MoS2 and TiO2 can significantly facilitate the transport of ions and electrons across the interfaces, especially in the high-rate charge-discharge process. Moreover, the facile fabrication strategy can be easily extended to design other oxide/carbon-sulfide/oxide core-shell materials for extensive applications. Electronic supplementary information (ESI) available: Supplementary SEM, TEM, XPS and EIS analyses. See DOI: 10.1039/c5nr03334a

  6. Synthesis of mesoporous TiO(2-x)N(x) spheres by template free homogeneous co-precipitation method and their photo-catalytic activity under visible light illumination.

    Science.gov (United States)

    Parida, K M; Naik, Brundabana

    2009-05-01

    The article presents preparation, characterization and catalytic activity evaluation of an efficient nitrogen doped mesoporous titania sphere photo-catalyst for degradation of methylene blue (MB) and methyl orange (MO) under visible light illumination. Nitrogen doped titania was prepared by soft chemical route i.e. template free, slow and controlled homogeneous co-precipitation from titanium oxysulfate sulfuric acid complex hydrate, urea, ethanol and water. The molar composition of TiOSO(4) to urea was varied to prepare different atomic % nitrogen doped titania. Mesoporous anatase TiO(2-x)N(x) spheres with average crystallite size of 10 nm and formation of titanium oxynitride center were confirmed from HRTEM, XRD and XPS study. UV-vis DRS showed a strong absorption in the range of 400-500 nm which supports its use in visible spectrum of light. Nitrogen adsorption-desorption study supports the porous nature of the doped material. All the TiO(2-x)N(x) samples showed higher photo-catalytic activity than Degussa P(25) and undoped mesoporous titania. Sample containing around one atomic % nitrogen showed highest activity among the TiO(2-x)N(x) samples.

  7. Non-aqueous hybrid supercapacitors fabricated with mesoporous TiO2 microspheres and activated carbon electrodes with superior performance

    Science.gov (United States)

    Cai, Yong; Zhao, Bote; Wang, Jie; Shao, Zongping

    2014-05-01

    Mesoporous TiO2 microspheres, synthesized by a facile template-free solvothermal method and subsequent heat treatment, are exploited as the electrode for hybrid supercapacitors. The effects of the calcination temperature on the phase composition, particulate microstructure and morphology are characterized by XRD, Raman, FE-SEM and N2 adsorption/desorption measurements. Hybrid supercapacitors utilizing the as-prepared TiO2 mesoporous microspheres as the negative electrode and activated carbon (AC) as the positive electrode in a non-aqueous electrolyte are fabricated. The electrochemical performance of these hybrid supercapacitors is studied by galvanostatic charge-discharge and cyclic voltammetry (CV). The hybrid supercapacitor built from TiO2 microspheres calcined at 400 °C shows the best performance, delivering an energy density of 79.3 Wh kg-1 at a power density of 178.1 W kg-1. Even at a power density of 9.45 kW kg-1, an energy density of 31.5 Wh kg-1 is reached. These values are much higher than the AC-AC symmetric supercapacitor. In addition, the hybrid supercapacitor exhibits excellent cycling performance, retaining 98% of the initial energy density after 1000 cycles. Such outstanding electrochemical performance of the hybrid supercapacitor is attributed to the matched reaction kinetics between the two electrodes with different energy storage mechanisms.

  8. Transparent conductive electrodes of mixed TiO2−x–indium tin oxide for organic photovoltaics

    KAUST Repository

    Lee, Kyu-Sung

    2012-05-22

    A transparent conductive electrode of mixed titanium dioxide (TiO2x)–indium tin oxide (ITO) with an overall reduction in the use of indium metal is demonstrated. When used in organic photovoltaicdevices based on bulk heterojunction photoactive layer of poly (3-hexylthiophene) and [6,6]-phenyl C61 butyric acid methyl ester, a power conversion efficiency of 3.67% was obtained, a value comparable to devices having sputtered ITO electrode. Surface roughness and optical efficiency are improved when using the mixed TiO2−x–ITO electrode. The consumption of less indium allows for lower fabrication cost of such mixed thin filmelectrode.

  9. Analysis of Ti valence states in resistive switching regions of a rutile TiO2x four-terminal memristive device

    Science.gov (United States)

    Yamaguchi, Kengo; Takeuchi, Shotaro; Tohei, Tetsuya; Ikarashi, Nobuyuki; Sakai, Akira

    2018-06-01

    We have performed Ti valence state analysis of our four-terminal rutile TiO2x single-crystal memristors using scanning transmission electron microscopy–electron energy loss spectroscopy (STEM–EELS). Analysis of Ti-L2,3 edge EELS spectra revealed that the electrocolored region formed by the application of voltage includes a valence state reflecting highly reduced TiO2x due to the accumulation of oxygen vacancies. Such a valence state mainly exists within ∼50 nm from the crystal surface and extends along specific crystal directions. These electrically reduced surface layers are considered to directly contribute to the resistive switching (RS) in the four-terminal device. The present results add new insights into the microscopic mechanisms of the RS phenomena and should contribute to further development and improvements of TiO2x based memristive devices.

  10. High-Performance Epoxy-Resin-Bonded Magnets Produced from the Sm2Fe17Nx Powders Coated by Copper and Zinc Metals

    Science.gov (United States)

    Noguchi, Kenji; Machida, Ken-ichi; Adachi, Gin-ya

    2001-04-01

    Fine powders of Sm2Fe17Nx coated with copper metal reduced from CuCl2 and/or zinc metal subsequently derived by photo-decomposition of diethylzinc [Zn(C2H5)2] were prepared, and their magnetic properties were characterized in addition to those of epoxy-resin-bonded magnets produced from the coated powders (Cu/Sm2Fe17Nx, Zn/Sm2Fe17Nx and Zn/Cu/Sm2Fe17Nx). The remanence (Br) and maximum energy product [(\\mathit{BH})max] of double metal-coated Zn/Cu/Sm2Fe17Nx powders were maintained at higher levels than those of single Zn metal-coated Sm2Fe17Nx ones (Zn/Sm2Fe17Nx) even after heat treatment at 673 K since the oxidation resistance and thermal stability were effectively improved by formation of the thick and uniform protection layer on the surface of Sm2Fe17Nx particles. Moreover, the epoxy-resin-bonded magnets produced from the Zn/Cu/Sm2Fe17Nx powders possessed good corrosion resistance in air at 393 K which it resulted in the smaller thermal irreversible flux loss than that of uncoated and single Zn metal-coated Sm2Fe17Nx powders in the temperature range of above 393 K.

  11. Novel bamboo structured TiO2 nanotubes for energy storage/production applications

    Science.gov (United States)

    Samuel, J. J.; Beh, K. P.; Cheong, Y. L.; Yusuf, W. A. A.; Yam, F. K.

    2018-04-01

    Nanostructured TiO2 received much attention owing to its high surface-to-volume ratio, which can be advantageous in energy storage and production applications. However, the increase in energy consumption at present and possibly the foreseeable future has demanded energy storage and production devices of even higher performance. A direct approach would be manipulating the physical aspects of TiO2 nanostructures, particularly, nanotubes. In this work, dual voltage anodization system has been implemented to fabricate bamboo shaped TiO2 nanotubes, which offers even greater surface area. This unique nanostructure would be used in Dye Sensitized Solar Cell (DSSC) fabrication and its performance will be evaluated and compared along other forms of TiO2 nanotubes. The results showed that bamboo shaped nanotubes indeed are superior morphologically, with an increase of efficiency of 107% at 1.130% efficiency when compared to smooth walled nanotubes at 0.546% efficiency.

  12. One-component solution system to prepare nanometric anatase TiO2

    International Nuclear Information System (INIS)

    Trung, Tran; Ha, Chang-Sik

    2004-01-01

    A novel one-pot synthesis route was proposed to prepare nanometric anatase TiO 2 using trichloroethylene as reaction medium, which may have great advantage over multicomponent solution systems when TiO 2 is used as a reinforcing filler for polymers dissolved in trichloroethylene. The anatase TiO 2 nanoparticles were characterized using X-ray diffraction (XRD), scanning electron microscopy and small-angle X-ray scattering (SAXS). It was found that the diameters of TiO 2 nanoparticles are in the range from 5 to 13 nm

  13. Microwave synthesized nanostructured TiO2-activated carbon composite electrodes for supercapacitor

    International Nuclear Information System (INIS)

    Selvakumar, M.; Bhat, D. Krishna

    2012-01-01

    Highlights: ► Nanostructure TiO 2 has been prepared by a microwave assisted synthesis method. ► Microwave irradiation was varied with time duration on the formation of nanoparticles. ► TiO 2 -activate carbon show very good specific capacitance for supercapacitor. ► Electrochemical properties were studied on electroanalytical techniques. - Abstract: Electrochemical properties of a supercapacitor based on nanocomposite electrodes of activated carbon with TiO 2 nano particles synthesized by a microwave method have been determined. The TiO 2 /activated carbon nanocomposite electrode with a composition of 1:3 showed a specific capacitance 92 Fg −1 . The specific capacitance of the electrode decreased with increase in titanium dioxide content. The p/p symmetrical supercapacitor fabricated with TiO 2 /activated carbon composite electrodes showed a specific capacitance of 122 Fg −1 . The electrochemical behavior of the neat TiO 2 nanoparticles has also been studied for comparison purpose. The galvanostatic charge–discharge test of the fabricated supercapacitor showed that the device has good coulombic efficiency and cycle life. The specific capacitance of the supercapacitor was stable up to 5000 cycles at current densities of 2, 4, 6 and 7 mA cm −2 .

  14. A promising tritium breeding material: Nanostructured 2Li2TiO3-Li4SiO4 biphasic ceramic pebbles

    Science.gov (United States)

    Dang, Chen; Yang, Mao; Gong, Yichao; Feng, Lan; Wang, Hailiang; Shi, Yanli; Shi, Qiwu; Qi, Jianqi; Lu, Tiecheng

    2018-03-01

    As an advanced tritium breeder material for the fusion reactor blanket of the International Thermonuclear Experimental Reactor (ITER), Li2TiO3-Li4SiO4 biphasic ceramic has attracted widely attention due to its merits. In this paper, the uniform precursor powders were prepared by hydrothermal method, and nanostructured 2Li2TiO3-Li4SiO4 biphasic ceramic pebbles were fabricated by an indirect wet method at the first time. In addition, the composition dependence (x/y) of their microstructure characteristics and mechanical properties were investigated. The results indicated that the crush load of biphasic ceramic pebbles was better than that of single phase ceramic pebbles under identical conditions. The 2Li2TiO3-Li4SiO4 ceramic pebbles have good morphology, small grain size (90 nm), satisfactory crush load (37.8 N) and relative density (81.8 %T.D.), which could be a promising breeding material in the future fusion reactor.

  15. An innovative approach to synthesize highly-ordered TiO2 nanotubes.

    Science.gov (United States)

    Isimjan, Tayirjan T; Yang, D Q; Rohani, Sohrab; Ray, Ajay K

    2011-02-01

    An innovative route to prepare highly-ordered and dimensionally controlled TiO2 nanotubes has been proposed using a mild sonication method. The nanotube arrays were prepared by the anodization of titanium in an electrolyte containing 3% NH4F and 5% H2O in glycerol. It is demonstrated that the TiO2 nanostructures has two layers: the top layer is TiO2 nanowire and underneath is well-ordered TiO2 nanotubes. The top layer can easily fall off and form nanowires bundles by implementing a mild sonication after a short annealing time. We found that the dimensions of the TiO2 nanotubes were only dependent on the anodizing condition. The proposed technique may be extended to fabricate reproducible well-ordered TiO2 nanotubes with large area on other metals.

  16. Hydrogenated TiO2 nanotube photonic crystals for enhanced photoelectrochemical water splitting.

    Science.gov (United States)

    Meng, Ming; Zhou, Sihua; Yang, Lun; Gan, Zhixing; Liu, Kuili; Tian, Fengshou; Zhu, Yu; Li, ChunYang; Liu, Weifeng; Yuan, Honglei; Zhang, Yan

    2018-04-02

    We report the design, fabrication and characterization of novel TiO 2 nanotube photonic crystals with a crystalline core/disordered shell structure as well as substantial oxygen vacancies for photoelectrochemical (PEC) water splitting. The novel TiO 2 nanotube photonic crystals are fabricated by annealing of anodized TiO 2 nanotube photonic crystals in hydrogen atmosphere at various temperatures. The optimized novel TiO 2 nanotube photonic crystals produce a maximal photocurrent density of 2.2 mA cm -2 at 0.22 V versus Ag/AgCl, which is two times higher that of the TiO 2 nanotube photonic crystals annealed in air. Such significant PEC performance improvement can be ascribed to synergistic effects of the disordered surface layer and oxygen vacancies. The reduced band gap owing to the disordered surface layer and localized states induced by oxygen vacancies can enhance the efficient utilization of visible light. In addition, the disordered surface layer and substantial oxygen vacancies can promote the efficiency for separation and transport of the photogenerated carriers. This work may open up new opportunities for the design and construction of the high efficient and low-cost PEC water splitting system.

  17. Performance of Erbium-doped TiO2 thin film grown by physical vapor deposition technique

    Science.gov (United States)

    Lahiri, Rini; Ghosh, Anupam; Dwivedi, Shyam Murli Manohar Dhar; Chakrabartty, Shubhro; Chinnamuthu, P.; Mondal, Aniruddha

    2017-09-01

    Undoped and Erbium-doped TiO2 thin films (Er:TiO2 TFs) were fabricated on the n-type Si substrate using physical vapour deposition technique. Field emission scanning electron microscope showed the morphological change in the structure of Er:TiO2 TF as compared to undoped sample. Energy dispersive X-ray spectroscopy (EDX) confirmed the Er doping in the TiO2 thin film (TF). The XRD and Raman spectrum showed the presence of anatase phase TiO2 and Er2O3 in the Er:TiO2 TF. The Raman scattering depicted additional number of vibrational modes for Er:TiO2 TF due to the presence of Er as compared to the undoped TiO2 TF. The UV-Vis absorption measurement showed that Er:TiO2 TF had approximately 1.2 times more absorption over the undoped TiO2 TF in the range of 300-400 nm. The main band transition, i.e., the transition between the oxygen (2p) state and the Ti (3d) state was obtained at 3.0 eV for undoped TiO2 and at 3.2 eV for Er:TiO2 TF, respectively. The photo responsivity measurement was done on both the detectors, where Er:TiO2 TF detector showed better detectivity ( D *), noise equivalent power and temporal response as compared to undoped detector under ultra-violet illumination.

  18. Laser induced photocurrent and photovoltage transient measurements of dye-sensitized solar cells based on TiO_2 nanosheets and TiO_2 nanoparticles

    International Nuclear Information System (INIS)

    Ghaithan, Hamid M.; Qaid, Saif M.H.; Hezam, Mahmoud; Labis, Joselito P.; Alduraibi, Mohammad; Bedja, Idriss M.; Aldwayyan, Abdullah S.

    2016-01-01

    Dye-sensitized solar cells (DSSCs) based on TiO_2 nanoparticles and TiO_2 nanosheets with exposed {001} facets are investigated using laser-induced photovoltage and photocurrent transient decay (LIPVCD) measurements. We adopted a simplified version of LIPVCD technique, in which a single illumination light source and a laboratory oscilloscope could be conveniently used for the measurements. Although the {001} surface of TiO_2 nanosheets allowed a noticeably slower recombination with the electrolyte, this was counterpoised by a slower electron transport probably due to its planar morphology, resulting in a shorter diffusion length in TiO_2 nanosheets. The nanosheet morphology also resulted in less surface area and therefore reduced short circuit current density in the fabricated devices. Our work highlights the fact that the morphological parameters of TiO_2 nanosheets finally resulting after electrode film deposition is of no less importance than the reported efficient dye adsorption and slow electron recombination at the surface of individual nanosheets.

  19. Hydrogen-Etched TiO2x as Efficient Support of Gold Catalysts for Water–Gas Shift Reaction

    Directory of Open Access Journals (Sweden)

    Li Song

    2018-01-01

    Full Text Available Hydrogen-etching technology was used to prepare TiO2x nanoribbons with abundant stable surface oxygen vacancies. Compared with traditional Au-TiO2, gold supported on hydrogen-etched TiO2x nanoribbons had been proven to be efficient and stable water–gas shift (WGS catalysts. The disorder layer and abundant stable surface oxygen vacancies of hydrogen-etched TiO2x nanoribbons lead to higher microstrain and more metallic Au0 species, respectively, which all facilitate the improvement of WGS catalytic activities. Furthermore, we successfully correlated the WGS thermocatalytic activities with their optoelectronic properties, and then tried to understand WGS pathways from the view of electron flow process. Hereinto, the narrowed forbidden band gap leads to the decreased Ohmic barrier, which enhances the transmission efficiency of “hot-electron flow”. Meanwhile, the abundant surface oxygen vacancies are considered as electron traps, thus promoting the flow of “hot-electron” and reduction reaction of H2O. As a result, the WGS catalytic activity was enhanced. The concept involved hydrogen-etching technology leading to abundant surface oxygen vacancies can be attempted on other supported catalysts for WGS reaction or other thermocatalytic reactions.

  20. Preparation and solar-light photocatalytic activity of TiO2 composites: TiO2/kaolin, TiO2/diatomite, and TiO2/zeolite

    Science.gov (United States)

    Li, Y.; Li, S. G.; Wang, J.; Li, Y.; Ma, C. H.; Zhang, L.

    2014-12-01

    Three TiO2 loaded composites, TiO2/kaolin, TiO2/diatomite, and TiO2/zeolite, were prepared in order to improve the solar-light photocatalytic activity of TiO2. The results showed that the photocatalytic activity could obviously be enhanced by loading appropriate amount of inorganic mineral materials. Meanwhile, TiO2 content, heat-treatment temperature and heat-treatment time on the photocatalytic activity were reviewed. Otherwise, the effect of solar light irradiation time and dye concentration on the photocatalytic degradation of Acid Red B was investigated. Furthermore, the degradation mechanism and adsorption process were also discussed.

  1. tavgU_2d_flx_Nx: MERRA 2D IAU Diagnostic, Surface Fluxes, Diurnal 0.667 x 0.5 degree V5.2.0 (MATUNXFLX) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATUNXFLX or tavgU_2d_flx_Nx data product is the MERRA Data Assimilation System 2-Dimensional surface turbulence flux diagnostic that is time averaged...

  2. Photoelectrochemical Performances and Potential Applications of TiO2 Nanotube Arrays Modified with Ag and Pt Nanoparticles

    International Nuclear Information System (INIS)

    Xu, Guangqing; Liu, Haipeng; Wang, Jinwen; Lv, Jun; Zheng, Zhixiang; Wu, Yucheng

    2014-01-01

    TiO 2 nanotube arrays (NTAs) modified with Ag (Ag/TiO 2 ) and Pt (Pt/TiO 2 ) nanoparticles were fabricated by anodic oxidation combined with photoreduction and hydrothermal methods, respectively. Structures, element components and morphologies of TiO 2 , Ag/TiO 2 and Pt/TiO 2 NTAs were measured by X-ray diffraction diffractometer, X-ray photoelectron spectroscopy, scanning electron microscope and transmission electron microscope. The photoeletrochemical performances of TiO 2 , Pt/TiO 2 and Ag/TiO 2 NTAs were characterized by cyclic voltammetry and amperometry in phosphate buffer solution in absence and presence of glucose. Modifications of Ag and Pt nanoparticles play different roles in the photoelectrochemical process and have different potential applications. Ag nanoparticles decrease the photocurrent in buffer solution but increase the photocurrent response to organic compounds, which is fit for electrochemical detection of organic compounds due to the low background photocurrent and high photocurrent response. Ag/TiO 2 NTAs achieve the best detection performance with sensitivity of 0.152 μA/μM and detection limit of 0.53 μM. On the contrary, Pt nanoparticles can enhance the photocurrent of TiO 2 NTAs in buffer solution but decrease the photocurrent response to organic compounds, which are benefit for photocatalytic water splitting but not for photoelectrochemical detection

  3. EFFECT OF THE REDUCTION TEMPERATURE INTO CATALYTIC ACTIVITY OF Ni SUPPORTED BY TiO2, AL2O2 AND TiO2/AL2O3 FOR CONVERSION CO2 INTO METHANE

    Directory of Open Access Journals (Sweden)

    Hery Haerudin

    2010-06-01

    Full Text Available Nickel catalysts, containing 6% (w/w of nickel, have been prepared using TiO2, Al2O3 and mixture of TiO2-Al2O3 (1:9. The catalysts were used for CO2 conversion into methane. The characteristics of catalysts were studied by determination of its specific surface area, temperature programmed reaction technique and X-ray diffraction. The specific surface area were varied slightly by different temperature of reduction, namely after reduction at 300°C it was 39, 120 and 113 m2/g and after reduction at 400°C it was 42, 135  and 120 m2/g for 6% nickel catalysts supported on TiO2, Al2O3 and mixture of TiO2-Al2O3 (1:9 respectively. Temperature program reaction studies (TPO and TPR showed that NiTiOx species were possibly formed during the pretreatments which has shown by the shift of its peak to the lower temperature on Ni catalyst, that supported on mixture of TiO2-Al2O3 compared with catalysts supported on individual TiO2 or Al2O3. The nickel species on reduced Ni catalysts supported on TiO2 and on mixture of TiO2-Al2O3 could be detected by X-ray diffraction. The catalyst's activities toward CH4 formation were affected by the reduction temperature. Activity for CH4 formation was decreased in the following order: Ni/ TiO2 > Ni/ TiO2: Al2O3 > Ni/ Al2O3 and Ni/ TiO2: Al2O3 > Ni/ TiO2> Ni/ Al2O3, when catalysts were reduced at 300°C or 400°C respectively. The CO2 conversion was decreased in the following order: Ni/ Al2O3 > Ni/ TiO2: Al2O3 > Ni/ TiO2 when catalysts were reduced at 300°C or 400°C respectively.   Keywords: nickel catalyst, carbondioxide, methane

  4. tavgM_2d_ocn_Nx: MERRA 2D IAU Ocean Surface Diagnostic, Diurnal 0.667 x 0.5 degree V5.2.0 (MATUNXOCN) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATUNXOCN or tavgU_2d_ocn_Nx data product is the MERRA Data Assimilation System 2-Dimensional ocean surface single-level diagnostics that is monthly mean...

  5. TiO2--a prototypical memristive material.

    Science.gov (United States)

    Szot, K; Rogala, M; Speier, W; Klusek, Z; Besmehn, A; Waser, R

    2011-06-24

    Redox-based memristive switching has been observed in many binary transition metal oxides and related compounds. Since, on the one hand, many recent reports utilize TiO(2) for their studies of the memristive phenomenon and, on the other hand, there is a long history of the electronic structure and the crystallographic structure of TiO(2) under the impact of reduction and oxidation processes, we selected this material as a prototypical material to provide deeper insight into the mechanisms behind memristive switching. In part I, we briefly outline the results of the historical and recent studies of electroforming and resistive switching of TiO(2)-based cells. We describe the (tiny) stoichiometrical range for TiO(2 - x) as a homogeneous compound, the aggregation of point defects (oxygen vacancies) into extended defects, and the formation of the various Magnéli phases. Furthermore, we discuss the driving forces for these solid-state reactions from the thermodynamical point of view. In part II, we provide new experimental details about the hierarchical transformation of TiO(2) single crystals into Magnéli phases, and vice versa, under the influence of chemical, electrical and thermal gradients, on the basis of the macroscopic and nanoscopic measurements. Those include thermogravimetry, high-temperature x-ray diffraction (XRD), high-temperature conductivity measurements, as well as low-energy electron diffraction (LEED), x-ray photoelectron spectroscopy (XPS), and LC-AFM (atomic force microscope equipped with a conducting tip) studies. Conclusions are drawn concerning the relevant parameters that need to be controlled in order to tailor the memristive properties.

  6. Synthesis of TiO2 Nanoparticle and its Application to Graphite Composite Electrode for Hydroxylamine Oxidation

    Directory of Open Access Journals (Sweden)

    M. Mazloum-Ardakani

    2013-09-01

    Full Text Available In this work, sol-gel method was used tosynthesize titanium dioxide nanoparticles (TiO2. The TiO2nanoparticles was characterized by Scanning Electron Microscopy (SEM, x-ray diffraction (XRD and BET technique.The TiO2 and coumarin derivative (7-(1,3-dithiolan-2-yl-9, 10-dihydroxy-6H-benzofuro [3,2-c] chromen-6-on were incorporated in a graphite composite electrode. The resulting modified electrode displayed a good electrocatalytic activity for the oxidation of hydroxylamine, which leads to a reduction in its overpotential by more than 520 mV. Differential pulse voltammetry (DPV of hydroxylamine at the modified electrode exhibited a linear dynamic range (between 0.5 and 500.0 µM with a detection limit (3σ of 0.133 μM. The high sensitivity, ease of fabrication and low cost of this modified electrode for the detection of hydroxylamine demonstrate its potential sensing applications.

  7. Facile fabrication of p-n heterojunctions for Cu2O submicroparticles deposited on anatase TiO2 nanobelts

    International Nuclear Information System (INIS)

    Li, Li; Lei, Jingguo; Ji, Tianhao

    2011-01-01

    Graphical abstract: Cu 2 O particle-deposited TiO 2 nanobelts with p-n semiconductor heterojunction structure were successfully prepared via two-step preparation process, and their visible-light photodegradation activities of Rhodamine B were investigated in detail. Highlights: → Cu 2 O particle-deposited TiO 2 nanobelts mainly with diameters in a range of 200-400 nm were successfully prepared. → The amount of Cu 2 O particles deposited on TiO 2 nanobelts can be tuned. → The composite structure with Cu 2 O particles and TiO 2 nanobelts exhibits p-n semiconductor heterojunction performance. → Photocatalytic properties of such composites. -- Abstract: In this paper, Cu 2 O particle-deposited TiO 2 nanobelts with p-n semiconductor heterojunction structure were successfully prepared via a two-step preparation process to investigate electron-transfer performance between p-type Cu 2 O and n-type TiO 2 . Various measurement results confirm that the amount of pure Cu 2 O submicroparticles, with diameters within the range of 200-400 nm and deposited on the surface of TiO 2 nanobelts, can be controlled, and that the purity of Cu 2 O is heavily affected by reaction time. Visible-light photodegradation activities of Rhodamine B show that photocatalysts have little or no photocatalytic activities mainly due to their p-n heterojunction structure, indicating that there hardly appears any electron-transfer from Cu 2 O to TiO 2 .

  8. Study of TiO2(1 1 0)-p(1x1), p(1x2) and p(1x3) surface structures by impact collision ion scattering spectroscopy (ICISS)

    International Nuclear Information System (INIS)

    Asari, E.; Souda, R.

    2000-01-01

    The surface structure of TiO 2 (1 1 0)-p(1x1), p(1x2) and p(1x3) were studied using impact collision ion scattering spectroscopy (ICISS). We found that (i) the height of bridging oxygen for the p(1x1) is comparative to that of bulk structure, (ii) the p(1x2) surface has the added Ti 2 O 3 unit rows proposed by Onishi et al. and also the oxygen atoms rows between Ti 2 O 3 unit rows and (iii) the p(1x3) surface is constructed with the same added Ti 2 O 3 unit rows as that in the p(1x2) surface, but the bridging oxygen rows exist between the Ti 2 O 3 unit rows

  9. Fabrication and electrical characteristics for MIS diode by utilizing TiO2 ceramics

    International Nuclear Information System (INIS)

    Bae, S.H.

    1981-01-01

    Metal insulator semiconductor diodes were made by utilizing TiO 2 ceramics. Tunnel field emission is here proposed as a model for rectification in TiO 2 diode. Measurements of junction depth show very satisfactory agreement with value obtained from the Richardson plot, thus serving as additional supporting evidence of field emission in TiO 2 ceramic. The measured junction area exceeds by a factor of 10 6 the value expected by assuming field emission. The Richardson plot shows a deviation from the emission theory at low voltage, which is probably due to leakage currents which are present in MIS rutile diode. (author)

  10. Sustained release of melatonin from TiO2 nanotubes for modulating osteogenic differentiation of mesenchymal stem cells in vitro.

    Science.gov (United States)

    Lai, Min; Jin, Ziyang; Tang, Qiang; Lu, Min

    2017-10-01

    To control the sustained release of melatonin and modulate the osteogenic differentiation of mesenchymal stem cells (MSCs), melatonin was firstly loaded onto TiO 2 nanotubes by direct dropping method, and then a multilayered film was coated by a spin-assisted layer-by-layer technique, which was composed of chitosan (Chi) and gelatin (Gel). Successful fabrication was characterized by field emission scanning electron microscopy, atomic force microscope, X-ray photoelectron spectroscopy and contact angle measurement, respectively. The efficient sustained release of melatonin was measured by UV-visible-spectrophotometer. After 2 days of culture, well-spread morphology was observed in MSCs grown on the Chi/Gel multilayer-coated melatonin-loaded TiO 2 nanotube substrates as compared to different groups. After 4, 7, 14 and 21 days of culture, the multilayered-coated melatonin-loaded TiO 2 nanotube substrates increased cell proliferation, increased alkaline phosphatase (ALP) and mineralization, increased expression of mRNA levels for runt-related transcription factor 2 (Runx2), ALP, osteopontin (OPN) and osteocalcin (OC), indicative of osteoblastic differentiation. These results demonstrated that Chi/Gel multilayer-coated melatonin-loaded TiO 2 nanotube substrates promoted cell adhesion, spreading, proliferation and differentiation and could provide an alternative fabrication method for titanium-based implants to enhance the osteointegration between bone tissues and implant surfaces.

  11. Inverted organic solar cells with solvothermal synthesized vanadium-doped TiO2 thin films as efficient electron transport layer

    Institute of Scientific and Technical Information of China (English)

    Mehdi Ahmadi; Sajjad Rashidi Dafeh; Samaneh Ghazanfarpour; Mohammad Khanzadeh

    2017-01-01

    We investigated the effects of using different thicknesses of pure and vanadium-doped thin films of TiO2 as the electron transport layer in the inverted configuration of organic photovoltaic cells based on poly (3-hexylthiophene) P3HT:[6-6] phenyl-(6) butyric acid methyl ester (PCBM).1% vanadium-doped TiO2 nanoparticles were synthesized via the solvothermal method.Crystalline structure,morphology,and optical properties of pure and vanadium-doped TiO2 thin films were studied by different techniques such as x-ray diffraction,scanning electron microscopy,transmittance electron microscopy,and UV-visible transmission spectrum.The doctor blade method which is compatible with roll-2-roll printing was used for deposition of pure and vanadium-doped TiO2 thin films with thicknesses of 30 nm and 60 nm.The final results revealed that the best thickness of TiO2 thin films for our fabricated cells was 30 nm.The cell with vanadium-doped TiO2 thin film showed slightly higher power conversion efficiency and great Jsc of 10.7 mA/cm2 compared with its pure counterpart.In the cells using 60 nm pure and vanadium-doped TiO2 layers,the cell using the doped layer showed much higher efficiency.It is remarkable that the extemal quantum efficiency of vanadium-doped TiO2 thin film was better in all wavelengths.

  12. Fabrication of TiO2 Crystalline Coatings by Combining Ti-6Al-4V Anodic Oxidation and Heat Treatments

    Directory of Open Access Journals (Sweden)

    María Laura Vera

    2015-01-01

    Full Text Available The bio- and hemocompatibility of titanium alloys are due to the formation of a TiO2 layer. This natural oxide may have fissures which are detrimental to its properties. Anodic oxidation is used to obtain thicker films. By means of this technique, at low voltages oxidation, amorphous and low roughness coatings are obtained, while, above a certain voltage, crystalline and porous coatings are obtained. According to the literature, the crystalline phases of TiO2, anatase, and rutile would present greater biocompatibility than the amorphous phase. On the other hand, for hemocompatible applications, smooth and homogeneous surfaces are required. One way to obtain crystalline and homogeneous coatings is by heat treatments after anodic oxidation. The aim of this study is to evaluate the influence of heat treatments on the thickness, morphology, and crystalline structure of the TiO2 anodic coatings. The characterization was performed by optical and scanning electron microscopy, X-ray diffraction, and X-ray reflectometry. Coatings with different colors of interference were obtained. There were no significant changes in the surface morphology and roughness after heat treatment of 500°C. Heat treated coatings have different proportions of the crystalline phases, depending on the voltage of anodic oxidation and the temperature of the heat treatment.

  13. Fabrication of TiO2-modified polytetrafluoroethylene ultrafiltration membranes via plasma-enhanced surface graft pretreatment

    Science.gov (United States)

    Qian, Yingjia; Chi, Lina; Zhou, Weili; Yu, Zhenjiang; Zhang, Zhongzhi; Zhang, Zhenjia; Jiang, Zheng

    2016-01-01

    Surface hydrophilic modification of polymer ultrafiltration membrane using metal oxide represents an effective yet highly challenging solution to improve water flux and antifouling performance. Via plasma-enhanced graft of poly acryl acid (PAA) prior to coating TiO2, we successfully fixed TiO2 functional thin layer on super hydrophobic polytetrafluoroethylene (PTFE) ultrafiltration (UF) membranes. The characterization results evidenced TiO2 attached on the PTFE-based UF membranes through the chelating bidentate coordination between surface-grafted carboxyl group and Ti4+. The TiO2 surface modification may greatly reduce the water contact angle from 115.8° of the PTFE membrane to 35.0° without degradation in 30-day continuous filtration operations. The novel TiO2/PAA/PTFE membranes also exhibited excellent antifouling and self-cleaning performance due to the intrinsic hydrophilicity and photocatalysis properties of TiO2, which was further confirmed by the photo-degradation of MB under Xe lamp irradiation.

  14. Design of H3PW12O40/TiO2 nano-photocatalyst for efficient photocatalysis under simulated sunlight irradiation

    International Nuclear Information System (INIS)

    Zhao, Kun; Lu, Ying; Lu, Nan; Zhao, Yahui; Yuan, Xing; Zhang, Hao; Teng, Lianghui; Li, Fu

    2013-01-01

    H 3 PW 12 O 40 /TiO 2 (PW 12 /TiO 2 ) nano-photocatalyst was successfully synthesized through a modified sol–gel-hydrothermal method. The X-ray diffraction (XRD) patterns, Fourier transform infrared (FT-IR) spectra, UV–vis diffuse reflectance spectrum (UV–vis DRS), and N 2 adsorption–desorption isotherms were characterized respectively to investigate the physical and chemical properties of prepared catalysts. Under simulated sunlight (320 nm 12 /TiO 2 . The results showed that the pollutants degradation followed first-order kinetics, and the kinetic constants of photocatalytic degradation of fuchsin acid, malachite green and PNP were 2.82, 4.66, and 3.48 times as great as that using pristine TiO 2 , respectively. The high pollutants degradation efficiency was ascribed to the synergistic effect between H 3 PW 12 O 40 and TiO 2 , which resulted in enhanced quantum efficiency and high light harvesting efficiency. We believe this work could provide new insights into the fabrication of photocatalyst with high photocatalytic performance and facilitate their practical application in environmental issues.

  15. Fabrication and characterization of TiO2-epoxy nanocomposite

    International Nuclear Information System (INIS)

    Chatterjee, Amit; Islam, Muhammad S.

    2008-01-01

    A systematic study has been conducted to investigate the matrix properties by introducing nanosize TiO 2 (5-40 nm, 0.5-2% by weight) fillers into an epoxy resin. Ultrasonic mixing process, via sonic cavitations, was employed to disperse the particles into the resin system. The thermal, mechanical, morphology and the viscoelastic properties of the nanocomposite and the neat resin were measured with TGA, DMA, TEM and Instron. The nano-particles are dispersed evenly throughout the entire volume of the resin. The nanofiller infusion improves the thermal, mechanical and viscoelastic properties of the epoxy resin. The nanocomposite shows increase in storage modulus, glass transition temperature, tensile modulus, flexural modulus and short beam shear strength from neat epoxy resin. The mechanical performance and thermal stability of the epoxy nanocomposites are depending on with the dispersion state of the TiO 2 in the epoxy matrix and are correlated with loading (0.0015-0.006% by volume). In addition, the nanocomposite shows enhanced flexural strength. Several reasons to explain these effects in terms of reinforcing mechanisms were discussed

  16. Thermal characteristics, Raman spectra, optical and structural properties of TiO2-Bi2O3-B2O3-TeO2 glasses

    Science.gov (United States)

    Gupta, Nupur; Khanna, Atul; Gonzàlez, Fernando; Iordanova, Reni

    2017-05-01

    Tellurite and borotellurite glasses containing Bi2O3 and TiO2 were prepared and structure-property correlations were carried out by density measurements, X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Raman and UV-visible spectroscopy. Titanium tellurite glasses require high melt-cooling rates and were fabricated by splat quenching. On adding B2O3, the glass forming ability (GFA) enhances, and glasses could be synthesized at lower quenching rates. The density of glasses shows a direct correlation with molecular mass of the constituents. UV-visible studies were used to determine the optical band gap and refractive index. Raman studies found that the co-ordination number of tellurium ions with oxygen (NTe-O) decreases with the increase in B2O3 as well as Bi2O3 content while, TiO2 produce only a small decrease in NTe-O, which explains the lower GFA of titanium tellurite glasses that do not contain Bi2O3 and B2O3. DSC studies show that the glass transition temperature (Tg) increases with B2O3 and TiO2 concentrations and that Tg correlates well with bond enthalpy of the metal oxides.

  17. Self-Assembled TiO2 Nanotube Arrays with U-Shaped Profile by Controlling Anodization Temperature

    Directory of Open Access Journals (Sweden)

    Jingfei Chen

    2010-01-01

    Full Text Available TiO2 nanotube arrays with uniform diameter from top to bottom were fabricated. The synthesizing approach is based on the investigation of the influence of electrolyte temperature on the tube diameter. We found that the inner diameter of the tubes increased with the electrolyte temperature. Accordingly, we improved the tube profile from the general V shape to U shape by raising the electrolyte temperature gradually. This is a simple and fast approach to fabricate uniform TiO2 nanotubes in diameter. The improved TiO2 nanotube arrays may show better properties and have broad potential applications.

  18. Study the target effect on the structural, surface and optical properties of TiO2 thin film fabricated by RF sputtering method

    Science.gov (United States)

    Vyas, Sumit; Tiwary, Rohit; Shubham, Kumar; Chakrabarti, P.

    2015-04-01

    The effect of target (Ti metal target and TiO2 target) on Titanium Dioxide (TiO2) thin films grown on ITO coated glass substrate by RF magnetron sputtering has been investigated. A comparative study of both the films was done in respect of crystalline structure, surface morphology and optical properties by using X-ray diffractometer (XRD), Atomic Force Microscopy (AFM) studies and ellipsometric measurements. The XRD results confirmed the crystalline structure and indicated that the deposited films have the intensities of anatase phase. The surface morphology and roughness values indicated that the film using Ti metal target has a smoother surface and densely packed with grains as compared to films obtained using TiO2 target. A high transmission in the visible region, and direct band gap of 3.67 eV and 3.75 eV for films derived by using Ti metal and TiO2 target respectively and indirect bandgap of 3.39 eV for the films derived from both the targets (Ti metal and TiO2 target) were observed by the ellipsometric measurements.

  19. tavgM_2d_flx_Nx: MERRA 2D IAU Diagnostic, Surface Fluxes, Monthly Mean 0.667 x 0.5 degree V5.2.0 (MATMNXFLX) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATMNXFLX or tavgM_2d_flx_Nx data product is the MERRA Data Assimilation System 2-Dimensional surface turbulence flux diagnostic that is time averaged...

  20. TiO2-SnS2 nanocomposites: solar-active photocatalytic materials for water treatment.

    Science.gov (United States)

    Kovacic, Marin; Kusic, Hrvoje; Fanetti, Mattia; Stangar, Urska Lavrencic; Valant, Matjaz; Dionysiou, Dionysios D; Bozic, Ana Loncaric

    2017-08-01

    The study is aimed at evaluating TiO 2 -SnS 2 composites as effective solar-active photocatalysts for water treatment. Two strategies for the preparation of TiO 2 -SnS 2 composites were examined: (i) in-situ chemical synthesis followed by immobilization on glass plates and (ii) binding of two components (TiO 2 and SnS 2 ) within the immobilization step. The as-prepared TiO 2 -SnS 2 composites and their sole components (TiO 2 or SnS 2 ) were inspected for composition, crystallinity, and morphology using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) analyses. Diffuse reflectance spectroscopy (DRS) was used to determine band gaps of immobilized TiO 2 -SnS 2 and to establish the changes in comparison to respective sole components. The activity of immobilized TiO 2 -SnS 2 composites was tested for the removal of diclofenac (DCF) in aqueous solution under simulated solar irradiation and compared with that of single component photocatalysts. In situ chemical synthesis yielded materials of high crystallinity, while their morphology and composition strongly depended on synthesis conditions applied. TiO 2 -SnS 2 composites exhibited higher activity toward DCF removal and conversion in comparison to their sole components at acidic pH, while only in situ synthesized TiO 2 -SnS 2 composites showed higher activity at neutral pH.

  1. Hierarchical architectures TiO2: Pollen-inducted synthesis, remarkable crystalline-phase stability, tunable size, and reused photo-catalysis

    International Nuclear Information System (INIS)

    Dou, Lingling; Gao, Lishuang; Yang, Xiaohui; Song, Xiuqin

    2012-01-01

    Highlights: ► The synthetic method is much milder and simpler than that of conventional methods. ► The obtained hierarchical TiO 2 shows three interesting hierarchical morphology. ► The products have tunable crystal phase structures. ► The pure phase of anatase can be retained after being annealed at 900 °C. ► The product exhibits higher and reused photo-catalytic activity. - Abstract: TiO 2 with hierarchical architectures, tunable crystalline phase and thermal stability is successfully fabricated on a large scale through a facile hydrolysis process of TiCl 4 combining with inducing of pollen. The structure of the as-prepared TiO 2 is characterized by X-ray diffraction, Raman spectroscopy, infrared spectra, and scanning electron microscopy. The experimental results indicate that different phases (anatase, rutile or mixed crystallite) of TiO 2 can be synthesized by controlling the experimental conditions. The pure phase of rutile or anatase can be obtained at 100 °C, while the pure phase of anatase can be retained after being annealed at 900 °C. The hierarchical structures TiO 2 are constitute through self-assembly of nanoparticles or nanorods TiO 2 , which exhibit high and reused photo-catalytic properties for degradation of methylene blue.

  2. tavgM_2d_ocn_Nx: MERRA 2D IAU Ocean Surface Diagnostic, Monthly Mean 0.667 x 0.5 degree V5.2.0 (MATMNXOCN) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATMNXOCN or tavgM_2d_ocn_Nx data product is the MERRA Data Assimilation System 2-Dimensional ocean surface single-level diagnostics that is monthly mean...

  3. Microporous TiO2-WO3/TiO2 films with visible-light photocatalytic activity synthesized by micro arc oxidation and DC magnetron sputtering

    International Nuclear Information System (INIS)

    Wu, Kee-Rong; Hung, Chung-Hsuang; Yeh, Chung-Wei; Wu, Jiing-Kae

    2012-01-01

    Highlights: ► A simple MAO is used to prepare porous WO 3 /TiO 2 layer on Ti sheet as a visible-light enabled catalyst. ► The photocatalytic activity of the WO 3 /TiO 2 is enhanced by sputtering over an N,C-TiO 2 layer. ► This is ascribed to the synergetic effect of hybrid sample prepared by two-step method. - Abstract: This study reports the preparation of microporous TiO 2 -WO 3 /TiO 2 films with a high surface area using a two-step approach. A porous WO 3 /TiO 2 template was synthesized by oxidizing a titanium sheet using a micro arc oxidation (MAO) process. This sheet was subsequently overlaid with a visible light (Vis)-enabled TiO 2 (N,C-TiO 2 ) film, which was deposited by codoping nitrogen (N) and carbon (C) ions into a TiO 2 lattice using direct current magnetron sputtering. The resulting microporous TiO 2 -WO 3 /TiO 2 film with a 0.38-μm-thick N,C-TiO 2 top-layer exhibited high photocatalytic activity in methylene blue (MB) degradation among samples under ultraviolet (UV) and Vis irradiation. This is attributable to the synergetic effect of two-step preparation method, which provides a highly porous microstructure and the well-crystallized N,C-TiO 2 top-layer. This is because a higher surface area with high crystallinity favors the adsorption of more MB molecules and more photocatalytic active areas. Thus, the microporous TiO 2 -WO 3 /TiO 2 film has promising applications in the photocatalytic degradation of dye solution under UV and Vis irradiation. These results imply that the microporous WO 3 /TiO 2 can be used as a template of hybrid electrode because it enables rapid fabrication.

  4. Favorable recycling photocatalyst TiO2/CFA: Effects of loading percent of TiO2 on the structural property and photocatalytic activity

    International Nuclear Information System (INIS)

    Shi Jianwen; Chen Shaohua; Ye Zhilong; Wang Shumei; Wu Peng

    2010-01-01

    A series of photocatalysts TiO 2 /CFA were prepared using coal fly ash (CFA), waste discharged from coal-fired power plant, as substrate, and then these photocatalysts were characterized by scanning electron microscope, X-ray diffraction analysis, nitrogen adsorption test and ultraviolet-visible absorption analysis. The effects of loading percent of TiO 2 on the photocatalytic activity and re-use property of TiO 2 /CFA were evaluated by the photocatalytic decoloration and mineralization of methyl orange solution. The results show that the pore volume and the specific surface area of the TiO 2 /CFA both increased with the increase in the loading percent of TiO 2 , which improved the photocatalytic activity of TiO 2 /CFA. However, when the loading percent of TiO 2 was too high (up to 54.51%), superfluous TiO 2 was easy to break away from CFA in the course of water treatment, which was disadvantaged to the recycling property of TiO 2 /CFA. In this study, the optimal loading percent of TiO 2 was 49.97%, and the efficiencies of photocatalytic decoloration and mineralization could be maintained above 99% and 90%, respectively, when the photocatalyst was used repeatedly, without any decline, even at the sixth cycle.

  5. A Macroporous TiO2 Oxygen Sensor Fabricated Using Anodic Aluminium Oxide as an Etching Mask

    Directory of Open Access Journals (Sweden)

    Sheng-Po Wu

    2010-01-01

    Full Text Available An innovative fabrication method to produce a macroporous Si surface by employing an anodic aluminium oxide (AAO nanopore array layer as an etching template is presented. Combining AAO with a reactive ion etching (RIE processes, a homogeneous and macroporous silicon surface can be effectively configured by modulating AAO process parameters and alumina film thickness, thus hopefully replacing conventional photolithography and electrochemical etch methods. The hybrid process integration is considered fully CMOS compatible thanks to the low-temperature AAO and CMOS processes. The gas-sensing characteristics of 50 nm TiO2 nanofilms deposited on the macroporous surface are compared with those of conventional plain (or non-porous nanofilms to verify reduced response noise and improved sensitivity as a result of their macroporosity. Our experimental results reveal that macroporous geometry of the TiO2 chemoresistive gas sensor demonstrates 2-fold higher (~33% improved sensitivity than a non-porous sensor at different levels of oxygen exposure. In addition, the macroporous device exhibits excellent discrimination capability and significantly lessened response noise at 500 °C. Experimental results indicate that the hybrid process of such miniature and macroporous devices are compatible as well as applicable to integrated next generation bio-chemical sensors.

  6. Dry-spray deposition of TiO2 for a flexible dye-sensitized solar cell (DSSC) using a nanoparticle deposition system (NPDS).

    Science.gov (United States)

    Kim, Min-Saeng; Chun, Doo-Man; Choi, Jung-Oh; Lee, Jong-Cheon; Kim, Yang Hee; Kim, Kwang-Su; Lee, Caroline Sunyong; Ahn, Sung-Hoon

    2012-04-01

    TiO2 powders were deposited on indium tin oxide (ITO) coated polyethylene terephthalate (PET) substrates for application to the photoelectrode of a dye-sensitized solar cell (DSSC). In the conventional DSSC manufacturing process, a semiconductor oxide such as TiO2 powder requires a sintering process at higher temperature than the glass transition temperature (T(g)) of polymers, and thus utilization of flexible polymer substrates in DSSC research has been constrained. To overcome this restriction related to sintering, we used a nanoparticle deposition system (NPDS) that could produce a thin coating layer through a dry-spray method under atmospheric pressure at room temperature. The powder was sprayed through a slit-type nozzle having a 0.4 x 10 mm2 rectangular outlet. In order to determine the deposited TiO2 thickness, five kinds of TiO2 layered specimens were prepared, where the specimens have single and double layer structures. Deposited powders on the ITO coated PET substrates were observed using FE-SEM and a scan profiler The thicker TiO2 photoelectrode with a DSSC having a double layer structure showed higher energy efficiency than the single layer case. The highest fabricated flexible DSSC displayed a short circuit current density J(sc) = 1.99 mA cm(-2), open circuit voltage V(oc) = 0.71 V, and energy efficiency eta = 0.94%. These results demonstrate the possibility of utilizing the dry-spray method to fabricate a TiO2 layer on flexible polymer substrates at room temperature under atmospheric pressure.

  7. Electrospinning processed nanofibrous TiO2 membranes for photovoltaic applications

    Science.gov (United States)

    Onozuka, Katsuhiro; Ding, Bin; Tsuge, Yosuke; Naka, Takayuki; Yamazaki, Michiyo; Sugi, Shinichiro; Ohno, Shingo; Yoshikawa, Masato; Shiratori, Seimei

    2006-02-01

    We have recently fabricated dye-sensitized solar cells (DSSCs) comprising nanofibrous TiO2 membranes as electrode materials. A thin TiO2 film was pre-deposited on fluorine doped tin oxide (FTO) coated conducting glass substrate by immersion in TiF4 aqueous solution to reduce the electron back-transfer from FTO to the electrolyte. The composite polyvinyl acetate (PVac)/titania nanofibrous membranes can be deposited on the pre-deposited thin TiO2 film coated FTO by electrospinning of a mixture of PVac and titanium isopropoxide in N,N-dimethylformamide (DMF). The nanofibrous TiO2 membranes were obtained by calcining the electrospun composite nanofibres of PVac/titania as the precursor. Spectral sensitization of the nanofibrous TiO2 membranes was carried out with a ruthenium (II) complex, cis-dithiocyanate-N,N'-bis(2,2'-bipyridyl-4,4'-dicarboxylic acid) ruthenium (II) dihydrate. The results indicated that the photocurrent and conversion efficiency of electrodes can be increased with the addition of the pre-deposited TiO2 film and the adhesion treatment using DMF. Additionally, the dye loading, photocurrent, and efficiency of the electrodes were gradually increased by increasing the average thickness of the nanofibrous TiO2 membranes. The efficiency of the fibrous TiO2 photoelectrode with the average membrane thickness of 3.9 µm has a maximum value of 4.14%.

  8. Photoelectrolchemical performance of PbS/CdS quantum dots co-sensitized TiO2 nanosheets array film photoelectrodes

    International Nuclear Information System (INIS)

    Yao, Huizhen; Li, Xue; Liu, Li; Niu, Jiasheng; Ding, Dong; Mu, Yannan; Su, Pengyu; Wang, Guangxia; Fu, Wuyou; Yang, Haibin

    2015-01-01

    Herein, PbS/CdS quantum dots (QDs) co-sensitized titanium dioxide nanosheets array (TiO 2 NSs) films were reported for the first time. The TiO 2 NSs films exposed {001} facets were vertically grown on transparent conductive fluorine-doped tin oxide (FTO) glass substrates by a facile hydrothermal method. The PbS/CdS QDs were assembled on TiO 2 NSs photoelectrode by successive ionic layer adsorption and reaction (SILAR). The X-ray diffraction pattern (XRD) and transmission electron microscopy (TEM) verified that QDs with a diameter less than 20 nm were uniformly anchored on the surface of the TiO 2 NSs films. The QDs co-sensitization can significantly extend the absorption range and increase the absorption property of the photoelectrode by UV–vis absorption spectra. The optimal photoelectrolchemical (PEC) performance of PbS/CdS QDs co-sensitization TiO 2 NSs was with photocurrent density of 6.12 mA cm −2 under an illumination of AM 1.5 G, indicating the TiO 2 NSs films co-sensitized by PbS/CdS QDs have potential applications in solar cells. - Highlights: • TiO 2 nanosheets films were fabricated by a simple hydrothermal. • TiO 2 nanosheets film exposed high energy facets was with gaps. • PbS/CdS co-sensitized TiO 2 nanosheets film was obtained for the first time. • Photocurrent intensity of the novel photoelectrode increased to 6.12 mA cm −2

  9. Shielding properties of 80TeO2–5TiO2–(15−x) WO3–xAnOm glasses using WinXCom and MCNP5 code

    International Nuclear Information System (INIS)

    Dong, M.G.; El-Mallawany, R.; Sayyed, M.I.; Tekin, H.O.

    2017-01-01

    Gamma ray shielding properties of 80TeO 2 –5TiO 2 –(15−x) WO 3 –xA n O m glasses, where A n O m is Nb 2 O 5 = 0.01, 5, Nd 2 O 3 = 3, 5 and Er 2 O 3 = 5 mol% have been achieved. Shielding parameters; mass attenuation coefficients, half value layers, and macroscopic effective removal cross section for fast neutrons have been computed by using WinXCom program and MCNP5 Monte Carlo code. In addition, by using Geometric Progression method (G-P), exposure buildup factor values were also calculated. Variations of shielding parameters are discussed for the effect of REO addition into the glasses and photon energy. - Highlights: • The shielding properties of 80TeO 2 –5TiO 2 –(15−x) WO 3 –xA n O m glasses were evaluated. • WinXCom program and MCNP simulation codes were used in the calculations. • Good agreement was noticed between the WinXCom and MCNP5 code results.

  10. Solvothermal fabrication of TiO2/sepiolite composite gel with exposed {0 0 1} and {1 0 1} facets and its enhanced photocatalytic activity

    Science.gov (United States)

    Liu, Ruirui; Ji, Zhijiang; Wang, Jing; Zhang, Jinjun

    2018-05-01

    A novel TiO2/sepiolite composite gel (TiSG) was fabricated in the presence of cetyltrimethylammonium bromide (CTAB) through a simple solvothermal reaction in an acetic acid-water solvent. A homogeneous anchoring of TiO2 nanoparticles with exposed {0 0 1} and {1 0 1} facets on sepiolite nanofibers was achieved. CTAB content, solvothermal temperature/time, and HAc content play crucial roles in the morphological and facet formation of TiSG. A possible mechanism for the formation of TiSG was further proposed. CTAB as capping/shape-controlling agent can strongly bind to the more reactive (0 0 1) facet of TiO2 and then mitigate the thermodynamically favored (0 0 1) plane growth. Eventually, the truncated octahedral TiO2 was obtained by controlling the growth rates in 〈0 0 1〉 and 〈1 0 1〉 directions. Sepiolite as a cross-linking agent provides sufficient crosslinking sites for TiO2 to induce three-dimensional (3D) network formation, thereby generating the composite gel. The synthesized TiSG samples were then used as photocatalysts, which exhibited increased methyl orange removal under UV-vis light (350-780 nm) by the synergistic effect of adsorption and in-situ photocatalytic degradation as compared to P25 and bare TiO2. The excellent photocatalytic performance of TiSG was mainly ascribed to the formations of 3D gel structure and surface heterojunctions between (0 0 1) and (1 0 1) facets.

  11. Fabrication of novel Ag−TiO_2 nanobelts as a photoanode for enhanced photovoltage performance in dye sensitized solar cells

    International Nuclear Information System (INIS)

    Wang, Yang; Li, Zhen; Cao, Ya; Li, Fei; Zhao, Wen; Liu, Xueqin; Yang, Jianbo

    2016-01-01

    TiO_2 nanobelts (TiO_2NBs) were successfully prepared using a solvothermal route via Ti foil as substrate in large scales. The morphology evolution process and formation mechanism of the as-obtained products were investigated in detail. On the basis of this novel structure, chemical sensitive Ag modified TiO_2NBs nanocomposites (Ag−TiO_2NBs) were fabricated. It was found that Ag−TiO_2NBs exhibit strong light absorption and efficient electron transport. According to Mott-Schottky analysis, Ag−TiO_2NBs show less surface trapping sites compared with TiO_2NBs. The Ag−TiO_2NBs photoanode fabricated in 0.01 M AgNO_3 demonstrates the best performance with a short-circuit current of 11.9 mA cm"−"2 corresponding to a photoelectric conversion efficiency of 4.89%, which is higher than that of pure TiO_2NBs based solar cell by 60%. - Graphical abstract: J-V curves of DSSCs based on TiO_2NPs, TiO_2NBs and Ag−TiO_2NBs—X under AM 1.5 conditions (100 mW cm"−"2). Ag−TiO_2NBs nanocomposites were prepared via a simple and effective method. Owing to strong light absorption and efficient electron transport, Ag−TiO_2NBs—0.01 M shows a PCE of 4.89% when prepared as a photoanode in DSSCs. - Highlights: • A facile route was adopted to construct well-dispersed Ag nanoparticles on TiO_2 nanobelts (Ag—TiO_2NBs). • Structure and photoelectrochemical properties of Ag—TiO_2NBs were studied. • Ag nanoparticles were found to modify the defects of TiO_2NBs. • Enhanced photovoltaic property of Ag—TiO_2NBs, compared to TiO_2NBs.

  12. Electrospun Fe3O4/TiO2 hybrid nanofibers and their in vitro biocompatibility: Prospective matrix for satellite cell adhesion and cultivation

    International Nuclear Information System (INIS)

    Amna, Touseef; Hassan, M. Shamshi; Van Ba, Hoa; Khil, Myung-Seob; Lee, Hak-Kyo; Hwang, I.H.

    2013-01-01

    We report the fabrication of novel Fe 3 O 4 /TiO 2 hybrid nanofibers with the improved cellular response for potential tissue engineering applications. In this study, Fe 3 O 4 /TiO 2 hybrid nanofibers were prepared by facile sol–gel electrospinning using titanium isopropoxide and iron(III) nitrate nonahydrate as precursors. The obtained electrospun nanofibers were vacuum dried at 80 °C and then calcined at 500 °C. The physicochemical characterization of the synthesized composite nanofibers was carried out by scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy and X-ray diffraction pattern. To examine the in vitro cytotoxicity, satellite cells were treated with as-prepared Fe 3 O 4 /TiO 2 and the viability of cells was analyzed by Cell Counting Kit-8 assay at regular time intervals. The morphological features of unexposed satellite cells and exposed to Fe 3 O 4 /TiO 2 composite were examined with a phase contrast microscope whereas the quantification of cell viability was carried out via confocal laser scanning microscopy. The morphology of the cells attached to hybrid matrix was observed by Bio-SEM. Cytotoxicity experiments indicated that the satellite cells could attach to the Fe 3 O 4 /TiO 2 composite nanofibers after being cultured. We observed that Fe 3 O 4 –TiO 2 composite nanofibers could support cell adhesion and growth. Results from this study therefore suggest that Fe 3 O 4 /TiO 2 composite scaffold with small diameters (approximately 200 nm) can mimic the natural extracellular matrix well and provide possibilities for diverse applications in the field of tissue engineering and regenerative medicine. Highlights: ► We report fabrication of novel Fe 3 O 4 /TiO 2 hybrid nanofibers by facile electrospinning. ► The utilized satellite cells were isolated from native Korean Hanwoo cattle. ► Fe 3 O 4 /TiO 2 composite with small diameters (∼ 200 nm) can mimic the natural ECM well. ► Fe 3 O 4 /TiO 2

  13. Raman spectra of TiO2 thin films deposited electrochemically and by spray pyrolysis

    International Nuclear Information System (INIS)

    Shishiyanu, S.; Vartic, V.; Shishiyanu, T.; Stratan, Gh.; Rusu, E.; Zarrelli, M.; Giordano, M.

    2013-01-01

    In this paper we present our experimental results concerning the fabrication of TiO 2 thin films by spray pyrolysis and electrochemical deposition method onto different substrates - Corning glass, Si and optical fibers. The surface morphology of the TiO 2 thin films have been investigated by Atomic Force Microscopy. Raman shift spectra measurements have been done for the optical characterization of the fabricated titania thin films. The post-growth rapid photothermal processing (RPP) at temperatures of 100-800 degrees Celsius for 1-3 min have been applied. Our experimental results prove that by the application of post-growth RPP is possible to essentially improve the crystallinity of the deposited TiO 2 films. (authors)

  14. Multi-Layered TiO2 Films towards Enhancement of Escherichia coli Inactivation

    Directory of Open Access Journals (Sweden)

    Sorachon Yoriya

    2016-09-01

    Full Text Available Crystalline TiO2 has shown its great photocatalytic properties in bacterial inactivation. This work presents a design fabrication of low-cost, layered TiO2 films assembled reactors and a study of their performance for a better understanding to elucidate the photocatalytic effect on inactivation of E. coli in water. The ability to reduce the number of bacteria in water samples for the layered TiO2 composing reactors has been investigated as a function of time, while varying the parameters of light sources, initial concentration of bacteria, and ratios of TiO2 film area and volume of water. Herein, the layered TiO2 films have been fabricated on the glass plates by thermal spray coating prior to screen printing, allowing a good adhesion of the films. Surface topology and crystallographic phase of TiO2 for the screen-printed active layer have been characterized, resulting in the ratio of anatase:rutile being 80:20. Under exposure to sunlight and a given condition employed in this study, the optimized film area:water volume of 1:2.62 has shown a significant ability to reduce the E. coli cells in water samples. The ratio of surface area of photocatalytic active base to volume of water medium is believed to play a predominant role facilitating the cells inactivation. The kinetic rate of inactivation and its behavior are also described in terms of adsorption of reaction species at different contact times.

  15. Ammonia Sensing Behaviors of TiO2-PANI/PA6 Composite Nanofibers

    Directory of Open Access Journals (Sweden)

    Fenglin Huang

    2012-12-01

    Full Text Available Titanium dioxide-polyaniline/polyamide 6 (TiO2-PANI/PA6 composite nanofibers were prepared by in situ polymerization of aniline in the presence of PA6 nanofibers and a sputtering-deposition process with a high purity titanium sputtering target. TiO2-PANI/PA6 composite nanofibers and PANI/PA6 composite nanofibers were fabricated for ammonia gas sensing. The ammonia sensing behaviors of the sensors were examined at room temperature. All the results indicated that the ammonia sensing property of TiO2-PANI/PA6 composite nanofibers was superior to that of PANI/PA6 composite nanofibers. TiO2-PANI/PA6 composite nanofibers had good selectivity to ammonia. It was also found that the content of TiO2 had a great influence on both the morphology and the sensing property of TiO2-PANI/PA6 composite nanofibers.

  16. Fabrication and characterization of Ba sub x Sr sub 1 sub - sub x TiO sub 3 /YBa sub 2 Cu sub 3 O sub x /SrTiO sub 3 structure

    CERN Document Server

    Choi, J; Park, S Y; Lee Jae Sik; No, K; Sung, T H; Park, Y

    2002-01-01

    Ba sub x Sr sub 1 sub - sub x TiO sub 3 (BST)/YBa sub 2 Cu sub 3 O sub x (YBCO)/SrTiO sub 3 (STO) structures were deposited, and the microstructure, orientation and electrical characteristics were investigated. (00l) oriented YBCO thin films were deposited on STO substrates using pulsed laser deposition, and (h00) oriented BST thin films were deposited on YBCO/STO substrates using electron cyclotron resonance (ECR) plasma assisted metal organic chemical vapor deposition (MOCVD). A new phase was formed at the interface between YBCO and BST films and was speculated to be (Ba sub x Y sub 1 sub - sub x)(Ti sub y Y sub 1 sub - sub y)O sub 3. Ba-rich BST films showed a higher dielectric loss than Sr-rich BST films did, which indicates that Sr-rich BST films are more suited for application to microwave devices. The dielectric loss of the films was reduced as temperature decreased, which may be due to the conductivity change of YBCO film and the formation of a conduction path rather than a dielectric property change ...

  17. Enhancement of Perovskite Solar Cells Efficiency using N-Doped TiO2 Nanorod Arrays as Electron Transfer Layer.

    Science.gov (United States)

    Zhang, Zhen-Long; Li, Jun-Feng; Wang, Xiao-Li; Qin, Jian-Qiang; Shi, Wen-Jia; Liu, Yue-Feng; Gao, Hui-Ping; Mao, Yan-Li

    2017-12-01

    In this paper, N-doped TiO 2 (N-TiO 2 ) nanorod arrays were synthesized with hydrothermal method, and perovskite solar cells were fabricated using them as electron transfer layer. The solar cell performance was optimized by changing the N doping contents. The power conversion efficiency of solar cells based on N-TiO 2 with the N doping content of 1% (N/Ti, atomic ratio) has been achieved 11.1%, which was 14.7% higher than that of solar cells based on un-doped TiO 2 . To get an insight into the improvement, some investigations were performed. The structure was examined with X-ray powder diffraction (XRD), and morphology was examined by scanning electron microscopy (SEM). Energy dispersive spectrometer (EDS) and Tauc plot spectra indicated the incorporation of N in TiO 2 nanorods. Absorption spectra showed higher absorption of visible light for N-TiO 2 than un-doped TiO 2 . The N doping reduced the energy band gap from 3.03 to 2.74 eV. The photoluminescence (PL) and time-resolved photoluminescence (TRPL) spectra displayed the faster electron transfer from perovskite layer to N-TiO 2 than to un-doped TiO 2 . Electrochemical impedance spectroscopy (EIS) showed the smaller resistance of device based on N-TiO 2 than that on un-doped TiO 2 .

  18. Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications

    Science.gov (United States)

    Pan, Xiaoyang; Yang, Min-Quan; Fu, Xianzhi; Zhang, Nan; Xu, Yi-Jun

    2013-04-01

    Titanium dioxide (TiO2), as an important semiconductor metal oxide, has been widely investigated in the field of photocatalysis. The properties of TiO2, including its light absorption, charge transport and surface adsorption, are closely related to its defect disorder, which in turn plays a significant role in the photocatalytic performance of TiO2. Among all the defects identified in TiO2, oxygen vacancy is one of the most important and is supposed to be the prevalent defect in many metal oxides, which has been widely investigated both by theoretical calculations and experimental characterizations. Here, we give a short review on the existing strategies for the synthesis of defective TiO2 with oxygen vacancies, and the defect related properties of TiO2 including structural, electronic, optical, dissociative adsorption and reductive properties, which are intimately related to the photocatalytic performance of TiO2. In particular, photocatalytic applications with regard to defective TiO2 are outlined. In addition, we offer some perspectives on the challenge and new direction for future research in this field. We hope that this tutorial minireview would provide some useful contribution to the future design and fabrication of defective semiconductor-based nanomaterials for diverse photocatalytic applications.Titanium dioxide (TiO2), as an important semiconductor metal oxide, has been widely investigated in the field of photocatalysis. The properties of TiO2, including its light absorption, charge transport and surface adsorption, are closely related to its defect disorder, which in turn plays a significant role in the photocatalytic performance of TiO2. Among all the defects identified in TiO2, oxygen vacancy is one of the most important and is supposed to be the prevalent defect in many metal oxides, which has been widely investigated both by theoretical calculations and experimental characterizations. Here, we give a short review on the existing strategies for the

  19. Hierarchical Honeycomb Br-, N-Codoped TiO2 with Enhanced Visible-Light Photocatalytic H2 Production.

    Science.gov (United States)

    Zhang, Chao; Zhou, Yuming; Bao, Jiehua; Sheng, Xiaoli; Fang, Jiasheng; Zhao, Shuo; Zhang, Yiwei; Chen, Wenxia

    2018-06-06

    The halogen elements modification strategy of TiO 2 encounters a bottleneck in visible-light H 2 production. Herein, we have for the first time reported a hierarchical honeycomb Br-, N-codoped anatase TiO 2 catalyst (HM-Br,N/TiO 2 ) with enhanced visible-light photocatalytic H 2 production. During the synthesizing process, large amounts of meso-macroporous channels and TiO 2 nanosheets were fabricated in massive TiO 2 automatically, constructing the hierarchical honeycomb structure with large specific surface area (464 m 2 g -1 ). cetyl trimethylammonium bromide and melamine played a key role in constructing the meso-macroporous channels. Additionally, HM-Br,N/TiO 2 showed a high visible-light H 2 production rate of 2247 μmol h -1 g -1 , which is far more higher than single Br- or N-doped TiO 2 (0 or 63 μmol h -1 g -1 , respectively), thereby demonstrating the excellent synergistic effects of Br and N elements in H 2 evolution. In HM-Br,N/TiO 2 catalytic system, the codoped Br-N atoms could reduce the band gap of TiO 2 to 2.88 eV and the holes on acceptor levels (N acceptor) can passivate the electrons on donor levels (Br donor), thereby preventing charge carriers recombination significantly. Furthermore, the proposed HM-Br,N/TiO 2 fabrication strategy had a wide range of choices for N source (e.g., melamine, urea, and dicyandiamide) and it can be applied to other TiO 2 materials (e.g., P25) as well, thereby implying its great potential application in visible-light H 2 production. Finally, on the basis of experimental results, a possible photocatalytic H 2 production mechanism for HM-Br,N/TiO 2 was proposed.

  20. Effect of sintering temperatures and screen printing types on TiO2 layers in DSSC applications

    Science.gov (United States)

    Supriyanto, Agus; Furqoni, Lutfi; Nurosyid, Fahru; Hidayat, Jojo; Suryana, Risa

    2016-03-01

    Dye-Sensitized Solar Cell (DSSC) is a candidate solar cell, which has a big potential in the future due to its eco-friendly material. This research is conducted to study the effect of sintering temperature and the type of screen-printing toward the characteristics of TiO2 layer as a working electrode in DSSC. TiO2 layers were fabricated using a screen-printing method with a mesh size of T-49, T-55, and T-61. TiO2 layers were sintered at temperatures of 600°C and 650°C for 60 min. DSSC structure was composed of TiO2 as semiconductors, ruthenium complex as dyes, and carbon as counter electrodes. The morphology of TiO2 layer was observed by using Nikon E2 Digital Camera Microscopy. The efficiencies of DSSC were calculated from the I-V curves. The highest efficiency is 0.015% at TiO2 layer fabricated with screen type T-61 and at a sintering temperature of 650°C.

  1. Effect of sintering temperatures and screen printing types on TiO_2 layers in DSSC applications

    International Nuclear Information System (INIS)

    Supriyanto, Agus; Furqoni, Lutfi; Nurosyid, Fahru; Suryana, Risa; Hidayat, Jojo

    2016-01-01

    Dye-Sensitized Solar Cell (DSSC) is a candidate solar cell, which has a big potential in the future due to its eco-friendly material. This research is conducted to study the effect of sintering temperature and the type of screen-printing toward the characteristics of TiO_2 layer as a working electrode in DSSC. TiO_2 layers were fabricated using a screen-printing method with a mesh size of T-49, T-55, and T-61. TiO_2 layers were sintered at temperatures of 600°C and 650°C for 60 min. DSSC structure was composed of TiO_2 as semiconductors, ruthenium complex as dyes, and carbon as counter electrodes. The morphology of TiO_2 layer was observed by using Nikon E2 Digital Camera Microscopy. The efficiencies of DSSC were calculated from the I-V curves. The highest efficiency is 0.015% at TiO_2 layer fabricated with screen type T-61 and at a sintering temperature of 650°C.

  2. A Facile Method for Loading CeO2 Nanoparticles on Anodic TiO2 Nanotube Arrays.

    Science.gov (United States)

    Liao, Yulong; Yuan, Botao; Zhang, Dainan; Wang, Xiaoyi; Li, Yuanxun; Wen, Qiye; Zhang, Huaiwu; Zhong, Zhiyong

    2018-04-03

    In this paper, a facile method was proposed to load CeO 2 nanoparticles (NPs) on anodic TiO 2 nanotube (NT) arrays, which leads to a formation of CeO 2 /TiO 2 heterojunctions. Highly ordered anatase phase TiO 2 NT arrays were fabricated by using anodic oxidation method, then these individual TiO 2 NTs were used as tiny "nano-containers" to load a small amount of Ce(NO 3 ) 3 solutions. The loaded anodic TiO 2 NTs were baked and heated to a high temperature of 450 °C, under which the Ce(NO 3 ) 3 would be thermally decomposed inside those nano-containers. After the thermal decomposition of Ce(NO 3 ) 3 , cubic crystal CeO 2 NPs were obtained and successfully loaded into the anodic TiO 2 NT arrays. The prepared CeO 2 /TiO 2 heterojunction structures were characterized by a variety of analytical technologies, including XRD, SEM, and Raman spectra. This study provides a facile approach to prepare CeO 2 /TiO 2 films, which could be very useful for environmental and energy-related areas.

  3. Wet-Chemical Preparation of TiO2-Based Composites with Different Morphologies and Photocatalytic Properties

    Directory of Open Access Journals (Sweden)

    Liqin Xiang

    2017-10-01

    Full Text Available TiO2-based composites have been paid significant attention in the photocatalysis field. The size, crystallinity and nanomorphology of TiO2 materials have an important effect on the photocatalytic efficiency. The synthesis and photocatalytic activity of TiO2-based materials have been widely investigated in past decades. Based on our group’s research works on TiO2 materials, this review introduces several methods for the fabrication of TiO2, rare-earth-doped TiO2 and noble-metal-decorated TiO2 particles with different morphologies. We focused on the preparation and the formation mechanism of TiO2-based materials with unique structures including spheres, hollow spheres, porous spheres, hollow porous spheres and urchin-like spheres. The photocatalytical activity of urchin-like TiO2, noble metal nanoparticle-decorated 3D (three-dimensional urchin-like TiO2 and bimetallic core/shell nanoparticle-decorated urchin-like hierarchical TiO2 are briefly discussed.

  4. Optimizing Thermoelectric Properties of In Situ Plasma-Spray-Synthesized Sub-stoichiometric TiO2-x Deposits

    Science.gov (United States)

    Lee, Hwasoo; Seshadri, Ramachandran Chidambaram; Pala, Zdenek; Sampath, Sanjay

    2018-06-01

    In this article, an attempt has been made to relate the thermoelectric properties of thermal spray deposits of sub-stoichiometric titania to process-induced phase and microstructural variances. The TiO2-x deposits were formed through the in situ reaction of the TiO1.9 or TiO1.7 feedstock within the high-temperature plasma flame and manipulated via varying the amounts of hydrogen fed into in the thermal plasma. Changes in the flow rates of H2 in the plasma plume greatly affected the in-flight particle behavior and composition of the deposits. For reference, a high-velocity oxy-fuel spray torch was also used to deposit the two varieties of feedstocks. Refinements to the representation of the in-flight particle characteristics derived via single particle and ensemble diagnostic methods are proposed using the group parameters (melting index and kinetic energy). The results show that depending on the value of the melting index, there is an inverse proportional relationship between electrical conductivity and Seebeck coefficient, whereas thermal conductivity has a directly proportional relationship with the electrical conductivity. Retention of the original phase and reduced decomposition is beneficial to retain the high Seebeck coefficient or the high electrical conductivity in the TiO2 system.

  5. tavgM_2d_slv_Nx: MERRA 2D IAU Diagnostic, Single Level Meteorology, Monthly Mean 0.667 x 0.5 degree V5.2.0 (MATMNXSLV) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATMNXSLV or tavgM_2d_slv_Nx data product is the MERRA Data Assimilation System 2-Dimensional atmospheric single-level diagnostics that is time averaged...

  6. TiO2/Halloysite Composites Codoped with Carbon and Nitrogen from Melamine and Their Enhanced Solar-Light-Driven Photocatalytic Performance

    Directory of Open Access Journals (Sweden)

    Pengcheng Yao

    2015-01-01

    Full Text Available Carbon (C and nitrogen (N codoped anatase TiO2/amorphous halloysite nanotubes (C+N-TiO2/HNTs were fabricated using melamine as C and N source. The samples prepared by different weight ratios of melamine and TiO2 were investigated by X-ray diffraction (XRD and UV-vis diffuse reflectance spectrometer. It is shown that the doping amounts of C and N could influence the photocatalytic performance of as-prepared composites. When the weight ratio of melamine/TiO2 is 4.5, the C+N-TiO2/HNTs exhibited the best photocatalytic degradation efficiency of methyl blue (MB under solar light irradiation. The obtained C+N-TiO2/HNTs were characterized by transmission electron microscopy (TEM, N2 adsorption-desorption isotherm (BET, X-ray photoelectron spectroscopy (XPS, and Fourier transform infrared spectrum (FT-IR. The results showed that the aggregation was effectively reduced, and TiO2 nanoparticles could be uniformly deposited on the surface of HNTs. This leads to an increase of their specific surface area. XPS and FT-IR analyses indicated TiO2 particles were doped successfully with C and N via the linkage of the Ti–O–N, O–Ti–N, and Ti–O–C. Photocatalytic experiments showed that C+N-TiO2/HNTs had higher degradation efficiency of MB than TiO2/HNTs. This makes the composite a potential candidate for the photocatalytic wastewater treatment.

  7. Fabrication of doped TiO2 nanotube array films with enhanced photo-catalytic activity

    Science.gov (United States)

    Peighambardoust, Naeimeh-Sadat; Khameneh-asl, Shahin; Khademi, Adib

    2018-01-01

    In the present work, we investigate the N and Fe-doped TiO2 nanotube array film prepared by treating TiO2 nanotube array film with ammonia solution and anodizing in Fe(NO3)3 solution respectively. This method avoided the use of hazardous ammonia gas, or laborious ion implantation process. N and Fe-doped TiO2 nanotube arrays (TiO2 NTs) were prepared by electrochemical anodization process in 0.5 wt % HF aqueous solution. The anodization was performed at the conditions of 20 V and 20 min, Followed by a wet immersion in NH3.H2O (1M) for N-doping for 2 hr and annealing post-treatment at 450 °C. The morphology and structure of the nanotube films were characterized by field emission scanning electron microscope (FESEM) and EDX. UV-vis. illumination test were done to observe photo-enhanced catalysis. The effect of different annealing temperature on the structure and photo-absorption property of the TiO2-TNTs was investigated. The results showed that N-TNTs nanotubes exhibited higher photocatalytic activity compared whit the Fe-doped and pure TNTs, because doping N promoted the separation of the photogenerated electrons and holes.

  8. Solvothermal synthesis of TiO2 nanocrystals with {001} facets using titanic acid nanobelts for superior photocatalytic activity

    Science.gov (United States)

    Cao, Yuhui; Zong, Lanlan; Li, Qiuye; Li, Chen; Li, Junli; Yang, Jianjun

    2017-01-01

    Anatase TiO2 nanocrystals exposed with {001} facets were fabricated by solvothermal strategy in HF-C4H9OH mixed solution, using titanic acid nanobelts (TAN) as a precursor. The shape of TAN is a long flat plane with a high aspect ratio, and F- is easily adsorbed on the surface of the nanobelts, inducing a higher exposure of {001} facet of TiO2 nanoparticles during the structure reorganization. The exposed percentage of {001} facets could vary from 40 to 77% by adjusting the amount of HF. The as-prepared samples were characterized by transmission electron microscopy, N2 adsorption-desorption isotherms, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscope. The photocatalytic measurement showed that TiO2 nanocrystals with 77% {001} facets exhibited much superior photocatalytic activity for photodegradation of methyl orange, methylene blue, and rhodamine B. And what's more, the mineralization rate of methyl orange was as high as 96% within 60 min. The photocatalytic enhancement is due to a large amount of the high energetic {001} facets exposing, the special truncated octahedral morphology and a stronger ability for dyes adsorption.

  9. Electrochromic Type E-Paper Using Poly(1H-Thieno[3,4-d]Imidazol-2(3H-One Derivatives by a Novel Printing Fabrication Process

    Directory of Open Access Journals (Sweden)

    Kirihiro Nakano

    2011-12-01

    Full Text Available In this study, we report poly(1H-thieno[3,4-d]imidazol-2(3H-one (pTIO derivatives for an electrochromic (EC type e-paper and its novel printing fabrication process. pTIO is a kind of conductive polymer (CP s which are known as one of the EC materials. The electrochromism of pTIO is unique, because its color in doped state is almost transparent (pale gray. A transparent state is required to show a white color in a see-through view of an EC type e-paper. An electrochromism of CP has a good memory effect which is applicable for e-paper. The corresponding monomers of CP are able to be polymerized with an electrochemical method, which be made good use of for the fabrication process of e-paper. pTIO derivatives are copolymerized with other pi-conjugated X unit, which adjusts the color of electrochromism. Finally, we fabricated a segment matrix EC display using pTIO derivatives by ink-jet printing.

  10. Ag and CdS nanoparticles co-sensitized TiO2 nanotubes for enhancing visible photoelectrochemical performance

    International Nuclear Information System (INIS)

    Wang Qingyao; Yang Xiuchun; Liu Dan; Chi Lina; Hou Junwei

    2012-01-01

    Highlights: ► Ag and CdS nanoparticles co-sensitized TiO 2 nanotubes were fabricated by the SILAR method. ► The co-sensitization expands the photoresponse range of TiO 2 NTs to 668.7 nm. ► Visible light photocurrents and photocatalytic activities of CdS–Ag/TiO 2 NTs were studied. ► The electron transfer mechanism of CdS–Ag/TiO 2 NTs was proposed. - Abstract: The Ag and CdS nanoparticles co-sensitization of TiO 2 nanotubes (CdS–Ag/TiO 2 NTs) were prepared by successive ionic layer adsorption and reaction (SILAR) technique. The phase composition, morphology and optical property were characterized by the X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV–vis diffusion reflection spectroscopy (DRS). The co-modification of Ag and CdS nanoparticles expanded the photoresponse range of TiO 2 NTs from ultraviolet region to 668.7 nm, and the CdS–Ag/TiO 2 NTs prepared by SILAR deposition of 5 cycles exhibited higher visible photocurrent and stability against photocorrosion. The detailed electrons transfer mechanism of CdS–Ag/TiO 2 NTs was proposed, and photocatalytic activity toward degradation of methyl orange (MO) under visible-light irradiation was also investigated.

  11. Pebble fabrication of super advanced tritium breeders using a solid solution of Li2+xTiO3+y with Li2ZrO3

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Hoshino

    2016-12-01

    Full Text Available Lithium titanate with excess lithium (Li2+xTiO3+y is one of the most promising candidates among advanced tritium breeders for demonstration power plant reactors because of its good tritium release characteristics. However, the tritium breeding ratio (TBR of Li2+xTiO3+y is smaller than that of e.g., Li2O or Li8TiO6 because of its lower Li density. Therefore, new Li-containing ceramic composites with both high stability and high Li density have been developed. Thus, this study focused on the development of a solid solution with a new characteristic. The solid-solution pebbles of Li2+xTiO3+y with Li2ZrO3 (Li2+x(Ti,ZrO3+y, designated as LTZO, were fabricated by an emulsion method. The X-ray diffraction patterns of sintered LTZO pebbles are approximately the same as those of Li2+xTiO3+y pebbles, and no peaks attributable to Li2ZrO3 are observed. These results demonstrate that LTZO pebbles are not a two-phase material but rather a solid solution. Furthermore, LTZO pebbles were easily sintered under air. Thus, the LTZO solid solution is a candidate breeder material for super advanced (SA tritium breeders.

  12. Influence of Different Defects in Vertically Aligned Carbon Nanotubes on TiO2 Nanoparticle Formation through Atomic Layer Deposition.

    Science.gov (United States)

    Acauan, Luiz; Dias, Anna C; Pereira, Marcelo B; Horowitz, Flavio; Bergmann, Carlos P

    2016-06-29

    The chemical inertness of carbon nanotubes (CNT) requires some degree of "defect engineering" for controlled deposition of metal oxides through atomic layer deposition (ALD). The type, quantity, and distribution of such defects rules the deposition rate and defines the growth behavior. In this work, we employed ALD to grow titanium oxide (TiO2) on vertically aligned carbon nanotubes (VACNT). The effects of nitrogen doping and oxygen plasma pretreatment of the CNT on the morphology and total amount of TiO2 were systematically studied using transmission electron microscopy, Raman spectroscopy, and thermogravimetric analysis. The induced chemical changes for each functionalization route were identified by X-ray photoelectron and Raman spectroscopies. The TiO2 mass fraction deposited with the same number of cycles for the pristine CNT, nitrogen-doped CNT, and plasma-treated CNT were 8, 47, and 80%, respectively. We demonstrate that TiO2 nucleation is dependent mainly on surface incorporation of heteroatoms and their distribution rather than structural defects that govern the growth behavior. Therefore, selecting the best way to functionalize CNT will allow us to tailor TiO2 distribution and hence fabricate complex heterostructures.

  13. Synthesis and characterization of TiO2/CdS core–shell nanorod arrays and their photoelectrochemical property

    International Nuclear Information System (INIS)

    Cao Chunlan; Hu Chenguo; Shen Weidong; Wang, Shuxia; Tian Yongshu; Wang Xue

    2012-01-01

    Highlights: ► TiO 2 /CdS core–shell nanorod arrays were fabricated by spin-SILAR method. ► The enhanced photocurrent was found in the TiO 2 /CdS core–shell nanorod arrays. ► The CdS coated on TiO 2 increases the e-h separation and enlarges light absorption range. - Abstract: TiO 2 /CdS core–shell nanorod arrays have been fabricated via a two-step method. Vertically aligned TiO 2 nanorod arrays (NRs) were synthesized by a facile hydrothermal method, and followed by depositing CdS nanoparticles on TiO 2 NRs by spin-coating successive ion layer adsorption and reaction (spin-SILAR) method. The surface morphology, structure, optical and photoelectrochemical behaviors of the core–shell NRs films are considered. The UV–vis absorption spectrum results suggested that the absorption peak of the TiO 2 /CdS core–shell NRs shifts from the ultraviolet region to the visible region in comparison to that of the pure TiO 2 NRs. The obviously enhanced photoelectrochemical (PEC) performances of the heterojunction NRs were found under illumination of the simulated sunlight in comparison with that of the TiO 2 NRs. The enhanced PEC performance and formation mechanism of TiO 2 /CdS core–shell NRs were discussed in detail.

  14. Fine control of the amount of preferential <001> orientation in DC magnetron sputtered nanocrystalline TiO2 films

    International Nuclear Information System (INIS)

    Stefanov, B; Granqvist, C G; Österlund, L

    2014-01-01

    Different crystal facets of anatase TiO 2 are known to have different chemical reactivity; in particular the {001} facets which truncates the bi-tetrahedral anatase morphology are reported to be more reactive than the usually dominant {101} facets. Anatase TiO 2 thin films were deposited by reactive DC magnetron sputtering in Ar/O 2 atmosphere and were characterized using Rietveld refined grazing incidence X-ray diffraction, atomic force microscopy and UV/Vis spectroscopy. By varying the partial O2 pressure in the deposition chamber, the degree of orientation of the grains in the film could be systematically varied with preferred <001> orientation changing from random upto 39% as determined by March-Dollase method. The orientation of the films is shown to correlate with their reactivity, as measured by photo-degradation of methylene blue in water solutions. The results have implications for fabrication of purposefully chemically reactive thin TiO 2 films prepared by sputtering methods

  15. Formation of textured microstructure by mist deposition of TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Qin, Gang; Watanabe, Akira

    2013-01-01

    Unique and various textured TiO 2 films have been easily fabricated by mist deposition method on silicon and glass substrates with mild preparation conditions. Two kinds of TiO 2 nanoparticle with different shape, size, and crystal form were used as starting material, which resulted in a simple preparation process under low temperature and ordinary pressure. It was easy to control the thickness, morphology, and roughness of textured TiO 2 film by adjusting the mist deposition conditions such as deposition time, temperature, and the shape and size of nanoparticles. The optical properties of textured TiO 2 films before and after spin coating of Ag nanoparticles were investigated. The angular dependence of the reflectance was obviously reduced by textured TiO 2 surface and such effect was enhanced by Ag nanoparticles coating. A broad plasmon band of Ag grains was observed in the absorption spectrum of the textured Ag nanoparticle-coated TiO 2 film

  16. Study of phase development and thermal stability in as synthesized TiO2 nanoparticles by laser pyrolysis: ethylene uptake and oxygen enrichment

    Science.gov (United States)

    Ilie, Alina Georgiana; Scarisoreanu, Monica; Dutu, Elena; Dumitrache, Florian; Banici, Ana-Maria; Fleaca, Claudiu Teodor; Vasile, Eugenia; Mihailescu, Ion

    2018-01-01

    Laser pyrolysis has proven a viable and trustworthy method of TiO2 nanoparticles fabrication, ensuring good quality and wide variety of nanoparticle morphologies and sizes. This work is aimed to phase control, experimentally studied, by parameter modulation, during one step laser pyrolysis synthesis or in combination with thermal annealing. High phase purity anatase and rutile TiO2 nanoparticles, oxygen abundant, are synthesized from TiCl4 and C2H4 gas mixtures, in the presence of air as oxygen donor, under CO2 laser radiation. The nano-titania samples are analyzed by X-ray Diffraction, EDAX, TEM and Raman spectroscopy and reveal good phase stability and distinct morphology. This study extends the method applicability onto rutile majoritarian TiO2 synthesis and generation of thermally stable anatase titania, a well-known catalyst.

  17. Enhanced interfacial contact between PbS and TiO2 layers in quantum dot solar cells using 2D-arrayed TiO2 hemisphere nanostructures

    Science.gov (United States)

    Lee, Wonseok; Ryu, Ilhwan; Lee, Haein; Yim, Sanggyu

    2018-02-01

    Two-dimensionally (2D) arrayed hemispherical nanostructures of TiO2 thin films were successfully fabricated using a simple procedure of spin-coating or dip-coating TiO2 nanoparticles onto 2D close-packed polystyrene (PS) nanospheres, followed by PS extraction. The nanostructured TiO2 film was then used as an n-type layer in a lead sulfide (PbS) colloidal quantum dot solar cell. The TiO2 nanostructure could provide significantly increased contacts with subsequently deposited PbS quantum dot layer. In addition, the periodically arrayed nanostructure could enhance optical absorption of the cell by redirecting the path of the incident light and increasing the path length passing though the active layer. As a result, the power conversion efficiency (PCE) reached 5.13%, which is approximately a 1.7-fold increase over that of the control cell without nanostructuring, 3.02%. This PCE enhancement can mainly be attributed to the increase of the short-circuit current density from 19.6 mA/cm2 to 30.6 mA/cm2, whereas the open-circuit voltage and fill factor values did not vary significantly.

  18. Fabrication of Coaxial Si(1-x)Ge(x) Heterostructure Nanowires by O(2) Flow-Induced Bifurcate Reactions.

    Science.gov (United States)

    Kim, Ilsoo; Lee, Ki-Young; Kim, Ungkil; Park, Yong-Hee; Park, Tae-Eon; Choi, Heon-Jin

    2010-06-17

    We report on bifurcate reactions on the surface of well-aligned Si(1-x)Ge(x) nanowires that enable fabrication of two different coaxial heterostructure nanowires. The Si(1-x)Ge(x) nanowires were grown in a chemical vapor transport process using SiCl(4) gas and Ge powder as a source. After the growth of nanowires, SiCl(4) flow was terminated while O(2) gas flow was introduced under vacuum. On the surface of nanowires was deposited Ge by the vapor from the Ge powder or oxidized into SiO(2) by the O(2) gas. The transition from deposition to oxidation occurred abruptly at 2 torr of O(2) pressure without any intermediate region and enables selectively fabricated Ge/Si(1-x)Ge(x) or SiO(2)/Si(1-x)Ge(x) coaxial heterostructure nanowires. The rate of deposition and oxidation was dominated by interfacial reaction and diffusion of oxygen through the oxide layer, respectively.

  19. Spherical anatase TiO2 covered with nanospindles as dual functional scatters for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Xue, Xiaopan; Tian, Jianhua; Liao, Wenming; Shan, Zhongqiang

    2014-01-01

    Highlights: • Spherical anatase TiO 2 covered with nanospindles (SNS) were employed in DSSCs. • SNS possess the dual functions of light scattering and high dye loading. • SNS were fabricated through a facile hydrothermal treatment of the precursors. • Precursors were synthesized by controlled hydrolysis of TBT after being diluted. • The cells based on SNS-18/P25 photoanode exhibited advanced performance. - Abstract: Spherical anatase TiO 2 covered with nanospindles (SNS) were fabricated through a facile hydrothermal treatment of precursors in the presence of ammonia. The precursors were synthesized by controlling hydrolysis rate of TBT (tetrabutyl titanate) in ethanol. Organic structure directing agents and toxic reagents were avoided in the two–step process. By scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD), it is confirmed that the morphology and structure of the products can be controlled by adjusting hydrothermal treatment conditions. Time dependent trails revealed the growth mechanism of SNS, which indicating that ammonia can not only retard the dissolution of precursors but also make TiO 2 grow selectively along the direction. Furthermore, photocurrent-potential (I-V) curves show that the solar cells fabricated with the SNS collected after 18 h hydrothermal treatment (SNS-18) exhibit the highest solar energy conversion efficiency. The efficiency is improved by 24.5% compared with that of the cells fabricated with pure P25. Based on the UV-Vis spectrum, nitrogen sorption and IPCE analysis, the improved performance can be attributed to the enhanced scattering and increased active sites for dye loading. Therefore, the dual functions of light scattering and many active sites for dye loading make SNS superior candidates for DSSCs

  20. The Effects of Oxidation Temperature on the Microstructure and Photocatalytic Activity of the TiO2 Coating

    Directory of Open Access Journals (Sweden)

    Xinxin TANG

    2017-08-01

    Full Text Available Titanium coatings were prepared on the surface of 1mm ZrO2 balls by mechanical ball mill, then the coatings were oxidized to photocatalytic TiO2 films at 400 ~ 600 °C. X-Ray Diffraction, Scanning Electron Microscope, Energy Dispersive Spectroscopy and Optical Microscope were used to analyze the microstructure and crystal form of the films. The photocatalytic activity of the samples was also evaluated. After that, the effects of oxidation temperature on the microstructure and photocatalytic activity of the films were discussed. The results show that the fabricated coatings are uneven, with average thickness of 60 μm. In the process of oxidation, oxygen is imported into the inner coatings by the gaps existed in the Ti coatings, which makes the Ti particles oxidize from surface to core, finally the films with TiO2 + Ti composite microstructure are obtained. The films oxidized at 500 °C have the best photocatalytic performance with the degradation rate of methyl orange solution 79.08 %, this owing to the existence of anatase and the TiO2+Ti composite microstructure. The result will provide theoretical basis for the fabrication of efficient photocatalytic film.DOI: http://dx.doi.org/10.5755/j01.ms.23.2.15590

  1. Flow-Regulated Growth of Titanium Dioxide (TiO2 ) Nanotubes in Microfluidics.

    Science.gov (United States)

    Fan, Rong; Chen, Xinye; Wang, Zihao; Custer, David; Wan, Jiandi

    2017-08-01

    Electrochemical anodization of titanium (Ti) in a static, bulk condition is used widely to fabricate self-organized TiO 2 nanotube arrays. Such bulk approaches, however, require extended anodization times to obtain long TiO 2 nanotubes and produce only vertically aligned nanotubes. To date, it remains challenging to develop effective strategies to grow long TiO 2 nanotubes in a short period of time, and to control the nanotube orientation. Here, it is shown that the anodic growth of TiO 2 nanotubes is significantly enhanced (≈16-20 times faster) under flow conditions in microfluidics. Flow not only controls the diameter, length, and crystal orientations of TiO 2 nanotubes, but also regulates the spatial distribution of nanotubes inside microfluidic devices. Strikingly, when a Ti thin film is deposited on silicon substrates and anodized in microfluidics, both vertically and horizontally aligned (relative to the bottom substrate) TiO 2 nanotubes can be produced. The results demonstrate previously unidentified roles of flow in the regulation of growth of TiO 2 nanotubes, and provide powerful approaches to effectively grow long, oriented TiO 2 nanotubes, and construct hierarchical TiO 2 nanotube arrays on silicon-based materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Enhanced photochemical catalysis of TiO2 inverse opals by modification with ZnO or Fe2O3 using ALD and the hydrothermal method

    Science.gov (United States)

    Liu, Jiatong; Sun, Cuifeng; Fu, Ming; Long, Jie; He, Dawei; Wang, Yongsheng

    2018-02-01

    The development of porous materials exhibiting photon regulation abilities for improved photoelectrochemical catalysis performance is always one of the important goals of solar energy harvesting. In this study, methods to improve the photocatalytic activity of TiO2 inverse opals were discussed. TiO2 inverse opals were prepared by atomic layer deposition (ALD) using colloidal crystal templates. In addition, TiO2 inverse opal heterostructures were fabricated using colloidal heterocrystals by repeated vertical deposition using different colloidal spheres. The hydrothermal method and ALD were used to prepare ZnO- or Fe2O3-modified TiO2 inverse opals on the internal surfaces of the TiO2 porous structures. Although the photonic reflection band was not significantly varied by oxide modification, the presence of Fe2O3 in the TiO2 inverse opals enhanced their visible absorption. The conformally modified oxides on the TiO2 inverse opals could also form energy barriers and avoid the recombination of electrons and holes. The fabrication of the TiO2 photonic crystal heterostructures and modification with ZnO or Fe2O3 can enhance the photocatalytic activity of TiO2 inverse opals.

  3. In situ glow discharge plasma electrolytic synthesis of reduced TiO2 for enhanced visible light photocatalysis

    Science.gov (United States)

    Feng, Guang; Wu, Botao; Qayyum Khan, Abdul; Zeng, Heping

    2018-05-01

    Reduced titanium dioxide (TiO2x) due to its extraordinary visible light absorption has been widely investigated in photodegradation and water splitting nowadays. However, conventional routes to synthesize reduced TiO2 usually demand multiple preparation steps, harsh controlled conditions or expensive facilities. Here we developed a single-step in situ approach to prepare the gray TiO2x nanoparticles (sub-10 nm) effectively by the glow discharge plasma electrolysis (GDPE) under atmospheric pressure. The co-existence of self-doped oxygen vacancies and Ti3+ in the generated TiO2x nanoparticles is demonstrated by electron paramagnetic resonance (EPR). The tunable ratio of bulk/surface defect can be realized by controlling the glow discharge power directly. It should be noticed that Ti3+ in the synthesized TiO2x are quite stable in ambient air. The UV–vis spectra of gray TiO2x show an enhanced visible light absorption, which leads to high visible-light photocatalytic activity. Moreover, the as-prepared TiO2x after 6 months storage still shows excellent stability during photocatalytic reactions. Owing to its simplicity and effectivity, this preparation method with GDPE should provide a large-scale production for TiO2x with high photoactivity.

  4. Fabrication of TiO2@Yeast-Carbon Hybrid Composites with the Raspberry-Like Structure and Their Synergistic Adsorption-Photocatalysis Performance

    Directory of Open Access Journals (Sweden)

    Dang Yu

    2013-01-01

    Full Text Available In the present work, we report the preparation and photocatalytic properties of TiO2@yeast-carbon with raspberry-like structure using a pyrolysis method. The products are characterized by field emission scanning electron microscopy (FE-SEM, energy dispersive spectrometry (EDS, X-ray diffraction (XRD, thermal gravimetric and differential thermal analysis (TGA-DTA, Fourier transformed infrared spectroscopy (FT-IR, and ultraviolet visible spectroscopy (UV-VIS, respectively. The results show that the hybrid TiO2@yeast-carbon microspheres have ordered elliptic shapes of uniform size (length = 3.5±0.3 μm; width = 2.5±0.5 μm. UV-VIS ascertains that the as-prepared microspheres possess an obvious light response in a wide range of 250–400 nm. In the decomposition of typical model pollutants including methylene blue and congo red, the hybrid composites exhibited excellent photocatalytic activity for the methylene blue due to the enhanced adsorption ability. Further investigation reveals that the combined effect of adsorption from the yeast-carbon core and photocatalytic degradation from the attached TiO2 nanoparticles were responsible for the improvement of the photocatalytic activities. Hereby, the raspberry-like TiO2@yeast-carbon has promising applications in water purification.

  5. Enhanced conversion efficiency of dye-sensitized solar cells using a CNT-incorporated TiO2 slurry-based photoanode

    OpenAIRE

    Jiaoping Cai; Zexiang Chen; Jun Li; Yan Wang; Dong Xiang; Jijun Zhang; Hai Li

    2015-01-01

    A new titanium dioxide (TiO2) slurry formulation is herein reported for the fabrication of TiO2 photoanode for use in dye-sensitized solar cells (DSSCs). The prepared TiO2 photoanode featured a highly uniform mesoporous structure with well-dispersed TiO2 nanoparticles. The energy conversion efficiency of the resulting TiO2 slurry-based DSSC was ∼63% higher than that achieved by a DSSC prepared using a commercial TiO2 slurry. Subsequently, the incorporation of acid-treated multi-walled carbon ...

  6. Effect of zinc doping on the bandgap and photoluminescence of Zn2+-doped TiO2 nanowires

    Science.gov (United States)

    Loan, Trinh Thi; Huong, Vu Hoang; Tham, Vu Thi; Long, Nguyen Ngoc

    2018-03-01

    This study was focused on the effect of Zn2+ dopant concentration on the absorption edge and photoluminescence of anatase TiO2 nanowires synthesized by hydrothermal technique. For the undoped anatase TiO2 nanowires, the indirect band gap of 3.26 eV and the direct band gap of 3.58 eV are assigned to the indirect Γ3 → X1b and direct X2b → X1b transitions, respectively. The Zn2+-doping makes the absorption edge of TiO2:Zn2+ nanowires shift towards the lower energy side (red shift). On the other hand, the replacing Ti4+ ions with Zn2+ ions creates oxygen vacancies (VO) and shallow defects associated with VO. Just these defects are responsible for the enhanced luminescence of Zn2+-doped TiO2 nanowires.

  7. Fabrication of ridge waveguide structure from photosensitive TiO2/ormosil hybrid films by using an ultraviolet soft imprint technique

    International Nuclear Information System (INIS)

    Zhang, Xuehua; Que, Wenxiu; Chen, Jing; Gao, Tianxi; Hu, Jiaxing; Liu, Weiguo

    2013-01-01

    Photosensitive TiO 2 /organically modified silane hybrid films were prepared by combining a low-temperature sol–gel process with a spin-coating technique. Optical properties and photochemical activities of the as-prepared hybrid sol–gel films under different UV irradiation time were characterized and monitored by prism coupling technique, UV–visible spectroscopy, and Fourier transform infrared spectroscopy. Surface morphology of the hybrid films was also observed by an atomic force microscopy. Advantages for fabrication of ridge waveguide structure based on the photosensitive hybrid films were demonstrated by an ultraviolet soft imprint technique. Effects of imprint force, imprint time, and UV irradiation time on high replication fidelity of the ridge waveguide structure were also investigated. An altitude replication fidelity of 99.7% can be obtained when the imprint force of 2 MPa, imprint time of 30 min and UV irradiation time of 45 min were chosen. Scanning electron microscopy and surface profiler were used to characterize the morphological and surface profile properties of the as fabricated ridge waveguide structure. Results indicate that the as-prepared photosensitive hybrid materials have great applicability for the fabrication of micro-optical elements and advantage as the imprint layer under the ultraviolet soft imprint technique. - Highlights: ► Photosensitive TiO 2 /ormosil hybrid film is prepared by a sol–gel process. ► Optical properties of the films change a little with UV exposure time. ► Photo-chemical property of the film changes a lot with UV exposure time. ► The imprint force and time, and the UV exposure time affect the imprint fidelity. ► A fidelity value of 99.7% is obtained under an optimized condition

  8. Fabrication and properties of La2-xGdxHf2O7 transparent ceramics

    International Nuclear Information System (INIS)

    Wang, Zhengjuan; Zhou, Guohong; Zhang, Fang; Qin, Xianpeng; Ai, Jianping; Wang, Shiwei

    2016-01-01

    La 2-x Gd x Hf 2 O 7 (x=0–2.0) transparent ceramics were fabricated through vacuum sintering from nano-powders synthesized by a simple combustion method. The phase composition of the powders and final ceramics, the in-line transmittance, microstructures and density of the ceramics were investigated. With the increasing of Gd content, the ceramics maintained the cubic pyrochlore structure, and the lattice parameters decreased, whilst the densities increased linearly. All the ceramics were transparent. The highest in-line transmittance was 76.1% at 800 nm (x=1.2). With high density (7.91–8.88 g/cm 3 ) and effective atomic number, some of the La 2-x Gd x Hf 2 O 7 (x=0–2.0) transparent ceramics are promising candidates for scintillator hosts. - Highlights: • A new series of La 2-x Gd x Hf 2 O 7 transparent ceramics were fabricated by vacuum sintering using combustion-synthesized powders. • All the ceramics are transparent and the in-line transmittance can reach to 76.1% at 800 nm when x=1.2. • The Gd content has effects on the crystal structure, in-line transmittance, microstructures and densities of the ceramics. • With high density (7.91~8.88 g/cm3) and effective atomic number, some of the La2-xGdxHf2O7 transparent ceramics are promising candidates for scintillator hosts.

  9. Photocatalytic effects for the TiO2-coated phosphor materials

    International Nuclear Information System (INIS)

    Yoon, Jin-Ho; Jung, Sang-Chul; Kim, Jung-Sik

    2011-01-01

    Research highlights: → The photocatalytic behavior of the coupling of TiO 2 with phosphorescent materials. → The photobleaching of an MB aqueous solution under visible light irradiation. → The ALD TiO 2 -coated phosphor composite showed much higher photocatalytic reactivity. → The light emitted from the phosphors contributed to the photo-generation. - Abstract: This study investigated the photocatalytic behavior of the coupling of TiO 2 with phosphorescent materials. A TiO 2 thin film was deposited on CaAl 2 O 4 :Eu 2+ ,Nd 3+ phosphor particles by using atomic layer deposition (ALD), and its photocatalytic reaction was investigated by the photobleaching of an aqueous solution of methylene-blue (MB) under visible light irradiation. To clarify the mechanism of the TiO 2 -phosphorescent materials, two different samples of TiO 2 -coated phosphor and TiO 2 -Al 2 O 3 -coated phosphor particles were prepared. The photocatalytic mechanisms of the ALD TiO 2 -coated phosphor powders were different from those of the pure TiO 2 and TiO 2 -Al 2 O 3 -coated phosphor. The absorbance in a solution of the ALD TiO 2 -coated phosphor decreased much faster than that of pure TiO 2 under visible irradiation. In addition, the ALD TiO 2 -coated phosphor showed moderately higher photocatalytic degradation of MB solution than the TiO 2 -Al 2 O 3 -coated phosphor did. The TiO 2 -coated phosphorescent materials were characterized by transmission electron microscopy (TEM), Auger electron spectroscopy (AES) and X-ray photon spectroscopy (XPS).

  10. Preparation of anatase TiO2 nanoparticles using low hydrothermal temperature for dye-sensitized solar cell

    Science.gov (United States)

    Sofyan, N.; Ridhova, A.; Yuwono, A. H.; Udhiarto, A.

    2018-03-01

    One device being developed as an alternative source of renewable energy by utilizing solar energy source is dye-sensitized solar cells (DSSC). This device works using simple photosynthetic-electrochemical principle in the molecular level. In this device, the inorganic oxide semiconductor of titanium dioxide (TiO2) has a great potential for the absorption of the photon energy from the solar energy source, especially in the form of TiO2 nanoparticle structure. This nanoparticle structure is expected to improve the performance of DSSC because the surface area to weight ratio of this nanostructures is very large. In this study, the synthesis of TiO2 nanoparticle from its precursors has been performed along with the fabrication of the DSSC device. Effort to improve the size of nanocrystalline anatase TiO2 was accomplished by low hydrothermal treatment at various temperatures whereas the crystallinity of the anatase phase in the structure was performed by calcination process. Characterization of the materials was performed using X-ray Diffraction (XRD) and scanning electron microscope (SEM), while the DSSC performance was examined through a high precision current versus voltage (I-V) curve analyzer. The results showed that pure anatase TiO2 nanoparticles could be obtained at low hydrothermal of 100, 125, and 150 °C followed by calcination at 450 °C. The best performance of photocurrent-voltage characteristic was given by TiO2 hydrothermally synthesized at 150 °C with power conversion efficiency (PCE) of 4.40 %, whereas the standard TiO2 nanoparticles has PCE only 4.02 %. This result is very promising in terms low temperature and thus low cost of anatase TiO2 semiconductor preparation for DSSC application.

  11. Graphene-spindle shaped TiO2 mesocrystal composites: Facile synthesis and enhanced visible light photocatalytic performance

    International Nuclear Information System (INIS)

    Yang, Xiaofei; Qin, Jieling; Li, Yang; Zhang, Rongxian; Tang, Hua

    2013-01-01

    Highlights: • Graphene-TiO 2 mesocrystal composites were fabricated via a facile approach. • Graphene sheets were decorated with spindle-like TiO 2 mesocrystals. • Graphene causes enhanced light absorbance and visible light photocatalytic activity. • Oxygen-containing radicals are believed to responsible for its improved activity. -- Abstract: Graphene (GR)-TiO 2 mesocrystal composites were prepared by a facile template-free process based on the combination of sol–gel and solvothermal methods, and were characterized using field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Raman spectroscopy, UV–vis diffuse reflectance spectroscopy (UV–vis DRS), nitrogen absorption and electron spin resonance (ESR). Visible light photocatalytic performance of GR-TiO 2 composites was evaluated for photocatalytic degradation of organic dye Rhodamine B. It was found that the amount of graphene oxide (GO) added obviously affects morphologies of TiO 2 mesocrystals and photocatalytic activities of as-prepared nanocomposites. Composites prepared in the presence of different amounts of GO all exhibit higher photocatalytic activity than pure TiO 2 mesocrystals and P25, the composite obtained by using 20 mg GO presents the most uniform TiO 2 mesocrystals in the composite and shows the highest photocatalytic efficiency. The mechanism for the generation of TiO 2 mesocrystals in the GR-TiO 2 composite is proposed and possible reasons for the enhancement in visible light photocatalytic efficiency are also discussed

  12. Water adsorption on TiO2 surfaces probed by soft X-ray spectroscopies: bulk materials vs. isolated nanoparticles

    Science.gov (United States)

    Benkoula, Safia; Sublemontier, Olivier; Patanen, Minna; Nicolas, Christophe; Sirotti, Fausto; Naitabdi, Ahmed; Gaie-Levrel, François; Antonsson, Egill; Aureau, Damien; Ouf, François-Xavier; Wada, Shin-Ichi; Etcheberry, Arnaud; Ueda, Kiyoshi; Miron, Catalin

    2015-01-01

    We describe an experimental method to probe the adsorption of water at the surface of isolated, substrate-free TiO2 nanoparticles (NPs) based on soft X-ray spectroscopy in the gas phase using synchrotron radiation. To understand the interfacial properties between water and TiO2 surface, a water shell was adsorbed at the surface of TiO2 NPs. We used two different ways to control the hydration level of the NPs: in the first scheme, initially solvated NPs were dried and in the second one, dry NPs generated thanks to a commercial aerosol generator were exposed to water vapor. XPS was used to identify the signature of the water layer shell on the surface of the free TiO2 NPs and made it possible to follow the evolution of their hydration state. The results obtained allow the establishment of a qualitative determination of isolated NPs’ surface states, as well as to unravel water adsorption mechanisms. This method appears to be a unique approach to investigate the interface between an isolated nano-object and a solvent over-layer, paving the way towards new investigation methods in heterogeneous catalysis on nanomaterials. PMID:26462615

  13. TiO2/ CNT hetero-structure with variable electron beam diameter suitable for nano lithography

    International Nuclear Information System (INIS)

    Barati, F.; Abdi, Y.; Arzi, E.

    2012-01-01

    We report fabrication of a novel TiO 2 /carbon nano tube based field emission device suitable for nano lithography and fabrication of transistor. The growth of carbon nano tubes is performed on silicon substrates using plasma-enhanced chemical vapor deposition method. The vertically grown carbon nano tubes are encapsulated by TiO 2 using an atmospheric pressure chemical vapor deposition system. Field emission from the carbon nano tubes is realized by mechanical polishing of the prepared nano structure. The possibility of the application of such nano structures as a lithography tool with variable electron beam diameter was investigated. The obtained results show that spot size of less than 30 nm can be obtained by applying a proper voltage on TiO 2 surrounding gate. Electrical measurements of the fabricated device confirm the capability of this nano structure for the fabrication of field emission based field effect transistor. By applying a voltage between the gate and the cathode electrode, the emission current from carbon nano tubes shows a significant drop, indicating proper control of gate on the emission current.

  14. TiO2/PbS/ZnS heterostructure for panchromatic quantum dot sensitized solar cells synthesized by wet chemical route

    Science.gov (United States)

    Bhat, T. S.; Mali, S. S.; Sheikh, A. D.; Korade, S. D.; Pawar, K. K.; Hong, C. K.; Kim, J. H.; Patil, P. S.

    2017-11-01

    So far we developed the efficient photoelectrodes which can harness the UV as well as the visible regime of the solar spectrum effectively. In order to exploit a maximum portion of solar spectrum, it is necessary to study the synergistic effect of a photoelectrode comprising UV and visible radiations absorbing materials. Present research work highlights the efforts to study the synchronized effect of TiO2 and PbS on the power conversion efficiency of quantum dot sensitized solar cell (QDSSC). A cascade structure of TiO2/PbS/ZnS QDSSC is achieved to enhance the photoconversion efficiency of TiO2/PbS system by incorporating a surface passivation layer of ZnS which avoids the recombination of charge carriers. A QDSSC is fabricated using a simple and cost-effective technique such as hydrothermally grown TiO2 nanorod arrays decorated with PbS and ZnS using successive ionic layer adsorption and reaction (SILAR) method. Synthesized electrode materials are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), High resolution-transmission electron microscopy (TEM), STEM-EDS mapping, optical and solar cell performances. Phase formation of TiO2, PbS and ZnS get confirmed from the XPS study. FE-SEM images of the photoelectrode show uniform coverage of PbS QDs onto the TiO2 nanorods which increases with increasing number of SILAR cycles. The ZnS layer not only improves the charge transport but also reduces the photocorrosion of lead chalcogenides in the presence of a liquid electrolyte. Finally, the photoelectrochemical (PEC) study is carried out using an optimized photoanode comprising TiO2/PbS/ZnS assembly. Under AM 1.5G illumination the TiO2/PbS/ZnS QDSSC photoelectrode shows 4.08 mA/cm2 short circuit current density in a polysulfide electrolyte which is higher than that of a bare TiO2 nanorod array.

  15. A Humidity Sensor Based on Nb-doped Nanoporous TiO2 Thin Film

    Directory of Open Access Journals (Sweden)

    Mansoor Anbia

    2011-11-01

    Full Text Available The humidity sensing properties of the sensor fabricated from Nb-doped nanoporous TiO2 by screen-printing on the alumina substrate with Ag-Pd interdigital electrodes have been investigated. The nanoporous thin film has been prepared by sol-gel technique. The product has been characterized by X-ray diffraction and scanning electron microscopy to analyze the structure and its morphology. It is found that the impedance of this sensor changes more than four orders of magnitude in the relative humidity (RH range of 11–95 % at 25 °C. The response and recovery time of the sensor are about 19 and 25 s, respectively, during the RH variation from 11 to 95 %. The sensor shows high humidity sensitivity, rapid response and recovery, prominent stability, good repeatability and narrow hysteresis loop. These results indicate that Nb-doped nanoporous TiO2 thin films have a great potential for humidity sensing applications in room temperature operations.

  16. Fabrication and properties of La{sub 2-x}Gd{sub x}Hf{sub 2}O{sub 7} transparent ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhengjuan [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhou, Guohong, E-mail: sic_zhough@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhang, Fang; Qin, Xianpeng [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Ai, Jianping [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Shiwei, E-mail: swwang51@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2016-01-15

    La{sub 2-x}Gd{sub x}Hf{sub 2}O{sub 7} (x=0–2.0) transparent ceramics were fabricated through vacuum sintering from nano-powders synthesized by a simple combustion method. The phase composition of the powders and final ceramics, the in-line transmittance, microstructures and density of the ceramics were investigated. With the increasing of Gd content, the ceramics maintained the cubic pyrochlore structure, and the lattice parameters decreased, whilst the densities increased linearly. All the ceramics were transparent. The highest in-line transmittance was 76.1% at 800 nm (x=1.2). With high density (7.91–8.88 g/cm{sup 3}) and effective atomic number, some of the La{sub 2-x}Gd{sub x}Hf{sub 2}O{sub 7} (x=0–2.0) transparent ceramics are promising candidates for scintillator hosts. - Highlights: • A new series of La{sub 2-x}Gd{sub x}Hf{sub 2}O{sub 7} transparent ceramics were fabricated by vacuum sintering using combustion-synthesized powders. • All the ceramics are transparent and the in-line transmittance can reach to 76.1% at 800 nm when x=1.2. • The Gd content has effects on the crystal structure, in-line transmittance, microstructures and densities of the ceramics. • With high density (7.91~8.88 g/cm3) and effective atomic number, some of the La2-xGdxHf2O7 transparent ceramics are promising candidates for scintillator hosts.

  17. Uniformly distributed anatase TiO2 nanoparticles on graphene: Synthesis, characterization, and photocatalytic application

    International Nuclear Information System (INIS)

    Bai, Xue; Zhang, Xiaoyuan; Hua, Zulin; Ma, Wenqiang; Dai, Zhangyan; Huang, Xin; Gu, Haixin

    2014-01-01

    Highlights: • Uniform distributed TiO 2 nanoparticles on graphene by a modified method. • Reduced recombination rate of photogenerated electron–hole pairs. • Effective charge transfer from TiO 2 to graphene. • Better photocatalytic activity upon UV and visible irradiation. • A mechanism of bisphenol A degradation process is proposed. - Abstract: Graphene (GR)/TiO 2 nanocomposites are successfully synthesized using a simple and efficient hydrothermal method. Even-sized anatase TiO 2 nanoparticles are uniformly distributed on GR. The GR/TiO 2 nanocomposites exhibit an extended light absorption range and decreased electron–hole recombination rates. The photocatalytic activity of the as-prepared GR/TiO 2 nanocomposites for bisphenol A (BPA) degradation is investigated under UV (λ = 365 nm) and visible (λ ⩾ 400 nm) light irradiation. The results show that GR/TiO 2 nanocomposites have significantly higher photocatalytic activity than P25 (pure TiO 2 ). The large increase in photocatalytic activity is mostly attributed to effective charge transfer from TiO 2 nanoparticles to GR, which suppresses charge recombination during the photocatalytic process. After five successive cycles, the photodegradation activity of the GR/TiO 2 nanocomposites shows no significant decrease, which indicates that the nanocomposites are stable under UV and visible light. X-ray photoelectron spectroscopy (XPS) is used to investigate the chemical bonds of GR/TiO 2 nanocomposites before and after degradation to determine the degradation intermediate products of BPA under irradiation. A proposed degradation reaction pathway of BPA is also established. This study provides new insights into the fabrication and practical application of high-performance photocatalysts in wastewater treatment

  18. Low-temperature atomic layer deposition of TiO2 thin layers for the processing of memristive devices

    International Nuclear Information System (INIS)

    Porro, Samuele; Conti, Daniele; Guastella, Salvatore; Ricciardi, Carlo; Jasmin, Alladin; Pirri, Candido F.; Bejtka, Katarzyna; Perrone, Denis; Chiolerio, Alessandro

    2016-01-01

    Atomic layer deposition (ALD) represents one of the most fundamental techniques capable of satisfying the strict technological requirements imposed by the rapidly evolving electronic components industry. The actual scaling trend is rapidly leading to the fabrication of nanoscaled devices able to overcome limits of the present microelectronic technology, of which the memristor is one of the principal candidates. Since their development in 2008, TiO 2 thin film memristors have been identified as the future technology for resistive random access memories because of their numerous advantages in producing dense, low power-consuming, three-dimensional memory stacks. The typical features of ALD, such as self-limiting and conformal deposition without line-of-sight requirements, are strong assets for fabricating these nanosized devices. This work focuses on the realization of memristors based on low-temperature ALD TiO 2 thin films. In this process, the oxide layer was directly grown on a polymeric photoresist, thus simplifying the fabrication procedure with a direct liftoff patterning instead of a complex dry etching process. The TiO 2 thin films deposited in a temperature range of 120–230 °C were characterized via Raman spectroscopy and x-ray photoelectron spectroscopy, and electrical current–voltage measurements taken in voltage sweep mode were employed to confirm the existence of resistive switching behaviors typical of memristors. These measurements showed that these low-temperature devices exhibit an ON/OFF ratio comparable to that of a high-temperature memristor, thus exhibiting similar performances with respect to memory applications

  19. Sequential Dip-spin Coating Method: Fully Infiltration of MAPbI 3-x Cl x into Mesoporous TiO 2 for Stable Hybrid Perovskite Solar Cells

    KAUST Repository

    Kim, Woochul

    2017-05-31

    Organic-inorganic hybrid perovskite solar cells (PSCs) have reached a power conversion efficiency of 22.1% in a short period (∼7 years), which has been obtainable in silicon-based solar cells for decades. The high power conversion efficiency and simple fabrication process render perovskite solar cells as potential future power generators, after overcoming the lack of long-term stability, for which the deposition of void-free and pore-filled perovskite films on mesoporous TiO2 layers is the key pursuit. In this research, we developed a sequential dip-spin coating method in which the perovskite solution can easily infiltrate the pores within the TiO2 nanoparticulate layer, and the resultant film has large crystalline grains without voids between them. As a result, a higher short circuit current is achieved owing to the large interfacial area of TiO2/perovskite, along with enhanced power conversion efficiency, compared to the conventional spin coating method. The as-made pore-filled and void-free perovskite film avoids intrinsic moisture and air and can effectively protect the diffusion of degradation factors into the perovskite film, which is advantageous for the long-term stability of PSCs.

  20. Influence of Dye Adsorbtion Time on TiO2 Dye-Sensitized Solar Cell with Krokot Extract (Portulaca Oleracea. L as A Natural Sensitizer

    Directory of Open Access Journals (Sweden)

    Didik Krisdiyanto

    2015-03-01

    Full Text Available Dye sensitized solar cells (DSSC photoelectrodes were fabricated using titanium oxide (TiO2 and sensitized with the krokot extract dye. This study investigated the effect of dye adsorption time to an efficiency of the solar cells. The fabrication cells immersed with krokot extract dye for 1, 8 and 26 hours. The photochemical performance of the DSSC showed that the open circuit voltage (Voc were 0.33, 0.036 and 0.27 V with short photocurrent density (Isc 8.00 x 10-5, 6.80 x 10-7 and 3.10 x 10-4. The photo-to-electric conversion efficiency of the DSSC reached 4.63 x 10-3 % for 26 hours adsorption time.

  1. Screened coulomb hybrid DFT study on electronic structure and optical properties of anionic and cationic Te-doped anatase TiO2

    KAUST Repository

    Harb, Moussab

    2013-06-27

    The origin of the enhanced visible-light optical absorption in Te-doped bulk anatase TiO2 is investigated in the framework of DFT and DFPT within HSE06 in order to ensure accurate electronic structure and optical transition predictions. Various oxidation states of Te species are considered based on their structural location in bulk TiO2. In fact, TiO (2-x)Tex (with isolated Te2- species at Te-Te distance of 8.28 Å), TiO2Tex (with isolated TeO 2- species at Te-Te distance of 8.28 Å), TiO2Te 2x (with two concomitant TeO2- species at Te-Te distance of 4.11 Å), and Ti(1-2x)O2Te2x (with two neighboring Te4+ species at nearest-neighbor Te-Te distance of 3.05 Å) show improved optical absorption responses in the visible range similarly as it is experimentally observed in Te-doped TiO2 powders. The optical absorption edges of TiO(2-x)Tex, TiO 2Tex, and TiO2Te2x are found to be red-shifted by 400 nm compared with undoped TiO2 whereas that of Ti(1-2x)O2Te2x is red-shifted by 150 nm. On the basis of calculated valence and conduction band edge positions of Te-doped TiO2, only TiO(2-x)Tex and Ti (1-2x)O2Te2x show suitable potentials for overall water splitting under visible-light irradiation. The electronic structure analysis revealed narrower band gaps of 1.12 and 1.17 eV with respect to undoped TiO2, respectively, resulting from the appearance of new occupied electronic states in the gap of TiO2. A delocalized nature of the gap states is found to be much more pronounced in TiO (2-x)Tex than that with Ti(1-2x)O 2Te2x due to the important contribution of numerous O 2p orbitals together with Te 5p orbitals. © 2013 American Chemical Society.

  2. Photocatalytic oxidation of NOx gases using TiO2: a surface spectroscopic approach

    International Nuclear Information System (INIS)

    Dalton, J.S.; Janes, P.A.; Jones, N.G.; Nicholson, J.A.; Hallam, K.R.; Allen, G.C.

    2002-01-01

    X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy were used to study surface reactions between nitrogen oxides and TiO 2 on surfaces. - The bandgap of solid-state TiO 2 (3.2 eV) enables it to be a useful photocatalyst in the ultraviolet (λ 2 surface in the presence of sunlight therefore enables the removal of harmful NO x gases from the atmosphere by oxidation to nitrates. These properties, in addition to the whiteness, relative cheapness and non-toxicity, make TiO 2 ideal for the many de-NOX catalysts that are currently being commercially exploited both in the UK and Japan for concrete paving materials in inner cities. There is need, however, for further academic understanding of the surface reactions involved. Hence, we have used surface specific techniques, including X-ray photoelectron spectroscopy and Raman spectroscopy, to investigate the NO x adsorbate reaction at the TiO 2 substrate surface

  3. Fabrication of highly conductive Ta-doped SnO2 polycrystalline films on glass using seed-layer technique by pulse laser deposition

    International Nuclear Information System (INIS)

    Nakao, Shoichiro; Yamada, Naoomi; Hitosugi, Taro; Hirose, Yasushi; Shimada, Toshihiro; Hasegawa, Tetsuya

    2010-01-01

    We discuss the fabrication of highly conductive Ta-doped SnO 2 (Sn 1-x Ta x O 2 ; TTO) thin films on glass by pulse laser deposition. On the basis of the comparison of X-ray diffraction patterns and resistivity (ρ) values between epitaxial films and polycrystalline films deposited on bare glass, we proposed the use of seed-layers for improving the conductivity of the TTO polycrystalline films. We investigated the use of rutile TiO 2 and NbO 2 as seed-layers; these are isostructural materials of SnO 2, which are expected to promote epitaxial-like growth of the TTO films. The films prepared on the 10-nm-thick seed-layers exhibited preferential growth of the TTO (110) plane. The TTO film with x = 0.05 on rutile TiO 2 exhibited ρ = 3.5 x 10 -4 Ω cm, which is similar to those of the epitaxial films grown on Al 2 O 3 (0001).

  4. tavgM_2d_rad_Nx: MERRA 2D IAU Diagnostic, Radiation Surface and TOA, Monthly Mean 0.667 x 0.5 degree V5.2.0 (MATMNXRAD) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATMNXRAD or tavgM_2d_rad_Nx data product is the MERRA Data Assimilation System 2-Dimensional surface and TOA radiation flux that is time averaged single-level...

  5. Application of rapid thermal processing on SiNx thin film to solar cells

    Institute of Scientific and Technical Information of China (English)

    Youjie LI; Peiqing LUO; Zhibin ZHOU; Rongqiang CUI; Jianhua HUANG; Jingxiao WANG

    2008-01-01

    Rapid thermal processing (RTP) of SiNx thin films from PECVD with low temperature was investigated. A special processing condition of this technique which could greatly increase the minority lifetime was found in the experiments. The processing mechanism and the application of the technique to silicon solar cells fabrication were dis-cussed. A main achievement is an increase of the minority lifetime in silicon wafer with SiNx thin film by about 200% after the RTP was reached. PC-1D simulation results exhibit an enhancement of the efficiency of the solar cell by 0.42% coming from the minority lifetime improvement. The same experiment was also conducted with P-diffusion silicon wafers, but the increment of minority lifetime is just about 55%. It could be expected to improve the solar cell efficiency if it would be used in silicon solar cells fabrication with the combination of laser firing contact technique.

  6. The double peaks and symmetric path phenomena in the catalytic activity of Pd/Al2O3-TiO2 catalysts with different TiO2 contents

    Science.gov (United States)

    Zhang, Shen; Guo, Yuyu; Li, Xingying; Wu, Xu; Li, Zhe

    2018-06-01

    Physicochemical properties of Pd/Al2O3-TiO2 catalysts with different amounts of TiO2 contents were investigated by XRD, nitrogen adsorption-desorption, FTIR, NH3-TPD, H2-TPR and XPS techniques. Catalysts of different compositions were tested in the ethanol oxidation reaction to study the effects of TiO2 contents. Double peaks and symmetric path phenomena were observed at certain temperatures with the increase in TiO2 contents. The symmetric peak phenomena and the diverse activity fluctuations have been ascribed to the controlling factors such as temperature and compositions. With the increase in TiO2 content, the surface area, adsorbed oxygen contents and surface acid quantity decreased gradually. The large surface area and adsorbed oxygen contents were conducive to the performance, while increased acid amounts were not beneficial for ethanol oxidation. At 150 and 175 °C, Pd/AT(X1

  7. Quantum dot sensitized solar cell based on TiO2/CdS/Ag2S heterostructure

    Science.gov (United States)

    Pawar, Sachin A.; Patil, Dipali S.; Kim, Jin Hyeok; Patil, Pramod S.; Shin, Jae Cheol

    2017-04-01

    Quantum dot sensitized solar cell (QDSSC) is fabricated based on a stepwise band structure of TiO2/CdS/Ag2S to improve the photoconversion efficiency of TiO2/CdS system by incorporating a low band gap Ag2S QDs. Vertically aligned TiO2 nanorods assembly is prepared by a simple hydrothermal technique. The formation of CdS and Ag2S QDs over TiO2 nanorods assembly as a photoanode is carried out by successive ionic layer adsorption and reaction (SILAR) technique. The synthesized electrode materials are characterized by XRD, XPS, field emission scanning electron microscopy (FE-SEM), Optical, solar cell and electrochemical performances. The results designate that the QDs of CdS and Ag2S have efficiently covered exterior surfaces of TiO2 nanorods assembly. A cautious evaluation between TiO2/CdS and TiO2/CdS/Ag2S sensitized cells tells that CdS and Ag2S synergetically helps to enhance the light harvesting ability. Under AM 1.5G illumination, the photoanodes show an improved power conversion efficiency of 1.87%, in an aqueous polysulfide electrolyte with short-circuit photocurrent density of 7.03 mA cm-2 which is four fold higher than that of a TiO2/CdS system.

  8. Antibacterial effect of novel synthesized sulfated β-cyclodextrin crosslinked cotton fabric and its improved antibacterial activities with ZnO, TiO2 and Ag nanoparticles coating.

    Science.gov (United States)

    Selvam, S; Rajiv Gandhi, R; Suresh, J; Gowri, S; Ravikumar, S; Sundrarajan, M

    2012-09-15

    Sulfated β-cyclodextrin was synthesized from sulfonation of β-cyclodextrin and sulfated polymer was crosslinked with cotton fabric using ethylenediaminetetraacetic acid as crosslinker. ZnO, TiO(2) and Ag nanoparticles were prepared and characterized by XRD, UV, DLS, SEM and PSA. The prepared nanoparticles were coated on crosslinked cotton fabric. The crosslinking and nanoparticles coating effects of cotton fabrics were studied by FTIR and SEM analysis. The antibacterial test was done against gram positive Staphylococcus aureus and gram negative Escherichia coli bacterium. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Cluster synthesis of monodisperse rutile-TiO2 nanoparticles and dielectric TiO2-vinylidene fluoride oligomer nanocomposites

    International Nuclear Information System (INIS)

    Balasubramanian, Balamurugan; Kraemer, Kristin L; Valloppilly, Shah R; Ducharme, Stephen; Sellmyer, David J

    2011-01-01

    The embedding of oxide nanoparticles in polymer matrices produces a greatly enhanced dielectric response by combining the high dielectric strength and low loss of suitable host polymers with the high electric polarizability of nanoparticles. The fabrication of oxide-polymer nanocomposites with well-controlled distributions of nanoparticles is, however, challenging due to the thermodynamic and kinetic barriers between the polymer matrix and nanoparticle fillers. In the present study, monodisperse TiO 2 nanoparticles having an average particle size of 14.4 nm and predominant rutile phase were produced using a cluster-deposition technique without high-temperature thermal annealing and subsequently coated with uniform vinylidene fluoride oligomer (VDFO) molecules using a thermal evaporation source, prior to deposition as TiO 2 -VDFO nanocomposite films on suitable substrates. The molecular coatings on TiO 2 nanoparticles serve two purposes, namely to prevent the TiO 2 nanoparticles from contacting each other and to couple the nanoparticle polarization to the matrix. Parallel-plate capacitors made of TiO 2 -VDFO nanocomposite film as the dielectric exhibit minimum dielectric dispersion and low dielectric loss. Dielectric measurements also show an enhanced effective dielectric constant in TiO 2 -VDFO nanocomposites as compared to that of pure VDFO. This study demonstrates for the first time a unique electroactive particle coating in the form of a ferroelectric VDFO that has high-temperature stability as compared to conventionally used polymers for fabricating dielectric oxide-polymer nanocomposites.

  10. Recovery TiO2 by leaching process of carbothermic reduced Kalimantan ilmenite

    Science.gov (United States)

    Wahyuningsih, S.; Sari, P. P.; Ramelan, A. H.

    2018-05-01

    Ilmenite naturally occurred in iron titanate (FeTiO3) minerals. The separation of natural ilmenite into TiO2 and Fe2O3 need to be explored to gain the high purity separation product. A new combination method named of carbothermic reduction, acidic-leaching and complexation by EDTA were proposed for separation TiO2 from Ilmenite. Roasting of ilmenite was carried out at 950 °C for 1 h by the addition of activated carbon with mass ratio of ilmenite : activated carbon =4:3. The carbothermic reduction was carried out to yield a high separation of initial content of ilmenite that will be easily to dissolve within hydrochloric acid solution in leaching process. The composition of ilmenite observed by X-Ray Fluoresences (XRF) changed after the carbothermic reduction process and the dominant content is TiO2 (57.56%). X-Ray Diffraction (XRD) of roasted ilmenite composed of decomposed product of ilmenite i.e. hematite (Fe2O3), TiO2 anatase, TiO2 rutile, and inorganic salt. The leaching of the roasted ilmenite has been done by sulphuric acid solution (6 M) to gain the titanyl sulphate solution. Separation of iron impurities of TiO2 gel from titanyl sulphate (TiOSO4) solution was conducted by complexation method using EDTA as a complexation agent. The characteristic of TiO2 obtained using XRD showed that TiO2 is anatase type and the percentage of TiO2 using XRF showed that TiO2 content of 86,03%.

  11. Permanent magnetic properties of NdFe12Nx sputtered films epitaxially grown on V buffer layer

    Science.gov (United States)

    Sato, T.; Ohsuna, T.; Yano, M.; Kato, A.; Kaneko, Y.

    2017-08-01

    To clarify the magnetic properties of the NdFe12Nx compound, which shows promise as a high-performance permanent magnet material, NdFe12Nx epitaxial films fabricated by using a V underlayer on MgO (100) single-crystalline substrates were investigated. Nd-Fe films deposited on a V underlayer consist of NdFe12 grains, which have a c-axis orientation perpendicular to the film plane, as well as α-Fe and Nd2Fe17 phases. In the Nd-Fe-N film obtained by subsequent nitridation of the Nd-Fe film, NdFe12Nx grains grew as the dominant phase, and the volume fractions of α-Fe phases dropped below 5%. A Nd-Fe-N film with a thickness of 50 nm exhibits a saturation magnetization (Ms) of 1.7 T, an anisotropy field (HA) of ˜60 kOe, a magnetocrystalline anisotropy energy (K1) of ˜4.1 MJ/m3, and a coercivity (Hc) of 1.7 kOe. The Hc of a Nd-Fe-N film with a thickness of 25 nm is 4.3 kOe. These results indicate that NdFe12Nx compounds have a superior Ms compared to Nd-Fe-B magnets, while the enhancement in Hc is indispensable.

  12. Effects of Homogenization Scheme of TiO2 Screen-Printing Paste for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Seigo Ito

    2012-01-01

    Full Text Available TiO2 porous electrodes have been fabricated for photoelectrodes in dye-sensitized solar cells (DSCs using TiO2 screen-printing paste from nanocrystalline TiO2 powder dried from the synthesized sol. We prepared the TiO2 screen-printing paste by two different methods to disperse the nanocrystalline TiO2 powder: a “ball-milling route” and a “mortal-grinding route.” The TiO2 ball-milling (TiO2-BM route gave monodisperse TiO2 nanoparticles, resulting in high photocurrent density (14.2 mA cm−2 and high photoconversion efficiency (8.27%. On the other hand, the TiO2 mortal-grinding (TiO2-MG route gave large aggregate of TiO2 nanoparticles, resulting in low photocurrent density (11.5 mA cm−2 and low photoconversion efficiency (6.43%. To analyze the photovoltaic characteristics, we measured the incident photon-to-current efficiency, light absorption spectroscopy, and electrical impedance spectroscopy of DSCs.

  13. Nanoimprinted distributed feedback lasers comprising TiO2 thin films

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Smith, Cameron; Leung, Michael C.

    2013-01-01

    Design guidelines for optimizing the sensing performance of nanoimprinted second order distributed feedback dye lasers are presented. The guidelines are verified by experiments and simulations. The lasers, fabricated by UV-nanoimprint lithography into Pyrromethene doped Ormocomp thin films on glass......, have their sensor sensitivity enhanced by a factor of up to five via the evaporation of a titanium dioxide (TiO2) waveguiding layer. The influence of the TiO2 layer thickness on the device sensitivity is analyzed with a simple model that accurately predicts experimentally measured wavelength shifts...

  14. Improved hydrogen storage properties of MgH2 catalyzed with TiO2

    Science.gov (United States)

    Jangir, Mukesh; Meena, Priyanka; Jain, I. P.

    2018-05-01

    In order to improve the hydrogenation properties of the MgH2, various concentration of rutile Titanium Oxide (TiO2) (X wt%= 5, 10, 15 wt %) is added to MgH2 by ball milling and the catalytic effect of TiO2 on hydriding/dehydriding properties of MgH2 has been investigated. Result shows that the TiO2 significantly reduced onset temperature of desorption. Onset temperature as low as 190 °C were observed for the MgH2-15 wt% TiO2 sample which is 60 °C and 160 °C lower than the as-milled and as-received MgH2. Fromm the Kissinger plot the activation energy of 15 wt% TiO2 added sample is calculated to be -75.48 KJ/mol. These results indicate that the hydrogenation properties of MgH2-TiO2 have been improved compared to the as-milled and as-received MgH2. Furthermore, XRD and XPS were performed to characterize the structural evolution upon milling and dehydrogenation.

  15. Electrical conductivity characteristic of TiO2 nanowires from hydrothermal method

    International Nuclear Information System (INIS)

    Othman, Mohd Azlishah; Amat, Noor Faridah; Ahmad, Badrul Hisham; Rajan, Jose

    2014-01-01

    One dimensional nanostructures of titanium dioxide (TiO 2 ) were synthesized via hydrothermal method by mixing TiO 2 as precursor in aqueous solution of NaOH as solvent. Then, heat and washing treatment was applied. Thus obtained wires had diameter ∼15 nm. TiO 2 nanowires will be used as a network in solar cell such dye-sensitized solar cell in order to improve the performance of electron movement in the device. To improve the performance of electron movement, the characteristics of TiO 2 nanowires have been analyses using field emission scanning electron microscopy (FESEM) analysis, x-ray diffractometer (XRD) analysis and brunauer emmett teller (BET) analysis. Finally, electrical conductivity of TiO 2 nanowires was determined by measuring the resistance of the TiO 2 nanowires paste on microscope glass.

  16. Method of spectra parametrization of (n, x) and (n, nx) reactions induced by DT-neutrons

    International Nuclear Information System (INIS)

    Aleksandrov, D.V.; Kovrigin, B.S.

    1980-01-01

    A method for parmetrization of experimental spectra has been developed for more convenient carrying out a process of separating competing mechanisms contributions in spectra of the (n, x) and (n, nx) reactions induced with DT neutrons. Differential cross sections of competing partial processes are used. as expanding coefficients. Model spectra may be represented in the form of tabulated-given functions calculated separately from formulae of any complexity degree. Fit of model expressions is performed by the least square method (lsm). Step-by-step algorithm of nonlinear optimization is used for search for lsm- evaluations of theoretical models parameters [ru

  17. Photocatalytic properties of porous TiO2/Ag thin films

    International Nuclear Information System (INIS)

    Chang, C.-C.; Chen, J.-Y.; Hsu, T.-L.; Lin, C.-K.; Chan, C.-C.

    2008-01-01

    In this study, nanocrystalline TiO 2 /Ag composite thin films were prepared by a sol-gel spin-coating technique. By introducing polystyrene (PS) spheres into the precursor solution, porous TiO 2 /Ag thin films were prepared after calcination at a temperature of 500 deg. C for 4 h. Three different sizes (50, 200, and 400 nm) of PS spheres were used to prepare porous TiO 2 films. The as-prepared TiO 2 and TiO 2 /Ag thin films were characterized by X-ray diffractometry (XRD) and by scanning electron microscopy to reveal structural and morphological differences. In addition, the photocatalytic properties of these films were investigated by degrading methylene blue under UV irradiation. When PS spheres of different sizes were introduced after calcination, the as-prepared TiO 2 films exhibited different porous structures. XRD results showed that all TiO 2 /Ag films exhibited a major anatase phase. The photodegradation of porous TiO 2 thin films prepared with 200 nm PS spheres and doped with 1 mol% Ag exhibited the best photocatalytic efficiency where ∼ 100% methylene blue was decomposed within 8 h under UV exposure

  18. Conductometric sensor for ammonia and ethanol using gold nanoparticle-doped mesoporous TiO2

    International Nuclear Information System (INIS)

    Xiong, Wei; Liu, Huanhuan; Liu, Shantang

    2015-01-01

    We describe uniform and high-temperature-stable mesoporous TiO 2 beads functionalized with gold nanoparticles (AuNPs-TiO 2 ) for use in conductometric sensing of gases and organic vapors. The size of the interconnected main mesopores of the TiO 2 beads ranges from 8 to 15 nm, and the AuNPs have diameters between 8 and 10 nm. The mesoporous TiO 2 beads are formed during calcination while the structure-directing template agent is removed. Monodispersed AuNPs are formed by reduction in-situ and are placed inside the mesoporous TiO 2 framework. This prevents aggregation of the AuNPs even at 500 °C. The materials were characterized by UV–vis spectroscopy, scanning and transmission electron microscopy, nitrogen adsorption-desorption, and X-ray diffraction. Comb-type gold electrodes were then fabricated on an alumina substrate and are shown to display excellent properties in terms of sensing ammonia, ethanol, methanol or acetone. The sensitivity (defined as the ratio of resistivities under vapor and air) of a typical AuNPs(0.5 %)-TiO 2 gas sensor for ethanol reached up to 5.65 at above 600 ppm at 75 °C. Response time and recovery times (t 90  ≤ 20 s) are faster than (or comparable to) other metal-doped TiO 2 sensors, and working temperatures are much lower. An interesting observation was made in that the changes in the conductivity of the sensor change with temperature. The sensor prepared with AuNPs(0.5 %)-TiO 2 is of the p-type (in its response to ammonia gas) at 45 °C, but becomes n-type at 20 °C. Obviously, rather slight changes in temperature lead to a complete change in the direction of the conductometric signal change. This may provide a new aspect in terms of selective and highly sensitive detection of ammonia at ambient and slightly elevated temperatures. (author)

  19. Engineering the TiO2 -graphene interface to enhance photocatalytic H2 production.

    Science.gov (United States)

    Liu, Lichen; Liu, Zhe; Liu, Annai; Gu, Xianrui; Ge, Chengyan; Gao, Fei; Dong, Lin

    2014-02-01

    In this work, TiO2 -graphene nanocomposites are synthesized with tunable TiO2 crystal facets ({100}, {101}, and {001} facets) through an anion-assisted method. These three TiO2 -graphene nanocomposites have similar particle sizes and surface areas; the only difference between them is the crystal facet exposed in TiO2 nanocrystals. UV/Vis spectra show that band structures of TiO2 nanocrystals and TiO2 -graphene nanocomposites are dependent on the crystal facets. Time-resolved photoluminescence spectra suggest that the charge-transfer rate between {100} facets and graphene is approximately 1.4 times of that between {001} facets and graphene. Photoelectrochemical measurements also confirm that the charge-separation efficiency between TiO2 and graphene is greatly dependent on the crystal facets. X-ray photoelectron spectroscopy reveals that Ti-C bonds are formed between {100} facets and graphene, while {101} facets and {001} facets are connected with graphene mainly through Ti-O-C bonds. With Ti-C bonds between TiO2 and graphene, TiO2 -100-G shows the fastest charge-transfer rate, leading to higher activity in photocatalytic H2 production from methanol solution. TiO2 -101-G with more reductive electrons and medium interfacial charge-transfer rate also shows good H2 evolution rate. As a result of its disadvantageous electronic structure and interfacial connections, TiO2 -001-G shows the lowest H2 evolution rate. These results suggest that engineering the structures of the TiO2 -graphene interface can be an effective strategy to achieve excellent photocatalytic performances. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Efectos de fotodegradación propiciados por recubrimientos de TiO2 y TiO2-SiO2 obtenidos por Sol-Gel

    Directory of Open Access Journals (Sweden)

    Rodriguez Paez, J. E.

    2008-10-01

    Full Text Available Photodegradation effect is widely used for water purification this contributes to preservation and protection of environment. Titanium oxide, (TiO2, is a compound that shows up this phenomenon. TiO2 is a semiconductor which may degradate pollutants through of a oxidation process. It permit the treatment of the residual water. It this work we has conformed coatings of TiO2 y TiO2-SiO2, utilized Sol-Gel method and investigated the degradation of the blue Methylene. For this, we introduced these coatings in the blue methylene solution which was illuminated with radiation of λ=365nm to activate its photocatilist properties. The structures of the coatings were characterized using Atomic Force Microscopy (AFM and X-ray Photoelectron Spectroscopy (XPS.El efecto de fotodegradación es ampliamente utilizado para la purificación del agua, acción que contribuye a la conservación y protección del medio ambiente; el óxido de titanio (TiO2 es uno de los semiconductores que pueden degradar contaminantes mediante procesos de oxidación, lo que lo hace apto para el tratamiento de aguas residuales. En este trabajo se conformaron recubrimientos de TiO2 y TiO2-SiO2, por el método Sol-Gel, y se estudio la degradación que experimentaba una solución de azul de metileno al introducirle estos recubrimientos e iluminarlos con una radiación de λ=365nm para activar su propiedad fotocatalítica. Los recubrimientos fueron caracterizados microestructuralmente utilizando Microscopía de Fuerza Atómica (MFA y Espectroscopía de Fotoelectrones de rayos X (XPS. Los resultados obtenidos de los ensayos de fotodegradación indican que los recubrimientos con una cantidad pequeña de silicio presentan un mayor efecto de fotodegradación indicando que el silicio puede generar puntos de anclaje que facilitan las reacciones de fotocatálisis. Por otro lado, la formación de centros activos, constituidos principalmente por carbono, también contribuyeron al desarrollo de estas

  1. Crystal growth and design of a facile synthesized uniform single crystalline football-like anatase TiO2 microspheres with exposed {0 0 1} facets

    International Nuclear Information System (INIS)

    Liu, Bitao; Jin, Chunhua; Ju, Yue; Peng, Lingling; Tian, Liangliang; Wang, Jinbiao; Zhang, Tiejun

    2014-01-01

    Graphical abstract: - Highlights: • Football-like TiO 2 synthesized by a facile hydrothermal method. • The formation mechanism of football-like TiO 2 was investigated. • The DSSC efficiency assembled by football-like TiO 2 is 23.3% higher than P25. - Abstract: Uniform football-like anatase TiO 2 particles exposed by {0 0 1} facets were successfully synthesized by an environment-friendly, facile and low-temperature hydrothermal method in water solution without any additional capping agent. The crystallographic structure and the growth mechanism of anatase TiO 2 particles were investigated systematically by X-ray diffraction pattern (XRD), field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectra (XPS), respectively. The formation mechanism of football-like anatase TiO 2 particles exposed by {0 0 1} facets is investigated. It was found that there existed a selective adsorption of F − ions on different facets by analyzed with the density functional theory (DFT) computer simulation results, and it would lead to a selective nucleation and crystal growth of anatase football-like TiO 2 particles. Additionally, this type of exposed {0 0 1} facets football-like TiO 2 microspheres were used as a scattering overlayer on a transparent P25 film for fabrication of photoanodes for dye-sensitized solar cells (DSSCs). The results showed that an overall light conversion efficiency of this film was 6.31%, which is higher than that of the overall efficiency (5.13%) obtained from the P25 photoanode owing to the superior light scattering effect of microspheres and excellent light reflecting ability of the mirror-like plane {0 0 1} facets

  2. Optical studies of cobalt implanted rutile TiO2 (110) surfaces

    International Nuclear Information System (INIS)

    Joshi, Shalik Ram; Padmanabhan, B.; Chanda, Anupama; Mishra, Indrani; Malik, V.K.; Mishra, N.C.; Kanjilal, D.; Varma, Shikha

    2016-01-01

    Highlights: • The present study displays formation of nanostructures after Co implantation on TiO 2 surfaces. • Preferential sputtering leads to the creation of oxygen vacancies on the surface. • A large enhancement in visible light absorbance (nearly 5 times compared to pristine) is observed. • Creation of self-organized nanostructures and Ti 3+ oxygen vacancies promote photoabsorption. • Formation of Co-nanoclusters and Co–Ti–O phase play concerted role in enhancing photo-absorption. - Abstract: Present study investigates the photoabsorption properties of single crystal rutile TiO 2 (110) surfaces after they have been implanted with low fluences of cobalt ions. The surfaces, after implantation, demonstrate fabrication of nanostructures and anisotropic nano-ripple patterns. Creation of oxygen vacancies (Ti 3+ states), development of cobalt nano-clusters as well as band gap modifications have also been observed. Results presented here demonstrate that fabrication of self organized nanostructures, upon implantation, along with the development of oxygen vacancies and ligand field transitions of cobalt ion promote the enhancement of photo-absorbance in both UV (∼2 times) and visible (∼5 times) regimes. These investigations on nanostructured TiO 2 surfaces can be important for photo-catalysis.

  3. Structural and electrical properties of (1-x)(Na1/2Bi1/2)TiO3-xPb(Mg1/3Nb2/3)O3 solid solution

    International Nuclear Information System (INIS)

    Lee, J.-K.; Yi, J.Y.; Hong, K.S.

    2004-01-01

    Structural, dielectric and piezoelectric properties of (1-x)(Na 1/2 Bi 1/2 )TiO 3 -xPb(Mg 1/3 Nb 2/3 )O 3 (NBT-xPMN) solid solution have been investigated. An addition of PMN into NBT transformed the structure of sintered samples from rhombohedral to pseudocubic phase where x is larger than 0.1. In calcined powders, however, the intermediate structure were observed between rhombohedral and cubic phases near x=0.1. The formation of solid solution between NBT and PMN modified the dielectric and piezoelectric properties of NBT to be suitable for high temperature dielectric and piezoelectric material. With increasing the content of PMN, the temperature-stability of ε r (T) increased and the high temperature dielectric loss decreased. In addition, the piezoelectric property of NBT-xPMN was enhanced, for the decrease of coercive field and conductivity promoted the domain reversal under the high electric field of the poling process

  4. Characterization of ultra-thin TiO2 films grown on Mo(112)

    International Nuclear Information System (INIS)

    Kumar, D.; Chen, M.S.; Goodman, D.W.

    2006-01-01

    Ultra-thin TiO 2 films were grown on a Mo(112) substrate by stepwise vapor depositing of Ti onto the sample surface followed by oxidation at 850 K. X-ray photoelectron spectroscopy showed that the Ti 2p peak position shifts from lower to higher binding energy with an increase in the Ti coverage from sub- to multilayer. The Ti 2p peak of a TiO 2 film with more than a monolayer coverage can be resolved into two peaks, one at 458.1 eV corresponding to the first layer, where Ti atoms bind to the substrate Mo atoms through Ti-O-Mo linkages, and a second feature at 458.8 eV corresponding to multilayer TiO 2 where the Ti atoms are connected via Ti-O-Ti linkages. Based on these assignments, the single Ti 2p 3/2 peak at 455.75 eV observed for the Mo(112)-(8 x 2)-TiO x monolayer film can be assigned to Ti 3+ , consistent with our previous results obtained with high-resolution electron energy loss spectroscopy

  5. Enhancement of optical and structural quality of semipolar (11-22) GaN by introducing nanoporous SiNx interlayers

    Science.gov (United States)

    Monavarian, Morteza; Metzner, Sebastian; Izyumskaya, Natalia; Müller, Marcus; Okur, Serdal; Zhang, Fan; Can, Nuri; Das, Saikat; Avrutin, Vitaliy; Özgür, Ümit; Bertram, Frank; Christen, Juergen; Morkoç, Hadis

    2015-03-01

    Enhancement of optical and structural quality of semipolar (11‾22) GaN grown by metal-organic chemical vapor deposition on planar m-sapphire substrates was achieved by using an in-situ epitaxial lateral overgrowth (ELO) technique with nanoporous SiNx layers employed as masks. In order to optimize the procedure, the effect of SiNx deposition time was studied by steady-state photoluminescence (PL), and X-ray diffraction. The intensity of room temperature PL for the (11‾22) GaN layers grown under optimized conditions was about three times higher compared to those for the reference samples having the same thickness but no SiNx interlayers. This finding is attributed to the blockage of extended defect propagation toward the surface by the SiNx interlayers as evidenced from the suppression of emissions associated with basal-plane and prismatic stacking faults with regard to the intensity of donor bound excitons (D0X) in lowtemperature PL spectra. In agreement with the optical data, full width at half maximum values of (11‾22) X-ray rocking curves measured for two different in-plane rotational orientations of [1‾100] and [11‾23] reduced from 0.33º and 0.26º for the reference samples to 0.2º and 0.16º for the nano-ELO structures grown under optimized conditions, respectively.

  6. Photolithographically Patterned TiO2 Films for Electrolyte-Gated Transistors.

    Science.gov (United States)

    Valitova, Irina; Kumar, Prajwal; Meng, Xiang; Soavi, Francesca; Santato, Clara; Cicoira, Fabio

    2016-06-15

    Metal oxides constitute a class of materials whose properties cover the entire range from insulators to semiconductors to metals. Most metal oxides are abundant and accessible at moderate cost. Metal oxides are widely investigated as channel materials in transistors, including electrolyte-gated transistors, where the charge carrier density can be modulated by orders of magnitude upon application of relatively low electrical bias (2 V). Electrolyte gating offers the opportunity to envisage new applications in flexible and printed electronics as well as to improve our current understanding of fundamental processes in electronic materials, e.g. insulator/metal transitions. In this work, we employ photolithographically patterned TiO2 films as channels for electrolyte-gated transistors. TiO2 stands out for its biocompatibility and wide use in sensing, electrochromics, photovoltaics and photocatalysis. We fabricated TiO2 electrolyte-gated transistors using an original unconventional parylene-based patterning technique. By using a combination of electrochemical and charge carrier transport measurements we demonstrated that patterning improves the performance of electrolyte-gated TiO2 transistors with respect to their unpatterned counterparts. Patterned electrolyte-gated (EG) TiO2 transistors show threshold voltages of about 0.9 V, ON/OFF ratios as high as 1 × 10(5), and electron mobility above 1 cm(2)/(V s).

  7. tavgM_2d_int_Nx: MERRA 2D IAU Diagnostic, Vertical Integrals and Budget Terms, Monthly Mean 0.667 x 0.5 degree V5.2.0 (MATMNXINT) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATMNXINT or tavgM_2d_int_Nx data product is the MERRA Data Assimilation System 2-Dimensional vertical integral that is time averaged single-level at the native...

  8. tavgM_2d_lnd_Nx: MERRA 2D IAU Diagnostic, Land Only States and Diagnostics, Monthly Mean 0.667 x 0.5 degree V5.2.0 (MATMNXLND) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATMNXLND or tavgM_2d_lnd_Nx data product is the MERRA Data Assimilation System 2-Dimensional land surface diagnostic that is time averaged single-level at the...

  9. Development and Application of TiO2 Nanoparticles Coupled with Silver Halide

    Directory of Open Access Journals (Sweden)

    Xiaojia Wan

    2014-01-01

    Full Text Available Titanium dioxide (TiO2 is proposed to be effective photocatalyst for wastewater treatment, air purification, and self-cleaning ability, because of its strong oxidation and superhydrophilicity. In order to conquer the limits of TiO2, a variety of methods have been used. This paper presents a critical review of novel research and achievements in the modification of TiO2 nanoparticles with silver halide (AgX, X=Cl, Br, I, which aims at enhancing the visible light absorption and photosensitivity. Herein we study the synthesis, physical and chemical properties, and the mechanism of this composite photocatalyst.

  10. Foldable and Cytocompatible Sol-gel TiO2 Photonics.

    Science.gov (United States)

    Li, Lan; Zhang, Ping; Wang, Wei-Ming; Lin, Hongtao; Zerdoum, Aidan B; Geiger, Sarah J; Liu, Yangchen; Xiao, Nicholas; Zou, Yi; Ogbuu, Okechukwu; Du, Qingyang; Jia, Xinqiao; Li, Jingjing; Hu, Juejun

    2015-09-07

    Integrated photonics provides a miniaturized and potentially implantable platform to manipulate and enhance the interactions between light and biological molecules or tissues in in-vitro and in-vivo settings, and is thus being increasingly adopted in a wide cross-section of biomedical applications ranging from disease diagnosis to optogenetic neuromodulation. However, the mechanical rigidity of substrates traditionally used for photonic integration is fundamentally incompatible with soft biological tissues. Cytotoxicity of materials and chemicals used in photonic device processing imposes another constraint towards these biophotonic applications. Here we present thin film TiO2 as a viable material for biocompatible and flexible integrated photonics. Amorphous TiO2 films were deposited using a low temperature (<250 °C) sol-gel process fully compatible with monolithic integration on plastic substrates. High-index-contrast flexible optical waveguides and resonators were fabricated using the sol-gel TiO2 material, and resonator quality factors up to 20,000 were measured. Following a multi-neutral-axis mechanical design, these devices exhibit remarkable mechanical flexibility, and can sustain repeated folding without compromising their optical performance. Finally, we validated the low cytotoxicity of the sol-gel TiO2 devices through in-vitro cell culture tests. These results demonstrate the potential of sol-gel TiO2 as a promising material platform for novel biophotonic devices.

  11. Enhanced photoelectrocatalytic performance for degradation of diclofenac and mechanism with TiO2 nano-particles decorated TiO2 nano-tubes arrays photoelectrode

    International Nuclear Information System (INIS)

    Cheng, Xiuwen; Liu, Huiling; Chen, Qinghua; Li, Junjing; Wang, Pu

    2013-01-01

    In this study, TiO 2 nano-particles decorated TiO 2 nano-tubes arrays (TiO 2 NPs/TiO 2 NTAs) photoelectrodes have been successfully prepared through anodization, combined with ultrasonic strategy, followed by annealing post-treatment. The morphology and structure of the as-prepared TiO 2 NPs/TiO 2 NTAs photoelectrodes were characterized by scanning electrons microscopy (SEM), N 2 adsorption/desorption isotherms, X-ray diffraction (XRD) and UV–visible light diffuse reflection spectroscopy (DRS). In addition, the generation of hydroxyl radicals (·OH) was detected by a photoluminescence (PL) spectra using terephthalic acid (TA) as a probe molecule. Furthermore, the photoelectrochemical (PECH) properties of TiO 2 NPs/TiO 2 NTAs photoanode were investigated through transient open circuit potential (OCP), photocurrent response (PCR) and electrochemical impedance spectroscopy (EIS). It was found that TiO 2 NPs/TiO 2 NTAs photoelectrode exhibited a distinct decrease of OCP of −0.219 mV cm −2 and PCR of 0.049 mA cm −2 , while a significantly enhanced photoelectrocatalytic (PEC) efficiency of 63.6% (0.4 V vs. SCE) for the degradation of diclofenac. Moreover, the enhanced PEC mechanism of TiO 2 NPs/TiO 2 NTAs photoanode was proposed. The high PEC performance could be attributed to the decoration of TiO 2 NPs, which could improve the mobility and separation efficiency of photoinduced charge carriers under external potential

  12. Fabrication and characterization of uniform TiO2 nanotube arrays by ...

    Indian Academy of Sciences (India)

    Titanium dioxide (TiO2) has been widely investigated as a key material for ... photonic crystals, catalysis, photocatalysis (Livraghi et al. 2005) and ... As a catalyst and/or catalyst support, .... of XRD analysis is supported by the Raman spectra of.

  13. Enhanced Photocatalytic Properties of Ag-Loaded N-Doped Tio2 Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Gao Dawei

    2018-03-01

    Full Text Available Highly ordered TiO2 nanotube (TiO2 NT arrays were prepared by anodic oxidizing method on the surface of the Ti substrate. Nitrogen-doped TiO2 nanotube (N-TiO2 NT arrays were carried out by ammonia solution immersion, and Ag nanoparticles loaded N-doped TiO2 nanotube (Ag/N-TiO2 NT arrays were obtained by successive ionic layer adsorption and reaction (SILAR technique. The samples were characterized by the X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, field emission scanning electron microscopy (FESEM, high-resolution transmission electron microscopy (HRTEM, photoluminescence (PL emission spectra, ultraviolet–visible (UV–vis diffuse reflectance spectroscopy (DRS. The result indicated that the diameter and wall thickness of the TiO2 NT are 100–120 and 20–30 nm, respectively. Moreover, the morphology and structure of the highly ordered TiO2 NTs were not affected by N-doping. Furthermore, Ag nanoparticles were evenly deposited on the surface of TiO2 NTs in the form of elemental silver. Finally, the photocatalytic activity of Ag/N-TiO2 NTs was evaluated by degradation of methyl orange (MO under visible-light irradiation. The Ag/N-TiO2 NTs exhibited enhanced photocatalytic properties, which could reach 95% after 90-min irradiation.

  14. High pressure synthesis of amorphous TiO2 nanotubes

    Directory of Open Access Journals (Sweden)

    Quanjun Li

    2015-09-01

    Full Text Available Amorphous TiO2 nanotubes with diameters of 8-10 nm and length of several nanometers were synthesized by high pressure treatment of anatase TiO2 nanotubes. The structural phase transitions of anatase TiO2 nanotubes were investigated by using in-situ high-pressure synchrotron X-ray diffraction (XRD method. The starting anatase structure is stable up to ∼20GPa, and transforms into a high-density amorphous (HDA form at higher pressure. Pressure-modified high- to low-density transition was observed in the amorphous form upon decompression. The pressure-induced amorphization and polyamorphism are in good agreement with the previous results in ultrafine TiO2 nanoparticles and nanoribbons. The relationship between the LDA form and α-PbO2 phase was revealed by high-resolution transmission electron microscopy (HRTEM study. In addition, the bulk modulus (B0 = 158 GPa of the anatase TiO2 nanotubes is smaller than those of the corresponding bulks and nanoparticles (180-240 GPa. We suggest that the unique open-ended nanotube morphology and nanosize play important roles in the high pressure phase transition of TiO2 nanotubes.

  15. Pilot-plant evaluation of TiO2 and TiO2-based hybrid photocatalysts for solar treatment of polluted water.

    Science.gov (United States)

    Andronic, Luminita; Isac, Luminita; Miralles-Cuevas, Sara; Visa, Maria; Oller, Isabel; Duta, Anca; Malato, Sixto

    2016-12-15

    Materials with photocatalytic and adsorption properties for advanced wastewater treatment targeting reuse were studied. Making use of TiO 2 as a well-known photocatalyst, Cu 2 S as a Vis-active semiconductor, and fly ash as a good adsorbent, dispersed mixtures/composites were prepared to remove pollutants from wastewater. X-ray diffraction, scanning electron microscopy, energy-dispersive X-Ray spectroscopy, atomic force microscopy, band gap energy, point of zero charge (pH pzc ) and BET porosity were used to characterize the substrates. Phenol, imidacloprid and dichloroacetic acid were used as pollutants for photocatalytic activity of the new photocatalysts. Experiments using the new dispersed powders were carried out at laboratory scale in two solar simulators and under natural solar irradiation at the Plataforma Solar de Almería, in a Compound Parabolic Collector (CPC) for a comparative analysis of pollutants removal and mineralization efficiencies, and to identify features that could facilitate photocatalyst separation and reuse. The results show that radiation intensity significantly affects the phenol degradation rate. The composite mixture of TiO 2 and fly ash is 2-3 times less active than sol-gel TiO 2 . Photodegradation kinetic data on the highly active TiO 2 are compared for pollutants elimination. Photodegradation of dichloroacetic acid was fast and complete after 90min in the CPC, while after 150min imidacloprid and phenol removal was 90% and 56% respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Pilot-plant evaluation of TiO_2 and TiO_2-based hybrid photocatalysts for solar treatment of polluted water

    International Nuclear Information System (INIS)

    Andronic, Luminita; Isac, Luminita; Miralles-Cuevas, Sara; Visa, Maria; Oller, Isabel; Duta, Anca; Malato, Sixto

    2016-01-01

    Materials with photocatalytic and adsorption properties for advanced wastewater treatment targeting reuse were studied. Making use of TiO_2 as a well-known photocatalyst, Cu_2S as a Vis-active semiconductor, and fly ash as a good adsorbent, dispersed mixtures/composites were prepared to remove pollutants from wastewater. X-ray diffraction, scanning electron microscopy, energy-dispersive X-Ray spectroscopy, atomic force microscopy, band gap energy, point of zero charge (pH_p_z_c) and BET porosity were used to characterize the substrates. Phenol, imidacloprid and dichloroacetic acid were used as pollutants for photocatalytic activity of the new photocatalysts. Experiments using the new dispersed powders were carried out at laboratory scale in two solar simulators and under natural solar irradiation at the Plataforma Solar de Almería, in a Compound Parabolic Collector (CPC) for a comparative analysis of pollutants removal and mineralization efficiencies, and to identify features that could facilitate photocatalyst separation and reuse. The results show that radiation intensity significantly affects the phenol degradation rate. The composite mixture of TiO_2 and fly ash is 2-3 times less active than sol-gel TiO_2. Photodegradation kinetic data on the highly active TiO_2 are compared for pollutants elimination. Photodegradation of dichloroacetic acid was fast and complete after 90 min in the CPC, while after 150 min imidacloprid and phenol removal was 90% and 56% respectively.

  17. SAXS Studies of TiO2 Nanoparticles in Polymer Electrolytes and in Nanostructured Films

    Directory of Open Access Journals (Sweden)

    Sigrid Bernstorff

    2010-11-01

    Full Text Available Polymer electrolytes as nanostructured materials are very attractive components for batteries and opto-electronic devices. (PEO8ZnCl2 polymer electrolytes were prepared from PEO and ZnCl2. The nanocomposites (PEO8ZnCl2/TiO2 themselves contained TiO2 nanograins. In this work, the influence of the TiO2 nanograins on the morphology and ionic conductivity of the nanocomposite was systematically studied by transmission small-angle X-ray scattering (SAXS simultaneously recorded with wide-angle X-ray diffraction (WAXD and differential scanning calorimetry (DSC at the synchrotron ELETTRA. Films containing nanosized grains of titanium dioxide (TiO2 are widely used in the research of optical and photovoltaic devices. The TiO2 films, prepared by chemical vapor deposition and e-beam epitaxy, were annealed in hydrogen atmospheres in the temperature range between 20 °C and 900 °C in order to study anatase-rutile phase transition at 740 °C. Also, grazing-incidence small angle X-ray scattering (GISAXS spectra for each TiO2 film were measured in reflection geometry at different grazing incident angles. Environmentally friendly galvanic cells, as well as solar cells of the second generation, are to be constructed with TiO2 film as working electrode, and nanocomposite polymer as electrolyte.

  18. Dependence of Photocatalytic Activity of TiO2-SiO2 Nanopowders

    Directory of Open Access Journals (Sweden)

    M. Riazian

    2014-10-01

    Full Text Available Structural properties and chemical composition change the photocatalytic activity in TiO2-SiO2 nanopowder composite. The SiO2-TiO2 nanostructure is synthesized based on sol–gel method. The nanoparticles are characterized by x-ray fluorescents (XRF, x- ray diffraction (XRD, tunneling electron microscopy (TEM, field emission scanning electron microscopy (FE-SEM, UV-vis. Spectrophotometer and furrier transmission create infrared absorption (FTIR techniques. The rate constant k for the degradation of methylen blue in its aqueous solution under UV irradiation is determined as a measure of photocatalytic activity. Dependence between photocatalytic activity and SiO2 content in the composite is determined. Rate constant k is found dependent on the content of SiO2 in the composite that calcined at 900 oC. The addition of low composition SiO2 to the TiO2 matrix (lower than 45% enhances the photocatalytic activity due to thermal stability and increasing in the surface area. The effects of chemical compositions on the surface topography and the crystallization of phases are studied.

  19. A thick hierarchical rutile TiO2 nanomaterial with multilayered structure

    International Nuclear Information System (INIS)

    Zhu, Shengli; Xie, Guoqiang; Yang, Xianjin; Cui, Zhenduo

    2013-01-01

    Highlights: ► We synthesized a new rutile TiO 2 nanomaterial with a hierarchical nanostructure. ► The nano architecture structure consist of nanorods and nanoflower arrays. ► The rutile TiO 2 nanomaterial is thick in size (several 10 μm). ► The TiO 2 nanomaterials present a multilayer structure. - Abstract: In the present paper, we synthesized a new type of rutile TiO 2 nanomaterial with a hierarchical nanostructure using a novel method, which combined dealloying process with chemical synthesis. The structure characters were examined using X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The rutile TiO 2 nanomaterial is thick in size (several 10 μm). The hierarchical structure of the rutile TiO 2 nanomaterial consists of large quantities nanorods and nanoflower arrays. The nanoflowers consist of serveral nanopetals with diameter of 100–200 nm. The cross section of TiO 2 nanomaterials presents a multilayer structure with the layer thickness of about 3–5 μm. The rutile TiO 2 nanomaterial has high specific surface area. The formation mechanism of the rutile TiO 2 nanomaterial was discussed according to the experimental results. The rutile TiO 2 nanomaterial has potential applications in catalysis, photocatalysis and solar cells

  20. Preparation of anatase TiO2 thin films by vacuum arc plasma evaporation

    International Nuclear Information System (INIS)

    Miyata, Toshihiro; Tsukada, Satoshi; Minami, Tadatsugu

    2006-01-01

    Anatase titanium dioxide (TiO 2 ) thin films with high photocatalytic activity have been prepared with deposition rates as high as 16 nm/min by a newly developed vacuum arc plasma evaporation (VAPE) method using sintered TiO 2 pellets as the source material. Highly transparent TiO 2 thin films prepared at substrate temperatures from room temperature to 400 deg. C exhibited photocatalytic activity, regardless whether oxygen (O 2 ) gas was introduced during the VAPE deposition. The highest photocatalytic activity and photo-induced hydrophilicity were obtained in anatase TiO 2 thin films prepared at 300 deg. C, which correlated to the best crystallinity of the films, as evidenced from X-ray diffraction. In addition, a transparent and conductive anatase TiO 2 thin film with a resistivity of 2.6 x 10 -1 Ω cm was prepared at a substrate temperature of 400 deg. C without the introduction of O 2 gas

  1. Integrated titanium dioxide (TiO_2) nanoparticles on interdigitated device electrodes (IDEs) for pH analysis

    International Nuclear Information System (INIS)

    Azizah, N.; Gopinath, Subash C. B.; Nadzirah, Sh.; Farehanim, M. A.; Fatin, M. F.; Ruslinda, A. R.; Hashim, U.; Arshad, M. K. Md.; Ayub, R. M.

    2016-01-01

    Titanium dioxide (TiO_2) nanoparticles based Interdigitated Device Electrodes (IDEs) Nanobiosensor device was developed for intracellular biochemical detection. Fabrication and characterization of pH sensors using IDE nanocoated with TiO_2 was studied in this paper. In this paper, a preliminary assessment of this intracellular sensor with electrical measurement under different pH levels. 3-aminopropyltriethoxysilane (APTES) was used to enhance the sensitivity of titanium dioxide layer as well as able to provide surface modification by undergoing protonation and deprotonation process. Different types of pH solution provide different resistivity and conductivity towards the surface. Base solution has the higher current compared to an acid solution. Amine and oxide functionalized TiO_2 based IDE exhibit pH-dependent could be understood in terms of the change in surface charge during protonation and deprotonation. The simple fabrication process, high sensitivity, and fast response of the TiO_2 based IDEs facilitate their applications in a wide range of areas. The small size of semiconductor TiO_2 based IDE for sensitive, label-free, real time detection of a wide range of biological species could be explored in vivo diagnostics and array-based screening.

  2. XRD analysis of undoped and Fe doped TiO2 nanoparticles by Williamson Hall method

    International Nuclear Information System (INIS)

    Bharti, Bandna; Barman, P. B.; Kumar, Rajesh

    2015-01-01

    Undoped and Fe doped titanium dioxide (TiO 2 ) nanoparticles were synthesized by sol-gel method at room temperature. The synthesized samples were annealed at 500°C. For structural analysis, the prepared samples were characterized by X-ray diffraction (XRD). The crystallite size of TiO 2 and Fe doped TiO 2 nanoparticles were calculated by Scherer’s formula, and was found to be 15 nm and 11 nm, respectively. Reduction in crystallite size of TiO 2 with Fe doping was observed. The anatase phase of Fe-doped TiO 2 nanoparticles was also confirmed by X-ray diffraction. By using Williamson-Hall method, lattice strain and crystallite size were also calculated. Williamson–Hall plot indicates the presence of compressive strain for TiO 2 and tensile strain for Fe-TiO 2 nanoparticles annealed at 500°C

  3. Core/Shell Structured TiO2/CdS Electrode to Enhance the Light Stability of Perovskite Solar Cells.

    Science.gov (United States)

    Hwang, Insung; Baek, Minki; Yong, Kijung

    2015-12-23

    In this work, enhanced light stability of perovskite solar cell (PSC) achieved by the introduction of a core/shell-structured CdS/TiO2 electrode and the related mechanism are reported. By a simple solution-based process (SILAR), a uniform CdS shell was coated onto the surface of a TiO2 layer, suppressing the activation of intrinsic trap sites originating from the oxygen vacancies of the TiO2 layer. As a result, the proposed CdS-PSC exhibited highly improved light stability, maintaining nearly 80% of the initial efficiency after 12 h of full sunlight illumination. From the X-ray diffraction analyses, it is suggested that the degradation of the efficiency of PSC during illumination occurs regardless of the decomposition of the perovskite absorber. Considering the light-soaking profiles of the encapsulated cells and the OCVD characteristics, it is likely that the CdS shell had efficiently suppressed the undesirable electron kinetics, such as trapping at the surface defects of the TiO2 and preventing the resultant charge losses by recombination. This study suggests that further complementary research on various effective methods for passivation of the TiO2 layer would be highly meaningful, leading to insight into the fabrication of PSCs stable to UV-light for a long time.

  4. Loose nanofiltration membrane for dye/salt separation through interfacial polymerization with in-situ generated TiO_2 nanoparticles

    International Nuclear Information System (INIS)

    Zhang, Qi; Fan, Lin; Yang, Zhen; Zhang, Runnan; Liu, Ya-nan; He, Mingrui; Su, Yanlei; Jiang, Zhongyi

    2017-01-01

    Highlights: • A in-situ generated TiO_2 approach was used to fabricate loose nanofiltration membrane. • The membrane contained small channels owing to the interaction between TiO_2 and the polyamide. • The membranes exhibited high water fluxes and separation performance for dye/salt solutions. - Abstract: In this study, a high flux nanofiltration (NF) membrane with hybrid polymer-nanoparticle active layer was fabricated by chemical crosslinking of piperazine (PIP) and 1, 3, 5-benzene tricarbonyl trichloride (TMC). An in-situ generated method was applied to deposit titanium dioxide (TiO_2) nanoparticles uniformly on the membrane surface, leading to the enhancement of the surface hydrophilicity, roughness and relative surface area of the polyamide (PA) layer. The morphology of the modified membrane was investigated by scanning electron microscopy (SEM) and Atomic force microscopy (AFM), also energy dispersive X-ray microanalysis (EDX) was used to analyze the distribution of Ti element. Chemical structure was observed by Fourier transmission infrared attenuated total reflectance (FTIR-ATR) spectroscopy. Remarkably, the optimal water flux of the loose NF membrane was 65.0 Lm"−"2 h"−"1 bar"−"1 nearly 5 times as much as the pure PA membrane flux. The rejections of the loose NF membranes for dyes were almost all greater than 95.0%, while the rejection for sodium sulfate (Na_2SO_4) was only about 17.0%, which indicated that the modified membrane had an impressive potential application for dye desalination and purification.

  5. Shielding properties of 80TeO2-5TiO2-(15-x) WO3-xAnOm glasses using WinXCom and MCNP5 code

    Science.gov (United States)

    Dong, M. G.; El-Mallawany, R.; Sayyed, M. I.; Tekin, H. O.

    2017-12-01

    Gamma ray shielding properties of 80TeO2-5TiO2-(15-x) WO3-xAnOm glasses, where AnOm is Nb2O5 = 0.01, 5, Nd2O3 = 3, 5 and Er2O3 = 5 mol% have been achieved. Shielding parameters; mass attenuation coefficients, half value layers, and macroscopic effective removal cross section for fast neutrons have been computed by using WinXCom program and MCNP5 Monte Carlo code. In addition, by using Geometric Progression method (G-P), exposure buildup factor values were also calculated. Variations of shielding parameters are discussed for the effect of REO addition into the glasses and photon energy.

  6. Influence of surface treatment on preparing nanosized TiO2 supported on carbon nanotubes

    International Nuclear Information System (INIS)

    Wang Shuo; Ji Lijun; Wu Bin; Gong Qianming; Zhu Yuefeng; Liang Ji

    2008-01-01

    In this paper, nanosize titanium dioxide (TiO 2 ) deposited on pristine and acid treated carbon nanotubes (CNTs) were prepared by a modified sol-gel method. The nanoscale materials were extensively characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR) and Raman spectra. The results indicated that about 6.8 nm TiO 2 nanoparticles were successfully deposited on acid-treated CNTs surface homogeneously and densely, which was smaller than TiO 2 coated on pristine CNTs. The surface state of CNTs was a critical factor in obtaining a homogeneous distribution of nanoscale TiO 2 particles. Acid oxidization could etch the surface of CNTs and introduce functional groups, which were beneficial to controllable homogeneous deposition. The TiO 2 coated on acid-treated CNTs was used as photocatalyst for Reactive Brilliant Red X-3B dye degradation under UV irradiation, which showed higher efficiency than that of TiO 2 coated on pristine CNTs and commercial photocatalyst P25.

  7. Deliberate Design of TiO2 Nanostructures towards Superior Photovoltaic Cells.

    Science.gov (United States)

    Sun, Ziqi; Liao, Ting; Sheng, Liyuan; Kou, Liangzhi; Kim, Jung Ho; Dou, Shi Xue

    2016-08-01

    TiO2 nanostructures are being sought after as flexibly utilizable building blocks for the fabrication of the mesoporous thin-film photoelectrodes that are the heart of the third-generation photovoltaic devices, such as dye-sensitized solar cells (DSSCs), quantum-dot-sensitized solar cells (QDSSCs), and the recently promoted perovskite-type solar cells. Here, we report deliberate tailoring of TiO2 nanostructures for superior photovoltaic cells. Morphology engineering of TiO2 nanostructures is realized by designing synthetic protocols in which the precursor hydrolysis, crystal growth, and oligomer self-organization are precisely controlled. TiO2 nanostructures in forms varying from isolated nanocubes, nanorods, and cross-linked nanorods to complex hierarchical structures and shape-defined mesoporous micro-/nanostructures were successfully synthesized. The photoanodes made from the shape-defined mesoporous TiO2 microspheres and nanospindles presented superior performances, owing to the well-defined overall shapes and the inner ordered nanochannels, which allow not only a high amount of dye uptake, but also improved visible-light absorption. This study provides a new way to seek an optimal synthetic protocol to meet the required functionality of the nanomaterials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. tavg1_2d_flx_Nx: MERRA 2D IAU Diagnostic, Surface Fluxes, Time Average 1-hourly 0.667 x 0.5 degree V5.2.0 (MAT1NXFLX) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAT1NXFLX or tavg1_2d_flx_Nx data product is the MERRA Data Assimilation System 2-Dimensional surface turbulence flux diagnostic that is time averaged...

  9. Structure refinement, far infrared spectroscopy, and dielectric characterization of (1-x)La(Mg1/2Ti1/2)O3-xLa2/3TiO3 solid solutions

    Science.gov (United States)

    Salak, Andrei N.; Khalyavin, Dmitry D.; Ferreira, Victor M.; Ribeiro, José L.; Vieira, Luís G.

    2006-05-01

    Dielectric properties of (1-x)La(Mg1/2Ti1/2)O3-xLa2/3TiO3 [(1-x)LMT-xLT] ceramics (0infrared (FIR) frequency ranges. The crystal structure sequence in (1-x)LMT-xLT reported by different authors has been analyzed and revised. FIR spectroscopy was used to characterize the lattice contribution to the dielectric response at microwave frequencies. The complex dielectric function was evaluated from the reflectivity data and extrapolated down to a gigahertz range. Compositional variations of the fundamental microwave dielectric parameters estimated by different methods are compared and discussed. The dependence of the quality factor on the composition in LMT-LT is interpreted in terms of the reduction of spatial phonon correlations originated from the increasing amount of La vacancies. This approach could account for the compositional behavior of the dielectric loss commonly observed in a number of microwave mixed systems.

  10. An instant photo-excited electrons relaxation on the photo-degradation properties of TiO2-x films

    CSIR Research Space (South Africa)

    Nkosi, SS

    2014-11-01

    Full Text Available of Photochemistry and Photobiology A: Chemistry 293 (2014) 72–80 An instant photo-excited electrons relaxation on the photo- degradation properties of TiO2x films S.S. Nkosi a,b,∗, I. Kortidis d, D.E. Motaungc,∗, P.R. Makgwanec, O.M. Ndwandwe b, S.S. Rayc, G...

  11. Structural and vibrational investigations of Nb-doped TiO2 thin films

    International Nuclear Information System (INIS)

    Uyanga, E.; Gibaud, A.; Daniel, P.; Sangaa, D.; Sevjidsuren, G.; Altantsog, P.; Beuvier, T.; Lee, Chih Hao; Balagurov, A.M.

    2014-01-01

    Highlights: • We studied the evolutions of structure for TiO 2 thin film as changes with Nb doping and temperatures. • Up to 800 °C, the grain size of Nb 0.1 Ti 0.9 O 2 is smaller than for pure TiO 2 because doped Nb hinders the growth of the TiO 2 grains. • There was no formation of the rutile phase at high temperature. • Nb doped TiO 2 films have high electron densities at 400–700 °C. • Nb dope extends the absorbance spectra of TiO 2 which leads to the band gap reduce. - Abstract: Acid-catalyzed sol–gel and spin-coating methods were used to prepare Nb-doped TiO 2 thin film. In this work, we studied the effect of niobium doping on the structure, surface, and absorption properties of TiO 2 by energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), X-ray reflectometry (XRR), X-ray photoelectron spectroscopy (XPS), Raman, and UV–vis absorption spectroscopy at various annealing temperatures. EDX spectra show that the Nb:Ti atomic ratios of the niobium-doped titania films are in good agreement with the nominal values (5 and 10%). XPS results suggest that charge compensation is achieved by the formation of Ti vacancies. Specific niobium phases are not observed, thus confirming that niobium is well incorporated into the titania crystal lattice. Thin films are amorphous at room temperature and the formation of anatase phase appeared at an annealing temperature close to 400 °C. The rutile phase was not observed even at 900 °C (XRD and Raman spectroscopy). Grain sizes and electron densities increased when the temperature was raised. Nb-doped films have higher electron densities and lower grain sizes due to niobium doping. Grain size inhibition can be explained by lattice stress induced by the incorporation of larger Nb 5+ ions into the lattice. The band gap energy of indirect transition of the TiO 2 thin films was calculated to be about 3.03 eV. After niobium doping, it decreased to 2.40 eV

  12. tavg1_2d_ocn_Nx: MERRA 2D IAU Ocean Surface Diagnostic, Time Average 1-hourly 0.667 x 0.5 degree V5.2.0 (MAT1NXOCN) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAT1NXOCN or tavg1_2d_ocn_Nx data product is the MERRA Data Assimilation System 2-Dimensional ocean surface single-level diagnostics that is time averaged...

  13. Quantum Dot Sensitized Solar Cells Based on TiO2/AgInS2

    Science.gov (United States)

    Pawar, Sachin A.; Jeong, Jae Pil; Patil, Dipali S.; More, Vivek M.; Lee, Rochelle S.; Shin, Jae Cheol; Choi, Won Jun

    2018-05-01

    Quantum dot heterojunctions with type-II band alignment can efficiently separate photogenerated electron-hole pairs and, hence, are useful for solar cell studies. In this study, a quantum dot sensitized solar cell (QDSSC) made of TiO2/AgInS2 is achieved to boost the photoconversion efficiency for the TiO2-based system by varying the AgInS2 layer's thickness. The TiO2 nanorods array film is prepared by using a simple hydrothermal technique. The formation of a AgInS2 QD-sensitized TiO2-nanorod photoelectrode is carried out by successive ionic layer adsorption and reaction (SILAR) technique. The effect of the QD layer on the performance of the solar cell is studied by varying the SILAR cycles of the QD coating. The synthesized electrode materials are characterized by using X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, high resolution transmission electron microscopy and solar cell performances. The results indicate that the nanocrystals have effectively covered the outer surfaces of the TiO2 nanorods. The interfacial structure of quantum dots (QDs)/TiO2 is also investigated, and the growth interface is verified. A careful comparison between TiO2/AgInS2 sensitized cells reveals that the trasfer of electrons and hole proceeds efficiently, the recombination is suppressed for the optimum thickness of the QD layer and light from the entire visible spectrum is utilised. Under AM 1.5G illumination, a high photocurrent of 1.36 mAcm-2 with an improved power conversion efficiency of 0.48% is obtained. The solar cell properties of our photoanodes suggest that the TiO2 nanorod array films co-sensitized by AgInS2 nanoclusters have potential applications in solar cells.

  14. Fullerene C70 decorated TiO2 nanowires for visible-light-responsive photocatalyst

    International Nuclear Information System (INIS)

    Cho, Er-Chieh; Ciou, Jing-Hao; Zheng, Jia-Huei; Pan, Job; Hsiao, Yu-Sheng; Lee, Kuen-Chan; Huang, Jen-Hsien

    2015-01-01

    Graphical abstract: - Highlights: • TiO 2 nanowire decorated with C 60 and C 70 derivatives has been synthesized. • The fullerenes impede the charge recombination due to its high electron affinity. • The fullerenes expand the utilization of solar light from UV to visible light. • The modified-TiO 2 has great biocompatibility. - Abstract: In this study, we have synthesized C 60 and C 70 -modified TiO 2 nanowire (NW) through interfacial chemical bonding. The results indicate that the fullerenes (C 60 and C 70 derivatives) can act as sinks for photogenerated electrons in TiO 2 , while the fullerene/TiO 2 is illuminated under ultraviolet (UV) light. Therefore, in comparison to the pure TiO 2 NWs, the modified TiO 2 NWs display a higher photocatalytic activity under UV irradiation. Moreover, the fullerenes also can function as a sensitizer to TiO 2 which expand the utilization of solar light from UV to visible light. The results reveal that the C 70 /TiO 2 NWs show a significant photocatalytic activity for degradation of methylene blue (MB) in visible light region. To better understand the mechanism responsible for the effect of fullerenes on the photocatalytic properties of TiO 2 , the electron only devices and photoelectrochemical cells based on fullerenes/TiO 2 are also fabricated and evaluated.

  15. Chemical synthesis of CdS onto TiO2 nanorods for quantum dot sensitized solar cells

    Science.gov (United States)

    Pawar, Sachin A.; Patil, Dipali S.; Lokhande, Abhishek C.; Gang, Myeng Gil; Shin, Jae Cheol; Patil, Pramod S.; Kim, Jin Hyeok

    2016-08-01

    A quantum dot sensitized solar cell (QDSSC) is fabricated using hydrothermally grown TiO2 nanorods and successive ionic layer adsorption and reaction (SILAR) deposited CdS. Surface morphology of the TiO2 films coated with different SILAR cycles of CdS is examined by Scanning Electron Microscopy which revealed aggregated CdS QDs coverage grow on increasing onto the TiO2 nanorods with respect to cycle number. Under AM 1.5G illumination, we found the TiO2/CdS QDSSC photoelectrode shows a power conversion efficiency of 1.75%, in an aqueous polysulfide electrolyte with short-circuit photocurrent density of 4.04 mA/cm2 which is higher than that of a bare TiO2 nanorods array.

  16. Synthesis, characterization and photocatalytic activity of porous WO3/TiO2 hollow microspheres

    International Nuclear Information System (INIS)

    Yang, Liuyang; Si, Zhichun; Weng, Duan; Yao, Youwei

    2014-01-01

    Porous WO 3 /TiO 2 hollow microspheres were prepared by a spray drying method for photodegradation of methylene blue and phenol. The catalysts were characterized by X-ray diffraction, Field Emission Scanning Electron Microscope, High Resolution Transmission Electron Microscope, N 2 adsorption–desorption measurements, Raman spectrometer, UV–Vis Diffuse Reflectance Spectroscopy and Zeta-Meter measurements. The results showed that the tungsten oxides mainly existed in highly dispersed amorphous form on anatase when the loading amount of tungsten oxide was below 3 mol%. The improved photocatalytic activity under UV light irradiation of the WO 3 /TiO 2 catalyst mainly arises from the enhanced charge separation efficiency rather than the improved light absorbance by highly dispersed amorphous tungsten oxides. Highly dispersed amorphous WO x can form a shallowly trapped site due to its similar band structure with TiO 2 . The strongly electron-withdrawing of tungsten oxide in highly dispersed state facilitates the electron transition between titanium and WO x , and consequently improves the charge separation. The enhanced acidity of catalyst by WO x in reactant environment also improved the charge separation efficiency due to the timely transition of holes and electrons accumulated on TiO 2 and WO x , respectively. However, the improved photocatalytic activity under visible light irradiation of the WO 3 /TiO 2 catalyst mainly arises from light harvest. TiO 2 containing 3 mol% WO 3 displayed the highest photocatalytic activity under UV light irradiation while that containing 4 mol% WO 3 present highest activity under visible light irradiation

  17. Photocatalytic Degradation of Methylene Blue Using TiO2 Impregnated Diatomite

    Directory of Open Access Journals (Sweden)

    Ranfang Zuo

    2014-01-01

    Full Text Available Nano-TiO2 showed a good catalytic activity, but it is easy to agglomerate, resulting in the reduction or even complete loss of photocatalytic activity. The dispersion of TiO2 particles on porous materials was a potential solution to this problem. Diatomite has high specific surface and absorbability because of its particular shell structure. Thus, TiO2/diatomite composite, prepared by loading TiO2 on the surface of diatomite, was a good photocatalyst, through absorbing organic compounds with diatomite and degrading them with TiO2. Scanning electron microscopy (SEM, energy dispersive spectrum (EDS, X-ray diffraction (XRD, chemical analysis, and Fourier transform infrared spectrometry (FTIR indicated that TiO2 was impregnated well on the surface of diatomite. Furthermore, TiO2/diatomite was more active than nano-TiO2 for the degradation of methylene blue (MB in solution. MB at concentrations of 15 and 35 ppm can be completely degraded in 20 and 40 min, respectively.

  18. PHOTODEGRADATION OF ALIZARIN S DYE USING TiO2-ZEOLITE AND UV RADIATION

    Directory of Open Access Journals (Sweden)

    Karna Wijaya

    2010-06-01

    Full Text Available An investigation of Alizarin S photodegradation using TiO2-zeolite and UV radiation was performed. TiO2-zeolite was prepared by dispersing oligocations of titanium into suspension of zeolite. The suspension was stirred and then filtered to separate the solid phase from the filtrate. the solid phase was calcined by microwave oven at 800 Watt for 5 minutes to convert the oligocations into its oxide forms. The calcined product and unmodified zeolite were characterized using x-ray diffractometry, FT-IR spectrophotometry, X-ray fluorescence and gas sorption analysis methods to determine their physicochemical properties. Photocatalytic activity of TiO2-zeolite was tested on Alizarin S solution using following method: 50 mg of zeolite was dispersed into 25 mL of 10-4 M Alizarin S. The dispersion was irradiated using 365 nm UV light at room temperature on various irradiation times, i.e. 10, 20, 30, 40 and 60 minutes. At certain irradiation time, the dispersion was filtered and the filtrate was then analyzed its concentration using UV-Vis spectrophotometry method. Characterization results exhibited that the formation of TiO2 on internal as well as external surfaces of zeolite could not be detected  with x-ray diffractometry and FT-IR spectrophotometry, however determination of titanium using x-ray fluorescence analysis on the calcined product showed that the concentration of titanium was much higher than zeolite (0.22% on zeolite and 12.08% on TiO2-zeolite. Gas sorption analysis result indicated that the the calcination  resulted in the increase of specific surface area (16,31 m2/g on zeolite and 100.96 m2/g on TiO2-zeolite as well as total pore volume of calcined product (13.34 mL/Å/g on zeolite and 57.54 mL/Å/g on TiO2-zeolite. The result of photocatalytic activitiy study showed that ca 99 % of Alizarin S was degraded by TiO2-zeolite after UV irradiation for 60 min.   Keywords: TiO2-zeolite, photocatalytic, Alizarin S.

  19. Biocorrosion of TiO2 nanoparticle coating of Ti–6Al–4V in DMEM under specific in vitro conditions

    International Nuclear Information System (INIS)

    Höhn, Sarah; Virtanen, Sannakaisa

    2015-01-01

    Highlights: • Possibility to fabricate a TiO 2 NP-coating on Ti–6Al–4V by a simple spin-coating method. • The NP-coating enhances biomimetic apatite formation on the surface immersed in DMEM. • The TiO 2 coating can efficiently reduce Al release from the alloy during immersion in DMEM. • TiO 2 NP-coating makes the surface more bioactive. - Abstract: A TiO 2 nanoparticle coating was prepared on a biomedical Ti–6Al–4V alloy using “spin-coating” technique with a colloidal suspension of TiO 2 nanopowders with the aim to optimize the surface morphology (e.g., roughness) for improved biocompatibility. The influence of a TiO 2 nanoparticle (NP) coating on the corrosion behavior, metal ion release, and biomimetic apatite formation was studied in DMEM, at 37.5 °C with a continuous supply of 5% CO 2 . Electrochemical impedance spectroscopy measurements indicate a formation of a new layer on the surface of the NP-coated sample upon 28 days immersion in DMEM. Scanning electron microscopy (SEM) and X-ray spectroscopy confirm that the surface of the NP-coated Ti–6Al–4V shows a complete coverage by a Ca–phosphate layer in contrast to the non-coated Ti–6Al–4V alloy. Hence, the TiO 2 -NP coating strongly enhances biomimetic apatite formation on the alloy surface. In addition, the TiO 2 -NP coating can efficiently reduce Al-release from the alloy, for which the bare Ti–6Al–4V alloy is significant for at least 28 days of immersion in DMEM

  20. Synthesis of Nd3+doped TiO2 nanoparticles and Its Optical Behaviour

    Directory of Open Access Journals (Sweden)

    Ezhil Arasi S.

    2017-04-01

    Full Text Available Pure and Rare earth ion doped TiO2 nanoparticles were synthesized by Sol-gel method. The synthesized TiO2 nanoparticles were characterized by X-ray diffraction, Raman spectroscopy, UV–Vis spectroscopy and photoluminescence emission spectra. From the UV-visible measurement, the absorption edge of Nd3+-TiO2 was shifted to a higher wavelength side with decreasing band gap. Photoluminescence emission studies reveal the energy transfer mechanism of Nd3+ doped TiO2 nanoparticles explain.

  1. Interconnected TiO2 Nanowire Networks for PbS Quantum Dot Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Fan Xu

    2012-01-01

    Full Text Available We present a simple method for the fabrication of an interconnected porous TiO2 nanostructured film via dip coating in a colloidal suspension of ultrathin TiO2 nanowires followed by high-temperature annealing. The spheroidization of the nanowires and the fusing of the loosely packed nanowire films at the contact points lead to the formation of nanopores. Using this interconnected TiO2 nanowire network for electron transport, a PbS/TiO2 heterojunction solar cell with a large short-circuit current of 2.5 mA/cm2, a Voc of 0.6 V, and a power conversion efficiency of 5.4% is achieved under 8.5 mW/cm2 white light illumination. Compared to conventional planar TiO2 film structures, these results suggest superior electron transport properties while still providing the large interfacial area between PbS quantum dots and TiO2 required for efficient exciton dissociation.

  2. Effects of TiO2 film thickness on photovoltaic properties of dye-sensitized solar cell and its enhanced performance by graphene combination

    International Nuclear Information System (INIS)

    Zhang, Haiyan; Wang, Wenguang; Liu, Hui; Wang, Rong; Chen, Yiming; Wang, Zhiwei

    2014-01-01

    Graphical abstract: - Highlights: • DSSC based on TiO 2 film with 8 printing layers showed the highest efficiency. • The photoelectric conversion efficiency of the DSSC increased from 5.52% to 6.49% by graphene combination. • A mechanism for the enhanced performance of the DSSC was proposed. - Abstract: Dye-sensitized solar cells based on TiO 2 films with different printing layers (6-10) were fabricated by screen printing method. The prepared samples were characterized by scanning electron microscopy, X-ray diffraction and UV–vis absorption spectroscopy. The effects of thickness on the photoelectric conversion performance of the as-fabricated DSSCs were investigated. An optimum photoelectric conversion efficiency of 5.52% was obtained in a DSSC with 8 printing layers. Furthermore, after a moderate amount of graphene was combined with TiO 2 , the photoelectric conversion efficiency of the DSSC based on graphene/TiO 2 composite film rose from 5.52% to 6.49%, with an increase of η by 17.6%. The results indicated that graphene not only enhances the transport of electrons from the film to the fluorine doped tin oxide substrates and reduces the charge recombination rate, but also reduces the electrolyte–electrode interfacial resistance, clearly increasing the photoelectric conversion efficiency

  3. Selective adsorption of thiophenic compounds from fuel over TiO2/SiO2 under UV-irradiation.

    Science.gov (United States)

    Miao, Guang; Ye, Feiyan; Wu, Luoming; Ren, Xiaoling; Xiao, Jing; Li, Zhong; Wang, Haihui

    2015-12-30

    This study investigates selective adsorption of thiophenic compounds from fuel over TiO2/SiO2 under UV-irradiation. The TiO2/SiO2 adsorbents were prepared and then characterized by N2 adsorption, X-ray diffraction and X-ray photoelectron spectroscopy. Adsorption isotherms, selectivity and kinetics of TiO2/SiO2 were measured in a UV built-in batch reactor. It was concluded that (a) with the employment of UV-irradiation, high organosulfur uptake of 5.12 mg/g was achieved on the optimized 0.3TiO2/0.7SiO2 adsorbent at low sulfur concentration of 15 ppmw-S, and its adsorption selectivity over naphthalene was up to 325.5; (b) highly dispersed TiO2 served as the photocatalytic sites for DBT oxidation, while SiO2 acted as the selective adsorption sites for the corresponding oxidized DBT using TiO2 as a promoter, the two types of active sites worked cooperatively to achieve the high adsorption selectivity of TiO2/SiO2; (c) The kinetic rate-determining step for the UV photocatalysis-assisted adsorptive desulfurization (PADS) over TiO2/SiO2 was DBT oxidation; (d) consecutive adsorption-regeneration cycles suggested that the 0.3TiO2/0.7SiO2 adsorbent can be regenerated by acetonitrile washing followed with oxidative air treatment. This work demonstrated an effective PADS approach to greatly enhance adsorption capacity and selectivity of thiophenic compounds at low concentrations for deep desulfurization under ambient conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Enhanced supercapacitor performance using hierarchical TiO2 nanorod/Co(OH)2 nanowall array electrodes

    International Nuclear Information System (INIS)

    Ramadoss, Ananthakumar; Kim, Sang Jae

    2014-01-01

    Graphical abstract: - Highlights: • TiO 2 /Co(OH) 2 hierarchical nanostructure was prepared by a combination of hydrothermal and cathodic electrodeposition method. • Hierarchical nanostructure electrode exhibited a maximum capacitance of 274.3 mF cm −2 at a scan rate of 5 mV s −1 . • Combination of Co(OH) 2 nanowall with TiO 2 NR into a single system enhanced the electrochemical behavior of supercapacitor electrode. - Abstract: We report novel hierarchical TiO 2 nanorod (NR)/porous Co(OH) 2 nanowall array electrodes for high-performance supercapacitors fabricated using a two-step process that involves hydrothermal and electrodeposition techniques. Field-emission scanning electron microscope images reveal a bilayer structure consisting of TiO 2 NR arrays with porous Co(OH) 2 nanowalls. Compared with the bare TiO 2 NRs, the hierarchical TiO 2 NRs/Co(OH) 2 electrodes showed improved pseudocapacitive performance in a 2-M KOH electrolyte solution, exhibiting an areal specific capacitance of 274.3 mF cm −2 at a scan rate of 5 mV s −1 . The electrodes exhibited good stability, retaining 82.5% of the initial capacitance after 4000 cycles. The good pseudocapacitive performance of the hierarchical nanostructures is mainly due to the porous structure, which provides fast ion and electron transfer, a large surface area, short ion diffusion paths, and a favourable volume change during the cycling process

  5. Preparation of RuO2-TiO2/Nano-graphite composite anode for electrochemical degradation of ceftriaxone sodium.

    Science.gov (United States)

    Li, Dong; Guo, Xiaolei; Song, Haoran; Sun, Tianyi; Wan, Jiafeng

    2018-06-05

    Graphite-like material is widely used for preparing various electrodes for wastewater treatment. To enhance the electrochemical degradation efficiency of Nano-graphite (Nano-G) anode, RuO 2 -TiO 2 /Nano-G composite anode was prepared through the sol-gel method and hot-press technology. RuO 2 -TiO 2 /Nano-G composite was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and N 2 adsorption-desorption. Results showed that RuO 2 , TiO 2 and Nano-G were composited successfully, and RuO 2 and TiO 2 nanoparticles were distributed uniformly on the surface of Nano-G sheet. Specific surface area of RuO 2 -TiO 2 /Nano-G composite was higher than that of TiO 2 /Nano-G composite and Nano-G. Electrochemical performances of RuO 2 -TiO 2 /Nano-G anode were investigated by cyclic voltammetry, electrochemical impedance spectroscopy. RuO 2 -TiO 2 /Nano-G anode was applied to electrochemical degradation of ceftriaxone. The generation of hydroxyl radical (OH) was measured. Results demonstrated that RuO 2 -TiO 2 /Nano-G anode displayed enhanced electrochemical degradation efficiency towards ceftriaxone and yield of OH, which is derived from the synergetic effect between RuO 2 , TiO 2 and Nano-G, which enhance the specific surface area, improve the electrochemical oxidation activity and lower the charge transfer resistance. Besides, the possible degradation intermediates and pathways of ceftriaxone sodium were identified. This study may provide a viable and promising prospect for RuO 2 -TiO 2 /Nano-G anode towards effective electrochemical degradation of antibiotics from wastewater. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Toward an Active Fabric-Based Air Decontamination System

    National Research Council Canada - National Science Library

    Gaddy, G. A; Bratcher, Matthew S; Mills, G; Huang, S; Slaten, B. L; Debortoli, J

    2004-01-01

    ...) particles that were grafted on cotton fabric and on TiO2 particles that were embedded in glass fabric Modified TiO2 particles were grafted onto cotton fabric and irradiated in the presence of CHCl3...

  7. Fabrication and Characterization of New Composite Tio2 Carbon Nanofiber Anodic Catalyst Support for Direct Methanol Fuel Cell via Electrospinning Method

    Science.gov (United States)

    Abdullah, N.; Kamarudin, S. K.; Shyuan, L. K.; Karim, N. A.

    2017-12-01

    Platinum (Pt) is the common catalyst used in a direct methanol fuel cell (DMFC). However, Pt can lead towards catalyst poisoning by carbonaceous species, thus reduces the performance of DMFC. Thus, this study focuses on the fabrication of a new composite TiO2 carbon nanofiber anodic catalyst support for direct methanol fuel cells (DMFCs) via electrospinning technique. The distance between the tip and the collector (DTC) and the flow rate were examined as influencing parameters in the electrospinning technique. To ensure that the best catalytic material is fabricated, the nanofiber underwent several characterizations and electrochemical tests, including FTIR, XRD, FESEM, TEM, and cyclic voltammetry. The results show that D18, fabricated with a flow rate of 0.1 mLhr-1 and DTC of 18 cm, is an ultrafine nanofiber with the smallest average diameter, 136.73 ± 39.56 nm. It presented the highest catalyst activity and electrochemical active surface area value as 274.72 mAmg-1 and 226.75m2 g-1 PtRu, respectively, compared with the other samples.

  8. SYNTHESIS OF MAGNETIC NANOPARTICLES OF TiO2-NiFe2O4: CHARACTERIZATION AND PHOTOCATALYTIC ACTIVITY ON DEGRADATION OF RHODAMINE B

    Directory of Open Access Journals (Sweden)

    Rahmayeni Rahmayeni

    2012-12-01

    Full Text Available Magnetic nanoparticles of TiO2-(xNiFe2O4 with x = 0.01, 0.1, and 0.3have been synthesized by mixture of titanium isopropoxide (TIP and nitric metal as precursors. The particles were characterized by XRD, SEM-EDX, and VSM. XRD pattern show the peaks at 2q = 25.3°, 38.4° and 47.9° which are referred as anatase phase of TiO2. Meanwhile NiFe2O4 phase was observed clearly for x = 0.3. The present of NiFe2O4 can prevent the transformation of TiO2 from anatase to rutile when the calcination temperature increased. Microstructure analyses by SEM show the homogeneous form and size of particles. The magnetic properties analysis by VSM indicates that TiO2-NiFe2O4 is paramagnetic behavior. TiO2 doped NiFe2O4 has higher photocatalytic activity than TiO2 synthesized for degradation of Rhodamine B in aqueous solution under solar light irradiation.

  9. Controlled synthesis of TiO2-B nanowires and nanoparticles for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Qi Lihong; Liu Yongjun; Li Chunyan

    2010-01-01

    Controllable synthesis of the TiO 2 -B nanowires (NWs) and nanoparticles (NPs) had been achieved via a facile hydrothermal route, respectively, only by tuning the solution volume. The dye-sensitized solar cells prototypes had been fabricated using TiO 2 -B NW and NP electrodes, respectively. The TiO 2 -B NP cells had higher photocurrent and photoelectrical conversion efficiency than the TiO 2 -B NW cells though the latter exhibited larger photovoltage compared to the former. The key factors such as the photogenerated electron injection drive force, surface defects and the interfacial charge transfer, which determined the photoelectrical properties, had been systematically researched with the surface photovoltage spectra (SPS) and the electrochemical impedance spectra (EIS). The SPS proved that there was larger photoelectron injection drive force in TiO 2 -B NP photoelectrode than that in NW photoelectrode. And the electrochemical impedance spectra (EIS) revealed that TiO 2 -B NP cells had faster interface charge transfer compared to TiO 2 -B NW cells. Both proved that NP cells had the higher photocurrents.

  10. Light-induced antifungal activity of TiO2 nanoparticles/ZnO nanowires

    International Nuclear Information System (INIS)

    Haghighi, N.; Abdi, Y.; Haghighi, F.

    2011-01-01

    Antifungal activity of TiO 2 /ZnO nanostructures under visible light irradiation was investigated. A simple chemical method was used to synthesize ZnO nanowires. Zinc acetate dihydrate, Polyvinyl Pyrrolidone and deionized water were used as precursor, capping and solvent, respectively. TiO 2 nanoparticles were deposited on ZnO nanowires using an atmospheric pressure chemical vapor deposition system. X-ray diffraction pattern of TiO 2 /ZnO nano-composite has represented the diffraction peaks relating to the crystal planes of the TiO 2 (anatase and rutile) and ZnO. TiO 2 /ZnO nanostructure antifungal effect on Candida albicans biofilms was studied and compared with the activity of TiO 2 nanoparticles and ZnO nanowires. The high efficiency photocatalytic activity of TiO 2 nanoparticles leads to increased antifungal activity of ZnO nanowires. Scanning electron microscope was utilized to study the morphology of the as prepared nanostructures and the degradation of the yeast.

  11. Tailored TiO2(110) surfaces and their reactivity

    International Nuclear Information System (INIS)

    Pang, C L; Bikondoa, O; Humphrey, D S; Papageorgiou, A C; Cabailh, G; Ithnin, R; Chen, Q; Muryn, C A; Onishi, H; Thornton, G

    2006-01-01

    Electron bombardment from a filament as well as voltage pulses from a scanning tunnelling microscope tip have been employed to modify the surface of TiO 2 (110). Individual H atoms are selectively desorbed with electrical pulses of +3 V from the scanning tunnelling microscope tip, whilst leaving the oxygen vacancies intact. This allows us to distinguish between oxygen vacancies and hydroxyl groups, which have a similar appearance in scanning tunnelling microscopy images. This then allows the oxygen vacancy-promoted dissociation of water and O 2 to be followed with the microscope. Electrical pulses between +5 and +10 V induce local TiO 2 (110)1 x 2 reconstructions centred around the pulse. As for electron bombardment of the surface, relatively low fluxes increase the density of oxygen vacancies whilst higher fluxes lead to the 1 x 2 and other 1 x n reconstructions

  12. The Influence of TiO2 Nanoparticles on LaFeO3/TiO2 Nanocomposites for Reduction of Aqueous Organic Dyes

    International Nuclear Information System (INIS)

    Afifah, N.; Saleh, R.

    2016-01-01

    A series of Lanthanum ferrite (LaFeO3) nanoparticles over titanium dioxide (TiO2) were synthesized using sol-gel method at room temperature by varying the loading of LaFeO3 on TiO2. The magnetic properties of samples were measured using vibrating sample magnetometer and photosonocatalytic activity towards the degradation of methylene blue under light (UV or visible) and ultrasound irradiation was also evaluated. The morphology and structure of the samples were characterized by field emission scanning electron microscope, energy dispersive analysis and X-ray diffraction. Furthermore the optical properties were also characterized by UV-visible diffuse reflectance. The experimental results showed that the prepared perovskites had sphere-like shape and strong visible light absorption. LaFeO3 demonstrated ferromagnetic properties and the magnetization decreased with the incorporation of TiO2 in the samples. However, the incorporation of TiO2 increased the photosonocatalytic activity and extended the photoresponding to UV light. (paper)

  13. An Alternative to Annealing TiO2 Nanotubes for Morphology Preservation: Atmospheric Pressure Plasma Jet Treatment.

    Science.gov (United States)

    Seo, Sang-Hee; Uhm, Soo-Hyuk; Kwon, Jae-Sung; Choi, Eun Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2015-03-01

    Titanium oxide nanotube layer formed by plasma electrolytic oxidation (PEO) is known to be excellent in biomaterial applications. However, the annealing process which is commonly performed on the TiO2 nanotubes cause defects in the nanotubular structure. The purpose of this work was to apply a non-thermal atmospheric pressure plasma jet on diameter-controlled TiO2 nanotubes to mimic the effects of annealing while maintaining the tubular structure for use as biomaterial. Diameter-controlled nanotube samples fabricated by plasma electrolytic oxidation were dried and prepared under three different conditions: untreated, annealed at 450 °C for 1 h in air with a heating rate of 10 °C/min, and treated with an air-based non-thermal atmospheric pressure plasma jet for 5 minutes. The contact angle measurement was investigated to confirm the enhanced hydrophilicity of the TiO2 nanotubes. The chemical composition of the surface was studied using X-ray photoelectron spectroscopy, and the morphology of TiO2 nanotubes was examined by field emission scanning electron microscopy. For the viability of the cell, the attachment of the osteoblastic cell line MC3T3-E1 was determined using the water-soluble tetrazolium salt assay. We found that there are no morphological changes in the TiO2 nanotubular structure after the plasma treatment. Also, we investigated a change in the chemical composition and enhanced hydrophilicity which result in improved cell behavior. The results of this study indicated that the non-thermal atmospheric pressure plasma jet results in osteoblast functionality that is comparable to annealed samples while maintaining the tubular structure of the TiO2 nanotubes. Therefore, this study concluded that the use of a non-thermal atmospheric pressure plasma jet on nanotube surfaces may replace the annealing process following plasma electrolytic oxidation.

  14. Electrospun Fe3O4/TiO2 hybrid nanofibers and their in vitro biocompatibility: prospective matrix for satellite cell adhesion and cultivation.

    Science.gov (United States)

    Amna, Touseef; Hassan, M Shamshi; Van Ba, Hoa; Khil, Myung-Seob; Lee, Hak-Kyo; Hwang, I H

    2013-03-01

    We report the fabrication of novel Fe3O4/TiO2 hybrid nanofibers with the improved cellular response for potential tissue engineering applications. In this study, Fe3O4/TiO2 hybrid nanofibers were prepared by facile sol-gel electrospinning using titanium isopropoxide and iron(III) nitrate nonahydrate as precursors. The obtained electrospun nanofibers were vacuum dried at 80 °C and then calcined at 500 °C. The physicochemical characterization of the synthesized composite nanofibers was carried out by scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy and X-ray diffraction pattern. To examine the in vitro cytotoxicity, satellite cells were treated with as-prepared Fe3O4/TiO2 and the viability of cells was analyzed by Cell Counting Kit-8 assay at regular time intervals. The morphological features of unexposed satellite cells and exposed to Fe3O4/TiO2 composite were examined with a phase contrast microscope whereas the quantification of cell viability was carried out via confocal laser scanning microscopy. The morphology of the cells attached to hybrid matrix was observed by Bio-SEM. Cytotoxicity experiments indicated that the satellite cells could attach to the Fe3O4/TiO2 composite nanofibers after being cultured. We observed that Fe3O4-TiO2 composite nanofibers could support cell adhesion and growth. Results from this study therefore suggest that Fe3O4/TiO2 composite scaffold with small diameters (approximately 200 nm) can mimic the natural extracellular matrix well and provide possibilities for diverse applications in the field of tissue engineering and regenerative medicine. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Al2O3 doping of TiO2 electrodes and applications in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Eom, Tae Sung; Kim, Kyung Hwan; Bark, Chung Wung; Choi, Hyung Wook

    2014-01-01

    Dye-sensitized solar cells (DSSCs) have been intensively studied since their discovery in 1991. DSSCs have been extensively researched over the past decades as cheaper alternatives to silicon solar cells due to their high energy-conversion efficiency and their low production cost. However, some problems need to be solved in order to enhance the efficiency of DSSCs. In particular, the electron recombination that occurs due to the contact between the transparent conductive oxide (TCO) and a redox electrolyte is one of the main limiting factors of efficiency. In this work, we report for the first time the improvement of the photovoltaic characteristics of DSSCs by doping TiO 2 with Al 2 O 3 . DSSCs were constructed using composite particles of Al 2 O 3 -doped TiO 2 and TiO 2 nanoparticles. The DSSCs using Al 2 O 3 showed the maximum conversion efficiency of 6.29% due to effective electron transport. DSSCs based on Al 2 O 3 -doped TiO 2 films showed better photovoltaic performance than cells fabricated with only TiO 2 nanoparticles. This result is attributed to the prevention of electron recombination between electrons in the TiO 2 conduction band with holes in the dye or the electrolyte. There mechanism is suggested based on impedance results, which indicated improved electron transport at the TiO 2 /dye/electrolyte interface.

  16. Instability of Hydrogenated TiO2

    Energy Technology Data Exchange (ETDEWEB)

    Nandasiri, Manjula I.; Shutthanandan, V.; Manandhar, Sandeep; Schwarz, Ashleigh M.; Oxenford, Lucas S.; Kennedy, John V.; Thevuthasan, Suntharampillai; Henderson, Michael A.

    2015-11-06

    Hydrogenated TiO2 (H-TiO2) is toted as a viable visible light photocatalyst. We report a systematic study on the thermal stability of H-implanted TiO2 using X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA). Protons (40 keV) implanted at a ~2 atom % level within a ~120 nm wide profile of rutile TiO2(110) were situated ~300 nm below the surface. NRA revealed that this H-profile broadened preferentially toward the surface after annealing at 373 K, dissipated out of the crystal into vacuum at 473 K, and was absent within the beam sampling depth (~800 nm) at 523 K. Photoemission showed that the surface was reduced in concert with these changes. Similar anneals had no effect on pristine TiO2(110). The facile bulk diffusivity of H in rutile, as well as its activity toward interfacial reduction, significantly limits the utilization of H-TiO2 as a photocatalyst. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  17. Passivation of pigment-grade TiO2 particles by nanothick atomic layer deposited SiO2 films

    International Nuclear Information System (INIS)

    King, David M; Liang Xinhua; Weimer, Alan W; Burton, Beau B; Akhtar, M Kamal

    2008-01-01

    Pigment-grade TiO 2 particles were passivated using nanothick insulating films fabricated by atomic layer deposition (ALD). Conformal SiO 2 and Al 2 O 3 layers were coated onto anatase and rutile powders in a fluidized bed reactor. SiO 2 films were deposited using tris-dimethylaminosilane (TDMAS) and H 2 O 2 at 500 deg. C. Trimethylaluminum and water were used as precursors for Al 2 O 3 ALD at 177 deg. C. The photocatalytic activity of anatase pigment-grade TiO 2 was decreased by 98% after the deposition of 2 nm SiO 2 films. H 2 SO 4 digest tests were performed to exhibit the pinhole-free nature of the coatings and the TiO 2 digest rate was 40 times faster for uncoated TiO 2 than SiO 2 coated over a 24 h period. Mass spectrometry was used to monitor reaction progress and allowed for dosing time optimization. These results demonstrate that the TDMAS-H 2 O 2 chemistry can deposit high quality, fully dense SiO 2 films on high radius of curvature substrates. Particle ALD is a viable passivation method for pigment-grade TiO 2 particles

  18. PREPARATION AND CHARACTERIZATION OF TiO2-ZEOLITE AND ITS APPLICATION TO DEGRADE TEXTILLE WASTEWATER BY PHOTOCATALYTIC METHOD

    Directory of Open Access Journals (Sweden)

    Yeslia Utubira

    2010-06-01

    Full Text Available The preparation of titanium oxide-zeolite composite (TiO2-zeolite has been done. Preparation was initiated by dispersing oligocation of titanium solution into suspension of natural zeolite. The suspension was stirred and then filtered to separate the solid phase from the filtrate. The solid phase was heated by microwave oven to convert the oligocations into its oxide forms and the resulting material (called as TiO2-zeolite then was used to photodegrade the wastewater of PT.Jogjatex The TiO2-zeolite and unmodified zeolite were characterized using X-ray diffractometry, FT-IR spectro-photometry, X-ray fluorescence (XRF and gas sorption analysis (GSA methods to determine their physicochemical properties. Photocatalytic activity of TiO2-Zeolite was tested by exposing the suspension of TiO2-Zeolite/wastewater by the UV light of 366 nm at room temperature for 15 - 75 minutes. Characterization results exhibited that the formation of TiO2 on internal as well as external surfaces of Zeolite could not be detected  with X-ray diffractometry as well as  FT-IR spectrophotometry, however elemental analysis result with XRF indicated that titanium concentration in zeolite increased due to the inclusion, i.e from 0.26% (w/w in zeolite to 2.80% (w/w in TiO2-zeolite. Characterization result by GSA exhibited the increased of specific surface area from 19.57 m2/g in zeolite to 67.96 m2/g in TiO2-zeolite; total pore volume from 20.64 x 10-3 mL/g in zeolite to 49.561 x 10-3 mL/g in TiO2-Zeolite; pore radius average decreased from 21.10 Å in zeolite to 14.58 Å in TiO2-zeolite. Photocatalytic activity test of TiO2-zeolite on wastewater of PT. Jogjatex showed that UV radiation for 75 minutes on the mixture of TiO2-zeolite and wastewater resulted in the decreased of  COD number up to 57.85%. Meanwhile the sorption study showed that zeolite and TiO2-zeolite could decrease COD number of wastewater up to 43.95% and 57.85%, respectively.   Keywords: TiO2-zeolite

  19. tavg1_2d_slv_Nx: MERRA 2D IAU Diagnostic, Single Level Meteorology, Time Average 1-hourly 0.667 x 0.5 degree V5.2.0 (MAT1NXSLV) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAT1NXSLV or tavg1_2d_slv_Nx data product is the MERRA Data Assimilation System 2-Dimensional atmospheric single-level diagnostics that is time averaged...

  20. Analysis of X-ray diffraction of the titanium dioxide (TiO_2) synthesized by the Pechini Method for application in heterogeneous photocatalysis processes

    International Nuclear Information System (INIS)

    Oliveira, P.L.; Araujo, D.S.; Costa, A.C.F.M.; Oliveira, L.S.C.

    2016-01-01

    Titanium dioxide (TiO_2) is a polymorph commonly applied to heterogeneous photocatalysis processes for being relatively inexpensive and photo - stable. It is usually found in three different crystalline phases (anatase, rutile and brookite), which directly interfere in their photocatalytic efficiency. Therefore, this study aimed to investigate the obtainment of TiO_2 by Pechini method in different conditions for application in the heterogeneous photocatalysis process. For this purpose, it was evaluated by analysis of X-ray diffraction (XRD ) the behavior of TiO_2 materials synthesized in proportions of 2:1 and 3:1 (titanium isopropoxide/citric acid), pyrolyzed at 300°C/3h and 400°C /h and calcined at 400°C and 500°C/1h. The results revealed that the TiO_2 samples produced in the ratio of 2:1 and 3:1 isopropoxide/citric acid and calcined at 500°C/h presented the best results. (author)

  1. Density, thickness and composition measurements of TiO2 -SiO2 thin films by coupling X-ray reflectometry, ellipsometry and electron probe microanalysis-X

    International Nuclear Information System (INIS)

    Hodroj, A.; Roussel, H.; Crisci, A.; Robaut, F.; Gottlieb, U.; Deschanvres, J.L.

    2006-01-01

    Mixed TiO 2 -SiO 2 thin films were deposited by aerosol atmospheric CVD method by using di-acetoxi di-butoxi silane (DADBS) and Ti tetra-butoxide as precursors. By varying the deposition temperatures between 470 and 600 deg. C and the ratios between the Si and Ti precursors (Si/Ti) from 2 up to 16, films with different compositions and thicknesses were deposited. The coupled analysis of the results of different characterisation methods was used in order to determine the variation of the composition, the thickness and the density of the films. First EPMA measurements were performed at different acceleration voltages with a Cameca SX50 system. By analysing, with specific software, the evolution of the intensity ratio I x /I std versus the voltage, the composition and the mass thickness (product of density by the thickness) were determined. In order to measure independently the density, X-ray reflectometry experiments were performed. By analysing the value of the critical angle and the Kiessig fringes, the density and the thickness of the layers were determined. The refractive index and the thickness of the films were also measured by ellipsometry. By assuming a linear interpolation between the index value of the pure SiO 2 and TiO 2 films, the film composition was deduced from the refractive index value. XPS measurements were also performed in order to obtain an independent value of the composition. A good agreement between the ways to measure the density is obtained

  2. Photocatalytic oxidative desulfurization of dibenzothiophene catalyzed by amorphous TiO2 in ionic liquid

    International Nuclear Information System (INIS)

    Zhu, Wenshuai; Xu, Yehai; Li, Huaming; Dai, Bilian; Xu, Hui; Wang, Chao; Chao, Yanhong; Liu, Hui

    2014-01-01

    Three types of TiO 2 were synthesized by a hydrolysis and calcination method. The catalysts were characterized by X-ray powder diffraction (XRD), diffuse reflectance spectrum (DRS), Raman spectra, and X-ray photoelectron spectroscopy (XPS). The XRD and Raman spectra indicated that amorphous TiO 2 was successfully obtained at 100 .deg. C. The results indicated that amorphous TiO 2 achieved the highest efficiency of desulfurization. The photocatalytic oxidation of dibenzothiophene (DBT), benzothiophene (BT), 4,6-dimethyldibenzothiophene (4,6-DMDBT) and dodecanethiol (RSH) in model oil was studied at room temperature (30 .deg. C) with three catalysts. The system contained amorphous TiO 2 , H 2 O 2 , and [Bmim]BF 4 ionic liquid, ultraviolet (UV), which played vitally important roles in the photocatalytic oxidative desulfurization. Especially, the molar ratio of H 2 O 2 and sulfur (O/S) was only 2 : 1, which corresponded to the stoichiometric reaction. The sulfur removal of DBT-containing model oil with amorphous TiO 2 could reach 96.6%, which was apparently superior to a system with anatase TiO 2 (23.6%) or with anatase - rutile TiO 2 (18.2%). The system could be recycled seven times without a signicant decrease in photocatalytic activity

  3. Improved Visible Light Photocatalytic Activity for TiO2 Nanomaterials by Codoping with Zinc and Sulfur

    Directory of Open Access Journals (Sweden)

    Qianzhi Xu

    2015-01-01

    Full Text Available S/Zn codoped TiO2 nanomaterials were synthesized by a sol-gel method. X-ray diffraction, UV-vis diffuse reflectance spectroscopy, transmission electron microscopy, photoluminescence spectroscopy, and X-ray photoelectron spectroscopy were used to characterize the morphology, structure, and optical properties of the prepared samples. The introduction of Zn and S resulted in significant red shift of absorption edge for TiO2-based nanomaterials. The photocatalytic activity was evaluated by degrading reactive brilliant red X-3B solution under simulated sunlight irradiation. The results showed S/Zn codoped TiO2 exhibited higher photocatalytic activity than pure TiO2 and commercial P25, due to the photosynergistic effect of obvious visible light absorption, efficient separation of photoinduced charge carriers, and large surface area. Moreover, the content of Zn and S in the composites played important roles in photocatalytic activity of TiO2-based nanomaterials.

  4. Synthesis and photocatalytic activity of mesoporous – (001) facets TiO_2 single crystals

    International Nuclear Information System (INIS)

    Dong, Yeshuo; Fei, Xuening; Zhou, Yongzhu

    2017-01-01

    Highlights: • The (001) facets of TiO_2 single crystals with mesoporous structure. • The (010) and (100) facets of TiO_2 single crystals were covered by the flower – shaped TiO_2 crystals. • This special structure could promote charge separation and provide more active sites, which will lead to a substantial increase in photocatalytic activity. - Abstract: In this work, the mesoporous – (001) facets TiO_2 single crystals have been successfully synthesized through a two-step solvothermal route without any template. Their structure and morphology were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV–vis) diffuse reflectance spectroscopy and energy dispersive X-ray spectrometer (EDX). Based on the different characteristics and atomic arrangements on each facet of anatase TiO_2 single crystals, we synthesized these mesoporous – (001) facets TiO_2 single crystals by controlling the interaction characteristics of hydrofluoric acid (HF) and isopropanol (i-PrOH) on the crystal facets. It can been seen that the (001) facets of these as-synthesized TiO_2 single crystals have a clear mesoporous structure through the SEM images and BET methods. Moreover, the other four facets were covered by the flower – shaped TiO_2 crystals with the generation of the mesoporous – (001) facets. This special and interesting morphology could promote charge separation and provide more active sites, which will lead to a substantial increase in photocatalytic activity. Moreover, it is more intuitive to reflect that the different crystal facets possess the different properties due to their atomic arrangement. Besides, according to the different synthetic routes, we proposed and discussed a plausible synthesis mechanism of these mesoporous – (001) facets TiO_2 single crystals.

  5. Synthesis of TiO2/Bi2S3 heterojunction with a nuclear-shell structure and its high photocatalytic activity

    International Nuclear Information System (INIS)

    Lu, Juan; Han, Qiaofeng; Wang, Zuoshan

    2012-01-01

    Highlights: ► Bi 2 S 3 was doped into TiO 2 and it was clearly proved by the expander of the crystalline lattice in XRD result. ► As-prepared TiO 2 /Bi 2 S 3 heterojunctions have a nuclear-shell structure which has not been reported. ► As-prepared TiO 2 /Bi 2 S 3 heterojunctions have the excellent photocatalytic activity. -- Abstract: TiO 2 /Bi 2 S 3 heterojunctions with a nuclear-shell structure were prepared by the coprecipitation method. The products were characterized by X-ray diffraction analysis, Raman spectra, transmission electron microscope images and energy dispersion X-ray spectra. Results showed that as-prepared Bi 2 S 3 was urchin-like, made from many nanorods, and TiO 2 /Bi 2 S 3 heterojunctions have a similar nuclear-shell structure, with Bi 2 S 3 as the shell and TiO 2 as the nuclear. The photocatalytic experiments performed under UV irradiation using methyl orange as the pollutant revealed that the photocatalytic activity of TiO 2 could be improved by introduction of an appropriate amount of Bi 2 S 3 . However, excessive amount of Bi 2 S 3 would result in the decrease of photocatalytic activity of TiO 2 . The relative mechanism was proposed.

  6. Structure and Properties of La2O3-TiO2 Nanocomposite Films for Biomedical Applications

    Science.gov (United States)

    Zhang, Lin; Sun, Zhi-Hua; Yu, Feng-Mei; Chen, Hong-Bin

    2011-01-01

    The hemocompatibility of La2O3-doped TiO2 films with different concentration prepared by radio frequency (RF) sputtering was studied. The microstructures and blood compatibility of TiO2 films were investigated by scan electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and UV-visible optical absorption spectroscopy, respectively. With the increasing of the La2O3 concentrations, the TiO2 films become smooth, and the grain size becomes smaller. Meanwhile, the band gap of the samples increases from 2.85 to 3.3 eV with increasing of the La2O3 content in TiO2 films from 0 to 3.64%. La2O3-doped TiO2 films exhibit n-type semiconductor properties due to the existence of Ti2+ and Ti3+. The mechanism of hemocompatibility of TiO2 film doped with La2O3 was analyzed and discussed. PMID:22162671

  7. Preparation of flexible TiO2 photoelectrodes for dye-sensitized solar cells

    Science.gov (United States)

    Li, Wen-Ren; Wang, Hsiu-Hsuan; Lin, Chia-Feng; Su, Chaochin

    2014-09-01

    Dye-sensitized solar cells (DSSCs) based on nanocrystalline TiO2 photoelectrodes on indium tin oxide (ITO) coated polymer substrates have drawn great attention due to its lightweight, flexibility and advantages in commercial applications. However, the thermal instability of polymer substrates limits the process temperature to below 150 °C. In order to assure high and firm interparticle connection between TiO2 nanocrystals (TiO2-NC) and polymer substrates, the post-treatment of flexible TiO2 photoelectrodes (F-TiO2-PE) by mechanical compression was employed. In this work, Degussa P25 TiO2-NC was mixed with tert-butyl alcohol and DI-water to form TiO2 paste. F-TiO2-PE was then prepared by coating the TiO2 paste onto ITO coated polyethylene terephthalate (PET) substrate using doctor blade followed by low temperature sintering at 120 °C for 2 hours. To study the effect of mechanical compression, we applied 50 and 100 kg/cm2 pressure on TiO2/PET to complete the fabrication of F-TiO2-PE. The surface morphology of F-TiO2-PE was characterized using scanning electron microscopy. The resultant F-TiO2-PE sample exhibited a smooth, crack-free structure indicating the great improvement in the interparticle connection of TiO2-NC. Increase of compression pressure could lead to the increase of DSSC photoconversion efficiency. The best photoconversion efficiency of 4.19 % (open circuit voltage (Voc) = 0.79 V, short-circuit photocurrent density (Jsc) = 7.75 mA/cm2, fill factor (FF) = 0.68) was obtained for the F-TiO2-PE device, which showed great enhancement compared with the F-TiO2-PE cell without compression treatment. The effect of compression in DSSC performance was vindicated by the electrochemical impedance spectroscopy measurement.

  8. High-speed growth of TiO2 nanotube arrays with gradient pore diameter and ultrathin tube wall under high-field anodization

    Science.gov (United States)

    Yuan, Xiaoliang; Zheng, Maojun; Ma, Li; Shen, Wenzhong

    2010-10-01

    Highly ordered TiO2 nanotubular arrays have been prepared by two-step anodization under high field. The high anodizing current densities lead to a high-speed film growth (0.40-1.00 µm min - 1), which is nearly 16 times faster than traditional fabrication of TiO2 at low field. It was found that an annealing process of Ti foil is an effective approach to get a monodisperse and double-pass TiO2 nanotubular layer with a gradient pore diameter and ultrathin tube wall (nearly 10 nm). A higher anodic voltage and longer anodization time are beneficial to the formation of ultrathin tube walls. This approach is simple and cost-effective in fabricating high-quality ordered TiO2 nanotubular arrays for practical applications.

  9. Heteroepitaxial growth of Ba1 - xSrxTiO3/YBa2Cu3O7 - x by plasma-enhanced metalorganic chemical vapor deposition

    Science.gov (United States)

    Chern, C. S.; Liang, S.; Shi, Z. Q.; Yoon, S.; Safari, A.; Lu, P.; Kear, B. H.; Goodreau, B. H.; Marks, T. J.; Hou, S. Y.

    1994-06-01

    Epitaxial Ba1-xSrxTiO3(BST)/YBa2Cu3O7-x heterostructures with superior electrical and dielectric properties have been fabricated by plasma-enhanced metalorganic chemical vapor deposition (PE-MOCVD). Data of x-ray diffraction and high resolution transmission electron microscopy showed that oriented Ba1-xSrxTiO3 layers were epitaxially deposited on epitaxial (001) YBa2Cu3O7-x layers. The leakage current density through the Ba1-xSrxTiO3 films was about 10-7 A/cm2 at 2 V (about 2×105 V/cm) operation. Moreover, the results of capacitance-temperature measurements showed that the PE-MOCVD Ba1-xSrxTiO3 films had Curie temperatures of about 30 °C and a peak dielectric constant of 600 at zero bias voltage. The Rutherford backscattering spectrometry and x-ray diffraction results showed that the BST film composition was controlled between Ba0.75Sr0.25TiO3 and Ba0.8Sr0.2TiO3. The structural and electrical properties of the Ba1-xSrxTiO3/YBa2Cu3O7-x heterostructure indicated that conductive oxide materials with close lattice to Ba1-xSrxTiO3 can be good candidates for the bottom electrode.

  10. Band alignment of TiO2/FTO interface determined by X-ray photoelectron spectroscopy: Effect of annealing

    Directory of Open Access Journals (Sweden)

    Haibo Fan

    2016-01-01

    Full Text Available The energy band alignment between pulsed-laser-deposited TiO2 and FTO was firstly characterized using high-resolution X-ray photoelectron spectroscopy. A valence band offset (VBO of 0.61 eV and a conduction band offset (CBO of 0.29 eV were obtained across the TiO2/FTO heterointerface. With annealing process, the VBO and CBO across the heterointerface were found to be -0.16 eV and 1.06 eV, respectively, with the alignment transforming from type-I to type-II. The difference in the band alignment is believed to be dominated by the core level down-shift of the FTO substrate, which is a result of the oxidation of Sn. Current-voltage test has verified that the band alignment has a significant effect on the current transport of the heterojunction.

  11. Photocatalytic degradation of methyl orange with W-doped TiO2 synthesized by a hydrothermal method

    International Nuclear Information System (INIS)

    Tian Hua; Ma Junfeng; Li Kang; Li Jinjun

    2008-01-01

    Nanosized W-doped TiO 2 photocatalysts were synthesized by a simple hydrothermal method, and characterized by energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM) and BET surface area analyzer. The photocatalytic activity of undoped TiO 2 and W-doped TiO 2 photocatalysts was evaluated by the photocatalytic oxidation degradation of methyl orange in aqueous solution. The results show that the photocatalytic activity of the W-doped TiO 2 photocatalyst is much higher than that of undoped TiO 2 , and the optimum percentage of W doped is 2.0 mol%. The enhanced photocatalytic activity of the doped photocatalyst may be attributed to the increase in the charge separation efficiency and the presence of surface acidity

  12. Magnetic and structural study of Cu-doped TiO2 thin films

    International Nuclear Information System (INIS)

    Torres, C.E. Rodriguez; Golmar, F.; Cabrera, A.F.; Errico, L.; Navarro, A.M. Mudarra; Renteria, M.; Sanchez, F.H.; Duhalde, S.

    2007-01-01

    Transparent pure and Cu-doped (2.5, 5 and 10 at.%) anatase TiO 2 thin films were grown by pulsed laser deposition technique on LaAlO 3 substrates. The samples were structurally characterized by X-ray absorption spectroscopy and X-ray diffraction. The magnetic properties were measured using a SQUID. All films have a FM-like behaviour. In the case of the Cu-doped samples, the magnetic cycles are almost independent of the Cu concentration. Cu atoms are forming CuO and/or substituting Ti in TiO 2 . The thermal treatment in air promotes the CuO segregation. Since CuO is antiferromagnetic, the magnetic signals present in the films could be assigned to Cu substitutionally replacing cations in TiO 2

  13. Rapid photo-degradation of 2-chlorophenol under visible light irradiation using cobalt oxide-loaded TiO2/reduced graphene oxide nanocomposite from aqueous media.

    Science.gov (United States)

    Sharma, Ajit; Lee, Byeong-Kyu

    2016-01-01

    The photocatalytic removal of 2-chlorophenol (2-CP) from water environment was investigated by TiO2-RGO-CoO. Cobalt oxide-loaded TiO2 (TiO2-CoO) supported with reduced graphene oxide (RGO) was synthesized using a sol-gel method and then annealed at 500 °C for 5 min. The material characteristics were analyzed by UV-Vis analysis, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Incorporation of cobalt oxide and RGO into the TiO2 system (TiO2-RGO-CoO) lowered the band gap energy to 2.83 eV, which greatly enhanced the visible light absorption. The TiO2-RGO-CoO photocatalyst showed complete removal of 20 mg/L 2-CP within 8 h with the addition of 0.01% H2O2 under 100 W visible light irradiation. The photo-degradation efficiency of 2-CP (10 mg/L) was 35.2, 48.9, 58.9 and 98.2% for TiO2, TiO2-RGO, TiO2-CoO and TiO2-RGO-CoO, respectively, in the presence of visible light irradiation at solution pH of 6.0. The TiO2-RGO-CoO photocatalyst retained its high removal efficiency even after five photocatalytic cycles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Enhanced photovoltaic properties of perovskite solar cells by TiO2 homogeneous hybrid structure.

    Science.gov (United States)

    Su, Pengyu; Fu, Wuyou; Yao, Huizhen; Liu, Li; Ding, Dong; Feng, Fei; Feng, Shuang; Xue, Yebin; Liu, Xizhe; Yang, Haibin

    2017-10-01

    In this paper, we fabricated a TiO 2 homogeneous hybrid structure for application in perovskite solar cells (PSCs) under ambient conditions. Under the standard air mass 1.5 global (AM 1.5G) illumination, PSCs based on homogeneous hybrid structure present a maximum power conversion efficiency of 5.39% which is higher than that of pure TiO 2 nanosheets. The enhanced properties can be explained by the better contact of TiO 2 nanosheets/nanoparticles with CH 3 NH 3 PbI 3 and fewer pinholes in electron transport materials. The advent of such unique structure opens up new avenues for the future development of high-efficiency photovoltaic cells.

  15. Structural and electrical properties of TiO2/ZnO core–shell nanoparticles synthesized by hydrothermal method

    International Nuclear Information System (INIS)

    Vlazan, P.; Ursu, D.H.; Irina-Moisescu, C.; Miron, I.; Sfirloaga, P.; Rusu, E.

    2015-01-01

    TiO 2 /ZnO core–shell nanoparticles were successfully synthesized by hydrothermal method in two stages: first stage is the hydrothermal synthesis of ZnO nanoparticles and second stage the obtained ZnO nanoparticles are encapsulated in TiO 2 . The obtained ZnO, TiO 2 and TiO 2 /ZnO core–shell nanoparticles were investigated by means of X-ray diffraction, transmission electron microscopy, Brunauer, Emmett, Teller and resistance measurements. X-ray diffraction analysis revealed the presence of both, TiO 2 and ZnO phases in TiO 2 /ZnO core–shell nanoparticles. According to transmission electron microscopy images, ZnO nanoparticles have hexagonal shapes, TiO 2 nanoparticles have a spherical shape, and TiO 2 /ZnO core–shell nanoparticles present agglomerates and the shape of particles is not well defined. The activation energy of TiO 2 /ZnO core–shell nanoparticles was about 101 meV. - Graphical abstract: Display Omitted - Highlights: • TiO 2 /ZnO core–shell nanoparticles were synthesized by hydrothermal method. • TiO 2 /ZnO core–shell nanoparticles were investigated by means of XRD, TEM and BET. • Electrical properties of TiO 2 /ZnO core–shell nanoparticles were investigated. • The activation energy of TiO 2 /ZnO core–shell nanoparticles was about E a = 101 meV

  16. Fabrication of La-doped TiO2 Film Electrode and investigation of its electrocatalytic activity for furfural reduction

    International Nuclear Information System (INIS)

    Wang, Fengwu; Xu, Mai; Wei, Lin; Wei, Yijun; Hu, Yunhu; Fang, Wenyan; Zhu, Chuan Gao

    2015-01-01

    Lanthanum trivalent ions (La 3+ ) doped nano-TiO 2 film electrode was prepared by the sol–gel method. The prepared electrode was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). The electrocatalytic properties of the roughened TiO 2 film electrode towards the electrocatalytic reduction of furfural to furfural alcohol were evaluated by CV and preparative electrolysis experiments. The results of the optimum molar ratio of La: Ti was 0.005:1. Experimental evidence was presented that the La nano-TiO 2 electrode exhibited higher electrocatalytic activity for the reduction of furfural than the undoped nano-TiO 2 electrode in N,N-dimethylformamide medium. Bulk electrolysis studies were also carried out for the reduction of furfural and the product was confirmed by NMR

  17. Nano-MnO2@TiO2 microspheres: A novel structure and excellent performance as anode of lithium-ion batteries

    Science.gov (United States)

    Cao, Zhiguang; Chen, Xiaoqiao; Xing, Lidang; Liao, Youhao; Xu, Mengqing; Li, Xiaoping; Liu, Xiang; Li, Weishan

    2018-03-01

    A structurally hierarchical MnO2/TiO2 composite (Nano-MnO2@TiO2) is fabricated by calcining MnCO3 microspheres and coating a thin layer of TiO2 through the heat decomposition of tetrabutyl titanate, and evaluated as anode of gravimetrically and volumetrically high energy density lithium ion battery. The characterizations from FESEM, TEM, HRTEM and XRD, indicate that the resulting Nano-MnO2@TiO2 takes a spherical morphology with a core of about 2 μm in diameter, consisting of compact MnO2 nanoparticles, and a shell of 60 nm thick, consisting of smaller TiO2 nanoparticles. The charge/discharge tests demonstrate that Nano-MnO2@TiO2 exhibits excellent performance as anode of lithium ion battery, delivering a capacity of 938 mAh g-1 at 300 mA g-1 after 200 cycles, compared to the 103 mAh g-1 of the uncoated sample. The microsphere consisting of compact nanoparticles provides Nano-MnO2@TiO2 with high specific gravity. The dimensionally and structurally stable TiO2 maintains the integrity of MnO2 microspheres and facilitates lithium insertion/extraction. This unique structure yields the excellent cyclic stability and rate capability of Nano-MnO2@TiO2.

  18. Synthesis and Photocatalytic Activity of Mo-Doped TiO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ji-guo Huang

    2015-01-01

    Full Text Available The undoped and Mo-doped TiO2 nanoparticles were synthesized by sol-gel method. The as-prepared samples were characterized by X-ray diffraction (XRD, diffuse reflectance UV-visible absorption spectra (UV-vis DRS, X-ray photoelectron spectra (XPS, and transmission electron microscopy (TEM. The photocatalytic activity was evaluated by photocatalytic degradation of methylene blue under irradiation of a 500 W xenon lamp and natural solar light outdoor. Effects of calcination temperatures and Mo doping amounts on crystal phase, crystallite size, lattice distortion, and optical properties were investigated. The results showed that most of Mo6+ took the place of Ti4+ in the crystal lattice of TiO2, which inhibited the growth of crystallite size, suppressed the transformation from anatase to rutile, and led to lattice distortion of TiO2. Mo doping narrowed the band gap (from 3.05 eV of TiO2 to 2.73 eV of TiMo0.02O and efficiently increased the optical absorption in visible region. Mo doping was shown to be an efficient method for degradation of methylene blue under visible light, especially under solar light. When the calcination temperature was 550°C and the Mo doping amount was 2.0%, the Mo-doped TiO2 sample exhibited the highest photocatalytic activity.

  19. Rutile TiO2 nanorod arrays directly grown on Ti foil substrates towards lithium-ion micro-batteries

    International Nuclear Information System (INIS)

    Dong Shanmu; Wang Haibo; Gu Lin; Zhou Xinhong; Liu Zhihong; Han Pengxian; Wang Ya; Chen Xiao; Cui Guanglei; Chen Liquan

    2011-01-01

    Nanosized rutile TiO 2 is one of the most promising candidates for anode material in lithium-ion micro-batteries owing to their smaller dimension in ab-plane resulting in an enhanced performance for area capacity. However, few reports have yet emerged up to date of rutile TiO 2 nanorod arrays growing along c-axis for Li-ion battery electrode application. In this study, single-crystalline rutile TiO 2 nanorod arrays growing directly on Ti foil substrates have been fabricated using a template-free method. These nanorods can significantly improve the electrochemical performance of rutile TiO 2 in Li-ion batteries. The capacity increase is about 10 times in comparison with rutile TiO 2 compact layer.

  20. A 2 TiO 5 (A = Dy, Gd, Er, Yb) at High Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sulgiye [Department of Geological Science, Stanford University, Stanford, California 94305, United States; Rittman, Dylan R. [Department of Geological Science, Stanford University, Stanford, California 94305, United States; Tracy, Cameron L. [Department of Geological Science, Stanford University, Stanford, California 94305, United States; Chapman, Karena W. [X-ray Science Division, Advanced Photon; Zhang, Fuxiang [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States; Park, Changyong [HPCAT, Carnegie Institution of Washington, Argonne, Illinois 60439, United States; Tkachev, Sergey N. [Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 60637, United States; O’Quinn, Eric [Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States; Shamblin, Jacob [Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States; Lang, Maik [Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States; Mao, Wendy L. [Department of Geological Science, Stanford University, Stanford, California 94305, United States; Stanford; amp, Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States; Ewing, Rodney C. [Department of Geological Science, Stanford University, Stanford, California 94305, United States

    2018-02-07

    The structural evolution of lanthanide A2TiO5 (A = Dy, Gd, Yb, and Er) at high pressure is investigated using synchrotron X-ray diffraction. The effects of A-site cation size and of the initial structure are systematically examined by varying the composition of the isostructural lanthanide titanates, and the structure of dysprosium titanate polymorphs (orthorhombic, hexagonal and cubic), respectively. All samples undergo irreversible high pressure phase transformations, but with different onset pressures depending on the initial structure. While individual phase exhibits different phase transformation histories, all samples commonly experience a sluggish transformation to a defect cotunnite-like (Pnma) phase for a certain pressure range. Orthorhombic Dy2TiO5 and Gd2TiO5 form P21am at pressures below 9 GPa and Pnma above 13 GPa. Pyrochlore-type Dy2TiO5 and Er2TiO5 as well as defect-fluorite-type Yb2TiO5 form Pnma at ~ 21 GPa, followed by Im-3m. Hexagonal Dy2TiO5 forms Pnma directly, although a small amount of remnants of hexagonal Dy2TiO5 is observed even at the highest pressure (~ 55 GPa) reached, indicating a kinetic limitations in the hexagonal Dy2TiO5 phase transformations at high pressure. Decompression of these materials leads to different metastable phases. Most interestingly, a high pressure cubic X-type phase (Im-3m) is confirmed using highresolution transmission electron microscopy on recovered pyrochlore-type Er2TiO5. The kinetic constraints on this metastable phase yield a mixture of both the X-type phase and amorphous domains upon pressure release. This is the first observation of an X-type phase for an A2BO5 composition at high pressure.

  1. Carbon coated anatase TiO2 mesocrystals enabling ultrastable and robust sodium storage

    Science.gov (United States)

    Zhang, Weifeng; Lan, Tongbin; Ding, Tianli; Wu, Nae-Lih; Wei, Mingdeng

    2017-08-01

    Nanoporous anatase TiO2 mesocrystals with tunable architectures and crystalline phases were successfully fabricated in the presence of the butyl oleate and oleylamine. Especially, the introduced surfactants served as a carbon source, bring a uniform carbon layer (about 2-8 nm) for heightening the electronic conductivity. The carbon coated TiO2 mesocrystals assembled from crystalline tiny subunits have more space sites for sodium-ion storage. When the material was applied as an electrode material in rechargeable sodium-ion batteries, it exhibited a superior capacity of about 90 mA h g-1 at 20 C (1 C = 168 mA g-1) and a highly reversible capacity for 5000 cycles, which is the longest cycle life reported for sodium storage in TiO2 electrodes.

  2. High-performance thermoelectric materials based on ternary TiO2/CNT/PANI composites.

    Science.gov (United States)

    Erden, Fuat; Li, Hui; Wang, Xizu; Wang, FuKe; He, Chaobin

    2018-04-04

    In the present work, we report the fabrication of high-performance thermoelectric materials using TiO2/CNT/PANI ternary composites. We showed that a conductivity of ∼2730 S cm-1 can be achieved for the binary CNT (70%)/PANI (30%) composite, which is the highest recorded value for the reported CNT/PANI composites. We further demonstrated that the Seebeck coefficient of CNT/PANI composites could be enhanced by incorporating TiO2 nanoparticles into the binary CNT/PANI composites, which could be attributed to lower carrier density and the energy scattering of low-energy carriers at the interfaces of TiO2/a-CNT and TiO2/PANI. The resulting TiO2/a-CNT/PANI ternary system exhibits a higher Seebeck coefficient and enhanced thermoelectric power. Further optimization of the thermoelectric power was achieved by water treatment and by tuning the processing temperature. A high thermoelectric power factor of 114.5 μW mK-2 was obtained for the ternary composite of 30% TiO2/70% (a-CNT (70%)/PANI (30%)), which is the highest reported value among the reported PANI based ternary composites. The improvement of thermoelectric performance by incorporation of TiO2 suggests a promising approach to enhance power factor of organic thermoelectric materials by judicial tuning of the carrier concentration and electrical conductivity.

  3. Preparation and Characterization of TiO2/CdS Layers as Potential Photoelectrocatalytic Materials

    Directory of Open Access Journals (Sweden)

    Teofil-Danut Silipas

    2011-01-01

    Full Text Available The TiO2/CdS semiconductor composites were prepared on
    indium tin oxide (ITO substrates in di®erent mass proportions via wet-chemical techniques using bi-distilled water, acetyl-acetone, poly-propylene-glycol and Triton X-100 as additives. The composite layers were annealed in normal conditions at the temperature of 450±C, 120 min. with a rate of temperature increasing of 5±C/min. The structural and optical properties of all the TiO2/CdS ayers were characterized by X-ray di®raction, UV-VIS spectroscopy, spectrofluorimetry and FT/IR microscopy. The microstructural properties of the deposited TiO2/CdS layers can be modi¯ed by varying the mass proportions of TiO2:CdS. The good crystallinity level and the high optical adsorption of
    the TiO2/CdS layers make them attractive for photoelectrochemical cell applications.

  4. Low-temperature processed ultrathin TiO2 for efficient planar heterojunction perovskite solar cells

    International Nuclear Information System (INIS)

    Huang, Xiaokun; Hu, Ziyang; Xu, Jie; Wang, Peng; Zhang, Jing; Zhu, Yuejin

    2017-01-01

    Highlights: • An ultrathin and discrete TiO 2 (u-TiO 2 ) was fabricated at low temperature. • High-performance perovskite solar cells based u-TiO 2 was realized. • u-TiO 2 between perovskite and FTO functions as a bridge for electron transport. • u-TiO 2 accelerates electron transfer and alleviates charge recombination. - Abstract: A compact TiO 2 (c-TiO 2 ) layer fabricated by spin coating or spray pyrolysis following a high-temperature sintering is a routine in high-performance planar heterojunction perovskite solar cells. Here, we demonstrate an effective low-temperature approach to fabricate an ultrathin and discrete TiO 2 (u-TiO 2 ) for enhancing photovoltaic performance of perovskite solar cells. Via hydrolysis of low-concentration TiCl 4 solution at 70 °C, u-TiO 2 was grown on a fluorine doped tin oxide (FTO) substrate, forming the electron selective contact with the photoactive CH 3 NH 3 PbI 3 film. The perovskite solar cell using u-TiO 2 achieves an efficiency of 13.42%, which is compared to 13.56% of the device using c-TiO 2 prepared by high-temperature sintering. Cyclic voltammetry, steady-state photoluminescence spectroscopy and electrical impedance spectroscopy were conducted to study interface engineering and charge carrier dynamics. Our results suggest that u-TiO 2 functions as a bridge for electron transport between perovskite and FTO, which accelerates electron transfer and alleviates charge recombination.

  5. TiO2 nanowire-templated hierarchical nanowire network as water-repelling coating

    Science.gov (United States)

    Hang, Tian; Chen, Hui-Jiuan; Xiao, Shuai; Yang, Chengduan; Chen, Meiwan; Tao, Jun; Shieh, Han-ping; Yang, Bo-ru; Liu, Chuan; Xie, Xi

    2017-12-01

    Extraordinary water-repelling properties of superhydrophobic surfaces make them novel candidates for a great variety of potential applications. A general approach to achieve superhydrophobicity requires low-energy coating on the surface and roughness on nano- and micrometre scale. However, typical construction of superhydrophobic surfaces with micro-nano structure through top-down fabrication is restricted by sophisticated fabrication techniques and limited choices of substrate materials. Micro-nanoscale topographies templated by conventional microparticles through surface coating may produce large variations in roughness and uncontrollable defects, resulting in poorly controlled surface morphology and wettability. In this work, micro-nanoscale hierarchical nanowire network was fabricated to construct self-cleaning coating using one-dimensional TiO2 nanowires as microscale templates. Hierarchical structure with homogeneous morphology was achieved by branching ZnO nanowires on the TiO2 nanowire backbones through hydrothermal reaction. The hierarchical nanowire network displayed homogeneous micro/nano-topography, in contrast to hierarchical structure templated by traditional microparticles. This hierarchical nanowire network film exhibited high repellency to both water and cell culture medium after functionalization with fluorinated organic molecules. The hierarchical structure templated by TiO2 nanowire coating significantly increased the surface superhydrophobicity compared to vertical ZnO nanowires with nanotopography alone. Our results demonstrated a promising strategy of using nanowires as microscale templates for the rational design of hierarchical coatings with desired superhydrophobicity that can also be applied to various substrate materials.

  6. One-step preparation and photocatalytic performance of vanadium doped TiO2 coatings

    International Nuclear Information System (INIS)

    Vasilić, R.; Stojadinović, S.; Radić, N.; Stefanov, P.; Dohčević-Mitrović, Z.; Grbić, B.

    2015-01-01

    In this paper, we have investigated one-step preparation of vanadium doped TiO 2 coatings formed by plasma electrolytic oxidation (PEO) of titanium in electrolyte containing 10 g/L Na 3 PO 4 ·12H 2 O + 0.5 g/L NH 4 VO 3 . The morphology, phase structure, and elemental composition of the formed coatings were characterized by atomic force microscopy (AFM), x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) techniques. Ultraviolet–visible diffuse reflectance spectroscopy (UV–Vis DRS) was employed to evaluate the band gap energy of obtained coatings. Vanadium doped TiO 2 coatings are partly crystallized and mainly composed of anatase phase TiO 2 , with up to about 2 wt% of vanadium present in the surface layer of the oxide. The valence band photoelectron spectra and UV–Vis DRS showed that vanadium doped TiO 2 coatings exhibit notable red shift with respect to the pure TiO 2 coatings. The photocatalytic activity was evaluated by monitoring the degradation of methyl orange under simulated sunlight conditions. Photocatalytic activity of vanadium doped TiO 2 coatings increases with PEO time. Prolonged PEO times result in higher roughness of obtained coatings, thus increasing surface area available for methyl orange degradation. Vanadium doped TiO 2 coatings obtained after 180 s of PEO time exhibit the best photocatalytic activity and about 67% of methyl orange is degraded after 12 h of irradiation under simulated sunlight. - Highlights: • One-step preparation of V-doped TiO 2 coatings in 10 g/L Na 3 PO 4 ·12H 2 O + 0.5 g/L NH 4 VO 3 . • Properties of obtained coatings strongly depend on microdischarge characteristics. • Band gap of V-doped TiO 2 coatings is shifted towards red side of the spectrum. • V-doped TiO 2 coatings have better photocatalytic activity than pure TiO 2 . • After 12 h of simulated sunlight irradiation, 67% of methyl orange was decomposed

  7. Catalysis of a Nanometre Solid Super Acid of SO42-/TiO2 on the Thermal Decomposition of Ammonium Nitrate

    OpenAIRE

    Song, Xiaolan; Wang, Yi; Song, Dan; An, Chongwei; Wang, Jingyu

    2016-01-01

    Raw TiO2 nanoparticles were prepared using the hydroly‐ sis of TiCl4. The nanoparticles were subjected to a surface treatment in diluted sulphuric acid and, subsequently, calcined at different temperatures. Then, a type of super solid acid (SO42-/TiO2) with particle sizes of 20∼30 nm was fabricated. The catalysis of SO42-/TiO2 on the thermolysis of ammonium nitrate (AN) was probed using thermal analysis. For SO42-/TiO2 (AN doped with 3%SO42-/TiO2), the onset temperature decreased by 19°C and ...

  8. Undoped TiO2 and nitrogen-doped TiO2 thin films deposited by atomic layer deposition on planar and architectured surfaces for photovoltaic applications

    International Nuclear Information System (INIS)

    Tian, Liang; Soum-Glaude, Adurey; Volpi, Fabien; Salvo, Luc; Berthomé, Grégory; Coindeau, Stéphane; Mantoux, Arnaud; Boichot, Raphaël; Lay, Sabine; Brizé, Virginie; Blanquet, Elisabeth; Giusti, Gaël; Bellet, Daniel

    2015-01-01

    Undoped and nitrogen doped TiO 2 thin films were deposited by atomic layer deposition on planar substrates. Deposition on 3D-architecture substrates made of metallic foams was also investigated to propose architectured photovoltaic stack fabrication. All the films were deposited at 265 °C and nitrogen incorporation was achieved by using titanium isopropoxide, NH 3 and/or N 2 O as precursors. The maximum nitrogen incorporation level obtained in this study was 2.9 at. %, resulting in films exhibiting a resistivity of 115 Ω cm (+/−10 Ω cm) combined with an average total transmittance of 60% in the 400–1000 nm wavelength range. Eventually, TiO 2 thin films were deposited on the 3D metallic foam template

  9. LEED-IV study of the rutile TiO2(110)-1x2 surface with a Ti-interstitial added-row reconstruction

    International Nuclear Information System (INIS)

    Blanco-Rey, M.; Mendez, J.; Lopez, M. F.; Roman, E.; Martin-Gago, J. A.; Andres, P. L. de; Abad, J.; Rogero, C.

    2007-01-01

    Upon sputtering and annealing in UHV at ∼1000 K, the rutile TiO 2 (110) surface undergoes a 1x1→1x2 phase transition. The resulting 1x2 surface is Ti rich, formed by strands of double Ti rows as seen on scanning tunneling microscopic images, but its detailed structure and composition have been subject to debate in the literature for years. Recently, Park et al. [Phys. Rev. Lett. 96, 226105 (2006)] have proposed a model where Ti atoms are located on interstitial sites with Ti 2 O stoichiometry. This model, when it is analyzed using LEED-IV data [Phys. Rev. Lett. 96, 0055502 (2006)], does not yield an agreement between theory and experiment as good as the previous best fit for Onishi and Iwasawa's model for the long-range 1x2 reconstruction. Therefore, the Ti 2 O 3 added row is the preferred one from the point of view low-energy electron diffraction

  10. Construction of anatase/rutile TiO2 hollow boxes for highly efficient photocatalytic performance

    Science.gov (United States)

    Jia, Changchao; Zhang, Xiao; Yang, Ping

    2018-02-01

    Hollow TiO2 hierarchical boxes with suitable anatase and rutile ratios were designed for photocatalysis. The unique hierarchical structure was fabricated via a Topotactic synthetic method. CaTiO3 cubes were acted as the sacrificial templates to create TiO2 hollow hierarchical boxes with well-defined phase distribution. The phase composition of the hollow TiO2 hierarchical boxes is similar to that of TiO2 P25 nanoparticles (∼80% anatase, and 20% rutile). Compared with nanaoparticles, TiO2 hollow boxes with hierarchical structures exhibited an excellent performance in the photocatalytic degradation of methylene blue organic pollutant. Quantificationally, the degradation rate of the hollow boxes is higher than that of TiO2 P25 nanoparticles by a factor of 2.7. This is ascribed that hollow structure provide an opportunity for using incident light more efficiently. The surface hierarchical and well-organized porous structures are beneficial to supply more active sites and enough transport channels for reactant molecules. The boxes consist of single crystal anatase and rutile combined well with each other, which gives photon-generated carriers transfer efficiently.

  11. Effect of TiO_2 Loading on Pt-Ru Catalysts During Alcohol Electrooxidation

    International Nuclear Information System (INIS)

    Hasa, Bjorn; Kalamaras, Evangelos; Papaioannou, Evangelos I.; Vakros, John; Sygellou, Labrini; Katsaounis, Alexandros

    2015-01-01

    Highlights: • TiO_2 can be used to modify Pt-Ru based electrodes for alcohol oxidation. • TiO_2 modified electrodes with lower amount of metals had higher active surface area than pure Pt-Ru electrodes. • TiO_2 modified electrodes showed comparable performance with pure Pt-Ru electrode both in a single cell and in a PEM fuel cell under alcohol fuelling. - Abstract: In this study, Pt-Ru based electrodes modified by TiO_2 were prepared by means of thermal decomposition of chloride and isopropoxide precursors on Ti substrates, characterised by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), electrochemical techniques and CO stripping and used as anodes for alcohol oxidation. The minimization of the metal loading without electrocatalytic activity losses was also explored. TiO_2 was chosen due to its chemical stability, low cost and excellent properties as substrate for metal dispersion. It was found that TiO_2 loading up to 50% results in a 3-fold increase of the Electrochemically Active Surface (EAS). This conclusion has been confirmed by CO stripping experiments. All samples have been evaluated during the electrochemical oxidation of methanol, ethanol and glycerol. In all cases, the Pt_2_5-Ru_2_5-(TiO_2)_5_0 electrode had better electrocatalytic activity than the pure Pt_5_0-Ru_5_0 anode. The best modified electrode, (Pt_2_5-Ru_2_5-(TiO_2)_5_0), was also evaluated as anode in a PEM fuel cell under methanol fuelling conditions. The observed higher performance of the TiO_2 modified electrodes was attributed to the enhanced Pt-Ru dispersion as well as the formation of smaller Pt and Ru particles.

  12. The preparation and characterization of nanostructured TiO2-ZrO2 mixed oxide electrode for efficient dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Kitiyanan, Athapol; Ngamsinlapasathian, Supachai; Pavasupree, Soropong; Yoshikawa, Susumu

    2005-01-01

    The preparation of nanostructured mixed metal oxide based on a sol-gel method with surfactant-assisted mechanism, and its application for dye-sensitized solar cell (DSSC) are reported. The mixed zirconia (ZrO 2 ) and titania (TiO 2 ) mesoporous powder possessed larger surface area than the corresponding titania. For the UV action spectra of unsensitized photochemical cell, the mixed zirconia/titania electrode can absorb UV light below 380nm, corresponding to band gap (E g ) around 3.27eV, which is higher than that of pure component of titania (E g =3.2eV). Both of these improved properties, i.e., BET surface area and band gap, contributed to the improvement on a short-circuit photocurrent up to 11%, an open-circuit voltage up to 4%, and a solar energy conversion efficiency up to 17%, for the DSSC fabricated by mesoporous zirconia/titania mixed system when compared to the cell that was fabricated only by nanostructured TiO 2 . The cell fabricated by 5μm thick mixed TiO 2 -ZrO 2 electrode gave the short-circuit photocurrent about 13mA/cm 2 , open-circuit voltage about 600 mV and the conversion efficiency 5.4%

  13. Probing Photocatalytic Characteristics of Sb-Doped TiO2 under Visible Light Irradiation

    Directory of Open Access Journals (Sweden)

    Lingjing Luo

    2014-01-01

    Full Text Available Sb-doped TiO2 nanoparticle with varied dopant concentrations was synthesized using titanium tetrachloride (TiCl4 and antimony chloride (SbCl3 as the precursors. The properties of Sb-doped TiO2 nanoparticles were characterized by X-ray diffraction (XRD, scanning electron microscope (SEM, fluorescence spectrophotometer, and Uv-vis spectrophotometer. The absorption edge of TiO2 nanoparticles could be extended to visible region after doping with antimony, in contrast to the UV absorption of pure TiO2. The results showed that the photocatalytic activity of Sb-doped TiO2 nanoparticles was much more active than pure TiO2. The 0.1% Sb-doped TiO2 nanoparticles demonstrated the best photocatalytic activity which was better than that of the Degussa P25 under visible light irradiation using terephthalic acid as fluorescent probe. The effects of Sb dopant on the photocatalytic activity and the involved mechanism were extensively investigated in this work as well.

  14. Asymmetric photoelectric property of transparent TiO2 nanotube films loaded with Au nanoparticles

    International Nuclear Information System (INIS)

    Wang, Hui; Liang, Wei; Liu, Yiming; Zhang, Wanggang; Zhou, Diaoyu; Wen, Jing

    2016-01-01

    Highlights: • Highly transparent films of TiO 2 nanotube arrays were directly fabricated on FTO glasses. • Semitransparent TNT-Au composite films were obtained and exhibited excellent photoelectrocatalytic ability. • Back-side of TNT-Au composite films was firstly irradiated and tested to compare with front-side of films. - Abstract: Semitransparent composite films of Au loaded TiO 2 nanotubes (TNT-Au) were prepared by sputtering Au nanoparticles on highly transparent TiO 2 nanotubes films, which were fabricated directly on FTO glasses by anodizing the Ti film sputtered on the FTO glasses. Compared with pure TNT films, the prepared TNT-Au films possessed excellent absorption ability and high photocurrent response and improved photocatalytic activity under visible-light irradiation. It could be concluded that Au nanoparticles played important roles in improving the photoelectrochemical performance of TNT-Au films. Moreover, in this work, both sides of TNT-Au films were researched and compared owing to theirs semitransparency. It was firstly found that the photoelectric activity of TNT-Au composite films with back-side illumination was obviously superior to front-side illumination.

  15. Synthesis and Characterization of Stable and Binder-Free Electrodes of TiO2 Nanofibers for Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Phontip Tammawat

    2013-01-01

    Full Text Available An electrospinning technique was used to fabricate TiO2 nanofibers for use as binder-free electrodes for lithium-ion batteries. The as-electrospun nanofibers were calcined at 400–1,000°C and characterized using X-ray diffraction (XRD, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. SEM and TEM images showed that the fibers have an average diameter of ~100 nm and are composed of nanocrystallites and grains, which grow in size as the calcination temperature increases. The electrochemical properties of the nanofibers were evaluated using galvanostatic cycling and electrochemical impedance spectroscopy. The TiO2 nanofibers calcined at 400°C showed higher electronic conductivity, higher discharge capacity, and better cycling performance than the nanofibers calcined at 600, 800, and 1,000°C. The TiO2 nanofibers calcined at 400°C delivered an initial reversible capacity of 325 mAh·g−1 approaching their theoretical value at 0.1 C rate and over 175 mAh·g−1 at 0.3 C rate with limited capacity fading and Coulombic efficiency between 96 and 100%.

  16. Influence of anodization parameters on the morphology of TiO 2 nanotube arrays

    Science.gov (United States)

    Omidvar, Hamid; Goodarzi, Saba; Seif, Ahmad; Azadmehr, Amir R.

    2011-07-01

    TiO 2 nanotube arrays can be fabricated by electrochemical anodization in organic and inorganic electrolytes. Morphology of these nanotube arrays changes when anodization parameters such as applied voltage, type of electrolyte, time and temperature are varied. Nanotube arrays fabricated by anodization of commercial titanium in electrolytes containing NH 4F solution and either sulfuric or phosphoric acid were studied at room temperature; time of anodization was kept constant. Applied voltage, fluoride ion concentration, and acid concentrations were varied and their influences on TiO 2 nanotubes were investigated. The current density of anodizing was recorded by computer controlled digital multimeter. The surface morphology (top-view) of nanotube arrays were observed by SEM. The nanotube arrays in this study have inner diameters in range of 40-80 nm.

  17. Photocatalytic methane decomposition over vertically aligned transparent TiO2 nanotube arrays

    DEFF Research Database (Denmark)

    In, Su-il; Nielsen, Morten Godtfred; Vesborg, Peter Christian Kjærgaard

    2011-01-01

    Vertically aligned transparent TiO2 nanotube arrays grown by the one-step anodic oxidation technique (on non-conductive supports such as Pyrex) and their photocatalytic performance for methane decomposition in a single-pass micro-fabricated reactor under UV light....

  18. Preparation of Fluorine-Doped TiO2 Photocatalysts with Controlled Crystalline Structure

    Directory of Open Access Journals (Sweden)

    N. Todorova

    2008-01-01

    Full Text Available Nanocrystalline F-doped TiO2 powders were prepared by sol-gel route. The thermal behavior of the powders was recorded by DTA/TG technique. The crystalline phase of the fluorinated TiO2 powders was determined by X-ray diffraction technique. It was demonstrated that F-doping using CF3COOH favors the formation of rutile along with anatase phase even at low temperature. Moreover, the rutile's phase content increases with the increase of the quantity of the fluorine precursor in the starting solution. The surface area of the powders and the pore size distribution were studied by N2 adsorption-desorption using BET and BJH methods. X-ray photoelectron spectroscopy (XPS revealed that the fluorine is presented in the TiO2 powders mainly as metal fluoride in quantities ∼16 at %. The F-doped TiO2 showed a red-shift absorption in UV-vis region which was attributed to the increased content of rutile phase in the powders. The powders exhibited enhanced photocatalytic activity in decomposition of acetone.

  19. An easy-to-fabricate low-temperature TiO2 electron collection layer for high efficiency planar heterojunction perovskite solar cells

    Directory of Open Access Journals (Sweden)

    B. Conings

    2014-08-01

    Full Text Available Organometal trihalide perovskite solar cells arguably represent the most auspicious new photovoltaic technology so far, as they possess an astonishing combination of properties. The impressive and brisk advances achieved so far bring forth highly efficient and solution processable solar cells, holding great promise to grow into a mature technology that is ready to be embedded on a large scale. However, the vast majority of state-of-the-art perovskite solar cells contains a dense TiO2 electron collection layer that requires a high temperature treatment (>450 °C, which obstructs the road towards roll-to-roll processing on flexible foils that can withstand no more than ∼150 °C. Furthermore, this high temperature treatment leads to an overall increased energy payback time and cumulative energy demand for this emerging photovoltaic technology. Here we present the implementation of an alternative TiO2 layer formed from an easily prepared nanoparticle dispersion, with annealing needs well within reach of roll-to-roll processing, making this technology also appealing from the energy payback aspect. Chemical and morphological analysis allows to understand and optimize the processing conditions of the TiO2 layer, finally resulting in a maximum obtained efficiency of 13.6% for a planar heterojunction solar cell within an ITO/TiO2/CH3NH3PbI3-xClxpoly(3-hexylthiophene/Ag architecture.

  20. Synthesis of LaVO4/TiO2 heterojunction nanotubes by sol-gel coupled with hydrothermal method for photocatalytic air purification.

    Science.gov (United States)

    Zou, Xuejun; Li, Xinyong; Zhao, Qidong; Liu, Shaomin

    2012-10-01

    With the aim of improving the effective utilization of visible light, the LaVO(4)/TiO(2) heterojunction nanotubes were fabricated by sol-gel coupled with hydrothermal method. The photocatalytic ability was demonstrated through catalytic removal of gaseous toluene species. The nanotube samples were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), surface photovoltage (SPV), Raman spectra and N(2) adsorption-desorption measurements. The characterization results showed that the samples with high specific surface areas were of typical nanotubular morphology, which would lead to the high separation and transfer efficiency of photo induced electron-hole pairs. The as-prepared nanotubes exhibited high photocatalytic activity in decomposing toluene species under visible light irradiation with fine photochemical stability. The enhanced photocatalytic performance of LaVO(4)/TiO(2) nanotubes might be attributed to the matching band potentials, the interconnected heterojunction of LaVO(4) versus TiO(2), and the large specific surface areas of nanotubes. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Investigation on the Photoelectrocatalytic Activity of Well-Aligned TiO2 Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Xiaomeng Wu

    2012-01-01

    Full Text Available Well-aligned TiO2 nanotube arrays were fabricated by anodizing Ti foil in viscous F− containing organic electrolytes, and the crystal structure and morphology of the TiO2 nanotube array were characterized and analyzed by XRD, SEM, and TEM, respectively. The photocatalytic activity of the TiO2 nanotube arrays was evaluated in the photocatalytic (PC and photoelectrocatalytic (PEC degradation of methylene blue (MB dye in different supporting solutions. The excellent performance of ca. 97% for color removal was reached after 90 min in the PEC process compared to that of PC process which indicates that a certain external potential bias favors the promotion of the electrode reaction rate on TiO2 nanotube array when it is under illumination. In addition, it is found that PEC process conducted in supporting solutions with low pH and containing Cl− is also beneficial to accelerate the degradation rate of MB.

  2. TiO2 Films Modified with Au Nanoclusters as Self-Cleaning Surfaces under Visible Light

    Directory of Open Access Journals (Sweden)

    Ting-Wei Liao

    2018-01-01

    Full Text Available In this study, we applied cluster beam deposition (CBD as a new approach for fabricating efficient plasmon-based photocatalytic materials. Au nanoclusters (AuNCs produced in the gas phase were deposited on TiO2 P25-coated silicon wafers with coverage ranging from 2 to 8 atomic monolayer (ML equivalents. Scanning Electron Microscopy (SEM images of the AuNCs modified TiO2 P25 films show that the surface is uniformly covered by the AuNCs that remain isolated at low coverage (2 ML, 4 ML and aggregate at higher coverage (8 ML. A clear relationship between AuNCs coverage and photocatalytic activity towards stearic acid photo-oxidation was measured, both under ultraviolet and green light illumination. TiO2 P25 covered with 4 ML AuNCs showed the best stearic acid photo-oxidation performance under green light illumination (Formal Quantum Efficiency 1.6 × 10−6 over a period of 93 h. These results demonstrate the large potential of gas-phase AuNCs beam deposition technology for the fabrication of visible light active plasmonic photocatalysts.

  3. Facile synthesis of Ag nanoparticles supported on TiO2 inverse opal with enhanced visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Zhao Yongxun; Yang Beifang; Xu Jiao; Fu Zhengping; Wu Min; Li Feng

    2012-01-01

    TiO 2 inverse opal films loaded with silver nanoparticles (ATIO) were synthesized on glass substrates. TiO 2 inverse opal (TIO) films were prepared via a sol–gel process using self-assembly of SiO 2 colloidal crystal template and a facile wet chemical route featuring an AgNO 3 precursor solution to fabricate silver nanoparticles on the TIO films. The inverse opal structure and Ag deposition physically and chemically modify titania, respectively. The catalysts were characterized by Raman spectroscopy, field-emission scanning electron microscopy, high-resolution transmission electron microscopy (HRTEM), UV–vis absorption spectra, X-ray photoelectron spectroscopy and photoluminescence spectroscopy. The HRTEM results show that Ag nanoparticles measuring 5–10 nm were evenly distributed on TIO. Both the UV- and visible-light photocatalytic activities of the samples were evaluated by analyzing the degradation of methylene blue (MB) in aqueous solution. The results reveal that the apparent reaction rate constant (k app ) of MB degradation of the sample ATIO under UV-light irradiation is approximately 1.5 times that of the conventional Ag-loaded TiO 2 film (ATF) without an ordered porous structure at an AgNO 3 concentration of 5 mM in the precursor solution. At an AgNO 3 concentration of 10 mM, the sample exhibits a k app value approximately 4.2 times that of ATF under visible-light irradiation. This enhanced visible-light photocatalytic performance can be attributed to the synergistic effect of optimized Ag nanoparticle deposition and an ordered macroporous TIO structure. Repeated cycling tests revealed that the samples showed stable photocatalytic activity, even after six repeated cycles. - Highlights: ►TiO 2 inverse opal films loaded with silver nanoparticles were synthesized. ►Physical and chemical modifications of TiO 2 were achieved simultaneously. ►The catalysts exhibited enhanced visible-light photocatalytic activity. ►The mechanism for enhanced

  4. tavg1_2d_rad_Nx: MERRA 2D IAU Diagnostic, Radiation Surface and TOA, Time Average 1-hourly 0.667 x 0.5 degree V5.2.0 (MAT1NXRAD) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAT1NXRAD or tavg1_2d_rad_Nx data product is the MERRA Data Assimilation System 2-Dimensional surface and TOA radiation flux that is time averaged single-level...

  5. Synthesis and Mechanical Properties Investigation of Nano TiO2/Glass/Epoxy Hybrid Nanocomposite

    Directory of Open Access Journals (Sweden)

    Hamid Reza Salehi

    2015-10-01

    Full Text Available Mechanical properties of epoxy and glass/epoxy filled with 0.25, 0.5 and 1 vol% of TiO2 nanoparticles have been studied using tensile and three-point bending tests. For the TiO2/epoxy nanocomposites, the results showed that the strength and stiffness were improved, though the strain at ultimate strength point and breaking strain decreased. Moreover, the hybrid nanocomposites composed of 4 layers of woven E-glass fabric and TiO2/epoxy matrix were fabricated and cut onaxis and 45° off-axis by water jet. The results of tensile and three-point bending tests indicated a remarkable improvement in the strength and stiffness that could not be related to the mechanical improvement of the matrix. The samples containing 1 vol% nano TiO2 were improved relative to samples without the nanoparticles. The tensile strength of the on-axis and off-axis samples containing 1 vol% TiO2 increased by about 25.9% and 17.9%, in the order given, compared to that of the glass/epoxy specimens. In three-point bending test, the strength of the on-axis and off-axis specimens was improved 26% and 23.2%, respectively. In addition, the tensile stiffness of the onaxis and off-axis samples containing 1 vol% TiO2 increased, respectively, by about 14.4% and 17.5% compared to that of the glass/epoxy specimens. Also for the same on-axis and off-axis samples the three-point bending stiffness increased about 19.8% and 14.6%, respectively. The whole investigation on the microstructure of the hybrid nanocomposites illustrated that stronger interfaces between the fiber and TiO2/epoxy matrix were formed and improvement was noticed on mechanical properties of ternary composite compared to those of the fiber/epoxy composites. The analysis of damage zones of hybrid nanocomposites showed that the surface area of the damaged zone declined considerably due to the brittle behavior of TiO2-filled specimens but the area below the stress-strain curve, showing energy absorption during the test

  6. Hybridization and bond-orbital components in site-specific X-ray photoelectron spectra of rutile TiO2

    International Nuclear Information System (INIS)

    Woicik, J.C.; Nelson, E.J.; Kronik, Leeor; Jain, Manish; Chelikowsky, James R.; Heskett, D.; Berman, L.E.; Herman, G.S.

    2002-01-01

    We have determined the Ti and O components of the rutile TiO 2 valence band using the method of site-specific x-ray photoelectron spectroscopy. Comparisons with calculations based on pseudopotentials within the local density approximation reveal the hybridization of the Ti 3d, 4s, and 4p states, and the O 2s and 2p states on each site. These chemical effects are observed due to the large differences between the angular-momentum dependent matrix elements of the photoelectron process

  7. N-doped TiO2 photo-catalyst for the degradation of 1,2-dichloroethane under fluorescent light

    International Nuclear Information System (INIS)

    Lin, Yi-Hsing; Chiu, Tang-Chun; Hsueh, Hsin-Ta; Chu, Hsin

    2011-01-01

    The photo-catalytic degradation of 1,2-dichloroethane (1, 2-DCE) using nitrogen-doped TiO 2 photo-catalysts under fluorescent light irradiation was investigated. Highly pure TiO 2 and nitrogen-doped TiO 2 were prepared by a sol-gel method and characterized by thermo-gravimetric/differential-thermal analysis (TG/DTA), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy. The results indicate that the photo-catalysts were mainly nano-size with an anatase-phase structure. The degradation reaction of 1,2-DCE was operated under visible-light irradiation, and the photo-catalytic oxidation was conducted in a batch photo-reactor with various nitrogen doping ratios (N/Ti = 0-25 mol%). The relative humidity (RH) was controlled at 0-20% and the oxygen concentration was controlled at 0-21%. The photo-degradation with nitrogen-doped TiO 2 showed superior photo-catalytic activity compared to that for pure TiO 2 . TiO 2 doped with 15 mol% nitrogen exhibited the best photo-catalytic efficiency under the tested conditions. The products from the 1,2-DCE photo-catalytic oxidation were CO 2 and water; the by-products included dichloromethane, methyl chloride, ethyl chloride, carbon monoxide, and hydrogen chloride. The reaction pathway of 1,2-DCE indicates that oxygen molecules are the major factor that causes the degradation of 1,2-DCE in the gas phase.

  8. Photodegradation of Reactive Golden Yellow R Dye Catalyzed by Effective Titania (TiO2)

    International Nuclear Information System (INIS)

    Bedurus, E.A.; Marinah Mohd Ariffin; Mohd Hasmizam Razali

    2015-01-01

    In the present research, Microwave Assisted Synthesis (MAS) method was applied to synthesize titania (TiO 2 ) at 150 degree Celsius in a range of 2-6 hours heating time. Each prepared TiO 2 were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and nitrogen gas (N 2 ) sorption analysis (Brunaeur-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) calculation) techniques. The TiO 2 prepared by MAS 150 degree Celsius (4 hours) has emerged with the highest photo catalytic activity. Within 4 hours, the TiO 2 managed to catalyze the degradation of Reactive Golden Yellow R dye up to 98.51 %. This is because of the TiO 2 possessed high crystallinity of anatase phase, small crystallite size and high pore volume compared to other prepared TiO 2 . (author)

  9. Electrical properties of TiO2/SEO nanocomposites: From macro to nano

    International Nuclear Information System (INIS)

    Gutierrez, Junkal; Tercjak, Agnieszka; Martin, Loli; Mondragon, Inaki

    2011-01-01

    Graphical abstract: Display Omitted Highlights: → Three electro-devices were fabricated based on TiO 2 -SEO hybrid nanocomposites. → TUNA-current maps determine local conductivity variations at the nanoscale level. → Semiconductor analyzer allows to calculate conductivity values of investigated samples. → ITO/1:PEDOT-PSS/1:TiO 2 -SEO system show the highest conductivity value, 0.16 S/cm. - Abstract: Tunneling atomic force microscopy (TUNA) was successfully used to confirm that electro-devices based on TiO 2 -SEO nanocomposites can find possible application in solar power conversion field. Investigated electro-devices show different current flow depending on the layer combination. The highest capacity was shown by the electro-devices with a PEDOT-PSS layer on the top, being the average current values ∼200 pA at 10 V applied voltage. The conductivity value measured by Keithley indicated that the system ITO/1:PEDOT-PSS/1:TiO 2 -SEO electro-device shows the highest conductivity level, 0.16 S/cm. Thus, these systems have high potential to find application as solar cell devices.

  10. Hierarchical top-porous/bottom-tubular TiO 2 nanostructures decorated with Pd nanoparticles for efficient photoelectrocatalytic decomposition of synergistic pollutants

    KAUST Repository

    Zhang, Zhonghai

    2012-02-22

    In this paper, top-porous and bottom-tubular TiO 2 nanotubes (TiO 2 NTs) loaded with palladium nanoparticles (Pd/TiO 2 NTs) were fabricated as an electrode for an enhanced photoelectrocatalytic (PEC) activity toward organic dye decomposition. TiO 2 NTs with a unique hierarchical top-porous and bottom-tubular structure were prepared by a facile two-step anodization method and Pd nanoparticles were decorated onto the TiO 2 NTs via a photoreduction process. The PEC activity of Pd/TiO 2 NTs was investigated by decomposition of methylene blue (MB) and Rhodamine B (RhB). Because of formation Schottky junctions between TiO 2 and Pd, which significantly promoted the electron transfer and reduced the recombination of photogenerated electrons and holes, the Pd/TiO 2 NT electrode showed significantly higher PEC activities than TiO 2 NTs. Interestingly, an obvious synergy between two dyes was observed and corresponding mechanism based on facilitated transfer of electrons and holes as a result of a suitable energy level alignment was suggested. The findings of this work provide a fundamental insight not only into the fabrication but also utility of Schottky junctions for enhanced environmental remediation processes. © 2012 American Chemical Society.

  11. Direct Z-scheme TiO2/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity

    Science.gov (United States)

    Meng, Aiyun; Zhu, Bicheng; Zhong, Bo; Zhang, Liuyang; Cheng, Bei

    2017-11-01

    Photocatalytic H2 evolution, which utilizes solar energy via water splitting, is a promising route to deal with concerns about energy and environment. Herein, a direct Z-scheme TiO2/CdS binary hierarchical photocatalyst was fabricated via a successive ionic layer adsorption and reaction (SILAR) technique, and photocatalytic H2 production was measured afterwards. The as-prepared TiO2/CdS hybrid photocatalyst exhibited noticeably promoted photocatalytic H2-production activity of 51.4 μmol h-1. The enhancement of photocatalytic activity was ascribed to the hierarchical structure, as well as the efficient charge separation and migration from TiO2 nanosheets to CdS nanoparticles (NPs) at their tight contact interfaces. Moreover, the direct Z-scheme photocatalytic reaction mechanism was demonstrated to elucidate the improved photocatalytic performance of TiO2/CdS composite photocatalyst. The photoluminescence (PL) analysis of hydroxyl radicals were conducted to provide clues for the direct Z-scheme mechanism. This work provides a facile route for the construction of redox mediator-free Z-scheme photocatalytic system for photocatalytic water splitting.

  12. Data on the effect of improved TiO2/FTO interface and Ni(OH2 cocatalyst on the photoelectrochemical performances and stability of CdS cased ZnIn2S4/TiO2 heterojunction

    Directory of Open Access Journals (Sweden)

    Mahadeo A. Mahadik

    2018-04-01

    Full Text Available This data article presents the experimental evidences of the effect of TiO2-fluorine doped tin oxide interface annealing and Ni(OH2 cocatalysts on the photoelectrochemical, structural, morphological and optical properties of Ni(OH2/CdS/ZnIn2S4/TiO2 heterojunction. The Raman spectroscopy exhibits the sharp features of the rutile phase of TiO2 and in agreement with the X-ray diffraction data. The band gap energy of the 500 °C sample was found to be 3.12 eV, further it was increased to 3.20, 3.22 eV for samples annealed at 600 and 700 °C respectively. The decrease in the band gap energy at 500 °C related to the oxygen vacancies and was analysed by photoluminescence spectroscopy analysis. The synthesis, characterization methods and other experimental details of TiO2 based heterostructure are also provided. The presence of CdS and ZnIn2S4 coating on surface of TiO2 electrodes providing a high surface area, extended visible absorption and helps to improve the change separation. This data article contains data related to the research article entitled “Highly efficient and stable 3D Ni(OH2/CdS/ZnIn2S4/TiO2 heterojunction under solar light: Effect of an improved TiO2/FTO interface and cocatalyst” (Mahadik et al., 2017 [1]. Keywords: Annealed TiO2 nanorods, CdS/ZnIn2S4/TiO2 heterostructure, Ni(OH2 cocatalyst, TiO2-FTO interface

  13. CdS-sensitized TiO2 nanocorals: hydrothermal synthesis, characterization, application.

    Science.gov (United States)

    Mali, S S; Desai, S K; Dalavi, D S; Betty, C A; Bhosale, P N; Patil, P S

    2011-10-01

    Cadmium sulfide (CdS) nanoparticle-sensitized titanium oxide nanocorals (TNC) were synthesized using a two-step deposition process. The TiO(2) nanocorals were grown on the conducting glass substrates (FTO) using A hydrothermal process and CdS nanoparticles were loaded on TNC using successive ionic layer adsorption and reaction (SILAR) method. The TiO(2), CdS and TiO(2)-CdS samples were characterized by optical absorption, X-ray diffraction (XRD), FT-Raman, FT-IR, scanning electron microscopy (SEM) and contact angle. Further, their photoelectrochemical (PEC) performance was tested in NaOH, Na(2)S-NaOH-S and Na(2)S electrolytes, respectively. When CdS nanoparticles are coated on TNCs, the optical absorption is found to be enhanced and band edge is red-shifted towards visible region. The TiO(2)-CdS sample exhibits improved photoelectrochemical (PEC) performance with maximum short circuit current of (J(sc)) 1.04 mA cm(-2). After applying these TiO(2)-CdS electrodes in photovoltaic cells, the photocurrent was found to be enhanced by 2.7 and 32.5 times, as compared with those of bare CdS and TiO(2) nanocorals films electrodes respectively. Also, the power conversion efficiency of TiO(2)-CdS electrodes is 0.72%, which is enhanced by about 16 and 29 times for TiO(2), CdS samples. This journal is © The Royal Society of Chemistry and Owner Societies 2011

  14. TiO2 micro-flowers composed of nanotubes and their application to dye-sensitized solar cells

    Science.gov (United States)

    Kim, Woong-Rae; Park, Hun; Choi, Won-Youl

    2014-02-01

    TiO2 micro-flowers were made to bloom on Ti foil by the anodic oxidation of Ti-protruding dots with a cylindrical shape. Arrays of the Ti-protruding dots were prepared by photolithography, which consisted of coating the photoresists, attaching a patterned mask, illuminating with UV light, etching the Ti surface by reactive ion etching (RIE), and stripping the photoresist on the Ti foil. The procedure for the blooming of the TiO2 micro-flowers was analyzed by field emission scanning electron microscopy (FESEM) as the anodizing time was increased. Photoelectrodes of dye-sensitized solar cells (DSCs) were fabricated using TiO2 micro-flowers. Bare TiO2 nanotube arrays were used for reference samples. The short-circuit current ( J sc) and the power conversion efficiency of the DSCs based on the TiO2 micro-flowers were 4.340 mA/cm2 and 1.517%, respectively. These values of DSCs based on TiO2 micro-flowers were higher than those of bare samples. The TiO2 micro-flowers had a larger surface area for dye adsorption compared to bare TiO2 nanotube arrays, resulting in improved J sc characteristics. The structure of the TiO2 micro-flowers allowed it to adsorb dyes very effectively, also demonstrating the potential to achieve higher power conversion efficiency levels for DSCs compared to a bare TiO2 nanotube array structure and the conventional TiO2 nanoparticle structure.

  15. Solid-State Dewetting of Gold Aggregates/Islands on TiO2 Nanorod Structures Grown by Oblique Angle Deposition.

    Science.gov (United States)

    Liu, Shizhao; Plawsky, Joel L

    2017-12-12

    A composite film made of a stable gold nanoparticle (NP) array with well-controlled separation and size atop a TiO 2 nanorod film was fabricated via the oblique angle deposition (OAD) technique. The fabrication of the NP array is based on controlled, Rayleigh-instability-induced, solid-state dewetting of as-deposited gold aggregates on the TiO 2 nanorods. It was found that the initial spacing between as-deposited gold aggregates along the vapor flux direction should be greater than the TiO 2 interrod spacing created by 80° OAD to control dewetting and produce NP arrays. A numerical investigation of the process was conducted using a phase-field modeling approach. Simulation results showed that coalescence between neighboring gold aggregates is likely to have caused the uncontrolled dewetting in the 80° deposition, and this could be circumvented if the initial spacing between gold aggregates is larger than a critical value s min . We also found that TiO 2 nanorod tips affect dewetting dynamics differently than planar TiO 2 . The topology of the tips can induce contact line pinning and an increase in the contact angle along the vapor flux direction to the supported gold aggregates. These two effects are beneficial for the fabrication of monodisperse NPs based on Rayleigh-instability-governed self-assembly of materials, as they help to circumvent the undesired coalescence and facilitate the instability growth on the supported material. The findings uncover the application potential of OAD as a new method to fabricate structured films as template substrates to mediate dewetting. The reported composite films would have uses in optical coatings and photocatalytic systems, taking advantage of their ability to combine plasmonic nanostructures within a nanostructured dielectric film.

  16. TiO2 coated Si nanowire electrodes for electrochemical double layer capacitors in room temperature ionic liquid

    International Nuclear Information System (INIS)

    Konstantinou, F; Shougee, A; Albrecht, T; Fobelets, K

    2017-01-01

    Three TiO 2 deposition processes are used to coat the surface of Si nanowire array electrodes for electrochemical double layer capacitors in room temperature ionic liquid [Bmim][NTF 2 ]. The fabrication processes are based on wet chemistry only and temperature treatments are kept below 450 °C. Successful TiO 2 coatings are found to be those that are carried out at low pressure and with low TiO 2 coverage to avoid nanowires breakage. The best TiO 2 coated Si nanowire array electrode in [Bmim][NTF 2 ] showed energy densities of 0.9 Wh·kg −1 and power densities of 2.2 kW·kg −1 with a nanowire length of ∼10 µ m. (paper)

  17. Design and fabrication of a TiO2/nano-silicon composite visible light photocatalyst

    International Nuclear Information System (INIS)

    Lin, C.Y.; Fang, Y.K.; Kuo, C.H.; Chen, S.F.; Lin, C.-S.; Chou, T.H.; Lee, Y.-H.; Lin, J.-C.; Hwang, S.-B.

    2006-01-01

    Nano-silicon (nc-Si) was utilized as the charges generator to promote the photocatalytic and super-hydrophilic reactivity of TiO 2 film under visible light irradiation. The photocatalytic ability of TiO 2 /nc-Si composite photocatalyst was evaluated by a set of experiments to photodecompose 100 ppm methylene blue (MB) in aqueous solution. And the super-hydrophilic property was characterized by measuring the water droplet contacts angle, under visible light irradiation in atmospheric air and at room temperature. Under 100 mW/cm 2 visible light irradiation, the droplet contact angles were reduced to 0 deg. within 4 h with nc-Si charge generator. Additionally, the rate constant of MB photo-degradation was promoted 6.6 times

  18. Research Update: Doping ZnO and TiO2 for solar cells

    Directory of Open Access Journals (Sweden)

    Robert L. Z. Hoye

    2013-12-01

    Full Text Available ZnO and TiO2 are two of the most commonly used n-type metal oxide semiconductors in new generation solar cells due to their abundance, low-cost, and stability. ZnO and TiO2 can be used as active layers, photoanodes, buffer layers, transparent conducting oxides, hole-blocking layers, and intermediate layers. Doping is essential to tailor the materials properties for each application. The dopants used and their impact in solar cells are reviewed. In addition, the advantages, disadvantages, and commercial potential of the various fabrication methods of these oxides are presented.

  19. Giant strain with low cycling degradation in Ta-doped [Bi_1_/_2(Na_0_._8K_0_._2)_1_/_2]TiO_3 lead-free ceramics

    International Nuclear Information System (INIS)

    Liu, Xiaoming; Tan, Xiaoli

    2016-01-01

    Non-textured polycrystalline [Bi_1_/_2(Na_0_._8K_0_._2)_1_/_2](Ti_1_−_xTa_x)O_3 ceramics are fabricated and their microstructures and electrical properties are characterized. Transmission electron microscopy reveals the coexistence of the rhombohedral R3c and tetragonal P4bm phases in the form of nanometer-sized domains in [Bi_1_/_2(Na_0_._8K_0_._2)_1_/_2]TiO_3 with low Ta concentration. When the composition is x = 0.015, the electrostrain is found to be highly asymmetric under bipolar fields of ±50 kV/cm. A very large value of 0.62% is observed in this ceramic, corresponding to a large-signal piezoelectric coefficient d_3_3* of 1240 pm/V (1120 pm/V under unipolar loading). These values are greater than most previously reported lead-free polycrystalline ceramics and can even be compared with some lead-free piezoelectric single crystals. Additionally, this ceramic displays low cycling degradation; its electrostrain remains above 0.55% even after undergoing 10 000 cycles of ±50 kV/cm bipolar fields at 2 Hz. Therefore, Ta-doped [Bi_1_/_2(Na_0_._8K_0_._2)_1_/_2]TiO_3 ceramics show great potential for large displacement devices.

  20. Magneto-optical spectroscopy of diluted magnetic oxides TiO2-δ: Co

    International Nuclear Information System (INIS)

    Gan'shina, E.A.; Granovsky, A.B.; Orlov, A.F.; Perov, N.S.; Vashuk, M.V.

    2009-01-01

    We report an experimental study on transversal Kerr effect (TKE) in magnetic oxide semiconductors TiO 2-δ :Co. The TiO 2-δ : Co thin films were deposited on LaAlO 3 (0 0 1) substrates by magnetron sputtering in the argon-oxygen atmosphere at oxygen partial pressure of 2x10 -6 -2x10 -4 Torr. It was obtained that TKE spectra in ferromagnetic samples are extremely sensitive to the Co-volume fraction, the crystalline structure, and technology parameters. The observed well-pronounced peaks in TKE spectra for anatase Co-doped TiO 2-δ films at low Co ( 2-δ matrix that indicates on intrinsic ferromagnetism in these samples. With increase of Co-volume fraction up to 5-8% the fine structure of TKE spectra disappears and magneto-optical response in reflection mode becomes larger than that for thick Co films

  1. Preparation of an orthodontic bracket coated with an nitrogen-doped TiO(2-x)N(y) thin film and examination of its antimicrobial performance.

    Science.gov (United States)

    Cao, Baocheng; Wang, Yuhua; Li, Na; Liu, Bin; Zhang, Yingjie

    2013-01-01

    A bracket coated with a nitrogen-doped (N-doped) TiO(2-x)N(y) thin film was prepared using the RF magnetron sputtering method. The physicochemical properties of the thin film were measured using X-ray diffraction and energy-dispersive X-ray spectrometry, while the antimicrobial activity of the bracket against common oral pathogenic microbes was assessed on the basis of colony counts. The rate of antimicrobial activity of the bracket coated with nano-TiO(2-x)N(y) thin film against Streptococcus mutans, Lactobacillus acidophilus, Actinomyces viscous, and Candida albicans was 95.19%, 91.00%, 69.44%, and 98.86%, respectively. Scanning electron microscopy showed that fewer microbes adhered to the surface of this newly designed bracket than to the surface of the normal edgewise bracket. The brackets coated with the N-doped TiO(2-x)N(y) thin film showed high antimicrobial and bacterial adhesive properties against normal oral pathogenic bacterial through visible light, which is effective in prevention of enamel demineralization and gingivitis in orthodontic patients.

  2. Porous TiO2-Based Gas Sensors for Cyber Chemical Systems to Provide Security and Medical Diagnosis

    Science.gov (United States)

    2017-01-01

    Gas sensors play an important role in our life, providing control and security of technical processes, environment, transportation and healthcare. Consequently, the development of high performance gas sensor devices is the subject of intense research. TiO2, with its excellent physical and chemical properties, is a very attractive material for the fabrication of chemical sensors. Meanwhile, the emerging technologies are focused on the fabrication of more flexible and smart systems for precise monitoring and diagnosis in real-time. The proposed cyber chemical systems in this paper are based on the integration of cyber elements with the chemical sensor devices. These systems may have a crucial effect on the environmental and industrial safety, control of carriage of dangerous goods and medicine. This review highlights the recent developments on fabrication of porous TiO2-based chemical gas sensors for their application in cyber chemical system showing the convenience and feasibility of such a model to provide the security and to perform the diagnostics. The most of reports have demonstrated that the fabrication of doped, mixed and composite structures based on porous TiO2 may drastically improve its sensing performance. In addition, each component has its unique effect on the sensing properties of material. PMID:29257076

  3. Immobilization of TiO2 nanoparticles on Fe-filled carbon nanocapsules for photocatalytic applications

    International Nuclear Information System (INIS)

    Huang, H.-C.; Huang, G.-L.; Chen, H.-L.; Lee, Y.-D.

    2006-01-01

    Using a simple sol-gel method, a novel magnetic photocatalyst was produced by immobilization of TiO 2 nano-crystal on Fe-filled carbon nanocapsules (Fe-CNC). High resolution TEM images indicated that the immobilization of TiO 2 on Fe-CNC was driven primarily by heterogeneous coagulation, whereas surface nucleation and growth was the dominant mechanism for immobilizing TiO 2 on acid-functionalized hollow CNC. The TiO 2 immobilized on Fe-CNC exhibited the anatase phase as revealed by the X-ray diffraction (XRD) patterns. In comparison with free TiO 2 and TiO 2 -coated CNC, TiO 2 -coated Fe-CNC displayed good performance in the removal of NO gas under UV exposure. Due to the advantages of easy recycling and good photocatalytic efficiency, the novel magnetic photocatalyst developed here has potential use in photocatalytic applications for pollution prevention

  4. Fabrication of CdS/H-TiO2 Nanotube Arrays and Their Application for the Degradation of Methyl Orange in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Xiaosong Zhou

    2014-01-01

    Full Text Available The fabrication and characterization of heterogeneous structures based on CdS and self-doped TiO2 nanotube arrays (H-TNTs are reported for the first time. CdS was conformally deposited onto TiO2 nanotube arrays (TNTs using a simple method of electrochemical atomic layer deposition. The as-prepared samples were characterized by scanning electron microscopy (SEM, X-ray photoelectron spectroscopy (XPS, UV-Vis diffusion reflection spectroscopy (UV-Vis DRS, and photoluminescence spectroscopy (PL techniques. Compared with pure TNTs, CdS/H-TNTs exhibit enhanced photoelectrochemical properties and photocatalytic activity under visible light. Self-doping introduces oxygen vacancies and Ti3+ species, and the electrochemical deposition technique promotes the deposition of CdS onto TiO2 nanotube walls, forming a heterojunction compact structure and resulting in decrease in photocatalytic activity under visible light.

  5. A Brown Mesoporous TiO2-x /MCF Composite with an Extremely High Quantum Yield of Solar Energy Photocatalysis for H2 Evolution.

    Science.gov (United States)

    Xing, Mingyang; Zhang, Jinlong; Qiu, Bocheng; Tian, Baozhu; Anpo, Masakazu; Che, Michel

    2015-04-24

    A brown mesoporous TiO2-x /MCF composite with a high fluorine dopant concentration (8.01 at%) is synthesized by a vacuum activation method. It exhibits an excellent solar absorption and a record-breaking quantum yield (Φ = 46%) and a high photon-hydrogen energy conversion efficiency (η = 34%,) for solar photocatalytic H2 production, which are all higher than that of the black hydrogen-doped TiO2 (Φ = 35%, η = 24%). The MCFs serve to improve the adsorption of F atoms onto the TiO2 /MCF composite surface, which after the formation of oxygen vacancies by vacuum activation, facilitate the abundant substitution of these vacancies with F atoms. The decrease of recombination sites induced by high-concentration F doping and the synergistic effect between lattice Ti(3+)-F and surface Ti(3+)-F are responsible for the enhanced lifetime of electrons, the observed excellent absorption of solar light, and the photocatalytic production of H2 for these catalysts. The as-prepared F-doped composite is an ideal solar light-driven photocatalyst with great potential for applications ranging from the remediation of environmental pollution to the harnessing of solar energy for H2 production. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Low-temperature sputtering of crystalline TiO2 films

    International Nuclear Information System (INIS)

    Musil, J.; Herman, D.; Sicha, J.

    2006-01-01

    This article reports on the investigation of reactive magnetron sputtering of transparent, crystalline titanium dioxide films. The aim of this investigation is to determine a minimum substrate surface temperature T surf necessary to form crystalline TiO 2 films with anatase structure. Films were prepared by dc pulsed reactive magnetron sputtering using a dual magnetron operating in bipolar mode and equipped with Ti(99.5) and ceramic Ti 5 O 9 targets. The films were deposited on unheated glass substrates and their structure was characterized by x-ray diffraction and surface morphology by atomic force microscopy. Special attention is devoted to the measurement of T surf using thermostrips pasted to the glass substrate. It was found that (1) T surf is considerably higher (approximately by 100 deg. C or more) than the substrate temperature T s measured by the thermocouple incorporated into the substrate holder and (2) T surf strongly depends on the substrate-to-target distance d s-t , the magnetron target power loading, and the thermal conductivity of the target and its cooling. The main result of this study is the finding that (1) the crystallization of sputtered TiO 2 films depends not only on T surf but also on the total pressure p T of sputtering gas (Ar+O 2 ), partial pressure of oxygen p O 2 , the film deposition rate a D , and the film thickness h (2) crystalline TiO 2 films with well developed anatase structure can be formed at T surf =160 deg. C and low values of a D ≅5 nm/min (3) the crystalline structure of TiO 2 film gradually changes from (i) anatase through (ii) anatase+rutile mixture, and (iii) pure rutile to x-ray amorphous structure at T surf =160 deg. C and p T =0.75 Pa when p O 2 decreases and a D increases above 5 nm/min, and (4) crystallinity of the TiO 2 films decreases with decreasing h and T surf . Interrelationships between the structure of TiO 2 film, its roughness, T surf , and a D are discussed in detail. Trends of next development are

  7. Enhancement removal of tartrazine dye using HCl-doped polyaniline and TiO2-decorated PANI particles

    Science.gov (United States)

    Elsayed, M. A.; Gobara, Mohamed

    2016-08-01

    HCl-doped polyaniline (HCl-PANI) and titanium dioxide decorated with polyaniline (TiO2-decorated PANI) with different TiO2:PANI ratios were chemically prepared and utilized for the removal of tartrazine (TZ) dye from a synthetic aqueous solution. The mechanism of preparation of the sample suggested that aniline was adsorbed on the TiO2 surface before the polymerization process took place. Samples were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive x-ray spectroscopy and x-ray diffraction. The results showed that HCl-PANI and TiO2-decorated PANI have an amorphous structure. The thermal stability of the prepared samples was characterized using thermo-gravimetric (TG) analysis. HCl-PANI is stable up to 200 °C and the relative weight per cent of PANI in the TiO2-decorated PANI was 20, 25, 40 and 45%. The removal activity of TiO2-decorated PANI via TZ azo dye was investigated under UV light irradiations and compared with HCl-PANI and TiO2 particles. The results indicated the superiority of the TiO2-decorated PANI over pure HCl-PANI and TiO2. However, the excessive PANI percentage tends to form a relatively thick layer, and even aggregates on the surface of TiO2. This hinders the migration of excited electrons from the outer PANI layer to the inner TiO2 particles, which consequently leads to a decrease in the removal efficiency. A possible mechanism for the removal oxidative degradation is also mentioned.

  8. Photocatalytic properties of nanocrystalline TiO2 thin film with Ag additions

    International Nuclear Information System (INIS)

    Chang, C.-C.; Lin, C.-K.; Chan, C.-C.; Hsu, C.-S.; Chen, C.-Y.

    2006-01-01

    In the present study, nanocrystalline TiO 2 /Ag composite thin films were prepared by a sol-gel spin coating technique. While, by introducing polystyrene (PS) microspheres, porous TiO 2 /Ag films were obtained after calcining at a temperature of 500 o C. The as-prepared TiO 2 and TiO 2 /Ag thin films were characterized by X-ray diffractometry, and scanning electron microscopy to reveal the structural and morphological differences. In addition, the photocatalytic properties of these films were investigated by degrading methylene blue under UV irradiation. After 500 o C calcination, the microstructure of PS-TiO 2 film without Ag addition exhibited a sponge-like microstructure while significant sintering effect was noticed with Ag additions and the films exhibited a porous microstructure. Meanwhile, coalescence of nanocrystalline anatase-phase TiO 2 can be observed with respect to the sharpening of XRD diffraction peaks. The photodegradation of porous TiO 2 doped with 1 mol% Ag exhibited the best photocatalytic efficiency where 72% methylene blue can be decomposed after UV exposure for 12 h

  9. Glutaraldehyde assisted synthesis of collagen derivative modified Fe3+/TiO2 nanocomposite and their enhanced photocatalytic activity

    International Nuclear Information System (INIS)

    Li, Chongyi; Xue, Feng; Ding, Enyong; He, Xiaoling

    2015-01-01

    Graphical abstract: - Highlights: • Collagen-g-PDMC was successfully designed by grafting DMC monomers onto the collagen backbone. • Fe 3+ /TiO 2 nanospheres highly capable of responding to visible light were successfully prepared. • Collagen-g-PDMC was firmly immobilized onto the Fe 3+ /TiO 2 surface by virtue of glutaraldehyde. • CFT-3 performed the best in the photocatalytic degradation of MO solution under solar irradiation. - Abstract: A unique organic–inorganic hybrid nanocomposite was designed and synthesized by chemically anchoring the cationic collagen-based derivatives onto the surface of Fe 3+ /TiO 2 nanospheres for the significant enhancement in photocatalytic activity under the visible light irradiation. The NMR analysis suggested the successful fabrication of cationic collagen-g-PDMC as grafted materials. In addition, the chemical structures, morphologies and properties of these samples were systematically characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectrum, ultra violet–visible spectroscopy (UV–vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL). And obtained results clearly demonstrated that Fe 3+ ions diffusing into TiO 2 lattice could be responsible for slightly reducing the average diameter of nanospheres to about 125 nm, promoting phase transition from anatase to rutile to some extent and extending the light harvesting range into visible region markedly. Meanwhile, the achievement that collagen-g-PDMC molecules had been covalently immobilized onto the surface of Fe 3+ /TiO 2 nanoparticles was also well supported by the information acquired. Furthermore, the photocatalytic activities of all the as-prepared products were carefully evaluated by adopting photocatalytic decoloration of methyl orange (MO) solution under the solar direct irradiation, and the sample CFT-3 performed the best in

  10. Efficient and stable CH3NH3PbI3-x(SCN)x planar perovskite solar cells fabricated in ambient air with low-temperature process

    Science.gov (United States)

    Zhang, Zongbao; Zhou, Yang; Cai, Yangyang; Liu, Hui; Qin, Qiqi; Lu, Xubing; Gao, Xingsen; Shui, Lingling; Wu, Sujuan; Liu, Jun-Ming

    2018-02-01

    Planar perovskite solar cells (PSCs) based on CH3NH3PbI3-x(SCN)x (SCN: thiocyanate) active layer and low-temperature processed TiO2 films are fabricated by a sequential two-step method in ambient air. Here, alkali thiocyanates (NaSCN, KSCN) are added into Pb(SCN)2 precursor to improve the microstructure of CH3NH3PbI3-x(SCN)x perovskite layers and performance of the as-prepared PSCs. At the optimum concentrations of alkali thiocyanates as additives, the as-prepared NaSCN-modified and KSCN-modified PSCs demonstrate the efficiencies of 16.59% and 15.63% respectively, being much higher than 12.73% of the reference PSCs without additives. This improvement is primarily ascribed to the enhanced electron transport, reduced recombination rates and much improved microstructures with large grain size and low defect density at grain boundaries. Importantly, it is revealed that the modified PSCs at the optimized concentrations of alkali thiocyanates additives exhibit remarkably improved stability than the reference PSCs against humid circumstance, and a continuous exposure to humid air without encapsulation over 45 days only records about 5% degradation of the efficiency. These findings provide a facile approach to fabricate efficient and stable PSCs by low processing temperature in ambient air, both of which are highly preferred for future practical applications of PSCs.

  11. Sol-gel synthesis of TiO2-SiO2 photocatalyst for β-naphthol photodegradation

    International Nuclear Information System (INIS)

    Qourzal, S.; Barka, N.; Tamimi, M.; Assabbane, A.; Nounah, A.; Ihlal, A.; Ait-Ichou, Y.

    2009-01-01

    Silica gel supported titanium dioxide particles (TiO 2 -SiO 2 ) prepared by sol-gel method was as photocatalyst in the degradation of β-naphthol in water under UV-illumination. The prepared sample has been characterized by powder X-ray diffraction (XRD), infrared spectroscopy (IR) and scanning electron microscopy (SEM). The supported catalyst had large surface area and good sedimentation ability. The photodegradation rate of β-naphthol under UV-irradiation depended strongly on adsorption capacity of the catalyst, and the photoactivity of the supported catalyst was much higher than that of the pure titanium dioxides. The experiments were measured by high performance liquid chromatography (HPLC). The photodegradation rate of β-naphthol using 60% TiO 2 -SiO 2 particles was faster than that using TiO 2 'Degussa P-25', TiO 2 'PC-50' and TiO 2 'Aldrich' as photocatalyst by 2.7, 4 and 7.8 times, respectively. The kinetics of photocatalytic β-naphthol degradation was found to follow a pseudo-first-order rate law. The effect of the TiO 2 loading on the photoactivity of TiO 2 -SiO 2 particles was also discussed. With good photocatalytic activity under UV-irradiation and the ability to be readily separated from the reaction system, this novel kind of catalyst exhibited the potential effective in the treatment of organic pollutants in aqueous systems.

  12. AC/TiO2/Rubber Composite Sheet Catalysts; Fabrication, Characterization and Photocatalytic Activities

    Directory of Open Access Journals (Sweden)

    Sriwong Chaval

    2015-01-01

    Full Text Available The AC/TiO2/Rubber (ACTR composite sheets weresuccessfully fabricated by a simply mixing of fixed TiO2 suspension and natural rubber latex (60% HA contents withthe varyingamounts of activated carbon (AC suspension, followed by stirring, pouring into apetri dish mold, drying at room temperature (RT, after that taking out from a mold, reversing and drying again at RT. Then, the as-fabricated ACTR composite sheets were characterized by X-ray diffractometer (XRD, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR, energy dispersive X-ray spectroscopy (EDS and scanning electron microscopy (SEMtechniques. The photocatalytic efficiencies of all ACTR composite sheet samples were evaluated by photo degrading of methylene blue (MB dye solution under UV light irradiation. The results showed that the photocatalytic activity of ACTR sheet with10.0wt%AC loading has the highest efficiency for the photo degradation of MB dye than the other sheets. This is due to the fact that it is relatively with the synergistic effect of well-combined titanium dioxide catalyst and activated carbon adsorbent.

  13. Preparation of thermally stable anatase TiO2 photocatalyst from TiOF2 precursor and its photocatalytic activity

    International Nuclear Information System (INIS)

    Lv Kangle; Yu Jiaguo; Cui Longzhe; Chen Shulin; Li Mei

    2011-01-01

    Graphical abstract: The prepared anatase TiO 2 from TiOF 2 shows very high thermal stability (up to 1000 o C) and the 700 o C-calcined sample showed the highest photocatalytic activity. Display Omitted Research highlights: → TiOF 2 was prepared by a simple microwave assisted hydrothermal rout. → Anatase TiO 2 prepared by calcination of TiOF 2 shows high thermal stability. → F - play an important role in the improvement thermal stability of anatase TiO 2 . → The 700 o C-calcined sample shows the highest photocatalytic activity. - Abstract: Preparation of anatase TiO 2 with high themal stability is of great importance for its environmental application. In this work, TiOF 2 was first synthesized by a simple microwave-assisted hydrothermal route using tetrabutyl titanate and hydrofluoric acid as precursors at 200 o C for 20 min. Then the resulted precipitates were calcined at different temperatures (300-1000 o C) for 2 h. The as-prepared samples were characterized by X-ray diffraction, Raman spectrum, scanning electron microscopy, N 2 adsorption-desorption isotherms and X-ray photoelectron spectroscopy. The photocatalytic activity was evaluated using Brilliant Red X3B, an anionic azo dye, as the target organic molecule under UV light irradiation. The results showed that the prepared TiOF 2 exhibited weak or no photocatalytic activity. The phase transformation of TiOF 2 to anatase TiO 2 occurred at about 300 o C. The prepared anatase TiO 2 from TiOF 2 showed very high thermal stability and the anatase-to-rutile phase transformation temperature was up to 1000 o C. Fluoride ions played an important role in the improvement of thermal stability of anatase TiO 2 by strongly adsorbing on the crystal planes of anatase to stabilize the anatase structure. The 700 o C-calcined sample showed the highest photocatalytic activity due to its relative good crystallization and high specific surface areas.

  14. tavg1_2d_int_Nx: MERRA 2D IAU Diagnostic, Vertical Integrals and Budget Terms, Time Average 1-hourly 0.667 x 0.5 degree V5.2.0 (MAT1NXINT) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAT1NXINT or tavg1_2d_int_Nx data product is the MERRA Data Assimilation System 2-Dimensional vertical integral that is time averaged single-level at the native...

  15. tavg1_2d_lnd_Nx: MERRA 2D IAU Diagnostic, Land Only States and Diagnostics, Time Average 1-hourly 0.667 x 0.5 degree V5.2.0 (MAT1NXLND) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAT1NXLND or tavg1_2d_lnd_Nx data product is the MERRA Data Assimilation System 2-Dimensional land surface diagnostic that is time averaged single-level at the...

  16. The effects of solvent on photocatalytic properties of Bi2WO6/TiO2 heterojunction under visible light irradiation

    Science.gov (United States)

    Guo, Qiyao; Huang, Yunfang; Xu, Hui; Luo, Dan; Huang, Feiyue; Gu, Lin; Wei, Yuelin; Zhao, Huang; Fan, Leqing; Wu, Jihuai

    2018-04-01

    Bi2WO6/TiO2 heterojunction photocatalysts with two different microstructures were controllably fabricated via a facile two-step synthetic route. XRD, XPS, SEM, TEM, BET-surface, DRS, PL spectra, photoelectrochemical measurement (Mott-Schottky), and zeta-potential analyzer were employed to clarify structural and morphological characteristics of the obtained products. The results showed that Bi2WO6 nanoparticles/nanosheets grew on the primary TiO2 nanorods. The TiO2 nanorods used as a synthetic template inhibit the growth of Bi2WO6 crystals along the c-axis, resulting in Bi2WO6/TiO2 heterostructure with one-dimensional (1D) morphology. The photocatalytic properties of Bi2WO6/TiO2 heterojunction photocatalysts were strongly dependent on their shapes and structures. Compared with bare Bi2WO6 and TiO2, Bi2WO6/TiO2 composite have stronger adsorption ability and better visible light photocatalytic activities towards organic dyes. The Bi2WO6/TiO2 composite prepared in EG solvent with optimal Bi:Ti ratio of 2:12 (S-TB2) showed the highest photocatalytic activity, which could totally decompose Rhodamine B within 10 min upon irradiation with visible light (λ > 422 nm), and retained the high photocatalytic performance after five recycles, confirming its stability and practical usability. The results of PL indicated that Bi2WO6 and TiO2 could combine well to form a heterojunction structure which facilitated electron-hole separation, and lead to the increasing photocatalytic activity.

  17. Nitrogen and europium doped TiO2 anodized films with applications in photocatalysis

    International Nuclear Information System (INIS)

    Chi, Choong-Soo; Choi, Jinwook; Jeong, Yongsoo; Lee, Oh Yeon; Oh, Han-Jun

    2011-01-01

    Micro-arc oxidation method is a useful process for mesoporous titanium dioxide films. In order to improve the photocatalytic activity of the TiO 2 film, N-Eu co-doped titania catalyst was synthesized by micro-arc oxidation in the H 2 SO 4 /Eu(NO 3 ) 3 mixture solution. The specific surface area and the roughness of the anodic titania film fabricated in the H 2 SO 4 /Eu(NO 3 ) 3 electrolyte, were increased compared to that of the anodic TiO 2 film prepared in H 2 SO 4 solution. The absorbance response of N-Eu titania film shows a higher adsorption onset toward visible light region, and the incorporated N and Eu ions during anodization as a dopant in the anodic TiO 2 film significantly enhanced the photocatalytic activity for dye degradation. After dye decomposition test for 3 h, dye removal rates for the anodic TiO 2 film were 60.7% and 90.1% for the N-Eu doped titania film. The improvement of the photocatalytic activity was ascribed to the synergistic effects of the surface enlargement and the new electronic state of the TiO 2 band gap by N and Eu co-doping.

  18. Photocatalytic Decolorization Study of Methyl Orange by TiO2–Chitosan Nanocomposites

    Directory of Open Access Journals (Sweden)

    Imelda Fajriati

    2014-10-01

    Full Text Available The photocatalytic decolorization of methyl orange (MO by TiO2-chitosan nanocomposite has been studied. This study was started by synthesizing TiO2-chitosan nanocomposites using sol-gel method with various concentrations of Titanium(IV isopropoxide (TTIP as the TiO2 precursor. The structure, surface morphology, thermal and optical property of TiO2-chitosan nanocomposite were characterized by X-ray diffraction (XRD, fourier transform infra red (FTIR spectroscopy, scanning electron microscopy (SEM, thermogravimetric analysis (TGA, and diffuse reflectance ultra violet (DRUV spectroscopy. The photocatalytic activity of TiO2-chitosan nanocomposite was evaluated by photocatalytic decolorization of methyl orange as a model pollutant. The results indicate that the particle size of TiO2 increases with increasing ofthe concentration of TTIP, in which TiO2 with smallest particle size exhibit the highest photocatalytic activity. The highest photocatalytic decolorization was obtained at 5 h of contact time, initial concentration of MO at 20 ppm and at solution pH of 4. Using these conditions, over 90% of MO was able to be decolorized using 0.02 g of TiO2-chitosan nanocomposite under UV light irradiation. The TiO2-chitosan nanocomposite could be reused, which meant that the TiO2-chitosan nanocomposites can be developed as an effective and economical photocatalyst to decolorize or treat dye in wastewater.

  19. Synthesis and characterization of Fe3+ doped TiO2 nanoparticles and films and their performance for photocurrent response under UV illumination

    International Nuclear Information System (INIS)

    Elghniji, Kais; Atyaoui, Atef; Livraghi, Stefano; Bousselmi, Latifa; Giamello, Elio; Ksibi, Mohamed

    2012-01-01

    Graphical abstract: Schematic diagram illustrating the charge transfer from excited TiO 2 to the different states of Fe 3+ ions; C B and V B refer to the energy levels of the conduction and valence bands of TiO 2 , respectively. Highlights: ► In this study we examine the Iron as catalyst precursor to synthesize the Fe 3+ doped TiO 2 nanoparticles. ► The Fe 3+ doped TiO 2 catalysts show the presence of a mixed phase of anatase. ► The iron is completely absent in the XRD pattern of the doped iron TiO 2 powder. ► The analysis of EPR result further confirms that Fe 3+ ion are successfully doped in the TiO 2 lattice by substituting Ti 4+ . ► Fe 3+ doping can efficiently separate the photo-generated electrons and holes. - Abstract: Undoped TiO 2 and Fe 3+ doped (0.1, 0.3, 0.6 and 1 wt.%) TiO 2 nanoparticles have been synthesized by the acid-catalyzed sol–gel method. Iron cations are introduced in the initial solution, before gelification, what promotes their lattice localization. The Fe 3+ doped TiO 2 films have been fabricated using a dip-coating technique. The effect of iron content on the crystalline structure, phase transformation and grain growth were determined by X-ray diffraction (XRD), Raman spectroscopy, UV–visible diffused reflectance spectroscopy (DRS) and Electron paramagnetic resonance (EPR) spectroscopy. It has demonstrated that all catalysts are composed of mixed-phase crystals of anatase and brookite with anatase as dominant phase. The crystallinity of the brookite and anatase phases decreased with increasing the iron content. The analysis of EPR result further confirms that Fe 3+ ion are successfully doped in the TiO 2 lattice by substituting Ti 4+ . It was demonstrated that Fe 3+ ion in the TiO 2 films plays a role as the intermediate for the efficient separation of photogenerated hole–electron pairs and increases the photocurrent response of the film under UV light irradiation. The maximum photocurrent is obtained on the Fe 3+ doped TiO

  20. Gold and TiO2 Nanostructure Surfaces for Assembling of Electrochemical Biosensors

    International Nuclear Information System (INIS)

    Curulli, A.; Zane, D.

    2008-01-01

    Devices based on nano materials are emerging as a powerful and general class of ultrasensitive sensors for the direct detection of biological and chemical species. In this work, we report the preparation and the full characterization of nano materials such as gold nano wires and TiO 2 nano structured films to be used for assembling of electrochemical biosensors. Gold nano wires were prepared by electroless deposition within the pores of polycarbonate particle track-etched membranes (PMS). Glucose oxidase was deposited onto the nano wires using self-assembling monolayer as an anchor layer for the enzyme molecules. Finally, cyclic voltammetry was performed for different enzymes to test the applicability of gold nano wires as biosensors. Considering another interesting nano material, the realization of functionalized TiO 2 thin films on Si substrates for the immobilization of enzymes is reported. Glucose oxidase and horseradish peroxidase immobilized onto TiO 2 -based nano structured surfaces exhibited a pair of well-defined and quasi reversible voltammetric peaks. The electron exchange between the enzyme and the electrodes was greatly enhanced in the TiO 2 nano structured environment. The electrocatalytic activity of HRP and GOD embedded in TiO 2 electrodes toward H 2 O 2 and glucose, respectively, may have a potential perspective in the fabrication of third-generation biosensors based on direct electrochemistry of enzymes.

  1. Ion beam modification of TiO2 films prepared by Cat-CVD for solar cell

    International Nuclear Information System (INIS)

    Narita, Tomoki; Iida, Tamio; Ogawa, Shunsuke; Mizuno, Kouichi; So, Jisung; Kondo, Akihiro; Yoshida, Norimitsu; Itoh, Takashi; Nonomura, Shuichi; Tanaka, Yasuhito

    2008-01-01

    The effects of nitrogen ion bombardment on TiO 2 films prepared by the Cat-CVD method have been studied to improve the optical and electrical properties of the material for use in Si thin film solar cells. The refractive index n and the dark conductivity of the TiO 2 film increased with irradiation time. The refractive index n of the TiO 2 film was changed from 2.1 to 2.4 and the electrical conductivity was improved from 3.4 x 10 -2 to 1.2 x 10 -1 S/cm by the irradiation. These results are due to the formation of Ti-N bonds and oxygen vacancies in the film

  2. Dielectric response and room temperature ferromagnetism in Cr doped anatase TiO2 nanoparticles

    Science.gov (United States)

    Naseem, Swaleha; Khan, Wasi; Khan, Shakeel; Husain, Shahid; Ahmad, Abid

    2018-02-01

    In the present work, nanocrystalline samples of Ti1-xCrxO2 (x = 0, 0.02, 0.04, 0.06 and 0.08) were synthesized in anatase phase through simple and cost effective acid modified sol gel method. The influence of Cr doping on thermal, microstructural, electrical and magnetic properties was investigated in TiO2 host matrix. The surface morphology has revealed less agglomeration and considerable reduction in particle size in case of Cr doped TiO2 as compared to undoped TiO2 nanoparticles (NPs). Energy dispersive x-ray spectroscopy (EDS), Raman and X-ray photoelectron spectroscopy (XPS) established high purity, appropriate stoichiometry and oxidation states of the compositions. The dielectric properties of the nanoparticles were altered by the doping concentration, applied frequency as well as temperature variation. The variation in dielectric constant (ε‧), dielectric loss (δ) and ac conductivity as a function of frequency and temperature at different doping concentration of Cr were interpreted in the light of Maxwell Wagner theory, space charge polarization mechanism and drift mobility of charge carriers. Both undoped and Cr doped TiO2 samples exhibit room temperature ferromagnetism (RTFM) that remarkably influenced by means of the Cr content. The significant enhancement in the magnetization was observed at 4% Cr doping. However, decrease in magnetization for higher doping signify antiferromagnetic interactions between Cr ions or superexchange mechanism. These results reveal that the oxygen vacancies play a crucial role to initiate the RTFM. Therefore, the present investigation suggests the potential applications of Cr doped TiO2 nanoparticles for spintronics application.

  3. Photocatalytic Degradation of Methylene Blue under UV Light Irradiation on Prepared Carbonaceous TiO2

    Directory of Open Access Journals (Sweden)

    Zatil Amali Che Ramli

    2014-01-01

    Full Text Available This study involves the investigation of altering the photocatalytic activity of TiO2 using composite materials. Three different forms of modified TiO2, namely, TiO2/activated carbon (AC, TiO2/carbon (C, and TiO2/PANi, were compared. The TiO2/carbon composite was obtained by pyrolysis of TiO2/PANi prepared by in situ polymerization method, while the TiO2/activated carbon (TiO2/AC was obtained after treating TiO2/carbon with 1.0 M KOH solution, followed by calcination at a temperature of 450°C. X-ray powder diffraction (XRD, transmission electron microscopy (TEM, Fourier transform infrared (FTIR, thermogravimetric analysis (TG-DTA, Brunauer-Emmet-Teller (BET, and UV-Vis spectroscopy were used to characterize and evaluate the prepared samples. The specific surface area was determined to be in the following order: TiO2/AC > TiO2/C > TiO2/PANi > TiO2 (179 > 134 > 54 > 9 m2 g−1. The evaluation of photocatalytic performance for the degradation of methylene blue under UV light irradiation was also of the same order, with 98 > 84.7 > 69% conversion rate, which is likely to be attributed to the porosity and synergistic effect in the prepared samples.

  4. Structural, optical and ferromagnetic properties of Cr doped TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Choudhury, Biswajit; Choudhury, Amarjyoti

    2013-01-01

    Graphical abstract: Doping of Cr 3+ distorts the lattice of TiO 2 , generate oxygen vacancies and create d-band states in the mid band gap of TiO 2 . Incorporation of Cr 3+ also imparts magnetism in non-magnetic TiO 2 by undergoing coupling with the neighboring oxygen vacancies. -- Highlights: • Incorporation of Cr 3+ increases the concentration of oxygen vacancies in TiO 2 nanoparticles. • Doped TiO 2 nanoparticles contain absorption peaks corresponding to d–d transition of Cr 3+ into TiO 2 . • Pure and doped TiO 2 nanoparticles contain emission peaks related to oxygen vacancies. • Pure TiO 2 shows diamagnetism while Cr doped TiO 2 shows ferromagnetism. • The ferromagnetism is due to the interaction of Cr 3+ ions via oxygen vacancies. -- Abstract: Cr doped TiO 2 nanoparticles are prepared with three different concentrations of chromium, 1.5%, 3.0% and 4.5 mol% respectively. Doping decreases the crystallinity and increases the width of the X-ray diffraction peak. The Raman active E g peak of TiO 2 nanoparticles become asymmetric and shifted to higher energy on doping of 4.5% chromium. Electron paramagnetic resonance spectra reveal the presence of Cr 3+ in the host TiO 2 matrix. The absorption spectra of Cr doped TiO 2 nanoparticles contain absorption peaks corresponding to d–d transition of Cr 3+ in octahedral coordination. Most of the visible emission peaks are due to the electrons trapped in the oxygen vacancy centers. Undoped TiO 2 nanoparticles show diamagnetism at room temperature while all chromium doped samples show ferromagnetism. The magnetization of the doped samples increases at 1.5% and 3.0% and decreases at 4.5%. The ferromagnetism arises owing to the interaction of the neighboring Cr 3+ ions via oxygen vacancies. The decrease of magnetization at the highest doping is possibly due to the antiferromagnetic interactions of Cr 3+ pairs or due to Cr 3+ -O 2− -Cr 3+ superexchange interaction in the lattice

  5. Cross flow microfiltration of oil-water emulsions using clay based ceramic membrane support and TiO2 composite membrane

    OpenAIRE

    Kanchapogu Suresh; G. Pugazhenthi

    2017-01-01

    The main objective of this work is to study the effect of cross flow filtration conditions on the separation of oily wastewater using ceramic support and TiO2 membrane. Firstly, the low cost clay based ceramic membrane support was prepared by uniaxial compaction method using combination of pyrophyllite, quartz, feldspar, kaolin, ball clay and calcium carbonate along with PVA as a binder. Subsequently, TiO2 composite membrane was fabricated via hydrothermal route employing TiO2 sol derived fro...

  6. A practical pathway for the preparation of Fe_2O_3 decorated TiO_2 photocatalyst with enhanced visible-light photoactivity

    International Nuclear Information System (INIS)

    Cheng, Li; Qiu, Shoufei; Chen, Juanrong; Shao, Jian; Cao, Shunsheng

    2017-01-01

    Shifting the ultra-violet of titania to visible light driven photocatalysis can be realized by coupling with metallic or non-metallic elements. However, time-consuming multi-step process and significant loss of UV photocatalytic activity of such TiO_2-based photocatalysts severely hinder their practical applications. In this work, we explore the idea of creating a practical method for the preparation of Fe_2O_3 decorated TiO_2 (TiO_2/Fe_2O_3) photocatalyst with controlled visible-light photoactivity. This method only involves the calcination of the mixture (commercial P25 powders and magnetic Fe_3O_4 nanoparticles) prepared by a mechanical process. The morphology and properties of TiO_2/Fe_2O_3 composites were characterized by Transmission electron microscope, X-ray diffraction, UV–vis spectroscopy, and X-ray photoelectron spectroscopy. Results confirm the fusion of TiO_2 and Fe_2O_3, which promotes photo-generated electrons/holes migration and separation. Because of the strong synergistic effect, the as-synthesized TiO_2/Fe_2O_3 composites manifest an enhanced visible-light photocatalytic activity. Especially, the TiO_2/Fe_2O_3 photocatalyst is very easy to be constructed via an one-step protocol that efficiently overcomes the time-consuming multi-step processes used in existed strategies for the preparation of Fe_2O_3/TiO_2 photocatalysts, providing a new insight into the practical application of TiO_2/Fe_2O_3 visible light photocatalyst. - Highlights: • We introduced a practical preparation of Fe_2O_3 decorated TiO_2 photocatalyst. • TiO_2/Fe_2O_3 was developed using commercial precursors in a high efficient manner. • Visible-light activity of TiO_2/Fe_2O_3 could be tuned by changing amount of Fe_3O_4 precursor. • TiO_2/Fe_2O_3 exhibited a higher visible-light photocatalytic activity than P25.

  7. Influence of silver on photocatalytic activity of TiO2

    International Nuclear Information System (INIS)

    Kisen, Carla Yuri; Teodoro, Vinicius; Zaghete, Maria Ap.; Perazolli, Leinig Antonio; Longo, Elson

    2016-01-01

    Full text: This work studied the influence of silver on photo activity of TiO 2 , prepared by Pechini method, in the photodegradation of Rhodamine-B. The catalysts were prepared with different percentage of silver (0.0, 0.5 and 1.0 %) and different calcination temperatures (500, 600 and 700°C), characterized by X-ray diffraction (DRX) and field emission gun - scanning electron microscopy (FEG-SEM), The powders' photo catalytic activity was defined by Rhodamine-B decolorisation test. The solution containing the dye and the catalyst, in the concentration of 0,01 mmol L -1 e 1,0 g L -1 respectively, were submitted to radiation with 9W germicidal lamp for 120 minutes. The control samples, for comparison effects, were made with TiO 2 anatase (Synth brand) and photolysis tests. In the micrographs, obtained by SEM, all the temperatures and compositions employed presented similar morphologies, it is assumed the calcination temperature rise leads to a decreased apparent porosity and the generation of particles clusters. The X-ray diffractograms indicates the calcination temperature influence in the generation of distinct TiO 2 phases during the catalysts synthesis. Regardless of the TiO 2 proportions, the only actual phase with 500°C calcination is the anatase. At 600°C, the rutile phase coexisting with the anatase phase disappears, and the rutile phase predominates. Among the catalysts, what presented greater activity was the TiO 2 with 0.5% Ag and calcination temperature of 500°C, which degraded around 100% in 60 minutes. References: [1] P. Cozolli, E. Fanizza and A. Agostiano. J. Phys.Chem. B108, 9623-9630, 2004. (author)

  8. Visible photoenhanced current-voltage characteristics of Au : TiO2 nanocomposite thin films as photoanodes

    International Nuclear Information System (INIS)

    Naseri, N; Amiri, M; Moshfegh, A Z

    2010-01-01

    In this investigation, the effect of annealing temperature and concentration of gold nanoparticles on the photoelectrochemical properties of sol-gel deposited Au : TiO 2 nanocomposite thin films is studied. Various gold concentrations have been added to the TiO 2 thin films and their properties are compared. All the deposited samples are annealed at different temperatures. The optical density spectra of the films show the formation of gold nanoparticles in the films. The optical bandgap energy of the Au : TiO 2 films decreases with increasing Au concentration. The crystalline structure of the nanocomposite films is studied by x-ray diffractometry indicating the formation of gold nanocrystals in the anatase TiO 2 nanocrystalline thin films. X-ray photoelectron spectroscopy reveals that the presence of gold in the metallic state and the formation of TiO 2 are stoichiometric. The photoelectrochemical properties of the Au : TiO 2 samples are characterized using a compartment cell containing H 2 SO 4 and KOH as cathodic and anodic electrolytes, respectively. It is found that the addition of Au nanoparticles in TiO 2 films enhances the photoresponse of the layer and the addition of gold nanocrystals with an optimum value of 5 mol% resulted in the highest photoelectrochemical activity. Moreover, the photoresponse of the samples is also enhanced with an increase in the annealing temperature.

  9. TiO2@C Core-Shell Nanoparticles Formed by Polymeric Nano-Encapsulation

    Directory of Open Access Journals (Sweden)

    Mitra eVasei

    2014-07-01

    Full Text Available TiO2 semiconducting nanoparticles are known to be photocatalysts of moderate activity due to their high band-gap and high rate of electron-hole recombination. The formation of a shell of carbon around the core of TiO2, i.e. the formation of TiO2@C nanoparticles, is believed to partly alleviate these problems. It is usually achieved by a hydrothermal treatment in a presence of a sugar derivative. We present here a novel method for the formation of highly uniform C shell around TiO2 nanoparticles. For this purpose, TiO2 nanoparticles were dispersed in water using an oligomeric dispersant prepared by Reversible Addition-Fragmentation chain Transfer (RAFT polymerization. Then the nanoparticles were engaged into an emulsion polymerization of acrylonitrile, resulting in the formation of a shell of polyacrylonitrile (PAN around each TiO2 nanoparticles. Upon pyrolisis, the PAN was transformed into carbon, resulting in the formation of TiO2@C nanoparticles. The structure of the resulting particles was elucidated by X-Ray diffraction, FTIR, UV-VIS and Raman spectroscopy as well as TEM microscopy. Preliminary results about the use of the TiO2@C particles as photocatalysts for the splitting of water are presented. They indicate that the presence of the C shell is responsible for a significant enhancement of the photocurrent.

  10. Hydrothermal synthesis of 1D TiO2 nanostructures for dye sensitized solar cells

    International Nuclear Information System (INIS)

    Tacchini, I.; Ansón-Casaos, A.; Yu, Youhai; Martínez, M.T.; Lira-Cantu, M.

    2012-01-01

    Highlights: ► Hydrothermal synthesis allows the preparation of different 1D TiO 2 nanostructures easily. ► Nanotubular morphology demonstrates the highest photovoltaic efficiencies in dye sensitized cells (DSCs). ► Morphology at the nanoscale level is as decisive for DSC efficiency as it is TiO 2 crystal structure and surface area. - Abstract: Mono-dimensional titanium oxide nanostructures (multi-walled nanotubes and nanorods) were synthesized by the hydrothermal method and applied to the construction of dye sensitized solar cells (DSCs). First, nanotubes (TiNTs) and nanotubes loaded with titanium oxide nanoparticles (TiNT/NPs) were synthesized with specific surface areas of 253 m 2 /g and 304 m 2 /g, respectively. After that, thermal treatment of the nanotubes at 500 °C resulted in their transformation into the corresponding anatase nanorods (TiNT-Δ and TiNT/NPs-Δ samples). X-ray diffraction and Raman spectroscopy data indicated that titanium oxide in the pristine TiNT and TiNT/NP samples was converted into anatase phase TiO 2 during the heating. Additionally, specific surface areas and water adsorption capacities decreased after the heat treatment due to the sample agglomeration and the collapse of the inner nanotube channels. DSCs were fabricated with the nanotube TiNT and TiNT/NP samples and with the anatase nanorod TiNT-Δ and TiNT/NPs-Δ samples as well. The highest power conversion efficiency of η = 3.12% was obtained for the TiNT sample, despite its lower specific surface compared with the corresponding nanoparticle-loaded sample (TiNT/NP).

  11. Fabrication of assembled ZnO/TiO2 heterojunction thin film transistors using solution processing technique

    Science.gov (United States)

    Liau, Leo Chau-Kuang; Lin, Yun-Guo

    2015-01-01

    Ceramic-based metal-oxide-semiconductor (MOS) field-effect thin film transistors (TFTs), which were assembled by ZnO and TiO2 heterojunction films coated using solution processing technique, were fabricated and characterized. The fabrication of the device began with the preparation of ZnO and TiO2 films by spin coating. The ZnO and TiO2 films that were stacked together and annealed at 450 °C were characterized as a p-n junction diode. Two types of the devices, p-channel and n-channel TFTs, were produced using different assemblies of ZnO and TiO2 films. Results show that the p-channel TFTs (p-TFTs) and n-channel TFTs (n-TFTs) using the assemblies of ZnO and TiO2 films were demonstrated by source-drain current vs. drain voltage (IDS-VDS) measurements. Several electronic properties of the p- and n- TFTs, such as threshold voltage (Vth), on-off ratio, channel mobility, and subthreshold swing (SS), were determined by current-voltage (I-V) data analysis. The ZnO/TiO2-based TFTs can be produced using solution processing technique and an assembly approach.

  12. Pressure-Induced Polyamorphic Transition in Nanoscale TiO2

    International Nuclear Information System (INIS)

    Swamy, Varghese; Muddle, Barry C.

    2009-01-01

    The detection and characterization of pressure-induced amorphization in 20 GPa and ambient temperature is documented. The characterization employed in situ high-pressure angle-dispersive synchrotron X-ray diffraction and Raman spectroscopy in diamond-anvil cells. Comparative Raman spectroscopy allows the local structures of the high-density amorphous (HDA) form obtained at high pressures and its low-pressure (<10-15 GPa) low-density amorphous (LDA) analogue to be related to the baddeleyite-TiO2 and TiO2-II structures, respectively. The pressure-induced amorphization and the HDA-LDA transition in nanoscale TiO2 bear broad similarities to transitions in the Si and H2O systems.

  13. The effects of nanostructures on the mechanical and tribological properties of TiO2 nanotubes

    Science.gov (United States)

    Yoon, Yeoungchin; Park, Jeongwon

    2018-04-01

    TiO2 nanotubes were prepared by anodization on Ti substrates with a diameter variation of 30-100 nm, and the structure of the nanotubes were studied using x-ray diffraction and Raman spectroscopy, which confirmed the structure changes from the anatase phase to the rutile phase of TiO2 at a diameter below 50 nm. The tribological behaviors of TiO2 nanotubes were investigated with different diameters. The effectiveness of the rutile phase and the diameter size enhanced the frictional performance of TiO2 nanotubes.

  14. Formaldehyde gas sensor based on TiO2 thin membrane integrated with nano silicon structure

    Science.gov (United States)

    Zheng, Xuan; Ming, An-jie; Ye, Li; Chen, Feng-hua; Sun, Xi-long; Liu, Wei-bing; Li, Chao-bo; Ou, Wen; Wang, Wei-bing; Chen, Da-peng

    2016-07-01

    An innovative formaldehyde gas sensor based on thin membrane type metal oxide of TiO2 layer was designed and fabricated. This sensor under ultraviolet (UV) light emitting diode (LED) illumination exhibits a higher response to formaldehyde than that without UV illumination at low temperature. The sensitivities of the sensor under steady working condition were calculated for different gas concentrations. The sensitivity to formaldehyde of 7.14 mg/m3 is about 15.91 under UV illumination with response time of 580 s and recovery time of 500 s. The device was fabricated through micro-electro-mechanical system (MEMS) processing technology. First, plasma immersion ion implantation (PIII) was adopted to form black polysilicon, then a nanoscale TiO2 membrane with thickness of 53 nm was deposited by DC reactive magnetron sputtering to obtain the sensing layer. By such fabrication approaches, the nanoscale polysilicon presents continuous rough surface with thickness of 50 nm, which could improve the porosity of the sensing membrane. The fabrication process can be mass-produced for the MEMS process compatibility.

  15. Nanocrystalline SnO2-TiO2 thin film deposited on base of equilateral prism as an opto-electronic humidity sensor

    Science.gov (United States)

    Yadav, B. C.; Verma, Nidhi; Singh, Satyendra

    2012-09-01

    Present paper reports the synthesis of SnO2-TiO2 nanocomposite, its characterization and performance as opto-electronic humidity sensor. Nanocrystalline SnO2-TiO2 film was deposited on the base of an equilateral prism using a photo resist spinner and the as prepared film was annealed at 200 °C for 2 h. The crystal structure of the prepared film was investigated using X-ray diffraction (XRD). Minimum crystallite size of the material was found 7 nm. Surface morphology of the film was investigated by Scanning electron microscope (SEM LEO-0430, Cambridge). SEM image shows that the film is porous. Differential scanning calorimetry (DSC) of as synthesized material shows two exothermic peaks at about 40 and 110 °C, respectively which are due to the evaporation of chemical impurities and water. Further the prepared film was investigated through the exposure of humidity and relative humidity (%RH) was measured directly in terms of modulation in the intensity of light recorded on a digital power meter. The maximum sensitivity of sensor was found 4.14 μW/%RH, which is quite significant for sensor fabrication purposes.

  16. Solvothermal synthesis of stable nanoporous polymeric bases-crystalline TiO2 nanocomposites: visible light active and efficient photocatalysts for water treatment.

    Science.gov (United States)

    Liu, Fujian; Kong, Weiping; Wang, Liang; Noshadi, Iman; Zhang, Zhonghua; Qi, Chenze

    2015-02-27

    Visible light active and stable nanoporous polymeric base-crystalline TiO2 nanocomposites were solvothermally synthesized from in situ copolymerization of divinylbenzene (DVB) with 1-vinylimidazolate (VI) or 4-vinylpyridine (Py) in the presence of tetrabutyl titanate without the use of any other additives (PDVB-VI-TiO2-x, PDVB-Py-TiO2-x, where x stands for the molar ratio of TiO2 to VI or Py), which showed excellent activity with respect to catalyzing the degradation of organic pollutants of p-nitrophenol (PNP) and rhodamine-B (RhB). TEM and SEM images show that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x have abundant nanopores, and TiO2 nanocrystals with a high degree of crystallinity were homogeneously embedded in the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x, forming a stable 'brick-and-mortar' nanostructure. PDVB-VI and PDVB-Py supports act as the glue linking TiO2 nanocrystals to form nanopores and constraining the agglomeration of TiO2 nanocrystals. XPS spectra show evidence of unique interactions between TiO2 and basic sites in these samples. UV diffuse reflectance shows that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x exhibit a unique response to visible light. Catalytic tests show that the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were active in catalyzing the degradation of PNP and RhB organic pollutants under visible light irradiation. The enhanced activities of the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were ascribed to synergistic effects between abundant nanopores and the unique optical adsorption of visible light in the samples.

  17. Solvothermal synthesis of stable nanoporous polymeric bases-crystalline TiO2 nanocomposites: visible light active and efficient photocatalysts for water treatment

    Science.gov (United States)

    Liu, Fujian; Kong, Weiping; Wang, Liang; Noshadi, Iman; Zhang, Zhonghua; Qi, Chenze

    2015-02-01

    Visible light active and stable nanoporous polymeric base-crystalline TiO2 nanocomposites were solvothermally synthesized from in situ copolymerization of divinylbenzene (DVB) with 1-vinylimidazolate (VI) or 4-vinylpyridine (Py) in the presence of tetrabutyl titanate without the use of any other additives (PDVB-VI-TiO2-x, PDVB-Py-TiO2-x, where x stands for the molar ratio of TiO2 to VI or Py), which showed excellent activity with respect to catalyzing the degradation of organic pollutants of p-nitrophenol (PNP) and rhodamine-B (RhB). TEM and SEM images show that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x have abundant nanopores, and TiO2 nanocrystals with a high degree of crystallinity were homogeneously embedded in the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x, forming a stable ‘brick-and-mortar’ nanostructure. PDVB-VI and PDVB-Py supports act as the glue linking TiO2 nanocrystals to form nanopores and constraining the agglomeration of TiO2 nanocrystals. XPS spectra show evidence of unique interactions between TiO2 and basic sites in these samples. UV diffuse reflectance shows that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x exhibit a unique response to visible light. Catalytic tests show that the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were active in catalyzing the degradation of PNP and RhB organic pollutants under visible light irradiation. The enhanced activities of the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were ascribed to synergistic effects between abundant nanopores and the unique optical adsorption of visible light in the samples.

  18. Significantly enhanced visible light response in single TiO2 nanowire by nitrogen ion implantation

    Science.gov (United States)

    Wu, Pengcheng; Song, Xianyin; Si, Shuyao; Ke, Zunjian; Cheng, Li; Li, Wenqing; Xiao, Xiangheng; Jiang, Changzhong

    2018-05-01

    The metal-oxide semiconductor TiO2 shows enormous potential in the field of photoelectric detection; however, UV-light absorption only restricts its widespread application. It is considered that nitrogen doping can improve the visible light absorption of TiO2, but the effect of traditional chemical doping is far from being used for visible light detection. Herein, we dramatically broadened the absorption spectrum of the TiO2 nanowire (NW) by nitrogen ion implantation and apply the N-doped single TiO2 NW to visible light detection for the first time. Moreover, this novel strategy effectively modifies the surface states and thus regulates the height of Schottky barriers at the metal/semiconductor interface, which is crucial to realizing high responsivity and a fast response rate. Under the illumination of a laser with a wavelength of 457 nm, our fabricated photodetector exhibits favorable responsivity (8 A W-1) and a short response time (0.5 s). These results indicate that ion implantation is a promising method in exploring the visible light detection of TiO2.

  19. Short-length and high-density TiO2 nanorod arrays for the efficient charge separation interface in perovskite solar cells

    International Nuclear Information System (INIS)

    Xiao, Guannan; Shi, Chengwu; Zhang, Zhengguo; Li, Nannan; Li, Long

    2017-01-01

    The TiO 2 nanorod arrays with the length of 70 nm, the diameter of 20 nm, and the areal density of 1000 µm −2 were firstly prepared by the hydrothermal method using the aqueous grown solution of 38 mM titanium isopropoxide and 6 M hydrochloric acid at 170 °C for 60 min. Over-500 nm-thickness CH 3 NH 3 PbI 3−x Br x absorber layers were successfully obtained by sequential deposition routes using 1.7 M PbI 2 ·DMSO complex precursor solution and 0.465 M isopropanol solution of the methylammonium halide mixture with the molar ratio of CH 3 NH 3 I/CH 3 NH 3 Br=85/15. The perovskite solar cells based on the TiO 2 nanorod array and 560 nm-thickness CH 3 NH 3 PbI 3−x Br x absorber layer exhibited the best photoelectric conversion efficiency (PCE) of 15.93%, while the corresponding planar perovskite solar cells without the TiO 2 nanorod array and with 530 nm-thickness CH 3 NH 3 PbI 3−x Br x absorber layer gave the best PCE of 12.82% at the relative humidity of 50–54%. - Graphical abstract: The TiO 2 nanorod arrays with the length of 70 nm, the diameter of 20 nm, and the areal density of 1000 µm −2 were prepared by the hydrothermal method using the aqueous grown solution of 38 mM titanium isopropoxide and 6 M hydrochloric acid at 170 °C for 60 min. The optimal annealing temperature of TiO 2 nanorod arrays was 450 °C. The perovskite solar cells based on the TiO 2 nanorod array and 560 nm-thickness CH 3 NH 3 PbI 3−x Br x absorber layer exhibited the best photoelectric conversion efficiency (PCE) of 15.93% and the average PCE of 13.41±2.52%, while the corresponding planar perovskite solar cells without the TiO 2 nanorod array and with 530 nm-thickness CH 3 NH 3 PbI 3−x Br x absorber layer gave the best PCE of 12.82% and the average PCE of 10.54±2.28% at the relative humidity of 50–54%. - Highlights: • Preparation of TiO 2 nanorod array with length of 70 nm and density of 1000 µm −2 . • Influence of annealing temperatures on the -OH content of TiO

  20. Data on the effect of improved TiO2/FTO interface and Ni(OH)2 cocatalyst on the photoelectrochemical performances and stability of CdS cased ZnIn2S4/TiO2 heterojunction.

    Science.gov (United States)

    Mahadik, Mahadeo A; Shinde, Pravin S; Lee, Hyun Hwi; Cho, Min; Jang, Jum Suk

    2018-04-01

    This data article presents the experimental evidences of the effect of TiO 2 -fluorine doped tin oxide interface annealing and Ni(OH) 2 cocatalysts on the photoelectrochemical, structural, morphological and optical properties of Ni(OH) 2 /CdS/ZnIn 2 S 4 /TiO 2 heterojunction. The Raman spectroscopy exhibits the sharp features of the rutile phase of TiO 2 and in agreement with the X-ray diffraction data. The band gap energy of the 500 °C sample was found to be 3.12 eV, further it was increased to 3.20, 3.22 eV for samples annealed at 600 and 700 °C respectively. The decrease in the band gap energy at 500 °C related to the oxygen vacancies and was analysed by photoluminescence spectroscopy analysis. The synthesis, characterization methods and other experimental details of TiO 2 based heterostructure are also provided. The presence of CdS and ZnIn 2 S 4 coating on surface of TiO 2 electrodes providing a high surface area, extended visible absorption and helps to improve the change separation. This data article contains data related to the research article entitled "Highly efficient and stable 3D Ni(OH) 2 /CdS/ZnIn 2 S 4 /TiO 2 heterojunction under solar light: Effect of an improved TiO 2 /FTO interface and cocatalyst" (Mahadik et al., 2017) [1].

  1. Liquid phase deposition of WO3/TiO2 heterojunction films with high photoelectrocatalytic activity under visible light irradiation

    International Nuclear Information System (INIS)

    Zhang, Man; Yang, Changzhu; Pu, Wenhong; Tan, Yuanbin; Yang, Kun; Zhang, Jingdong

    2014-01-01

    Highlights: • Liquid phase deposition is developed for preparing WO 3 /TiO 2 heterojunction films. • TiO 2 film provides an excellent platform for WO 3 deposition. • WO 3 expands the absorption band edge of TiO 2 film to visible light region. • WO 3 /TiO 2 heterojunction film shows high photoelectrocatalytic activity. - ABSTRACT: The heterojunction films of WO 3 /TiO 2 were prepared by liquid phase deposition (LPD) method via two-step processes. The scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopic analysis indicated that flower-like WO 3 film was successfully deposited on TiO 2 film with the LPD processes. The TiO 2 film provided an excellent platform for WO 3 deposition while WO 3 obviously expanded the absorption of TiO 2 film to visible light. As the result, the heterojunction film of WO 3 /TiO 2 exhibited higher photocurrent response to visible light illumination than pure TiO 2 or WO 3 film. The photoelectrocatalytic (PEC) activity of WO 3 /TiO 2 film was evaluated by degrading Rhodamin B (RhB) and 4-chlorophenol (4-CP) under visible light irradiation. The results showed that the LPD WO 3 /TiO 2 film possessed high PEC activity for efficient removal of various refractory organic pollutants

  2. Preparation of TiO2 thin films from autoclaved sol containing needle-like anatase crystals

    International Nuclear Information System (INIS)

    Ge Lei; Xu Mingxia; Fang Haibo; Sun Ming

    2006-01-01

    A new inorganic sol-gel method was introduced in this paper to prepare TiO 2 thin films. The autoclaved sol with needle-like anatase crystals was synthesized using titanyl sulfate (TiOSO 4 ) and peroxide (H 2 O 2 ) as starting materials. The transparent anatase TiO 2 thin films were prepared on glass slides from the autoclaved sol by sol-gel dip-coating method. A wide range of techniques such as Fourier transform infrared transmission spectra (FT-IR), X-ray diffraction (XRD), thermogravimetry-differential thermal analysis (TG-DTA), scanning electron microscopes, X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible spectrum were applied to characterize the autoclaved sol and TiO 2 thin films. The results indicate that the autoclaved sol is flavescent, semitransparent and stable at room temperature. The anatase crystals of TiO 2 films connect together to form net-like structure after calcined and the films become uniform with increasing heating temperature. The surface of the TiO 2 films contain not only Ti and O elements, but also a small amount of N and Na elements diffused from substrates during heat treatment. The TiO 2 films are transparent and their maximal light transmittances exceed 80% under visible light region

  3. The influence of excess K2O on the electrical properties of (K,Na)1/2Bi1/2TiO3 ceramics

    Science.gov (United States)

    Li, Linhao; Li, Ming; Sinclair, Derek C.

    2018-04-01

    The solid solution (KxNa0.50-x)Bi0.50TiO3 (KNBT) between Na1/2Bi1/2TiO3 and K1/2Bi1/2TiO3 (KBT) has been extensively researched as a candidate lead-free piezoelectric material because of its relatively high Curie temperature and good piezoelectric properties, especially near the morphotropic phase boundary (MPB) at x ˜ 0.10 (20 mol. % KBT). Here, we show that low levels of excess K2O in the starting compositions, i.e., (Ky+0.03Na0.50-y)Bi0.50TiO3.015 (y-series), can significantly change the conduction mechanism and electrical properties compared to a nominally stoichiometric KNBT series (KxNa0.50-x)Bi0.50TiO3 (x-series). Impedance spectroscopy measurements reveal significantly higher bulk conductivity (σb) values for y ≥ 0.10 samples [activation energy (Ea) ≤ 0.95 eV] compared to the corresponding x-series samples which possess bandgap type electronic conduction (Ea ˜ 1.26-1.85 eV). The largest difference in electrical properties occurs close to the MPB composition (20 mol. % KBT) where y = 0.10 ceramics possess σb (at 300 °C) that is 4 orders of magnitude higher than that of x = 0.10 and the oxide-ion transport number in the former is ˜0.70-0.75 compared to processing. This demonstrates the electrical properties of KNBT to be sensitive to low levels of A-site nonstoichiometry and indicates that excess K2O in KNBT starting compositions to compensate for volatilisation can lead to undesirable high dielectric loss and leakage currents at elevated temperatures.

  4. Effect of titanium dioxide (TiO2) on largely improving solar reflectance and cooling property of high density polyethylene (HDPE) by influencing its crystallization behavior

    International Nuclear Information System (INIS)

    Wang, Shichao; Zhang, Jun

    2014-01-01

    Highlights: • HDPE/TiO 2 composites have more perfect crystal structure. • Refractive index is the key factor affecting the final solar reflectance. • HDPE/TiO 2 composites can achieve high solar reflectance. • The real cooling property is in accordance with solar reflectance. - Abstract: In this study, the different crystal forms of titanium dioxide (TiO 2 ) were added into high density polyethylene (HDPE) to fabricate cool material. Crystal structure, crystallization behavior, crystal morphology were investigated by wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC) and polarized optical microscope (POM). Scanning electron microscope (SEM) was applied to observe dispersion of TiO 2 particles in the HDPE matrix and the cross section morphology. The solar reflectance and actual cooling property were evaluated by UV–Vis–NIR spectrometer and a self-designed device. By adding TiO 2 particles into HDPE matrix, the polymer chain could crystallize into more perfect and thermal stable lamella. The presence of TiO 2 particles dramatically increased the number of nucleation site therefore decreased the crystal size. The subsequent solar reflectance was related to the degree of crystallinity, the spherulite size of HDPE, refractive index, and distribution of TiO 2 particles in HDPE matrix. It was found the rutile TiO 2 could largely improve the total solar reflectance from 28.2% to 51.1%. Finally, the temperature test showed that the composites had excellent cooling property, which was in accordance with solar reflectance result

  5. Structural and optical properties of AgCl-sensitized TiO2 (TiO2 @AgCl prepared by a reflux technique under alkaline condition

    Directory of Open Access Journals (Sweden)

    V. A. Mu’izayanti

    Full Text Available Abstract The AgCl-sensitized TiO2 (TiO2@AgCl has been prepared from the precursor of TiO2-rutile type which on its surface adsorb chloride anion (Cl- and various amounts of silver using AgNO3 as starting material: AgNO3/(AgNO3+TiO2 mass ratio of 0.00, 1.14, 3.25, 6.38 and 10.32%. Reflux under alkaline condition was the employed technique. All samples were characterized by X-ray diffraction (XRD and diffuse reflectance UV-vis spectroscopy. The sample without the addition of AgNO3 was analyzed by scanning electron microscope and surface area analyzer. The morphology of the sample showed a distribution of microspheres of approximately 0.5 to 1.0 µm and the specific surface area was 68 m2/g. XRD patterns indicated that the sample without the addition of AgNO3 contained two types of TiO2: rutile (major and anatase (minor, whereas the samples with the addition of AgNO3 consisted of one phase of AgCl and two types of TiO2: rutile and anatase. The bandgaps of the samples were in the range of 2.97 to 3.24 eV, which were very close to the bandgap of intrinsic TiO2 powder. The presence of 0.8, 2.6 and 4.4 wt% of AgCl in each sample resulted in an additional bandgap in visible light region of 1.90, 1.94 and 2.26 eV, respectively, whereas the presence of 9.4 wt% of AgCl in the sample resulted in two bandgaps in visible light region of 1.98 and 1.88 eV.

  6. Study on preparation of SnO2-TiO2/Nano-graphite composite anode and electro-catalytic degradation of ceftriaxone sodium.

    Science.gov (United States)

    Guo, Xiaolei; Wan, Jiafeng; Yu, Xiujuan; Lin, Yuhui

    2016-12-01

    In order to improve the electro-catalytic activity and catalytic reaction rate of graphite-like material, Tin dioxide-Titanium dioxide/Nano-graphite (SnO 2 -TiO 2 /Nano-G) composite was synthesized by a sol-gel method and SnO 2 -TiO 2 /Nano-G electrode was prepared in hot-press approach. The composite was characterized by X-ray photoelectron spectroscopy, fourier transform infrared, Raman, N 2 adsorption-desorption, scanning electrons microscopy, transmission electron microscopy and X-ray diffraction. The electrochemical performance of the SnO 2 -TiO 2 /Nano-G anode electrode was investigated via cyclic voltammetry and electrochemical impedance spectroscopy. The electro-catalytic performance was evaluated by the degradation of ceftriaxone sodium and the yield of ·OH radicals in the reaction system. The results demonstrated that TiO 2 , SnO 2 and Nano-G were composited successfully, and TiO 2 and SnO 2 particles dispersed on the surface and interlamination of the Nano-G uniformly. The specific surface area of SnO 2 modified anode was higher than that of TiO 2 /Nano-G anode and the degradation rate of ceftriaxone sodium within 120 min on SnO 2 -TiO 2 /Nano-G electrode was 98.7% at applied bias of 2.0 V. The highly efficient electro-chemical property of SnO 2 -TiO 2 /Nano-G electrode was attributed to the admirable conductive property of the Nano-G and SnO 2 -TiO 2 /Nano-G electrode. Moreover, the contribution of reactive species ·OH was detected, indicating the considerable electro-catalytic activity of SnO 2 -TiO 2 /Nano-G electrode. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Synthesis of the lithium metatitanate, Li2TiO3, by the modified combustion method

    International Nuclear Information System (INIS)

    Cruz, D.; Bulbulian, S.; Pfeiffer, H.

    2005-01-01

    A modified combustion method to obtain Li 2 TiO 3 it was used, a compound to be used in fusion reactors like tritium generator material. To obtain Li 2 TiO 3 were proven different molar ratios of lithium hydroxide (LiOH), titanium oxide (TiO 2 ) and urea (CO(NH 2 ) 2 ), as well as different heating temperatures (550, 650 and 750 C). The characterization of the products it was carried out using X-ray diffraction, Scanning electron microscopy and Thermal gravimetric analysis. The sample prepared with a molar ratio Li: Ti: urea = 2.75: 1: 3 was the one that presented as only product the Li 2 TiO 3 . The particle size and the morphology found in the Li 2 TiO 3 , showed similar particle size and morphology to the TiO 2 used as precursor. (Author)

  8. Crystallographic structure and magnetic properties of pseudobrookite Fe2-xNixTiO5 system (x = 0, 0.1, 0.2, 0.3, 0.5 and 1)

    International Nuclear Information System (INIS)

    Yosef Sarwanto and Wisnu Ari Adi

    2018-01-01

    Crystallographic structure and magnetic properties of pseudobrookite Fe 2-x Ni x TiO 5 system (x=0, 0.1, 0.2, 0.3 ,0.5 and 1)have been performed through solid state reaction. Pseudobrookite Fe 2-x Ni x TiO 5 system was synthesized by mixing of Fe 2 O 3 , NiO, and TiO 2 with stoichiometry composition using wet mill. The mixture was milled for 5 hours and sintered in the electric chamber furnace at 1000 °C in the air at atmosphere pressure for 5 hours. The refinement against of X-ray diffraction data shows that the samples with composition of (x = 0) and (x = 0.1) have a single phase with Fe 2 TiO 5 structure. How ever the samples with composition of (x > 0.1) consist of multiple phases, namely Fe 2-x Ni x TiO 5 , FeTiO 3 , Fe 2 NiO 4 and NiO. Particle morphologies of the composition x = 0 and x =0.1 are homogenous and uniform on the sample surface with a polygonal particle shape and particle size varies. At room temperature, the sample with x =0 is paramagnetic and that with x =0.1 is ferromagnetic. Magnetic phase transformation of this study is the caused by the present of Ni substituted Fe in the system. Thus substitution Ni into Fe on the system pseudobrookite Fe 2 TiO 5 only capable of 0.1 at.% without changing the crystal structure of the material. It means that there is an interaction between the magnetic spin Fe 3+ on the 3d 5 configurations and Ni 2 + on the 3d 3 configurations through the mechanism of double exchange. Double exchange mechanism is a magnetic type of exchange that appears between the ions Fe 3+ and Ni 2+ adjacent in different oxidation states. (author)

  9. Photo catalytic degradation of nitrobenzene using nanocrystalline TiO2 photo catalyst doped with Zn ions

    International Nuclear Information System (INIS)

    Reynoso S, E. A.; Perez S, S.; Reyes C, A. P.; Castro R, C. L.; Felix N, R. M.; Lin H, S. W.; Paraguay D, F.; Alonso N, G.

    2013-01-01

    Photo catalysis is a method widely used in the degradation of organic pollutants of the environment. The development of new materials is very important to improve the photo catalytic properties and to find new applications for TiO 2 as a photo catalyst. In this article we reported the synthesis of a photo catalyst based on TiO 2 doped with Zn 2+ ions highly efficient in the degradation of nitrobenzene. The results of photo catalytic activity experiments showed that the Zn 2+ doped TiO 2 is more active that un-doped TiO 2 catalyst with an efficiency of 99% for the nitrobenzene degradation at 120 min with an apparent rate constant of 35 x 10 -3 min -1 . For the characterization of photo catalyst X-ray diffraction, transmission electron microscopy and Raman spectroscopy were used. (Author)

  10. Origin of the Enhanced Visible-Light Absorption in N-Doped Bulk Anatase TiO 2 from First-Principles Calculations

    KAUST Repository

    Harb, Moussab

    2011-10-06

    Extension of the absorption properties of TiO2 photocatalytic materials to the visible part of the solar spectrum is of major importance for energy and cleaning up applications. We carry out a systematic study of the N-doped anatase TiO2 material using spin-polarized density functional theory (DFT) and the range-separated hybrid HSE06 functional. The thermodynamic stability of competitive N-doped TiO2 structural configurations is studied as a function of the oxygen chemical potential and of various chemical doping agents: N2, (N2 + H2), NH3, N2H4. We show that the diamagnetic TiO (2-3x)N2x system corresponding to a separated substitutional N species (with 2-4% N impurities) and formation of one-half concentration of O vacancies (1-2 atom %) is an optimal configuration thermodynamically favored by NH3, N2H4, and (N2 + H2) chemical doping agents presenting a dual nitrating-reducing character. The simulated UV-vis absorption spectra using the perturbation theory (DFPT) approach demonstrates unambiguously that the diamagnetic TiO(2-3x)N2x system exhibits the enhanced optical absorption in N-doped TiO2 under visible-light irradiation. Electronic analysis further reveals a band gap narrowing of 0.6 eV induced by delocalized impurity states located at the top of the valence band of TiO 2. A fruitful comparison with experimental data is furnished. © 2011 American Chemical Society.

  11. Chemically synthesized TiO2 and PANI/TiO2 thin films for ethanol sensing applications

    Science.gov (United States)

    Gawri, Isha; Ridhi, R.; Singh, K. P.; Tripathi, S. K.

    2018-02-01

    Ethanol sensing properties of chemically synthesized titanium dioxide (TiO2) and polyaniline/titanium dioxide nanocomposites (PANI/TiO2) had been performed at room temperature. In-situ oxidative polymerization process had been employed with aniline as a monomer in presence of anatase titanium dioxide nanoparticles. The prepared samples were structurally and morphologically characterized by x-ray diffraction, fourier transform infrared spectra, high resolution-transmission electron microscopy and field emission-scanning electron microscopy. The crystallinity of PANI/TiO2 nanocomposite was revealed by XRD and FTIR spectra confirmed the presence of chemical bonding between the polymer chains and metal oxide nanoparticles. HR-TEM micrographs depicted that TiO2 particles were embedded in polymer matrix, which provides an advantage over pure TiO2 nanoparticles in efficient adsorption of vapours. These images also revealed that the TiO2 nanoparticles were irregular in shape with size around 17 nm. FE-SEM studies revealed that in the porous structure of PANI/TiO2 film, the intercalation of TiO2 in PANI chains provides an advantage over pure TiO2 film for uniform interaction with ethanol vapors. The sensitivity values of prepared samples were examined towards ethanol vapours at room temperature. The PANI/TiO2 nanocomposite exhibited better sensing response and faster response-recovery examined at different ethanol concentrations ranging from 5 ppm to 20 ppm in comparison to pure TiO2 nanoparticles. The increase in vapour sensing of PANI/TiO2 sensing film as compared to pure TiO2 film had been explained in detail with the help of gas sensing mechanism of TiO2 and PANI/TiO2. This provides strong evidence that gas sensing properties of TiO2 had been considerably improved and enhanced with the addition of polymer matrix.

  12. Structure and photocatalytic activity studies of TiO2-supported over Ce-modified Al-MCM-41

    International Nuclear Information System (INIS)

    Krishna Reddy, Jakkidi; Durgakumari, Valluri; Subrahmanyam, Machiraju; Sreedhar, Bojja

    2009-01-01

    Ce-Al-MCM-41, TiO 2 /Al-MCM-41 and TiO 2 /Ce-Al-MCM-41 materials with varying contents of Ce (by impregnation) and TiO 2 loaded (by solid-state dispersion) on Al-MCM-41 support are prepared. The Ce modified and TiO 2 loaded composite systems are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectra (DRS) and X-ray photoelectron spectroscopy (XPS) techniques. The DRS and XPS of low Ce content (0.2-0.5 wt.%) modified Al-MCM-41 samples are showing more characteristic of Ce 3+ species wherein cerium in interaction with Al-MCM-41 and that of high Ce (0.8, 3.0 wt.%) content modified samples are showing the characteristic of both Ce 4+ and Ce 3+ species. A series of Ce-modified Al-MCM-41 and TiO 2 loaded composite catalysts are evaluated for photocatalytic degradation of phenol under UV irradiation. Low Ce content in Ce 3+ state on Al-MCM-41 is showing good photoactivity in comparison with high Ce content samples and pure ceria. The composite TiO 2 /Ce-Al-MCM-41 is showing enhanced degradation activity due decreased rate of electron-hole recombination on TiO 2 surface by the redox properties of cerium. The photocatalyst TiO 2 /Ce-Al-MCM-41 with an optimum of 10 wt.% TiO 2 and 0.3 wt.% Ce is showing maximum phenol degradation activity. The possible mechanism of phenol degradation on the composite photocatalyst is proposed.

  13. The Effects of Doping Copper and Mesoporous Structure on Photocatalytic Properties of TiO2

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2014-01-01

    Full Text Available This paper describes a system for the synthesis of Cu-doped mesoporous TiO2 nanoparticles by a hydrothermal method at relatively low temperatures. The technique used is to dope the as-prepared mesoporous TiO2 system with copper. In this method, the copper species with the form of Cu1+, which was attributed to the reduction effect of dehydroxylation and evidenced by X-ray photoelectron spectroscopy (XPS and X-ray diffraction (XRD, was well dispersed in the optimal concentration 1 wt.% Cu-doped mesoporous TiO2. In this as-prepared mesoporous TiO2 system, original particles with a size of approximately 20 nm are aggregated together to shapes of approximately 1100 nm, which resulted in the porous aggregate structure. More importantly, the enhancement of the photocatalytic activity was discussed as effects due to the formation of stable Cu(I and the mesoporous structure in the Cu-doped mesoporous TiO2. Among them, Cu-doped mesoporous TiO2 shows the highest degradation rate of methyl orange (MO. In addition, the effects of initial solution pH on degradation of MO had also been investigated. As a result, the optimum values of initial solution pH were found to be 3.

  14. Optical Properties and Surface Morphology of Nano-composite PMMA: TiO2 Thin Films

    International Nuclear Information System (INIS)

    Lyly Nyl Ismail; Ahmad Fairoz Aziz; Habibah Zulkefle

    2011-01-01

    There are two nano-composite PMMA: TiO 2 solutions were prepared in this research. First solution is nano-composite PMMA commercially available TiO 2 nanopowder and the second solution is nano-composite PMMA with self-prepared TiO 2 powder. The self-prepared TiO 2 powder is obtained by preparing the TiO 2 sol-gel. Solvo thermal method were used to dry the TiO 2 sol-gel and obtained TiO 2 crystal. Ball millers were used to grind the TiO 2 crystal in order to obtained nano sized powder. Triton-X was used as surfactant to stabilizer the composite between PMMA: TiO 2 . Besides comparing the nano-composite solution, we also studied the effect of the thin films thickness on the optical properties and surface morphology of the thin films. The thin films were deposited by sol-gel spin coating method on glass substrates. The optical properties and surface characterization were measured with UV-VIS spectrometer equipment and atomic force microscopy (AFM). The result showed that nano-composite PMMA with self prepared TiO 2 give high optical transparency than nano-composite PMMA with commercially available TiO 2 nano powder. The results also indicate as the thickness is increased the optical transparency are decreased. Both AFM images showed that the agglomerations of TiO 2 particles are occurred on the thin films and the surface roughness is increased when the thickness is increased. High agglomeration particles exist in the AFM images for nano-composite PMMA: TiO 2 with TiO 2 nano powder compare to the other nano-composite solution. (author)

  15. Visible light photoelectrocatalysis with salicylic acid-modified TiO2 nanotube array electrode for p-nitrophenol degradation

    International Nuclear Information System (INIS)

    Wang Xin; Zhao Huimin; Quan Xie; Zhao Yazhi; Chen Shuo

    2009-01-01

    This research focused on immersion method synthesis of visible light active salicylic acid (SA)-modified TiO 2 nanotube array electrode and its photoelectrocatalytic (PEC) activity. The SA-modified TiO 2 nanotube array electrode was synthesized by immersing in SA solution with an anodized TiO 2 nanotube array electrode. Scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (IR), UV-vis diffuse reflectance spectrum (DRS), and Surface photovoltage (SPV) were used to characterize this electrode. It was found that SA-modified TiO 2 nanotube array electrode absorbed well into visible region and exhibited enhanced visible light PEC activity on the degradation of p-nitrophenol (PNP). The degradation efficiencies increased from 63 to 100% under UV light, and 79-100% under visible light (λ > 400 nm), compared with TiO 2 nanotube array electrode. The enhanced PEC activity of SA-modified TiO 2 nanotube array electrode was attributed to the amount of surface hydroxyl groups introduced by SA-modification and the extension of absorption wavelength range.

  16. Origin of visible-light sensitivity in N-doped TiO2 films

    International Nuclear Information System (INIS)

    Nakano, Yoshitaka; Morikawa, Takeshi; Ohwaki, Takeshi; Taga, Yasunori

    2007-01-01

    We report on visible-light sensitivity in N-doped TiO 2 (TiO 2 :N) films that were deposited on n + -GaN/Al 2 O 3 substrates by reactive magnetron sputtering and subsequently crystallized by annealing at 550 deg. C in flowing N 2 gas. The N-doping concentration was ∼8.8%, as determined by X-ray photoelectron spectroscopy measurements. From transmission electron microscopic observations and optical absorption measurements, yellow-colored TiO 2 :N samples showed an enhanced granular structure and strong absorption in the visible-light region. Photoelectron spectroscopy in air measurements showed a noticeable decrease in ionization energy of TiO 2 by the N doping. Deep-level optical spectroscopy measurements revealed two characteristic deep levels located at ∼1.18 and ∼2.48 eV below the conduction band. The 1.18 eV level is probably attributable to the O vacancy state and can be active as an efficient generation-recombination center. The pronounced 2.48 eV band is newly introduced by the N doping and contributes to band-gap narrowing of TiO 2 by mixing with the O 2p valence band. Therefore, this localized intraband is probably one origin of visible-light sensitivity in TiO 2 :N

  17. Functionalized TiO2 nanoparticle containing isocyanate groups

    International Nuclear Information System (INIS)

    Ou, Baoli; Li, Duxin; Liu, Qingquan; Zhou, Zhihua; Liao, Bo

    2012-01-01

    Functionalized TiO 2 nanoparticle containing isocyanate groups can extend the TiO 2 nanoparticle chemistry, and may promote their many potential applications such as in polymer composites and coatings. This paper describes a facile method to prepare functionalized TiO 2 nanoparticle with highly reactive isocyanate groups on its surface, via the reaction between toluene-2, 4-diisocyanate (TDI) and hydroxyl on TiO 2 nanoparticle surface. The main effect factors on the reaction of TiO 2 with TDI were studied by determining the reaction extent of hydroxyl groups on TiO 2 surface. Fourier-transformed infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) confirmed that reactive isocyanate groups were covalently attached to the TiO 2 nanoparticle surface. The dispersion of the TDI-functionalized TiO 2 nanoparticle was studied by transmission electron microscopy (TEM). Owing to the TDI molecules covalently bonded on TiO 2 nanoparticle surface, it was established that the TiO 2 nanoparticle can be uniformly dispersed in toluene, thus indicating that this functionalization method can prevent TiO 2 nanoparticle from agglomerating. -- Highlights: ► TiO 2 nanoparticle was functionalized with toluene-2, 4-diisocyanate. ► Functionalized TiO 2 nanoparticle can be uniformly dispersed in xylene. ► Compatibility of TiO 2 nanoparticle and organic solvent is significantly improved. ► TiO 2 containing isocyanate groups can extend the TiO 2 nanoparticle chemistry.

  18. The Influence of Cr3+ on TiO2 Crystal Growth and Photoactivity Properties

    Science.gov (United States)

    Wahyuningsih, S.; Hidayatika, W. N.; Sari, P. L.; Sari, P. P.; Hidayat, R.; Munawaroh, H.; Ramelan, A. H.

    2018-03-01

    The photocatalyst technology is an integrated combination of photochemical processes and catalysis in order to carry out a chemical transformation reaction. One of the semiconductor materials that have good photocatalytic activity is TiO2 anatase. This study aim to determine the effect of the Cr3+ addition on the growth of TiO2 rutile crystal and the increasing of TiO2 photoactivity. Diffractogram X-Ray of the samples showed that the synthesized TiO2 at 400 °C has been produced 100% TiO2 anatase. Synthesis of TiO2 doped Cr3+ composite was using wet impregnation method. The TiO2 doped Cr3+ composites have beed grown by annealed at a temperature of 300, 400, 500, 600 and 700 °C, respectively Annealing process have capabled to gain to the TiO2 doped Cr3+ nanocomposite. The result product annealed at 500 °C only appear anatase phase due to the Cr3+ addition influence that was able to suppress the growth of rutile. Identification of TiO2 doped Cr3+ composite using Fourier Transform Infra-Red (FT-IR) showed O-Cr vibration at 2283.72 cm-1. The TiO2 doped Cr3+ photoactivity was studied to degrade Rhodamin B. The best result on photodegradation of Rhodamin B was performed by using TiO2 doped Cr3+ composite which was annealed at 700 °C i.e. 74.71%.

  19. Enhancement of tributyltin degradation under natural light by N-doped TiO2 photocatalyst

    International Nuclear Information System (INIS)

    Bangkedphol, S.; Keenan, H.E.; Davidson, C.M.; Sakultantimetha, A.; Sirisaksoontorn, W.; Songsasen, A.

    2010-01-01

    Photo-degradation of tributyltin (TBT) has been enhanced by TiO 2 nanoparticles doped with nitrogen (N-doped TiO 2 ). The N-doped catalyst was prepared by a sol-gel reaction of titanium (IV) tetraisopropoxide with 25% ammonia solution and calcined at various temperatures from 300 to 600 deg. C. X-ray diffraction results showed that N-doped TiO 2 remained amorphous at 300 deg. C. At 400 deg. C the anatase phase occurred then transformed to the rutile phase at 600 deg. C. The crystallite size calculated from Scherrer's equation was in the range of 16-51 nm which depended on the calcination temperature. N-doped TiO 2 calcined at 400 deg. C which contained 0.054% nitrogen, demonstrated the highest photocatalytic degradation of TBT at 28% in 3 h under natural light when compared with undoped TiO 2 and commercial photocatalyst, P25-TiO 2 which gave 14.8 and 18% conversion, respectively.

  20. Hydrothermal synthesis spherical TiO2 and its photo-degradation property on salicylic acid

    International Nuclear Information System (INIS)

    Guo Wenlu; Liu Xiaolin; Huo Pengwei; Gao Xun; Wu Di; Lu Ziyang; Yan Yongsheng

    2012-01-01

    Anatase TiO 2 spheres have been prepared using hydrothermal synthesis. The prepared spheres were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and UV-vis diffuse reflectance spectra (UV-vis DRS). The TiO 2 consisted of well-defined spheres with size of 3-5 μm. The photocatalytic activity of spherical TiO 2 was determined by degradation of salicylic acid under visible light irradiation. It was revealed that the degradation rate of the spherical TiO 2 which was processed at 150 °C for 48 h could reach 81.758%. And the kinetics of photocatalytic degradation obeyed first-order kinetic, which the rate constant value was 0.01716 S -1 of the salicylic acid onto TiO 2 (temperature: 150, time: 48 h). The kinetics of adsorption followed the pseudo-second-order model and the rate constant was 1.2695 g mg -1 of the salicylic acid onto TiO 2 (temperature: 150, time: 48 h).

  1. Electrochemical properties of TiO2 encapsulated ZnO nanorod aggregates dye sensitized solar cells

    International Nuclear Information System (INIS)

    Justin Raj, C.; Karthick, S.N.; Dennyson Savariraj, A.; Hemalatha, K.V.; Park, Song-Ki; Kim, Hee-Je; Prabakar, K.

    2012-01-01

    Highlights: ► ZnO nanorod aggregates were synthesized by simple co-precipitation technique. ► TiO 2 encapsulated ZnO nanorod aggregates photoanode was used for the DSSC. ► TiO 2 encapsulated ZnO nanorod aggregates shows an enhanced efficiency. ► The electron recombination and transport properties were studied using EIS method. - Abstract: Dye sensitized solar cells based on TiO 2 encapsulated ZnO nanorod (NR) aggregates were fabricated and electrochemical performance was analyzed using impedance spectroscopy as a function of forward bias voltage. Charge transfer properties such as electron life time (τ n ), electron diffusion coefficient (D n ) and electron diffusion length (L n ) were calculated in order to ensure the influence of TiO 2 layer over the ZnO NR aggregates. It is found that the short circuit current density (Jsc = 5.8 mA cm −2 ), open circuit potential (V oc = 0.743 V), fill factor (FF = 0.57) and conversion efficiency are significantly improved by the introduction of TiO 2 layer over ZnO photoanode. A power conversion efficiency of about 2.48% has been achieved for TiO 2 /ZnO cell, which is higher than that of bare ZnO NR aggregate based cells (1.73%). The formation of an inherent energy barrier between TiO 2 and ZnO films and the passivation of surface traps on the ZnO film caused by the introduction of TiO 2 layer increase the dye absorption and favor the electron transport which may be responsible for the enhanced performance of TiO 2 /ZnO cell.

  2. Preparation and photoelectrocatalytic performance of N-doped TiO2/NaY zeolite membrane composite electrode material.

    Science.gov (United States)

    Cheng, Zhi-Lin; Han, Shuai

    2016-01-01

    A novel composite electrode material based on a N-doped TiO2-loaded NaY zeolite membrane (N-doped TiO2/NaY zeolite membrane) for photoelectrocatalysis was presented. X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible (UV-vis) and X-ray photoelectron spectroscopy (XPS) characterization techniques were used to analyze the structure of the N-doped TiO2/NaY zeolite membrane. The XRD and SEM results verified that the N-doped TiO2 nanoparticles with the size of ca. 20 nm have been successfully loaded on the porous stainless steel-supported NaY zeolite membrane. The UV-vis result showed that the N-doped TiO2/NaY zeolite membrane exhibited a more obvious red-shift than that of N-TiO2 nanoparticles. The XPS characterization revealed that the doping of N element into TiO2 was successfully achieved. The photoelectrocatalysis performance of the N-doped TiO2/NaY zeolite membrane composite electrode material was evaluated by phenol removal and also the effects of reaction conditions on the catalytic performance were investigated. Owing to exhibiting an excellent catalytic activity and good recycling stability, the N-doped TiO2/NaY zeolite membrane composite electrode material was of promising application for photoelectrocatalysis in wastewater treatment.

  3. Origin of the Enhanced Visible-Light Absorption in N-Doped Bulk Anatase TiO 2 from First-Principles Calculations

    KAUST Repository

    Harb, Moussab; Sautet, P.; Raybaud, P.

    2011-01-01

    unambiguously that the diamagnetic TiO(2-3x)N2x system exhibits the enhanced optical absorption in N-doped TiO2 under visible-light irradiation. Electronic analysis further reveals a band gap narrowing of 0.6 eV induced by delocalized impurity states located

  4. Lattice defects in rutile, TiO2

    International Nuclear Information System (INIS)

    Nakagawa, M.; Itoh, H.; Nakanishi, S.; Kondo, K.; Okada, M.; Atobe, K.

    1991-01-01

    Rutile, TiO 2 , having a relatively high melting point exhibits strong optical absorption after neutron irradiation (8 x 10 16 n f /cm 2 ) at 15K. The band peak is located near 0.96 μ, having a FWHM of 0.87 eV (at liquid nitrogen temperature). After inverse recovery at 120K, lattice defects due probably to F centers are annealed out at about 220K. (author)

  5. Enhanced visible light photocatalytic properties of Fe-doped TiO2 nanorod clusters and monodispersed nanoparticles

    International Nuclear Information System (INIS)

    Liu, Y.; Wei, J.H.; Xiong, R.; Pan, C.X.; Shi, J.

    2011-01-01

    In order to get photocatalysts with desired morphologies and enhanced visible light responses, the Fe-doped TiO 2 nanorod clusters and monodispersed nanoparticles were prepared by modified hydrothermal and solvothermal method, respectively. The microstructures and morphologies of TiO 2 crystals can be controlled by restraining the hydrolytic reaction rates. The Fe-doped photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis absorption spectroscopy (UV-vis), N 2 adsorption-desorption measurement (BET), and photoluminescence spectroscopy (PL). The refinements of the microstructures and morphologies result in the enhancement of the specific surface areas. The Fe 3+ -dopants in TiO 2 lattices not only lead to the significantly extending of the optical responses from UV to visible region but also diminish the recombination rates of the electrons and holes. The photocatalytic activities were evaluated by photocatalytic decomposition of formaldehyde in air under visible light illumination. Compared with P25 (TiO 2 ) and N-doped TiO 2 nanoparticles, the Fe-doped photocatalysts show high photocatalytic activities under visible light.

  6. Photoluminescence studies on Eu doped TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Ningthoujam, R.S.; Sudarsan, V.; Vatsa, R.K.; Kadam, R.M.; Jagannath; Gupta, A.

    2009-01-01

    Eu 3+ doped TiO 2 nanoparticles were prepared by urea hydrolysis in ethylene glycol medium at low temperature of 150 deg. C. X-ray diffraction study showed that anatase phase of tetragonal structure was formed below 500 deg. C; and above this temperature, additional peaks due to rutile phase were also observed. From luminescence study, it was found that as prepared nanoparticles showed the enhanced luminescence intensity due to energy transfer from host to europium ions. However, photoluminescence from these nanoparticles was found to disappear when the samples were heated above 900 deg. C. We established the origin of the reduction in the luminescence intensity from Eu 3+ when doped in TiO 2 and heated at 900 deg. C. Based on detailed studies at different heat-treatment temperatures using techniques such as X-ray diffraction, X-ray photoelectron spectroscopy, electron paramagnetic resonance, Raman spectroscopy, and Moessbauer spectroscopy, it has been established that formation of Eu 2 Ti 2 O 7 phase, wherein Eu 3+ ions occupy high symmetric environment (D 3d ) and also reduced distance between Eu 3+ and Eu 3+ ions is responsible for the decrease/loss in the luminescence intensity.

  7. Electrochemically conductive treatment of TiO2 nanotube arrays in AlCl3 aqueous solution for supercapacitors

    Science.gov (United States)

    Zhong, Wenjie; Sang, Shangbin; Liu, Yingying; Wu, Qiumei; Liu, Kaiyu; Liu, Hongtao

    2015-10-01

    Highly ordered TiO2 nanotube arrays (NTAs) with excellent stability and large specific surface area make them competitive using as supercapacitor materials. Improving the conductivity of TiO2 is of great concern for the construction of high-performance supercapacitors. In this work, we developed a novel approach to improve the performance of TiO2 materials, involving the fabrication of Al-doped TiO2 NTAs by a simple electrochemical cathodic polarization treatment in AlCl3 aqueous solution. The prepared Al-doped TiO2 NTAs exhibited excellent electrochemical performances, attributing to the remarkably improved electrical conductivity (i.e., from approx. 10 kΩ to 20 Ω). Further analysis showed that Al3+ ions rather than H+ protons doped into TiO2 lattice cause this high conductivity. A MnO2/Al-TiO2 composite was evaluated by cyclic voltammetry, and achieved the specific capacitance of 544 F g-1, and the Ragone plot of the sample showed a high power density but less reduction of energy density. These results indicate that the MnO2/Al-TiO2 NTAs sample could be served as a promising electrode material for high -performance supercapacitors.

  8. Exciton confinement in strain-engineered metamorphic InAs/I nxG a1 -xAs quantum dots

    Science.gov (United States)

    Khattak, S. A.; Hayne, M.; Huang, J.; Vanacken, J.; Moshchalkov, V. V.; Seravalli, L.; Trevisi, G.; Frigeri, P.

    2017-11-01

    We report a comprehensive study of exciton confinement in self-assembled InAs quantum dots (QDs) in strain-engineered metamorphic I nxG a1 -xAs confining layers on GaAs using low-temperature magnetophotoluminescence. As the lattice mismatch (strain) between QDs and confining layers (CLs) increases from 4.8% to 5.7% the reduced mass of the exciton increases, but saturates at higher mismatches. At low QD-CL mismatch there is clear evidence of spillover of the exciton wave function due to small localization energies. This is suppressed as the In content x in the CLs decreases (mismatch and localization energy increasing). The combined effects of low effective mass and wave-function spillover at high x result in a diamagnetic shift coefficient that is an order of magnitude larger than for samples where In content in the barrier is low (mismatch is high and localization energy is large). Finally, an anomalously small measured Bohr radius in samples with the highest x is attributed to a combination of thermalization due to low localization energy, and its enhancement with magnetic field, a mechanism which results in small dots in the ensemble dominating the measured Bohr radius.

  9. Production and Characterization of (004) Oriented Single Anatase TiO2 Films

    Science.gov (United States)

    Atay, Ferhunde; Akyuz, Idris; Cergel, Muge Soyleyici; Erdogan, Banu

    2018-02-01

    Highly (004) oriented anatase TiO2 films have been successfully obtained by an inexpensive ultrasonic spray pyrolysis technique at low substrate temperatures and without additional annealing. X-ray diffraction analysis, ultraviolet-visible spectroscopy and field emission scanning electron microscopy were used to analyze the structural, optical and surface properties of the films. By using the less reported TiCl4 solution, the optical band gap values falling into the visible region (between 2.70 eV and 2.92 eV) have been obtained for all films. Spectroscopic ellipsometry technique has been used to determine the dispersive refractive index and extinction coefficient of TiO2 films. Possible electrical conduction mechanisms in TiO2 films have been examined using temperature dependent conductivity measurements in the temperature range of 78-300 K. At room temperature, electrical resistivity values of TiO2 films change between 1.68 × 104 Ω cm and 5.88 × 104 Ω cm. Considering the analyzed parameters with respect to substrate temperature, this work refers to the properties of anatase TiO2 films that are strongly correlated to the growth direction, namely (004). As a result, (004) oriented anatase TiO2 films with appropriate optical band gap values are promising materials for technological applications, especially for photocatalysts.

  10. Photo-electrocatalytic activity of TiO2 nanotubes prepared with two-step anodization and treated under UV light irradiation

    Directory of Open Access Journals (Sweden)

    Mohamad Mohsen Momeni

    2016-01-01

    Full Text Available To improve the photo-catalytic degradation of salicylic acid, we reported the fabrication of ordered TiO2 nanotube arrays by a simple and effective two-step anodization method and then these TiO2 nanotubes treated in a methanol solution under UV light irradiation. The TiO2 nanotubes prepared in the two-step anodization process showed better photo-catalytic activity than TiO2 nanotubes prepared in one-step anodization process. Also, compared with TiO2 nanotubes without the UV pretreatment, the TiO2 nanotubes pretreated in a methanol solution under UV light irradiation exhibited significant enhancements in both photocurrent and activity. The treated TiO2 nanotubes exhibited a 5-fold enhancement in photocurrent and a 2.5-fold increase in the photo-catalytic degradation of salicylic acid. Also the effect of addition of persulfate and periodate on the photo-catalytic degradation of salicylic acid were investigated. The results showed that the degradation efficiency of salicylic acid increased with increasing persulfate and periodate concentrations. These treated TiO2 nanotubes are promising candidates for practical photochemical reactors.

  11. Transparent nanostructured Fe-doped TiO2 thin films prepared by ultrasonic assisted spray pyrolysis technique

    Science.gov (United States)

    Rasoulnezhad, Hossein; Hosseinzadeh, Ghader; Ghasemian, Naser; Hosseinzadeh, Reza; Homayoun Keihan, Amir

    2018-05-01

    Nanostructured TiO2 and Fe-doped TiO2 thin films with high transparency were deposited on glass substrate through ultrasonic-assisted spray pyrolysis technique and were used in the visible light photocatalytic degradation of MB dye. The resulting thin films were characterized by scanning electron microscopy (SEM), Raman spectroscopy, photoluminescence spectroscopy, x-ray diffraction (XRD), and UV-visible absorption spectroscopy techniques. Based on Raman spectroscopy results, both of the TiO2 and Fe-doped TiO2 films have anatase crystal structure, however, because of the insertion of Fe in the structure of TiO2 some point defects and oxygen vacancies are formed in the Fe-doped TiO2 thin film. Presence of Fe in the structure of TiO2 decreases the band gap energy of TiO2 and also reduces the electron–hole recombination rate. Decreasing of the electron–hole recombination rate and band gap energy result in the enhancement of the visible light photocatalytic activity of the Fe-doped TiO2 thin film.

  12. Microwave dielectric properties of low-fired Li_2TiO_3–MgO ceramics for LTCC applications

    International Nuclear Information System (INIS)

    Ma, Jian-Li; Fu, Zhi-Fen; Liu, Peng; Wang, Bing; Li, Yang

    2016-01-01

    Graphical abstract: This figure gives the Q × f and τ_f of Li_2TiO_3–MgO ceramics sintered at various temperatures with different LiF contents. Addition of LiF enhanced the sinterability and optimized the microwave dielectric properties of Li_2TiO_3–MgO ceramics. The excellent microwave dielectric properties (ε_r = 15.8, Q × f = 64,500 GHz, and τ_f = −0.2 ppm/°C) of Li_2TiO_3–MgO ceramics sintered at 850 °C illustrated that LiF is a simple effective sintering aids for Li_2TiO_3–MgO ceramics. Such sample was compatible with Ag electrodes, suitable for the low-temperature co-fired ceramics (LTCC) applications. - Highlights: • Temperature stability of Li_2TiO_3 ceramics were improved by doping MgO. • The low-fired Li_2TiO_3–MgO ceramics are fabricated. • LiF liquid phase reduced sintering temperature of Li_2TiO_3–MgO ceramics to 850 °C. • The low-fired Li_2TiO_3–MgO ceramics possess well microwave dielectric properties. • The sample was compatible with Ag electrodes and suitable for LTCC applications. - Abstract: We fabricated the low-fired Li_2TiO_3–MgO ceramics doped with LiF by a conventional solid-state route, and investigated systematically their sintering characteristics, microstructures and microwave dielectric properties. The results showed that temperature stability of Li_2TiO_3 ceramics were improved by doping MgO. Well microwave dielectric properties for Li_2TiO_3–13 wt%MgO (LTM) ceramics with ε_r = 16.4, Q × f = 87,500 GHz, and τ_f = −1.2 ppm/°C were obtained at 1325 °C. Furthermore, addition of LiF enhanced the sinterability and optimized the microwave dielectric properties of LTM ceramics. A typically sample of LTM-4 wt%LiF ceramics with optimum dielectric properties (ε_r = 15.8, Q × f = 64,500 GHz, and τ_f = −0.2 ppm/°C) were achieved at 850 °C for 4 h. Such sample was compatible with Ag electrodes, suitable for the low-temperature co-fired ceramics (LTCC) applications.

  13. Preparation and performance of photocatalytic TiO2 immobilized on palladium-doped carbon fibers

    International Nuclear Information System (INIS)

    Zhu Yaofeng; Fu Yaqin; Ni Qingqing

    2011-01-01

    Pd-modified carbon fibers (CFs) are obtained by a facile oxidation-reduction method and then dip-coated in a sol-gel of titanium dioxide (TiO 2 ) to form supported TiO 2 /Pd-CF photocatalysts. The morphology of the Pd-modified CFs and the amount Pd deposited are characterized by field emission scanning electron microscopy and atomic absorption spectrometry, respectively. X-ray diffraction is used to investigate the crystal structures of the TiO 2 photocatalyst. Acid orange II is used as a model contaminant to evaluate the photocatalytic properties of the photocatalyst under UV irradiation. TiO 2 /Pd-CF exhibits higher catalytic activity than TiO 2 /CF towards the degradation of acid orange II. Optimum photocatalytic performance and support properties are achieved when the Pd particle loading is about 10.8 mg/g.

  14. Probing properties of the interfacial perimeter sites in TiO x /Au/SiO 2 with 2-propanol decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yi Y.; Kung, Harold H. (NWU)

    2017-11-01

    The decomposition of 2-propanol was studied over SiO2, SiO2 with an overlayer of TiO2 (Ti/SiO2), Au/SiO2, and Au/SiO2 with an overlayer of TiO2 (Ti/[Au/SiO2]) at 170–190 °C. There was no reaction on SiO2. Propene was the only product on Ti/SiO2, and its rate of formation increased proportionally with the Ti content. Acetone was the major product (selectivity 65–99%) on all Au-containing catalysts. Its rate of formation also increased with Ti loading. In addition, small amounts of propene were also formed on Ti/[Au/SiO2] the rate of which increased with Ti loading. Characterization of the catalysts with N2 adsorption, STEM, DR-UV-vis spectroscopy, XPS, XANES and EXAFS suggested that the Ti formed an amorphous TiO2 overlayer on the catalyst. At high Ti loadings (4–5 wt.%), there were patches of thick porous TiO2 layer, and some microdomains of crystalline TiO2 could be detected. Au was present as 1–3 nm nanoparticles on all catalysts, before and after used in reaction. Only Lewis acid sites were detected based on results from pyridine adsorption, and their quantities increased with Ti loading. Based on the comparison of reaction rates, the dependence of the kinetics on 2-propanol partial pressure, the apparent activation energies, and the effect of co-feeding O2 among different catalysts, it was concluded that propene was formed on the TiO2 overlayer, acetone was formed primarily at the Au-TiO2 interfacial perimeter sites, and α-C-H bond breaking preceding acetone formation was more facile on Au at the interfacial site than other surface Au atoms. Implication of these results to the selective acetone formation in the oxidation of propane in the presence of a O2/H2 mixture was discussed.

  15. Development of high dispersed TiO2 paste for transparent screen-printable self-cleaning coatings on glass

    International Nuclear Information System (INIS)

    Wang Yuanhao; Lu, Lin; Yang Hongxing; Che Quande

    2013-01-01

    This paper reports a cheap and facile method to fabricate transparent self-cleaning coatings on glass by screen-printing high dispersed TiO 2 paste. Three kinds of ZrO 2 beads with diameter of 2, 1, and 0.1–0.2 mm were utilized to investigate their influence on the grinding and dispersion of the commercial TiO 2 powder in the ball mill. From the SEM images, surface profiler and transmittance spectrum it could be demonstrated that the smallest ZrO 2 bead with the diameter of 0.1–0.2 mm was the best candidate to disperse the TiO 2 powder into nanoscale size to make the high dispersed TiO 2 paste which was the key factor to achieve a smooth, high transparent TiO 2 coating. The surface wettability measurement showed that all the screen-printed coatings had super hydrophilic surfaces, which was independent to the surface morphology. However, the coating with the highest transparency showed the lowest photocatalytic activity which is mainly due to the light loss.

  16. The investigation of photo-induced chemiluminescence on Co2+-doped TiO2 nanoparticles and its analytical application.

    Science.gov (United States)

    Li, Guixin; Nan, Hongyan; Zheng, Xingwang

    2009-07-01

    A novel space- and time-resolved photo-induced chemiluminescence (PICL) analytical method was developed based on the photocatalysis of the Co2+-doped TiO2 nanoparticles. The PICL reaction procedure under the photocatalysis of Co2+-doped TiO2 nanoparticles was investigated using cyclic voltammetry and potentiometry. Meanwhile, the effect of the electrical double layer outside the Co2+-doped TiO2 nanoparticles on the PICL was investigated by contrasting with the Co2+-doped TiO2-SiO2 core-shell nanoparticles. Significantly, the CL intensity increased apparently and the time of the CL was prolonged in the presence of procaterol hydrochloride because the mechanism of the enhanced PICL reaction may be modified. The route of the PICL was changed due to the participation of the procaterol hydrochloride enriched at the surface of the Co2+-doped TiO2-SiO2 in the PICL reaction, which prolonged the time of the CL reaction and resulted in the long-term PICL. The analytical characteristics of the proposed in-situ PICL method were investigated using the procaterol hydrochloride as the model analyte. The investigation results showed that this new PICL analytical method offered higher sensitivity to the analysis of the procaterol hydrochloride and the PICL intensity was linear with the concentration of the procaterol hydrochloride in the range from ca. 2.0 x 10(-10) to 1.0 x 10(-8) g mL(-1).

  17. Fabrication of hierarchically porous TiO2 nanofibers by microemulsion electrospinning and their application as anode material for lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Jin Zhang

    2017-06-01

    Full Text Available Titanium dioxide (TiO2 nanofibers have been widely applied in various fields including photocatalysis, energy storage and solar cells due to the advantages of low cost, high abundance and nontoxicity. However, the low conductivity of ions and bulk electrons hinder its rapid development in lithium-ion batteries (LIB. In order to improve the electrochemical performances of TiO2 nanomaterials as anode for LIB, hierarchically porous TiO2 nanofibers with different tetrabutyl titanate (TBT/paraffin oil ratios were prepared as anode for LIB via a versatile single-nozzle microemulsion electrospinning (ME-ES method followed by calcining. The experimental results indicated that TiO2 nanofibers with the higher TBT/paraffin oil ratio demonstrated more axially aligned channels and a larger specific surface area. Furthermore, they presented superior lithium-ion storage properties in terms of specific capacity, rate capability and cycling performance compared with solid TiO2 nanofibers for LIB. The initial discharge and charge capacity of porous TiO2 nanofibers with a TBT/paraffin oil ratio of 2.25 reached up to 634.72 and 390.42 mAh·g−1, thus resulting in a coulombic efficiency of 61.51%; and the discharge capacity maintained 264.56 mAh·g−1 after 100 cycles, which was much higher than that of solid TiO2 nanofibers. TiO2 nanofibers with TBT/paraffin oil ratio of 2.25 still obtained a high reversible capacity of 204.53 mAh·g−1 when current density returned back to 40 mA·g−1 after 60 cycles at increasing stepwise current density from 40 mA·g−1 to 800 mA·g−1. Herein, hierarchically porous TiO2 nanofibers have the potential to be applied as anode for lithium-ion batteries in practical applications.

  18. TiO 2 Thin Films Prepared via Adsorptive Self-Assembly for Self-Cleaning Applications

    KAUST Repository

    Xi, Baojuan

    2012-02-22

    Low-cost controllable solution-based processes for preparation of titanium oxide (TiO 2) thin films are highly desirable, because of many important applications of this oxide in catalytic decomposition of volatile organic compounds, advanced oxidation processes for wastewater and bactericidal treatments, self-cleaning window glass for green intelligent buildings, dye-sensitized solar cells, solid-state semiconductor metal-oxide solar cells, self-cleaning glass for photovoltaic devices, and general heterogeneous photocatalysis for fine chemicals etc. In this work, we develop a solution-based adsorptive self-assembly approach to fabricate anatase TiO 2 thin films on different glass substrates such as simple plane glass and patterned glass at variable compositions (normal soda lime glass or solar-grade borofloat glass). By tuning the number of process cycles (i.e., adsorption-then-heating) of TiO 2 colloidal suspension, we could facilely prepare large-area TiO 2 films at a desired thickness and with uniform crystallite morphology. Moreover, our as-prepared nanostructured TiO 2 thin films on glass substrates do not cause deterioration in optical transmission of glass; instead, they improve optical performance of commercial solar cells over a wide range of incident angles of light. Our as-prepared anatase TiO 2 thin films also display superhydrophilicity and excellent photocatalytic activity for self-cleaning application. For example, our investigation of photocatalytic degradation of methyl orange indicates that these thin films are indeed highly effective, in comparison to other commercial TiO 2 thin films under identical testing conditions. © 2012 American Chemical Society.

  19. Tuning metal support interactions enhances the activity and durability of TiO2-supported Pt nanocatalysts

    International Nuclear Information System (INIS)

    Hsieh, Bing-Jen; Tsai, Meng-Che; Pan, Chun-Jern; Su, Wei-Nien; Rick, John; Chou, Hung-Lung; Lee, Jyh-Fu; Hwang, Bing-Joe

    2017-01-01

    Highlights: • The coverage of TiO x on Pt can be modified by thermal and fluoric acid treatments. • Strong metal support interaction (SMSI) can be testified by electrochemical method. • For the first time, the SMSI effect is observed at 200 °C with supporting TEM images. • Increased activity and stability are attributed to stronger SMSI. • This tunable approach is valid for other oxide supported catalysts, e.g. Pt/Nb-TiO 2 . - Abstract: A facile approach to enhance catalytic activity and durability of TiO 2 -supported Pt nanocatalysts by tuning strong metal support interaction (SMSI) is investigated in this work. No need for a high temperature treatment, the strong metal-support interaction (SMSI) in TiO 2 -supported Pt can be induced at 200° C by H 2 reduction. Moreover, electrochemical methods (methanol oxidation reaction and cyclic voltammetry) are first reported ever to be effective characterization tools for the coverage state caused by SMSI. In addition, the SMSI has also been confirmed by X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and Transmission Electron Microscopy. It is found that the encapsulation of TiO 2-x species on the surface Pt clusters was induced and modified by thermal reduction and fluoric acid treatment. The catalytic activity and durability of the TiO 2 -supported Pt nanocatalysts are strongly dependent of the state of SMSI. The proposed SMSI-tunable approach to enhance the ORR activity and stability is also proved applicable to Pt/Ti 0.9 Nb 0.1 O 2 nanocatalysts. We believe that the reported approach paves the way for manipulating the activity and stability of other TiO 2 -supported metal nanocatalysts. Furthermore, the suggested electrochemical methods offer facile and effective ways to verify the presence of coverage state before combining with other physical analysis.

  20. The ML1Nx2 Phosphatidylinositol 3,5-Bisphosphate Probe Shows Poor Selectivity in Cells.

    Science.gov (United States)

    Hammond, Gerald R V; Takasuga, Shunsuke; Sasaki, Takehiko; Balla, Tamas

    2015-01-01

    Phosphatidylinositol (3,5)-bisphosphate (PtdIns(3,5)P2) is a quantitatively minor phospholipid in eukaryotic cells that plays a fundamental role in regulating endocytic membrane traffic. Despite its clear importance for cellular function and organism physiology, mechanistic details of its biology have so far not been fully elucidated. In part, this is due to a lack of experimental tools that specifically probe for PtdIns(3,5)P2 in cells to unambiguously identify its dynamics and site(s) of action. In this study, we have evaluated a recently reported PtdIns(3,5)P2 biosensor, GFP-ML1Nx2, for its veracity as such a probe. We report that, in live cells, the localization of this biosensor to sub-cellular compartments is largely independent of PtdIns(3,5)P2, as assessed after pharmacological, chemical genetic or genomic interventions that block the lipid's synthesis. We therefore conclude that it is unwise to interpret the localization of ML1Nx2 as a true and unbiased biosensor for PtdIns(3,5)P2.

  1. The effect of TiO2 nanocrystal shape on the electrical properties of poly(styrene-b-methyl methacrylate) block copolymer based nanocomposites for solar cell application

    International Nuclear Information System (INIS)

    Cano, Laida; Gutierrez, Junkal; Di Mauro, A. Evelyn; Curri, M. Lucia; Tercjak, Agnieszka

    2015-01-01

    Titanium dioxide (TiO 2 ) nanocrystals were synthesized into two shapes, namely spherical and rod-like and used for the fabrication of polystyrene-block-poly(methyl methacrylate) (PSMMA) block copolymer based nanocomposites, which were employed as the active top layer of electro-devices for solar cell application. Electro-devices were designed using nanocomposites with high TiO 2 nanocrystal contents (50-70 wt%) and for comparison as-synthesized TiO 2 nanospheres (TiO 2 NSs) and TiO 2 nanorods (TiO 2 NRs) were also used. The morphology of the electro-devices was studied by atomic force microscopy showing good nanocrystal dispersion. The electrical properties of the devices were investigated by PeakForce tunneling atomic force microscopy and Keithley semiconductor analyzer, which showed higher electrical current values for devices containing TiO 2 NRs in comparison to TiO 2 NSs. Remarkably, the influence of the PSMMA block copolymer on the improvement of the conductivity of the electro-devices was also assessed, demonstrating that the self-assembling ability of block copolymer can be beneficial to improve charge transfer in the fabricated electro-devices, thus representing relevant systems to be potentially developed for photovoltaic applications. Moreover, the absorbance of the prepared electro-devices in solar irradiation range was confirmed by UV–vis spectroscopy characterization.

  2. Formation of double-layered TiO2 structures with selectively-positioned molecular dyes for efficient flexible dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Kim, Eun Yi; Yu, Sora; Moon, Jeong Hoon; Yoo, Seon Mi; Kim, Chulhee; Kim, Hwan Kyu; Lee, Wan In

    2013-01-01

    Graphical abstract: A novel flexible tandem dye-sensitized solar cell, selectively loading different dyes in discrete layers, was successfully formed on a plastic substrate by transferring the high-temperature-processed N719/TiO 2 over an organic dye-adsorbed TiO 2 film by a typical compression process at room temperature. -- Highlights: • A novel flexible dye-sensitized solar cell, selectively loading two different dyes in discrete layers, was successfully formed on a plastic substrate. • η of the flexible tandem cell obtained by transferring the high-temperature-processed TiO 2 layer was enhanced from 2.91% to 6.86%. • Interface control between two TiO 2 layers is crucial for the efficient transport of photo-injected electrons from the top to bottom TiO 2 layer. -- Abstract: To fabricate flexible dye-sensitized solar cells (DSCs) utilizing full solar spectrum, the double-layered TiO 2 films, selectively loading two different dyes in discrete layers, were formed on a plastic substrate by transferring the high-temperature-processed N719/TiO 2 over an organic dye (TA-St-CA)-sensitized TiO 2 film by a typical compression process at room temperature. It was found that interface control between two TiO 2 layers is crucial for the efficient transport of photo-injected electrons from the N719/TiO 2 to the TA-St-CA/TiO 2 layer. Electron impedance spectra (EIS) and transient photoelectron spectroscopic analyses exhibited that introduction of a thin interfacial TiO 2 layer between the two TiO 2 layers remarkably decreased the resistance at the interface, while increasing the electron diffusion constant (D e ) by ∼10 times. As a result, the photovoltaic conversion efficiency (η) of the flexible tandem DSC was 6.64%, whereas that of the flexible cell derived from the single TA-St-CA/TiO 2 layer was only 2.98%. Another organic dye (HC-acid), absorbing a short wavelength region of solar spectrum, was also applied to fabricate flexible tandem DSC. The η of the cell

  3. Layer-by-layer assembled TiO2 films with high ultraviolet light-shielding property

    International Nuclear Information System (INIS)

    Li, Xiaozhou; Wang, Lin; Pei, Yuxin; Jiang, Jinqiang

    2014-01-01

    Ultraviolet (UV) B is hazardous to human, plants and animals. With the rapid growth of ozone holes over the earth, the exploration of optical materials that can cut off harmful UV radiation is important. In this work, fusiform TiO 2 nanoparticles were synthesized by a hydrothermal synthesis method. The thin films assembled with TiO 2 nanoparticles and oppositely charged polyelectrolytes were fabricated via a layer-by-layer assembly method. The fabrication of poly(ethylene imine) (PEI)/TiO 2 multilayer films was verified by ultraviolet–visible spectra measurements, scanning electron microscopy and atomic force microscopy. The as-prepared PEI/TiO 2 multilayer films can effectively absorb harmful UVB light and filter off visible light. Most importantly, the PEI/TiO 2 films can be deposited directly on various kinds of hydrophilic substrates such as quartz, glass, silicon and hydrophobic substrates such as polystyrene, polypropylene, polyethylene and polymethyl methacrylate when the hydrophilic substrates were modified to obtain a hydrophilic surface. - Highlights: • PEI/TiO 2 films were fabricated via a layer-by-layer self-assembly method. • The films could effectively absorb harmful UVB light and filter off visible light. • The films could deposit directly on either hydrophilic or hydrophobic substrates

  4. TiO2 Nanorods Decorated with Pd Nanoparticles for Enhanced Liquefied Petroleum Gas Sensing Performance.

    Science.gov (United States)

    Dhawale, Dattatray S; Gujar, Tanaji P; Lokhande, Chandrakant D

    2017-08-15

    Development of highly sensitive and selective semiconductor-based metal oxide sensor devices to detect toxic, explosive, flammable, and pollutant gases is still a challenging research topic. In the present work, we systematically enhanced the liquefied petroleum gas (LPG) sensing performance of chemical bath deposited TiO 2 nanorods by decorating Pd nanoparticle catalyst. Surface morphology with elemental mapping, crystal structure, composition and oxidation states, and surface area measurements of pristine TiO 2 and Pd:TiO 2 nanorods was examined by high resolution transmission electron microscopy with energy-dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and nitrogen adsorption-desorption characterization techniques. LPG sensing performance of pristine TiO 2 and Pd:TiO 2 nanorods was investigated in different LPG concentration and operating temperature ranges. The LPG response of 21% for pristine TiO 2 nanorods is enhanced to 49% after Pd catalyst decoration with reasonably fast response and recovery times. Further, the sensor exhibited long-term stability, which could be due to the strong metal support (Pd:TiO 2 ) interaction and catalytic properties offered by the Pd nanoparticle catalyst. The work described herein demonstrates a general and scalable approach that provides a promising route for rational design of variety of sensor devices for LPG detection.

  5. Synthesis, characterization and photocatalytic activity of Fe2O3-TiO2 nanoparticles and nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Ahmadi Golsefidi

    2016-01-01

    Full Text Available In this pepper Fe2O3 nanoparticles were synthesized via a fast microwave method. Then Fe2O3-TiO2 nanocomposites were synthesized by a sonochemical-assisted method. The prepared products were characterized by X-ray diffraction pattern, scanning electron microscopy and Fourier transform infrared spectroscopy. The photocatalytic behaviour of Fe2O3-TiO2 nanocomposites was evaluated using the degradation of Rhodamine B under ultra violet irradiation. The results show that nanocomposites have applicable magnetic and photocatalytic performance.

  6. New insights into the origin of visible-light photocatalytic activity in Se-modified anatase TiO2 from screened coulomb hybrid DFT calculations

    KAUST Repository

    Harb, Moussab

    2013-01-01

    ), TiO(2-x)Sex (containing Se2- species), and TiO(2-x)Se2x (containing Se2 2- species) reveal significant enhanced visible-light optical absorption spectra with new absorption features appearing at 500, 600, and 690 nm, respectively. Our calculated

  7. Fabrication of TiO2/PU Superhydrophobic Film by Nanoparticle Assisted Cast Micromolding Process.

    Science.gov (United States)

    Li, Jie; Zheng, Jianyong; Zhang, Jing; Feng, Jie

    2016-06-01

    Lotus-like surfaces have attracted great attentions in recent years for their wide applications in water repellency, anti-fog and self-cleaning. This paper introduced a novel process, nanoparticle assisted cast micromolding, to create polymer film with superhydrophobic surface. Briefly, waterborne polyurethane (WPU) sol and nano TiO2/WPU sol were each cast onto the featured surfaces of the poly(dimethylsiloxane) (PDMS) stamps replicated from fresh lotus leaves. After being dried and peeled off from the stamps, PU and TiO2/WPU replica films were created respectively. To the former, only high hydrophobic property was observed with static water contact angle (WCA) at 142.5 degrees. While to the later, superhydrophobic property was obtained with WCA more than 150 degrees and slide angle less than 3 degrees. Scanning electron microscopy (SEM) imaging showed that the PU replica film only had the micro-papillas and the TiO2/PU replica film not only had micro papillas but also had a large number of nano structures distributed on and between the micro-papillas. Such nano and micro hierarchical structures were very similar with those on the natural lotus leaf surface, thus was the main reason for causing superhydrophobic property. Although an elastic PDMS stamp from lotus leaf was used in herein process, hard molds may also be used in theory. This study supplied an alternative technique for large scale production of polymeric films with superhydrophobic.

  8. Synthesis of reduced graphene oxide-anatase TiO2 nanocomposite and its improved photo-induced charge transfer properties.

    Science.gov (United States)

    Wang, Ping; Zhai, Yueming; Wang, Dejun; Dong, Shaojun

    2011-04-01

    The construction of reduced graphene oxide or graphene oxide with semiconductor has gained more and more attention due to its unexpected optoelectronic and electronic properties. The synthesis of reduced graphene oxide (RGO) or graphene oxide-semiconductor nanocomposite with well-dispersed decorated particles is still a challenge now. Herein, we demonstrate a facile method for the synthesis of graphene oxide-amorphous TiO(2) and reduced graphene oxide-anatase TiO(2) nanocomposites with well-dispersed particles. The as-synthesized samples were characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, UV-Vis absorption spectroscopy, Fourier transform infrared spectrometry, and thermogravimetric analysis. The photovoltaic properties of RGO-anatase TiO(2) were also compared with that of similar sized anatase TiO(2) by transient photovoltage technique, and it was interesting to find that the combination of reduced graphene oxide with anatase TiO(2) will significantly increase the photovoltaic response and retard the recombination of electron-hole pairs in the excited anatase TiO(2).

  9. DSC, Raman and impedance spectroscopy studies on the xB2O3 - (90 - x)TeO2 - 10TiO2 (where x = 0 to 50 mol%) glass system

    Science.gov (United States)

    Sripada, Suresh; Rani, D. Esther Kalpana; Upender, G.; Pavani, P. Gayathri

    2013-03-01

    Titanium boro tellurite glasses in the xB2O3 -(90- x) TeO2 - 10TiO2 (where x = 0 to 50 mol%) system were prepared by using the conventional melt-quenching technique. Glass transition temperatures were measured with differential scanning calorimetry (DSC) and found to be in the range of 300-370 °C. The Raman spectra showed a cleavage of the continuous TeO4 (tbp) network by breaking of the Te-O-Te linkages. The relative transition of TeO4 - groups to TeO3 - groups is accompanied by a change in the oxygen coordination of the boron from 3 to 4 (BO3 - to BO4 -). The impedance plots Z″( ω) versus Z'( ω) for all the glass samples were recorded and found to exhibit a single circle. The AC conductivity of all glass samples was studied in the frequency range from 100 Hz to 1 MHz and in the temperature range from room temperature (RT) to 375 °C. The AC conductivity decreased by about one order in magnitude with increasing B2O3 content. The conductivity was found to be on the order of 10-4.5 to 10-6 (Ωcm)-1 at 375 °C and 1 MHz for 10 mol% and 50 mol% B2O3 contents, respectively. The relaxation behavior in these glass samples is discussed based on the complex modulus and impedance data.

  10. Visible-light photocatalytic performances of TiO2 nanoparticles modified by trace derivatives of PVA

    Directory of Open Access Journals (Sweden)

    Le SHI

    2016-10-01

    Full Text Available In order to study the visible-light photocatalytic activity and catalysis stability of nanocomposites, a TiO2-based visible-light photocatalyst is prepared by surface-modification of TiO2 nanoparticles using trace conjugated derivatives from polyvinyl alcohol (DPVA via a facile method. The obtained DPVA/TiO2 nanocomposites are characterized by X-ray diffraction (XRD, Fourier transform infrared Spectra (FT-IR, scanning electron microscopy (SEM, UV-vis diffuse reflection spectroscopy (DRS, and X-ray photoelectron spectroscopy (XPS. With Rhodamine B (RhB as a model pollutant, the visible-light photocatalytic activity and stability of DPVA/TiO2 nanocomposites are investigated by evaluating the RhB decomposition under visible light irradiation. The results reveal that the trace conjugated polymers on the TiO2 surface doesn’t change the crystalline and crystal size of TiO2 nanoparticles, but significantly enhances their visible-light absorbance and visible-light photocatalytic activity. The nanocomposite with the PVA and TiO2 mass ratio of 1∶200 exhibits the highest visible-light photocatalytic activity. The investigated nanocomposites exhibit well visible-light photoctatalytic stability. The photogenerated holes are thought as the main active species for the RhB photodegradation in the presence of the DPVA/TiO2 nanocomposites.

  11. Biomimetic Water-Collecting Fabric with Light-Induced Superhydrophilic Bumps.

    Science.gov (United States)

    Wang, Yuanfeng; Wang, Xiaowen; Lai, Chuilin; Hu, Huawen; Kong, Yeeyee; Fei, Bin; Xin, John H

    2016-02-10

    To develop an efficient water-collecting surface that integrates both fast water-capturing and easy drainage properties is of high current interest for addressing global water issues. In this work, a superhydrophobic surface was fabricated on cotton fabric via manipulation of both the surface roughness and surface energy. This was followed by a subsequent spray coating of TiO2 nanosol that created light-induced superhydrophilic bumps with a unique raised structure as a result of the interfacial tension of the TiO2 nanosol sprayed on the superhydrophobic fiber surface. These raised TiO2 bumps induce both a wettability gradient and a shape gradient, synergistically accelerating water coalescence and water collection. The in-depth study revealed that the quantity and the distribution of the TiO2 had a significant impact on the final water collection efficiency. This inexpensive and facilely fabricated fabric biomimicks the desert beetle's back and spider silk, which are capable of fog harvesting without additional energy consumption.

  12. TiO2 and Cu/TiO2 Thin Films Prepared by SPT

    Directory of Open Access Journals (Sweden)

    S. S. Roy

    2015-12-01

    Full Text Available Titanium oxide (TiO2 and copper (Cu doped titanium oxide (Cu/TiO2 thin films have been prepared by spray pyrolysis technique. Titanium chloride (TiCl4 and copper acetate (Cu(CH3COO2.H2O were used as source of Ti and Cu. The doping concentration of Cu was varied from 1-10 wt. %. The X-ray diffraction studies show that TiO2 thin films are tetragonal structure and Cu/TiO2 thin films implies CuO has present with monoclinic structure. The optical properties of the TiO2 thin films have been investigated as a function of Cu-doping level. The optical transmission of the thin films was found to increase from 88 % to 94 % with the addition of Cu up to 8 % and then decreases for higher percentage of Cu doping. The optical band gap (Eg for pure TiO2 thin film is found to be 3.40 eV. Due to Cu doping, the band gap is shifted to lower energies and then increases further with increasing the concentration of Cu. The refractive index of the TiO2 thin films is found to be 2.58 and the variation of refractive index is observed due to Cu doped. The room temperature resistivity of the films decreases with increasing Cu doping and is found to be 27.50 - 23.76 W·cm. It is evident from the present study that the Cu doping promoted the thin film morphology and thereby it is aspect for various applications.

  13. The influence of alizarin and fluorescein on the photoactivity of Ni, Pt and Ru-doped TiO2 layers

    International Nuclear Information System (INIS)

    Rosu, Marcela-Corina; Suciu, Ramona-Crina; Lazar, Mihaela D.; Bratu, I.

    2013-01-01

    Highlights: ► The Ni, Pt, Ru-doped TiO 2 materials and sensitized with alizarin and fluorescein dyes were prepared by wet chemical route. ► The samples were characterized by: UV–vis spectroscopy, spectrofluorimetry, FT/IR spectroscopy and microscopy, X-ray diffraction and N 2 physisorption measurements. ► A combined influence of the dopants and dyes was observed, leading to a beneficial effect to TiO 2 photoactivity. -- Abstract: The doping with different metal ions and sensitization with organic compounds are two well known methods used to improve the photoactivity of TiO 2 . In this respect, the metallic ions-doped TiO 2 samples were prepared by embedding Ni, Pt and Ru ions into TiO 2 crystalline network and then, each sample was sensitized with alizarin and fluorescein dyes. The qualitative evaluation of prepared TiO 2 -based materials was made by: UV–vis spectroscopy, spectrofluorimetry, FT/IR spectroscopy and microscopy, X-ray diffraction and N 2 physisorption measurements. The optoelectronic properties investigated by UV–vis spectroscopy show that the optical response of Ni-doped TiO 2 layer shifts to visible. The X-ray spectra do not show peaks of nickel, platinum and ruthenium oxide crystals or pure metals. The FT/IR spectra proved the presence of dye molecules adsorbed on titania nanoparticles surface. These results demonstrated that the studied dopants and dyes have potential to promote modified TiO 2 -based materials as good candidates to be used in photolectrocatalytic processes

  14. Facile synthesis of high-temperature (1000 °C) phase-stable rice-like anatase TiO2 nanocrystals

    Science.gov (United States)

    Lv, Lizhen; Chen, Qirong; Liu, Xiuyun; Wang, Miaomiao; Meng, Xiangfu

    2015-05-01

    High-temperature phase-stable rice-like anatase TiO2 nanocrystals were synthesized by one-pot solvothermal method using soluble titania xerogel and isopropyl alcohol (IPA) as the precursor and the solvent, respectively. Sample characterization was carried out by powder X-ray diffraction, high-resolution transmission electron microscopy, field emission scanning electron microscope, X-ray photoelectron spectroscopy, and N2 adsorption-desorption isotherms. The results showed that TiO2 nanocrystals had rice-like shapes with an average size of 5 nm in width and 35 nm in length. The BET surface area was 153 m2/g. Unexpectedly, the rice-like TiO2 nanocrystals exhibited high-temperature phase stability, which could remain as pure anatase phase after calcinations at 1000 °C. Growth mechanism investigation revealed that the IPA solvent played a key role in nucleation and growth of rice-like anatase TiO2 nanocrystals. The photodegradation of rhodamine B demonstrated that rice-like anatase TiO2 nanocrystals exhibited enhanced photocatalytic activity under visible light irradiation.

  15. Optimized monolayer grafting of 3-aminopropyltriethoxysilane onto amorphous, anatase and rutile TiO 2

    Science.gov (United States)

    Song, Yan-Yan; Hildebrand, Helga; Schmuki, Patrik

    2010-02-01

    Experimental conditions were studied for optimized attachment of 3-aminopropyltriethoxysilane (APTES) onto amorphous, anatase and rutile titanium dioxide (TiO 2) surfaces. The attachment process and extent was characterized using X-ray photoelectron spectroscopy (XPS). In particular, the effect of attachment time, silane concentration, reaction temperature and the TiO 2 crystalline structure on the growth kinetics of the silane layers was studied. The measurements reveal that typically monolayers are more dense on amorphous than on crystalline TiO 2. The results show that critical experimental conditions exist where APTES attachment to the TiO 2 surface changes from a monolayer to a multilayer growth mode. The obtained results and parameters to produce optimized APTES layers are of a high practical relevance as APTES attachment often constitutes the initial step for organic modification of TiO 2 surface with biorelevant molecules such as proteins, enzymes or growth factors.

  16. Hydrothermal synthesis of Fe-doped TiO2 nanostructure photocatalyst

    International Nuclear Information System (INIS)

    Nguyen, Van Nghia; Nguyen, Ngoc Khoa Truong; Nguyen, Phi Hung

    2011-01-01

    Fe-doped TiO 2 catalyst was prepared by the hydrothermal method. The resulting nanopowders were characterized by x-ray diffraction, transmission electron microscopy and Raman and UV-visible spectroscopies. The photocatalytic activity of the Fe-doped TiO 2 was tested by decomposition of methylene orange with a concentration of 10 mg l −1 in aqueous solution. The obtained results showed that methylene orange was significantly degraded after irradiation for 90 min under a halogen lamp and sunlight. The doping effect on the photocatalytic activity of the iron-doped catalyst samples are discussed

  17. The TiO2 Refraction Film for CsI Scintillator

    OpenAIRE

    C. C. Chen; C. W. Hun; C. J. Wang; C. Y. Chen; J. S. Lin; K. J. Huang

    2015-01-01

    Cesium iodide (CsI) melt was injected into anodic aluminum oxide (AAO) template and was solidified to CsI column. The controllable AAO channel size (10~500 nm) can makes CsI column size from 10 to 500 nm in diameter. In order to have a shorter light irradiate from each singe CsI column top to bottom the AAO template was coated a TiO2 nano-film. The TiO2 film acts a refraction film and makes X-ray has a shorter irradiation path in the CsI crystal making a stronger the photo-electron signal. Wh...

  18. An ingenious strategy of preparing TiO2/g-C3N4 heterojunction photocatalyst: In situ growth of TiO2 nanocrystals on g-C3N4 nanosheets via impregnation-calcination method

    Science.gov (United States)

    Zhang, Guanghui; Zhang, Tianyong; Li, Bin; Jiang, Shuang; Zhang, Xia; Hai, Li; Chen, Xingwei; Wu, Wubin

    2018-03-01

    An ingenious method was employed to design and fabricate the TiO2/g-C3N4 heterojunction photocatalysts in this study. The thermal oxidation etching of g-C3N4 nanosheets and the in situ growth of TiO2 nanocrystal on the surface of g-C3N4 nanosheets were completed simultaneously by the calcination process. The g-C3N4 nanosheets played a crucial role in regulating and assembling the structures and morphologies of TiO2. Furthermore, the thickness and content of g-C3N4, and the crystallinity of TiO2 in TiO2/g-C3N4 composites could be regulated and controlled by the calcination temperature. Among the resultant TiO2/g-C3N4 samples, the TiO2/g-C3N4 sample with 41.6 wt% g-C3N4 exhibited the highest photocatalytic activity. It could degrade almost all MO molecules under visible light irradiation within 3 h. Moreover, it displayed higher visible light photocatalytic performance for degrading MO solution than pure g-C3N4 and D-TiO2. The synergistic effect between TiO2 and g-C3N4 makes significant contributions to the enhancement of the visible light photocatalytic activity. In addition, the favorable photocatalytic performance of TiO2/g-C3N4 nanocomposites is also attributed to the porous structures and uniform morphologies, and large surface area. Furthermore, the resultant TiO2/g-C3N4 exhibits excellent photocatalytic stability. Radical trapping experiments indicated that rad O2- and h+ were the main reactive species during the photodegradation process under visible light irradiation. Hopefully, the results can offer new design and strategy for preparing other g-C3N4-based nanocomposites for environmental and energy applications.

  19. Low-cost fabrication of highly sensitive room temperature hydrogen sensor based on ordered mesoporous Co-doped TiO2 structure

    Science.gov (United States)

    Li, Zhong; Haidry, Azhar Ali; Wang, Tao; Yao, Zheng Jun

    2017-07-01

    The development of cost-effective gas sensors with improved sensing properties and minimum power consumption for room temperature hydrogen leakage monitoring is in increasing demand. In this context, this report focus on the facile fabrication of ordered mesoporous TiO2 via evaporation-induced self-assembly route. With the controlled doping threshold (3%Co-TiO2), the output resistance change to 1000 ppm H2 is ˜4.1 × 103 with the response time of 66 s. The sensor response exhibits power law dependence with an increase in the hydrogen concentration, where the power law coefficient was found not only specific to the kind of target gas but also related to temperature. Further, the effect of structure integrity with doping level and humidity on sensing characteristics is interpreted in terms of variation in surface potential eVS and depletion region w caused by the adsorption of molecular oxygen O2-.

  20. Visible Light Irradiation-Mediated Drug Elution Activity of Nitrogen-Doped TiO2 Nano tubes

    International Nuclear Information System (INIS)

    Oh, S.; Moon, K.S.; Bae, J.M.; Moon, J.H.; Jin, S.

    2013-01-01

    We have developed nitrogen-doped TiO 2 nano tubes showing photo catalytic activity in the visible light region and have investigated the triggered release of antibiotics from these nano tubes in response to remote visible light irradiation. Scanning electron microscopy (SEM) observations indicated that the structure of TiO 2 nano tubes was not destroyed on the conditions of 0.05 and 0.1 M diethanolamine treatment. The results of X-ray photoelectron spectroscopy (XPS) confirmed that nitrogen, in the forms of nitrite (TiO 2 ) and nitrogen monoxide (NO), had been incorporated into the TiO 2 nano tube surface. A drug-release test revealed that the antibiotic-loaded TiO 2 nano tubes showed sustained and prolonged drug elution with the help of polylactic acid. Visible light irradiation tests showed that the antibiotic release from nitrogen-doped nano tubes was significantly higher than that from pure TiO 2 nano tubes (ρ ≨ 0.05).