WorldWideScience

Sample records for fabricate test maintain

  1. Optimal fit of chairside-fabricated distal shoe space maintainer.

    Science.gov (United States)

    Nouri, M R; Kennedy, D B

    2013-10-01

    Premature loss of a primary second molar may lead to space loss in the dental arch. This space loss tends to be more severe in unfavourable malocclusions. The distal shoe space maintainer (DSSM) may be beneficial in controlling the path of eruption of an unerupted permanent first molar from the primary into the early mixed dentition. This article describes the technique for achieving optimal fit of a chairside-fabricated band and DSSM in a single visit by contouring the distal shoe blade, and by extending it to the mesial surface of the permanent first molar. Upon the eruption of the permanent first molar DSSM may be modified to a reverse band-and-loop, or replaced by a lingual holding arch.

  2. The distal shoe space maintainer chairside fabrication and clinical performance.

    Science.gov (United States)

    Brill, Warren A

    2002-01-01

    The chairside-fabricated distal shoe appliance, with a stainless steel crown as the retainer, is an efficacious and cost-effective appliance for guiding the unerupted permanent first molar into position after premature loss or extraction of the second primary molar. The fabrication technique is illustrated in this case report and data is presented on the success rate of the appliance.

  3. Stirling Microregenerators Fabricated and Tested

    Science.gov (United States)

    Moran, Matthew E.

    2004-01-01

    A mesoscale Stirling refrigerator patented by the NASA Glenn Research Center is currently under development. This refrigerator has a predicted efficiency of 30 percent of Carnot and potential uses in electronics, sensors, optical and radiofrequency systems, microarrays, and microsystems. The mesoscale Stirling refrigerator is most suited to volume-limited applications that require cooling below the ambient or sink temperature. Primary components of the planar device include two diaphragm actuators that replace the pistons found in traditional-scale Stirling machines and a microregenerator that stores and releases thermal energy to the working gas during the Stirling cycle. Diaphragms are used to eliminate frictional losses and bypass leakage concerns associated with pistons, while permitting reversal of the hot and cold sides of the device during operation to allow precise temperature control. Three candidate microregenerators were fabricated under NASA grants for initial evaluation: two constructed of porous ceramic, which were fabricated by Johns Hopkins Applied Physics Laboratory, and one made of multiple layers of nickel and photoresist, which was fabricated by Polar Thermal Technologies. The candidate regenerators are being tested by Johns Hopkins Applied Physics in a custom piezoelectric-actuated test apparatus designed to produce the Stirling refrigeration cycle. In parallel with the regenerator testing, Johns Hopkins is using deep reactive ion etching to fabricate electrostatically driven, comb-drive diaphragm actuators. These actuators will drive the Stirling cycle in the prototype device. The top photograph shows the porous ceramic microregenerators. Two microregenerators were fabricated with coarse pores and two with fine pores. The bottom photograph shows the test apparatus parts for evaluating the microregenerators, including the layered nickel-and-photoresist regenerator fabricated using LIGA techniques.

  4. Diffractive optics: design, fabrication, and test

    National Research Council Canada - National Science Library

    O'Shea, Donald C

    2004-01-01

    This book provides the reader with the broad range of materials that were discussed in a series of short courses presented at Georgia Tech on the design, fabrication, and testing of diffractive optical elements (DOEs...

  5. MITG test assembly design and fabrication

    International Nuclear Information System (INIS)

    Schock, A.

    1983-01-01

    The design, analysis, and evaluation of the Modular Isotopic Thermoelectric Generator (MITG), described in an earlier paper, led to a program to build and test prototypical, modules of that generator. Each test module duplicates the thermoelectric converters, thermal insulation, housing and radiator fins of a typical generator slice, and simulates its isotope heat source module by means of an electrical heater encased in a prototypical graphite box. Once the approx. 20-watt MITG module has been developed, it can be assembled in appropriate number to form a generator design yielding the desired power output. The present paper describes the design and fabrication of the MITG test assembly, which confirmed the fabricability of the multicouples and interleaved multifoil insulation called for by the design. Test plans, procedures, instrumentation, results, and post-test analyses, as well as revised designs, fabrication procedures, and performance estimates, are described in subsequent papers in these proceedings

  6. Reliability and maintainability data acquisition in equipment development tests

    International Nuclear Information System (INIS)

    Haire, M.J.; Gift, E.H.

    1983-10-01

    The need for collection of reliability, maintainability, and availability data adds a new dimension to the data acquisition requirements of equipment development tests. This report describes the reliability and maintainability data that are considered necessary to ensure that sufficient and high quality data exist for a comprehensive, quantitative evaluation of equipment and system availability. These necessary data are presented as a set of data collection forms. Three data acquisition forms are discussed: an inventory and technical data form, which is filed by the design engineer when the design is finished or the equipment is received; an event report form, which is completed by the senior test operator at each shutdown; and a maintainability report, which is a collaborative effort between senior operators and lead engineers and is completed on restart. In addition, elements of a reliability, maintainability evaluation program are described. Emphasis is placed on the role of data, its storage, and use in such a program

  7. Crashworthy airframe design concepts: Fabrication and testing

    Science.gov (United States)

    Cronkhite, J. D.; Berry, V. L.

    1982-01-01

    Crashworthy floor concepts applicable to general aviation aircraft metal airframe structures were investigated. Initially several energy absorbing lower fuselage structure concepts were evaluated. Full scale floor sections representative of a twin engine, general aviation airplane lower fuselage structure were designed and fabricated. The floors featured an upper high strength platform with an energy absorbing, crushable structure underneath. Eighteen floors were fabricated that incorporated five different crushable subfloor concepts. The floors were then evaluated through static and dynamic testing. Computer programs NASTRAN and KRASH were used for the static and dynamic analysis of the floor section designs. Two twin engine airplane fuselages were modified to incorporate the most promising crashworthy floor sections for test evaluation.

  8. New system for wiggler fabrication and testing

    International Nuclear Information System (INIS)

    Warren, R.W.; Elliott, C.J.

    1988-01-01

    A system approach is taken for fabrication and testing of wigglers for free-electron lasers. Emphasis is placed on convenient, practical, assembly procedures that produce wigglers with high fields, two-plane focusing, and facilities for in-place adjustments. Equal emphasis is placed on rapid and precise techniques for measuring field errors, both before final assembly and afterward, during wiggler operation. (author). 10 refs, 12 figs

  9. Fabrication and test of a superconducting RFQ

    International Nuclear Information System (INIS)

    Jain, A.; Wang, H.; Ben-Zvi, I.; Paul, P.; Noe, J.W.; Lombardi, A.

    1992-01-01

    The fabrication and first performance tests of a prototype superconducting radio-frequency quadrupole resonator (SRFQ) are described. The SRFQ operates at 57 MHz and is optimized for a particle velocity of β = 0.033. It is constructed of copper electroplated with a lead-tin alloy. An accelerating field gradient of 1.25 MV/m was achieved with about 7 watts of helium dissipation. This corresponds to an energy gain of 700 keV per unit charge over the 56 cm overall diameter of the resonator

  10. Nuclear Fuel Test Rod Fabrication for Data Acquisition Test

    International Nuclear Information System (INIS)

    Joung, Chang-Young; Hong, Jin-Tae; Kim, Ka-Hye; Huh, Sung-Ho

    2014-01-01

    A nuclear fuel test rod must be fabricated with precise welding and assembly technologies, and confirmed for their soundness. Recently, we have developed various kinds of processing systems such as an orbital TIG welding system, a fiber laser welding system, an automated drilling system and a helium leak analyzer, which are able to fabricate the nuclear fuel test rods and rigs, and keep inspection systems to confirm the soundness of the nuclear fuel test rods and rids. The orbital TIG welding system can be used with two kinds of welding methods. One can perform the round welding for end-caps of a nuclear fuel test rod by an orbital head mounted in a low-pressure chamber. The other can do spot welding for a pin-hole of a nuclear fuel test rod in a high-pressure chamber to fill up helium gas of high pressure. The fiber laser welding system can weld cylindrical and 3 axis samples such as parts of a nuclear fuel test rod and instrumentation sensors which is moved by an index chuck and a 3 axis (X, Y, Z) servo stage controlled by the CNC program. To measure the real-time temperature change at the center of the nuclear fuel during the irradiation test, a thermocouple should be instrumented at that position. Therefore, a hole needs to be made at the center of fuel pellet to instrument the thermocouple. An automated drilling system can drill a fine hole into a fuel pellet without changing tools or breaking the work-piece. The helium leak analyzer (ASM-380 model of DEIXEN Co.) can check the leak of the nuclear fuel test rod filled with helium gas. This paper describes not only the assembly and fabrication methods used by the process systems, but also the results of the data acquisition test for the nuclear fuel test rod. A nuclear fuel test rod for the data acquisition test was fabricated using the welding and assembling echnologies acquired from previous tests

  11. Nuclear Fuel Test Rod Fabrication for Data Acquisition Test

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Chang-Young; Hong, Jin-Tae; Kim, Ka-Hye; Huh, Sung-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    A nuclear fuel test rod must be fabricated with precise welding and assembly technologies, and confirmed for their soundness. Recently, we have developed various kinds of processing systems such as an orbital TIG welding system, a fiber laser welding system, an automated drilling system and a helium leak analyzer, which are able to fabricate the nuclear fuel test rods and rigs, and keep inspection systems to confirm the soundness of the nuclear fuel test rods and rids. The orbital TIG welding system can be used with two kinds of welding methods. One can perform the round welding for end-caps of a nuclear fuel test rod by an orbital head mounted in a low-pressure chamber. The other can do spot welding for a pin-hole of a nuclear fuel test rod in a high-pressure chamber to fill up helium gas of high pressure. The fiber laser welding system can weld cylindrical and 3 axis samples such as parts of a nuclear fuel test rod and instrumentation sensors which is moved by an index chuck and a 3 axis (X, Y, Z) servo stage controlled by the CNC program. To measure the real-time temperature change at the center of the nuclear fuel during the irradiation test, a thermocouple should be instrumented at that position. Therefore, a hole needs to be made at the center of fuel pellet to instrument the thermocouple. An automated drilling system can drill a fine hole into a fuel pellet without changing tools or breaking the work-piece. The helium leak analyzer (ASM-380 model of DEIXEN Co.) can check the leak of the nuclear fuel test rod filled with helium gas. This paper describes not only the assembly and fabrication methods used by the process systems, but also the results of the data acquisition test for the nuclear fuel test rod. A nuclear fuel test rod for the data acquisition test was fabricated using the welding and assembling echnologies acquired from previous tests.

  12. Fabrication and characterization of absorber pellets for FFTF irradiation testing

    International Nuclear Information System (INIS)

    Wilson, C.N.; Hollenberg, G.W.

    1981-01-01

    Methods used for characterization of B 4 C powder and fabricated pellets are summarized. Fabrication techniques used at HEDL for absorber test pellets are reviewed and selected powder and pellet characterization data are presented

  13. Fabrication of corneal epithelial cell sheets maintaining colony-forming cells without feeder cells by oxygen-controlled method.

    Science.gov (United States)

    Nakajima, Ryota; Takeda, Shizu

    2014-01-01

    The use of murine 3T3 feeder cells needs to be avoided when fabricating corneal epithelial cell sheets for use in treating ocular surface diseases. However, the expression level of the epithelial stem/progenitor cell marker, p63, is down-regulated in feeder-free culture systems. In this study, in order to fabricate corneal epithelial cell sheets that maintain colony-forming cells without using any feeder cells, we investigated the use of an oxygen-controlled method that was developed previously to fabricate cell sheets efficiently. Rabbit limbal epithelial cells were cultured under hypoxia (1-10% O2) and under normoxia during stratification after reaching confluence. Multilayered corneal epithelial cell sheets were fabricated using an oxygen-controlled method, and immunofluorescence analysis showed that cytokeratin 3 and p63 was expressed in appropriate localization in the cell sheets. The colony-forming efficiency of the cell sheets fabricated by the oxygen-controlled method without feeder cells was significantly higher than that of cell sheets fabricated under 20% O2 without feeder cells. These results indicate that the oxygen-controlled method has the potential to achieve a feeder-free culture system for fabricating corneal epithelial cell sheets for corneal regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. ENSTAR detector: fabrication and test measurement

    International Nuclear Information System (INIS)

    Shukla, P.; Jha, V.; Roy, B.J.; Chatterjee, A.; Machner, H.; Biswas, P.K.; Guha, S.; Jawale, S.B.; Panse, H.B.; Balasubramanian, R.

    2003-07-01

    A large acceptance plastic scintillator detector ENSTAR has been designed and built at BARC, Mumbai. The detector will be used for studies of a new type of nuclear matter- the η-mesic nucleus, at the multi-GeV hadron facility COSY (COoler SYnchrotron), Juelich, Germany. The ENSTAR design has been optimized for detecting decay products of eta-nucleus bound state (η-mesic nucleus), namely protons and pions. However, it can also be used in other experiments whereever missing mass determination in a reaction has to be done in coincidence with decay products. The detector is made of plastic scintillators arranged in three concentric cylindrical layers. These layers will be used to generate ΔE - E spectra for particle identification and total energy information for the stopped particles. Each layer is sub-divided into a number of pieces to obtain θ and φ information. The scintillator read-out is made through state-of-the-art fiber optic technique. The present report describes fabrication details such as machining the scintillators, polishing the scintillators and the fibers and coupling the fibers with scintillators and photomultiplier tubes. Test measurements have been performed with proton beam from the COSY accelerator at Juelich, the results of which are reported. (author)

  15. Sandia National Laboratories: Fabrication, Testing and Validation

    Science.gov (United States)

    digital and analog elements. * Cadence Process-Design Kit. Structured ASIC Sandia National Laboratories demonstrate complex multilevel devices such as micro-mass-analysis systems up to 25 microns thick and novel possible to fabricate a wide very large variety of useful devices. Micro-Mass-Analysis Systems Applications

  16. Application of CAD-CAM for Fabrication of Metal-Free Band and Loop Space Maintainer.

    Science.gov (United States)

    Soni, Harleen Kaur

    2017-02-01

    An ideal occlusion with proper tooth alignment and fully functional teeth is the ultimate goal of all dental treatments. Premature extraction of deciduous teeth is a common sequeale of untreated dental caries in teeth in which the damage is far beyond repair. Premature extraction might lead to loss of space for the successor tooth, drifting of teeth and loss of arch integrity leading to malocclusion in the permanent teeth. To prevent the space loss, space maintainers are designed and delivered at the time of extraction to allow for development of proper functional occlusion in children till the eruption of the succedaneous permanent tooth. A six-year-old female patient with chronic intra-radicular abscess in upper right first primary molar was treated with extraction followed by the placement of BruxZir zirconia space maintainer. Clinical and radiographic examinations were performed at one and six months. At the end of six months, the patient was completely asymptomatic and there were no visible signs of gingival inflammation and tissue irritation at the site of the space maintainer.

  17. Start up testing for the secure automated fabrication line

    International Nuclear Information System (INIS)

    Gerber, E.W.; Benson, E.M.; Dahl, R.E.

    1987-01-01

    The secure automated fabrication (SAF) line is a remotely operated, liquid metal reactor fuel fabrication process being built by Westinghouse Hanford Company for the Department of Energy. All process and control equipment is installed and start up testing has been initiated. Start up testing is comprised of five phases, each incorporating higher degrees of equipment integration, automation, and remote control. Testing methodology for SAF line start up is described in this report

  18. Stable Dual-Wavelength Fibre Laser with Bragg Gratings Fabricated in a Polarization-Maintaining Erbium-Doped Fibre

    International Nuclear Information System (INIS)

    Lin, Wang; Feng-Ping, Yan; Xiang-Qiao, Mao; Shui-Sheng, Jian

    2008-01-01

    A new polarization-independent dual-wavelength fibre laser by fabricating a uniform FBG and a chirped FBG in a polarization-maintaining erbium-doped fibre (PM-EDF) is proposed and demonstrated. The wavelength spacing is 0.18nm and the optical signal-to-noise ratio is greater than 50dB with pump power of 246mW. Chirped FBG is used to make the reflectivity wavelengths of two PM-FBGs match easier. Since both EDF and FBGs are polarization-maintaining without splices and the two wavelengths are polarization-independent, the maximum amplitude variation and wavelength shifts for both lasing wavelength with 3-min intervals over a period of six hours are less than 0.2 dB and 0.005 nm, respectively, which shows stable dual-wavelength output

  19. Microbiological testing of devices used in maintaining peripheral venous catheters

    Directory of Open Access Journals (Sweden)

    Fernanda de Paula Rossini

    Full Text Available ABSTRACT Objective: to evaluate the use of peripheral venous catheters based on microbiological analysis of devices (dressing and three-way stopcocks and thus contribute to the prevention and infection control. Methods: this was a prospective study of microbiological analysis of 30 three-way stopcocks (external surfaces and lumens and 30 dressing used in maintaining the peripheral venous catheters of hospitalized adult patients. Results: all external surfaces, 40% of lumens, and 86.7% of dressing presented bacterial growth. The main species isolated in the lumen were 50% coagulase-negative Staphylococcus, 14.3% Staphylococcus aureus, and 14.3% Pseudomonas aeruginosa. Fifty nine percent of multidrug-resistant bacteria were isolated of the three-way stopcocks, 42% of the lumens, and 44% of the dressing with a predominance of coagulase-negative Staphylococcus resistant to methicillin. Besides, 18% gram-negative bacteria with resistance to carbapenems were identified from multidrug-resistant bacteria on the external surfaces of the three-way stopcocks. Conclusion: it is important to emphasize the isolation of coagulase-negative Staphylococcus and gram-negative bacteria resistant to methicillin and carbapenems in samples of devices, respectively, which reinforces the importance of nursing care in the maintenance of the biologically safe environment as well as prevention and infection control practices.

  20. Fabrication and Testing of Deflecting Cavities for APS

    Energy Technology Data Exchange (ETDEWEB)

    Mammosser, John; Wang, Haipeng; Rimmer, Robert; Jim, Henry; Katherine, Wilson; Dhakal, Pashupati; Ali, Nassiri; Jim, Kerby; Jeremiah, Holzbauer; Genfa, Wu; Joel, Fuerst; Yawei, Yang; Zenghai, Li

    2013-09-01

    Jefferson Lab (Newport News, Virginia) in collaboration with Argonne National Laboratory (Argonne, IL) has fabricated and tested four first article, 2.8 GHz, deflecting SRF cavities, for Argonne's Short-Pulse X-ray (SPX) project. These cavities are unique in many ways including the fabrication techniques in which the cavity cell and waveguides were fabricated. These cavity subcomponents were milled from bulk large grain niobium ingot material directly from 3D CAD files. No forming of sub components was used with the exception of the beam-pipes. The challenging cavity and helium vessel design and fabrication results from the stringent RF performance requirements required by the project and operation in the APS ring. Production challenges and fabrication techniques as well as testing results will be discussed in this paper.

  1. Fabrication, Testing and Modeling of the MICE Superconducting Spectrometer Solenoids

    International Nuclear Information System (INIS)

    Virostek, S.P.; Green, M.A.; Trillaud, F.; Zisman, M.S.

    2010-01-01

    The Muon Ionization Cooling Experiment (MICE), an international collaboration sited at Rutherford Appleton Laboratory in the UK, will demonstrate ionization cooling in a section of realistic cooling channel using a muon beam. A five-coil superconducting spectrometer solenoid magnet will provide a 4 tesla uniform field region at each end of the cooling channel. Scintillating fiber trackers within the 400 mm diameter magnet bore tubes measure the emittance of the beam as it enters and exits the cooling channel. Each of the identical 3-meter long magnets incorporates a three-coil spectrometer magnet section and a two-coil section to match the solenoid uniform field into the other magnets of the MICE cooling channel. The cold mass, radiation shield and leads are currently kept cold by means of three two-stage cryocoolers and one single-stage cryocooler. Liquid helium within the cold mass is maintained by means of a re-condensation technique. After incorporating several design changes to improve the magnet cooling and reliability, the fabrication and acceptance testing of the spectrometer solenoids have proceeded. The key features of the spectrometer solenoid magnets, the development of a thermal model, the results of the recently completed tests, and the current status of the project are presented.

  2. Spacecraft fabrication and test MODIL. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T.T.

    1994-05-01

    This report covers the period from October 1992 through the close of the project. FY 92 closed out with the successful briefing to industry and with many potential and important initiatives in the spacecraft arena. Due to the funding uncertainties, we were directed to proceed as if our funding would be approximately the same as FY 92 ($2M), but not to make any major new commitments. However, the MODIL`s FY 93 funding was reduced to $810K and we were directed to concentrate on the cryocooler area. The cryocooler effort completed its demonstration project. The final meetings with the cryocooler fabricators were very encouraging as we witnessed the enthusiastic reception of technology to help them reduce fabrication uncertainties. Support of the USAF Phillips Laboratory cryocooler program was continued including kick-off meetings for the Prototype Spacecraft Cryocooler (PSC). Under Phillips Laboratory support, Gill Cruz visited British Aerospace and Lucas Aerospace in the United Kingdom to assess their manufacturing capabilities. In the Automated Spacecraft & Assembly Project (ASAP), contracts were pursued for the analysis by four Brilliant Eyes prime contractors to provide a proprietary snap shot of their current status of Integrated Product Development. In the materials and structure thrust the final analysis was completed of the samples made under the contract (``Partial Automation of Matched Metal Net Shape Molding of Continuous Fiber Composites``) to SPARTA. The Precision Technologies thrust funded the Jet Propulsion Laboratory to prepare a plan to develop a Computer Aided Alignment capability to significantly reduce the time for alignment and even possibly provide real time and remote alignment capability of systems in flight.

  3. Microbiological testing of devices used in maintaining peripheral venous catheters.

    Science.gov (United States)

    Rossini, Fernanda de Paula; Andrade, Denise de; Santos, Lissandra Chaves de Sousa; Ferreira, Adriano Menis; Tieppo, Caroline; Watanabe, Evandro

    2017-05-15

    to evaluate the use of peripheral venous catheters based on microbiological analysis of devices (dressing and three-way stopcocks) and thus contribute to the prevention and infection control. this was a prospective study of microbiological analysis of 30 three-way stopcocks (external surfaces and lumens) and 30 dressing used in maintaining the peripheral venous catheters of hospitalized adult patients. all external surfaces, 40% of lumens, and 86.7% of dressing presented bacterial growth. The main species isolated in the lumen were 50% coagulase-negative Staphylococcus, 14.3% Staphylococcus aureus, and 14.3% Pseudomonas aeruginosa. Fifty nine percent of multidrug-resistant bacteria were isolated of the three-way stopcocks, 42% of the lumens, and 44% of the dressing with a predominance of coagulase-negative Staphylococcus resistant to methicillin. Besides, 18% gram-negative bacteria with resistance to carbapenems were identified from multidrug-resistant bacteria on the external surfaces of the three-way stopcocks. it is important to emphasize the isolation of coagulase-negative Staphylococcus and gram-negative bacteria resistant to methicillin and carbapenems in samples of devices, respectively, which reinforces the importance of nursing care in the maintenance of the biologically safe environment as well as prevention and infection control practices. avaliar o uso de cateteres venosos periféricos com base em análises microbiológicas de dispositivos (curativos e torneiras de três vias - T3Vs) e assim contribuir para a prevenção e controle de infecção. estudo prospectivo de análise microbiológica de 30 T3Vs (superfícies externas e lúmens) e 30 curativos utilizados na manutenção dos cateteres venosos periféricos de pacientes adultos hospitalizados. todas as superfícies externas, 40% dos lúmens e 86,7% dos curativos apresentaram crescimento bacteriano. As principais espécies isoladas no lúmen foram 50% Staphylococcus coagulase-negativa, 14

  4. Nondestructive testing of multi-layer tubes during fabrication

    International Nuclear Information System (INIS)

    Troitskij, V.A.; Biletskij, S.M.; Trushchenko, A.A.

    1985-01-01

    Design of multilayer steel tubes for gas pipelines and technology of their fabrication are described in brief. Testing of the ground metal and welded joints of tubes used in their fabrication are considered. These methods comprise ultrasonic (US) testing of band, US testing and vacuum-bubble testing (VBT) of inner lap joints of shells X-ray TV control (XTVC) of ring welds, US testing of edge sections of shells with a continuous wall. Equipment applied in testing is described. XTVC is exercised by means of the RUP-150/300-10 X-ray apparatus, RI-60TEh introscope, sensitivity of testing is not worse than 4%, the rate equals 1-2 m/min

  5. Design, fabrication, and testing of stellar coronagraphs for exoplanet imaging

    Science.gov (United States)

    Knight, Justin M.; Brewer, John; Hamilton, Ryan; Ward, Karen; Milster, Tom D.; Guyon, Olivier

    2017-09-01

    Complex-mask coronagraphs destructively interfere unwanted starlight with itself to enable direct imaging of exoplanets. This is accomplished using a focal plane mask (FPM); a FPM can be a simple occulter mask, or in the case of a complex-mask, is a multi-zoned device designed to phase-shift starlight over multiple wavelengths to create a deep achromatic null in the stellar point spread function. Creating these masks requires microfabrication techniques, yet many such methods remain largely unexplored in this context. We explore methods of fabrication of complex FPMs for a Phased-Induced Amplitude Apodization Complex-Mask Coronagraph (PIAACMC). Previous FPM fabrication efforts for PIAACMC have concentrated on mask manufacturability while modeling science yield, as well as assessing broadband wavelength operation. Moreover current fabrication efforts are concentrated on assessing coronagraph performance given a single approach. We present FPMs fabricated using several process paths, including deep reactive ion etching and focused ion beam etching using a silicon substrate. The characteristic size of the mask features is 5μm with depths ranging over 1μm. The masks are characterized for manufacturing quality using an optical interferometer and a scanning electron microscope. Initial testing is performed at the Subaru Extreme Adaptive Optics testbed, providing a baseline for future experiments to determine and improve coronagraph performance within fabrication tolerances.

  6. Fabrication and testing of prestressed composite rotor blade spar specimens

    Science.gov (United States)

    Gleich, D.

    1974-01-01

    Prestressed composite spar specimens were fabricated and evaluated by crack propagation and ballistic penetration tests. The crack propagation tests on flawed specimens showed that the prestressed composite spar construction significantly suppresses crack growth. Damage from three high velocity 30 caliber projectile hits was confined to three small holes in the ballistic test specimen. No fragmentation or crack propagation was observed indicating good ballistic damage resistance. Rotor attachment approaches and improved structural performance configurations were identified. Design theory was verified by tests. The prestressed composite spar configuration consisted of a compressively prestressed high strength ARDEFORM 301 stainless steel liner overwrapped with pretensioned S-994 fiberglass.

  7. Fabrication of Fast Reactor Fuel Pins for Test Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Karsten, G. [Institute for Applied Reactor Physics, Kernforschungszentrum Karlsruhe, Karlsruhe, Federal Republic of Germany (Germany); Dippel, T. [Institute for Radiochemistry, Kernforschungszentrum Karlsruhe, Karlsruhe, Federal Republic of Germany (Germany); Laue, H. J. [Institute for Applied Reactor Physics, Kernforschungszentrum Karlsruhe, Karlsruhe, Federal Republic of Germany (Germany)

    1967-09-15

    An extended irradiation programme is being carried out for the fuel element development of the Karlsruhe fast breeder project. A very important task within the programme is the testing of plutonium-containing fuel pins in a fast-reactor environment. This paper deals with fabrication of such pins by our laboratories at Karlsruhe. For the fast reactor test positions at present envisaged a fuel with 15% plutonium and the uranium fully enriched is appropriate. Hie mixed oxide is both pelletized and vibro-compacted with smeared densities between 80 and 88% theoretical. The pin design is, for example, such that there are two gas plena at the top and bottom, and one blanket above the fuel with the fuel zone fitting to the test reactor core length. The specifications both for fuel and cladding have been adapted to the special purpose of a fast-breeder reactor - the outer dimensions, the choice of cladding and fuel types, the data used and the kind of tests outline the targets of the development. The fuel fabrication is described in detail, and also the powder line used for vibro-compaction. The source materials for the fuel are oxalate PuO{sub 2} and UO{sub 2} from the UF{sub 6} process. The special problems of mechanical mixing and of plutonium homogeneity have been studied. The development of the sintering technique and grain characteristics for vibratory compactive fuel had to overcome serious problems in order to reach 82-83% theoretical. The performance of the pin fabrication needed a major effort in welding, manufacturing of fits and decontamination of the pin surfaces. This was a stimulation for the development of some very subtle control techniques, for example taking clear X-ray photographs and the tube testing. In general the selection of tests was a special task of the production routine. In conclusion the fabrication of the pins resulted in valuable experiences for the further development of fast reactor fuel elements. (author)

  8. Biaxial testing for fabrics and foils optimizing devices and procedures

    CERN Document Server

    Beccarelli, Paolo

    2015-01-01

    This book offers a well-structured, critical review of current design practice for tensioned membrane structures, including a detailed analysis of the experimental data required and critical issues relating to the lack of a set of design codes and testing procedures. The technical requirements for biaxial testing equipment are analyzed in detail, and aspects that need to be considered when developing biaxial testing procedures are emphasized. The analysis is supported by the results of a round-robin exercise comparing biaxial testing machines that involved four of the main research laboratories in the field. The biaxial testing devices and procedures presently used in Europe are extensively discussed, and information is provided on the design and implementation of a biaxial testing rig for architectural fabrics at Politecnico di Milano, which represents a benchmark in the field. The significance of the most recent developments in biaxial testing is also explored.

  9. Fabrication and testing history prototypes and production units

    Energy Technology Data Exchange (ETDEWEB)

    1954-09-01

    From April, 1951 to Aug, 1954, New York Shipbuilding Corp. carried out a subcontract with E.I. du Pont de Nemours & Company that was without parallel in the shipyard`s history. The work, designated the NYX Project for reasons of security, was vital to the operations of the Savannah River Plant, Aiken, S.C., which was then being designed and constructed by du Pont for the Atomic Energy Commission. It consisted of three broad parts: developmental and experimental work; fabrication and testing of a prototype unit; fabrication of production units. Five production units were ultimately built, one of them converted from the prototype. All were fabricated from stainless steel, and involved welding techniques, control of thermal distortion and tolerances never previously attempted on assemblies of comparable size. Du Pont`s technical experience and the background of New York Ship in heavy construction, particularly in the fabrication of naval gun turrets, were combined from the outset to resolve the difficult fabrication problems that occurred almost daily. Representatives of both companies worked together as a team in the shops and at supervisory levels to an unprecedented extent. The report is intended primarily to summarize New York Ship`s part in the project, but also includes some of du Pont`s activities since the work of the two organizations was so interrelated. Because of the scope of the program, it will not always be possible to provide detailed information, but rather to record what happened in general terms. Where the reader desires more specific data, he should refer to original plans and records, including various reports compiled during the course of the project.

  10. Guidebook for the fabrication of non-destructive testing (NDT) test specimens

    International Nuclear Information System (INIS)

    2001-01-01

    Non-destructive testing (NDT) test specimens constitute a very important part of training and certification of NDT personnel and are important for carrying out actual inspection and testing, and for achieving international harmonization of NDT practices. The IAEA organized an advisory group of experts to develop a Guidebook for Fabrication of NDT Test Specimens. The experts consulted the ISO/FDIS 9712-1999 requirements for training and certification of personnel and the suitability of various types of NDT test specimens that are needed to meet such requirements This guidebook presents a set of NDT test specimens, and the methodology and procedures for their fabrication

  11. Design, fabrication and testing of a thermal diode

    Science.gov (United States)

    Swerdling, B.; Kosson, R.

    1972-01-01

    Heat pipe diode types are discussed. The design, fabrication and test of a flight qualified diode for the Advanced Thermal Control Flight Experiment (ATFE) are described. The review covers the use of non-condensable gas, freezing, liquid trap, and liquid blockage techniques. Test data and parametric performance are presented for the liquid trap and liquid blockage techniques. The liquid blockage technique was selected for the ATFE diode on the basis of small reservoir size, low reverse mode heat transfer, and apparent rapid shut-off.

  12. Carbon fiber reinforced hierarchical orthogrid stiffened cylinder: Fabrication and testing

    Science.gov (United States)

    Wu, Hao; Lai, Changlian; Sun, Fangfang; Li, Ming; Ji, Bin; Wei, Weiyi; Liu, Debo; Zhang, Xi; Fan, Hualin

    2018-04-01

    To get strong, stiff and light cylindrical shell, carbon fiber reinforced hierarchical orthogrid stiffened cylinders are designed and fabricated. The cylinder is stiffened by two-scale orthogrid. The primary orthogrid has thick and high ribs and contains several sub-orthogrid cells whose rib is much thinner and lower. The primary orthogrid stiffens the bending rigidity of the cylinder to resist the global instability while the sub-orthogrid stiffens the bending rigidity of the skin enclosed by the primary orthogrid to resist local buckling. The cylinder is fabricated by filament winding method based on a silicone rubber mandrel with hierarchical grooves. Axial compression tests are performed to reveal the failure modes. With hierarchical stiffeners, the cylinder fails at skin fracture and has high specific strength. The cylinder will fail at end crushing if the end of the cylinder is not thickened. Global instability and local buckling are well restricted by the hierarchical stiffeners.

  13. Superphenix 1 primary handling system fabrication and testing

    International Nuclear Information System (INIS)

    Branchu, J.; Ebbinghaus, K.; Gigarel, C.

    1985-01-01

    Primary handling covers the operations performed for spent fuel removal, new fuel insertion, and the insodium storage outside the new or spent fuel vessel. This equipment typifies many of the difficulties encountered with the project as a whole: fabrication coordination when several countries are involved and design and construction of very large, relatively complex components. Detailed design studies were mainly influenced by thermal and seismic requirements, as applicable to sodium-immersed structures. Where possible, well-tried mechanical solutions were used, but widely differing techniques were involved, ranging from the high precision fabrication of structures and mechanisms comprising numerous component parts, implying complex machining operations. No particular problems were encountered during the sodium testing of the primary handling equipment. Trends for the 1500-MW (electric) breeder include investigation of the advisability of fuel storage in the core lattice and the possibility of handling system simplification

  14. Fabrication and Testing of Pyramidal X- Band Standard Horn Antenna

    Directory of Open Access Journals (Sweden)

    Hasan F. Khazaal

    2017-11-01

    Full Text Available Standard horn antennas are an important device to evaluate many types of antennas, since they are used as a reference to any type of antennas within the microwave frequency bands. In this project the fabrication process and tests of standard horn antenna operating at X-band frequencies have been proposed. The fabricated antenna passed through multi stages of processing of its parts until assembling the final product. These stages are (milling, bending, fitting and welding. The assembled antenna subjected to two types of tests to evaluate its performance. The first one is the test by two port network analyzer to point out S & Z parameters, input resistance, and the voltage standing wave ratio of the horn, while the second test was done using un-echoic chamber to measure the gain, side lobes level and the half power beam width. The results of testing come nearly as a theoretical value of the most important of antenna parameters, like; gain, side lobe level, -3 dB beam width, return loss and voltage standing wave ratio "VSWR", input Impedance.

  15. WTP Waste Feed Qualification: Glass Fabrication Unit Operation Testing Report

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Hanford Missions Programs; Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Process Technology Programs; Johnson, F. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Engineering Process Development; Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Engineering Process Development

    2016-07-14

    The waste feed qualification program is being developed to protect the Hanford Tank Waste Treatment and Immobilization Plant (WTP) design, safety basis, and technical basis by assuring waste acceptance requirements are met for each staged waste feed campaign prior to transfer from the Tank Operations Contractor to the feed receipt vessels inside the Pretreatment Facility. The Waste Feed Qualification Program Plan describes the three components of waste feed qualification: 1. Demonstrate compliance with the waste acceptance criteria 2. Determine waste processability 3. Test unit operations at laboratory scale. The glass fabrication unit operation is the final step in the process demonstration portion of the waste feed qualification process. This unit operation generally consists of combining each of the waste feed streams (high-level waste (HLW) and low-activity waste (LAW)) with Glass Forming Chemicals (GFCs), fabricating glass coupons, performing chemical composition analysis before and after glass fabrication, measuring hydrogen generation rate either before or after glass former addition, measuring rheological properties before and after glass former addition, and visual observation of the resulting glass coupons. Critical aspects of this unit operation are mixing and sampling of the waste and melter feeds to ensure representative samples are obtained as well as ensuring the fabrication process for the glass coupon is adequate. Testing was performed using a range of simulants (LAW and HLW simulants), and these simulants were mixed with high and low bounding amounts of GFCs to evaluate the mixing, sampling, and glass preparation steps in shielded cells using laboratory techniques. The tests were performed with off-the-shelf equipment at the Savannah River National Laboratory (SRNL) that is similar to equipment used in the SRNL work during qualification of waste feed for the Defense Waste Processing Facility (DWPF) and other waste treatment facilities at the

  16. Fast electrochemical membrane actuator: Design, fabrication and preliminary testing

    Science.gov (United States)

    Uvarov, I. V.; Postnikov, A. V.; Shlepakov, P. S.; Naumov, V. V.; Koroleva, O. M.; Izyumov, M. O.; Svetovoy, V. B.

    2017-11-01

    An actuator based on water electrolysis with a fast change of voltage polarity is presented. It demonstrates a new actuation principle allowing significant increase the operation frequency of the device due to fast termination of the produced gas. The actuator consists of a working chamber with metallic electrodes and supplying channels filled with an electrolyte. The chamber is formed in a layer of SU-8 and covered by a flexible polydimethylsiloxane membrane, which deforms as the pressure in the chamber increases. Design, fabrication procedure, and first tests of the actuator are described.

  17. Tritium Systems Test Assembly: design for major device fabrication review

    International Nuclear Information System (INIS)

    Anderson, J.L.; Sherman, R.H.

    1977-06-01

    This document has been prepared for the Major Device Fabrication Review for the Tritium Systems Test Assembly (TSTA). The TSTA is dedicated to the development, demonstration, and interfacing of technologies related to the deuterium-tritium fuel cycle for fusion reactor systems. The principal objectives for TSTA are: (a) demonstrate the fuel cycle for fusion reactor systems; (b) develop test and qualify equipment for tritium service in the fusion program; (c) develop and test environmental and personnel protective systems; (d) evaluate long-term reliability of components; (e) demonstrate long-term safe handling of tritium with no major releases or incidents; and (f) investigate and evaluate the response of the fuel cycle and environmental packages to normal, off-normal, and emergency situations. This document presents the current status of a conceptual design and cost estimate for TSTA. The total cost to design, construct, and operate TSTA through FY-1981 is estimated to be approximately $12.2 M

  18. Start up testing for the secure automated fabrication line

    International Nuclear Information System (INIS)

    Gerber, E.W.; Benson, E.M.; Dahl, R.E.

    1986-01-01

    The Secure Automated Fabrication (SAF) Line has been designed and built by Westinghouse Hanford Company for the Department of Energy at the Hanford Site near Richland, Washington. The SAF Line will provide the capability for remote manufacture of fuel for Liquid Metal Reactors, and will supply fuel for the Fast Flux Test Facility (FFTF). The SAF process is highly automated and represents a major advancement in nuclear fuel manufacturing, offering significant improvements in product quality, productivity, safety, and accountability of Special Nuclear Materials. The construction phase of the project is complete, and testing has been initiated to accomplish start up of the plant for manufacture of FFTF fuel. This paper describes the test methodology used for SAF Line start up

  19. Solid Propellant Microthruster Design, Fabrication, and Testing for Nanosatellites

    Science.gov (United States)

    Sathiyanathan, Kartheephan

    This thesis describes the design, fabrication, and testing of a solid propellant microthruster (SPM), which is a two-dimensional matrix of millimeter-sized rockets each capable of delivering millinewtons of thrust and millinewton-seconds of impulse to perform fine orbit and attitude corrections. The SPM is a potential payload for nanosatellites to increase spacecraft maneuverability and is constrained by strict mass, volume, and power requirements. The dimensions of the SPM in the millimeter-scale result in a number of scaling issues that need consideration such as a low Reynolds number, high heat loss, thermal and radical quenching, and incomplete combustion. The design of the SPM, engineered to address these issues, is outlined. The SPM fabrication using low-cost commercial off-the-shelf materials and standard micromachining is presented. The selection of a suitable propellant and its customization are described. Experimental results of SPM firing to demonstrate successful ignition and sustained combustion are presented for three configurations: nozzleless, sonic nozzle, and supersonic nozzle. The SPM is tested using a ballistic pendulum thrust stand. Impulse and thrust values are calculated and presented. The performance values of the SPM are found to be consistent with existing designs.

  20. Fabrication of CANFLEX bundle kit for irradiation test in NRU

    International Nuclear Information System (INIS)

    Cho, Moon Sung; Kwon, Hyuk Il; Ji, Chul Goo; Chang, Ho Il; Sim, Ki Seob; Suk, Ho Chun.

    1997-10-01

    CANFLEX bundle kit was prepared at KAERI for the fabrication of complete bundle at AECL. Completed bundle will be used for irradiation test in NRU. Provisions in the 'Quality Assurance Manual for HWR Fuel Projects,' 'Manufacturing Plan' and 'Quality Verification, Inspection and Test Plan' were implemented as appropriately for the preparation of CANFLEX kit. A set of CANFLEX kit consist of 43 fuel sheath of two different sizes with spacers, bearing pads and buttons attached, 2 pieces of end plates and 86 pieces of end caps with two different sizes. All the documents utilized as references for the fabrication such as drawings, specifications, operating instructions, QC instructions and supplier's certificates are specified in this report. Especially, suppliers' certificates and inspection reports for the purchased material as well as KAERI's inspection report are integrated as attachments to this report. Attached to this report are supplier's certificates and KAERI inspection reports for the procured materials and KAERI QC inspection reports for tubes, pads, spacers, buttons, end caps, end plates and fuel sheath. (author). 37 refs

  1. Performance Test of the Salt transfer and Pellet fabrication of UCl3 Making Equipment for Electrorefining

    International Nuclear Information System (INIS)

    Woo, M. S.; Jin, H. J.; Park, G. I.; Park, S. B.

    2014-01-01

    The process to produce a uranium chloride salt includes two steps: a reaction process of gaseous chlorine with liquid cadmium to form the CdCl 2 occurring in a Cd layer, followed by a process to produce UCl 3 by the reaction of U in the LiCl-KCl eutectic salt and CdCl 2 . Chemical reaction is next chlorination reaction; - Cd chlorination : Cd + Cl2 → CdCl 2 - U chlorination : 3CdCl2 + 2U → 3Cd + 2UCl 3 The apparatus for producing UCl 3 consists of a chlorine gas generator, a uranium chlorinator, a Cd distiller, the pelletizer, a off-gas wet scrubber and a dry scrubber. Salt transfer system set among reactors to transfer salt at 500 .deg. C. The temperature of the reactants is maintained at about 600 .deg. C. After the reaction is completed in the uranium chlorinator, The Salt product is transferred to the Cd distiller to decrease residual Cd concentration in the salts, and then salt is transferred to the mould of pelletizer by a transfer system to fabricate pellet type salt. Performance test of the salt transfer and pellet fabrication of its equipment was tested in this work. Performance test of the salt transfer and pellet fabrication of UCl3 making equipment for Electrorefining carried out in this work. The result of equipment test is that melted salt at 600 .deg. C was easy transferred by salt transfer equipment heated at 500 .deg. C. In this time, salt transfer was carried out by argon gas pressurization at 3bar. When velocity of salt transfer was controlled under reduce pressure, velocity of salt transfer was difficult to control. And when salt pellet was fabricated by the mold of pelletizer heated at 90 .deg. C better than mold of pelletizer heated at 200 .deg. C because salt melted prevent leakage from mold of pelletizer

  2. High-Strength Composite Fabric Tested at Structural Benchmark Test Facility

    Science.gov (United States)

    Krause, David L.

    2002-01-01

    Large sheets of ultrahigh strength fabric were put to the test at NASA Glenn Research Center's Structural Benchmark Test Facility. The material was stretched like a snare drum head until the last ounce of strength was reached, when it burst with a cacophonous release of tension. Along the way, the 3-ft square samples were also pulled, warped, tweaked, pinched, and yanked to predict the material's physical reactions to the many loads that it will experience during its proposed use. The material tested was a unique multi-ply composite fabric, reinforced with fibers that had a tensile strength eight times that of common carbon steel. The fiber plies were oriented at 0 and 90 to provide great membrane stiffness, as well as oriented at 45 to provide an unusually high resistance to shear distortion. The fabric's heritage is in astronaut space suits and other NASA programs.

  3. Mechanical testing of PHWR components at different fabrication stages

    International Nuclear Information System (INIS)

    Saibaba, N.

    2007-01-01

    Zirconium alloys are extensively used for reactor structural and cladding components for PHWRs and BWRs due to their low neutron absorption cross-section, corrosion resistance to high temperature aqueous environments, adequate mechanical properties and resistance to radiation damage. The coolant tube fabrication route consists of a series of intermediate process steps. The working parameters of each process have a definite bearing on the final properties of these tubes. In order to ascertain the effect of these parameters, mechanical testing is carried out at intermediate stage of coolant tube fabrication. The mechanical properties of the products can be correlated with process parameters and reflect the quality of the product to a great extent. These properties at intermediate stages can serve as process controlling parameters. This paper discusses the correlation of mechanical properties of pressure tubes between the intermediate stage and final stage. The effect of process parameters like annealing temperature, honing, sand blasting pressure and eccentricity on the final mechanical properties was highlighted. (author)

  4. Long time durability tests of fabric inlet stratification pipes

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon

    2008-01-01

    and that this destroys the capability of building up thermal stratification for the fabric inlet stratification pipe. The results also show that although dirt, algae etc. are deposited in the fabric pipes in the space heating tank, the capability of the fabric inlet stratifiers to build up thermal stratification...

  5. 16 CFR 1611.35 - Testing certain classes of fabric and film.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Testing certain classes of fabric and film... REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM Rules and Regulations § 1611.35 Testing certain classes of fabric and film. (a) Fabric not customarily washed or dry cleaned. (1) Except as...

  6. 16 CFR 1611.33 - Test procedures for textile fabrics and film.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Test procedures for textile fabrics and film... REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM Rules and Regulations § 1611.33 Test procedures for textile fabrics and film. (a)(1) All textile fabrics (except those with a nitro-cellulose...

  7. Perspective: Maintaining surface-phase purity is key to efficient open air fabricated cuprous oxide solar cells

    International Nuclear Information System (INIS)

    Hoye, Robert L. Z.; Ievskaya, Yulia; MacManus-Driscoll, Judith L.; Brandt, Riley E.; Buonassisi, Tonio; Heffernan, Shane; Musselman, Kevin P.

    2015-01-01

    Electrochemically deposited Cu 2 O solar cells are receiving growing attention owing to a recent doubling in efficiency. This was enabled by the controlled chemical environment used in depositing doped ZnO layers by atomic layer deposition, which is not well suited to large-scale industrial production. While open air fabrication with atmospheric pressure spatial atomic layer deposition overcomes this limitation, we find that this approach is limited by an inability to remove the detrimental CuO layer that forms on the Cu 2 O surface. Herein, we propose strategies for achieving efficiencies in atmospherically processed cells that are equivalent to the high values achieved in vacuum processed cells

  8. Analysis, fabrication, and field test of an advanced embedded throwing electromechanical sensing system

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhen; Zhang, Dan [Beijing JiaoTong University, Beijing (China)

    2014-01-15

    Scientific measuring equipment is important in maintaining and further improving the daily training quality of professional athletes. In throwing sports, only kinematic information is usually recorded by several high-speed cameras, whereas the dynamic data are lacking. An advanced embedded throwing system is analyzed, fabricated, and field tested. This throwing system can be used to substitute the normal shot-put that obtains acceleration information from the upper limb when force is applied onto the device. This device has four main parts, namely, a mechanical shell, an embedded sensor, a signal processing circuit, and interface ports. The detailed design, simulation, and prototyping process are introduced in this work. The practical results obtained from the field test and feedback from users prove that the proposed throwing system is efficient for technical training and monitoring. This design provides a unique solution for the modeling and development of non-traditional, electro-mechanical sensing devices.

  9. Fabrication and testing of fire resistant graphite composite panels

    Science.gov (United States)

    Roper, W. D.

    1986-01-01

    Eight different graphite composite panels were fabricated using four different resin matrices. The resin matrices included Hercules 71775, a blend of vinylpolystyrpyridine and bismaleimide, H795, a bismaleimide, Cycom 6162, a phenolic, and PSP 6022m, a polystyrylpyridine. Graphite panels were fabricated using fabric or unidirectional tape. Described are the processes for preparing these panels and some of their mechanical, thermal and flammability properties. Panel properties are compared with state-of-the-art epoxy fiberglass composite panels.

  10. Fabrication and Testing of Viscosity Measuring Instrument (Viscometer

    Directory of Open Access Journals (Sweden)

    A. B. HASSAN

    2006-01-01

    Full Text Available This paper presents the fabrication and testing of a simple and portable viscometer for the measurement of bulk viscosity of different Newtonian fluids. It is aimed at making available the instrument in local markets and consequently reducing or eliminating the prohibitive cost of importation. The method employed is the use of a D.C motor to rotate a disc having holes for infra-red light to pass through and fall on a photo-diode thus undergoing amplification and this signal being translated on a moving-coil meter as a deflection. The motor speed is kept constant but varies with changes in viscosity of the fluid during stirring, which alter signals being read on the meter. The faster is revolution per minute of the disc, the less the deflection on the meter and vise-versa. From the results of tests conducted on various sample fluids using data on standard Newtonian fluids as reliable guide the efficiency of the viscometer was 76.5%.

  11. Design, fabrication, and testing of energy-harvesting thermoelectric generator

    Science.gov (United States)

    Jovanovic, Velimir; Ghamaty, Saeid

    2006-03-01

    An energy-harvesting thermoelectric generator (TEG) is being developed to provide power for wireless sensors used in health monitoring of Navy machinery. TEGs are solid-state devices that convert heat directly into electricity without any moving parts. In this application, the TEGs utilize the heat transfer between shipboard waste heat sources and the ambient air to generate electricity. In order to satisfy the required small design volume of less than one cubic inch, Hi-Z is using its innovative thin-film Quantum Well (QW) thermoelectric technology that will provide a factor of four increase in efficiency and a large reduction in the device volume over the currently used bulk Bi IITe 3 based thermoelectics. QWs are nanostructured multi-layer films. These wireless sensors can be used to detect cracks, corrosion, impact damage, and temperature and vibration excursions as part of the Condition Based Maintenance (CBM) of the Navy ship machinery. The CBM of the ship machinery can be significantly improved by automating the process with the use of self-powered wireless sensors. These power-harvesting TEGs can be used to replace batteries as electrical power sources and to eliminate power cables and data lines. The first QW TEG module was fabricated and initial tests were successful. It is planned to conduct performance tests the entire prototype QW TEG device (consisting of the TEG module, housing, thermal insulation and the heat sink) in a simulated thermal environment of a Navy ship.

  12. Perspective: Maintaining surface-phase purity is key to efficient open air fabricated cuprous oxide solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hoye, Robert L. Z., E-mail: rlzh2@cam.ac.uk, E-mail: jld35@cam.ac.uk; Ievskaya, Yulia; MacManus-Driscoll, Judith L., E-mail: rlzh2@cam.ac.uk, E-mail: jld35@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Brandt, Riley E.; Buonassisi, Tonio [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Heffernan, Shane [Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Musselman, Kevin P. [Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom)

    2015-02-01

    Electrochemically deposited Cu{sub 2}O solar cells are receiving growing attention owing to a recent doubling in efficiency. This was enabled by the controlled chemical environment used in depositing doped ZnO layers by atomic layer deposition, which is not well suited to large-scale industrial production. While open air fabrication with atmospheric pressure spatial atomic layer deposition overcomes this limitation, we find that this approach is limited by an inability to remove the detrimental CuO layer that forms on the Cu{sub 2}O surface. Herein, we propose strategies for achieving efficiencies in atmospherically processed cells that are equivalent to the high values achieved in vacuum processed cells.

  13. 16 CFR 1610.33 - Test procedures for textile fabrics and film.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Test procedures for textile fabrics and film... for textile fabrics and film. (a)(1) All textile fabrics (except those with a nitro-cellulose fiber... under the procedures outlined in part 1611, Standard for the Flammability of Vinyl Plastic Film, and if...

  14. NASA funding opportunities for optical fabrication and testing technology development

    Science.gov (United States)

    Stahl, H. Philip

    2013-09-01

    NASA requires technologies to fabricate and test optical components to accomplish its highest priority science missions. The NRC ASTRO2010 Decadal Survey states that an advanced large-aperture UVOIR telescope is required to enable the next generation of compelling astrophysics and exo-planet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. The NRC 2012 NASA Space Technology Roadmaps and Priorities Report states that the highest priority technology in which NASA should invest to `Expand our understanding of Earth and the universe' is next generation X-ray and UVOIR telescopes. Each of the Astrophysics division Program Office Annual Technology Reports (PATR) identifies specific technology needs. NASA has a variety of programs to fund enabling technology development: SBIR (Small Business Innovative Research); the ROSES APRA and SAT programs (Research Opportunities in Space and Earth Science; Astrophysics Research and Analysis program; Strategic Astrophysics Technology program); and several Office of the Chief Technologist (OCT) programs.

  15. DESIGN, FABRICATION, AND TESTING OF AN ADVANCED, NON-POLLUTING TURBINE DRIVE GAS GENERATOR

    International Nuclear Information System (INIS)

    Unknown

    2002-01-01

    The objectives of this report period were to complete the development of the Gas Generator design, which was done; fabricate and test of the non-polluting unique power turbine drive gas Gas Generator, which has been postponed. Focus during this report period has been to complete the brazing and bonding necessary to fabricate the Gas Generator hardware, continue making preparations for fabricating and testing the Gas Generator, and continuing the fabrication of the Gas Generator hardware and ancillary hardware in preparation for the test program. Fabrication is more than 95% complete and is expected to conclude in early May 2002. the test schedule was affected by relocation of the testing to another test supplier. The target test date for hot fire testing is now not earlier than June 15, 2002

  16. Fabrication and testing of the Nb3Sn superconductor for High-Field Test Facility (HFTF)

    International Nuclear Information System (INIS)

    Spencer, C.; Adam, E.; Gregory, E.; Marancik, W.; Sanger, P.; Scanlan, R.; Cornish, D.

    1979-01-01

    A 5000 A-12 T fully stable Nb 3 Sn superconductor has to be produced for the insert magnet of the high-field test facility being built at Lawrence Livermore Laboratory. A process is described which permits the fabrication of long lengths of large fully transposed monolithic superconductors containing in excess of 100,000 filaments of Nb 3 Sn. Measurements of critical current as a function of magnetic field and longitudinal strain on prototype samples are reported

  17. Functionally graded bioactive coatings: From fabrication to testing

    Science.gov (United States)

    Foppiano, Silvia

    Every year about half a million Americans undergo total joint replacement surgery of some kind. This number is expected to steadily increase in the future. About 20% of these patients will need a revision surgery because of implant failure, with a significant increase in health care cost. Current implant materials for load bearing applications must be strong enough to support the loads involved in daily activities, and bioinert, to limit reactivity in the body that may cause inflammatory and other adverse reactions. Metal alloys are typically used as materials for load bearing implants and rely on mechanical interlocking to achieve fixation which can be improved by using bone cements. To improve implant osteointegration, metal implants have been coated with a bone-like mineral: hydroxyapatite (HA). The plasma spray technique is commonly used to apply the HA coating. Such implants do not require the use of bone cement. Plasma sprayed HA coated implants are FDA approved and currently on the market, but their properties are not reproducible or reliable. Thus, coating delamination can occur. Our research group developed a novel family of bioactive glasses which were enameled onto titanium alloy using a functionally graded approach. We stratified the coating with different glass compositions to fulfill different functions. We coupled a first glass layer, with a good CTE match to the alloy, with a second layer of bioactive glass obtaining a functionally graded bioactive coating (FGC). In this thesis for the first time the cytocompatibility of novel bioactive glasses, and their functionally graded coatings on Ti6Al4V, was studied with an in vitro bone model (MC3T3-E1.4 mouse preosteblast cells). The novel bioactive glasses are cytocompatible and no compositional change is required. The fabrication process is reproducible, introduces a small (average 6 vol%) amount of crystallization, which does not significantly affect bioactivity in SBF as tested. The coatings are

  18. Fabrication and Tests of M240 Machine Gun Barrels Lined with Stellite 25

    Science.gov (United States)

    2016-04-01

    ARL-TR-7662 ● APR 2016 US Army Research Laboratory Fabrication and Tests of M240 Machine Gun Barrels Lined with Stellite 25...Fabrication and Tests of M240 Machine Gun Barrels Lined with Stellite 25 by William S de Rosset and Sean Fudger Weapons and Materials Research...

  19. Injection molded nanofluidic chips: Fabrication method and functional tests using single-molecule DNA experiments

    DEFF Research Database (Denmark)

    Utko, Pawel; Persson, Karl Fredrik; Kristensen, Anders

    2011-01-01

    We demonstrate that fabrication of nanofluidic systems can be greatly simplified by injection molding of polymers. We functionally test our devices by single-molecule DNA experiments in nanochannels.......We demonstrate that fabrication of nanofluidic systems can be greatly simplified by injection molding of polymers. We functionally test our devices by single-molecule DNA experiments in nanochannels....

  20. Fabrication and testing of the recoil mass spectrometer at Bombay ...

    Indian Academy of Sciences (India)

    A recoil mass spectrometer (RMS) has been designed, fabricated and installed ... first order and only mass dispersion is obtained at the focal plane of the ... more details, like, the specifications and a typical beam profile through the ... Further experiments are now in progress to characterize the spectrometer, i.e., to measure.

  1. Design, fabrication, test, and evaluation of a prototype 150-foot long composite wind turbine blade

    Science.gov (United States)

    Gewehr, H. W.

    1979-01-01

    The design, fabrication, testing, and evaluation of a prototype 150 foot long composite wind turbine blade is described. The design approach and material selection, compatible with low cost fabrication methods and objectives, are highlighted. The operating characteristics of the blade during rotating and nonrotating conditions are presented. The tensile, compression, and shear properties of the blade are reported. The blade fabrication, tooling, and quality assurance are discussed.

  2. Design, Fabrication and Test of a Full Scale Copper Tubular Combustion Chamber

    National Research Council Canada - National Science Library

    Cooley, Christine

    2002-01-01

    This paper presents the design fabrication and test of a full scale copper tubular combustion chamber as an enabling technology for future application in a high thrust upper-stage expander-cycle engine...

  3. Design, fracture control, fabrication, and testing of pressurized space-vehicle structures

    Science.gov (United States)

    Babel, H. W.; Christensen, R. H.; Dixon, H. H.

    1974-01-01

    The relationship between analysis, design, fabrication, and testing of thin shells is illustrated by Saturn S-IVB, Thor, Delta, and other single-use and reusable large-size cryogenic aluminum tankage. The analyses and design to meet the design requirements are reviewed and include consideration of fracture control, general instability, and other failure modes. The effect of research and development testing on the structure is indicated. It is shown how fabrication and nondestructive and acceptance testing constrain the design. Finally, qualification testing is reviewed to illustrate the extent of testing used to develop the Saturn S-IVB.

  4. Tests of Flammability of Cotton Fabrics and Expected Skin Burns in Microgravity

    Science.gov (United States)

    Cavanagh, Jane M.; Torvi, David A.; Gabriel, Kamiel S.; Ruff, Gary A.

    2004-01-01

    During a shuttle launch and other portions of space flight, astronauts wear specialized flame resistant clothing. However during most of their missions on board the Space Shuttle or International Space Station, astronauts wear ordinary clothing, such as cotton shirts and pants. As the behaviour of flames is considerably different in microgravity than under earth s gravity, fabrics are expected to burn in a different fashion in microgravity than when tested on earth. There is interest in determining how this change in burning behaviour may affect times to second and third degree burn of human skin, and how the results of standard fabric flammability tests conducted under earth s gravity correlate with the expected fire behaviour of textiles in microgravity. A new experimental apparatus was developed to fit into the Spacecraft Fire Safety Facility (SFSF), which is used on NASA s KC-135 low gravity aircraft. The new apparatus was designed to be similar to the apparatus used in standard vertical flammability tests of fabrics. However, rather than using a laboratory burner, the apparatus uses a hot wire system to ignite 200 mm high by 80 mm wide fabric specimens. Fabric temperatures are measured using thermocouples and/or an infrared imaging system, while flame spread rates are measured using real time observations or video. Heat flux gauges are placed between 7 and 13 mm away from the fabric specimen, so that heat fluxes from the burning fabric to the skin can be estimated, along with predicted times required to produce skin burns.

  5. Fabrication and mechanical testing of fibre reinforced thermoplastic composite tubes

    International Nuclear Information System (INIS)

    Tufail, M.

    2005-01-01

    Polymer based composites are produced using less expensive moulds and quick fabrication techniques. The overall processing cost for such materials is much lesser than metallic materials. Usually monolithic parts are produced out of composite materials which further decreases the processing time needed for joining sub- , assemblies as in the case of metallic parts. Any defects encountered due to sub-assemblies are also eliminated. Thermoset based composites have been used for long time to produce parts for automotive, aerospace, marine, and sports industries. The properties thus obtained by using thermoset as matrix are very well in comparison with metals but certain draw backs a.e there with this kind of matrix. Thermoset based composites are processed in untidy environment and once the object is produced can not be reshaped. In contrary to that thermoplastic materials are processed in a clean environment and the material can be recycled. The component once produced can easily be reshaped if required as no chemical reaction does take place during the process. Although the high melt viscosity of thermoplastic has limited its application as due to its high viscosity, its processing would be very difficult. Various methods have been developed to resolve this issue. In this study, a commingled material has been used to produce thermoplastic based composite tubes. The method developed for making such tubes is defined along with the method adopted to measure some of the mechanical properties of these tubes. (author)

  6. Design and fuel fabrication processes for the AC-3 mixed-carbide irradiation test

    International Nuclear Information System (INIS)

    Latimer, T.W.; Chidester, K.M.; Stratton, R.W.; Ledergerber, G.; Ingold, F.

    1992-01-01

    The AC-3 test was a cooperative U.S./Swiss irradiation test of 91 wire-wrapped helium-bonded U-20% Pu carbide fuel pins irradiated to 8.3 at % peak burnup in the Fast Flux Test Facility. The test consisted of 25 pins that contained spherepac fuel fabricated by the Paul Scherrer Institute (PSI) and 66 pins that contained pelletized fuel fabricated by the Los Alamos National Laboratory. Design of AC-3 by LANL and PSI was begun in 1981, the fuel pins were fabricated from 1983 to 1985, and the test was irradiated from 1986 to 1988. The principal objective of the AC-3 test was to compare the irradiation performance of mixed-carbide fuel pins that contained either pelletized or sphere-pac fuel at prototypic fluence and burnup levels for a fast breeder reactor

  7. Performance Test of the Salt transfer and Pellet fabrication of UCl{sub 3} Making Equipment for Electrorefining

    Energy Technology Data Exchange (ETDEWEB)

    Woo, M. S.; Jin, H. J.; Park, G. I.; Park, S. B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The process to produce a uranium chloride salt includes two steps: a reaction process of gaseous chlorine with liquid cadmium to form the CdCl{sub 2} occurring in a Cd layer, followed by a process to produce UCl{sub 3} by the reaction of U in the LiCl-KCl eutectic salt and CdCl{sub 2}. Chemical reaction is next chlorination reaction; - Cd chlorination : Cd + Cl2 → CdCl{sub 2} - U chlorination : 3CdCl2 + 2U → 3Cd + 2UCl{sub 3} The apparatus for producing UCl{sub 3} consists of a chlorine gas generator, a uranium chlorinator, a Cd distiller, the pelletizer, a off-gas wet scrubber and a dry scrubber. Salt transfer system set among reactors to transfer salt at 500 .deg. C. The temperature of the reactants is maintained at about 600 .deg. C. After the reaction is completed in the uranium chlorinator, The Salt product is transferred to the Cd distiller to decrease residual Cd concentration in the salts, and then salt is transferred to the mould of pelletizer by a transfer system to fabricate pellet type salt. Performance test of the salt transfer and pellet fabrication of its equipment was tested in this work. Performance test of the salt transfer and pellet fabrication of UCl3 making equipment for Electrorefining carried out in this work. The result of equipment test is that melted salt at 600 .deg. C was easy transferred by salt transfer equipment heated at 500 .deg. C. In this time, salt transfer was carried out by argon gas pressurization at 3bar. When velocity of salt transfer was controlled under reduce pressure, velocity of salt transfer was difficult to control. And when salt pellet was fabricated by the mold of pelletizer heated at 90 .deg. C better than mold of pelletizer heated at 200 .deg. C because salt melted prevent leakage from mold of pelletizer.

  8. High torque DC motor fabrication and test program

    Science.gov (United States)

    Makus, P.

    1976-01-01

    The testing of a standard iron and standard alnico permanent magnet two-phase, brushless dc spin motor for potential application to the space telescope has been concluded. The purpose of this study was to determine spin motor power losses, magnetic drag, efficiency and torque speed characteristics of a high torque dc motor. The motor was designed and built to fit an existing reaction wheel as a test vehicle and to use existing brass-board commutation and torque command electronics. The results of the tests are included in this report.

  9. Design, fabrication and testing of porous tungsten vaporizers for mercury ion thrusters

    Science.gov (United States)

    Zavesky, R.; Kroeger, E.; Kami, S.

    1983-01-01

    The dispersions in the characteristics, performance and reliability of vaporizers for early model 30-cm thrusters were investigated. The purpose of the paper is to explore the findings and to discuss the approaches that were taken to reduce the observed dispersion and present the results of a program which validated those approaches. The information that is presented includes porous tungsten materials specifications, a discussion of assembly procedures, and a description of a test program which screens both material and fabrication processes. There are five appendices providing additional detail in the areas of vaporizer contamination, nitrogen flow testing, bubble testing, porosimeter testing, and mercury purity. Four neutralizers, seven cathodes and five main vaporizers were successfully fabricated, tested, and operated on thrusters. Performance data from those devices is presented and indicates extremely repeatable results from using the design and fabrication procedures.

  10. Design, fabrication, and test of a composite material wind turbine rotor blade

    Science.gov (United States)

    Griffee, D. G., Jr.; Gustafson, R. E.; More, E. R.

    1977-01-01

    The aerodynamic design, structural design, fabrication, and structural testing is described for a 60 foot long filament wound, fiberglass/epoxy resin matrix wind turbine rotor blade for a 125 foot diameter, 100 kW wind energy conversion system. One blade was fabricated which met all aerodynamic shape requirements and was structurally capable of operating under all specified design conditions. The feasibility of filament winding large rotor blades was demonstrated.

  11. Novel Galvanic Corrosion Inhibitors: Synthesis, Characterization, Fabrication and Testing

    Science.gov (United States)

    2007-09-30

    Polyimide Insulated Electrical Wire", SAMPE pp.16, Jan/Feb 1984. 11. Brown, S. R.; Deluccia, J.J., " Galvanic Corrosion Fatigue Testing of 7075-T6...Modified Microporous Aluminosilicate" Development of Adsorbents for Air and Water Treatment Conference, 226th American Chemical Society (ACS) National

  12. Fabrication and testing of a superconducting coil: Phase 3 of the Maglev development program

    Energy Technology Data Exchange (ETDEWEB)

    Fife, A A; Lee, S; Tillotson, M [CTF Systems Inc., Port Coquitlam, BC (Canada)

    1989-03-01

    This report documents developmental research on superconducting magnet technology suitable for the levitation and propulsion units of the Canadian Maglev vehicle. The contract work involved the design, fabrication and testing of a racetrack coil fabricated using epoxy-impregnated windings of copper stabilized NbTi wire. The following results were achieved: successful fabrication and testing of a superconducting racetrack magnet with strength {gt} 400,000 A-turns integrated in a support frame; selection and characterization of cryogenic strain gauges; characterization of strain in solenoidal and racetrack superconducting magnets; design, fabrication and testing of high current persistent switches; and operation of superconducting magnets in persistent mode. The racetrack coil reached the design current after the third quench and short sample critical current after the eighth quench. This behavior is essentially identical to that observed with a superconducting solenoid fabricated during a previous phase. The strain measured perpendicular to the straight sides of the racetrack coil was proportional to the square of the energizing current. Persistent switches were fabricated, one type with low resistance (10{sup -2} ohm) and the other with high resistance (1.2 ohm) in their normal states. The low resistance switch could be operated in 1-Tesla fields with stabel characteristics up to about 800A drive current and the high resistance switch to 475A.

  13. Mechanical design and fabrication of power feed cavity test setup

    International Nuclear Information System (INIS)

    Ghodke, S.R.; Dhavle, A.S.; Sharma, Vijay; Sarkar, Shreya; Kumar, Mahendra; Nayak, Susanta; Barnwal, Rajesh; Jayaprakash, D.; Mondal, J.; Nimje, V.T.; Mittal, K.C.; Gantayet, L.M.

    2013-01-01

    Power feed cavity set up consists of nine number of accelerating cavity and eight numbers of coupling cavity for testing of power feed cavity with coupling flange for 2856 MHz S band standing wave coupled cavity linac. When we are assembling the cavity and applying the pressure, its resonance frequency changes with applied pressure/load. After some critical pressure/load frequency change becomes negligible or zero. This set up will be used to find out assembly performance of power feed cavity and its coupler. Top four cavity or eight half cells as well as bottom four cavity or eight half cells will be brazed separately. Power feed cavity will be sandwiched between this two brazed cavity assemblies. This paper discuss about linear motion bush, linear motion rod, load cell, hydraulic actuator, power pack, stepper motor PLC control, jig boring, alignment, tolerances and assembly procedure for this test setup. (author)

  14. Fabrication of a CANFLEX-RU designed bundle for power ramp irradiation test in NRU

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Moon Sung

    2000-11-01

    The BDL-443 CANFLEX-RU bundle AKW was fabricated at Korea Atomic Energy Research Institute (KAERI) for power ramp irradiation testing in NRU reactor. The bundle was fabricated with IDR and ADU fuel pellets in adjacent elements and contains fuel pellets enriched to 1.65 wt% {sup 235}U in the outer and intermediate rings and also contains pellets enriched to 2.00 wt% {sup 235}U in the inner ring. This bundle does not have a center element to allow for insertion on a hanger bar. KAERI produced the IDR pellets with the IDR-source UO{sub 2} powder supplied by BNFL. ADU pellets were fabricated and supplied by AECL. Bundle kits (Zircaloy-4 end plates, end plugs, and sheaths with brazed appendages) manufactured at KAERI earlier in 1996 were used for the fabrication of the bundle. The CANFLEX bundle was fabricated successfully at KAERI according to the QA provisions specified in references and as per relevant KAERI drawings and technical specification. This report covers the fabrication activities performed at KAERI. Fabrication processes performed at AECL will be documented in a separate report.

  15. Textile for heart valve prostheses: fabric long-term durability testing.

    Science.gov (United States)

    Heim, Frederic; Durand, Bernard; Chakfe, Nabil

    2010-01-01

    The rapid developments and success in percutaneous vascular surgery over the last two decades with the now common stent grafts implantation, make the noninvasive surgery technique today attractive even for heart valve replacement. Less traumatic for the patient and also less time consuming, percutaneous heart valve replacement is however at its beginning and restricted to end of life patients. The noninvasive procedure expects from the heart valve prosthesis material to be resistant and adapted to folding requirements of the implantation process (catheter). Polyester fabric could be a suited material for heart valve implanted percutaneously. Highly flexible and resistant, polyester fabric proved to be well adapted to the dynamic behavior of a valve and polyester (Dacron) is also widely used for vascular grafts implantation and shows good biocompatibility and durability. However, today there's no data available on long-term durability of fabric used as heart valve material. The purpose of this work is to study the long term behavior of a microdenier polyester fabric construction under combined in vitro flexure and tension fatigue stress. In the novel in vitro testing technique presented, a fabric specimen was subjected to combined flexural and tensile fatigue generated by fluid flow under physiological pressure conditions. The results obtained show how flexural properties change with fatigue time, which reflects directly on the suitability of a fabric in such devices. It was also observed that these fabric structural changes directly influence the in vitro behavior of the textile heart valve prosthesis. (c) 2009 Wiley Periodicals, Inc.

  16. Fabrication of a CANFLEX-RU designed bundle for power ramp irradiation test in NRU

    International Nuclear Information System (INIS)

    Cho, Moon Sung

    2000-11-01

    The BDL-443 CANFLEX-RU bundle AKW was fabricated at Korea Atomic Energy Research Institute (KAERI) for power ramp irradiation testing in NRU reactor. The bundle was fabricated with IDR and ADU fuel pellets in adjacent elements and contains fuel pellets enriched to 1.65 wt% 235 U in the outer and intermediate rings and also contains pellets enriched to 2.00 wt% 235 U in the inner ring. This bundle does not have a center element to allow for insertion on a hanger bar. KAERI produced the IDR pellets with the IDR-source UO 2 powder supplied by BNFL. ADU pellets were fabricated and supplied by AECL. Bundle kits (Zircaloy-4 end plates, end plugs, and sheaths with brazed appendages) manufactured at KAERI earlier in 1996 were used for the fabrication of the bundle. The CANFLEX bundle was fabricated successfully at KAERI according to the QA provisions specified in references and as per relevant KAERI drawings and technical specification. This report covers the fabrication activities performed at KAERI. Fabrication processes performed at AECL will be documented in a separate report

  17. Design and Fabrication of an Elastomer Test Machine.

    Science.gov (United States)

    1988-05-01

    provided by the Army Materials Technology Laboratories, were tested with the ETM at U.C.N.W. RUBBER 15 TP14AX 15 NAT25A 15 SBR26 NBR 6 FIBREGLASS REINFORCED...stationary, tilted and rotational) are comparable with 0001 AM and 0001 AN samples. SAMPLE NBR 62 This is a matt black, rubber based sample described as a... RUBBER 0001 AM 0001 AN 0001 AE -6- POLYURETHANE ECP 1 S ECP 2 Morbay 2690 Budd 20 1080 (Polyester) ) Gallagher Corporation A8 (Polyester) ) All

  18. Fabrication and testing of main sodium pumps of Superphenix 1

    International Nuclear Information System (INIS)

    Noel, H.; Pasqualini, G.

    1985-01-01

    The complexity of the loads involved and the extremely fine analysis required necessitates extensive design calculations for the Superphenix 1 primary and secondary pumps and associated expansion tanks, aiming toward detailed design validation, after slight adjustments, mainly to the secondary pumps and expansion tanks. The component parts to be built were far larger than those for the previous pumps (Rapsodie, Phenix), with very low manufacturing tolerances, which led to precision machining and welding operations, together with numerous dimensional inspections and materials characterization tests to achieve the required quality standards

  19. Testing alarm resolution procedures in a fuel fabrication facility

    International Nuclear Information System (INIS)

    Smith, B.W.; Razvi, J.

    1984-07-01

    Process monitoring data can be used for generating material loss estimates. The intent of using process control data is to enhance nuclear material control and accounting for the timely detection and resolution of discrepancies. The purpose of an alarm resolution system is to distinguish between system errors and an actual loss of nuclear material. A study has been performed to develop and test a site-specific set of alarm resolution procedures. The results of the study are described and include the frequency of alarms, the causes of alarms, the type of resolution, and the modeling of loss estimates. 3 references, 2 figures, 2 tables

  20. Fabrication and tests of EF conductors for JT-60SA

    Energy Technology Data Exchange (ETDEWEB)

    Kizu, Kaname, E-mail: kizu.kaname@jaea.go.jp [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Kashiwa, Yoshitoshi; Murakami, Haruyuki [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Obana, Tetsuhiro; Takahata, Kazuya [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Tsuchiya, Katsuhiko; Yoshida, Kiyoshi [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Hamaguchi, Shinji [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Matsui, Kunihiro [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Nakamura, Kazuya; Takao, Tomoaki [Sophia University, Tokyo 102-8554 (Japan); Yanagi, Nagato; Imagawa, Shinsaku; Mito, Toshiyuki [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2011-10-15

    The conductors for plasma equilibrium field (EF) coils of JT-60SA are NbTi cable-in-conduit (CIC) conductor with stainless steel 316L jacket. The production of superconductors for actual EF coils started from February 2010. Nine superconductors with 444 m in length were produced up to July 2010. More than 300 welding of jackets were performed. Six nonconformities were found by inspections as go gauge, visual inspection and X-ray test. In order to shorten the manufacturing time schedule, helium leak test was conducted at once after connecting the long length jacket not just after the welding. The maximum force to pull the cable into jacket was about 7.6 kN on average. The mass flow rates of 9 conductors showed almost same values indicating that there are no blockages in the conductors. The measured current sharing temperature agreed with the expectation values from strand performance indicating that no degradation was caused by production process. The coupling time constants of conductors ranged from 80 to 90 ms which are much smaller than the design value of 200 ms.

  1. A Conduction-Cooled Superconducting Magnet System-Design, Fabrication and Thermal Tests

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Holbøll, Joachim; Wang, Qiuliang

    2015-01-01

    A conduction-cooled superconducting magnet system with an operating current of 105.5 A was designed, fabricated and tested for material processing applications. The magnet consists of two coaxial NbTi solenoid coils with an identical vertical height of 300 mm and is installed in a high-vacuumed c......A conduction-cooled superconducting magnet system with an operating current of 105.5 A was designed, fabricated and tested for material processing applications. The magnet consists of two coaxial NbTi solenoid coils with an identical vertical height of 300 mm and is installed in a high......-vacuumed cryostat. A two-stage GM cryocooler with a cooling power of 1.5 W at 4.2 K in the second stage is used to cool the system from room temperature to 4.2 K. In this paper, the detailed design, fabrication, thermal analysis and tests of the system are presented....

  2. Using equilibrium passive dosing to maintain stable exposure concentrations of triclosan in a 6-week toxicity test

    DEFF Research Database (Denmark)

    Sobek, A.; Ribbenstedt, A.; Mustajärvi, L.

    2015-01-01

    toxicity tests. Yet, the European Commission’s criteria for chemicals’ risk assessments aim at protecting higher levels in the environment. To achieve protection of populations and ecosystems, reliable long-term ecotoxicologial tests are needed. In this study, we used equilibrium passive dosing to maintain...... stable exposure concentrations of triclosan (log Kow 4.8) in a 6-week multigeneration test with the benthic copepod Nitocra spinipes. The tests were performed in 10 mL vials casted with 1000 mg of silicone (DC 1-2577). Based on a previous pilot study, three triclosan concentrations were selected...... and tested (15 μg L-1; 30 μg L-1; 60 μg L-1) as well as a control (no triclosan). At test beginning, each vial contained 12 individuals consisting of 3 individuals from four different life stages. The test includes feeding with phytoplankton three times a week, which can lead to declining freely dissolved...

  3. Fabrication and testing of an energy-harvesting hydraulic damper

    International Nuclear Information System (INIS)

    Li, Chuan; Tse, Peter W

    2013-01-01

    Hydraulic dampers are widely used to dissipate energy during vibration damping. In this paper, an energy-harvesting hydraulic damper is proposed for collecting energy while simultaneously damping vibration. Under vibratory excitation, the flow of hydraulic oil inside the cylinder of the damper is converted into amplified rotation via a hydraulic motor, whose output shaft is connected to an electromagnetic generator capable of harvesting a large amount of energy. In this way, the vibration is damped by both oil viscosity and the operation of an electrical mechanism. An electromechanical model is presented to illustrate both the electrical and mechanical responses of the system. A three-stage identification approach is introduced to facilitate the model parameter identification using cycle-loading experiments. A prototype device is developed and characterized in a test rig. The maximum power harvested during the experiments was 435.1 W (m s −1 ) −1 , using a predefined harmonic excitation with an amplitude of 0.02 m, a frequency of 0.8 Hz, and an optimal resistance of 2 Ω. Comparison of the experimental and computational results confirmed the effectiveness of both the electromechanical model and the three-stage identification approach in realizing the proposed design. (paper)

  4. Microbiological testing of devices used in maintaining peripheral venous catheters 1

    Science.gov (United States)

    Rossini, Fernanda de Paula; de Andrade, Denise; Santos, Lissandra Chaves de Sousa; Ferreira, Adriano Menis; Tieppo, Caroline; Watanabe, Evandro

    2017-01-01

    ABSTRACT Objective: to evaluate the use of peripheral venous catheters based on microbiological analysis of devices (dressing and three-way stopcocks) and thus contribute to the prevention and infection control. Methods: this was a prospective study of microbiological analysis of 30 three-way stopcocks (external surfaces and lumens) and 30 dressing used in maintaining the peripheral venous catheters of hospitalized adult patients. Results: all external surfaces, 40% of lumens, and 86.7% of dressing presented bacterial growth. The main species isolated in the lumen were 50% coagulase-negative Staphylococcus, 14.3% Staphylococcus aureus, and 14.3% Pseudomonas aeruginosa. Fifty nine percent of multidrug-resistant bacteria were isolated of the three-way stopcocks, 42% of the lumens, and 44% of the dressing with a predominance of coagulase-negative Staphylococcus resistant to methicillin. Besides, 18% gram-negative bacteria with resistance to carbapenems were identified from multidrug-resistant bacteria on the external surfaces of the three-way stopcocks. Conclusion: it is important to emphasize the isolation of coagulase-negative Staphylococcus and gram-negative bacteria resistant to methicillin and carbapenems in samples of devices, respectively, which reinforces the importance of nursing care in the maintenance of the biologically safe environment as well as prevention and infection control practices. PMID:28513768

  5. Assessment of behavioral mechanisms maintaining encopresis: Virginia Encopresis-Constipation Apperception Test.

    Science.gov (United States)

    Cox, Daniel J; Ritterband, Lee M; Quillian, Warren; Kovatchev, Boris; Morris, James; Sutphen, James; Borowitz, Stephen

    2003-09-01

    To develop and test a scale for parent and child, evaluating theoretical and clinical parameters relevant to children with encopresis. Encopretic children were hypothesized to have more bowel-specific, but not more generic, psychological problems, as compared with nonsymptomatic control children. In addition, mothers were also believed to be more discerning than children. The Virginia Encopresis-Constipation Apperception Test (VECAT) consists of 9 pairs of bowel-specific and 9 parallel generic drawings. Respondents selected the picture in each pair that best described them/their child. It was administered to encopretic children (N = 87), nonsymptomatic siblings (N = 27), and nonsymptomatic nonsiblings (N = 35). The mothers of all the participants also completed the VECAT. Encopretic children were retested 6 and 12 months posttreatment with Enhanced Toilet Training. The VECAT demonstrated good test-retest reliability and internal consistency. Encopretic children and their mothers reported more bowel-specific, but not more generic, problems. Bowel-specific scores improved significantly posttreatment only for those patients who demonstrated significant symptom improvement. Mothers were significantly more discerning than children. The VECAT is a reliable, valid, discriminating, and sensitive test. Bowel-specific problems appear to best differentiate children with and without encopresis.

  6. The fabrication of a vanadium-stainless steel test section for MHD testing of insulator coatings in flowing lithium

    International Nuclear Information System (INIS)

    Reed, C.B.; Mattas, R.F.; Smith, D.L.; Chung, H.; Tsai, H.-C.; Morgan, G.D.; Wille, G.W.; Young, C.

    1996-01-01

    To test the magnetohydrodynamic (MHD) pressure drop reduction performance of candidate insulator coatings for the ITER Vanadium/Lithium Breeding Blanket, a test section comprised of a V- 4Cr-4Ti liner inside a stainless steel pipe was designed and fabricated. Theoretically, the MHD pressure drop reduction benefit resulting, from an electrically insulating coating on a vanadium- lined pipe is identical to the benefit derived from an insulated pipe fabricated of vanadium alone. A duplex test section design consisting of a V alloy liner encased in a SS pressure boundary provided protection for vanadium from atmospheric contamination during operation at high temperature and obviated any potential problems with vanadium welding while also minimizing the amount of V alloy material required. From the MHD and insulator coating- point of view, the test section outer SS wall and inner V alloy liner can be modeled simply as a wall having a sandwich construction. Two 52.3 mm OD x 2.9 m long V-alloy tubes were fabricated by Century Tubes from 64 mm x 200 mm x 1245 mm extrusions produced by Teledyne Wah Chang. The test section's duplex structure was subsequently fabricated at Century Tubes by drawing down a SS pipe (2 inch schedule 10) over one of the 53.2 mm diameter V tubes

  7. EUROFAB: fabrication of four MOX lead tests assemblies for the US DOE

    International Nuclear Information System (INIS)

    Jean-Pierre Bariteau

    2006-01-01

    In a multilateral agreement, the United States (US) and the Russian Federation agreed to reduce their respective weapons stockpiles by each country disposing of 34 tons of military origin plutonium. On behalf of the US government, the Department of Energy contracted with Duke, COGEMA, Stone and Webster (DCS) to design a Mixed Oxide Fuel Fabrication facility (MFFF) which would be built and operated at the DOE Savannah River Site near Aiken, South Carolina. This plant will transform the US excess weapons stockpile into MOX fuel, which will be used it in existing domestic commercial power reactors. The MFFF is based on a replication of AREVA existing facilities (La Hague for Pu polishing and Melox for MOX fabrication). In parallel with the design, construction and startup of the MFFF facility, DOE commissioned fabrication and irradiation of 4 lead test assemblies in one of the Mission Reactors to assist in obtaining NRC approval for MOX fuel loading in US NPPs prior to the production phase of the MFFF facility. This program was named 'EUROFAB', since fabrication had to be made in Europe because no facility implementing the MFFF technology was existing in the USA. The COGEMA Recycling Business unit transmitted a bid to DCS in April 2003, which proposed to perform Eurofab fabrication in its Cadarache (pellets and rods) and Melox (assembly mounting) facilities. In August 2003, the decision was made by DCS, on behalf of the DOE, to award the EUROFAB fabrication contract to COGEMA. (author)

  8. Fabrication of the instrumented fuel rods for the 3-Pin Fuel Test Loop at HANARO

    International Nuclear Information System (INIS)

    Sohn, Jae Min; Park, Sung Jae; Shin, Yoon Tag; Lee, Jong Min; Ahn, Sung Ho; Kim, Soo Sung; Kim, Bong Goo; Kim, Young Ki; Lee, Ki Hong; Kim, Kwan Hyun

    2008-09-01

    The 3-Pin Fuel Test Loop(hereinafter referred to as the '3-Pin FTL') facility has been installed at HANARO(High-flux Advanced Neutron Application Reactor) and the 3-Pin FTL is under a test operation. The purpose of this report is to fabricate the instrumented fuel rods for the 3-Pin FTL. The fabrication of these fuel rods was based on experiences and technologies of the instrumented fuel rods for an irradiation fuel capsule. The three instrumented fuel rods of the 3-Pin FTL have been designed. The one fuel rod(180 .deg. ) was designed to measure the centerline temperature of the nuclear fuels and the internal pressure of the fuel rod, and others(60 .deg. and 300 .deg. ) were designed to measure the centerline temperature of the fuel pellets. The claddings were made of the reference material 1 and 2 and new material 1 and 2. And nuclear fuel was used UO 2 (2.0w/o) pellet type with large grain and standard grain. The major procedures of fabrication are followings: (1) the assembling and weld of fuel rods with the pellet mockups and the sensor mockups for the qualification tests, (2) the qualification tests(dimension measurements, tensile tests, metallography examinations and helium leak tests) of weld, (3) the assembling and weld of instrumented fuel rods with the nuclear pellets and the sensors for the irradiation test, and (4) the qualification tests(the helium leak test, the dimensional measurement, electric resistance measurements of sensors) of test fuel rods. Satisfactory results were obtained for all the qualification tests of the instrumented fuel rods for the 3-Pin FTL. Therefore the three instrumented fuel rods for the 3-Pin FTL have been fabricated successfully. These will be installed in the In-Pile Section of 3-Pin FTL. And the irradiation test of these fuel rods is planned from the early next year for about 3 years at HANARO

  9. Chemistry of the sea surface microlayer. 1. Fabrication and testing of the sampler

    Digital Repository Service at National Institute of Oceanography (India)

    Singbal, S.Y.S.; Narvekar, P.V.

    A screen sampler fabricated to study the sea surface microlayer (SML) has been described. The screen sampler was tested in the Mandovi estuary and adjacent waters. Physico-chemical parameters of the subsurface waters from a depth of 25 cm was also...

  10. Design, fabrication and testing of a 5-Hz acoustic exciter system

    Science.gov (United States)

    Lundy, D. H.; Robinson, G. D.

    1973-01-01

    A 5-Hz acoustic excitation system was designed, fabricated and checked out for use in the modulation of a stagnant gas volume contained in an absorption cell. A detailed system description of the test equipment, both mechanical and electronic, and an operating procedure are included. Conclusions are also presented.

  11. Cooperative program for design, fabrication, and testing of graphite/epoxy composite helicopter shafting

    Science.gov (United States)

    Wright, C. C.; Baker, D. J.; Corvelli, N.; Thurston, L.; Clary, R.; Illg, W.

    1971-01-01

    The fabrication of UH-1 helicopter tail rotor drive shafts from graphite/epoxy composite materials is discussed. Procedures for eliminating wrinkles caused by lack of precure compaction are described. The development of the adhesive bond between aluminum end couplings and the composite tube is analyzed. Performance tests to validate the superiority of the composite materials are reported.

  12. Space and frequency-multiplexed optical linear algebra processor - Fabrication and initial tests

    Science.gov (United States)

    Casasent, D.; Jackson, J.

    1986-01-01

    A new optical linear algebra processor architecture is described. Space and frequency-multiplexing are used to accommodate bipolar and complex-valued data. A fabricated laboratory version of this processor is described, the electronic support system used is discussed, and initial test data obtained on it are presented.

  13. Fleet servicing facilities for testing and maintaining rail and truck radioactive waste transport systems

    International Nuclear Information System (INIS)

    Watson, C.D.; Hudson, B.J.; Preston, M.K.; Keith, D.A.; McCreery, P.N.; Knox, W.; Easterling, E.M.; Lamprey, A.S.; Wiedemann, G.

    1980-01-01

    This paper examines feasibility design concepts and feasibility studies of Fleet Servicing Facilities (FSF). Such facilities are intended to be used for routine servicing, preventive maintenance, and for performing requalification license compliance tests and inspections, minor repairs, and decontamination of both the transportation casks and their associated rail cars or tractor-trailers. None of the waste handling plants in the United States presently receiving radioactive wastes have an onsite FSF, nor is there an existing third party facility providing all of these services. This situation has caused the General Accounting Office to express concern regarding the quality of waste transport system maintenance once the transport system is placed into service. Thus a need is indicated for FSFs or their equivalent at various radioactive materials receiving sites. This paper also compares the respective capital costs and operating characteristics of the following three concepts of a spent fuel cask transportation FSF; integrated FSF, colocated FSF, and independent FSF

  14. The European ITER test blanket modules: Progress in development of fabrication technologies towards standardization

    Energy Technology Data Exchange (ETDEWEB)

    Zmitko, Milan, E-mail: milan.zmitko@f4e.europa.eu [Fusion for Energy (F4E), Josep Pla 2, Barcelona (Spain); Thomas, Noël [ATMOSTAT, F-94815 Villejuif (France); LiPuma, Antonella; Forest, Laurent [CEA-Saclay, DEN, DM2S, SEMT, F-91191 Gif-sur-Yvette (France); Cogneau, Laurence [CEA-DRT, 38000 Grenoble (France); Rey, Jörg; Neuberger, Heiko [Karlsruhe Institute of Technology (KIT), Postfach 3640, Karlsruhe (Germany); Poitevin, Yves [Fusion for Energy (F4E), Josep Pla 2, Barcelona (Spain)

    2016-11-01

    Highlights: • Significant progress on the development of welding procedures for European TBM achieved. • Fabrication processes feasibility based on diffusion and fusion welding demonstrated. • An optimized welding scenario/sequence for TBM box assembly identified. • Future qualification of pF/WPS proposed through realization of a number of QMUs. - Abstract: The paper reviews progress achieved in development of fabrication technologies and procedures applied for manufacturing of the TBM sub-components, like, HCLL and HCPB cooling plates, HCLL/HCPB stiffening plates, and HCLL/HCPB first wall and side caps. The used technologies are based on fusion and diffusion welding techniques taking into account specificities of the EUROFER97 steel. Development of a standardized procedure complying with professional codes and standards (RCC-MRx), a preliminary fabrication/welding procedure specification (pF/WPS), is described based on fabrication and non-destructive and destructive characterization of feasibility mock-ups (FMU) aimed at assessing the suitability of a fabrication process for fulfilling the design and fabrication specifications. The main FMUs characterization results are reported (e.g. pressure resistance and helium leak tightness tests, mechanical properties and microstructure at the weld joints, geometrical characteristics of the sub-components and internal cooling channels) and the key pF/WPS steps and parameters are outlined. Also, fabrication procedures for the TBM box assembly are presently under development for the establishment of an optimized assembly sequence/scenario and development of standardized welding procedure specifications. In conclusions, further steps towards the pF/WPS qualification are briefly discussed.

  15. Design, Fabrication, and Testing of Active Skin Antenna with 3D Printing Array Framework

    Directory of Open Access Journals (Sweden)

    Jinzhu Zhou

    2017-01-01

    Full Text Available An active skin antenna with structural load-bearing and electromagnetic functions is usually installed in the structural surface of mobile vehicles such as aircrafts, warships, and high-speed train. This paper presents the design, fabrication, and testing of a novel active skin antenna which consists of an encapsulation shell, antenna skin, and RF and beam control circuits. The antenna skin which consists of the facesheet, honeycomb, array framework, and microstrip antenna elements was designed by using Bayesian optimization, in order to improve the design efficiency. An active skin antenna prototype with 32 microstrip antenna elements was fabricated by using a hybrid manufacturing method. In this method, 3D printing technology was applied to fabricate the array framework, and the different layers were bonded to form the final antenna skin by using traditional composite process. Some experimental testing was conducted, and the testing results validate the feasibility the proposed antenna skin structure. The proposed design and fabrication technique is suitable for the development of conformal load-bearing antenna or smart skin antenna installed in the structural surface of aircraft, warships, and armored vehicles.

  16. Woven electrochemical fabric-based test sensors (WEFTS): a new class of multiplexed electrochemical sensors.

    Science.gov (United States)

    Choudhary, Tripurari; Rajamanickam, G P; Dendukuri, Dhananjaya

    2015-05-07

    We present textile weaving as a new technique for the manufacture of miniature electrochemical sensors with significant advantages over current fabrication techniques. Biocompatible silk yarn is used as the material for fabrication instead of plastics and ceramics used in commercial sensors. Silk yarns are coated with conducting inks and reagents before being handloom-woven as electrodes into patches of fabric to create arrays of sensors, which are then laminated, cut and packaged into individual sensors. Unlike the conventionally used screen-printing, which results in wastage of reagents, yarn coating uses only as much reagent and ink as required. Hydrophilic and hydrophobic yarns are used for patterning so that sample flow is restricted to a small area of the sensor. This simple fluidic control is achieved with readily available materials. We have fabricated and validated individual sensors for glucose and hemoglobin and a multiplexed sensor, which can detect both analytes. Chronoamperometry and differential pulse voltammetry (DPV) were used to detect glucose and hemoglobin, respectively. Industrial quantities of these sensors can be fabricated at distributed locations in the developing world using existing skills and manufacturing facilities. We believe such sensors could find applications in the emerging area of wearable sensors for chemical testing.

  17. Doubling immunochemistry laboratory testing efficiency with the cobas e 801 module while maintaining consistency in analytical performance.

    Science.gov (United States)

    Findeisen, P; Zahn, I; Fiedler, G M; Leichtle, A B; Wang, S; Soria, G; Johnson, P; Henzell, J; Hegel, J K; Bendavid, C; Collet, N; McGovern, M; Klopprogge, K

    2018-06-04

    The new immunochemistry cobas e 801 module (Roche Diagnostics) was developed to meet increasing demands on routine laboratories to further improve testing efficiency, while maintaining high quality and reliable data. During a non-interventional multicenter evaluation study, the overall performance, functionality and reliability of the new module was investigated under routine-like conditions. It was tested as a dedicated immunochemistry system at four sites and as a consolidator combined with clinical chemistry at three sites. We report on testing efficiency and analytical performance of the new module. Evaluation of sample workloads with site-specific routine request patterns demonstrated increased speed and almost doubled throughput (maximal 300 tests per h), thus revealing that one cobas e 801 module can replace two cobas e 602 modules while saving up to 44% floor space. Result stability was demonstrated by QC analysis per assay throughout the study. Precision testing over 21 days yielded excellent results within and between labs, and, method comparison performed versus the cobas e 602 module routine results showed high consistency of results for all assays under study. In a practicability assessment related to performance and handling, 99% of graded features met (44%) or even exceeded (55%) laboratory expectations, with enhanced reagent management and loading during operation being highlighted. By nearly doubling immunochemistry testing efficiency on the same footprint as a cobas e 602 module, the new module has a great potential to further consolidate and enhance laboratory testing while maintaining high quality analytical performance with Roche platforms. Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  18. Hybrid composite laminates reinforced with Kevlar/carbon/glass woven fabrics for ballistic impact testing.

    Science.gov (United States)

    Randjbaran, Elias; Zahari, Rizal; Jalil, Nawal Aswan Abdul; Majid, Dayang Laila Abang Abdul

    2014-01-01

    Current study reported a facile method to investigate the effects of stacking sequence layers of hybrid composite materials on ballistic energy absorption by running the ballistic test at the high velocity ballistic impact conditions. The velocity and absorbed energy were accordingly calculated as well. The specimens were fabricated from Kevlar, carbon, and glass woven fabrics and resin and were experimentally investigated under impact conditions. All the specimens possessed equal mass, shape, and density; nevertheless, the layers were ordered in different stacking sequence. After running the ballistic test at the same conditions, the final velocities of the cylindrical AISI 4340 Steel pellet showed how much energy was absorbed by the samples. The energy absorption of each sample through the ballistic impact was calculated; accordingly, the proper ballistic impact resistance materials could be found by conducting the test. This paper can be further studied in order to characterise the material properties for the different layers.

  19. Hybrid Composite Laminates Reinforced with Kevlar/Carbon/Glass Woven Fabrics for Ballistic Impact Testing

    Directory of Open Access Journals (Sweden)

    Elias Randjbaran

    2014-01-01

    Full Text Available Current study reported a facile method to investigate the effects of stacking sequence layers of hybrid composite materials on ballistic energy absorption by running the ballistic test at the high velocity ballistic impact conditions. The velocity and absorbed energy were accordingly calculated as well. The specimens were fabricated from Kevlar, carbon, and glass woven fabrics and resin and were experimentally investigated under impact conditions. All the specimens possessed equal mass, shape, and density; nevertheless, the layers were ordered in different stacking sequence. After running the ballistic test at the same conditions, the final velocities of the cylindrical AISI 4340 Steel pellet showed how much energy was absorbed by the samples. The energy absorption of each sample through the ballistic impact was calculated; accordingly, the proper ballistic impact resistance materials could be found by conducting the test. This paper can be further studied in order to characterise the material properties for the different layers.

  20. Fabrication and testing of uranium nitride fuel for space power reactors

    Science.gov (United States)

    Matthews, R. B.; Chidester, K. M.; Hoth, C. W.; Mason, R. E.; Petty, R. L.

    1988-02-01

    Uranium nitride fuel was selected for previous space power reactors because of its attractive thermal and physical properties; however, all UN fabrication and testing activities were terminated over ten years ago. An accelerated irradiation test, SP-1, was designed to demonstrate the irradiation performance of Nb-1 Zr clad UN fuel pins for the SP-100 program. A carbothermic-reduction/nitriding process was developed to synthesize UN powders. These powders were fabricated into fuel pellets by conventional cold-pressing and sintering. The pellets were loaded into Nb-1 Zr cladding tubes, irradiated in a fast-test reactor, and destructively examined after 0.8 at% burnup. Preliminary postirradiation examination (PIE) results show that the fuel pins behaved as designed. Fuel swelling, fission-gas release, and microstructural data are presented, and suggestions to enhance the reliability of UN fuel pins are discussed.

  1. Fabrication and Testing of Durable Redundant and Fluted-Core Joints for Composite Sandwich Structures

    Science.gov (United States)

    Lin, Shih-Yung; Splinter, Scott C.; Tarkenton, Chris; Paddock, David A.; Smeltzer, Stanley S.; Ghose, Sayata; Guzman, Juan C.; Stukus, Donald J.; McCarville, Douglas A.

    2013-01-01

    The development of durable bonded joint technology for assembling composite structures is an essential component of future space technologies. While NASA is working toward providing an entirely new capability for human space exploration beyond low Earth orbit, the objective of this project is to design, fabricate, analyze, and test a NASA patented durable redundant joint (DRJ) and a NASA/Boeing co-designed fluted-core joint (FCJ). The potential applications include a wide range of sandwich structures for NASA's future launch vehicles. Three types of joints were studied -- splice joint (SJ, as baseline), DRJ, and FCJ. Tests included tension, after-impact tension, and compression. Teflon strips were used at the joint area to increase failure strength by shifting stress concentration to a less sensitive area. Test results were compared to those of pristine coupons fabricated utilizing the same methods. Tensile test results indicated that the DRJ design was stiffer, stronger, and more impact resistant than other designs. The drawbacks of the DRJ design were extra mass and complex fabrication processes. The FCJ was lighter than the DRJ but less impact resistant. With barely visible but detectable impact damages, all three joints showed no sign of tensile strength reduction. No compression test was conducted on any impact-damaged sample due to limited scope and resource. Failure modes and damage propagation were also studied to support progressive damage modeling of the SJ and the DRJ.

  2. Fabrication and testing of W7-X pre-series target elements

    International Nuclear Information System (INIS)

    Boscary, J; Boeswirth, B; Greuner, H; Grigull, P; Missirlian, M; Plankensteiner, A; Schedler, B; Friedrich, T; Schlosser, J; Streibl, B; Traxler, H

    2007-01-01

    The assembly of the highly-loaded target plates of the WENDELSTEIN 7-X (W7-X) divertor requires the fabrication of 890 target elements (TEs). The plasma facing material is made of CFC NB31 flat tiles bonded to a CuCrZr copper alloy water-cooled heat sink. The elements are designed to remove a stationary heat flux and power up to 10 MW m -2 and 100 kW, respectively. Before launching the serial fabrication, pre-series activities aimed at qualifying the design, the manufacturing route and the non-destructive examinations (NDEs). High heat flux (HHF) tests performed on full-scale pre-series TEs resulted in an improvement of the design of the bond between tiles and heat sink to reduce the stresses during operation. The consequence is the fabrication of additional pre-series TEs to be tested in the HHF facility GLADIS. NDEs of this bond based on thermography methods are developed to define the acceptance criteria suitable for serial fabrication

  3. Fabrication and testing of small scale mock-ups of ITER shielding blanket

    Energy Technology Data Exchange (ETDEWEB)

    Hatano, Toshihisa; Sato, Satoshi; Suzuki, Satoshi; Yokoyama, Kenji; Furuya, Kazuyuki; Kuroda, Toshimasa; Enoeda, Mikio; Takatsu, Hideyuki; Ohara, Yoshihiro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1998-12-01

    Small scale mock-ups of the primary first wall, the baffle first wall, the shield block and a partial model for the edge of the primary first wall module were designed and fabricated incorporating most of the key design features of the ITER shielding blanket. All mock-ups featured the DSCu heat sink, the built-in SS coolant tubes within the heat sink and the SS shield block. CFC tiles was used as the protection armor for the baffle first wall mock-up. The small scale shield block mock-up, integrated with the first wall, was designed to have a poloidal curvature specified in the ITER design. Fabrication routes of mock-ups were decided based on the single step solid HIP of DSCu/DSCu, DSCu/SS and SS/SS reflecting the results of previous joining techniques development and testing. For attaching the CFC tiles onto DSCu heat sink in the fabrication of the baffle first wall mock-up, a two-step brazing was tried. All mock-ups and the partial model were successfully fabricated with a satisfactory dimensional accuracy. The small scale primary first wall mock-up was thermo-mechanically tested under high heat fluxes of 5-7 MW/m{sup 2} for 2500 cycles in total. Satisfactory heat removal performance and integrity of the mock-up against cyclic high heat flux loads were confirmed by measurement during the tests and destructive examination after the tests. Similar high heat flux tests were also performed with the small scale baffle first wall mock-up under 5-10 MW/m{sup 2} for 4500 cycles in total resulting in sufficient heat removal capability and integrity confirmed by measurements during the tests. (author)

  4. Fabrication and testing of small scale mock-ups of ITER shielding blanket

    International Nuclear Information System (INIS)

    Hatano, Toshihisa; Sato, Satoshi; Suzuki, Satoshi; Yokoyama, Kenji; Furuya, Kazuyuki; Kuroda, Toshimasa; Enoeda, Mikio; Takatsu, Hideyuki; Ohara, Yoshihiro

    1998-12-01

    Small scale mock-ups of the primary first wall, the baffle first wall, the shield block and a partial model for the edge of the primary first wall module were designed and fabricated incorporating most of the key design features of the ITER shielding blanket. All mock-ups featured the DSCu heat sink, the built-in SS coolant tubes within the heat sink and the SS shield block. CFC tiles was used as the protection armor for the baffle first wall mock-up. The small scale shield block mock-up, integrated with the first wall, was designed to have a poloidal curvature specified in the ITER design. Fabrication routes of mock-ups were decided based on the single step solid HIP of DSCu/DSCu, DSCu/SS and SS/SS reflecting the results of previous joining techniques development and testing. For attaching the CFC tiles onto DSCu heat sink in the fabrication of the baffle first wall mock-up, a two-step brazing was tried. All mock-ups and the partial model were successfully fabricated with a satisfactory dimensional accuracy. The small scale primary first wall mock-up was thermo-mechanically tested under high heat fluxes of 5-7 MW/m 2 for 2500 cycles in total. Satisfactory heat removal performance and integrity of the mock-up against cyclic high heat flux loads were confirmed by measurement during the tests and destructive examination after the tests. Similar high heat flux tests were also performed with the small scale baffle first wall mock-up under 5-10 MW/m 2 for 4500 cycles in total resulting in sufficient heat removal capability and integrity confirmed by measurements during the tests. (author)

  5. Status report of an experimental dairy herd maintained on the Nevada Test Site, 1 January 1976 through 31 December 1976

    International Nuclear Information System (INIS)

    Daley, E.M.

    1978-04-01

    The Environmental Monitoring and Support Laboratory-Las Vegas, U.S. Environmental Protection Agency, maintains an experimental dairy herd and farm facility in Area 15 of the Nevada Test Site for the U.S. Energy Research and Development Administration. This status report covers the period from January 1, 1976, through December 31, 1976. Improvements, changes, and additions made to the facilities, production and reproduction statistics for individual cows and the herd, the veterinary medicine practices employed, and summaries of the metabolism studies that involved the dairy herd are covered in this report

  6. Design, Fabrication, Test Report of the Material Capsule(08M-10K) with Double Thermal Media for High-temperature Irradiation

    International Nuclear Information System (INIS)

    Cho, Man Soon; Choo, K. N.; Kang, Y. H.; Sohn, J. M.; Shin, Y. T.; Park, S. J.; Kim, B. G.; Oh, S. Y.

    2010-01-01

    To overcome the restriction of the irradiation test at a high temperature of the existing material capsule with Al thermal media, a capsule suitable for the irradiation at the high temperature was developed and the performance test was undertaken. The 08M-10K capsule was designed and fabricated as that with double thermal media to verify the structural and external integrity in the high-temperature irradiation higher than 500 .deg. C. The thermal performance test was undertaken at the out-pile test facility, and the soundness of the double thermal media was confirmed with the naked eye after disassembling the capsule. Though the temperatures of the specimens reach 500±20 .deg. C as a result maintaining the capsule during 5 hours after setting the specimens temperatures in the target range, the high-temperature thermal media with double structure was confirmed to maintain the soundness. And the specimens and the thermal media were heated to 600 .deg. C for about 3 minutes, but the thermal media were maintained sound. Especially, the Al thermal media were heated for 5 hours in range of 500±20 .deg. C and for 3 minutes at the temperature of 600 .deg. C. However, the thermal media were confirmed to maintain the soundness. Whether a capsule has only Al thermal media or the high-temperature thermal media with double structure, any capsule can be used in the range of 500±20 .deg. C as the result of this experiment maintaining the specimens high-temperature

  7. Fabrication and testing of U–7Mo monolithic plate fuel with Zircaloy cladding

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, E.E. [Laboratorio de Nanotecnología Nuclear, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. General Paz 1499, B1650KNA, San Martín, Prov. Buenos Aires (Argentina); Robinson, A.B. [Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID, 83415-6188 (United States); Porter, D.L., E-mail: Douglas.Porter@inl.gov [Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID, 83415-6188 (United States); Wachs, D.M. [Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID, 83415-6188 (United States); Finlay, M.R. [Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW, 2234 (Australia)

    2016-10-15

    Nuclear fuel designs are being developed to replace highly enriched fuel used in research and test reactors with fuels of low enrichment. In the most challenging cases, U–(7–10 wt%)Mo monolithic plate fuels are proposed. One of the considered designs includes aluminum-alloy cladding, which provides some challenges in fabrication and fuel/cladding interaction during service. Zircaloy cladding, specifically Zry–4, was investigated as an alternative cladding, and development of a fabrication method was performed by researchers with the Comisión Nacionalde Energia Atómica (CNEA) in Argentina, resulting in test fuel plates (Zry–4 clad U–7Mo) which were subsequently tested in the Advanced Test Reactor in Idaho. Because Zry–4 and U–(7–10)Mo have similar high-temperature mechanical properties, fabrication was simplified in that the fuel foil and cladding could be co-rolled and bonded. The challenge was to prevent a thermal-expansion mismatch, which could destroy the fuel/cladding bond before complete bonding was achieved; the solution was to prevent the composites from cooling significantly during or between roll passes. The final product performed very well in-reactor, showing good bonding, very little fuel/cladding interaction—either from fabrication or in-reactor testing—and little swelling, especially no detectable heterogeneous bubble formation at the fuel/cladding interface tested to a fission density of up to 2.7E+21 (average) fissions/cm{sup 3}, 3.8E+21 (peak).

  8. Fabrication and tests and RF control of the superconducting resonators of the Saclay heavy ion LINAC

    International Nuclear Information System (INIS)

    Cauvin, B.; Coret, M.; Fouan, J.P.; Girard, J.; Girma, J.L.; Leconte, P.; Lussignol, Y.; Moreau, R.; Passerieux, J.P.; Ramstein, G.; Wartski, L.

    1987-01-01

    Two types of niobium superconducting resonators used in the Saclay linac are discussed. The outer cylinder and RF ports are identical for the two designs, but internal structures are different: full wave helix with three gaps behavior; or half wave with two gaps behavior. All cavities (34 full wave, 16 half) were tested for field and mounted in the machine cryostats. Cavity fabrication and performance are summarized. Vibration tests and Rf control are described. It is argued that helix resonators can overcome problems due to vibration. The very low lock out time percentage measured in an acceleration test with 21 cavities supports this confidence

  9. Maintaining and assessing extended 9 test methods in accordance with ISO/IEC 17025: 2005 for Isotopes Hydrology Laboratory

    International Nuclear Information System (INIS)

    Nguyen Thi Hong Thinh; Ha Lan Anh; Vo Thi Anh; Tran Khanh Minh; Vu Hoai

    2016-01-01

    The ISO/IEC 17025:2005 ''General requirements for the competence of testing and calibration laboratories'' is basis for the accreditation body of the country in general and VILAS in particular recognizing the competence of laboratories. With the desire to prove that we have sufficient technique and management capacity , and the ability to provide the legally recognized and technically valuable test results, the Isotope Hydrology Laboratory have developed and maintain a quality management system in accordance with ISO/IEC 17025:2005. In 2013, Isotope Hydrology Laboratory received a certificate of accreditation issued by Bureau of Accreditation which recognized the laboratory in accordance with ISO/IEC 17025:2005 with VILAS 670 accredited code. Scope of recognition is analyzed 14 parameters: F"-, Cl"-, NO_2"-, NO_3"-, Br"-, PO_4"3"-, SO_4"2"-, Li"+, Na"+, NH_4"+, K"+, Mg"2"+, Ca"2"+ and "3H in water by ion chromatography and liquid scintillator counting method. The laboratory has successfully implemented the task of maintaining quality management systems conform to ISO/IEC 17025: 2005 and expanded the scope of accreditation by 9 parameters in water: pH, EC, TSS, TDS, DO, BOD5, pH, Fe and Mn in 2015. (author)

  10. Fabrication and tests of prototype quadrupole magnets for the storage ring of the Advanced Photon Source

    International Nuclear Information System (INIS)

    Kim, S.H.; Thompson, K.M.; Black, E.L.; Jagger, J.M.

    1991-01-01

    Prototype quadrupole magnets for the APS storage ring have been fabricated and tested. Mechanical stability of the magnet poles and acceptable field quality have been achieved. Geometries of the pole-end bevels have been studied in order to simplify the design of the magnet end-plate. The field saturation at different segments of the magnet has been measured to evaluate the magnet efficiency

  11. Design, fabrication, and testing of the PIACE-R1 machine

    International Nuclear Information System (INIS)

    Goto, S.; Uyama, T.; Yokota, T.; Takano, H.; Ohsaki, O.; Masuda, K.; Koyanagi, E.; Sanada, Y.

    1979-01-01

    The design, fabrication and testing of the coil and collector system for the PIACE-R1 (Plasma Injection and Compression Experiments-Race Track 1) are described in this paper. In particular, the eddy current analysis, collector insulation, and stress analysis for determining the coil configuration and arrangement are presented in detail. The purpose of the machine is to obtain thermonuclear plasmas. 5 refs

  12. Full-field fabric stress mapping by micro Raman spectroscopy in a yarn push-out test.

    Science.gov (United States)

    Lei, Z K; Qin, F Y; Fang, Q C; Bai, R X; Qiu, W; Chen, X

    2018-02-01

    The full-field stress distribution of a two-dimensional plain fabric was mapped using micro Raman spectroscopy (MRS) through a novel yarn push-out test, simulating a quasi-static projectile impact on the fabric. The stress-strain relationship for a single yarn was established using a digital image correlation method in a single-yarn tensile test. The relationship between Raman peak shift and aramid Kevlar 49 yarn stress was established using MRS in a single-yarn tensile test. An out-of-plane loading test was conducted on an aramid Kevlar 49 plain fabric, and the yarn stress was measured using MRS. From the full-field fabric stress distribution, it can be observed that there is a cross-shaped distribution of high yarn stress; this result would be helpful in further studies on load transfer on a fabric during a projectile impact.

  13. Fabrication Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Fabrication Facilities are a direct result of years of testing support. Through years of experience, the three fabrication facilities (Fort Hood, Fort Lewis, and...

  14. Design criteria and fabrication in-pile test section of HANARO fuel test loop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. Y.

    1997-10-01

    Safety state fuel test loop will be equipped in HANARO to obtain the development and betterments of advanced fuel and materials through the irradiation tests. The objective of this study is to determine the design criteria and technical specification of in-pile test section and to specify the manufacturing requirements of in-pile test section. HANARO fuel test loop was designed to meet the CANDU and PWR fuel testing and in-pile section will be manufactured and installed in HANARO. The design criteria and technical specification of in-pile test section could be used the fuel and materials design with for irradiation testing IPS of HANARO fuel test loop. This results will become guidances for the planning and programming of irradiation testing. (author). 12 refs., tabs., figs.

  15. Modeling, Fabrication and Testing of a Customizable Micromachined Hotplate for Sensor Applications.

    Science.gov (United States)

    Tommasi, Alessio; Cocuzza, Matteo; Perrone, Denis; Pirri, Candido Fabrizio; Mosca, Roberto; Villani, Marco; Delmonte, Nicola; Zappettini, Andrea; Calestani, Davide; Marasso, Simone Luigi

    2016-12-30

    In the sensors field the active sensing material frequently needs a controlled temperature in order to work properly. In microsystems technology, micro-machined hotplates represent a platform consisting of a thin suspended membrane where the sensing material can be deposited, usually integrating electrical stimuli and temperature readout. The micro-hotplate ensures a series of advantages such as miniaturized size, fast response, high sensitivity, low power consumption and selectivity for chemical sensing. This work compares the coplanar and the buried approach for the micro-hotplate heaters design with the aim to optimize the fabrication process and to propose a guideline for the choice of the suitable design with respect to the applications. In particular, robust Finite Element Method (FEM) models are set up in order to predict the electrical and thermal behavior of the micro-hotplates. The multiphysics approach used for the simulation allows to match as close as possible the actual device to the predictive model: geometries, materials, physics have been carefully linked to the fabricated devices to obtain the best possible accuracy. The materials involved in the fabrication process are accurately selected in order to improve the yield of the process and the performance of the devices. The fabricated micro-hotplates are able to warm the active region up to 400 °C (with a corresponding power consumption equal to 250 mW @ 400 °C) with a uniform temperature distribution in the buried micro-hotplate and a controlled temperature gradient in the coplanar one. A response time of about 70 ms was obtained on the virtual model, which perfectly agrees with the one measured on the fabricated device. Besides morphological, electrical and thermal characterizations, this work includes reliability tests in static and dynamic modes.

  16. Modeling, Fabrication and Testing of a Customizable Micromachined Hotplate for Sensor Applications

    Directory of Open Access Journals (Sweden)

    Alessio Tommasi

    2016-12-01

    Full Text Available In the sensors field the active sensing material frequently needs a controlled temperature in order to work properly. In microsystems technology, micro-machined hotplates represent a platform consisting of a thin suspended membrane where the sensing material can be deposited, usually integrating electrical stimuli and temperature readout. The micro-hotplate ensures a series of advantages such as miniaturized size, fast response, high sensitivity, low power consumption and selectivity for chemical sensing. This work compares the coplanar and the buried approach for the micro-hotplate heaters design with the aim to optimize the fabrication process and to propose a guideline for the choice of the suitable design with respect to the applications. In particular, robust Finite Element Method (FEM models are set up in order to predict the electrical and thermal behavior of the micro-hotplates. The multiphysics approach used for the simulation allows to match as close as possible the actual device to the predictive model: geometries, materials, physics have been carefully linked to the fabricated devices to obtain the best possible accuracy. The materials involved in the fabrication process are accurately selected in order to improve the yield of the process and the performance of the devices. The fabricated micro-hotplates are able to warm the active region up to 400 °C (with a corresponding power consumption equal to 250 mW @ 400 °C with a uniform temperature distribution in the buried micro-hotplate and a controlled temperature gradient in the coplanar one. A response time of about 70 ms was obtained on the virtual model, which perfectly agrees with the one measured on the fabricated device. Besides morphological, electrical and thermal characterizations, this work includes reliability tests in static and dynamic modes.

  17. Testing the electrostatic characteristics of polypropylene fabric with metallic yarns, intended for use in coal mines threatened by the explosion hazard. Part 2: Tests in coal mine

    International Nuclear Information System (INIS)

    Talarek, M; Orzech, L

    2011-01-01

    The aim of this paper was to assess the electrostatic safety of polypropylene fabric with metallic yarns intended for use in coal mines. Such fabrics have not been used in the Polish mining industry yet. The tests conducted have been divided into two subgroups: laboratory tests and tests in a coal mine. This paper presents the results of tests in a coal mine, where we have focused on the resistance-to-ground in some specific situations. Bags made of fabric at the roadway face were tested, as well as the roll of fabric during transport and carried by a miner. The results obtained allow the reliable assessment of the risk of using fabrics with metallic yarns in the explosive atmosphere which often occurs in coal mines.

  18. Design, fabrication, and dynamic testing of a V-groove radiator mechanical development unit

    Science.gov (United States)

    Petrick, S. Walter; Bard, Steven

    1988-01-01

    This paper describes the design, fabrication, and dynamic testing of a V-groove radiator development unit. The intended goal was to survive the dynamic environment of the Mars Observer mission. The development unit was designed to achieve a temperature of 80 K with a heat load of about 80 milliwatts. An analysis was performed to predict the thermal performance of the development unit. The radiator with a mass mockup of a Gamma Ray Spectrometer detector, the most massive of the candidate Mars Observer instrument detectors (1.7 Kg), passed vibration and acoustic testing to the Mars Observer requirements in effect at that time.

  19. Design and testing of RFID sensor tag fabricated using inkjet-printing and electrodeposition

    Science.gov (United States)

    Chien Dang, Mau; Son Nguyen, Dat; Dung Dang, Thi My; Tedjini, Smail; Fribourg-Blanc, Eric

    2014-06-01

    The passive RFID tag with an added sensing function is of interest to many applications. In particular, applications where RFID tagging is already considered to be the next step, such as food items, are a specific target. This paper demonstrates a flexible RFID tag sensor fabricated using a low cost technique with an added zero-cost sensing function. It is more specifically applied to the sensing of degradable food, in particular beef meat in our demonstrated example. To reach this, the antenna is designed in such a way to be sensitive to the variation of the dielectric permittivity of the meat over time. The design of the sensing tag as well as its fabrication process are described. The fabrication involves inkjet printing of a silver nanoparticle based ink on a commercial low cost PET film to create a seed layer. It is followed by a copper electrodeposition step on top of the silver pattern to complete the tag to obtain the desired thickness and conductivity of the tag antenna. The results of the electrical tests showed that with the inkjet printing-electrodeposition combination it is possible to produce flexible electrically conductive patterns for practical RFID applications. The tag was then tested in close-to-real-world conditions and it is demonstrated that it can provide a sensing function to detect the consumption limit of the packaged beef.

  20. Fabrication and testing of an electrochemical microcell for in situ soft X-ray microspectroscopy measurements

    Science.gov (United States)

    Gianoncelli, A.; Kaulich, B.; Kiskinova, M.; Mele, C.; Prasciolu, M.; Sgura, I.; Bozzini, B.

    2013-03-01

    In this paper we report on the fabrication and testing of a novel concept of electrochemical microcell for in-situ soft X-ray microspectroscopy in transmission. The microcell, fabricated by electron-beam lithography, implements an improved electrode design, with optimal current density distribution and minimised ohmic drop, allowing the same three-electrode electrochemical control achievable with traditional cells. Moreover standard electroanalytical measurements, such as cyclic voltammetry, can be routinely performed. As far as the electrolyte is concerned, we selected a room-temperature ionic-liquid. Some of the materials belonging to this class, in addition to a broad range of outstanding electrochemical properties, feature two highlights that are crucial for in situ, soft X-ray transmission work: spinnability, enabling accurate thickness control, and stability to UHV, allowing operation of an open cell in the analysis chamber vacuum (10-6 mbar). The cell can, of course, be used also with non-vacuum stable electrolytes in the sealed version developed in previous work in our group. In this study, the microcell designed, fabricated and tested in situ by applying an anodic polarisation to a Au electrode and following the formation of a distribution of corrosion features. This specific material combination presented in this work does not limit the cell concept, that can implement any electrodic material grown by lithography, any liquid electrolyte and any spinnable solid electrolyte.

  1. Design, fabrication and cold tests of a super ferric octupole corrector for the LHC

    International Nuclear Information System (INIS)

    Garcia-Tabares, L.; Calero, J.; Laurent, G.; Russenschuck, S.; Siegel, N.; Traveria, M.; Aguirre, P.; Etxeandia, J.; Garcia, J.

    1996-01-01

    In the corrections scheme of the LHC it is planed to install octupole corrector magnets in the short straight section of the lattice. Initially these correctors were distributed windings on the cold bore tube nested in the tuning quadrupoles. The latter being suppressed a new compact super ferric design was chosen for the octupole prototype, suitable for a two-in-one configuration. This prototype was designed by CERN and CEDEX/Spain, built at INDAR/Spain and tested at CEDEX. The paper reports on the design of the prototype, describes the fabrication and assembly and presents the measurement results. Special interest has been taken to design a simple and compact magnet, easy to fabricate and training free below nominal field. First results show the feasibility of the solution wich will be finally confirmed by magnetic measurement. (Author) 4 refs

  2. Production circulator fabrication and testing for core flow test loop. Final report, Phase III

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    The performance testing of two production helium circulators utilizing gas film lubrication is described. These two centrifugal-type circulators plus an identical circulator prototype will be arranged in series to provide the helium flow requirements for the Core Flow Test Loop which is part of the Gas-Cooled Fast Breeder Reactor Program (GCFR) at the Oak Ridge National Laboratory. This report presents the results of the Phase III performance and supplemental tests, which were carried out by MTI during the period of December 18, 1980 through March 19, 1981. Specific test procedures are outlined and described, as are individual tests for measuring the performance of the circulators. Test data and run descriptions are presented.

  3. Production circulator fabrication and testing for core flow test loop. Final report, Phase III

    International Nuclear Information System (INIS)

    1981-05-01

    The performance testing of two production helium circulators utilizing gas film lubrication is described. These two centrifugal-type circulators plus an identical circulator prototype will be arranged in series to provide the helium flow requirements for the Core Flow Test Loop which is part of the Gas-Cooled Fast Breeder Reactor Program (GCFR) at the Oak Ridge National Laboratory. This report presents the results of the Phase III performance and supplemental tests, which were carried out by MTI during the period of December 18, 1980 through March 19, 1981. Specific test procedures are outlined and described, as are individual tests for measuring the performance of the circulators. Test data and run descriptions are presented

  4. Report on material and fabrication tests of the KUHFR core vessel

    International Nuclear Information System (INIS)

    Yoshida, H.; Kozuka, T.; Achiwa, N.; Mitani, S.; Kawano, S.; Araki, Y.; Shibata, T.

    1983-01-01

    For the material of the cylindrical reactor core vessel of the Kyoto University High Flux Reactor (KUHFR), A6061 alloy is selected because the aged state of the alloy is known to show the highest resistance against void swelling due to high-dose irradiation. The fabrication possibility of the large-scale tubes is also tested because the sizes (40 cmdiameter and 43 cmdiameter x 960 cm with a thickness of 10 mm for the inner- and outer-tubes, respectively) are just over the largest limit of the conventional factory fabrication. The results are summarized as follows. (1) From an ingot of A6061 alloy a raw inner-tube is hot-extruded by the 3,000 ton press machine. The shape of the extruded tubes is effectively corrected by stretch forming and other special methods. (2) The real scale tubes are heat-treated under the various conditions (T1, T4 and T6) and their size changes are measured just after the every heat-treatment. (3) The hydropressure for a pipe prepared by welding from an aged-tube shows a fairly uniform strain distribution and the breaking initiation at the reasonable pressure in the welded part. (4) Each of the welded specimens prepared using three kinds of welding rods shows sufficient strength in both of bending and tensile test for the JIS standard. Their microstructures correspond to the result of the mechanical tests for each welded specimen. The confidence for the fabrication possibility of the real core vessel has been given through the present tests. (author)

  5. Split-cross-bridge resistor for testing for proper fabrication of integrated circuits

    Science.gov (United States)

    Buehler, M. G. (Inventor)

    1985-01-01

    An electrical testing structure and method is described whereby a test structure is fabricated on a large scale integrated circuit wafer along with the circuit components and has a van der Pauw cross resistor in conjunction with a bridge resistor and a split bridge resistor, the latter having two channels each a line width wide, corresponding to the line width of the wafer circuit components, and with the two channels separated by a space equal to the line spacing of the wafer circuit components. The testing structure has associated voltage and current contact pads arranged in a two by four array for conveniently passing currents through the test structure and measuring voltages at appropriate points to calculate the sheet resistance, line width, line spacing, and line pitch of the circuit components on the wafer electrically.

  6. Fabrication and performance tests of a prototype in-situ coating machine for JT-60

    International Nuclear Information System (INIS)

    Obara, Kenjiro; Abe, Tetsuya; Murakami, Yoshio

    1987-09-01

    Prior to the design and construction of the JT-60's in-situ coating device, a prototype machine was fabricated and tested to confirm the applicability of proposed driving methods and mechanical elements to the device which would be operated in very severe conditions including high ambient temperature and high vacuum. The machine basically consists of an in-vessel manipulator, a fiberscope and an ohmically heated titanium evaporator. From the test results, we recommended to use the combination of Inconel 625 and a self-lubricating alloy for the solid-lubricated bearings and MoS 2 -coated Inconel 625 for the solid-lubricated gears. It was also found that TiC coating showed a effect for the prevention of welding between bolts and nuts. In order to optimize the operating parameters of the machine, many wall inspection tests and titanium evaporation tests were carried out in a large vacuum vessel by simulating the JT-60 conditions. (author)

  7. Concentrating Solar Power Central Receiver Panel Component Fabrication and Testing FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    McDowell, Michael W [Pratt & Whitney Rocketdyne; Miner, Kris [Pratt & Whitney Rocketdyne

    2013-03-30

    The objective of this project is to complete a design of an advanced concentrated solar panel and demonstrate the manufacturability of key components. Then confirm the operation of the key components under prototypic solar flux conditions. This work is an important step in reducing the levelized cost of energy (LCOE) from a central receiver solar power plant. The key technical risk to building larger power towers is building the larger receiver systems. Therefore, this proposed technology project includes the design of an advanced molten salt prototypic sub-scale receiver panel that can be utilized into a large receiver system. Then complete the fabrication and testing of key components of the receive design that will be used to validate the design. This project shall have a significant impact on solar thermal power plant design. Receiver panels of suitable size for utility scale plants are a key element to a solar power tower plant. Many subtle and complex manufacturing processes are involved in producing a reliable, robust receiver panel. Given the substantial size difference between receiver panels manufactured in the past and those needed for large plant designs, the manufacture and demonstration on prototype receiver panel components with representative features of a full-sized panel will be important to improving the build process for commercial success. Given the thermal flux limitations of the test facility, the panel components cannot be rendered full size. Significance changes occurred in the projects technical strategies from project initiation to the accomplishments described herein. The initial strategy was to define cost improvements for the receiver, design and build a scale prototype receiver and test, on sun, with a molten salt heat transport system. DOE had committed to constructing a molten salt heat transport loop to support receiver testing at the top of the NSTTF tower. Because of funding constraints this did not happen. A subsequent plan to

  8. Design, Fabrication, and Shakeout Testing of ATALANTE Dissolver Off-Gas Sorbent-Based Capture System

    International Nuclear Information System (INIS)

    Walker Jr, Joseph Franklin; Jubin, Robert Thomas; Jordan, Jacob A.; Bruffey, Stephanie H.

    2015-01-01

    A sorbent-based capture system designed for integration into the existing dissolver off-gas (DOG) treatment system at the ATelier Alpha et Laboratoires pour ANalyses, Transuraniens et Etudes de retraitement (ATALANTE) facility has been successfully designed and fabricated and has undergone shakeout testing. Discussions with personnel from the ATALANTE facility provided guidance that was used for the design. All components for this system were specified, procured, and received on site at Oak Ridge National Laboratory (ORNL). The system was then fabricated and tested at ORNL to verify operation. Shakeout testing resulted in a simplified system. This system should be easily installed into the existing facility and should be straightforward to operate during future experimental testing. All parts were selected to be compatible with ATALANTE power supplies, space requirements, and the existing DOG treatment system. Additionally, the system was demonstrated to meet all of four design requirements. These include (1) a dissolver off-gas flow rate of ?100 L/h (1.67 L/min), (2) an external temperature of ?50°C for all system components placed in the hot cell, (3) a sorbent bed temperature of ~150°C, and (4) a gas temperature of ~150°C upon entry into the sorbent bed. The system will be ready for shipment and installation in the existing DOG treatment system at ATALANTE in FY 2016.

  9. Maintainability allocation

    International Nuclear Information System (INIS)

    Guyot, Christian.

    1980-06-01

    The author gives the general lines of a method for the allocation and for the evaluation of maintainability of complex systems which is to be developed during the conference. The maintainability objective is supposed to be formulated under the form of a mean time to repair (M.T.T.R.) [fr

  10. Design, fabrication and performance tests for a polymer-based flexible flat heat pipe

    International Nuclear Information System (INIS)

    Hsieh, Shou-Shing; Yang, Ya-Ru

    2013-01-01

    Highlights: ► Fabrication of a polymer-based flexible flat heat pipe. ► Bending angle of 15° will lead to a better thermal performance of the system. ► Powers higher than 12.67 W can be transferred/delivered. - Abstract: In this paper, we report on the novel design, fabrication and performance tests for a polymer-based flexible flat heat pipe (FHP) with a bending angle in the range of 15–90°. Each heat pipe is 4 mm thick, 20 mm wide and 80 mm long, with two layers of No. 250 copper mesh as the wicking material. A copper/silicone rubber hybrid structure is designed and fabricated to achieve the flexibility of the heat pipe. Thermal characteristics are measured and studied for de-ionized water under different working conditions. Experimental results reveal that a bending angle of 15° on the vertical plane has a better thermal performance than those of heat pipes with/without bending. In addition, a higher power of 12.67 W can be transferred/delivered

  11. Design, fabrication, and testing of a low frequency MEMS piezoelectromagnetic energy harvester

    Science.gov (United States)

    Fernandes, Egon; Martin, Blake; Rua, Isabel; Zarabi, Sid; Debéda, Hélène; Nairn, David; Wei, Lan; Salehian, Armaghan

    2018-03-01

    This paper details a power solution for smart grid applications to replace batteries by harvesting the electromagnetic energy from a current-carrying wire. A MEMS piezoelectromagnetic energy harvester has been fabricated using PZT screen-printing technology with a centrally-supported meandering geometry. The energy harvesting device employs a symmetric geometry to increase its power output by reducing the effects of the torsional modes and the resultant overall strain nodes in the system subsequently reduce the complexities for the electrode fabrication. The unit is modelled using COMSOL to determine mode shapes and frequency response functions. A 12.7 mm by 14.7 mm unit is fabricated by screen-printing 75 μm-thick PZT on a stainless steel substrate and then experimentally tested to validate the FEA results. Experimentally, the harvester is shown to produce 9 μW from a wire carrying 7 A while operating at a distance of 6.5 mm from the wire. The design of the current work results in a greater normalized power density than other MEMS based piezoelectromagnetic devices and shows great potential relative to larger devices that use bulk or thin film piezoelectrics.

  12. Pre-series and testing route for the serial fabrication of W7-X target elements

    International Nuclear Information System (INIS)

    Boscary, J.; Greuner, H.; Friedrich, T.; Traxler, H.; Mendelevitch, B.; Boeswirth, B.; Schlosser, J.; Smirnow, M.; Stadler, R.

    2009-01-01

    The fabrication of the actively cooled high-heat flux divertor of the WENDELSTEIN 7-X stellarator (W7-X) requires the delivery of 890 target elements, which are designed to withstand a stationary heat flux of 10 MW/m 2 . The organization of the manufacturing and testing route for the serial fabrication is the result of the pre-series activities. Flat CFC Sepcarb NB31 tiles are bonded to CuCrZr copper alloy cooling structure in consecutive steps. A copper layer is active metal cast to CFC tiles, and then an OF-copper layer is added by hot isostatic pressing to produce bi-layer tiles. These tiles are bonded by electron beam welding onto the cooling structure, which was manufactured independently. The introduction of the bi-layer technology proved to be a significant improvement of the bond reliability under thermal cycling loading. This result is also the consequence of the improved bond inspections throughout the manufacturing route performed in the ARGUS pulsed thermography facility of PLANSEE. The repairing process by electron beam welding of the bonding was also qualified. The extended pre-series activities related to the qualification of fabrication processes with the relevant non-destructive examinations aim to minimize the risks for the serial manufacturing and to guarantee the steady-state operation of the W7-X divertor.

  13. Overview of advanced techniques for fabrication and testing of ITER multilayer plasma facing walls

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A.-A.F. [Commissariat a l`Energie Atomique, Saclay, Gif-sur-Yvette (France)

    1998-09-01

    The design of the ITER primary first wall incorporates a multi-layered structure consisting of a layer of beryllium bonded to a layer of copper alloy with embedded stainless steel tubes which in turn is bonded to a stainless steel structure. In this configuration, the stainless steel provides structural support, the copper alloy improved resistance to high heat loads, and the beryllium layer a low Z metal interface with plasma. Fabrication, testing and control of this multi-layered structure, and indeed the entire blanket shield module, calls for advanced methods. Several associations in the four home teams and their industrial partners have been involved in various fabrication and joining tasks now grouped under L4 blanket project. In this paper, an overview of the work done so far for joining stainless steel to stainless steel, stainless steel to copper alloy, copper alloy to copper alloy, and copper alloy to beryllium is presented. Specialised papers dealing with most of the topics treated here are scheduled in this symposium. The fabrication and joining methods presented here, other than the conventional welding and brazing, follow four main routes. Two of them make extensive use of hot-isostatic pressing (HIP); (a) solid to solid; (b) solid or powder to powder, with or without a prior cold or hot isostatic pressing of one of the products. The third combines advantages of casting and HIPping for fabricating large and complex parts. The fourth investigates the possibility of using explosive welding for joining copper alloys to stainless steel. Other methods, including friction welding, are investigated for specific parts. (orig.) 34 refs.

  14. Detailed design, fabrication and testing of an engineering prototype compensated pulsed alternator. Final report

    International Nuclear Information System (INIS)

    Bird, W.L. Jr.; Woodson, H.H.

    1980-03-01

    The design, fabrication, and test results of a prototype compensated pulsed alternator are discussed. The prototype compulsator is a vertical shaft single phase alternator with a rotating armature and salient pole stator. The machine is designed for low rep rate pulsed duty and is sized to drive a modified 10 cm Beta amplifier. The load consists of sixteen 15 mm x 20 mm x 112 cm long xenon flashlamps connected in parallel. The prototype compulsator generates an open circuit voltage of 6 kV, 180 Hz, at a maximum design speed of 5400 rpm. At maximum speed, the inertial energy stored in the compulsator rotor is 3.4 megajoules

  15. Fabrication, tests, and RF control of the 50 superconducting resonators of the Saclay heavy ion linac

    International Nuclear Information System (INIS)

    Cauvin, B.; Coret, M.; Fouan, J.P.

    1988-01-01

    Two types of niobium superconducting resonators are currently in use in the linac Outer cylinder and RF ports are identical for both designs but internal structures are different full wave helix (λ) with three gaps behavior or half-wave (λ/2) with two gaps behavior. The λ structure is based on a Karlsruhe design. All cavities (34 λ and 16 λ/2) are now fabricated, tested for field, and mounted in the eight machine cryostats. Resonator characteristics are listed. Frequencies are multiples of the low energy bunching frequency (13.5 MHz). The high magnetic fields arise at the welds joining helix to can (λ/2) or half-helices together (λ)

  16. Development Of Test Rig System For Calibration Of Temperature Sensing Fabric

    Directory of Open Access Journals (Sweden)

    Husain Muhammad Dawood

    2017-09-01

    Full Text Available A test rig is described, for the measurement of temperature and resistance parameters of a Temperature Sensing Fabric (TSF for calibration purpose. The equipment incorporated a temperature-controlled hotplate, two copper plates, eight thermocouples, a temperature data-logger and a four-wire high-resolution resistance measuring multimeter. The copper plates were positioned above and below the TSF and in physical contact with its surfaces, so that a uniform thermal environment might be provided. The temperature of TSF was estimated by the measurement of temperature profiles of the two copper plates. Temperature-resistance graphs were created for all the tests, which were carried out over the range of 20 to 50°C, and they showed that the temperature and resistance values were not only repeatable but also reproducible, with only minor variations. The comparative analysis between the temperature-resistance test data and the temperature-resistance reference profile showed that the error in estimation of temperature of the sensing element was less than ±0.2°C. It was also found that the rig not only provided a stable and homogenous thermal environment but also offered the capability of accurately measuring the temperature and resistance parameters. The Temperature Sensing Fabric is suitable for integration into garments for continuous measurement of human body temperature in clinical and non-clinical settings.

  17. Fabrication of imitative cracks by 3D printing for electromagnetic nondestructive testing and evaluations

    Directory of Open Access Journals (Sweden)

    Noritaka Yusa

    2016-05-01

    Full Text Available This study demonstrates that 3D printing technology offers a simple, easy, and cost-effective method to fabricate artificial flaws simulating real cracks from the viewpoint of eddy current testing. The method does not attempt to produce a flaw whose morphology mirrors that of a real crack but instead produces a relatively simple artificial flaw. The parameters of this flaw that have dominant effects on eddy current signals can be quantitatively controlled. Three artificial flaws in type 316L austenitic stainless steel plates were fabricated using a powderbed-based laser metal additive manufacturing machine. The three artificial flaws were designed to have the same length, depth, and opening but different branching and electrical contacts between flaw surfaces. The flaws were measured by eddy current testing using an absolute type pancake probe. The signals due to the three flaws clearly differed from each other although the flaws had the same length and depth. These results were supported by subsequent destructive tests and finite element analyses.

  18. Design and fabrication of a unique electromechanical machine for long-term fatigue testing

    International Nuclear Information System (INIS)

    Boling, K.W.

    1984-12-01

    An electromechanical machine has been designed and fabricated for performing long-term fatigue tests under conditions that simulate those in modern plants. The machine is now commercially available. Its advantages over current electrohydraulic machines are lower initial cost, minimum maintenance requirements, and greater reliability especially when performing long tests. The machine operates in closed-loop fashion by utilizing continuous feedback signals from the specimen extensometer or load cell, it is programmable for testing in strain or load control. The maximum ram rate is 0.056 mm/s (0.134 in./min), maximum ram travel is 102 mm (4 in.) and load capacity is +-44 (+-10 kips). Induction heating controls speciment temperatures to 1000 0 C

  19. Enertech 2-kW high-reliability wind system. Phase II. Fabrication and testing

    Energy Technology Data Exchange (ETDEWEB)

    Cordes, J A; Johnson, B A

    1981-06-01

    A high-reliability wind machine rated for 2 kW in a 9 m/s wind has been developed. Activities are summarized that are centered on the fabrication and testing of prototypes of the wind machine. The test results verified that the wind machine met the power output specification and that the variable-pitch rotor effectively controlled the rotor speed for wind speeds up to 50 mph. Three prototypes of the wind machine were shipped to the Rocky Flats test center in September through November of 1979. Work was also performed to reduce the start-up wind speed. The start-up wind speed to the Enertech facility has been reduced to 4.5 m/s.

  20. Design, fabrication, and testing of a fast discharge homopolar machine (FDX)

    International Nuclear Information System (INIS)

    Gully, J.H.; Driga, M.D.; Grant, B.; Rylander, H.G.; Tolk, K.M.; Weldon, W.F.; Woodson, H.H.

    1977-01-01

    The Fast Discharge Experiment (FDX) is a 0.36 MJ, 200 V homopolar machine designed to discharge in one millisecond. All components, including dual brush actuation systems, a room-temperature 2 x 10 6 A-t pulsed copper coil, two aluminum rotors with copper slip rings, low inductance return conductors, coaxial transmission line, four fast closing (30 μsec), megamp switches, hydrostatic journal bearings, squeeze film thrust bearings and a fiberglass reinforced epoxy structure have been fabricated and assembled. The detail design of machine components is presented. Preliminary testing, including rotor spin-ups, brush actuation, switch making, and pulsed field coil tests have been concluded. A low speed, short-circuit discharge of FDX has recently been conducted. Experimental data from these tests are compared with theoretical predictions

  1. Progress on the Fabrication Methods Development for the Korean Test Blanket Module First Wall in the ITER

    International Nuclear Information System (INIS)

    Lee, Dong Won; Kim, Suk Kwon; Bae, Young Dug; Yoon, Jae Sung; Cho, Seung Yon

    2010-01-01

    A Korean helium cooled molten lithium (HCML) test blanket module (TBM) has been designed to be tested in the International Thermonuclear Experimental Reactor (ITER) TBM and related fabrication methods have been developed especially for the purpose of joining. Since the first wall (FW) of the HCML TBM is composed of a beryllium (Be) as an armor material and a FMS as a structural one, joining with Be to FMS and FMS to FMS should be developed in order to fabricate it

  2. Design and fabrication of irradiation testing capsule for research reactor materials

    International Nuclear Information System (INIS)

    Yang, Seong Woo; Kim, Bong Goo; Park, Seung Jae; Cho, Man Soon; Choo, Kee Nam; Oh, Jong Myeong; Choi, Myeong Hwan; Lee, Byung Chul; Kang, Suk Hoon; Kim, Dae Jong; Chun, Young Bum; Kim, Tae Kyu

    2012-01-01

    Recently, the demand of research reactors is increasing because there are many ageing research reactors in the world. Also, the production of radioisotope related with the medical purpose is very important. Korea Atomic Energy Research Institute (KAERI) is designing and licensing for Jordan Research and Training Reactor (JRTR) and new type research reactor for export which will be constructed in Amman, Jordan and Busan, Korea, respectively. Thus, It is expected that more research reactors will be designed and constructed by KAERI. To design the research reactor, the irradiation performance and behavior of core structure material are necessary. However, the irradiation behavior of these materials is not yet investigated. Therefore, the irradiation performance must be verified by irradiation test. 11M 20K and 11M 21K irradiation capsules were designed and fabricated to conduct the irradiation test for some candidate core materials, Zircaloy 4, beryllium, and graphite, at HANARO. In this paper, the design and fabrication features of 11M 20K and 11M 21K were discussed

  3. Design and fabrication of irradiation testing capsule for research reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seong Woo; Kim, Bong Goo; Park, Seung Jae; Cho, Man Soon; Choo, Kee Nam; Oh, Jong Myeong; Choi, Myeong Hwan; Lee, Byung Chul; Kang, Suk Hoon; Kim, Dae Jong; Chun, Young Bum; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    Recently, the demand of research reactors is increasing because there are many ageing research reactors in the world. Also, the production of radioisotope related with the medical purpose is very important. Korea Atomic Energy Research Institute (KAERI) is designing and licensing for Jordan Research and Training Reactor (JRTR) and new type research reactor for export which will be constructed in Amman, Jordan and Busan, Korea, respectively. Thus, It is expected that more research reactors will be designed and constructed by KAERI. To design the research reactor, the irradiation performance and behavior of core structure material are necessary. However, the irradiation behavior of these materials is not yet investigated. Therefore, the irradiation performance must be verified by irradiation test. 11M 20K and 11M 21K irradiation capsules were designed and fabricated to conduct the irradiation test for some candidate core materials, Zircaloy 4, beryllium, and graphite, at HANARO. In this paper, the design and fabrication features of 11M 20K and 11M 21K were discussed.

  4. Fabrication of vitrified isotopic heat and radiation sources for testing in the Asse Mine

    International Nuclear Information System (INIS)

    Holton, L.K.; Burkholder, H.C.; McElroy, J.L.; Kahl, L.; Kroebel, R.; Rothfuchs, T.; Strippler, R.

    1989-02-01

    The Pacific Northwest Laboratory (PNL), under contract to the US Department of Energy, has produced 30 isotopic heat and radiation sources (canisters) for the Federal Republic of Germany (FRG) to be used as part of a repository testing program in the Asse Salt Mine. PNL was responsible for the fabrication, including filling, closing, decontaminating, and characterizing the canisters. The canisters were fabricated (filled) in three separate processing campaigns using the radioactive liquid-fed ceramic melter to produce a borosilicate glass. Radiochemical constituents ( 137 Cs and 90 Sr) were immobilized within the borosilicate glass matrix to yield a product with a predetermined decay heat and surface radiation exposure rate. Canister lid-welding was completed using an autogenous gas tungsten arc welding process. A helium leak test of lid weld tightness verified the leak rate to be no greater than 2.4 /times/ 10/sup /minus/8/ atm-cc/sec, which was less than the criterion of 10/sup /minus/7/ atm-cc/sec. The top, sides, and bottom of the canisters were decontaminated by electropolishing. All canisters were decontaminated to surface smear contamination levels of less than 33 Bq/100 cm 2 beta-gamma radiation. No significant alpha contamination was observed on canister surfaces. 11 figs., 2 tabs

  5. Effect of Ti Doping to Maintain Structural Disorder in InOx-Based Thin-Film Transistors Fabricated by RF Magnetron Sputtering

    Science.gov (United States)

    Aikawa, Shinya

    2017-12-01

    The effect of Ti doping in an indium oxide (InOx)-based semiconductor is investigated for the thin-film transistor (TFT) property and crystal structure of the film. InOx and Ti-doped InOx (InTiOx) films deposited by RF magnetron sputtering under the same O2 partial pressure conditions were systematically compared. The TFT behavior of the InOx showed higher conductivity than that of the InTiOx and was drastically changed to metallic conduction after annealing at 150 °C. Under the annealing conditions when the electrical transition to the metallic behavior occurred, the InOx film was crystallized. The X-ray diffraction analysis revealed that the shrinkage of the In2O3 unit cell is pronounced in the case of InOx films. Thus, Ti dopants may play the role as a suppressor for shrinkage of the unit cell, i.e. maintaining neighboring In-In distances, in addition to suppression of oxygen vacancies. The In-In distance, which is related to the overlapping of In 5 s orbitals, is considered to be one of the key factor for which InOx-based materials are utilized as conducting films or semiconducting channels.

  6. Cold crucible induction melter test for crystalline ceramic waste form fabrication: A feasibility assessment

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, Jake W., E-mail: jake.amoroso@srnl.doe.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Marra, James; Dandeneau, Christopher S. [Savannah River National Laboratory, Aiken, SC 29808 (United States); Brinkman, Kyle; Xu, Yun [Clemson University, Clemson, SC 29634 (United States); Tang, Ming [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Maio, Vince [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Webb, Samuel M. [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94086 (United States); Chiu, Wilson K.S. [University of Connecticut, Storrs, Connecticut 06269-3139 (United States)

    2017-04-01

    The first scaled proof-of-principle cold crucible induction melter (CCIM) test to process a multiphase ceramic waste form from a simulated combined (Cs/Sr, lanthanide and transition metal fission products) commercial used nuclear fuel waste stream was recently conducted in the United States. X-ray diffraction, 2-D X-ray absorption near edge structure (XANES), electron microscopy, inductively coupled plasma-atomic emission spectroscopy (and inductively coupled plasma-mass spectroscopy for Cs), and product consistency tests were used to characterize the fabricated CCIM material. Characterization analyses confirmed that a crystalline ceramic with a desirable phase assemblage was produced from a melt using a CCIM. Primary hollandite, pyrochlore/zirconolite, and perovskite phases were identified in addition to minor phases rich in Fe, Al, or Cs. The material produced in the CCIM was chemically homogeneous and displayed a uniform phase assemblage with acceptable aqueous chemical durability.

  7. Additive Manufacturing, Design, Testing, and Fabrication: A Full Engineering Experience at JSC

    Science.gov (United States)

    Zusack, Steven

    2016-01-01

    I worked on several projects this term. While most projects involved additive manufacturing, I was also involved with two design projects, two testing projects, and a fabrication project. The primary mentor for these was Richard Hagen. Secondary mentors were Hai Nguyen, Khadijah Shariff, and fabrication training from James Brown. Overall, my experience at JSC has been successful and what I have learned will continue to help me in my engineering education and profession long after I leave. My 3D printing projects ranged from less than a 1 cubic centimeter to about 1 cubic foot and involved several printers using different printing technologies. It was exciting to become familiar with printing technologies such as industrial grade FDM (Fused Deposition Modeling), the relatively new SLA (Stereolithography), and PolyJet. My primary duty with the FDM printers was to model parts that came in from various sources to print effectively and efficiently. Using methods my mentor taught me and the Stratasys Insight software, I was able to minimize imperfections, hasten build time, improve strength for specific forces (tensile, shear, etc...), and reduce likelihood of a print-failure. Also using FDM, I learned how to repair a part after it was printed. This is done by using a special kind of glue that chemically melts the two faces of plastic parts together to form a fused interface. My first goal with SLA technology was to bring the printer back to operational readiness. In becoming familiar with the Pegasus SLA printer, I researched the leveling, laser settings, and different vats to hold liquid material. With this research, I was successfully able to bring the Pegasus back online and have successfully printed multiple sample parts as well as functional parts. My experience with PolyJet technology has been focused on an understanding of the abilities/limits, costs, and the maintenance for daily use. Still upcoming will be experience with using a composite printer that uses FDM

  8. Status Report on the Fabrication of Fuel Cladding Chemical Interaction Test Articles for ATR Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-28

    FeCrAl alloys are a promising new class of alloys for light water reactor (LWR) applications due to their superior oxidation and corrosion resistance in high temperature environments. The current R&D efforts have focused on the alloy composition and processing routes to generate nuclear grade FeCrAl alloys with optimized properties for enhanced accident tolerance while maintaining properties needed for normal operation conditions. Therefore, the composition and processing routes must be optimized to maintain the high temperature steam oxidation (typically achieved by increasing the Cr and Al content) while still exhibiting properties conducive to normal operation in a LWR (such as radiation tolerance where reducing Cr content is favorable). Within this balancing act is the addition of understanding the influence on composition and processing routes on the FeCrAl alloys for fuel-cladding chemical interactions (FCCI). Currently, limited knowledge exists on FCCI for the FeCrAl-UO2 clad-fuel system. To overcome the knowledge gaps on the FCCI for the FeCrAl-UO2 clad-fuel system a series of fueled irradiation tests have been developed for irradiation in the Advanced Test Reactor (ATR) housed at the Idaho National Laboratory (INL). The first series of tests has already been reported. These tests used miniaturized 17x17 PWR fuel geometry rodlets of second-generation FeCrAl alloys fueled with industrial Westinghouse UO2 fuel. These rodlets were encapsulated within a stainless steel housing.To provide high fidelity experiments and more robust testing, a new series of rodlets have been developed deemed the Accident Tolerant Fuel Experiment #1 Oak Ridge National Laboratory FCCI test (ATF-1 ORNL FCCI). The main driving factor, which is discussed in detail, was to provide a radiation environment where prototypical fuel-clad interface temperatures are met while still maintaining constant contact between industrial fuel and the candidate cladding alloys

  9. A proposal of ITER vacuum vessel fabrication specification and results of the full-scale partial mock-up test

    Energy Technology Data Exchange (ETDEWEB)

    Nakahira, Masataka; Takeda, Nobukazu; Onozuka, Masanori [Japan Atomic Energy Agency (Japan); Kakudate, Satoshi [Mitsubishi Heavy Industries, Ltd. (Japan)

    2007-07-01

    The structure and fabrication methods of the ITER vacuum vessel have been investigated and defined by the ITER international team. However, some of the current specifications are very difficult to be achieved from the manufacturing point of view and will lead to cost increase. In the mock-up fabrication, it is planned to conduct the following items: 1. Feasibility of the Japanese proposed VV structure and fabrication methods and the applicability to the ITER are to be confirmed; 2. Assembly procedure and inspection procedure are to be confirmed; 3. Manufacturing tolerances are to be assessed; 4. Manufacturing schedule is to be assessed. This report summarizes the Japanese proposed specification of the VV mock-up describing differences between the ITER supplied design. General scope of the mock-up fabrication and the detailed dimensions are also shown. In the VV fabrication, several types of weld joint configuration will be used. This report shows the joint configurations proposed by Japan to be used for the inner shell connection, the rib-to-shell connection and outer shell connection, and the housing-to-shell connection, respectively. Non-destructive testing considered to be applied to each joint configuration is also presented. A series of the fabrication and assembly procedures for the mock-up are presented in this report, together with candidates of welding configurations. Finally, the report summarizes the results of mock-up fabrication, including results of nondestructive examination of weld lines, obtained welding deformation and issues revealed from the fabrication experience. (orig.)

  10. Fabrication, inspection, and test plan for the Advanced Test Reactor (ATR) Mixed-Oxide (MOX) fuel irradiation project

    International Nuclear Information System (INIS)

    Wachs, G.W.

    1997-11-01

    The Department of Energy (DOE) Fissile Materials Disposition Materials Disposition Program (FMDP) has announced that reactor irradiation of MOX fuel is one of the preferred alternatives for disposal of surplus weapons-usable plutonium (Pu). MOX fuel has been utilized domestically in test reactors and on an experimental basis in a number of Commercial Light Water Reactors (CLWRs). Most of this experience has been with Pu derived from spent low enriched uranium (LEU) fuel, known as reactor grade (RG) Pu. The MOX fuel test will be irradiated in the ATR to provide preliminary data to demonstrate that the unique properties of surplus weapons-derived or weapons-grade (WG) plutonium (Pu) do not compromise the applicability of this MOX experience base. In addition, the test will contribute experience with irradiation of gallium-containing fuel to the data base required for resolution of generic CLWR fuel design issues (ORNL/MD/LTR-76). This Fabrication, Inspection, and Test Plan (FITP) is a level 2 document as defined in the FMDP LWR MOX Fuel Irradiation Test Project Plan (ORNL/MD/LTR-78)

  11. Fabrication, Treatment and Testing of a 1.6 Cell Photo-injector Cavity for HZB

    International Nuclear Information System (INIS)

    Kneisel, P.; Kamps, T.; Knobloch, J.; Kugeler, O.; Neumann, A.; Nietubyc, R.; Sekutowicz, J.K.

    2011-01-01

    As part of a CRADA (Cooperative Research and Development Agreement) between Forschungszentrum Dresden (FZD) and JLab we have fabricated and tested after appropriate surface treatment a 1.5 cell, 1300 MHz RRR niobium photo-injector cavity to be used in a demonstration test at BESSY*. Following a baseline test at JLab, the cavity received a lead spot coating of ∼ 8 mm diameter deposited with a cathode arc at the Soltan Institute on the endplate made from large grain niobium. It had been demonstrated in earlier tests with a DESY built 1.5 cell cavity - the original design - that a lead spot of this size can be a good electron source, when irradiated with a laser light of 213 nm. In the initial test with the lead spot we could measure a peak surface electric field of ∼ 29 MV/m; after a second surface treatment, carried out to improve the cavity performance, but which was not done with sufficient precaution, the lead spot was destroyed and the cavity had to be coated a second time. This contribution reports about the experiences and results obtained with this cavity.

  12. Fabrication and Testing of Thermoelectric CMOS-MEMS Microgenerators with CNCs Film

    Directory of Open Access Journals (Sweden)

    Yu-Wei Chen

    2018-06-01

    Full Text Available Manufacturing and testing of a TMG (thermoelectric microgenerator with CNCs (carbon nanocapsules film fabricated utilizing a CMOS (complementary metal oxide semiconductor technology are investigated. The microgenerator includes a CNCs layer, thermopiles, and thermometers. CNCs, a heat absorbing material, are coated on the microgenerator, so that the TD (temperature difference of HP (hot part and CP (cold part in the thermopiles increases, resulting in an enhancement of the microgenerator OP (output power. Thermometers fabricated in the microgenerator are employed to detect the HP and CP temperature in thermopiles. In order to enhance thermopiles’ TD, the HP in thermopiles was manufactured as suspension structures isolating heat dissipation, and the CP in thermopiles was made on a silicon substrate to increase the heat sink. Experiments showed that the microgenerator OV (output voltage was 3.3 mV and its output power was 125 pW at TD 3 K. Voltage and power factors of TMG were 0.71 mV/K/mm2 and 9.04 pW/K2/mm2, respectively.

  13. Micromachining of commodity plastics by proton beam writing and fabrication of spatial resolution test-chart for neutron radiography

    International Nuclear Information System (INIS)

    Sakai, T.; Yasuda, R.; Iikura, H.; Nojima, T.; Matsubayashi, M.; Kada, W.; Kohka, M.; Satoh, T.; Ohkubo, T.; Ishii, Y.; Takano, K.

    2013-01-01

    Proton beam writing is a direct-write technique and a promising method for the micromachining of commodity plastics such as acrylic resins. Herein, we describe the fabrication of microscopic devices made from a relatively thick (∼75 μm) acrylic sheet using proton beam writing. In addition, a software package that converts image pixels into coordinates data was developed, and the successful fabrication of a very fine jigsaw puzzle was achieved. The size of the jigsaw puzzle pieces was 50 × 50 μm. For practical use, a prototype of a line and space test-chart was also successfully fabricated for the determination of spatial resolution in neutron radiography

  14. Fabrication of uranium-plutonium mixed nitride fuel pins (88F-5A) for first irradiation test at JMTR

    International Nuclear Information System (INIS)

    Suzuki, Yasufumi; Iwai, Takashi; Arai, Yasuo; Sasayama, Tatsuo; Shiozawa, Ken-ichi; Ohmichi, Toshihiko; Handa, Muneo

    1990-07-01

    A couple of uranium-plutonium mixed nitride fuel pins was fabricated for the first irradiation tests at JMTR for the purpose of understanding the irradiation behavior and establishing the feasibility of nitride fuels as advanced FBR fuels. The one of the pins was fitted with thermocouples in order to observe the central fuel temperature. In this report, the fabrication procedure of the pins such as pin design, fuel pellet fabrication and characterizations, welding of fuel pins, and inspection of pins are described, together with the outline of the new TIG welder installed recently. (author)

  15. Engineering structure design and fabrication process of small sized China helium-cooled solid breeder test blanket module

    International Nuclear Information System (INIS)

    Wang Zeming; Chen Lu; Hu Gang

    2014-01-01

    Preliminary design and analysis for china helium-cooled solid breeder (CHHC-SB) test blanket module (TBM) have been carried out recently. As partial verification that the original size module was reasonable and the development process was feasible, fabrication work of a small sized module was to be carried out targetedly. In this paper, detailed design and structure analysis of small sized TBM was carried out based on preliminary design work, fabrication process and integrated assembly process was proposed, so a fabrication for the trial engineering of TBM was layed successfully. (authors)

  16. Mechanical design, fabrication, and test of biomimetic fish robot using LIPCA as artificial muscle

    Science.gov (United States)

    Wiguna, T.; Syaifuddin, M.; Park, Hoon C.; Heo, S.

    2006-03-01

    This paper presents a mechanical design, fabrication and test of biomimetic fish robot using the Lightweight Piezocomposite Curved Actuator (LIPCA). We have designed a mechanism for converting actuation of the LIPCA into caudal fin movement. This linkage mechanism consists of rack-pinion system and four-bar linkage. We also have tested four types of caudal fin in order to examine effect of different shape of caudal fin on thrust generation by tail beat. Subsequently, based on the caudal fin test, four caudal fins which resemble fish caudal fin shapes of ostraciiform, subcarangiform, carangiform and thunniform, respectively, are attached to the posterior part of the robotic fish. The swimming test using 300 V pp input with 1 Hz to 1.5 Hz frequency was conducted to investigate effect of changing tail beat frequency and shape of caudal fin on the swimming speed of the robotic fish. The maximum swimming speed was reached when the device was operated at its natural swimming frequency. At the natural swimming frequency 1 Hz, maximum swimming speeds of 1.632 cm/s, 1.776 cm/s, 1.612 cm/s and 1.51 cm/s were reached for ostraciiform-, subcarangiform-, carangiform- and thunniform-like caudal fins, respectively. Strouhal numbers, which are a measure of thrust efficiency, were calculated in order to examine thrust performance of the present biomimetic fish robot. We also approximated the net forward force of the robotic fish using momentum conservation principle.

  17. Factors for Consideration in an Open-Flame Test for Assessing Fire Blocking Performance of Barrier Fabrics

    Directory of Open Access Journals (Sweden)

    Shonali Nazaré

    2016-09-01

    Full Text Available The main objective of the work reported here is to assess factors that could affect the outcome of a proposed open flame test for barrier fabrics (BF-open flame test. The BF-open flame test characterizes barrier effectiveness by monitoring the ignition of a flexible polyurethane foam (FPUF layer placed in contact with the upper side of the barrier fabric, exposed to a burner flame from below. Particular attention is given to the factors that influence the ignitibility of the FPUF, including thermal resistance, permeability, and structural integrity of the barrier fabrics (BFs. A number of barrier fabrics, displaying a wide range of the properties, are tested with the BF-open flame test. Visual observations of the FPUF burning behavior and BF char patterns, in addition to heat flux measurements on the unexposed side of the barrier fabrics, are used to assess the protective performance of the BF specimen under the open flame test conditions. The temperature and heat transfer measurements on the unexposed side of the BF and subsequent ranking of BFs for their thermal protective performance suggest that the BF-open flame test does not differentiate barrier fabrics based on their heat transfer properties. A similar conclusion is reached with regard to BF permeability characterized at room temperature. However, the outcome of this BF-open flame test is found to be heavily influenced by the structural integrity of thermally degraded BF. The BF-open flame test, in its current form, only ignited FPUF when structural failure of the barrier was observed.

  18. PVDF core-free actuator for Braille displays: design, fabrication process, and testing

    Science.gov (United States)

    Levard, Thomas; Diglio, Paul J.; Lu, Sheng-Guo; Gorny, Lee J.; Rahn, Christopher D.; Zhang, Q. M.

    2011-04-01

    Refreshable Braille displays require many, small diameter actuators to move the pins. The electrostrictive P(VDF-TrFECFE) terpolymer can provide the high strain and actuation force under modest electric fields that are required of this application. In this paper, we develop core-free tubular actuators and integrate them into a 3 × 2 Braille cell. The films are solution cast, stretched to 6 μm thick, electroded, laminated into a bilayer, rolled into a 2 mm diameter tube, bonded, and provided with top and bottom contacts. Experimental testing of 17 actuators demonstrates significant strains (up to 4%). A novel Braille cell is designed and fabricated using six of these actuators.

  19. Novel epoxy-free construction method for fabricating dipole magnets and test results

    International Nuclear Information System (INIS)

    Taylor, C.; Althaus, R.; Caspi, S.; Gilbert, W.S.; Hassenzahl, W.; Meuser, R.; Rechen, J.; Warren, R.

    1981-01-01

    Three model superconducting dipole magnets, lm length and having a bore diameter of 76mm, fabricated without epoxy resins or other adhesives, have been built and the first two have been tested in He I and He II. The conductor is the 23-strand Rutherford-type cable used in the Fermilab Doubler/Saver magnets, and is insulated with Mylar and Kapton. The two-layer winding is highly compessed by a system of structural support rings and tapered collets. Little training was required. Quench currents greater than 95% of short sample were obtained in He I with rise-times of 15 to 20 seconds to a central field of 4.6 T; 6.0 T in Helium II

  20. Selection of sorption material for tests of pesticide permeation through protective clothing fabrics.

    Science.gov (United States)

    Krzemińska, Sylwia; Nazimek, Teresa

    2004-01-01

    The paper presents the results of studies on selecting a solid sorption material for absorbing liquid crop protection agents which permeate samples of protective clothing fabrics. The sorption materials were investigated and selected with an assumption that they should have a high recovery coefficient for biologically active substances, used as active ingredients in crop protection agents, at a presumed, acceptably high level. The selected substances were determined with a gas chromatograph equipped with an electron capture detector (dichlorvos, cypermethrin and 2,4-D) and a nitrogen-phosphorus detector (carbofuran). The tests demonstrated that polypropylene melt-blown type unwoven cloth had high recovery coefficients for all 4 active ingredients proposed for the study. The highest recovery coefficient, -.97, was obtained for carbofuran. The recovery coefficients obtained for the 3 remaining substances were lower: .89 for cypermethrin and 2,4-D, and .84 for dichlorvos.

  1. Technical issues of reduced activation ferritic/martensitic steels for fabrication of ITER test blanket modules

    International Nuclear Information System (INIS)

    Tanigawa, H.; Hirose, T.; Shiba, K.; Kasada, R.; Wakai, E.; Serizawa, H.; Kawahito, Y.; Jitsukawa, S.; Kimura, A.; Kohno, Y.; Kohyama, A.; Katayama, S.; Mori, H.; Nishimoto, K.; Klueh, R.L.; Sokolov, M.A.; Stoller, R.E.; Zinkle, S.J.

    2008-01-01

    Reduced activation ferritic/martensitic steels (RAFMs) are recognized as the primary candidate structural materials for fusion blanket systems. The RAFM F82H was developed in Japan with emphasis on high-temperature properties and weldability. Extensive irradiation studies have conducted on F82H, and it has the most extensive available database of irradiated and unirradiated properties of all RAFMs. The objective of this paper is to review the R and D status of F82H and to identify the key technical issues for the fabrication of an ITER test blanket module (TBM) suggested from the recent research achievements in Japan. This work clarified that the primary issues with F82H involve welding techniques and the mechanical properties of weld joints. This is the result of the distinctive nature of the joint caused by the phase transformation that occurs in the weld joint during cooling, and its impact on the design of a TBM will be discussed

  2. Nucleate pool boiling investigation on a silicon test section with micro-fabricated cavities

    International Nuclear Information System (INIS)

    Sanna, A.; Kenning, D.B.R.; Karayiannis, T.G.; Hutter, C.; Sefiane, K.; Nelson, R.A.

    2009-01-01

    The basic mechanisms of nucleate boiling are still not completely understood, in spite of the many numerical and experimental studies dedicated to the topic. The use of a hybrid code allows reasonable computational times for simulations of a solid plate with a large population of artificial micro-cavities with fixed distribution. This paper analyses the guidelines for the design, through numerical simulations, of the location and sizes of micro-fabricated cavities on a new silicon test section immersed in FC-72 at the saturation temperature for different pressures with an imposed heat flux applied at the back of the plate. Particular focus is on variations of wall temperature around nucleation sites. (author)

  3. Review of Commercially Available Microfluidic Materials and Fabricating Techniques for Point of Care Testing

    Directory of Open Access Journals (Sweden)

    Luck EREKU

    2016-07-01

    Full Text Available During the last two decades silicon and MEMs technology had been the mainstay of early microfluidic devices. However, recent times have brought into focus the need for low cost and readily available materials capable of achieving the expected microfluidics physical and chemical requirements. Also what mentioning is the rapid improvement in microfabrication technology over the years, which has significantly aided new and cheaper ways to produce microfluidic Point-Of-Care-Testing devices commercially or for research purposes. This review article discusses the usefulness of a wide range of available materials and their unique properties suitability in microfluidic applications. Likewise, advantages and drawbacks of manufacturing procedures and outputs of different fabrication methods are also brought into focus.

  4. Fabrication and testing of gas filled targets for large scale plasma experiments on Nova

    International Nuclear Information System (INIS)

    Stone, G.F.; Spragge, M.; Wallace, R.J.; Rivers, C.J.

    1995-01-01

    An experimental campaign on the Nova laser was started in July 1993 to study one st of target conditions for the point design of the National Ignition Facility (NIF). The targets were specified to investigate the current NIF target conditions--a plasma of ∼3 keV electron temperature and an electron density of ∼1.0 E + 21 cm -3 . A gas cell target design was chosen to confine as gas of ∼0.01 cm 3 in volume at ∼ 1 atmosphere. This paper will describe the major steps and processes necessary in the fabrication, testing and delivery of these targets for shots on the Nova Laser at LLNL

  5. Maintaining positive

    OpenAIRE

    Gheorghe Gh. IONESCU; Adina Letitia NEGRUSA

    2004-01-01

    Maintaining positive work-force relationships includes in effective labor-management relations and making appropriate responses to current employee issues. Among the major current employee issues are protection from arbitrary dismissal, drug and alcohol abuse, privacy rights and family maters and they impact work. In our paper we discus two problems: first, the meanings of industrial democracy; second, the three principal operational concepts of industrial democracy (1) industrial democracy t...

  6. Design, fabrication, and testing of a helium-cooled module for the ITER divertor

    International Nuclear Information System (INIS)

    Baxi, C.B.; Smith, J.P.; Youchison, D.

    1994-08-01

    The International Thermonuclear Reactor (ITER) will have a single-null divertor with total power flow of 200 MW and a peak heat flux of about 5 MW/m 2 . The reference coolant for the divertor is water. However, helium is a viable alternative and offers advantages from safety considerations, such as excellent radiation stability and chemical inertness. In order to prove the feasibility of helium cooling at ITER relevant heat flux conditions, General Atomics designed, fabricated, and tested a helium-cooled divertor module. The module was made from dispersion strengthened copper, with a heat flux surface 25 mm wide and 80 mm long, designed for twice the ITER divertor heat flux. Different techniques were examined to enhance the heat transfer, which in turn reduced the flow and pumping power required to cool the module. It was concluded that an extended surface was the most practical solution. An optimization study was performed to find the best extended surface parameters. The optimum extended surface geometry consisted of fins: 10 mm high, 0.4 mm thick with a 1 mm pitch. It was estimated to require a pumping power of 150 W to remove 20 kW of power. This is more than an order of magnitude reduction in pumping power requirement, compared to smooth surface. The module was fabricated by electric discharge machining (EDM) process. The testing was carried out at SNLA during August 1993. The testing confirmed the design calculations. The peak heat flux during the test was 10 MW/m 2 applied over a surface area of 20 cm 2 . The pumping power calculated from flow rate and pressure drop measurement was about 160 W, which was less than 1% of the power removed. It is planned to test the module to higher temperature limits and higher heat fluxes during coming months. As a result of this effort we conclude that helium cooling of the ITER divertor is feasible without requiring a very large helium pressure or a large pumping power

  7. Quick look of first VEGA test and fabrication study of thoria components

    International Nuclear Information System (INIS)

    Nakamura, Takehiko; Hidaka, Akihide; Kudo, Tamotsu; Hayashida, Retsu; Ohtomo, Takashi; Nakamura, Jinichi; Uetsuka, Hiroshi

    2000-01-01

    The first fission product release test VEGA-1 was conducted on September 9, 1999 in the Reactor Fuel Examination Facility (RFEF) of JAERI Tokai using two PWR pellets at burnup of 47 GWd/tU. The fuel pellet of about 10g without cladding tube was heated up to 2500degC for 10min in an inert helium atmosphere at 0.1 MPa, following two other plateaus at 1727degC (20min) and 2027degC (20min). The release of radioactive fission products was on-line measured by 4 gamma sensors watching at the fuel in a furnace, at trapped aerosols in filters, at a condenser, and at noble gases in a charcoal trap. Gamma intensity of the fuel, which was dominated by Cs-134 and Cs-137, started to decrease, when the furnace temperature started to rise to the first plateau of 1727degC from a conditioning stage at 1350degC. Following the decease, the intensity at the filters, which was located about 2.5 m downstream of the furnace following thermal gradient tubes (TGTs) to collect the aerosols, started to increase. At about the same time, the counting rate on Kr-85 at the charcoal trap at -60degC started to rise. Preliminary releases of Cs-134, Cs-137, and Ru-106, etc. were estimated from changes of gamma-ray spectrum before/after the heating test. Total releases of the nuclides, however, will be evaluated later, by comprehensive off-line measurement of the apparatus, e.g. gamma scanning, leaching and gamma spectroscopy of pipes, the TGTs, and the filters. Development of thoria components in the VEGA furnace has been progressing for the use in high temperature tests under oxidizing atmosphere. Three kinds of slip casting techniques, i.e. centrifugal casting, drain casting and solid casting, were successfully applied to fabricate inner tubes, crucibles and caps, respectively. Calcination of the thoria powder was conducted to optimize slip characteristics for casting and sintering. Fabrication of test pieces has finished, expecting for two to four sets of the components being ready for heating

  8. Fabrication and characterization of MCC approved testing material - ATM-8 glass

    International Nuclear Information System (INIS)

    Wald, J.W.

    1985-10-01

    The Materials Characterization Center (MCC) Approved Testing Material ATM-8 is a borosilicate glass that incorporates elements typical of high-level waste (HLW) resulting from the reprocessing of commercial nuclear reactor fuel. Its composition is based upon the simulated HLW glass type 76-68 (Mendel, J.E. et al., 1977, Annual Report of the Characteristics of High-Level Waste Glasses, BNWL-2252, Pacific Northwest Laboratory, Richland, Washington), to which depleted uranium, technetium-99, neptunium-237 and plutonium-239 have been added at moderate to low levels. The glass was requested by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. It was produced by the MCC at the Pacific Northwest Laboratory (PNL) operated for the Department of Energy (DOE) by Battelle Memorial Institute. ATM-8 glass was produced in April of 1984, and is the second in a series of testing materials for NNWSI. This report discusses its fabrication (starting materials, batch and glass preparation, measurement and testing equipment, other equipment, procedures, identification system and materials availability and storage, and characterization (bulk density) measurements, chemical analysis, microscopic examination, and x-ray diffraction analysis. 4 refs., 2 figs., 10 tabs

  9. Design, fabrication, and testing of a SMA hybrid composite jet engine chevron

    Science.gov (United States)

    Turner, Travis L.; Cabell, Randolph H.; Cano, Roberto J.; Fleming, Gary A.

    2006-01-01

    Control of jet noise continues to be an important research topic. Exhaust nozzle chevrons have been shown to reduce jet noise, but parametric effects are not well understood. Additionally, thrust loss due to chevrons at cruise suggests significant benefit from deployable chevrons. The focus of this study is development of an active chevron concept for the primary purpose of parametric studies for jet noise reduction in the laboratory and technology development to leverage for full scale systems. The active chevron concept employed in this work consists of a laminated composite structure with embedded shape memory alloy (SMA) actuators, termed a SMA hybrid composite (SMAHC). The actuators are embedded on one side of the middle surface such that thermal excitation generates a moment and deflects the structure. A brief description of the chevron design is given followed by details of the fabrication approach. Results from bench top tests are presented and correlated with numerical predictions from a model for such structures that was recently implemented in MSC.Nastran and ABAQUS. Excellent performance and agreement with predictions is demonstrated. Results from tests in a representative flow environment are also presented. Excellent performance is again achieved for both open- and closed-loop tests, the latter demonstrating control to a specified immersion into the flow. The actuation authority and immersion performance is shown to be relatively insensitive to nozzle pressure ratio (NPR). Very repeatable immersion control with modest power requirements is demonstrated.

  10. Design and fabrication of test apparatuses for investigation on corrosivity of aqueous molybdate solution for structural materials

    International Nuclear Information System (INIS)

    Ishikawa, Koji; Inaba, Yoshitomo; Tsuchiya, Kunihiko

    2010-02-01

    In the solution irradiation method, which is proposed as new 99 Mo production method, the molybdate solution of an irradiation target flows in a capsule. However, the compatibility between the flowing aqueous molybdate solution and the structural materials of capsules and pipes was not clear. Therefore, test apparatuses for the investigation of the compatibility were designed and fabricated. Preliminary tests with the test apparatuses were also carried out, and it was confirmed that planed tests could be carried out. (author)

  11. Fabrication and radio frequency test of large-area MgB2 films on niobium substrates

    Science.gov (United States)

    Ni, Zhimao; Guo, Xin; Welander, Paul B.; Yang, Can; Franzi, Matthew; Tantawi, Sami; Feng, Qingrong; Liu, Kexin

    2017-04-01

    Magnesium diboride (MgB2) is a promising candidate material for superconducting radio frequency (RF) cavities because of its higher transition temperature and critical field compared with niobium. To meet the demand of RF test devices, the fabrication of large-area MgB2 films on metal substrates is needed. In this work, high quality MgB2 films with 50 mm diameter were fabricated on niobium by using an improved HPCVD system at Peking University, and RF tests were carried out at SLAC National Accelerator Laboratory. The transition temperature is approximately 39.6 K and the RF surface resistance is about 120 μΩ at 4 K and 11.4 GHz. The fabrication processes, surface morphology, DC superconducting properties and RF tests of these large-area MgB2 films are presented.

  12. Design and fabrication of liner-arroy ultrasonic transducer using KLM and FEM simulation for non-destructive testing

    International Nuclear Information System (INIS)

    Park, Chan Yuk; Sung, Jin Ho; Jeong, Jong Seob

    2015-01-01

    In this paper, a linear-array transducer capable of overcoming the faults of a single element and phased array transducers with convex shape for non-destructive ultrasonic testing was designed and fabricated. A 5.5 MHz linear-array transducer was designed using the PiezoCAD program based on the KLM analysis and the PZFlex program based on the FEM analysis. A 2-2 composite structure was employed to achieve broad-band characteristics. A 128 element linear-array transducer was fabricated and its performance was compared with the simulation results. The center frequency of the fabricated transducer was 5.5 Mhzand the -6 dB frequency bandwidth was 70 %. Thus, we expect that the designed transducer can provide an effective inner image of the test material during non-destructive ultrasonic testing.

  13. Design and fabrication of liner-arroy ultrasonic transducer using KLM and FEM simulation for non-destructive testing

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Yuk; Sung, Jin Ho; Jeong, Jong Seob [Dept. of Medical Biotechnology, Dongguk University Biomedi Campus, Goyang (Korea, Republic of)

    2015-04-15

    In this paper, a linear-array transducer capable of overcoming the faults of a single element and phased array transducers with convex shape for non-destructive ultrasonic testing was designed and fabricated. A 5.5 MHz linear-array transducer was designed using the PiezoCAD program based on the KLM analysis and the PZFlex program based on the FEM analysis. A 2-2 composite structure was employed to achieve broad-band characteristics. A 128 element linear-array transducer was fabricated and its performance was compared with the simulation results. The center frequency of the fabricated transducer was 5.5 Mhzand the -6 dB frequency bandwidth was 70 %. Thus, we expect that the designed transducer can provide an effective inner image of the test material during non-destructive ultrasonic testing.

  14. Fabrication and testing of ceramic UO2 fuel - I-III. Part I

    International Nuclear Information System (INIS)

    Novakovic, M.

    1961-12-01

    The task described consists of the following: fabrication of UO 2 with different granulation from uranyl nitrate by ammonia diuranate; determination of size and shape distributions of metal and ceramic powders; fabrication of sintered pressed samples UO 2 ; investigating the properties of sintered uranium dioxide dependent on the fabrication process; producing a vibrator for compacting UO 2 powder. This volume includes reports on the first two tasks

  15. Dynamic correction of the laser beam coordinate in fabrication of large-sized diffractive elements for testing aspherical mirrors

    Science.gov (United States)

    Shimansky, R. V.; Poleshchuk, A. G.; Korolkov, V. P.; Cherkashin, V. V.

    2017-05-01

    This paper presents a method of improving the accuracy of a circular laser system in fabrication of large-diameter diffractive optical elements by means of a polar coordinate system and the results of their use. An algorithm for correcting positioning errors of a circular laser writing system developed at the Institute of Automation and Electrometry, SB RAS, is proposed and tested. Highprecision synthesized holograms fabricated by this method and the results of using these elements for testing the 6.5 m diameter aspheric mirror of the James Webb space telescope (JWST) are described..

  16. Development and testing of a superconducting acceleration resonator using new methods in design and fabrication

    International Nuclear Information System (INIS)

    Steck, M.

    1986-01-01

    A superconducting quarter-wave resonator at 325 MHz was studied for the implementation at the Heidelberg post-accelerator. Using the computer programs SUPERFISH and URMEL the first design derived from analytical approaches was optimized regarding the superconducting operation. The measurements on the model showed good agreement with the calculations. By modification of the standard techniques the fabrication of the resonator body and the preparation of the superconducting surface could be simplified. On the superconducting resonator 1 μm thick superconducting surfaces of pure lead as well as a lead/tin alloy were tested. Thereby with lead a quality of the resonator Q 0 =8.5.10 7 and a maximal electrical acceleration field in the continuous region of epsilonsub(acc)=2.16 MV/m at Q=1.10 7 were reached. The measurements with a surface of lead/tin yielded Q 0 =1.4.10 8 and as maximal acceleration field epsilonsub(acc)=1.93 MV/m at Q=1.10 7 . A further increasing of the maximal electric field by conditioning of the resonator can be expected because of the test results. The excellent mechanical stability not reachable with other resonator types which manifests by a static frequency shift of 4 Hz/(MV/m) 2 and rapid frequency oscillations [de

  17. Fabrication of superhydrophobic cotton fabrics using crosslinking polymerization method

    Science.gov (United States)

    Jiang, Bin; Chen, Zhenxing; Sun, Yongli; Yang, Huawei; Zhang, Hongjie; Dou, Haozhen; Zhang, Luhong

    2018-05-01

    With the aim of removing and recycling oil and organic solvent from water, a facile and low-cost crosslinking polymerization method was first applied on surface modification of cotton fabrics for water/oil separation. Micro-nano hierarchical rough structure was constructed by triethylenetetramine (TETA) and trimesoyl chloride (TMC) that formed a polymeric layer on the surface of the fabric and anchored Al2O3 nanoparticles firmly between the fabric surface and the polymer layer. Superhydrophobic property was further obtained through self-assembly grafting of hydrophobic groups on the rough surface. The as-prepared cotton fabric exhibited superoleophilicity in atmosphere and superhydrophobicity both in atmosphere and under oil with the water contact angle of 153° and 152° respectively. Water/oil separation test showed that the as-prepared cotton fabric can handle with various oil-water mixtures with a high separation efficiency over 99%. More importantly, the separation efficiency remained above 98% over 20 cycles of reusing without losing its superhydrophobicity which demonstrated excellent reusability in oil/water separation process. Moreover, the as-prepared cotton fabric possessed good contamination resistance ability and self-cleaning property. Simulation washing process test showed the superhydrophobic cotton fabric maintained high value of water contact angle above 150° after 100 times washing, indicating great stability and durability. In summary, this work provides a brand-new way to surface modification of cotton fabric and makes it a promising candidate material for oil/water separation.

  18. Fabrication and Testing of a Modular Micro-Pocket Fission Detector Instrumentation System for Test Nuclear Reactors

    Science.gov (United States)

    Reichenberger, Michael A.; Nichols, Daniel M.; Stevenson, Sarah R.; Swope, Tanner M.; Hilger, Caden W.; Roberts, Jeremy A.; Unruh, Troy C.; McGregor, Douglas S.

    2018-01-01

    Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Measurement of the neutron-flux distribution within the reactor core provides a more complete understanding of the operating conditions in the reactor than typical ex-core sensors. Micro-Pocket Fission Detectors have been developed and tested previously but have been limited to single-node operation and have utilized highly specialized designs. The development of a widely deployable, multi-node Micro-Pocket Fission Detector assembly will enhance nuclear research capabilities. A modular, four-node Micro-Pocket Fission Detector array was designed, fabricated, and tested at Kansas State University. The array was constructed from materials that do not significantly perturb the neutron flux in the reactor core. All four sensor nodes were equally spaced axially in the array to span the fuel-region of the reactor core. The array was filled with neon gas, serving as an ionization medium in the small cavities of the Micro-Pocket Fission Detectors. The modular design of the instrument facilitates the testing and deployment of numerous sensor arrays. The unified design drastically improved device ruggedness and simplified construction from previous designs. Five 8-mm penetrations in the upper grid plate of the Kansas State University TRIGA Mk. II research nuclear reactor were utilized to deploy the array between fuel elements in the core. The Micro-Pocket Fission Detector array was coupled to an electronic support system which has been specially developed to support pulse-mode operation. The Micro-Pocket Fission Detector array composed of four sensors was used to monitor local neutron flux at a constant reactor power of 100 kWth at different axial locations simultaneously. The array was positioned at five different radial locations within the core to emulate the deployment of multiple arrays and develop a 2-dimensional measurement of

  19. GLASS FABRICATION AND PRODUCT CONSISTENCY TESTING OF LANTHANIDE BOROSILICATE FRIT X COMPOSITION FOR PLUTONIUM DISPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J

    2006-11-15

    The Department of Energy Office of Environmental Management (DOE/EM) plans to conduct the Plutonium Disposition Project at the Savannah River Site (SRS) to disposition excess weapons-usable plutonium. A plutonium glass waste form is the preferred option for immobilization of the plutonium for subsequent disposition in a geologic repository. A reference glass composition (Lanthanide Borosilicate (LaBS) Frit B) was developed during the Plutonium Immobilization Program (PIP) to immobilize plutonium in the late 1990's. A limited amount of performance testing was performed on this baseline composition before efforts to further pursue Pu disposition via a glass waste form ceased. Recent FY05 studies have further investigated the LaBS Frit B formulation as well as development of a newer LaBS formulation denoted as LaBS Frit X. The objectives of this present task were to fabricate plutonium loaded LaBS Frit X glass and perform corrosion testing to provide near-term data that will increase confidence that LaBS glass product is suitable for disposal in the Yucca Mountain Repository. Specifically, testing was conducted in an effort to provide data to Yucca Mountain Project (YMP) personnel for use in performance assessment calculations. Plutonium containing LaBS glass with the Frit X composition with a 9.5 wt% PuO{sub 2} loading was prepared for testing. Glass was prepared to support Product Consistency Testing (PCT) at Savannah River National Laboratory (SRNL). The glass was thoroughly characterized using x-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) prior to performance testing. A series of PCTs were conducted at SRNL using quenched Pu Frit X glass with varying exposed surface areas. Effects of isothermal and can-in-canister heat treatments on the Pu Frit X glass were also investigated. Another series of PCTs were performed on these different heat-treated Pu Frit X glasses. Leachates from all these PCTs

  20. Study on Single-yarn Pullout Test of Ballistic Resistant Fabric under Different Preloads

    Science.gov (United States)

    Fang, Q. C.; Lei, Z. K.; Y Qin, F.; Li, W. K.; Bai, R. X.

    2017-12-01

    During bullet penetrating fabric, the pull-out force of yarn in fabric is related to the impact resistance of fabric when the yarn is pulled out from the fabric. The complex uncrimping and friction slip behavior occur during the yarn pullout process, which is critical to learn the impact resistance of fabric. Based on digital image correlation technique, the deformation behavior of Kevlar 49 fabric subjected to preload during the single-yarn pullout process was studied in this paper. The pullout force and displacement curve shows a straight rise and an oscillated decrease. In the linear rise stage, the yarn uncrimping causes a static friction effect. The maximum of the pullout force is not linearly increased with the preload. In the oscillating descending stage, the local descent of the pullout force indicates that the yarn end is gradually withdrawn from the fabric, and the local rise indicates that the yarn end moves to the next weft/warp interaction until the yarn is completely pulled out. The shear deformation of fabric corresponds to the single-yarn pullout process.

  1. Design and fabrication of hafnium tube to control the power of the irradiation test fuel in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. H.; Lee, C. B.; Kim, Y. M.; Yang, Y. S.; Jung, Y. H

    2003-05-01

    For the irradiation test at HANARO, non-instrumentation capsule was manufactured and hafnium tube was used to control LHGR of HANARO. Hafnium tube can control the irradiation condition of HANARO similar to that of commercial reactor. Hafnium tube thickness was determined by the LHGR calculated at OR-4 irradiation hole to be installed the non-instrumented capsule. To fabricate the hafnium tube with hafnium plate, the fabrication method was determined by using the hafnium mechanical properties. And the tensile strength of hafnium was confirmed by tensile test. This report is confirmed the LHGR control at the OR-4 and the Hafnium fabrication for in used which the AFPCAP non-instrumented irradiation capsule.

  2. Maintaining evolvability

    Indian Academy of Sciences (India)

    2008-12-23

    % of the variance would have passed the stringent tests for inclusion in the ... genetic complication (e.g. a balanced lethal system) or in- compatibility of .... have important evolutionary roles (genes of large effect; du- plications ...

  3. Fabrication and mechanical test data for the four 6-inch-thick intermediate test vessels made from steel plate for the Heavy Section Steel Program

    International Nuclear Information System (INIS)

    Childress, C.E.

    1976-01-01

    The HSST Program has among its goals the objective of demonstrating the capability to predict safe behavior of thick-walled pressure vessels containing flaws of known dimensions under frangible, transitional, and tough loading regimes. To accomplish these objectives the program is conducting a series of tests involving 6-in.-thick pressure vessels which will serve as test specimens for assisting in the characterization of failure under these loading conditions. Among the vessels a number of parameters, such as weld type, weld location, flaw size and shape, and test temperature and pressure, will be selectively varied to show that a rationale exists for dealing with the varied stress and metallurgical states which normally exist in commercial nuclear reactor vessels. Each vessel will serve as a go, no-go determination of critical flaw size for a specific set of test parameters. Item 4 of the previous issues in this series covers the fabrication details of the first six 6-in.-thick test vessels, which were fabricated from ASTM A-508 Cl 2 forging materials. This report covers the fabrication details of four additional 6-in.-thick intermediate test vessels having shell courses fabricated from ASTM A-533 Gr B Cl 1 plate. The remaining components were made from forgings. Essentially this report is a continuation of ORNL-TM-4351; it describes the manufacturing details of the individual parts and their ultimate assembly into finished vessels. Details concerning chemical composition and mechanical and nondestructive test data are presented

  4. THE DESIGN, FABRICATION AND PRELIMINARY TESTING OF AN INDIGENOUS SINGLE SCREW EXTRUDER

    Directory of Open Access Journals (Sweden)

    FOLASAYO T. FAYOSE

    2017-10-01

    Full Text Available Developing countries including Nigeria have become dumping grounds of unserviceable and broken down imported machineries because of poor adaptation. Detailed study and design of machines to suit local conditions will prevent poor adaptation of imported machines and high initial costs. In this study, a single screw starch extruder was designed, fabricated and tested using locally available materials. The extruder is the dry type and it has 27.12 kg/s capacity, a compression ratio of 4.5: 1 and is powered by a 5.5 kW electric motor. It consists of a hopper, feeding screw, extruder screw rotating in a barrel and variable die, all made of stainless steel. A unit of the machine costs N 470, 390.00.00 as at April 2015. When used to process cassava flour, a maximum temperature of 114°C was attained through viscous dissipation, up to an actual screw speed of 98.96 rpm (1.65 Hz and extruder efficiency of 64%. Barrel temperature varied directly with extrusion time in a polynomial trend while actual extruder screw speed and efficiency varied inversely with extrusion time and it is best fitted with a polynomial trend.

  5. Fabrication and Testing of CERMET Fuel Materials for Nuclear Thermal Propulsion

    Science.gov (United States)

    Hickman, Robert; Broadway, Jeramie; Mireles, Omar

    2012-01-01

    A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on Nuclear Thermal Propulsion (NTP) is currently being developed for Advanced Space Exploration Systems. The overall goal of the project is to address critical NTP technology challenges and programmatic issues to establish confidence in the affordability and viability of NTP systems. The current technology roadmap for NTP identifies the development of a robust fuel form as a critical near term need. The lack of a qualified nuclear fuel is a significant technical risk that will require a considerable fraction of program resources to mitigate. Due to these risks and the cost for qualification, the development and selection of a primary fuel must begin prior to Authority to Proceed (ATP) for a specific mission. The fuel development is a progressive approach to incrementally reduce risk, converge the fuel materials, and mature the design and fabrication process of the fuel element. A key objective of the current project is to advance the maturity of CERMET fuels. The work includes fuel processing development and characterization, fuel specimen hot hydrogen screening, and prototypic fuel element testing. Early fuel materials development is critical to help validate requirements and fuel performance. The purpose of this paper is to provide an overview and status of the work at Marshall Space Flight Center (MSFC).

  6. Current status of technology development for fabrication of Indian Test Blanket Module (TBM) of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, T., E-mail: tjk@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam 603102 (India); Rajendra Kumar, E. [TBM Division, Institute for Plasma Research (IPR), Bhat, Gandhinagar 382428 (India)

    2014-10-15

    Highlights: • Status of technology developments for Indian TBM to be installed in ITER is presented. • Procedure development for EB, laser and laser-hybrid welding of RAFM steel presented. • Filler wires for RAFM steel for TIG, NG-TIG and laser-hybrid welding have been developed. • Feasibility of production of channel plate by HIP technology has been demonstrated. - Abstract: Ever since India decided to install its Lead-Lithium Ceramic Breeder (LLCB) TBM in ITER, various technologies for fabrication of Indian TBM are being pursued by IPR and IGCAR, in collaboration with various research laboratories in India. Welding consumables for joining India specific RAFM steels (IN-RAFMS), procedures for hot isostatic pressing, electron beam welding, laser and laser-hybrid welding have been developed. Considering the complex nature and limited access available for inspection, innovative inspection procedures that involved use of phased array ultrasonic and C-scan imaging are also being pursued. This paper presents the current status of these developments and provides a roadmap for the future activities planned in realizing Indian TBM for testing in ITER.

  7. Test fabrication of sulfuric acid decomposer applied for thermochemical hydrogen production IS process

    International Nuclear Information System (INIS)

    Noguchi, Hiroki; Terada, Atsuhiko; Kubo, Shinji; Onuki, Kaoru; Hino, Ryutaro; Ota, Hiroyuki

    2007-07-01

    Thermo-chemical Iodine-Sulfur (IS) process produces large amount of hydrogen effectively without carbon dioxide emission. Since the IS process uses strong acids such as sulfuric acid and hydriodic acid, it is necessary to develop large-scale chemical reactors featuring materials that exhibit excellent heat and corrosion resistance. A sulfuric acid decomposer is one of the key components of the IS process plant, in which sulfuric acid is evaporated and decomposed into water and sulfur trioxide under temperature range from 300degC to 500degC using the heat supplied by high temperature helium gas. The decomposer is exposed to severe corrosion condition of sulfuric acid boiling flow, where only the SiC ceramics shows good corrosion resistance. However, at the current status, it is very difficult to manufacture the large-scale SiC ceramics structure required in the commercial plant. Therefore, we devised a new concept of the decomposer, which featured a counter flow type heat exchanger consisting of cylindrical blocks made of SiC ceramics. Scale up can be realized by connecting the blocks in parallel and/or in series. This paper describes results of the design work and the test-fabrication study of the sulfuric acid decomposer, which was carried out in order to confirm its feasibility. (author)

  8. Test Operation of Oxygen-Enriched Incinerator for Wastes From Nuclear Fuel Fabrication Facility

    International Nuclear Information System (INIS)

    Kim, J.-G.; Yang, H.cC.; Park, G.-I.; Kim, I.-T.; Kim, J.-K.

    2002-01-01

    The oxygen-enriched combustion concept, which can minimize off-gas production, has been applied to the incineration of combustible uranium-containing wastes from a nuclear fuel fabrication facility. A simulation for oxygen combustion shows the off-gas production can be reduced by a factor of 6.7 theoretically, compared with conventional air combustion. The laboratory-scale oxygen enriched incineration (OEI) process with a thermal capacity of 350 MJ/h is composed of an oxygen feeding and control system, a combustion chamber, a quencher, a ceramic filter, an induced draft fan, a condenser, a stack, an off-gas recycle path, and a measurement and control system. Test burning with cleaning paper and office paper in this OEI process shows that the thermal capacity is about 320 MJ/h, 90 % of design value and the off-gas reduces by a factor of 3.5, compared with air combustion. The CO concentration for oxygen combustion is lower than that of air combustion, while the O2 concentration in off-gas is kept above 25 vol % for a simple incineration process without any grate. The NOx concentration in an off-gas stream does not reduce significantly due to air incoming by leakage, and the volume and weight reduction factors are not changed significantly, which suggests a need for an improvement in sealing

  9. Design, fabrication, and testing of a five megajoule homopolar motor-generator

    International Nuclear Information System (INIS)

    Weldon, W.F.; Driga, M.D.; Woodson, W.H.; Rylander, H.G.

    1976-01-01

    The current and future generations of controlled thermonuclear fusion experiments require large amounts of pulsed energy for heating and confinement of plasma. Kinetic energy storage with direct conversion to electrical power (i.e., homopolar machines) seems to be the most economically attractive solution for meeting these requirements. The University of Texas at Austin has a program intended to develop a design technology for homopolar machines to meet a broad spectrum of performance requirements in terms of stored energy and discharge times. The Energy Storage Group at the University of Texas at Austin has in the past ten months designed, fabricated, assembled and begun a thorough testing program on a second generation homopolar machine with a storage capacity of five megajoules. This machine, using room temperature field coils, solid electrical brushes, and hydrostatic bearings has been designed to deliver 42 volt pulses at current levels in excess of 150,000 amperes. The machine has been designed as a laboratory device with extremely stiff bearings, variable brush area as well as variable brush contact force, variable field strength for pulse shaping, and minicomputer controlled data acquisition, real time signature analysis and on line experiment control. A continuing program studying discharge characteristics, brush and rotor dynamics, machine losses, and system efficiencies is already underway and is currently funded through June, 1975

  10. Design, fabrication and testing of a prototype stressed-shell fuel isolation container

    International Nuclear Information System (INIS)

    Crosthwaite, J.L.; Barrie, J.N.; Nuttall, K.

    1982-07-01

    Atomic Energy of Canada Limited is conducting and coordinating research into the development of engineered barriers for the disposal of unreprocessed irradiated fuel within a deep, stable geologic vault. In one approach, a containment shell of corrosion-resistant metal is proposed as the principal barrier to radionuclide release, giving a high probability of containment for at least 300 years, thus ensuring isolation of nearly all fission products for their hazardous lives. The simplest concept is the 'stressed-shell' container, designed with sufficient shell thickness to withstand the hydrostatic pressure within a 1000-m deep disposal vault postulated to have flooded with groundwater. This report describes the design, fabrication, analysis and hydrostatic testing of a full-scale stressed-shell prototype. The report concludes that the deformation and collapse performance of stressed-shell designs, based on short-term mechanical properties be modelled adequately by BOSOR 5, a commercially available stress-strain computer program. If the stressed-shell concept is retained as a viable fuel isolation concept, future analyses should include an assessment of the role of material creep on long-term container performance

  11. Establishment of technological basis for fabrication of U-Pu-Zr ternary alloy fuel pins for irradiation tests in Japan

    International Nuclear Information System (INIS)

    Kikuchi, Hironobu; Iwai, Takashi; Nakajima, Kunihisa; Arai, Yasuo; Nakamura, Kinya; Ogata, Takanari

    2011-01-01

    A high-purity Ar gas atmosphere glove box accommodating injection casting and sodium-bonding apparatuses was newly installed in the Plutonium Fuel Research Facility of Oarai Research and Development Center, Japan Atomic Energy Agency, in which several nitride and carbide fuel pins were fabricated for irradiation tests. The experiences led to the establishment of the technological basis of the fabrication of U-Pu-Zr alloy fuel pins for the first time in Japan. After the injection casting of the U-Pu-Zr alloy, the metallic fuel pins were fabricated by welding upper and lower end plugs with cladding tubes of ferritic-martensitic steel. Subsequent to the sodium bonding for filling the annular gap region between the U-Pu-Zr alloy and the cladding tube with the melted sodium, the fuel pins for irradiation tests are inspected. This paper shows the apparatuses and the technological basis for the fabrication of U-Pu-Zr alloy fuel pins for the irradiation test planned at the experimental fast test reactor Joyo. (author)

  12. Helium-cooled pebble bed test blanket module alternative design and fabrication routes

    International Nuclear Information System (INIS)

    Lux, M.

    2007-01-01

    According to first results of the recently started European DEMO study, a new blanket integration philosophy was developed applying so-called multi-module segments. These consist of a number of blanket modules flexibly mounted onto a common vertical manifold structure that can be used for replacing all modules in one segment at one time through vertical remote-handling ports. This principle gives new freedom in the design choices applied to the blanket modules itself. Based on the alternative design options considered for DEMO also the ITER test blanket module was newly analyzed. As a result of these activities it was decided to keep the major principles of the reference design like stiffening grid, breeder unit concept and perpendicular arrangement of pebble beds related to the First Wall because of the very positive results of thermo-mechanical and neutronics studies. The present paper gives an overview on possible further design optimization and alternative fabrication routes. One of the most significant improvements in terms of the hydraulic performance of the Helium cooled reactor can be reached with a new First Wall concept. That concept is based on an internal heat transfer enhancement technique and allows drastically reducing the flow velocity in the FW cooling channels. Small ribs perpendicular to the flow direction (transverse-rib roughness) are arranged on the inner surface of the First Wall cooling channels at the plasma side. In the breeder units cooling plates which are mostly parallel but bent into U-shape at the plasma-side are considered. In this design all flow channels are parallel and straight with the flow entering on one side of the parallel plate sections and exiting on the other side. The ceramic pebble beds are embedded between two pairs of such type of cooling plates. Different modifications could possibly be combined, whereby the most relevant discussed in this paper are (i) rib-cooled First Wall channels, (ii) U-bent cooling plates for

  13. The European ITER Test Blanket Modules: Current status of fabrication technologies development and a way forward

    Energy Technology Data Exchange (ETDEWEB)

    Zmitko, Milan, E-mail: milan.zmitko@f4e.europa.eu [Fusion for Energy (F4E), Josep Pla 2, Barcelona (Spain); Galabert, Jose [Fusion for Energy (F4E), Josep Pla 2, Barcelona (Spain); Thomas, Noël [ATMOSTAT, F-94815 Villejuif (France); Forest, Laurent [CEA-Saclay, DEN, DM2S, SEMT, F-91191 Gif-sur-Yvette (France); Bucci, Philippe; Cogneau, Laurence [CEA-DRT, 38000 Grenoble (France); Rey, Jörg; Neuberger, Heiko [Karlsruhe Institute of Technology (KIT), Postfach 3640, Karlsruhe (Germany); Poitevin, Yves [Fusion for Energy (F4E), Josep Pla 2, Barcelona (Spain)

    2015-10-15

    Highlights: • Significant progress on development of welding procedures for European TBM achieved. • Fabrication processes feasibility based on diffusion and fusion welding demonstrated. • TBM box assembly welding scenarios investigated and welding scenarios identified. • Future qualification of pF/WPS proposed through realization of a number of QMUs. - Abstract: The paper reviews fabrication technologies and procedures applied for manufacturing of the TBM sub-components, like, HCLL and HCPB cooling plates, HCLL/HCPB stiffening plates, and HCLL/HCPB first wall and side caps. The used technologies are based on fusion and diffusion welding techniques taking into account specificities of the EUROFER-97 steel. Development of a standardized procedure complying with professional codes and standards (RCC-MRx), a preliminary fabrication/welding procedure specification (pF/WPS), is described as well as a fabrication and characterization of feasibility mock-ups (FMU) aimed at assessing the suitability of a fabrication process for fulfilling the design and fabrication specifications. Also, fabrication procedures for the TBM box assembly are presently under development through collaboration between European Fusion Laboratories and Industry for the establishment of an optimized assembly sequence/scenario and development of standardized welding procedure specifications. Selection of optimized assembly scenario takes into accounts not only the design requirements and fabrication possibilities/constraints but also maximum accessibility to the welds for sound non-destructive examination in compliance with welds classification. A future approach towards qualification of the developed fabrication technologies and procedures, through a number of medium to full-size qualification mock-ups according to European standards, is outlined before construction of the first TBMs.

  14. The fabrication and performance of Canadian silicide dispersion fuel for test reactors

    International Nuclear Information System (INIS)

    Sears, D.F.; Wood, J.C.; Berthiaume, L.C.; Herbert, L.N.; Schaefer, J.D.

    1985-01-01

    Fuel fabrication effort is now concentrated on the commissioning of large-scale process equipment, defining product specifications, developing a quality assurance plan, and setting up a mini-computer material accountancy system. In the irradiation testing program, full-size NRU assemblies containing 20% enriched silicide dispersion fuel have been Irradiated successfully to burnups in the range 65-80 atomic percent. Irradiations have also been conducted on mini-elements having 1.2 mm diameter holes In their mid-sections, some drilled before irradiation and others after irradiation to 22-83 atomic percent burnup. Uranium was lost to the coolant in direct proportion to the surface area of exposed core material. Pre-irradiation in the intact condition appeared to reduce in-reactor corrosion. Fuel cores developed for the NRU reactor are dimensionally very stable, swelling by only 6-8% at the very high burnup of 93 atomic percent. Two important factors contributing to this good performance are cylindrical clad restraint and coarse silicide particles. Thermal ramping tests were conducted on irradiated silicide aspersion fuels. Small segments of fuel cores released 85 Kr starting at about 520 deg. C and peaking at about 680 deg C. After a holding period of 1 hour at 720 deg. C a secondary 85 Kr peak occurred during cooling (at about 330 deg. C) probably due to thermal contraction cracking. Whole mini-elements irradiated to 93 atomic percent burnup were also ramped thermally, with encouraging results. After about 0.25 h at 530 deg. C the aluminum cladding developed very localized small blisters, some with penetrating pin-hole cracks preventing gross pillowing or ballooning. (author)

  15. The fabrication and performance of Canadian silicide dispersion fuel for test reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sears, D F; Wood, J C; Berthiaume, L C; Herbert, L N; Schaefer, J D

    1985-07-01

    Fuel fabrication effort is now concentrated on the commissioning of large-scale process equipment, defining product specifications, developing a quality assurance plan, and setting up a mini-computer material accountancy system. In the irradiation testing program, full-size NRU assemblies containing 20% enriched silicide dispersion fuel have been Irradiated successfully to burnups in the range 65-80 atomic percent. Irradiations have also been conducted on mini-elements having 1.2 mm diameter holes In their mid-sections, some drilled before irradiation and others after irradiation to 22-83 atomic percent burnup. Uranium was lost to the coolant in direct proportion to the surface area of exposed core material. Pre-irradiation in the intact condition appeared to reduce in-reactor corrosion. Fuel cores developed for the NRU reactor are dimensionally very stable, swelling by only 6-8% at the very high burnup of 93 atomic percent. Two important factors contributing to this good performance are cylindrical clad restraint and coarse silicide particles. Thermal ramping tests were conducted on irradiated silicide aspersion fuels. Small segments of fuel cores released {sup 85}Kr starting at about 520 deg. C and peaking at about 680 deg C. After a holding period of 1 hour at 720 deg. C a secondary {sup 85}Kr peak occurred during cooling (at about 330 deg. C) probably due to thermal contraction cracking. Whole mini-elements irradiated to 93 atomic percent burnup were also ramped thermally, with encouraging results. After about 0.25 h at 530 deg. C the aluminum cladding developed very localized small blisters, some with penetrating pin-hole cracks preventing gross pillowing or ballooning. (author)

  16. Sectional pipeline bundles. Design, fabrication and testing of a subsea pipeline connection system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-01

    The tests of the prototype system indicated that the system is applicable for connecting pipeline bundle sections. The overall performance of the system is therefore concluded to be satisfactory. Some modifications are required though, for improving the reliability of the system to the level required for offshore North Sea application. The tests showed that connection of the pipeline bundle sections can be performed for alignment tolerances larger than those expected during a typical subsea installation. Pull-in of bundle end sections can be performed with pull-in wires deployed from surface. The offshore tests showed that handling of wires must be done with great care to avoid possibility for wire entanglement, especially if a fully diverless system is to be used. The flowline connection tool was found to be suitable for final alignment of the individual spool ends. It was demonstrated that face to face contact between the hub faces in the connector was obtained after tie-in. Pressure tests showed that the connector could be sealed by the tie-in force applied by the connection tool tie-in system. However, the standard connector clamp which was used, was found to be insuficient for maintaining the connector effectively sealed after removal of the pull-in force applied by the connection tool. Based on the results proposals for improvements of the system are included. Improvements are applicable to the current system for connection of bundle sections or for tie-in operations, relating to conventional pipelines. The improvements also includes a strong connection clamp suitable for subsea use. The connection clamp will replace the standard clamp devise used in this project. (au) EFP-96. 41 refs.

  17. Maintaining evolvability.

    Science.gov (United States)

    Crow, James F

    2008-12-01

    Although molecular methods, such as QTL mapping, have revealed a number of loci with large effects, it is still likely that the bulk of quantitative variability is due to multiple factors, each with small effect. Typically, these have a large additive component. Conventional wisdom argues that selection, natural or artificial, uses up additive variance and thus depletes its supply. Over time, the variance should be reduced, and at equilibrium be near zero. This is especially expected for fitness and traits highly correlated with it. Yet, populations typically have a great deal of additive variance, and do not seem to run out of genetic variability even after many generations of directional selection. Long-term selection experiments show that populations continue to retain seemingly undiminished additive variance despite large changes in the mean value. I propose that there are several reasons for this. (i) The environment is continually changing so that what was formerly most fit no longer is. (ii) There is an input of genetic variance from mutation, and sometimes from migration. (iii) As intermediate-frequency alleles increase in frequency towards one, producing less variance (as p --> 1, p(1 - p) --> 0), others that were originally near zero become more common and increase the variance. Thus, a roughly constant variance is maintained. (iv) There is always selection for fitness and for characters closely related to it. To the extent that the trait is heritable, later generations inherit a disproportionate number of genes acting additively on the trait, thus increasing genetic variance. For these reasons a selected population retains its ability to evolve. Of course, genes with large effect are also important. Conspicuous examples are the small number of loci that changed teosinte to maize, and major phylogenetic changes in the animal kingdom. The relative importance of these along with duplications, chromosome rearrangements, horizontal transmission and polyploidy

  18. Observed Changes in As-Fabricated U-10Mo Monolithic Fuel Microstructures After Irradiation in the Advanced Test Reactor

    Science.gov (United States)

    Keiser, Dennis; Jue, Jan-Fong; Miller, Brandon; Gan, Jian; Robinson, Adam; Madden, James

    2017-12-01

    A low-enriched uranium U-10Mo monolithic nuclear fuel is being developed by the Material Management and Minimization Program, earlier known as the Reduced Enrichment for Research and Test Reactors Program, for utilization in research and test reactors around the world that currently use high-enriched uranium fuels. As part of this program, reactor experiments are being performed in the Advanced Test Reactor. It must be demonstrated that this fuel type exhibits mechanical integrity, geometric stability, and predictable behavior to high powers and high fission densities in order for it to be a viable fuel for qualification. This paper provides an overview of the microstructures observed at different regions of interest in fuel plates before and after irradiation for fuel samples that have been tested. These fuel plates were fabricated using laboratory-scale fabrication methods. Observations regarding how microstructural changes during irradiation may impact fuel performance are discussed.

  19. Design and fabrication of the superconducting-magnet system for the Mirror Fusion Test Facility (MFTF-B)

    International Nuclear Information System (INIS)

    Tatro, R.E.; Wohlwend, J.W.; Kozman, T.A.

    1982-01-01

    The superconducting magnet system for the Mirror Fusion Test Facility (MFTF-B) consists of 24 magnets; i.e. two pairs of C-shaped Yin-Yang coils, four C-shaped transition coils, four solenoidal axicell coils, and a 12-solenoid central cell. General Dynamics Convair Division has designed all the coils and is responsible for fabricating 20 coils. The two Yin-Yang pairs (four coils) are being fabricated by the Lawrence Livermore National Laboratory. Since MFTF-B is not a magnet development program, but rather a major physics experiment critical to the mirror fusion program, the basic philosophy has been to use proven materials and analytical techniques wherever possible. The transition and axicell coils are currently being analyzed and designed, while fabrication is under way on the solenoid magnets

  20. GLASS FABRICATION AND PRODUCT CONSISTENCY TESTING OF LANTHANIDE BOROSHILICATE FRIT X COMPOSITION FOR PLUTONIUM DISPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J

    2006-11-21

    The Department of Energy Office of Environmental Management (DOE/EM) plans to conduct the Plutonium Disposition Project at the Savannah River Site (SRS) to disposition excess weapons-usable plutonium. A plutonium glass waste form is the preferred option for immobilization of the plutonium for subsequent disposition in a geologic repository. A reference glass composition (Lanthanide Borosilicate (LaBS) Frit B) was developed during the Plutonium Immobilization Program (PIP) to immobilize plutonium in the late 1990's. A limited amount of performance testing was performed on this baseline composition before efforts to further pursue Pu disposition via a glass waste form ceased. Recent FY05 studies have further investigated the LaBS Frit B formulation as well as development of a newer LaBS formulation denoted as LaBS Frit X. The objectives of this present task were to fabricate plutonium loaded LaBS Frit X glass and perform corrosion testing to provide near-term data that will increase confidence that LaBS glass product is suitable for disposal in the Yucca Mountain Repository. Specifically, testing was conducted in an effort to provide data to Yucca Mountain Project (YMP) personnel for use in performance assessment calculations. Plutonium containing LaBS glass with the Frit X composition with a 9.5 wt% PuO{sub 2} loading was prepared for testing. Glass was prepared to support Product Consistency Testing (PCT) at Savannah River National Laboratory (SRNL). The glass was thoroughly characterized using x-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) prior to performance testing. A series of PCTs were conducted at SRNL using quenched Pu Frit X glass with varying exposed surface areas. Effects of isothermal and can-in-canister heat treatments on the Pu Frit X glass were also investigated. Another series of PCTs were performed on these different heat-treated Pu Frit X glasses. Leachates from all these PCTs

  1. Flight service evaluation of composite components on the Bell Helicopter model 206L: Design, fabrication and testing

    Science.gov (United States)

    Zinberg, H.

    1982-01-01

    The design, fabrication, and testing phases of a program to obtain long term flight service experience on representative helicopter airframe structural components operating in typical commercial environments are described. The aircraft chosen is the Bell Helicopter Model 206L. The structural components are the forward fairing, litter door, baggage door, and vertical fin. The advanced composite components were designed to replace the production parts in the field and were certified by the FAA to be operable through the full flight envelope of the 206L. A description of the fabrication process that was used for each of the components is given. Static failing load tests on all components were done. In addition fatigue tests were run on four specimens that simulated the attachment of the vertical fin to the helicopter's tail boom.

  2. On-Demand Testing and Maintaining Standards for General Qualifications in the UK Using Item Response Theory: Possibilities and Challenges

    Science.gov (United States)

    He, Qingping

    2012-01-01

    Background: Although on-demand testing is being increasingly used in many areas of assessment, it has not been adopted in high stakes examinations like the General Certificate of Secondary Education (GCSE) and General Certificate of Education Advanced level (GCE A level) offered by awarding organisations (AOs) in the UK. One of the major issues…

  3. MOX fuel fabrication at AECL

    International Nuclear Information System (INIS)

    Dimayuga, F.C.; Jeffs, A.T.

    1995-01-01

    Atomic Energy of Canada Limited's mixed-oxide (MOX) fuel fabrication activities are conducted in the Recycle Fuel Fabrication Laboratories (RFFL) at the Chalk River Laboratories. The RFFL facility is designed to produce experimental quantities of CANDU MOX fuel for reactor physics tests or demonstration irradiations. From 1979 to 1987, several MOX fuel fabrication campaigns were run in the RFFL, producing various quantities of fuel with different compositions. About 150 bundles, containing over three tonnes of MOX, were fabricated in the RFFL before operations in the facility were suspended. In late 1987, the RFFL was placed in a state of active standby, a condition where no fuel fabrication activities are conducted, but the monitoring and ventilation systems in the facility are maintained. Currently, a project to rehabilitate the RFFL and resume MOX fuel fabrication is nearing completion. This project is funded by the CANDU Owners' Group (COG). The initial fabrication campaign will consist of the production of thirty-eight 37-element (U,Pu)O 2 bundles containing 0.2 wt% Pu in Heavy Element (H.E.) destined for physics tests in the zero-power ZED-2 reactor. An overview of the Rehabilitation Project will be given. (author)

  4. Development of a test device to characterize thermal protective performance of fabrics against hot steam and thermal radiation

    International Nuclear Information System (INIS)

    Su, Yun; Li, Jun

    2016-01-01

    Steam burns severely threaten the life of firefighters in the course of their fire-ground activities. The aim of this paper was to characterize thermal protective performance of flame-retardant fabrics exposed to hot steam and low-level thermal radiation. An improved testing apparatus based on ASTM F2731-11 was developed in order to simulate the routine fire-ground conditions by controlling steam pressure, flow rate and temperature of steam box. The thermal protective performance of single-layer and multi-layer fabric system with/without an air gap was studied based on the calibrated tester. It was indicated that the new testing apparatus effectively evaluated thermal properties of fabric in hot steam and thermal radiation. Hot steam significantly exacerbated the skin burn injuries while the condensed water on the skin’s surface contributed to cool down the skin tissues during the cooling. Also, the absorbed thermal energy during the exposure and the cooling was mainly determined by the fabric’s configuration, the air gap size, the exposure time and the existence of hot steam. The research provides a effective method to characterize the thermal protection of fabric in complex conditions, which will help in optimization of thermal protection performance of clothing and reduction of steam burn. (paper)

  5. Technical issues of RAFMs for the fabrication of ITER Test Blanket Module

    International Nuclear Information System (INIS)

    Tanigawa, Hiroyasu; Hirose, Takanori; Shiba, Kiyoyuki

    2007-01-01

    Reduced activation ferritic/martensitic steels (RAFMs) are recognized as the primary candidate structural materials for fusion blanket systems, as it has they have been developed based on massive industrial experience of ferritic/martensitic steel replacing Mo and Nb of high chromium heat resistant martensitic steels (such as modified 9Cr-1Mo) with W and Ta, respectively. F82H and JLF-1 are RAFMs, which have been developed and studied in Japan and the various effects of irradiation were reported. F82H is designed with emphasis on high temperature property and weldability, and was provided and evaluated in various countries as a part of the IEA fusion materials development collaboration. The JAEA/US collaboration program also has been conducted with the emphasis on irradiation effects of F82H. Now, among the existing database for RAFMs the most extensive one is that for F82H. The objective of this paper is to review the R and D status of F82H and to identify the key technical issues for the fabrication of ITER Test Blanket Module (TBM) suggested from the recent achievements in Japan. It is desirable to make the status of RAFMs equivalent to commercial steels to use RAFMs as the ITER-TBM structural material. This would require demonstrating the reproducibility and weldability as well as providing the database. The excellent reproducibility of F82H has been demonstrated with four 5-ton-heats, and two of them were provided as F82H-IEA heats. It has been also proved that F82H could be provided as plates (thickness of 1.5 to 55 mm), pipes and rectangular tubes. It is also important to have the excellent weldability as the TBM has about 300m length of weld line, and it was proved through TIG, EB and YAG weld test performed in air atmosphere. Various mechanical and microstructural data have been accumulated including long-term tests such as creep rupture tests and aging tests. Although F82H is a well-perceived RAFM as the ITER-TBM structural material, some issues are

  6. Fabrication of recyclable superhydrophobic cotton fabrics

    Science.gov (United States)

    Han, Sang Wook; Park, Eun Ji; Jeong, Myung-Geun; Kim, Il Hee; Seo, Hyun Ook; Kim, Ju Hwan; Kim, Kwang-Dae; Kim, Young Dok

    2017-04-01

    Commercial cotton fabric was coated with SiO2 nanoparticles wrapped with a polydimethylsiloxane (PDMS) layer, and the resulting material surface showed a water contact angle greater than 160°. The superhydrophobic fabric showed resistance to water-soluble contaminants and maintained its original superhydrophobic properties with almost no alteration even after many times of absorption-washing cycles of oil. Moreover, superhydrophobic fabric can be used as a filter to separate oil from water. We demonstrated a simple method of fabrication of superhydrophobic fabric with potential interest for use in a variety of applications.

  7. Fabrication of a Miniaturized ZnO Nanowire Accelerometer and Its Performance Tests

    Directory of Open Access Journals (Sweden)

    Hyun Chan Kim

    2016-09-01

    Full Text Available This paper reports a miniaturized piezoelectric accelerometer suitable for a small haptic actuator array. The accelerometer is made with zinc oxide (ZnO nanowire (NW grown on a copper wafer by a hydrothermal process. The size of the accelerometer is 1.5 × 1.5 mm2, thus fitting the 1.8 × 1.8 mm2 haptic actuator array cell. The detailed fabrication process of the miniaturized accelerometer is illustrated. Performance evaluation of the fabricated accelerometer is conducted by comparing it with a commercial piezoelectric accelerometer. The output current of the fabricated accelerometer increases linearly with the acceleration. The miniaturized ZnO NW accelerometer is feasible for acceleration measurement of small and lightweight devices.

  8. Fabrication and testing of the sintered ceramic UO2 fuel - I - III, Part III - testing of sintered uranium dioxide properties dependent on the fabrication procedure

    International Nuclear Information System (INIS)

    Novakovic, M.; Ristic, M.M.

    1961-12-01

    The objective of this task was testing the influence of some parameters on the properties of sintered UO 2 . The influence of parameters tested were as follows: adhesives; pressure in the pressing procedure; temperature of sintering of the UO 2 powder. Other parameters were chosen according to the theoretical study. Sintering was done in argon atmosphere. Characterization of the UO 2 powder was performed meaning determining the needed chemical, physical and physico-chemical properties. Some new methods were developed within this task: SET method for measuring the specific surfaces, DTA, TGA, high-temperature torsion

  9. Fabrication and Testing of the SRF Cavities for the CEBAF 12 GeV Upgrade Prototype Cryomodule Renascence

    International Nuclear Information System (INIS)

    Charles Reece; Edward Daly; Stephen Manning; Robert Manus; Samuel Morgan; Joseph Ozelis; Larry Turlington

    2005-01-01

    Twelve seven-cell niobium cavities for the CEBAF 12 GeV upgrade prototype cryomodule Renascence have been fabricated at JLab and tested individually. This set includes four of the ''Low Loss'' (LL) design and eight of the ''High Gradient'' (HG) design. The fabrication strategy was an efficient mix of batch job-shop component machining and in-house EBW, chemistry, and final-step machining to meet mechanical tolerances. Process highlights will be presented. The cavities have been tested at 2.07 K, the intended CEBAF operating temperature. Performance exceeded the tentative design requirement of 19.2 MV/m cw with less than 29 W dynamic heat dissipation. These results, as well as the HOM damping performance will be presented

  10. Fabrication and Testing of the SRF cavities for the CEBAF 12 GeV Upgrade Prototype Cryomodule Renascence

    International Nuclear Information System (INIS)

    C. E. Reece; E. F. Daly; S. Manning; R. Manus; S. Morgan; J. P. Ozelis; L. Turlington

    2005-01-01

    Twelve seven-cell niobium cavities for the CEBAF 12 GeV upgrade prototype cryomodule Renascence have been fabricated at JLab and tested individually. This set includes four of the ''Low Loss'' (LL) design and eight of the ''High Gradient'' (HG) design. The fabrication strategy was an efficient mix of batch job-shop component machining and in-house EBW, chemistry, and final-step machining to meet mechanical tolerances. Process highlights will be presented. The cavities have been tested at 2.07 K, the intended CEBAF operating temperature. Performance exceeded the tentative design requirement of 19.2 MV/m CW with less than 29 W dynamic heat dissipation. These results, as well as the HOM damping performance are presented

  11. Fabrication of imitative stress corrosion cracking using diffusion bonding for the development of nondestructive testing and evaluations

    International Nuclear Information System (INIS)

    Yusa, Noritaka; Hashizume, Hidetoshi

    2011-01-01

    This study reports a method to fabricate imitative stress corrosion cracking suitable for the development of nondestructive testing and evaluation methods. The method is to embed a partially-bonded region, which simulates the characteristics of stress corrosion cracking, inside a material by bonding together surfaces having artificial grooves. Since the sizes of the grooves are smaller than the spatial resolution of nondestructive testing method applied, the material property realized can be regarded as uniform as the actual stress corrosion cracking. The grooves are introduced using mechanical machining, which enables one to control the characteristics of the simulated flaw. Four specimens made of type 316L austenitic stainless steel are fabricated. The method is demonstrated by visual and eddy current examinations. (author)

  12. Design, fabrication, and testing of an ultrasonic de-icing system for helicopter rotor blades

    Science.gov (United States)

    Palacios, Jose Luis

    A low-power, non-thermal ultrasonic de-icing system is introduced as a possible substitute for current electro-thermal systems. The system generates delaminating ultrasonic transverse shear stresses at the interface of accreted ice. A PZT-4 disk driven at 28.5 KHz (radial resonance of the disk) instantaneously de-bonds 2 mm thick freezer ice layers. The ice layers are accreted to a 0.7 mm thick, 30.4 cm x 30.4 cm steel plate at an environment temperature of -20°C. A power input of 50 Watts is applied to the actuator (50 V, 19.6 KV/m), which translates to a de-icing power of 0.07 W/cm2. A finite element model of the actuator bonded to the isotropic plate is used to guide the design of the system, and predicts the transverse shear stresses at the ice interface. Wind tunnel icing tests were conducted to demonstrate the potential use of the proposed system under impact icing conditions. Both glaze ice and rime ice were generated on steel and composite plates by changing the cloud conditions of the wind tunnel. Continuous ultrasonic vibration prevented impact ice formation around the actuator location at an input power not exceeding 0.18 W/cm 2 (1.2 W/in2). As ice thickness reached a critical thickness of approximately 1.2 mm, shedding occurred on those locations where ultrasonic transverse shear stresses exceeded the shear adhesion strength of the ice. Finite element transverse shear stress predictions correlate with observed experimental impact ice de-bonding behavior. To increase the traveling distance of propagating ultrasonic waves, ultrasonic shear horizontal wave modes are studied. Wave modes providing large modal interface transverse shear stress concentration coefficients (ISCC) between the host structure (0.7 mm thick steel plate) and accreted ice (2.5 mm thick ice layer) are identified and investigated for a potential increase in the wave propagation distance. Ultrasonic actuators able to trigger these optimum wave modes are designed and fabricated. Despite

  13. Fabrication and characterization of MCC approved testing material - ATM-1 glass

    International Nuclear Information System (INIS)

    Wald, J.W.

    1985-10-01

    The Materials Characterization Center Approved Testing Material ATM-1 is a borosilicate glass that incorporates nonradioactive constituents and uranium to represent high-level waste (HLW) resulting from the reprocessing of commercial nuclear reactor fuel. Its composition is based upon the simulated HLW glass type 76-68 to which depleted uranium has been added as UO 2 . Three separate lots of ATM-1 glass have been fabricated, designated ATM-1a, ATM-1b, and ATM-1c. Limited analyses and microstructural evaluations were conducted on each type. Each lot of ATM-1 glass was produced from a feedstock melted in an air atmosphere at between 1150 to 1200 0 C and cast into stress annealed rectangular bars. Bars of ATM-1a were nominally 1.3 x 1.3 x 7.6 cm (approx.36 g each), bars of ATM-1b were nominally 2 x 2.5 x 17.5 cm (approx.190 g each) and bars of ATM-1c were nominally 1.9 x 1.9 x 15 cm (approx.170 g each). Thirteen bars of ATM-1a, 14 bars of ATM-1b, and 6 bars of ATM-1c were produced. Twelve random samples from each of lots ATM-1a, ATM-1b, and ATM-1c were analyzed. The concentrations (except for U and Cs) were obtained by Inductively-Coupled Argon Plasma Atomic Emission Spectroscopy analysis. Cesium analysis was performed by Atomic Absorption Spectroscopy, while uranium was analyzed by Pulsed Laser Fluorometry. X-ray diffraction analysis of four samples indicated that lot ATM-1a had no detectable crystalline phases (<3 wt %), while ATM-1b and ATM-1c contained approx.3 to 5 wt % iron-chrome spinel crystals. These concentrations of secondary spinel component are not considered uncommon. Scanning electron microscopy examination of fracture surfaces revealed only a random, apparently crystalline, second phase (1-10 μm diam) and a random distribution of small voids or bubbles (approx.1 μm nominal diam)

  14. Design, fabrication and test of a lightweight shell structure, phase 3

    Science.gov (United States)

    1977-01-01

    Progress is reported in the construction of lightweight orthogrid shells. Graphite/epoxy panels are being used in the fabrication. The shell structure is diagramed in detail. Panel laminates, and panel stiffener flanges are described while illustrations delineate panel assembly procedures.

  15. Gas Atomization Equipment Statement of Work and Specification for Engineering design, Fabrication, Testing, and Installation

    Energy Technology Data Exchange (ETDEWEB)

    Boutaleb, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pluschkell, T. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-30

    The Gas Atomization Equipment will be used to fabricate metallic powder suitable for Powder Bed Fusion additive Manufacturing material to support Lawrence Livermore National Laboratory (LLNL) research and development. The project will modernize our capabilities to develop spherical reactive, refractory, and radioactive powders in the 10-75 μm diameter size range at LLNL.

  16. Fabrication of Metallic Fuel Slugs for Irradiation Experiments in Fast Breeder Test Reactor

    International Nuclear Information System (INIS)

    Saify, M.T.; Jha, S.K.; Abdulla, K.K.; Kumar, Arun; Prasad, G.J.

    2013-01-01

    Advantages of Metallic fuels for future FBR: → High heavy metal atom density; → Higher thermal conductivity at room temperature that increases with temperature; → Metal fuels can be relatively easily fabricated with close dimensional tolerances; → They have excellent compatibility with liquid metal coolants

  17. Design, ancillary testing, analysis and fabrication data for the advanced composite stabilizer for Boeing 737 aircraft. Volume 1: Technical summary

    Science.gov (United States)

    Aniversario, R. B.; Harvey, S. T.; Mccarty, J. E.; Parsons, J. T.; Peterson, D. C.; Pritchett, L. D.; Wilson, D. R.; Wogulis, E. R.

    1983-01-01

    The horizontal stabilizer of the 737 transport was redesigned. Five shipsets were fabricated using composite materials. Weight reduction greater than the 20% goal was achieved. Parts and assemblies were readily produced on production-type tooling. Quality assurance methods were demonstrated. Repair methods were developed and demonstrated. Strength and stiffness analytical methods were substantiated by comparison with test results. Cost data was accumulated in a semiproduction environment. FAA certification was obtained.

  18. Relationship between electrical conductivity anisotropy and fabric anisotropy in granular materials during drained triaxial compressive tests: a numerical approach

    Science.gov (United States)

    Niu, Qifei; Revil, André; Li, Zhaofeng; Wang, Yu-Hsing

    2017-07-01

    The anisotropy of granular media and its evolution during shearing are important aspects required in developing physics-based constitutive models in Earth sciences. The development of relationships between geoelectrical properties and the deformation of porous media has applications to the monitoring of faulting and landslides. However, such relationships are still poorly understood. In this study, we first investigate the definition of the electrical conductivity anisotropy tensor of granular materials in presence of surface conductivity of the grains. Fabric anisotropy is related to the components of the fabric tensor. We define an electrical anisotropy factor based on the Archie's exponent second-order symmetric tensor m of granular materials. We use numerical simulations to confirm a relationship between the evolution of electrical and fabric anisotropy factors during shearing. To realize the simulations, we build a virtual laboratory in which we can easily perform synthetic experiments. We first simulate drained compressive triaxial tests of loose and dense granular materials (porosity 0.45 and 0.38, respectively) using the discrete element method. Then, the electrical conductivity tensor of a set of deformed synthetic samples is computed using the finite-difference method. The numerical results show that shear strains are responsible for a measurable anisotropy in the bulk conductivity of granular media. The observed electrical anisotropy response, during shearing, is distinct for dense and loose synthetic samples. Electrical and fabric anisotropy factors exhibit however a unique linear correlation, regardless of the shear strain and the initial state (porosity) of the synthetic samples. The practical implication of this finding confirms the usefulness of the electrical conductivity method in studying the fabric tensor of granular media. This result opens the door in using time-lapse electrical resistivity to study non-intrusively the evolution of anisotropy

  19. Fabrication and integrity test preparation of HIP-joined W and ferritic-martensitic steel mockups for fusion reactor development

    International Nuclear Information System (INIS)

    Lee, Dong Won; Shin, Kyu In; Kim, Suk Kwon; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae Sung; Choi, Bo Guen; Moon, Se Youn; Hong, Bong Guen

    2014-01-01

    Tungsten (W) and ferritic-martensitic steel (FMS) as armor and structural materials, respectively, are the major candidates for plasma-facing components (PFCs) such as the blanket first wall (BFW) and the divertor, in a fusion reactor. In the present study, three W/FMS mockups were successfully fabricated using a hot isostatic pressing (HIP, 900 .deg. C, 100 MPa, 1.5 hrs) with a following post-HIP heat treatment (PHHT, tempering, 750 .deg. C, 70 MPa, 2 hrs), and the W/FMS joining method was developed based on the ITER BFW and the test blanket module (TBM) development project from 2004 to the present. Using a 10-MHz-frequency flat-type probe to ultrasonically test of the joint, we found no defects in the fabricated mockups. For confirmation of the joint integrity, a high heat flux test will be performed up to the thermal lifetime of the mockup under the proper test conditions. These conditions were determined through a preliminary analysis with conventional codes such as ANSYS-CFX for thermal-hydraulic conditions considering the test facility, the Korea heat load test facility with an electron beam (KoHLT-EB), and its water coolant system at the Korea Atomic Energy Research Institute (KAERI)

  20. Fabrication and integrity test preparation of HIP-joined W and ferritic-martensitic steel mockups for fusion reactor development

    Science.gov (United States)

    Lee, Dong Won; Shin, Kyu In; Kim, Suk Kwon; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae Sung; Choi, Bo Guen; Moon, Se Youn; Hong, Bong Guen

    2014-10-01

    Tungsten (W) and ferritic-martensitic steel (FMS) as armor and structural materials, respectively, are the major candidates for plasma-facing components (PFCs) such as the blanket first wall (BFW) and the divertor, in a fusion reactor. In the present study, three W/FMS mockups were successfully fabricated using a hot isostatic pressing (HIP, 900 °C, 100 MPa, 1.5 hrs) with a following post-HIP heat treatment (PHHT, tempering, 750 °C, 70 MPa, 2 hrs), and the W/FMS joining method was developed based on the ITER BFW and the test blanket module (TBM) development project from 2004 to the present. Using a 10-MHz-frequency flat-type probe to ultrasonically test of the joint, we found no defects in the fabricated mockups. For confirmation of the joint integrity, a high heat flux test will be performed up to the thermal lifetime of the mockup under the proper test conditions. These conditions were determined through a preliminary analysis with conventional codes such as ANSYS-CFX for thermal-hydraulic conditions considering the test facility, the Korea heat load test facility with an electron beam (KoHLT-EB), and its water coolant system at the Korea Atomic Energy Research Institute (KAERI).

  1. Fabrication and integrity test preparation of HIP-joined W and ferritic-martensitic steel mockups for fusion reactor development

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Won; Shin, Kyu In; Kim, Suk Kwon; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae Sung; Choi, Bo Guen [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Moon, Se Youn; Hong, Bong Guen [Chonbuk National University, Jeonju (Korea, Republic of)

    2014-10-15

    Tungsten (W) and ferritic-martensitic steel (FMS) as armor and structural materials, respectively, are the major candidates for plasma-facing components (PFCs) such as the blanket first wall (BFW) and the divertor, in a fusion reactor. In the present study, three W/FMS mockups were successfully fabricated using a hot isostatic pressing (HIP, 900 .deg. C, 100 MPa, 1.5 hrs) with a following post-HIP heat treatment (PHHT, tempering, 750 .deg. C, 70 MPa, 2 hrs), and the W/FMS joining method was developed based on the ITER BFW and the test blanket module (TBM) development project from 2004 to the present. Using a 10-MHz-frequency flat-type probe to ultrasonically test of the joint, we found no defects in the fabricated mockups. For confirmation of the joint integrity, a high heat flux test will be performed up to the thermal lifetime of the mockup under the proper test conditions. These conditions were determined through a preliminary analysis with conventional codes such as ANSYS-CFX for thermal-hydraulic conditions considering the test facility, the Korea heat load test facility with an electron beam (KoHLT-EB), and its water coolant system at the Korea Atomic Energy Research Institute (KAERI)

  2. Design, fabrication and test of double-wall vacuum vessel for JT-60U

    International Nuclear Information System (INIS)

    Uchikawa, Takashi; Ioki, Kimihiro; Ninomiya, Hiromasa.

    1994-01-01

    A double-wall vacuum vessel was designed and fabricated for JT-60U (an upgraded machine of JT-60), which has a plasma current up to 6 MA and a large plasma volume (100 m 3 ). A new concept of Inconel 625 all-welded structure was adopted to the vessel, that comprises an inner plate, square tubes and an outer plate. The vacuum vessel with a multi-arc D-shaped cross section was fabricated by using hot-sizing press. The electromagnetic and structural analysis has been performed for plasma disruption loads. Dynamic responses of the vessel were measured during plasma disruptions, and the observed displacement had a good agreement with the result of FEM analysis. (author)

  3. Biaxial Testing of High-Strength Fabric Improves Design of Inflatable Radar Domes

    Science.gov (United States)

    Krause, David L.; Bartolotta, Paul A.

    2001-01-01

    Large radar installations around the globe continuously watch the skies, unobtrusively providing security to the United States; these systems have been in active use for the past 50 years. Often situated in extreme environments, the radar dishes require shielding from the harsh elements. Air-inflated domes (over 100 ft in diameter) are one structure of choice for providing this essential protection. The radomes are constructed from highstrength fabric that is strong enough to withstand the inflation pressure, high winds, and other environmental loads, yet transparent to the microwave signal to allow precise radar mapping. This fabric is woven from glass fibers for high strength and embedded in a polytetrafluoroethylene resin matrix, akin to the nonstick coatings used on cookware.

  4. The fabrication and testing of electrospun silica nanofiber membranes for the detection of proteins

    International Nuclear Information System (INIS)

    Tsou, P-H; Kameoka, J; Chou, C-K; Saldana, S M; Hung, M-C

    2008-01-01

    In this study, we fabricated electrospun silica nanofiber membranes and investigated their use in biomolecular sensing. The diameter, porosity and surface-to-volume ratio of nanofiber membranes were investigated under different fabrication conditions. Using this type of nanofiber membrane, enzyme-linked immunosorbent assay (ELISA) was performed, and the results were compared with those obtained with conventional ELISA using polystyrene well plates. The minimum detectable concentration was determined as 0.19 ng ml -1 (1.6 pM), which is 32 times lower than that of conventional ELISA. In addition, the detection time for all processes for the nanofiber membrane was reduced to 1 h, compared with 1 day for conventional ELISA. The increased sensitivity, faster reaction time, and affordability of the nanofiber membrane make it well suited for bio-chip use.

  5. Design, Fabrication, and Testing of a Composite Rack Prototype in Support of the Deep Space Habitat Program

    Science.gov (United States)

    Smith, Russ; Hagen, Richard

    2015-01-01

    In support of the Deep Space Habitat project a number of composite rack prototypes were developed, designed, fabricated and tested to various extents ( with the International Standard Payload Rack configuration, or crew quarters, as a baseline). This paper focuses specifically on a composite rack prototype with a direct tie in to Space Station hardware. The outlined prototype is an all composite construction, excluding metallic fasteners, washers, and their associated inserts. The rack utilizes braided carbon composite tubing for the frame with the sidewalls, backwall and flooring sections utilizing aircraft grade composite honeycomb sandwich panels. Novel additively manufactured thermoplastic joints and tube inserts were also developed in support of this effort. Joint and tube insert screening tests were conducted at a preliminary level. The screening tests allowed for modification, and enhancement, of the fabrication and design approaches, which will be outlined. The initial joint tests did not include mechanical fasteners. Adhesives were utilized at the joint to composite tube interfaces, along with mechanical fasteners during final fabrication (thus creating a stronger joint than the adhesive only variant). In general the prototype was focused on a potential in-space assembly approach, or kit-of-parts construction concept, which would not necessarily require the inclusion of an adhesive in the joint regions. However, given the tie in to legacy Station hardware (and potential flight loads with imbedded hardware mass loadings), the rack was built as stiff and strong as possible. Preliminary torque down tests were also conducted to determine the feasibility of mounting the composite honeycomb panels to the composite tubing sections via the additively manufactured tube inserts. Additional fastener torque down tests were also conducted with inserts (helicoils) imbedded within the joints. Lessons learned are also included and discussed.

  6. Design, fabrication, and test of a steel spar wind turbine blade

    Science.gov (United States)

    Sullivan, T. L.; Sirocky, P. J., Jr.; Viterna, L. A.

    1979-01-01

    The design and fabrication of wind turbine blades based on 60 foot steel spars are discussed. Performance and blade load information is given and compared to analytical prediction. In addition, performance is compared to that of the original MOD-O aluminum blades. Costs for building the two blades are given, and a projection is made for the cost in mass production. Design improvements to reduce weight and improve fatigue life are suggested.

  7. Project, fabrication, assembly and tests of different prototypes for CPS compound parabolic solar collectors; Projeto, fabricacao, montagem e testes de diferentes prototipos de coletores solares parabolicos compostos CPCs

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Jose H.M. [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET), Belo Horizonte, MG (Brazil). Dept. de Engenharia Mecanica]. E-mail: henrique@daem.des.cefemg.br

    2000-07-01

    This work presents the results of the experiment involving the design, fabrication, assembly and tests of composite parabolic solar collectors prototypes with acceptance half-angles of 3 deg C, 6.5 deg C, 11 deg C, 14 deg C and 19.5 deg C of the tube type absorber and 14 deg C rectangular absorber. Field test were performed on all the prototypes for determination of thermal efficiency, time constants and optical efficiencies represented by the modified incidence angles. Tests were performed for the determination of the heat transfer global coefficients on each prototype. (author)

  8. Design Modifications, Fabrication and Test of HFDB-03 Racetrack Magnet Wound with Pre-Reacted Nb3Sn Rutherford Cable

    International Nuclear Information System (INIS)

    Ambrosio, G.; Andreev, N.; Barzi, E.; Bhashyam, S.; Carcagno, R.; Feher, S.; Imbasciati, L.; Lamm, M.; Pischalnikov, Y.; Tartaglia, M.; Tompkins, J.; Zlobin, A.V.

    2004-01-01

    A 10 T racetrack magnet (HFDB-03) wound with pre-reacted Nb3Sn Rutherford cable has been fabricated and tested at Fermilab. This magnet is the third one in a proof-of-principle series for the use of the React-and-Wind technology in common-coil dipole magnets for future accelerators. It consists of two flat racetrack coils (28 turns each) separated by 5 mm. The maximum field on the coil, at the short sample limit of 16530 A, is 10 tesla. The cable has 41 strands with 0.7 mm diameter and the minimum bend radius in the magnet ends is 90 mm. The predecessor of this magnet (HFDB-02) reached 78 % of the short sample limit at 7.7 T. The mechanical design was improved and the fabrication procedure was slightly modified in order to address possible causes of limitation. In this paper we present the mechanical design and analysis of HFDB-03, the modifications to the fabrication procedure and the test results

  9. Constructability and maintainability

    International Nuclear Information System (INIS)

    Hart, R.S.

    1985-01-01

    A set of principles for minimizing the construction schedule was established at the outset of the CANDU 300 programme. Consideration of these principles and other factors led to the development of the unique CANDU 300 station layout. The paper discusses the CANDU 300 station layout and construction methods. In summary, the station layout provides 360 deg. construction access to all buildings, separation of nuclear and non-nuclear systems, precise and minimal physical interfaces between buildings, accommodation of many contractors and construction activities without interference, and maximum flexibility in terms of constructional, financial and supply arrangements. The CANDU 300 further employs modularization, shop fabrication and advanced instrumentation (multiplexers, remote processors, data highways) to minimize construction time. Many of the CANDU 300 features that enhance constructability also contribute to maintainability. These include the 360 deg. access to all principal buildings, the uncluttered and spacious building layouts, the simplification of systems and the high level of modularization. The CANDU 300 has also been designed to facilitate the replacement of all key components, thereby offering an essentially unlimited station life. A prime example is a reduction in the fuel channel inlet end-fitting diameter such that the fuel channels can be shop assembled and easily replaced after the initial 40 years of operation, without an extended unit outage. Maintainability within the reactor building has been given particular attention in the CANDU 300 design; key features of other CANDU reactors (the ability to replace a heat transport system pump motor at power, for example) have been incorporated, while accessibility and maintainability of all systems and components have been enhanced. These and other aspects of maintainability are discussed. (author)

  10. Design and fabrication report on capsule (11M 19K for out of pile test) for irradiation testing of research reactor materials at HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.G.; Yang, S.W.; Park, S.J.; Shim, K.T.; Choo, K.N.; Oh, J.M.; Lee, B.C.; Choi, M.H.; Kim, D.J.; Kim, J.M.; Kang, S.H.; Chun, Y.B.; Kim, T.K.; Jeong, Y.H.

    2012-05-15

    As a part of the research reactor development project with a plate type fuel, the irradiation tests of graphite (Gr), beryllium (Be), and zircaloy 4 materials using the capsule have been investigating to obtain the mechanical characteristics such as an irradiation growth, hardness, swelling and tensile strength at the temperature below 100 .deg. C and the 30 MW reactor power. Then, A capsule to be able to irradiate materials(graphite, Be, zircaloy 4) under 100 .deg. C at the HANARO was designed and fabricated. After performing out of pile testing in single channel test loop by using the capsule, the final design of the capsules to be irradiated in CT and IR2 test hole of HANARO was approved, and 2 sets of capsule were fabricated. These capsules will be loaded in CT and IR2 test hole of HANARO, and be started the irradiation from the end of June, 2012. After performing the irradiation testing of 2 sets of capsule, PIE (Post Irradiation Examination) on irradiated specimens (Gr, Be, and zircaloy 4) will be carry out in IMEF (Irradiated Material Examination Facility). So, the irradiation testing will be contributed to obtain the characteristic data induced neutron irradiation on Gr, Be, and zircaloy 4. And then, it is convinced that these data will be also contributed to obtain the license for JRTR (Jordan Research and Training Reactor) and new research reactor in Korea, and export research reactors.

  11. Research and developments on nondestructive testing in fabrications of fast breeder reactor structural components in Japan

    International Nuclear Information System (INIS)

    Ebata, M.; Ooka, K.; Miyoshi, S.; Senda, T.

    1985-01-01

    Research and developments (R and D) have been conducted on the nondestructive testing techniques necessary for the construction of fast breeder reactor (FBR). Radiographic tests have been made on tube-tube plate welds and small-diameter tube welds, etc. Ultrasonic tests have been conducted on austenitic stainless steel welds. In the penetrant tests and magnetic particle tests, the investigations have been performed on the effects of various test factors on the test results

  12. Design, Fabrication and Testing of Two Dimensional Radio-Frequency Metamaterials

    Science.gov (United States)

    2014-03-03

    silver nanoparticle ink printed on photo-paper (Ag on photo-paper). The Cu on FR4 fabrication method started with black painted Cu on FR4 board. This...available for printing (e.g. silver, graphene , carbon nano-tubes). Moreover, the printing process is easily within the tolerance of wet-etching PCB...Field Applicator," IEEE Tran. on Inst. and Meas., vol. 42, no. 3, 1993. [23] S. He and T. Chen, "Broadband THz Absorbers with Graphene -Based

  13. Fabrication, test and performance of very large X-ray CCDs designed for astrophysical applications

    CERN Document Server

    Soltau, H; Meidinger, N; Stoetter, D; Strüder, L; Trümper, J E; Zanthier, C V; Braeuniger, H; Briel, U; Carathanassis, D; Dennerl, K; Engelhard, S; Haberl, F; Hartmann, R; Hartner, G; Hauff, D; Hippmann, H; Holl, P; Kendziorra, E; Krause, N; Lechner, P; Pfeffermann, E; Popp, M; Reppin, C; Seitz, H; Solc, P; Stadlbauer, T; Weber, U; Weichert, U

    2000-01-01

    A 6x6 cm sup 2 large X-ray CCD has been developed and fabricated at the Semiconductor Laboratory of the Max-Planck-Institut fuer Extraterrestrische Physik. The CCD has been designed for the focal plane cameras of two satellite missions. The concept is a fully depleted pn-CCD which is sensitive over the whole wafer thickness of about 300 mu m. It has been especially developed for X-ray detection delivering a high quantum efficiency over the energy range between 0.2 and 15 keV. A production yield of 27% was achieved. Seven good (almost) defect-free wafers were produced within the performance requirements, i.e. for temperatures below 180 K they show a homogeneous noise level smaller than 5 e sup - , a uniform spectral response with an energy resolution of 130 eV for Mn-K subalpha and a reduction of the sensitive area due to defects by less than 0.3%. Three CCDs have now been integrated in the flight cameras. The presentation comprises special aspects related with the fabrication of very large CCDs, a summary of ...

  14. DESIGN, FABRICATION AND TEST OF THE REACT AND WIND, NB(3)SN, LDX FLOATING COIL CONDUCTOR

    International Nuclear Information System (INIS)

    SMITH, B.A.; MICHAEL, P.C.; MINERVINI, J.V.; TAKAYASU, M.; SCHULTZ, J.H.; GREGORY, E.; PYON, T.; SAMPSON, W.B.; GHOSH, A.; SCANLAN, R.

    2000-01-01

    The Levitated Dipole Experiment (LDX) is a novel approach for studying magnetic confinement of a fusion plasma. In this approach, a superconducting ring coil is magnetically levitated for up to 8 hours a day in the center of a 5 meter diameter vacuum vessel. The levitated coil, with on-board helium supply, is called the gloating Coil (F-Coil). Although the maximum field at the coil is only 5.3 tesla, a react-and-wind Nb 3 Sn conductor was selected because the relatively high critical temperature will enable the coil to remain levitated while it warms from 5 K to 10 K. Since pre-reacted Nb 3 Sn tape is no longer commercially available, a composite conductor was designed that contains an 18 strand Nb 3 Sn Rutherford cable. The cable was reacted and then soldered into a structural copper channel that completes the conductor and also provides quench protection. The strain state of the cable was continuously controlled during fabrication steps such as: soldering into the copper channel, spooling, and coil winding, to prevent degradation of the critical current. Measurements of strand and cable critical currents are reported, as well as estimates of the effect of fabrication, winding and operating strains on critical current

  15. The design, fabrication, and testing of WETF high-quality, long-term-storage, secondary containment vessels

    International Nuclear Information System (INIS)

    Fisher, Kane J.

    2000-01-01

    Los Alamos National Laboratory's Weapons Engineering Tritium Facility (WETF) requires secondary containment vessels to store primary tritium containment vessels. The primary containment vessel provides the first boundary for tritium containment. The primary containment vessel is stored within a secondary containment vessel that provides the secondary boundary for tritium containment. WETF requires high-quality, long-term-storage, secondary tritium containment vessels that fit within a Mound-designed calorimeter. In order to qualify the WETF high-quality, long-term-storage, secondary containment vessels for use at WETF, steps have been taken to ensure the appropriate design, adequate testing, quality in fabrication, and acceptable documentation

  16. Fabrication of ORNL Fuel Irradiated in the Peach Bottom Reactor and Postirradiation Examination of Recycle Test Elements 7 and 4

    International Nuclear Information System (INIS)

    Long, Jr. E.L.

    2001-01-01

    Seven full-sized Peach Bottom Reactor fuel elements were fabricated in a cooperative effort by Oak Ridge National Laboratory (ORNL) and Gulf General Atomic (GGA) as part of the National HTGR Fuel Recycle Development Program. These elements contain bonded fuel rods and loose beds of particles made from several combinations of fertile and fissile particles of interest for present and future use in the High-Temperature Gas-Cooled Reactor (HTGR). The portion of the fuel prepared for these elements by ORNL is described in detail in this report, and it is in conjunction with the GGA report (GA-10109) a complete fabrication description of the test. In addition, this report describes the results obtained to date from postirradiation examination of the first two elements removed from the Peach Bottom Reactor, RTE-7 and -4. The fuel examined had relatively low exposure, up to about 1.5 x 10 21 neutrons/cm* fast (>0.18 MeV) fluence, compared with the peak anticipated HTGR fluence of 8.0 x 10 21 , but it has performed well at this exposure. Dimensional data indicate greater irradiation shrinkage than expected from accelerated test data to higher exposures. This suggests that either the method of extrapolation of the higher exposure data back to low exposure is faulty, or the behavior of the coated particles in the neutron spectrum characteristic of the accelerated tests does not adequately represent the behavior in an HTGR spectrum

  17. Building Energy Simulation Test for Existing Homes (BESTEST-EX); Phase 1 Test Procedure: Building Thermal Fabric Cases

    Energy Technology Data Exchange (ETDEWEB)

    Judkoff, Ron [National Renewable Energy Lab. (NREL), Golden, CO (United States; Polly, Ben [National Renewable Energy Lab. (NREL), Golden, CO (United States; Bianchi, Marcus [National Renewable Energy Lab. (NREL), Golden, CO (United States; Neymark, Joel [J. Neymark & Associates, Golden, CO (United States)

    2010-08-01

    This report documents the initial Phase 1 test process for testing the reliability of software models that predict retrofit energy savings of existing homes, including their associated calibration methods.

  18. Program plan for the Brayton Isotope Power System. Phase I. Design, fabrication and test of the Brayton Isotope Power System

    International Nuclear Information System (INIS)

    1975-01-01

    Phase I of an overall program for the development of a 500 to 2000 W(e) (EOM), 7-y life, power system for space vehicles is discussed. The system uses a closed Brayton dynamic system to convert energy from an isotope heat source at a net efficiency greater than 25 percent. This first phase, a 35-month effort, is for the conceptual design of a 1300 W(e), 450 lb flight system and the design, fabrication, and test of a ground demonstration system. The flight system will use, for the baseline design, two of the multihundred-watt (MHW) heat sources being developed. The Ground Demonstration System will simulate, as closely as possible, the Brayton Isotope Power Flight System and will utilize components and technology being developed for the Mini-Brayton rotating unit, recuperator and heat source assembly, respectively. The Ground Demonstration System includes a performance test and a 1000-h endurance test

  19. Fabrication and Testing of Carbon Fiber, Graphite-Epoxy Panels for Submillimeter Telescope Use

    Science.gov (United States)

    Rieger, H.; Helwig, G.; Parks, R. E.; Ulich, B. L.

    1983-12-01

    An experimental carbon-fiber, graphite-epoxy, aluminum Flexcore sandwich panel roughly 1-m square was made by Dornier System, Friedrichshafen, West Germany. The panel was a pre-prototype of the panels to be used in the dish of the 10-m diameter Sub-Millimeter Telescope, a joint project of the Max-Planck-Institute fur Radioastronomie, Bonn, West Germany, and Steward Observatory, the University of Arizona in Tucson. This paper outlines the fabrication process for the panel and indicates the surface accuracy of the panel replication process. To predict the behavior of the panel under various environmental loads, the panel was modeled structurally using anisotropic elements for the core material. Results of this analysis along with experimental verification of these predictions are also given.

  20. Fabrication and test of inorganic/organic separators. [for silver zinc batteries

    Science.gov (United States)

    Smatko, J. S.

    1974-01-01

    Completion of testing and failure analysis of MDC 40 Ahr silver zinc cells containing largely inorganic separators was accomplished. The results showed that the wet stand and cycle life objectives of the silver zinc cell development program were accomplished. Building, testing and failure analysis of two plate cells employing three optimum separators selected on the basis of extensive screening tests, was performed. The best separator material as a result of these tests was doped calcium zirconate.

  1. Fabrication and irradiation testing of LEU [low enriched uranium] fuels at CRNL status as of 1987 September

    International Nuclear Information System (INIS)

    Sears, D.F.; Berthiaume, L.C.; Herbert, L.N.

    1987-01-01

    The current status of Chalk River Nuclear Laboratories' (CRNL) program to develop and test low-enriched uranium (LEU), proliferation-resistant fuels for use in research reactors is reviewed. CRNL's fuel manufacturing process has been qualified by the successful demonstration irradiation of 7 full-size rods in the NRU reactor. Now industrial-scale production equipment has been commissioned, and a fuel-fabrication campaign for 30 NRU rods and a MAPLE-X core is underway. Excess capacity could be used for commercial fuel fabrication. In the irradiation testing program, mini-elements with deliberately included core surface defects performed well in-reactor, swelling by only 7 to 8 vol% at 93 atomic percent burnup of the original U-235. The additional restraint provided by the aluminium cladding which flowed into the defects during extrusion contributed to this good performance. Mini-elements containing a variety of particle size distributions were also successfully irradiated to 93 at% burnup in NRU, as part of a study to establish the optimum particle size distribution. Swelling was found to be proportional to the percentage of fines (<44μm particles) contained in the cores. The mini-elements containing the composition normally used at CRNL had swollen by 5.8 vol%, and mini-elements with a much higher percentage of fines had swollen by 6.8 vol%, at 93 at% burnup. Also, a program to develop LEU targets for Mo-99 production, via the technology developed to fabricate dispersed silicide fuel, has started, and preliminary scoping studies are underway. (Author)

  2. Reliability and maintainability

    International Nuclear Information System (INIS)

    1994-01-01

    Several communications in this conference are concerned with nuclear plant reliability and maintainability; their titles are: maintenance optimization of stand-by Diesels of 900 MW nuclear power plants; CLAIRE: an event-based simulation tool for software testing; reliability as one important issue within the periodic safety review of nuclear power plants; design of nuclear building ventilation by the means of functional analysis; operation characteristic analysis for a power industry plant park, as a function of influence parameters

  3. Fabrication of irradiation capsule for IASCC irradiation tests (2). Irradiation capsule for crack propagation test (Joint research)

    International Nuclear Information System (INIS)

    Ide, Hiroshi; Matsui, Yoshinori; Kawamata, Kazuo; Taguchi, Taketoshi; Kanazawa, Yoshiharu; Onuma, Yuichi; Watanabe, Hiroyuki; Inoue, Shuichi; Izumo, Hironobu; Ishida, Takuya; Saito, Takashi; Ishitsuka, Etsuo; Kawamura, Hiroshi; Kaji, Yoshiyuki; Ugachi, Hirokazu; Tsukada, Takashi

    2008-03-01

    It is known that irradiation Assisted Stress Corrosion Cracking (IASCC) occurs when austenitic stainless steel components used for light water reactor (LWR) are irradiated for a long period. In order to evaluate the high aging of the nuclear power plant, the study of IASCC becomes the important problem. The specimens irradiated in the reactor were evaluated by post irradiation examination in the past study. For the appropriate evaluation of IASCC, it is necessary to test it under the simulated LWR conditions; temperature, water chemistry and irradiation conditions. In order to perform in-pile SCC test, saturated temperature capsule (SATCAP) was developed. There are crack growth test, crack propagation test and so on for in-pile SCC test. In this report, SATCAP for crack propagation test is reported. (author)

  4. Fabrication of irradiation capsule for IASCC irradiation tests (1). Irradiation capsule for crack growth test (Joint research)

    International Nuclear Information System (INIS)

    Ide, Hiroshi; Matsui, Yoshinori; Kawamata, Kazuo; Taguchi, Taketoshi; Kanazawa, Yoshiharu; Onuma, Yuichi; Watanabe, Hiroyuki; Inoue, Shuichi; Izumo, Hironobu; Ishida, Takuya; Saito, Takashi; Ishitsuka, Etsuo; Kawamura, Hiroshi; Kaji, Yoshiyuki; Ugachi, Hirokazu; Tsukada, Takashi

    2008-03-01

    It is known that Irradiation Assisted Stress Corrosion Cracking (IASCC) occurs when austenitic stainless steel components used for light water reactor (LWR) are irradiated for a long period. In order to evaluate the high aging of the nuclear power plant, the study of IASCC becomes the important problem. The specimens irradiated in the reactor were evaluated by post irradiation examination in the past study. For the appropriate evaluation of IASCC, it is necessary to test it under the simulated LWR conditions; temperature, water chemistry and irradiation conditions. In order to perform in-pile SCC test, saturated temperature capsule (SATCAP) was developed. There are crack growth test, crack propagation test and so on for in-pile SCC test. In this report, SATCAP for crack growth test is reported. (author)

  5. Building Energy Simulation Test for Existing Homes (BESTEST-EX); Phase 1 Test Procedure: Building Thermal Fabric Cases

    Energy Technology Data Exchange (ETDEWEB)

    Judkoff, R.; Polly, B.; Bianchi, M.; Neymark, J.

    2010-08-01

    The U.S. Department of Energy tasked NREL to develop a process for testing the reliability of models that predict retrofit energy savings, including their associated calibration methods. DOE asked NREL to conduct the work in phases so that a test procedure would be ready should DOE need it to meet legislative requirements related to residential retrofits in FY 2010. This report documents the initial 'Phase 1' test procedure.

  6. Fabric based supercapacitor

    International Nuclear Information System (INIS)

    Yong, S; Tudor, M J; Beeby, S P; Owen, J R

    2013-01-01

    Flexible supercapacitors with electrodes coated on inexpensive fabrics by the dipping technique. This paper present details of the design, fabrication and characterisation of fabric supercapacitor. The sandwich structured supercapacitors can achieve specific capacitances of 11.1F/g, area capacitance 105 mF.cm −2 and maintain 95% of the initial capacitance after cycling the device for more than 15000 times

  7. Fabrication and Performance Test of Aluminium Alloy-Rice Husk Ash Hybrid Metal Matrix Composite as Industrial and Construction Material

    Directory of Open Access Journals (Sweden)

    Md. Rahat Hossain

    2017-12-01

    Full Text Available Aluminium matrix composites (AMCs used extensively in various engineering fields due to their exceptional mechanical properties. In this present study, aluminium matrix composites (AMCs such as aluminium alloy (A356 reinforced with rice husk ash particles (RHA are made to explore the possibilities of reinforcing aluminium alloy. The stir casting method was applied to produce aluminium alloy (A356 reinforced with various amounts of (2%, 4%, and 6% rice husk ash (RHA particles. Physical treatment was carried out before the rice husk ash manufacturing process. The effect of mechanical strength of the fabricated hybrid composite was investigated. Therefore, impact test, tensile stress, compressive stress, and some other tests were carried out to analyse the mechanical properties. From the experimental results, it was found that maximum tensile, and compressive stress were found at 6% rice husk ash (RHA and aluminium matrix composites (AMCs. In future, the optimum percentages of rice husk ash (RHA to fabricate the hybrid composites will be determined. Also, simulation by finite element method (FEM will be applied for further investigation.

  8. Fabrication, Tuning, Treatment and Testing of Two 3.5 Cell Photo-Injektor Cavities for the ELBE Linac

    CERN Document Server

    Arnold, A; Teichert, J; Xiang, R; Eremeev, G V; Kneisel, P; Stirbet, M; Turlington, L

    2011-01-01

    As part of a CRADA (Cooperative Research and Development Agreement) between Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and Thomas Jefferson Lab National Accelerator Facility (TJNAF) we have fabricated and tested two 1.3 GHz 3.5 cell photo-injector cavities from polycrystalline RRR niobium and large grain RRR niobium, respectively. The cavity with the better performance will replace the presently used injector cavity in the ELBE linac [1]. The cavities have been fabricated and pre-tuned at TJNAF, while the more sophisticated final field tuning; the adjustment of the external couplings and the field profile measurement of transverse electric modes for RF focusing [2] was done at HZDR. The following standard surface treatment and the vertical test were carried out at TJNAF’s production facilities. A major challenge turned out to be the rinsing of the cathode cell, which has small opening (Ø10 mm) to receive the cathode stalk. Another unexpected problem encountered after etching, since large visible defects a...

  9. Design, fabrication and testing of an air-breathing micro direct methanol fuel cell with compound anode flow field

    International Nuclear Information System (INIS)

    Wang, Luwen; Zhang, Yufeng; Zhao, Youran; An, Zijiang; Zhou, Zhiping; Liu, Xiaowei

    2011-01-01

    An air-breathing micro direct methanol fuel cell (μDMFC) with a compound anode flow field structure (composed of the parallel flow field and the perforated flow field) is designed, fabricated and tested. To better analyze the effect of the compound anode flow field on the mass transfer of methanol, the compound flow field with different open ratios (ratio of exposure area to total area) and thicknesses of current collectors is modeled and simulated. Micro process technologies are employed to fabricate the end plates and current collectors. The performances of the μDMFC with a compound anode flow field are measured under various operating parameters. Both the modeled and the experimental results show that, comparing the conventional parallel flow field, the compound one can enhance the mass transfer resistance of methanol from the flow field to the anode diffusion layer. The results also indicate that the μDMFC with an anode open ratio of 40% and a thickness of 300 µm has the optimal performance under the 7 M methanol which is three to four times higher than conventional flow fields. Finally, a 2 h stability test of the μDMFC is performed with a methanol concentration of 7 M and a flow velocity of 0.1 ml min −1 . The results indicate that the μDMFC can work steadily with high methanol concentration.

  10. Fabrication, Tuning, Treatment and Testing of Two 3.5 Cell Photo-Injector Cavities for the ELBE Linac

    International Nuclear Information System (INIS)

    Arnold, A.; Murcek, P.; Teichert, J.; Xiang, R.; Eremeev, G. V.; Kneisel, P.; Stirbet, M.; Turlington, L.

    2011-01-01

    As part of a CRADA (Cooperative Research and Development Agreement) between Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and Thomas Jefferson Lab National Accelerator Facility (TJNAF) we have fabricated and tested two 1.3 GHz 3.5 cell photo-injector cavities from polycrystalline RRR niobium and large grain RRR niobium, respectively. The cavity with the better performance will replace the presently used injector cavity in the ELBE linac. The cavities have been fabricated and pre-tuned at TJNAF, while the more sophisticated final field tuning, the adjustment of the external couplings and the field profile measurement of transverse electric modes for RF focusing was done at HZDR. The following standard surface treatment and the vertical test was carried out at TJNAF's production facilities. A major challenge turned out to be the rinsing of the cathode cell, which has small opening (O-slash10mm) to receive the cathode stalk. Another unexpected problem encountered after etching, since large visible defects appeared in the least accessible cathode cell. This contribution reports about our experiences, initial results and the on-going diagnostic work to understand and fix the problems

  11. GRIST-2 preliminary test plan and requirements for fuel fabrication and preirradiation

    International Nuclear Information System (INIS)

    Tang, I.M.; Harmon, D.P.; Torri, A.

    1978-12-01

    The preliminary version of the GRIST-2 test plan has been developed for the planned initial 5 years (1984 to 1989) of TREAT-Upgrade in-pile tests. These tests will be employed to study the phenomenology and integral behavior of GCFR core disruptive accidents (CDAs) and to support the Final Safety Analysis Report (FSAR) CDA analyses for the demonstration plant licensing. The preliminary test plan is outlined. Test Phases I and II are for the fresh fuel (preconditioned or not) CDA behavior at the beginning-of-life (BOL) reactor state. Phase III is for the reactor state that contains irradiated fuel with a saturated content of helium and fission gas. Phase IV is for larger bundle tests and scaling effects

  12. Fabrication and characterization of MCC approved testing material: ATM-WV/205 glass

    International Nuclear Information System (INIS)

    Maupin, G.D.; Bowen, W.M.; Daniel, J.L.

    1988-08-01

    The ATM-WV/205 glass was produced in accordance with PNL's QA Manual for License-Related Programs, MCC technical procedures, and MCC QA Plan that were in effect during the course of this work. The method and procedure to be used in the fabrication and characterization of the ATM-WV/205 glass were specified in two run plans for glass preparation and a characterization plan. The ATM-WV/205 glass meets all specifications. The elemental composition and oxidation state of the glass are within the sponsor's specifications. Visually, the ATM-WV/205 glass bars appear uniformly glassy and generally without exterior features. Microscopic examination and x-ray diffraction revealed low (about 0.5 wt %) concentrations of 3-μm iron chrome spinel crystals and 1-μm ruthenium inclusions scattered randomly throughout the glassy matrix. Closed porosity, with pores ranging in diameter from 20 to 135 μm, was observed in all samples. 3 refs., 10 figs., 21 tabs

  13. Design, fabrication, and test plan of a small centrifugal compressor test model for a supercritical CO2 compressor in the fast reactor power plant

    International Nuclear Information System (INIS)

    Muto, Yasushi; Ishizuka, Takao; Aritomi, Masanori

    2009-01-01

    To clarify the CO 2 compressor performance in the vicinity of the critical point, a research project has begun at Tokyo Institute of Technology based on Japanese government funding. This paper describes the design and fabrication results of a small and high-speed centrifugal test compressor. Drawings of compressor structures such as an impeller and a rotor are presented. Numerical analysis results confirm that a desirable fluid flow distribution and structural integrity with respect to both the vane strength and rotor vibration can be expected. (author)

  14. Fuel fabrication processes, design and experimental conditions for the joint US-Swiss mixed carbide test in FFTF (AC-3 test)

    International Nuclear Information System (INIS)

    Stratton, R.W.; Ledergerber, G.; Ingold, F.; Latimer, T.W.; Chidester, K.M.

    1993-01-01

    The preparation of mixed carbide fuel for a joint (US-Swiss) irradiation test in the US Fast Flux Test Facility (FFTF) is described, together with the experiment design and the irradiation conditions. Two fabrication routes were compared. The US produced 66 fuel pins containing pellet fuel via the powder-pellet (dry) route, and the Swiss group produced 25 sphere pac pins of mixed carbide using the internal gelation (wet) route. Both sets of fuel met all t the requirements of the specifications concerning soichiometry, chemical composition and structure. The pin designs were as similar as possible. The test operated successfully in the FFTF for 620 effective full power days until October 1988 and reached over 8% burn up with peak powers of around 80 kW/m. The conclusions were that the choice of sphere pac or pellet fuel for reactor application is dependent on preferred differences in fabrication (e.g. economics and environmental factors) and not on differences in irradiation behaviour. (orig.)

  15. Superfluid He testing of titanium-stainless steel transitions fabricated by explosive welding

    International Nuclear Information System (INIS)

    Budagov, Yu.; Sabirov, B.; Shirkov, G.

    2009-01-01

    An experimental setup was constructed to test in liquid He bimetallic (titanium-stainless steel) tube joints which were manufactured by an explosive welding method. The leak levels of the samples tested at room temperature 7.5·10 -10 and 7.5·10 -9 Torr·1/s at 77 K, correspondingly, measured at FNAL (Batavia, USA) after the thermocycling have coincided with the earlier results obtained at JINR (Dubna, Russia) and INFN (Pisa, Italy) data for the same samples. For the liquid helium test the tubes were welded in pairs by their titanium ends. At the room temperature the leak level of the three tested samples was 4.9·10 -10 Torr·l/s. At the first cryogenic tests (4-6 K) one of the samples manifested a leak. The investigation will be continued since the explosive welding seems to be a very perspective new generation technology

  16. Field test of short-notice random inspections for inventory-change verification at a low-enriched-uranium fuel-fabrication plant

    International Nuclear Information System (INIS)

    Fishbone, L.G.; Moussalli, G.; Naegele, G.

    1995-01-01

    An approach of short-notice random inspections (SNRIs) for inventory-change verification can enhance the effectiveness and efficiency of international safeguards at natural or low-enriched uranium (LEU) fuel fabrication plants. According to this approach, the plant operator declares the contents of nuclear material items before knowing if an inspection will occur to verify them. Additionally, items about which declarations are newly made should remain available for verification for an agreed time. Then a statistical inference can be made from verification results for items verified during SNRIs to the entire populations, i.e. the entire strata, even if inspectors were not present when many items were received or produced. A six-month field test of the feasibility of such SNRIs took place at the Westinghouse Electric Corporation Commercial Nuclear Fuel Division during 1993. Westinghouse personnel made daily declarations about both feed and product items, uranium hexafluoride cylinders and finished fuel assemblies, using a custom-designed computer ''mailbox''. Safeguards inspectors from the IAEA conducted eight SNRIs to verify these declarations. They arrived unannounced at the plant, in most cases immediately after travel from Canada, where the IAEA maintains a regional office. Items from both strata were verified during the SNRIs by meant of nondestructive assay equipment

  17. Industry to Education Technical Transfer Program & Composite Materials. Composite Materials Course. Fabrication I Course. Fabrication II Course. Composite Materials Testing Course. Final Report.

    Science.gov (United States)

    Massuda, Rachel

    These four reports provide details of projects to design and implement courses to be offered as requirements for the associate degree program in composites and reinforced plastics technology. The reports describe project activities that led to development of curricula for four courses: composite materials, composite materials fabrication I,…

  18. Fabrication of High Temperature and High Pressure Vessel for the Fuel Test

    International Nuclear Information System (INIS)

    Park, Kook Nam; Lee, Jong Min; Sim, Bong Shick; Shon, Jae Min; Ahn, Seung Ho; Yoo, Seong Yeon

    2007-01-01

    The Fuel Test Loop(FTL) which is capable of an irradiation testing under a similar operating condition to those of PWR and CANDU nuclear power plants has been developed and installed in HANARO, KAERI. It is consisted of In-Pile Section(IPS) and Out-of Pile System(OPS). The IPS which is located inside the pool is divided into 3-parts; they are in-pool pipes, IVA(IPS Vessel Assembly) and the support structures. The test fuel is loaded inside a double wall, inner pressure vessel and outer pressure vessel, to keep the functionality of the reactor coolant pressure boundary. The localization of the IVA is achieved by manufacturing through local company and the functional test and verification were done through pressure drop, vibration, hydraulic and leakage tests. The brazing technique of the instrument lines has been checked for its functionality and yield. A IVA has been manufactured by local technique and will be finally tested under out of the high temperature and high pressure test

  19. Titer plate formatted continuous flow thermal reactors for high throughput applications: fabrication and testing

    International Nuclear Information System (INIS)

    Park, Daniel Sang-Won; Chen, Pin-Chuan; You, Byoung Hee; Kim, Namwon; Park, Taehyun; Lee, Tae Yoon; Soper, Steven A; Nikitopoulos, Dimitris E; Murphy, Michael C; Datta, Proyag; Desta, Yohannes

    2010-01-01

    A high throughput, multi-well (96) polymerase chain reaction (PCR) platform, based on a continuous flow (CF) mode of operation, was developed. Each CFPCR device was confined to a footprint of 8 × 8 mm 2 , matching the footprint of a well on a standard micro-titer plate. While several CFPCR devices have been demonstrated, this is the first example of a high-throughput multi-well continuous flow thermal reactor configuration. Verification of the feasibility of the multi-well CFPCR device was carried out at each stage of development from manufacturing to demonstrating sample amplification. The multi-well CFPCR devices were fabricated by micro-replication in polymers, polycarbonate to accommodate the peak temperatures during thermal cycling in this case, using double-sided hot embossing. One side of the substrate contained the thermal reactors and the opposite side was patterned with structures to enhance thermal isolation of the closely packed constant temperature zones. A 99 bp target from a λ-DNA template was successfully amplified in a prototype multi-well CFPCR device with a total reaction time as low as ∼5 min at a flow velocity of 3 mm s −1 (15.3 s cycle −1 ) and a relatively low amplification efficiency compared to a bench-top thermal cycler for a 20-cycle device; reducing the flow velocity to 1 mm s −1 (46.2 s cycle −1 ) gave a seven-fold improvement in amplification efficiency. Amplification efficiencies increased at all flow velocities for 25-cycle devices with the same configuration.

  20. Fabrication and characterization of MCC [Materials Characterization Center] approved testing material: ATM-10 glass

    International Nuclear Information System (INIS)

    Maupin, G.D.; Bowen, W.M.; Daniel, J.L.

    1988-04-01

    The Materials Characterization Center ATM-10 glass represents a reference commercial high-level waste form similar to that which will be produced by the West Valley Nuclear Service Co. Inc., West Valley, New York. The target composition and acceptable range of composition were defined by the sponsor, West Valley Nuclear Service. The ATM-10 glass was produced in accordance with the Pacific Northwest Laboratory QA Manual for License-Related Programs, MCC technical procedures, and MCC QA Plan that were in effect during the course of the work. The method and procedure to be used in the fabrication and characterization of the ATM-10 glass were specified in two run plans for glass preparation and a characterization plan. All of the ATM-10 glass was produced in the form of bars 1.9 /times/ 1.9 /times/ 10 cm nominal size, and 93 g nominal mass. A total of 15 bars of ATM-10 glass weighing 1394 g was produced. The production bars were characterized to determine the mean composition, oxidation state, and microstructure of the ATM-10 product. Table A summarizes the characterization results. The ATM-10 glass meets all specifications. The elemental composition and oxidation state of the glass are within the specifications of the client. Visually, the ATM-10 glass bars appear uniformly glassy and generally without exterior features. Microscopic examination revealed low (less than 2 wt %) concentractions of 3-μm iron-chrome (suspected spinel) crystals and /approximately/0.5-μm ruthenium inclusions scattered randomly throughout the glassy matrix. Closed porosity, with pores ranging in diameter from 5 to 250 μm, was observed in all samples. 4 refs., 10 figs., 21 tabs

  1. Nondestructive testing during the fabrication of pressure vessels with half pipe jackets

    International Nuclear Information System (INIS)

    Scherner, D.

    1985-01-01

    The most important precondition to guarantee the optimum quality of half pipe jackets is the precise fixing and observance of the manufacturing conditions. For this reason the manufacturing conditions are explained in detail. The second important point is the test for gas tightness of the half pipe jacket system. The sources of mistakes in connection with the test for gas tightness are of fundamental importance. (orig./PW) [de

  2. Design, fabrication, and mockup testing in the Remote Maintenance Development Facility

    International Nuclear Information System (INIS)

    Carter, J.A.; Jacobs, R.T.; Bingham, G.E.

    1978-01-01

    The Remote Maintenance Development Facility (RMDF) at the Idaho National Engineering Laboratory (INEL) was installed and used extensively for full-scale development, mockup and testing of remote maintenance requirements for the New Waste Calcining Facility (NWCF). By performing remote handling tests, the NWCF handling concepts, techniques and remote capabilities were proven workable prior to construction. Presented in this paper is a description of the RMDF and its purpose, functions, and handling capabilities as they were used in support of the NWCF

  3. Design, fabrication, and mockup testing in the remote maintenance development facility

    International Nuclear Information System (INIS)

    Carter, J.A.; Jacobs, R.T.; Bingham, G.E.

    1978-01-01

    The Remote Maintenance Development Facility at the Idaho National Engineering Laboratory was installed and used extensively for full-scale development, mockup, and testing of remote maintenance requirements for the New Waste Calcining Facility (NWCF). By performing remote handling tests, the NWCF handling concepts, techniques, and remote capabilities were proven workable prior to construction. A description of the RMDF and its purpose, functions, and handling capabilities as they were used in support of the NWCF is presented

  4. Design, Fabrication and Testing of Carbon Fiber Reinforced Epoxy Drive Shaft for All Terrain Vehicle using Filament Winding

    Directory of Open Access Journals (Sweden)

    Yeshwant Nayak Suhas

    2018-01-01

    Full Text Available Filament winding is a composite material fabrication technique that is used to manufacture concentric hollow components. In this study Carbon/Epoxy composite drive shafts were fabricated using filament winding process with a fiber orientation of [852/±452/252]s. Carbon in the form of multifilament fibers of Tairyfil TC-33 having 3000 filaments/strand was used as reinforcement with low viscosity epoxy resin as the matrix material. The driveshaft is designed to be used in SAE Baja All Terrain Vehicle (ATV that makes use of a fully floating axle in its rear wheel drive system. The torsional strength of the shaft was tested and compared to that of an OEM steel shaft that was previously used in the ATV. Results show that the composite shaft had 8.5% higher torsional strength in comparison to the OEM steel shaft and was also lighter by 60%. Scanning electron microscopy (SEM micrographs were studied to investigate the probable failure mechanism. Delamination, matrix agglomeration, fiber pull-out and matrix cracking were the prominent failure mechanisms identified.

  5. Design, fabrication, commissioning, and testing of a 250 g/s, 2-K helium cold compressor system

    International Nuclear Information System (INIS)

    V. Ganni; D. M. Arenius; B. S. Bevins; W. C. Chronis; J. D. Creel; J. D. Wilson Jr.

    2002-01-01

    In June 1999 the Thomas Jefferson National Accelerator Facility (TJNAF) Cryogenic Systems Group had completed the design, fabrication, and commissioning of a cold compressor system capable of pumping 250 g/s of 2-K helium vapor to a pressure above 1 bar. The 2-K cold box consists of five stages of centrifugal variable speed compressors with LN2 cooled drive motors and magnetic bearings, a plate fin heat exchanger, and an LN2 shield system. The new 2-K cold box (referred to as the SCN) was built as a redundant system to an existing four stage cold compressor SCM cold box that was commissioned in May 1994. The SCN has been in continuous service supporting the facility experiments since commissioning. This system has achieved a significant improvement in the total 2-K refrigeration system capacity and stability and has substantially increased the operating envelope both in cold compressor flow and operating pressure range. This paper describes the cold box configuration and the experience s in the design, fabrication, commissioning and performance evaluation. The capacity of the system for various operating pressures (0.040 to 0.025 bar at the load corresponding to a total compressor pressure ratio of 28 to 54) is presented. An effort is made to characterize the components and their operating data over the tested range. This includes the return side pressure drop in the distribution system, the heat exchanger, and the cold compressor characteristics. The system design parameters and their effects on performance are outlined

  6. Design and fabrication of water control unit for IASCC irradiation test

    International Nuclear Information System (INIS)

    Mori, Yuichiro; Takeuchi, Yutaka; Matsunami, Kiyotaka; Kosaki, Kazuhiko; Suzuki, Tomio; Hayashi, Motomitsu; Ide, Kiyoshi

    2004-01-01

    In relation to the aging of LWR, the Irradiation Assisted Stress Corrosion Cracking (IASCC) has been regarded as a significant and urgent issue for the reliability of in-core components of LWR, therefore the irradiation research project which was planned by Nuclear and Industrial Safety Agency is now being done under the cooperation of Industry-Government-Academia such as Japan Nuclear Energy Safety Organization, Institute of Research and Innovation (IRI), Central Research Institute of Electric Power Industry, Japan Atomic Energy Research Institute (JAERI), power companies, makers of LWR, and universities. Then at Japan Material Testing Reactor (JMTR) of JAERI, the irradiation test of the material for BWR is being carried out. This paper describes the introduction about the Water Control Unit (WCU) for IASCC irradiation test. The WCU was designed and installed into JMTR by Kawasaki Heavy Industries, LTD, based on the order from JAERI, IRI, and so on. (author)

  7. Weld testing in the fabrication of large-diameter pipes; Schweissnahtpruefung bei der Fertigung von Grossrohren

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, T.; Fuchs, T.; Hassler, U.; Hanke, R. [Fraunhofer-Institut fuer Integrierte Schaltungen (IIS), Fuerth (Germany). EZRT; Matzen, H.U.; Kraemer, J. [GE Inspection Technologies, Ahrensburg (Germany); Lindenschmidt, H. [Butting, Knesebeck (Germany); Behrendt, R.; Kostka, G.; Schmitt, P. [Fraunhofer-Institut fuer Integrierte Schaltungen (IIS), Erlangen (Germany)

    2007-07-01

    Fully automatic radiographic testing of cast light metal components is a state of the art technology. The contribution describes its application in weld testing. A new method for evaluating X-rays of welds is presented which were tested using an innovative X-ray camera with maximum spatial resolution and a wide range of grey values. Further, a novel concept for handling test objects significantly shortens testing times. The pipes are not moved longitudinally; instead, the longitudinal motion is made by the X-ray emitter and sensor, which reduces the testing time by up to 30 percent. The specially developed X-ray detector has a sensitive surface of 200 mm x 50 mm with a total of 4.2 million pixels. Neither the evaluation electronics nor the light-sensitive camera chip are exposed to the direct X-radiation so that no damage will occur at photoenergies up to at least 250 keV. Many tests, e.g. according to EN 13068 and EN 462-5, have shown that the image quality in general and especially the local resolution exceeds the specifications of the EN 584 standard on weld testing with X-ray films. The pictures taken by the camera serve as input data for fully automatic evaluation. All stages of image processing implement 16-bit digitalisation depth in order to make use of the high dynamic range of gray value images. This means that in the whole processing chain, there will be no loss of information from downscaling of the gray values. In the first stage of image processing, the gray values are transformed into penetrated material thicknesses in preparation of the measurement of fault length in the direction of incidence at a later stage. In the next stage, external boundaries and the middle of the weld are detected, followed by an adaptive filtering stage. Additionally, information on the accurate location of the weld is transmitted to the control system of the mechanical parts, so that optimum positioning of the weld with respect to the camera is ensured. The adaptive filter

  8. Fabrication and test of prototype ring magnets for the ALS [Advanced Light Source

    International Nuclear Information System (INIS)

    Tanabe, J.; Avery, R.; Caylor, R.; Green, M.I.; Hoyer, E.; Halbach, K.; Hernandez, S.; Humphries, D.; Kajiyama, Y.; Keller, R.; Low, W.; Marks, S.; Milburn, J.; Yee, D.

    1989-03-01

    Prototype Models for the Advanced Light Source (ALS) Booster Dipole, Quadrupole and Sextupole and the Storage Ring Gradient Magnet, Quadrupole and Sextupole have been constructed. The Booster Magnet Prototypes have been tested. The Storage Ring Magnets are presently undergoing tests and magnetic measurements. This paper reviews the designs and parameters for these magnets, briefly describes features of the magnet designs which respond to the special constraints imposed by the requirements for both accelerator rings, and reviews some of the results of magnet measurements for the prototype. 13 refs., 7 figs., 1 tab

  9. Fabrication, testing and analysis of steel/composite DLS adhesive joints

    DEFF Research Database (Denmark)

    Nashim, S.; Nisar, J.; Tsouvalis, N.

    2009-01-01

    0/90 WR GFRP and 0/90 UD CFRP laminates and steel. The focus here is on CFRP/steel joint due to availability of test data. The thickness of the outer adherend varies from 3 mm to 6 mm. Shear overlaps of 25-200mm were considered. The overall objectives are (i) to assess the quality of the standard...

  10. U3Si2 Fabrication and Testing for Implementation into the BISON Fuel Performance Code

    Energy Technology Data Exchange (ETDEWEB)

    Knight, Travis W.

    2018-04-23

    A creep test stand was designed and constructed for compressive creep testing of U3Si2 pellets. This is described in Chapter 3.

    • Creep testing of U3Si2 pellets was completed. In total, 13 compressive creep tests of U3Si2 pellets was successfully completed. This is reported in Chapter 3.
    • Secondary creep model of U3Si2 was developed and implemented in BISON. This is described in Chapter 4.
    • Properties of U3Si2 were implemented in BISON. This is described in Chapter 4.
    • A resonant frequency and damping analyzer (RFDA) using impulse excitation technique (IET) was setup, tested, and used to analyze U3Si2 samples to measure Young’s and Shear Moduli which were then used to calculate the Poisson ratio for U3Si2. This is described in Chapter 5.
    • Characterization of U3Si2 samples was completed. Samples were prepared and analyzed by XRD, SEM, and optical microscopy. Grain size analysis was conducted on images.
    SEM with EDS was used to analyze second phase precipitates. Impulse excitation technique was used to determine the Young’s and Shear Moduli of a tile specimen which allowed for the determination of the Poisson ratio. Helium pycnometry and mercury intrusion porosimetry was performed and used with image analysis to determine porosity size distribution. Vickers microindentation characterization method was used to evaluate the mechanical properties of U3Si2 including toughness, hardness, and Vickers hardness. Electrical resistivity measurement was done using the four-point probe method. This is reported in Chapter 5.

  11. Development of an innovative plate-type SG for fast breeder reactor. Proposal of the concept and the evaluation of the fabricating method by the test fabrication of the partial model

    International Nuclear Information System (INIS)

    Nishi, Yoshihisa; Kinoshita, Izumi

    2006-01-01

    The concept of an innovative plate type SG for the fast reactor fabricated by using the HIP (Hot Isostatic Pressing) method was proposed. The heat transfer plate, which is assembled with rectangular tubes and is fabricated by HIP method, is surrounded by leakage detection spaces. It is possible to apply it to both the pool-type and the loop-type LMFR. In this report, the fabrication technique was studied about the concept for the loop-type LMFR, and the following results were obtained. Hip tests, tensile tests, and structure observation were performed to clarify the suitable HIP condition for the modified 9Cr-1Mo steel. As a result, the optimum condition of 1150 deg C x 1200 kgf/cm 2 x 3 hr was found. Nickel-type solder (BNi-5) and gold-type solder (BAu-4) were selected as a joining material to laminate the heat transfer tube plates. Through the comparison of tensile tests, BAu-4 that showed a more excellent joining performance was selected on the assumption of the margin of 5 mm from the welding line. After buckling load had been clarified, the BAu-4 brazing of the heat transfer tube plates was performed using a hot pressing method. Problems were not observed in the welding of simulated header, and in the fabricating of the partial model of SG. (author)

  12. Design and fabrication of a cryostat for low temperature mechanical testing for the Mechanical and Materials Engineering group at CERN

    CERN Document Server

    Aviles Santillana, I; Gerardin, A; Guinchard, M; Langeslag, S A E; Sgobba, S

    2015-01-01

    Mechanical testing of materials at low temperatures is one of the cornerstones of the Mechanical and Materials Engineering (MME) group at CERN. A long tradition of more than 20 years and a unique know - how of such tests has been developed with an 18 kN double-walled cryostat. Large campaigns of material qualification have been carried out and the mechanical behaviour of materials at 4 K has been vastly studied in sub - size samples for projects like LEP, LHC and its experiments. With the aim of assessing the mechanical properties of materials of higher strength and/or issued from heavy gauge products for which testing standardized specimens of larger cross section might be more adapted, a new 100 kN cryostat capable of hosting different shapes of normalized samples has been carefully designed and fabricated inhouse together with the associated tooling and measurement instrumentation. It has been conceived to be able to adapt to different test frames both dynamic and static, which will be of paramount importa...

  13. Design, fabrication and low power RF testing of a prototype beta=1, 1050 MHz cavity developed for electron linac

    International Nuclear Information System (INIS)

    Sarkar, S.; Mondal, J.; Mittal, K.C.

    2013-01-01

    A single cell 1050 MHz β = 1 elliptical cavity has been designed for possible use in High energy electron accelerator. A prototype Aluminium cavity has been fabricated by die punch method and low power testing of the cavity has been carried out by using VNA. The fundamental mode frequency of the prototype cavity is found out to be 1051.38 MHz and Q (loaded) and Q0 values corresponding to 2 modes are 8439 and 10013 respectively. Cell to cell coupling coefficient is 1.82 % from measurement which matches with the designed value (1.84%). The higher order mode frequencies are also measured and electric field of the cavity is confirmed by bead pull method. Low power RF measurements on the prototype cavity indicate that the critical RF parameters (Qo, f, Kc etc) for the cavity are consistent with the designed value. (author)

  14. Pulsed plasma solid propellant microthruster for the synchronous meteorological satellite. Task 4: Engineering model fabrication and test report

    Science.gov (United States)

    Guman, W. J. (Editor)

    1972-01-01

    Two flight prototype solid propellant pulsed plasma microthruster propulsion systems for the SMS satellite were fabricated, assembled and tested. The propulsion system is a completely self contained system requiring only three electrical inputs to operate: a 29.4 volt power source, a 28 volt enable signal and a 50 millsec long command fire signal that can be applied at any rate from 50 ppm to 110 ppm. The thrust level can be varied over a range 2.2 to 1 at constant impulse bit amplitude. By controlling the duration of the 28 volt enable either steady state thrust or a series of discrete impulse bits can be generated. A new technique of capacitor charging was implemented to reduce high voltage stress on energy storage capacitors.

  15. Fabrication of Non-instrumented capsule for DUPIC simulated fuel irradiation test in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.G.; Kang, Y.H.; Park, S.J.; Shin, Y.T. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-10-01

    In order to develope DUPIC nuclear fuel, the irradiation test for simulated DUPIC fuel was planed using a non-instrumented capsule in HANARO. Because DUPIC fuel is highly radioactive material the non-instrumented capsule for an irradiation test of simulated DUPIC fuel in HANARO was designed to remotely assemble and disassemble in hot cell. And then, according to the design requirements the non-instrumented DUPIC capsule was successfully manufactured. Also, the manufacturing technologies of the non-instrumented capsule for irradiating the nuclear fuel in HANARO were established, and the basic technology for the development of the instrumented capsule technology was accumulated. This report describes the manufacturing of the non-instrumented capsule for simulated DUPIC fuel. And, this report will be based to develope the instrumented capsule, which will be utilized to irradiate the nuclear fuel in HANARO. 26 refs., 4 figs. (Author)

  16. Fabrication and laboratory-based performance testing of a building-integrated photovoltaic-thermal roofing panel

    International Nuclear Information System (INIS)

    Chen, Fangliang; Yin, Huiming

    2016-01-01

    Highlights: • A BIPVT solar panel is designed and fabricated for energy efficient buildings. • A high-speed manufacture method is developed to produce the functionally graded materials. • Laboratory tests demonstrate BIPVT’s energy efficiency improvement and innovations. • The PV efficiency is enhanced ∼24% through temperature control of the panel by water flow. • The combined electric and thermal efficiency reaches >75% of solar irradiation. - Abstract: A building integrated photovoltaic-thermal (BIPVT) multifunctional roofing panel has been developed in this study to harvest solar energy in the form of PV electricity as well as heat energy through the collection of warm water. As a key component of the multifunctional building envelope, an aluminum/high-density polyethylene (HDPE) functionally graded material (FGM) panel embedded with aluminum water tubes has been fabricated through the vibration-sedimentation approach. The FGM layer gradually transits material phases from well-conductive side (with aluminum dominated) to another highly insulated side (with HDPE). The heat in the PV cells can be easily transferred into the conductive side of the FGM and then collected by the water flow in the embedded tubes. Therefore, the operational temperature of the PV cells can be significantly lowered down, which recovers the PV efficiency in hot weather. In this way, the developed BIPVT panel is able to efficiently harvest solar energy in the form of both PV electricity and heat. The performance of a prototype BIPVT panel has been evaluated in terms of its thermal efficiency via warm water collection and PV efficiency via the output electricity. The laboratory test results demonstrate that significant energy conversion efficiency improvement can be achieved for both electricity generation and heat collection by the presented BIPVT roofing system. Overall, the performance indicates a very promising prospective of the new BIPVT multifunctional roofing panel.

  17. Fabrication and component testing results for a Nb3Sn dipole magnet

    International Nuclear Information System (INIS)

    Dell'Orco, D.; Scanlan, R.M.; Taylor, C.E.; Lietzke, A.; Caspi, S.; van Oort, J.M.; McInturff, A.D.

    1994-10-01

    At present, the maximum field achieved in accelerator R ampersand D dipoles is slightly over 10T, with NbTi conductor at 1.8 K. Although Nb 3 Sn has the potential to achieve much higher fields, none of the previous dipoles constructed from Nb 3 Sn have broken the 10T barrier. We report here on the construction of a dipole with high current density Nb 3 Sn with a predicted short sample limit of 13T. A wind and react technique, followed by epoxy impregnation of the fiberglass insulated coils, was used. The problems identified with the use of Nb 3 SD in earlier dipole magnets were investigated in a series of supplemental tests. This includes measurement of the degradation of J c with transverse strain, cabling degradation, joint resistance measurements, and epoxy strength tests. In addition, coff assembly techniques were developed to ensure that adequate prestress could be applied without damaging the reacted Nb 3 Sn cable. We report here the results of these tests and the construction status of this 50 mm bore dipole

  18. Design, fabrication and operation of the mechanical systems for the Neutral Beam Engineering Test Facility

    International Nuclear Information System (INIS)

    Paterson, J.A.; Biagi, L.A.; Fong, M.; Koehler, G.W.; Low, W.; Purgalis, P.; Wells, R.P.

    1983-12-01

    The Neutral Beam Engineering Test Facility (NBETF) at Lawrence Berkeley Laboratory (LBL) is a National Test Facility used to develop long pulse Neutral Beam Sources. The Facility will test sources up to 120 keV, 50 A, with 30 s beam-on times with a 10% duty factor. For this application, an actively cooled beam dump is required and one has been constructed capable of dissipating a wide range of power density profiles. The flexibility of the design is achieved by utilizing a standard modular panel design which is incorporated into a moveable support structure comprised of eight separately controllable manipulator assemblies. A unique neutralizer design has been installed into the NBETF beamline. This is a gun-drilled moveable brazed assembly which provides continuous armoring of the beamline near the source. The unit penetrates the source mounting valve during operation and retracts to permit the valve to close as needed. The beamline is also equpped with many beam scraper plates of differing detail design and dissipation capabilities

  19. The design, fabrication and operation of the mechanical systems for the Neutral Beam Engineering Test Facility

    International Nuclear Information System (INIS)

    Patterson, J.A.; Fong, M.; Koehler, G.W.; Low, W.; Purgalis, P.; Wells, R.P.

    1983-01-01

    The Neutral Beam Engineering Test Facility (NBETF) at the Lawrence Berkeley Laboratory (LBL) is a National Test Facility used to develop long pulse Neutral Beam Sources. The Facility will test sources up to 120 keV, 50 A, with 30 s beam-on times with a 10% duty factor. For this application, an actively cooled beam dump is required and one has been constructed capable of dissipating a wide range of power density profiles. The flexibility of the design is achieved by utilizing a standard modular panel design which is incorporated into a moveable support structure comprised of eight separately controllable manipulator assemblies. The thermal hydraulic design of the panels permits the dissipation of 2 kW/cm 2 anywhere on the panel surface. The cooling water requirements of the actively cooled dump system are provided by the closed loop Primary High Pressure Cooling Water System. To minimize the operating costs of continuously running this high power system, a variable speed hydraulic drive is used for the main pump. During beam pulses, the pump rotates at high speed, then cycles to low speed upon completion of the beam shot. A unique neutralizer design has been installed into the NBETF beamline. This is a gun-drilled moveable brazed assembly which provides continuous armoring of the beamline near the source. The unit penetrates the source mounting valve during operation and retracts to permit the valve to close as needed. The beamline also has an inertially cooled duct calorimeter assembly. This assembly is a moveable hinged matrix of copper plates that can be used as a beam stop up to pulse lengths of 50 ms. The beamline is also equipped with many beam scraper plates of differing detail design and dissipation capabilities

  20. Design, Fabrication and Temperature Sensitivity Testing of a Miniature Piezoelectric-Based Sensor for Current Measurements

    Directory of Open Access Journals (Sweden)

    Steven B. Lao

    2014-07-01

    Full Text Available Grid capacity, reliability, and efficient distribution of power have been major challenges for traditional power grids in the past few years. Reliable and efficient distribution within these power grids will continue to depend on the development of lighter and more efficient sensing units with lower costs in order to measure current and detect failures across the grid. The objective of this paper is to present the development of a miniature piezoelectric-based sensor for AC current measurements in single conductors, which are used in power transmission lines. Additionally presented in this paper are the thermal testing results for the sensor to assess its robustness for various operating temperatures.

  1. Fabrication and tests of anode supported solid oxide fuel cell; Fabricacao e testes de celula a combustivel de oxido solido suportada no anodo

    Energy Technology Data Exchange (ETDEWEB)

    Florio, D.Z. de [UNESP, Araraquara, SP (Brazil)], e-mail: dzflorio@ipen.br; Fonseca, F.C.; Franca, Y.V.; Muccillo, E.N.S.; Muccillo, R. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Berton, M.A.C.; Garcia, C.M. [LACTEC - Instituto de Tecnologia para o Desenvolvimento, Curitiba, PR (Brazil)

    2006-07-01

    A laboratory setup was designed and put into operation for the development of solid oxide fuel cells (SOFCs). Ceramic single cells were fabricated by low-cost methods, and emphasis was given to the use of ready available raw materials. The whole project consisted of the preparation of the component materials - anode, cathode, and electrolyte - and the buildup of a hydrogen leaking-free sample chamber with platinum leads and current collectors for measuring the electrochemical properties of single SOFCs. Anode-supported single SOFCs of the type (ZrO{sub 2}:Y{sub 2}O{sub 3} + NiO) anode / (ZrO{sub 2}:Y{sub 2}O{sub 3}) electrolyte / (La{sub 0.65}Sr{sub 0.35}MnO{sub 3} + ZrO{sub 2}:Y{sub 2}O{sub 3}) cathode have been prepared and tested at 700 deg C and 800 deg C after in situ H{sub 2} anode reduction. The main results show that the slurry coating method resulted in single-cells with good reproducibility and reasonable performance, suggesting that this method can be considered for fabrication of SOFCs. (author)

  2. Development of Reduced Activation Ferritic-Martensitic Steels and fabrication technologies for Indian test blanket module

    Energy Technology Data Exchange (ETDEWEB)

    Raj, Baldev [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Jayakumar, T., E-mail: tjk@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2011-10-01

    For the development of Reduced Activation Ferritic-Martensitic Steel (RAFMS), for the Indian Test Blanket Module for ITER, a 3-phase programme has been adopted. The first phase consists of melting and detailed characterization of a laboratory scale heat conforming to Eurofer 97 composition, to demonstrate the capability of the Indian industry for producing fusion grade steel. In the second phase which is currently in progress, the chemical composition will be optimized with respect to tungsten and tantalum for better combination of mechanical properties. Characterization of the optimized commercial scale India-specific RAFM steel will be carried out in the third phase. The first phase of the programme has been successfully completed and the tensile, impact and creep properties are comparable with Eurofer 97. Laser and electron beam welding parameters have been optimized and welding consumables were developed for Narrow Gap - Gas Tungsten Arc welding and for laser-hybrid welding.

  3. The design, fabrication, and testing of beryllium capsules for resonant ultrasound experiments

    International Nuclear Information System (INIS)

    Salazar, M.A.; Salzer, L.; Day, R.

    1999-01-01

    Inertial Confinement Fusion (ICF) ignition targets require smooth and well-characterized deuterium/tritium (DT) ice layers. Los Alamos is developing Resonant Ultrasound Spectroscopy (RUS) to measure the internal pressure in the targets at room temperature after filling with DT. RUS techniques also can detect and measure the amplitudes of low modal surface roughness perturbations of the target shell interior. The experiments required beryllium capsules with a nominal inside radius of 1 mm and a spherical outside radius of 3 mm. The capsules have various spherical harmonic contours up to mode 12 machined into their interior surfaces. The capsules are constructed from hemispheres using an epoxy adhesive and then filled to ∼270 atm with helium or deuterium gas. This paper describes the adhesive joint design, machining techniques, and interior geometry inspection techniques. It also describes the fixtures needed to assemble, fill, and pressure test the capsules

  4. Design, fabrication, testing and delivery of a feasibility model laminated ferrite memory

    Science.gov (United States)

    Heckler, H. C.

    1973-01-01

    The effect of using multiword addressing with laminated ferrite arrays was made. Both a reduction in the number of components, and a reduction in power consumption was obtained for memory capacities between one million bits and one million words. An investigation into the effect of variations in the processing steps resulted in a number of process modifications that improved the quality of the arrays. A feasibility model laminated ferrite memory system was constructed by modifying a commercial plated wire memory system to operate with laminated ferrite arrays. To provide flexibility for the testing of the laminated ferrite memory, an exerciser has been constructed to automatically control the loading and recirculation of arbitrary size checkerboard patterns of one's and zero's and to display the patterns of stored information on a CRT screen.

  5. Fabrication, characterization and testing of silicon photomultipliers for the Muon Portal Project

    International Nuclear Information System (INIS)

    La Rocca, P.; Billotta, S.; Blancato, A.A.; Bonanno, D.; Bonanno, G.; Fallica, G.; Garozzo, S.; Lo Presti, D.; Marano, D.; Pugliatti, C.; Riggi, F.; Romeo, G.; Santagati, G.; Valvo, G.

    2015-01-01

    The Muon Portal is a recently started Project aiming at the construction of a large area tracking detector that exploits the muon tomography technique to inspect the contents of traveling cargo containers. The detection planes will be made of plastic scintillator strips with embedded wavelength-shifting fibres. Special designed silicon photomultipliers will read the scintillation light transported by the fibres along the strips and a dedicated electronics will combine signals from different strips to reduce the overall number of channels, without loss of information. Different silicon photomultiplier prototypes, both with the p-on-n and n-on-p technologies, have been produced by STMicroelectronics during the last years. In this paper we present the main characteristics of the silicon photomultipliers designed for the Muon Portal Project and describe the setup and the procedure implemented for the characterization of these devices, giving some statistical results obtained from the test of a first batch of silicon photomultipliers

  6. Trampoline Resonator Fabrication for Tests of Quantum Mechanics at High Mass

    Science.gov (United States)

    Weaver, Matthew; Pepper, Brian; Sonin, Petro; Eerkens, Hedwig; Buters, Frank; de Man, Sven; Bouwmeester, Dirk

    2014-03-01

    There has been much interest recently in optomechanical devices that can reach the ground state. Two requirements for achieving ground state cooling are high optical finesse in the cavity and high mechanical quality factor. We present a set of trampoline resonator devices using high stress silicon nitride and superpolishing of mirrors with sufficient finesse (as high as 60,000) and quality factor (as high as 480,000) for ground state cooling in a dilution refrigerator. These devices have a higher mass, between 80 and 100 ng, and lower frequency, between 200 and 500 kHz, than other devices that have been cooled to the ground state, enabling tests of quantum mechanics at a larger mass scale.

  7. Fabrication, characterization and testing of silicon photomultipliers for the Muon Portal Project

    Energy Technology Data Exchange (ETDEWEB)

    La Rocca, P., E-mail: paola.larocca@ct.infn.it [Dipartimento di Fisica e Astronomia - Catania (Italy); INFN - Sezione di Catania (Italy); Billotta, S. [INAF - Osservatorio Astrofisico di Catania (Italy); Blancato, A.A.; Bonanno, D. [Dipartimento di Fisica e Astronomia - Catania (Italy); Bonanno, G. [INAF - Osservatorio Astrofisico di Catania (Italy); Fallica, G. [STMicroelectronics - Catania (Italy); Garozzo, S. [INAF - Osservatorio Astrofisico di Catania (Italy); Lo Presti, D. [Dipartimento di Fisica e Astronomia - Catania (Italy); INFN - Sezione di Catania (Italy); Marano, D. [INAF - Osservatorio Astrofisico di Catania (Italy); Pugliatti, C.; Riggi, F. [Dipartimento di Fisica e Astronomia - Catania (Italy); INFN - Sezione di Catania (Italy); Romeo, G. [INAF - Osservatorio Astrofisico di Catania (Italy); Santagati, G. [Dipartimento di Fisica e Astronomia - Catania (Italy); INFN - Sezione di Catania (Italy); Valvo, G. [STMicroelectronics - Catania (Italy)

    2015-07-01

    The Muon Portal is a recently started Project aiming at the construction of a large area tracking detector that exploits the muon tomography technique to inspect the contents of traveling cargo containers. The detection planes will be made of plastic scintillator strips with embedded wavelength-shifting fibres. Special designed silicon photomultipliers will read the scintillation light transported by the fibres along the strips and a dedicated electronics will combine signals from different strips to reduce the overall number of channels, without loss of information. Different silicon photomultiplier prototypes, both with the p-on-n and n-on-p technologies, have been produced by STMicroelectronics during the last years. In this paper we present the main characteristics of the silicon photomultipliers designed for the Muon Portal Project and describe the setup and the procedure implemented for the characterization of these devices, giving some statistical results obtained from the test of a first batch of silicon photomultipliers.

  8. Design, Fabrication, and In Vitro Testing of an Anti-biofouling Glaucoma Micro-shunt.

    Science.gov (United States)

    Harake, Ryan S; Ding, Yuzhe; Brown, J David; Pan, Tingrui

    2015-10-01

    Glaucoma, one of the leading causes of irreversible blindness, is a progressive neurodegenerative disease. Chronic elevated intraocular pressure (IOP), a prime risk factor for glaucoma, can be treated by aqueous shunts, implantable devices, which reduce IOP in glaucoma patients by providing alternative aqueous outflow pathways. Although initially effective at delaying glaucoma progression, contemporary aqueous shunts often lead to numerous complications and only 50% of implanted devices remain functional after 5 years. In this work, we introduce a novel micro-device which provides an innovative platform for IOP reduction in glaucoma patients. The device design features an array of parallel micro-channels to provide precision aqueous outflow resistance control. Additionally, the device's microfluidic channels are composed of a unique combination of polyethylene glycol materials in order to provide enhanced biocompatibility and resistance to problematic channel clogging from biofouling of aqueous proteins. The microfabrication process employed to produce the devices results in additional advantages such as enhanced device uniformity and increased manufacturing throughput. Surface characterization experimental results show the device's surfaces exhibit significantly less non-specific protein adsorption compared to traditional implant materials. Results of in vitro flow experiments verify the device's ability to provide aqueous resistance control, continuous long-term stability through 10-day protein flow testing, and safety from risk of infection due to bacterial ingression.

  9. Design, fabrication and test of a liquid hydrogen titanium honeycomb cryogenic test tank for use as a reusable launch vehicle main propellant tank

    Science.gov (United States)

    Stickler, Patrick B.; Keller, Peter C.

    1998-01-01

    Reusable Launch Vehicles (RLV's) utilizing LOX\\LH2 as the propellant require lightweight durable structural systems to meet mass fraction goals and to reduce overall systems operating costs. Titanium honeycomb sandwich with flexible blanket TPS on the windward surface is potentially the lightest-weight and most operable option. Light weight is achieved in part because the honeycomb sandwich tank provides insulation to its liquid hydrogen contents, with no need for separate cryogenic insulation, and in part because the high use temperature of titanium honeycomb reduces the required surface area of re-entry thermal protection systems. System operability is increased because TPS needs to be applied only to surfaces where temperatures exceed approximately 650 K. In order to demonstrate the viability of a titanium sandwich constructed propellant tank, a technology demonstration program was conducted including the design, fabrication and testing of a propellant tank-TPS system. The tank was tested in controlled as well as ambient environments representing ground hold conditions for a RLV main propellant tank. Data collected during each test run was used to validate predictions for air liquefaction, outside wall temperature, boil-off rates, frost buildup and its insulation effects, and the effects of placing a thermal protection system blanket on the external surface. Test results indicated that titanium honeycomb, when used as a RLV propellant tank material, has great promise as a light-weight structural system.

  10. Fabrication and characterization of MCC approved testing material - ATM-12 glass

    International Nuclear Information System (INIS)

    Wald, J.W.

    1985-10-01

    The Materials Characterization Center (MCC) Approved Testing Material ATM-12 is a borosilicate glass that incorporates elements typical of high-level waste (HLW) resulting from the reprocessing of commercial nuclear reactor fuels. The composition has been adjusted to match that predicted for HLW type 76-68 glass at an age of 300 y. Radioactive constituents contained in this glass include depleted uranium, 99 Tc, 237 Np, 239 Pu, and 241 Am. The glass was produced by the MCC at the Pacific Northwest Laboratory (PNL). ATM-12 glass ws produced from July to November of 1984 at the request of the Nevada Nuclear Waste Site Investigations (NNWSI) Program and is the third in a series of glasses produced for NNWSI. Most of the glass produced was in the form of cast bars; special castings and crushed material were also produced. Three kilograms of ATM-12 glass were produced from a feedstock melted in a nitrogen-atmosphere glove box at 1150 0 C in a platinum crucible, and formed into stress-annealed rectangular bars and the special casting shapes requested by NNWSI. Bars of ATM-12 were nominally 1.9 x 1.9 x 10 cm, with an average mass of 111 g each. Nineteen bars and 37 special castings were made. ATM-12 glass has been provided to the NNWSI Program, in the form of bars, crushed powder and special castings. As of August 1985 approximately 590 g of ATM-12 is available for distribution. Requests for materials or services related to this glass should be directed to the Materials Characterization Center Program Office, PNL

  11. Designing, fabricating, and testing cost effective structural composite for the SSCL magnets

    International Nuclear Information System (INIS)

    Nobrega, F.

    1993-05-01

    Particle accelerators like the Superconducting Super Collider (SSC) use superconducting dipole magnets to bend the particle bunches around the 54-mile ring and superconducting quadrupole magnets to focus the particles. The heart of these magnets is the superconducting niobium-titanium copper cable which carries extremely high current because the internal resistance is zero at liquid helium temperatures. With these high currents,the magnets generate large magnetic fields on the order of 6.7 Tesla. The superconducting cable is insulated with a wrap of polyimide film on the first layer and a second layer wrap of either a polyimide film with adhesive or a fiberglass epoxy prepreg. The insulated cable is wound into long coils and cured. All coil materials must withstand temperature extremes from 220 degree C (428 degree F) to -269 degree C (-452 degree F) at loads as high as 104 MPa (15 ksi). In addition, all magnet components must survive for 25 years with a total radiation dose of 1000 MRad. The parts at the end of a coil are used to support and restrain the conductors during magnet energization. The most common end part materials used to date have been G-10 and G-11 fiberglass and epoxy tubes and laminates in NEMA grades and CR type. Developments in polyimides like bismaleimides, copolymers like the newly developed PT resins and advanced epoxy blends like CTD101 and CTD102 are materials of choice for magnet components because of their radiation resistance. An extensive testing program is currently underway by the SSCL to measure the radiation degradation of these and many other materials

  12. Designing, fabricating, and testing cost effective structural composite for the SSCL magnets

    International Nuclear Information System (INIS)

    Nobrega, F.

    1994-01-01

    Particle accelerators like the Superconducting Super Collider (SSC) use superconducting dipole magnets to bend the particle bunches around the 54-mile ring and superconducting quadrupole magnets to focus the particles. The heart of these magnets is the superconducting niobium-titanium copper cable which carries extremely high current because the internal resistance is zero at liquid helium temperatures. With these high currents, the magnets generate large magnetic fields on the order of 6.7 Tesla. The superconducting cable is insulated with a wrap of polyimide film on the first layer and a second layer wrap of either a polyimide film with adhesive or a fiberglass epoxy prepreg. The insulated cable is wound into long coils and cured. All coil materials must withstand temperature extremes from 220C to -269C at loads as high as 104 MPa (15ksi). In addition, all magnet components must survive for 25 years with a total radiation dose of 1000 MRad. The parts at the end of a coil are used to support and restrain the conductors during magnet energization. The most common end part materials used to date have been G-10 and G-11 fiberglass and epoxy tubes and laminates in NEMA grades and CR type. Developments in polyimides like bismaleimides, copolymers like the newly developed PT resins and advanced epoxy blends like CTD101 and CTE102 are materials of choice for magnet components because of their radiation resistance. An extensive testing program is currently underway by the SSCL to measure the radiation degradation of these and many other materials

  13. Fabrication of a novel gigabit/second free-space optical interconnect - photodetector characterization and testing and system development

    Science.gov (United States)

    Savich, Gregory R.

    2004-01-01

    design and construction of a test setup for the experiment and then appropriate characterization of the test system. Specifically, I am involved in the characterization of a commercially available 1550nm wavelength, 5mW diode laser and a study of its modulation bandwidth. Commercially produced photodetectors as well as the incorporation of microwave technology, in the form of RF input and output, are used in the characterization procedure. The next stage involves the use of a probe station and network analyzer to characterize and test a series of photodetectors fabricated on a 2 inch, Indium Gallium Arsenide (InGaAs) wafer in the Branch s microlithography lab. Other project responsibilities include, but are not limited to the incorporation of a transimpedance amplifier to the photodetector circuit; a study of VCSEL technology; bit error rate analysis of an optical interconnect system; and analysis of free space divergence of the VCSEL, optical path length of the interconnect; and any other pertinent optical properties of the one gigabit per second interconnect for fabrication and testing.

  14. Design, fabrication and irradiation test report on HANARO instrumented capsule (03M-06U) for researches of universities in 2003

    International Nuclear Information System (INIS)

    Choo, K. N.; Kim, B. G.; Kang, Y. H.; Choi, M. H.; Cho, M. S.; Son, J. M.; Shin, Y. T.; Park, S. J.

    2005-03-01

    As a part of 2003 project for active utilization of HANARO, an instrumented capsule (03M-06U) was designed, fabricated and irradiated for the irradiation test of various nuclear materials under irradiation conditions requested by external researchers from universities. The basic structure of 03M-06U capsule was based on the 00M-01U, 01M-05U and 02M-05U capsules successfully irradiated in HANARO as 2000, 2001 and 2002 projects. However, because of the limited number of specimens and budget of 4 universities, the remained space of the capsule was charged with KAERI specimens for the development of the precise temperature control technology under irradiation. The material of the specimens is mainly Fe-based alloys partially mixed with Zr, Al and Cu-Ag alloys. The capsule is composed of 5 stages having many kinds of specimens and independent electric heater in each stage. During the irradiation test, the temperature of the specimens and the thermal/fast neutron fluences were measured by 14 thermocouples and 5 sets of Ni-Ti-Fe neutron fluence monitors installed in the capsule. Various types of specimens such as tensile, Charpy, TEM, toughness, electrical resistance specimens were inserted in the capsule. The capsule was firstly irradiated in the CT test hole of HANARO of 30MW thermal output at 275∼500±10 .deg. C up to a fast neutron fluence of 5.4 x 10 20 (n/cm 2 ) (E>1.0MeV). The obtained results will be very valuable for the related researches of the users

  15. SU-C-213-07: Fabrication and Testing of a 3D-Printed Small Animal Rectal Cooling Device to Evaluate Local Hypothermia as a Radioprotector During Prostate SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Hrycushko, B; Chopra, R; Futch, C; Bing, C; Wodzak, M; Stojadinovic, S; Jiang, S; Medin, P [UT Southwestern Medical Center, Dallas, TX (United States)

    2015-06-15

    Purpose: The protective effects of induced or even accidental hypothermia on the human body are widespread with several medical uses currently under active research. In vitro experiments using human cell lines have shown hypothermia provides a radioprotective effect that becomes more pronounced at large, single-fraction doses common to SBRT treatments. Relevant to prostate SBRT, this work details the fabrication and testing of a 3D-printed cooling device to facilitate the investigation of the radioprotective effect of local hypothermia on the rat rectum. Methods: A 3cm long, two-channel rectal cooling device was designed in SOLIDWORKS CAD for 3D printing. The water intake nozzle is connected to a 1mm diameter brass pipe from which water flows and circulates back around to the exit nozzle. Both nozzles are connected by plastic tubing to a water chiller pump. Following leak-proof testing, fiber optic temperature probes were used to evaluate the temperature over time when placed adjacent to the cooling device within a rat rectum. MRI thermometry characterized the relative temperature distribution in concentric ROIs surrounding the probe. CBCT images from a small-animal irradiator were evaluated for imaging artifacts which could affect Monte Carlo dose calculations during treatment planning. Results: The rectal temperature adjacent to the cooling device decreased from body temperature (37°C) to 15°C in 10–20 minutes from device insertion. Rectal temperature was maintained at 15±3°C during active cooling. MRI thermometry tests revealed a steep temperature gradient with increasing distance from the cooling device, with the desired temperature range maintained within the surrounding few millimeters. Conclusion: A 3D printed rectal cooling device was fabricated for the purpose of inducing local hypothermia in rat rectums. Rectal cooling capabilities were characterized in-vivo to facilitate an investigation of the radioprotective effect of hypothermia for late rectal

  16. SU-C-213-07: Fabrication and Testing of a 3D-Printed Small Animal Rectal Cooling Device to Evaluate Local Hypothermia as a Radioprotector During Prostate SBRT

    International Nuclear Information System (INIS)

    Hrycushko, B; Chopra, R; Futch, C; Bing, C; Wodzak, M; Stojadinovic, S; Jiang, S; Medin, P

    2015-01-01

    Purpose: The protective effects of induced or even accidental hypothermia on the human body are widespread with several medical uses currently under active research. In vitro experiments using human cell lines have shown hypothermia provides a radioprotective effect that becomes more pronounced at large, single-fraction doses common to SBRT treatments. Relevant to prostate SBRT, this work details the fabrication and testing of a 3D-printed cooling device to facilitate the investigation of the radioprotective effect of local hypothermia on the rat rectum. Methods: A 3cm long, two-channel rectal cooling device was designed in SOLIDWORKS CAD for 3D printing. The water intake nozzle is connected to a 1mm diameter brass pipe from which water flows and circulates back around to the exit nozzle. Both nozzles are connected by plastic tubing to a water chiller pump. Following leak-proof testing, fiber optic temperature probes were used to evaluate the temperature over time when placed adjacent to the cooling device within a rat rectum. MRI thermometry characterized the relative temperature distribution in concentric ROIs surrounding the probe. CBCT images from a small-animal irradiator were evaluated for imaging artifacts which could affect Monte Carlo dose calculations during treatment planning. Results: The rectal temperature adjacent to the cooling device decreased from body temperature (37°C) to 15°C in 10–20 minutes from device insertion. Rectal temperature was maintained at 15±3°C during active cooling. MRI thermometry tests revealed a steep temperature gradient with increasing distance from the cooling device, with the desired temperature range maintained within the surrounding few millimeters. Conclusion: A 3D printed rectal cooling device was fabricated for the purpose of inducing local hypothermia in rat rectums. Rectal cooling capabilities were characterized in-vivo to facilitate an investigation of the radioprotective effect of hypothermia for late rectal

  17. Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems, Phase II. Part 2; Ballistic Impact Testing

    Science.gov (United States)

    Revilock, D. M.; Pereira, J. M.

    2009-01-01

    This report summarizes the ballistic impact testing that was conducted to provide validation data for the development of numerical models of blade-out events in fabric containment systems. The ballistic impact response of two different fiber materials - Kevlar(TradeName) 49 and Zylon(TradeName) AS (as spun) was studied by firing metal projectiles into dry woven fabric specimens using a gas gun. The shape, mass, orientation, and velocity of the projectile were varied and recorded. In most cases, the tests were designed so the projectile would perforate the specimen, allowing measurement of the energy absorbed by the fabric. The results for both Zylon and Kevlar presented here represent a useful set of data for the purposes of establishing and validating numerical models to predict the response of fabrics under conditions that simulate those of a jet engine blade-release situation. In addition, some useful empirical observations were made regarding the effects of projectile orientation and the relative performance of the different fabric materials.

  18. Fabrication of Acrylonitrile-Butadiene-Styrene Nanostructures with Anodic Alumina Oxide Templates, Characterization and Biofilm Development Test for Staphylococcus epidermidis.

    Directory of Open Access Journals (Sweden)

    Camille Desrousseaux

    Full Text Available Medical devices can be contaminated by microbial biofilm which causes nosocomial infections. One of the strategies for the prevention of such microbial adhesion is to modify the biomaterials by creating micro or nanofeatures on their surface. This study aimed (1 to nanostructure acrylonitrile-butadiene-styrene (ABS, a polymer composing connectors in perfusion devices, using Anodic Alumina Oxide templates, and to control the reproducibility of this process; (2 to characterize the physico-chemical properties of the nanostructured surfaces such as wettability using captive-bubble contact angle measurement technique; (3 to test the impact of nanostructures on Staphylococcus epidermidis biofilm development. Fabrication of Anodic Alumina Oxide molds was realized by double anodization in oxalic acid. This process was reproducible. The obtained molds present hexagonally arranged 50 nm diameter pores, with a 100 nm interpore distance and a length of 100 nm. Acrylonitrile-butadiene-styrene nanostructures were successfully prepared using a polymer solution and two melt wetting methods. For all methods, the nanopicots were obtained but inside each sample their length was different. One method was selected essentially for industrial purposes and for better reproducibility results. The flat ABS surface presents a slightly hydrophilic character, which remains roughly unchanged after nanostructuration, the increasing apparent wettability observed in that case being explained by roughness effects. Also, the nanostructuration of the polymer surface does not induce any significant effect on Staphylococcus epidermidis adhesion.

  19. Role of non-destructive examinations in leak testing of glove boxes for industrial scale plutonium handling at nuclear fuel fabrication facility along with case study

    International Nuclear Information System (INIS)

    Aher, Sachin

    2015-01-01

    Non Destructive Examinations has the prominent role at Nuclear Fuel Fabrication Facilities. Specifically NDE has contributed at utmost stratum in Leak Testing of Glove Boxes and qualifying them as a Class-I confinement for safe Plutonium handling at industrial scale. Advanced Fuel Fabrication Facility, BARC, Tarapur is engaged in fabrication of Plutonium based MOX (PuO 2 , DDUO 2 ) fuel with different enrichments for first core of PFBR reactor. Alpha- Leak Tight Glove Boxes along with HEPA Filters and dynamic ventilation form the promising engineering system for safe and reliable handling of plutonium bearing materials considering the radiotoxicity and risk associated with handling of plutonium. Leak Testing of Glove Boxes which involves the leak detection, leak rectification and leak quantifications is major challenging task. To accomplish this challenge, various Non Destructive Testing methods have assisted in promising way to achieve the stringent leak rate criterion for commissioning of Glove Box facilities for plutonium handling. This paper highlights the Role of various NDE techniques like Soap Solution Test, Argon Sniffer Test, Pressure Drop/Rise Test etc. in Glove Box Leak Testing along with procedure and methodology for effective rectification of leakage points. A Flow Chart consisting of Glove Box leak testing procedure starting from preliminary stage up to qualification stage along with a case study and observations are discussed in this paper. (author)

  20. Fabrication and characterization of 6Li-enriched Li2TiO3 pebbles for a high Li-burnup irradiation test

    International Nuclear Information System (INIS)

    Tsuchiya, Kunihiko; Kawamura, Hiroshi

    2006-10-01

    Lithium titanate (Li 2 TiO 3 ) pebbles are considered to be a candidate material of tritium breeders for fusion reactor from viewpoints of easy tritium release at low temperatures (about 300degC) and chemical stability. In the present study, trial fabrication tests of 6 Li-enriched Li 2 TiO 3 pebbles of 1mm in diameter were carried out by a wet process with a dehydration reaction, and characteristics of the 6 Li-enriched Li 2 TiO 3 pebbles were evaluated for preparation of a high Li-burnup test in a testing reactor. Powder of 96at% 6 Li-enriched Li 2 TiO 3 was prepared by a solid state reaction, and two kinds of 6 Li-enriched Li 2 TiO 3 pebbles, namely un-doped and TiO 2 -doped Li 2 TiO 3 pebbles, were fabricated by the wet process. Based on results of the pebble fabrication tests, two kinds of 6 Li-enriched Li 2 TiO 3 pebbles were successfully fabricated with target values (density: 80-85%T.D., grain size: 2 TiO 3 pebbles was a satisfying value of about 1.05. Contact strength of these pebbles was about 6300MPa, which was almost the same as that of the Li 2 TiO 3 pebbles with natural Li. (author)

  1. The design and fabrication of an optical periscope for core viewing of fast breeder test reactor (FBTR)

    International Nuclear Information System (INIS)

    Das, N.C.; Sanjiva Kumar; Udupa, D.V.; Shukla, R.P.; Kadu, A.M.; Modi, R.K.

    2004-08-01

    A FBTR (Fast Breeder Test Reactor) periscope has been designed and fabricated indigenously for viewing and photography/ video recording the objects in the reactor core. The periscope consists of a scanning prism mechanism, zoom lens objective, a system of relay lenses and an eyepiece sub-assembly for viewing the objects. The objective of the periscope is a zoom lens system for obtaining a continuously varying magnification from 2X to 5X. Zoom lens objective system has a variable focal length from 100 mm to 250 mm with an aperture varying from 10 mm to 25 mm respectively. This covers a semi- field angle of 3 deg for the objective lens of focal length of 250 mrn and 4 deg for the objective of focal length of l00 mm. Two prisms of 45 deg -90 deg -45 deg types are used for scanning the object space in vertical direction. One prism is fixed, whereas the prism facing the object can be rotated about the horizontal axis through an angle of 110 deg. The rotation of the entire periscope assembly along the vertical axis scans the object space on the horizontal plane. The combination of these two rotations is used to scan the field of interest. It may be noted here that it is absolutely essential to introduce a Pechan prism before each eyepiece. Pechan prism is used for the rotation of the image, which is produced due to the rotation of the scanning prisms. The measured value of the linear resolution of the instrument is 0.7 mm at an object distance of 2.5 meter from the zoom lens objective system. The periscope has two arm labeled I and II. The arm I is used for visual inspection, while the arm II is used for video recording/photography. The periscope will be used as an in-service instrument for Fast Breeder Test Reactor, IGCAR, Kalpakkam. (author)

  2. A proposal of ITER vacuum vessel fabrication specification and results of the full-scale partial mock-up test

    International Nuclear Information System (INIS)

    Nakahira, M.; Takeda, N.; Kakudate, S.; Onozuka, M.

    2008-01-01

    The structure and fabrication methods of the ITER vacuum vessel (VV) have been investigated and defined by the ITER International Team (IT). However, some of the current technical specifications are difficult to be achieved from the manufacturing point of view. To solve such an issue, this paper proposes an alternative specification of the VV to the IT's design. A series of the fabrication and assembly procedures for the mock-up are presented, together with candidates of welding configurations. Finally, the paper summarizes the results of mock-up fabrication, such as non-destructive examination of weld lines, obtained welding deformation and issues revealed from the fabrication experience. Based on the results, it is suggested that several issues such as clarification of conditions of repair welding, demonstration of welding distortion control and detectability/localization of internal defects should be solved before manufacturing the ITER VV

  3. A proposal of ITER vacuum vessel fabrication specification and results of the full-scale partial mock-up test

    Energy Technology Data Exchange (ETDEWEB)

    Nakahira, M. [Japan Atomic Energy Agency, Mukouyama 801-1, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan)], E-mail: nakahira.masataka@jaea.go.jp; Takeda, N.; Kakudate, S. [Japan Atomic Energy Agency, Mukouyama 801-1, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Onozuka, M. [Mitsubishi Nuclear Energy Systems, Inc., 1700K Street NW, Suite 440, Washington, DC 20006 (United States)

    2008-12-15

    The structure and fabrication methods of the ITER vacuum vessel (VV) have been investigated and defined by the ITER International Team (IT). However, some of the current technical specifications are difficult to be achieved from the manufacturing point of view. To solve such an issue, this paper proposes an alternative specification of the VV to the IT's design. A series of the fabrication and assembly procedures for the mock-up are presented, together with candidates of welding configurations. Finally, the paper summarizes the results of mock-up fabrication, such as non-destructive examination of weld lines, obtained welding deformation and issues revealed from the fabrication experience. Based on the results, it is suggested that several issues such as clarification of conditions of repair welding, demonstration of welding distortion control and detectability/localization of internal defects should be solved before manufacturing the ITER VV.

  4. Design, Fabrication and Prototype testing of a Chip Integrated Micro PEM Fuel Cell Accumulator combined On-Board Range Extender

    International Nuclear Information System (INIS)

    Balakrishnan, A; Mueller, C; Reinecke, H

    2014-01-01

    In this work we present the design, fabrication and prototype testing of Chip Integrated Micro PEM Fuel Cell Accumulator (CIμ-PFCA) combined On-Board Range Extender (O-BRE). CIμ-PFCA is silicon based micro-PEM fuel cell system with an integrated hydrogen storage feature (palladium metal hydride), the run time of CIμ-PFCA is dependent on the stored hydrogen, and in order to extend its run time an O-BRE is realized (catalytic hydrolysis of chemical hydride, NaBH 4 . Combining the CIμ-PFCA and O-BRE on a system level have few important design requirements to be considered; hydrogen regulation, gas -liquid separator between the CIμ-PFCA and the O-RE. The usage of traditional techniques to regulate hydrogen (tubes), gas-liquid phase membranes (porous membrane separators) are less desirable in the micro domain, due to its space constraint. Our approach is to use a passive hydrogen regulation and gas-liquid phase separation concept; to use palladium membrane. Palladium regulates hydrogen by concentration diffusion, and its property to selectively adsorb only hydrogen is used as a passive gas-liquid phase separator. Proof of concept is shown by realizing a prototype system. The system is an assembly of CIμ-PFCA, palladium membrane and the O-BRE. The CIμ-PFCA consist of 2 individually processed silicon chips, copper supported palladium membrane realized by electroplating followed by high temperature annealing process under inter atmosphere and the O-BRE is realized out of a polymer substrate by micromilling process with platinum coated structures, which functions as a catalyst for the hydrolysis of NaBH 4 . The functionality of the assembled prototype system is demonstrated by the measuring a unit cell (area 1 mm 2 ) when driven by the catalytic hydrolysis of chemical hydride (NaBH 4 and the prototype system shows run time more than 15 hours

  5. Low-cost fabrication and performance testing of Polydimethylsiloxane (PDMS) micromixers using an improved print-and-Peel (PAP) method

    Science.gov (United States)

    Abagon, Ma. Victoria; Buendia, Neil Daniel; Jasper Caracas, Corine; July Yap, Kristian

    2018-03-01

    The research presents different configurations of microfluidic mixers made from polydimethylsiloxane (PDMS) fabricated using an improved, low-cost print-and-peel (PAP) method. Processes, such as mixing, operated in the micro scale allow decreased equipment size-to-production capacity ratio and decreased energy consumption per unit product. In the study, saturated solutions of blue and yellow food dyes were introduced inside the channels using a LEGO® improvised microsyringe pump. Scanning Electron Microscopy (SEM) was used to determine the average depth of the fabricated micromixers which was found to be around 14 ¼m. The flows were observed and images were taken using a light microscope. The color intensities of the images were then measured using MATLAB®. From the relationship between color intensity and concentration, the mixing indices were calculated and found to be 0.9435 to 0.9941, which falls within the standard mixing index range (0.8 - 1.0) regardless of the flow rate and the configuration of the micromixer as verified through the two-way ANOVA. From the cost analysis, the cost of the device fabricated in this study is a hundred-fold less than expenses from standard fabrication procedures. Hence, the fabricated device provides an alternative for micromixers produced from expensive and conventional lithographic methods.

  6. Analysis of the custom design/fabrication/testing requirements for a large-hole drilling machine for use in an underground radioactive waste repository

    International Nuclear Information System (INIS)

    Grams, W.H.; Gnirk, P.F.

    1976-01-01

    This report presents an analysis of the fabrication and field test requirements for a drilling machine that would be applicable to the drilling of large diameter holes for the emplacement of radioactive waste canisters in an underground repository. On the basis of a previous study in 1975 by RE/SPEC Inc. for the Oak Ridge National Laboratory, it was concluded that none of the commercially available machines were ideally suited for the desired drilling application, and that it was doubtful whether a machine with the required capabilities would become available as a standard equipment item. The results of the current study, as presented herein, provide a definitive basis for selecting the desired specifications, estimating the design, fabrication, and testing costs, and analyzing the cost-benefit characteristics of a custom-designed drilling machine for the emplacement hole drilling task

  7. Design, Fabrication and High Power RF Test of a C-band Accelerating Structure for Feasibility Study of the SPARC photo-injector energy upgrade

    CERN Document Server

    Alesini, D.; Di Pirro, G.; Di Raddo, R.; Ferrario, M.; Gallo, A.; Lollo, V.; Marcellini, F.; Higo, T.; Kakihara, K.; Matsumoto, S.; Campogiani, G.; Mostacci, A.; Palumbo, L.; Persichelli, S.; Spizzo, V.; Verdú-Andrés, S.

    2011-01-01

    The energy upgrade of the SPARC photo-injector from 160 to more than 260 MeV will be done by replacing a low gradient 3m S-Band structure with two 1.4m high gradient C-band structures. The structures are travelling wave, constant impedance sections, have symmetric waveguide input couplers and have been optimized to work with a SLED RF input pulse. A prototype with a reduced number of cells has been fabricated and tested at high power in KEK (Japan) giving very good performances in terms of breakdown rates (10^6 bpp/m) at high accelerating gradient (>50 MV/m). The paper illustrates the design criteria of the structures, the fabrication procedure and the high power RF test results.

  8. Gas Tungsten Arc Welding for Fabrication of SFR Fuel Rodlet

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Won; Woo, Yoon Myeng; Kim, Bong Goo; Park, Jeong Yong; Kim, Sung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    To evaluate the PGSFR fuel performance, the irradiation test in HANARO research reactor was planned and the fuel rodlet to be used for irradiation test should be fabricated under the appropriate Quality Assurance (QA) program. For the fabrication of PGSFR metallic fuel rodlets, the end plug welding is a crucial process. The sealing of end plug to cladding tube should be hermetically perfect to prevent a leakage of fission gases and to maintain a good reactor performance. In this study, the end plug welding of fuel rodlet for irradiation test in HANARO was carried out based on the qualified welding technique as reported in the previous paper. The end plug welding of fuel rodlets for irradiation test in HANARO was successfully carried out under the appropriate QA program. The results of the quality inspections on the end plug weld satisfied well the quality criteria on the weld. Consequently the fabricated fuel rodlets are ready for irradiation test in HANARO.

  9. An in Vitro Twist Fatigue Test of Fabric Stent-Grafts Supported by Z-Stents vs. Ringed Stents

    Directory of Open Access Journals (Sweden)

    Jing Lin

    2016-02-01

    Full Text Available Whereas buckling can cause type III endoleaks, long-term twisting of a stent-graft was investigated here as a mechanism leading to type V endoleak or endotension. Two experimental device designs supported with Z-stents having strut angles of 35° or 45° were compared to a ringed control under accelerated twisting. Damage to each device was assessed and compared after different durations of twisting, with focus on damage that may allow leakage. Stent-grafts with 35° Z-stents had the most severe distortion and damage to the graft fabric. The 45° Z-stents caused less fabric damage. However, consistent stretching was still seen around the holes for sutures, which attach the stents to the graft fabric. Larger holes may become channels for fluid percolation through the wall. The ringed stent-graft had the least damage observed. Stent apexes with sharp angles appear to be responsible for major damage to the fabrics. Device manufacturers should consider stent apex angle when designing stent-grafts, and ensure their devices are resistant to twisting.

  10. Fabrication of etched facets and vertical couplers in InP for packaging and on-wafer test

    NARCIS (Netherlands)

    Lemos Alvares Dos Santos, Rui; D'Agostino, D.; Soares, F. M.; Haghighi, H. Rabbani; Williams, K. A.; Leijtens, X. J. M.

    2016-01-01

    In this letter, the fabrication and the characterization of angled and straight etched facets in InP-based technology are reported. In addition, we report on etched facets combined with coupler mirrors for vertical outcoupling, realized with a wet-etching process.

  11. An in Vitro Twist Fatigue Test of Fabric Stent-Grafts Supported by Z-Stents vs. Ringed Stents.

    Science.gov (United States)

    Lin, Jing; Guidoin, Robert; Du, Jia; Wang, Lu; Douglas, Graeham; Zhu, Danjie; Nutley, Mark; Perron, Lygia; Zhang, Ze; Douville, Yvan

    2016-02-16

    Whereas buckling can cause type III endoleaks, long-term twisting of a stent-graft was investigated here as a mechanism leading to type V endoleak or endotension. Two experimental device designs supported with Z-stents having strut angles of 35° or 45° were compared to a ringed control under accelerated twisting. Damage to each device was assessed and compared after different durations of twisting, with focus on damage that may allow leakage. Stent-grafts with 35° Z-stents had the most severe distortion and damage to the graft fabric. The 45° Z-stents caused less fabric damage. However, consistent stretching was still seen around the holes for sutures, which attach the stents to the graft fabric. Larger holes may become channels for fluid percolation through the wall. The ringed stent-graft had the least damage observed. Stent apexes with sharp angles appear to be responsible for major damage to the fabrics. Device manufacturers should consider stent apex angle when designing stent-grafts, and ensure their devices are resistant to twisting.

  12. Ergonomics Contribution in Maintainability

    Science.gov (United States)

    Teymourian, Kiumars; Seneviratne, Dammika; Galar, Diego

    2017-09-01

    The objective of this paper is to describe an ergonomics contribution in maintainability. The economical designs, inputs and training helps to increase the maintainability indicators for industrial devices. This analysis can be helpful, among other cases, to compare systems, to achieve a better design regarding maintainability requirements, to improve this maintainability under specific industrial environment and to foresee maintainability problems due to eventual changes in a device operation conditions. With this purpose, this work first introduces the notion of ergonomics and human factors, maintainability and the implementation of assessment of human postures, including some important postures to perform maintenance activities. A simulation approach is used to identify the critical posture of the maintenance personnel and implements the defined postures with minimal loads on the personnel who use the equipment in a practical scenario. The simulation inputs are given to the designers to improve the workplace/equipment in order to high level of maintainability. Finally, the work concludes summarizing the more significant aspects and suggesting future research.

  13. Design, simulation, fabrication, and preliminary tests of 3D CMS pixel detectors for the super-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Koybasi, Ozhan; /Purdue U.; Bortoletto, Daniela; /Purdue U.; Hansen, Thor-Erik; /SINTEF, Oslo; Kok, Angela; /SINTEF, Oslo; Hansen, Trond Andreas; /SINTEF, Oslo; Lietaer, Nicolas; /SINTEF, Oslo; Jensen, Geir Uri; /SINTEF, Oslo; Summanwar, Anand; /SINTEF, Oslo; Bolla, Gino; /Purdue U.; Kwan, Simon Wing Lok; /Fermilab

    2010-01-01

    The Super-LHC upgrade puts strong demands on the radiation hardness of the innermost tracking detectors of the CMS, which cannot be fulfilled with any conventional planar detector design. The so-called 3D detector architectures, which feature columnar electrodes passing through the substrate thickness, are under investigation as a potential solution for the closest operation points to the beams, where the radiation fluence is estimated to reach 10{sup 16} n{sub eq}/cm{sup 2}. Two different 3D detector designs with CMS pixel readout electronics are being developed and evaluated for their advantages and drawbacks. The fabrication of full-3D active edge CMS pixel devices with p-type substrate has been successfully completed at SINTEF. In this paper, we study the expected post-irradiation behaviors of these devices with simulations and, after a brief description of their fabrication, we report the first leakage current measurement results as performed on wafer.

  14. Testing of a cathode fabricated by painting with a brush pen for anode-supported tubular solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Renzhu; Zhao, Chunhua; Li, Junliang; Wang, Shaorong; Wen, Zhaoyin; Wen, Tinglian [CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 1295 Dingxi Road, Shanghai 200050 (China)

    2010-01-15

    We have studied the properties of a cathode fabricated by painting with a brush pen for use with anode-supported tubular solid oxide fuel cells (SOFCs). The porous cathode connects well with the electrolyte. A preliminary examination of a single tubular cell, consisting of a Ni-YSZ anode support tube, a Ni-ScSZ anode functional layer, a ScSZ electrolyte film, and a LSM-ScSZ cathode fabricated by painting with a brush pen, has been carried out, and an improved performance is obtained. The ohmic resistance of the cathode side clearly decreases, falling to a value only 37% of that of the comparable cathode made by dip-coating at 850 C. The single cell with the painted cathode generates a maximum power density of 405 mW cm{sup -2} at 850 C, when operating with humidified hydrogen. (author)

  15. A recursive framework for time-dependent characteristics of tested and maintained standby units with arbitrary distributions for failures and repairs

    International Nuclear Information System (INIS)

    Vaurio, Jussi K.

    2015-01-01

    The time-dependent unavailability and the failure and repair intensities of periodically tested aging standby system components are solved with recursive equations under three categories of testing and repair policies. In these policies, tests or repairs or both can be minimal or perfect renewals. Arbitrary distributions are allowed to times to failure as well as to repair and renewal durations. Major preventive maintenance is done periodically or at random times, e.g. when a true demand occurs. In the third option process renewal is done if a true demand occurs or when a certain mission time has expired since the previous maintenance, whichever occurs first. A practical feature is that even if a repair can renew the unit, it does not generally renew the alternating process. The formalism updates and extends earlier results by using a special backward-renewal equation method, by allowing scheduled tests not limited to equal intervals and accepting arbitrary distributions and multiple failure types and causes, including failures caused by tests, human errors and true demands. Explicit solutions are produced to integral equations associated with an age-renewal maintenance policy. - Highlights: • Time-dependent unavailability, failure count and repair count for a standby system. • Free testing schedule and distributions for times to failure, repair and maintenance. • Multiple failure modes; tests or repairs or both can be minimal or perfect renewals. • Process renewals periodically, randomly or based on the process age or an initiator. • Backward renewal equations as explicit solutions to Volterra-type integral equations

  16. Design, fabrication and testing of a 56 mm bore twin-aperture 1 m long dipole magnet made with SSC type cable

    Energy Technology Data Exchange (ETDEWEB)

    Ostler, J.; Perini, D.; Russenschuck, S.; Siegel, N.; Siemko, A.; Trinquart, G.; Walckiers, L.; Weterings, W. [CERN, Geneva (Switzerland)

    1996-07-01

    In the framework of the LHC superconducting dipole magnet model program, a 56 mm bore, twin-aperture dipole model 1 m long, using existing cables of the standard SSC type, was launched to initiate studies of lower field magnets with smaller strand size cables for a 7 TeV collider. This model was designed, built, assembled and tested at CERN and reached a peak field of 9.7 T at 1.8 K. The paper reviews the main design principles, presents the fabrication and assembly procedures and finally discusses the overall test results.

  17. Design, fabrication and testing of a 56 mm bore twin-aperture 1 m long dipole magnet made with SSC type cable

    International Nuclear Information System (INIS)

    Ostler, J.; Perini, D.; Russenschuck, S.; Siegel, N.; Siemko, A.; Trinquart, G.; Walckiers, L.; Weterings, W.

    1996-01-01

    In the framework of the LHC superconducting dipole magnet model program, a 56 mm bore, twin-aperture dipole model 1 m long, using existing cables of the standard SSC type, was launched to initiate studies of lower field magnets with smaller strand size cables for a 7 TeV collider. This model was designed, built, assembled and tested at CERN and reached a peak field of 9.7 T at 1.8 K. The paper reviews the main design principles, presents the fabrication and assembly procedures and finally discusses the overall test results

  18. Maintaining dignity in vulnerability

    DEFF Research Database (Denmark)

    Høy, Bente

    2016-01-01

    to understand the meaning of the narrated text. Results. The meaning of maintaining dignity was constituted in a sense of vulnerability to the self, and elucidated in three major interrelated themes: Being involved as a human being, being involved as the person one is and strives to become, and being involved...

  19. Enhanced density of optical data storage using near-field concept: fabrication and test of nanometric aperture array

    International Nuclear Information System (INIS)

    Cha, J.; Park, J. H.; Kim, Myong R.; Jhe, W.

    1999-01-01

    We have tried to enhance the density of the near-field optical memory and to improve the recording/readout speed. The current optical memory has the limitation in both density and speed. This barrier due to the far-field nature can be overcome by the use of near-field. The optical data storage density can be increased by reducing the size of the nanometric aperture where the near-field is obtained. To fabricate the aperture in precise dimension, we applied the orientation-dependent / anisotropic etching property of crystal Si often employed in the field of MEMS. And so we fabricated the 10 x 10 aperture array. This array will be also the indispensable part for speeding up. One will see the possibility of the multi-tracking pickup in the phase changing type memory through this array. This aperture array will be expected to write the bit-mark whose size is about 100 nm. We will show the recent result obtained. (author)

  20. Draw your assay: Fabrication of low-cost paper-based diagnostic and multi-well test zones by drawing on a paper.

    Science.gov (United States)

    Oyola-Reynoso, Stephanie; Heim, Andrew P; Halbertsma-Black, Julian; Zhao, C; Tevis, Ian D; Çınar, Simge; Cademartiri, Rebecca; Liu, Xinyu; Bloch, Jean-Francis; Thuo, Martin M

    2015-11-01

    Interest in low-cost diagnostic devices has recently gained attention, in part due to the rising cost of healthcare and the need to serve populations in resource-limited settings. A major challenge in the development of such devices is the need for hydrophobic barriers to contain polar bio-fluid analytes. Key approaches in lowering the cost in diagnostics have centered on (i) development of low-cost fabrication techniques/processes, (ii) use of affordable materials, or, (iii) minimizing the need for high-tech tools. This communication describes a simple, low-cost, adaptable, and portable method for patterning paper and subsequent use of the patterned paper in diagnostic tests. Our approach generates hydrophobic regions using a ball-point pen filled with a hydrophobizing molecule suspended in a solvent carrier. An empty ball-point pen was filled with a solution of trichloro perfluoroalkyl silane in hexanes (or hexadecane), and the pen used to draw lines on Whatman® chromatography 1 paper. The drawn regions defined the test zones since the trichloro silane reacts with the paper to give a hydrophobic barrier. The formation of the hydrophobic barriers is reaction kinetic and diffusion-limited, ensuring well defined narrow barriers. We performed colorimetric glucose assays and enzyme-linked immuno-sorbent assay (ELISA) using the created test zones. To demonstrate the versatility of this approach, we fabricated multiple devices on a single piece of paper and demonstrated the reproducibility of assays on these devices. The overall cost of devices fabricated by drawing are relatively lower (

  1. Feeling younger and identifying with older adults: Testing two routes to maintaining well-being in the face of age discrimination.

    Directory of Open Access Journals (Sweden)

    Bibiana M Armenta

    Full Text Available Integrating the social identity and aging literatures, this work tested the hypothesis that there are two independent, but simultaneous, responses by which adults transitioning into old age can buffer themselves against age discrimination: an individual response, which entails adopting a younger subjective age when facing discrimination, and a collective response, which involves increasing identification with the group of older adults. In three experimental studies with a total number of 488 older adults (50 to 75 years of age, we manipulated age discrimination in a job application scenario and measured the effects of both responses on perceived health and self-esteem. Statistical analyses include individual study results as well as a meta-analysis on the combined results of the three studies. Findings show consistent evidence only for the individual response, which was in turn associated with well-being. Furthermore, challenging previous research, the two responses (adopting a younger subjective age and increasing group identification were not only theoretically, but also empirically distinct. This research complements prior research by signaling the value of considering both responses to discrimination as complementary rather than mutually exclusive.

  2. The test about blood serum capabilities in maintaining the quality of bull spermatozoa during storage in cep diluent at refrigerator temperature

    Science.gov (United States)

    Ducha, Nur

    2018-03-01

    The storage of spermatozoa requires a protective material from cold shock events and the presence of free radicals.In CEP diluent contain BSA, that was used as spermatozoa protection. This study aim was to examine the ability of cow blood serum in replacing BSA as spermatozoa protective in CEP diluent. Fresh semen from Limousin bull was diluted with CEP diluent + BSA as control, in the treatment group were CEP without BSA, but replaced with 3%, 5%, and 7% serum from fresh blood. Spermatozoa quality tests included motility and viability. The motility of spermatozoa was observed by two people using a light microscope with 200 X magnification at temperature of 37°C. The method of viability observation was eosin nigrosin staining, and observed under a light microscope with 400 X magnification. The results showed that the replacement of cow blood serum with various concentrations gave different effects on the quality of spermatozoa. The best motility and viability of the treatment group was at serum concentrations of 5% after eight days storage and was not significantly different from the controls. The conclusion in this study was cow blood serum can replace BSA in CEP diluents.

  3. Fleet servicing facilities for servicing, maintaining, and testing rail and truck radioactive waste transport systems: functional requirements, technical design concepts and options cost estimates and comparisons

    International Nuclear Information System (INIS)

    Watson, C.D.; Hudson, B.J.; Keith, D.A.; Preston, M.K. Jr.; McCreery, P.N.; Knox, W.; Easterling, E.M.; Lamprey, A.S.; Wiedemann, G.

    1980-05-01

    This is a resource document which examines feasibility design concepts and feasibility studies of a Fleet Servicing Facility (FSF). Such a facility is intended to be used for routine servicing, preventive maintenance, and for performing requalification license compliance tests and inspections, minor repairs, and decontamination of both the transportation casks and their associated rail cars or tractor-trailers. None of the United States' waste handling plants presently receiving radioactive wastes have an on-site FSF, nor is there an existing third party facility providing these services. This situation has caused the General Accounting Office to express concern regarding the quality of waste transport system maintenance once the system is placed into service. Thus, a need is indicated for FSF's, or their equivalent, at various radioactive materials receiving sites. In this report, three forms of FSF's solely for spent fuel transport systems were examined: independent, integrated, and colocated. The independent concept was already the subject of a detailed report and is extensively referenced in this document so that capital cost comparisons of the three concepts could be made. These facilities probably could service high-level, intermediate-level, low-level, or other waste transportation systems with minor modification, but this study did not include any system other than spent fuel. Both the Integrated and Colocated concepts were assumed to be associated with some radioactive materials handling facility such as an AFR repository

  4. Upgrade of a UV-VIS-NIR imaging spectrometer for the coastal ocean observation: concept, design, fabrication, and test of prototype.

    Science.gov (United States)

    Yu, Lei

    2017-06-26

    A novel UV-VIS-NIR imaging spectrometer prototype has been presented for the remote sensing of the coastal ocean by air. The concept is proposed for the needs of the observation. An advanced design has been demonstrated based on the Dyson spectrometer in details. The analysis and tests present excellent optical performances in the spectral broadband, easy and low cost fabrication and alignment, low inherent stray light, and high signal to noise ratio. The research provides an easy method for the coastal ocean observation.

  5. Long-Term Carbon Injection Field Test for 90% Mercury Removal for a PRB Unit a Spray Dryer and Fabric Filter

    Energy Technology Data Exchange (ETDEWEB)

    Sjostrom, Sharon; Amrhein, Jerry

    2009-04-30

    The power industry in the U.S. is faced with meeting regulations to reduce the emissions of mercury compounds from coal-fired plants. Injecting a sorbent such as powdered activated carbon (PAC) into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. The purpose of this test program was to evaluate the long-term mercury removal capability, long-term mercury emissions variability, and operating and maintenance (O&M) costs associated with sorbent injection on a configuration being considered for many new plants. Testing was conducted by ADA Environmental Solutions (ADA) at Rocky Mountain Power’s (RMP) Hardin Station through funding provided by DOE/NETL, RMP, and other industry partners. The Hardin Station is a new plant rated at 121 MW gross that was first brought online in April of 2006. Hardin fires a Powder River Basin (PRB) coal and is configured with selective catalytic reduction (SCR) for NOx control, a spray dryer absorber (SDA) for SO2 control, and a fabric filter (FF) for particulate control. Based upon previous testing at PRB sites with SCRs, very little additional mercury oxidation from the SCR was expected at Hardin. In addition, based upon results from DOE/NETL Phase II Round I testing at Holcomb Station and results from similarly configured sites, low native mercury removal was expected across the SDA and FF. The main goal of this project was met—sorbent injection was used to economically and effectively achieve 90% mercury control as measured from the air heater (AH) outlet to the stack for a period of ten months. This goal was achieved with DARCO® Hg-LH, Calgon FLUEPAC®-MC PLUS and ADA Power PAC PREMIUM brominated activated carbons at nominal loadings of 1.5–2.5 lb/MMacf. An economic analysis determined the twenty-year levelized cost to be 0.87 mills/kW-hr, or $15,000/lb Hg removed. No detrimental effects on other equipment or plant operations were observed. The

  6. Seamless service: maintaining momentum.

    Science.gov (United States)

    Grinstead, N; Timoney, R

    1994-01-01

    Describes the process used by the Mater Infirmorum Hospital in Belfast in 1992-1994 to achieve high quality care (Seamless Service), motivate staff to deliver and measure performance. Aims of the project include focusing the organization on the customer, improving teamwork and motivation at all levels. After comprehensive data collection from GPs, patients and staff management forums developed a full TQM strategy to gain support and maintain momentum including innovative staff events (every staff member was given the opportunity to attend) where multilevel, multidisciplinary workshops enabled staff to design customer care standards, develop teams and lead customer-driven change.

  7. Gestures maintain spatial imagery.

    Science.gov (United States)

    Wesp, R; Hesse, J; Keutmann, D; Wheaton, K

    2001-01-01

    Recent theories suggest alternatives to the commonly held belief that the sole role of gestures is to communicate meaning directly to listeners. Evidence suggests that gestures may serve a cognitive function for speakers, possibly acting as lexical primes. We observed that participants gestured more often when describing a picture from memory than when the picture was present and that gestures were not influenced by manipulating eye contact of a listener. We argue that spatial imagery serves a short-term memory function during lexical search and that gestures may help maintain spatial images. When spatial imagery is not necessary, as in conditions of direct visual stimulation, reliance on gestures is reduced or eliminated.

  8. Maintainability design guide

    International Nuclear Information System (INIS)

    Pack, R.W.

    1985-01-01

    The Human Factors Design Guide for Maintainability provides guidance for systematically incorporating good human factors techniques into the design of power plants. The guide describes a means of developing a comprehensive program plan to ensure compliance with the human factors approaches specified by the utility. The guide also provides specific recommendations for design practices, with examples, bases, and references. The recommendations are formatted for easy use by nuclear power plant design teams and by utility personnel involved in specification and design review. The guide was developed under EPRI research project RP2166-4 and is currently being published

  9. Fabrication and installment of the hard-wired I and C works for the neutral beam injection test stand of the K-STAR project

    International Nuclear Information System (INIS)

    Jung, Ki Sok; Oh, Byung Hun

    2004-12-01

    Instrumentation and Control(I and C) of the neutral beam injection test stand (NBI-TS) for the K-STAR national fusion research project has been underway since the start of the project to answer the diverse requests arising from the various facets of the development and construction phases of the project. In a parallel effort with the software oriented I and C development, there has been existing an enormous amount of hard-wiring I and C works for the NBI facility to be developed and fabricated in schedule. Circuits and hardwired functions have been designed, tested, fabricated, and finally installed to the relevant parts of the system. Examples of those hard-wired I and C works are related to the vacuum system, gas feeding system, arc detector circuit, ion source monitoring, bending magnet and calorimeter. Another one to be mentioned is the interlock circuitry. One of the interlock circuits are related to the coolant flow failure. The other is the interlock circuit related to the vacuum failure. All of the above mentioned circuitry now constitutes integral parts for the proper operation of the NBI system; details of those hard-wired I and C work are described in this report

  10. Field test of short-notice random inspections for inventory-change verification at a low-enriched-uranium fuel-fabrication plant: Preliminary summary

    International Nuclear Information System (INIS)

    Fishbone, L.G.; Moussalli, G.; Naegele, G.; Ikonomou, P.; Hosoya, M.; Scott, P.; Fager, J.; Sanders, C.; Colwell, D.; Joyner, C.J.

    1994-01-01

    An approach of short-notice random inspections (SNRIs) for inventory-change verification can enhance the effectiveness and efficiency of international safeguards at natural or low-enriched uranium (LEU) fuel fabrication plants. According to this approach, the plant operator declares the contents of nuclear material items before knowing if an inspection will occur to verify them. Additionally, items about which declarations are newly made should remain available for verification for an agreed time. This report details a six-month field test of the feasibility of such SNRIs which took place at the Westinghouse Electric Corporation Commercial Nuclear Fuel Division. Westinghouse personnel made daily declarations about both feed and product items, uranium hexafluoride cylinders and finished fuel assemblies, using a custom-designed computer ''mailbox''. Safeguards inspectors from the IAEA conducted eight SNRIs to verify these declarations. Items from both strata were verified during the SNRIs by means of nondestructive assay equipment. The field test demonstrated the feasibility and practicality of key elements of the SNRI approach for a large LEU fuel fabrication plant

  11. Digital fabrication

    CERN Document Server

    2012-01-01

    The Winter 2012 (vol. 14 no. 3) issue of the Nexus Network Journal features seven original papers dedicated to the theme “Digital Fabrication”. Digital fabrication is changing architecture in fundamental ways in every phase, from concept to artifact. Projects growing out of research in digital fabrication are dependent on software that is entirely surface-oriented in its underlying mathematics. Decisions made during design, prototyping, fabrication and assembly rely on codes, scripts, parameters, operating systems and software, creating the need for teams with multidisciplinary expertise and different skills, from IT to architecture, design, material engineering, and mathematics, among others The papers grew out of a Lisbon symposium hosted by the ISCTE-Instituto Universitario de Lisboa entitled “Digital Fabrication – A State of the Art”. The issue is completed with four other research papers which address different mathematical instruments applied to architecture, including geometric tracing system...

  12. Design, Fabrication and Test Report on a Verification Capsule (05M-06K) for the Control of a Neutron Irradiation Fluence of Specimens in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Choo, K. N.; Kim, B. G.; Kang, Y. H.; Cho, M. S.; Son, J. M.; Shin, Y. T.; Park, S. J.; Choi, M. H.; Lee, D. S.

    2007-02-15

    As a part of a project for a capsule development and utilization for an irradiation test, a verification capsule (05M-06K) was designed, fabricated and tested for the development of new instrumented capsule technology for a more precise control of the irradiation fluence of a specimen, irrespective of the reactor operation condition. The basic structure of the 05M-06K capsule was based on the 04M-22K mock-up capsule which was successfully designed and out-pile tested to confirm the various key technologies necessary for the fluence control of a specimen. 21 square and round shaped specimens made of STS 304 were inserted into the capsule. The capsule was constructed in 5 stages with specimens and an independent electric heater at each stage. Each of the five specimens which were accommodated in the 1st stage (top) of the capsule can be taken out of the HANARO core during a normal reactor operation. The specimen is extracted by a specimen extraction mechanism using a steel wire. During the out-pile test, the temperatures of the specimens were measured by 12 thermocouples installed in the capsule. The capsule was successfully out-pile tested in a single channel test loop. The obtained results will be used for a safety evaluation of the new irradiation capsule for controlling the irradiation fluence of specimens in HANARO.

  13. Fabrication and testing of a 4-node micro-pocket fission detector array for the Kansas State University TRIGA Mk. II research nuclear reactor

    Science.gov (United States)

    Reichenberger, Michael A.; Nichols, Daniel M.; Stevenson, Sarah R.; Swope, Tanner M.; Hilger, Caden W.; Unruh, Troy C.; McGregor, Douglas S.; Roberts, Jeremy A.

    2017-08-01

    Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Micro-Pocket Fission Detectors (MPFDs) have been fabricated and tested previously, but successful testing of these prior detectors was limited to single-node operation with specialized designs. Described in this work is a modular, four-node MPFD array fabricated and tested at Kansas State University (KSU). The four sensor nodes were equally spaced to span the length of the fuel-region of the KSU TRIGA Mk. II research nuclear reactor core. The encapsulated array was filled with argon gas, serving as an ionization medium in the small cavities of the MPFDs. The unified design improved device ruggedness and simplified construction over previous designs. A 0.315-in. (8-mm) penetration in the upper grid plate of the KSU TRIGA Mk. II research nuclear reactor was used to deploy the array between fuel elements in the core. The MPFD array was coupled to an electronic support system which has been developed to support pulse-mode operation. Neutron-induced pulses were observed on all four sensor channels. Stable device operation was confirmed by testing under steady-state reactor conditions. Each of the four sensors in the array responded to changes in reactor power between 10 kWth and full power (750 kWth). Reactor power transients were observed in real-time including positive transients with periods of 5, 15, and 30 s. Finally, manual reactor power oscillations were observed in real-time.

  14. ELIMINATION OF THE CHARACTERIZATION OF DWPF POUR STREAM SAMPLE AND THE GLASS FABRICATION AND TESTING OF THE DWPF SLUDGE BATCH QUALIFICATION SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J.; Peeler, D.; Edwards, T.

    2012-05-11

    A recommendation to eliminate all characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification sample was made by a Six-Sigma team chartered to eliminate non-value-added activities for the Defense Waste Processing Facility (DWPF) sludge batch qualification program and is documented in the report SS-PIP-2006-00030. That recommendation was supported through a technical data review by the Savannah River National Laboratory (SRNL) and is documented in the memorandums SRNL-PSE-2007-00079 and SRNL-PSE-2007-00080. At the time of writing those memorandums, the DWPF was processing sludge-only waste but, has since transitioned to a coupled operation (sludge and salt). The SRNL was recently tasked to perform a similar data review relevant to coupled operations and re-evaluate the previous recommendations. This report evaluates the validity of eliminating the characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification samples based on sludge-only and coupled operations. The pour stream sample has confirmed the DWPF's ability to produce an acceptable waste form from Slurry Mix Evaporator (SME) blending and product composition/durability predictions for the previous sixteen years but, ultimately the pour stream analysis has added minimal value to the DWPF's waste qualification strategy. Similarly, the information gained from the glass fabrication and PCT of the sludge batch qualification sample was determined to add minimal value to the waste qualification strategy since that sample is routinely not representative of the waste composition ultimately processed at the DWPF due to blending and salt processing considerations. Moreover, the qualification process has repeatedly confirmed minimal differences in glass behavior from actual radioactive waste to glasses fabricated from simulants or batch chemicals. In

  15. Elimination Of The Characterization Of DWPF Pour Stream Sample And The Glass Fabrication And Testing Of The DWPF Sludge Batch Qualification Sample

    International Nuclear Information System (INIS)

    Amoroso, J.; Peeler, D.; Edwards, T.

    2012-01-01

    A recommendation to eliminate all characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification sample was made by a Six-Sigma team chartered to eliminate non-value-added activities for the Defense Waste Processing Facility (DWPF) sludge batch qualification program and is documented in the report SS-PIP-2006-00030. That recommendation was supported through a technical data review by the Savannah River National Laboratory (SRNL) and is documented in the memorandums SRNL-PSE-2007-00079 and SRNL-PSE-2007-00080. At the time of writing those memorandums, the DWPF was processing sludge-only waste but, has since transitioned to a coupled operation (sludge and salt). The SRNL was recently tasked to perform a similar data review relevant to coupled operations and re-evaluate the previous recommendations. This report evaluates the validity of eliminating the characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification samples based on sludge-only and coupled operations. The pour stream sample has confirmed the DWPF's ability to produce an acceptable waste form from Slurry Mix Evaporator (SME) blending and product composition/durability predictions for the previous sixteen years but, ultimately the pour stream analysis has added minimal value to the DWPF's waste qualification strategy. Similarly, the information gained from the glass fabrication and PCT of the sludge batch qualification sample was determined to add minimal value to the waste qualification strategy since that sample is routinely not representative of the waste composition ultimately processed at the DWPF due to blending and salt processing considerations. Moreover, the qualification process has repeatedly confirmed minimal differences in glass behavior from actual radioactive waste to glasses fabricated from simulants or batch chemicals. In contrast, the

  16. Developing and maintaining instructor capabilities

    International Nuclear Information System (INIS)

    Flynn, W.P.; Smith, G.

    1985-01-01

    The New York Power Authority, after surveying available courses, decided to develop an in-house instructor training program. Following the principles of the Systems Approach to Training the course embodied the results of a job analysis resulting in a program containing instruction in Educational Philosophy, the Systems Approach to Training, Methods and Media, and Testing. The course content is covered through classroom instruction, on-the-job training, instructor evaluations, and assignments. Instructors completing the program continue to maintain skills with inservice training

  17. Maintaining Relationship Based Procurement

    Directory of Open Access Journals (Sweden)

    Peter Davis

    2012-11-01

    Full Text Available Alliance and relationship projects are increasingin number and represent a large pool of work. Tobe successful relationship style contracts dependon soft-dollar factors, particularly the participants'ability to work together within an agreedframework, generally they are not based on lowbid tendering. Participants should be prepared todo business in an open environment based ontrust and mutually agreed governance. Theresearch evaluates relationship maintenance inthe implementation phase of constructionalliances - a particular derivative of relationshipstyle contracts. To determine the factors thatcontribute to relationship maintenance forty-nineexperienced Australian alliance projectmanagers were interviewed. The main findingswere; the development of relationships early inthe project form building blocks of success fromwhich relationships are maintained and projectvalue added; quality facilitation plays animportant part in relationship maintenance and ahybrid organisation created as a result of alliancedevelopment overcomes destructiveorganisational boundaries. Relationshipmaintenance is integral to alliance project controland failure to formalise it and pay attention toprocess and past outcomes will undermine analliance project's potential for success.

  18. Fabrication and vertical test experience of the European X-ray Free Electron Laser 3.9 GHz superconducting cavities

    Science.gov (United States)

    Pierini, P.; Bertucci, M.; Bosotti, A.; Chen, J. F.; Maiano, C. G.; Michelato, P.; Monaco, L.; Moretti, M.; Pagani, C.; Paparella, R.; Sertore, D.; Vogel, E.

    2017-04-01

    We report the experience of the production, processing and qualification testing of the superconducting radio frequency cavities at 3.9 GHz for the third harmonic system at the European XFEL (EXFEL) injector. The rf structure concept, originally developed for the FLASH FEL facility, was adapted to the new interfaces provided by the EXFEL design and the cavities were procured from a qualified vendor, delivered ready for the testing at the INFN infrastructure. A total of 23 cavities, three prototypes and two batches of 10, have been realized and tested up to specifications.

  19. Aluminum-based one- and two-dimensional micro fin array structures: high-throughput fabrication and heat transfer testing

    International Nuclear Information System (INIS)

    Primeaux, Philip A; Zhang, Bin; Zhang, Xiaoman; Miller, Jacob; Meng, W J; KC, Pratik; Moore, Arden L

    2017-01-01

    Microscale fin array structures were replicated onto surfaces of aluminum 1100 and aluminum 6061 alloy (Al1100/Al6061) sheet metals through room-temperature instrumented roll molding. Aluminum-based micro fin arrays were replicated at room temperature, and the fabrication process is one with high throughput and low cost. One-dimensional (1D) micro fin arrays were made through one-pass rolling, while two-dimensional (2D) micro fin arrays were made by sequential 90° cross rolling with the same roller sleeve. For roll molding of 1D micro fins, fin heights greater than 600 µ m were achieved and were shown to be proportional to the normal load force per feature width. At a given normal load force, the fin height was further shown to scale inversely with the hardness of the sheet metal. For sequential 90° cross rolling, morphologies of roll molded 2D micro fin arrays were examined, which provided clues to understand how plastic deformation occurred under cross rolling conditions. A series of pool boiling experiments on low profile Al micro fin array structures were performed within Novec 7100, a widely used commercial dielectric coolant. Results for both horizontal and vertical surface orientations show that roll molded Al micro fin arrays can increase heat flux at fixed surface temperature as compared to un-patterned Al sheet. The present results further suggest that many factors beyond just increased surface area can influence heat transfer performance, including surface finish and the important multiphase transport mechanisms in and around the fin geometry. These factors must also be considered when designing and optimizing micro fin array structures for heat transfer applications. (paper)

  20. Proceedings of the international meeting on development, fabrication and application of reduced enrichment fuels for research and test reactors

    International Nuclear Information System (INIS)

    1983-08-01

    Separate abstracts were prepared for each of the papers presented in the following areas: (1) Reduced Enrichment Fuels for Research and Test Reactors (RERTR) Program Status; (2) Fuel Development; (3) Fuel Demonstrations; (4) General Topics; and (5) Specific Reactor Applications

  1. 14 CFR 23.605 - Fabrication methods.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fabrication methods. 23.605 Section 23.605... Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a... fabrication method must be substantiated by a test program. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964; 30 FR...

  2. Design, fabrication, and testing of a sodium evaporator for the STM4-120 kinematic Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Rawlinson, K.S.; Adkins, D.R.

    1995-05-01

    This report describes the development and testing of a compact heat-pipe heat exchanger kW(e) designed to transfer thermal energy from hot combustion gases to the heater tubes of a 25-kW(e) Stirling engine. In this system, sodium evaporates from a surface that is heated by a stream of hot gases. The liquid metal then condenses on the heater tubes of a Stirling engine, where energy is transferred to the engine`s helium working fluid. Tests on a prototype unit illustrated that a compact (8 cm {times} 13 cm {times} 16 cm) sodium evaporator can routinely transfer 15 kW(t) of energy at an operating vapor temperature of 760 C. Four of these prototype units were eventually used to power a 25-kW(e) Stirling engine system. Design details and test results from the prototype unit are presented in this report.

  3. The design, fabrication and testing of an iron-core current compensated magnetic channel for cyclotron extraction

    International Nuclear Information System (INIS)

    Laxdale, R.E.; Fong, K.; Houtman, H.

    1994-06-01

    An iron-core current compensated magnetic channel has been built ss part of the TRIUMF 450 MeV H - extraction feasibility project. The channel would operate in the 0.5 T cyclotron field and was designed using the two-dimensional code POISSON. Recent beam tests with the channel installed in the TRIUMF cyclotron confirmed that the electro-mechanical design is reliable and that the effect on the circulating beam is in agreement with calculation. The design and hardware details will be described and the beam test results reported. (author)

  4. Fabrication and Test of a 1 m Long Single-Aperture 11 T Nb$_3$Sn Dipole for LHC Upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Zlobin, A. V. [Fermilab; Andreev, N. [Fermilab; Apollinari, G. [Fermilab; Barzi, E. [Fermilab; Bossert, R. [Fermilab; Chlachidze, G. [Fermilab; DiMarco, J. [Fermilab; Nobrega, F. [Fermilab; Novitski, I. [Fermilab; Turrioni, D. [Fermilab; Velev, G. [Fermilab; Auchmann, B. [CERN; Karppinen, M. [CERN; Rossi, L. [CERN; Smekens, D. [CERN

    2013-06-01

    FNAL and CERN are carrying out a joint R&D program with the goal of building a 5.5-m long twin-aperture Nb$_3$Sn dipole prototype suitable for installation in the LHC. An important part of the program is the development and test of a series of short single-aperture demonstration dipoles with a nominal field of 11 T at the LHC nominal current of 11.85 kA and 20% margin. This paper describes design features and test results of a 1 m long single-aperture Nb3Sn demonstrator dipole.

  5. Drop Weight Device Fabrication and Tests for a Dynamic Material Property of Shock-Absorbing Material and Structure in Transportation Package

    International Nuclear Information System (INIS)

    Choi, Woo Seok; Jeon, Jea Eon; Han, Sang Hyeok; Lee, Sang Hoon; Seo, Ki Seok

    2009-01-01

    A radioactive material transportation package consists of canister and impact limiters. IAEA Safety Standard Series No. TS-R-1 recommends a drop test to evaluate the structural integrity of a transportation package under a hypothetical accident condition. The free drop test of a transportation package from 9 m height simulates one of accident conditions. The transportation package has a potential energy corresponding to 9 m drop height, and this energy changes to a kinetic energy when it impacts on the target. The energy is absorbed by a deformation of shock-absorbing material so that the minimum energy is transferred to canister. Accordingly, the shock-absorbing material is a very important part in transportation package design. Since the data for shock-absorbing material characteristics is acquired by a static test in general, it is quite different to that of dynamic characteristics. And the dynamic characteristics data is hardly found in literature. In this study, a drop weight facility was designed and fabricated which produces an impact speed like that of free drop of 9 m height. Several materials considered for an impact limiter and impact limiter structures were tested by a drop weight facility to acquire a dynamic material characteristics data

  6. Drop Weight Device Fabrication and Tests for a Dynamic Material Property of Shock-Absorbing Material and Structure in Transportation Package

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Woo Seok; Jeon, Jea Eon; Han, Sang Hyeok; Lee, Sang Hoon; Seo, Ki Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    A radioactive material transportation package consists of canister and impact limiters. IAEA Safety Standard Series No. TS-R-1 recommends a drop test to evaluate the structural integrity of a transportation package under a hypothetical accident condition. The free drop test of a transportation package from 9 m height simulates one of accident conditions. The transportation package has a potential energy corresponding to 9 m drop height, and this energy changes to a kinetic energy when it impacts on the target. The energy is absorbed by a deformation of shock-absorbing material so that the minimum energy is transferred to canister. Accordingly, the shock-absorbing material is a very important part in transportation package design. Since the data for shock-absorbing material characteristics is acquired by a static test in general, it is quite different to that of dynamic characteristics. And the dynamic characteristics data is hardly found in literature. In this study, a drop weight facility was designed and fabricated which produces an impact speed like that of free drop of 9 m height. Several materials considered for an impact limiter and impact limiter structures were tested by a drop weight facility to acquire a dynamic material characteristics data.

  7. Design, Fabrication, Installation and Commissioning of the Helium Refrigeration system Supporting Superconducting Radio Frequency Testing at Facility for Rare Isotope Beams at Michigan State University

    Science.gov (United States)

    Casagrande, F.; Fila, A.; Nguyen, C.; Tatsumoto, H.

    2017-12-01

    The Facility for Rare Isotope Beams (FRIB) will be a scientific user facility for the Office of Nuclear Physics in the U.S. Department of Energy Office of Science (DOE-SC). The FRIB linear accelerator (LINAC) will be comprised of cryomodules each with multiple Superconducting Radio Frequency (SRF) cavities operating at 2 K. A helium refrigeration system was designed, fabricated, installed and commissioned in the SRF high bay building to test and certify these cavities and cryomodules before installation in the FRIB LINAC tunnel. The helium refrigeration system includes a helium refrigerator which has nominal capacity of 900 W at 4 K, 5000 L liquid helium storage Dewar, helium gas storage, two room temperature vacuum pumps capable of 2.5 g/s each for 2 K testing, purifier, purifier recovery compressor, and the distribution system for liquid nitrogen and helium. The helium refrigeration system is now operational supporting three below grade cavity testing Dewars and one cryomodule testing bunker meeting the required throughput of 1 cavity per day.

  8. NSRR experiment with un-irradiated uranium-zirconium hydride fuel. Design, fabrication process and inspection data of test fuel rod

    Energy Technology Data Exchange (ETDEWEB)

    Sasajima, Hideo; Fuketa, Toyoshi; Ishijima, Kiyomi; Kuroha, Hiroshi; Ikeda, Yoshikazu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Aizawa, Keiichi

    1998-08-01

    An experiment plan is progressing in the Nuclear Safety Research Reactor (NSRR) to perform pulse-irradiation with uranium-zirconium hydride (U-ZrH{sub x}) fuel. This fuel is widely used in the training research and isotope production reactor of GA (TRIGA). The objectives of the experiment are to determine the fuel rod failure threshold and to investigate fuel behavior under simulated reactivity initiated accident (RIA) conditions. This report summarizes design, fabrication process and inspection data of the test fuel rods before pulse-irradiation. The experiment with U-ZrH{sub x} fuel will realize precise safety evaluation, and improve the TRIGA reactor performance. The data to be obtained in this program will also contribute development of next-generation TRIGA reactor and its safety evaluation. (author)

  9. Nondestructive testing for microstructural characterization in 9Cr-1Mo ferritic steel towards assessment of fabrication quality and in-service degradation

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, T.; Rao, K.B.S.; Raj, Baldev [Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    1999-07-01

    The paper discusses the usefulness of non destructive testing for microstructural characterization in 9Cr-1Mo ferritic steel. Ultrasonic velocity and attenuation measurements and spectral analysis have been used in a complementary way for characterizing Ac{sub 1} and Ac{sub 3} temperatures, amount of martensite and ferrite, dissolution of V{sub 4}C{sub 3} and NbC and formation of {delta}-ferrite. The microstructural degradation occurring due to thermal ageing and creep has also been studied by ultrasonic velocity measurements. Magnetic Barkhausen noise technique has been used for estimating the extent of various regions in heat affected zone (HAZ) of 9Cr-1Mo ferritic steel weldment. The same technique has been used for the assessment of low cycle fatigue damage in 9Cr-1Mo steel. The study establishes that non destructive methods can be used for the assessment of fabrication quality and in service degradation of the components. (author)

  10. Maintaining Web Cache Coherency

    Directory of Open Access Journals (Sweden)

    2000-01-01

    Full Text Available Document coherency is a challenging problem for Web caching. Once the documents are cached throughout the Internet, it is often difficult to keep them coherent with the origin document without generating a new traffic that could increase the traffic on the international backbone and overload the popular servers. Several solutions have been proposed to solve this problem, among them two categories have been widely discussed: the strong document coherency and the weak document coherency. The cost and the efficiency of the two categories are still a controversial issue, while in some studies the strong coherency is far too expensive to be used in the Web context, in other studies it could be maintained at a low cost. The accuracy of these analysis is depending very much on how the document updating process is approximated. In this study, we compare some of the coherence methods proposed for Web caching. Among other points, we study the side effects of these methods on the Internet traffic. The ultimate goal is to study the cache behavior under several conditions, which will cover some of the factors that play an important role in the Web cache performance evaluation and quantify their impact on the simulation accuracy. The results presented in this study show indeed some differences in the outcome of the simulation of a Web cache depending on the workload being used, and the probability distribution used to approximate updates on the cached documents. Each experiment shows two case studies that outline the impact of the considered parameter on the performance of the cache.

  11. ADAS Update and Maintainability

    Science.gov (United States)

    Watson, Leela R.

    2010-01-01

    Since 2000, both the National Weather Service Melbourne (NWS MLB) and the Spaceflight Meteorology Group (SMG) have used a local data integration system (LOIS) as part of their forecast and warning operations. The original LOIS was developed by the Applied Meteorology Unit (AMU) in 1998 (Manobianco and Case 1998) and has undergone subsequent improvements. Each has benefited from three-dimensional (3-D) analyses that are delivered to forecasters every 15 minutes across the peninsula of Florida. The intent is to generate products that enhance short-range weather forecasts issued in support of NWS MLB and SMG operational requirements within East Central Florida. The current LDIS uses the Advanced Regional Prediction System (ARPS) Data Analysis System (AD AS) package as its core, which integrates a wide variety of national, regional, and local observational data sets. It assimilates all available real-time data within its domain and is run at a finer spatial and temporal resolution than current national or regional-scale analysis packages. As such, it provides local forecasters with a more comprehensive understanding of evolving fine-scale weather features. Over the years, the LDIS has become problematic to maintain since it depends on AMU-developed shell scripts that were written for an earlier version of the ADAS software. The goals of this task were to update the NWS MLB/SMG LDIS with the latest version of ADAS, incorporate new sources of observational data, and upgrade and modify the AMU-developed shell scripts written to govern the system. In addition, the previously developed ADAS graphical user interface (GUI) was updated. Operationally, these upgrades will result in more accurate depictions of the current local environment to help with short-range weather forecasting applications, while also offering an improved initialization for local versions of the Weather Research and Forecasting (WRF) model used by both groups.

  12. Understanding core conductor fabrics

    International Nuclear Information System (INIS)

    Swenson, D E

    2011-01-01

    ESD Association standard test method ANSI/ESD STM2.1 - Garments (STM2.1), provides electrical resistance test procedures that are applicable for materials and garments that have surface conductive or surface dissipative properties. As has been reported in other papers over the past several years 1 fabrics are now used in many industries for electrostatic control purposes that do not have surface conductive properties and therefore cannot be evaluated using the procedures in STM2.1 2 . A study was conducted to compare surface conductive fabrics with samples of core conductor fibre based fabrics in order to determine differences and similarities with regards to various electrostatic properties. This work will be used to establish a new work item proposal within WG-2, Garments, in the ESD Association Standards Committee in the USA.

  13. Out-of-pile demonstration test of HTTR hydrogen production system structure and fabrication technology of steam reformer. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Yoshiyuki; Ouchi, Yoshihiro; Fujisaki, Katsuo; Kato, Michio; Uno, Hisao; Hayashi, Koji; Aita, Hideki [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1999-10-01

    A hydrogen production system by steam reforming of natural gas, chemical reaction; CH{sub 4}+H{sub 2}O = 3H{sub 2}+CO, is to be the first heat utilization system of the HTTR. Prior to coupling of the steam reforming system with the HTTR, an out-of-pile test facility is presently under construction in order to confirm safety, controllability and performance of the steam reforming system under simulated operational conditions of the HTTR hydrogen production system. The out-of-pile test facility, using an electric heater as a reactor substitute, simulates key components downstream an intermediate heat exchanger of the HTTR hydrogen production system on a scale of 1 to 30 with a hydrogen production rate of 110 Nm{sup 3}/h. A steam reformer (SR) is a key component to produce hydrogen by steam reforming of natural gas. A bayonet-type catalyst tube was applied to the SR of the out-of-pile test facility in order to enhance the heat utilization rate. Also to promote heat transfer, the thickness of the catalyst tube should be decreased to 10 mm while augmenting heat transfer by fins formed on the outer surface of the catalyst tube. Therefore, the catalyst tube was designed on the basis of pressure difference between helium and process gases instead of total pressure of them. This design method was authorized for the first time in Japan. Furthermore, a function of explosion proof was applied to the SR because it contains inflammable gas and electric heater. This report describes the structure of the SR as well as the authorization both of the design method of the catalyst tube and the explosion proof function of the SR. (author)

  14. Out-of-pile demonstration test of HTTR hydrogen production system structure and fabrication technology of steam reformer. Contract research

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Ouchi, Yoshihiro; Fujisaki, Katsuo; Kato, Michio; Uno, Hisao; Hayashi, Koji; Aita, Hideki

    1999-10-01

    A hydrogen production system by steam reforming of natural gas, chemical reaction; CH 4 +H 2 O = 3H 2 +CO, is to be the first heat utilization system of the HTTR. Prior to coupling of the steam reforming system with the HTTR, an out-of-pile test facility is presently under construction in order to confirm safety, controllability and performance of the steam reforming system under simulated operational conditions of the HTTR hydrogen production system. The out-of-pile test facility, using an electric heater as a reactor substitute, simulates key components downstream an intermediate heat exchanger of the HTTR hydrogen production system on a scale of 1 to 30 with a hydrogen production rate of 110 Nm 3 /h. A steam reformer (SR) is a key component to produce hydrogen by steam reforming of natural gas. A bayonet-type catalyst tube was applied to the SR of the out-of-pile test facility in order to enhance the heat utilization rate. Also to promote heat transfer, the thickness of the catalyst tube should be decreased to 10 mm while augmenting heat transfer by fins formed on the outer surface of the catalyst tube. Therefore, the catalyst tube was designed on the basis of pressure difference between helium and process gases instead of total pressure of them. This design method was authorized for the first time in Japan. Furthermore, a function of explosion proof was applied to the SR because it contains inflammable gas and electric heater. This report describes the structure of the SR as well as the authorization both of the design method of the catalyst tube and the explosion proof function of the SR. (author)

  15. Design, Fabrication and Testing of Medium-Beta 650 MHz SRF Cavity Prototypes for Project-X

    International Nuclear Information System (INIS)

    Marhauser, F.; Clemens, W.A.; Henry, J.; Kneisel, P.; Martin, R.; Rimmer, R.A.; Slack, G.; Turlington, L.; Williams, R.S.

    2011-01-01

    A new type of superconducting radio frequency (SRF) cavity shape with a shallow equator dome to reduce electron impact energies for suppressing multipacting barriers has been proposed. The shape is in consideration for the first time in the framework of Project-X to design a potential multi-cell cavity candidate for the medium-beta section of the SRF proton CW linac operating at 650 MHz. Rationales covering the design of the multi-cell cavity, the manufacture, post-processing and high power testing of two single-cell prototypes are presented.

  16. Fabrication and testing of a CoNiCu/Cu CPP-GMR nanowire-based microfluidic biosensor

    International Nuclear Information System (INIS)

    Bellamkonda, Ramya; John, Tom; Mathew, Bobby; DeCoster, Mark; Hegab, Hisham; Davis, Despina

    2010-01-01

    Giant magneto resistance (GMR)-based microfluidic biosensors are used in applications involving the detection, analysis, enumeration and characterization of magnetic nano-particles attached to biological mediums such as antibodies and DNA. Here we introduce a novel multilayered CoNiCu/Cu nanowire GMR-based microfluidic biosensor. The current perpendicular to the plane of multilayers (CPP)-nanowires GMR was used as the core sensing material in the biosensor which responds to magnetic fields depending on the concentration and the flow velocity of bio-nano-magnetic fluids. The device was tested with different control solutions such as DI-water, mineral oil, phosphate buffered saline (PBS), ferrofluid, polystyrene superparamagnetic beads (PSB) and Dynabeads sheep anti-rabbit IgG. The nanowire array resistance decreased with an increase in the ferrofluid concentration, and a maximum 15.8% relative GMR was observed for the undiluted ferrofluid. The sensor was also responding differently to various ferrofluid flow rates. The GMR device showed variation in the output signal when the PSB and Dynabeads of different dilutions were pumped through it. When the tests were performed with pulsing potentials (150 mV and 200 mV), an increased GMR response was identified at higher voltages for PSB and Dynabeads sheep anti-rabbit IgG.

  17. Out-of-plane buckling of pantographic fabrics in displacement-controlled shear tests: experimental results and model validation

    Science.gov (United States)

    Barchiesi, Emilio; Ganzosch, Gregor; Liebold, Christian; Placidi, Luca; Grygoruk, Roman; Müller, Wolfgang H.

    2018-01-01

    Due to the latest advancements in 3D printing technology and rapid prototyping techniques, the production of materials with complex geometries has become more affordable than ever. Pantographic structures, because of their attractive features, both in dynamics and statics and both in elastic and inelastic deformation regimes, deserve to be thoroughly investigated with experimental and theoretical tools. Herein, experimental results relative to displacement-controlled large deformation shear loading tests of pantographic structures are reported. In particular, five differently sized samples are analyzed up to first rupture. Results show that the deformation behavior is strongly nonlinear, and the structures are capable of undergoing large elastic deformations without reaching complete failure. Finally, a cutting edge model is validated by means of these experimental results.

  18. Fabrication and characterization of MCC [Materials Characterization Center] approved testing material---ATM-2, ATM-3, and ATM-4 glasses

    International Nuclear Information System (INIS)

    Wald, J.W.

    1988-03-01

    Materials Characterization Center glasses ATM-2, ATM-3, and ATM-4 are designed to simulate high-level waste glasses that are likely to result from the reprocessing of commercial nuclear reactor fuels. The three Approved Testing Materials (ATMs) are borosilicate glasses based upon the MCC-76-68 glass composition. One radioisotope was added to form each ATM. The radioisotopes added to form ATM-2, ATM-3, and ATM-4 were 241 Am, 237 Np, and 239 Pu, respectively. Each of the ATM lots was produced in a nominal lot size of 450 g from feed stock melted in a nitrogen-atmosphere glove box at 1200/degree/C in a platinum crucible. Each ATM was then cast into bars. Analyzed compositions of these glasses are listed. The nonradioactive elements were analyzed by inductively coupled argon plasma atomic emission spectroscopy (ICP), and the radioisotope analyses were done by alpha energy analysis. Results are discussed. 7 refs., 3 figs., 5 tabs

  19. Bioresorbable scaffolds for bone tissue engineering: optimal design, fabrication, mechanical testing and scale-size effects analysis.

    Science.gov (United States)

    Coelho, Pedro G; Hollister, Scott J; Flanagan, Colleen L; Fernandes, Paulo R

    2015-03-01

    Bone scaffolds for tissue regeneration require an optimal trade-off between biological and mechanical criteria. Optimal designs may be obtained using topology optimization (homogenization approach) and prototypes produced using additive manufacturing techniques. However, the process from design to manufacture remains a research challenge and will be a requirement of FDA design controls to engineering scaffolds. This work investigates how the design to manufacture chain affects the reproducibility of complex optimized design characteristics in the manufactured product. The design and prototypes are analyzed taking into account the computational assumptions and the final mechanical properties determined through mechanical tests. The scaffold is an assembly of unit-cells, and thus scale size effects on the mechanical response considering finite periodicity are investigated and compared with the predictions from the homogenization method which assumes in the limit infinitely repeated unit cells. Results show that a limited number of unit-cells (3-5 repeated on a side) introduce some scale-effects but the discrepancies are below 10%. Higher discrepancies are found when comparing the experimental data to numerical simulations due to differences between the manufactured and designed scaffold feature shapes and sizes as well as micro-porosities introduced by the manufacturing process. However good regression correlations (R(2) > 0.85) were found between numerical and experimental values, with slopes close to 1 for 2 out of 3 designs. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. Design, fabrication, and operation of capsules for the irradiation testing of candidate advanced space reactor fuel pins

    International Nuclear Information System (INIS)

    Thoms, K.R.

    1975-04-01

    Fuel irradiation experiments were designed, built, and operated to test uranium mononitride (UN) fuel clad in tungsten-lined T-111 (Ta-8 percent W-2 percent Hf) and uranium dioxide (UO 2 ) fuel clad in both tungsten-lined T-111 and tungsten-lined Nb-1 percent Zr. A total of nine fuel pins was irradiated (four containing porous UN, two containing dense, nonporous UN, and three containing dense UO 2 ) at average cladding temperatures ranging from 931 to 1015 0 C. The UN experiments, capsules UN-4 and -5, operated for 10,480 and 10,037 hr, respectively, at an average linear heat generation rate of 10 kW/ft. The UO 2 experiment, capsule UN-6, operated for 8333 hr at an average linear heat generation rate of approximately 5 kW/ft. Following irradiation, the nine fuel pins were removed from their capsules, externally examined, and sent to the NASA Plum Brook Facility for more detailed postirradiation examination. During visual examination, it was discovered that the cladding of the fuel pin containing dense UN in each of capsules UN-4 and -5 had failed, exposing the UN fuel to the NaK in which the pins were submerged and permitting the release of fission gas from the failed pins. A rough analysis of the fission gas seen in samples of the gas in the fuel pin region indicated fission gas release-to-birth rates from these fuel pins in the range of 10 -5 . (U.S.)

  1. Fabrication of superconducting niobium radio frequency structures

    International Nuclear Information System (INIS)

    Kirchgessner, J.; Amato, J.; Brawley, J.

    1983-01-01

    During the last several years a variety of superconducting radio frequency structures have been designed, fabricated and tested. The diverse structures and fabrication techniques are described. This paper is a description of the authors' experiences in this field

  2. Environmental concerns in regarding a materials test reactor fuel fabrication facility at the Nuclear and Energy Research Institute - IPEN

    International Nuclear Information System (INIS)

    Santos, Glaucia R.T.; Durazzo, Michelangelo; Carvalho, Elita F.U.; Riella, Humberto G.

    2008-01-01

    The aim of the industrial activities success, front to a more and more informed and demanding society and to a more and more competitive market demands an environmental administration policy which doesn't limit itself to assist the legislation but anticipate and prevent, in a responsible way, possible damages to the environment. One of the main programs of the Institute of Energetic and Nuclear Research of the national Commission of Nuclear Energy located in Brazil, through the Center of Nuclear Fuel -CCN- is to manufacture MTR-type fuel elements using low-enrichment uranium (20 wt % 235 U), to supply its IEA-R1 research reactor. Integrated in this program, this work aims at well developing and assuring a methodology to implant an environment, health and safety policy, foreseeing its management with the use of detailed data reports and through the adoption of new tools for improving the management, in order to fulfil the applicable legislation and accomplish all the environmental, operational and works aspects. The applied methodology for the effluents management comprises different aspects, including the specific environmental legislation of a country, main available effluents treatment techniques, process flow analyses from raw materials and intakes to products, generated effluents, residuals and emissions. Data collections were accomplished for points gathering and tests characterization, classification and compatibility of the generated effluents and their eventual environmental impacts.This study aims to implant the Sustainability Concept in order to guarantee access to financial resources, allowing cost reduction, maximizing long-term profits, preventing and reducing environmental accident risks and stimulating both the attraction and the keeping of a motivated manpower. Work on this project has already started and, even though many technical actions have not still ended, the results have being extremely valuable. These results can already give to CCN

  3. Environmental concerns regarding a materials test reactor fuel fabrication facility at the Nuclear and Energy Research Institute - IPEN

    International Nuclear Information System (INIS)

    Santos, G. R. T.; Durazzo, M.; Carvalho, E. F. U.; Riella, H. G.

    2008-01-01

    The aim of the industrial activities success, front to a more and more informed and demanding society and to a more and more competitive market demands an environmental administration policy which doesn't limit itself to assist the legislation but anticipate and prevent, in a responsible way, possible damages to the environment. One of the maim programs of the Institute of Energetic and Nuclear Research of the national Commission of Nuclear Energy located in Brazil, through the Center of Nuclear Fuel - CCN - is to manufacture MTR-type fuel elements using low-enrichment uranium (20 wt% 2 35U), to supply its IEA-RI research reactor. Integrated in this program, this work aims at well developing and assuring a methodology to implant an environment, health and safety policy, foreseeing its management with the use of detailed data reports and through the adoption of new tools for improving the management, in order to fulfil the applicable legislation and accomplish all the environmental, operational and works aspects. The applied methodology for the effluents management comprises different aspects, including the specific environmental legislation of a country, main available effluents treatment techniques, process flow analyses from raw materials and intakes to products, generated effluents, residuals and emissions. Data collections were accomplished for points gathering and tests characterization, classification and compatibility of the generated effluents and their eventual environmental impacts. This study aims to implant the Sustainable Concept in order to guarantee access to financial resources, allowing cost reduction, maximizing long-term profits, preventing and reducing environmental accident risks and stimulating both the attraction and the keeping of a motivated manpower. Work on this project has already started and, even though many technical actions have not still ended, the results have being extremely valuable. These results can already give to CCN

  4. Characterization and mechanical testing of alumina-based nanocomposites reinforced with niobium and/or carbon nanotubes fabricated by spark plasma sintering

    International Nuclear Information System (INIS)

    Thomson, K.E.; Jiang, D.; Yao, W.; Ritchie, R.O.; Mukherjee, A.K.

    2012-01-01

    Alumina-based nanocomposites reinforced with niobium and/or carbon nanotubes (CNT) were fabricated by advanced powder processing techniques and consolidated by spark plasma sintering. Raman spectroscopy revealed that single-walled carbon nanotubes (SWCNT) begin to break down at sintering temperatures >1150 °C. Nuclear magnetic resonance showed that, although thermodynamically unlikely, no Al 4 C 3 formed in the CNT–alumina nanocomposites, such that the nanocomposite can be considered as purely a physical mixture with no chemical bond formed between the nanotubes and ceramic matrix. In addition, in situ single-edge notched bend tests were conducted on niobium and/or CNT-reinforced alumina nanocomposites to assess their toughness. Despite the absence of subcritical crack growth, average fracture toughness values of 6.1 and 3.3 MPa m 1/2 were measured for 10 vol.% Nb and 10 vol.% Nb–5 vol.% SWCNT–alumina, respectively. Corresponding tests for the alumina nanocomposites containing 5 vol.% SWCNT, 10 vol.% SWCNT, 5 vol.% double-walled-CNT and 10 vol.% Nb yielded average fracture toughnesses of 3.0, 2.8, 3.3 and 4.0 MPa m 1/2 , respectively. It appears that the reason for not observing improvement in fracture toughness of CNT-reinforced samples is because of either damage to CNTs or possibly non-optimal interfacial bonding between CNT-alumina.

  5. Maintaining Life-saving Testing for Patients With Infectious Diseases: Infectious Diseases Society of America, American Society for Microbiology, and Pan American Society for Clinical Virology Recommendations on the Regulation of Laboratory-developed Tests.

    Science.gov (United States)

    Caliendo, Angela M; Couturier, Marc R; Ginocchio, Christine C; Hanson, Kimberly E; Miller, Melissa B; Walker, Kimberly E; Frank, Gregory M

    2016-07-15

    In 2014, the US Food and Drug Administration (FDA) proposed to regulate laboratory-developed tests (LDTs)-diagnostics designed, manufactured, and used within a single laboratory. The Infectious Diseases Society of America, the American Society for Microbiology, and the Pan American Society for Clinical Virology recognize that the FDA is committed to protecting patients. However, our societies are concerned that the proposed regulations will limit access to testing and negatively impact infectious diseases (ID) LDTs. In this joint commentary, our societies discuss why LDTs are critical for ID patient care, hospital infection control, and public health responses. We also highlight how the FDA's proposed regulation of LDTs could impair patient access to life-saving tests and stifle innovation in ID diagnostics. Finally, our societies make specific recommendations for the FDA's consideration to reduce the burden of the proposed new rules on clinical laboratories and protect patients' access to state-of-the art, quality LDTs. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  6. Simple process to fabricate nitride alloy powders

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kim, Dong-Joo; Kim, Keon Sik; Rhee, Young Woo; Oh, Jang-Soo; Kim, Jong Hun; Koo, Yang Hyun

    2013-01-01

    alloy powders were obtained. Two types of the simple thermal treatment procedures were tested to fabricate nitride powders. First, the procedure is a direct nitriding process in which the metal powders were annealed at 1000 deg. C under nitrogen gas and then further annealed at 1500 deg. C under hydrogen containing Ar gas atmosphere. It was revealed that the particles were fragmented to smaller particles during the annealing. The XRD results showed that the uranium metal converted to UN 2 phase during the annealing at 1000 deg. C and then decomposed to UN phase during the further annealing at 1500 deg. C. Observed fragmentation and cracking of particles were caused by sequential volume changes of expansion and contraction which were accompanied by the formation and decomposition of uranium nitrides. Although uranium nitride powders were successfully fabricated during the simple nitriding process, it seems that milling of the obtained powder might be necessary to fabricate sintered nitride fuel pellets. In order to fabricate finer nitride powders, a nitriding procedure has been modified. In the modified process, the particles were heat-treated at 250 deg. C in H 2 before nitriding. The addition of a hydriding step was effective in obtaining fine uranium nitride powder. In the case of U-10 wt% Zr-alloy, however, only a few large cracks were developed on the particle surface and the particle maintained its size. This result reveals that hydriding and nitriding kinetics or mechanisms of U-10 wt% Zr alloy are quite different from those of U metal

  7. Design, fabrication and irradiation test report on HANARO instrumented capsule (05M-07U) for the researches of universities in 2005

    Energy Technology Data Exchange (ETDEWEB)

    Choo, K. N.; Kim, B. G.; Kang, Y. H.; Choi, M. H.; Cho, M. S.; Son, J. M.; Choi, M. H.; Shin, Y. T.; Park, S. J.

    2006-09-15

    As a part of the 2005 project for an active utilization of HANARO, an instrumented capsule (05M-07U) was designed, fabricated and irradiated for an irradiation test of various unclear materials under irradiation conditions which was requested by external researchers from universities. The basic structure of the 05M-07U capsule was based on the 00M-01U, 01M-05U, 02M-05U, 03M-06U and 04M-07U capsules which had been successfully irradiated in HANARO as part of the 2000, 2001, 2002, 2003 and 2004 projects. However, because of a limited number of specimens and the budget of one university, the remaining space in the capsule was filled with various KAERI specimens for researches on a nuclear core and SMART materials, and parts of a nuclear fuel assembly of KNFC. Various types of specimens such as tensile, Charpy, TEM, hardness, compression and growth specimens made of Zr 702, Ti and Ni alloys, Zirlo, Inconel, STS 316L and Cr-Mo alloys were placed in the capsule. Especially, this capsule was designed to evaluate the nuclear characteristics of the parts of a nuclear fuel assembly and the Ti tubes in HANARO. The capsule was composed of 5 stages having many kinds of specimens and an independent electric heater at each stage. During the irradiation test, the temperature of the specimens and the thermal/fast neutron fluences were measured by 14 thermocouples and 5 sets of Ni-Ti-Fe neutron fluence monitors installed in the capsule. The capsule was irradiated in the CT test hole of HANARO of a 30MW thermal output at 270 ∼ 400 .deg. C up to a fast neutron fluence of 5.7 x 10{sup 20} (n/cm{sup 2}) (E >1.0MeV). The obtained results will be very valuable for the related research of the users.

  8. Structure and yarn sensor for fabric

    Science.gov (United States)

    Mee, D.K.; Allgood, G.O.; Mooney, L.R.; Duncan, M.G.; Turner, J.C.; Treece, D.A.

    1998-10-20

    A structure and yarn sensor for fabric directly determines pick density in a fabric thereby allowing fabric length and velocity to be calculated from a count of the picks made by the sensor over known time intervals. The structure and yarn sensor is also capable of detecting full length woven defects and fabric. As a result, an inexpensive on-line pick (or course) density measurement can be performed which allows a loom or knitting machine to be adjusted by either manual or automatic means to maintain closer fiber density tolerances. Such a sensor apparatus dramatically reduces fabric production costs and significantly improves fabric consistency and quality for woven or knitted fabric. 13 figs.

  9. Fabrication and Test of a Nb$_{3}$Sn Model Magnet With Ceramic Insulation for the Next Generation Undulator of the LHC

    CERN Document Server

    Elias, N; Dalexandro, N; Giloux, C; Bordini, B; Maccaferri, R

    2010-01-01

    The future run of the Large Hadron Collider with lead ions will require important modifications in the synchrotron radiation profile monitor system, which at present comprises two superconducting undulators wound from Nb-Ti conductor, delivering 5 T in a 60 mm gap, and with a period of 280 mm. Whilst the gap and the nominal field of the future undulators will remain the same, the period shall be 140 mm, which translates to a peak field of over 8 T in the coils and hence requires the use of Nb$_{3}$Sn technology. In this paper the electromagnetic design of the undulator is summarized. We describe the fabrication of a race-track coil wound with a 0.8 mm diameter Nb$_{3}$Sn strand with ceramic insulation. Finally, the results of successful tests made at 4.3 K and 1.9 K in a mirror configuration are presented. 10 T at 4.3 K and 11.5 T at 1.9 K were measured in the yoke gap, thus validating this concept for the future undulator.

  10. Fabricated Elastin.

    Science.gov (United States)

    Yeo, Giselle C; Aghaei-Ghareh-Bolagh, Behnaz; Brackenreg, Edwin P; Hiob, Matti A; Lee, Pearl; Weiss, Anthony S

    2015-11-18

    The mechanical stability, elasticity, inherent bioactivity, and self-assembly properties of elastin make it a highly attractive candidate for the fabrication of versatile biomaterials. The ability to engineer specific peptide sequences derived from elastin allows the precise control of these physicochemical and organizational characteristics, and further broadens the diversity of elastin-based applications. Elastin and elastin-like peptides can also be modified or blended with other natural or synthetic moieties, including peptides, proteins, polysaccharides, and polymers, to augment existing capabilities or confer additional architectural and biofunctional features to compositionally pure materials. Elastin and elastin-based composites have been subjected to diverse fabrication processes, including heating, electrospinning, wet spinning, solvent casting, freeze-drying, and cross-linking, for the manufacture of particles, fibers, gels, tubes, sheets and films. The resulting materials can be tailored to possess specific strength, elasticity, morphology, topography, porosity, wettability, surface charge, and bioactivity. This extraordinary tunability of elastin-based constructs enables their use in a range of biomedical and tissue engineering applications such as targeted drug delivery, cell encapsulation, vascular repair, nerve regeneration, wound healing, and dermal, cartilage, bone, and dental replacement. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Status report, canister fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Claes-Goeran; Eriksson, Peter; Westman, Marika [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Emilsson, Goeran [CSM Materialteknik AB, Linkoeping (Sweden)

    2004-06-01

    The report gives an account of the development of material and fabrication technology for copper canisters with cast inserts during the period from 2000 until the start of 2004. The engineering design of the canister and the choice of materials in the constituent components described in previous status reports have not been significantly changed. In the reference canister, the thickness of the copper shell is 50 mm. Fabrication of individual components with a thinner copper thickness is done for the purpose of gaining experience and evaluating fabrication and inspection methods for such canisters. As a part of the development of cast inserts, computer simulations of the casting processes and techniques used at the foundries have been performed for the purpose of optimizing the material properties. These properties have been evaluated by extensive tensile testing and metallographic inspection of test material taken from discs cut at different points along the length of the inserts. The testing results exhibit a relatively large spread. Low elongation values in certain tensile test specimens are due to the presence of poorly formed graphite, porosities, slag or other casting defects. It is concluded in the report that it will not be possible to avoid some presence of observed defects in castings of this size. In the deep repository, the inserts will be exposed to compressive loading and the observed defects are not critical for strength. An analysis of the strength of the inserts and formulation of relevant material requirements must be based on a statistical approach with probabilistic calculations. This work has been initiated and will be concluded during 2004. An initial verifying compression test of a canister in an isostatic press has indicated considerable overstrength in the structure. Seamless copper tubes are fabricated by means of three methods: extrusion, pierce and draw processing, and forging. It can be concluded that extrusion tests have revealed a

  12. Status report, canister fabrication

    International Nuclear Information System (INIS)

    Andersson, Claes-Goeran; Eriksson, Peter; Westman, Marika; Emilsson, Goeran

    2004-06-01

    The report gives an account of the development of material and fabrication technology for copper canisters with cast inserts during the period from 2000 until the start of 2004. The engineering design of the canister and the choice of materials in the constituent components described in previous status reports have not been significantly changed. In the reference canister, the thickness of the copper shell is 50 mm. Fabrication of individual components with a thinner copper thickness is done for the purpose of gaining experience and evaluating fabrication and inspection methods for such canisters. As a part of the development of cast inserts, computer simulations of the casting processes and techniques used at the foundries have been performed for the purpose of optimizing the material properties. These properties have been evaluated by extensive tensile testing and metallographic inspection of test material taken from discs cut at different points along the length of the inserts. The testing results exhibit a relatively large spread. Low elongation values in certain tensile test specimens are due to the presence of poorly formed graphite, porosities, slag or other casting defects. It is concluded in the report that it will not be possible to avoid some presence of observed defects in castings of this size. In the deep repository, the inserts will be exposed to compressive loading and the observed defects are not critical for strength. An analysis of the strength of the inserts and formulation of relevant material requirements must be based on a statistical approach with probabilistic calculations. This work has been initiated and will be concluded during 2004. An initial verifying compression test of a canister in an isostatic press has indicated considerable overstrength in the structure. Seamless copper tubes are fabricated by means of three methods: extrusion, pierce and draw processing, and forging. It can be concluded that extrusion tests have revealed a

  13. Facile fabrication of a superhydrophobic fabric with mechanical stability and easy-repairability.

    Science.gov (United States)

    Zhu, Xiaotao; Zhang, Zhaozhu; Yang, Jin; Xu, Xianghui; Men, Xuehu; Zhou, Xiaoyan

    2012-08-15

    The poor mechanical stability of superhydrophobic fabrics severely hindered their use in practical applications. Herein, to address this problem, we fabricated a superhydrophobic fabric with both mechanical stability and easy-repairability by a simple method. The mechanical durability of the obtained superhydrophobic fabric was evaluated by finger touching and abrasion with sandpaper. The results show that rough surface textures of the fabric were retained, and the fabric surface still exhibited superhydrophobicity after tests. More importantly, when the fabric lost its superhydrophobicity after a long-time abrasion, it can be easily rendered with superhydrophobicity once more by a regeneration process. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Inspection of NFT-type cask fabrication

    International Nuclear Information System (INIS)

    Takani, M.; Umegaki, O.

    1998-01-01

    NFT-type cask has been developed to transport the high burn-up spent fuel from Japanese nuclear power stations to the reprocessing plant of Japan Nuclear Fuel Limited which is under construction in Rokkasho-mura, Aomori prefecture. NFT placed orders of 53 casks to 5 fabricators in Japan and overseas, and these casks have been fabricated since 1994. There are two types of NFT-type casks for PWR spent fuel and four types of NFT-type cask for BWR spent fuel. These are designed in consideration of the number of spent fuels accommodated into each type of casks and the handling conditions at domestic nuclear power stations. According to Japanese notification, it is required to be confirmed by competent authority that casks are manufactured in accordance with approved designs. Furthermore, additional tests are performed such as through-gauge test for basket and pressure test on the shielding material space to ensure the performance of cask by NFT other than items inspected by the competent authority. In order to enhance maintainability of casks, replacement parts such as bolts and valves are shared as much as possible. (authors)

  15. Improving Mechanical Properties of Molded Silicone Rubber for Soft Robotics Through Fabric Compositing.

    Science.gov (United States)

    Wang, Yue; Gregory, Cherry; Minor, Mark A

    2018-06-01

    Molded silicone rubbers are common in manufacturing of soft robotic parts, but they are often prone to tears, punctures, and tensile failures when strained. In this article, we present a fabric compositing method for improving the mechanical properties of soft robotic parts by creating a fabric/rubber composite that increases the strength and durability of the molded rubber. Comprehensive ASTM material tests evaluating the strength, tear resistance, and puncture resistance are conducted on multiple composites embedded with different fabrics, including polyester, nylon, silk, cotton, rayon, and several blended fabrics. Results show that strong fabrics increase the strength and durability of the composite, valuable in pneumatic soft robotic applications, while elastic fabrics maintain elasticity and enhance tear strength, suitable for robotic skins or soft strain sensors. Two case studies then validate the proposed benefits of the fabric compositing for soft robotic pressure vessel applications and soft strain sensor applications. Evaluations of the fabric/rubber composite samples and devices indicate that such methods are effective for improving mechanical properties of soft robotic parts, resulting in parts that can have customized stiffness, strength, and vastly improved durability.

  16. Shock wave fabricated ceramic-metal nozzles

    NARCIS (Netherlands)

    Carton, E.P.; Stuivinga, M.E.C.; Keizers, H.L.J.; Verbeek, H.J.; Put, P.J. van der

    1999-01-01

    Shock compaction was used in the fabrication of high temperature ceramic-based materials. The materials' development was geared towards the fabrication of nozzles for rocket engines using solid propellants, for which the following metal-ceramic (cermet) materials were fabricated and tested: B4C-Ti

  17. Maintaining Healthy Skin -- Part 2

    Science.gov (United States)

    ... and SCI • Depression and SCI • Taking Care of Pressure Sores • Maintaining Healthy Skin (Part I) • Maintaining Healthy Skin ( ... For information on establishing skin tolerance, see our “Pressure Sores” pamphlet.) Pressure releases in a wheelchair can be ...

  18. AECL's reliability and maintainability program

    International Nuclear Information System (INIS)

    Wolfe, W.A.; Nieuwhof, G.W.E.

    1976-05-01

    AECL's reliability and maintainability program for nuclear generating stations is described. How the various resources of the company are organized to design and construct stations that operate reliably and safely is shown. Reliability and maintainability includes not only special mathematically oriented techniques, but also the technical skills and organizational abilities of the company. (author)

  19. In vivo testing of a biodegradable woven fabric made of bioactive glass fibers and PLGA80--a pilot study in the rabbit.

    Science.gov (United States)

    Alm, Jessica J; Frantzén, Janek P A; Moritz, Niko; Lankinen, Petteri; Tukiainen, Mikko; Kellomäki, Minna; Aro, Hannu T

    2010-05-01

    The purpose of this study was to perform an intra-animal comparison of biodegradable woven fabrics made of bioactive glass (BG) fibers and poly(L-lactide-co-glycolide) 80/20 copolymer (PLGA(80)) fibers or PLGA(80) fibers alone, in surgical stabilization of bone graft. The BG fibers (BG 1-98) were aimed to enhance bone growth at site of bone grafting, whereas the PLGA component was intended to provide structural strength and flexibility to the fabric. Bone formation was analyzed qualitatively by histology and quantitatively by peripheral quantitative computed tomography (pQCT) at 12 weeks. The surgical handling properties of the control PLGA(80) fabric were more favorable. Both fabrics were integrated with the cortical bone surfaces, but BG fibers showed almost complete resorption. There were no signs of adverse local tissue reactions. As a proof of material integration and induced new bone formation, there was a significant increase in bone volume of the operated femurs compared with the contralateral intact bone (25% with BG/PLGA(80) fabric, p < 0.001 and 28% with the control PLGA(80) fabric, p = 0.006). This study failed to demonstrate the previously seen positive effect of BG 1-98 on osteogenesis, probably due to the changed resorption properties of BG in the form of fibers. Therefore, the feasibility and safety of BG as fibers needs to be reevaluated before use in clinical applications. (c) 2010 Wiley Periodicals, Inc.

  20. Maintaining and troubleshooting your 3D printer

    CERN Document Server

    Bell, Charles

    2014-01-01

    Maintaining and Troubleshooting Your 3D Printer by Charles Bell is your guide to keeping your 3D printer running through preventive maintenance, repair, and diagnosing and solving problems in 3D printing. If you've bought or built a 3D printer such as a MakerBot only to be confounded by jagged edges, corner lift, top layers that aren't solid, or any of a myriad of other problems that plague 3D printer enthusiasts, then here is the book to help you get past all that and recapture the joy of creative fabrication. The book also includes valuable tips for builders and those who want to modify the

  1. Secure Automated Fabrication: an overview of remote breeder fuel fabrication

    International Nuclear Information System (INIS)

    Nyman, D.H.; Graham, R.A.

    1983-10-01

    The Secure Automated Fabrication (SAF) line is an automated, remotely controlled breeder fuel pin fabrication process which is to be installed in the Fuels and Materials Examination Facility (FMEF). The FMEF is presently under construction at Hanford and is scheduled for completion in 1984. The SAF line is scheduled for startup in 1987 and will produce mixed uranium-plutonium fuel pins for the Fast Flux Test Facility (FFTF) and the Clinch River Breeder Reactor Plant (CRBRP). The fabrication line and support systems are described

  2. 33 CFR 150.555 - How must cranes be maintained?

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false How must cranes be maintained? 150.555 Section 150.555 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Operations § 150.555 How must cranes be maintained? Cranes must be operated, maintained, and tested in...

  3. An Ethology of Urban Fabric(s)

    DEFF Research Database (Denmark)

    Fritsch, Jonas; Thomsen, Bodil Marie Stavning

    2014-01-01

    The article explores a non-metaphorical understanding of urban fabric(s), shifting the attention from a bird’s eye perspective to the actual, textural manifestations of a variety of urban fabric(s) to be studied in their real, processual, ecological and ethological complexity within urban life. We...... effectuate this move by bringing into resonance a range of intersecting fields that all deal with urban fabric(s) in complementary ways (interaction design and urban design activism, fashion, cultural theory, philosophy, urban computing)....

  4. Project Plan Remote Target Fabrication Refurbishment Project

    International Nuclear Information System (INIS)

    Bell, Gary L.; Taylor, Robin D.

    2009-01-01

    In early FY2009, the DOE Office of Science - Nuclear Physics Program reinstated a program for continued production of 252 Cf and other transcurium isotopes at the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). The FY2009 major elements of the workscope are as follows: (1) Recovery and processing of seven transuranium element targets undergoing irradiation at the High Flux Isotope Reactor (HFIR) at ORNL; (2) Development of a plan to manufacture new targets for irradiation beginning in early- to mid-FY10 to supply irradiated targets for processing Campaign 75 (TRU75); and (3) Refurbishment of the target manufacturing equipment to allow new target manufacture in early FY10 The 252 Cf product from processing Campaign 74 (recently processed and currently shipping to customers) is expected to supply the domestic demands for a period of approximately two years. Therefore it is essential that new targets be introduced for irradiation by the second quarter of FY10 (HFIR cycle 427) to maintain supply of 252 Cf; the average irradiation period is ∼10 HFIR cycles, requiring about 1.5 calendar years. The strategy for continued production of 252 Cf depends upon repairing and refurbishing the existing pellet and target fabrication equipment for one additional target production campaign. This equipment dates from the mid-1960s to the late 1980s, and during the last target fabrication campaign in 2005- 2006, a number of component failures and operations difficulties were encountered. It is expected that following the target fabrication and acceptance testing of the targets that will supply material for processing Campaign 75 a comprehensive upgrade and replacement of the remote hot-cell equipment will be required prior to subsequent campaigns. Such a major refit could start in early FY 2011 and would take about 2 years to complete. Scope and cost estimates for the repairs described herein were developed, and authorization for the work

  5. Design, fabrication, installation and shielding integrity testing of source storage container for automatic source movement system used in TLD calibration facility

    International Nuclear Information System (INIS)

    Subramanian, V.; Baskar, S.; Annalakshmi, O.; Jose, M.T.; Jayshree, C.P.; Choudry, Shreelatha

    2012-01-01

    A state-of-art TLD laboratory has been commissioned in January 2000 at Radiological Safety Division of Indira Gandhi Centre for Atomic Research (IGCAR). The laboratory provides personnel monitoring service to 2000 occupational workers from Indira Gandhi Centre for Atomic Research and Bhabha Atomic Research Centre facilities. The laboratory has been accredited by the Radiation Safety Systems Division (RSSD), Bhabha Atomic Research Centre (BARC) since year 2002. The laboratory has exclusive facility for the calibration of the TLD cards. As apart of accreditation procedure and taking into account of geometry effect, the dose rate at the card position is determined by the accreditation authorities by using graphite chamber (secondary or national standard instrument) and often re estimated by a condenser R meter (M/s Victoreen, Germany) by our laboratory. As per the regulatory requirement, the exposure protocols should be automated. Towards this an automatic source movement system has been augmented in the calibration facility. By using the system, the source will be brought to the irradiation position by pneumatically and exposures will be terminated by counter, timer and triggering system. To accomplish this task a lead container has been designed, fabricated and mounted at the beneath of the calibration table for the storage of source. As per the automation process, a lead container for the source storage has been designed and installed beneath to the Calibration Table. The container was designed to hold a 3Ci 137 Cs source, but present activity of the source is 1.2Ci. Hence, the shielding integrity was tested with higher active source (1.7Ci 60 Co). The dose rate measured outside on the circumference of the container at the middle of the source is found to be the same as calculated using QAD CGGP calculations. The top plug is so designed to avoid inadvertent upward movement of the source. Though, the shielding was not adequate on top of the top plug, however it does

  6. Fabrication and Prototyping Lab

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The Fabrication and Prototyping Lab for composite structures provides a wide variety of fabrication capabilities critical to enabling hands-on research and...

  7. Maintainability effectiveness evaluations and enhancement

    International Nuclear Information System (INIS)

    Seminara, J.L.

    1985-01-01

    In the mid-seventies EPRI initiated a research project to review the human factors aspects of nuclear power plant control rooms. In the course of investigating operator-control room interfaces in five operational control rooms, it became evident that many plant outages had either been caused or prolonged by human factors problems associated with maintenance activities. Consequently, as one of several follow-on projects, EPRI sponsored a review of nine power plants (five nuclear and four fossil) to examine the human factors aspects of plant maintainability. This survey revealed a wide variety of generic human factors problems that could negatively impact the effectiveness of plant maintenance personnel. It was clear that plant maintainability features deserved no less attention to human factors concerns than the operational features of the control room. This paper describes subsequent EPRI-initiated efforts to assist the utilities in conducting self-reviews of maintainability effectiveness and effect needed enhancements

  8. ITER Central Solenoid Module Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Smith, John [General Atomics, San Diego, CA (United States)

    2016-09-23

    The fabrication of the modules for the ITER Central Solenoid (CS) has started in a dedicated production facility located in Poway, California, USA. The necessary tools have been designed, built, installed, and tested in the facility to enable the start of production. The current schedule has first module fabrication completed in 2017, followed by testing and subsequent shipment to ITER. The Central Solenoid is a key component of the ITER tokamak providing the inductive voltage to initiate and sustain the plasma current and to position and shape the plasma. The design of the CS has been a collaborative effort between the US ITER Project Office (US ITER), the international ITER Organization (IO) and General Atomics (GA). GA’s responsibility includes: completing the fabrication design, developing and qualifying the fabrication processes and tools, and then completing the fabrication of the seven 110 tonne CS modules. The modules will be shipped separately to the ITER site, and then stacked and aligned in the Assembly Hall prior to insertion in the core of the ITER tokamak. A dedicated facility in Poway, California, USA has been established by GA to complete the fabrication of the seven modules. Infrastructure improvements included thick reinforced concrete floors, a diesel generator for backup power, along with, cranes for moving the tooling within the facility. The fabrication process for a single module requires approximately 22 months followed by five months of testing, which includes preliminary electrical testing followed by high current (48.5 kA) tests at 4.7K. The production of the seven modules is completed in a parallel fashion through ten process stations. The process stations have been designed and built with most stations having completed testing and qualification for carrying out the required fabrication processes. The final qualification step for each process station is achieved by the successful production of a prototype coil. Fabrication of the first

  9. Advanced fuel fabrication

    International Nuclear Information System (INIS)

    Bernard, H.

    1989-01-01

    This paper deals with the fabrication of advanced fuels, such as mixed oxides for Pressurized Water Reactors or mixed nitrides for Fast Breeder Reactors. Although an extensive production experience exists for the mixed oxides used in the FBR, important work is still needed to improve the theoretical and technical knowledge of the production route which will be introduced in the future European facility, named Melox, at Marcoule. Recently, the feasibility of nitride fuel fabrication in existing commercial oxide facilities was demonstrated in France. The process, based on carbothermic reduction of oxides with subsequent comminution of the reaction product, cold pressing and sintering provides (U, Pu)N pellets with characteristics suitable for irradiation testing. Two experiments named NIMPHE 1 and 2 fabricated in collaboration with ITU, Karlsruhe, involve 16 nitride and 2 carbide pins, operating at a linear power of 45 and 73 kW/m with a smear density of 75-80% TD and a high burn-up target of 15 at%. These experiments are currently being irradiated in Phenix, at Marcoule. (orig.)

  10. Developing and maintaining nuclear competencies

    International Nuclear Information System (INIS)

    Gobert, C.

    2004-01-01

    The paper discusses the following aspects on the nuclear knowledge management: assimilation of knowledge management, recognition of the nuclear specificity, attracting young talents. Another feature which, possibly, differentiates nuclear from other high-tech industries is that time constraints in some nuclear development may very well exceed the duration of a generation of professionals. That means, not only maintaining scientific and technical knowledge, which, as a minimum, leads to maintain: a rigorous supervision of human resources in quality and quantity; anticipatory planning of human resources, with a special focus on succession planning concerning expertise positions; a steady and continuous effort in training and retraining programs. Maintaining the safety culture is also one of the major managerial duties. Taking full account of the nuclear specificity in knowledge maintenance and development in the AREVA group, requests a multifunctional approach, which combines efforts of Research and Innovation, and Human Resources departments, plus the group Nuclear inspectorate. It is acknowledged that the industry, basically, would readily rely on the capabilities of the academic world and research centers in ensuring that training and education in nuclear science and technologies are attuned to the evolving needs of the industry, in maintaining the proper educational programs and in fostering fruitful cooperations between them

  11. [Maintaining patients' autonomy at home].

    Science.gov (United States)

    Niang, Bénédicte; Coudre, Jean Pierre

    2015-01-01

    To maintain the flow of hospital discharges, the patient's return home with support from a home nursing service is important. If any difficulties are identified, there are various programmes or good practices which can be put into place. The future law on adapting society to ageing also comprises a scheme combining home assistance and nursing care.

  12. Fabrication of particulate metal fuel for fast burner reactors

    International Nuclear Information System (INIS)

    Ryu, Ho Jin; Lee, Sun Yong; Kim, Jong Hwan; Woo, Yoon Myung; Ko, Young Mo; Kim, Ki Hwan; Park, Jong Man; Lee, Chan Bok

    2012-01-01

    U Zr metallic fuel for sodium cooled fast reactors is now being developed by KAERI as a national R and D program of Korea. In order to recycle transuranic elements (TRU) retained in spent nuclear fuel, remote fabrication capability in a shielded hot cell should be prepared. Moreover, generation of long lived radioactive wastes and loss of volatile species should be minimized during the recycled fuel fabrication step. Therefore, innovative fuel concepts should be developed to address the fabrication challenges pertaining to TRU while maintaining good performances of metallic fuel. Particulate fuel concepts have already been proposed and tested at several experimental fast reactor systems and vipac ceramic fuel of RIAR, Russia is one of the examples. However, much less work has been reported for particulate metallic fuel development. Spherical uranium alloy particles with various diameters can be easily produced by the centrifugal atomization technique developed by KAERI. Using the atomized uranium and uranium zirconium alloy particles, we fabricated various kinds of powder pack, powder compacts and sintered pellets. The microstructures and properties of the powder pack and pellets are presented

  13. COLOR STABILITY OF NATURALLY DYED DENIM FABRICS

    Directory of Open Access Journals (Sweden)

    SUBTIRICA Adriana-Ioana

    2014-05-01

    Full Text Available The desire to colour textiles is as old as spinning and weaving. Natural dyes have been used since thousands of years for their long endurance, soft and elegant colours. But the invention of synthetic dyes has limited the application of natural dyes. The health hazards associated with the use of synthetic dyes and also the increased environmental awareness have revived the use of natural dyes during the recent years. The major performance characteristic of a dye is its ability to maintain the colour in normal use and is known as colorfastness. The study provides information regarding colour fastness properties of naturally dyed denim fabrics. Three vegetable materials were used for dyeing denim fabrics: Punica granatum (bark powder, Indigofera tinctoria (leave powder and Juglans regia (walnut dried shells. The results of the study indicated that using Walnut shells and Punica granatum deeper and more stable shades of colors are obtained in comparison with Indigofera Tinctoria dyed denim samples. All samples highlight a change in color in the sense of fading which has occurred to the highest extent when exposed to artificial light and washing. When tested against water, alkaline and acid perspiration, it is noticed that better results are obtained, and color change appear in a smaller extent.

  14. Fabricating 3D figurines with personalized faces.

    Science.gov (United States)

    Tena, J Rafael; Mahler, Moshe; Beeler, Thabo; Grosse, Max; Hengchin Yeh; Matthews, Iain

    2013-01-01

    We present a semi-automated system for fabricating figurines with faces that are personalised to the individual likeness of the customer. The efficacy of the system has been demonstrated by commercial deployments at Walt Disney World Resort and Star Wars Celebration VI in Orlando Florida. Although the system is semi automated, human intervention is limited to a few simple tasks to maintain the high throughput and consistent quality required for commercial application. In contrast to existing systems that fabricate custom heads that are assembled to pre-fabricated plastic bodies, our system seamlessly integrates 3D facial data with a predefined figurine body into a unique and continuous object that is fabricated as a single piece. The combination of state-of-the-art 3D capture, modelling, and printing that are the core of our system provide the flexibility to fabricate figurines whose complexity is only limited by the creativity of the designer.

  15. Advanced fabrication technology

    International Nuclear Information System (INIS)

    Sheely, W.F.

    1986-01-01

    The Fuel Cycle Plant is a multipurpose nuclear facility located on the Hanford Nuclear Reservation in eastern Washington state. The facility is part of the Hanford Engineering Development Laboratory which is operated by Westinghouse Hanford Company for the Department of Energy. The Fuel Cycle Plant is currently being prepared to support the Liquid Metal Reactors Program with fuel fabrication services for the Fast Flux Test Facility and other LMR programs. This report describes the technical innovations to be utilized in the operation of this plant

  16. Polymorphous computing fabric

    Science.gov (United States)

    Wolinski, Christophe Czeslaw [Los Alamos, NM; Gokhale, Maya B [Los Alamos, NM; McCabe, Kevin Peter [Los Alamos, NM

    2011-01-18

    Fabric-based computing systems and methods are disclosed. A fabric-based computing system can include a polymorphous computing fabric that can be customized on a per application basis and a host processor in communication with said polymorphous computing fabric. The polymorphous computing fabric includes a cellular architecture that can be highly parameterized to enable a customized synthesis of fabric instances for a variety of enhanced application performances thereof. A global memory concept can also be included that provides the host processor random access to all variables and instructions associated with the polymorphous computing fabric.

  17. Influence of Clothing Fabrics on Skin Microcirculation

    Institute of Scientific and Technical Information of China (English)

    CHENG Ling; PAN Ning; ZHAO Lian-ying; HUAUNG Gu

    2010-01-01

    This study investigated the effects of clothing fabric on human skin microcirculation. Once skin is covered with a clothing fabric, human sensations, namely, coolness, warmth, softness, and roughness, are amused immediately, and the cutaneous micrecireulation may be changed consequently. Since the complex relationships of the human skin, the environment, and the clothing, there is few publication focusing on the physiological responses of the skin to the fabrics. In this paper, a Laser Doppler Flowmetry (LDF) was used to test the dynamic responses of the skin blood flow when the fabric was placed on the skin. Effects of different fabrics on the skin blood flux were investigated. The results show that cold stimulation of fabric has remarkable influences on the skin blood flux, and the surface properties of fabric are of importance to affect the human skin blood flow.

  18. Maintaining steam/condensate lines

    International Nuclear Information System (INIS)

    Russum, S.A.

    1992-01-01

    Steam and condensate systems must be maintained with the same diligence as the boiler itself. Unfortunately, they often are not. The water treatment program, critical to keeping the boiler at peak efficiency and optimizing operating life, should not stop with the boiler. The program must encompass the steam and condensate system as well. A properly maintained condensate system maximizes condensate recovery, which is a cost-free energy source. The fuel needed to turn the boiler feedwater into steam has already been provided. Returning the condensate allows a significant portion of that fuel cost to be recouped. Condensate has a high heat content. Condensate is a readily available, economical feedwater source. Properly treated, it is very pure. Condensate improves feedwater quality and reduces makeup water demand and pretreatment costs. Higher quality feedwater means more reliable boiler operation

  19. Disturbance maintains alternative biome states.

    Science.gov (United States)

    Dantas, Vinícius de L; Hirota, Marina; Oliveira, Rafael S; Pausas, Juli G

    2016-01-01

    Understanding the mechanisms controlling the distribution of biomes remains a challenge. Although tropical biome distribution has traditionally been explained by climate and soil, contrasting vegetation types often occur as mosaics with sharp boundaries under very similar environmental conditions. While evidence suggests that these biomes are alternative states, empirical broad-scale support to this hypothesis is still lacking. Using community-level field data and a novel resource-niche overlap approach, we show that, for a wide range of environmental conditions, fire feedbacks maintain savannas and forests as alternative biome states in both the Neotropics and the Afrotropics. In addition, wooded grasslands and savannas occurred as alternative grassy states in the Afrotropics, depending on the relative importance of fire and herbivory feedbacks. These results are consistent with landscape scale evidence and suggest that disturbance is a general factor driving and maintaining alternative biome states and vegetation mosaics in the tropics. © 2015 John Wiley & Sons Ltd/CNRS.

  20. Maintaining protein composition in cilia.

    Science.gov (United States)

    Stephen, Louise A; Elmaghloob, Yasmin; Ismail, Shehab

    2017-12-20

    The primary cilium is a sensory organelle that is vital in regulating several signalling pathways. Unlike most organelles cilia are open to the rest of the cell, not enclosed by membranes. The distinct protein composition is crucial to the function of cilia and many signalling proteins and receptors are specifically concentrated within distinct compartments. To maintain this composition, a mechanism is required to deliver proteins to the cilium whilst another must counter the entropic tendency of proteins to distribute throughout the cell. The combination of the two mechanisms should result in the concentration of ciliary proteins to the cilium. In this review we will look at different cellular mechanisms that play a role in maintaining the distinct composition of cilia, including regulation of ciliary access and trafficking of ciliary proteins to, from and within the cilium.

  1. Improving versus maintaining nuclear safety

    International Nuclear Information System (INIS)

    2002-01-01

    The concept of improving nuclear safety versus maintaining it has been discussed at a number of nuclear regulators meetings in recent years. National reports have indicated that there are philosophical differences between NEA member countries about whether their regulatory approaches require licensees to continuously improve nuclear safety or to continuously maintain it. It has been concluded that, while the actual level of safety achieved in all member countries is probably much the same, this is difficult to prove in a quantitative way. In practice, all regulatory approaches require improvements to be made to correct deficiencies and when otherwise warranted. Based on contributions from members of the NEA Committee on Nuclear Regulatory Activities (CNRA), this publication provides an overview of current nuclear regulatory philosophies and approaches, as well as insights into a selection of public perception issues. This publication's intended audience is primarily nuclear safety regulators, but government authorities, nuclear power plant operators and the general public may also be interested. (author)

  2. FBR pellet fabrication - density and dimensional control

    International Nuclear Information System (INIS)

    Rasmussen, D.E.; Schaus, P.S.

    1982-01-01

    The fuel pellet fabricating experience described in this paper involved pellet processing tests using mixed oxide (PuO 2 -UO 2 ) powders to produce fast breeder reactor (FBR) fuel pellets. Objectives of the pellet processing tests were to establish processing parameters for sintered-to-size fuel pellets to be used in an irradiation test in the Fast Flux Test Facility and to establish baseline fabrication control information. 26 figures, 7 tables

  3. Fabrication of tungsten wire reinforced nickel-base alloy composites

    Science.gov (United States)

    Brentnall, W. D.; Toth, I. J.

    1974-01-01

    Fabrication methods for tungsten fiber reinforced nickel-base superalloy composites were investigated. Three matrix alloys in pre-alloyed powder or rolled sheet form were evaluated in terms of fabricability into composite monotape and multi-ply forms. The utility of monotapes for fabricating more complex shapes was demonstrated. Preliminary 1093C (2000F) stress rupture tests indicated that efficient utilization of fiber strength was achieved in composites fabricated by diffusion bonding processes. The fabrication of thermal fatigue specimens is also described.

  4. Babcock and Wilcox plate fabrication experience with uranium silicide spherical fuel

    International Nuclear Information System (INIS)

    Todd, Lawrence E.; Pace, Brett W.

    1996-01-01

    This report is written to present the fuel fabrication experience of Babcock and Wilcox using atomized spherical uranium silicide powder. The intent is to demonstrate the ability to fabricate fuel plates using spherical powder and to provide useful information proceeding into the next phase of work using this type of fuel. The limited quantity of resources- spherical powder and time, did not allow for much process optimizing in this work scope. However, the information contained within provides optimism for the future of spherical uranium silicide fuel plate fabrication at Babcock and Wilcox.The success of assembling fuel elements with spherical powder will enable Babcock and Wilcox to reduce overall costs to its customers while still maintaining our reputation for providing high quality research and test reactor products. (author)

  5. 织物静态悬垂性测试过程中图像采集问题的研究%Research on issues of image acquisition in the dynamic drape test of fabric

    Institute of Scientific and Technical Information of China (English)

    程浩南

    2017-01-01

    The static drape of fabric was tested by the dynamic drape instrument and home-made assembly instrument DIY based on the static drape instrument of fabric.The selection of image acquisition mode and the problem of overlooking blind angles were analyzed in the testing process.The research showed that it is appropriate to collect the images directly in the form of upper lighting when the color of pure fabric had great difference with the background or the patterns of coloured fabric had great difference with the background, and it is appropriate to collect the images directly in the form of bottom lighting when the sample fabric was translucent.When the problem that the overlooking blind angles in the image acquisition of the upper front lighting led to the appearance of unclear images appeared, it was solved by increasing the radius of the support plate or increasing the space between the camera and the sample.%分别采用织物动态悬垂性风格仪和基于织物静态悬垂性风格仪自行组装的DIY仪器,对织物的静态悬垂性进行测试,并对测试过程中图像采集方式的选择和俯视死角问题进行分析.研究结果表明:当纯色织物的颜色与背景颜色反差较大或花色织物的图案花色与背景颜色相差较大时,宜采用上打光直接采集图像;当测试织物为半透明织物时,宜采用下打光直接采集图像;上打光顺光采集图像过程中出现俯视死角导致的图像采集不清晰问题,可通过增大支持盘半径或增大相机与试样间距的方法解决.

  6. Fabrication of internally instrumented reactor fuel rods

    International Nuclear Information System (INIS)

    Schmutz, J.D.; Meservey, R.H.

    1975-01-01

    Procedures are outlined for fabricating internally instrumented reactor fuel rods while maintaining the original quality assurance level of the rods. Instrumented fuel rods described contain fuel centerline thermocouples, ultrasonic thermometers, and pressure tubes for internal rod gas pressure measurements. Descriptions of the thermocouples and ultrasonic thermometers are also contained

  7. Shield fabrication development of ITER primary wall modules by powder HIP. ITER task T216-Subtask 3E1

    International Nuclear Information System (INIS)

    Lind, A.

    1997-12-01

    A research and development program for the blanket shield in the International Thermonuclear Experimental Reactor (ITER) has been implemented to provide input for the design and manufacture of full scale production components. It comprises fabrication and testing of mock-ups and prototype modules. The design, materials, manufacture, examination, testing and inspection of the mock-ups representing future full scale production modules. This work applies to the development of a shield block fabrication method by Hot Isostatic Pressing (HIP) starting from a gas atomised powder and pre-fabricated cooling tube galleries. The size of the block is 1250 x 650 x 250 mm and the weight is about 1400 kg. Examination and testing of the block was performed to determine properties, achieved fabrication tolerances, and quality of bonding. It is concluded that the today's powder HIP route gives a 316 LN IG material with mechanical properties which fulfills the ITER material specification requirements and a fully dense block which is easy to examine with ultrasonic methods. The joints between tubes and matrix are excellent. In order to achieve and maintain accuracy in positioning of the tubes during fabrication improvements of the standard fabrication route have been identified, such as the positioning of tubes during welding, the powder particle distribution and the powder filling procedure. Modification of the actual HIP cycle may also be required

  8. Shield fabrication development of ITER primary wall modules by powder HIP. ITER task T216-Subtask 3E1

    Energy Technology Data Exchange (ETDEWEB)

    Lind, A

    1997-12-01

    A research and development program for the blanket shield in the International Thermonuclear Experimental Reactor (ITER) has been implemented to provide input for the design and manufacture of full scale production components. It comprises fabrication and testing of mock-ups and prototype modules. The design, materials, manufacture, examination, testing and inspection of the mock-ups representing future full scale production modules. This work applies to the development of a shield block fabrication method by Hot Isostatic Pressing (HIP) starting from a gas atomised powder and pre-fabricated cooling tube galleries. The size of the block is 1250 x 650 x 250 mm and the weight is about 1400 kg. Examination and testing of the block was performed to determine properties, achieved fabrication tolerances, and quality of bonding. It is concluded that the today`s powder HIP route gives a 316 LN IG material with mechanical properties which fulfills the ITER material specification requirements and a fully dense block which is easy to examine with ultrasonic methods. The joints between tubes and matrix are excellent. In order to achieve and maintain accuracy in positioning of the tubes during fabrication improvements of the standard fabrication route have been identified, such as the positioning of tubes during welding, the powder particle distribution and the powder filling procedure. Modification of the actual HIP cycle may also be required

  9. A facile method to fabricate superhydrophobic cotton fabrics

    Science.gov (United States)

    Zhang, Ming; Wang, Shuliang; Wang, Chengyu; Li, Jian

    2012-11-01

    A facile and novel method for fabricating superhydrophobic cotton fabrics is described in the present work. The superhydrophobic surface has been prepared by utilizing cationic poly (dimethyldiallylammonium chloride) and silica particles together with subsequent modification of (heptadecafluoro-1,1,2,2-tetradecyl) trimethoxysilane. The size distribution of silica particles was measured by Particle Size Analyzer. The cotton textiles before and after treatment were characterized by using scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The wetting behavior of cotton samples was investigated by water contact angle measurement. Moreover, the superhydrophobic durability of coated cotton textiles has been evaluated by exposure, immersion and washing tests. The results show that the treated cotton fabrics exhibited excellent chemical stability and outstanding non-wettability with the WCA of 155 ± 2°, which offers an opportunity to accelerate the large-scale production of superhydrophobic textiles materials for new industrial applications.

  10. Fabrication and in situ compression testing of Mg micropillars with a nontrivial cross section: Influence of micropillar geometry on mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Bočan, Jiří [Laboratory of Nanostructures and Nanomaterials, Institute of Physics, Czech Academy of Sciences, Na Slovance 1999/2, CZ-12821 Praha 8 (Czech Republic); Tsurekawa, Sadahiro [Division of Materials Science, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Jäger, Aleš, E-mail: aljag@seznam.cz [Laboratory of Nanostructures and Nanomaterials, Institute of Physics, Czech Academy of Sciences, Na Slovance 1999/2, CZ-12821 Praha 8 (Czech Republic)

    2017-02-27

    Micropillars with a nontrivial cross-sectional shape but constant cross-sectional area were fabricated from a pure magnesium single crystal with (0001) orientation by a focused gallium ion beam using a modified annular milling method. The basic mechanical properties (compressive modulus, strength at different plastic strain levels and hardening exponent) of those structures were determined under compression by means of in situ nanoindentation in scanning electron microscope and correlated by the micropillar cross-sectional circumference. It was observed that the modulus and strength increased with increasing circumference. The values of the modulus for the complex cross sectional shapes are on average higher by 5%, and the yield strength, ranging between 274 MPa and 342 MPa, is on average higher by 20% relative to micropillars with a simple circular or polygonal cross section. Surprisingly, the hardening exponent remains nearly constant regardless of the micropillar cross section.

  11. Maintaining consistency in distributed systems

    Science.gov (United States)

    Birman, Kenneth P.

    1991-01-01

    In systems designed as assemblies of independently developed components, concurrent access to data or data structures normally arises within individual programs, and is controlled using mutual exclusion constructs, such as semaphores and monitors. Where data is persistent and/or sets of operation are related to one another, transactions or linearizability may be more appropriate. Systems that incorporate cooperative styles of distributed execution often replicate or distribute data within groups of components. In these cases, group oriented consistency properties must be maintained, and tools based on the virtual synchrony execution model greatly simplify the task confronting an application developer. All three styles of distributed computing are likely to be seen in future systems - often, within the same application. This leads us to propose an integrated approach that permits applications that use virtual synchrony with concurrent objects that respect a linearizability constraint, and vice versa. Transactional subsystems are treated as a special case of linearizability.

  12. Fabrication of elliptical SRF cavities

    Science.gov (United States)

    Singer, W.

    2017-03-01

    The technological and metallurgical requirements of material for high-gradient superconducting cavities are described. High-purity niobium, as the preferred metal for the fabrication of superconducting accelerating cavities, should meet exact specifications. The content of interstitial impurities such as oxygen, nitrogen, and carbon must be below 10 μg g-1. The hydrogen content should be kept below 2 μg g-1 to prevent degradation of the quality factor (Q-value) under certain cool-down conditions. The material should be free of flaws (foreign material inclusions or cracks and laminations) that can initiate a thermal breakdown. Traditional and alternative cavity mechanical fabrication methods are reviewed. Conventionally, niobium cavities are fabricated from sheet niobium by the formation of half-cells by deep drawing, followed by trim machining and electron beam welding. The welding of half-cells is a delicate procedure, requiring intermediate cleaning steps and a careful choice of weld parameters to achieve full penetration of the joints. A challenge for a welded construction is the tight mechanical and electrical tolerances. These can be maintained by a combination of mechanical and radio-frequency measurements on half-cells and by careful tracking of weld shrinkage. The main aspects of quality assurance and quality management are mentioned. The experiences of 800 cavities produced for the European XFEL are presented. Another cavity fabrication approach is slicing discs from the ingot and producing cavities by deep drawing and electron beam welding. Accelerating gradients at the level of 35-45 MV m-1 can be achieved by applying electrochemical polishing treatment. The single-crystal option (grain boundary free) is discussed. It seems that in this case, high performance can be achieved by a simplified treatment procedure. Fabrication of the elliptical resonators from a seamless pipe as an alternative is briefly described. This technology has yielded good

  13. MQXFS1 Quadrupole Fabrication Report

    CERN Document Server

    Ambrosio, G; Bossert, R; Cavanna, E; Cheng, D; Chlachidize, G; Cooley, L D; Dietderich, D; Felice, H; Ferracin, P; Ghosh, A; Hafalia, R; Holik, E F; Izquierdo Bermudez, S; Juchno, M; Krave, S; Marchevsky, M; Muratore, J; Nobrega, F; Pan, H; Perez, J C; Pong, I; Prestemon, S; Ravaioli, E; Sabbi, G L; Santini, C; Schmalzle, J; Schmalzle, J; Stoynev, S; Strauss, T; Vallone, G; Wanderer, P; Wang, X; Yu, M

    2017-01-01

    This report presents the fabrication and QC data of MQXFS1, the first short model of the low-beta quadrupoles (MQXF) for the LHC High Luminosity Upgrade. It describes the conductor, the coils, and the structure that make the MQXFS1 magnet. Qualification tests and non-conformities are also presented and discussed. The fabrication of MQXFS1 was started before the finalization of conductor and coil design for MQXF magnets. Two strand design were used (RRP 108/127 and RRP 132/169). Cable and coil cross-sections were “first generation”.

  14. MQXFS1 Quadrupole Fabrication Report

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Anerella, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Bossert, R. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Cavanna, E. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Cheng, D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chlachidize, G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Cooley, L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Dietderich, D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Felice, H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ferracin, P. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Ghosh, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hafalia, R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Holik, E. F. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bermudez, S. Izquierdo [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Juchno, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Krave, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Marchevsky, M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Muratore, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Nobrega, F. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Pan, H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Perez, J. C. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Pong, I. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Prestemon, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ravaioli, E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sabbi, G. L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Santini, C. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Schmalzle, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stoynev, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Strauss, T. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Vallone, G. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Wanderer, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wang, X. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yu, M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2017-07-16

    This report presents the fabrication and QC data of MQXFS1, the first short model of the low-beta quadrupoles (MQXF) for the LHC High Luminosity Upgrade. It describes the conductor, the coils, and the structure that make the MQXFS1 magnet. Qualification tests and non-conformities are also presented and discussed. The fabrication of MQXFS1 was started before the finalization of conductor and coil design for MQXF magnets. Two strand design were used (RRP 108/127 and RRP 132/169). Cable and coil cross-sections were “first generation”.

  15. New Fabrication Strategies for Polymer Electrolyte Batteries

    National Research Council Canada - National Science Library

    Shriver, D

    1997-01-01

    .... The objective of this research was to fabricate lithium-polymer batteries by techniques that may produce a thin electrolyte and cathode films and with minimal contamination during fabrication. One such technique, ultrasonic spray was used. Another objective of this research was to test lithium cells that incorporate the new polymer electrolytes and polyelectrolytes.

  16. Quality assurance for breeder reactor fuel fabrication

    International Nuclear Information System (INIS)

    Marx, E.R.

    1978-01-01

    Fuel performance in the Fast Flux Test Facility (FFTF) depends on fabrication of fuel to rigorous quality standards. The quality program including Management, Procurement, Fabrication, Inspection, Records, and Audits is discussed as well as unique mixed oxide fuel inspections such as homogeneity inspection, analytical chemistry, and nondestructive fissile assay

  17. Tensile properties of polymethyl methacrylate coated natural fabric Sterculia urens

    CSIR Research Space (South Africa)

    Jayaramudu, J

    2009-04-01

    Full Text Available stress, Young's modulus and % elongation at break were determined using a Universal Testing Machine. The effect of alkali treatment and the polymethyl methacrylate coating on tensile properties of the fabric was studied. The morphology of the fabric...

  18. Evaluation of filter fabrics for use in silt fences.

    Science.gov (United States)

    1980-01-01

    The study reported was initiated to develop tests simulating field conditions that could be used to develop information for the formulation of specifications for use in purchasing filter fabrics to be used to construct silt fences. Fifteen fabrics we...

  19. Building and maintaining media contacts

    International Nuclear Information System (INIS)

    Fenton, Bob

    2000-01-01

    This presentation is answering the question: 'how does British Energy build and maintain its relationships with journalists in so many areas', not only the basic industrial correspondents that you would expect to have to deal with an industry British Energy, but those dealing with science and technology, the environment, personnel and training, city and financial, political, and on and on, and that is just the national press. Then add the local and regional media around power station sites - literally hundreds of contacts and you start to get an idea about the size of our media contact database. But it is managed it rather well. Every six months British Energy takes part in a survey run by one of the UK's leading market research companies who conducts a poll among journalists and then rate each company's performance. In the last three years British Energy has not been outside the top five in most categories, and in the top two in several. The answer is a lot of work over a long period of time. You cannot expect to build trusting relationships with a journalist overnight. At British Energy the key is being open and honest, and always available. Of course good media relations is not a one-way street, and there has to be some element of compromise if you are to achieve a relationship based on mutual trust

  20. Characterization of the first double-sided 3D radiation sensors fabricated at FBK on 6-inch silicon wafers

    International Nuclear Information System (INIS)

    Sultan, D.M.S.; Mendicino, R.; Betta, G.-F. Dalla; Boscardin, M.; Ronchin, S.; Zorzi, N.

    2015-01-01

    Following 3D pixel sensor production for the ATLAS Insertable B-Layer, Fondazione Bruno Kessler (FBK) fabrication facility has recently been upgraded to process 6-inch wafers. In 2014, a test batch was fabricated to check for possible issues relevant to this upgrade. While maintaining a double-sided fabrication technology, some process modifications have been investigated. We report here on the technology and the design of this batch, and present selected results from the electrical characterization of sensors and test structures. Notably, the breakdown voltage is shown to exceed 200 V before irradiation, much higher than in earlier productions, demonstrating robustness in terms of radiation hardness for forthcoming productions aimed at High Luminosity LHC upgrades

  1. Current Research on Containment Technologies for Verification Activities: Advanced Tools for Maintaining Continuity of Knowledge

    International Nuclear Information System (INIS)

    Smartt, H.; Kuhn, M.; Krementz, D.

    2015-01-01

    The U.S. National Nuclear Security Administration (NNSA) Office of Non-proliferation and Verification Research and Development currently funds research on advanced containment technologies to support Continuity of Knowledge (CoK) objectives for verification regimes. One effort in this area is the Advanced Tools for Maintaining Continuity of Knowledge (ATCK) project. Recognizing that CoK assurances must withstand potential threats from sophisticated adversaries, and that containment options must therefore keep pace with technology advances, the NNSA research and development on advanced containment tools is an important investment. The two ATCK efforts underway at present address the technical containment requirements for securing access points (loop seals) and protecting defined volumes. Multiple U.S. national laboratories are supporting this project: Sandia National Laboratories (SNL), Savannah River National Laboratory (SRNL), and Oak Ridge National Laboratory (ORNL). SNL and SRNL are developing the ''Ceramic Seal,'' an active loop seal that integrates multiple advanced security capabilities and improved efficiency housed within a small-volume ceramic body. The development includes an associated handheld reader and interface software. Currently at the prototype stage, the Ceramic Seal will undergo a series of tests to determine operational readiness. It will be field tested in a representative verification trial in 2016. ORNL is developing the Whole Volume Containment Seal (WCS), a flexible conductive fabric capable of enclosing various sizes and shapes of monitored items. The WCS includes a distributed impedance measurement system for imaging the fabric surface area and passive tamper-indicating features such as permanent-staining conductive ink. With the expected technology advances from the Ceramic Seal and WCS, the ATCK project takes significant steps in advancing containment technologies to help maintain CoK for various verification

  2. Development of and verification test integral reactor major components - Development of manufacturing process and fabrication of prototype for SG and CEDM

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Hee; Park, Hwa Kyu; Kim, Yong Kyu; Choi, Yong Soon; Kang, Ki Su; Hyun, Young Min [Korea Heavy Industries and Construction Co., LTD., Changwon (Korea)

    1999-03-01

    Integral SMART(System integrated Modular Advanced Reactor) type reactor is under conceptual design. Because major components is integrated within in a single pressure vessel, compact design using advanced technology is essential. It means that manufacturing process for these components is more complex and difficult. The objective of this study is to confirm the possibility of manufacture of Steam Generator, Control Element Drive Mechanism(CEDM) and Reactor Assembly which includes Reactor Pressure Vessel, it is important to understand the design requirement and function of the major components. After understanding the design requirement and function, it is concluded that the helical bending and weld qualification of titanium tube for Steam Generator and the applicability of electron beam weld for CEDM step motor parts is the critical to fabricate the components. Therefore, bending mock-up and weld qualification of titanium tube was performed and the results are quite satisfactory. Also, it is concluded that electron beam welding technique can be applicable to the CEDM step motor part. (author). 22 refs., 14 figs., 46 tabs.

  3. APT target-blanket fabrication development

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.L.

    1997-06-13

    Concepts for producing tritium in an accelerator were translated into hardware for engineering studies of tritium generation, heat transfer, and effects of proton-neutron flux on materials. Small-scale target- blanket assemblies were fabricated and material samples prepared for these performance tests. Blanket assemblies utilize composite aluminum-lead modules, the two primary materials of the blanket. Several approaches are being investigated to produce large-scale assemblies, developing fabrication and assembly methods for their commercial manufacture. Small-scale target-blanket assemblies, designed and fabricated at the Savannah River Site, were place in Los Alamos Neutron Science Center (LANSCE) for irradiation. They were subjected to neutron flux for nine months during 1996-97. Coincident with this test was the development of production methods for large- scale modules. Increasing module size presented challenges that required new methods to be developed for fabrication and assembly. After development, these methods were demonstrated by fabricating and assembling two production-scale modules.

  4. Woven fabric composites: Can we peel it?

    NARCIS (Netherlands)

    Sacchetti, Francisco; Grouve, Wouter Johannes Bernardus; Warnet, Laurent; Villegas, I. Fernandez

    2016-01-01

    The present work focuses on the applicability of the mandrel peel test to quantify the fracture toughness of woven fabric Carbon/PEEK composites. For this purpose, the mandrel peel test was compared to the standardized DCB test. Unstable crack propagation (stick-slip) was observed in both testing

  5. Optimum processing parameters for the fabrication of twill flax fabric-reinforced polypropylene (PP) composites

    Science.gov (United States)

    Zuhudi, Nurul Zuhairah Mahmud; Minhat, Mulia; Shamsuddin, Mohd Hafizi; Isa, Mohd Dali; Nur, Nurhayati Mohd

    2017-12-01

    In recent years, natural fabric thermoplastic composites such as flax have received much attention due to its attractive capabilities for structural applications. It is crucial to study the processing of flax fabric materials in order to achieve good quality and cost-effectiveness in fibre reinforced composites. Though flax fabric has been widely utilized for several years in composite applications due to its high strength and abundance in nature, much work has been concentrated on short flax fibre and very little work focused on using flax fabric. The effectiveness of the flax fabric is expected to give higher strength performance due to its structure but the processing needs to be optimised. Flax fabric composites were fabricated using compression moulding due to its simplicity, gives good surface finish and relatively low cost in terms of labour and production. Further, the impregnation of the polymer into the fabric is easier in this process. As the fabric weave structure contributes to the impregnation quality which leads to the overall performance, the processing parameters of consolidation i.e. pressure, time, and weight fraction of fabric were optimized using the Taguchi method. This optimization enhances the consolidation quality of the composite by improving the composite mechanical properties, three main tests were conducted i.e. tensile, flexural and impact test. It is observed that the processing parameter significantly affected the consolidation and quality of composite.

  6. Maintaining quality in blood banking.

    Science.gov (United States)

    Harvey, E; Hewison, C; Nevalainen, D E; Lloyd, H L

    1995-03-01

    component will warrant redress. The degree of fault attributed to the producer will in part depend on whether they have met the best available standards at all stages in the preparation of the product. If a Transfusion Service can show that it's operation has external accreditation, particularly to an internationally recognised standard such as ISO 9000 and they can show that staff have been properly trained, that equipment is properly supplied and maintained and that the facility is appropriate to the work being carried out, then the liability that exists when something goes wrong will be reduced.(ABSTRACT TRUNCATED AT 400 WORDS)

  7. Design, fabrication and installation of irradiation facilities

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Bong Shick; Kim, Y. S.; Lee, C. Y. and others

    1999-03-01

    The principal contents of this project are to design, fabricate and install the steady-state fuel test loop in HANARO for nuclear technology development. Procurement and fabrication of main equipment, licensing and technical review for fuel test loop have been performed during 2 years(1997, 1998) for this project. Following contents are described in the report. - Procurement and fabrication of the equipment, piping for OPS - IPS manufacture - License - Technical review and evaluation of the FTL facility. As besides, as these irradiation facilities will be installed in HANARO, review of safety concern, discussion with KINS for licensing and review ofHANARO interface have been performed respectively. (author)

  8. Building and maintaining media relations

    International Nuclear Information System (INIS)

    Oesterberg, Anders

    2000-01-01

    Full text: In my opinion good media relations are among the most valuable investments regarding the communications and Public Relations operations within an Organisation. This means, that all the work you put up in building and maintaining media relations, is worth all the efforts. It can mean the difference between success or failure. Although a reporter never would admit that he or she is easily influenced, the fact is that you would get better press in an emergency case if you have a positive personal relation to the reporter. So, in my opinion there is nothing more important, in building and maintaining media relations, than the face-to-face-contact. My experience of good personal relations to reporters is also that you're not only getting better press in emergency cases. You are more successful in getting published when you have something positive to say, too. Honesty and openness are two key-words in this context. I have never tried to manipulate and delude a reporter, since that definitely would ruin the relationship. I always try to be as straight forward as possible and underline what I can say and what I can't. That instead of presenting some forced lies. For me, it is also very important to create some kind of mid-field ground, where the reporter and I can meet unprejudiced. Sense of humour and distance, both to yourself and your organisation, are two main characteristics that are invaluable in order to create a good personal relationship with a reporter. But, I'm very accurate in emphasizing when I enter my role as a company representative. All in order to be regarded as correct, yet obliging. To be quick when it comes to returning calls is another vital component that gives the reporter a feeling that he or she is important enough to be contacted as soon as possible. This service-minded attitude is of course good for the relationship. Besides the more personal relation it's important to have a business-like relation, where you show a great deal of

  9. Adaptive Robotic Fabrication for Conditions of Material Inconsistency

    DEFF Research Database (Denmark)

    Nicholas, Paul; Zwierzycki, Mateusz; Clausen Nørgaard, Esben

    2017-01-01

    This paper describes research that addresses the variable behaviour of industrial quality metals and the extension of computational techniques into the fabrication process. It describes the context of robotic incremental sheet metal forming, a freeform method for imparting 3D form onto a 2D thin...... and the fabrication process? Here, two adaptive methods are presented that aim to increase forming accuracy with only a minimum increase in fabrication time, and that maintain ongoing input from the results of the fabrication process. The first method is an online sensor-based strategy and the second method...

  10. Effective bending strain estimated from I c test results of a D-shaped Nb3Al CICC coil fabricated with a react-and-wind process for the National Centralized Tokamak

    International Nuclear Information System (INIS)

    Ando, T.; Kizu, K.; Miura, Y.M.; Tsuchiya, K.; Matsukawa, M.; Tamai, H.; Ishida, S.; Koizumi, N.; Okuno, K.

    2005-01-01

    Japan National Centralized Tokamak (NCT) is a superconducting tokamak proposed as a modification to JT-60U. As part of the R and D for the National Centralized Tokamak, a two-turn, approximately 2 m tall, D-shaped Nb 3 Al coil was wound and tested using a full-size cable-in-conduit conductor (CICC). The Nb 3 Al cable-in-conductor was bent following the heat treatment reaction with a maximum bending strain of 0.4% to simulate the react-and-wind fabrication. The comparison of the coil performance to the measured strand data shows that the effective axial strain of the conductor strands is essentially zero despite the 0.4% bending strain of the conductor. This suggests that the strands in the cable slipped relatively to each other during bending of the conduit, thus reducing the effective strain transmitted to the strands. This result is very encouraging for the low-cost fabrication of high-current-density fusion coils using the react-and-wind method

  11. Non-Destructive Testing in Reactor Pressure-Vessel Fabrication; Essais non Destructifs dans la Fabrication des Caissons Etanches de Reacteurs; Nedestruktivnoe ispytanie pri izgotovlenii reaktornykh bakov vysokogo davleniya; Ensayo no Destructivo Durante la Fabricacion de Recipientes de Presion para Reactores

    Energy Technology Data Exchange (ETDEWEB)

    McGonnagle, W. J. [Fluids Dynamics Research, Iit Research Institute, Chicago, IL (United States)

    1965-09-15

    The objective of this paper is to outline briefly a quality control programme for the design and fabrication of a reactor pressure-vessel which will meet all nuclear and safety requirements, and to show the place and importance of non-destructive testing in achieving that objective. Failure in materials, components, and assembly has demonstrated that our present techniques of fabrication are not sufficient alone to assure constant reliability in critical components. Flaws and inhomogeneities occur even when using the best processes and properly controlled methods and techniques. Thus an adequate and well-integrated non-destructive testing programme is necessary to assure the quality level required in a nuclear- reactor pressure-vessel. The principal non-destructive methods used by fabricators of reactor pressure-vessels are: visual, X-ray and gamma radiography, ultrasonics, magnetic particle, and liquid penetrant. The non-destructive testing programme includes the inspection of plate material, forging, casting, cladding and welds. The particular non-destructive testing problems met in nuclear pressure-vessels are discussed. The specialized techniques peculiar to the non-destructive testing of pressure vessels and their components are illustrated and discussed. The applicable codes and specifications, such as the Boiler and Pressure Vessel Code of the American Society for Mechanical Engineers and other regulatory bodies, are outlined. How non-destructive testing can help to comply with the specifications and requirements of various regulatory bodies, and the adequacy and applicability of standards used in such an application are discussed. Realistic but adequate acceptance and rejection criteria are suggested. A procedure is outlined which will help non-destructive personnel to perform adequately their functions at the proper time in the fabrication cycle. The inter-relationships of the non-destructive testing group with the other groups involved in the fabrication

  12. Cryogenic Dark Matter Search detector fabrication process and recent improvements

    Energy Technology Data Exchange (ETDEWEB)

    Jastram, A., E-mail: akjastram@tamu.edu [Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Harris, H.R.; Mahapatra, R.; Phillips, J.; Platt, M.; Prasad, K. [Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Sander, J. [Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Department of Physics, University of South Dakota, Vermillion, SD 57069 (United States); Upadhyayula, S. [Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States)

    2015-02-01

    A dedicated facility has been commissioned for Cryogenic Dark Matter Search (CDMS) detector fabrication at Texas A and M University (TAMU). The fabrication process has been carefully tuned using this facility and its equipment. Production of successfully tested detectors has been demonstrated. Significant improvements in detector performance have been made using new fabrication methods/equipment and tuning of process parameters.

  13. Proceedings of the international meeting on development, fabrication, and application of Reduced Enrichment fuels for Research and Test Reactors (RERTR). Base technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-08-01

    The international effort to develop new fuel materials and designs which will make it feasible to fuel research and test reactors throughout the world with low-enrichment uranium, instead of high-enrichment uranium, has made significant progress during the past year. This progress has taken place at research centers located in many different countries, and is of crucial interest to reactor operators and licensors whose geographical distribution is even more varied. It is appropriate, therefore, that international meetings be held periodically to foster direct communication among the specialists in this area. To achieve this purpose, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at the Argonne National Laboratory, sponsored this meeting as the third of a series which begun in 1978. The papers presented at this meeting were divided into sessions according to relevant subject: status of RERTR program and safety issues; development of new fuel types; testing of new fuel elements; specific reactor applications. These proceedings were edited by various members of the RERTR Program.

  14. Enhancement of the quality of the reactor pressure vessel used in light water power plants by advanced material, fabrication and testing technologies

    International Nuclear Information System (INIS)

    Kussmaul, K.; Ewald, J.; Maier, G.; Schellhammer, W.

    1980-01-01

    Fracture safe assessment of nuclear reactor pressure vessels (RPV) is based upon an adequate stress analysis, reliable material characteristics, and acceptable defect sizes. Problems may arise concerning inhomogeneties, low toughness and crack phenomena as observed in the base material and heat affected zone (HAZ). Therefore, efforts have been made to develop a steel which would be both non-susceptible to embrittlement and/or cracking in the HAZ, and have a higher upper-shelf toughness of base and HAZ material. Tests have been made on inhomogeneties and defects and also on improvement of chemical composition, the steel-making process, welding procedures and the optimum temperature cycle and level for stress-relief heat treatment. To solve these problems, common testing methods were supplemented by tangential-cut techniques, small HAZ-tensile test procedures and HAZ-simulation techniques. Results indicate that 50 per cent of 100 investigated component-strength welds are affected by micro stress-relief cracking (SRC) on a micro-and millimetre scale. The 22 NiMoCr 37 steel with optimised chemical composition, and the 20 MnMoNi 55 steel are both resistant to stress-relief embrittlement and SRC. Specific welding techniques are found to limit SRC and proposals for optimum stress-relief temperatures are given. For the generation of new components, the fracture-safe analysis can now be based completely upon homogeneous and high upper-shelf base materials including the HAZ. (author)

  15. Fabrication and testing of diamond-machined gratings in ZnSe, GaP, and bismuth germanate for the near infrared and visible

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmenko, P J; Little, S L; Ikeda, Y; Kobayashi, N

    2008-06-22

    High quality immersion gratings for infrared applications have been demonstrated in silicon and germanium. To extend this technology to shorter wavelengths other materials must be investigated. We selected three materials, zinc selenide, gallium phosphide and bismuth germanate (Bi{sub 4}Ge{sub 3}O{sub 12}), based on high refractive index, good visible transmission and commercial availability in useful sizes. Crystal samples were diamond turned on an ultra-precision lathe to identify preferred cutting directions. Using this information we diamond-flycut test gratings over a range of feed rates to determine the optimal cutting conditions. For both ZnSe and GaP good surface quality was achieved at feed rates up to 1.0 cm/minute using a special compound angle diamond tool with negative rake angles on both cutting surfaces. The surface roughness of the groove facets was about 4 nm. A Zygo interferometer measured grating wavefront errors in reflection. For the ZnSe the RMS error was < {lambda}/20 at 633nm. More extensive testing was performed with a HeNe laser source and a cooled CCD camera. These measurements demonstrated high relative diffraction efficiency (> 80%), low random groove error (2.0 nm rms), and Rowland ghost intensities at < 0.1%. Preliminary tests on bismuth germanate show high tool wear.

  16. Proceedings of the international meeting on development, fabrication, and application of Reduced Enrichment fuels for Research and Test Reactors (RERTR). Base technology

    International Nuclear Information System (INIS)

    1983-08-01

    The international effort to develop new fuel materials and designs which will make it feasible to fuel research and test reactors throughout the world with low-enrichment uranium, instead of high-enrichment uranium, has made significant progress during the past year. This progress has taken place at research centers located in many different countries, and is of crucial interest to reactor operators and licensors whose geographical distribution is even more varied. It is appropriate, therefore, that international meetings be held periodically to foster direct communication among the specialists in this area. To achieve this purpose, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at the Argonne National Laboratory, sponsored this meeting as the third of a series which begun in 1978. The papers presented at this meeting were divided into sessions according to relevant subject: status of RERTR program and safety issues; development of new fuel types; testing of new fuel elements; specific reactor applications. These proceedings were edited by various members of the RERTR Program

  17. Design, fabrication and thermal characterization of a magnetocaloric microcooler

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.; Ghirlanda, S.; Adams, C.; Bethala, B.; Sambandam, S.N.; Bhansali, S. [BioMEMS and Microsystems Laboratory, Department of Electrical Engineering, University of South Florida, 4202 E. Fowler Ave., ENB118, Tampa, FL 33620, (United States)

    2006-12-11

    Magnetocaloric cooling is an alternative, high-efficiency cooling technology. In this paper, we present the design and fabrication of a micromachined magnetocaloric cooler and demonstrate its ability to work in a small magnetic field (<1.2 T) with a cooling test. The cooler was built by fabricating Si microfluidic channels, and it was integrated with a Gd{sub 5}(Si{sub 2}Ge{sub 2}) magnetocaloric refrigeration element. The magnetic properties of the Gd{sub 5}(Si{sub 2}Ge{sub 2}) material were characterized to calculate the magnetic entropy change at different ambient temperatures. Three different methods to integrate the channel layer and the magnetocaloric element were evaluated to test sealing and cooling performance. The cooling tests were performed by providing a magnetic field using an electromagnet. A test jig was constructed between the poles of an electromagnet to maintain a steady temperature during the test. Cooling tests were performed on the magnetocaloric element at ambient temperatures ranging from 258 to 280 K using a magnetic field of 1.2 T. Experimental results showed a maximum temperature change of 7 K on the magnetocaloric element alone at an ambient temperature of 258 K. Cooling tests of the fully integrated coolers were also performed. A solution of anti-freeze fluid (propylene glycol) and water was used as the coolant. The temperature of the working fluid decreased by 4.6 and 9 K for the glass and Si intermediate layers, respectively, confirming that the thermal conductivity of the materials is also an important factor in cooler performance. (Author)

  18. Sintering furnace for remote fuel fabrication

    International Nuclear Information System (INIS)

    Bowen, W.W.

    1978-10-01

    Component testing and evaluation of a chemical vapor deposition Re/W muffle has been initiated. Hydrogen permeation testing and thermal cycling behavior will be evaluated. Fabrication of prototype 10-12 Kg furnace is scheduled for completion late in 1979, at which time testing of the system will be initiated

  19. Fabrics in Function

    DEFF Research Database (Denmark)

    Bang, Anne Louise

    2007-01-01

    sensing of fabrics in function. It is proposed that tactile and visual sensing of fabrics is a way to investigate and express emotional utility values. The further purpose is to use experiments with repertory grid models as part of the mapping of the entire research project and also as a basis...

  20. Fabricating architectural volume

    DEFF Research Database (Denmark)

    Feringa, Jelle; Søndergaard, Asbjørn

    2015-01-01

    The 2011 edition of Fabricate inspired a number of collaborations, this article seeks to highlight three of these. There is a common thread amongst the projects presented: sharing the ambition to close the rift between design and fabrication while incorporating structural design aspects early on...

  1. Smart Fabrics Technology Development

    Science.gov (United States)

    Simon, Cory; Potter, Elliott; Potter, Elliott; McCabe, Mary; Baggerman, Clint

    2010-01-01

    Advances in Smart Fabrics technology are enabling an exciting array of new applications for NASA exploration missions, the biomedical community, and consumer electronics. This report summarizes the findings of a brief investigation into the state of the art and potential applications of smart fabrics to address challenges in human spaceflight.

  2. Are anticoagulant independent mechanical valves within reach-fast prototype fabrication and in vitro testing of innovative bi-leaflet valve models.

    Science.gov (United States)

    Scotten, Lawrence N; Siegel, Rolland

    2015-08-01

    Exploration for causes of prosthetic valve thrombogenicity has frequently focused on forward or post-closure flow detail. In prior laboratory studies, we uncovered high amplitude flow velocities of short duration close to valve closure implying potential for substantial shear stress with subsequent initiation of blood coagulation pathways. This may be relevant to widely accepted clinical disparity between mechanical and tissue valves vis-à-vis thrombogenicity. With a series of prototype bi-leaflet mechanical valves, we attempt reduction of closure related velocities with the objective of identifying a prototype valve with thrombogenic potential similar to our tissue valve control. This iterative design approach may find application in preclinical assessment of valves for anticoagulation independence. Tested valves included: prototype mechanical bi-leaflet BVs (n=56), controls (n=2) and patented early prototype mechanicals (n=2) from other investigators. Pulsatile and quasi-steady flow systems were used for testing. Projected dynamic valve area (PDVA) was measured using previously described novel technology. Flow velocity over the open and closing periods was determined by volumetric flow rate/PDVA. For the closed valve interval, use was made of data obtained from quasi-steady back pressure/flow tests. Performance was ranked by a proposed thrombogenicity potential index (TPI) relative to tissue and mechanical control valves. Optimization of the prototype valve designs lead to a 3-D printed model (BV3D). For the mitral/aortic site, BV3D has lower TPI (1.10/1.47) relative to the control mechanical valve (3.44/3.93) and similar to the control tissue valve (ideal TPI ≤1.0). Using unique technology, rapid prototyping and thrombogenicity ranking, optimization of experimental valves for reduced thrombogenic potential was expedited and simplified. Innovative mechanical valve configurations were identified that merit consideration for further development which may bring

  3. Optics fabrication technical challenges

    International Nuclear Information System (INIS)

    Chabassier, G.; Ferriou, N.; Lavastre, E.; Maunier, C.; Neauport, J.; Taroux, D.; Balla, D.; Fornerod, J.C.

    2004-01-01

    Before the production of all the LMJ (MEGAJOULE laser) optics, the CEA had to proceed with the fabrication of about 300 large optics for the LIL (laser integration line) laser. Thanks to a fruitful collaboration with high-tech optics companies in Europe, this challenge has been successfully hit. In order to achieve the very tight requirements for cleanliness, laser damage threshold and all the other high demanding fabrication specifications, it has been necessary to develop and to set completely new fabrication process going and to build special outsize fabrication equipment. Through a couple of examples, this paper gives an overview of the work which has been done and shows some of the results which have been obtained: continuous laser glass melting, fabrication of the laser slabs, rapid-growth KDP (potassium dihydrogen phosphate) technology, large diffractive transmission gratings engraving and characterization. (authors)

  4. Development of manufacturing capability for the fabrication of the Nb3Sn superconductor for the High Field Test Facility. Final report

    International Nuclear Information System (INIS)

    Spencer, C.R.

    Construction of High Field Test Facility (HFTF) at Lawrence Livermore Laboratory (LLNL) requires an extended surface Nb 3 Sn superconductor cable of carrying currents in excess of 7500 amperes in a 12 Tesla magnetic field. This conductor consists of a 5.4 mm x 11.0 mm superconducting core onto whose broad surfaces are soldered embossed oxygen free copper strips. Two different core designs have been developed and the feasibility of each design evaluated. Equipment necessary to produce the conductor were developed and techniques of production were explored

  5. High-Thermal-Conductivity Fabrics

    Science.gov (United States)

    Chibante, L. P. Felipe

    2012-01-01

    Heat management with common textiles such as nylon and spandex is hindered by the poor thermal conductivity from the skin surface to cooling surfaces. This innovation showed marked improvement in thermal conductivity of the individual fibers and tubing, as well as components assembled from them. The problem is centered on improving the heat removal of the liquid-cooled ventilation garments (LCVGs) used by astronauts. The current design uses an extensive network of water-cooling tubes that introduces bulkiness and discomfort, and increases fatigue. Range of motion and ease of movement are affected as well. The current technology is the same as developed during the Apollo program of the 1960s. Tubing material is hand-threaded through a spandex/nylon mesh layer, in a series of loops throughout the torso and limbs such that there is close, form-fitting contact with the user. Usually, there is a nylon liner layer to improve comfort. Circulating water is chilled by an external heat exchanger (sublimator). The purpose of this innovation is to produce new LCVG components with improved thermal conductivity. This was addressed using nanocomposite engineering incorporating high-thermalconductivity nanoscale fillers in the fabric and tubing components. Specifically, carbon nanotubes were added using normal processing methods such as thermoplastic melt mixing (compounding twin screw extruder) and downstream processing (fiber spinning, tubing extrusion). Fibers were produced as yarns and woven into fabric cloths. The application of isotropic nanofillers can be modeled using a modified Nielsen Model for conductive fillers in a matrix based on Einstein s viscosity model. This is a drop-in technology with no additional equipment needed. The loading is limited by the ability to maintain adequate dispersion. Undispersed materials will plug filtering screens in processing equipment. Generally, the viscosity increases were acceptable, and allowed the filled polymers to still be

  6. SRF Cavity Fabrication and Materials

    Energy Technology Data Exchange (ETDEWEB)

    Singer, W [DESY (Germany)

    2014-07-01

    The technological and metallurgical requirements of material for highgradient superconducting cavities are described. High-purity niobium, as the preferred metal for the fabrication of superconducting accelerating cavities, should meet exact specifications. The content of interstitial impurities such as oxygen, nitrogen, and carbon must be below 10μg/g. The hydrogen content should be kept below 2μg/g to prevent degradation of the Q-value under certain cool-down conditions. The material should be free of flaws (foreign material inclusions or cracks and laminations) that can initiate a thermal breakdown. Defects may be detected by quality control methods such as eddy current scanning and identified by a number of special methods. Conventional and alternative cavity fabrication methods are reviewed. Conventionally, niobium cavities are fabricated from sheet niobium by the formation of half-cells by deep drawing, followed by trim machining and Electron-Beam Welding (EBW). The welding of half-cells is a delicate procedure, requiring intermediate cleaning steps and a careful choice of weld parameters to achieve full penetration of the joints. The equator welds are particularly critical. A challenge for a welded construction is the tight mechanical and electrical tolerances. These can be maintained by a combination of mechanical and radio-frequency measurements on halfcells and by careful tracking of weld shrinkage. The established procedure is suitable for large series production. The main aspects of quality assurance management are mentioned. Another cavity fabrication approach is slicing discs from the ingot and producing cavities by deep drawing and EBW. Accelerating gradients at the level of 35–45 MV·m–1 can be achieved by applying Electropolishing (EP) treatment. Furthermore, the single-crystal option (grain boundary free) is promising. It seems that in this case, high performance can be achieved by a simplified treatment procedure. Fabrication of the

  7. Final Report on Design, Fabrication and Test of HANARO Instrumented Capsule (07M-13N) for the Researches of Irradiation Performance of Parts of X-Gen Nuclear Fuel Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Choo, K. N.; Kim, B. G.; Kang, Y. H. (and others)

    2008-08-15

    An instrumented capsule of 07M-13N was designed, fabricated and irradiated for an evaluation of the neutron irradiation properties of the parts of a X-Gen nuclear fuel assembly for PWR requested by KNF. Some specimens of control rod materials of AP1000 reactor requested by Westinghouse Co. were inserted in this capsule as a preliminary irradiation test and Polyimide specimens requested by Hanyang university were also inserted. 463 specimens such as buckling and spring test specimens of cell spacer grid, tensile, microstructure and tensile of welded parts, irradiation growth, spring test specimens made of HANA tube, Zirlo, Zircaloy-4, Inconel-718, Polyimide, Ag and Ag-In-Cd alloys were placed in the capsule. During the irradiation test, the temperature of the specimens and the thermal/fast neutron fluences were measured by 14 thermocouples and 7 sets of neutron fluence monitors installed in the capsule. A new friction welded tube between STS304 and Al1050 alloys was introduced in the capsule to prevent a coolant leakage into a capsule during a capsule cutting process in HANARO. The capsule was irradiated for 95.19 days (4 cycles) in the CT test hole of HANARO of a 30MW thermal output at 230 {approx} 420 .deg. C. The specimens were irradiated up to a maximum fast neutron fluence of 1.27x10{sup 21}(n/cm{sup 2}) (E>1.0MeV) and the dpa of the irradiated specimens were evaluated as 1.21 {approx} 1.97. The irradiated specimens were tested to evaluate the irradiation performance of the parts of an X-Gen fuel assembly in the IMEF hot cell and the obtained results will be very valuable for the related researches of the users.

  8. Design, Fabrication, and Performance Test of a 100-W Helical-Blade Vertical-Axis Wind Turbine at Low Tip-Speed Ratio

    Directory of Open Access Journals (Sweden)

    Dowon Han

    2018-06-01

    Full Text Available A 100-W helical-blade vertical-axis wind turbine was designed, manufactured, and tested in a wind tunnel. A relatively low tip-speed ratio of 1.1 was targeted for usage in an urban environment at a rated wind speed of 9 m/s and a rotational speed of 170 rpm. The basic dimensions were determined through a momentum-based design method according to the IEC 61400-2 protocol. The power output was estimated by a mathematical model that takes into account the aerodynamic performance of the NACA0018 blade shape. The lift and drag of the blade with respect to the angle of attack during rotation were calculated using 2D computational fluid dynamics (CFD simulation to take into account stall region. The average power output calculated by the model was 108.34 W, which satisfies the target output of 100 W. The manufactured wind turbine was tested in a large closed-circuit wind tunnel, and the power outputs were measured for given wind speeds. At the design condition, the measured power output was 114.7 W, which is 5.9% higher than that of the mathematical model. This result validates the proposed design method and power estimation by the mathematical model.

  9. Development of techniques for fabrication of film probe sensor assembly

    International Nuclear Information System (INIS)

    Moorhead, A.J.

    1982-10-01

    Pulsed laser welding and brazing techniques were developed for fabrication of sensors designed to measure liquid film properties in out-of-reactor safety tests that simulate a loss-of-coolant accident in a pressurized-water nuclear reactor. These sensors were made possible by a unique ceramic-to-metal seal system based on a cermet insulator and a brazing filler metal, both developed at ORNL. This seal system was shown to resist steam to an exposure of at least 100 h at 700 0 C (1292 0 F) and to resist repetitive thermal transients of 300 0 C/s (540 0 F). Procedures were also developed for induction brazing the instrumentation cables to a stainless steel end cap and for laser welding this component to the brazed sensor body itself. Cable end seals and sensor bodies fabricated with these designs and techniques maintained excellent helium leaktightness ( -6 cm 3 /s) after 20 severe thermal shock tests from 500 0 C air into water at 80 0 C

  10. Optimization of Ultrasonic Fabric Cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Hand, T.E.

    1998-05-13

    The fundamental purpose of this project was to research and develop a process that would reduce the cost and improve the environmental efficiency of the present dry-cleaning industry. This second phase of research (see report KCP-94-1006 for information gathered during the first phase) was intended to allow the optimal integration of all factors of ultrasonic fabric cleaning. For this phase, Garment Care performed an extensive literature search and gathered data from other researchers worldwide. The Garment Care-AlliedSignal team developed the requirements for a prototype cleaning tank for studies and acquired that tank and the additional equipment required to use it properly. Garment Care and AlliedSignal acquired the transducers and generators from Surftran Martin-Walter in Sterling Heights, Michigan. Amway's Kelly Haley developed the test protocol, supplied hundreds of test swatches, gathered the data on the swatches before and after the tests, assisted with the cleaning tests, and prepared the final analysis of the results. AlliedSignal personnel, in conjunction with Amway and Garment Care staff, performed all the tests. Additional planning is under way for future testing by outside research facilities. The final results indicated repeatable performance and good results for single layered fabric swatches. Swatches that were cleaned as a ''sandwich,'' that is, three or more layers.

  11. Dissolvable microneedle fabrication using piezoelectric dispensing technology.

    Science.gov (United States)

    Allen, Evin A; O'Mahony, Conor; Cronin, Michael; O'Mahony, Thomas; Moore, Anne C; Crean, Abina M

    2016-03-16

    Dissolvable microneedle (DMN) patches are novel dosage forms for the percutaneous delivery of vaccines. DMN are routinely fabricated by dispensing liquid formulations into microneedle-shaped moulds. The liquid formulation within the mould is then dried to create dissolvable vaccine-loaded microneedles. The precision of the dispensing process is critical to the control of formulation volume loaded into each dissolvable microneedle structure. The dispensing process employed must maintain vaccine integrity. Wetting of mould surfaces by the dispensed formulation is also an important consideration for the fabrication of sharp-tipped DMN. Sharp-tipped DMN are essential for ease of percutaneous administration. In this paper, we demonstrate the ability of a piezoelectric dispensing system to dispense picolitre formulation volumes into PDMS moulds enabling the fabrication of bilayer DMN. The influence of formulation components (trehalose and polyvinyl alcohol (PVA) content) and piezoelectric actuation parameters (voltage, frequency and back pressure) on drop formation is described. The biological integrity of a seasonal influenza vaccine following dispensing was investigated and maintained voltage settings of 30 V but undermined at higher settings, 50 and 80 V. The results demonstrate the capability of piezoelectric dispensing technology to precisely fabricate bilayer DMN. They also highlight the importance of identifying formulation and actuation parameters to ensure controlled droplet formulation and vaccine stabilisation. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Fabrication of Robust and Antifouling Superhydrophobic Surfaces via Surface-Initiated Atom Transfer Radical Polymerization.

    Science.gov (United States)

    Xue, Chao-Hua; Guo, Xiao-Jing; Ma, Jian-Zhong; Jia, Shun-Tian

    2015-04-22

    Superhydrophobic surfaces were fabricated via surface-initiated atom transfer radical polymerization of fluorinated methacrylates on poly(ethylene terephthalate) (PET) fabrics. The hydrophobicity of the PET fabric was systematically tunable by controlling the polymerization time. The obtained superhydrophobic fabrics showed excellent chemical robustness even after exposure to different chemicals, such as acid, base, salt, acetone, and toluene. Importantly, the fabrics maintained superhydrophobicity after 2500 abrasion cycles, 100 laundering cycles, and long time exposure to UV irradiation. Also, the surface of the superhydrophobic fabrics showed excellent antifouling properties.

  13. New polymorphous computing fabric

    International Nuclear Information System (INIS)

    Wolinski, Christophe; Gokhale, Maya; McCabe, Kevin P.

    2002-01-01

    This paper introduces a new polymorphous computing Fabric well suited to DSP and Image Processing and describes its implementation on a Configurable System on a Chip (CSOC). The architecture is highly parameterized and enables customization of the synthesized Fabric to achieve high performance for a specific class of application. For this reason it can be considered to be a generic model for hardware accelerator synthesis from a high level specification. Another important innovation is the Fabric uses a global memory concept, which gives the host processor random access to all the variables and instructions on the Fabric. The Fabric supports different computing models including MIMD, SPMD and systolic flow and permits dynamic reconfiguration. We present a specific implementation of a bank of FIR filters on a Fabric composed of 52 cells on the Altera Excalibur ARM running at 33 MHz. The theoretical performance of this Fabric is 1.8 GMACh. For the FIR application we obtain 1.6 GMAC/s real performance. Some automatic tools have been developed like the tool to provide a host access utility and assembler.

  14. Fabrication of ion source components by electroforming

    International Nuclear Information System (INIS)

    Schechter, D.E.; Sluss, F.

    1983-01-01

    Several components of the Oak Ridge National Laboratory (ORNL)/Magnetic Fusion Test Facility (MFTF-B) ion source have been fabricated utilizing an electroforming process. A procedure has been developed for enclosing coolant passages in copper components by electrodepositing a thick (greater than or equal to 0.75-mm) layer of copper (electroforming) over the top of grooves machined into the copper component base. Details of the procedure to fabricate acceleration grids and other ion source components are presented

  15. Evaluation of Whiteness in Linen and Semi-linen Fabrics

    Directory of Open Access Journals (Sweden)

    Liucina Kot

    2015-03-01

    Full Text Available Whiteness of textiles is one of the main "white" product quality indicators described by the following parameters: lightness of a colour, colour tone (white shade, white uniformity and stability under the influence of physical factors. “White” textile products can be perceived by comparing them with a white standard (Pantone colour palette. On the other hand, the whiteness of the fabric can be estimated using the colorimeter and determining lightness of a fabric L. The purpose of a research is to assess the whiteness of a linen and semi-linen fabric using two different methods, to carry out a comparative analysis of the results and to associate fabric whiteness with the fabric structure parameters. Two methods were used for experiment (colorimeter Spectraflash SF450X and expert assessment of whiteness. The analysed colours of a fabric were divided into five colours: white, whitish, light grey, grey and dark grey. The examination of the two methods, different results were obtained: testing with colorimeter, white colour was found in only one fabric, while the experts found the fabrics of white colour much more. The opinions of experts vary also. Fabric lightness L was associated with fabric structure parameters – the warp and weft settings and fabric weave. It was found that these fabric structure parameters affect the lightness of a colour of a fabric L very little.DOI: http://dx.doi.org/10.5755/j01.ms.21.1.5348

  16. Test

    DEFF Research Database (Denmark)

    Bendixen, Carsten

    2014-01-01

    Bidrag med en kortfattet, introducerende, perspektiverende og begrebsafklarende fremstilling af begrebet test i det pædagogiske univers.......Bidrag med en kortfattet, introducerende, perspektiverende og begrebsafklarende fremstilling af begrebet test i det pædagogiske univers....

  17. Fabrication and characterisation of fabric supercapacitor

    OpenAIRE

    Yong, Sheng

    2016-01-01

    Fabric supercapacitor is a flexible electrochemical device for energy storage application. It is designed to power up flexible electronic systems used for, for example, information sensing, data computation and communication. The development of a flexible supercapacitor is important for e-textiles since supercapacitor can achieve higher energy density than a standard parallel plate capacitor and a larger power density compared with a battery. This research area is currently facing barriers on...

  18. Fabrication and testing of ceramic UO{sub 2} fuel - I-III. Part I; Izrada i ispitivanje keramickog goriva na bazi UO{sub 2}- I-III, I Deo

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, M [Institute of Nuclear Sciences Boris Kidric, Laboratorija za termotehniku reaktora, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    The task described consists of the following: fabrication of UO{sub 2} with different granulation from uranyl nitrate by ammonia diuranate; determination of size and shape distributions of metal and ceramic powders; fabrication of sintered pressed samples UO{sub 2}; investigating the properties of sintered uranium dioxide dependent on the fabrication process; producing a vibrator for compacting UO{sub 2} powder. This volume includes reports on the first two tasks.

  19. A cryogenic optical feedthrough using polarization maintaining fibers.

    Science.gov (United States)

    Nelson, M J; Collins, C J; Speake, C C

    2016-03-01

    Polarization maintaining optical fibers can be used to transmit linearly polarized light over long distances but their use in cryogenic environments has been limited by their sensitivity to temperature changes and associated mechanical stress. We investigate experimentally how thermal stresses affect the polarization maintaining fibers and model the observations with Jones matrices. We describe the design, construction, and testing of a feedthrough and fiber termination assembly that uses polarization maintaining fiber to transmit light from a 633 nm HeNe laser at room temperature to a homodyne polarization-based interferometer in a cryogenic vacuum. We report on the efficiency of the polarization maintaining properties of the feedthrough assembly. We also report that, at cryogenic temperatures, the interferometer can achieve a sensitivity of 8 × 10(-10) rad/√Hz at 0.05 Hz using this feedthrough.

  20. Evolution of maintainability in France since 1971

    International Nuclear Information System (INIS)

    Guyot, Christian.

    1975-01-01

    The purpose of the paper is to make the point of maintainability in France since 1971. The importance of maintainability is recalled. Publications in France from 1971 to 1975 show the interest arose by maintainability; their analysis permits to make clear the general plan followed by the studies and gives indications on the directions of actual efforts. Conclusion is drawn on the orientation of work at short, medium and long term [fr

  1. Environmental concerns regarding a materials test reactor fuel fabrication facility at the Nuclear and Energy Research Institute - IPEN; Atomos para el desarrollo de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Santos, G. R. T.; Durazzo, M.; Carvalho, E. F. U. [IPEN, CNEN-SP, P.O. Box 11049, CEP 05422-970, Sao Paulo (Brazil); Riella, H. G. [Universidade Federal de Santa Catarina, Departamento de Engenharia Quimica, Campus Universitario, Florianopolis, CEP 88040-900 (Brazil)]. e-mail: grsantos@ipen.br

    2008-07-01

    The aim of the industrial activities success, front to a more and more informed and demanding society and to a more and more competitive market demands an environmental administration policy which doesn't limit itself to assist the legislation but anticipate and prevent, in a responsible way, possible damages to the environment. One of the maim programs of the Institute of Energetic and Nuclear Research of the national Commission of Nuclear Energy located in Brazil, through the Center of Nuclear Fuel - CCN - is to manufacture MTR-type fuel elements using low-enrichment uranium (20 wt% {sup 2}35U), to supply its IEA-RI research reactor. Integrated in this program, this work aims at well developing and assuring a methodology to implant an environment, health and safety policy, foreseeing its management with the use of detailed data reports and through the adoption of new tools for improving the management, in order to fulfil the applicable legislation and accomplish all the environmental, operational and works aspects. The applied methodology for the effluents management comprises different aspects, including the specific environmental legislation of a country, main available effluents treatment techniques, process flow analyses from raw materials and intakes to products, generated effluents, residuals and emissions. Data collections were accomplished for points gathering and tests characterization, classification and compatibility of the generated effluents and their eventual environmental impacts. This study aims to implant the Sustainable Concept in order to guarantee access to financial resources, allowing cost reduction, maximizing long-term profits, preventing and reducing environmental accident risks and stimulating both the attraction and the keeping of a motivated manpower. Work on this project has already started and, even though many technical actions have not still ended, the results have being extremely valuable. These results can already give to

  2. Space maintainers in dentistry: past to present.

    Science.gov (United States)

    Setia, Vikas; Pandit, Inder Kumar; Srivastava, Nikhil; Gugnani, Neeraj; Sekhon, Harveen Kaur

    2013-10-01

    Early orthodontic interventions are often initiated in the developing dentition to promote favourable developmental changes. Interceptive orthodontic can eliminate or reduce the severity of a developing malocclusion, the complexity of orthodontic treatment, overall treatment time and cost. The safest way to prevent future malocclusions from tooth loss is to place a space maintainer that is effective and durable. An appropriate use of space maintainer is advocated to hold the space until the eruption of permanent teeth. This case report describes the various changing trends in use of space maintainers: conventional band and loop, prefabricated band with custom made loop and glass fibre reinforced composite resins as space maintainers.

  3. Design, fabrication and installation of irradiation facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Sung; Lee, C. Y.; Kim, J. Y.; Chi, D. Y.; Kim, S. H.; Ahn, S. H.; Kim, S. J.; Kim, J. K.; Yang, S. H.; Yang, S. Y.; Kim, H. R.; Kim, H.; Lee, K. H.; Lee, B. C.; Park, C.; Lee, C. T.; Cho, S. W.; Kwak, K. K.; Suk, H. C. [and others

    1997-07-01

    The principle contents of this project are to design, fabricate and install the steady-state fuel test loop and non-instrumented capsule in HANARO for nuclear technology development. This project will be completed in 1999, the basic and detail design, safety analysis, and procurement of main equipment for fuel test loop have been performed and also the piping in gallery and the support for IPS piping in reactor pool have been installed in 1994. In the area of non-instrumented capsule for material irradiation test, the fabrication of capsule has been completed. Procurement, fabrication and installation of the fuel test loop will be implemented continuously till 1999. As besides, as these irradiation facilities will be installed in HANARO, review of safety concern, discussion with KINS for licensing and safety analysis report has been submitted to KINS to get a license and review of HANARO interface have been performed respectively. (author). 39 refs., 28 tabs., 21 figs.

  4. Design, fabrication and installation of irradiation facilities

    International Nuclear Information System (INIS)

    Kim, Yong Sung; Lee, C. Y.; Kim, J. Y.; Chi, D. Y.; Kim, S. H.; Ahn, S. H.; Kim, S. J.; Kim, J. K.; Yang, S. H.; Yang, S. Y.; Kim, H. R.; Kim, H.; Lee, K. H.; Lee, B. C.; Park, C.; Lee, C. T.; Cho, S. W.; Kwak, K. K.; Suk, H. C.

    1997-07-01

    The principle contents of this project are to design, fabricate and install the steady-state fuel test loop and non-instrumented capsule in HANARO for nuclear technology development. This project will be completed in 1999, the basic and detail design, safety analysis, and procurement of main equipment for fuel test loop have been performed and also the piping in gallery and the support for IPS piping in reactor pool have been installed in 1994. In the area of non-instrumented capsule for material irradiation test, the fabrication of capsule has been completed. Procurement, fabrication and installation of the fuel test loop will be implemented continuously till 1999. As besides, as these irradiation facilities will be installed in HANARO, review of safety concern, discussion with KINS for licensing and safety analysis report has been submitted to KINS to get a license and review of HANARO interface have been performed respectively. (author). 39 refs., 28 tabs., 21 figs

  5. Junction and circuit fabrication

    International Nuclear Information System (INIS)

    Jackel, L.D.

    1980-01-01

    Great strides have been made in Josephson junction fabrication in the four years since the first IC SQUID meeting. Advances in lithography have allowed the production of devices with planar dimensions as small as a few hundred angstroms. Improved technology has provided ultra-high sensitivity SQUIDS, high-efficiency low-noise mixers, and complex integrated circuits. This review highlights some of the new fabrication procedures. The review consists of three parts. Part 1 is a short summary of the requirements on junctions for various applications. Part 2 reviews intergrated circuit fabrication, including tunnel junction logic circuits made at IBM and Bell Labs, and microbridge radiation sources made at SUNY at Stony Brook. Part 3 describes new junction fabrication techniques, the major emphasis of this review. This part includes a discussion of small oxide-barrier tunnel junctions, semiconductor barrier junctions, and microbridge junctions. Part 3 concludes by considering very fine lithography and limitations to miniaturization. (orig.)

  6. Construction, fabrication, and installation

    International Nuclear Information System (INIS)

    1992-05-01

    This standard specifies the construction, fabrication, and installation requirements that apply to concrete containment structures of a containment system designated as class containment components, parts and appurtenances for nuclear power plants

  7. Experimental Fabrication Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Provides aviation fabrication support to special operations aircraft residing at Fort Eustis and other bases in the United States. Support is also provided to AATD...

  8. Alloy Fabrication Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL’s Alloy Fabrication Facility in Albany, OR, researchers conduct DOE research projects to produce new alloys suited to a variety of applications, from gas...

  9. Superhydrophilicity of a nanofiber-covered aluminum surface fabricated via pyrophosphoric acid anodizing

    Science.gov (United States)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2016-12-01

    A superhydrophilic aluminum surface covered by numerous alumina nanofibers was fabricated via pyrophosphoric acid anodizing. High-density anodic alumina nanofibers grow on the bottom of a honeycomb oxide via anodizing in concentrated pyrophosphoric acid. The water contact angle on the nanofiber-covered aluminum surface decreased with time after a 4 μL droplet was placed on the surface, and a superhydrophilic behavior with a contact angle measuring 2.2° was observed within 2 s; this contact angle is considerably lower than those observed for electropolished and porous alumina-covered aluminum surfaces. There was no dependence of the superhydrophilicity on the density of alumina nanofibers fabricated via different constant voltage anodizing conditions. The superhydrophilic property of the surface covered by anodic alumina nanofibers was maintained during an exposure test for 359 h. The quick-drying and snow-sliding behaviors of the superhydrophilic aluminum covered with anodic alumina nanofibers were demonstrated.

  10. Fabricating nuclear components

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Activities of the Nuclear Engineering Division of Vickers Ltd., particularly fabrication of long slim tubular components for power reactors and the construction of irradiation loops and rigs, are outlined. The processes include hydraulic forming for fabrication of various types of tubes and outer cases of fuel transfer buckets, various specialised welding operations including some applications of the TIG process, and induction brazing of specialised assemblies. (U.K.)

  11. Nuclear Fabrication Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Levesque, Stephen [EWI, Columbus, OH (United States)

    2013-04-05

    This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectively engage with each other and rebuild the capacity of this supply chain by : Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. Supporting industry in helping to create a larger qualified nuclear supplier network. Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication Consortium

  12. Fabrication of toroidal composite pressure vessels. Final report

    International Nuclear Information System (INIS)

    Dodge, W.G.; Escalona, A.

    1996-01-01

    A method for fabricating composite pressure vessels having toroidal geometry was evaluated. Eight units were fabricated using fibrous graphite material wrapped over a thin-walled aluminum liner. The material was wrapped using a machine designed for wrapping, the graphite material was impregnated with an epoxy resin that was subsequently thermally cured. The units were fabricated using various winding patterns. They were hydrostatically tested to determine their performance. The method of fabrication was demonstrated. However, the improvement in performance to weight ratio over that obtainable by an all metal vessel probably does not justify the extra cost of fabrication

  13. Maintaining Gamma Spectrometer and its challenges

    International Nuclear Information System (INIS)

    Mazlipah Mohd Ramlan; Ramzah Mohamed; Saipo Bahari Abdul Ratan

    2011-01-01

    This paper discusses the activities of the Group Maintenance of Instrumentation and Automation Center. Maintenance of group activities is to provide maintenance service on equipment at the Malaysian Nuclear Agency. Category of equipment is maintained instrumentation / nuclear electronics, scientific, analytical, security, communications, audio visual and other related. Maintenance services is to support research and development and scientific services at Nuclear Malaysia. Equipment maintenance services including repair service (CM), periodic maintenance (PM), technical testing and calibration of new devices. The objective is to ensure that maintenance activities can be the hope of an equipment, extend the life of the operation of the equipment, reducing 'down time' and reduce maintenance costs. Among the challenges in managing the maintenance of equipment in Nuclear Malaysia is the lack of expertise in specific areas such as nuclear instrumentation, analytical instruments, the problem of the inability of local suppliers to provide after-sales service, lack of spares, maintenance and nothing less emphasis on preventive maintenance schedule is perfect. (author)

  14. The Cost of Maintaining Educational Communications Equipment.

    Science.gov (United States)

    Humphrey, David A.

    Tentative formulas for calculating the cost of maintaining educational communications equipment are proposed. The formulas are based on a survey of campuses of the State University of New York. The survey analyzed the types of equipment to be maintained, types of maintenance, who uses the equipment, who services the equipment, and the cost…

  15. Fabricating customized hydrogel contact lens

    Science.gov (United States)

    Childs, Andre; Li, Hao; Lewittes, Daniella M.; Dong, Biqin; Liu, Wenzhong; Shu, Xiao; Sun, Cheng; Zhang, Hao F.

    2016-10-01

    Contact lenses are increasingly used in laboratories for in vivo animal retinal imaging and pre-clinical studies. The lens shapes often need modification to optimally fit corneas of individual test subjects. However, the choices from commercially available contact lenses are rather limited. Here, we report a flexible method to fabricate customized hydrogel contact lenses. We showed that the fabricated hydrogel is highly transparent, with refractive indices ranging from 1.42 to 1.45 in the spectra range from 400 nm to 800 nm. The Young’s modulus (1.47 MPa) and hydrophobicity (with a sessile drop contact angle of 40.5°) have also been characterized experimentally. Retinal imaging using optical coherence tomography in rats wearing our customized contact lenses has the quality comparable to the control case without the contact lens. Our method could significantly reduce the cost and the lead time for fabricating soft contact lenses with customized shapes, and benefit the laboratorial-used contact lenses in pre-clinical studies.

  16. Study on the improvement of hydrophilic character on polyvinylalcohol treated polyester fabric

    Directory of Open Access Journals (Sweden)

    S. Pitchai

    2014-12-01

    Full Text Available Polyester fabric was treated with polyvinyl alcohol in alkaline medium. The moisture regain, water retention and wettability of the PVA treated polyester fabric were tested. The PVA treated PET fabric was dyed with disperse dye. The presence of PVA in the treated PET fabric was assessed by spot test. The treated fabric was also characterized by scanning electron microscope, FTIR and differential scanning calorimetry. The PVA treated polyester fabric showed improved hydrophilic character over intact and sodium hydroxide treated PET fabrics.

  17. Reduced enrichment fuels for Canadian research reactors - Fabrication and performance

    Energy Technology Data Exchange (ETDEWEB)

    Wood, J C; Foo, M T; Berthiaume, L C; Herbert, L N; Schaefer, J D; Hawley, D [Atomic Energy of Canada Limited, Chalk River Nuclear Laboratories, Chalk River, ON KOJ 1JO (Canada)

    1985-07-01

    Our facilities have been upgraded to manufacture fuel rods comprising dispersions of U{sub 3}Si in aluminum, to complement the dispersions of U{sub 3}Si alloyed with 1.5 and 3.0 wt% Al fabricated and tested previously. Further advances have been made in process optimization particularly in core extrusion where production rate has been doubled while maintaining high quality standards. Our mini-element irradiations of Al-61.5 wt% (U,3.5 wt% Si, 1.5 wt% Al) and Al-62.4 wt% (U,3.2 wt% Si, 30 wt% Al) have been completed successfully up to the terminal burnup of 93 atomic percent. Fuel core swelling remained marginally below 1% per 10 atomic percent burnup over the whole irradiation. Also mini-elements containing Al-72.4 wt% USiAl and Al-73.4 wt% USi*Al have been irradiated to 82 atomic percent burnup, their swelling rate marginally exceeding 1% per 10 atomic percent burnup. Three full-size 12-element NRU assemblies containing Al-62.4 wt% USi*Al have been fabricated and installed in the NRU reactor where they have performed normally without problems. The cores for four more full-size 12-element NRU assemblies containing Al-61.0 wt% U{sub 3}Si have been manufactured. (author)

  18. Reduced enrichment fuels for Canadian research reactors - Fabrication and performance

    International Nuclear Information System (INIS)

    Wood, J.C.; Foo, M.T.; Berthiaume, L.C.; Herbert, L.N.; Schaefer, J.D.; Hawley, D.

    1985-01-01

    Our facilities have been upgraded to manufacture fuel rods comprising dispersions of U 3 Si in aluminum, to complement the dispersions of U 3 Si alloyed with 1.5 and 3.0 wt% Al fabricated and tested previously. Further advances have been made in process optimization particularly in core extrusion where production rate has been doubled while maintaining high quality standards. Our mini-element irradiations of Al-61.5 wt% (U,3.5 wt% Si, 1.5 wt% Al) and Al-62.4 wt% (U,3.2 wt% Si, 30 wt% Al) have been completed successfully up to the terminal burnup of 93 atomic percent. Fuel core swelling remained marginally below 1% per 10 atomic percent burnup over the whole irradiation. Also mini-elements containing Al-72.4 wt% USiAl and Al-73.4 wt% USi*Al have been irradiated to 82 atomic percent burnup, their swelling rate marginally exceeding 1% per 10 atomic percent burnup. Three full-size 12-element NRU assemblies containing Al-62.4 wt% USi*Al have been fabricated and installed in the NRU reactor where they have performed normally without problems. The cores for four more full-size 12-element NRU assemblies containing Al-61.0 wt% U 3 Si have been manufactured. (author)

  19. Overview of MOX fuel fabrication achievements

    International Nuclear Information System (INIS)

    Bairiot, H.; Vliet, J. van; Chiarelli, G.; Edwards, J.; Nagai, S.H.; Reshetnikov, F.

    2000-01-01

    Such overview having been adequately covered in an OECD/NEA publication providing the situation as of end 1994, this paper is mainly devoted to an update as of end 1998. The Belgian plant, Belgonucleaire/Dessel, is now dedicated exclusively to the fabrication of MOX fuel and has operated consistently around its nameplate capacity (35tHM/a) through the 1990s involving a large variety of PWR and BWR fuels. The two French plants have also achieved routine operation during the 1990s. CFCa, historically the largest FBR MOX fuel manufacturer, is utilizing the genuine COCA process for that type of fuel and the MIMAS process for LWR fuel: a nominal capacity (40 tHM/a) has been gradually approached. MELOX has operated at 100 tHM/a, as defined in the operating licence granted originally. The British plant, MDF/Sellafield with 8tHM/a nameplate capacity is devoted to fuel and has manufactured several small fabrication campaigns. In Japan, JNC operates three facilities located at Tokai: PFDF, devoted to basic research and fabrication of test fuels, PFFF/ATR line, for the fabrication of Fugen fuel and of corresponding fuel for the critical facility DCA, and PFPF for the fabrication of FBR fuel. In Russia, fabrication techniques have been developed to fuel four BN-800 FBRs contemplated to be constructed and be fuelled with the civilian Pu stockpile. Two demonstration facilities Paket (Mayak) and RIAR (Dimitrovgrad) fabricated respectively pellet and vipac type FBR MOX fuel for BR-5, BOR-60, BN-350 and BN-600. The paper includes a brief description of each of the fabrication routes mentioned, as well as the production of respectively LWR and FBR MOX fuel in each fabrication facility, since the start-up of the plant, since 1 January 1993 and since 1 January 1998 up to 31 December 1998. (author)

  20. Test chamber

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes

    2009-01-01

    A test chamber for measuring electromagnetic radiation emitted by an apparatus to be tested or for exposing an apparatus to be tested to an electromagnetic radiation field. The test chamber includes a reverberation chamber made of a conductive tent fabric. To create a statistically uniform field in

  1. Piezoresistive effect in top-down fabricated silicon nanowires

    DEFF Research Database (Denmark)

    Reck, Kasper; Richter, Jacob; Hansen, Ole

    2008-01-01

    We have designed and fabricated silicon test chips to investigate the piezoresistive properties of both crystalline and polycrystalline nanowires using a top-down approach, in order to comply with conventional fabrication techniques. The test chip consists of 5 silicon nanowires and a reference...

  2. Practical polarization maintaining optical fibre temperature sensor for harsh environment application

    Science.gov (United States)

    Yang, Yuanhong; Xia, Haiyun; Jin, Wei

    2007-10-01

    A reflection spot temperature sensor was proposed based on the polarization mode interference in polarization maintaining optical fibre (PMF) and the phenomenon that the propagation constant difference of the two orthogonal polarization modes in stressing structures PMF is sensitive to temperature and the sensing equation was obtained. In this temperature sensor, a broadband source was used to suppress the drift due to polarization coupling in lead-in/lead-out PMF. A characteristic and performance investigation proved this sensor to be practical, flexible and precise. Experimental results fitted the theory model very well and the noise-limited minimum detectable temperature variation is less than 0.01 °C. The electric arc processing was investigated and the differential propagation constant modifying the PMF probe is performed. For the demand of field hot-spot monitoring of huge power transformers, a remote multi-channel temperature sensor prototype has been made and tested. Specially coated Panda PMF that can stand high temperatures up to 250 °C was fabricated and used as probe fibres. The sensor probes were sealed within thin quartz tubes that have high voltage insulation and can work in a hot oil and vapour environment. Test results show that the accuracy of the system is better than ±0.5 °C within 0 °C to 200 °C.

  3. Fabrication and testing of ceramic UO{sub 2} fuel - I-III. Part II, Fabrication of sintered pressed samples UO{sub 2} (Final report); Izrada i ispitivanje keramickog goriva na bazi UO{sub 2}- I-III, II Deo - Dobijanje sinterovanih ispresaka UO{sub 2} (zavrsni izvestaj)

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, M; Ristic, M M [Institute of Nuclear Sciences Boris Kidric, Laboratorija za termotehniku reaktora, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    Procedure for fabrication of sintered ceramic UO{sub 2} pellets was developed in the Department of reactor materials. The tasks described in this report deal with design and construction of laboratory equipment for treatment of ceramic materials, and fabrication of UO{sub 2} pellets. The procedure was based on cold pressing of appropriately prepared powder and sintering of the of thus obtained pressed samples.

  4. ATLAS facility fabrication and assembly

    CERN Document Server

    Ballard, E O; Davis, H A; Nielsen, K E; Parker, G V; Parsons, W M

    2001-01-01

    Summary form only given. Atlas is a pulsed-power facility recently completed at Los Alamos National Laboratory to drive hydrodynamic experiments. This new generation pulsed-power machine consists of a radial array of 24, 240-kV Marx modules and transmission lines supplying current to the load region at the machine center. The transmission lines, powered by the Marx modules, consist of cable headers, load protection switches and tri-plates interfacing to the center transition section through detachable current joints. A conical power-flow-channel attaches to the transition section providing an elevated interface to attach the experimental loads for diagnostic access. Fabrication and assembly of all components for the Atlas machine was completed in August 2000. The machine has also progressed through a test phase where the Marx module/transmission line units were fired, individually, into a test load. Progression continued with eight and sixteen lines being fired. Subsequently, an overall machine test was condu...

  5. Process development and fabrication for sphere-pac fuel rods

    International Nuclear Information System (INIS)

    Welty, R.K.; Campbell, M.H.

    1981-06-01

    Uranium fuel rods containing sphere-pac fuel have been fabricated for in-reactor tests and demonstrations. A process for the development, qualification, and fabrication of acceptable sphere-pac fuel rods is described. Special equipment to control fuel contamination with moisture or air and the equipment layout needed for rod fabrication is described and tests for assuring the uniformity of the fuel column are discussed. Fuel retainers required for sphere-pac fuel column stability and instrumentation to measure fuel column smear density are described. Results of sphere-pac fuel rod fabrication campaigns are reviewed and recommended improvements for high throughput production are noted

  6. Nuclear fuel elements design, fabrication and performance

    CERN Document Server

    Frost, Brian R T

    1982-01-01

    Nuclear Fuel Elements: Design, Fabrication and Performance is concerned with the design, fabrication, and performance of nuclear fuel elements, with emphasis on fast reactor fuel elements. Topics range from fuel types and the irradiation behavior of fuels to cladding and duct materials, fuel element design and modeling, fuel element performance testing and qualification, and the performance of water reactor fuels. Fast reactor fuel elements, research and test reactor fuel elements, and unconventional fuel elements are also covered. This volume consists of 12 chapters and begins with an overvie

  7. Fabrication of FFTF fuel pin wire wrap

    International Nuclear Information System (INIS)

    Epperson, E.M.

    1980-06-01

    Lateral spacing between FFTF fuel pins is required to provide a passageway for the sodium coolant to flow over each pin to remove heat generated by the fission process. This spacing is provided by wrapping each fuel pin with type 316 stainless steel wire. This wire has a 1.435mm (0.0565 in.) to 1.448mm (0.0570 in.) diameter, contains 17 +- 2% cold work and was fabricated and tested to exacting RDT Standards. About 500 kg (1100 lbs) or 39 Km (24 miles) of fuel pin wrap wire is used in each core loading. Fabrication procedures and quality assurance tests are described

  8. Maintainability design criteria for packaging of spacecraft replaceable electronic equipment.

    Science.gov (United States)

    Kappler, J. R.; Folsom, A. B.

    1972-01-01

    Maintainability must be designed into long-duration spacecraft and equipment to provide the required high probability of mission success with the least cost and weight. The ability to perform repairs quickly and easily in a space environment can be achieved by imposing specific maintainability design criteria on spacecraft equipment design and installation. A study was funded to investigate and define design criteria for electronic equipment that would permit rapid removal and replacement in a space environment. The results of the study are discussed together with subsequent simulated zero-g demonstration tests of a mockup with new concepts for packaging.

  9. Coastal Maintained Channels in US waters

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This layer shows coastal channels and waterways that are maintained and surveyed by the U.S. Army Corps of Engineers (USACE). These channels are necessary...

  10. Marshal: Maintaining Evolving Models, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SIFT proposes to design and develop the Marshal system, a mixed-initiative tool for maintaining task models over the course of evolving missions. Marshal-enabled...

  11. Fabrication of multilayer nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Jasveer, E-mail: kaurjasveer89@gmail.com; Singh, Avtar; Kumar, Davinder [Department of Physics, Punjabi University Patiala, 147002, Punjab (India); Thakur, Anup; Kaur, Raminder, E-mail: raminder-k-saini@yahoo.com [Department of Basic and Applied Sciences, Punjabi University Patiala, 147002, Punjab (India)

    2016-05-06

    Multilayer nanowires were fabricated by potentiostate ectrodeposition template synthesis method into the pores of polycarbonate membrane. In present work layer by layer deposition of two different metals Ni and Cu in polycarbonate membrane having pore size of 600 nm were carried out. It is found that the growth of nanowires is not constant, it varies with deposition time. Scanning electron microscopy (SEM) is used to study the morphology of fabricated multilayer nanowires. An energy dispersive X-ray spectroscopy (EDS) results confirm the composition of multilayer nanowires. The result shows that multilayer nanowires formed is dense.

  12. MOX Fabrication Isolation Considerations

    Energy Technology Data Exchange (ETDEWEB)

    Eric L. Shaber; Bradley J Schrader

    2005-08-01

    This document provides a technical position on the preferred level of isolation to fabricate demonstration quantities of mixed oxide transmutation fuels. The Advanced Fuel Cycle Initiative should design and construct automated glovebox fabrication lines for this purpose. This level of isolation adequately protects the health and safety of workers and the general public for all mixed oxide (and other transmutation fuel) manufacturing efforts while retaining flexibility, allowing parallel development and setup, and minimizing capital expense. The basis regulations, issues, and advantages/disadvantages of five potential forms of isolation are summarized here as justification for selection of the preferred technical position.

  13. Fabrication of multilayer nanowires

    International Nuclear Information System (INIS)

    Kaur, Jasveer; Singh, Avtar; Kumar, Davinder; Thakur, Anup; Kaur, Raminder

    2016-01-01

    Multilayer nanowires were fabricated by potentiostate ectrodeposition template synthesis method into the pores of polycarbonate membrane. In present work layer by layer deposition of two different metals Ni and Cu in polycarbonate membrane having pore size of 600 nm were carried out. It is found that the growth of nanowires is not constant, it varies with deposition time. Scanning electron microscopy (SEM) is used to study the morphology of fabricated multilayer nanowires. An energy dispersive X-ray spectroscopy (EDS) results confirm the composition of multilayer nanowires. The result shows that multilayer nanowires formed is dense.

  14. Modelling the Effect of Weave Structure and Fabric Thread Density on Mechanical and Comfort Properties of Woven Fabrics

    Directory of Open Access Journals (Sweden)

    Maqsood Muhammad

    2016-09-01

    Full Text Available The paper investigates the effects of weave structure and fabric thread density on the comfort and mechanical properties of various test fabrics woven from polyester/cotton yarns. Three different weave structures, that is, 1/1 plain, 2/1 twill and 3/1 twill, and three different fabric densities were taken as input variables whereas air permeability, overall moisture management capacity, tensile strength and tear strength of fabrics were taken as response variables and a comparison is made of the effect of weave structure and fabric density on the response variables. The results of fabric samples were analysed in Minitab statistical software. The coefficients of determinations (R-sq values of the regression equations show a good predictive ability of the developed statistical models. The findings of the study may be helpful in deciding appropriate manufacturing specifications of woven fabrics to attain specific comfort and mechanical properties.

  15. Improved Sound Absorption Performance of Nonwoven Fabric using Fabric Facing and Air Back Cavity

    Directory of Open Access Journals (Sweden)

    Ismail Ahmad Yusuf

    2017-01-01

    Full Text Available This paper presents the improvement methods to increase sound absorption performance of polyethylene based nonwoven fabric (PNF. The methods are placing a woven fabric in front of the sample as well as providing air cavity behind the sample. The samples were experimentally tested in an impedance tube based on ISO 10354-2:2001 whereby two microphones are used and the transfer matrix methods are employed. From the results, it can be seen that placing front woven fabric effectively increases sound absorption performance. Moreover, introducing air cavity gap behind the sample is also found to be more significant to increase sound absorption.

  16. Pellet presses for remote fuel fabrication

    International Nuclear Information System (INIS)

    Densley, P.J.

    1978-01-01

    Two types of mechanical presses are being tested from the remote operation and remote maintenance aspects. Results will be used to recommend the type of press and design considerations required for operation in a remotely operated and maintained process line

  17. Fabrication and testing of the sintered ceramic UO{sub 2} fuel - I - III, Part III - testing of sintered uranium dioxide properties dependent on the fabrication procedure; Izrada i ispitivanje keramickog goriva na bazi UO{sub 2}- I-III, III Deo - Ispitivanje osobina sinterovanog urandioksida u zavisnosti od procesa dobijanja

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, M; Ristic, M M [Institute of Nuclear Sciences Boris Kidric, Laboratorija za termotehniku reaktora, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    The objective of this task was testing the influence of some parameters on the properties of sintered UO{sub 2}. The influence of parameters tested were as follows: adhesives; pressure in the pressing procedure; temperature of sintering of the UO{sub 2} powder. Other parameters were chosen according to the theoretical study. Sintering was done in argon atmosphere. Characterization of the UO{sub 2} powder was performed meaning determining the needed chemical, physical and physico-chemical properties. Some new methods were developed within this task: SET method for measuring the specific surfaces, DTA, TGA, high-temperature torsion.

  18. EIT-based fabric pressure sensing.

    Science.gov (United States)

    Yao, A; Yang, C L; Seo, J K; Soleimani, M

    2013-01-01

    This paper presents EIT-based fabric sensors that aim to provide a pressure mapping using the current carrying and voltage sensing electrodes attached to the boundary of the fabric patch. Pressure-induced shape change over the sensor area makes a change in the conductivity distribution which can be conveyed to the change of boundary current-voltage data. This boundary data is obtained through electrode measurements in EIT system. The corresponding inverse problem is to reconstruct the pressure and deformation map from the relationship between the applied current and the measured voltage on the fabric boundary. Taking advantage of EIT in providing dynamical images of conductivity changes due to pressure induced shape change, the pressure map can be estimated. In this paper, the EIT-based fabric sensor was presented for circular and rectangular sensor geometry. A stretch sensitive fabric was used in circular sensor with 16 electrodes and a pressure sensitive fabric was used in a rectangular sensor with 32 electrodes. A preliminary human test was carried out with the rectangular sensor for foot pressure mapping showing promising results.

  19. EIT-Based Fabric Pressure Sensing

    Directory of Open Access Journals (Sweden)

    A. Yao

    2013-01-01

    Full Text Available This paper presents EIT-based fabric sensors that aim to provide a pressure mapping using the current carrying and voltage sensing electrodes attached to the boundary of the fabric patch. Pressure-induced shape change over the sensor area makes a change in the conductivity distribution which can be conveyed to the change of boundary current-voltage data. This boundary data is obtained through electrode measurements in EIT system. The corresponding inverse problem is to reconstruct the pressure and deformation map from the relationship between the applied current and the measured voltage on the fabric boundary. Taking advantage of EIT in providing dynamical images of conductivity changes due to pressure induced shape change, the pressure map can be estimated. In this paper, the EIT-based fabric sensor was presented for circular and rectangular sensor geometry. A stretch sensitive fabric was used in circular sensor with 16 electrodes and a pressure sensitive fabric was used in a rectangular sensor with 32 electrodes. A preliminary human test was carried out with the rectangular sensor for foot pressure mapping showing promising results.

  20. Challenges of designing fusion reactors for remote maintainability

    International Nuclear Information System (INIS)

    Mason, L.S.

    1981-01-01

    One of the major problems faced by the fusion community is the development of the high level of reliability required to assure that fusion will be a viable commercial power source. Much of the responsibility for solving this problem falls directly on the designer in developing concepts that have a high level of maintainability. The problems are both near-term, in developing maintainability for next generation engineering oriented reactors; and long range, in developing full maintainability for the more commercial concepts with their required high level of on-line time. The near-time challenge will include development of unqiue design concepts to perform inspection, maintenance, replacement, and testing under the stringent conditions imposed by the next generation engineering oriented machines. The long range challenge will focus on basic design concepts that will enable the full mainatability required by commerical fusion