WorldWideScience

Sample records for fabricate high efficiency

  1. Design, fabrication, and characterization of high-efficiency extreme ultraviolet diffusers

    Energy Technology Data Exchange (ETDEWEB)

    Naulleau, Patrick P.; Liddle, J. Alexander; Salmassi, Farhad; Anderson, Erik H.; Gullikson, Eric M.

    2004-02-19

    As the development of extreme ultraviolet (EUV) lithography progresses, interest grows in the extension of traditional optical components to the EUV regime. The strong absorption of EUV by most materials and its extremely short wavelength, however, makes it very difficult to implement many components that are commonplace in the longer wavelength regimes. One such example is the diffuser often implemented with ordinary ground glass in the visible light regime. Here we demonstrate the fabrication of reflective EUV diffusers with high efficiency within a controllable bandwidth. Using these techniques we have fabricated diffusers with efficiencies exceeding 10% within a moderate angular single-sided bandwidth of approximately 0.06 radians.

  2. Highly efficient tandem organic light-emitting devices employing an easily fabricated charge generation unit

    Science.gov (United States)

    Yang, Huishan; Yu, Yaoyao; Wu, Lishuang; Qu, Biao; Lin, Wenyan; Yu, Ye; Wu, Zhijun; Xie, Wenfa

    2018-02-01

    We have realized highly efficient tandem organic light-emitting devices (OLEDs) employing an easily fabricated charge generation unit (CGU) combining 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile with ultrathin bilayers of CsN3 and Al. The charge generation and separation processes of the CGU have been demonstrated by studying the differences in the current density-voltage characteristics of external-carrier-excluding devices. At high luminances of 1000 and 10000 cd/m2, the current efficiencies of the phosphorescent tandem device are about 2.2- and 2.3-fold those of the corresponding single-unit device, respectively. Simultaneously, an efficient tandem white OLED exhibiting high color stability and warm white emission has also been fabricated.

  3. High efficiency pump combiner fabricated by CO2 laser splicing system

    Science.gov (United States)

    Zhu, Gongwen

    2018-02-01

    High power combiners are of great interest for high power fiber lasers and fiber amplifiers. With the advent of CO2 laser splicing system, power combiners are made possible with low manufacturing cost, low loss, high reliability and high performance. Traditionally fiber optical components are fabricated with flame torch, electrode arc discharge or filament heater. However, these methods can easily leave contamination on the fiber, resulting inconsistent performance or even catching fire in high power operations. The electrodes or filaments also degrade rapidly during the combiner manufacturing process. The rapid degradation will lead to extensive maintenance, making it unpractical or uneconomic for volume production. By contrast, CO2 laser is the cleanest heating source which provides reliable and repeatable process for fabricating fiber optic components including high power combiners. In this paper we present an all fiber end pumped 7x1 pump combiner fabricated by CO2 laser splicing system. The input pump fibers are 105/125 (core/clad diameters in μm) fibers with a core NA of 0.22. The output fiber is a 300/320 fiber with a core NA of 0.22. The average efficiency is 99.4% with all 7 ports more than 99%. The process is contamination-free and highly repeatable. To our best knowledge, this is the first report in the literature on power combiners fabricated by CO2 laser splicing system. It also has the highest reported efficiency of its kind.

  4. Manipulation of radicals and ions in LFICP-aided fabrication of high efficiency solar cells

    International Nuclear Information System (INIS)

    Xu, S.

    2013-01-01

    In this talk, we report on the development and diagnostics of low frequency inductively coupled plasma (LFICP) reactor for fabrication of high efficiency silicon solar cells. Chemically active, thermally non-equilibrium plasma possess unique advantages for manipulation of plasma-generated radicals/ions and overall control of growth and self-organization processes that are crucial for fabrication of photovoltaic materials and solar cells. In low frequency inductively coupled plasmas, generation, selection and control of densities and fluxes of the radicals and ions can easily be controlled by the electron energy distributions and other plasma parameters. The electric field and thermal forces guide selective delivery of the radicals to the surface. Specific substrate activation and temperature determine the ion/heat fluxes from the gas phase to the charged surfaces. Detailed discussion includes the inter-connection between in-situ plasma diagnostics (Optical Emission Spectroscopy, Langmuir Probe diagnostics, and Quadruple Mass Spectrometry) and ex-situ material characterization (XRD, Raman, FTIR EDX, UV/Vis, SEM, Hall-effect and others). Special emphasis is paid to the identification and control strategies of the plasma-generated radicals/ions existed in both the ionized gas phase and on the deposition surfaces. We will show how radicals and ions can be manipulated to meet the structural, optical and electronic requirements for high efficiency photovoltaic cells. Solar cell fabricated by the LFICP plasma exhibits an extraordinarily photovoltaic performance with energy conversion efficiency exceeding 18%. (author)

  5. Progress in high-efficient solution process organic photovoltaic devices fundamentals, materials, devices and fabrication

    CERN Document Server

    Li, Gang

    2015-01-01

    This book presents an important technique to process organic photovoltaic devices. The basics, materials aspects and manufacturing of photovoltaic devices with solution processing are explained. Solution processable organic solar cells - polymer or solution processable small molecules - have the potential to significantly reduce the costs for solar electricity and energy payback time due to the low material costs for the cells, low cost and fast fabrication processes (ambient, roll-to-roll), high material utilization etc. In addition, organic photovoltaics (OPV) also provides attractive properties like flexibility, colorful displays and transparency which could open new market opportunities. The material and device innovations lead to improved efficiency by 8% for organic photovoltaic solar cells, compared to 4% in 2005. Both academic and industry research have significant interest in the development of this technology. This book gives an overview of the booming technology, focusing on the solution process fo...

  6. High efficient plastic solar cells fabricated with a high-throughput gravure printing method

    Energy Technology Data Exchange (ETDEWEB)

    Kopola, P.; Jin, H.; Tuomikoski, M.; Maaninen, A.; Hast, J. [VTT, Kaitovaeylae 1, FIN-90571 Oulu (Finland); Aernouts, T. [IMEC, Organic PhotoVoltaics, Polymer and Molecular Electronics, Kapeldreef 75, B-3001 Leuven (Belgium); Guillerez, S. [CEA-INES RDI, 50 Avenue Du Lac Leman, 73370 Le Bourget Du Lac (France)

    2010-10-15

    We report on polymer-based solar cells prepared by the high-throughput roll-to-roll gravure printing method. The engravings of the printing plate, along with process parameters like printing speed and ink properties, are studied to optimise the printability of the photoactive as well as the hole transport layer. For the hole transport layer, the focus is on testing different formulations to produce thorough wetting of the indium-tin-oxide (ITO) substrate. The challenge for the photoactive layer is to form a uniform layer with optimal nanomorphology in the poly-3-hexylthiophene (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend. This results in a power conversion efficiency of 2.8% under simulated AM1.5G solar illumination for a solar cell device with gravure-printed hole transport and a photoactive layer. (author)

  7. High Efficient THz Emission From Unbiased and Biased Semiconductor Nanowires Fabricated Using Electron Beam Lithography

    Energy Technology Data Exchange (ETDEWEB)

    Balci, Soner; Czaplewski, David A.; Jung, Il Woong; Kim, Ju-Hyung; Hatami, Fariba; Kung, Patrick; Kim, Seongsin Margaret

    2017-07-01

    Besides having perfect control on structural features, such as vertical alignment and uniform distribution by fabricating the wires via e-beam lithography and etching process, we also investigated the THz emission from these fabricated nanowires when they are applied DC bias voltage. To be able to apply a voltage bias, an interdigitated gold (Au) electrode was patterned on the high-quality InGaAs epilayer grown on InP substrate bymolecular beam epitaxy. Afterwards, perfect vertically aligned and uniformly distributed nanowires were fabricated in between the electrodes of this interdigitated pattern so that we could apply voltage bias to improve the THz emission. As a result, we achieved enhancement in the emitted THz radiation by ~four times, about 12 dB increase in power ratio at 0.25 THz with a DC biased electric field compared with unbiased NWs.

  8. Highly efficient fully flexible indium tin oxide free organic light emitting diodes fabricated directly on barrier-foil

    International Nuclear Information System (INIS)

    Bocksrocker, Tobias; Hülsmann, Neele; Eschenbaum, Carsten; Pargner, Andreas; Höfle, Stefan; Maier-Flaig, Florian; Lemmer, Uli

    2013-01-01

    We present a simple method for the fabrication of highly conductive and fully flexible metal/polymer hybrid anodes for efficient organic light emitting diodes (OLEDs). By incorporating ultra-thin metal grids into a conductive polymer, we fabricated anodes with very low sheet resistances and high transparency. After optimizing the metallic grid, OLEDs with these hybrid anodes are superior to OLEDs with standard indium tin oxide (ITO) anodes in luminous efficacy by a factor of ∼ 2. Furthermore, the sheet resistance can be reduced by up to an order of magnitude compared to ITO on polyethylene terephthalate (PET). The devices show a very low turn-on voltage and the hybrid anodes do not change the emissive spectra of the OLEDs. In addition, we fabricated the anodes directly on a barrier foil, making the double sided encapsulation of a typically used PET-substrate unnecessary

  9. Design and fabrication of a high performance inorganic tandem solar cell with 11.5% conversion efficiency

    International Nuclear Information System (INIS)

    Amiri, Omid; Mir, Noshin; Ansari, Fatemeh; Salavati-Niasari, Masoud

    2017-01-01

    Tandem solar cell is a design that combines two types of solar cells to benefit their advantages. We show a new concept for achieving highly efficient dye sensitized and quantum dot tandem solar cells. The new tandem cell further enhances the performance of the device, leading to a power conversion efficiency more than 11% under 1.5 Air Mass. To the best of our knowledge, this is the first time that the efficiency over 11 percent is achieved based on tandem solar cell. X-ray diffraction, Transmission Electron Microscopy, Scanning Electron Microscopy, Current-Voltage measurments, Intensity modulated photocurrent spectroscopy, intensity modulated photovoltage spectroscopy, Energy Dispersive X-ray spectroscopy, Brunauer-Emmett-Teller, Barrett-Joyner-Halenda and absorption spectroscopy were used to characterize the fabricated solar cells.

  10. High Throughput, High Yield Fabrication of High Quantum Efficiency Back-Illuminated Photon Counting, Far UV, UV, and Visible Detector Arrays

    Science.gov (United States)

    Nikzad, Shouleh; Hoenk, M. E.; Carver, A. G.; Jones, T. J.; Greer, F.; Hamden, E.; Goodsall, T.

    2013-01-01

    In this paper we discuss the high throughput end-to-end post fabrication processing of high performance delta-doped and superlattice-doped silicon imagers for UV, visible, and NIR applications. As an example, we present our results on far ultraviolet and ultraviolet quantum efficiency (QE) in a photon counting, detector array. We have improved the QE by nearly an order of magnitude over microchannel plates (MCPs) that are the state-of-the-art UV detectors for many NASA space missions as well as defense applications. These achievements are made possible by precision interface band engineering of Molecular Beam Epitaxy (MBE) and Atomic Layer Deposition (ALD).

  11. A facile strategy for the fabrication of a bioinspired hydrophilic-superhydrophobic patterned surface for highly efficient fog-harvesting

    KAUST Repository

    Wang, Yuchao

    2015-08-10

    Fog water collection represents a meaningful effort in the places where regular water sources, including surface water and ground water, are scarce. Inspired by the amazing fog water collection capability of Stenocara beetles in the Namib Desert and based on the recent work in biomimetic water collection, this work reported a facile, easy-to-operate, and low-cost method for the fabrication of hydrophilic-superhydrophobic patterned hybrid surface toward highly efficient fog water collection. The essence of the method is incorporating a (super)hydrophobically modified metal-based gauze onto the surface of a hydrophilic polystyrene (PS) flat sheet by a simple lab oven-based thermal pressing procedure. The produced hybrid patterned surfaces consisted of PS patches sitting within the holes of the metal gauzes. The method allows for an easy control over the pattern dimension (e.g., patch size) by varying gauze mesh size and thermal pressing temperature, which is then translated to an easy optimization of the ultimate fog water collection efficiency. Given the low-cost and wide availability of both PS and metal gauze, this method has a great potential for scaling-up. The results showed that the hydrophilic-superhydrophobic patterned hybrid surfaces with a similar pattern size to Stenocara beetles’s back pattern produced significantly higher fog collection efficiency than the uniformly (super)hydrophilic or (super)hydrophobic surfaces. This work contributes to general effort in fabricating wettability patterned surfaces and to atmospheric water collection for direct portal use.

  12. Tungsten-rhenium composite tube fabricated by CVD for application in 18000C high thermal efficiency fuel processing furnace

    International Nuclear Information System (INIS)

    Svedberg, R.C.; Bowen, W.W.; Buckman, R.W. Jr.

    1980-04-01

    Chemical Vapor Deposit (CVD) rhenium was selected as the muffle material for an 1800 0 C high thermal efficiency fuel processing furnace. The muffle is exposed to high vacuum on the heater/insulation/instrumentation side and to a flowing argon-8 V/0 hydrogen gas mixture at one atmosphere pressure on the load volume side. During operation, the muffle cycles from room temperature to 1800 0 C and back to room temperature once every 24 hours. Operational life is dependent on resistance to thermal fatigue during the high temperature exposure. For a prototypical furnace, the muffle is approximately 13 cm I.D. and 40 cm in length. A small (about one-half size) rhenium closed end tube overcoated with tungsten was used to evaluate the concept. The fabrication and testing of the composite tungsten-rhenium tube and prototypic rhenium muffle is described

  13. Fabrication of Highly Stable and Efficient PtCu Alloy Nanoparticles on Highly Porous Carbon for Direct Methanol Fuel Cells.

    Science.gov (United States)

    Khan, Inayat Ali; Qian, Yuhong; Badshah, Amin; Zhao, Dan; Nadeem, Muhammad Arif

    2016-08-17

    Boosting the durability of Pt nanoparticles by controlling the composition and morphology is extremely important for fuel cells commercialization. We deposit the Pt-Cu alloy nanoparticles over high surface area carbon in different metallic molar ratios and optimize the conditions to achieve desired material. The novel bimetallic electro-catalyst {Pt-Cu/PC-950 (15:15%)} offers exceptional electrocatalytic activity when tested for both oxygen reduction reaction and methanol oxidation reactions. A high mass activity of 0.043 mA/μgPt (based on Pt mass) is recorded for ORR. An outstanding longevity of this electro-catalyst is noticed when compared to 20 wt % Pt loaded either on PC-950 or commercial carbon. The high surface area carbon support offers enhanced activity and prevents the nanoparticles from agglomeration, migration, and dissolution as evident by TEM analysis.

  14. A smart strategy to fabricate Ru nanoparticle inserted porous carbon nanofibers as highly efficient levulinic acid hydrogenation catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ying; Sun, Cheng-Jun; Brown, Dennis E.; Zhang, Liqiang; Yang, Feng; Zhao, Hairui; Wang, Yue; Ma, Xiaohui; Zhang, Xin; Ren, Yang

    2016-01-01

    Herein, we first put forward a smart strategy to in situ fabricate Ru nanoparticle (NP) inserted porous carbon nanofibers by one-pot conversion of Ru-functionalized metal organic framework fibers. Such fiber precursors are skillfully constructed by cooperative assembly of different proportional RuCl3 and Zn(Ac)2·2H2O along with trimesic acid (H3BTC) in the presence of N,N-dimethylformamide. The following high-temperature pyrolysis affords uniform and evenly dispersed Ru NPs (ca. 12-16 nm), which are firmly inserted into the hierarchically porous carbon nanofibers formed simultaneously. The resulting Ru-carbon nanofiber (Ru-CNF) catalysts prove to be active towards the liquid-phase hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL), a biomass-derived platform molecule with wide applications in the preparation of renewable chemicals and liquid transportation fuels. The optimal GVL yield of 96.0% is obtained, corresponding to a high activity of 9.23 molLAh–1gRu–1, 17 times of that using the commercial Ru/C catalyst. Moreover, the Ru-CNF catalyst is extremely stable, and can be cycled up to 7 times without significant loss of reactivity. Our strategy demonstrated here reveals new possibilities to make proficient metal catalysts, and provides a general way to fabricate metal-carbon nanofiber composites available for other applications.

  15. Facile and Scalable Fabrication of Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells in Air Using Gas Pump Method.

    Science.gov (United States)

    Ding, Bin; Gao, Lili; Liang, Lusheng; Chu, Qianqian; Song, Xiaoxuan; Li, Yan; Yang, Guanjun; Fan, Bin; Wang, Mingkui; Li, Chengxin; Li, Changjiu

    2016-08-10

    Control of the perovskite film formation process to produce high-quality organic-inorganic metal halide perovskite thin films with uniform morphology, high surface coverage, and minimum pinholes is of great importance to highly efficient solar cells. Herein, we report on large-area light-absorbing perovskite films fabrication with a new facile and scalable gas pump method. By decreasing the total pressure in the evaporation environment, the gas pump method can significantly enhance the solvent evaporation rate by 8 times faster and thereby produce an extremely dense, uniform, and full-coverage perovskite thin film. The resulting planar perovskite solar cells can achieve an impressive power conversion efficiency up to 19.00% with an average efficiency of 17.38 ± 0.70% for 32 devices with an area of 5 × 2 mm, 13.91% for devices with a large area up to 1.13 cm(2). The perovskite films can be easily fabricated in air conditions with a relative humidity of 45-55%, which definitely has a promising prospect in industrial application of large-area perovskite solar panels.

  16. The Fabrication and High-Efficiency Electromagnetic Wave Absorption Performance of CoFe/C Core-Shell Structured Nanocomposites

    Science.gov (United States)

    Wan, Gengping; Luo, Yongming; Wu, Lihong; Wang, Guizhen

    2018-03-01

    CoFe/C core-shell structured nanocomposites (CoFe@C) have been fabricated through the thermal decomposition of acetylene with CoFe2O4 as precursor. The as-prepared CoFe@C was characterized by X-ray powder diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy, and thermogravimetric analysis. The results demonstrate that the carbon shell in CoFe@C has a poor crystallization with a thickness about 5-30 nm and a content approximately 48.5 wt.%. Due to a good combination between intrinsic magnetic properties and high-electrical conductivity, the CoFe@C exhibits not only excellent absorption intensity but also wide frequency bandwidth. The minimum RL value of CoFe@C can reach - 44 dB at a thickness of 4.0 mm, and RL values below - 10 dB is up to 4.3 GHz at a thickness of 2.5 mm. The present CoFe@C may be a potential candidate for microwave absorption application.

  17. High-Efficiency InGaN/GaN Quantum Well-Based Vertical Light-Emitting Diodes Fabricated on β-Ga2O3 Substrate.

    Science.gov (United States)

    Muhammed, Mufasila M; Alwadai, Norah; Lopatin, Sergei; Kuramata, Akito; Roqan, Iman S

    2017-10-04

    We demonstrate a state-of-the-art high-efficiency GaN-based vertical light-emitting diode (VLED) grown on a transparent and conductive (-201)-oriented (β-Ga 2 O 3 ) substrate, obtained using a straightforward growth process that does not require a high-cost lift-off technique or complex fabrication process. The high-resolution scanning transmission electron microscopy (STEM) images confirm that we produced high quality upper layers, including a multiquantum well (MQW) grown on the masked β-Ga 2 O 3 substrate. STEM imaging also shows a well-defined MQW without InN diffusion into the barrier. Electroluminescence (EL) measurements at room temperature indicate that we achieved a very high internal quantum efficiency (IQE) of 78%; at lower temperatures, IQE reaches ∼86%. The photoluminescence (PL) and time-resolved PL analysis indicate that, at a high carrier injection density, the emission is dominated by radiative recombination with a negligible Auger effect; no quantum-confined Stark effect is observed. At low temperatures, no efficiency droop is observed at a high carrier injection density, indicating the superior VLED structure obtained without lift-off processing, which is cost-effective for large-scale devices.

  18. High-Efficiency InGaN/GaN Quantum Well-Based Vertical Light-Emitting Diodes Fabricated on β-Ga2O3 Substrate

    KAUST Repository

    Muhammed, Mufasila; Alwadai, Norah Mohammed Mosfer; Lopatin, Sergei; Kuramata, Akito; Roqan, Iman S.

    2017-01-01

    We demonstrate a state-of-the-art high-efficiency GaN-based vertical light-emitting diode (VLED) grown on a transparent and conductive (-201)-oriented (β-Ga2O3) substrate, obtained using a straightforward growth process that does not require a high cost lift-off technique or complex fabrication process. The high-resolution scanning transmission electron microscopy (STEM) images confirm that we produced high quality upper layers, including a multi-quantum well (MQW) grown on the masked β-Ga2O3 substrate. STEM imaging also shows a well-defined MQW without InN diffusion into the barrier. Electroluminescence (EL) measurements at room temperature indicate that we achieved a very high internal quantum efficiency (IQE) of 78%; at lower temperatures, IQE reaches ~ 86%. The photoluminescence (PL) and time-resolved PL analysis indicate that, at a high carrier injection density, the emission is dominated by radiative recombination with a negligible Auger effect; no quantum-confined Stark effect is observed. At low temperatures, no efficiency droop is observed at a high carrier injection density, indicating the superior VLED structure obtained without lift-off processing, which is cost-effective for large-scale devices.

  19. High-Efficiency InGaN/GaN Quantum Well-Based Vertical Light-Emitting Diodes Fabricated on β-Ga2O3 Substrate

    KAUST Repository

    Muhammed, Mufasila

    2017-09-11

    We demonstrate a state-of-the-art high-efficiency GaN-based vertical light-emitting diode (VLED) grown on a transparent and conductive (-201)-oriented (β-Ga2O3) substrate, obtained using a straightforward growth process that does not require a high cost lift-off technique or complex fabrication process. The high-resolution scanning transmission electron microscopy (STEM) images confirm that we produced high quality upper layers, including a multi-quantum well (MQW) grown on the masked β-Ga2O3 substrate. STEM imaging also shows a well-defined MQW without InN diffusion into the barrier. Electroluminescence (EL) measurements at room temperature indicate that we achieved a very high internal quantum efficiency (IQE) of 78%; at lower temperatures, IQE reaches ~ 86%. The photoluminescence (PL) and time-resolved PL analysis indicate that, at a high carrier injection density, the emission is dominated by radiative recombination with a negligible Auger effect; no quantum-confined Stark effect is observed. At low temperatures, no efficiency droop is observed at a high carrier injection density, indicating the superior VLED structure obtained without lift-off processing, which is cost-effective for large-scale devices.

  20. Highly Flexible and Efficient Fabric-Based Organic Light-Emitting Devices for Clothing-Shaped Wearable Displays.

    Science.gov (United States)

    Choi, Seungyeop; Kwon, Seonil; Kim, Hyuncheol; Kim, Woohyun; Kwon, Jung Hyun; Lim, Myung Sub; Lee, Ho Seung; Choi, Kyung Cheol

    2017-07-25

    Recently, the role of clothing has evolved from merely body protection, maintaining the body temperature, and fashion, to advanced functions such as various types of information delivery, communication, and even augmented reality. With a wireless internet connection, the integration of circuits and sensors, and a portable power supply, clothes become a novel electronic device. Currently, the information display is the most intuitive interface using visualized communication methods and the simultaneous concurrent processing of inputs and outputs between a wearer and functional clothes. The important aspect in this case is to maintain the characteristic softness of the fabrics even when electronic devices are added to the flexible clothes. Silicone-based light-emitting diode (LED) jackets, shirts, and stage costumes have started to appear, but the intrinsic stiffness of inorganic semiconductors causes wearers to feel discomfort; thus, it is difficult to use such devices for everyday purposes. To address this problem, a method of fabricating a thin and flexible emitting fabric utilizing organic light-emitting diodes (OLEDs) was developed in this work. Its flexibility was evaluated, and an analysis of its mechanical bending characteristics and tests of its long-term reliability were carried out.

  1. Facile fabrication of Ag3VO4/attapulgite composites for highly efficient visible light-driven photodegradation towards organic dyes and tetracycline hydrochloride

    Science.gov (United States)

    Luo, Yuting; Luo, Jie; Duan, Guorong; Liu, Xiaoheng

    2017-12-01

    An efficient one-dimensional attapulgite (ATP)-based photocatalyst, Ag3VO4/ATP nanocomposite, was fabricated by a facile deposition precipitation method with well-dispersed Ag3VO4 nanoparticles anchored on the surface of natural ATP fibers. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and UV-visible diffused reflectance spectroscopy (UV-vis DRS) were employed to investigate the morphologies, structure, and optical property of the prepared photocatalysts. The photocatalytic experiments indicated that the Ag3VO4/ATP nanocomposites exhibited enhanced visible light-driven photocatalytic activity towards the degradation of rhodamine B (RhB), methyl orange (MO), and tetracycline hydrochloride (TCH), of which the 20 wt% Ag3VO4/ATP sample showed superb photocatalytic performance. As demonstrated by N2 adsorption-desorption, photocurrent measurements, electrochemical impedance spectroscopy (EIS), and photoluminescence (PL) spectra analyses, the improved photocatalytic activity arose from the enlarged surface area, the facilitated charge transfer, and the suppressed recombination of photogenerated charge carriers in Ag3VO4/ATP system. Furthermore, radical scavengers trapping experiments and recycling tests were also conducted. This work gives a new insight into fabrication of highly efficient, stable, and cost-effective visible light-driven photocatalyst for practical application in wastewater treatment and environmental remediation.

  2. High Efficiency Photovoltaic Devices Fabricated from Self-Assemble Block Insulating-Conducting Copolymer Containing Semiconducting Nanoparticles

    Science.gov (United States)

    2005-12-14

    71.3° TESDT ɝ° 45.3° 59.5° 67.2° 75.0° The amount of D-A linkers anchored on TiO2 nanoparticles was determined by thermogravimetric analysis ...e.g. lamellae, cylinders and spheres of copolymers were fabricated. Semiconducting nanoparticles of cadmium sulfide ( CdS ) was incorporated into PPP...water contact angle measurement, thermogravimetric analysis , and XPS spectra, we can presume that compact SAMs were formed on the surface of TiO2

  3. Fabrication, characterization and comparison of composite magnetic materials for high efficiency integrated voltage regulators with embedded magnetic core micro-inductors

    International Nuclear Information System (INIS)

    Bellaredj, Mohamed L F; Mueller, Sebastian; Davis, Anto K; Swaminathan, Madhavan; Mano, Yasuhiko; Kohl, Paul A

    2017-01-01

    High-efficiency integrated voltage regulators (IVRs) require the integration of power inductors, which have low loss and reduced size at very high frequency. The use of a magnetic material core can reduce significantly the inductor area and simultaneously increase the inductance. This paper focuses on the fabrication, characterization and modeling of nickel zinc (NiZn) ferrite and carbonyl iron powder (CIP)-epoxy magnetic composite materials, which are used as the magnetic core materials of embedded inductors in a printed wiring board (PWB) for a system in package (SIP) based buck type IVR. The fabricated composite materials and process are fully compatible with FR4 epoxy resin prepreg and laminate. For 85% weight loading of the magnetic powder (around 100 MHz at room temperature), the composite materials show a relative permeability of 7.5–8.1 for the NiZn ferrite composite and 5.2–5.6 for the CIP composite and a loss tangent value of 0.24–0.28 for the NiZn ferrite composite and 0.09–0.1 for the CIP-composite. The room temperature saturation flux density values are 0.1351 T and 0.5280 T for the NiZn ferrite and the CIP composites, respectively. The frequency dispersion parameters of the magnetic composites are modeled using a simplified Lorentz and Landau–Lifshitz–Gilbert equation for a Debye type relaxation. Embedded magnetic core solenoid inductors were designed based on the composite materials for the output filter of a high-efficiency SIP based buck type IVR. Evaluation of a SIP based buck type IVR with the designed inductors shows that it can reach peak efficiencies of 91.7% at 11 MHz for the NiZn ferrite-composite, 91.6% at 14 MHz for CIP-composite and 87.5% (NiZn ferrite-composite) and 87.3% (CIP-composite) efficiency at 100 MHz for a 1.7 V:1.05 V conversion. For a direct 5 V:1 V conversion using a stacked topology, a peak efficiency of 82% at 10 MHz and 72% efficiency at 100 MHz can be achieved for both materials. (paper)

  4. Fabrication, characterization and comparison of composite magnetic materials for high efficiency integrated voltage regulators with embedded magnetic core micro-inductors

    Science.gov (United States)

    Bellaredj, Mohamed L. F.; Mueller, Sebastian; Davis, Anto K.; Mano, Yasuhiko; Kohl, Paul A.; Swaminathan, Madhavan

    2017-11-01

    High-efficiency integrated voltage regulators (IVRs) require the integration of power inductors, which have low loss and reduced size at very high frequency. The use of a magnetic material core can reduce significantly the inductor area and simultaneously increase the inductance. This paper focuses on the fabrication, characterization and modeling of nickel zinc (NiZn) ferrite and carbonyl iron powder (CIP)-epoxy magnetic composite materials, which are used as the magnetic core materials of embedded inductors in a printed wiring board (PWB) for a system in package (SIP) based buck type IVR. The fabricated composite materials and process are fully compatible with FR4 epoxy resin prepreg and laminate. For 85% weight loading of the magnetic powder (around 100 MHz at room temperature), the composite materials show a relative permeability of 7.5-8.1 for the NiZn ferrite composite and 5.2-5.6 for the CIP composite and a loss tangent value of 0.24-0.28 for the NiZn ferrite composite and 0.09-0.1 for the CIP-composite. The room temperature saturation flux density values are 0.1351 T and 0.5280 T for the NiZn ferrite and the CIP composites, respectively. The frequency dispersion parameters of the magnetic composites are modeled using a simplified Lorentz and Landau-Lifshitz-Gilbert equation for a Debye type relaxation. Embedded magnetic core solenoid inductors were designed based on the composite materials for the output filter of a high-efficiency SIP based buck type IVR. Evaluation of a SIP based buck type IVR with the designed inductors shows that it can reach peak efficiencies of 91.7% at 11 MHz for the NiZn ferrite-composite, 91.6% at 14 MHz for CIP-composite and 87.5% (NiZn ferrite-composite) and 87.3% (CIP-composite) efficiency at 100 MHz for a 1.7 V:1.05 V conversion. For a direct 5 V:1 V conversion using a stacked topology, a peak efficiency of 82% at 10 MHz and 72% efficiency at 100 MHz can be achieved for both materials.

  5. Efficient bragg grating fabrication in Ge-rich fibre by high-intensity femtosecond 264 mm irradation

    DEFF Research Database (Denmark)

    Slattery, S.A.; Nikogasyan, D.N.; Plougmann, Nikolai

    2004-01-01

    UV pulses leads to an improvement of the inscription efficiency in photosensitive fibres due to realisation of the two-step excitation process S0!S1!SN [3, 4]. The possibility of such an improvement follows from the consideration of the scheme of the electronic levels for the germanium sites in fused...

  6. Fabrication of Natural Sensitizer Extracted from Mixture of Purple Cabbage, Roselle, Wormwood and Seaweed with High Conversion Efficiency for DSSC.

    Science.gov (United States)

    Chang, Ho; Lai, Xuan-Rong

    2016-02-01

    This study aims to deal with the influence of different solvent in extraction of natural sensitizer and different thickness of photoelectrode thin film on the photoelectric conversion efficiency and the electron transport properties for the prepared dye-sensitized solar cells (DSSC). The natural dyes of anthocyanin and chlorophyll dyes are extracted from mixture of purple cabbage and roselle and mixture of wormwood and seaweed, respectively. The experimental results show the cocktail dye extracted with ethanol and rotating speed of spin coating at 1000 rpm can achieve the greatest photoelectric conversion efficiency up to 1.85%. Electrochemical impedance result shows that the effective diffusion coefficient for the prepared DSSC with the thickness of photoelectrode thin film at 21 microm are 5.23 x 10(-4) cm2/s.

  7. A novel highly porous ceramic foam with efficient thermal insulation and high temperature resistance properties fabricated by gel-casting process

    Science.gov (United States)

    Yu, Jiahong; Wang, Guixiang; Tang, Di; Qiu, Ya; Sun, Nali; Liu, Wenqiao

    2018-01-01

    The design of super thermal insulation and high-temperature resistant materials for high temperature furnaces is crucial due to the energy crisis and the huge wasting. Although it is told that numerous studies have been reported about various of thermal insulation materials prepared by different methods, the applications of yttria-stabilized zirconia (YSZ) ceramic foams fabricated through tert-butyl alcohol (TBA)-based gel-casting process in bulk thermal isolators were barely to seen. In this paper, highly porous yttria-stabilized zirconia (YSZ) ceramic foams were fabricated by a novel gel-casting method using tert-butyl alcohol (TBA) as solvent and pore-forming agent. Different raw material ratio, sintering temperature and soaking time were all investigated to achieve optimal thermal insulation and mechanical properties. We can conclude that porosity drops gradually while compressive strength increases significantly with the rising temperature from 1000-1500°C. With prolonged soaking time, there is no obvious change in porosity but compressive strength increases gradually. All specimens have uniformly distributed pores with average size of 0.5-2μm and show good structural stability at high temperature. The final obtained ceramic foams displayed an outstanding ultra-low thermal conductivity property with only 200.6 °C in cold surface while the hot side was 1000 °C (hold 60 min to keep thermal balance before testing) at the thickness of 10 mm.

  8. Remarkably High Conversion Efficiency of Inverted Bulk Heterojunction Solar Cells: From Ultrafast Laser Spectroscopy and Electron Microscopy to Device Fabrication and Optimization

    KAUST Repository

    Alsulami, Qana

    2016-04-10

    In organic donor-acceptor systems, ultrafast interfacial charge transfer (CT), charge separation (CS), and charge recombination (CR) are key determinants of the overall performance of photovoltaic devices. However, a profound understanding of these photophysical processes at device interfaces remains superficial, creating a major bottleneck that circumvents advancements and the optimization of these solar cells. Here, results from time-resolved laser spectroscopy and high-resolution electron microscopy are examined to provide the fundamental information necessary to fabricate and optimize organic solar cell devices. In real time, CT and CS are monitored at the interface between three fullerene acceptors (FAs) (PC71BM, PC61BM, and IC60BA) and the PTB7-Th donor polymer. Femtosecond transient absorption (fs-TA) data demonstrates that photoinduced electron transfer from the PTB7-Th polymer to each FA occurs on the sub-picosecond time scale, leading to the formation of long-lived radical ions. It is also found that the power conversion efficiency improves from 2% in IC60BA-based solar cells to >9% in PC71BM-based devices, in support of our time-resolved results. The insights reported in this manuscript provide a clear understanding of the key variables involved at the device interface, paving the way for the exploitation of efficient CS and subsequently improving the photoconversion efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Fabrication of high efficacy selective solar absorbers

    CSIR Research Space (South Africa)

    Tile, N

    2012-03-01

    Full Text Available High efficiency tandem selective solar absorber materials of carbon in nickel oxide (C-NiO) composite were fabricated on an aluminium substrate using a simple and cost effective sol-gel process. The process involved preparation of carbon and nickel...

  10. Facile and highly efficient approach for the fabrication of multifunctional silk nanofibers containing hydroxyapatite and silver nanoparticles.

    Science.gov (United States)

    Sheikh, Faheem A; Ju, Hyung Woo; Moon, Bo Mi; Park, Hyun Jung; Kim, Jung-Ho; Lee, Ok Joo; Park, Chan Hum

    2014-10-01

    In this study, a good combination consisting of electrospun silk fibroin nanofibers incorporated with high-purity hydroxyapatite (HAp) nanoparticles (NPs) and silver NPs is introduced as antimicrobial for tissue engineering applications. The variable pressure field emission scanning electron microscope results confirmed randomly placed nanofibers are produced with highly dispersed HAp and silver NPs in nanofibers after electrospinning. The X-ray diffraction results demonstrated crystalline features of each of the three components used for electrospinning. Moreover, the TEM-EDS analysis confirmed the presence and chemical nature of each component over individual silk nanofiber. The FT-IR analyses was used confirm the different vibration modes caused due to functional groups present in silk fibroin, Hap, and silver NPs. The obtained nanofibers were checked for antimicrobial activity by using two model organisms Escherichia coli and Staphylococcus aureus. Subsequently, the antimicrobial tests have indicated that prepared nanofibers do possess good bactericidal activity. The ability of N,N-dimethylformamide and silk fibroin used to reduce silver nitrate into silver metal was evaluated using MTT assay. The nanofibers were grown in presence of NIH 3T3 fibroblasts, which revealed toxic behavior to fibroblasts at higher concentrations of silver nitrate used in this study. Furthermore, cell attachment studies on nanofibers for 3 and 12 days of incubation time were minutely observed and correlated with the results of MTT assay. The reported results confirmed the high amounts of silver nitrate can lead to toxic effects on viability of fibroblasts and had bad effect in cell attachment. © 2013 Wiley Periodicals, Inc.

  11. One-step fabrication of highly stable, superhydrophobic composites from controllable and low-cost PMHS/TEOS sols for efficient oil cleanup.

    Science.gov (United States)

    Guo, Ping; Zhai, Shangru; Xiao, Zuoyi; An, Qingda

    2015-05-15

    Facing the issues of significant increase of industrial oily wastewater and frequent accident of oil spills, the developing of efficient and affordable absorbents for improving oil pollution is of practical significance. Herein, several superhydrophobic and superoleophilic materials, utilizing filter paper, filter cloth and polyester sponge as substrates, through facile coating of hybrid SiO2 colloid particles from controllable PMHS-TEOS sol system were presented. These methyl-modified particles not only provided hierarchical micro/nano-scale structure with distinct roughness, but also largely lowered the surface energy of the coated substances, leading to excellent superhydrophobic and superoleophilic surfaces. The modified filter cloths could be applied for oil/water separation owing to the flexible and foldable property; sponges could efficiently absorb oil or organic solvents in situ on account of its low density and high porosity, and meanwhile the absorbed oil could be easily recollected by simple squeezing. It is worth mentioning that both modified filter cloths and sponges exhibited excellent selectivity, high efficiency, outstanding rapidity and remarkable recyclability. More importantly, after treatment of 100 abrasion cycles with metal scalpel and strongly acidic and basic water droplets, the whole WCA values of resultant filter cloths still maintained superhydrophobic character (>150°), illuminating the charming mechanical and chemical stability of sol-gel processed coating with hierarchical roughness and covalently bonded methyl groups. Combining controllable fabrication process and cheap raw precursors, this method enables scalable manufacturing of stable and superhydrophobic substances, which are promising in practical applications involved in oil/water separation and oil sorption. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Toward more efficient fabrication of high-density 2-D VCSEL arrays for spatial redundancy and/or multi-level signal communication

    Science.gov (United States)

    Roscher, Hendrik; Gerlach, Philipp; Khan, Faisal Nadeem; Kroner, Andrea; Stach, Martin; Weigl, Alexander; Michalzik, Rainer

    2006-04-01

    We present flip-chip attached high-speed VCSELs in 2-D arrays with record-high intra-cell packing densities. The advances of VCSEL array technology toward improved thermal performance and more efficient fabrication are reviewed, and the introduction of self-aligned features to these devices is pointed out. The structure of close-spaced wedge-shaped VCSELs is discussed and their static and dynamic characteristics are presented including an examination of the modal structure by near-field measurements. The lasers flip-chip bonded to a silicon-based test platform exhibit 3-dB and 10-dB bandwidths of 7.7 GHz and 9.8 GHz, respectively. Open 12.5 Gbit/s two-level eye patterns are demonstrated. We discuss the uses of high packing densities for the increase of the total amount of data throughput an array can deliver in the course of its life. One such approach is to provide up to two backup VCSELs per fiber channel that can extend the lifetimes of parallel transmitters through redundancy of light sources. Another is to increase the information density by using multiple VCSELs per 50 μm core diameter multimode fiber to generate more complex signals. A novel scheme using three butt-coupled VCSELs per fiber for the generation of four-level signals in the optical domain is proposed. First experiments are demonstrated using two VCSELs butt-coupled to the same standard glass fiber, each modulated with two-level signals to produce four-level signals at the photoreceiver. A four-level direct modulation of one VCSEL within a triple of devices produced first 20.6 Gbit/s (10.3 Gsymbols/s) four-level eyes, leaving two VCSELs as backup sources.

  13. High efficiency, long life terrestrial solar panel

    Science.gov (United States)

    Chao, T.; Khemthong, S.; Ling, R.; Olah, S.

    1977-01-01

    The design of a high efficiency, long life terrestrial module was completed. It utilized 256 rectangular, high efficiency solar cells to achieve high packing density and electrical output. Tooling for the fabrication of solar cells was in house and evaluation of the cell performance was begun. Based on the power output analysis, the goal of a 13% efficiency module was achievable.

  14. High-Thermal-Conductivity Fabrics

    Science.gov (United States)

    Chibante, L. P. Felipe

    2012-01-01

    Heat management with common textiles such as nylon and spandex is hindered by the poor thermal conductivity from the skin surface to cooling surfaces. This innovation showed marked improvement in thermal conductivity of the individual fibers and tubing, as well as components assembled from them. The problem is centered on improving the heat removal of the liquid-cooled ventilation garments (LCVGs) used by astronauts. The current design uses an extensive network of water-cooling tubes that introduces bulkiness and discomfort, and increases fatigue. Range of motion and ease of movement are affected as well. The current technology is the same as developed during the Apollo program of the 1960s. Tubing material is hand-threaded through a spandex/nylon mesh layer, in a series of loops throughout the torso and limbs such that there is close, form-fitting contact with the user. Usually, there is a nylon liner layer to improve comfort. Circulating water is chilled by an external heat exchanger (sublimator). The purpose of this innovation is to produce new LCVG components with improved thermal conductivity. This was addressed using nanocomposite engineering incorporating high-thermalconductivity nanoscale fillers in the fabric and tubing components. Specifically, carbon nanotubes were added using normal processing methods such as thermoplastic melt mixing (compounding twin screw extruder) and downstream processing (fiber spinning, tubing extrusion). Fibers were produced as yarns and woven into fabric cloths. The application of isotropic nanofillers can be modeled using a modified Nielsen Model for conductive fillers in a matrix based on Einstein s viscosity model. This is a drop-in technology with no additional equipment needed. The loading is limited by the ability to maintain adequate dispersion. Undispersed materials will plug filtering screens in processing equipment. Generally, the viscosity increases were acceptable, and allowed the filled polymers to still be

  15. Research cooperation project on environmentally friendly technology for highly efficient mineral resources extraction and treatment. Detail design for pilot plant (Mechanical fabrication)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper prepared plans of the mechanical equipment in the detailed design of a pilot plant in the joint research project on the environmental protection technology for highly efficient mineral resource extraction and treatment. (NEDO)

  16. Fabrication of Very High Efficiency 5.8 GHz Power Amplifiers using AlGaN HFETs on SiC Substrates for Wireless Power Transmission

    Science.gov (United States)

    Sullivan, Gerry

    2001-01-01

    For wireless power transmission using microwave energy, very efficient conversion of the DC power into microwave power is extremely important. Class E amplifiers have the attractive feature that they can, in theory, be 100% efficient at converting, DC power to RF power. Aluminum gallium nitride (AlGaN) semiconductor material has many advantageous properties, relative to silicon (Si), gallium arsenide (GaAs), and silicon carbide (SiC), such as a much larger bandgap, and the ability to form AlGaN/GaN heterojunctions. The large bandgap of AlGaN also allows for device operation at higher temperatures than could be tolerated by a smaller bandgap transistor. This could reduce the cooling requirements. While it is unlikely that the AlGaN transistors in a 5.8 GHz class E amplifier can operate efficiently at temperatures in excess of 300 or 400 C, AlGaN based amplifiers could operate at temperatures that are higher than a GaAs or Si based amplifier could tolerate. Under this program, AlGaN microwave power HFETs have been fabricated and characterized. Hybrid class E amplifiers were designed and modeled. Unfortunately, within the time frame of this program, good quality HFETs were not available from either the RSC laboratories or commercially, and so the class E amplifiers were not constructed.

  17. Highly efficient and large-scale fabrication of superhydrophobic alumina surface with strong stability based on self-congregated alumina nanowires.

    Science.gov (United States)

    Peng, Shan; Tian, Dong; Yang, Xiaojun; Deng, Wenli

    2014-04-09

    In this study, a large-area superhydrophobic alumina surface with a series of superior properties was fabricated via an economical, simple, and highly effective one-step anodization process, and subsequently modified with low-surface-energy film. The effects of the anodization parameters including electrochemical anodization time, current density, and electrolyte temperature on surface morphology and surface wettability were investigated in detail. The hierarchical alumina pyramids-on-pores (HAPOP) rough structure which was produced quickly through the one-step anodization process together with a low-surface-energy film deposition [1H,1H,2H,2H-perfluorodecyltriethoxysilane (PDES) and stearic acid (STA)] confer excellent superhydrophobicity and an extremely low sliding angle. Both the PDES-modified superhydrophobic (PDES-MS) and the STA-modified superhydrophobic (STA-MS) surfaces present fascinating nonwetting and extremely slippery behaviors. The chemical stability and mechanical durability of the PDES-MS and STA-MS surfaces were evaluated and discussed. Compared with the STA-MS surface, the as-prepared PDES-MS surface possesses an amazing chemical stability which not only can repel cool liquids (water, HCl/NaOH solutions, around 25 °C), but also can show excellent resistance to a series of hot liquids (water, HCl/NaOH solutions, 30-100 °C) and hot beverages (coffee, milk, tea, 80 °C). Moreover, the PDES-MS surface also presents excellent stability toward immersion in various organic solvents, high temperature, and long time period. In particular, the PDES-MS surface achieves good mechanical durability which can withstand ultrasonication treatment, finger-touch, multiple fold, peeling by adhesive tape, and even abrasion test treatments without losing superhydrophobicity. The corrosion resistance and durability of the diverse-modified superhydrophobic surfaces were also examined. These fascinating performances makes the present method suitable for large

  18. High-efficiency photovoltaic cells

    Science.gov (United States)

    Yang, H.T.; Zehr, S.W.

    1982-06-21

    High efficiency solar converters comprised of a two cell, non-lattice matched, monolithic stacked semiconductor configuration using optimum pairs of cells having bandgaps in the range 1.6 to 1.7 eV and 0.95 to 1.1 eV, and a method of fabrication thereof, are disclosed. The high band gap subcells are fabricated using metal organic chemical vapor deposition (MOCVD), liquid phase epitaxy (LPE) or molecular beam epitaxy (MBE) to produce the required AlGaAs layers of optimized composition, thickness and doping to produce high performance, heteroface homojunction devices. The low bandgap subcells are similarly fabricated from AlGa(As)Sb compositions by LPE, MBE or MOCVD. These subcells are then coupled to form a monolithic structure by an appropriate bonding technique which also forms the required transparent intercell ohmic contact (IOC) between the two subcells. Improved ohmic contacts to the high bandgap semiconductor structure can be formed by vacuum evaporating to suitable metal or semiconductor materials which react during laser annealing to form a low bandgap semiconductor which provides a low contact resistance structure.

  19. Fabrication and characterization of Al2O3 /Si composite nanodome structures for high efficiency crystalline Si thin film solar cells

    Directory of Open Access Journals (Sweden)

    Ruiying Zhang

    2015-12-01

    Full Text Available We report on our fabrication and characterization of Al2O3/Si composite nanodome (CND structures, which is composed of Si nanodome structures with a conformal cladding Al2O3 layer to evaluate its optical and electrical performance when it is applied to thin film solar cells. It has been observed that by application of Al2O3thin film coating using atomic layer deposition (ALD to the Si nanodome structures, both optical and electrical performances are greatly improved. The reflectivity of less than 3% over the wavelength range of from 200 nm to 2000 nm at an incident angle from 0° to 45° is achieved when the Al2O3 film is 90 nm thick. The ultimate efficiency of around 27% is obtained on the CND textured 2 μm-thick Si solar cells, which is compared to the efficiency of around 25.75% and 15% for the 2 μm-thick Si nanodome surface-decorated and planar samples respectively. Electrical characterization was made by using CND-decorated MOS devices to measure device’s leakage current and capacitance dispersion. It is found the electrical performance is sensitive to the thickness of the Al2O3 film, and the performance is remarkably improved when the dielectric layer thickness is 90 nm thick. The leakage current, which is less than 4x10−9 A/cm2 over voltage range of from -3 V to 3 V, is reduced by several orders of magnitude. C-V measurements also shows as small as 0.3% of variation in the capacitance over the frequency range from 10 kHz to 500 kHz, which is a strong indication of surface states being fully passivated. TEM examination of CND-decorated samples also reveals the occurrence of SiOx layer formed between the interface of Si and the Al2O3 film, which is thin enough that ensures the presence of field-effect passivation, From our theoretical and experimental study, we believe Al2O3 coated CND structures is a truly viable approach to achieving higher device efficiency.

  20. Fabrication and characterization of Al{sub 2}O{sub 3} /Si composite nanodome structures for high efficiency crystalline Si thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ruiying, E-mail: ryzhang2008@sinano.ac.cn [Key lab of nanodevices and applications, Chinese Academy of Sciences, Division of nano-devices and related materials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123 (China); State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 China (China); Zhu, Jian; Zhang, Zhen; Wang, Yanyan; Qiu, Bocang [Key lab of nanodevices and applications, Chinese Academy of Sciences, Division of nano-devices and related materials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123 (China); Liu, Xuehua; Zhang, Jinping; Zhang, Yi [Platform for Characterization & Test, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123 (China); Fang, Qi; Ren, Zhong [Oxford Instruments Plasma Technology, Yatton, Bristol, BS49 4AP (United Kingdom); Bai, Yu [School of Nano-Science and Nano-Engineering, Xi’an Jiaotong University, Suzhou, 215123 (China)

    2015-12-15

    We report on our fabrication and characterization of Al{sub 2}O{sub 3}/Si composite nanodome (CND) structures, which is composed of Si nanodome structures with a conformal cladding Al{sub 2}O{sub 3} layer to evaluate its optical and electrical performance when it is applied to thin film solar cells. It has been observed that by application of Al{sub 2}O{sub 3}thin film coating using atomic layer deposition (ALD) to the Si nanodome structures, both optical and electrical performances are greatly improved. The reflectivity of less than 3% over the wavelength range of from 200 nm to 2000 nm at an incident angle from 0° to 45° is achieved when the Al{sub 2}O{sub 3} film is 90 nm thick. The ultimate efficiency of around 27% is obtained on the CND textured 2 μm-thick Si solar cells, which is compared to the efficiency of around 25.75% and 15% for the 2 μm-thick Si nanodome surface-decorated and planar samples respectively. Electrical characterization was made by using CND-decorated MOS devices to measure device’s leakage current and capacitance dispersion. It is found the electrical performance is sensitive to the thickness of the Al{sub 2}O{sub 3} film, and the performance is remarkably improved when the dielectric layer thickness is 90 nm thick. The leakage current, which is less than 4x10{sup −9} A/cm{sup 2} over voltage range of from -3 V to 3 V, is reduced by several orders of magnitude. C-V measurements also shows as small as 0.3% of variation in the capacitance over the frequency range from 10 kHz to 500 kHz, which is a strong indication of surface states being fully passivated. TEM examination of CND-decorated samples also reveals the occurrence of SiO{sub x} layer formed between the interface of Si and the Al{sub 2}O{sub 3} film, which is thin enough that ensures the presence of field-effect passivation, From our theoretical and experimental study, we believe Al{sub 2}O{sub 3} coated CND structures is a truly viable approach to achieving higher device

  1. Design, Fabrication, and Testing of the INSTAR [INertial STorage And Recovery] System: A Flywheel-based, High Power Energy Storage System for Improved Hybrid Vehicle Fuel Efficiency

    OpenAIRE

    Talancon, Daniel Raul

    2015-01-01

    This thesis describes the development of the INSTAR system: a high-power, cost-effective energy storage system designed to improve HEV regenerative braking capabilities by combining chemical batteries with an electromechanical flywheel. This combination allows the regenerative braking system in hybrid vehicles to recapture more available braking energy at a lower battery pack charging current, increasing vehicle energy efficiency while also potentially increasing battery life.A prototype flyw...

  2. An easy-to-fabricate low-temperature TiO2 electron collection layer for high efficiency planar heterojunction perovskite solar cells

    Directory of Open Access Journals (Sweden)

    B. Conings

    2014-08-01

    Full Text Available Organometal trihalide perovskite solar cells arguably represent the most auspicious new photovoltaic technology so far, as they possess an astonishing combination of properties. The impressive and brisk advances achieved so far bring forth highly efficient and solution processable solar cells, holding great promise to grow into a mature technology that is ready to be embedded on a large scale. However, the vast majority of state-of-the-art perovskite solar cells contains a dense TiO2 electron collection layer that requires a high temperature treatment (>450 °C, which obstructs the road towards roll-to-roll processing on flexible foils that can withstand no more than ∼150 °C. Furthermore, this high temperature treatment leads to an overall increased energy payback time and cumulative energy demand for this emerging photovoltaic technology. Here we present the implementation of an alternative TiO2 layer formed from an easily prepared nanoparticle dispersion, with annealing needs well within reach of roll-to-roll processing, making this technology also appealing from the energy payback aspect. Chemical and morphological analysis allows to understand and optimize the processing conditions of the TiO2 layer, finally resulting in a maximum obtained efficiency of 13.6% for a planar heterojunction solar cell within an ITO/TiO2/CH3NH3PbI3-xClxpoly(3-hexylthiophene/Ag architecture.

  3. Efficient fabrication of high-capacity immobilized metal ion affinity chromatographic media: The role of the dextran-grafting process and its manipulation.

    Science.gov (United States)

    Zhao, Lan; Zhang, Jingfei; Huang, Yongdong; Li, Qiang; Zhang, Rongyue; Zhu, Kai; Suo, Jia; Su, Zhiguo; Zhang, Zhigang; Ma, Guanghui

    2016-03-01

    Novel high-capacity Ni(2+) immobilized metal ion affinity chromatographic media were prepared through the dextran-grafting process. Dextran was grafted to an allyl-activated agarose-based matrix followed by functionalization for the immobilized metal ion affinity chromatographic media. With elaborate regulation of the allylation degree, dextran was completely or partly grafted to agarose microspheres, namely, completely dextran-grafted agarose microspheres and partly dextran-grafted ones, respectively. Confocal laser scanning microscope results demonstrated that a good adjustment of dextran-grafting degree was achieved, and dextran was distributed uniformly in whole completely dextran-grafted microspheres, while just distributed around the outside of the partly dextran-grafted ones. Flow hydrodynamic properties were improved greatly after the dextran-grafting process, and the flow velocity increased by about 30% compared with that of a commercial chromatographic medium (Ni Sepharose FF). A significant improvement of protein binding performance was also achieved by the dextran-grafting process, and partly dextran-grafted Ni(2+) chelating medium had a maximum binding capacity for His-tagged lactate dehydrogenase about 2.5 times higher than that of Ni Sepharose FF. The results indicated that this novel chromatographic medium is promising for applications in high-efficiency and large-scale protein purification. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. High yield fabrication of fluorescent nanodiamonds

    Energy Technology Data Exchange (ETDEWEB)

    Boudou, Jean-Paul; Curmi, Patrick A [Structure and Activity of Normal and Pathological Biomolecules-INSERM/UEVE U829, Universite d' Evry-Val d' Essonne, Batiment Maupertuis, Rue du pere Andre Jarlan, F-91025 Evry (France); Jelezko, Fedor; Wrachtrup, Joerg; Balasubramanian, Gopalakrischnan; Reuter, Rolf [3.Physikalisches Institut, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart (Germany); Aubert, Pascal [Nanometric Media Laboratory, Universite d' Evry-Val d' Essonne, Batiment Maupertuis, Rue du pere Andre Jarlan, F-91025 Evry (France); Sennour, Mohamed; Thorel, Alain [Centre des Materiaux, Mines Paris, ParisTech, BP 87, F-91000 Evry (France); Gaffet, Eric [Nanomaterials Research Group-UMR 5060, CNRS, UTBM, Site de Sevenans, F-90010 Belfort (France)], E-mail: jpb.cnrs@free.fr, E-mail: pcurmi@univ-evry.fr, E-mail: f.jelezko@physik.uni-stuttgart.de

    2009-06-10

    A new fabrication method to produce homogeneously fluorescent nanodiamonds with high yields is described. The powder obtained by high energy ball milling of fluorescent high pressure, high temperature diamond microcrystals was converted in a pure concentrated aqueous colloidal dispersion of highly crystalline ultrasmall nanoparticles with a mean size less than or equal to 10 nm. The whole fabrication yield of colloidal quasi-spherical nanodiamonds was several orders of magnitude higher than those previously reported starting from microdiamonds. The results open up avenues for the industrial cost-effective production of fluorescent nanodiamonds with well-controlled properties.

  5. High yield fabrication of fluorescent nanodiamonds

    International Nuclear Information System (INIS)

    Boudou, Jean-Paul; Curmi, Patrick A; Jelezko, Fedor; Wrachtrup, Joerg; Balasubramanian, Gopalakrischnan; Reuter, Rolf; Aubert, Pascal; Sennour, Mohamed; Thorel, Alain; Gaffet, Eric

    2009-01-01

    A new fabrication method to produce homogeneously fluorescent nanodiamonds with high yields is described. The powder obtained by high energy ball milling of fluorescent high pressure, high temperature diamond microcrystals was converted in a pure concentrated aqueous colloidal dispersion of highly crystalline ultrasmall nanoparticles with a mean size less than or equal to 10 nm. The whole fabrication yield of colloidal quasi-spherical nanodiamonds was several orders of magnitude higher than those previously reported starting from microdiamonds. The results open up avenues for the industrial cost-effective production of fluorescent nanodiamonds with well-controlled properties.

  6. Highly efficient high temperature electrolysis

    DEFF Research Database (Denmark)

    Hauch, Anne; Ebbesen, Sune; Jensen, Søren Højgaard

    2008-01-01

    High temperature electrolysis of water and steam may provide an efficient, cost effective and environmentally friendly production of H-2 Using electricity produced from sustainable, non-fossil energy sources. To achieve cost competitive electrolysis cells that are both high performing i.e. minimum...... internal resistance of the cell, and long-term stable, it is critical to develop electrode materials that are optimal for steam electrolysis. In this article electrolysis cells for electrolysis of water or steam at temperatures above 200 degrees C for production of H-2 are reviewed. High temperature...... electrolysis is favourable from a thermodynamic point of view, because a part of the required energy can be supplied as thermal heat, and the activation barrier is lowered increasing the H-2 production rate. Only two types of cells operating at high temperature (above 200 degrees C) have been described...

  7. HIGH EFFICIENCY TURBINE

    OpenAIRE

    VARMA, VIJAYA KRUSHNA

    2012-01-01

    Varma designed ultra modern and high efficiency turbines which can use gas, steam or fuels as feed to produce electricity or mechanical work for wide range of usages and applications in industries or at work sites. Varma turbine engines can be used in all types of vehicles. These turbines can also be used in aircraft, ships, battle tanks, dredgers, mining equipment, earth moving machines etc, Salient features of Varma Turbines. 1. Varma turbines are simple in design, easy to manufac...

  8. Scalable, "Dip-and-Dry" Fabrication of a Wide-Angle Plasmonic Selective Absorber for High-Efficiency Solar-Thermal Energy Conversion.

    Science.gov (United States)

    Mandal, Jyotirmoy; Wang, Derek; Overvig, Adam C; Shi, Norman N; Paley, Daniel; Zangiabadi, Amirali; Cheng, Qian; Barmak, Katayun; Yu, Nanfang; Yang, Yuan

    2017-11-01

    A galvanic-displacement-reaction-based, room-temperature "dip-and-dry" technique is demonstrated for fabricating selectively solar-absorbing plasmonic-nanoparticle-coated foils (PNFs). The technique, which allows for facile tuning of the PNFs' spectral reflectance to suit different radiative and thermal environments, yields PNFs which exhibit excellent, wide-angle solar absorptance (0.96 at 15°, to 0.97 at 35°, to 0.79 at 80°), and low hemispherical thermal emittance (0.10) without the aid of antireflection coatings. The thermal emittance is on par with those of notable selective solar absorbers (SSAs) in the literature, while the wide-angle solar absorptance surpasses those of previously reported SSAs with comparable optical selectivities. In addition, the PNFs show promising mechanical and thermal stabilities at temperatures of up to 200 °C. Along with the performance of the PNFs, the simplicity, inexpensiveness, and environmental friendliness of the "dip-and-dry" technique makes it an appealing alternative to current methods for fabricating selective solar absorbers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. High-efficiency CARM

    Energy Technology Data Exchange (ETDEWEB)

    Bratman, V.L.; Kol`chugin, B.D.; Samsonov, S.V.; Volkov, A.B. [Institute of Applied Physics, Nizhny Novgorod (Russian Federation)

    1995-12-31

    The Cyclotron Autoresonance Maser (CARM) is a well-known variety of FEMs. Unlike the ubitron in which electrons move in a periodical undulator field, in the CARM the particles move along helical trajectories in a uniform magnetic field. Since it is much simpler to generate strong homogeneous magnetic fields than periodical ones for a relatively low electron energy ({Brit_pounds}{le}1-3 MeV) the period of particles` trajectories in the CARM can be sufficiently smaller than in the undulator in which, moreover, the field decreases rapidly in the transverse direction. In spite of this evident advantage, the number of papers on CARM is an order less than on ubitron, which is apparently caused by the low (not more than 10 %) CARM efficiency in experiments. At the same time, ubitrons operating in two rather complicated regimes-trapping and adiabatic deceleration of particles and combined undulator and reversed guiding fields - yielded efficiencies of 34 % and 27 %, respectively. The aim of this work is to demonstrate that high efficiency can be reached even for a simplest version of the CARM. In order to reduce sensitivity to an axial velocity spread of particles, a short interaction length where electrons underwent only 4-5 cyclotron oscillations was used in this work. Like experiments, a narrow anode outlet of a field-emission electron gun cut out the {open_quotes}most rectilinear{close_quotes} near-axis part of the electron beam. Additionally, magnetic field of a small correcting coil compensated spurious electron oscillations pumped by the anode aperture. A kicker in the form of a sloping to the axis frame with current provided a control value of rotary velocity at a small additional velocity spread. A simple cavity consisting of a cylindrical waveguide section restricted by a cut-off waveguide on the cathode side and by a Bragg reflector on the collector side was used as the CARM-oscillator microwave system.

  10. Enhancing the photon-extraction efficiency of site-controlled quantum dots by deterministically fabricated microlenses

    Science.gov (United States)

    Kaganskiy, Arsenty; Fischbach, Sarah; Strittmatter, André; Rodt, Sven; Heindel, Tobias; Reitzenstein, Stephan

    2018-04-01

    We report on the realization of scalable single-photon sources (SPSs) based on single site-controlled quantum dots (SCQDs) and deterministically fabricated microlenses. The fabrication process comprises the buried-stressor growth technique complemented with low-temperature in-situ electron-beam lithography for the integration of SCQDs into microlens structures with high yield and high alignment accuracy. The microlens-approach leads to a broadband enhancement of the photon-extraction efficiency of up to (21 ± 2)% and a high suppression of multi-photon events with g (2)(τ = 0) SPSs which, can be applied in photonic quantum circuits and advanced quantum computation schemes.

  11. Remarkably High Conversion Efficiency of Inverted Bulk Heterojunction Solar Cells: From Ultrafast Laser Spectroscopy and Electron Microscopy to Device Fabrication and Optimization

    KAUST Repository

    Alsulami, Qana; Banavoth, Murali; Alsinan, Yara; Parida, Manas R.; Aly, Shawkat Mohammede; Mohammed, Omar F.

    2016-01-01

    of these photophysical processes at device interfaces remains superficial, creating a major bottleneck that circumvents advancements and the optimization of these solar cells. Here, results from time-resolved laser spectroscopy and high-resolution electron microscopy

  12. Fabrication and photocatalytic activity of high-efficiency visible-light-responsive photocatalyst ZnTe/TiO2 nanotube arrays

    International Nuclear Information System (INIS)

    Liu Yutang; Zhang Xilin; Liu Ronghua; Yang Renbin; Liu Chengbin; Cai Qingyun

    2011-01-01

    A new ZnTe modified TiO 2 nanotube (NT) array catalyst was prepared by pulse potential electrodeposition of ZnTe nanoparticles (NPs) onto TiO 2 NT arrays, and its application for photocatalytic degradation of anthracene-9-carboxylic acid (9-AnCOOH) was investigated. The even distribution of ZnTe NPs was well-proportionately grown on the top surface of the TiO 2 NT while without clogging the tube entrances. Compared with the unmodified TiO 2 NT, the ZnTe modified TiO 2 NT (ZnTe/TiO 2 NT) showed significantly enhanced photocatalytic activity towards 9-AnCOOH under simulated solar light. After 70 min of irradiation, 9-AnCOOH was degraded with the removal ratio of 45% on the bare TiO 2 NT, much lower than 80%, 90%, and 100% on the ZnTe/TiO 2 NT with the ZnTe NPs prepared under the pulsed 'on' potentials of -0.8, -1.0, and -2.0 V, respectively. The increased photodegradation efficiency mainly results from the improved photocurrent density as results of enhanced visible-light absorption and decreased hole-electron recombination due to the presence of narrow-band-gap p-type semiconductor ZnTe. -- Graphical abstract: Surface-view SEM images of ZnTe/TiO 2 NT prepared under -2.0 V, and the inset is the corresponding enlarged drawings. Display Omitted Research highlights: → A new method to deposit chalcogenides of transition metals on the TiO 2 nanotubes. → The even distribution of ZnTe nanoparticles was well-proportionedly grown onto TiO 2 NT arrays. → ZnTe/TiO 2 NT showed remarkably increased photocurrent density. → ZnTe/TiO 2 NT showed good photocatalytic performance. → The prepared new catalyst has a promising application in practical systems.

  13. Fabrication of titanate nanotubes/iron oxide magnetic composite for the high efficient capture of radionuclides: a case investigation of 109Cd(II)

    International Nuclear Information System (INIS)

    Lei Dai; Jun Zheng; Lijie Wang

    2013-01-01

    In this paper, the capture of radiocadmium (Cd(II)) by adsorption onto the titanate nanotube/iron oxide (TNT/IOM) magnetic composite as a function of contact time, pH, ionic strength, foreign cation and anion ions, humic acid (HA) and fulvic acid (FA) was studied using batch technique. The results indicated that the adsorption of Cd(II) onto the TNT/IOM magnetic composite was dependent on ionic strength at pH 9.0. Outer-sphere surface complexation were the main mechanism of Cd(II) adsorption onto the TNT/IOM magnetic composite at low pH values, whereas the adsorption was mainly dominated via inner-sphere surface complexation at high pH values. The adsorption of Cd(II) onto the TNT/IOM magnetic composite was dependent on foreign cation and anion ions at low pH values, but was independent of foreign cation and anion ions at high pH values. A positive effect of HA/FA on Cd(II) adsorption onto the TNT/IOM magnetic composite was found at low pH values, while a negative effect was observed at high pH values. From the results of Cd(II) removal by the TNT/IOM magnetic composite, the optimum reaction conditions can be obtained for the maximum removal of Cd(II) from water. It is clear that the best pH values of the system to remove Cd(II) from solution by using the TNT/IOM magnetic composite are 7.0-8.0. Considering the low cost and effective disposal of Cd(II)-contaminated wastewaters, the best condition for Cd(II) capture by the TNT/IOM magnetic composite is at room temperature and solid content of 0.5 g L -1 . These results are quite important for estimating and optimizing the removal of Cd(II) and related metal ions by the TNT-based magnetic composite. (author)

  14. High Efficiency Centrifugal Compressor for Rotorcraft Applications

    Science.gov (United States)

    Medic, Gorazd; Sharma, Om P.; Jongwook, Joo; Hardin, Larry W.; McCormick, Duane C.; Cousins, William T.; Lurie, Elizabeth A.; Shabbir, Aamir; Holley, Brian M.; Van Slooten, Paul R.

    2017-01-01

    A centrifugal compressor research effort conducted by United Technologies Research Center under NASA Research Announcement NNC08CB03C is documented. The objectives were to identify key technical barriers to advancing the aerodynamic performance of high-efficiency, high work factor, compact centrifugal compressor aft-stages for turboshaft engines; to acquire measurements needed to overcome the technical barriers and inform future designs; to design, fabricate, and test a new research compressor in which to acquire the requisite flow field data. A new High-Efficiency Centrifugal Compressor stage -- splittered impeller, splittered diffuser, 90 degree bend, and exit guide vanes -- with aerodynamically aggressive performance and configuration (compactness) goals were designed, fabricated, and subquently tested at the NASA Glenn Research Center.

  15. Ecofriendly laccase-hydrogen peroxide/ultrasound-assisted bleaching of linen fabrics and its influence on dyeing efficiency.

    Science.gov (United States)

    Abou-Okeil, A; El-Shafie, A; El Zawahry, M M

    2010-02-01

    This study evaluates the bleaching efficiency of enzymatically scoured linen fabrics using a combined laccase-hydrogen peroxide bleaching process with and without ultrasonic energy, with the goal of obtaining fabrics with high whiteness levels, well preserved tensile strength and higher dye uptake. The effect of the laccase enzyme and the combined laccase-hydrogen peroxide bleaching process with and without ultrasound has been investigated with regard to whiteness value, tensile strength, dyeing efficiency and dyeing kinetics using both reactive and cationic dyes. The bleached linen fabrics were characterized using X-ray diffraction and by measuring tensile strength and lightness. The dyeing efficiency and kinetics were characterized by measuring dye uptake and colour fastness. The results indicated that ultrasound was an effective technique in the combined laccase-hydrogen peroxide bleaching process of linen fabrics. The whiteness values expressed as lightness of linen fabrics is enhanced by using ultrasonic energy. The measured colour strength values were found to be slightly better for combined laccase-hydrogen peroxide/ultrasound-assisted bleached fabrics than for combined laccase-hydrogen peroxide for both reactive and cationic dyes. The fastness properties of the fabrics dyed with reactive dye were better than those obtained when using cationic dye. The time/dye uptake isotherms were also enhanced when using combined laccase-hydrogen peroxide/ultrasound-assisted bleached fabric, which confirms the efficiency of ultrasound in the combined oxidative bleaching process. The dyeing rate constant, half-time of dyeing and dyeing efficiency have been calculated and discussed.

  16. Diffraction efficiency of plasmonic gratings fabricated by electron beam lithography using a silver halide film

    Energy Technology Data Exchange (ETDEWEB)

    Sudheer,, E-mail: sudheer@rrcat.gov.in, E-mail: sudheer.rrcat@gmail.com; Tiwari, P.; Srivastava, Himanshu; Rai, V. N.; Srivastava, A. K.; Naik, P. A. [Homi Bhabha National Institute, Mumbai, Maharashtra 400094 (India); Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India); Porwal, S. [Solid State Lasers Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India); Bhartiya, S. [Homi Bhabha National Institute, Mumbai, Maharashtra 400094 (India); Laser Materials Development and Device Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India); Rao, B. T. [Homi Bhabha National Institute, Mumbai, Maharashtra 400094 (India); Laser Materials Processing Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India); Sharma, T. K. [Homi Bhabha National Institute, Mumbai, Maharashtra 400094 (India); Solid State Lasers Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India)

    2016-07-28

    The silver nanoparticle surface relief gratings of ∼10 μm period are fabricated using electron beam lithography on the silver halide film substrate. Morphological characterization of the gratings shows that the period, the shape, and the relief depth in the gratings are mainly dependent on the number of lines per frame, the spot size, and the accelerating voltage of electron beam raster in the SEM. Optical absorption of the silver nanoparticle gratings provides a broad localized surface plasmon resonance peak in the visible region, whereas the intensity of the peaks depends on the number density of silver nanoparticles in the gratings. The maximum efficiency of ∼7.2% for first order diffraction is observed for the grating fabricated at 15 keV. The efficiency is peaking at 560 nm with ∼380 nm bandwidth. The measured profiles of the diffraction efficiency for the gratings are found in close agreement with the Raman-Nath diffraction theory. This technique provides a simple and efficient method for the fabrication of plasmonic nanoparticle grating structures with high diffraction efficiency having broad wavelength tuning.

  17. High efficiency positron moderation

    International Nuclear Information System (INIS)

    Taqqu, D.

    1990-01-01

    A new positron moderation scheme is proposed. It makes use of electric and magnetic fields to confine the β + emitted by a radioactive source forcing them to slow down within a thin foil. A specific arrangement is described where an intermediary slowed-down beam of energy below 10 keV is produced. By directing it towards a standard moderator optimal conversion into slow positrons is achieved. This scheme is best applied to short lived β + emitters for which a 25% moderation efficiency can be reached. Within the state of the art technology a slow positron source intensity exceeding 2 x 10 10 e + /sec is achievable. (orig.)

  18. Metal-organic framework superhydrophobic coating on Kevlar fabric with efficient drag reduction and wear resistance

    Science.gov (United States)

    Li, Deke; Guo, Zhiguang

    2018-06-01

    Superhydrophobic layers are extremely essential for protecting material surface in various applications. In this study, a stable superhydrophobic mixed matrix surface with a 152.2° contact angle can be fabricated through the technology of layer-by-layer hot-pressing (HoP), and then modified by 1H,1H,2H,2H-perfluorooctyltriethoxysilane (PFOTES) on the ZIF-8@Kevlar fabric surface. The morphology and chemical composition were analyzed by the means of SEM, XRD and FTIR. The obtained superhydrophobic coatings showed excellent antiwear performance and drag reduction under desired working conditions. Moreover, we successfully applied superhydrophobic F-ZIF-8@Kevlar fabric in the alcohol adsorbent with high removal capacity, and it can be reused for several times without serious efficiency loss.

  19. Partition efficiencies of newly fabricated universal high-speed counter-current chromatograph for separation of two different types of sugar derivatives with organic-aqueous two-phase solvent systems

    Science.gov (United States)

    Shinomiya, Kazufusa; Sato, Kazuki; Yoshida, Kazunori; Tokura, Koji; Maruyama, Hiroshi; Yanagidaira, Kazuhiro; Ito, Yoichiro

    2013-01-01

    Universal high-speed counter-current chromatograph (HSCCC) was newly designed and fabricated in our laboratory. It holds a set of four column holders symmetrically around the rotary frame at a distance of 11.2 cm from the central axis. By engaging the stationary gear on the central axis of the centrifuge to the planetary gears on the column holder shaft through a set of idle gears, two pairs of diagonally located column holders simultaneously rotate about their own axes in the opposite directions: one forward (type-J planetary motion) and the other backward (type-I planetary motion) each synchronously with the revolution. Using the eccentric coil assembly, partition efficiencies produced by these two planetary motions were compared on the separation of two different types of sugar derivatives (4-methylumbelliferyl and 5-bromo-4-chloro-3-indoxyl sugar derivatives) using organic-aqueous two-phase solvent systems composed of n-hexane/ethyl acetate/1-butanol/methanol/water and aqueous 0.1 M sodium tetraborate, respectively. With lower phase mobile, better peak resolution was obtained by the type-J forward rotation for both samples probably due to higher retention of the stationary phase. With upper phase mobile, however, similar peak resolutions were obtained between these two planetary motions for both sugar derivatives. The overall results indicate that the present universal HSCCC is useful for counter-current chromatographic separation since each planetary motion has its specific applications: e.g., vortex CCC by the type-I planetary motion and HSCCC by the type-J planetary motion both for separation of various natural and synthetic products. PMID:24267319

  20. A biomimic thermal fabric with high moisture permeability

    Directory of Open Access Journals (Sweden)

    Fan Jie

    2013-01-01

    Full Text Available Moisture comfort is an essential factor for functional property of thermal cloth, especially for thick thermal cloth, since thick cloth may hinder effective moisture permeation, and high moisture concentration in the micro-climate between skin and fabric would cause cold feeling. Here, we report a biomimic thermal fabric with excellent warm retention and moisture management properties. In this fabric, the warp yarn system constructs many tree-shaped channel nets in the thickness direction of the fabric. Experimental result indicates that the special hierarchic configuration of warp yarns endows the biomimic thermal fabric with a better warm retention and water vapor management properties compared with the traditional fabrics.

  1. New highly efficient piezoceramic materials

    International Nuclear Information System (INIS)

    Dantsiger, A.Ya.; Razumovskaya, O.N.; Reznichenko, L.A.; Grineva, L.D.; Devlikanova, R.U.; Dudkina, S.I.; Gavrilyachenko, S.V.; Dergunova, N.V.

    1993-01-01

    New high efficient piezoceramic materials with various combination of parameters inclusing high Curie point for high-temperature transducers using in atomic power engineering are worked. They can be used in systems for heated matters nondestructive testing, controllers for varied industrial power plants and other high-temperature equipment

  2. Towards highly efficient water photoelectrolysis

    Science.gov (United States)

    Elavambedu Prakasam, Haripriya

    ethylene glycol resulted in remarkable growth characteristics of titania nanotube arrays, hexagonal closed packed up to 1 mm in length, with tube aspect ratios of approximately 10,000. For the first time, complete anodization of the starting titanium foil has been demonstrated resulting in back to back nanotube array membranes ranging from 360 mum--1 mm in length. The nanotubes exhibited growth rates of up to 15 mum/hr. A detailed study on the factors affecting the growth rate and nanotube dimensions is presented. It is suggested that faster high field ionic conduction through a thinner barrier layer is responsible for the higher growth rates observed in electrolytes containing ethylene glycol. Methods to fabricate free standing, titania nanotube array membranes ranging in thickness from 50 microm--1000 mum has also been an outcome of this dissertation. In an effort to combine the charge transport properties of titania with the light absorption properties of iron (III) oxide, films comprised of vertically oriented Ti-Fe-O nanotube arrays on FTO coated glass substrates have been successfully synthesized in ethylene glycol electrolytes. Depending upon the Fe content the bandgap of the resulting films varied from about 3.26 to 2.17 eV. The Ti-Fe oxide nanotube array films demonstrated a photocurrent of 2 mA/cm2 under global AM 1.5 illumination with a 1.2% (two-electrode) photoconversion efficiency, demonstrating a sustained, time-energy normalized hydrogen evolution rate by water splitting of 7.1 mL/W·hr in a 1 M KOH solution with a platinum counter electrode under an applied bias of 0.7 V. The Ti-Fe-O material architecture demonstrates properties useful for hydrogen generation by water photoelectrolysis and, more importantly, this dissertation demonstrates that the general nanotube-array synthesis technique can be extended to other ternary oxide compositions of interest for water photoelectrolysis.

  3. Fabrication of Phosphate Cement with High Integrity

    International Nuclear Information System (INIS)

    Yang, Jae Hwan; Lee, Chang Hwa; Heo, Cheol Min; Jeon, Min Ku; Kang, Kweon Ho

    2011-01-01

    As the development of industrial society has accelerated, hazardous wastes are generated as well. According to the 1986 statistics of U.S.A, each person made 40 tons of waste in America that year. Treatment of radioactive waste is one of the most important and serious problems related to waste treatments, because its radioactivity and decaying heat have harmful effects to human and environment for a long time. Nuclear developed countries have used conventional method of treatment such as vitrification or cementation in order to stabilize and solidify radioactive waste. Although the former guarantees the formation of high leaching resistant and durable waste form, it requires several hundred (or even more than one thousand) temperature to melt glass frit. This process generates secondary waste volatilized, as well as being non-economical. Cement technology played a role of immobilizing low and middle class wastes. It has advantages of low temperature setting, low cost, easy process, etc. The alkalinity of ordinary cement, however, constrains the utility of cement to the solidification of alkaline waste. In addition, leachability and mechanical strength of cements are not quite appropriate for the stabilization of high level waste. In this regard, chemically bonded phosphate cement(CBPC), which sets by an acid-base reaction, is a potentially expectable material for immobilization of radioactive waste. CBPC not only sets at room temperature, but also encapsulates various isotopes chemically. The performance of CBPC can be enhanced by the addition of fly ash, sand, wollastonite, etc. This study aims at fabricating the CBPC containing fly ash with high integrity. Morphology, microstructure, and compressive strength are evaluated using SEM, and digital compressing machine

  4. Fabrication of 20.19% Efficient Single-Crystalline Silicon Solar Cell with Inverted Pyramid Microstructure.

    Science.gov (United States)

    Zhang, Chunyang; Chen, Lingzhi; Zhu, Yingjie; Guan, Zisheng

    2018-04-03

    This paper reports inverted pyramid microstructure-based single-crystalline silicon (sc-Si) solar cell with a conversion efficiency up to 20.19% in standard size of 156.75 × 156.75 mm 2 . The inverted pyramid microstructures were fabricated jointly by metal-assisted chemical etching process (MACE) with ultra-low concentration of silver ions and optimized alkaline anisotropic texturing process. And the inverted pyramid sizes were controlled by changing the parameters in both MACE and alkaline anisotropic texturing. Regarding passivation efficiency, the textured sc-Si with normal reflectivity of 9.2% and inverted pyramid size of 1 μm was used to fabricate solar cells. The best batch of solar cells showed a 0.19% higher of conversion efficiency and a 0.22 mA cm -2 improvement in short-circuit current density, and the excellent photoelectric property surpasses that of the same structure solar cell reported before. This technology shows great potential to be an alternative for large-scale production of high efficient sc-Si solar cells in the future.

  5. High-speed micro electrode tool fabrication by a twin-wire EDM system

    International Nuclear Information System (INIS)

    Sheu, Dong-Yea

    2008-01-01

    This paper describes a new machining process which combines twin-electro-wire together with two electro discharge circuits to rapidly fabricate micro electrode tools. The results show that transistor electro discharge and RC electro discharge circuits coexist to fabricate micro tools with rough and finish machining both on the same machine. Compared to conventional wire electro discharge grinding (WEDG) technology, a twin-wire EDM system that combines rough and finish machining into one process allows the efficient fabrication of micro tools. This high-speed micro tool fabrication process can be applied not only to micro electrode machining but also to micro punching tool and micro probing tips machining

  6. Energy efficiency improvement target for SIC 34 - fabricated metal products

    Energy Technology Data Exchange (ETDEWEB)

    Byrer, T. G.; Billhardt, C. F.; Farkas, M. S.

    1977-03-15

    A March 15, 1977 revision of a February 15, 1977 document on the energy improvement target for the Fabricated Metal Products industry (SIC 34) is presented. A net energy savings in 1980 of 24% as compared with 1972 energy consumption in SIC 34 is considered a realistic goal. (ERA citation 04:045008)

  7. One-Step Printable Perovskite Films Fabricated under Ambient Conditions for Efficient and Reproducible Solar Cells.

    Science.gov (United States)

    Jung, Yen-Sook; Hwang, Kyeongil; Heo, Youn-Jung; Kim, Jueng-Eun; Lee, Donmin; Lee, Cheol-Ho; Joh, Han-Ik; Yeo, Jun-Seok; Kim, Dong-Yu

    2017-08-23

    Despite the potential of roll-to-roll processing for the fabrication of perovskite films, the realization of highly efficient and reproducible perovskite solar cells (PeSCs) through continuous coating techniques and low-temperature processing is still challenging. Here, we demonstrate that efficient and reliable CH 3 NH 3 PbI 3 (MAPbI 3 ) films fabricated by a printing process can be achieved through synergetic effects of binary processing additives, N-cyclohexyl-2-pyrrolidone (CHP) and dimethyl sulfoxide (DMSO). Notably, these perovskite films are deposited from premixed perovskite solutions for facile one-step processing under a room-temperature and ambient atmosphere. The CHP molecules result in the uniform and homogeneous perovskite films even in the one-step slot-die system, which originate from the high boiling point and low vapor pressure of CHP. Meanwhile, the DMSO molecules facilitate the growth of perovskite grains by forming intermediate states with the perovskite precursor molecules. Consequently, fully printed PeSC based on the binary additive system exhibits a high PCE of 12.56% with a high reproducibility.

  8. Design & Fabrication of a High-Voltage Photovoltaic Cell

    Energy Technology Data Exchange (ETDEWEB)

    Felder, Jennifer; /North Carolina State U. /SLAC

    2012-09-05

    Silicon photovoltaic (PV) cells are alternative energy sources that are important in sustainable power generation. Currently, applications of PV cells are limited by the low output voltage and somewhat low efficiency of such devices. In light of this fact, this project investigates the possibility of fabricating high-voltage PV cells on float-zone silicon wafers having output voltages ranging from 50 V to 2000 V. Three designs with different geometries of diffusion layers were simulated and compared in terms of metal coverage, recombination, built-in potential, and conduction current density. One design was then chosen and optimized to be implemented in the final device design. The results of the simulation serve as a feasibility test for the design concept and provide supportive evidence of the effectiveness of silicon PV cells as high-voltage power supplies.

  9. Unconventional, High-Efficiency Propulsors

    DEFF Research Database (Denmark)

    Andersen, Poul

    1996-01-01

    The development of ship propellers has generally been characterized by search for propellers with as high efficiency as possible and at the same time low noise and vibration levels and little or no cavitation. This search has lead to unconventional propulsors, like vane-wheel propulsors, contra-r...

  10. Overview of Ecological Agriculture with High Efficiency

    OpenAIRE

    Huang, Guo-qin; Zhao, Qi-guo; Gong, Shao-lin; Shi, Qing-hua

    2012-01-01

    From the presentation, connotation, characteristics, principles, pattern, and technologies of ecological agriculture with high efficiency, we conduct comprehensive and systematic analysis and discussion of the theoretical and practical progress of ecological agriculture with high efficiency. (i) Ecological agriculture with high efficiency was first advanced in China in 1991. (ii) Ecological agriculture with high efficiency highlights "high efficiency", "ecology", and "combination". (iii) Ecol...

  11. Highly efficient silicon light emitting diode

    NARCIS (Netherlands)

    Le Minh, P.; Holleman, J.; Wallinga, Hans

    2002-01-01

    In this paper, we describe the fabrication, using standard silicon processing techniques, of silicon light-emitting diodes (LED) that efficiently emit photons with energy around the silicon bandgap. The improved efficiency had been explained by the spatial confinement of charge carriers due to a

  12. Process development for high-efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gee, J.M.; Basore, P.A.; Buck, M.E.; Ruby, D.S.; Schubert, W.K.; Silva, B.L.; Tingley, J.W.

    1991-12-31

    Fabrication of high-efficiency silicon solar cells in an industrial environment requires a different optimization than in a laboratory environment. Strategies are presented for process development of high-efficiency silicon solar cells, with a goal of simplifying technology transfer into an industrial setting. The strategies emphasize the use of statistical experimental design for process optimization, and the use of baseline processes and cells for process monitoring and quality control. 8 refs.

  13. High-power, high-efficiency FELs

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1989-04-01

    High power, high efficiency FELs require tapering, as the particles loose energy, so as to maintain resonance between the electromagnetic wave and the particles. They also require focusing of the particles (usually done with curved pole faces) and focusing of the electromagnetic wave (i.e. optical guiding). In addition, one must avoid transverse beam instabilities (primarily resistive wall) and longitudinal instabilities (i.e sidebands). 18 refs., 7 figs., 3 tabs

  14. Efficient fabrication of micro- and nano-systems

    DEFF Research Database (Denmark)

    Birkelund, Karen; Hanberg, Peter Jesper; Jørgensen, Anders Michael

    2014-01-01

    There is an increasing demand for a more sustainable society where unnecessary use of the Worlds energy resources is avoided. Micro- and nano-fabricated sensors and actuators are in that sense desirable in many applications for power saving purposes, minimization of chemical consumption, rapid...... analyzing of e.g.waste water before it is lead out in our lakes and oceans or as sensors notifying when maintenance i srequired in due time before breakdown.More and more of these sensors are also made self-sufficient of power by harvesting the energy from e.g.the sun, thermal excess energy, environmental...... as minimizing the consumption of materials, etchants and process time. Danchip excels in optimizing micro- and nanofabrication in order to simplify processes, minimize cost and at the same time maximize yield. Danchips team of process generalists is ready to guide you through your design and planning phase...

  15. High Efficiency Room Air Conditioner

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, Pradeep [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    This project was undertaken as a CRADA project between UT-Battelle and Geberal Electric Company and was funded by Department of Energy to design and develop of a high efficiency room air conditioner. A number of novel elements were investigated to improve the energy efficiency of a state-of-the-art WAC with base capacity of 10,000 BTU/h. One of the major modifications was made by downgrading its capacity from 10,000 BTU/hr to 8,000 BTU/hr by replacing the original compressor with a lower capacity (8,000 BTU/hr) but high efficiency compressor having an EER of 9.7 as compared with 9.3 of the original compressor. However, all heat exchangers from the original unit were retained to provide higher EER. The other subsequent major modifications included- (i) the AC fan motor was replaced by a brushless high efficiency ECM motor along with its fan housing, (ii) the capillary tube was replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and (iii) the unit was tested with a drop-in environmentally friendly binary mixture of R32 (90% molar concentration)/R125 (10% molar concentration). The WAC was tested in the environmental chambers at ORNL as per the design rating conditions of AHAM/ASHRAE (Outdoor- 95F and 40%RH, Indoor- 80F, 51.5%RH). All these modifications resulted in enhancing the EER of the WAC by up to 25%.

  16. High Efficiency, High Density Terrestrial Panel. [for solar cell modules

    Science.gov (United States)

    Wohlgemuth, J.; Wihl, M.; Rosenfield, T.

    1979-01-01

    Terrestrial panels were fabricated using rectangular cells. Packing densities in excess of 90% with panel conversion efficiencies greater than 13% were obtained. Higher density panels can be produced on a cost competitive basis with the standard salami panels.

  17. Development of high-efficiency solar cells on silicon web

    Science.gov (United States)

    Meier, D. L.; Greggi, J.; Okeeffe, T. W.; Rai-Choudhury, P.

    1986-01-01

    Work was performed to improve web base material with a goal of obtaining solar cell efficiencies in excess of 18% (AM1). Efforts in this program are directed toward identifying carrier loss mechanisms in web silicon, eliminating or reducing these mechanisms, designing a high efficiency cell structure with the aid of numerical models, and fabricating high efficiency web solar cells. Fabrication techniques must preserve or enhance carrier lifetime in the bulk of the cell and minimize recombination of carriers at the external surfaces. Three completed cells were viewed by cross-sectional transmission electron microscopy (TEM) in order to investigate further the relation between structural defects and electrical performance of web cells. Consistent with past TEM examinations, the cell with the highest efficiency (15.0%) had no dislocations but did have 11 twin planes.

  18. High-efficient electron linacs

    International Nuclear Information System (INIS)

    Glavatskikh, K.V.; Zverev, B.V.; Kalyuzhnyj, V.E.; Morozov, V.L.; Nikolaev, S.V.; Plotnikov, S.N.; Sobenin, N.P.; Vovna, V.A.; Gryzlov, A.V.

    1993-01-01

    Comparison analysis of ELA on running and still waves designed for 10 MeV energy and with high efficiency is carried out. It is shown, that from the point of view of dimensions ELA with a still wave or that of a combined type is more preferable. From the point of view of impedance characteristics in any variant with application of magnetron as HF-generator it is necessary to implement special requirements to the accelerating structure if no ferrite isolation is provided in HF-channel. 3 refs., 4 figs., 1 tab

  19. Methods and systems for fabricating high quality superconducting tapes

    Science.gov (United States)

    Majkic, Goran; Selvamanickam, Venkat

    2018-02-13

    An MOCVD system fabricates high quality superconductor tapes with variable thicknesses. The MOCVD system can include a gas flow chamber between two parallel channels in a housing. A substrate tape is heated and then passed through the MOCVD housing such that the gas flow is perpendicular to the tape's surface. Precursors are injected into the gas flow for deposition on the substrate tape. In this way, superconductor tapes can be fabricated with variable thicknesses, uniform precursor deposition, and high critical current densities.

  20. High-efficiency silicon solar cells for low-illumination applications

    OpenAIRE

    Glunz, S.W.; Dicker, J.; Esterle, M.; Hermle, M.; Isenberg, J.; Kamerewerd, F.; Knobloch, J.; Kray, D.; Leimenstoll, A.; Lutz, F.; Oßwald, D.; Preu, R.; Rein, S.; Schäffer, E.; Schetter, C.

    2002-01-01

    At Fraunhofer ISE the fabrication of high-efficiency solar cells was extended from a laboratory scale to a small pilot-line production. Primarily, the fabricated cells are used in small high-efficiency modules integrated in prototypes of solar-powered portable electronic devices such as cellular phones, handheld computers etc. Compared to other applications of high-efficiency cells such as solar cars and planes, the illumination densities found in these mainly indoor applications are signific...

  1. A Low VSWR and High Efficiency Waveguide Feed Antenna Array

    Directory of Open Access Journals (Sweden)

    Zhao Xiao-Fang

    2018-01-01

    Full Text Available A low VSWR and high efficiency antenna array operating in the Ku band for satellite communications is presented in this paper. To achieve high radiation efficiency and broad enough bandwidth, all-metal radiation elements and full-corporate waveguide feeding network are employed. As the general milling method is used in the multilayer antenna array fabrication, the E-plane waveguide feeding network is adopted here to suppress the wave leakage caused by the imperfect connectivity between adjacent layers. A 4 × 8 elements array prototype was fabricated and tested for verification. The measured results of proposed antenna array show bandwidth of 6.9% (13.9–14.8 GHz for VSWR < 1.5. Furthermore, antenna gain and efficiency of higher than 22.2 dBi and 80% are also exhibited, respectively.

  2. High-performance ceramics. Fabrication, structure, properties

    International Nuclear Information System (INIS)

    Petzow, G.; Tobolski, J.; Telle, R.

    1996-01-01

    The program ''Ceramic High-performance Materials'' pursued the objective to understand the chaining of cause and effect in the development of high-performance ceramics. This chain of problems begins with the chemical reactions for the production of powders, comprises the characterization, processing, shaping and compacting of powders, structural optimization, heat treatment, production and finishing, and leads to issues of materials testing and of a design appropriate to the material. The program ''Ceramic High-performance Materials'' has resulted in contributions to the understanding of fundamental interrelationships in terms of materials science, which are summarized in the present volume - broken down into eight special aspects. (orig./RHM)

  3. High efficiency double sided solar cells

    International Nuclear Information System (INIS)

    Seddik, M.M.

    1990-06-01

    Silicon technology state of the art for single crystalline was given to be limited to less than 20% efficiency. A proposed new form of photovoltaic solar cell of high current high efficiency with double sided structures has been given. The new forms could be n ++ pn ++ or p ++ np ++ double side junctions. The idea of double sided devices could be understood as two solar cells connected back-to-back in parallel electrical connection, in which the current is doubled if the cell is illuminated from both sides by a V-shaped reflector. The cell is mounted to the reflector such that each face is inclined at an angle of 45 deg. C to each side of the reflector. The advantages of the new structure are: a) High power devices. b) Easy to fabricate. c) The cells are used vertically instead of horizontal use of regular solar cell which require large area to install. This is very important in power stations and especially for satellite installation. If the proposal is made real and proved to be experimentally feasible, it would be a new era for photovoltaic solar cells since the proposal has already been extended to even higher currents. The suggested structures could be stated as: n ++ pn ++ Vp ++ np ++ ;n ++ pn ++ Vn ++ pn ++ ORp ++ np ++ Vp ++ np ++ . These types of structures are formed in wedged shape to employ indirect illumination by either parabolic; conic or V-shaped reflectors. The advantages of these new forms are low cost; high power; less in size and space; self concentrating; ... etc. These proposals if it happens to find their ways to be achieved experimentally, I think they will offer a short path to commercial market and would have an incredible impact on solar cell technology and applications. (author). 12 refs, 5 figs

  4. Fabrication of high-quality brazed joints

    International Nuclear Information System (INIS)

    Orlov, A.V.

    1980-01-01

    Problem of ensuring of joint high-quality when brazing different parts in power engineering is considered. To obtain high-quality joints it is necessary to correctly design brazed joint and to choose a gap width, overlap length and fillet radius; to clean up carefully the surfaces to be brazed and fix them properly one relative to another; to apply a solder so as to provide its flowing into the gap and sticking in it; to exactly regulate thermal conditions of brazing. High quality and reliability of brazed joints are ensured by the application of solders based on noble metals, and cheap solders based on nickel, manganese and copper. Joints brazed with nickel base solders may operate at temperatures as high as 888 deg C

  5. High collection efficiency CVD diamond alpha detectors

    International Nuclear Information System (INIS)

    Bergonzo, P.; Foulon, F.; Marshall, R.D.; Jany, C.; Brambilla, A.; McKeag, R.D.; Jackman, R.B.

    1998-01-01

    Advances in Chemical Vapor Deposited (CVD) diamond have enabled the routine use of this material for sensor device fabrication, allowing exploitation of its unique combination of physical properties (low temperature susceptibility (> 500 C), high resistance to radiation damage (> 100 Mrad) and to corrosive media). A consequence of CVD diamond growth on silicon is the formation of polycrystalline films which has a profound influence on the physical and electronic properties with respect to those measured on monocrystalline diamond. The authors report the optimization of physical and geometrical device parameters for radiation detection in the counting mode. Sandwich and co-planar electrode geometries are tested and their performances evaluated with regard to the nature of the field profile and drift distances inherent in such devices. The carrier drift length before trapping was measured under alpha particles and values as high as 40% of the overall film thickness are reported. Further, by optimizing the device geometry, they show that a gain in collection efficiency, defined as the induced charge divided by the deposited charge within the material, can be achieved even though lower bias values are used

  6. Fabrication of High Temperature Cermet Materials for Nuclear Thermal Propulsion

    Science.gov (United States)

    Hickman, Robert; Panda, Binayak; Shah, Sandeep

    2005-01-01

    Processing techniques are being developed to fabricate refractory metal and ceramic cermet materials for Nuclear Thermal Propulsion (NTP). Significant advances have been made in the area of high-temperature cermet fuel processing since RoverNERVA. Cermet materials offer several advantages such as retention of fission products and fuels, thermal shock resistance, hydrogen compatibility, high conductivity, and high strength. Recent NASA h d e d research has demonstrated the net shape fabrication of W-Re-HfC and other refractory metal and ceramic components that are similar to UN/W-Re cermet fuels. This effort is focused on basic research and characterization to identify the most promising compositions and processing techniques. A particular emphasis is being placed on low cost processes to fabricate near net shape parts of practical size. Several processing methods including Vacuum Plasma Spray (VPS) and conventional PM processes are being evaluated to fabricate material property samples and components. Surrogate W-Re/ZrN cermet fuel materials are being used to develop processing techniques for both coated and uncoated ceramic particles. After process optimization, depleted uranium-based cermets will be fabricated and tested to evaluate mechanical, thermal, and hot H2 erosion properties. This paper provides details on the current results of the project.

  7. Perspective: Maintaining surface-phase purity is key to efficient open air fabricated cuprous oxide solar cells

    International Nuclear Information System (INIS)

    Hoye, Robert L. Z.; Ievskaya, Yulia; MacManus-Driscoll, Judith L.; Brandt, Riley E.; Buonassisi, Tonio; Heffernan, Shane; Musselman, Kevin P.

    2015-01-01

    Electrochemically deposited Cu 2 O solar cells are receiving growing attention owing to a recent doubling in efficiency. This was enabled by the controlled chemical environment used in depositing doped ZnO layers by atomic layer deposition, which is not well suited to large-scale industrial production. While open air fabrication with atmospheric pressure spatial atomic layer deposition overcomes this limitation, we find that this approach is limited by an inability to remove the detrimental CuO layer that forms on the Cu 2 O surface. Herein, we propose strategies for achieving efficiencies in atmospherically processed cells that are equivalent to the high values achieved in vacuum processed cells

  8. Methods and systems for fabricating high quality superconducting tapes

    Energy Technology Data Exchange (ETDEWEB)

    Majkic, Goran; Selvamanickam, Venkat

    2018-02-13

    An MOCVD system fabricates high quality superconductor tapes with variable thicknesses. The MOCVD system can include a gas flow chamber between two parallel channels in a housing. A substrate tape is heated and then passed through the MOCVD housing such that the gas flow is perpendicular to the tape's surface. Precursors are injected into the gas flow for deposition on the substrate tape. In this way, superconductor tapes can be fabricated with variable thicknesses, uniform precursor deposition, and high critical current densities.

  9. HIGH-EFFICIENCY INFRARED RECEIVER

    Directory of Open Access Journals (Sweden)

    A. K. Esman

    2016-01-01

    Full Text Available Recent research and development show promising use of high-performance solid-state receivers of the electromagnetic radiation. These receivers are based on the low-barrier Schottky diodes. The approach to the design of the receivers on the basis of delta-doped low-barrier Schottky diodes with beam leads without bias is especially actively developing because for uncooled receivers of the microwave radiation these diodes have virtually no competition. The purpose of this work is to improve the main parameters and characteristics that determine the practical relevance of the receivers of mid-infrared electromagnetic radiation at the operating room temperature by modifying the electrodes configuration of the diode and optimizing the distance between them. Proposed original design solution of the integrated receiver of mid-infrared radiation on the basis of the low-barrier Schottky diodes with beam leads allows to effectively adjust its main parameters and characteristics. Simulation of the electromagnetic characteristics of the proposed receiver by using the software package HFSS with the basic algorithm of a finite element method which implemented to calculate the behavior of electromagnetic fields on an arbitrary geometry with a predetermined material properties have shown that when the inner parts of the electrodes of the low-barrier Schottky diode is performed in the concentric elliptical convex-concave shape, it can be reduce the reflection losses to -57.75 dB and the standing wave ratio to 1.003 while increasing the directivity up to 23 at a wavelength of 6.09 μm. At this time, the rounded radii of the inner parts of the anode and cathode electrodes are equal 212 nm and 318 nm respectively and the gap setting between them is 106 nm. These parameters will improve the efficiency of the developed infrared optical-promising and electronic equipment for various purposes intended for work in the mid-infrared wavelength range. 

  10. High-efficiency wind turbine

    Science.gov (United States)

    Hein, L. A.; Myers, W. N.

    1980-01-01

    Vertical axis wind turbine incorporates several unique features to extract more energy from wind increasing efficiency 20% over conventional propeller driven units. System also features devices that utilize solar energy or chimney effluents during periods of no wind.

  11. High efficiency turbine blade coatings

    Energy Technology Data Exchange (ETDEWEB)

    Youchison, Dennis L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gallis, Michail A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-06-01

    The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600°C and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the

  12. Development of fabrication technique of bulk high superconductor

    International Nuclear Information System (INIS)

    Hong, Gye Won; Kim, Chang Joong; Kim, Ki Baik; Lee, Ho Jin; Lee, Hee Gyoun; Kwon, Sun Chil.

    1997-05-01

    In order to realize the commercial application of HTSC materials, it is necessary to develop the fabrication process of high Tc oxide superconductor materials with desired shape and for practical application and high critical current density as well as good mechanical strength which critical current density as well as good mechanical strength which can withstand high lorenz force generated at high magnetic field. Much studies have been concentrated to develop the fabrication technique for high critical current density but still there are a lot of gap which should be overcome for large scale application of HTSC materials at liquid nitrogen temperature. Recently some new fabrication techniques have been developed for YBCO bulk superconductor with high mechanical strength and critical current density. In this project, plastic extrusion and melt process techniques were studied. The components materials for the current lead and the flywheel application were fabricated and their characteristics were investigated from the view point of microstructure and phase formation during heat treatment process. (author). 64 refs., 59 figs

  13. Design, fabrication, and characterization of polymer based bulk heterojunction solar cells with enhanced efficiencies

    Science.gov (United States)

    Lu, Haiwei

    Polymer based bulk heterojunction (BHJ) solar cells offer promising technological advantages for actualization of low-cost and large-area fabrication on flexible substrates. To reach the envisaged market entry figure of 10% power conversion efficiency (PCE), it is crucial that more solar energy is utilized in the active layer, requiring both higher energy conversion efficiency and expansion of the absorption spectrum of the active layer to near infrared (NIR) region. The research introduced in this dissertation is an effort to increase PCE of solar cells from the aforementioned two directions. In the first method, carbon nanotubes (CNTs) were incorporated into polymer-fullerene BHJ solar cells to increase the hole-collection efficiency. Devices with CNT monolayer networks placed at different positions were fabricated, and the impact of CNTs on device performance was studied. It was demonstrated that CNTs placed on the hole-collection side of the device resulted in optimized performance, with PCE increased from 4% to 4.9%. To realize the controlled deposition of a uniform layer of CNTs on different positions, a mild plasma treatment of the active-layer was employed, and the influence of plasma treatment on device performance was also studied. In the second strategy, I developed an approach to expand the absorption spectrum to NIR region. In this case, hybrid polymer based BHJ solar cells composed of pyridine-capped PbS (PbS-py) quantum dots (QDs) and poly(3-hexylthiophene) (P3HT) were proposed. With pyridines as capping ligands, devices showed superior performance compared to with conventionally used oleate agents. PbS QDs with bandgaps of ˜1.13-1.38 eV offered the advantage of energetically favorable charge separation between P3HT and PbS QDs for photoexcitons in both visible and NIR regions. It was also found that thermal annealing leads to the removal of excess and interfacial pyridine ligands in polymer/QDs composites, and thus provides intimate electrical

  14. Homogeneous PCBM layers fabricated by horizontal-dip coating for efficient bilayer heterojunction organic photovoltaic cells.

    Science.gov (United States)

    Huh, Yoon Ho; Bae, In-Gon; Jeon, Hong Goo; Park, Byoungchoo

    2016-10-31

    We herein report a homogeneous [6,6]-phenyl C61 butyric acid methyl ester (PCBM) layer, produced by a solution process of horizontal-dipping (H-dipping) to improve the photovoltaic (PV) effects of bilayer heterojunction organic photovoltaic cells (OPVs) based on a bi-stacked poly(3-hexylthiophene) (P3HT) electron donor layer and a PCBM electron acceptor layer (P3HT/PCBM). It was shown that a homogeneous and uniform coating of PCBM layers in the P3HT/PCBM bilayer OPVs resulted in reliable and reproducible device performance. We recorded a power conversion efficiency (PCE) of 2.89%, which is higher than that (2.00%) of bilayer OPVs with a spin-coated PCBM layer. Moreover, introducing surfactant additives of poly(oxyethylene tridecyl ether) (PTE) into the homogeneous P3HT/PCBM PV layers resulted in the bilayer OPVs showing a PCE value of 3.95%, which is comparable to those of conventional bulk-heterojunction (BHJ) OPVs (3.57-4.13%) fabricated by conventional spin-coating. This improved device performance may be attributed to the selective collection of charge carriers at the interfaces among the active layers and electrodes due to the PTE additives as well as the homogeneous formation of the functional PCBM layer on the P3HT layer. Furthermore, H-dip-coated PCBM layers were deposited onto aligned P3HT layers by a rubbing technique, and the rubbed bilayer OPV exhibited improved in-plane anisotropic PV effects with PCE anisotropy as high as 1.81, which is also higher than that (1.54) of conventional rubbed BHJ OPVs. Our results suggest that the use of the H-dip-coating process in the fabrication of PCBM layers with the PTE interface-engineering additive could be of considerable interest to those seeking to improve PCBM-based opto-electrical organic thin-film devices.

  15. Method to fabricate block fuel elements for high temperature reactors

    International Nuclear Information System (INIS)

    Hrovat, M.; Rachor, L.

    1977-01-01

    The fabrication of block fuel elements for gas-cooled high temperature reactors can be improved upon by adding 0.2 to 2 wt.% of a hydrocarbon compound to the lubricating mixture prior to pressing. Hexanol or octanol are named as substances. The dimensional accuracy of the block is thus improved. 2 examples illustrate the method. (RW) [de

  16. Method to fabricate block fuel elements for high temperature reactors

    International Nuclear Information System (INIS)

    Hrovat, M.; Rachor, L.

    1978-01-01

    The fabrication of block fuel elements for gas-cooled high temperature reactors can be improved upon by adding 0.2 to 2 wt.% of a hydrocarbon compound to the lubricating mixture prior to pressing. Hexanol or octanol are named as substances. The dimensional accuracy of the block is thus improved. 2 examples illustrate the method. (orig./PW)

  17. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    Energy Technology Data Exchange (ETDEWEB)

    Grillo, Vincenzo, E-mail: vincenzo.grillo@nano.cnr.it [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); CNR-IMEM Parco Area delle Scienze 37/A, I-43124 Parma (Italy); Carlo Gazzadi, Gian [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Karimi, Ebrahim [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Mafakheri, Erfan [Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy); Boyd, Robert W. [Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Frabboni, Stefano [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy)

    2014-01-27

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science.

  18. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    International Nuclear Information System (INIS)

    Grillo, Vincenzo; Carlo Gazzadi, Gian; Karimi, Ebrahim; Mafakheri, Erfan; Boyd, Robert W.; Frabboni, Stefano

    2014-01-01

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science

  19. Fabrication of control rods for the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Sease, J.D.

    1998-01-01

    The High Flux Isotope Reactor (HFIR) is a research-type nuclear reactor that was designed and built in the early 1960s and has been in continuous operation since its initial criticality in 1965. Under current plans, the HFIR is expected to continue in operation until 2035. This report updates ORNL/TM-9365, Fabrication Procedure for HFIR Control Plates, which was mainly prepared in the early 1970's but was not issued until 1984, and reflects process changes, lessons learned in the latest control rod fabrication campaign, and suggested process improvements to be considered in future campaigns. Most of the personnel involved with the initial development of the processes and in part campaigns have retired or will retire soon. Because their unlikely availability in future campaigns, emphasis has been placed on providing some explanation of why the processes were selected and some discussions about the importance of controlling critical process parameters. Contained in this report is a description of the function of control rods in the reactor, the brief history of the development of control rod fabrication processes, and a description of procedures used in the fabrication of control rods. A listing of the controlled documents and procedures used in the last fabrication campaigns is referenced in Appendix A

  20. Fabrication of control rods for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sease, J.D.

    1998-03-01

    The High Flux Isotope Reactor (HFIR) is a research-type nuclear reactor that was designed and built in the early 1960s and has been in continuous operation since its initial criticality in 1965. Under current plans, the HFIR is expected to continue in operation until 2035. This report updates ORNL/TM-9365, Fabrication Procedure for HFIR Control Plates, which was mainly prepared in the early 1970's but was not issued until 1984, and reflects process changes, lessons learned in the latest control rod fabrication campaign, and suggested process improvements to be considered in future campaigns. Most of the personnel involved with the initial development of the processes and in part campaigns have retired or will retire soon. Because their unlikely availability in future campaigns, emphasis has been placed on providing some explanation of why the processes were selected and some discussions about the importance of controlling critical process parameters. Contained in this report is a description of the function of control rods in the reactor, the brief history of the development of control rod fabrication processes, and a description of procedures used in the fabrication of control rods. A listing of the controlled documents and procedures used in the last fabrication campaigns is referenced in Appendix A.

  1. Status of high-density fuel plate fabrication

    International Nuclear Information System (INIS)

    Wiencek, T.C.; Domagala, R.F.; Thresh, H.R.

    1991-01-01

    Progress has continued on the fabrication of fuel plates with equivalent fuel zone loadings approaching 9 gU/cm 3 . Through hot isostatic pressing (HIP), successful diffusion bonds have been made with 1100 Al and 6061 Al alloys. Although additional study is necessary to optimize the procedure, these bonds demonstrated the most critical processing step for proof-of-concept hardware. Two types of prototype highly loaded fuel plates have been fabricated. The first is a fuel plate in which 0.030-in. (0.76-mm) uranium compound wires are bonded within an aluminum cladding; the second, a dispersion fuel plate with uniform cladding and fuel zone thickness. The successful fabrication of these fuel plates derives from the unique ability of the HIP process to produce diffusion bonds with minimal deformation. (orig.)

  2. Fabrication of high aspect ratio micro electrode by using EDM

    International Nuclear Information System (INIS)

    Elsiti, Nagwa Mejid; Noordin, M.Y.; Alkali, Adam Umar

    2016-01-01

    The electrical discharge machining (EDM) process inherits characteristics that make it a promising micro-machining technique. Micro electrical discharge machining (micro- EDM) is a derived form of EDM, which is commonly used to manufacture micro and miniature parts and components by using the conventional electrical discharge machining fundamentals. Moving block electro discharge grinding (Moving BEDG) is one of the processes that can be used to fabricate micro-electrode. In this study, a conventional die sinker EDM machine was used to fabricate the micro-electrode. Modifications are made to the moving BEDG, which include changing the direction of movements and control gap in one electrode. Consequently current was controlled due to the use of roughing, semi-finishing and finishing parameters. Finally, a high aspect ratio micro-electrode with a diameter of 110.49μm and length of 6000μm was fabricated. (paper)

  3. Fabrication of high quality Cu2SnS3 thin film solar cell with 1.12% power conversion efficiency obtain by low cost environment friendly sol-gel technique

    Science.gov (United States)

    Chaudhari, J. J.; Joshi, U. S.

    2018-03-01

    Cu2SnS3 (CTS) is an emerging ternery chalcogenide material with great potential application in thin film solar cells. We present here high quality Cu2SnS3 thin films using a facile spin coating method. The as deposited films of CTS were sulphurized in a graphite box using tubular furnace at 520 °C for 60 min at the rate of 2.83 °C min-1 in argon atmosphere. X-ray diffraction (XRD) and Raman spectroscopy studies confirm tetragonal phase and absence of any secondary phase in sulphurized CTS thin films. X-ray photoelectron spectroscopy (XPS) demonstrates that Cu and Sn are in +1 and +4 oxidation state respectively. Surface morphology of CTS films were analyzed by field emission scanning electron microscope and atomic force microscope (AFM), which revealed a smooth surface with roughness (RMS) of 6.32 nm for sulphurized CTS film. Hall measurements confirmed p-type conductivity with hole concentartion of sulphurized CTS thin film is of 6.5348 × 1020 cm-3. UV-vis spectra revealed a direct energy band gap varies from 1.45 eV to 1.01 eV for as-deposited and sulphurized CTS thin film respectively. Such band gap values are optimum for semiconductor material as an absorber layer of thin film solar cell. The CTS thin film solar cell had following structure: SLG/FTO/ZnO/CTS/Al with short circuit current density of (Jsc) of 11.6 mA cm-2, open circuit voltage (Voc) of 0.276 V, active area of 0.16 cm2, fill factor (FF) of 35% and power conversion efficiency of 1.12% under AM 1.5 (100 mW cm-2) illumination in simulated standard test conditions.

  4. High efficiency motor selection handbook

    Science.gov (United States)

    McCoy, Gilbert A.; Litman, Todd; Douglass, John G.

    1990-10-01

    Substantial reductions in energy and operational costs can be achieved through the use of energy-efficient electric motors. A handbook was compiled to help industry identify opportunities for cost-effective application of these motors. It covers the economic and operational factors to be considered when motor purchase decisions are being made. Its audience includes plant managers, plant engineers, and others interested in energy management or preventative maintenance programs.

  5. Improving Light Outcoupling Efficiency for OLEDs with Microlens Array Fabricated on Transparent Substrate

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2014-01-01

    Full Text Available Low light outcoupling efficiency restricts the wide application of organic light-emitting diodes in solid state light market although the internal quantum efficiency of the device could reach near to 100%. In order to improve the output efficiency, different kinds of microlens array on the substrate emission surface were designed and simulated using light tracing method. Simulation results indicate that the microlens array on the substrate could efficiently improve the light output efficiency and an enhancement of 1.8 could be obtained with optimized microlens structure design. The microlens array with semicircle shape using polymer material was fabricated on glass substrate by a facile approach. Finally, the organic device with microlens array substrate was manufactured and the light output of the device with surface microlens structure could increase to 1.64 times comparing with the device without microlens.

  6. Development of technology of high density LEU dispersion fuel fabrication

    International Nuclear Information System (INIS)

    Wiencek, T.; Totev, T.

    2007-01-01

    Advanced Materials Fabrication Facilities at Argonne National Laboratory have been involved in development of LEU dispersion fuel for research and test reactors from the beginning of RERTR program. This paper presents development of technology of high density LEU dispersion fuel fabrication for full size plate type fuel elements. A brief description of Advanced Materials Fabrication Facilities where development of the technology was carried out is given. A flow diagram of the manufacturing process is presented. U-Mo powder was manufactured by the rotating electrode process. The atomization produced a U-Mo alloy powder with a relatively uniform size distribution and a nearly spherical shape. Test plates were fabricated using tungsten and depleted U-7 wt.% Mo alloy, 4043 Al and Al-2 wt% Si matrices with Al 6061 aluminum alloy for the cladding. During the development of the technology of manufacturing of full size high density LEU dispersion fuel plates special attention was paid to meet the required homogeneity, bonding, dimensions, fuel out of zone and other mechanical characteristics of the plates.

  7. Tailored Materials for High Efficiency CIDI Engines

    Energy Technology Data Exchange (ETDEWEB)

    Grant, G.J.; Jana, S.

    2012-03-30

    The overall goal of the project, Tailored Materials for High Efficiency Compression Ignition Direct Injection (CIDI) Engines, is to enable the implementation of new combustion strategies, such as homogeneous charge compression ignition (HCCI), that have the potential to significantly increase the energy efficiency of current diesel engines and decrease fuel consumption and environmental emissions. These strategies, however, are increasing the demands on conventional engine materials, either from increases in peak cylinder pressure (PCP) or from increases in the temperature of operation. The specific objective of this project is to investigate the application of a new material processing technology, friction stir processing (FSP), to improve the thermal and mechanical properties of engine components. The concept is to modify the surfaces of conventional, low-cost engine materials. The project focused primarily on FSP in aluminum materials that are compositional analogs to the typical piston and head alloys seen in small- to mid-sized CIDI engines. Investigations have been primarily of two types over the duration of this project: (1) FSP of a cast hypoeutectic Al-Si-Mg (A356/357) alloy with no introduction of any new components, and (2) FSP of Al-Cu-Ni alloys (Alloy 339) by physically stirring-in various quantities of carbon nanotubes/nanofibers or carbon fibers. Experimental work to date on aluminum systems has shown significant increases in fatigue lifetime and stress-level performance in aluminum-silicon alloys using friction processing alone, but work to demonstrate the addition of carbon nanotubes and fibers into aluminum substrates has shown mixed results due primarily to the difficulty in achieving porosity-free, homogeneous distributions of the particulate. A limited effort to understand the effects of FSP on steel materials was also undertaken during the course of this project. Processed regions were created in high-strength, low-alloyed steels up to 0.5 in

  8. Process for fabricating composite material having high thermal conductivity

    Science.gov (United States)

    Colella, Nicholas J.; Davidson, Howard L.; Kerns, John A.; Makowiecki, Daniel M.

    2001-01-01

    A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

  9. OSMOSE experiment: high minor actinides contents pellets and pins fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Jankowiak, A.; Leorier, C.; Desmouliere, F.; Donnet, L. [Commissariat a l' Energie Atomique, CEA/DEN/VRH/DTEC/SDTC/LEMA, 30207 Bagnols-sur-Ceze cedex (France); Antony, M. [Commissariat a l' Energie Atomique, CEA/DEN/CAD/DER/SPEX/LPE, 13108 St Paul Lez Durance cedex (France); Bernard, D. [Commissariat a l' Energie Atomique, CEA/DEN/ CAD/DER /SPRC/LEPh, 13108 St Paul Lez Durance cedex (France)

    2008-07-01

    The OSMOSE program aims to provide accurate experimental data on integral neutron cross-sections of isotopes (i.e.: Th{sup 232}, U{sup 233}, U{sup 234}, U{sup 235}, U{sup 236}, U{sup 238}, Np{sup 237}, Pu{sup 238}, Pu{sup 239}, Pu{sup 240}, Pu{sup 241}, Pu{sup 242}, Am{sup 241}, Am{sup 243}, Cm{sup 244} and Cm{sup 245}). The study of these nuclides is performed on a large range of neutron spectra corresponding to specific experimental conditions (thermal, epithermal, moderated/fast, and fast spectra). This program will be used to provide guidance to all nuclear data programs in the world. This program has led to an optimized fabrication process for OSMOSE pellets and pins which were fabricated by the LEMA (Actinide based Materials Study Laboratory) in the ATALANTE facility both in glove box and shielded cell. The fabrication process made possible to obtain the required material characteristics including a high density, a good distribution of the isotopes in the uranium oxide matrices. A particular attention was paid to reduce chemical pollution of the samples. The program has been successfully achieved in July 2007 with the fabrication of the last two Cm doped samples. (authors)

  10. High efficiency focus neutron generator

    Science.gov (United States)

    Sadeghi, H.; Amrollahi, R.; Zare, M.; Fazelpour, S.

    2017-12-01

    In the present paper, the new idea to increase the neutron yield of plasma focus devices is investigated and the results are presented. Based on many studies, more than 90% of neutrons in plasma focus devices were produced by beam target interactions and only 10% of them were due to thermonuclear reactions. While propounding the new idea, the number of collisions between deuteron ions and deuterium gas atoms were increased remarkably well. The COMSOL Multiphysics 5.2 was used to study the given idea in the known 28 plasma focus devices. In this circumstance, the neutron yield of this system was also obtained and reported. Finally, it was found that in the ENEA device with 1 Hz working frequency, 1.1 × 109 and 1.1 × 1011 neutrons per second were produced by D-D and D-T reactions, respectively. In addition, in the NX2 device with 16 Hz working frequency, 1.34 × 1010 and 1.34 × 1012 neutrons per second were produced by D-D and D-T reactions, respectively. The results show that with regards to the sizes and energy of these devices, they can be used as the efficient neutron generators.

  11. Modeling, fabrication and high power optical characterization of plasmonic waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Lysenko, Oleg

    2015-01-01

    This paper describes modeling, fabrication and high power optical characterization of thin gold films embedded in silicon dioxide. The propagation vector of surface plasmon polaritons has been calculated by the effective index method for the wavelength range of 750-1700 nm and film thickness of 15......, 30 and 45 nm. The fabrication process of such plasmonic waveguides with width in the range of 1-100 μm and their quality inspection are described. The results of optical characterization of plasmonic waveguides using a high power laser with the peak power wavelength 1064 nm show significant deviation...... from the linear propagation regime of surface plasmon polaritons at the average input power of 100 mW and above. Possible reasons for this deviation are heating of the waveguides and subsequent changes in the coupling and propagation losses....

  12. High volume fabrication of laser targets using MEMS techniques

    International Nuclear Information System (INIS)

    Spindloe, C; Tomlinson, S; Green, J; Booth, N.; Tolley, M K; Arthur, G; Hall, F; Potter, R; Kar, S; Higginbotham, A

    2016-01-01

    The latest techniques for the fabrication of high power laser targets, using processes developed for the manufacture of Micro-Electro-Mechanical System (MEMS) devices are discussed. These laser targets are designed to meet the needs of the increased shot numbers that are available in the latest design of laser facilities. Traditionally laser targets have been fabricated using conventional machining or coarse etching processes and have been produced in quantities of 10s to low 100s. Such targets can be used for high complexity experiments such as Inertial Fusion Energy (IFE) studies and can have many complex components that need assembling and characterisation with high precision. Using the techniques that are common to MEMS devices and integrating these with an existing target fabrication capability we are able to manufacture and deliver targets to these systems. It also enables us to manufacture novel targets that have not been possible using other techniques. In addition, developments in the positioning systems that are required to deliver these targets to the laser focus are also required and a system to deliver the target to a focus of an F2 beam at 0.1Hz is discussed. (paper)

  13. Efficient composite fabrication using electron-beam rapidly cured polymers engineered for several manufacturing processes

    International Nuclear Information System (INIS)

    Walton, T.C.; Crivello, J.V.

    1995-01-01

    Low cost, efficiently processed ultra high specific strength and stiffness graphite fiber reinforced polymeric composite materials are of great interest to commercial transportation, construction and aerospace industries for use in various components with enhanced degrees of weight reduction, corrosion/erosion resistance and fatigue resistance. 10 MeV Electron Beam cure processing has been found to increase the cure rate by an order of magnitude over thermally cured systems yet provide less molded in stresses and high T g s. However, a limited range of resins are available which are easily processed with low shrinkage and with performance properties equal or exceeding those of state of the art toughened epoxies and BMI's. The technology, introduced by an academia-industry partnership sparked by Langley Research Center utilizes a cost effective, rapid curing polymeric composite processing technique which effectively reduces the need for expensive tooling and energy inefficient autoclave processing and can cure the laminate in seconds (compared to hours for thermal curing) in ambient or sub-ambient conditions. The process is based on electron beam (E-Beam) curing of a new series of (65 to 1,000,000 cPs.) specially formulated resins that have been shown to exhibit excellent mechanical and physical properties once cured. Fabrication processes utilizing these specially formulated and newly commercialized resins, (e.g. including Vacuum Assist Resin Transfer molding (VARTM), vacuum bag prepreg layup, pultrusion and filament winding grades) are engineered to cure with low shrinkage, provide excellent mechanical properties, be processed solventless (environmentally friendly) and are inherently non toxic

  14. High temperature SU-8 pyrolysis for fabrication of carbon electrodes

    DEFF Research Database (Denmark)

    Hassan, Yasmin Mohamed; Caviglia, Claudia; Hemanth, Suhith

    2017-01-01

    In this work, we present the investigation of the pyrolysis parameters at high temperature (1100 °C) for the fabrication of two-dimensional pyrolytic carbon electrodes. The electrodes were fabricated by pyrolysis of lithographically patterned negative epoxy based photoresist SU-8. A central...... composite experimental design was used to identify the influence of dwell time at the highest pyrolysis temperature and heating rate on electrical, electrochemical and structural properties of the pyrolytic carbon: Van der Pauw sheet resistance measurements, cyclic voltammetry, electrochemical impedance...... spectroscopy and Raman spectroscopy were used to characterize the pyrolytic carbon. The results show that the temperature increase from 900 °C to 1100 °C improves the electrical and electrochemical properties. At 1100 °C, longer dwell time leads to lower resistivity, while the variation of the pyrolysis...

  15. Highly efficient tandem polymer solar cells with a photovoltaic response in the visible light range.

    Science.gov (United States)

    Zheng, Zhong; Zhang, Shaoqing; Zhang, Maojie; Zhao, Kang; Ye, Long; Chen, Yu; Yang, Bei; Hou, Jianhui

    2015-02-18

    Highly efficient polymer solar cells with a tandem structure are fabricated by using two excellent photovoltaic polymers and a highly transparent intermediate recombination layer. Power conversion -efficiencies over 10% can be realized with a photovoltaic response within 800 nm. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. An efficient enzyme-powered micromotor device fabricated by cyclic alternate hybridization assembly for DNA detection.

    Science.gov (United States)

    Fu, Shizhe; Zhang, Xueqing; Xie, Yuzhe; Wu, Jie; Ju, Huangxian

    2017-07-06

    An efficient enzyme-powered micromotor device was fabricated by assembling multiple layers of catalase on the inner surface of a poly(3,4-ethylenedioxythiophene and sodium 4-styrenesulfonate)/Au microtube (PEDOT-PSS/Au). The catalase assembly was achieved by programmed DNA hybridization, which was performed by immobilizing a designed sandwich DNA structure as the sensing unit on the PEDOT-PSS/Au, and then alternately hybridizing with two assisting DNA to bind the enzyme for efficient motor motion. The micromotor device showed unique features of good reproducibility, stability and motion performance. Under optimal conditions, it showed a speed of 420 μm s -1 in 2% H 2 O 2 and even 51 μm s -1 in 0.25% H 2 O 2 . In the presence of target DNA, the sensing unit hybridized with target DNA to release the multi-layer DNA as well as the multi-catalase, resulting in a decrease of the motion speed. By using the speed as a signal, the micromotor device could detect DNA from 10 nM to 1 μM. The proposed micromotor device along with the cyclic alternate DNA hybridization assembly technique provided a new path to fabricate efficient and versatile micromotors, which would be an exceptional tool for rapid and simple detection of biomolecules.

  17. Influence of Lay Plan Solution in Fabric Efficiency and Consume in Cutting Section

    OpenAIRE

    Dumishllari Elmira; Guxho Genti

    2016-01-01

    One cutting order may require several lies and markers to achieve optimal efficiency and selection of right Lay Plan is one of the major challenges in cutting section, in a way to lead in fabric economy and reduced costs. The main purpose of this paper is to determine the best solution of lay plan and its influence, in the cutting room, starting from the analysis of the lay indicators calculations. We have studied an order with 200 jackets, with specific sizes. Markers are made by Gemini CAD ...

  18. Energy efficiency improvement target for SIC 34 - fabricated metal products. Revised target support document

    Energy Technology Data Exchange (ETDEWEB)

    Byrer, T. G.; Billhardt, C. F.; Farkas, M. S.

    1977-02-15

    In accordance with section 374 of the Energy Policy and Conservation Act (EPCA), Pub. L. 94-163, the Federal Energy Administration (FEA) proposed industrial energy efficiency improvement targets for the ten most energy-consumptive manufacturing industries in the U.S. Following public hearings and a review of the comments made, the final targets for Fabricated Metal Products (SIC 34) were established and are described. Using 1972 data on the energy consumed to produce specific metal products, it was concluded that a 24% reduction in energy consumption for SIC 34 is a viable goal for achievement by 1980. (ERA citation 04:045006)

  19. Additive Manufacturing for Highly Efficient Window Inserts CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Roschli, Alex C. [ORNL; Chesser, Phillip C. [ORNL; Love, Lonnie J. [ORNL

    2018-04-01

    ORNL partnered with the Mackinac Technology Company to demonstrate how additive manufacturing can be used to create highly energy efficient window inserts for retrofit in pre-existing buildings. Many early iterations of the window inserts were fabricated using carbon fiber reinforced thermoplastics and polycarbonate films as a stand in for the low-e coated films produced by the Mackinac Technology Company. After demonstration of the proof of concept, i.e. custom window inserts with tensioned film, the materials used for the manufacture of the frames was more closely examined. Hollow particle-filled syntactic foam and low-density polymer composites formed by expandable microspheres were explored as the materials used to additively manufacture the frames of the inserts. It was concluded that low-cost retrofit window inserts in custom sizes could be easily fabricated using large scale additive manufacturing. Furthermore, the syntactic and expanded foams developed and tested satisfy the mechanical performance requirements for the application.

  20. Preparation of cuxinygazsen (X=0-2, Y=0-2, Z=0-2, N=0-3) precursor films by electrodeposition for fabricating high efficiency solar cells

    Science.gov (United States)

    Bhattacharya, Raghu N.; Contreras, Miguel A.; Keane, James; Tennant, Andrew L.; Tuttle, John R.; Ramanathan, Kannan; Noufi, Rommel

    1998-03-24

    High quality thin films of copper-indium-gallium-diselenide useful in the production of solar cells are prepared by electrodepositing at least one of the constituent metals onto a glass/Mo substrate, followed by physical vapor deposition of copper and selenium or indium and selenium to adjust the final stoichiometry of the thin film to approximately Cu(In,Ga)Se.sub.2. Using an AC voltage of 1-100 KHz in combination with a DC voltage for electrodeposition improves the morphology and growth rate of the deposited thin film. An electrodeposition solution comprising at least in part an organic solvent may be used in conjunction with an increased cathodic potential to increase the gallium content of the electrodeposited thin film.

  1. Fabrication and characterization of high impact hybrid matrix composites from thermoset resin and dyneema-glass fabric reinforcement

    Science.gov (United States)

    Patel, R. H.; Sharma, S.; Pansuriya, T.; Malgani, E. V.; Sevkani, V.

    2018-05-01

    Hybrid composites have been fabricated by hand lay-up technique with epoxy resin and diethylene tri amine as a hardener for high impact energy absorption with sandwich stacking of different reinforcements of dyneema and glass fabric. High impact grade composites are nowadays gaining a lot of importance in the field of high mechanical load bearing applications, ballistics and bulletproofing. The present work emphases on the fabrication and mechanical properties of the hybrid composites of cut resistant dyneema fabric along with glass fabric reinforced in the thermosetting resin. i.e. epoxy. The prime importance while fabricating such materials have been given to the processing along with selection of the raw materials. High impact resistive materials with low density and henceforth low weight have been manufactured and characterized by IZOD impact tester, UTM, Archimedes density meter and SEM. Throughout the work, satisfactory results have been obtained. Impact resistance was observed to be boosted three times as that of the reference sample of glass fabric and epoxy. The density of the hybrid composite is observed to be 25% as that of the reference sample.

  2. Highly Efficient Thermoresponsive Nanocomposite for Controlled Release Applications

    KAUST Repository

    Yassine, Omar

    2016-06-23

    Highly efficient magnetic release from nanocomposite microparticles is shown, which are made of Poly (N-isopropylacrylamide) hydrogel with embedded iron nanowires. A simple microfluidic technique was adopted to fabricate the microparticles with a high control of the nanowire concentration and in a relatively short time compared to chemical synthesis methods. The thermoresponsive microparticles were used for the remotely triggered release of Rhodamine (B). With a magnetic field of only 1 mT and 20 kHz a drug release of 6.5% and 70% was achieved in the continuous and pulsatile modes, respectively. Those release values are similar to the ones commonly obtained using superparamagnetic beads but accomplished with a magnetic field of five orders of magnitude lower power. The high efficiency is a result of the high remanent magnetization of the nanowires, which produce a large torque when exposed to a magnetic field. This causes the nanowires to vibrate, resulting in friction losses and heating. For comparison, microparticles with superparamagnetic beads were also fabricated and tested; while those worked at 73 mT and 600 kHz, no release was observed at the low field conditions. Cytotoxicity assays showed similar and high cell viability for microparticles with nanowires and beads.

  3. Highly Efficient Thermoresponsive Nanocomposite for Controlled Release Applications

    KAUST Repository

    Yassine, Omar; Zaher, Amir; Li, Erqiang; Alfadhel, Ahmed; Perez, Jose E.; Kavaldzhiev, Mincho; Contreras, Maria F.; Thoroddsen, Sigurdur T; Khashab, Niveen M.; Kosel, Jü rgen

    2016-01-01

    Highly efficient magnetic release from nanocomposite microparticles is shown, which are made of Poly (N-isopropylacrylamide) hydrogel with embedded iron nanowires. A simple microfluidic technique was adopted to fabricate the microparticles with a high control of the nanowire concentration and in a relatively short time compared to chemical synthesis methods. The thermoresponsive microparticles were used for the remotely triggered release of Rhodamine (B). With a magnetic field of only 1 mT and 20 kHz a drug release of 6.5% and 70% was achieved in the continuous and pulsatile modes, respectively. Those release values are similar to the ones commonly obtained using superparamagnetic beads but accomplished with a magnetic field of five orders of magnitude lower power. The high efficiency is a result of the high remanent magnetization of the nanowires, which produce a large torque when exposed to a magnetic field. This causes the nanowires to vibrate, resulting in friction losses and heating. For comparison, microparticles with superparamagnetic beads were also fabricated and tested; while those worked at 73 mT and 600 kHz, no release was observed at the low field conditions. Cytotoxicity assays showed similar and high cell viability for microparticles with nanowires and beads.

  4. Perspective: Maintaining surface-phase purity is key to efficient open air fabricated cuprous oxide solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hoye, Robert L. Z., E-mail: rlzh2@cam.ac.uk, E-mail: jld35@cam.ac.uk; Ievskaya, Yulia; MacManus-Driscoll, Judith L., E-mail: rlzh2@cam.ac.uk, E-mail: jld35@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Brandt, Riley E.; Buonassisi, Tonio [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Heffernan, Shane [Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Musselman, Kevin P. [Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom)

    2015-02-01

    Electrochemically deposited Cu{sub 2}O solar cells are receiving growing attention owing to a recent doubling in efficiency. This was enabled by the controlled chemical environment used in depositing doped ZnO layers by atomic layer deposition, which is not well suited to large-scale industrial production. While open air fabrication with atmospheric pressure spatial atomic layer deposition overcomes this limitation, we find that this approach is limited by an inability to remove the detrimental CuO layer that forms on the Cu{sub 2}O surface. Herein, we propose strategies for achieving efficiencies in atmospherically processed cells that are equivalent to the high values achieved in vacuum processed cells.

  5. Sliver Solar Cells: High-Efficiency, Low-Cost PV Technology

    Directory of Open Access Journals (Sweden)

    Evan Franklin

    2007-01-01

    Full Text Available Sliver cells are thin, single-crystal silicon solar cells fabricated using standard fabrication technology. Sliver modules, composed of several thousand individual Sliver cells, can be efficient, low-cost, bifacial, transparent, flexible, shadow tolerant, and lightweight. Compared with current PV technology, mature Sliver technology will need 10% of the pure silicon and fewer than 5% of the wafer starts per MW of factory output. This paper deals with two distinct challenges related to Sliver cell and Sliver module production: providing a mature and robust Sliver cell fabrication method which produces a high yield of highly efficient Sliver cells, and which is suitable for transfer to industry; and, handling, electrically interconnecting, and encapsulating billions of sliver cells at low cost. Sliver cells with efficiencies of 20% have been fabricated at ANU using a reliable, optimised processing sequence, while low-cost encapsulation methods have been demonstrated using a submodule technique.

  6. High-efficiency white OLEDs based on small molecules

    Science.gov (United States)

    Hatwar, Tukaram K.; Spindler, Jeffrey P.; Ricks, M. L.; Young, Ralph H.; Hamada, Yuuhiko; Saito, N.; Mameno, Kazunobu; Nishikawa, Ryuji; Takahashi, Hisakazu; Rajeswaran, G.

    2004-02-01

    Eastman Kodak Company and SANYO Electric Co., Ltd. recently demonstrated a 15" full-color, organic light-emitting diode display (OLED) using a high-efficiency white emitter combined with a color-filter array. Although useful for display applications, white emission from organic structures is also under consideration for other applications, such as solid-state lighting, where high efficiency and good color rendition are important. By incorporating adjacent blue and orange emitting layers in a multi-layer structure, highly efficient, stable white emission has been attained. With suitable host and dopant combinations, a luminance yield of 20 cd/A and efficiency of 8 lm/W have been achieved at a drive voltage of less than 8 volts and luminance level of 1000 cd/m2. The estimated external efficiency of this device is 6.3% and a high level of operational stability is observed. To our knowledge, this is the highest performance reported so far for white organic electroluminescent devices. We will review white OLED technology and discuss the fabrication and operating characteristics of these devices.

  7. Critical study of high efficiency deep grinding

    OpenAIRE

    Johnstone, lain

    2002-01-01

    The recent years, the aerospace industry in particular has embraced and actively pursued the development of stronger high performance materials, namely nickel based superalloys and hardwearing steels. This has resulted in a need for a more efficient method of machining, and this need was answered with the advent of High Efficiency Deep Grinding (HEDG). This relatively new process using Cubic Boron Nitride (CBN) electroplated grinding wheels has been investigated through experim...

  8. High-Performance Screen-Printed Thermoelectric Films on Fabrics.

    Science.gov (United States)

    Shin, Sunmi; Kumar, Rajan; Roh, Jong Wook; Ko, Dong-Su; Kim, Hyun-Sik; Kim, Sang Il; Yin, Lu; Schlossberg, Sarah M; Cui, Shuang; You, Jung-Min; Kwon, Soonshin; Zheng, Jianlin; Wang, Joseph; Chen, Renkun

    2017-08-04

    Printing techniques could offer a scalable approach to fabricate thermoelectric (TE) devices on flexible substrates for power generation used in wearable devices and personalized thermo-regulation. However, typical printing processes need a large concentration of binder additives, which often render a detrimental effect on electrical transport of the printed TE layers. Here, we report scalable screen-printing of TE layers on flexible fiber glass fabrics, by rationally optimizing the printing inks consisting of TE particles (p-type Bi 0.5 Sb 1.5 Te 3 or n-type Bi 2 Te 2.7 Se 0.3 ), binders, and organic solvents. We identified a suitable binder additive, methyl cellulose, which offers suitable viscosity for printability at a very small concentration (0.45-0.60 wt.%), thus minimizing its negative impact on electrical transport. Following printing, the binders were subsequently burnt off via sintering and hot pressing. We found that the nanoscale defects left behind after the binder burnt off became effective phonon scattering centers, leading to low lattice thermal conductivity in the printed n-type material. With the high electrical conductivity and low thermal conductivity, the screen-printed TE layers showed high room-temperature ZT values of 0.65 and 0.81 for p-type and n-type, respectively.

  9. A metamaterial electromagnetic energy rectifying surface with high harvesting efficiency

    Directory of Open Access Journals (Sweden)

    Xin Duan

    2016-12-01

    Full Text Available A novel metamaterial rectifying surface (MRS for electromagnetic energy capture and rectification with high harvesting efficiency is presented. It is fabricated on a three-layer printed circuit board, which comprises an array of periodic metamaterial particles in the shape of mirrored split rings, a metal ground, and integrated rectifiers employing Schottky diodes. Perfect impedance matching is engineered at two interfaces, i.e. one between free space and the surface, and the other between the metamaterial particles and the rectifiers, which are connected through optimally positioned vias. Therefore, the incident electromagnetic power is captured with almost no reflection by the metamaterial particles, then channeled maximally to the rectifiers, and finally converted to direct current efficiently. Moreover, the rectifiers are behind the metal ground, avoiding the disturbance of high power incident electromagnetic waves. Such a MRS working at 2.45 GHz is designed, manufactured and measured, achieving a harvesting efficiency up to 66.9% under an incident power density of 5 mW/cm2, compared with a simulated efficiency of 72.9%. This high harvesting efficiency makes the proposed MRS an effective receiving device in practical microwave power transmission applications.

  10. A metamaterial electromagnetic energy rectifying surface with high harvesting efficiency

    Science.gov (United States)

    Duan, Xin; Chen, Xing; Zhou, Lin

    2016-12-01

    A novel metamaterial rectifying surface (MRS) for electromagnetic energy capture and rectification with high harvesting efficiency is presented. It is fabricated on a three-layer printed circuit board, which comprises an array of periodic metamaterial particles in the shape of mirrored split rings, a metal ground, and integrated rectifiers employing Schottky diodes. Perfect impedance matching is engineered at two interfaces, i.e. one between free space and the surface, and the other between the metamaterial particles and the rectifiers, which are connected through optimally positioned vias. Therefore, the incident electromagnetic power is captured with almost no reflection by the metamaterial particles, then channeled maximally to the rectifiers, and finally converted to direct current efficiently. Moreover, the rectifiers are behind the metal ground, avoiding the disturbance of high power incident electromagnetic waves. Such a MRS working at 2.45 GHz is designed, manufactured and measured, achieving a harvesting efficiency up to 66.9% under an incident power density of 5 mW/cm2, compared with a simulated efficiency of 72.9%. This high harvesting efficiency makes the proposed MRS an effective receiving device in practical microwave power transmission applications.

  11. Fabrication of highly efficient ZnO nanoscintillators

    Czech Academy of Sciences Publication Activity Database

    Procházková, L.; Gbur, T.; Čuba, V.; Jarý, Vítězslav; Nikl, Martin

    2015-01-01

    Roč. 47, Sep (2015), s. 67-71 ISSN 0925-3467 R&D Projects: GA ČR GA13-09876S Grant - others:EU COST Fast advanced Scintillator Timing (FAST)(XE) TD COST Action TD1401 Institutional support: RVO:68378271 Keywords : exciton luminescence * nanoparticles * scintillating material * UV radiation * zinc oxide Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.183, year: 2015

  12. Fabrication of highly conductive carbon nanotube fibers for electrical application

    International Nuclear Information System (INIS)

    Guo, Fengmei; Li, Can; Wei, Jinquan; Xu, Ruiqiao; Zhang, Zelin; Cui, Xian; Wang, Kunlin; Wu, Dehai

    2015-01-01

    Carbon nanotubes (CNTs) have great potential for use as electrical wires because of their outstanding electrical and mechanical properties. Here, we fabricate lightweight CNT fibers with electrical conductivity as high as that of stainless steel from macroscopic CNT films by drawing them through diamond wire-drawing dies. The entangled CNT bundles are straightened by suffering tension, which improves the alignment of the fibers. The loose fibers are squeezed by the diamond wire-drawing dies, which reduces the intertube space and contact resistance. The CNT fibers prepared by drawing have an electrical conductivity as high as 1.6 × 10 6 s m −1 . The fibers are very stable when kept in the air and under cyclic tensile test. A prototype of CNT motor is demonstrated by replacing the copper wires with the CNT fibers. (paper)

  13. Advanced high throughput MOX fuel fabrication technology and sustainable development

    International Nuclear Information System (INIS)

    Krellmann, Juergen

    2005-01-01

    The MELOX plant in the south of France together with the La Hague reprocessing plant, are part of the two industrial facilities in charge of closing the nuclear fuel cycle in France. Started up in 1995, MELOX has since accumulated a solid know-how in recycling plutonium recovered from spent uranium fuel into MOX: a fuel blend comprised of both uranium and plutonium oxides. Converting recovered Pu into a proliferation-resistant material that can readily be used to power a civil nuclear reactor, MOX fabrication offers a sustainable solution to safely take advantage of the plutonium's high energy content. Being the first large-capacity industrial facility dedicated to MOX fuel fabrication, MELOX distinguishes itself from the first generation MOX plants with high capacity (around 200 tHM versus around 40 tHM) and several unique operational features designed to improve productivity, reliability and flexibility while maintaining high safety standards. Providing an exemplary reference for high throughput MOX fabrication with 1,000 tHM produced since start-up, the unique process and technologies implemented at MELOX are currently inspiring other MOX plant construction projects (in Japan with the J-MOX plant, in the US and in Russia as part of the weapon-grade plutonium inventory reduction). Spurred by the growing international demand, MELOX has embarked upon an ambitious production development and diversification plan. Starting from an annual level of 100 tons of heavy metal (tHM), MELOX demonstrated production capacity is continuously increasing: MELOX is now aiming for a minimum of 140 tHM by the end of 2005, with the ultimate ambition of reaching the full capacity of the plant (around 200 tHM) in the near future. With regards to its activity, MELOX also remains deeply committed to sustainable development in a consolidated involvement within AREVA group. The French minister of Industry, on August 26th 2005, acknowledged the benefits of MOX fuel production at MELOX: 'In

  14. High Temperature Resin/Carbon Nanotube Composite Fabrication

    Science.gov (United States)

    Ghose, Sayata; Watson, Kent A.; Sun, Keun J.; Criss, Jim M.; Siochi, Emilie J.; Connell, John W.

    2006-01-01

    For the purpose of incorporating multifunctionality into advanced composites, blends of phenylethynyl terminated imides-330 (PETI-330) and multi-walled carbon nanotubes (MWCNTs) were prepared, characterized and fabricated into moldings. PETI-330/MWCNT mixtures were prepared at concentrations ranging from 3 to 25 weight percent by dry mixing the components in a ball mill. The resulting powders were characterized for degree of mixing, thermal and rheological properties. Based on the characterization results, PETI-330/MWCNT samples were scaled up to approximately 300 g and used to fabricate moldings by injecting the mixtures at 260-280 deg C into a stainless steel tool followed by curing for 1 h at 371 deg C. The tool was designed to impart a degree of shear during the injection process in an attempt to achieve some alignment of the MWCNTs in the flow direction. Obtained moldings were subsequently characterized for thermal, mechanical, and electrical properties. The degree of dispersion and alignment of MWCNTs were investigated using high-resolution scanning electron microscopy. The preparation and preliminary characterization of PETI-330/MWCNT composites will be discussed.

  15. Environmentally Printing Efficient Organic Tandem Solar Cells with High Fill Factors: A Guideline Towards 20% Power Conversion Efficiency

    DEFF Research Database (Denmark)

    Li, Ning; Baran, Derya; Spyropoulos, George D.

    2014-01-01

    presents a major challenge. The reported high PCE values from lab-scale spin-coated devices are, of course, representative, but not helpful for commercialization. Here, organic tandem solar cells with exceptionally high fill factors and PCE values of 7.66% (on glass) and 5.56% (on flexible substrate...... to enhance the power conversion efficiency (PCE). However, due to the undeveloped deposition techniques, the challenges in ink formulation as well as the lack of commercially available high performance active materials, roll-to-roll fabrication of highly efficient organic tandem solar cells currently......), which are the highest values for the solution-processed tandem solar cells fabricated by a mass-production compatible coating technique under ambient conditions, are demonstrated. To predict the highest possible performance of tandem solar cells, optical simulation based on experimentally feasible...

  16. Highly Flexible and Efficient Solar Steam Generation Device.

    Science.gov (United States)

    Chen, Chaoji; Li, Yiju; Song, Jianwei; Yang, Zhi; Kuang, Yudi; Hitz, Emily; Jia, Chao; Gong, Amy; Jiang, Feng; Zhu, J Y; Yang, Bao; Xie, Jia; Hu, Liangbing

    2017-08-01

    Solar steam generation with subsequent steam recondensation has been regarded as one of the most promising techniques to utilize the abundant solar energy and sea water or other unpurified water through water purification, desalination, and distillation. Although tremendous efforts have been dedicated to developing high-efficiency solar steam generation devices, challenges remain in terms of the relatively low efficiency, complicated fabrications, high cost, and inability to scale up. Here, inspired by the water transpiration behavior of trees, the use of carbon nanotube (CNT)-modified flexible wood membrane (F-Wood/CNTs) is demonstrated as a flexible, portable, recyclable, and efficient solar steam generation device for low-cost and scalable solar steam generation applications. Benefitting from the unique structural merits of the F-Wood/CNTs membrane-a black CNT-coated hair-like surface with excellent light absorbability, wood matrix with low thermal conductivity, hierarchical micro- and nanochannels for water pumping and escaping, solar steam generation device based on the F-Wood/CNTs membrane demonstrates a high efficiency of 81% at 10 kW cm -2 , representing one of the highest values ever-reported. The nature-inspired design concept in this study is straightforward and easily scalable, representing one of the most promising solutions for renewable and portable solar energy generation and other related phase-change applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Progress of OLED devices with high efficiency at high luminance

    Science.gov (United States)

    Nguyen, Carmen; Ingram, Grayson; Lu, Zhenghong

    2014-03-01

    Organic light emitting diodes (OLEDs) have progressed significantly over the last two decades. For years, OLEDs have been promoted as the next generation technology for flat panel displays and solid-state lighting due to their potential for high energy efficiency and dynamic range of colors. Although high efficiency can readily be obtained at low brightness levels, a significant decline at high brightness is commonly observed. In this report, we will review various strategies for achieving highly efficient phosphorescent OLED devices at high luminance. Specifically, we will provide details regarding the performance and general working principles behind each strategy. We will conclude by looking at how some of these strategies can be combined to produce high efficiency white OLEDs at high brightness.

  18. Fabrication and Characterization of Organic Photovoltaic Cell using Keithley 2400 SMU for efficient solar cell

    Science.gov (United States)

    Hafeez, Hafeez Y.; Iro, Zaharaddeen S.; Adam, Bala I.; Mohammed, J.

    2018-04-01

    An organic solar cell device or organic photovoltaic cell (OPV) is a class of solar cell that uses conductive organic polymers or small organic molecules for light absorption and charge transport. In this study, we fabricate and characterize an organic photovoltaic cell device and estimated important parameters of the device such as Open Circuit Voltage Voc of 0.28V, Short-Circuit Current Isc of 4.0 × 10-5 A, Maximum Power Pmax of 2.4 × 10-6 W, Fill Factor of 0.214 and the energy conversion efficiency of η=0.00239% were tested using Keithley 2400,source meter under A.M 1.5 (1000/m2) illumination from a Newport Class A solar simulator. Also the I-V characteristics for OPV were drawn.

  19. Measure Guideline. High Efficiency Natural Gas Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L. [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States); Rose, W. [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States)

    2012-10-01

    This measure guideline covers installation of high-efficiency gas furnaces, including: when to install a high-efficiency gas furnace as a retrofit measure; how to identify and address risks; and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  20. Measure Guideline: High Efficiency Natural Gas Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L.; Rose, W.

    2012-10-01

    This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  1. Experiments on high efficiency aerosol filtration

    International Nuclear Information System (INIS)

    Mazzini, M.; Cuccuru, A.; Kunz, P.

    1977-01-01

    Research on high efficiency aerosol filtration by the Nuclear Engineering Institute of Pisa University and by CAMEN in collaboration with CNEN is outlined. HEPA filter efficiency was studied as a function of the type and size of the test aerosol, and as a function of flowrate (+-50% of the nominal value), air temperature (up to 70 0 C), relative humidity (up to 100%), and durability in a corrosive atmosphere (up to 140 hours in NaCl mist). In the selected experimental conditions these influences were appreciable but are not sufficient to be significant in industrial HEPA filter applications. Planned future research is outlined: measurement of the efficiency of two HEPA filters in series using a fixed particle size; dependence of the efficiency on air, temperatures up to 300-500 0 C; performance when subject to smoke from burning organic materials (natural rubber, neoprene, miscellaneous plastics). Such studies are relevant to possible accidental fires in a plutonium laboratory

  2. High efficiency grating couplers based on shared process with CMOS MOSFETs

    International Nuclear Information System (INIS)

    Qiu Chao; Sheng Zhen; Wu Ai-Min; Wang Xi; Zou Shi-Chang; Gan Fu-Wan; Li Le; Albert Pang

    2013-01-01

    Grating couplers are widely investigated as coupling interfaces between silicon-on-insulator waveguides and optical fibers. In this work, a high-efficiency and complementary metal—oxide—semiconductor (CMOS) process compatible grating coupler is proposed. The poly-Si layer used as a gate in the CMOS metal—oxide—semiconductor field effect transistor (MOSFET) is combined with a normal fully etched grating coupler, which greatly enhances its coupling efficiency. With optimal structure parameters, a coupling efficiency can reach as high as ∼ 70% at a wavelength of 1550 nm as indicated by simulation. From the angle of fabrication, all masks and etching steps are shared between MOSFETs and grating couplers, thereby making the high performance grating couplers easily integrated with CMOS circuits. Fabrication errors such as alignment shift are also simulated, showing that the device is quite tolerant in fabrication. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  3. High efficiency, variable geometry, centrifugal cryogenic pump

    International Nuclear Information System (INIS)

    Forsha, M.D.; Nichols, K.E.; Beale, C.A.

    1994-01-01

    A centrifugal cryogenic pump has been developed which has a basic design that is rugged and reliable with variable speed and variable geometry features that achieve high pump efficiency over a wide range of head-flow conditions. The pump uses a sealless design and rolling element bearings to achieve high reliability and the ruggedness to withstand liquid-vapor slugging. The pump can meet a wide range of variable head, off-design flow requirements and maintain design point efficiency by adjusting the pump speed. The pump also has features that allow the impeller and diffuser blade heights to be adjusted. The adjustable height blades were intended to enhance the pump efficiency when it is operating at constant head, off-design flow rates. For small pumps, the adjustable height blades are not recommended. For larger pumps, they could provide off-design efficiency improvements. This pump was developed for supercritical helium service, but the design is well suited to any cryogenic application where high efficiency is required over a wide range of head-flow conditions

  4. Fabrication of detectors and transistors on high-resistivity silicon

    International Nuclear Information System (INIS)

    Holland, S.

    1988-06-01

    A new process for the fabrication of silicon p-i-n diode radiation detectors is described. The utilization of backside gettering in the fabrication process results in the actual physical removal of detrimental impurities from critical device regions. This reduces the sensitivity of detector properties to processing variables while yielding low diode reverse-leakage currents. In addition, gettering permits the use of processing temperatures compatible with integrated-circuit fabrication. P-channel MOSFETs and silicon p-i-n diodes have been fabricated simultaneously on 10 kΩ/centerreverse arrowdot/cm silicon using conventional integrated-circuit processing techniques. 25 refs., 5 figs

  5. Deep-blue efficient OLED based on NPB with little efficiency roll-off under high current density

    Science.gov (United States)

    Liu, Jian

    2017-03-01

    NPB usually is used as a hole-transport layer in OLED. In fact, it is a standard pure blue-emission material. However, its light-emitting efficiency in OLED is low due to emissive nature of organic material. Herein, a deep-blue OLDE based on NPB was fabricated. The light-emitting efficiency of the device demonstrates a moderate value, and efficiency roll-off is little under high current density. The device demonstrates that the electroplex's emission decreases with increasing electric field intensity.

  6. Triple-junction thin-film silicon solar cell fabricated on periodically textured substrate with a stabilized efficiency of 13.6%

    Science.gov (United States)

    Sai, Hitoshi; Matsui, Takuya; Koida, Takashi; Matsubara, Koji; Kondo, Michio; Sugiyama, Shuichiro; Katayama, Hirotaka; Takeuchi, Yoshiaki; Yoshida, Isao

    2015-05-01

    We report a high-efficiency triple-junction thin-film silicon solar cell fabricated with the so-called substrate configuration. It was verified whether the design criteria for developing single-junction microcrystalline silicon (μc-Si:H) solar cells are applicable to multijunction solar cells. Furthermore, a notably high short-circuit current density of 32.9 mA/cm2 was achieved in a single-junction μc-Si:H cell fabricated on a periodically textured substrate with a high-mobility front transparent contacting layer. These technologies were also combined into a-Si:H/μc-Si:H/μc-Si:H triple-junction cells, and a world record stabilized efficiency of 13.6% was achieved.

  7. Saving energy via high-efficiency fans.

    Science.gov (United States)

    Heine, Thomas

    2016-08-01

    Thomas Heine, sales and market manager for EC Upgrades, the retrofit arm of global provider of air movement solutions, ebm-papst A&NZ, discusses the retrofitting of high-efficiency fans to existing HVAC equipment to 'drastically reduce energy consumption'.

  8. High efficiency, monolithic fiber chirped pulse amplification system for high energy femtosecond pulse generation.

    Science.gov (United States)

    Peng, Xiang; Kim, Kyungbum; Mielke, Michael; Jennings, Stephen; Masor, Gordon; Stohl, Dave; Chavez-Pirson, Arturo; Nguyen, Dan T; Rhonehouse, Dan; Zong, Jie; Churin, Dmitriy; Peyghambarian, N

    2013-10-21

    A novel monolithic fiber-optic chirped pulse amplification (CPA) system for high energy, femtosecond pulse generation is proposed and experimentally demonstrated. By employing a high gain amplifier comprising merely 20 cm of high efficiency media (HEM) gain fiber, an optimal balance of output pulse energy, optical efficiency, and B-integral is achieved. The HEM amplifier is fabricated from erbium-doped phosphate glass fiber and yields gain of 1.443 dB/cm with slope efficiency >45%. We experimentally demonstrate near diffraction-limited beam quality and near transform-limited femtosecond pulse quality at 1.55 µm wavelength. With pulse energy >100 µJ and pulse duration of 636 fs (FWHM), the peak power is estimated to be ~160 MW. NAVAIR Public Release Distribution Statement A-"Approved for Public release; distribution is unlimited".

  9. Fabrication of thin TEM sample of ionic liquid for high-resolution ELNES measurements

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Tomohiro, E-mail: tomo-m@iis.u-tokyo.ac.jp; Mizoguchi, Teruyasu, E-mail: teru@iis.u-tokyo.ac.jp

    2017-07-15

    Investigation of the local structure, ionic and molecular behavior, and chemical reactions at high spatial resolutions in liquids has become increasingly important. Improvements in these areas help to develop efficient batteries and improve organic syntheses. Transmission electron microscopy (TEM) and scanning-TEM (STEM) have excellent spatial resolution, and the electron energy-loss near edge structure (ELNES) measured by the accompanied electron energy-loss spectroscopy (EELS) is effective to analyze the liquid local structure owing to reflecting the electronic density of states. In this study, we fabricate a liquid-layer-only sample with thickness of single to tens nanometers using an ionic liquid. Because the liquid film has a thickness much less than the inelastic mean free path (IMFP) of the electron beam, the fine structure of the C-K edge electron energy loss near edge structure (ELNES) can be measured with sufficient resolution to allow meaningful analysis. The ELNES spectrum from the thin liquid film has been interpreted using first principles ELNES calculations. - Highlights: • A fabrication method of thin liquid film samples for STEM-EELS observations is proposed. • The thickness of the fabricated thin liquid film is about 10 nm. • An ELNES is measured from the thin liquid with a high energy resolution. • The peaks of the ELNES are interpreted using first principles calculations.

  10. High Efficiency, Low Cost Scintillators for PET

    International Nuclear Information System (INIS)

    Kanai Shah

    2007-01-01

    Inorganic scintillation detectors coupled to PMTs are an important element of medical imaging applications such as positron emission tomography (PET). Performance as well as cost of these systems is limited by the properties of the scintillation detectors available at present. The Phase I project was aimed at demonstrating the feasibility of producing high performance scintillators using a low cost fabrication approach. Samples of these scintillators were produced and their performance was evaluated. Overall, the Phase I effort was very successful. The Phase II project will be aimed at advancing the new scintillation technology for PET. Large samples of the new scintillators will be produced and their performance will be evaluated. PET modules based on the new scintillators will also be built and characterized

  11. Fundamental understanding and development of low-cost, high-efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    ROHATGI,A.; NARASIMHA,S.; MOSCHER,J.; EBONG,A.; KAMRA,S.; KRYGOWSKI,T.; DOSHI,P.; RISTOW,A.; YELUNDUR,V.; RUBY,DOUGLAS S.

    2000-05-01

    The overall objectives of this program are (1) to develop rapid and low-cost processes for manufacturing that can improve yield, throughput, and performance of silicon photovoltaic devices, (2) to design and fabricate high-efficiency solar cells on promising low-cost materials, and (3) to improve the fundamental understanding of advanced photovoltaic devices. Several rapid and potentially low-cost technologies are described in this report that were developed and applied toward the fabrication of high-efficiency silicon solar cells.

  12. Hexagonal boron nitride neutron detectors with high detection efficiencies

    Science.gov (United States)

    Maity, A.; Grenadier, S. J.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2018-01-01

    Neutron detectors fabricated from 10B enriched hexagonal boron nitride (h-10BN or h-BN) epilayers have demonstrated the highest thermal neutron detection efficiency among solid-state neutron detectors to date at about 53%. In this work, photoconductive-like vertical detectors with a detection area of 1 × 1 mm2 were fabricated from 50 μm thick free-standing h-BN epilayers using Ni/Au and Ti/Al bilayers as ohmic contacts. Leakage currents, mobility-lifetime (μτ) products under UV photoexcitation, and neutron detection efficiencies have been measured for a total of 16 different device configurations. The results have unambiguously identified that detectors incorporating the Ni/Au bilayer on both surfaces as ohmic contacts and using the negatively biased top surface for neutron irradiation are the most desired device configurations. It was noted that high growth temperatures of h-10BN epilayers on sapphire substrates tend to yield a higher concentration of oxygen impurities near the bottom surface, leading to a better device performance by the chosen top surface for irradiation than by the bottom. Preferential scattering of oxygen donors tends to reduce the mobility of holes more than that of electrons, making the biasing scheme with the ability of rapidly extracting holes at the irradiated surface while leaving the electrons to travel a large average distance inside the detector at a preferred choice. When measured against a calibrated 6LiF filled micro-structured semiconductor neutron detector, it was shown that the optimized configuration has pushed the detection efficiency of h-BN neutron detectors to 58%. These detailed studies also provided a better understanding of growth-mediated impurities in h-BN epilayers and their effects on the charge collection and neutron detection efficiencies.

  13. High Efficiency Reversible Fuel Cell Power Converter

    DEFF Research Database (Denmark)

    Pittini, Riccardo

    as well as different dc-ac and dc-dc converter topologies are presented and analyzed. A new ac-dc topology for high efficiency data center applications is proposed and an efficiency characterization based on the fuel cell stack I-V characteristic curve is presented. The second part discusses the main...... converter components. Wide bandgap power semiconductors are introduced due to their superior performance in comparison to traditional silicon power devices. The analysis presents a study based on switching loss measurements performed on Si IGBTs, SiC JFETs, SiC MOSFETs and their respective gate drivers...

  14. High-Efficiency Rad-Hard Ultra-Thin Si Photovoltaic Cell Technology for Space, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Improvements to solar cell efficiency that is consistent with low cost, high volume fabrication techniques are critical for future NASA space missions. In this...

  15. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based......, and remote power generation for light towers, camper vans, boats, beacons, and buoys etc. A review of current state-of-the-art is presented. The best performing converters achieve moderately high peak efficiencies at high input voltage and medium power level. However, system dimensioning and cost are often...

  16. High-Temperature High-Efficiency Solar Thermoelectric Generators

    Energy Technology Data Exchange (ETDEWEB)

    Baranowski, LL; Warren, EL; Toberer, ES

    2014-03-01

    Inspired by recent high-efficiency thermoelectric modules, we consider thermoelectrics for terrestrial applications in concentrated solar thermoelectric generators (STEGs). The STEG is modeled as two subsystems: a TEG, and a solar absorber that efficiently captures the concentrated sunlight and limits radiative losses from the system. The TEG subsystem is modeled using thermoelectric compatibility theory; this model does not constrain the material properties to be constant with temperature. Considering a three-stage TEG based on current record modules, this model suggests that 18% efficiency could be experimentally expected with a temperature gradient of 1000A degrees C to 100A degrees C. Achieving 15% overall STEG efficiency thus requires an absorber efficiency above 85%, and we consider two methods to achieve this: solar-selective absorbers and thermally insulating cavities. When the TEG and absorber subsystem models are combined, we expect that the STEG modeled here could achieve 15% efficiency with optical concentration between 250 and 300 suns.

  17. High efficiency and broadband acoustic diodes

    Science.gov (United States)

    Fu, Congyi; Wang, Bohan; Zhao, Tianfei; Chen, C. Q.

    2018-01-01

    Energy transmission efficiency and working bandwidth are the two major factors limiting the application of current acoustic diodes (ADs). This letter presents a design of high efficiency and broadband acoustic diodes composed of a nonlinear frequency converter and a linear wave filter. The converter consists of two masses connected by a bilinear spring with asymmetric tension and compression stiffness. The wave filter is a linear mass-spring lattice (sonic crystal). Both numerical simulation and experiment show that the energy transmission efficiency of the acoustic diode can be improved by as much as two orders of magnitude, reaching about 61%. Moreover, the primary working band width of the AD is about two times of the cut-off frequency of the sonic crystal filter. The cut-off frequency dependent working band of the AD implies that the developed AD can be scaled up or down from macro-scale to micro- and nano-scale.

  18. Complexity-aware high efficiency video coding

    CERN Document Server

    Correa, Guilherme; Agostini, Luciano; Cruz, Luis A da Silva

    2016-01-01

    This book discusses computational complexity of High Efficiency Video Coding (HEVC) encoders with coverage extending from the analysis of HEVC compression efficiency and computational complexity to the reduction and scaling of its encoding complexity. After an introduction to the topic and a review of the state-of-the-art research in the field, the authors provide a detailed analysis of the HEVC encoding tools compression efficiency and computational complexity.  Readers will benefit from a set of algorithms for scaling the computational complexity of HEVC encoders, all of which take advantage from the flexibility of the frame partitioning structures allowed by the standard.  The authors also provide a set of early termination methods based on data mining and machine learning techniques, which are able to reduce the computational complexity required to find the best frame partitioning structures. The applicability of the proposed methods is finally exemplified with an encoding time control system that emplo...

  19. High Q diamond hemispherical resonators: fabrication and energy loss mechanisms

    International Nuclear Information System (INIS)

    Bernstein, Jonathan J; Bancu, Mirela G; Bauer, Joseph M; Cook, Eugene H; Kumar, Parshant; Nyinjee, Tenzin; Perlin, Gayatri E; Ricker, Joseph A; Teynor, William A; Weinberg, Marc S; Newton, Eric

    2015-01-01

    We have fabricated polycrystalline diamond hemispheres by hot-filament CVD (HFCVD) in spherical cavities wet-etched into a high temperature glass substrate CTE matched to silicon. Hemispherical resonators 1.4 mm in diameter have a Q of up to 143 000 in the fundamental wineglass mode, for a ringdown time of 2.4 s. Without trimming, resonators have the two degenerate wineglass modes frequency matched as close as 2 Hz, or 0.013% of the resonant frequency (∼16 kHz). Laser trimming was used to match resonant modes on hemispheres to 0.3 Hz. Experimental and FEA energy loss studies on cantilevers and hemispheres examine various energy loss mechanisms, showing that surface related losses are dominant. Diamond cantilevers with a Q of 400 000 and a ringdown time of 15.4 s were measured, showing the potential of polycrystalline diamond films for high Q resonators. These resonators show great promise for use as hemispherical resonant gyroscopes (HRGs) on a chip. (paper)

  20. High Efficiency, Low Emission Refrigeration System

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Brian A [ORNL; Sharma, Vishaldeep [ORNL

    2016-08-01

    Supermarket refrigeration systems account for approximately 50% of supermarket energy use, placing this class of equipment among the highest energy consumers in the commercial building domain. In addition, the commonly used refrigeration system in supermarket applications is the multiplex direct expansion (DX) system, which is prone to refrigerant leaks due to its long lengths of refrigerant piping. This leakage reduces the efficiency of the system and increases the impact of the system on the environment. The high Global Warming Potential (GWP) of the hydrofluorocarbon (HFC) refrigerants commonly used in these systems, coupled with the large refrigerant charge and the high refrigerant leakage rates leads to significant direct emissions of greenhouse gases into the atmosphere. Methods for reducing refrigerant leakage and energy consumption are available, but underutilized. Further work needs to be done to reduce costs of advanced system designs to improve market utilization. In addition, refrigeration system retrofits that result in reduced energy consumption are needed since the majority of applications address retrofits rather than new stores. The retrofit market is also of most concern since it involves large-volume refrigerant systems with high leak rates. Finally, alternative refrigerants for new and retrofit applications are needed to reduce emissions and reduce the impact on the environment. The objective of this Collaborative Research and Development Agreement (CRADA) between the Oak Ridge National Laboratory and Hill Phoenix is to develop a supermarket refrigeration system that reduces greenhouse gas emissions and has 25 to 30 percent lower energy consumption than existing systems. The outcomes of this project will include the design of a low emission, high efficiency commercial refrigeration system suitable for use in current U.S. supermarkets. In addition, a prototype low emission, high efficiency supermarket refrigeration system will be produced for

  1. High efficiency novel window air conditioner

    International Nuclear Information System (INIS)

    Bansal, Pradeep

    2015-01-01

    Highlights: • Use of novel refrigerant mixture of R32/R125 (85/15% molar conc.) to reduce global warming and improve energy efficiency. • Use of novel features such as electronically commuted motor (ECM) fan motor, slinger and sub-merged sub-cooler. • Energy savings of up to 0.1 Quads per year in USA and much more in Asia/Middle East where WACs are used in large numbers. • Payback period of only 1.4 years of the novel efficient WAC. - Abstract: This paper presents the results of an experimental and analytical evaluation of measures to raise the efficiency of window air conditioners (WAC). In order to achieve a higher energy efficiency ratio (EER), the original capacity of a baseline R410A unit was reduced by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. Subsequent major modifications included – replacing the alternating current fan motor with a brushless high efficiency electronically commutated motor (ECM) motor, replacing the capillary tube with a needle valve to better control the refrigerant flow and refrigerant set points, and replacing R410A with a ‘drop-in’ lower global warming potential (GWP) binary mixture of R32/R125 (85/15% molar concentration). All these modifications resulted in significant enhancement in the EER of the baseline WAC. Further, an economic analysis of the new WAC revealed an encouraging payback period

  2. High efficiency carbon nanotube thread antennas

    Science.gov (United States)

    Amram Bengio, E.; Senic, Damir; Taylor, Lauren W.; Tsentalovich, Dmitri E.; Chen, Peiyu; Holloway, Christopher L.; Babakhani, Aydin; Long, Christian J.; Novotny, David R.; Booth, James C.; Orloff, Nathan D.; Pasquali, Matteo

    2017-10-01

    Although previous research has explored the underlying theory of high-frequency behavior of carbon nanotubes (CNTs) and CNT bundles for antennas, there is a gap in the literature for direct experimental measurements of radiation efficiency. These measurements are crucial for any practical application of CNT materials in wireless communication. In this letter, we report a measurement technique to accurately characterize the radiation efficiency of λ/4 monopole antennas made from the CNT thread. We measure the highest absolute values of radiation efficiency for CNT antennas of any type, matching that of copper wire. To capture the weight savings, we propose a specific radiation efficiency metric and show that these CNT antennas exceed copper's performance by over an order of magnitude at 1 GHz and 2.4 GHz. We also report direct experimental observation that, contrary to metals, the radiation efficiency of the CNT thread improves significantly at higher frequencies. These results pave the way for practical applications of CNT thread antennas, particularly in the aerospace and wearable electronics industries where weight saving is a priority.

  3. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based...

  4. ‘Chip-olate’ and dry-film resists for efficient fabrication, singulation and sealing of microfluidic chips

    Science.gov (United States)

    Temiz, Yuksel; Delamarche, Emmanuel

    2014-09-01

    This paper describes a technique for high-throughput fabrication and efficient singulation of chips having closed microfluidic structures and takes advantage of dry-film resists (DFRs) for efficient sealing of capillary systems. The technique is illustrated using 4-inch Si/SiO2 wafers. Wafers carrying open microfluidic structures are partially diced to about half of their thickness. Treatments such as surface cleaning are done at wafer-level, then the structures are sealed using low-temperature (45 °C) lamination of a DFR that is pre-patterned using a craft cutter, and ready-to-use chips are finally separated manually like a chocolate bar by applying a small force (≤ 4 N). We further show that some DFRs have low auto-fluorescence at wavelengths typically used for common fluorescent dyes and that mechanical properties of some DFRs allow for the lamination of 200 μm wide microfluidic structures with negligible sagging (~1 μm). The hydrophilicity (advancing contact angle of ~60°) of the DFR supports autonomous capillary-driven flow without the need for additional surface treatment of the microfluidic chips. Flow rates from 1 to 5 µL min-1 are generated using different geometries of channels and capillary pumps. In addition, the ‘chip-olate’ technique is compatible with the patterning of capture antibodies on DFR for use in immunoassays. We believe this technique to be applicable to the fabrication of a wide range of microfluidic and lab-on-a-chip devices and to offer a viable alternative to many labor-intensive processes that are currently based on wafer bonding techniques or on the molding of poly(dimethylsiloxane) (PDMS) layers.

  5. ‘Chip-olate’ and dry-film resists for efficient fabrication, singulation and sealing of microfluidic chips

    International Nuclear Information System (INIS)

    Temiz, Yuksel; Delamarche, Emmanuel

    2014-01-01

    This paper describes a technique for high-throughput fabrication and efficient singulation of chips having closed microfluidic structures and takes advantage of dry-film resists (DFRs) for efficient sealing of capillary systems. The technique is illustrated using 4-inch Si/SiO 2 wafers. Wafers carrying open microfluidic structures are partially diced to about half of their thickness. Treatments such as surface cleaning are done at wafer-level, then the structures are sealed using low-temperature (45 °C) lamination of a DFR that is pre-patterned using a craft cutter, and ready-to-use chips are finally separated manually like a chocolate bar by applying a small force (≤ 4 N). We further show that some DFRs have low auto-fluorescence at wavelengths typically used for common fluorescent dyes and that mechanical properties of some DFRs allow for the lamination of 200 μm wide microfluidic structures with negligible sagging (∼1 μm). The hydrophilicity (advancing contact angle of ∼60°) of the DFR supports autonomous capillary-driven flow without the need for additional surface treatment of the microfluidic chips. Flow rates from 1 to 5 µL min -1 are generated using different geometries of channels and capillary pumps. In addition, the ‘chip-olate’ technique is compatible with the patterning of capture antibodies on DFR for use in immunoassays. We believe this technique to be applicable to the fabrication of a wide range of microfluidic and lab-on-a-chip devices and to offer a viable alternative to many labor-intensive processes that are currently based on wafer bonding techniques or on the molding of poly(dimethylsiloxane) (PDMS) layers. (technical note)

  6. Fabrication of free-standing copper foils covered with highly-ordered copper nanowire arrays

    Science.gov (United States)

    Zaraska, Leszek; Sulka, Grzegorz D.; Jaskuła, Marian

    2012-07-01

    The through-hole nanoporous anodic aluminum oxide (AAO) membranes with relatively large surface area (ca. 2 cm2) were employed for fabrication of free-standing and mechanically stable copper foils covered with close-packed and highly-ordered copper nanowire arrays. The home-made AAO membranes with different pore diameters and interpore distances were fabricated via a two-step self-organized anodization of aluminum performed in sulfuric acid, oxalic acid and phosphoric acid followed by the pore opening/widening procedure. The direct current (DC) electrodeposition of copper was performed efficiently on both sides of AAO templates. The bottom side of the AAO templates was not insulated and consequently Cu nanowire arrays on thick Cu layers were obtained. The proposed template-assisted fabrication of free-standing copper nanowire array electrodes is a promising method for synthesis of nanostructured current collectors. The composition of Cu nanowires was confirmed by energy dispersive X-Ray spectroscopy (EDS) and X-ray diffraction (XRD) analyses. The structural features of nanowires were evaluated from field emission scanning electron microscopy (FE-SEM) images and compared with the characteristic parameters of anodic alumina membranes.

  7. Fabrication of free-standing copper foils covered with highly-ordered copper nanowire arrays

    International Nuclear Information System (INIS)

    Zaraska, Leszek; Sulka, Grzegorz D.; Jaskuła, Marian

    2012-01-01

    The through-hole nanoporous anodic aluminum oxide (AAO) membranes with relatively large surface area (ca. 2 cm 2 ) were employed for fabrication of free-standing and mechanically stable copper foils covered with close-packed and highly-ordered copper nanowire arrays. The home-made AAO membranes with different pore diameters and interpore distances were fabricated via a two-step self-organized anodization of aluminum performed in sulfuric acid, oxalic acid and phosphoric acid followed by the pore opening/widening procedure. The direct current (DC) electrodeposition of copper was performed efficiently on both sides of AAO templates. The bottom side of the AAO templates was not insulated and consequently Cu nanowire arrays on thick Cu layers were obtained. The proposed template-assisted fabrication of free-standing copper nanowire array electrodes is a promising method for synthesis of nanostructured current collectors. The composition of Cu nanowires was confirmed by energy dispersive X-Ray spectroscopy (EDS) and X-ray diffraction (XRD) analyses. The structural features of nanowires were evaluated from field emission scanning electron microscopy (FE-SEM) images and compared with the characteristic parameters of anodic alumina membranes.

  8. High efficiency lithium-thionyl chloride cell

    Science.gov (United States)

    Doddapaneni, N.

    1982-08-01

    The polarization characteristics and the specific cathode capacity of Teflon bonded carbon electrodes in the Li/SOCl2 system have been evaluated. Doping of electrocatalysts such as cobalt and iron phthalocyanine complexes improved both cell voltage and cell rate capability. High efficiency Li/SOCl2 cells were thus achieved with catalyzed cathodes. The electrochemical reduction of SOCl2 seems to undergo modification at catalyzed cathode. For example, the reduction of SOCl2 at FePc catalyzed cathode involves 2-1/2 e-/mole of SOCl2. Furthermore, the reduction mechanism is simplified and unwanted chemical species are eliminated by the catalyst. Thus a potentially safer high efficiency Li/SOCl2 can be anticipated.

  9. Fabrication of high specificity hollow mesoporous silica nanoparticles assisted by Eudragit for targeted drug delivery.

    Science.gov (United States)

    She, Xiaodong; Chen, Lijue; Velleman, Leonora; Li, Chengpeng; Zhu, Haijin; He, Canzhong; Wang, Tao; Shigdar, Sarah; Duan, Wei; Kong, Lingxue

    2015-05-01

    Hollow mesoporous silica nanoparticles (HMSNs) are one of the most promising carriers for effective drug delivery due to their large surface area, high volume for drug loading and excellent biocompatibility. However, the non-ionic surfactant templated HMSNs often have a broad size distribution and a defective mesoporous structure because of the difficulties involved in controlling the formation and organization of micelles for the growth of silica framework. In this paper, a novel "Eudragit assisted" strategy has been developed to fabricate HMSNs by utilising the Eudragit nanoparticles as cores and to assist in the self-assembly of micelle organisation. Highly dispersed mesoporous silica spheres with intact hollow interiors and through pores on the shell were fabricated. The HMSNs have a high surface area (670 m(2)/g), small diameter (120 nm) and uniform pore size (2.5 nm) that facilitated the effective encapsulation of 5-fluorouracil within HMSNs, achieving a high loading capacity of 194.5 mg(5-FU)/g(HMSNs). The HMSNs were non-cytotoxic to colorectal cancer cells SW480 and can be bioconjugated with Epidermal Growth Factor (EGF) for efficient and specific cell internalization. The high specificity and excellent targeting performance of EGF grafted HMSNs have demonstrated that they can become potential intracellular drug delivery vehicles for colorectal cancers via EGF-EGFR interaction. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Fabrication of high rate chromium getter sources for fusion applications

    International Nuclear Information System (INIS)

    Gabbard, W.A.; Simpkins, J.E.; Mioduszewski, P.; Edmonds, P.H.

    1983-01-01

    Design and fabrication techniques are described for the manufacture of large-capacity chromium getter sources, analogous to the commercially available titanium getter source known as Ti-Ball, manufactured by Varian Associates

  11. Bioblendstocks that Enable High Efficiency Engine Designs

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Robert L.; Fioroni, Gina M.; Ratcliff, Matthew A.; Zigler, Bradley T.; Farrell, John

    2016-11-03

    The past decade has seen a high level of innovation in production of biofuels from sugar, lipid, and lignocellulose feedstocks. As discussed in several talks at this workshop, ethanol blends in the E25 to E50 range could enable more highly efficient spark-ignited (SI) engines. This is because of their knock resistance properties that include not only high research octane number (RON), but also charge cooling from high heat of vaporization, and high flame speed. Emerging alcohol fuels such as isobutanol or mixed alcohols have desirable properties such as reduced gasoline blend vapor pressure, but also have lower RON than ethanol. These fuels may be able to achieve the same knock resistance benefits, but likely will require higher blend levels or higher RON hydrocarbon blendstocks. A group of very high RON (>150) oxygenates such as dimethyl furan, methyl anisole, and related compounds are also produced from biomass. While providing no increase in charge cooling, their very high octane numbers may provide adequate knock resistance for future highly efficient SI engines. Given this range of options for highly knock resistant fuels there appears to be a critical need for a fuel knock resistance metric that includes effects of octane number, heat of vaporization, and potentially flame speed. Emerging diesel fuels include highly branched long-chain alkanes from hydroprocessing of fats and oils, as well as sugar-derived terpenoids. These have relatively high cetane number (CN), which may have some benefits in designing more efficient CI engines. Fast pyrolysis of biomass can produce diesel boiling range streams that are high in aromatic, oxygen and acid contents. Hydroprocessing can be applied to remove oxygen and consequently reduce acidity, however there are strong economic incentives to leave up to 2 wt% oxygen in the product. This oxygen will primarily be present as low CN alkyl phenols and aryl ethers. While these have high heating value, their presence in diesel fuel

  12. Evaluating performance of high efficiency mist eliminators

    Energy Technology Data Exchange (ETDEWEB)

    Waggoner, Charles A.; Parsons, Michael S.; Giffin, Paxton K. [Mississippi State University, Institute for Clean Energy Technology, 205 Research Blvd, Starkville, MS (United States)

    2013-07-01

    Processing liquid wastes frequently generates off gas streams with high humidity and liquid aerosols. Droplet laden air streams can be produced from tank mixing or sparging and processes such as reforming or evaporative volume reduction. Unfortunately these wet air streams represent a genuine threat to HEPA filters. High efficiency mist eliminators (HEME) are one option for removal of liquid aerosols with high dissolved or suspended solids content. HEMEs have been used extensively in industrial applications, however they have not seen widespread use in the nuclear industry. Filtering efficiency data along with loading curves are not readily available for these units and data that exist are not easily translated to operational parameters in liquid waste treatment plants. A specialized test stand has been developed to evaluate the performance of HEME elements under use conditions of a US DOE facility. HEME elements were tested at three volumetric flow rates using aerosols produced from an iron-rich waste surrogate. The challenge aerosol included submicron particles produced from Laskin nozzles and super micron particles produced from a hollow cone spray nozzle. Test conditions included ambient temperature and relative humidities greater than 95%. Data collected during testing HEME elements from three different manufacturers included volumetric flow rate, differential temperature across the filter housing, downstream relative humidity, and differential pressure (dP) across the filter element. Filter challenge was discontinued at three intermediate dPs and the filter to allow determining filter efficiency using dioctyl phthalate and then with dry surrogate aerosols. Filtering efficiencies of the clean HEME, the clean HEME loaded with water, and the HEME at maximum dP were also collected using the two test aerosols. Results of the testing included differential pressure vs. time loading curves for the nine elements tested along with the mass of moisture and solid

  13. Highly Efficient Spectrally Stable Red Perovskite Light-Emitting Diodes.

    Science.gov (United States)

    Tian, Yu; Zhou, Chenkun; Worku, Michael; Wang, Xi; Ling, Yichuan; Gao, Hanwei; Zhou, Yan; Miao, Yu; Guan, Jingjiao; Ma, Biwu

    2018-05-01

    Perovskite light-emitting diodes (LEDs) have recently attracted great research interest for their narrow emissions and solution processability. Remarkable progress has been achieved in green perovskite LEDs in recent years, but not blue or red ones. Here, highly efficient and spectrally stable red perovskite LEDs with quasi-2D perovskite/poly(ethylene oxide) (PEO) composite thin films as the light-emitting layer are reported. By controlling the molar ratios of organic salt (benzylammonium iodide) to inorganic salts (cesium iodide and lead iodide), luminescent quasi-2D perovskite thin films are obtained with tunable emission colors from red to deep red. The perovskite/polymer composite approach enables quasi-2D perovskite/PEO composite thin films to possess much higher photoluminescence quantum efficiencies and smoothness than their neat quasi-2D perovskite counterparts. Electrically driven LEDs with emissions peaked at 638, 664, 680, and 690 nm have been fabricated to exhibit high brightness and external quantum efficiencies (EQEs). For instance, the perovskite LED with an emission peaked at 680 nm exhibits a brightness of 1392 cd m -2 and an EQE of 6.23%. Moreover, exceptional electroluminescence spectral stability under continuous device operation has been achieved for these red perovskite LEDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Research on High Layer Thickness Fabricated of 316L by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Shuo Wang

    2017-09-01

    Full Text Available Selective laser melting (SLM is a potential additive manufacturing (AM technology. However, the application of SLM was confined due to low efficiency. To improve efficiency, SLM fabrication with a high layer thickness and fine powder was systematically researched, and the void areas and hollow powders can be reduced by using fine powder. Single-track experiments were used to narrow down process parameter windows. Multi-layer fabrication relative density can be reached 99.99% at the exposure time-point distance-hatch space of 120 μs-40 μm-240 μm. Also, the building rate can be up to 12 mm3/s, which is about 3–10 times higher than the previous studies. Three typical defects were found by studying deeply, including the un-melted defect between the molten pools, the micro-pore defect within the molten pool, and the irregular distribution of the splashing phenomenon. Moreover, the microstructure is mostly equiaxed crystals and a small amount of columnar crystals. The averages of ultimate tensile strength, yield strength, and elongation are 625 MPa, 525 MPa, and 39.9%, respectively. As exposure time increased from 80 μs to 200 μs, the grain size is gradually grown up from 0.98 μm to 2.23 μm, the grain aspect ratio is close to 1, and the tensile properties are shown as a downward trend. The tensile properties of high layer thickness fabricated are not significantly different than those with a coarse-powder layer thickness of low in previous research.

  15. Research on High Layer Thickness Fabricated of 316L by Selective Laser Melting.

    Science.gov (United States)

    Wang, Shuo; Liu, Yude; Shi, Wentian; Qi, Bin; Yang, Jin; Zhang, Feifei; Han, Dong; Ma, Yingyi

    2017-09-08

    Selective laser melting (SLM) is a potential additive manufacturing (AM) technology. However, the application of SLM was confined due to low efficiency. To improve efficiency, SLM fabrication with a high layer thickness and fine powder was systematically researched, and the void areas and hollow powders can be reduced by using fine powder. Single-track experiments were used to narrow down process parameter windows. Multi-layer fabrication relative density can be reached 99.99% at the exposure time-point distance-hatch space of 120 μs-40 μm-240 μm. Also, the building rate can be up to 12 mm³/s, which is about 3-10 times higher than the previous studies. Three typical defects were found by studying deeply, including the un-melted defect between the molten pools, the micro-pore defect within the molten pool, and the irregular distribution of the splashing phenomenon. Moreover, the microstructure is mostly equiaxed crystals and a small amount of columnar crystals. The averages of ultimate tensile strength, yield strength, and elongation are 625 MPa, 525 MPa, and 39.9%, respectively. As exposure time increased from 80 μs to 200 μs, the grain size is gradually grown up from 0.98 μm to 2.23 μm, the grain aspect ratio is close to 1, and the tensile properties are shown as a downward trend. The tensile properties of high layer thickness fabricated are not significantly different than those with a coarse-powder layer thickness of low in previous research.

  16. High efficiency inverter and ballast circuits

    International Nuclear Information System (INIS)

    Nilssen, O.K.

    1984-01-01

    A high efficiency push-pull inverter circuit employing a pair of relatively high power switching transistors is described. The switching on and off of the transistors is precisely controlled to minimize power losses due to common-mode conduction or due to transient conditions that occur in the process of turning a transistor on or off. Two current feed-back transformers are employed in the transistor base drives; one being saturable for providing a positive feedback, and the other being non-saturable for providing a subtractive feedback

  17. Optimization of a high efficiency FEL amplifier

    International Nuclear Information System (INIS)

    Schneidmiller, E.A.; Yurkov, M.V.

    2014-10-01

    The problem of an efficiency increase of an FEL amplifier is now of great practical importance. Technique of undulator tapering in the post-saturation regime is used at the existing X-ray FELs LCLS and SACLA, and is planned for use at the European XFEL, Swiss FEL, and PAL XFEL. There are also discussions on the future of high peak and average power FELs for scientific and industrial applications. In this paper we perform detailed analysis of the tapering strategies for high power seeded FEL amplifiers. Application of similarity techniques allows us to derive universal law of the undulator tapering.

  18. High torque DC motor fabrication and test program

    Science.gov (United States)

    Makus, P.

    1976-01-01

    The testing of a standard iron and standard alnico permanent magnet two-phase, brushless dc spin motor for potential application to the space telescope has been concluded. The purpose of this study was to determine spin motor power losses, magnetic drag, efficiency and torque speed characteristics of a high torque dc motor. The motor was designed and built to fit an existing reaction wheel as a test vehicle and to use existing brass-board commutation and torque command electronics. The results of the tests are included in this report.

  19. Highly efficient fully transparent inverted OLEDs

    Science.gov (United States)

    Meyer, J.; Winkler, T.; Hamwi, S.; Schmale, S.; Kröger, M.; Görrn, P.; Johannes, H.-H.; Riedl, T.; Lang, E.; Becker, D.; Dobbertin, T.; Kowalsky, W.

    2007-09-01

    One of the unique selling propositions of OLEDs is their potential to realize highly transparent devices over the visible spectrum. This is because organic semiconductors provide a large Stokes-Shift and low intrinsic absorption losses. Hence, new areas of applications for displays and ambient lighting become accessible, for instance, the integration of OLEDs into the windshield or the ceiling of automobiles. The main challenge in the realization of fully transparent devices is the deposition of the top electrode. ITO is commonly used as transparent bottom anode in a conventional OLED. To obtain uniform light emission over the entire viewing angle and a low series resistance, a TCO such as ITO is desirable as top contact as well. However, sputter deposition of ITO on top of organic layers causes damage induced by high energetic particles and UV radiation. We have found an efficient process to protect the organic layers against the ITO rf magnetron deposition process of ITO for an inverted OLED (IOLED). The inverted structure allows the integration of OLEDs in more powerful n-channel transistors used in active matrix backplanes. Employing the green electrophosphorescent material Ir(ppy) 3 lead to IOLED with a current efficiency of 50 cd/A and power efficiency of 24 lm/W at 100 cd/m2. The average transmittance exceeds 80 % in the visible region. The on-set voltage for light emission is lower than 3 V. In addition, by vertical stacking we achieved a very high current efficiency of more than 70 cd/A for transparent IOLED.

  20. Fabrication of cathode supported tubular solid oxide electrolysis cell for high temperature steam electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Le; Wang, Shaorong; Qian, Jiqin; Xue, Yanjie; Liu, Renzhu

    2011-01-15

    In recent years, hydrogen has been identified as a potential alternative fuel and energy carrier for the future energy supply. Water electrolysis is one of the important hydrogen production technologies which do not emit carbon dioxide. High temperature steam electrolysis (HTSE) consumes even less electrical energy than low temperature water electrolysis. Theoretically, HTSE using solid oxide electrolysis cells (SOEC) can efficiently utilize renewable energy to produce hydrogen, and it is also possible to operate the SOEC in reverse mode as the solid oxide fuel cell (SOFC) to produce electricity. Tubular SOFC have been widely investigated. In this study, tubular solid oxide cells were fabricated by dip-coating and cosintering techniques. In SOEC mode, results suggested that steam ratio had a strong impact on the performance of the tubular cell; the tubular SOEC preferred to be operated at high steam ratio in order to avoid concentration polarization. The microstructure of the tubular SOEC should therefore be optimized for high temperature steam electrolysis.

  1. Highly Efficient and Reliable Transparent Electromagnetic Interference Shielding Film.

    Science.gov (United States)

    Jia, Li-Chuan; Yan, Ding-Xiang; Liu, Xiaofeng; Ma, Rujun; Wu, Hong-Yuan; Li, Zhong-Ming

    2018-04-11

    Electromagnetic protection in optoelectronic instruments such as optical windows and electronic displays is challenging because of the essential requirements of a high optical transmittance and an electromagnetic interference (EMI) shielding effectiveness (SE). Herein, we demonstrate the creation of an efficient transparent EMI shielding film that is composed of calcium alginate (CA), silver nanowires (AgNWs), and polyurethane (PU), via a facile and low-cost Mayer-rod coating method. The CA/AgNW/PU film with a high optical transmittance of 92% achieves an EMI SE of 20.7 dB, which meets the requirements for commercial shielding applications. A superior EMI SE of 31.3 dB could be achieved, whereas the transparent film still maintains a transmittance of 81%. The integrated efficient EMI SE and high transmittance are superior to those of most previously reported transparent EMI shielding materials. Moreover, our transparent films exhibit a highly reliable shielding ability in a complex service environment, with 98 and 96% EMI SE retentions even after 30 min of ultrasound treatment and 5000 bending cycles (1.5 mm radius), respectively. The comprehensive performance that is associated with the facile fabrication strategy imparts the CA/AgNW/PU film with great potential as an optimized EMI shielding material in emerging optoelectronic devices, such as flexible solar cells, displays, and touch panels.

  2. Rapid and high throughput fabrication of high temperature stable structures through PDMS transfer printing

    Science.gov (United States)

    Hohenberger, Erik; Freitag, Nathan; Korampally, Venumadhav

    2017-07-01

    We report on a facile and low cost fabrication approach for structures—gratings and enclosed nanochannels, through simple solution processed chemistries in conjunction with nanotransfer printing techniques. The ink formulation primarily consisting of an organosilicate polymeric network with a small percentage of added 3-aminopropyl triethoxysilane crosslinker allows one to obtain robust structures that are not only stable towards high temperature processing steps as high as 550 °C but also exhibit exceptional stability against a host of organic solvent washes. No discernable structure distortion was observed compared to the as-printed structures (room temperature processed) when printed structures were subjected to temperatures as high as 550 °C. We further demonstrate the applicability of this technique towards the fabrication of more complex nanostructures such as enclosed channels through a double transfer method, leveraging the exceptional room temperature cross-linking ability of the printed structures and their subsequent resistance to dissolution in organic solvent washes. The exceptional temperature and physico-chemical stability of the nanotransfer printed structures makes this a useful fabrication tool that may be applied as is, or integrated with conventional lithographic techniques for the large area fabrication of functional nanostructures and devices.

  3. High efficiency and broad bandwidth grating coupler between nanophotonic waveguide and fibre

    International Nuclear Information System (INIS)

    Yu, Zhu; Xue-Jun, Xu; Zhi-Yong, Li; Liang, Zhou; Yu-De, Yu; Jin-Zhong, Yu; Wei-Hua, Han; Zhong-Chao, Fan

    2010-01-01

    A high efficiency and broad bandwidth grating coupler between a silicon-on-insulator (SOI) nanophotonic waveguide and fibre is designed and fabricated. Coupling efficiencies of 46% and 25% at a wavelength of 1.55 μm are achieved by simulation and experiment, respectively. An optical 3 dB bandwidth of 45 nm from 1530 nm to 1575 nm is also obtained in experiment. Numerical calculation shows that a tolerance to fabrication error of 10 nm in etch depth is achievable. The measurement results indicate that the alignment error of ±2 μm results in less than 1 dB additional coupling loss. (classical areas of phenomenology)

  4. Efficient Preparation of Super Antifouling PVDF Ultrafiltration Membrane with One Step Fabricated Zwitterionic Surface.

    Science.gov (United States)

    Zhao, Xinzhen; He, Chunju

    2015-08-19

    On the basis of the excellent fouling resistance of zwitterionic materials, the super antifouling polyvinylidene fluoride (PVDF) membrane was efficiently prepared though one-step sulfonation of PVDF and polyaniline blend membrane in situ. The self-doped sulfonated polyaniline (SPANI) was generated as a novel zwitterionic polymer to improve the antifouling property of PVDF ultrafiltration membrane used in sewage treatment. Surface attenuated total reflection Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, surface zeta potential, and water contact angle demonstrated the successful fabrication of zwitterionic interface by convenient sulfonation modification. The static adsorption fouling test showed the quantified adsorption mass of bovine serum albumin (BSA) pollutant on the PVDF/SPANI membrane surface decreases to 3(±2) μg/cm(2), and the water flux recovery ratio (FRR) values were no less than 95% for the three model pollutants of BSA, sodium alginate (SA), and humic acid (HA), which were corresponding hydrophobic, hydrophilic, and natural pollutants in sewage, respectively. This Research Article demonstrated the antifouling advantages of zwitterionic SPANI and aimed to provide a simple method for the large scale preparation of zwitterionic antifouling ultrafiltration membranes.

  5. High Efficiency Colloidal Quantum Dot Phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Kahen, Keith

    2013-12-31

    The project showed that non-Cd containing, InP-based nanocrystals (semiconductor materials with dimensions of ~6 nm) have high potential for enabling next-generation, nanocrystal-based, on chip phosphors for solid state lighting. Typical nanocrystals fall short of the requirements for on chip phosphors due to their loss of quantum efficiency under the operating conditions of LEDs, such as, high temperature (up to 150 °C) and high optical flux (up to 200 W/cm2). The InP-based nanocrystals invented during this project maintain high quantum efficiency (>80%) in polymer-based films under these operating conditions for emission wavelengths ranging from ~530 to 620 nm. These nanocrystals also show other desirable attributes, such as, lack of blinking (a common problem with nanocrystals which limits their performance) and no increase in the emission spectral width from room to 150 °C (emitters with narrower spectral widths enable higher efficiency LEDs). Prior to these nanocrystals, no nanocrystal system (regardless of nanocrystal type) showed this collection of properties; in fact, other nanocrystal systems are typically limited to showing only one desirable trait (such as high temperature stability) but being deficient in other properties (such as high flux stability). The project showed that one can reproducibly obtain these properties by generating a novel compositional structure inside of the nanomaterials; in addition, the project formulated an initial theoretical framework linking the compositional structure to the list of high performance optical properties. Over the course of the project, the synthetic methodology for producing the novel composition was evolved to enable the synthesis of these nanomaterials at a cost approximately equal to that required for forming typical conventional nanocrystals. Given the above results, the last major remaining step prior to scale up of the nanomaterials is to limit the oxidation of these materials during the tens of

  6. Highly Efficient Estimators of Multivariate Location with High Breakdown Point

    NARCIS (Netherlands)

    Lopuhaa, H.P.

    1991-01-01

    We propose an affine equivariant estimator of multivariate location that combines a high breakdown point and a bounded influence function with high asymptotic efficiency. This proposal is basically a location $M$-estimator based on the observations obtained after scaling with an affine equivariant

  7. High efficiency motors; Motores de alta eficiencia

    Energy Technology Data Exchange (ETDEWEB)

    Uranga Favela, Ivan Jaime [Energia Controlada de Mexico, S. A. de C. V., Mexico, D. F. (Mexico)

    1993-12-31

    This paper is a technical-financial study of the high efficiency and super-premium motors. As it is widely known, more than 60% of the electrical energy generated in the country is used for the operation of motors, in industry as well as in commerce. Therefore the importance that the motors have in the efficient energy use. [Espanol] El presente trabajo es un estudio tecnico-financiero de los motores de alta eficiencia y los motores super premium. Como es ampliamente conocido, mas del 60% de la energia electrica generada en el pais, es utilizada para accionar motores, dentro de la industria y el comercio. De alli la importancia que los motores tienen en el uso eficiente de la energia.

  8. High-efficiency organic glass scintillators

    Science.gov (United States)

    Feng, Patrick L.; Carlson, Joseph S.

    2017-12-19

    A new family of neutron/gamma discriminating scintillators is disclosed that comprises stable organic glasses that may be melt-cast into transparent monoliths. These materials have been shown to provide light yields greater than solution-grown trans-stilbene crystals and efficient PSD capabilities when combined with 0.01 to 0.05% by weight of the total composition of a wavelength-shifting fluorophore. Photoluminescence measurements reveal fluorescence quantum yields that are 2 to 5 times greater than conventional plastic or liquid scintillator matrices, which accounts for the superior light yield of these glasses. The unique combination of high scintillation light-yields, efficient neutron/gamma PSD, and straightforward scale-up via melt-casting distinguishes the developed organic glasses from existing scintillators.

  9. High efficiency motors; Motores de alta eficiencia

    Energy Technology Data Exchange (ETDEWEB)

    Uranga Favela, Ivan Jaime [Energia Controlada de Mexico, S. A. de C. V., Mexico, D. F. (Mexico)

    1992-12-31

    This paper is a technical-financial study of the high efficiency and super-premium motors. As it is widely known, more than 60% of the electrical energy generated in the country is used for the operation of motors, in industry as well as in commerce. Therefore the importance that the motors have in the efficient energy use. [Espanol] El presente trabajo es un estudio tecnico-financiero de los motores de alta eficiencia y los motores super premium. Como es ampliamente conocido, mas del 60% de la energia electrica generada en el pais, es utilizada para accionar motores, dentro de la industria y el comercio. De alli la importancia que los motores tienen en el uso eficiente de la energia.

  10. Color-tunable and stable-efficiency white organic light-emitting diode fabricated with fluorescent-phosphorescent emission layers

    International Nuclear Information System (INIS)

    Yang, Su-Hua; Shih, Po-Jen; Wu, Wen-Jie; Huang, Yi-Hua

    2013-01-01

    White organic light emitting diodes (OLEDs) were fabricated for color-tunable lighting applications. Fluorescent and phosphorescent hybrid emission layers (EMLs) were used to enhance the luminance and stability of the devices, which have blue-EML/CBP interlayer/green-EML/phosphorescent-sensitized-EML/red-EML structures. The influence of the composition and structure of the EMLs on the electroluminescence properties of the devices were investigated from the viewpoint of their emission spectra. The possible exciton harvesting, diffusion, transport, and annihilation processes occurring in the EMLs were also evaluated. A maximum luminance intensity of 7400 cd/m 2 and a highly stable current efficiency of 3.2 cd/A were obtained. Good color tunability was achieved for the white OLEDs; the chromatic coordinates linearly shifted from pure white (0.300, 0.398) to cold white (0.261, 0.367) when the applied voltage was varied from 10 to 14 V. -- Highlights: • Exciton harvesting, diffusion, transport, and annihilation processes were evaluated. • The electroluminescence properties were investigated from the viewpoint of the emission spectra. • Good color tunability and stable-efficiency were achieved for the white OLEDs

  11. Metamaterial Receivers for High Efficiency Concentrated Solar Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Yellowhair, Julius E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.; Kwon, Hoyeong [Univ. of Texas, Austin, TX (United States). Dept. of Electrical and Computer Engineering; Alu, Andrea [Univ. of Texas, Austin, TX (United States). Dept. of Electrical and Computer Engineering; Jarecki, Robert L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.; Shinde, Subhash L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.

    2016-09-01

    Operation of concentrated solar power receivers at higher temperatures (>700°C) would enable supercritical carbon dioxide (sCO2) power cycles for improved power cycle efficiencies (>50%) and cost-effective solar thermal power. Unfortunately, radiative losses at higher temperatures in conventional receivers can negatively impact the system efficiency gains. One approach to improve receiver thermal efficiency is to utilize selective coatings that enhance absorption across the visible solar spectrum while minimizing emission in the infrared to reduce radiative losses. Existing coatings, however, tend to degrade rapidly at elevated temperatures. In this report, we report on the initial designs and fabrication of spectrally selective metamaterial-based absorbers for high-temperature, high-thermal flux environments important for solarized sCO2 power cycles. Metamaterials are structured media whose optical properties are determined by sub-wavelength structural features instead of bulk material properties, providing unique solutions by decoupling the optical absorption spectrum from thermal stability requirements. The key enabling innovative concept proposed is the use of structured surfaces with spectral responses that can be tailored to optimize the absorption and retention of solar energy for a given temperature range. In this initial study through the Academic Alliance partnership with University of Texas at Austin, we use Tungsten for its stability in expected harsh environments, compatibility with microfabrication techniques, and required optical performance. Our goal is to tailor the optical properties for high (near unity) absorptivity across the majority of the solar spectrum and over a broad range of incidence angles, and at the same time achieve negligible absorptivity in the near infrared to optimize the energy absorbed and retained. To this goal, we apply the recently developed concept of plasmonic Brewster angle to suitably designed

  12. Hybrid engineered materials with high water-collecting efficiency inspired by Namib Desert beetles.

    Science.gov (United States)

    Zhu, Hai; Guo, Zhiguang

    2016-05-21

    Inspired by Namib Desert beetles, a hybrid superhydrophobic surface was fabricated, showing highly efficient fog harvesting with a water collection rate (WCR) of 1309.9 mg h(-1) cm(-2). And, the surface possessed an excellent robustness and self-cleaning property.

  13. High efficiency beam splitting for H- accelerators

    International Nuclear Information System (INIS)

    Kramer, S.L.; Stipp, V.; Krieger, C.; Madsen, J.

    1985-01-01

    Beam splitting for high energy accelerators has typically involved a significant loss of beam and radiation. This paper reports on a new method of splitting beams for H - accelerators. This technique uses a high intensity flash of light to strip a fraction of the H - beam to H 0 which are then easily separated by a small bending magnet. A system using a 900-watt (average electrical power) flashlamp and a highly efficient collector will provide 10 -3 to 10 -2 splitting of a 50 MeV H - beam. Results on the operation and comparisons with stripping cross sections are presented. Also discussed is the possibility for developing this system to yield a higher stripping fraction

  14. High Quantum Efficiency OLED Lighting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Shiang, Joseph [General Electric (GE) Global Research, Fairfield, CT (United States)

    2011-09-30

    The overall goal of the program was to apply improvements in light outcoupling technology to a practical large area plastic luminaire, and thus enable the product vision of an extremely thin form factor high efficiency large area light source. The target substrate was plastic and the baseline device was operating at 35 LPW at the start of the program. The target LPW of the program was a >2x improvement in the LPW efficacy and the overall amount of light to be delivered was relatively high 900 lumens. Despite the extremely difficult challenges associated with scaling up a wet solution process on plastic substrates, the program was able to make substantial progress. A small molecule wet solution process was successfully implemented on plastic substrates with almost no loss in efficiency in transitioning from the laboratory scale glass to large area plastic substrates. By transitioning to a small molecule based process, the LPW entitlement increased from 35 LPW to 60 LPW. A further 10% improvement in outcoupling efficiency was demonstrated via the use of a highly reflecting cathode, which reduced absorptive loss in the OLED device. The calculated potential improvement in some cases is even larger, ~30%, and thus there is considerable room for optimism in improving the net light coupling efficacy, provided absorptive loss mechanisms are eliminated. Further improvements are possible if scattering schemes such as the silver nanowire based hard coat structure are fully developed. The wet coating processes were successfully scaled to large area plastic substrate and resulted in the construction of a 900 lumens luminaire device.

  15. Metal matrix composite fabrication processes for high performance aerospace structures

    Science.gov (United States)

    Ponzi, C.

    A survey is conducted of extant methods of metal matrix composite (MMC) production in order to serve as a basis for prospective MMC users' selection of a matrix/reinforcement combination, cost-effective primary fabrication methods, and secondary fabrication techniques for the achievement of desired performance levels. Attention is given to the illustrative cases of structural fittings, control-surface connecting rods, hypersonic aircraft air inlet ramps, helicopter swash plates, and turbine rotor disks. Methods for technical and cost analysis modeling useful in process optimization are noted.

  16. High-efficiency concentrator silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sinton, R.A.; Cuevas, A.; King, R.R.; Swanson, R.M. (Stanford Univ., CA (USA). Solid-State Electronics Lab.)

    1990-11-01

    This report presents results from extensive process development in high-efficiency Si solar cells. An advanced design for a 1.56-cm{sup 2} cell with front grids achieved 26% efficiency at 90 suns. This is especially significant since this cell does not require a prismatic cover glass. New designs for simplified backside-contact solar cells were advanced from a status of near-nonfunctionality to demonstrated 21--22% for one-sun cells in sizes up to 37.5 cm{sup 2}. An efficiency of 26% was achieved for similar 0.64-cm{sup 2} concentrator cells at 150 suns. More fundamental work on dopant-diffused regions is also presented here. The recombination vs. various process and physical parameters was studied in detail for boron and phosphorous diffusions. Emitter-design studies based solidly upon these new data indicate the performance vs design parameters for a variety of the cases of most interest to solar cell designers. Extractions of p-type bandgap narrowing and the surface recombination for p- and n-type regions from these studies have a generality that extends beyond solar cells into basic device modeling. 68 refs., 50 figs.

  17. Nanooptics for high efficient photon managment

    Science.gov (United States)

    Wyrowski, Frank; Schimmel, Hagen

    2005-09-01

    Optical systems for photon management, that is the generation of tailored electromagnetic fields, constitute one of the keys for innovation through photonics. An important subfield of photon management deals with the transformation of an incident light field into a field of specified intensity distribution. In this paper we consider some basic aspects of the nature of systems for those light transformations. It turns out, that the transversal redistribution of energy (TRE) is of central concern to achieve systems with high transformation efficiency. Besides established techniques nanostructured optical elements (NOE) are demanded to implement transversal energy redistribution. That builds a bridge between the needs of photon management, optical engineering, and nanooptics.

  18. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    International Nuclear Information System (INIS)

    Souza, Jose Antonio Batista de

    2011-01-01

    IPEN-CNEN/SP developed the technology to produce the dispersion type fuel elements for research reactors and made it available for routine production. Today, the fuel produced in IPEN-CNEN/SP is limited to the uranium concentration of 3.0 gU/cm 3 for U 3 Si 2 -Al dispersion-based and 2.3 gU/cm 3 for U 3 O 8 -Al dispersion. The increase of uranium concentration in fuel plates enables the reactivity of the reactor core reactivity to be higher and extends the fuel life. Concerning technology, it is possible to increase the uranium concentration in the fuel meat up to the limit of 4.8 gU/cm 3 in U 3 Si 2 -Al dispersion and 3.2 gU/cm 3 U 3 O 8 -Al dispersion. These dispersions are well qualified worldwide. This work aims to develop the manufacturing process of both fuel meats with high uranium concentrations, by redefining the manufacturing procedures currently adopted in the Nuclear Fuel Center of IPEN-CNEN/SP. Based on the results, it was concluded that to achieve the desired concentration, it is necessary to make some changes in the established procedures, such as in the particle size of the fuel powder and in the feeding process inside the matrix, before briquette pressing. These studies have also shown that the fuel plates, with a high concentration of U 3 Si 2 -Al, met the used specifications. On the other hand, the appearance of the microstructure obtained from U 3 O 8 -Al dispersion fuel plates with 3.2 gU/cm 3 showed to be unsatisfactory, due to the considerably significant porosity observed. The developed fabrication procedure was applied to U 3 Si 2 production at 4.8 gU/cm 3 , with enriched uranium. The produced plates were used to assemble the fuel element IEA-228, which was irradiated in order to check its performance in the IEA-R1 reactor at IPEN-CNEN/SP. These new fuels have potential to be used in the new Brazilian Multipurpose Reactor - RMB. (author)

  19. Quasi-static puncture resistance behaviors of high-strength polyester fabric for soft body armor

    Directory of Open Access Journals (Sweden)

    Qiu-Shi Wang

    Full Text Available A series of economical and flexible fabrics were prepared using high-strength polyester yarns with different fabric structures, weft density and number of layers. The effect of these factors on quasi-static puncture resistance was comparatively studied. The failure mode of the fabrics was analyzed with SEM photographs. Findings indicate that the structure and the weft density affected the quasi-static puncture resistance property of the fabrics, the plain fabrics had better puncture resistance property than twill and satin fabrics. The max puncture force and puncture energy of the plain fabrics with 160 yarn/10 cm reached the max values which were 107.43 N and 0.44 J, respectively. The number of layers had a linear relationship to quasi-static puncture resistance. The contact pressure and friction of the probe against the fibers were the main hindrance during the quasi-static puncture process and the breakage of the fibers during the penetration was caused by the bend and tensile deformation. Keywords: High-strength polyester fabrics, Fabric structure, Multiple-layer fabrics, Quasi-static puncture resistance

  20. Highly Efficient Compression Algorithms for Multichannel EEG.

    Science.gov (United States)

    Shaw, Laxmi; Rahman, Daleef; Routray, Aurobinda

    2018-05-01

    The difficulty associated with processing and understanding the high dimensionality of electroencephalogram (EEG) data requires developing efficient and robust compression algorithms. In this paper, different lossless compression techniques of single and multichannel EEG data, including Huffman coding, arithmetic coding, Markov predictor, linear predictor, context-based error modeling, multivariate autoregression (MVAR), and a low complexity bivariate model have been examined and their performances have been compared. Furthermore, a high compression algorithm named general MVAR and a modified context-based error modeling for multichannel EEG have been proposed. The resulting compression algorithm produces a higher relative compression ratio of 70.64% on average compared with the existing methods, and in some cases, it goes up to 83.06%. The proposed methods are designed to compress a large amount of multichannel EEG data efficiently so that the data storage and transmission bandwidth can be effectively used. These methods have been validated using several experimental multichannel EEG recordings of different subjects and publicly available standard databases. The satisfactory parametric measures of these methods, namely percent-root-mean square distortion, peak signal-to-noise ratio, root-mean-square error, and cross correlation, show their superiority over the state-of-the-art compression methods.

  1. Large-area high-efficiency flexible PHOLED lighting panels

    Science.gov (United States)

    Pang, Huiqing; Mandlik, Prashant; Levermore, Peter A.; Silvernail, Jeff; Ma, Ruiqing; Brown, Julie J.

    2012-09-01

    Organic Light Emitting Diodes (OLEDs) provide various attractive features for next generation illumination systems, including high efficiency, low power, thin and flexible form factor. In this work, we incorporated phosphorescent emitters and demonstrated highly efficient white phosphorescent OLED (PHOLED) devices on flexible plastic substrates. The 0.94 cm2 small-area device has total thickness of approximately 0.25 mm and achieved 63 lm/W at 1,000 cd/m2 with CRI = 85 and CCT = 2920 K. We further designed and fabricated a 15 cm x 15 cm large-area flexible white OLED lighting panels, finished with a hybrid single-layer ultra-low permeability single layer barrier (SLB) encapsulation film. The flexible panel has an active area of 116.4 cm2, and achieved a power efficacy of 47 lm/W at 1,000 cd/m2 with CRI = 83 and CCT = 3470 K. The efficacy of the panel at 3,000 cd/m2 is 43 lm/W. The large-area flexible PHOLED lighting panel is to bring out enormous possibilities to the future general lighting applications.

  2. Simple Motor Control Concept Results High Efficiency at High Velocities

    Science.gov (United States)

    Starin, Scott; Engel, Chris

    2013-09-01

    The need for high velocity motors in space applications for reaction wheels and detectors has stressed the limits of Brushless Permanent Magnet Motors (BPMM). Due to inherent hysteresis core losses, conventional BPMMs try to balance the need for torque verses hysteresis losses. Cong-less motors have significantly less hysteresis losses but suffer from lower efficiencies. Additionally, the inherent low inductance in cog-less motors result in high ripple currents or high switching frequencies, which lowers overall efficiency and increases performance demands on the control electronics.However, using a somewhat forgotten but fully qualified technology of Isotropic Magnet Motors (IMM), extremely high velocities may be achieved at low power input using conventional drive electronics. This paper will discuss the trade study efforts and empirical test data on a 34,000 RPM IMM.

  3. High efficiency diffractive grating coupler based on transferred silicon nanomembrane overlay on photonic waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Tapas Kumar; Zhou Weidong [University of Texas at Arlington, Department of Electrical Engineering, NanoFAB Center, Arlington, TX 76019-0072 (United States)

    2009-04-21

    We report here the design of a new type of high efficiency grating coupler, based on single crystalline Si nanomembrane overlay and stacking. Such high efficiency diffractive grating couplers are designed for the purpose of coupling light between single mode fibres and nanophotonic waveguides, and for the coupling between multiple photonic interconnect layers for compact three-dimensional vertical integration. Two-dimensional model simulation based on eigenmode expansion shows a diffractive power-up efficiency of 81% and a fibre coupling efficiency of 64%. With nanomembrane stacking, it is feasible to integrate the side-distributed Bragg reflector and bottom reflector, which can lead to the diffractive power-up efficiency and the fibre coupling efficiency of 97% and 73.5%, respectively. For a negatively detuned coupler, the bottom reflector is not needed, and the diffractive power-up efficiency can reach 98% over a large spectral range. The device is extremely tolerant to fabrication errors.

  4. Facile fabrication of Bi_2S_3/SnS_2 heterojunction photocatalysts with efficient photocatalytic activity under visible light

    International Nuclear Information System (INIS)

    Gao, Xiaomin; Huang, Guanbo; Gao, Haihuan; Pan, Cheng; Wang, Huan; Yan, Jing; Liu, Yu; Qiu, Haixia; Ma, Ning; Gao, Jianping

    2016-01-01

    In this work, Bi_2S_3/SnS_2 heterojunction photocatalysts were prepared by combining a hydrothermal technique and a facile in situ growth method. The nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, inductively coupled plasma spectroscopy, X-ray photoelectron spectroscopy, UV–Vis diffusion reflectance spectroscopy and room-temperature photoluminescence spectra. Their photocatalytic performances were evaluated by degrading methyl orange (MO) in aqueous solution (50 mg/L) under visible light (λ > 420 nm) irradiation. It was found that when the mass percentage of Bi_2S_3 in Bi_2S_3/SnS_2 was 7.95 wt%, the as-prepared Bi_2S_3/SnS_2 nanocomposite showed the best photocatalytic activity for the degradation of MO. The highly improved performance of the Bi_2S_3/SnS_2 nanocomposite was mainly ascribed to the efficient charge separation. - Highlights: • Facile fabrication of novel Bi_2S_3/SnS_2 heterojunction photocatalysts. • High-performance photocatalyst for the degradation of organic pollutants. • Good recyclability of catalyst without photo-corrosion. • The photocatalytic mechanism was proposed.

  5. Fabrication of 3D Air-core MEMS Inductors for High Frequency Power Electronic Applications

    DEFF Research Database (Denmark)

    Lê Thanh, Hoà; Mizushima, Io; Nour, Yasser

    2018-01-01

    footprints have an inductance from 34.2 to 44.6 nH and a quality factor from 10 to 13 at frequencies ranging from 30 to 72 MHz. The air-core inductors show threefold lower parasitic capacitance and up to a 140% higher-quality factor and a 230% higher-operation frequency than silicon-core inductors. A 33 MHz...... boost converter mounted with an air-core toroidal inductor achieves an efficiency of 68.2%, which is better than converters mounted with a Si-core inductor (64.1%). Our inductors show good thermal cycling stability, and they are mechanically stable after vibration and 2-m-drop tests.......We report a fabrication technology for 3D air-core inductors for small footprint and very-high-frequency power conversions. Our process is scalable and highly generic for fabricating inductors with a wide range of geometries and core shapes. We demonstrate spiral, solenoid, and toroidal inductors...

  6. High Efficiency, Illumination Quality OLEDs for Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Shiang; James Cella; Kelly Chichak; Anil Duggal; Kevin Janora; Chris Heller; Gautam Parthasarathy; Jeffery Youmans; Joseph Shiang

    2008-03-31

    The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown

  7. Efficient focusing of 8 keV X-rays with multilayer Fresnel zone plates fabricated by atomic layer deposition and focused ion beam milling

    International Nuclear Information System (INIS)

    Mayer, Marcel; Keskinbora, Kahraman; Grévent, Corinne; Szeghalmi, Adriana; Knez, Mato; Weigand, Markus; Snigirev, Anatoly; Snigireva, Irina; Schütz, Gisela

    2013-01-01

    The fabrication and performance of multilayer Al 2 O 3 /Ta 2 O 5 Fresnel zone plates in the hard X-ray range and a discussion of possible future developments considering available materials are reported. Fresnel zone plates (FZPs) recently showed significant improvement by focusing soft X-rays down to ∼10 nm. In contrast to soft X-rays, generally a very high aspect ratio FZP is needed for efficient focusing of hard X-rays. Therefore, FZPs had limited success in the hard X-ray range owing to difficulties of manufacturing high-aspect-ratio zone plates using conventional techniques. Here, employing a method of fabrication based on atomic layer deposition (ALD) and focused ion beam (FIB) milling, FZPs with very high aspect ratios were prepared. Such multilayer FZPs with outermost zone widths of 10 and 35 nm and aspect ratios of up to 243 were tested for their focusing properties at 8 keV and shown to focus hard X-rays efficiently. This success was enabled by the outstanding layer quality thanks to ALD. Via the use of FIB for slicing the multilayer structures, desired aspect ratios could be obtained by precisely controlling the thickness. Experimental diffraction efficiencies of multilayer FZPs fabricated via this combination reached up to 15.58% at 8 keV. In addition, scanning transmission X-ray microscopy experiments at 1.5 keV were carried out using one of the multilayer FZPs and resolved a 60 nm feature size. Finally, the prospective of different material combinations with various outermost zone widths at 8 and 17 keV is discussed in the light of the coupled wave theory and the thin-grating approximation. Al 2 O 3 /Ir is outlined as a promising future material candidate for extremely high resolution with a theoretical efficiency of more than 20% for as small an outermost zone width as 10 nm at 17 keV

  8. High-Performance Carbon Dioxide Electrocatalytic Reduction by Easily Fabricated Large-Scale Silver Nanowire Arrays.

    Science.gov (United States)

    Luan, Chuhao; Shao, Yang; Lu, Qi; Gao, Shenghan; Huang, Kai; Wu, Hui; Yao, Kefu

    2018-05-17

    An efficient and selective catalyst is in urgent need for carbon dioxide electroreduction and silver is one of the promising candidates with affordable costs. Here we fabricated large-scale vertically standing Ag nanowire arrays with high crystallinity and electrical conductivity as carbon dioxide electroreduction catalysts by a simple nanomolding method that was usually considered not feasible for metallic crystalline materials. A great enhancement of current densities and selectivity for CO at moderate potentials was achieved. The current density for CO ( j co ) of Ag nanowire array with 200 nm in diameter was more than 2500 times larger than that of Ag foil at an overpotential of 0.49 V with an efficiency over 90%. The origin of enhanced performances are attributed to greatly increased electrochemically active surface area (ECSA) and higher intrinsic activity compared to those of polycrystalline Ag foil. More low-coordinated sites on the nanowires which can stabilize the CO 2 intermediate better are responsible for the high intrinsic activity. In addition, the impact of surface morphology that induces limited mass transportation on reaction selectivity and efficiency of nanowire arrays with different diameters was also discussed.

  9. Multiscale approaches to high efficiency photovoltaics

    Directory of Open Access Journals (Sweden)

    Connolly James Patrick

    2016-01-01

    Full Text Available While renewable energies are achieving parity around the globe, efforts to reach higher solar cell efficiencies becomes ever more difficult as they approach the limiting efficiency. The so-called third generation concepts attempt to break this limit through a combination of novel physical processes and new materials and concepts in organic and inorganic systems. Some examples of semi-empirical modelling in the field are reviewed, in particular for multispectral solar cells on silicon (French ANR project MultiSolSi. Their achievements are outlined, and the limits of these approaches shown. This introduces the main topic of this contribution, which is the use of multiscale experimental and theoretical techniques to go beyond the semi-empirical understanding of these systems. This approach has already led to great advances at modelling which have led to modelling software, which is widely known. Yet, a survey of the topic reveals a fragmentation of efforts across disciplines, firstly, such as organic and inorganic fields, but also between the high efficiency concepts such as hot carrier cells and intermediate band concepts. We show how this obstacle to the resolution of practical research obstacles may be lifted by inter-disciplinary cooperation across length scales, and across experimental and theoretical fields, and finally across materials systems. We present a European COST Action “MultiscaleSolar” kicking off in early 2015, which brings together experimental and theoretical partners in order to develop multiscale research in organic and inorganic materials. The goal of this defragmentation and interdisciplinary collaboration is to develop understanding across length scales, which will enable the full potential of third generation concepts to be evaluated in practise, for societal and industrial applications.

  10. Conformal coating of amorphous silicon and germanium by high pressure chemical vapor deposition for photovoltaic fabrics

    Science.gov (United States)

    Ji, Xiaoyu; Cheng, Hiu Yan; Grede, Alex J.; Molina, Alex; Talreja, Disha; Mohney, Suzanne E.; Giebink, Noel C.; Badding, John V.; Gopalan, Venkatraman

    2018-04-01

    Conformally coating textured, high surface area substrates with high quality semiconductors is challenging. Here, we show that a high pressure chemical vapor deposition process can be employed to conformally coat the individual fibers of several types of flexible fabrics (cotton, carbon, steel) with electronically or optoelectronically active materials. The high pressure (˜30 MPa) significantly increases the deposition rate at low temperatures. As a result, it becomes possible to deposit technologically important hydrogenated amorphous silicon (a-Si:H) from silane by a simple and very practical pyrolysis process without the use of plasma, photochemical, hot-wire, or other forms of activation. By confining gas phase reactions in microscale reactors, we show that the formation of undesired particles is inhibited within the microscale spaces between the individual wires in the fabric structures. Such a conformal coating approach enables the direct fabrication of hydrogenated amorphous silicon-based Schottky junction devices on a stainless steel fabric functioning as a solar fabric.

  11. Method to fabricate high performance tubular solid oxide fuel cells

    Science.gov (United States)

    Chen, Fanglin; Yang, Chenghao; Jin, Chao

    2013-06-18

    In accordance with the present disclosure, a method for fabricating a solid oxide fuel cell is described. The method includes forming an asymmetric porous ceramic tube by using a phase inversion process. The method further includes forming an asymmetric porous ceramic layer on a surface of the asymmetric porous ceramic tube by using a phase inversion process. The tube is co-sintered to form a structure having a first porous layer, a second porous layer, and a dense layer positioned therebetween.

  12. Development of high efficiency solar cells on silicon web

    Science.gov (United States)

    Rohatgi, A.; Meier, D. L.; Campbell, R. B.; Schmidt, D. N.; Rai-Choudhury, P.

    1984-01-01

    Web base material is being improved with a goal toward obtaining solar cell efficiencies in excess of 18% (AM1). Carrier loss mechanisms in web silicon was investigated, techniques were developed to reduce carrier recombination in the web, and web cells were fabricated using effective surface passivation. The effect of stress on web cell performance was also investigated.

  13. Manufacturing polymer light emitting diode with high luminance efficiency by solution process

    Science.gov (United States)

    Kim, Miyoung; Jo, SongJin; Yang, Ho Chang; Yoon, Dang Mo; Kwon, Jae-Taek; Lee, Seung-Hyun; Choi, Ju Hwan; Lee, Bum-Joo; Shin, Jin-Koog

    2012-06-01

    While investigating polymer light emitting diodes (polymer-LEDs) fabricated by solution process, surface roughness influences electro-optical (E-O) characteristics. We expect that E-O characteristics such as luminance and power efficiency related to surface roughness and layer thickness of emitting layer with poly-9-Vinylcarbazole. In this study, we fabricated polymer organic light emitting diodes by solution process which guarantees easy, eco-friendly and low cost manufacturing for flexible display applications. In order to obtain high luminescence efficiency, E-O characteristics of these devices by varying parameters for printing process have been investigated. Therefore, we optimized process condition for polymer-LEDs by adjusting annealing temperatures of emission, thickness of emission layer showing efficiency (10.8 cd/A) at 10 mA/cm2. We also checked wavelength dependent electroluminescence spectrum in order to find the correlation between the variation of efficiency and the thickness of the layer.

  14. High efficiency thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Hans-Werner [Helmholtz Zentrum Berlin (Germany). Solar Energy

    2012-11-01

    Production of photovoltaics is growing worldwide on a gigawatt scale. Among the thin film technologies, Cu(In,Ga)S,Se{sub 2} (CIS or CIGS) based solar cells have been the focus of more and more attention. This paper aims to analyze the success of CIGS based solar cells and the potential of this technology for future photovoltaics large-scale production. Specific material properties make CIS unique and allow the preparation of the material with a wide range of processing options. The huge potential lies in the possibility to take advantage of modern thin film processing equipment and combine it with very high efficiencies beyond 20% already achieved on the laboratory scale. A sustainable development of this technology could be realized by modifying the materials and replacing indium by abundant elements. (orig.)

  15. Design of High Efficient MPPT Solar Inverter

    Directory of Open Access Journals (Sweden)

    Sunitha K. A.

    2017-01-01

    Full Text Available This work aims to design a High Efficient Maximum Power Point Tracking (MPPT Solar Inverter. A boost converter is designed in the system to boost the power from the photovoltaic panel. By this experimental setup a room consisting of 500 Watts load (eight fluorescent tubes is completely controlled. It is aimed to decrease the maintenance cost. A microcontroller is introduced for tracking the P&O (Perturb and Observe algorithm used for tracking the maximum power point. The duty cycle for the operation of the boost convertor is optimally adjusted by using MPPT controller. There is a MPPT charge controller to charge the battery as well as fed to inverter which runs the load. Both the P&O scheme with the fixed variation for the reference current and the intelligent MPPT algorithm were able to identify the global Maximum power point, however the performance of the MPPT algorithm was better.

  16. High Efficiency Ka-Band Spatial Combiner

    Directory of Open Access Journals (Sweden)

    D. Passi

    2014-12-01

    Full Text Available A Ka-Band, High Efficiency, Small Size Spatial Combiner (SPC is proposed in this paper, which uses an innovatively matched quadruple Fin Lines to microstrip (FLuS transitions. At the date of this paper and at the Author's best knowledge no such FLuS innovative transitions have been reported in literature before. These transitions are inserted into a WR28 waveguide T-junction, in order to allow the integration of 16 Monolithic Microwave Integrated Circuit (MMIC Solid State Power Amplifiers (SSPA's. A computational electromagnetic model using the finite elements method has been implemented. A mean insertion loss of 2 dB is achieved with a return loss better the 10 dB in the 31-37 GHz bandwidth.

  17. Multi-petascale highly efficient parallel supercomputer

    Science.gov (United States)

    Asaad, Sameh; Bellofatto, Ralph E.; Blocksome, Michael A.; Blumrich, Matthias A.; Boyle, Peter; Brunheroto, Jose R.; Chen, Dong; Cher, Chen-Yong; Chiu, George L.; Christ, Norman; Coteus, Paul W.; Davis, Kristan D.; Dozsa, Gabor J.; Eichenberger, Alexandre E.; Eisley, Noel A.; Ellavsky, Matthew R.; Evans, Kahn C.; Fleischer, Bruce M.; Fox, Thomas W.; Gara, Alan; Giampapa, Mark E.; Gooding, Thomas M.; Gschwind, Michael K.; Gunnels, John A.; Hall, Shawn A.; Haring, Rudolf A.; Heidelberger, Philip; Inglett, Todd A.; Knudson, Brant L.; Kopcsay, Gerard V.; Kumar, Sameer; Mamidala, Amith R.; Marcella, James A.; Megerian, Mark G.; Miller, Douglas R.; Miller, Samuel J.; Muff, Adam J.; Mundy, Michael B.; O'Brien, John K.; O'Brien, Kathryn M.; Ohmacht, Martin; Parker, Jeffrey J.; Poole, Ruth J.; Ratterman, Joseph D.; Salapura, Valentina; Satterfield, David L.; Senger, Robert M.; Steinmacher-Burow, Burkhard; Stockdell, William M.; Stunkel, Craig B.; Sugavanam, Krishnan; Sugawara, Yutaka; Takken, Todd E.; Trager, Barry M.; Van Oosten, James L.; Wait, Charles D.; Walkup, Robert E.; Watson, Alfred T.; Wisniewski, Robert W.; Wu, Peng

    2018-05-15

    A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaflop-scale includes node architectures based upon System-On-a-Chip technology, where each processing node comprises a single Application Specific Integrated Circuit (ASIC). The ASIC nodes are interconnected by a five dimensional torus network that optimally maximize the throughput of packet communications between nodes and minimize latency. The network implements collective network and a global asynchronous network that provides global barrier and notification functions. Integrated in the node design include a list-based prefetcher. The memory system implements transaction memory, thread level speculation, and multiversioning cache that improves soft error rate at the same time and supports DMA functionality allowing for parallel processing message-passing.

  18. The CRRES high efficiency solar panel

    International Nuclear Information System (INIS)

    Trumble, T.M.

    1991-01-01

    This paper reports on the High Efficiency Solar Panel (HESP) experiments which is to provide both engineering and scientific information concerning the effects of space radiation on advanced gallium arsenide (GaAs) solar cells. The HESP experiment consists of an ambient panel, and annealing panel and a programmable load. This experiment, in conjunction with the radiation measurement experiments abroad the CREES, provides the first opportunity to simultaneously measure the trapped radiation belts and the results of radiation damage to solar cells. The engineering information will result in a design guide for selecting the optimum solar array characteristics for different orbits and different lifetimes. The scientific information will provide both correlation of laboratory damage effects to space damage effects and a better model for predicting effective solar cell panel lifetimes

  19. Silicone Adhesives for High Temperature Inflatable Fabrics and Polymer Films, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Thin films, elastomeric materials, high temperature fabrics and adhesives that are capable of withstanding thermal extremes (-130oC to 500oC) are highly desirable...

  20. Zerodur polishing process for high surface quality and high efficiency

    International Nuclear Information System (INIS)

    Tesar, A.; Fuchs, B.

    1992-08-01

    Zerodur is a glass-ceramic composite importance in applications where temperature instabilities influence optical and mechanical performance, such as in earthbound and spaceborne telescope mirror substrates. Polished Zerodur surfaces of high quality have been required for laser gyro mirrors. Polished surface quality of substrates affects performance of high reflection coatings. Thus, the interest in improving Zerodur polished surface quality has become more general. Beyond eliminating subsurface damage, high quality surfaces are produced by reducing the amount of hydrated material redeposited on the surface during polishing. With the proper control of polishing parameters, such surfaces exhibit roughnesses of < l Angstrom rms. Zerodur polishing was studied to recommend a high surface quality polishing process which could be easily adapted to standard planetary continuous polishing machines and spindles. This summary contains information on a polishing process developed at LLNL which reproducibly provides high quality polished Zerodur surfaces at very high polishing efficiencies

  1. Efficient and facile fabrication of hierarchical carbon foams with abundant nanoscale pores for use in supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Wei; Yang, Gui Jun; Yang, Tae Hyeon; Jung, Yong Ju [Dept. of Chemical Engineering, Korea University of Technology and Education (KOREATECH), Cheonan (Korea, Republic of); Liu, Shan Tang [School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan (China)

    2017-03-15

    Hierarchical carbon foams (HCFs) with micro-, meso-, and macropores were successfully synthesized via a two-step process: (1) polymerization in oil-in-water (O/W) emulsions without any hard templates and (2) carbonization at 850°C. With the aim of both enhancing the stability of the emulsion and forming a micro- and mesoporous structure during the carbonization process, potassium citrate was introduced in an aqueous solution of resorcinol and formaldehyde. A series of HCFs were fabricated by changing the mass ratio of potassium citrate to total carbon sources from 0.25 to 1.5. The effect of potassium citrate on the porous structure of HCFs was investigated through nitrogen sorption tests. The prepared HCFs exhibited well-developed porous structures of micro-, meso- and macropores and high surface areas. The structural characteristics of the HCFs, including pore size distribution, surface area, and porosity, were significantly dependent on the amount of potassium citrate. It was concluded that potassium citrate greatly contributed to the formation of carbon foams with nano-sized pore structures and high porosity. Interestingly, it was found that when the mass ratio of potassium citrate to total carbon sources was 0.5, the HCFs showed the highest specific surface area (⁓1360 m{sup 2}/g). Furthermore, the capacitive performances of the HCFs were evaluated in a 6.0 M KOH aqueous solution using typical electrochemical methods such as cyclic voltammetry and galvanostatic charge/discharge tests. The capacitance of the HCFs tended to increase with the increase in surface area. In particular, the HCFs with the highest surface area also exhibited excellent electrochemical properties (high capacitance of 224 F/g at 1.0 A/g, high rate capability of 191 F/g at 10.0 A/g). These features may be attributed to both the resulting interconnected pore structure that is easily accessible to ions and the high surface area. We believe that this synthesis strategy can be easily

  2. Biomimetic fabrication of WO3 for water splitting under visible light with high performance

    International Nuclear Information System (INIS)

    Yin, Chao; Zhu, Shenmin; Yao, Fan; Gu, Jiajun; Zhang, Wang; Chen, Zhixin; Zhang, Di

    2013-01-01

    Inspired by the high light-harvesting properties of typical butterfly wings, ceramic WO 3 butterfly wings with hierarchical structures of bio-butterfly wings was fabricated using a template of PapilioParis butterfly wings through a sol–gel method. The effect of calcination temperatures on the structures of the ceramic butterfly wings was investigated and the results showed that the WO 3 butterfly wing replica calcined at 550 °C (WO 3 replica-550) is a single phase and has a high crystallinity and relatively fine hierarchical structure. The average grain size of WO 3 replica-550 and WO 3 powder are around 32.6 and 42.2 nm, respectively. Compared with pure WO 3 powder, WO 3 replica-550 demonstrated a higher light-harvesting capability in the region from 460 to 700 nm and more importantly the higher charge separation rate, as evidenced by electron paramagnetic resonance measurements. Photocatalytic O 2 evolutions from water were investigated on the ceramic butterfly wings and pure WO 3 powder under visible light (λ > 420 nm). The results showed that the amount of O 2 produced from WO 3 replica-550 is 50 % higher than that of the pure WO 3 powder. The improved photocatalytic performance of WO 3 replica-550 is attributed to the quasi-honeycomb structure inherited from the PapilioParis butterfly wings, providing both high light-harvesting efficiency and efficient charge transport through the WO 3

  3. Highly efficient red electrophosphorescent devices at high current densities

    International Nuclear Information System (INIS)

    Wu Youzhi; Zhu Wenqing; Zheng Xinyou; Sun, Runguang; Jiang Xueyin; Zhang Zhilin; Xu Shaohong

    2007-01-01

    Efficiency decrease at high current densities in red electrophosphorescent devices is drastically restrained compared with that from conventional electrophosphorescent devices by using bis(2-methyl-8-quinolinato)4-phenylphenolate aluminum (BAlq) as a hole and exciton blocker. Ir complex, bis(2-(2'-benzo[4,5-α]thienyl) pyridinato-N,C 3' ) iridium (acetyl-acetonate) is used as an emitter, maximum external quantum efficiency (QE) of 7.0% and luminance of 10000cd/m 2 are obtained. The QE is still as high as 4.1% at higher current density J=100mA/cm 2 . CIE-1931 co-ordinates are 0.672, 0.321. A carrier trapping mechanism is revealed to dominate in the process of electroluminescence

  4. White LED with High Package Extraction Efficiency

    International Nuclear Information System (INIS)

    Yi Zheng; Stough, Matthew

    2008-01-01

    The goal of this project is to develop a high efficiency phosphor converting (white) Light Emitting Diode (pcLED) 1-Watt package through an increase in package extraction efficiency. A transparent/translucent monolithic phosphor is proposed to replace the powdered phosphor to reduce the scattering caused by phosphor particles. Additionally, a multi-layer thin film selectively reflecting filter is proposed between blue LED die and phosphor layer to recover inward yellow emission. At the end of the project we expect to recycle approximately 50% of the unrecovered backward light in current package construction, and develop a pcLED device with 80 lm/W e using our technology improvements and commercially available chip/package source. The success of the project will benefit luminous efficacy of white LEDs by increasing package extraction efficiency. In most phosphor-converting white LEDs, the white color is obtained by combining a blue LED die (or chip) with a powdered phosphor layer. The phosphor partially absorbs the blue light from the LED die and converts it into a broad green-yellow emission. The mixture of the transmitted blue light and green-yellow light emerging gives white light. There are two major drawbacks for current pcLEDs in terms of package extraction efficiency. The first is light scattering caused by phosphor particles. When the blue photons from the chip strike the phosphor particles, some blue light will be scattered by phosphor particles. Converted yellow emission photons are also scattered. A portion of scattered light is in the backward direction toward the die. The amount of this backward light varies and depends in part on the particle size of phosphors. The other drawback is that yellow emission from phosphor powders is isotropic. Although some backward light can be recovered by the reflector in current LED packages, there is still a portion of backward light that will be absorbed inside the package and further converted to heat. Heat generated

  5. Efficient On-chip Optical Microresonator for Optical Comb Generation: Design and Fabrication

    Science.gov (United States)

    Han, Kyunghun

    An optical frequency comb is a series of equally spaced frequency components. It has gained much attention since Nobel physics prize was awarded John L. Hall and Theodor W. Hansch for their contribution to the optical frequency comb technique in 2005. The optical frequency comb has been extensively studied because of its precision as a tool for spectroscopy, and is now widely used in bio- and chemical sensors, optical clocks, mode-locked dark pulse generation, soliton generation, and optical communication. Recently, thanks to the developments in nanotechnology, the optical frequency comb generation is made possible at a chip-scale level with microresonators. However, because the threshold power of the optical frequency comb generation is beyond the capability of the on-chip laser source, efficient microresonator is required. Here, we demonstrate an ultra-compact and highly efficient strip-slot direct mode coupler, aiming to achieve slotted silicon microresonator cladded with nonlinear polymer Poly-DDMEBT in SOI platform. As an application of the strip-slot direct mode coupling, a double slot fiber-to-chip edge coupler is demonstrated showing 2 dB insertion loss reduction compared to the conventional single tip edge coupler. For silicon nitride platform, we investigated evanescent wave coupling of microresonator, focusing on bus waveguide geometry optimization. The optimized waveguide width offers an efficient excitation of a fundamental mode in the resonator waveguide. This investigation can benefit low threshold comb generation by enhancing the extinction ratio. We experimentally demonstrated the high Q-factor micro-ring resonator with intrinsic Q of 12.6 million as well as the single FSR comb generation with 63 mW.

  6. A general strategy for the fabrication of high performance microsupercapacitors

    KAUST Repository

    Kurra, Narendra

    2015-06-04

    We propose a generic strategy for microsupercapacitor fabrication that integrates layers of reduced graphene oxide (rGO) and pseudocapacitive materials to create electrode heterostructures with significantly improved cycling stability and performance. Our approach involves a combination of photolithography and a simple transfer method of free-standing reduced graphene oxide film onto an Au/patterned photoresist bilayer. The resulting stack (rGO/Au/patterned resist/substrate) is then used for the electrochemical deposition of various pseudocapacitive materials before the final step of lift-off. To prove the viability of this method, we have successfully fabricated microsupercapacitors (MSCs) with the following interdigitated electrode heterostructures: MnO2/rGO, Co(OH)2/rGO and PANI/rGO. These MSCs show better performance and cycling stability compared to the single layer, (i.e., rGO-free) counterparts. The interdigitated electrode heterostructures result in MSCs with energy densities in the range of 3–12 mW h/cm3 and power densities in the range of 400–1200 mW/cm3, which is superior to the Li thin film batteries (E=10 mW h/cm3), carbon, and metal oxide based MSCs (E=1–6 mW h/cm3) while device energy densities are in the range of 1.3–5.3 mW h/cm3, corresponding power densities are in the range of 178–533 mW/cm3. These results can be explained by a facilitated nucleation model, where surface topology of the rGO film creates a favorable environment for the nucleation and growth of pseudocapacitive materials with strong interfacial contacts and enhanced surface area. This approach opens up a new avenue in fabricating MSCs involving a variety of heterostructures combining electrical double layer carbon type with Faradaic pseudocapacitive materials for enhanced electrochemical performance.

  7. A general strategy for the fabrication of high performance microsupercapacitors

    KAUST Repository

    Kurra, Narendra; Jiang, Qiu; Alshareef, Husam N.

    2015-01-01

    We propose a generic strategy for microsupercapacitor fabrication that integrates layers of reduced graphene oxide (rGO) and pseudocapacitive materials to create electrode heterostructures with significantly improved cycling stability and performance. Our approach involves a combination of photolithography and a simple transfer method of free-standing reduced graphene oxide film onto an Au/patterned photoresist bilayer. The resulting stack (rGO/Au/patterned resist/substrate) is then used for the electrochemical deposition of various pseudocapacitive materials before the final step of lift-off. To prove the viability of this method, we have successfully fabricated microsupercapacitors (MSCs) with the following interdigitated electrode heterostructures: MnO2/rGO, Co(OH)2/rGO and PANI/rGO. These MSCs show better performance and cycling stability compared to the single layer, (i.e., rGO-free) counterparts. The interdigitated electrode heterostructures result in MSCs with energy densities in the range of 3–12 mW h/cm3 and power densities in the range of 400–1200 mW/cm3, which is superior to the Li thin film batteries (E=10 mW h/cm3), carbon, and metal oxide based MSCs (E=1–6 mW h/cm3) while device energy densities are in the range of 1.3–5.3 mW h/cm3, corresponding power densities are in the range of 178–533 mW/cm3. These results can be explained by a facilitated nucleation model, where surface topology of the rGO film creates a favorable environment for the nucleation and growth of pseudocapacitive materials with strong interfacial contacts and enhanced surface area. This approach opens up a new avenue in fabricating MSCs involving a variety of heterostructures combining electrical double layer carbon type with Faradaic pseudocapacitive materials for enhanced electrochemical performance.

  8. High efficiency diffusion molecular retention tumor targeting.

    Directory of Open Access Journals (Sweden)

    Yanyan Guo

    Full Text Available Here we introduce diffusion molecular retention (DMR tumor targeting, a technique that employs PEG-fluorochrome shielded probes that, after a peritumoral (PT injection, undergo slow vascular uptake and extensive interstitial diffusion, with tumor retention only through integrin molecular recognition. To demonstrate DMR, RGD (integrin binding and RAD (control probes were synthesized bearing DOTA (for (111 In(3+, a NIR fluorochrome, and 5 kDa PEG that endows probes with a protein-like volume of 25 kDa and decreases non-specific interactions. With a GFP-BT-20 breast carcinoma model, tumor targeting by the DMR or i.v. methods was assessed by surface fluorescence, biodistribution of [(111In] RGD and [(111In] RAD probes, and whole animal SPECT. After a PT injection, both probes rapidly diffused through the normal and tumor interstitium, with retention of the RGD probe due to integrin interactions. With PT injection and the [(111In] RGD probe, SPECT indicated a highly tumor specific uptake at 24 h post injection, with 352%ID/g tumor obtained by DMR (vs 4.14%ID/g by i.v.. The high efficiency molecular targeting of DMR employed low probe doses (e.g. 25 ng as RGD peptide, which minimizes toxicity risks and facilitates clinical translation. DMR applications include the delivery of fluorochromes for intraoperative tumor margin delineation, the delivery of radioisotopes (e.g. toxic, short range alpha emitters for radiotherapy, or the delivery of photosensitizers to tumors accessible to light.

  9. Fabrication of high-aspect ratio SU-8 micropillar arrays

    DEFF Research Database (Denmark)

    Amato, Letizia; Keller, Stephan S.; Heiskanen, Arto

    2012-01-01

    to the resolution limit of photolithography. This paper describes process optimization for the fabrication of dense SU-8 micropillar arrays (2.5μm spacing) with nominal height ⩾20μm and nominal diameter ⩽2.5μm (AR ⩾8). Two approaches, differing in temperature, ramping rate and duration of the baking steps were...... compared as part of the photolithographic processing, in order to evaluate the effect of baking on the pattern resolution. Additionally, during the post-processing, supercritical point drying and hard baking were introduced yielding pillars with diameter 1.8μm, AR=11 and an improved temporal stability....

  10. High performance a-Si solar cells and new fabrication methods for a-Si solar cells

    Science.gov (United States)

    Nakano, S.; Kuwano, Y.; Ohnishi, M.

    1986-12-01

    The super chamber, a separated UHV reaction-chamber system has been developed. A conversion efficiency of 11.7% was obtained for an a-Si solar cell using a high-quality i-layer deposited by the super chamber, and a p-layer fabricated by a photo-CVD method. As a new material, amorphous superlattice-structure films were fabricated by the photo-CVD method for the first time. Superlattice structure p-layer a-Si solar cells were fabricated, and a conversion efficiency of 10.5% was obtained. For the fabrication of integrated type a-Si solar cell modules, a laser pattering method was investigated. A thermal analysis of the multilayer structure was done. It was confirmed that selective scribing for a-Si, TCO and metal film is possible by controlling the laser power density. Recently developed a-Si solar power generation systems and a-Si solar cell roofing tiles are also described.

  11. High bandgap III-V alloys for high efficiency optoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Alberi, Kirstin; Mascarenhas, Angelo; Wanlass, Mark

    2017-01-10

    High bandgap alloys for high efficiency optoelectronics are disclosed. An exemplary optoelectronic device may include a substrate, at least one Al.sub.1-xIn.sub.xP layer, and a step-grade buffer between the substrate and at least one Al.sub.1-xIn.sub.xP layer. The buffer may begin with a layer that is substantially lattice matched to GaAs, and may then incrementally increase the lattice constant in each sequential layer until a predetermined lattice constant of Al.sub.1-xIn.sub.xP is reached.

  12. Nanoparticle size and production efficiency are affected by the presence of fatty acids during albumin nanoparticle fabrication.

    Directory of Open Access Journals (Sweden)

    Christian C Luebbert

    Full Text Available We have previously identified extensive glycation, bound fatty acids and increased quantities of protein aggregates in commercially available recombinant HSA (rHSA expressed in Oryza sativa (Asian rice (OsrHSA when compared to rHSA from other expression systems. We propose these differences may alter some attributes of nanoparticles fabricated with OsrHSA, as studies have associated greater quantities of aggregates with increased nanoparticle diameters. To determine if this is the case, nanoparticles were fabricated with OsrHSA from various suppliers using ethanol desolvation and subsequent glutaraldehyde cross-linking. All nanoparticles fabricated with OsrHSA showed larger diameters of approximately 20 to 90nm than particles fabricated with either defatted bovine serum albumin (DF-BSA (100.9 ± 2.8nm or human plasma albumin (pHSA (112.0 ± 4.0nm. It was hypothesized that the larger nanoparticle diameters were due to the presence of bound fatty acids and this was confirmed through defatting OsrHSA prior to particle fabrication which yielded particles with diameters similar to those fabricated with pHSA. For additional conformation, DF-BSA was incubated with dodecanoic acid prior to desolvation yielding particles with significantly larger diameters. Further studies showed the increased nanoparticle diameters were due to the bound fatty acids modulating electrostatic interactions between albumin nanoparticles during the desolvation and not changes in protein structure, stability or generation of additional albumin oligomers. Finally the presence of dodecanoic acid was shown to improve doxorubicin loading efficiency onto preformed albumin nanoparticles.

  13. Performance of a high efficiency high power UHF klystron

    International Nuclear Information System (INIS)

    Konrad, G.T.

    1977-03-01

    A 500 kW c-w klystron was designed for the PEP storage ring at SLAC. The tube operates at 353.2 MHz, 62 kV, a microperveance of 0.75, and a gain of approximately 50 dB. Stable operation is required for a VSWR as high as 2 : 1 at any phase angle. The design efficiency is 70%. To obtain this value of efficiency, a second harmonic cavity is used in order to produce a very tightly bunched beam in the output gap. At the present time it is planned to install 12 such klystrons in PEP. A tube with a reduced size collector was operated at 4% duty at 500 kW. An efficiency of 63% was observed. The same tube was operated up to 200 kW c-w for PEP accelerator cavity tests. A full-scale c-w tube reached 500 kW at 65 kV with an efficiency of 55%. In addition to power and phase measurements into a matched load, some data at various load mismatches are presented

  14. Fabrication of highly ordered nanoporous alumina films by stable high-field anodization

    International Nuclear Information System (INIS)

    Li Yanbo; Zheng Maojun; Ma Li; Shen Wenzhong

    2006-01-01

    Stable high-field anodization (1500-4000 A m -2 ) for the fabrication of highly ordered porous anodic alumina films has been realized in a H 3 PO 4 -H 2 O-C 2 H 5 OH system. By maintaining the self-ordering voltage and adjusting the anodizing current density, high-quality self-ordered alumina films with a controllable inter-pore distance over a large range are achieved. The high anodizing current densities lead to high-speed film growth (4-10 μm min -1 ). The inter-pore distance is not solely dependent on the anodizing voltage, but is also influenced by the anodizing current density. This approach is simple and cost-effective, and is of great value for applications in diverse areas of nanotechnology

  15. Ultrafast Flame Annealing of TiO2 Paste for Fabricating Dye-Sensitized and Perovskite Solar Cells with Enhanced Efficiency.

    Science.gov (United States)

    Kim, Jung Kyu; Chai, Sung Uk; Cho, Yoonjun; Cai, Lili; Kim, Sung June; Park, Sangwook; Park, Jong Hyeok; Zheng, Xiaolin

    2017-11-01

    Mesoporous TiO 2 nanoparticle (NP) films are broadly used as electrodes in photoelectrochemical cells, dye-sensitized solar cells (DSSCs), and perovskite solar cells (PSCs). State-of-the-art mesoporous TiO 2 NP films for these solar cells are fabricated by annealing TiO 2 paste-coated fluorine-doped tin oxide glass in a box furnace at 500 °C for ≈30 min. Here, the use of a nontraditional reactor, i.e., flame, is reported for the high throughput and ultrafast annealing of TiO 2 paste (≈1 min). This flame-annealing method, compared to conventional furnace annealing, exhibits three distinct benefits. First, flame removes polymeric binders in the initial TiO 2 paste more completely because of its high temperature (≈1000 °C). Second, flame induces strong interconnections between TiO 2 nanoparticles without affecting the underlying transparent conducting oxide substrate. Third, the flame-induced carbothermic reduction on the TiO 2 surface facilitates charge injection from the dye/perovskite to TiO 2 . Consequently, when the flame-annealed mesoporous TiO 2 film is used to fabricate DSSCs and PSCs, both exhibit enhanced charge transport and higher power conversion efficiencies than those fabricated using furnace-annealed TiO 2 films. Finally, when the ultrafast flame-annealing method is combined with a fast dye-coating method to fabricate DSSC devices, its total fabrication time is reduced from over 3 h to ≈10 min. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Fast and eco-friendly fabrication of uniform Ag substrates for highly sensitive surface-enhanced Raman scattering

    Science.gov (United States)

    Xu, Yongda; Li, Xin; Jiang, Lan; Meng, Ge; Ran, Peng; Lu, Yongfeng

    2017-05-01

    This study proposed a fast, simple, eco-friendly method for obtaining highly sensitive and uniform surface-enhanced Raman scattering (SERS) of silver (Ag) nanotextured substrates decorated with silver nanoparticles in open air. By splitting conventional femtosecond pulses (subpulse delay Δt = 0 ps) into pulse trains (subpulse delay Δt = 3 ps), the mean diameter of Ag nanoparticles was reduced by almost half and the amount of Ag nanoparticles with a diameter ranging from 20 to 60 nm was increased by more than 11 times. The substrate fabricated by femtosecond pulse trains has four main merits as follows: (1) High sensitivity: the maximum SERS enhancement factor is 1.26 × 109; (2) High efficiency: the fabrication rate can be up to 1600 μm2/s, which is 20-40 times faster than femtosecond photochemical reduction; (3) Good reproducibility: the relative standard deviation of the Raman signal intensity is 10.7%, which is one-third of that for conventional femtosecond laser; (4) Eco-friendly fabrication: neither chemical reagents nor vacuum conditions are needed during the fabrication process.

  17. Series-Tuned High Efficiency RF-Power Amplifiers

    DEFF Research Database (Denmark)

    Vidkjær, Jens

    2008-01-01

    An approach to high efficiency RF-power amplifier design is presented. It addresses simultaneously efficiency optimization and peak voltage limitations when transistors are pushed towards their power limits.......An approach to high efficiency RF-power amplifier design is presented. It addresses simultaneously efficiency optimization and peak voltage limitations when transistors are pushed towards their power limits....

  18. Magnetic Refrigeration Technology for High Efficiency Air Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Boeder, A; Zimm, C

    2006-09-30

    Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate

  19. High Efficiency and Low Cost Thermal Energy Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Sienicki, James J. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Lv, Qiuping [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Moisseytsev, Anton [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Bucknor, Matthew [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2017-09-29

    BgtL, LLC (BgtL) is focused on developing and commercializing its proprietary compact technology for processes in the energy sector. One such application is a compact high efficiency Thermal Energy Storage (TES) system that utilizes the heat of fusion through phase change between solid and liquid to store and release energy at high temperatures and incorporate state-of-the-art insulation to minimize heat dissipation. BgtL’s TES system would greatly improve the economics of existing nuclear and coal-fired power plants by allowing the power plant to store energy when power prices are low and sell power into the grid when prices are high. Compared to existing battery storage technology, BgtL’s novel thermal energy storage solution can be significantly less costly to acquire and maintain, does not have any waste or environmental emissions, and does not deteriorate over time; it can keep constant efficiency and operates cleanly and safely. BgtL’s engineers are experienced in this field and are able to design and engineer such a system to a specific power plant’s requirements. BgtL also has a strong manufacturing partner to fabricate the system such that it qualifies for an ASME code stamp. BgtL’s vision is to be the leading provider of compact systems for various applications including energy storage. BgtL requests that all technical information about the TES designs be protected as proprietary information. To honor that request, only non-proprietay summaries are included in this report.

  20. Highly efficient holograms based on c-Si metasurfaces in the visible range.

    Science.gov (United States)

    Martins, Augusto; Li, Juntao; da Mota, Achiles F; Wang, Yin; Neto, Luiz G; do Carmo, João P; Teixeira, Fernando L; Martins, Emiliano R; Borges, Ben-Hur V

    2018-04-16

    This paper reports on the first hologram in transmission mode based on a c-Si metasurface in the visible range. The hologram shows high fidelity and high efficiency, with measured transmission and diffraction efficiencies of ~65% and ~40%, respectively. Although originally designed to achieve full phase control in the range [0-2π] at 532 nm, these holograms have also performed well at 444.9 nm and 635 nm. The high tolerance to both fabrication and wavelength variations demonstrate that holograms based on c-Si metasurfaces are quite attractive for diffractive optics applications, and particularly for full-color holograms.

  1. Multi-petascale highly efficient parallel supercomputer

    Science.gov (United States)

    Asaad, Sameh; Bellofatto, Ralph E.; Blocksome, Michael A.; Blumrich, Matthias A.; Boyle, Peter; Brunheroto, Jose R.; Chen, Dong; Cher, Chen -Yong; Chiu, George L.; Christ, Norman; Coteus, Paul W.; Davis, Kristan D.; Dozsa, Gabor J.; Eichenberger, Alexandre E.; Eisley, Noel A.; Ellavsky, Matthew R.; Evans, Kahn C.; Fleischer, Bruce M.; Fox, Thomas W.; Gara, Alan; Giampapa, Mark E.; Gooding, Thomas M.; Gschwind, Michael K.; Gunnels, John A.; Hall, Shawn A.; Haring, Rudolf A.; Heidelberger, Philip; Inglett, Todd A.; Knudson, Brant L.; Kopcsay, Gerard V.; Kumar, Sameer; Mamidala, Amith R.; Marcella, James A.; Megerian, Mark G.; Miller, Douglas R.; Miller, Samuel J.; Muff, Adam J.; Mundy, Michael B.; O'Brien, John K.; O'Brien, Kathryn M.; Ohmacht, Martin; Parker, Jeffrey J.; Poole, Ruth J.; Ratterman, Joseph D.; Salapura, Valentina; Satterfield, David L.; Senger, Robert M.; Smith, Brian; Steinmacher-Burow, Burkhard; Stockdell, William M.; Stunkel, Craig B.; Sugavanam, Krishnan; Sugawara, Yutaka; Takken, Todd E.; Trager, Barry M.; Van Oosten, James L.; Wait, Charles D.; Walkup, Robert E.; Watson, Alfred T.; Wisniewski, Robert W.; Wu, Peng

    2015-07-14

    A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaOPS-scale computing, at decreased cost, power and footprint, and that allows for a maximum packaging density of processing nodes from an interconnect point of view. The Supercomputer exploits technological advances in VLSI that enables a computing model where many processors can be integrated into a single Application Specific Integrated Circuit (ASIC). Each ASIC computing node comprises a system-on-chip ASIC utilizing four or more processors integrated into one die, with each having full access to all system resources and enabling adaptive partitioning of the processors to functions such as compute or messaging I/O on an application by application basis, and preferably, enable adaptive partitioning of functions in accordance with various algorithmic phases within an application, or if I/O or other processors are underutilized, then can participate in computation or communication nodes are interconnected by a five dimensional torus network with DMA that optimally maximize the throughput of packet communications between nodes and minimize latency.

  2. Energy Efficient Graphene Based High Performance Capacitors.

    Science.gov (United States)

    Bae, Joonwon; Kwon, Oh Seok; Lee, Chang-Soo

    2017-07-10

    Graphene (GRP) is an interesting class of nano-structured electronic materials for various cutting-edge applications. To date, extensive research activities have been performed on the investigation of diverse properties of GRP. The incorporation of this elegant material can be very lucrative in terms of practical applications in energy storage/conversion systems. Among various those systems, high performance electrochemical capacitors (ECs) have become popular due to the recent need for energy efficient and portable devices. Therefore, in this article, the application of GRP for capacitors is described succinctly. In particular, a concise summary on the previous research activities regarding GRP based capacitors is also covered extensively. It was revealed that a lot of secondary materials such as polymers and metal oxides have been introduced to improve the performance. Also, diverse devices have been combined with capacitors for better use. More importantly, recent patents related to the preparation and application of GRP based capacitors are also introduced briefly. This article can provide essential information for future study. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Highly conductive templated-graphene fabrics for lightweight, flexible and foldable supercapacitors

    Science.gov (United States)

    Zhang, Ping; Zhang, Hanzhi; Yan, Casey; Zheng, Zijian; Yu, You

    2017-07-01

    The templated-rGO fabric, featuring high conductivity (<1.0 Ω □-1) and low density (160 mg cm-2), is prepared by a simple dip-coating technique with sequentially coating nickel via polymer-assisted metal deposition (PAMD) and reduced-graphene oxide (rGO) on textile fabric templates at very mild conditions and is used in the fabrication of energy storage devices. As a proof of concept, both the layered and planar supercapacitors (SCs) are successfully fabricated using the rGO fabrics as templates, and both exhibit excellent electrochemical performance, ultrahigh stability with 2000 charge-discharge cycles and mechanical flexibility at bending (r  =  3 mm) and even folding states. It is found that the material of textile fabric used has a profound effect on the electrochemical property of SCs. The comparison result reveals that loose natural cotton fabrics are more suitable than tight man-made nylon fabrics for preparing high-performance SCs. In addition, such supercapacitor can be sewed into commercial textiles and powers a LED light, indicating promising applications in wearable electronics.

  4. A novel high efficiency solar photovoltalic pump

    NARCIS (Netherlands)

    Diepens, J.F.L.; Smulders, P.T.; Vries, de D.A.

    1993-01-01

    The daily average overall efficiency of a solar pump system is not only influenced by the maximum efficiency of the components of the system, but just as much by the correct matching of the components to the local irradiation pattern. Normally centrifugal pumps are used in solar pump systems. The

  5. Enhancing the imaging quality and fabrication efficiency of bionic compound eyes using a sandwich structure

    Science.gov (United States)

    Luo, Jiasai; Guo, Yongcai; Wang, Xin

    2018-06-01

    This paper puts forward a novel method for fabrication of sandwich-structured BCE using a detachable micro-hole array (MHA) prepared by 3D printing. Compared with most traditional methods, 3D printing enables effective implementation of direct micro-fabrication for curved BCE without the pattern transfer and substrate reshaping process. This 3D fabrication method allows rapid fabrication of the curved BCE and automatic assembly of the detachable MHA using a custom-built mold under negative pressure. The formation of a multi-focusing micro-lens array (MLA) was realized by adjusting the parameters of the curved detachable MHA. The imaging performance was effectively enhanced by the sandwich structure that consist of the multi-focusing MLA, the outer detachable MHA and the inner solidified MHA. This method is suitable for mass production due to its advantages as a time-saving, cost-effective and simple process. Optical design software was used to analyze the optical properties, and an imaging simulation was performed.

  6. Bipolarly stacked electrolyser for energy and space efficient fabrication of supercapacitor electrodes

    Science.gov (United States)

    Liu, Xiaojuan; Wu, Tao; Dai, Zengxin; Tao, Keran; Shi, Yong; Peng, Chuang; Zhou, Xiaohang; Chen, George Z.

    2016-03-01

    Stacked electrolysers with titanium bipolar plates are constructed for electrodeposition of polypyrrole electrodes for supercapacitors. The cathode side of the bipolar Ti plates are pre-coated with activated carbon. In this new design, half electrolysis occurs which significantly lowers the deposition voltage. The deposited electrodes are tested in a symmetrical unit cell supercapacitor and an asymmetrical supercapacitor stack. Both devices show excellent energy storage performances and the capacitance values are very close to the design value, suggesting a very high current efficiency during the electrodeposition. The electrolyser stack offers multi-fold benefits for preparation of conducting polymer electrodes, i.e. low energy consumption, facile control of the electrode capacitance and simultaneous preparation of a number of identical electrodes. Therefore, the stacked bipolar electrolyser is a technology advance that offers an engineering solution for mass production of electrodeposited conducting polymer electrodes for supercapacitors.

  7. A preferential coating technique for fabricating large, high quality optics

    International Nuclear Information System (INIS)

    Alcock, S.G.; Cockerton, S.

    2010-01-01

    A major challenge facing optic manufacturers is the fabrication of large mirrors (>1 m) with minimal residual slope errors (<0.5 μrad rms). We present a differential coating method with the potential to satisfy such exacting technical demands. Iterative cycles of measurement using the Diamond-NOM, followed by preferential deposition, were performed on a 1200 mm long, silicon mirror. The applied coatings were observed to reduce the optical slope and figure errors from 1.62 to 0.44 μrad rms, and from 208 to 13 nm rms, respectively. It is hoped that this research will lead to commercially available products, of direct benefit to the Synchrotron, Free Electron Laser, Astronomy, Space, and Laser communities, who all require state-of-the-art optics.

  8. Chemical modification of fibers and fabrics with high-energy radiation

    International Nuclear Information System (INIS)

    Stannett, V.; Walsh, W.K.; Bittencourt, E.; Liepins, R.; Surles, J.R.

    1977-01-01

    Some fundamental considerations related to the radiation modification of fibers and fabrics are discussed. Experiments are described on the radiation ''grafting'' of various phosphorus- and bromine-containing vinyl monomers to polyester, cotton, and their blends to impart flame resistance. It was found that the flame retardancy was more efficient when the grafted polymer was located inside the fiber. The efficiency of the bromine containing polymers was found to be related to the bromine/aliphatic hydrogen ratio and to the thermal stability of the polymers. Experiments are also described illustrating the successful use of radiation processing with a number of vinyl monomers and oligomers to impart water sorbancy, for the bonding of nonwoven fabrics for fabric coating, and for the binding of pigment prints. 11 tables, 18 figures

  9. High efficiency targets for high gain inertial confinement fusion

    International Nuclear Information System (INIS)

    Gardner, J.H.; Bodner, S.E.

    1986-01-01

    Rocket efficiencies as high as 15% are possible using short wavelength lasers and moderately high aspect ratio pellet designs. These designs are made possible by two recent breakthroughs in physics constraints. First is the development of the Induced Spatial Incoherence (ISI) technique which allows uniform illumination of the pellet and relaxes the constraint of thermal smoothing, permitting the use of short wavelength laser light. Second is the discovery that the Rayleigh-Taylor growth rate is considerably reduced at the short laser wavelengths. By taking advantage of the reduced constraints imposed by nonuniform laser illumination and Rayleigh-Taylor instability, pellets using 1/4 micron laser light and initial aspect ratios of about 10 (with in flight aspect ratios of about 150 to 200) may produce energy gains as high as 200 to 250

  10. High power klystrons for efficient reliable high power amplifiers

    Science.gov (United States)

    Levin, M.

    1980-11-01

    This report covers the design of reliable high efficiency, high power klystrons which may be used in both existing and proposed troposcatter radio systems. High Power (10 kW) klystron designs were generated in C-band (4.4 GHz to 5.0 GHz), S-band (2.5 GHz to 2.7 GHz), and L-band or UHF frequencies (755 MHz to 985 MHz). The tubes were designed for power supply compatibility and use with a vapor/liquid phase heat exchanger. Four (4) S-band tubes were developed in the course of this program along with two (2) matching focusing solenoids and two (2) heat exchangers. These tubes use five (5) tuners with counters which are attached to the focusing solenoids. A reliability mathematical model of the tube and heat exchanger system was also generated.

  11. High-resolution and high-conductive electrode fabrication on a low thermal resistance flexible substrate

    International Nuclear Information System (INIS)

    Kang, Bongchul; Kno, Jinsung; Yang, Minyang

    2011-01-01

    Processes based on the liquid-state pattern transfer, like inkjet printing, have critical limitations including low resolution and low electrical conductivity when fabricating electrodes on low thermal resistance flexible substrates such as polyethylene terephthalate (PET). Those are due to the nonlinear transfer mechanism and the limit of the sintering temperature. Although the laser direct curing (LDC) of metallic inks is an alternative process to improve the resolution, it is also associated with the disadvantages of causing thermal damage to the polymer substrate. This paper suggests the laser induced pattern adhesion transfer method to fabricate electrodes of both high electrical conductivity and high resolution on a PET substrate. First, solid patterns are cost-effectively created by the LDC of the organometallic silver ink on a glass that is optically and thermally stable. The solid patterns sintered on the glass are transferred to the PET substrate by the photo-thermally generated adhesion force of the substrate. Therefore, we achieved electrodes with a minimum line width of 10 µm and a specific resistance of 3.6 μΩcm on the PET substrate. The patterns also showed high mechanical reliability

  12. High-resolution and high-conductive electrode fabrication on a low thermal resistance flexible substrate

    Science.gov (United States)

    Kang, Bongchul; Kno, Jinsung; Yang, Minyang

    2011-07-01

    Processes based on the liquid-state pattern transfer, like inkjet printing, have critical limitations including low resolution and low electrical conductivity when fabricating electrodes on low thermal resistance flexible substrates such as polyethylene terephthalate (PET). Those are due to the nonlinear transfer mechanism and the limit of the sintering temperature. Although the laser direct curing (LDC) of metallic inks is an alternative process to improve the resolution, it is also associated with the disadvantages of causing thermal damage to the polymer substrate. This paper suggests the laser induced pattern adhesion transfer method to fabricate electrodes of both high electrical conductivity and high resolution on a PET substrate. First, solid patterns are cost-effectively created by the LDC of the organometallic silver ink on a glass that is optically and thermally stable. The solid patterns sintered on the glass are transferred to the PET substrate by the photo-thermally generated adhesion force of the substrate. Therefore, we achieved electrodes with a minimum line width of 10 µm and a specific resistance of 3.6 μΩcm on the PET substrate. The patterns also showed high mechanical reliability.

  13. High numerical aperture imaging by using multimode fibers with micro-fabricated optics

    KAUST Repository

    Bianchi, Silvio; Rajamanickam, V.; Ferrara, Lorenzo; Di Fabrizio, Enzo M.; Di Leonardo, Roberto; Liberale, Carlo

    2014-01-01

    Controlling light propagation into multimode optical fibers through spatial light modulators provides highly miniaturized endoscopes and optical micromanipulation probes. We increase the numerical aperture up to nearly 1 by micro-optics fabricated on the fiber-end.

  14. Flexible semi-transparent silicon (100) fabric with high-k/metal gate devices

    KAUST Repository

    Rojas, Jhonathan Prieto; Hussain, Muhammad Mustafa

    2013-01-01

    (100) wafers and then released as continuous, mechanically flexible, optically semi-transparent and high thermal budget compatible silicon fabric with devices. This is the first ever demonstration with this set of materials which allows full degree

  15. TRUSSELATOR - On-Orbit Fabrication of High Performance Support Structures for Solar Arrays, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TUI proposes to develop and demonstrate a process for fabricating high-performance composite truss structures on-orbit and integrating them with thin film solar cell...

  16. TRUSSELATOR - On-Orbit Fabrication of High Performance Support Structures for Solar Arrays, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Trusselator technology will enable on-orbit fabrication of support structures for high-power solar arrays and large antennas, achieving order-of-magnitude...

  17. High efficiency quasi-monochromatic infrared emitter

    Energy Technology Data Exchange (ETDEWEB)

    Brucoli, Giovanni; Besbes, Mondher; Benisty, Henri, E-mail: henri.benisty@institutoptique.fr; Greffet, Jean-Jacques [Laboratoire Charles Fabry, UMR 8501, Institut d’Optique, CNRS, Université Paris-Sud 11, 2, Avenue Augustin Fresnel, 91127 Palaiseau Cedex (France); Bouchon, Patrick; Haïdar, Riad [Office National d’Études et de Recherches Aérospatiales, Chemin de la Hunière, 91761 Palaiseau (France)

    2014-02-24

    Incandescent radiation sources are widely used as mid-infrared emitters owing to the lack of alternative for compact and low cost sources. A drawback of miniature hot systems such as membranes is their low efficiency, e.g., for battery powered systems. For targeted narrow-band applications such as gas spectroscopy, the efficiency is even lower. In this paper, we introduce design rules valid for very generic membranes demonstrating that their energy efficiency for use as incandescent infrared sources can be increased by two orders of magnitude.

  18. Energy efficiency of high-rise buildings

    Science.gov (United States)

    Zhigulina, Anna Yu.; Ponomarenko, Alla M.

    2018-03-01

    The article is devoted to analysis of tendencies and advanced technologies in the field of energy supply and energy efficiency of tall buildings, to the history of the emergence of the concept of "efficiency" and its current interpretation. Also the article show the difference of evaluation criteria of the leading rating systems LEED and BREEAM. Authors reviewed the latest technologies applied in the construction of energy efficient buildings. Methodological approach to the design of tall buildings taking into account energy efficiency needs to include the primary energy saving; to seek the possibility of production and accumulation of alternative electric energy by converting energy from the sun and wind with the help of special technical devices; the application of regenerative technologies.

  19. High Efficiency Refrigeration Process, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — It has been proposed by NASA JSC studies, that the most mass efficient (non-nuclear) method of Lunar habitat cooling is via photovoltaic (PV) direct vapor...

  20. In situ fabrication of green reduced graphene-based biocompatible anode for efficient energy recycle.

    Science.gov (United States)

    Cheng, Ying; Mallavarapu, Megharaj; Naidu, Ravi; Chen, Zuliang

    2018-02-01

    Improving the anode configuration to enhance biocompatibility and accelerate electron shuttling is critical for efficient energy recovery in microbial fuel cells (MFCs). In this paper, green reduced graphene nanocomposite was successfully coated using layer-by-layer assembly technique onto carbon brush anode. The modified anode achieved a 3.2-fold higher power density of 33.7 W m -3 at a current density of 69.4 A m -3 with a 75% shorter start period. As revealed in the characterization, the green synthesized nanocomposite film affords larger surface roughness for microbial colonization. Besides, gold nanoparticles, which anchored on graphene sheets, promise the relatively high electroactive sites and facilitate electron transfer from electricigens to the anode. The reduction-oxidation peaks in cyclic voltammograms indicated the mechanism of surface cytochromes facilitated current generation while the electrochemical impedance spectroscopy confirmed the enhanced electron transfer from surface cytochrome to electrode. The green synthesis process has the potential to generate a high performing anode in further applications of MFCs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Fabrication of Chemically Doped, High Upper Critical Field Magnesium Diboride Superconducting Wires

    Energy Technology Data Exchange (ETDEWEB)

    Marzik, James, V.

    2005-10-13

    Controlled chemical doping of magnesium diboride (MgB2) has been shown to substantially improve its superconducting properties to the levels required for high field magnets, but the doping is difficult to accomplish through the usual route of solid state reaction and diffusion. Further, superconducting cables of MgB2 are difficult to fabricate because of the friable nature of the material. In this Phase I STTR project, doped and undoped boron fibers were made by chemical vapor deposition (CVD). Several >100m long batches of doped and undoped fiber were made by CVD codeposition of boron plus dopants. Bundles of these fibers infiltrated with liquid magnesium and subsequently converted to MgB2 to form Mg-MgB2 metal matrix composites. In a parallel path, doped boron nano-sized powder was produced by a plasma synthesis technique, reacted with magnesium to produce doped MgB2 superconducting ceramic bodies. The doped powder was also fabricated into superconducting wires several meters long. The doped boron fibers and powders made in this program were fabricated into fiber-metal composites and powder-metal composites by a liquid metal infiltration technique. The kinetics of the reaction between boron fiber and magnesium metal was investigated in fiber-metal composites. It was found that the presence of dopants had significantly slowed the reaction between magnesium and boron. The superconducting properties were measured for MgB2 fibers and MgB2 powders made by liquid metal infiltration. Properties of MgB2 products (Jc, Hc2) from Phase I are among the highest reported to date for MgB2 bulk superconductors. Chemically doped MgB2 superconducting magnets can perform at least as well as NbTi and NbSn3 in high magnetic fields and still offer an improvement over the latter two in terms of operating temperature. These characteristics make doped MgB2 an effective material for high magnetic field applications, such as magnetic confined fusion, and medical MRI devices. Developing

  2. Fabrication of Chemically Doped, High Upper Critical Field Magnesium Diboride Superconducting Wires

    International Nuclear Information System (INIS)

    Marzik, James V.

    2005-01-01

    Controlled chemical doping of magnesium diboride (MgB2) has been shown to substantially improve its superconducting properties to the levels required for high field magnets, but the doping is difficult to accomplish through the usual route of solid state reaction and diffusion. Further, superconducting cables of MgB2 are difficult to fabricate because of the friable nature of the material. In this Phase I STTR project, doped and undoped boron fibers were made by chemical vapor deposition (CVD). Several >100m long batches of doped and undoped fiber were made by CVD codeposition of boron plus dopants. Bundles of these fibers infiltrated with liquid magnesium and subsequently converted to MgB2 to form Mg-MgB2 metal matrix composites. In a parallel path, doped boron nano-sized powder was produced by a plasma synthesis technique, reacted with magnesium to produce doped MgB2 superconducting ceramic bodies. The doped powder was also fabricated into superconducting wires several meters long. The doped boron fibers and powders made in this program were fabricated into fiber-metal composites and powder-metal composites by a liquid metal infiltration technique. The kinetics of the reaction between boron fiber and magnesium metal was investigated in fiber-metal composites. It was found that the presence of dopants had significantly slowed the reaction between magnesium and boron. The superconducting properties were measured for MgB2 fibers and MgB2 powders made by liquid metal infiltration. Properties of MgB2 products (Jc, Hc2) from Phase I are among the highest reported to date for MgB2 bulk superconductors. Chemically doped MgB2 superconducting magnets can perform at least as well as NbTi and NbSn3 in high magnetic fields and still offer an improvement over the latter two in terms of operating temperature. These characteristics make doped MgB2 an effective material for high magnetic field applications, such as magnetic confined fusion, and medical MRI devices. Developing

  3. Development of CANDU high-burnup fuel fabrication technology

    International Nuclear Information System (INIS)

    Sim, Ki Seob; Suk, H. C.; Kwon, H. I.; Ji, C. G.; Cho, M. S.; Chang, H. I.

    1997-07-01

    This study is focused on the achievement of the fabrication process improvement of CANFLEX-NU and for this purpose, following two areas of basic research were executed this year. 1) development of amorphous alloy for use in brazing of nuclear materials. 2) development of ECT techniques for the end-cap weld inspection. Also, preliminary feasibility analyses on the characteristics and handling techniques of CANFLEX-RU fuel were executed this year. - Selection of optimum conversion process of RU power -Characterization of the composition of RU power - Radiological characterization of RU power and sintered pellets - Compaction and sintering characteristics of RU power - Required special process for the production of CANFLEX-RU fuel - Development of technical specification for RU powder and pellets. In addition, technical support activities were performed for in-pile and out-pile fuel performance tests such as precision measurement of out-pile test fuel dimensions, establishment of quality control technique on fuel bundle by providing bundle kits to AECL for use in-pile irradiation tests in the NRU research reactor. (author). 57 refs., 16 tabs.,40 figs

  4. Titer plate formatted continuous flow thermal reactors for high throughput applications: fabrication and testing

    International Nuclear Information System (INIS)

    Park, Daniel Sang-Won; Chen, Pin-Chuan; You, Byoung Hee; Kim, Namwon; Park, Taehyun; Lee, Tae Yoon; Soper, Steven A; Nikitopoulos, Dimitris E; Murphy, Michael C; Datta, Proyag; Desta, Yohannes

    2010-01-01

    A high throughput, multi-well (96) polymerase chain reaction (PCR) platform, based on a continuous flow (CF) mode of operation, was developed. Each CFPCR device was confined to a footprint of 8 × 8 mm 2 , matching the footprint of a well on a standard micro-titer plate. While several CFPCR devices have been demonstrated, this is the first example of a high-throughput multi-well continuous flow thermal reactor configuration. Verification of the feasibility of the multi-well CFPCR device was carried out at each stage of development from manufacturing to demonstrating sample amplification. The multi-well CFPCR devices were fabricated by micro-replication in polymers, polycarbonate to accommodate the peak temperatures during thermal cycling in this case, using double-sided hot embossing. One side of the substrate contained the thermal reactors and the opposite side was patterned with structures to enhance thermal isolation of the closely packed constant temperature zones. A 99 bp target from a λ-DNA template was successfully amplified in a prototype multi-well CFPCR device with a total reaction time as low as ∼5 min at a flow velocity of 3 mm s −1 (15.3 s cycle −1 ) and a relatively low amplification efficiency compared to a bench-top thermal cycler for a 20-cycle device; reducing the flow velocity to 1 mm s −1 (46.2 s cycle −1 ) gave a seven-fold improvement in amplification efficiency. Amplification efficiencies increased at all flow velocities for 25-cycle devices with the same configuration.

  5. Efficient and stable CH3NH3PbI3-x(SCN)x planar perovskite solar cells fabricated in ambient air with low-temperature process

    Science.gov (United States)

    Zhang, Zongbao; Zhou, Yang; Cai, Yangyang; Liu, Hui; Qin, Qiqi; Lu, Xubing; Gao, Xingsen; Shui, Lingling; Wu, Sujuan; Liu, Jun-Ming

    2018-02-01

    Planar perovskite solar cells (PSCs) based on CH3NH3PbI3-x(SCN)x (SCN: thiocyanate) active layer and low-temperature processed TiO2 films are fabricated by a sequential two-step method in ambient air. Here, alkali thiocyanates (NaSCN, KSCN) are added into Pb(SCN)2 precursor to improve the microstructure of CH3NH3PbI3-x(SCN)x perovskite layers and performance of the as-prepared PSCs. At the optimum concentrations of alkali thiocyanates as additives, the as-prepared NaSCN-modified and KSCN-modified PSCs demonstrate the efficiencies of 16.59% and 15.63% respectively, being much higher than 12.73% of the reference PSCs without additives. This improvement is primarily ascribed to the enhanced electron transport, reduced recombination rates and much improved microstructures with large grain size and low defect density at grain boundaries. Importantly, it is revealed that the modified PSCs at the optimized concentrations of alkali thiocyanates additives exhibit remarkably improved stability than the reference PSCs against humid circumstance, and a continuous exposure to humid air without encapsulation over 45 days only records about 5% degradation of the efficiency. These findings provide a facile approach to fabricate efficient and stable PSCs by low processing temperature in ambient air, both of which are highly preferred for future practical applications of PSCs.

  6. A highly efficient graphene oxide absorber for Q-switched Nd:GdVO4 lasers

    International Nuclear Information System (INIS)

    Wang Yonggang; Wen Xiaoming; Tang Jau; Chen, Hou Ren; Hsieh, Wen Feng

    2011-01-01

    We demonstrated that graphene oxide material could be used as a highly efficient saturable absorber for the Q-switched Nd:GdVO 4 laser. A novel and low-cost graphene oxide (GO) absorber was fabricated by a vertical evaporation technique and high viscosity of polyvinyl alcohol (PVA) aqueous solution. A piece of GO/PVA absorber, a piece of round quartz, and an output coupler mirror were combined to be a sandwich structure passive component. Using such a structure, 104 ns pulses and 1.22 W average output power were obtained with the maximum pulse energy at 2 µJ and a slope efficiency of 17%.

  7. Highly Efficient PCDTBT:PC71 BM Based Photovoltaic Devices without Thermal Annealing Treatment

    International Nuclear Information System (INIS)

    Yang Shao-Peng; Kong Wei-Guang; Liu Bo-Ya; Fu Guang-Sheng; Zheng Wen-Yao; Li Bao-Min; Liu Xian-Hao

    2011-01-01

    We propose an effective method to fabricate highly efficient organic photovoltaic cells based on poly [N-9 - heptadecanyl-2, 7-carbazole-alt-5,5-(4'7'-di-2-thienyl-2'1'3-b-enzothiadiazole): [6,6]-phenyl C 71 -butyric acid methyl ester (PCDTBT:PC 71 BM). A power conversion efficiency of as high as 5.6% and a fill factor of 53.7% are achieved from the optimized cells. The influence of surface morphology of the active layer on the performance of the cells is also investigated. (cross-disciplinary physics and related areas of science and technology)

  8. Fabrication of high aspect ratio nanocell lattices by ion beam irradiation

    International Nuclear Information System (INIS)

    Ishikawa, Osamu; Nitta, Noriko; Taniwaki, Masafumi

    2016-01-01

    Highlights: • Nanocell lattice with a high aspect ratio on InSb semiconductor surface was fabricated by ion beam irradiation. • The fabrication technique consisting of top-down and bottom-up processes was performed in FIB. • High aspect ratio of 2 was achieved in nanocell lattice with a 100 nm interval. • The intermediate-flux irradiation is favorable for fabrication of nanocell with a high aspect ratio. - Abstract: A high aspect ratio nanocell lattice was fabricated on the InSb semiconductor surface using the migration of point defects induced by ion beam irradiation. The fabrication technique consisting of the top-down (formation of voids and holes) and bottom-up (growth of voids and holes into nanocells) processes was performed using a focused ion beam (FIB) system. A cell aspect ratio of 2 (cell height/cell diameter) was achieved for the nanocell lattice with a 100 nm dot interval The intermediate-flux ion irradiation during the bottom-up process was found to be optimal for the fabrication of a high aspect ratio nanocell.

  9. High Power High Efficiency Diode Laser Stack for Processing

    Science.gov (United States)

    Gu, Yuanyuan; Lu, Hui; Fu, Yueming; Cui, Yan

    2018-03-01

    High-power diode lasers based on GaAs semiconductor bars are well established as reliable and highly efficient laser sources. As diode laser is simple in structure, small size, longer life expectancy with the advantages of low prices, it is widely used in the industry processing, such as heat treating, welding, hardening, cladding and so on. Respectively, diode laser could make it possible to establish the practical application because of rectangular beam patterns which are suitable to make fine bead with less power. At this power level, it can have many important applications, such as surgery, welding of polymers, soldering, coatings and surface treatment of metals. But there are some applications, which require much higher power and brightness, e.g. hardening, key hole welding, cutting and metal welding. In addition, High power diode lasers in the military field also have important applications. So all developed countries have attached great importance to high-power diode laser system and its applications. This is mainly due their low performance. In this paper we will introduce the structure and the principle of the high power diode stack.

  10. Polarization-independent high-index contrast grating and its fabrication tolerances

    DEFF Research Database (Denmark)

    Ikeda, Kazuhiro; Takeuchi, Kazuma; Takayose, Kentaro

    2013-01-01

    also investigated the fabrication tolerances of the structure and found that, assuming careful optimizations of electron beam lithography for the precise grating width and dry-etching for the vertical sidewall, the suggested polarization-independent HCG can be fabricated using standard technologies.......A polarization-independent, high-index contrast grating (HCG) with a single layer of cross stripes allowing simple fabrication is proposed. Since the cross stripes structure can be suspended in air by selectively wet-etching the layer below, all the layers can be grown at once when implemented...

  11. Fabrication of highly dispersed ZnO nanoparticles embedded in graphene nanosheets for high performance supercapacitors

    International Nuclear Information System (INIS)

    Fang, Linxia; Zhang, Baoliang; Li, Wei; Zhang, Jizhong; Huang, Kejing; Zhang, Qiuyu

    2014-01-01

    We report a facile strategy to synthesize ZnO-graphene nanocomposites as an advanced electrode material for high-performance supercapacitors. The ZnO-graphene nanocomposites have been fabricated via a facile, low-temperature in situ wet chemistry process. During this process, high dispersed ZnO nanoparticles are embedded in graphene nanosheets, leading to sandwich-structured ZnO-graphene nanocomposites. Thus, intimate interfacial contact between ZnO nanoparticles and graphene nanosheets are achieved, which facilitates electrochemical activity and enhance electrochemical properties due to fast electron transfer. The as-prepared ZnO-graphene nanocomposites exhibit a maximum specific capacitance of 786 F g −1 and excellent cycle life with capacity retention of about 92% after 500 cycles. This facile design and rational synthesis offers an effective strategy to enhance the electrochemical performance of supercapacitors and shows promising potential for large-scale application in energy storage

  12. Microactuator production via high aspect ratio, high edge acuity metal fabrication technology

    Science.gov (United States)

    Guckel, H.; Christenson, T. R.

    1993-01-01

    LIGA is a procession sequence which uses x-ray lithography on photoresist layers of several hundred micrometers to produce very high edge acuity photopolymer molds. These plastic molds can be converted to metal molds via electroplating of many different metals and alloys. The end results are high edge acuity metal parts with large structural heights. The LIGA process as originally described by W. Ehrfeld can be extended by adding a surface micromachining phase to produce precision metal parts which can be assembled to form three-dimensional micromechanisms. This process, SLIGA, has been used to fabricate a dynamometer on a chip. The instrument has been fully implemented and will be applied to tribology issues, speed-torque characterization of planar magnetic micromotors and a new family of sensors.

  13. Core-satellite Ag@BaTiO3 nanoassemblies for fabrication of polymer nanocomposites with high discharged energy density, high breakdown strength and low dielectric loss.

    Science.gov (United States)

    Xie, Liyuan; Huang, Xingyi; Li, Bao-Wen; Zhi, Chunyi; Tanaka, Toshikatsu; Jiang, Pingkai

    2013-10-28

    Dielectric polymer nanocomposites with high dielectric constant have wide applications in high energy density electronic devices. The introduction of high dielectric constant ceramic nanoparticles into a polymer represents an important route to fabricate nanocomposites with high dielectric constant. However, the nanocomposites prepared by this method generally suffer from relatively low breakdown strength and high dielectric loss, which limit the further increase of energy density and energy efficiency of the nanocomposites. In this contribution, by using core-satellite structured ultra-small silver (Ag) decorated barium titanate (BT) nanoassemblies, we successfully fabricated high dielectric constant polymer nanocomposites with enhanced breakdown strength and lower dielectric loss in comparison with conventional polymer-ceramic particulate nanocomposites. The discharged energy density and energy efficiency are derived from the dielectric displacement-electric field loops of the polymer nanocomposites. It is found that, by using the core-satellite structured Ag@BT nanoassemblies as fillers, the polymer nanocomposites can not only have higher discharged energy density but also have high energy efficiency. The mechanism behind the improved electrical properties was attributed to the Coulomb blockade effect and the quantum confinement effect of the introduced ultra-small Ag nanoparticles. This study could serve as an inspiration to enhance the energy storage densities of dielectric polymer nanocomposites.

  14. High-Efficiency, Commercial Ready CdTe Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Sites, James R. [Colorado State Univ., Fort Collins, CO (United States)

    2015-11-19

    Colorado State’s F-PACE project explored several ways to increase the efficiency of CdTe solar cells and to better understand the device physics of those cells under study. Increases in voltage, current, and fill factor resulted in efficiencies above 17%. The three project tasks and additional studies are described in detail in the final report. Most cells studied were fabricated at Colorado State using an industry-compatible single-vacuum closed-space-sublimation (CSS) chamber for deposition of the key semiconductor layers. Additionally, some cells were supplied by First Solar for comparison purposes, and a small number of modules were supplied by Abound Solar.

  15. Fabrication of highly active and cost effective SERS plasmonic substrates by electrophoretic deposition of gold nanoparticles on a DVD template

    Energy Technology Data Exchange (ETDEWEB)

    Leordean, Cosmin; Marta, Bogdan; Gabudean, Ana-Maria; Focsan, Monica; Botiz, Ioan; Astilean, Simion, E-mail: simion.astilean@phys.ubbcluj.ro

    2015-09-15

    Highlights: • Simple and cost effective electrophoretic method to fabricate plasmonic substrates. • SERS performance at three different excitation laser lines. • Promising applicability in SERS based biosensing. - Abstract: In this work we present a simple, rapid and cost effective method to fabricate highly active SERS substrates. This method consists in an electrophoretic deposition of gold nanoparticles on a metallic nanostructured template of a commercial digital versatile disk (DVD). The negatively charged gold nanoparticles self-assemble on the positively charged DVD metallic film connected to a positive terminal of a battery, due to the influence of the electric field. When gold nanoparticles self-assembled on DVD metallic film, a 10-fold additional enhancement of Raman signal was observed when compared with the case of GNPs self-assembled on a polycarbonate DVD substrate only. Finite-difference time-domain simulations demonstrated that the additional electromagnetic field arising in the hot-spots created between gold nanoparticles and DVD metallic film induces an additional enhancement of the Raman signal. SERS efficiency of the fabricated plasmonic substrate was successfully demonstrated through detection of para-aminothiophenol molecule with three different excitation laser lines (532, 633 and 785 nm). The enhancement factor was calculated to be 10{sup 6} and indicates that plasmonic substrates fabricated through this method could be a promising platform for future SERS based sensors.

  16. Designing high efficient solar powered lighting systems

    DEFF Research Database (Denmark)

    Poulsen, Peter Behrensdorff; Thorsteinsson, Sune; Lindén, Johannes

    2016-01-01

    Some major challenges in the development of L2L products is the lack of efficient converter electronics, modelling tools for dimensioning and furthermore, characterization facilities to support the successful development of the products. We report the development of 2 Three-Port-Converters respec...

  17. Fabrication of high quality GaN nanopillar arrays by dry and wet chemical etching

    OpenAIRE

    Paramanik, Dipak; Motayed, Abhishek; King, Matthew; Ha, Jong-Yoon; Kryluk, Sergi; Davydov, Albert V.; Talin, Alec

    2013-01-01

    We study strain relaxation and surface damage of GaN nanopillar arrays fabricated using inductively coupled plasma (ICP) etching and post etch wet chemical treatment. We controlled the shape and surface damage of such nanopillar structures through selection of etching parameters. We compared different substrate temperatures and different chlorine-based etch chemistries to fabricate high quality GaN nanopillars. Room temperature photoluminescence and Raman scattering measurements were carried ...

  18. Fabrication and demonstration of high energy density lithium ion microbatteries

    Science.gov (United States)

    Sun, Ke

    Since their commercialization by Sony two decades ago, Li-ion batteries have only experienced mild improvement in energy and power performance, which remains one of the main hurdles for their widespread implementation in applications outside of powering compact portable devices, such as in electric vehicles. Li-ion batteries must be advanced through a disruptive technological development or a series of incremental improvements in chemistry and design in order to be competitive enough for advanced applications. As it will be introduced in this work, achieving this goal by new chemistries and chemical modifications does not seem to be promising in the short term, so efforts to fully optimize existing systems must be pursued at in parallel. This optimization must be mainly relying on the modification and optimizations of micro and macro structures of current battery systems. This kind of battery architecture study will be even more important when small energy storage devices are desired to power miniaturized and autonomous gadgets, such as MEMs, micro-robots, biomedical sensors, etc. In this regime, the limited space available makes requirements on electrode architecture more stringent and the assembly process more challenging. Therefore, the study of battery assembly strategies for Li-ion microbatteries will benefit not only micro-devices but also the development of more powerful and energetic large scale battery systems based on available chemistries. In chapter 2, preliminary research related to the mechanism for the improved rate capability of cathodes by amorphous lithium phosphate surficial films will be used to motivate the potential for structural optimization of existing commercial lithium ion battery electrode. In the following chapters, novel battery assembly techniques will be explored to achieve new battery architectures. In chapter 3, direct ink writing will be used to fabricate 3D interdigitated microbattery structures that have superior areal energy

  19. Design and optimization of a high-efficiency array generator in the mid-IR with binary subwavelength grooves.

    Science.gov (United States)

    Bloom, Guillaume; Larat, Christian; Lallier, Eric; Lee-Bouhours, Mane-Si Laure; Loiseaux, Brigitte; Huignard, Jean-Pierre

    2011-02-10

    We have designed a high-efficiency array generator composed of subwavelength grooves etched in a GaAs substrate for operation at 4.5 μm. The method used combines rigorous coupled wave analysis with an optimization algorithm. The optimized beam splitter has both a high efficiency (∼96%) and a good intensity uniformity (∼0.2%). The fabrication error tolerances are numerically calculated, and it is shown that this subwavelength array generator could be fabricated with current electron beam writers and inductively coupled plasma etching. Finally, we studied the effect of a simple and realistic antireflection coating on the performance of the beam splitter.

  20. Biomimetic fabrication of WO{sub 3} for water splitting under visible light with high performance

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Chao; Zhu, Shenmin, E-mail: smzhu@sjtu.edu.cn; Yao, Fan; Gu, Jiajun; Zhang, Wang [Shanghai Jiao Tong University, State Key Laboratory of Metal Matrix Composites (China); Chen, Zhixin [University of Wollongong, Faculty of Engineering (Australia); Zhang, Di, E-mail: zhangdi@sjtu.edu.cn [Shanghai Jiao Tong University, State Key Laboratory of Metal Matrix Composites (China)

    2013-08-15

    Inspired by the high light-harvesting properties of typical butterfly wings, ceramic WO{sub 3} butterfly wings with hierarchical structures of bio-butterfly wings was fabricated using a template of PapilioParis butterfly wings through a sol-gel method. The effect of calcination temperatures on the structures of the ceramic butterfly wings was investigated and the results showed that the WO{sub 3} butterfly wing replica calcined at 550 Degree-Sign C (WO{sub 3} replica-550) is a single phase and has a high crystallinity and relatively fine hierarchical structure. The average grain size of WO{sub 3} replica-550 and WO{sub 3} powder are around 32.6 and 42.2 nm, respectively. Compared with pure WO{sub 3} powder, WO{sub 3} replica-550 demonstrated a higher light-harvesting capability in the region from 460 to 700 nm and more importantly the higher charge separation rate, as evidenced by electron paramagnetic resonance measurements. Photocatalytic O{sub 2} evolutions from water were investigated on the ceramic butterfly wings and pure WO{sub 3} powder under visible light ({lambda} > 420 nm). The results showed that the amount of O{sub 2} produced from WO{sub 3} replica-550 is 50 % higher than that of the pure WO{sub 3} powder. The improved photocatalytic performance of WO{sub 3} replica-550 is attributed to the quasi-honeycomb structure inherited from the PapilioParis butterfly wings, providing both high light-harvesting efficiency and efficient charge transport through the WO{sub 3}.

  1. One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Liu, Gui-qiang; Yu, Mei-dong; Liu, Zheng-qi; Liu, Xiao-shan; Huang, Shan; Pan, Ping-ping; Wang, Yan; Liu, Mu-lin; Gu, Gang

    2015-01-01

    One-process fabrication of highly active and reproducible surface-enhanced Raman scattering (SERS) substrates via ion beam deposition is reported. The fabricated metal–dielectric–metal (MDM) hierarchical nanostructure possesses rich nanogaps and a tunable resonant cavity. Raman scattering signals of analytes are dramatically strengthened due to the strong near-field coupling of localized surface plasmon resonances (LSPRs) and the strong interaction of LSPRs of metal NPs with surface plasmon polaritons (SPPs) on the underlying metal film by crossing over the dielectric spacer. The maximum Raman enhancement for the highest Raman peak at 1650 cm −1 is 13.5 times greater than that of a single metal nanoparticle (NP) array. Moreover, the SERS activity can be efficiently tailored by varying the size and number of voids between adjacent metal NPs and the thickness of the dielectric spacer. These findings may broaden the scope of SERS applications of MDM hierarchical nanostructures in biomedical and analytical chemistry. (paper)

  2. L-shaped fiber-chip grating couplers with high directionality and low reflectivity fabricated with deep-UV lithography.

    Science.gov (United States)

    Benedikovic, Daniel; Alonso-Ramos, Carlos; Pérez-Galacho, Diego; Guerber, Sylvain; Vakarin, Vladyslav; Marcaud, Guillaume; Le Roux, Xavier; Cassan, Eric; Marris-Morini, Delphine; Cheben, Pavel; Boeuf, Frédéric; Baudot, Charles; Vivien, Laurent

    2017-09-01

    Grating couplers enable position-friendly interfacing of silicon chips by optical fibers. The conventional coupler designs call upon comparatively complex architectures to afford efficient light coupling to sub-micron silicon-on-insulator (SOI) waveguides. Conversely, the blazing effect in double-etched gratings provides high coupling efficiency with reduced fabrication intricacy. In this Letter, we demonstrate for the first time, to the best of our knowledge, the realization of an ultra-directional L-shaped grating coupler, seamlessly fabricated by using 193 nm deep-ultraviolet (deep-UV) lithography. We also include a subwavelength index engineered waveguide-to-grating transition that provides an eight-fold reduction of the grating reflectivity, down to 1% (-20  dB). A measured coupling efficiency of -2.7  dB (54%) is achieved, with a bandwidth of 62 nm. These results open promising prospects for the implementation of efficient, robust, and cost-effective coupling interfaces for sub-micrometric SOI waveguides, as desired for large-volume applications in silicon photonics.

  3. Silicon-Light: a European FP7 Project Aiming at High Efficiency Thin Film Silicon Solar Cells on Foil

    DEFF Research Database (Denmark)

    Soppe, W.; Haug, F.-J.; Couty, P.

    2011-01-01

    Silicon-Light is a European FP7 project, which started January 1st, 2010 and aims at development of low cost, high-efficiency thin film silicon solar cells on foil. Three main routes are explored to achieve these goals: a) advanced light trapping by implementing nanotexturization through UV Nano...... calculations of ideal nanotextures for light trapping in thin film silicon solar cells; the fabrication of masters and the replication and roll-to-roll fabrication of these nanotextures. Further, results on ITO variants with improved work function are presented. Finally, the status of cell fabrication on foils...

  4. Energy efficiency indicators for high electric-load buildings

    Energy Technology Data Exchange (ETDEWEB)

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  5. Efficient and Highly Aldehyde Selective Wacker Oxidation

    KAUST Repository

    Teo, Peili; Wickens, Zachary K.; Dong, Guangbin; Grubbs, Robert H.

    2012-01-01

    A method for efficient and aldehyde-selective Wacker oxidation of aryl-substituted olefins using PdCl 2(MeCN) 2, 1,4-benzoquinone, and t-BuOH in air is described. Up to a 96% yield of aldehyde can be obtained, and up to 99% selectivity can be achieved with styrene-related substrates. © 2012 American Chemical Society.

  6. Efficient and Highly Aldehyde Selective Wacker Oxidation

    KAUST Repository

    Teo, Peili

    2012-07-06

    A method for efficient and aldehyde-selective Wacker oxidation of aryl-substituted olefins using PdCl 2(MeCN) 2, 1,4-benzoquinone, and t-BuOH in air is described. Up to a 96% yield of aldehyde can be obtained, and up to 99% selectivity can be achieved with styrene-related substrates. © 2012 American Chemical Society.

  7. High energy density capacitors fabricated by thin film technology

    International Nuclear Information System (INIS)

    Barbee, T W; Johnson, G W; Wagner, A V.

    1999-01-01

    Low energy density in conventional capacitors severely limits efforts to miniaturize power electronics and imposes design limitations on electronics in general. We have successfully applied physical vapor deposition technology to greatly increase capacitor energy density. The high dielectric breakdown strength we have achieved in alumina thin films allows high energy density to be achieved with this moderately low dielectric constant material. The small temperature dependence of the dielectric constant, and the high reliability, high resistivity, and low dielectric loss of Al 2 O 3 , make it even more appealing. We have constructed single dielectric layer thin film capacitors and shown that they can be stacked to form multilayered structures with no loss in yield for a given capacitance. Control of film growth morphology is critical for achieving the smooth, high quality interfaces between metal and dielectric necessary for device operation at high electric fields. Most importantly, high rate deposition with extremely low particle generation is essential for achieving high energy storage at a reasonable cost. This has been achieved by reactive magnetron sputtering in which the reaction to form the dielectric oxide has been confined to the deposition surface. By this technique we have achieved a yield of over 50% for 1 cm 2 devices with an energy density of 14 J per cubic centimeter of Al 2 O 3 dielectric material in 1.2 kV, 4 nF devices. By further reducing defect density and increasing the dielectric constant of the material, we will be able to increase capacitance and construct high energy density devices to meet the requirements of applications in power electronics

  8. Efficient and Scalable Fabrication of Solid Oxide Fuel Cells via 3D-Printing

    Data.gov (United States)

    National Aeronautics and Space Administration — Although solid oxide fuel cells (SOFCs) are a source of both efficient and clean electricity, the brittle ceramic materials which comprise them are difficult to form...

  9. Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS

    International Nuclear Information System (INIS)

    Martínez-Calderon, M.; Rodríguez, A.; Dias-Ponte, A.; Morant-Miñana, M.C.; Gómez-Aranzadi, M.; Olaizola, S.M.

    2016-01-01

    Highlights: • Femtosecond laser treatment to achieve highly hydrophobic behavior on stainless steel. • Combination of micro-machined patterns with LIPSS into hierarchical structures. • Contact angles as high as 156° with only the femtosecond laser irradiation. - Abstract: In this work we have developed hierarchical structures that consist of micro-patterned surfaces covered by nanostructures with a femtosecond laser. The first part of this work is a study to determine the microscale modifications produced on a stainless steel alloy (AISI304) surface at high pulse energy, different velocities, and number of overscans in order to obtain microstructures with a selected depth of around 10 μm and line widths of 20 μm. The second part of the work is focused on finding the optimal irradiation parameters to obtain the nanostructure pattern. Nanostructures have been defined by means of Laser Induced Periodical Surface Structures (LIPSS) around 250 nm high and a period of 580 nm, which constitute the nanostructure pattern. Finally, dual scale gratings of 50 mm"2 were fabricated with different geometries and their effect on the measured contact angle. Combining the micro-pattern with the LIPSS nano-pattern, highly hydrophobic surfaces have been developed with measured static contact angles higher than 150° on a stainless steel alloy.

  10. Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Calderon, M., E-mail: mmcalderon@ceit.es [CEIT-IK4 & Tecnun (University of Navarra), Paseo Manuel Lardizábal 15, 20018 San Sebastián (Spain); CIC microGUNE, Goiru Kalea 9 Polo Innovación Garaia, 20500 Arrasate-Mondragón (Spain); Rodríguez, A.; Dias-Ponte, A.; Morant-Miñana, M.C.; Gómez-Aranzadi, M.; Olaizola, S.M. [CEIT-IK4 & Tecnun (University of Navarra), Paseo Manuel Lardizábal 15, 20018 San Sebastián (Spain); CIC microGUNE, Goiru Kalea 9 Polo Innovación Garaia, 20500 Arrasate-Mondragón (Spain)

    2016-06-30

    Highlights: • Femtosecond laser treatment to achieve highly hydrophobic behavior on stainless steel. • Combination of micro-machined patterns with LIPSS into hierarchical structures. • Contact angles as high as 156° with only the femtosecond laser irradiation. - Abstract: In this work we have developed hierarchical structures that consist of micro-patterned surfaces covered by nanostructures with a femtosecond laser. The first part of this work is a study to determine the microscale modifications produced on a stainless steel alloy (AISI304) surface at high pulse energy, different velocities, and number of overscans in order to obtain microstructures with a selected depth of around 10 μm and line widths of 20 μm. The second part of the work is focused on finding the optimal irradiation parameters to obtain the nanostructure pattern. Nanostructures have been defined by means of Laser Induced Periodical Surface Structures (LIPSS) around 250 nm high and a period of 580 nm, which constitute the nanostructure pattern. Finally, dual scale gratings of 50 mm{sup 2} were fabricated with different geometries and their effect on the measured contact angle. Combining the micro-pattern with the LIPSS nano-pattern, highly hydrophobic surfaces have been developed with measured static contact angles higher than 150° on a stainless steel alloy.

  11. High critical temperature superconducting composite and fabrication process

    International Nuclear Information System (INIS)

    Dubots, P.; Legat, D.

    1989-01-01

    The core comprises a high temperature superconducting sintered oxide coated with alumina or barium oxide covered with a first sheath in aluminum, a second sheath in niobium and a third sheath in copper [fr

  12. Enhancement in Photoelectrochemical Efficiency by Fabrication of BiVO4@MWCNT Nanocomposites

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2011-01-01

    Full Text Available An enormous enhancement in the photo-to-current conversion efficiency over the nanocomposite material composed by BiVO4 on the surface of MWCNTs, with respect to electrode of pure BiVO4, was observed. The heterojunction formed between MWCNTs and nano-BiVO4 is beneficial for the separation of photogenerated electrons and holes, resulting in more electrons that are able to transport efficiently to the surface and therefore enhance the photoefficiency.

  13. Roll-coating fabrication of flexible large area small molecule solar cells with power conversion efficiency exceeding 1%

    DEFF Research Database (Denmark)

    Liu, Wenqing; Liu, Shiyong; Zawacka, Natalia Klaudia

    2014-01-01

    All solution-processed flexible large area small molecule bulk heterojunction solar cells were fabricated via roll-coating technology. Our devices were produced from slot-die coating on a lab-scale mini roll-coater under ambient conditions without the use of spin-coating or vacuum evaporation.......01%, combined with an open circuit voltage of 0.73 V, a short-circuit current density of 3.13 mA cm (2) and a fill factor of 44% were obtained for the device with SM1, which was the first example reported for efficient roll-coating fabrication of flexible large area small molecule solar cells with PCE exceeding...... methods. Four diketopyrrolopyrrole based small molecules (SMs 1-4) were utilized as electron donors with (6,6)phenyl- C61-butyric acid methyl ester as an acceptor and their photovoltaic performances based on roll-coated devices were investigated. The best power conversion efficiency (PCE) of 1...

  14. Highly efficient electroluminescence from a solution-processable thermally activated delayed fluorescence emitter

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Yoshimasa; Kubo, Shosei; Suzuki, Katsuaki; Kaji, Hironori, E-mail: kaji@scl.kyoto-u.ac.jp [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Shizu, Katsuyuki [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Tanaka, Hiroyuki [Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Adachi, Chihaya [Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Japan Science and Technology Agency (JST), ERATO, Adachi Molecular Exciton Engineering Project, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan)

    2015-11-02

    We developed a thermally activated delayed fluorescence (TADF) emitter, 2,4,6-tris(4-(9,9-dimethylacridan-10-yl)phenyl)-1,3,5-triazine (3ACR-TRZ), suitable for use in solution-processed organic light-emitting diodes (OLEDs). When doped into 4,4′-bis(carbazol-9-yl)biphenyl (CBP) host at 16 wt. %, 3ACR-TRZ showed a high photoluminescence quantum yield of 98%. Transient photoluminescence decay measurements of the 16 wt. % 3ACR-TRZ:CBP film confirmed that 3ACR-TRZ exhibits efficient TADF with a triplet-to-light conversion efficiency of 96%. This high conversion efficiency makes 3ACR-TRZ attractive as an emitting dopant in OLEDs. Using 3ACR-TRZ as an emitter, we fabricated a solution-processed OLED exhibiting a maximum external quantum efficiency of 18.6%.

  15. High efficiency nebulization for helium inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Jorabchi, Kaveh; McCormick, Ryan; Levine, Jonathan A.; Liu Huiying; Nam, S.-H.; Montaser, Akbar

    2006-01-01

    A pneumatically-driven, high efficiency nebulizer is explored for helium inductively coupled plasma mass spectrometry. The aerosol characteristics and analyte transport efficiencies of the high efficiency nebulizer for nebulization with helium are measured and compared to the results obtained with argon. Analytical performance indices of the helium inductively coupled plasma mass spectrometry are evaluated in terms of detection limits and precision. The helium inductively coupled plasma mass spectrometry detection limits obtained with the high efficiency nebulizer at 200 μL/min are higher than those achieved with the ultrasonic nebulizer consuming 2 mL/min solution, however, precision is generally better with high efficiency nebulizer (1-4% vs. 3-8% with ultrasonic nebulizer). Detection limits with the high efficiency nebulizer at 200 μL/min solution uptake rate approach those using ultrasonic nebulizer upon efficient desolvation with a heated spray chamber followed by a Peltier-cooled multipass condenser

  16. Effect of fabrication parameters on morphological and optical properties of highly doped p-porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Zare, Maryam, E-mail: mar.zare@gmail.com [Young Researchers Club, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr (Iran, Islamic Republic of); Shokrollahi, Abbas [Young Researchers Club, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr (Iran, Islamic Republic of); Seraji, Faramarz E. [Optical Communication Group, Iran Telecom Research Center, Tehran (Iran, Islamic Republic of)

    2011-09-01

    Porous silicon (PS) layers were fabricated by anodization of low resistive (highly doped) p-type silicon in HF/ethanol solution, by varying current density, etching time and HF concentration. Atomic force microscopy (AFM) and field emission scanning electron microscope (FESEM) analyses were used to investigate the physical properties and reflection spectrum was used to investigate the optical behavior of PS layers in different fabrication conditions. Vertically aligned mesoporous morphology is observed in fabricated films and with HF concentration higher than 20%. The dependence of porosity, layer thickness and rms roughness of the PS layer on current density, etching time and composition of electrolyte is also observed in obtained results. Correlation between reflectivity and fabrication parameters was also explored. Thermal oxidation was performed on some mesoporous layers that resulted in changes of surface roughness, mean height and reflectivity of the layers.

  17. A Brief Description of High Temperature Solid Oxide Fuel Cell’s Operation, Materials, Design, Fabrication Technologies and Performance

    Directory of Open Access Journals (Sweden)

    Muneeb Irshad

    2016-03-01

    Full Text Available Today’s world needs highly efficient systems that can fulfill the growing demand for energy. One of the promising solutions is the fuel cell. Solid oxide fuel cell (SOFC is considered by many developed countries as an alternative solution of energy in near future. A lot of efforts have been made during last decade to make it commercial by reducing its cost and increasing its durability. Different materials, designs and fabrication technologies have been developed and tested to make it more cost effective and stable. This article is focused on the advancements made in the field of high temperature SOFC. High temperature SOFC does not need any precious catalyst for its operation, unlike in other types of fuel cell. Different conventional and innovative materials have been discussed along with properties and effects on the performance of SOFC’s components (electrolyte anode, cathode, interconnect and sealing materials. Advancements made in the field of cell and stack design are also explored along with hurdles coming in their fabrication and performance. This article also gives an overview of methods required for the fabrication of different components of SOFC. The flexibility of SOFC in terms fuel has also been discussed. Performance of the SOFC with varying combination of electrolyte, anode, cathode and fuel is also described in this article.

  18. Fabrication of High-Aspect-Ratio 3D Hydrogel Microstructures Using Optically Induced Electrokinetics

    Directory of Open Access Journals (Sweden)

    Yi Li

    2016-04-01

    Full Text Available We present a rapid hydrogel polymerization and prototyping microfabrication technique using an optically induced electrokinetics (OEK chip, which is based on a non-UV hydrogel curing principle. Using this technique, micro-scale high-aspect-ratio three-dimensional polymer features with different geometric sizes can be fabricated within 1–10 min by projecting pre-defined visible light image patterns onto the OEK chip. This method eliminates the need for traditional photolithography masks used for patterning and fabricating polymer microstructures and simplifies the fabrication processes. This technique uses cross-link hydrogels, such as poly(ethylene glycol (PEG-diacrylate (PEGDA, as fabrication materials. We demonstrated that hydrogel micropillar arrays rapidly fabricated using this technique can be used as molds to create micron-scale cavities in PDMS (polydimethylsiloxane substrates. Furthermore, hollow, circular tubes with controllable wall thicknesses and high-aspect ratios can also be fabricated. These results show the potential of this technique to become a rapid prototyping technology for producing microfluidic devices. In addition, we show that rapid prototyping of three-dimensional suspended polymer structures is possible without any sacrificial etching process.

  19. A novel fabrication method for suspended high-aspect-ratio microstructures

    Science.gov (United States)

    Yang, Yao-Joe; Kuo, Wen-Cheng

    2005-11-01

    Suspended high-aspect-ratio structures (suspended HARS) are widely used for MEMS devices such as micro-gyroscopes, micro-accelerometers, optical switches and so on. Various fabrication methods, such as SOI, SCREAM, AIM, SBM and BELST processes, were proposed to fabricate HARS. However, these methods focus on the fabrication of suspended microstructures with relatively small widths of trench opening (e.g. less than 10 µm). In this paper, we propose a novel process for fabricating very high-aspect-ratio suspended structures with large widths of trench opening using photoresist as an etching mask. By enhancing the microtrenching effect, we can easily release the suspended structure without thoroughly removing the floor polymer inside the trenches for the cases with a relatively small trench aspect ratio. All the process steps can be integrated into a single-run single-mask ICP-RIE process, which effectively reduces the process complexity and fabrication cost. We also discuss the phenomenon of corner erosion, which results in the undesired etching of silicon structures during the structure-releasing step. By using the proposed process, 100 µm thick suspended structures with the trench aspect ratio of about 20 are demonstrated. Also, the proposed process can be used to fabricate devices for applications which require large in-plane displacement. This paper was orally presented in the Transducers'05, Seoul, Korea (paper ID: 3B1.3).

  20. Recent Advances in High Efficiency Solar Cells

    Institute of Scientific and Technical Information of China (English)

    Yoshio; Ohshita; Hidetoshi; Suzuki; Kenichi; Nishimura; Masafumi; Yamaguchi

    2007-01-01

    1 Results The conversion efficiency of sunlight to electricity is limited around 25%,when we use single junction solar cells. In the single junction cells,the major energy losses arise from the spectrum mismatching. When the photons excite carriers with energy well in excess of the bandgap,these excess energies were converted to heat by the rapid thermalization. On the other hand,the light with lower energy than that of the bandgap cannot be absorbed by the semiconductor,resulting in the losses. One way...

  1. High efficiency cyclotron trap assisted positron moderator

    OpenAIRE

    Gerchow, L.; Cooke, D. A.; Braccini, S.; Döbeli, M.; Kirch, K.; Köster, U.; Müller, A.; Van Der Meulen, N. P.; Vermeulen, C.; Rubbia, A.; Crivelli, P.

    2017-01-01

    We report the realisation of a cyclotron trap assisted positron tungsten moderator for the conversion of positrons with a broad keV- few MeV energy spectrum to a mono-energetic eV beam with an efficiency of 1.8(2)% defined as the ratio of the slow positrons divided by the $\\beta^+$ activity of the radioactive source. This is an improvement of almost two orders of magnitude compared to the state of the art of tungsten moderators. The simulation validated with this measurement suggests that usi...

  2. Fabrication of high gradient insulators by stack compression

    Science.gov (United States)

    Harris, John Richardson; Sanders, Dave; Hawkins, Steven Anthony; Norona, Marcelo

    2014-04-29

    Individual layers of a high gradient insulator (HGI) are first pre-cut to their final dimensions. The pre-cut layers are then stacked to form an assembly that is subsequently pressed into an HGI unit with the desired dimension. The individual layers are stacked, and alignment is maintained, using a sacrificial alignment tube that is removed after the stack is hot pressed. The HGI's are used as high voltage vacuum insulators in energy storage and transmission structures or devices, e.g. in particle accelerators and pulsed power systems.

  3. Fabrication of Te@Au core-shell hybrids for efficient ethanol oxidation

    Science.gov (United States)

    Jin, Huile; Wang, Demeng; Zhao, Yuewu; Zhou, Huan; Wang, Shun; Wang, Jichang

    2012-10-01

    Using Au nanoparticles to catalyze the oxidation of alcohols has garnered increasing attention due to its potential application in direct alcohol fuel cells. In this research Te@Au core-shell hybrids were fabricated for the catalytic oxidation of ethanol, where the preparation procedure involved the initial production of Te crystals with different microstructures and the subsequent utilization of the Te crystal as a template and reducing agent for the production of Te@Au hybrids. The as-prepared core-shell hybrids were characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction techniques. Electrochemical measurements illustrate that the hybrids have great electrocatalytic activity and stability toward ethanol oxidation in alkaline media. The enhanced electrocatalytic property may be attributed to the cooperative effects between the metal and semiconductor and the presence of a large number of active sites on the hybrids surface.

  4. Facile fabrication of highly flexible graphene paper for photocatalytic ...

    Indian Academy of Sciences (India)

    Administrator

    potential as a carbon-based catalyst in high-performance flexible catalytic ... resultant GOs/PAA/Au composite paper was applied as a catalytic material ... Graphene, as closely packed into two-dimensional (2D) ... only display the properties of metal nanoparticles and ... the morphology and the size of AuNPs, respectively.

  5. High-efficiency red electroluminescent device based on multishelled InP quantum dots.

    Science.gov (United States)

    Jo, Jung-Ho; Kim, Jong-Hoon; Lee, Ki-Heon; Han, Chang-Yeol; Jang, Eun-Pyo; Do, Young Rag; Yang, Heesun

    2016-09-01

    We report on the synthesis of highly fluorescent red-emitting InP quantum dots (QDs) and their application to the fabrication of a high-efficiency QD-light-emitting diode (QLED). The core/shell heterostructure of the QDs is elaborately tailored toward a multishelled structure with a composition-gradient ZnSeS intermediate shell and an outer ZnS shell. Using the resulting InP/ZnSeS/ZnS QDs as an emitting layer, all-solution-processible red InP QLEDs are fabricated with a hybrid multilayered device structure having an organic hole transport layer (HTL) and an inorganic ZnO nanoparticle electron transport layer. Two HTLs of poly(9-vinlycarbazole) or poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl))diphenyl-amine), whose hole mobilities are different by at least three orders of magnitude, are individually applied for QLED fabrication and such HTL-dependent device performances are compared. Our best red device displays exceptional figures of merit such as a maximum luminance of 2849  cd/m2, a current efficiency of 4.2  cd/A, and an external quantum efficiency of 2.5%.

  6. A high-efficiency electromechanical battery

    Science.gov (United States)

    Post, Richard F.; Fowler, T. K.; Post, Stephen F.

    1993-03-01

    In our society there is a growing need for efficient cost-effective means for storing electrical energy. The electric auto is a prime example. Storage systems for the electric utilities, and for wind or solar power, are other examples. While electrochemical cells could in principle supply these needs, the existing E-C batteries have well-known limitations. This article addresses an alternative, the electromechanical battery (EMB). An EMB is a modular unit consisting of an evacuated housing containing a fiber-composite rotor. The rotor is supported by magnetic bearings and contains an integrally mounted permanent magnet array. This article addresses design issues for EMBs with rotors made up of nested cylinders. Issues addressed include rotational stability, stress distributions, generator/motor power and efficiency, power conversion, and cost. It is concluded that the use of EMBs in electric autos could result in a fivefold reduction (relative to the IC engine) in the primary energy input required for urban driving, with a concomitant major positive impact on our economy and on air pollution.

  7. High-temperature fabrication of Ag(In,Ga)Se{sub 2} thin films for applications in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xianfeng [International Center for Science and Engineering Programs, Waseda University, Tokyo (Japan); Yamada, Akira [Department of Physical Electronics, Tokyo Institute of Technology, Tokyo (Japan); Kobayashi, Masakazu [Department of Electrical Engineering and Bioscience, Waseda University, Tokyo (Japan); Kagami Memorial Research Institute for Materials Science, Waseda University, Tokyo (Japan)

    2017-10-15

    Molecular beam epitaxy was used to fabricate Ag(In,Ga)Se{sub 2} (AIGS) thin films. To improve the diffusion of Ag, high-temperature deposition and high-temperature annealing methods were applied to fabricate AIGS films. The as-grown AIGS thin films were then used to make AIGS solar cells. We found that grain size and crystallinity of AIGS films were considerably improved by increasing the deposition and annealing temperature. For high-temperature deposition, temperatures over 600 C led to decomposition of the AIGS film, desorption of In, and deterioration of its crystallinity. The most appropriate deposition temperature was 590 C and a solar cell with a power conversion efficiency of 4.1% was obtained. High-temperature annealing of the AIGS thin films showed improved crystallinity as annealing temperature was increased and film decomposition and In desorption were prevented. A solar cell based on this film showed the highest conversion efficiency of 6.4% when annealed at 600 C. When the annealing temperature was further increased to 610 C, the performance of the cell deteriorated due to loss of the out-of-plane Ga gradient. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Facile fabrication of superparamagnetic graphene/polyaniline/Fe3O4 nanocomposites for fast magnetic separation and efficient removal of dye.

    Science.gov (United States)

    Mu, Bin; Tang, Jie; Zhang, Long; Wang, Aiqin

    2017-07-13

    Using graphene as adsorbent for removal of pollutants from polluted water is commonly recognized to be costly because the graphene is usually produced by a very complex process. Herein, a simple and eco-friendly method was employed to fabricate efficient superparamagnetic graphene/polyaniline/Fe 3 O 4 nanocomposites for removal of dyes. The exfoliation of graphite as nanosheets and the functionalization of nanosheets with polyaniline and Fe 3 O 4 nanoparticles were simultaneously achieved via a one-pot reaction process combining the intercalation polymerization of aniline and the co-precipitation of the residual Fe 3+ and the generated Fe 2+ . The obtained graphene/polyaniline/Fe 3 O 4 nanocomposites exhibited excellent adsorption performance for Congo red, even in the presence of Brilliant green. The adsorption kinetics and adsorption isotherms were well fitted with pseudo second-order kinetic model and Langmuir isotherm model, respectively. In a word, this method is simple and industrially feasible, which provides a new approach to fabricate highly efficient graphene-based adsorbents on large scale for removal of dyes. In addition, it also can be used to exfoliate other two-dimensional materials, such as boron nitride, carbon nitride and MoS 2 for a range of possible applications.

  9. Fabrication of highly modulable fibrous 3D extracellular microenvironments

    KAUST Repository

    Zhang, Xixiang; Han, Fangfei; Syed, Ahad; Bukhari, Ebtihaj M.; Siang, Basil Chew Joo; Yang, Shan; Zhou, Bingpu; Wen, Wei-jia; Jiang, Dechen

    2017-01-01

    Three-dimensional (3D) in vitro scaffolds that mimic the irregular fibrous structures of in vivo extracellular matrix (ECM) are critical for many important biological applications. However, structural properties modulation of fibrous 3D scaffolds remains a challenge. Here, we report the first highly modulable 3D fibrous scaffolds self-assembled by high-aspect-ratio (HAR) microfibers. The scaffolds structural properties can be easily tailored to incorporate various physical cues, including geometry, stiffness, heterogeneity and nanotopography. Moreover, the fibrous scaffolds are readily and accurately patterned on desired locations of the substrate. Cell culture exhibits that our scaffolds can elicit strong bidirectional cell-material interactions. Furthermore, a functional disparity between the two-dimensional substrate and our 3D scaffolds is identified by cell spreading and proliferation data. These results prove the potential of the proposed scaffold as a biomimetic extracellular microenvironment for cell study.

  10. Fabrication of highly modulable fibrous 3D extracellular microenvironments

    KAUST Repository

    Zhang, Xixiang

    2017-06-13

    Three-dimensional (3D) in vitro scaffolds that mimic the irregular fibrous structures of in vivo extracellular matrix (ECM) are critical for many important biological applications. However, structural properties modulation of fibrous 3D scaffolds remains a challenge. Here, we report the first highly modulable 3D fibrous scaffolds self-assembled by high-aspect-ratio (HAR) microfibers. The scaffolds structural properties can be easily tailored to incorporate various physical cues, including geometry, stiffness, heterogeneity and nanotopography. Moreover, the fibrous scaffolds are readily and accurately patterned on desired locations of the substrate. Cell culture exhibits that our scaffolds can elicit strong bidirectional cell-material interactions. Furthermore, a functional disparity between the two-dimensional substrate and our 3D scaffolds is identified by cell spreading and proliferation data. These results prove the potential of the proposed scaffold as a biomimetic extracellular microenvironment for cell study.

  11. Fabrication of interconnected microporous biomaterials with high hydroxyapatite nanoparticle loading

    International Nuclear Information System (INIS)

    Zhang Wei; Yao Donggang; Zhang Qingwei; Lelkes, Peter I; Zhou, Jack G

    2010-01-01

    Hydroxyapatite (HA) is known to promote osteogenicity and enhance the mechanical properties of biopolymers. However, incorporating a large amount of HA into a porous biopolymer still remains a challenge. In the present work, a new method was developed to produce interconnected microporous poly(glycolic-co-lactic acid) (PLGA) with high HA nanoparticle loading. First, a ternary blend comprising PLGA/PS (polystyrene)/HA (40/40/20 wt%) was prepared by melt blending under conditions for formation of a co-continuous phase structure. Next, a dynamic annealing stage under small-strain oscillation was applied to the blend to facilitate nanoparticle redistribution. Finally, the PS phase was sacrificially extracted, leaving a porous matrix. The results from different characterizations suggested that the applied small-strain oscillation substantially accelerated the migration of HA nanoparticles during annealing from the PS phase to the PLGA phase; nearly all HA particles were uniformly presented in the PLGA phase after a short period of annealing. After dissolution of the PS phase, a PLGA material with interconnected microporous structure was successfully produced, with a high HA loading above 30 wt%. The mechanisms beneath the experimental observations, particularly on the enhanced particle migration process, were discussed, and strategies for producing highly particle loaded biopolymers with interconnected microporous structures were proposed.

  12. Highly magnetic Co nanoparticles fabricated by X-ray radiolysis

    Science.gov (United States)

    Clifford, Dustin M.; Castano, Carlos E.; Rojas, Jessika V.

    2018-03-01

    Advanced routes for the synthesis of nanomaterials, such as ferromagnetic nanoparticles, are being explored that are easy to perform using cost-effective and non-toxic precursors. Radiolytic syntheses based on the use of X-rays as ionizing radiation are promising towards this effort. X-rays were used to produce highly magnetic cobalt nanoparticles (NPs), stable in air up to 200 °C, from the radiolysis of water. Crystal structure analysis by XRD indicates a mixture of Cofcc, 63%, and Cohcp, 37%, phases. Magnetic analysis by VSM gave a saturation magnetization (Ms) 136 emu/g at 1 T and coercivity (Hc) = 325 Oe when the reaction solution was purged with N2 while an air-purged treatment resulted in Co NPs having 102 emu/g with a coercivity (Hc) 270 Oe. Overall, the reduction of Co2+ occurred in an aqueous reaction environment without addition of chemical reductants resulting in Co NPs with size distribution from 20 to 140 nm. This clean approach at ambient temperature produced highly magnetic Co NPs that may be used for switching devices (i.e. reed switches) or as additives for alloys that require high Curie points.

  13. Development of high efficiency neutron detectors

    International Nuclear Information System (INIS)

    Pickrell, M.M.; Menlove, H.O.

    1993-01-01

    The authors have designed a novel neutron detector system using conventional 3 He detector tubes and composites of polyethylene and graphite. At this time the design consists entirely of MCNP simulations of different detector configurations and materials. These detectors are applicable to low-level passive and active neutron assay systems such as the passive add-a-source and the 252 Cf shuffler. Monte Carlo simulations of these neutron detector designs achieved efficiencies of over 35% for assay chambers that can accommodate 55-gal. drums. Only slight increases in the number of detector tubes and helium pressure are required. The detectors also have reduced die-away times. Potential applications are coincident and multiplicity neutron counting for waste disposal and safeguards. The authors will present the general design philosophy, underlying physics, calculation mechanics, and results

  14. High efficient white organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Stefan; Krause, Ralf [Department of Materials Science VI, University of Erlangen-Nuremberg (Germany); Siemens AG, CT MM 1, Erlangen (Germany); Kozlowski, Fryderyk; Schmid, Guenter; Hunze, Arvid [Siemens AG, CT MM 1, Erlangen (Germany); Winnacker, Albrecht [Department of Materials Science VI, University of Erlangen-Nuremberg (Germany)

    2007-07-01

    Due to the rapid progress in the last years the performance of organic light emitting diodes (OLEDs) has reached a level where general lighting presents a most interesting application target. We demonstrate, how the color coordinates of the emission spectrum can be adjusted using a combinatorial evaporation tool to lie on the desired black body curve representing cold and warm white, respectively. The evaluation includes phosphorescent and fluorescent dye approaches to optimize lifetime and efficiency, simultaneously. Detailed results are presented with respect to variation of layer thicknesses and dopant concentrations of each layer within the OLED stack. The most promising approach contains phosphorescent red and green dyes combined with a fluorescent blue one as blue phosphorescent dopants are not yet stable enough to achieve long lifetimes.

  15. High-Efficient Circuits for Ternary Addition

    Directory of Open Access Journals (Sweden)

    Reza Faghih Mirzaee

    2014-01-01

    Full Text Available New ternary adders, which are fundamental components of ternary addition, are presented in this paper. They are on the basis of a logic style which mostly generates binary signals. Therefore, static power dissipation reaches its minimum extent. Extensive different analyses are carried out to examine how efficient the new designs are. For instance, the ternary ripple adder constructed by the proposed ternary half and full adders consumes 2.33 μW less power than the one implemented by the previous adder cells. It is almost twice faster as well. Due to their unique superior characteristics for ternary circuitry, carbon nanotube field-effect transistors are used to form the novel circuits, which are entirely suitable for practical applications.

  16. A high-efficiency superconductor distributed amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Herr, Q P, E-mail: quentin.herr@ngc.co [Northrop Grumman Corporation, 7323 Aviation Boulevard, Baltimore, MD 21240 (United States)

    2010-02-15

    A superconductor output amplifier that converts single-flux-quantum signals to a non-return-to-zero pattern is reported using a twelve-stage distributed amplifier configuration. The output amplitude is measured to be 1.75 mV over a wide bias current range of {+-} 12%. The bit error rate is measured using a Delta-Sigma data pattern to be less than 1 x 10{sup -9} at 10 Gb s{sup -1} per channel. Analysis of the eye diagram suggests that the actual bit error rate may be much lower. The amplifier has power efficiency of 12% neglecting the termination resistor, which may be eliminated from the circuit with a small modification. (rapid communication)

  17. Highly smooth Nb surfaces fabricated by buffered electropolishing

    International Nuclear Information System (INIS)

    Wu, Andy T; John Mammossor; Phillips, H.; Jean Delayen; Charles Reece; Amy Wilkerson; David Smith; Robert Ike

    2005-01-01

    It is demonstrated that highly smooth Nb surfaces can be obtained through Buffered ElectroPolishing (BEP) employing an electrolyte consisting of lactic, sulfuric, and hydrofluoric acids. Parameters that control the polishing process are optimized to achieve the smoothest surface finish with the help of surface observations using a scanning electron microscope and a Metallographic Optical Microscope (MOM). The polishing rate of BEP is determined to be 0.646 (micro)m/min that is much higher than 0.381 (micro)m/min achieved by the conventional ElectroPolishing (EP) process widely used in the Superconducting Radio Frequency (SRF) community. A high precision and large scan area 3-D profilometer is used to view morphology of the treated Nb surfaces. Statistical data, such as, rms, total indicator runout, and arithmetic mean deviation of the Nb surfaces are extracted from the profilometer images. It is found that Nb surfaces treated by BEP are an order of magnitude smoother than those treated by the optimized EP process. The chemical composition of the Nb surfaces after BEP is analyzed by static and dynamic Secondary Ion Mass Spectrometer (SIMS) systems. Cracking patterns of the Nb surfaces under different primary ion sources of Ga + , Au + , and Ar + are reported. The depth profile of the surface niobium oxides is studied through continuously monitoring niobium and its relevant oxides' peaks as a function of time. Dynamic SIMS results imply that the surface oxide structure of Nb may be more complicated than what usually believed and can be inhomogeneous. Preliminary results of BEP on Nb SRF single cell cavities and half-cells are reported. It is shown that smooth and bright surfaces can be obtained in 30 minutes when the electric field inside a SRF cavity is uniform during a BEP process. This study reveals that BEP is a highly promising technique for surface treatment on Nb SRF cavities to be used in particle accelerators

  18. High Efficiency Regenerative Helium Compressor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Helium plays several critical rolls in spacecraft propulsion. High pressure helium is commonly used to pressurize propellant fuel tanks. Helium cryocoolers can be...

  19. Highly Efficient, Durable Regenerative Solid Oxide Stack, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Precision Combustion, Inc. (PCI) proposes to develop a highly efficient regenerative solid oxide stack design. Novel structural elements allow direct internal...

  20. Highly efficient multifunctional metasurface for high-gain lens antenna application

    Science.gov (United States)

    Hou, Haisheng; Wang, Guangming; Li, Haipeng; Guo, Wenlong; Li, Tangjing

    2017-07-01

    In this paper, a novel multifunctional metasurface combining linear-to-circular polarization conversion and electromagnetic waves focusing has been proposed and applied to design a high-gain lens antenna working at Ku band. The multifunctional metasurface consists of 15 × 15 unit cells. Each unit cell is composed of four identical metallic layers and three intermediate dielectric layers. Due to well optimization, the multifunctional metasurface can convert the linearly polarized waves generated by the source to circularly polarized waves and focus the waves. By placing a patch antenna operating at 15 GHz at the focal point of the metasurface and setting the focal distance to diameter ratio ( F/ D) to 0.34, we obtain a multifunctional lens antenna. Simulated and measured results coincide well, indicating that the metasurface can convert linearly polarized waves to right-handed circularly polarized waves at 15 GHz with excellent performances in terms of the 3 dB axial ratio bandwidth of 5.3%, realized gain of 16.9 dB and aperture efficiency of 41.2%. Because of the advantages of high gain, competitive efficiency and easy fabrication, the proposed lens antenna has a great potential application in wireless and satellite communication.

  1. High-strength high-conductivity Cu-Nb microcomposite sheet fabricated via multiple roll bonding

    International Nuclear Information System (INIS)

    Jha, S.C.; Delagi, R.G.; Forster, J.A.; Krotz, P.D.

    1993-01-01

    Copper-niobium microcomposites are a new class of high-strength high-conductivity materials that have attractive properties for room- and elevated-temperature applications. Since Nb has little solid solubility in Cu, addition of Nb to Cu does not affect its conductivity. Copper-niobium microcomposites are melted and cast so that the microstructure of cast Cu-Nb ingots consists of 1- to 10 μm Nb dendrites uniformly distributed within the copper matrix. Extensive wire drawing with a true processing strain (η> 12) of Cu-Nb alloy leads to refinement and elongation of Nb dendrites into 1- to 10 nm-thick filaments. The presence of such fine Nb filaments causes a significant increase in the strength of Cu-Nb wires. The tensile strength of heavily drawn Cu-Nb wires was determined to be significantly higher than the values predicted by the rule of mixtures. This article reports the fabrication of high-strength Cu-Nb microcomposite sheet by multiple roll bonding. It is difficult and impractical to attain high processing strains (η>3) by simple cold rolling. In most practical cold-rolling operation, the thickness reduction does not exceed 90 pct (η ≅2). Therefore, innovative processing is required to generate high strength in Cu-Nb microcomposite sheet. Multiple roll bonding of Cu-Nb has been utilized to store high processing strain ( η>10) in the material and refine the Nb particle size within the copper matrix. This article describes the microstructure, mechanical properties, and thermal stability of roll-bonded Cu-Nb microcomposite sheet

  2. Compact, Energy-Efficient High-Frequency Switched Capacitor Neural Stimulator With Active Charge Balancing.

    Science.gov (United States)

    Hsu, Wen-Yang; Schmid, Alexandre

    2017-08-01

    Safety and energy efficiency are two major concerns for implantable neural stimulators. This paper presents a novel high-frequency, switched capacitor (HFSC) stimulation and active charge balancing scheme, which achieves high energy efficiency and well-controlled stimulation charge in the presence of large electrode impedance variations. Furthermore, the HFSC can be implemented in a compact size without any external component to simultaneously enable multichannel stimulation by deploying multiple stimulators. The theoretical analysis shows significant benefits over the constant-current and voltage-mode stimulation methods. The proposed solution was fabricated using a 0.18 μm high-voltage technology, and occupies only 0.035 mm 2 for a single stimulator. The measurement result shows 50% peak energy efficiency and confirms the effectiveness of active charge balancing to prevent the electrode dissolution.

  3. FY 1998 annual summary report on advanced fabrication techniques for high-melting metal-based members. Development of techniques for creating members for high-efficiency power generation; 1998 nendo koyuten kinzokukei buzai no kodo kako gijutsu seika hokokusho. Kokoritsu hatsuden'yo buzai sosei gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The R and D programs were implemented to develop techniques for creating members of high-melting metals, having a very high melting point and potentially excellent high-temperature strength characteristics. These are expected to replace Ni-based superalloys for gas turbine members, to further increase operating temperature of the turbine. The programs were aimed to improve their high-temperature strength and toughness and hence their reliability by microscopically controlling their compositions and structures, and also aimed to improve their durability by coating them with a film capable of preventing oxidation and resisting to gas-induced corrosion to impart resistance to oxidation and corrosion to them. For the design of Nb-based solid solution alloys, it is found that dissolution of Mo at around 30 at.% or less and W at 20 at.% or less in Nb improves their high-temperature strength and toughness. For the design of high-strength Nb-based composite materials, it is found that Si-containing Nb-based composite materials, prepared by mechanical alloying, are amorphous or present in the form of solid solution of Ni supersaturated with Si. The R and D activities were also directed to development of techniques for creating Nb-based superhigh-temperature members, their evaluation, and imparting oxidation resistance to them. (NEDO)

  4. High efficiency multilayer blazed gratings for EUV and soft X-rays: Recent developments

    International Nuclear Information System (INIS)

    Voronov, Dmitriy; Ahn, Minseung; Anderson, Erik; Cambie, Rossana; Chang, Chih-Hao; Goray, Leonid; Gullikson, Eric; Heilmann, Ralf; Salmassi, Farhad; Schattenburg, Mark; Warwick, Tony; Yashchuk, Valeriy; Padmore, Howard

    2011-01-01

    Multilayer coated blazed gratings with high groove density are the best candidates for use in high resolution EUV and soft x-ray spectroscopy. Theoretical analysis shows that such a grating can be potentially optimized for high dispersion and spectral resolution in a desired high diffraction order without significant loss of diffraction efficiency. In order to realize this potential, the grating fabrication process should provide a perfect triangular groove profile and an extremely smooth surface of the blazed facets. Here we report on recent progress achieved at the Advanced Light Source (ALS) in fabrication of high quality multilayer coated blazed gratings. The blazed gratings were fabricated using scanning beam interference lithography followed by wet anisotropic etching of silicon. A 200 nm period grating coated with a Mo/Si multilayer composed with 30 bi-layers demonstrated an absolute efficiency of 37.6percent in the 3rd diffraction order at 13.6 nm wavelength. The groove profile of the grating was thoroughly characterized with atomic force microscopy before and after the multilayer deposition. The obtained metrology data were used for simulation of the grating efficiency with the vector electromagnetic PCGrate-6.1 code. The simulations showed that smoothing of the grating profile during the multilayer deposition is the main reason for efficiency losses compared to the theoretical maximum. Investigation of the grating with cross-sectional transmission electron microscopy revealed a complex evolution of the groove profile in the course of the multilayer deposition. Impact of the shadowing and smoothing processes on growth of the multilayer on the surface of the sawtooth substrate is discussed.

  5. Efficient fabrication of transparent antimicrobial poly(vinyl alcohol) thin films

    International Nuclear Information System (INIS)

    Liu Shuxia; He Junhui; Xue Jianfeng; Ding Wenjun

    2009-01-01

    We have explored in situ synthesis of Ag nanoparticles in transparent PVA films in view of increasing areas of application of those films. The two-step procedure consists of ion incorporation in the matrix and subsequent thermal reduction. Smooth and transparent PVA films containing Ag nanoparticles of 5-20 nm were fabricated by this approach. The optical property of the films and the size of metal nanoparticles could be controlled by changing the reaction conditions. By increasing heating temperature, the absorbance and wavelength of surface plasmon resonance (SPR) of the composite film increased, and nanoparticles with larger particle sizes and broader size distributions were obtained. In the temperature range of 130-170 o C, the wavelength of SPR increased with increasing the AgNO 3 concentration. At 190 o C, however, the wavelenght of SPR blue-shifted initially when the AgNO 3 concentration increased from 10 to 80 mmol/L, and red-shifted thereafter. The composite films showed excellent antimicrobial performance toward bacteria such as Escherchia coli. Such hybrids afford very effective and environment-friendly antimicrobial surface coatings.

  6. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    International Nuclear Information System (INIS)

    Souza, J.A.B.; Durazzo, M.

    2010-01-01

    IPEN developed and made available for routine production the technology for manufacturing dispersion type fuel elements for use in research reactors. However, the fuel produced at IPEN is limited to the uranium concentration of 3.0 gU/cm 3 by using the U 3 Si 2 -Al dispersion. Increasing the uranium concentration of the fuel is interesting by the possibility of increasing the reactor core reactivity and lifetime of the fuel. It is possible to increase the concentration of uranium in the fuel up to the technological limit of 4.8 gU/cm 3 for the U 3 Si 2 -Al dispersion, which is well placed around the world. This new fuel will be applicable in the new Brazilian-Multipurpose Reactor RMB. This study aimed to develop the manufacturing process of high uranium concentration fuel, redefining the procedures currently used in the manufacture of IPEN. This paper describes the main procedures adjustments that will be necessary. (author)

  7. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Jose Antonio Batista de; Durazzo, Michelangelo, E-mail: jasouza@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    IPEN developed and made available for routine production the technology for manufacturing dispersion type fuel elements for use in research reactors. However, the fuel produced at IPEN is limited to the uranium concentration of 3.0 g U/c m3 by using the U{sub 3}Si{sub 2}-Al dispersion. Increasing the uranium concentration of the fuel is interesting by the possibility of increasing the reactor core reactivity and lifetime of the fuel. It is possible to increase the concentration of uranium in the fuel up to the technological limit of 4.8 g U/c m3 for the U{sub 3}Si{sub 2}-Al dispersion, which is well placed around the world. This new fuel will be applicable in the new Brazilian- Multipurpose Reactor RMB. This study aimed to develop the manufacturing process of high uranium concentration fuel, redefining the procedures currently used in the manufacture of IPEN. This paper describes the main procedures adjustments that will be necessary. (author)

  8. Fabrication of high performance components for Indian nuclear reactors

    International Nuclear Information System (INIS)

    Jayaraj, R.N.

    2011-01-01

    Nuclear Fuel Complex (NFC), a Unit of the Department of Atomic Energy (DAE) has been engaged for well over three-and-half decades in the manufacture of fuels for Pressurized Heavy Water Reactors (PHWRs) and Boiling Water Reactors (BWRs). All the fuel assembly components, like, fuel clad tubes, end plugs, spacers, spacer grids etc. are also being manufactured at NFC in Zirconium alloy material. Apart from the regular production of these components and finished fuel assemblies, NFC has also been engaged in the production of Zirconium alloy reactor core structurals, like, pressure tubes, calandria tubes, garter springs and reactivity control mechanisms for PHWRs and square channels for BWRs. While all these structural components are produced through standardized flow sheets, there have been continuous innovations carried out in the processes to meet the ever increasing end-use characteristics laid down by the utilities. The paper enumerates various aspects of different technologies developed at NFC for the manufacture of high performance components for reactor applications

  9. New technique for fabrication of high frequency piezoelectric Micromachined Ultrasound Transducers

    DEFF Research Database (Denmark)

    Pedersen, T; Thomsen, Erik Vilain; Zawada, T

    2008-01-01

    A novel technique for fabrication of linear arrays of high frequency piezoelectric Micromachined Ultrasound Transducers (pMUT) on silicon substrates is presented. Piezoelectric elements are formed by deposition of PZT ((PbZrxTi1-x)O3) into etched features of the silicon substrate such that the de......A novel technique for fabrication of linear arrays of high frequency piezoelectric Micromachined Ultrasound Transducers (pMUT) on silicon substrates is presented. Piezoelectric elements are formed by deposition of PZT ((PbZrxTi1-x)O3) into etched features of the silicon substrate...

  10. High-efficiency airfoil rudders applied to submarines

    Directory of Open Access Journals (Sweden)

    ZHOU Yimei

    2017-03-01

    Full Text Available Modern submarine design puts forward higher and higher requirements for control surfaces, and this creates a requirement for designers to constantly innovate new types of rudder so as to improve the efficiency of control surfaces. Adopting the high-efficiency airfoil rudder is one of the most effective measures for improving the efficiency of control surfaces. In this paper, we put forward an optimization method for a high-efficiency airfoil rudder on the basis of a comparative analysis of the various strengths and weaknesses of the airfoil, and the numerical calculation method is adopted to analyze the influence rule of the hydrodynamic characteristics and wake field by using the high-efficiency airfoil rudder and the conventional NACA rudder comparatively; at the same time, a model load test in a towing tank was carried out, and the test results and simulation calculation obtained good consistency:the error between them was less than 10%. The experimental results show that the steerage of a high-efficiency airfoil rudder is increased by more than 40% when compared with the conventional rudder, but the total resistance is close:the error is no more than 4%. Adopting a high-efficiency airfoil rudder brings much greater lifting efficiency than the total resistance of the boat. The results show that high-efficiency airfoil rudder has obvious advantages for improving the efficiency of control, giving it good application prospects.

  11. Doping efficiency analysis of highly phosphorous doped epitaxial/amorphous silicon emitters grown by PECVD for high efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    El-Gohary, H.G.; Sivoththaman, S. [Waterloo Univ., ON (Canada). Dept. of Electrical and Computer Engineering

    2008-08-15

    The efficient doping of hydrogenated amorphous and crystalline silicon thin films is a key factor in the fabrication of silicon solar cells. The most popular method for developing those films is plasma enhanced chemical vapor deposition (PECVD) because it minimizes defect density and improves doping efficiency. This paper discussed the preparation of different structure phosphorous doped silicon emitters ranging from epitaxial to amorphous films at low temperature. Phosphine (PH{sub 3}) was employed as the doping gas source with the same gas concentration for both epitaxial and amorphous silicon emitters. The paper presented an analysis of dopant activation by applying a very short rapid thermal annealing process (RTP). A spreading resistance profile (SRP) and SIMS analysis were used to detect both the active dopant and the dopant concentrations, respectively. The paper also provided the results of a structural analysis for both bulk and cross-section at the interface using high-resolution transmission electron microscopy and Raman spectroscopy, for epitaxial and amorphous films. It was concluded that a unity doping efficiency could be achieved in epitaxial layers by applying an optimized temperature profile using short time processing rapid thermal processing technique. The high quality, one step epitaxial layers, led to both high conductive and high doping efficiency layers.

  12. Highly ordered uniform single-crystal Bi nanowires: fabrication and characterization

    International Nuclear Information System (INIS)

    Bisrat, Y; Luo, Z P; Davis, D; Lagoudas, D

    2007-01-01

    A mechanical pressure injection technique has been used to fabricate uniform bismuth (Bi) nanowires in the pores of an anodic aluminum oxide (AAO) template. The AAO template was prepared from general purity aluminum by a two-step anodization followed by heat treatment to achieve highly ordered nanochannels. The nanowires were then fabricated by an injection technique whereby the molten Bi was injected into the AAO template using a hydraulic pressure method. The Bi nanowires prepared by this method were found to be dense and continuous with uniform diameter throughout the length. Electron diffraction experiments using the transmission electron microscope on cross-sectional and free-standing longitudinal Bi nanowires showed that the majority of the individual nanowires were single crystalline, with preferred orientation of growth along the [011] zone axis of the pseudo-cubic structure. The work presented here provides an inexpensive and effective way of fabricating highly ordered single-crystalline Bi nanowires, with uniform size distributions

  13. Highly efficient and heavily-doped organic light-emitting devices based on an orange phosphorescent iridium complex

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shunliang; Wang, Qi [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Li, Ming [College of Chemistry, Sichuan University, Chengdu, 610064 (China); Lu, Zhiyun, E-mail: luzhiyun@scu.edu.cn [College of Chemistry, Sichuan University, Chengdu, 610064 (China); Yu, Junsheng, E-mail: jsyu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2014-10-15

    Heavily doped and highly efficient phosphorescent organic light-emitting devices (PhOLEDs) had been fabricated by utilizing an orange iridium complex, bis[2-(3′,5′-di-tert-butylbiphenyl-4-yl)benzothiazolato-N,C{sup 2'}]iridium(III) (acetylacetonate) [(tbpbt){sub 2}Ir(acac)], as a phosphor. When the doping concentration of [(tbpbt){sub 2}Ir(acac)] reached as high as 15 wt%, the PhOLEDs exhibited a power efficiency, current efficiency, and external quantum efficiency of 24.5 lm/W, 32.1 cd/A, 15.7%, respectively, implying a promising quenching-resistant characteristics of this novel phosphor. Furthermore, the efficient white PhOLEDs had been obtained by employing (tbpbt){sub 2}Ir(acac) as a self-host orange emitter, indicating that (tbpbt){sub 2}Ir(acac) could serve as a promising phosphor to fabricate white organic light-emitting devices with simplified manufacturing process. - Highlights: • Efficient phosphorescent devices were fabricated. • Optimized phosphor doping ratio reached as high as 15 wt%. • The results proved a promising quench-resistant property of the phosphor. • Efficient white devices based on this phosphor as self-host layer had been realized.

  14. Highly efficient and heavily-doped organic light-emitting devices based on an orange phosphorescent iridium complex

    International Nuclear Information System (INIS)

    Zhou, Shunliang; Wang, Qi; Li, Ming; Lu, Zhiyun; Yu, Junsheng

    2014-01-01

    Heavily doped and highly efficient phosphorescent organic light-emitting devices (PhOLEDs) had been fabricated by utilizing an orange iridium complex, bis[2-(3′,5′-di-tert-butylbiphenyl-4-yl)benzothiazolato-N,C 2' ]iridium(III) (acetylacetonate) [(tbpbt) 2 Ir(acac)], as a phosphor. When the doping concentration of [(tbpbt) 2 Ir(acac)] reached as high as 15 wt%, the PhOLEDs exhibited a power efficiency, current efficiency, and external quantum efficiency of 24.5 lm/W, 32.1 cd/A, 15.7%, respectively, implying a promising quenching-resistant characteristics of this novel phosphor. Furthermore, the efficient white PhOLEDs had been obtained by employing (tbpbt) 2 Ir(acac) as a self-host orange emitter, indicating that (tbpbt) 2 Ir(acac) could serve as a promising phosphor to fabricate white organic light-emitting devices with simplified manufacturing process. - Highlights: • Efficient phosphorescent devices were fabricated. • Optimized phosphor doping ratio reached as high as 15 wt%. • The results proved a promising quench-resistant property of the phosphor. • Efficient white devices based on this phosphor as self-host layer had been realized

  15. Structural and electrical characteristics of high-k/metal gate metal oxide semiconductor capacitors fabricated on flexible, semi-transparent silicon (100) fabric

    KAUST Repository

    Rojas, Jhonathan Prieto

    2013-02-12

    In pursuit of flexible computers with high performance devices, we demonstrate a generic process to fabricate 10 000 metal-oxide-semiconductor capacitors (MOSCAPs) with semiconductor industry\\'s most advanced high-k/metal gate stacks on widely used, inexpensive bulk silicon (100) wafers and then using a combination of iso-/anisotropic etching to release the top portion of the silicon with the already fabricated devices as a mechanically flexible (bending curvature of 133 m−1), optically semi-transparent silicon fabric (1.5 cm × 3 cm × 25 μm). The electrical characteristics show 3.7 nm effective oxide thickness, −0.2 V flat band voltage, and no hysteresis from the fabricated MOSCAPs.

  16. Structural and electrical characteristics of high-k/metal gate metal oxide semiconductor capacitors fabricated on flexible, semi-transparent silicon (100) fabric

    KAUST Repository

    Rojas, Jhonathan Prieto; Hussain, Muhammad Mustafa; Sevilla, Galo T.

    2013-01-01

    In pursuit of flexible computers with high performance devices, we demonstrate a generic process to fabricate 10 000 metal-oxide-semiconductor capacitors (MOSCAPs) with semiconductor industry's most advanced high-k/metal gate stacks on widely used, inexpensive bulk silicon (100) wafers and then using a combination of iso-/anisotropic etching to release the top portion of the silicon with the already fabricated devices as a mechanically flexible (bending curvature of 133 m−1), optically semi-transparent silicon fabric (1.5 cm × 3 cm × 25 μm). The electrical characteristics show 3.7 nm effective oxide thickness, −0.2 V flat band voltage, and no hysteresis from the fabricated MOSCAPs.

  17. Progress in the fabrication of high aspect ratio zone plates by soft x-ray lithography

    International Nuclear Information System (INIS)

    Divan, R.; Mancini, D. C.; Moldovan, N. A.; Lai, B.; Assoufid, L.; Leondard, Q.; Cerrina, F.

    2002-01-01

    Fabrication of Fresnel zone plates for the hard x-ray spectral region combines the challenge of high lateral resolution (∼100 nm) with a large thickness requirement for the phase-shifting material (0.5-3 (micro)m). For achieving a high resolution, the initial mask was fabricated by e-beam lithography and gold electroforming. To prevent the collapse of the structures between the developing and electroforming processes, drying was completely eliminated. Fabrication errors, such as nonuniform gold electroplating and collapse of structures, were systematically analyzed and largely eliminated. We optimized the exposure and developing processes for 950k and 2200k polymethylmethacrylate of different thicknesses and various adhesion promoters. We discuss the effects of these fabrication steps on the zone plate's resolution and aspect ratio. Fresnel zone plates with 110 nm outermost zone width, 150 (micro)m diameter, and 1.3 (micro)m gold thickness were fabricated. Preliminary evaluation of the FZPs was done by scanning electron microscopy and atomic force microscopy. The FZP focusing performance was characterized at the Advanced Photon Source at Argonne National Laboratory

  18. Direct fabrication of high-resolution three-dimensional polymeric scaffolds using electrohydrodynamic hot jet plotting

    International Nuclear Information System (INIS)

    Wei, Chuang; Dong, Jingyan

    2013-01-01

    This paper presents the direct three-dimensional (3D) fabrication of polymer scaffolds with sub-10 µm structures using electrohydrodynamic jet (EHD-jet) plotting of melted thermoplastic polymers. Traditional extrusion-based fabrication approaches of 3D periodic porous structures are very limited in their resolution, due to the excessive pressure requirement for extruding highly viscous thermoplastic polymers. EHD-jet printing has become a high-resolution alternative to other forms of nozzle deposition-based fabrication approaches by generating micro-scale liquid droplets or a fine jet through the application of a large electrical voltage between the nozzle and the substrate. In this study, we successfully apply EHD-jet plotting technology with melted biodegradable polymer (polycaprolactone, or PCL) for the fabrication of 2D patterns and 3D periodic porous scaffold structures in potential tissue engineering applications. Process conditions (e.g. electrical voltage, pressure, plotting speed) have been thoroughly investigated to achieve reliable jet printing of fine filaments. We have demonstrated for the first time that the EHD-jet plotting process is capable of the fabrication of 3D periodic structures with sub-10 µm resolution, which has great potential in advanced biomedical applications, such as cell alignment and guidance. (paper)

  19. Single-step direct fabrication of pillar-on-pore hybrid nanostructures in anodizing aluminum for superior superhydrophobic efficiency.

    Science.gov (United States)

    Jeong, Chanyoung; Choi, Chang-Hwan

    2012-02-01

    Conventional electrochemical anodizing processes of metals such as aluminum typically produce planar and homogeneous nanopore structures. If hydrophobically treated, such 2D planar and interconnected pore structures typically result in lower contact angle and larger contact angle hysteresis than 3D disconnected pillar structures and, hence, exhibit inferior superhydrophobic efficiency. In this study, we demonstrate for the first time that the anodizing parameters can be engineered to design novel pillar-on-pore (POP) hybrid nanostructures directly in a simple one-step fabrication process so that superior surface superhydrophobicity can also be realized effectively from the electrochemical anodization process. On the basis of the characteristic of forming a self-ordered porous morphology in a hexagonal array, the modulation of anodizing voltage and duration enabled the formulation of the hybrid-type nanostructures having controlled pillar morphology on top of a porous layer in both mild and hard anodization modes. The hybrid nanostructures of the anodized metal oxide layer initially enhanced the surface hydrophilicity significantly (i.e., superhydrophilic). However, after a hydrophobic monolayer coating, such hybrid nanostructures then showed superior superhydrophobic nonwetting properties not attainable by the plain nanoporous surfaces produced by conventional anodization conditions. The well-regulated anodization process suggests that electrochemical anodizing can expand its usefulness and efficacy to render various metallic substrates with great superhydrophilicity or -hydrophobicity by directly realizing pillar-like structures on top of a self-ordered nanoporous array through a simple one-step fabrication procedure.

  20. Simple and fast fabrication of superhydrophobic metal wire mesh for efficiently gravity-driven oil/water separation.

    Science.gov (United States)

    Song, Botao

    2016-12-15

    Superhydrophobic metal wire mesh (SMWM) has frequently been applied for the selective and efficient separation of oil/water mixture due to its porous structure and special wettability. However, current methods for the modification of metal wire mesh to be superhydrophobic suffered from problems with respect to complex experimental procedures or time-consuming process. In this study, a very simple, time-saving and single-step electrospray method was proposed to fabricate SMWM and the whole procedure required about only 2min. The morphology, surface composition and wettability of the SMWM were all evaluated, and the oil/water separation ability was further investigated. In addition, a commercial available sponge covered with SMWM was fabricated as an oil adsorbent for the purpose of oil recovery. This study demonstrated a convenient and fast method to modify the metal wire mesh to be superhydrophobic and such simple method might find practical applications in the large-scale removal of oils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Research cooperation project on environmentally friendly technology for highly efficient mineral resources extraction and treatment. Detail design for pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Photographs and drawings were edited into a book in relation with a joint project for environment preservation technologies in high-efficiency extraction and treatment of mineral resources, and detail design for a pilot plant. The book classified the related devices into fabricated devices, purchased devices and electrical devices, and contains detailed drawings and photographs thereof. (NEDO)

  2. Thin Film Packaging Solutions for High Efficiency OLED Lighting Products

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-06-30

    was characterized as having less than 10% change in transmission during the 15,000 hour test period; (3) demonstrated thin film encapsulation of a phosphorescent OLED device with 1,500 hours of lifetime at 60 C and 80% RH; (4) demonstrated that a thin film laminate encapsulation, in addition to the direct thin film deposition process, of a polymer OLED device was another feasible packaging strategy for OLED lighting. The thin film laminate strategy was developed to mitigate defects, demonstrate roll-to-roll process capability for high volume throughput (reduce costs) and to support a potential commercial pathway that is less dependent upon integrated manufacturing since the laminate could be sold as a rolled good; (5) demonstrated that low cost 'blue' glass substrates could be coated with a siloxane barrier layer for planarization and ion-protection and used in the fabrication of a polymer OLED lighting device. This study further demonstrated that the substrate cost has potential for huge cost reductions from the white borosilicate glass substrate currently used by the OLED lighting industry; (6) delivered four-square feet of white phosphorescent OLED technology, including novel high efficiency devices with 82 CRI, greater than 50 lm/W efficiency, and more than 1,000 hours lifetime in a product concept model shelf; (7) presented and or published more than twenty internal studies (for private use), three external presentations (OLED workshop-for public use), and five technology-related external presentations (industry conferences-for public use); and (8) issued five patent applications, which are in various maturity stages at time of publication. Delivery of thin film encapsulated white phosphorescent OLED lighting technology remains a challenging technical achievement, and it seems that commercial availability of thin, bright, white OLED light that meets market requirements will continue to require research and development effort. However, there will be

  3. 40 CFR 761.71 - High efficiency boilers.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false High efficiency boilers. 761.71... PROHIBITIONS Storage and Disposal § 761.71 High efficiency boilers. (a) To burn mineral oil dielectric fluid containing a PCB concentration of ≥50 ppm, but boiler shall comply with the following...

  4. Design and fabrication of metal-insulator-metal diode for high frequency applications

    Science.gov (United States)

    Azad, Ibrahim; Ram, Manoj K.; Goswami, D. Yogi; Stefanakos, Elias

    2017-02-01

    Metal-insulator-metal (MIM) diodes play significant role in high speed electronics where high frequency rectification is needed. Quantum based tunneling mechanism helps MIM diodes to rectify at high frequency signals. Rectenna, antenna coupled MIM diodes are becoming popular due to their potential use as IR detectors and energy harvesters. Because of small active area, MIM diodes could easily be incorporated into integrated circuits (IC's). The objective of the work is to design and develop MIM diodes for high frequency rectification. In this work, thin insulating layer of ZnO was fabricated using Langmuir-Blodgett (LB) technique which facilitates ultrathin thin, uniform and pinhole free fabrication of insulating layer. The ZnO layer was synthesized from organic precursor of zinc acetate layer. The optimization in the LB technique of fabrication process led to fabricate MIM diodes with high non-linearity and sensitivity. Moreover, the top and bottom electrodes as well as active area of the diodes were patterned using UV-tunneling conduction mechanism. The highest sensitivity of the diode was measured around 37 (A/W), and the rectification ratio was found around 36 under low applied bias at +/-100 mV.

  5. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation.

    Science.gov (United States)

    Zhou, Lin; Tan, Yingling; Ji, Dengxin; Zhu, Bin; Zhang, Pei; Xu, Jun; Gan, Qiaoqiang; Yu, Zongfu; Zhu, Jia

    2016-04-01

    The study of ideal absorbers, which can efficiently absorb light over a broad range of wavelengths, is of fundamental importance, as well as critical for many applications from solar steam generation and thermophotovoltaics to light/thermal detectors. As a result of recent advances in plasmonics, plasmonic absorbers have attracted a lot of attention. However, the performance and scalability of these absorbers, predominantly fabricated by the top-down approach, need to be further improved to enable widespread applications. We report a plasmonic absorber which can enable an average measured absorbance of ~99% across the wavelengths from 400 nm to 10 μm, the most efficient and broadband plasmonic absorber reported to date. The absorber is fabricated through self-assembly of metallic nanoparticles onto a nanoporous template by a one-step deposition process. Because of its efficient light absorption, strong field enhancement, and porous structures, which together enable not only efficient solar absorption but also significant local heating and continuous stream flow, plasmonic absorber-based solar steam generation has over 90% efficiency under solar irradiation of only 4-sun intensity (4 kW m(-2)). The pronounced light absorption effect coupled with the high-throughput self-assembly process could lead toward large-scale manufacturing of other nanophotonic structures and devices.

  6. HIGH EFFICIENCY DESULFURIZATION OF SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Anirban Mukherjee; Kwang-Bok Yi; Elizabeth J. Podlaha; Douglas P. Harrison

    2001-11-01

    Mixed metal oxides containing CeO{sub 2} and ZrO{sub 2} are being studied as high temperature desulfurization sorbents capable of achieving the DOE Vision 21 target of 1 ppmv of less H{sub 2}S. The research is justified by recent results in this laboratory that showed that reduced CeO{sub 2}, designated CeO{sub n} (1.5 < n < 2.0), is capable of achieving the 1 ppmv target in highly reducing gas atmospheres. The addition of ZrO{sub 2} has improved the performance of oxidation catalysts and three-way automotive catalysts containing CeO{sub 2}, and should have similar beneficial effects on CeO{sub 2} desulfurization sorbents. An electrochemical method for synthesizing CeO{sub 2}-ZrO{sub 2} has been developed and the products have been characterized by XRD and TEM during year 01. Nanocrystalline particles having a diameter of about 5 nm and containing from approximately 10 mol% to 80 mol% ZrO{sub 2} have been prepared. XRD showed the product to be a solid solution at low ZrO{sub 2} contents with a separate ZrO{sub 2} phase emerging at higher ZrO{sub 2} levels. Phase separation did not occur when the solid solutions were heat treated at 700 C. A flow reactor system constructed of quartz and teflon has been constructed, and a gas chromatograph equipped with a pulsed flame photometric detector (PFPD) suitable for measuring sub-ppmv levels of H{sub 2}S has been purchased with LSU matching funds. Preliminary desulfurization tests using commercial CeO{sub 2} and CeO{sub 2}-ZrO{sub 2} in highly reducing gas compositions has confirmed that CeO{sub 2}-ZrO{sub 2} is more effective than CeO{sub 2} in removing H{sub 2}S. At 700 C the product H{sub 2}S concentration using CeO{sub 2}-ZrO{sub 2} sorbent was near the 0.1 ppmv PFPD detection limit during the prebreakthrough period.

  7. Highly efficient induction of chirality in intramolecular

    Science.gov (United States)

    Cossio; Arrieta; Lecea; Alajarin; Vidal; Tovar

    2000-06-16

    Highly stereocontrolled, intramolecular [2 + 2] cycloadditions between ketenimines and imines leading to 1,2-dihydroazeto[2, 1-b]quinazolines have been achieved. The source of stereocontrol is a chiral carbon atom adjacent either to the iminic carbon or nitrogen atom. In the first case, the stereocontrol stems from the preference for the axial conformer in the first transition structure. In the second case, the origin of the stereocontrol lies on the two-electron stabilizing interaction between the C-C bond being formed and the sigma orbital corresponding to the polar C-X bond, X being an electronegative atom. These models can be extended to other related systems for predicting the stereochemical outcome in this intramolecular reaction.

  8. Compact and highly efficient laser pump cavity

    Science.gov (United States)

    Chang, Jim J.; Bass, Isaac L.; Zapata, Luis E.

    1999-01-01

    A new, compact, side-pumped laser pump cavity design which uses non-conventional optics for injection of laser-diode light into a laser pump chamber includes a plurality of elongated light concentration channels. In one embodiment, the light concentration channels are compound parabolic concentrators (CPC) which have very small exit apertures so that light will not escape from the pumping chamber and will be multiply reflected through the laser rod. This new design effectively traps the pump radiation inside the pump chamber that encloses the laser rod. It enables more uniform laser pumping and highly effective recycle of pump radiation, leading to significantly improved laser performance. This new design also effectively widens the acceptable radiation wavelength of the diodes, resulting in a more reliable laser performance with lower cost.

  9. High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation

    KAUST Repository

    Zhang, Huifang

    2017-11-30

    Recently, metasurfaces made up of dielectric structures have drawn enormous attentions in the optical and infrared regimes due to their high efficiency and designing freedom in manipulating light propagation. Such advantages can also be introduced to terahertz frequencies where efficient functional devices are still lacking. Here, polarization-dependent all-silicon terahertz dielectric metasurfaces are proposed and experimentally demonstrated. The metasurfaces are composed of anisotropic rectangular-shaped silicon pillars on silicon substrate. Each metasurface holds dual different functions depending on the incident polarizations. Furthermore, to suppress the reflection loss and multireflection effect in practical applications, a high-performance polarization-independent antireflection silicon pillar array is also proposed, which can be patterned at the other side of the silicon substrate. Such all-silicon dielectric metasurfaces are easy to fabricate and can be very promising in developing next-generation efficient, compact, and low-cost terahertz functional devices.

  10. High-Efficiency Nitride-Based Solid-State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Paul T. Fini; Shuji Nakamura

    2005-07-30

    In this final technical progress report we summarize research accomplished during Department of Energy contract DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. Two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and the Lighting Research Center at Rensselaer Polytechnic Institute (led by Dr. N. Narendran), pursued the goals of this contract from thin film growth, characterization, and packaging/luminaire design standpoints. The UCSB team initially pursued the development of blue gallium nitride (GaN)-based vertical-cavity surface-emitting lasers, as well as ultraviolet GaN-based light emitting diodes (LEDs). In Year 2, the emphasis shifted to resonant-cavity light emitting diodes, also known as micro-cavity LEDs when extremely thin device cavities are fabricated. These devices have very directional emission and higher light extraction efficiency than conventional LEDs. Via the optimization of thin-film growth and refinement of device processing, we decreased the total cavity thickness to less than 1 {micro}m, such that micro-cavity effects were clearly observed and a light extraction efficiency of over 10% was reached. We also began the development of photonic crystals for increased light extraction, in particular for so-called ''guided modes'' which would otherwise propagate laterally in the device and be re-absorbed. Finally, we pursued the growth of smooth, high-quality nonpolar a-plane and m-plane GaN films, as well as blue light emitting diodes on these novel films. Initial nonpolar LEDs showed the expected behavior of negligible peak wavelength shift with increasing drive current. M-plane LEDs in particular show promise, as unpackaged devices had unsaturated optical output power of {approx} 3 mW at 200 mA drive current. The LRC's tasks were aimed at developing the subcomponents necessary for packaging UCSB's light

  11. HIGH EFFICIENCY DESULFURIZATION OF SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Kwang-Bok Yi; Anirban Mukherjee; Elizabeth J. Podlaha; Douglas P. Harrison

    2004-03-01

    Mixed metal oxides containing ceria and zirconia have been studied as high temperature desulfurization sorbents with the objective of achieving the DOE Vision 21 target of 1 ppmv or less H{sub 2}S in the product gas. The research was justified by recent results in this laboratory that showed that reduced CeO{sub 2}, designated CeOn (1.5 < n < 2.0), is capable of achieving the 1 ppmv target in highly reducing gas atmospheres. The addition of ZrO{sub 2} has improved the performance of oxidation catalysts and three-way automotive catalysts containing CeO{sub 2}, and was postulated to have similar beneficial effects on CeO{sub 2} desulfurization sorbents. An electrochemical method for synthesizing CeO{sub 2}-ZrO{sub 2} mixtures was developed and the products were characterized by XRD and TEM during year 01. Nanocrystalline particles having a diameter of about 5 nm and containing from approximately 10 mol% to 80 mol% ZrO{sub 2} were prepared. XRD analysis showed the product to be a solid solution at low ZrO{sub 2} contents with a separate ZrO{sub 2} phase emerging at higher ZrO{sub 2} levels. Unfortunately, the quantity of CeO{sub 2}-ZrO{sub 2} that could be prepared electrochemically was too small to permit desulfurization testing. Also during year 01 a laboratory-scale fixed-bed reactor was constructed for desulfurization testing. All components of the reactor and analytical systems that were exposed to low concentrations of H{sub 2}S were constructed of quartz, Teflon, or silcosteel. Reactor product gas composition as a function of time was determined using a Varian 3800 gas chromatograph equipped with a pulsed flame photometric detector (PFPD) for measuring low H{sub 2}S concentrations from approximately 0.1 to 10 ppmv, and a thermal conductivity detector (TCD) for higher concentrations of H{sub 2}S. Larger quantities of CeO{sub 2}-ZrO{sub 2} mixtures from other sources, including mixtures prepared in this laboratory using a coprecipitation procedure, were obtained

  12. Fabrication of high aspect ratio through-wafer copper interconnects by reverse pulse electroplating

    International Nuclear Information System (INIS)

    Gu, Changdong; Zhang, Tong-Yi; Xu, Hui

    2009-01-01

    This study aims to fabricate high aspect ratio through-wafer copper interconnects by a simple reverse pulse electroplating technique. High aspect-ratio (∼18) through-wafer holes obtained by a two-step deep reactive ion etching (DRIE) process exhibit a taper profile, which might automatically optimize the local current density distribution during the electroplating process, thereby achieving void-free high aspect-ratio copper vias

  13. Fabrication of High-Frequency pMUT Arrays on Silicon Substrates

    DEFF Research Database (Denmark)

    Pedersen, Thomas; Zawada, Tomasz; Hansen, Karsten

    2010-01-01

    A novel technique based on silicon micromachining for fabrication of linear arrays of high-frequency piezoelectric micromachined ultrasound transducers (pMUT) is presented. Piezoelectric elements are formed by deposition of lead zirconia titanate into etched features of a silicon substrate...

  14. A simple method to fabricate electrochemical sensor systems with predictable high-redox amplification

    NARCIS (Netherlands)

    Straver, M.G.; Odijk, Mathieu; Olthuis, Wouter; van den Berg, Albert

    2012-01-01

    In this paper an easy to fabricate SU8/glass-based microfluidic sensor is described with two closely spaced parallel electrodes for highly selective measurements using the redox cycling effect. By varying the length of the microfluidic entrance channel, a diffusion barrier is created for non-cycling

  15. Pressure vessels fabricated with high-strength wire and electroformed nickel

    Science.gov (United States)

    Roth, B.

    1966-01-01

    Metal pressure vessels of various shapes having high strength-to-weight ratios are fabricated by using known techniques of filament winding and electroforming. This eliminates nonuniform wall thickness and unequal wall strength which resulted from welding formed vessel segments together.

  16. Fabrication and research of high purity germanium detectors with abrupt and thin diffusion layer

    International Nuclear Information System (INIS)

    Rodriguez Cabal, A. E.; Diaz Garcia, A.

    1997-01-01

    A different high purity germanium detector's fabrication method is described. A very thin diffusion film with an abrupt change of the type of conductivity is obtained. The fine diffusion layer thickness makes possibly their utilization in experimental systems in which all the data are elaborated directly on the computer. (author) [es

  17. Improved Structure and Fabrication of Large, High-Power KHPS Rotors - Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Corren, Dean [Verdant Power, Inc.; Colby, Jonathan [Verdant Power, Inc.; Adonizio, Mary Ann [Verdant Power, Inc.

    2013-01-29

    Verdant Power, Inc, working in partnership with the National Renewable Energy Laboratory (NREL), Sandia National Laboratories (SNL), and the University of Minnesota St. Anthony Falls Laboratory (SAFL), among other partners, used evolving Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) models and techniques to improve the structure and fabrication of large, high-power composite Kinetic Hydropower System (KHPS) rotor blades. The objectives of the project were to: design; analyze; develop for manufacture and fabricate; and thoroughly test, in the lab and at full scale in the water, the improved KHPS rotor blade.

  18. New fabrication of high-frequency (100-MHz) ultrasound PZT film kerfless linear array.

    Science.gov (United States)

    Zhu, Benpeng; Chan, Ngai Yui; Dai, Jiyan; Shung, K Kirk; Takeuchi, Shinichi; Zhou, Qifa

    2013-04-01

    The paper describes the design, fabrication, and measurements of a high-frequency ultrasound kerfless linear array prepared from hydrothermal lead zirconate titanate (PZT) thick film. The 15-μm hydrothermal PZT thick film with an area of 1 × 1 cm, obtained through a self-separation process from Ti substrate, was used to fabricate a 32-element 100-MHz kerfless linear array with photolithography. The bandwidth at -6 dB without matching layer, insertion loss around center frequency, and crosstalk between adjacent elements were measured to be 39%, -30 dB, and -15 dB, respectively.

  19. Reflecting and Polarizing Properties of Conductive Fabrics in Ultra-High Frequency Range

    Directory of Open Access Journals (Sweden)

    Oleg Kiprijanovič

    2015-09-01

    Full Text Available The system based on ultra-wide band (UWB signals was employed for qualitative estimation of attenuating, reflecting and polarizing properties of conductive fabrics, capable to prevent local static charge accumulation. Pulsed excitation of triangle monopole antenna of 6.5 cm height by rectangular electric pulses induced radiation of UWB signals with spectral density of power having maximum in ultra-high frequency (UHF range. The same antenna was used for the radiated signal receiving. Filters and amplifiers of different passband were employed to divide UHF range into subranges of 0.3-0.55 GHz, 0.55-1 GHz, 1-2 GHz and 2-4 GHz bands. The free space method, when conductive fabric samples of 50x50 cm2 were placed between transmitting and receiving antennas, was used to imitate a practical application. Received wideband signals corresponding to the defined range were detected by unbiased detectors. The fabrics made of two types of warps, containing different threads with conductive yarns, were investigated. It was estimated attenuation and reflective properties of the fabrics when electric field is collinear or perpendicular to thread direction. In the UHF range it was revealed good reflecting properties of the fabrics containing metallic component in the threads. The system has advantages but not without a certain shortcoming. Adapting it for specific tasks should lead to more effective usage, including yet unused properties of the UWB signals.

  20. Novel highly sensitive and wearable pressure sensors from conductive three-dimensional fabric structures

    International Nuclear Information System (INIS)

    Li, Jianfeng; Xu, Bingang

    2015-01-01

    Pressure sensors based on three-dimensional fabrics have all the excellent properties of the textile substrate: excellent compressibility, good air permeability and moisture transmission ability, which will find applications ranging from the healthcare industry to daily usage. In this paper, novel pressure sensors based on 3D spacer fabrics have been developed by a proposed multi-coating method. By this coating method, carbon black can be coated uniformly on the silicon elastomer which is attached and slightly cured on the 3D fabric surface beforehand. The as-made pressure sensors have good conductivity and can measure external pressure up to 283 kPa with an electrical conductivity range of 9.8 kΩ. The sensitivity of 3D fabric pressure sensors can be as high as 50.31×10 −3 kPa −1 , which is better than other textile based pressure sensors. When the as-made sensors are pressed, their electrical resistance will decrease because of more conductive connections and bending of fibers in the spacer layer. The sensing mechanism related to fiber bending has been explored by using an equivalent resistance model. The newly developed 3D sensor devices can be designed to exhibit different sensing performances by simply changing the structures of fabric substrate, which endows this kind of device more flexibility in related applications. (paper)

  1. Selectively Modulating Triplet Exciton Formation in Host Materials for Highly Efficient Blue Electrophosphorescence.

    Science.gov (United States)

    Li, Huanhuan; Bi, Ran; Chen, Ting; Yuan, Kai; Chen, Runfeng; Tao, Ye; Zhang, Hongmei; Zheng, Chao; Huang, Wei

    2016-03-23

    The concept of limiting the triplet exciton formation to fundamentally alleviate triplet-involved quenching effects is introduced to construct host materials for highly efficient and stable blue phosphorescent organic light-emitting diodes (PhOLEDs). The low triplet exciton formation is realized by small triplet exciton formation fraction and rate with high binding energy and high reorganization energy of triplet exciton. Demonstrated in two analogue molecules in conventional donor-acceptor molecule structure for bipolar charge injection and transport with nearly the same frontier orbital energy levels and triplet excited energies, the new concept host material shows significantly suppressed triplet exciton formation in the host to avoid quenching effects, leading to much improved device efficiencies and stabilities. The low-voltage-driving blue PhOLED devices exhibit maximum efficiencies of 43.7 cd A(-1) for current efficiency, 32.7 lm W(-1) for power efficiency, and 20.7% for external quantum efficiency with low roll-off and remarkable relative quenching effect reduction ratio up to 41%. Our fundamental solution for preventing quenching effects of long-lived triplet excitons provides exciting opportunities for fabricating high-performance devices using the advanced host materials with intrinsically small triplet exciton formation cross section.

  2. Fabrication of cermet bearings for the control system of a high temperature lithium cooled nuclear reactor

    Science.gov (United States)

    Yacobucci, H. G.; Heestand, R. L.; Kizer, D. E.

    1973-01-01

    The techniques used to fabricate cermet bearings for the fueled control drums of a liquid metal cooled reference-design reactor concept are presented. The bearings were designed for operation in lithium for as long as 5 years at temperatures to 1205 C. Two sets of bearings were fabricated from a hafnium carbide - 8-wt. % molybdenum - 2-wt. % niobium carbide cermet, and two sets were fabricated from a hafnium nitride - 10-wt. % tungsten cermet. Procedures were developed for synthesizing the material in high purity inert-atmosphere glove boxes to minimize oxygen content in order to enhance corrosion resistance. Techniques were developed for pressing cylindrical billets to conserve materials and to reduce machining requirements. Finishing was accomplished by a combination of diamond grinding, electrodischarge machining, and diamond lapping. Samples were characterized in respect to composition, impurity level, lattice parameter, microstructure and density.

  3. High-Strength Composite Fabric Tested at Structural Benchmark Test Facility

    Science.gov (United States)

    Krause, David L.

    2002-01-01

    Large sheets of ultrahigh strength fabric were put to the test at NASA Glenn Research Center's Structural Benchmark Test Facility. The material was stretched like a snare drum head until the last ounce of strength was reached, when it burst with a cacophonous release of tension. Along the way, the 3-ft square samples were also pulled, warped, tweaked, pinched, and yanked to predict the material's physical reactions to the many loads that it will experience during its proposed use. The material tested was a unique multi-ply composite fabric, reinforced with fibers that had a tensile strength eight times that of common carbon steel. The fiber plies were oriented at 0 and 90 to provide great membrane stiffness, as well as oriented at 45 to provide an unusually high resistance to shear distortion. The fabric's heritage is in astronaut space suits and other NASA programs.

  4. All passive architecture for high efficiency cascaded Raman conversion

    Science.gov (United States)

    Balaswamy, V.; Arun, S.; Chayran, G.; Supradeepa, V. R.

    2018-02-01

    Cascaded Raman fiber lasers have offered a convenient method to obtain scalable, high-power sources at various wavelength regions inaccessible with rare-earth doped fiber lasers. A limitation previously was the reduced efficiency of these lasers. Recently, new architectures have been proposed to enhance efficiency, but this came at the cost of enhanced complexity, requiring an additional low-power, cascaded Raman laser. In this work, we overcome this with a new, all-passive architecture for high-efficiency cascaded Raman conversion. We demonstrate our architecture with a fifth-order cascaded Raman converter from 1117nm to 1480nm with output power of ~64W and efficiency of 60%.

  5. High Efficiency Multijunction Solar Cells with Finely-Tuned Quantum Wells

    Science.gov (United States)

    Varonides, Argyrios C.

    The field of high efficiency (inorganic) photovoltaics (PV) is rapidly maturing in both efficiency goals and cover all cost reduction of fabrication. On one hand, know-how from space industry in new solar cell design configurations and on the other, fabrication cost reduction challenges for terrestrial uses of solar energy, have paved the way to a new generation of PV devices, capable of capturing most of the solar spectrum. For quite a while now, the goal of inorganic solar cell design has been the total (if possible) capture-absorption of the solar spectrum from a single solar cell, designed in such a way that a multiple of incident wavelengths could be simultaneously absorbed. Multi-absorption in device physics indicates parallel existence of different materials that absorb solar photons of different energies. Bulk solid state devices absorb at specific energy thresholds, depending on their respective energy gap (EG). More than one energy gaps would on principle offer new ways of photon absorption: if such a structure could be fabricated, two or more groups of photons could be absorbed simultaneously. The point became then what lattice-matched semiconductor materials could offer such multiple levels of absorption without much recombination losses. It was soon realized that such layer multiplicity combined with quantum size effects could lead to higher efficiency collection of photo-excited carriers. At the moment, the main reason that slows down quantum effect solar cell production is high fabrication cost, since it involves primarily expensive methods of multilayer growth. Existing multi-layer cells are fabricated in the bulk, with three (mostly) layers of lattice-matched and non-lattice-matched (pseudo-morphic) semiconductor materials (GaInP/InGaN etc), where photo-carrier collection occurs in the bulk of the base (coming from the emitter which lies right under the window layer). These carriers are given excess to conduction via tunnel junction (grown between

  6. Fabrication of high-aspect-ratio nano structures using a nano x-ray shadow mask

    International Nuclear Information System (INIS)

    Kim, Yong Chul; Lee, Seung S

    2008-01-01

    This paper describes a novel method for the fabrication of high-aspect-ratio nano structures (HAR-nano structures) using a nano x-ray shadow mask and deep x-ray lithography (DXRL). The nano x-ray shadow mask is fabricated by depositing an x-ray absorber layer (Au, 3 µm) onto the back side of a nano shadow mask. The nano shadow mask is produced with nano-sized apertures whose dimensions are reduced to several tens of nanometers by the accumulation of low-stress silicon nitride (Si x N y ) using the LPCVD process on the shadow mask. A shadow mask containing apertures with a size of 1 µm is fabricated on a bulk micromachined Si x N y membrane. The thickness of an absorber layer must be in the range of several tens of micrometers in order to obtain a contrast of more than 100 for the conventional DXRL process at the Pohang Light Source (PLS). However, a 3 µm thick absorber layer can provide a sufficient contrast if the modified DXRL of the central beam-stop method is used, which blocks high-energy x-rays. A nano shadow mask with 30 nm sized apertures is fabricated and a nano x-ray shadow mask with 250 nm sized apertures is fabricated by depositing a 3 µm thick absorber layer on a nano shadow mask with 500 nm sized apertures. HAR-nano structures (circles with a diameter of 420 nm and lines with a width of 274 nm) with aspect ratios of over 10:1 on a 3.2 µm SU-8 are successfully fabricated by using the nano x-ray shadow mask and the central beam-stop method

  7. Design, Fabrication, and Efficiency Study of a Novel Solar Thermal Water Heating System: Towards Sustainable Development

    Directory of Open Access Journals (Sweden)

    M. Z. H. Khan

    2016-01-01

    Full Text Available This paper investigated a novel loop-heat-pipe based solar thermal heat-pump system for small scale hot water production for household purposes. The effective use of solar energy is hindered by the intermittent nature of its availability, limiting its use and effectiveness in domestic and industrial applications especially in water heating. The easiest and the most used method is the conversion of solar energy into thermal energy. We developed a prototype solar water heating system for experimental test. We reported the investigation of solar thermal conversion efficiency in different seasons which is 29.24% in summer, 14.75% in winter, and 15.53% in rainy season. This paper also discusses the DC heater for backup system and the current by using thermoelectric generator which are 3.20 V in summer, 2.120 V in winter, and 1.843 V in rainy season. This solar water heating system is mostly suited for its ease of operation and simple maintenance. It is expected that such novel solar thermal technology would further contribute to the development of the renewable energy (solar driven heating/hot water service and therefore lead to significant environmental benefits.

  8. Research on shielding neutron efficiency of some boron-bearing fabric and transparent resin materials

    International Nuclear Information System (INIS)

    Chen Changmao; Liu Jinhua; Su Jingling; Wang Zheng

    1995-01-01

    The shielding neutron efficiency of boron-bearing materials developed recently is introduced. The thermal neutron shield ratios for two kinds of non-woven cloth with thickness of 58 mg/cm 2 and 153 mg/cm 2 are 51% and 79% respectively. Their mass attenuation coefficient for 0.186, 24.4 and 144 keV neutron are 1.56, 1.29 and 0.9 cm 2 /g respectively. The thermal neutron shield ratio is 85% for the natural boron-bearing transparent resin plate with the thickness of 0.59 g/cm 2 , and 97% for enriched boron or gadolinium bearing resin plate. The shield ratios of all three materials for 24.4 keV neutrons are 38%. The transparence of natural light for enriched boron-bearing resin plates shows no considerable change after they were exposed to thermal neutrons up to 6 Sv. After they were exposed up to 20 Sv, the transparence decreases to 50% but thermal neutron shield ratio does not change. The gadolinium-bearing plate has a very strong thermal neutron-capture gamma radiation and its dose-equivalent is greater than that of incident thermal neutrons

  9. Fabrication of Composite Filaments with High Dielectric Permittivity for Fused Deposition 3D Printing.

    Science.gov (United States)

    Wu, Yingwei; Isakov, Dmitry; Grant, Patrick S

    2017-10-23

    Additive manufacturing of complex structures with spatially varying electromagnetic properties can enable new applications in high-technology sectors such as communications and sensors. This work presents the fabrication method as well as microstructural and dielectric characterization of bespoke composite filaments for fused deposition modeling (FDM) 3D printing of microwave devices with a high relative dielectric permittivity ϵ = 11 in the GHz frequency range. The filament is composed of 32 vol % of ferroelectric barium titanate (BaTiO 3 ) micro-particles in a polymeric acrylonitrile butadiene styrene (ABS) matrix. An ionic organic ester surfactant was added during formulation to enhance the compatibility between the polymer and the BaTiO 3 . To promote reproducible and robust printability of the fabricated filament, and to promote plasticity, dibutyl phthalate was additionally used. The combined effect of 1 wt % surfactant and 5 wt % plasticizer resulted in a uniform, many hundreds of meters, continuous filament of commercial quality capable of many hours of uninterrupted 3D printing. We demonstrate the feasibility of using the high dielectric constant filament for 3D printing through the fabrication of a range of optical devices. The approach herein may be used as a guide for the successful fabrication of many types of composite filament with varying functions for a broad range of applications.

  10. Fabrication of Composite Filaments with High Dielectric Permittivity for Fused Deposition 3D Printing

    Directory of Open Access Journals (Sweden)

    Yingwei Wu

    2017-10-01

    Full Text Available Additive manufacturing of complex structures with spatially varying electromagnetic properties can enable new applications in high-technology sectors such as communications and sensors. This work presents the fabrication method as well as microstructural and dielectric characterization of bespoke composite filaments for fused deposition modeling (FDM 3D printing of microwave devices with a high relative dielectric permittivity ϵ = 11 in the GHz frequency range. The filament is composed of 32 vol % of ferroelectric barium titanate (BaTiO 3 micro-particles in a polymeric acrylonitrile butadiene styrene (ABS matrix. An ionic organic ester surfactant was added during formulation to enhance the compatibility between the polymer and the BaTiO 3 . To promote reproducible and robust printability of the fabricated filament, and to promote plasticity, dibutyl phthalate was additionally used. The combined effect of 1 wt % surfactant and 5 wt % plasticizer resulted in a uniform, many hundreds of meters, continuous filament of commercial quality capable of many hours of uninterrupted 3D printing. We demonstrate the feasibility of using the high dielectric constant filament for 3D printing through the fabrication of a range of optical devices. The approach herein may be used as a guide for the successful fabrication of many types of composite filament with varying functions for a broad range of applications.

  11. Perovskite Solar Cells for High-Efficiency Tandems

    Energy Technology Data Exchange (ETDEWEB)

    McGehee, Michael [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Buonassisi, Tonio [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-09-30

    organic cation evolution and moisture penetration to overcome the often-reported thermal and environmental instability of metal halide perovskites. Previous perovskite-containing tandems utilized molybdenum oxide (MoOx) as a sputter buffer layer, but this has raised concerns over long-term stability, as the iodide in the perovskite can chemically react with MoOx. Mixed-cation perovskite solar cells have consistently outperformed their single-cation counterparts. The first perovskite device to exceed 20% PCE was fabricated with a mixture of methylammonium (MA) and formamidinium (FA). Recent reports have shown promising results with the introduction of cesium mixtures, enabling high efficiencies with improved photo-, moisture, and thermal stability. The increased moisture and thermal stability are especially important as they broaden the parameter space for processing on top of the perovskite, enabling the deposition of metal oxide contacts through atomic layer deposition (ALD) or chemical vapor deposition (CVD) that may require elevated temperatures or water as a counter reagent. Both titanium dioxide (TiO2) and tin oxide (SnO2) have consistently proven to be effective electron-selective contacts for perovskite solar cells and both can be deposited via ALD at temperatures below 150 °C. We introduced a bilayer of SnO2 and zinc tin oxide (ZTO) that can be deposited by either low-temperature ALD or pulsed-CVD as a window layer with minimal parasitic absorption, efficient electron extraction, and sufficient buffer properties to prevent the organic and perovskite layers from damage during the subsequent sputter deposition of a transparent ITO electrode. We explored pulsed-CVD as a modified ALD process with a continual, rather than purely step-wise, growth component in order to considerably reduce the process time of the SnO2 deposition process and minimize potential perovskite degradation. These layers, when

  12. The design and fabrication of highly piezoelectric polymeric composites and their use in responsive devices

    Science.gov (United States)

    Baur, Cary Allen

    In this work, novel approaches to the design of highly piezoelectric and flexible polymer composites were explored. Diverging from past work focused on the addition of piezoelectric particles into polymer matrices, this research explores the ability to increase the piezoelectric performance of a host polymer through the incorporation of charge via polarizable, organic particles. The ability to insert charge into polymers, known as electrets, is well documented but widely considered impractical because of the low lifetime and temperature resistance of the inserted charge. Through the addition of particles that are polarizable, charge can be inserted into a system in a stable manner that results in highly charged materials with long lifetimes. Here, carbon structures, such as Buckminsterfullerenes (C60) and single-walled nanotubes (SWNTs), were composited into poly(vinylidene difluoride) at very low loading levels (0.05-0.25 wt%), resulting in the ability to insert stable charge into the system. We show that these highly charged systems can result in a doubling of the piezoelectric response of the host polymer when optimized. The low amount of nanoparticle filler required to improve these materials allows for the advantageous properties of the polymer matrix such as flexibility and compliance to be preserved, enabling highly piezoelectric and flexible system. This dissertation outlines research efforts towards the design and fabrication of 1) polymer composites with high piezoelectric response, 2) piezoelectric composites with increased operating temperatures, 3) motion control devices that incorporate piezoelectric materials and shape memory polymers, and 4) artificial muscles with piezoelectric polymers. The piezoelectric polymer composites developed in this work have potential to be utilized as highly efficient, flexible energy harvesters that can be used to capture ambient energy from environmental vibrations and motion from the human body. As actuators, these

  13. Fabrication of high-capacity polyelectrolyte brush-grafted porous AAO-silica composite membrane via RAFT polymerization.

    Science.gov (United States)

    Song, Cunfeng; Wang, Meijie; Liu, Xin; Wang, He; Chen, Xiaoling; Dai, Lizong

    2017-09-01

    Surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization has been utilized to fabricate high-capacity strong anion-exchange (AEX) membrane for the separation of protein. By means of RAFT polymerization, quaternized poly(3-(methacrylamidomethyl)-pyridine) brushes formed 3-dimensional nanolayers on the surface of porous anodic aluminum oxide (AAO)-silica composite membrane. The surface properties of the membranes were analyzed by SEM, water contact angle, ATR-FTIR, XPS and TGA. To investigate the adsorption performance, the new AEX membranes were applied to recover a model protein, ovalbumin (OVA). High adsorption capacities of 95.8mg/g membranes (static) and 65.3mg/g membranes (dynamic) were obtained at ambient temperature. In the further studies, up to 90% of the adsorbed OVA was efficiently eluted by using phosphate buffer-1M NaCl as elution medium. The successful separation of OVA with high purity from a mixture protein solution was also achieved by using the AEX membranes. The present study demonstrated that under mild reaction condition, RAFT polymerization can be used to fabricate ion-exchange membrane which has many remarkable features, such as high capacity and selectivity, easy elution and so on. Copyright © 2017. Published by Elsevier B.V.

  14. Stabilization void-fill encapsulation high-efficiency particulate filters

    International Nuclear Information System (INIS)

    Alexander, R.G.; Stewart, W.E.; Phillips, S.J.; Serkowski, M.M.; England, J.L.; Boynton, H.C.

    1994-05-01

    This report discusses high-efficiency particulate air (HEPA) filter systems that which are contaminated with radionuclides are part of the nuclear fuel processing systems conducted by the US Department of Energy (DOE) and require replacement and safe and efficient disposal for plant safety. Two K-3 HEPA filters were removed from service, placed burial boxes, buried, and safely and efficiently stabilized remotely which reduced radiation exposure to personnel and the environment

  15. Design of High Efficiency Illumination for LED Lighting

    OpenAIRE

    Chang, Yong-Nong; Cheng, Hung-Liang; Kuo, Chih-Ming

    2013-01-01

    A high efficiency illumination for LED street lighting is proposed. For energy saving, this paper uses Class-E resonant inverter as main electric circuit to improve efficiency. In addition, single dimming control has the best efficiency, simplest control scheme and lowest circuit cost among other types of dimming techniques. Multiple serial-connected transformers used to drive the LED strings as they can provide galvanic isolation and have the advantage of good current distribution against de...

  16. Efficiency Of Fabricated CNT-IPSFFe3O4 Nanocomposites In Removal Of Phenanthrenes From Contaminated Water

    Directory of Open Access Journals (Sweden)

    Shisia K. Silvanus

    2015-08-01

    Full Text Available The increased demand for oil to supply the needs of industry and motorists has exposed the water sources to one of the greatest threats. The removal of selective organic pollutants such as phenanthrenes in aqueous solution was investigated by adsorption process on fabricated CNT-IPSFFe3O4 nanocomposites. Characterization of products confirmed the synthesis of individual nanomaterials in the nanocomposites. The SEM image of prepared CNTs showed configuration with abundant threadlike entities whose TEMs further confirmed evidence for formation of MWCNTs. The silica modified magnetite Fe3O4.SiO2 nanoparticles had clear distinct and spherical shaped nanoparticles arranged in a 2-D closed packed manner. The XRD diffraction pattern showed well crystalline magnetite silica NPs with particle size 22.4 nm from the Debye-Scherrer equation. The SEMEDAX analysis revealed large quantities of dispersive magnetite NPs with moderately uniform and cubic structures in the fabricated CNT-IPSFFe3O4 nanocomposites. Adsorption parameters were optimized at adsorbent dose 6 mg20ml contact time 40 mins pHPZC 4.5 and pH 5. Adsorption kinetics followed pseudo second order kinetics while the adsorption isotherm favored was Freundlich isotherms. The nanocomposites were not largely affected by of counter PAHs as its removal efficiency was 42.2 and 40.8 in the presence of naphthalene and anthracene respectively. This was replicated in its application in phenanthrenes removal from industrial wastewater in which the nanocomposites showed 63 phenanthrenes removal. The trend for the studied desorption solvents was acetone hexane methanol which had 47 42 and 22 removal efficiency respectively. The adsorption-desorption cycles involved a small volume of phenanthrene concentrates being recovered with gradual decrease in adsorption capacity for phenanthrene from 33.46 - 28.68 gg after three cycles. The desorption efficiency of phenanthrenes increased from to 49.81 to 56.98 wt

  17. Fabrication of an infrared Shack-Hartmann sensor by combining high-speed single-point diamond milling and precision compression molding processes.

    Science.gov (United States)

    Zhang, Lin; Zhou, Wenchen; Naples, Neil J; Yi, Allen Y

    2018-05-01

    A novel fabrication method by combining high-speed single-point diamond milling and precision compression molding processes for fabrication of discontinuous freeform microlens arrays was proposed. Compared with slow tool servo diamond broaching, high-speed single-point diamond milling was selected for its flexibility in the fabrication of true 3D optical surfaces with discontinuous features. The advantage of single-point diamond milling is that the surface features can be constructed sequentially by spacing the axes of a virtual spindle at arbitrary positions based on the combination of rotational and translational motions of both the high-speed spindle and linear slides. By employing this method, each micro-lenslet was regarded as a microstructure cell by passing the axis of the virtual spindle through the vertex of each cell. An optimization arithmetic based on minimum-area fabrication was introduced to the machining process to further increase the machining efficiency. After the mold insert was machined, it was employed to replicate the microlens array onto chalcogenide glass. In the ensuing optical measurement, the self-built Shack-Hartmann wavefront sensor was proven to be accurate in detecting an infrared wavefront by both experiments and numerical simulation. The combined results showed that precision compression molding of chalcogenide glasses could be an economic and precision optical fabrication technology for high-volume production of infrared optics.

  18. Fabrication of Ni-Mn Microprobe Structure with Low Internal Stress and High Hardness by Employing DC Electrodeposition

    Directory of Open Access Journals (Sweden)

    Kuan-Hui Cheng

    2014-01-01

    Full Text Available Due to its widely tunable mechanical property and incompatibility with most solders, Ni-Mn alloy can become a viable candidate in the fabrication of testing probe for microelectronic devices. In this study, the electrodeposition of Ni-Mn alloy in nickel sulphamate electrolyte with the addition of manganese sulphate was investigated under direct current (DC power source. The effects of current density and Mn2+ concentration in the electrolyte on the coating composition, cathodic efficiency, microstructure and mechanical properties were explored. The results showed that the raise of the Mn2+ concentration in the electrolyte alone did not effectively increase the Mn content in the coating but reduce the cathodic efficiency. On the other hand, increasing the current density facilitated the codeposition of the Mn and rendered the crystallite from coarse columnar grain to the refined one. Thus, both hardness and internal stress of the coating increased. The fabrication of testing probes at 1 A/dm2 was shown to satisfy the high hardness, low internal stress, reasonable fatigue life, and nonsticking requirements for this microelectronic application.

  19. Streptavidin-functionalized capillary immune microreactor for highly efficient chemiluminescent immunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Yang Zhanjun [State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093 (China); College of Chemistry and Engineering, Yangzhou University, 88 South University Avenue, Yangzhou 225002 (China); Zong Chen [State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093 (China); Ju Huangxian, E-mail: hxju@nju.edu.cn [State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093 (China); Yan Feng, E-mail: yanfeng2007@sohu.com [Jiangsu Institute of Cancer Prevention and Cure, Nanjing 210009 (China)

    2011-11-07

    Highlights: {yields} A novel capillary immune microreactor was proposed for highly efficient flow-through chemiluminescent immunoassay. {yields} The microreactor was prepared by functionalizing capillary inner wall with streptavidin for capture of biotinylated antibody. {yields} The proposed immunoassay method showed wide dynamic range, good reproducibility, stability and practicality. {yields} The microreactor was low-cost and disposable, and possessed several advantages over the conventional immunoreactors. - Abstract: A streptavidin functionalized capillary immune microreactor was designed for highly efficient flow-through chemiluminescent (CL) immunoassay. The functionalized capillary could be used as both a support for highly efficient immobilization of antibody and a flow cell for flow-through immunoassay. The functionalized inner wall and the capture process were characterized using scanning electron microscopy. Compared to conventional packed tube or thin-layer cell immunoreactor, the proposed microreactor showed remarkable properties such as lower cost, simpler fabrication, better practicality and wider dynamic range for fast CL immunoassay with good reproducibility and stability. Using {alpha}-fetoprotein as model analyte, the highly efficient CL flow-through immunoassay system showed a linear range of 3 orders of magnitude from 0.5 to 200 ng mL{sup -1} and a low detection limit of 0.1 ng mL{sup -1}. The capillary immune microreactor could make up the shortcoming of conventional CL immunoreactors and provided a promising alternative for highly efficient flow-injection immunoassay.

  20. An efficient top-down approach for the fabrication of large-aspect-ratio g-C3N4 nanosheets with enhanced photocatalytic activities.

    Science.gov (United States)

    Tong, Jincheng; Zhang, Li; Li, Fei; Li, Mingming; Cao, Shaokui

    2015-09-28

    Graphitic carbon nitride (g-C3N4) nanosheets with large aspect ratios were fabricated from bulk g-C3N4 through an efficient top-down approach of moderate disintegration-exfoliation using diluted H2SO4 as an "efficient knife". By prior disintegration in a diluted H2SO4 solution, the exfoliation of bulk g-C3N4 was effectively accelerated. The as-prepared g-C3N4 nanosheets possess a two-dimensional (2D) thin-layer structure with seven-atom thickness, a large lateral size of about 1 μm, and a high specific surface area of 80 m(2) g(-1). Compared with the bulk precursor, the g-C3N4 nanosheets showed much higher efficiency of photogenerated charge transfer and separation, and consequently exhibited enhanced photocatalytic activity toward hydrogen evolution and pollutant decomposition under both full-sunlight and visible-light irradiation.

  1. Macroporous Double-Network Hydrogel for High-Efficiency Solar Steam Generation Under 1 sun Illumination.

    Science.gov (United States)

    Yin, Xiangyu; Zhang, Yue; Guo, Qiuquan; Cai, Xiaobing; Xiao, Junfeng; Ding, Zhifeng; Yang, Jun

    2018-04-04

    Solar steam generation is one of the most promising solar-energy-harvesting technologies to address the issue of water shortage. Despite intensive efforts to develop high-efficiency solar steam generation devices, challenges remain in terms of the relatively low solar thermal efficiency, complicated fabrications, high cost, and difficulty in scaling up. Herein, a double-network hydrogel with a porous structure (p-PEGDA-PANi) is demonstrated for the first time as a flexible, recyclable, and efficient photothermal platform for low-cost and scalable solar steam generation. As a novel photothermal platform, the p-PEGDA-PANi involves all necessary properties of efficient broadband solar absorption, exceptional hydrophilicity, low heat conductivity, and porous structure for high-efficiency solar steam generation. As a result, the hydrogel-based solar steam generator exhibits a maximum solar thermal efficiency of 91.5% with an evaporation rate of 1.40 kg m -2 h -1 under 1 sun illumination, which is comparable to state-of-the-art solar steam generation devices. Furthermore, the good durability and environmental stability of the p-PEGDA-PANi hydrogel enables a convenient recycling and reusing process toward real-life applications. The present research not only provides a novel photothermal platform for solar energy harvest but also opens a new avenue for the application of the hydrogel materials in solar steam generation.

  2. Single-Step Fabrication of High-Density Microdroplet Arrays of Low-Surface-Tension Liquids.

    Science.gov (United States)

    Feng, Wenqian; Li, Linxian; Du, Xin; Welle, Alexander; Levkin, Pavel A

    2016-04-01

    A facile approach for surface patterning that enables single-step fabrication of high-density arrays of low-surface-tension organic-liquid microdroplets is described. This approach enables miniaturized and parallel high-throughput screenings in organic solvents, formation of homogeneous arrays of hydrophobic nanoparticles, polymer micropads of specific shapes, and polymer microlens arrays. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Fabrication of highly porous biodegradable biomimetic nanocomposite as advanced bone tissue scaffold

    OpenAIRE

    Abdalla Abdal-hay; Khalil Abdelrazek Khalil; Abdel Salam Hamdy; Fawzi F. Al-Jassir

    2017-01-01

    Development of bioinspired or biomimetic materials is currently a challenge in the field of tissue regeneration. In-situ 3D biomimetic microporous nanocomposite scaffold has been developed using a simple lyophilization post hydrothermal reaction for bone healing applications. The fabricated 3D porous scaffold possesses advantages of good bonelike apatite particles distribution, thermal properties and high porous interconnected network structure. High dispersion bonelike apatite nanoparticles ...

  4. EVALUATION OF A LOW FRICTION - HIGH EFFICIENCY ROLLER BEARING ENGINE

    Energy Technology Data Exchange (ETDEWEB)

    Kolarik, Robert V. II; Shattuck, Charles W.; Copper, Anthony P.

    2009-06-30

    This Low Friction (High Efficiency Roller Bearing) Engine (LFE) report presents the work done by The Timken Company to conduct a technology demonstration of the benefits of replacing hydrodynamic bearings with roller bearings in the crankshaft and camshaft assemblies of an internal combustion engine for the purpose of collecting data sufficient to prove merit. The engines in the present study have been more extensively converted to roller bearings than any previous studies (40 needle roller bearings per engine) to gain understanding of the full potential of application of bearing technology. The project plan called for comparative testing of a production vehicle which was already respected for having demonstrated low engine friction levels with a rollerized version of that engine. Testing was to include industry standard tests for friction, emissions and fuel efficiency conducted on instrumented dynamometers. Additional tests for fuel efficiency, cold start resistance and other measures of performance were to be made in the actual vehicle. Comparative measurements of noise, vibration and harshness (NVH), were planned, although any work to mitigate the suspected higher NVH level in the rollerized engine was beyond the scope of this project. Timken selected the Toyota Avalon with a 3.5L V-6 engine as the test vehicle. In an attempt to minimize cost and fabrication time, a ‘made-from’ approach was proposed in which as many parts as possible would be used or modified from production parts to create the rollerized engine. Timken commissioned its test partner, FEV Engine Technology, to do a feasibility study in which they confirmed that using such an approach was possible to meet the required dimensional restrictions and tolerances. In designing the roller bearing systems for the crank and cam trains, Timken utilized as many production engine parts as possible. The crankshafts were produced from production line forgings, which use Timken steel, modified with special

  5. CuO Nanoflowers growing on Carbon Fiber Fabric for Flexible High-Performance Supercapacitors

    International Nuclear Information System (INIS)

    Xu, Weina; Dai, Shuge; Liu, Guanlin; Xi, Yi; Hu, Chenguo; Wang, Xue

    2016-01-01

    Graphical abstract: One of the best electrochemical performances for CuOelectrodes based supercapacitorisachieved by the CuOhierarchical structure growing on the carbon fiber fabric (CuO/CFF) in aqueous electrolyte. Meanwhile, a flexible solid-state supercapacitoris also fabricated as a promising candidate in energy storage for flexible, wearable and lightweight electronics. - Highlights: • The electrodes are fabricated by cupric oxide growing on carbon fiber fabric (CuO/CFF). • The capacitor performance is optimized by the mass loading. • One of the best electrochemical performances is achieved for CuO/CFF supercapacitor. • A highly flexible solid-state supercapacitor can power 3 light-emitting diodes for about 5 min. - Abstract: A hierarchical CuO nano-structure is prepared by directly growing CuO nanoflowers on carbon fiber fabric (CuO/CFF) via a hydrothermal method. The CuO/CFF is used as the electrode material of a supercapacitor for electrochemical energy storage. The supercapacitor displays superior electrochemical performance in aqueous electrolyte with the specific capacitance of 839.9 F/g at the scan rate of 1 mV/s, energy density of 10.05 Wh/kg and power density of 1798.5 W/kg, which are the highest values for the CuO/CFF electrodes. Moreover, a flexible symmetric solid-state symmetric supercapacitor is also fabricated by using the CuO/CFF as electrodes. The solid-state supercapacitor exhibits a specific capacitance of 131.34 F/g at the scan rate of 1 mV/s with a power density of 145.12 W/kg, and 95.8% capacitance retention after 2000 charge-discharge cycles.

  6. High annealing temperature induced rapid grain coarsening for efficient perovskite solar cells.

    Science.gov (United States)

    Cao, Xiaobing; Zhi, Lili; Jia, Yi; Li, Yahui; Cui, Xian; Zhao, Ke; Ci, Lijie; Ding, Kongxian; Wei, Jinquan

    2018-08-15

    Thermal annealing plays multiple roles in fabricating high quality perovskite films. Generally, it might result in large perovskite grains by elevating annealing temperature, but might also lead to decomposition of perovskite. Here, we study the effects of annealing temperature on the coarsening of perovskite grains in a temperature range from 100 to 250 °C, and find that the coarsening rate of the perovskite grain increase significantly with the annealing temperature. Compared with the perovskite films annealed at 100 °C, high quality perovskite films with large columnar grains are obtained by annealing perovskite precursor films at 250 °C for only 10 s. As a result, the power conversion efficiency of best solar cell increased from 12.35% to 16.35% due to its low recombination rate and high efficient charge transportation in solar cells. Copyright © 2018. Published by Elsevier Inc.

  7. Development of Highly Efficient Grafting Technique and Synthesis of Natural Polymer-Based Graft Adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Ueki, Y; Seko, N; Tamada, M [Japan Atomic Energy Agency, Quantum Beam Science Directorate, Takasaki (Japan)

    2012-09-15

    In the framework of the CRP, Japan has focused on the development of fibrous adsorbents for removal of toxic metal ions and recovery of significant metal ions from industrial wastewater and streaming water. Graft polymerization was carried out by using gamma irradiation facility and electron beam accelerator. Emulsion grafting is a novel topic for synthesis of metal ion adsorbents which are prepared from fibrous trunk polymers such as polyethylene fibre and biodegradable nonwoven fabrics. The emulsion grafting, where monomer micelles are dispersed in water in the presence of surfactant, is a highly efficient and economic grafting technique as compared to general organic solvent system. The resultant cotton-based adsorbent has high adsorption efficiency and high adsorption capacity for Hg, besides, it is biodegradable. Polylactic acid can also be used as a trunk material for the grafting. (author)

  8. Fabrication of silicon solar cell with >18% efficiency using spin-on-film processing for phosphorus diffusion and SiO{sub 2}/graded index TiO{sub 2} anti-reflective coating

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yi-Yu; Ho, Wen-Jeng, E-mail: wjho@ntut.edu.tw; Yeh, Chien-Wu

    2015-11-01

    Highlights: • Employed SOF technology for both phosphorus diffusion and multi-layer ARCs. • Optical properties of TiO{sub 2}, SiO{sub 2}, and SiO{sub 2}/TiO{sub 2}/TiO{sub 2} films are characterized. • Photovoltaic performances of the fabricated solar cells are measured and compared. • An impressive efficiency of 18.25% was obtained by using the SOF processes. - Abstract: This study employed spin-on film (SOF) technology for the fabrication of phosphorus diffusion and multi-layer anti-reflective coatings (ARCs) with a graded index on silicon (Si) wafers. Low cost and high efficiency solar cells are important issues for the operating cost of a photovoltaic system. SOF technology for the fabrication of solar cells can be for the achievement of this goal. This study succeeded in the application of SOF technology in the preparation of both phosphorus diffusion and SiO{sub 2}/graded index TiO{sub 2} ARCs for Si solar cells. Optical properties of TiO{sub 2}, SiO{sub 2}, and multi-layer SiO{sub 2}/TiO{sub 2} deposition by SOF are characterized. Electrical and optical characteristics of the fabricated solar cells are measured and compared. An impressive efficiency of 18.25% was obtained by using the SOF processes.

  9. Chitin/clay microspheres with hierarchical architecture for highly efficient removal of organic dyes.

    Science.gov (United States)

    Xu, Rui; Mao, Jie; Peng, Na; Luo, Xiaogang; Chang, Chunyu

    2018-05-15

    Numerous adsorbents have been reported for efficient removal of dye from water, but the high cost raw materials and complicated fabrication process limit their practical applications. Herein, novel nanocomposite microspheres were fabricated from chitin and clay by a simple thermally induced sol-gel transition. Clay nanosheets were uniformly embedded in a nanofiber weaved chitin microsphere matrix, leading to their hierarchical architecture. Benefiting from this unique structure, microspheres could efficiently remove methylene blue (MB) through a spontaneous physic-sorption process which fit well with pseudo-second-order and Langmuir isotherm models. The maximal values of adsorption capability obtained by calculation and experiment were 152.2 and 156.7 mg g -1 , respectively. Chitin/clay microspheres (CCM2) could remove 99.99% MB from its aqueous solution (10 mg g -1 ) within 20 min. These findings provide insight into a new strategy for fabrication of dye adsorbents with hierarchical structure from low cost raw materials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Junction and circuit fabrication

    International Nuclear Information System (INIS)

    Jackel, L.D.

    1980-01-01

    Great strides have been made in Josephson junction fabrication in the four years since the first IC SQUID meeting. Advances in lithography have allowed the production of devices with planar dimensions as small as a few hundred angstroms. Improved technology has provided ultra-high sensitivity SQUIDS, high-efficiency low-noise mixers, and complex integrated circuits. This review highlights some of the new fabrication procedures. The review consists of three parts. Part 1 is a short summary of the requirements on junctions for various applications. Part 2 reviews intergrated circuit fabrication, including tunnel junction logic circuits made at IBM and Bell Labs, and microbridge radiation sources made at SUNY at Stony Brook. Part 3 describes new junction fabrication techniques, the major emphasis of this review. This part includes a discussion of small oxide-barrier tunnel junctions, semiconductor barrier junctions, and microbridge junctions. Part 3 concludes by considering very fine lithography and limitations to miniaturization. (orig.)

  11. The Energy Efficiency of High Intensity Proton Driver Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Yakovlev, Vyacheslav [Fermilab; Grillenberger, Joachim [PSI, Villigen; Kim, Sang-Ho [ORNL, Oak Ridge (main); Seidel, Mike [PSI, Villigen; Yoshii, Masahito [JAEA, Ibaraki

    2017-05-01

    For MW class proton driver accelerators the energy efficiency is an important aspect; the talk reviews the efficiency of different accelerator concepts including s.c./n.c. linac, rapid cycling synchrotron, cyclotron; the potential of these concepts for very high beam power is discussed.

  12. Carbon nanotubes/cobalt sulfide composites as potential high-rate and high-efficiency supercapacitors

    Science.gov (United States)

    Chen, Chia-Ying; Shih, Zih-Yu; Yang, Zusing; Chang, Huan-Tsung

    2012-10-01

    We have prepared carbon nanotube (CNT)/cobalt sulfide (CoS) composites from cobalt nitrate, thioacetamide, and CNTs in the presence of poly(vinylpyrrolidone). CNT/CoS composites are deposited onto fluorine-doped tin oxide glass substrates and then subjected to simple annealing at 300 °C for 0.5 h to fabricate CNT/CoS electrodes. Data collected from Raman spectroscopy, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and d-spacing reveal the changes in the CoS structures and crystalline lattices after annealing. Cyclic voltammetry results reveal that the annealed CNT/CoS composite electrodes yield values of 2140 ± 90 and 1370 ± 50 F g-1 for specific capacitance at scan rates of 10 and 100 mV s-1, respectively. To the best of our knowledge, the annealed CNT/CoS composite electrodes provide higher specific capacitance relative to other reported ones at a scan rate of 100 mV s-1. CNT/CoS composite electrodes yield a power density of 62.4 kW kg-1 at a constant discharge current density of 217.4 A g-1. With such a high-rate capacity and power density, CNT/CoS composite supercapacitors demonstrate great potential as efficient energy storage devices.

  13. Flexible semi-transparent silicon (100) fabric with high-k/metal gate devices

    KAUST Repository

    Rojas, Jhonathan Prieto

    2013-01-07

    Can we build a flexible and transparent truly high performance computer? High-k/metal gate stack based metal-oxide-semiconductor capacitor devices are monolithically fabricated on industry\\'s most widely used low-cost bulk single-crystalline silicon (100) wafers and then released as continuous, mechanically flexible, optically semi-transparent and high thermal budget compatible silicon fabric with devices. This is the first ever demonstration with this set of materials which allows full degree of freedom to fabricate nanoelectronics devices using state-of-the-art CMOS compatible processes and then to utilize them in an unprecedented way for wide deployment over nearly any kind of shape and architecture surfaces. Electrical characterization shows uncompromising performance of post release devices. Mechanical characterization shows extra-ordinary flexibility (minimum bending radius of 1 cm) making this generic process attractive to extend the horizon of flexible electronics for truly high performance computers. Schematic and photograph of flexible high-k/metal gate MOSCAPs showing high flexibility and C-V plot showing uncompromised performance. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Fabrication of perforated isoporous membranes via a transfer-free strategy: enabling high-resolution separation of cells.

    Science.gov (United States)

    Ou, Yang; Lv, Chang-Jiang; Yu, Wei; Mao, Zheng-Wei; Wan, Ling-Shu; Xu, Zhi-Kang

    2014-12-24

    Thin perforated membranes with ordered pores are ideal barriers for high-resolution and high-efficiency selective transport and separation of biological species. However, for self-assembled thin membranes with a thickness less than several micrometers, an additional step of transferring the membranes onto porous supports is generally required. In this article, we present a facile transfer-free strategy for fabrication of robust perforated composite membranes via the breath figure process, and for the first time, demonstrate the application of the membranes in high-resolution cell separation of yeasts and lactobacilli without external pressure, achieving almost 100% rejection of yeasts and more than 70% recovery of lactobacilli with excellent viability. The avoidance of the transfer step simplifies the fabrication procedure of composite membranes and greatly improves the membrane homogeneity. Moreover, the introduction of an elastic triblock copolymer increases the interfacial strength between the membrane and the support, and allows the preservation of composite membranes in a dry state. Such perforated ordered membranes can also be applied in other size-based separation systems, enabling new opportunities in bioseparation and biosensors.

  15. MEMS based fabrication of high-frequency integrated inductors on Ni–Cu–Zn ferrite substrates

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, Ricky, E-mail: ricky.anthony@tyndall.ie; Wang, Ningning, E-mail: ning.wang@tyndall.ie; Casey, Declan P.; Ó Mathúna, Cian; Rohan, James F.

    2016-05-15

    A surface micro-machining process is described to realize planar inductors on ferrite (Ni{sub 0.49}Zn{sub 0.33}Cu{sub 0.18} Fe{sub 2}O{sub 4}) for high-frequency applications (<30 MHz). The highly resistive nature (~10{sup 8} Ω m) of the Ni–Cu–Zn substrate allows direct conductor patterning by electroplating of Cu windings through a photoresist mold on a sputtered seed layer and eliminates the need for a dielectric layer to isolate the windings from the bottom magnetic core. Measured inductances~367 nH (DC resistance~1.16 Ω and Q-value>14 at 30 MHz) and ~244 nH (DC resistance~0.86 Ω and Q-value~18 at 30 MHz) at 1 MHz for elongated racetrack (10.75 nH/mm{sup 2}) and racetrack inductors (12.5 nH/mm{sup 2}), respectively show good agreement with simulated finite element method analysis. This device can be integrated with power management ICs PMICs for cost-effective, high-performance realization of power-supply in package (PSiP) or on-chip (PSoC). This simple process lays the foundation for fabricating closed core ferrite nano-crystalline core micro-inductors. - Graphical abstract: Material Characterization of Ni–Cu–Zn ferrite substrate and process developed for on-ferrite integrated micro-inductor fabrication. - Highlights: • High-frequency microinductors have been fabricated on Ni-Cu-Zn substrates. • High-resistive ferrite substrates assist direct conductor patterning on the surface. • Uniform inductances ~365 nH over 30 MHz frequency have been achieved. • High Q-values (>18 at 30 MHz) attained are applicable for high-frequency DC–DC conversion applications. • The described process lays the foundation for fabricating closed core ferrite nano-crystalline core.

  16. Composite material having high thermal conductivity and process for fabricating same

    Science.gov (United States)

    Colella, Nicholas J.; Davidson, Howard L.; Kerns, John A.; Makowiecki, Daniel M.

    1998-01-01

    A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

  17. Fabrication of combinatorial nm-planar electrode array for high throughput evaluation of organic semiconductors

    International Nuclear Information System (INIS)

    Haemori, M.; Edura, T.; Tsutsui, K.; Itaka, K.; Wada, Y.; Koinuma, H.

    2006-01-01

    We have fabricated a combinatorial nm-planar electrode array by using photolithography and chemical mechanical polishing processes for high throughput electrical evaluation of organic devices. Sub-nm precision was achieved with respect to the average level difference between each pair of electrodes and a dielectric layer. The insulating property between the electrodes is high enough to measure I-V characteristics of organic semiconductors. Bottom-contact field-effect-transistors (FETs) of pentacene were fabricated on this electrode array by use of molecular beam epitaxy. It was demonstrated that the array could be used as a pre-patterned device substrate for high throughput screening of the electrical properties of organic semiconductors

  18. A novel method for the fabrication of a high-density carbon nanotube microelectrode array

    Directory of Open Access Journals (Sweden)

    Adam Khalifa

    2015-09-01

    Full Text Available We present a novel method for fabricating a high-density carbon nanotube microelectrode array (MEA chip. Vertically aligned carbon nanotubes (VACNTs were synthesized by microwave plasma-enhanced chemical vapor deposition and thermal chemical vapor deposition. The device was characterized using electrochemical experiments such as cyclic voltammetry, impedance spectroscopy and potential transient measurements. Through-silicon vias (TSVs were fabricated and partially filled with polycrystalline silicon to allow electrical connection from the high-density electrodes to a stimulator microchip. In response to the demand for higher resolution implants, we have developed a unique process to obtain a high-density electrode array by making the microelectrodes smaller in size and designing new ways of routing the electrodes to current sources. Keywords: Microelectrode array, Neural implant, Carbon nanotubes, Through-silicon via interconnects, Microfabrication

  19. Optimizing sol-gel infiltration for the fabrication of high-quality titania inverse opal and its photocatalytic activity

    International Nuclear Information System (INIS)

    Liu Weijie; Zou Bo; Zhao Jing; Cui Haining

    2010-01-01

    This article reports an optimized sol-gel opal infiltration technique for the fabrication of high-quality titania inverse opal. Different from previous reports, the presently proposed method is facile, efficient and suitable for other inorganic oxide. We have compared two different infiltration strategies and their influences on the structure, photonic properties and photocatalytic activity. The obtained titania inverse opal displays excellent photonic properties with photonic band gap at 320 nm and better photocatalytic effect, which is attributed to its high-quality inverse opal nanostructure. Reproducibility tests prove that the photocatalytic activity of the resultant titania inverse opal remains intact even after five repeated photocatalytic reactions under the same procedure and experimental conditions.

  20. Fabrication of high-performance fluorine doped-tin oxide film using flame-assisted spray deposition

    Energy Technology Data Exchange (ETDEWEB)

    Purwanto, Agus, E-mail: Aguspur@uns.ac.id [Department of Chemical Engineering, Faculty of Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A, Surakarta, Central Java 57126 (Indonesia); Widiyandari, Hendri [Department of Physics, Faculty of Mathematics and Natural Sciences, Diponegoro University, Jl. Prof. Dr. Soedarto, Tembalang, Semarang 50275 (Indonesia); Jumari, Arif [Department of Chemical Engineering, Faculty of Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A, Surakarta, Central Java 57126 (Indonesia)

    2012-01-01

    A high-performance fluorine-doped tin oxide (FTO) film was fabricated by flame-assisted spray deposition method. By varying the NH{sub 4}F doping concentration, the optimal concentration was established as 8 at.%. X-ray diffractograms confirmed that the as-grown FTO film was tetragonal SnO{sub 2}. In addition, the FTO film was comprised of nano-sized grains ranging from 40 to 50 nm. The heat-treated FTO film exhibited a sheet resistance of 21.8 {Omega}/{open_square} with an average transmittance of 81.9% in the visible region ({lambda} = 400-800 nm). The figures of merit shows that the prepared FTO film can be used for highly efficient dye-sensitized solar cells electrodes.

  1. High Efficiency Lighting with Integrated Adaptive Control (HELIAC), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project is the continued development of the High Efficiency Lighting with Integrated Adaptive Control (HELIAC) system. Solar radiation is not a viable...

  2. High Efficiency Lighting with Integrated Adaptive Control (HELIAC), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation of the proposed project is the development of High Efficiency Lighting with Integrated Adaptive Control (HELIAC) systems to drive plant growth. Solar...

  3. Efficiency of poly-generating high temperature fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Margalef, Pere; Brown, Tim; Brouwer, Jacob; Samuelsen, Scott [National Fuel Cell Research Center (NFCRC), University of California, Irvine, CA 92697-3550 (United States)

    2011-02-15

    High temperature fuel cells can be designed and operated to poly-generate electricity, heat, and useful chemicals (e.g., hydrogen) in a variety of configurations. The highly integrated and synergistic nature of poly-generating high temperature fuel cells, however, precludes a simple definition of efficiency for analysis and comparison of performance to traditional methods. There is a need to develop and define a methodology to calculate each of the co-product efficiencies that is useful for comparative analyses. Methodologies for calculating poly-generation efficiencies are defined and discussed. The methodologies are applied to analysis of a Hydrogen Energy Station (H{sub 2}ES) showing that high conversion efficiency can be achieved for poly-generation of electricity and hydrogen. (author)

  4. An Improved, Highly Efficient Method for the Synthesis of Bisphenols

    Directory of Open Access Journals (Sweden)

    L. S. Patil

    2011-01-01

    Full Text Available An efficient synthesis of bisphenols is described by condensation of substituted phenols with corresponding cyclic ketones in presence of cetyltrimethylammonium chloride and 3-mercaptopropionic acid as a catalyst in extremely high purity and yields.

  5. High Efficiency S-Band 20 Watt Amplifier

    Data.gov (United States)

    National Aeronautics and Space Administration — This project includes the design and build of a prototype 20 W, high efficiency, S-Band amplifier.   The design will incorporate the latest semiconductor technology,...

  6. High slope efficiency and high refractive index change in direct-written Yb-doped waveguide lasers with depressed claddings.

    Science.gov (United States)

    Palmer, Guido; Gross, Simon; Fuerbach, Alexander; Lancaster, David G; Withford, Michael J

    2013-07-15

    We report the first Yb:ZBLAN and Yb:IOG10 waveguide lasers fabricated by the fs-laser direct-writing technique. Pulses from a Titanium-Sapphire laser oscillator with 5.1 MHz repetition rate were utilized to generate negative refractive index modifications in both glasses. Multiple modifications were aligned in a depressed cladding geometry to create a waveguide. For Yb:ZBLAN we demonstrate high laser slope efficiency of 84% with a maximum output power of 170 mW. By using Yb:IOG10 a laser performance of 25% slope efficiency and 72 mW output power was achieved and we measured a remarkably high refractive index change exceeding Δn = 2.3 × 10(-2).

  7. High performance organic distributed Bragg reflector lasers fabricated by dot matrix holography.

    Science.gov (United States)

    Wan, Wenqiang; Huang, Wenbin; Pu, Donglin; Qiao, Wen; Ye, Yan; Wei, Guojun; Fang, Zongbao; Zhou, Xiaohong; Chen, Linsen

    2015-12-14

    We report distributed Bragg reflector (DBR) polymer lasers fabricated using dot matrix holography. Pairs of distributed Bragg reflector mirrors with variable mirror separations are fabricated and a novel energy transfer blend consisting of a blue-emitting conjugated polymer and a red-emitting one is spin-coated onto the patterned substrate to complete the device. Under optical pumping, the device emits sing-mode lasing around 622 nm with a bandwidth of 0.41 nm. The working threshold is as low as 13.5 μJ/cm² (~1.68 kW/cm²) and the measured slope efficiency reaches 5.2%. The distributed feedback (DFB) cavity and the DBR cavity resonate at the same lasing wavelength while the DFB laser shows a much higher threshold. We further show that flexible DBR lasers can be conveniently fabricated through the UV-imprinting technique by using the patterned silica substrate as the mold. Dot matrix holography represents a versatile approach to control the number, the size, the location and the orientation of DBR mirrors, thus providing great flexibility in designing DBR lasers.

  8. Highly efficient procedure for the transesterification of vegetable oil

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Xuezheng; Gao, Shan; He, Mingyuan [Shanghai Key Laboratory of Green Chemistry and Chemical Process, Department of Chemistry, East China Normal University, Shanghai 200062 (China); Yang, Jianguo [Shanghai Key Laboratory of Green Chemistry and Chemical Process, Department of Chemistry, East China Normal University, Shanghai 200062 (China); Energy Institute, Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2009-10-15

    The highly efficient procedure has been developed for the synthesis of biodiesel from vegetable oil and methanol. The KF/MgO has been selected as the most efficient catalyst for the reactions with the yield of 99.3%. Operational simplicity, without need of the purification of raw vegetable oil, low cost of the catalyst used, high activities, no saponification and reusability are the key features of this methodology. (author)

  9. The photonic nanowire: A highly efficient single-photon source

    DEFF Research Database (Denmark)

    Gregersen, Niels

    2014-01-01

    The photonic nanowire represents an attractive platform for a quantum light emitter. However, careful optical engineering using the modal method, which elegantly allows access to all relevant physical parameters, is crucial to ensure high efficiency.......The photonic nanowire represents an attractive platform for a quantum light emitter. However, careful optical engineering using the modal method, which elegantly allows access to all relevant physical parameters, is crucial to ensure high efficiency....

  10. Highly Efficient Spontaneous Emission from Self-Assembled Quantum Dots

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Lund-Hansen, Toke; Hvam, Jørn Märcher

    2006-01-01

    We present time resolved measurements of spontaneous emission (SE) from InAs/GaAs quantum dots (QDs). The measurements are interpreted using Fermi's Golden Rule and from this analysis we establish the parameters for high quantum efficiency.......We present time resolved measurements of spontaneous emission (SE) from InAs/GaAs quantum dots (QDs). The measurements are interpreted using Fermi's Golden Rule and from this analysis we establish the parameters for high quantum efficiency....

  11. Global climate change: Mitigation opportunities high efficiency large chiller technology

    Energy Technology Data Exchange (ETDEWEB)

    Stanga, M.V.

    1997-12-31

    This paper, comprised of presentation viewgraphs, examines the impact of high efficiency large chiller technology on world electricity consumption and carbon dioxide emissions. Background data are summarized, and sample calculations are presented. Calculations show that presently available high energy efficiency chiller technology has the ability to substantially reduce energy consumption from large chillers. If this technology is widely implemented on a global basis, it could reduce carbon dioxide emissions by 65 million tons by 2010.

  12. Low temperature high-mobility InZnO thin-film transistors fabricated by excimer laser annealing

    NARCIS (Netherlands)

    Fujii, M.; Ishikawa, Y.; Ishihara, R.; Van der Cingel, J.; Mofrad, M.R.T.; Horita, M.; Uraoka, Y.

    2013-01-01

    In this study, we successfully achieved a relatively high field-effect mobility of 37.7?cm2/Vs in an InZnO thin-film transistor (TFT) fabricated by excimer layer annealing (ELA). The ELA process allowed us to fabricate such a high-performance InZnO TFT at the substrate temperature less than 50?°C

  13. Time-Efficient High-Resolution Large-Area Nano-Patterning of Silicon Dioxide

    DEFF Research Database (Denmark)

    Lin, Li; Ou, Yiyu; Aagesen, Martin

    2017-01-01

    A nano-patterning approach on silicon dioxide (SiO2) material, which could be used for the selective growth of III-V nanowires in photovoltaic applications, is demonstrated. In this process, a silicon (Si) stamp with nanopillar structures was first fabricated using electron-beam lithography (EBL....... In addition, high time efficiency can be realized by one-spot electron-beam exposure in the EBL process combined with NIL for mass production. Furthermore, the one-spot exposure enables the scalability of the nanostructures for different application requirements by tuning only the exposure dose. The size...

  14. Palladium(0) NHC complexes: a new avenue to highly efficient phosphorescence.

    Science.gov (United States)

    Henwood, Adam F; Lesieur, Mathieu; Bansal, Ashu K; Lemaur, Vincent; Beljonne, David; Thompson, David G; Graham, Duncan; Slawin, Alexandra M Z; Samuel, Ifor D W; Cazin, Catherine S J; Zysman-Colman, Eli

    2015-05-01

    We report the first examples of highly luminescent di-coordinated Pd(0) complexes. Five complexes of the form [Pd(L)(L')] were synthesized, where L = IPr, SIPr or IPr* NHC ligands and L' = PCy 3 , or IPr and SIPr NHC ligands. The photophysical properties of these complexes were determined in degassed toluene solution and in the solid state and contrasted to the poorly luminescent reference complex [Pd(IPr)(PPh 3 )]. Organic light-emitting diodes were successfully fabricated but attained external quantum efficiencies of between 0.3 and 0.7%.

  15. High efficiency USC power plant - present status and future potential

    Energy Technology Data Exchange (ETDEWEB)

    Blum, R. [Faelleskemikerne I/S Fynsvaerket (Denmark); Hald, J. [Elsam/Elkraft/TU Denmark (Denmark)

    1998-12-31

    Increasing demand for energy production with low impact on the environment and minimised fuel consumption can be met with high efficient coal fired power plants with advanced steam parameters. An important key to this improvement is the development of high temperature materials with optimised mechanical strength. Based on the results of more than ten years of development a coal fired power plant with an efficiency above 50 % can now be realised. Future developments focus on materials which enable an efficiency of 52-55 %. (orig.) 25 refs.

  16. High efficiency USC power plant - present status and future potential

    Energy Technology Data Exchange (ETDEWEB)

    Blum, R [Faelleskemikerne I/S Fynsvaerket (Denmark); Hald, J [Elsam/Elkraft/TU Denmark (Denmark)

    1999-12-31

    Increasing demand for energy production with low impact on the environment and minimised fuel consumption can be met with high efficient coal fired power plants with advanced steam parameters. An important key to this improvement is the development of high temperature materials with optimised mechanical strength. Based on the results of more than ten years of development a coal fired power plant with an efficiency above 50 % can now be realised. Future developments focus on materials which enable an efficiency of 52-55 %. (orig.) 25 refs.

  17. Composite nanofibers for highly efficient photocatalytic degradation of organic dyes from contaminated water

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Alaa [Department of Materials and NanoPhysics, Royal Institute of Technology (KTH), 16440 Kista, Stockholm (Sweden); Mechanical Design and Production Engineering Department, Cairo University, 12613 Giza (Egypt); Production Engineering and Printing Technology Department, Akhbar El Yom Academy, 12655 Giza (Egypt); El-Sayed, Ramy [Experimental Cancer Medicine, KFC, Novum, Department of laboratory Medicine, Karolinska Institute, 14186 Stockholm (Sweden); Osman, T.A. [Mechanical Design and Production Engineering Department, Cairo University, 12613 Giza (Egypt); Toprak, M.S.; Muhammed, M. [Department of Materials and NanoPhysics, Royal Institute of Technology (KTH), 16440 Kista, Stockholm (Sweden); Uheida, A., E-mail: salam@kth.se [Department of Materials and NanoPhysics, Royal Institute of Technology (KTH), 16440 Kista, Stockholm (Sweden)

    2016-02-15

    In this study highly efficient photocatalyst based on composite nanofibers containing polyacrylonitrile (PAN), carbon nanotubes (CNT), and surface functionalized TiO{sub 2} nanoparticles was developed. The composite nanofibers were fabricated using electrospinning technique followed by chemical crosslinking. The surface modification and morphology changes of the fabricated composite nanofibers were examined through SEM, TEM, and FTIR analysis. The photocatalytic performance of the composite nanofibers for the degradation of model molecules, methylene blue and indigo carmine, under UV irradiation in aqueous solutions was investigated. The results demonstrated that high photodegradation efficiency was obtained in a short time and at low power intensity compared to other reported studies. The effective factors on the degradation of the dyes, such as the amount of catalyst, solution pH and irradiation time were investigated. The experimental kinetic data were fitted using pseudo-first order model. The effect of the composite nanofibers as individual components on the degradation efficiency of MB and IC was evaluated in order to understand the overall photodegradation mechanism. The results obtained showed that all the components possess significant effect on the photodegradation activity of the composite nanofibers. The stability studies demonstrated that the photodegradation efficiency can remain constant at the level of 99% after five consecutive cycles. - Highlights: • Develop effective photocatalyst based on PAN–CNT/TiO{sub 2}–NH{sub 2} composite nanofibers. • High photodegradation efficiency and fast kinetics was obtained. • Regeneration of the composite nanofibers allowed the reuse of these material. • Mechanism of the photocatalytic degradation was proposed. • The flexibility of the composite nanofibers allows use in a continuous operation mode.

  18. Composite nanofibers for highly efficient photocatalytic degradation of organic dyes from contaminated water

    International Nuclear Information System (INIS)

    Mohamed, Alaa; El-Sayed, Ramy; Osman, T.A.; Toprak, M.S.; Muhammed, M.; Uheida, A.

    2016-01-01

    In this study highly efficient photocatalyst based on composite nanofibers containing polyacrylonitrile (PAN), carbon nanotubes (CNT), and surface functionalized TiO 2 nanoparticles was developed. The composite nanofibers were fabricated using electrospinning technique followed by chemical crosslinking. The surface modification and morphology changes of the fabricated composite nanofibers were examined through SEM, TEM, and FTIR analysis. The photocatalytic performance of the composite nanofibers for the degradation of model molecules, methylene blue and indigo carmine, under UV irradiation in aqueous solutions was investigated. The results demonstrated that high photodegradation efficiency was obtained in a short time and at low power intensity compared to other reported studies. The effective factors on the degradation of the dyes, such as the amount of catalyst, solution pH and irradiation time were investigated. The experimental kinetic data were fitted using pseudo-first order model. The effect of the composite nanofibers as individual components on the degradation efficiency of MB and IC was evaluated in order to understand the overall photodegradation mechanism. The results obtained showed that all the components possess significant effect on the photodegradation activity of the composite nanofibers. The stability studies demonstrated that the photodegradation efficiency can remain constant at the level of 99% after five consecutive cycles. - Highlights: • Develop effective photocatalyst based on PAN–CNT/TiO 2 –NH 2 composite nanofibers. • High photodegradation efficiency and fast kinetics was obtained. • Regeneration of the composite nanofibers allowed the reuse of these material. • Mechanism of the photocatalytic degradation was proposed. • The flexibility of the composite nanofibers allows use in a continuous operation mode.

  19. Ultra-High Density Single Nanometer-Scale Anodic Alumina Nanofibers Fabricated by Pyrophosphoric Acid Anodizing

    Science.gov (United States)

    Kikuchi, Tatsuya; Nishinaga, Osamu; Nakajima, Daiki; Kawashima, Jun; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2014-12-01

    Anodic oxide fabricated by anodizing has been widely used for nanostructural engineering, but the nanomorphology is limited to only two oxides: anodic barrier and porous oxides. Therefore, the discovery of an additional anodic oxide with a unique nanofeature would expand the applicability of anodizing. Here we demonstrate the fabrication of a third-generation anodic oxide, specifically, anodic alumina nanofibers, by anodizing in a new electrolyte, pyrophosphoric acid. Ultra-high density single nanometer-scale anodic alumina nanofibers (1010 nanofibers/cm2) consisting of an amorphous, pure aluminum oxide were successfully fabricated via pyrophosphoric acid anodizing. The nanomorphologies of the anodic nanofibers can be controlled by the electrochemical conditions. Anodic tungsten oxide nanofibers can also be fabricated by pyrophosphoric acid anodizing. The aluminum surface covered by the anodic alumina nanofibers exhibited ultra-fast superhydrophilic behavior, with a contact angle of less than 1°, within 1 second. Such ultra-narrow nanofibers can be used for various nanoapplications including catalysts, wettability control, and electronic devices.

  20. A Highly Controllable Electrochemical Anodization Process to Fabricate Porous Anodic Aluminum Oxide Membranes

    Science.gov (United States)

    Lin, Yuanjing; Lin, Qingfeng; Liu, Xue; Gao, Yuan; He, Jin; Wang, Wenli; Fan, Zhiyong

    2015-12-01

    Due to the broad applications of porous alumina nanostructures, research on fabrication of anodized aluminum oxide (AAO) with nanoporous structure has triggered enormous attention. While fabrication of highly ordered nanoporous AAO with tunable geometric features has been widely reported, it is known that its growth rate can be easily affected by the fluctuation of process conditions such as acid concentration and temperature during electrochemical anodization process. To fabricate AAO with various geometric parameters, particularly, to realize precise control over pore depth for scientific research and commercial applications, a controllable fabrication process is essential. In this work, we revealed a linear correlation between the integrated electric charge flow throughout the circuit in the stable anodization process and the growth thickness of AAO membranes. With this understanding, we developed a facile approach to precisely control the growth process of the membranes. It was found that this approach is applicable in a large voltage range, and it may be extended to anodization of other metal materials such as Ti as well.

  1. High conversion efficiency and high radiation resistance InP solar cells

    International Nuclear Information System (INIS)

    Yamamoto, Akio; Itoh, Yoshio; Yamaguchi, Masafumi

    1987-01-01

    The fabrication of homojunction InP solar cells has been studied using impurity thermal diffusion, organometallic vapor phase epitaxy (OMVPE) and liquid phase epitaxy (LPE), and is discussed in this paper. Conversion efficiencies exceeding 20 % (AM1.5) are attained. These are the most efficient results ever reported for InP cells, and are comparable to those for GaAs cells. Electron and γ-ray irradiation studies have also been conducted for fabricated InP cells. The InP cells were found to have higher radiation resistance than GaAs cells. Through these studies, it has been demonstrated that the InP cells have excellent potential for space application. (author)

  2. Charge transport in highly efficient iridium cored electrophosphorescent dendrimers

    Science.gov (United States)

    Markham, Jonathan P. J.; Samuel, Ifor D. W.; Lo, Shih-Chun; Burn, Paul L.; Weiter, Martin; Bässler, Heinz

    2004-01-01

    Electrophosphorescent dendrimers are promising materials for highly efficient light-emitting diodes. They consist of a phosphorescent core onto which dendritic groups are attached. Here, we present an investigation into the optical and electronic properties of highly efficient phosphorescent dendrimers. The effect of dendrimer structure on charge transport and optical properties is studied using temperature-dependent charge-generation-layer time-of-flight measurements and current voltage (I-V) analysis. A model is used to explain trends seen in the I-V characteristics. We demonstrate that fine tuning the mobility by chemical structure is possible in these dendrimers and show that this can lead to highly efficient bilayer dendrimer light-emitting diodes with neat emissive layers. Power efficiencies of 20 lm/W were measured for devices containing a second-generation (G2) Ir(ppy)3 dendrimer with a 1,3,5-tris(2-N-phenylbenzimidazolyl)benzene electron transport layer.

  3. Very-High Efficiency, High Power Laser Diodes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — AdTech Photonics, in collaboration with the Center for Advanced Studies in Photonics Research (CASPR) at UMBC, is pleased to submit this proposal entitled ?Very-High...

  4. The waffle: a new photovoltaic diode geometry having high efficiency and backside contacts

    DEFF Research Database (Denmark)

    Leistiko, Otto

    1994-01-01

    By employing anisotropic etching techniques and advanced device processing it is possible to micromachine new types of mechanical, electronic, and optical devices of silicon, which have unique properties. In this paper the characteristics of a new type of photovoltaic diode fabricated employing...... these processing techniques are described. This novel device has not only high efficiency, but also has both contacts placed on the backside of the cell. The first devices which are only 50 mm in diameter are of relatively good quality with low leakage currents (nA), high breakdown voltages (80 V), and low series...... resistance (mohms). The measured efficiencies at AM 1.5 lie between 12 to 15% with short circuit currents of 25-30 mA/cm2, and open circuit voltages of 0.58-0.6 V...

  5. Field test of radioactive high efficiency filter and filter exchange techniques of fuel cycle examination facility

    International Nuclear Information System (INIS)

    Hwang, Yong Hwa; Lee, Hyung Kwon; Chun, Young Bum; Park, Dae Gyu; Ahn, Sang Bok; Chu, Yong Sun; Kim, Eun Ka.

    1997-12-01

    The development of high efficiency filter was started to protect human beings from the contamination of radioactive particles, toxic gases and bacillus, and its gradual performance increment led to the fabrication of Ultra Low Penetration Air Filter (ULPA) today. The application field of ULPA has been spread not only to the air conditioning of nuclear power facilities, semiconductor industries, life science, optics, medical care and general facilities but also to the core of ultra-precision facilities. Periodic performance test on the filters is essential to extend its life-time through effective maintenance. Especially, the bank test on HEPA filter of nuclear facilities handling radioactive materials is required for environmental safety. Nowadays, the bank test technology has been reached to the utilization of a minimized portable detecting instruments and the evaluation techniques can provide high confidence in the area of particle distribution and leakage test efficiency. (author). 16 refs., 13 tabs., 14 figs

  6. High power-efficient asynchronous SAR ADC for IoT devices

    Science.gov (United States)

    Zhang, Beichen; Yao, Bingbing; Liu, Liyuan; Liu, Jian; Wu, Nanjian

    2017-10-01

    This paper presents a power-efficient 100-MS/s, 10-bit asynchronous successive approximation register (SAR) ADC. It includes an on-chip reference buffer and the total power dissipation is 6.8 mW. To achieve high performance with high power-efficiency in the proposed ADC, bootstrapped switch, redundancy, set-and-down switching approach, dynamic comparator and dynamic logic techniques are employed. The prototype was fabricated using 65 nm standard CMOS technology. At a 1.2-V supply and 100 MS/s, the ADC achieves an SNDR of 56.2 dB and a SFDR of 65.1 dB. The ADC core consumes only 3.1 mW, resulting in a figure of merit (FOM) of 30.27 fJ/conversionstep and occupies an active area of only 0.009 mm2.

  7. High-efficiency terahertz polarization devices based on the dielectric metasurface

    Science.gov (United States)

    Zhou, Jian; Wang, JingJing; Guo, Kai; Shen, Fei; Zhou, Qingfeng; Zhiping yin; Guo, Zhongyi

    2018-02-01

    Metasurfaces are composed of the subwavelength structures, which can be used to manipulate the amplitude, phase, and polarization of incident electromagnetic waves efficiently. Here, we propose a novel type of dielectric metasurface based on crystal Si for realizing to manipulate the terahertz wave, in which by varying the geometric sizes of the Si micro-bricks, the transmitting phase of the terahertz wave can almost span over the entire 2π range for both of the x-polarization and y-polarization simultaneously, while keeping the similarly high-transmission amplitudes (over 90%). At the frequency of 1.0 THz, we have successfully designed a series of controllable THz devices, such as the polarization-dependent beam splitter, polarization-independent beam deflector and the focusing lenses based on the designed metasurfaces. Our designs are easy to fabricate and can be promising in developing high-efficiency THz functional devices.

  8. Fabrication of microlens array with controllable high NA and tailored optical characteristics using confined ink-jetting

    Science.gov (United States)

    Wang, Li; Luo, Yu; Liu, ZengZeng; Feng, Xueming; Lu, Bingheng

    2018-06-01

    This work presents an economic and controllable fabricating method of high numerical aperture (NA) polymer microlens array (MLA) based on ink-jetting technology. The MLAs are ink-jetted to align on micro platforms patterned flexible PDMS substrate. The shape of a sole lens is constructed by the ink-jetted pre-cured polymer volume confined on a micro platform. In this way, MLAs with targeted geometries-as well as tailored optical characteristics-can be printed, leading to freely designed optical properties. High NA from 0.446 to 0.885 and focal lengths between 99.26 μm and 39.45 μm are demonstrated, confirming theoretical predictions. Particularly, both the simulations and experimental measurements in optical properties are carried out, demonstrating that microlenses with shapes beyond a hemisphere (CA > 90°) exhibits higher light utilization efficiency and wider viewing angle. Meanwhile, the MLAs are fabricated on flexible PDMS substrates and can be attached to other curved surfaces for wider field of view imaging and higher sensitivity.

  9. CMOS sensors in 90 nm fabricated on high resistivity wafers: Design concept and irradiation results

    International Nuclear Information System (INIS)

    Rivetti, A.; Battaglia, M.; Bisello, D.; Caselle, M.; Chalmet, P.; Costa, M.; Demaria, N.; Giubilato, P.; Ikemoto, Y.; Kloukinas, K.; Mansuy, C.; Marchioro, A.; Mugnier, H.; Pantano, D.; Potenza, A.; Rousset, J.; Silvestrin, L.; Wyss, J.

    2013-01-01

    The LePix project aims at improving the radiation hardness and the readout speed of monolithic CMOS sensors through the use of standard CMOS technologies fabricated on high resistivity substrates. In this context, high resistivity means beyond 400Ωcm, which is at least one order of magnitude greater than the typical value (1–10Ωcm) adopted for integrated circuit production. The possibility of employing these lightly doped substrates was offered by one foundry for an otherwise standard 90 nm CMOS process. In the paper, the case for such a development is first discussed. The sensor design is then described, along with the key challenges encountered in fabricating the detecting element in a very deep submicron process. Finally, irradiation results obtained on test matrices are reported

  10. Biaxial Testing of High-Strength Fabric Improves Design of Inflatable Radar Domes

    Science.gov (United States)

    Krause, David L.; Bartolotta, Paul A.

    2001-01-01

    Large radar installations around the globe continuously watch the skies, unobtrusively providing security to the United States; these systems have been in active use for the past 50 years. Often situated in extreme environments, the radar dishes require shielding from the harsh elements. Air-inflated domes (over 100 ft in diameter) are one structure of choice for providing this essential protection. The radomes are constructed from highstrength fabric that is strong enough to withstand the inflation pressure, high winds, and other environmental loads, yet transparent to the microwave signal to allow precise radar mapping. This fabric is woven from glass fibers for high strength and embedded in a polytetrafluoroethylene resin matrix, akin to the nonstick coatings used on cookware.

  11. A monolithically fabricated gas chromatography separation column with an integrated high sensitivity thermal conductivity detector

    International Nuclear Information System (INIS)

    Kaanta, Bradley C; Zhang, Xin; Chen, Hua

    2010-01-01

    The monolithic integration of a high sensitivity detector with a gas chromatography (GC) separation column creates many potential advantages over the discrete components of a traditional chromatography system. In miniaturized high-speed GC systems, component interconnections can cause crucial errors and loss of fidelity during detection and analysis. A monolithically integrated device would eliminate the need to create helium-tight interconnections, which are bulky and labor intensive. Additionally, batch fabrication of integrated devices that no longer require expensive and fragile detectors can decrease the cost of micro GC systems through economies of scale. We present the design, fabrication and operation of a monolithic GC separation column and detector. Our device is able to separate nitrogen, methane and carbon dioxide within 30 s. This method of device integration could be applied to the existing wealth of column geometries and chemistries designed for specialized applications.

  12. Fabrication Technologies of the High Gradient Accelerator Structures at 100MV/m Range

    CERN Document Server

    Wang, Juwen; Van Pelt, John; Yoneda, Charles; Gudkov, D; Riddone, Germana; Higo, Toshiyasu; Takatomi, Toshikazu

    2010-01-01

    A CERN-SLAC-KEK collaboration on high gradient X-band structure research has been established in order to demonstrate the feasibility of the CLIC baseline design for the main linac stably operating at more than 100 MV/m loaded accelerating gradient. Several prototype CLIC structures were successfully fabricated and high power tested. They operated at 105 MV/m with a breakdown rate that meets the CLIC linear collider specifications of <5×10-7/pulse/m. This paper summarizes the fabrication technologies including the mechanical design, precision machining, chemical cleaning, diffusion bonding as well as vacuum baking and all related assembly technologies. Also, the tolerances control, tuning and RF characterization will be discussed

  13. Fabrication of high edge-definition steel-tape gratings for optical encoders

    Science.gov (United States)

    Ye, Guoyong; Liu, Hongzhong; Yan, Jiawei; Ban, Yaowen; Fan, Shanjin; Shi, Yongsheng; Yin, Lei

    2017-10-01

    High edge definition of a scale grating is the basic prerequisite for high measurement accuracy of optical encoders. This paper presents a novel fabrication method of steel tape gratings using graphene oxide nanoparticles as anti-reflective grating strips. Roll-to-roll nanoimprint lithography is adopted to manufacture the steel tape with hydrophobic and hydrophilic pattern arrays. Self-assembly technology is employed to obtain anti-reflective grating strips by depositing the graphene oxide nanoparticles on hydrophobic regions. A thin SiO2 coating is deposited on the grating to protect the grating strips. Experimental results confirm that the proposed fabrication process enables a higher edge definition in making steel-tape gratings, and the new steel tape gratings offer better performance than conventional gratings.

  14. High yield fabrication of chemically reduced graphene oxide field effect transistors by dielectrophoresis

    International Nuclear Information System (INIS)

    Joung, Daeha; Chunder, A; Zhai, Lei; Khondaker, Saiful I

    2010-01-01

    We demonstrate high yield fabrication of field effect transistors (FET) using chemically reduced graphene oxide (RGO) sheets. The RGO sheets suspended in water were assembled between prefabricated gold source and drain electrodes using ac dielectrophoresis. With the application of a backgate voltage, 60% of the devices showed p-type FET behavior, while the remaining 40% showed ambipolar behavior. After mild thermal annealing at 200 deg. C, all ambipolar RGO FET remained ambipolar with increased hole and electron mobility, while 60% of the p-type RGO devices were transformed to ambipolar. The maximum hole and electron mobilities of the devices were 4.0 and 1.5 cm 2 V -1 s -1 respectively. High yield assembly of chemically derived RGO FET will have significant impact in scaled up fabrication of graphene based nanoelectronic devices.

  15. Fabrication of novel cryomill for synthesis of high purity metallic nanoparticles

    Science.gov (United States)

    Kumar, Nirmal; Biswas, Krishanu

    2015-08-01

    The successful preparation of free standing metal nanoparticles with high purity in bulk quantity is the pre-requisite for any potential application. This is possible by using ball milling at cryogenic temperature. However, the most of ball mills available in the market do not allow preparing high purity metal nanoparticles by this route. In addition, it is not possible to carry out in situ measurements of process parameters as well as diagnostic of the process. In the present investigation, we present a detailed study on the fabrication of a cryomill, which is capable of avoiding contaminations in the product. It also provides in situ measurements and diagnostic of the low temperature milling process. Online monitoring of the milling temperature and observation of ball motion are the important aspects in the newly designed mill. The nanoparticles prepared using this fabricated mill have been found to be free standing and also free from contaminations.

  16. Easy fabrication of high quality nickel mold for deep polymer microfluidic channels

    International Nuclear Information System (INIS)

    Wong, Ten It; Tan, Christina Yuan Ling; Zhou, Xiaodong; Limantoro, Julian; Fong, Kin Phang; Quan, Chenggen; Sun, Ling Ling

    2016-01-01

    Mass fabrication of disposable microfluidic chips with hot embossing is a key technology for microfluidic chip based biosensors. In this work, we develop a new method of fabricating high quality and highly durable nickel molds for hot embossing polymer chips. The process involves the addition of a thick, patterned layer of negative photoresist AZ-125nxT to a 4″ silicon wafer, followed by nickel electroplating and delamination of the nickel mold. Our investigations found that compared to a pillar mask, a hole mask can minimize the diffraction effect in photolithography of a thick photoresist, reduce the adhesion of the AZ-125nxT to the photomask in photolithography, and facilitate clean development of the photoresist patterns. By optimizing the hot embossing and chip bonding parameters, microfluidic chips with deep channels are achieved. (paper)

  17. Anti-Solvent Crystallization Strategies for Highly Efficient Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Maria Konstantakou

    2017-09-01

    Full Text Available Solution-processed organic-inorganic halide perovskites are currently established as the hottest area of interest in the world of photovoltaics, ensuring low manufacturing cost and high conversion efficiencies. Even though various fabrication/deposition approaches and device architectures have been tested, researchers quickly realized that the key for the excellent solar cell operation was the quality of the crystallization of the perovskite film, employed to assure efficient photogeneration of carriers, charge separation and transport of the separated carriers at the contacts. One of the most typical methods in chemistry to crystallize a material is anti-solvent precipitation. Indeed, this classical precipitation method worked really well for the growth of single crystals of perovskite. Fortunately, the method was also effective for the preparation of perovskite films by adopting an anti-solvent dripping technique during spin-coating the perovskite precursor solution on the substrate. With this, polycrystalline perovskite films with pure and stable crystal phases accompanied with excellent surface coverage were prepared, leading to highly reproducible efficiencies close to 22%. In this review, we discuss recent results on highly efficient solar cells, obtained by the anti-solvent dripping method, always in the presence of Lewis base adducts of lead(II iodide. We present all the anti-solvents that can be used and what is the impact of them on device efficiencies. Finally, we analyze the critical challenges that currently limit the efficacy/reproducibility of this crystallization method and propose prospects for future directions.

  18. Fabrication of high aspect ratio TiO2 and Al2O3 nanogratings by atomic layer deposition

    DEFF Research Database (Denmark)

    Shkondin, Evgeniy; Takayama, Osamu; Michael-Lindhard, Jonas

    2016-01-01

    The authors report on the fabrication of TiO2 and Al2O3 nanostructured gratings with an aspect ratio of up to 50. The gratings were made by a combination of atomic layer deposition (ALD) and dry etch techniques. The workflow included fabrication of a Si template using deep reactive ion etching...... spectroscopy. The approach presented opens the possibility to fabricate high quality optical metamaterials and functional nanostructures....

  19. [Characteristics of phosphorus uptake and use efficiency of rice with high yield and high phosphorus use efficiency].

    Science.gov (United States)

    Li, Li; Zhang, Xi-Zhou; Li, Tinx-Xuan; Yu, Hai-Ying; Ji, Lin; Chen, Guang-Deng

    2014-07-01

    A total of twenty seven middle maturing rice varieties as parent materials were divided into four types based on P use efficiency for grain yield in 2011 by field experiment with normal phosphorus (P) application. The rice variety with high yield and high P efficiency was identified by pot experiment with normal and low P applications, and the contribution rates of various P efficiencies to yield were investigated in 2012. There were significant genotype differences in yield and P efficiency of the test materials. GRLu17/AiTTP//Lu17_2 (QR20) was identified as a variety with high yield and high P efficiency, and its yields at the low and normal rates of P application were 1.96 and 1.92 times of that of Yuxiang B, respectively. The contribution rate of P accumulation to yield was greater than that of P grain production efficiency and P harvest index across field and pot experiments. The contribution rates of P accumulation and P grain production efficiency to yield were not significantly different under the normal P condition, whereas obvious differences were observed under the low P condition (66.5% and 26.6%). The minimal contribution to yield was P harvest index (11.8%). Under the normal P condition, the contribution rates of P accumulation to yield and P harvest index were the highest at the jointing-heading stage, which were 93.4% and 85.7%, respectively. In addition, the contribution rate of P accumulation to grain production efficiency was 41.8%. Under the low P condition, the maximal contribution rates of P accumulation to yield and grain production efficiency were observed at the tillering-jointing stage, which were 56.9% and 20.1% respectively. Furthermore, the contribution rate of P accumulation to P harvest index was 16.0%. The yield, P accumulation, and P harvest index of QR20 significantly increased under the normal P condition by 20.6%, 18.1% and 18.2% respectively compared with that in the low P condition. The rank of the contribution rates of P

  20. High Efficiency of Two Efficient QSDC with Authentication Is at the Cost of Their Security

    International Nuclear Information System (INIS)

    Su-Juan, Qin; Qiao-Yan, Wen; Luo-Ming, Meng; Fu-Chen, Zhu

    2009-01-01

    Two efficient protocols of quantum secure direct communication with authentication [Chin. Phys. Lett. 25 (2008) 2354] were recently proposed by Liu et al. to improve the efficiency of two protocols presented in [Phys. Rev. A 75 (2007) 026301] by four Pauli operations. We show that the high efficiency of the two protocols is at the expense of their security. The authenticator Trent can reach half the secret by a particular attack strategy in the first protocol. In the second protocol, not only Trent but also an eavesdropper outside can elicit half-information about the secret from the public declaration

  1. Decay Time Measurement for Different Energy Depositions of Plastic Scintillator Fabricated by High Temperature Polymerization Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheol Ho; Son, Jaebum; Lee, Sangmin; Kim, Tae Hoon; Kim, Yong-Kyun [Hanyang University, Seoul (Korea, Republic of)

    2016-10-15

    Plastic scintillators are based on organic fluorite. They have many advantages such as fast rise and decay time, high optical transmission, ease of manufacturing, low cost, and large available size. For these reasons they are widely used for particle identification. Also, protection of people against a variety of threats (such as nuclear, radiological, and explosive) represents a true challenge along with the continuing development of science and technology. The plastic scintillator is widely used in various devise, which serves for nuclear, photonics, quantum, and high-energy physics. The plastic scintillator is probably the most widely used organic detector, and polystyrene is one of the most widely used materials in the making of the plastic scintillator detector. Thus, a styrene monomer as a solvent was used to fabricate the plastic scintillator by using high temperature polymerization reaction, and then the emission wavelength and the decay times for different energy depositions were measured by using the fabricated plastic scintillator. A plastic scintillator was fabricated to measure decay time for different energy depositions using the high temperature polymerization. Emission wavelength was measured of 426.05 nm to confirm a scintillator property using the spectrophotometer. Four gamma-ray sources (Cs-137, Co-60, Na-22, and Ba-133) were used to evaluate effect for decay time of different energy depositions. The average decay time of the fabricated plastic scintillator was measured to approximately 4.72 ns slightly higher more than commercial plastic scintillator. In future, light output and linearity will be measured to evaluate other property compared with the commercial scintillator.

  2. Fabrication and testing of the Nb3Sn superconductor for High-Field Test Facility (HFTF)

    International Nuclear Information System (INIS)

    Spencer, C.; Adam, E.; Gregory, E.; Marancik, W.; Sanger, P.; Scanlan, R.; Cornish, D.

    1979-01-01

    A 5000 A-12 T fully stable Nb 3 Sn superconductor has to be produced for the insert magnet of the high-field test facility being built at Lawrence Livermore Laboratory. A process is described which permits the fabrication of long lengths of large fully transposed monolithic superconductors containing in excess of 100,000 filaments of Nb 3 Sn. Measurements of critical current as a function of magnetic field and longitudinal strain on prototype samples are reported

  3. A high extinction ratio THz polarizer fabricated by double-bilayer wire grid structure

    Science.gov (United States)

    Lu, Bin; Wang, Haitao; Shen, Jun; Yang, Jun; Mao, Hongyan; Xia, Liangping; Zhang, Weiguo; Wang, Guodong; Peng, Xiao-Yu; Wang, Deqiang

    2016-02-01

    We designed a new style of broadband terahertz (THz) polarizer with double-bilayer wire grid structure by fabricating them on both sides of silicon substrate. This THz polarizer shows a high average extinction ratio of 60dB in 0.5 to 2.0 THz frequency range and the maximum of 87 dB at 1.06 THz, which is much higher than that of conventional monolayer wire grid polarizers and single-bilayer wire grid ones.

  4. Recent advances in high-temperature superconductor wire fabrication and applications development

    International Nuclear Information System (INIS)

    Hull, J.R.; Uherka, K.L.

    1992-01-01

    In this paper, recent advances in fabrication of high-temperature superconductor wires are summarized and detailed discussion is provided on developments in near- and intermediate-term applications. Near-term applications, using presently obtainable current densities, include liquid-nitrogen depth sensors, cryostat current leads, and magnetic bearings. Intermediate-term applications, using current densities expected to be available in the near future, include fault-current limiters and short transmission lines

  5. Decay Time Measurement for Different Energy Depositions of Plastic Scintillator Fabricated by High Temperature Polymerization Reaction

    International Nuclear Information System (INIS)

    Lee, Cheol Ho; Son, Jaebum; Lee, Sangmin; Kim, Tae Hoon; Kim, Yong-Kyun

    2016-01-01

    Plastic scintillators are based on organic fluorite. They have many advantages such as fast rise and decay time, high optical transmission, ease of manufacturing, low cost, and large available size. For these reasons they are widely used for particle identification. Also, protection of people against a variety of threats (such as nuclear, radiological, and explosive) represents a true challenge along with the continuing development of science and technology. The plastic scintillator is widely used in various devise, which serves for nuclear, photonics, quantum, and high-energy physics. The plastic scintillator is probably the most widely used organic detector, and polystyrene is one of the most widely used materials in the making of the plastic scintillator detector. Thus, a styrene monomer as a solvent was used to fabricate the plastic scintillator by using high temperature polymerization reaction, and then the emission wavelength and the decay times for different energy depositions were measured by using the fabricated plastic scintillator. A plastic scintillator was fabricated to measure decay time for different energy depositions using the high temperature polymerization. Emission wavelength was measured of 426.05 nm to confirm a scintillator property using the spectrophotometer. Four gamma-ray sources (Cs-137, Co-60, Na-22, and Ba-133) were used to evaluate effect for decay time of different energy depositions. The average decay time of the fabricated plastic scintillator was measured to approximately 4.72 ns slightly higher more than commercial plastic scintillator. In future, light output and linearity will be measured to evaluate other property compared with the commercial scintillator

  6. Fabrication method to create high-aspect ratio pillars for photonic coupling of board level interconnects

    Science.gov (United States)

    Debaes, C.; Van Erps, J.; Karppinen, M.; Hiltunen, J.; Suyal, H.; Last, A.; Lee, M. G.; Karioja, P.; Taghizadeh, M.; Mohr, J.; Thienpont, H.; Glebov, A. L.

    2008-04-01

    An important challenge that remains to date in board level optical interconnects is the coupling between the optical waveguides on printed wiring boards and the packaged optoelectronics chips, which are preferably surface mountable on the boards. One possible solution is the use of Ball Grid Array (BGA) packages. This approach offers a reliable attachment despite the large CTE mismatch between the organic FR4 board and the semiconductor materials. Collimation via micro-lenses is here typically deployed to couple the light vertically from the waveguide substrate to the optoelectronics while allowing for a small misalignment between board and package. In this work, we explore the fabrication issues of an alternative approach in which the vertical photonic connection between board and package is governed by a micro-optical pillar which is attached both to the board substrate and to the optoelectronic chips. Such an approach allows for high density connections and small, high-speed detector footprints while maintaining an acceptable tolerance between board and package. The pillar should exhibit some flexibility and thus a high-aspect ratio is preferred. This work presents and compares different fabrication methods and applies different materials for such high-aspect ratio pillars. The different fabrication methods are: photolithography, direct laser writing and deep proton writing. The selection of optical materials that was investigated is: SU8, Ormocers, PU and a multifunctional acrylate polymer. The resulting optical pillars have diameters ranging from 20um up to 80um, with total heights ranging between 30um and 100um (symbol for micron). The aspect-ratio of the fabricated structures ranges from 1.5 to 5.

  7. Size and Aging Effects on Antimicrobial Efficiency of Silver Nanoparticles Coated on Polyamide Fabrics Activated by Atmospheric DBD Plasma.

    Science.gov (United States)

    Zille, Andrea; Fernandes, Margarida M; Francesko, Antonio; Tzanov, Tzanko; Fernandes, Marta; Oliveira, Fernando R; Almeida, Luís; Amorim, Teresa; Carneiro, Noémia; Esteves, Maria F; Souto, António P

    2015-07-01

    This work studies the surface characteristics, antimicrobial activity, and aging effect of plasma-pretreated polyamide 6,6 (PA66) fabrics coated with silver nanoparticles (AgNPs), aiming to identify the optimum size of nanosilver exhibiting antibacterial properties suitable for the manufacture of hospital textiles. The release of bactericidal Ag(+) ions from a 10, 20, 40, 60, and 100 nm AgNPs-coated PA66 surface was a function of the particles' size, number, and aging. Plasma pretreatment promoted both ionic and covalent interactions between AgNPs and the formed oxygen species on the fibers, favoring the deposition of smaller-diameter AgNPs that consequently showed better immediate and durable antimicrobial effects against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria. Surprisingly, after 30 days of aging, a comparable bacterial growth inhibition was achieved for all of the fibers treated with AgNPs silver. Overall, the results suggest that instead of reducing the size of the AgNPs, which is associated with higher toxicity, similar long-term effects can be achieved with larger NPs (40-60 nm), even in lower concentrations. Because the antimicrobial efficiency of AgNPs larger than 30 nm is mainly ruled by the release of Ag(+) over time and not by the size and number of the AgNPs, this parameter is crucial for the development of efficient antimicrobial coatings on plasma-treated surfaces and contributes to the safety and durability of clothing used in clinical settings.

  8. Efficiency enhancement of perovskite solar cells by fabricating as-prepared film before sequential spin-coating procedure

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jiajia [Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of material science and technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100 (China); Tao, Hai jun, E-mail: taohaijun@nuaa.edu.cn [Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of material science and technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100 (China); Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu (China); Chen, Shanlong; Tan, Bin [Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of material science and technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100 (China); Zhou, Ning [Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhu, Lumin; Zhao, Yuan [Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of material science and technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100 (China); Wang, Yuqiao [Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Tao, Jie [Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of material science and technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100 (China)

    2016-05-15

    Graphical abstract: Schematic illustration of modified two-step spin-coating procedure for MAPbI{sub 3} perovskite thin films. - Highlights: • An as-prepared CH{sub 3}NH{sub 3}PbI{sub 3} and PbI{sub 2} film was introduced before the traditional two-step process. • Smooth morphology and trace amount of remaining PbI{sub 2} benefit the performance of solar cell. • The optimal as-prepared film introduced improves the efficiency of CH{sub 3}NH{sub 3}PbI{sub 3} solar cells from 9.11% to 11.16%. - Abstract: Sequential spin-coating procedure is a widely adopted strategy to prepare CH{sub 3}NH{sub 3}PbI{sub 3} on mesostructured TiO{sub 2} electrode for organolead halide perovskite-based solar cells. However, this method suffers from the rough surface and excessively residual PbI{sub 2} in the resulting perovskite film, deteriorating the device performance seriously. Herein, a facial modified sequential solution deposition method, by introducing an as-prepared CH{sub 3}NH{sub 3}PbI{sub 3} and PbI{sub 2} film before the traditional two-step process, was proposed to fabricate the perovskite-based solar cell with smooth morphology and trace amount of remaining PbI{sub 2}. The optimal as-prepared film introduced improves the efficiency of CH{sub 3}NH{sub 3}PbI{sub 3} solar cells from 9.11% to 11.16%. The enhancement of device performance can be attributed to the increased light absorption ability and decreased recombination rate of carriers in CH{sub 3}NH{sub 3}PbI{sub 3} absorber.

  9. Efficiency enhancement of perovskite solar cells by fabricating as-prepared film before sequential spin-coating procedure

    International Nuclear Information System (INIS)

    Jiang, Jiajia; Tao, Hai jun; Chen, Shanlong; Tan, Bin; Zhou, Ning; Zhu, Lumin; Zhao, Yuan; Wang, Yuqiao; Tao, Jie

    2016-01-01

    Graphical abstract: Schematic illustration of modified two-step spin-coating procedure for MAPbI 3 perovskite thin films. - Highlights: • An as-prepared CH 3 NH 3 PbI 3 and PbI 2 film was introduced before the traditional two-step process. • Smooth morphology and trace amount of remaining PbI 2 benefit the performance of solar cell. • The optimal as-prepared film introduced improves the efficiency of CH 3 NH 3 PbI 3 solar cells from 9.11% to 11.16%. - Abstract: Sequential spin-coating procedure is a widely adopted strategy to prepare CH 3 NH 3 PbI 3 on mesostructured TiO 2 electrode for organolead halide perovskite-based solar cells. However, this method suffers from the rough surface and excessively residual PbI 2 in the resulting perovskite film, deteriorating the device performance seriously. Herein, a facial modified sequential solution deposition method, by introducing an as-prepared CH 3 NH 3 PbI 3 and PbI 2 film before the traditional two-step process, was proposed to fabricate the perovskite-based solar cell with smooth morphology and trace amount of remaining PbI 2 . The optimal as-prepared film introduced improves the efficiency of CH 3 NH 3 PbI 3 solar cells from 9.11% to 11.16%. The enhancement of device performance can be attributed to the increased light absorption ability and decreased recombination rate of carriers in CH 3 NH 3 PbI 3 absorber.

  10. A highly efficient microfluidic nano biochip based on nanostructured nickel oxide.

    Science.gov (United States)

    Ali, Md Azahar; Solanki, Pratima R; Patel, Manoj K; Dhayani, Hemant; Agrawal, Ved Varun; John, Renu; Malhotra, Bansi D

    2013-04-07

    We present results of the studies relating to fabrication of a microfluidic biosensor chip based on nickel oxide nanorods (NRs-NiO) that is capable of directly measuring the concentration of total cholesterol in human blood through electrochemical detection. Using this chip we demonstrate, with high reliability and in a time efficient manner, the detection of cholesterol present in buffer solutions at clinically relevant concentrations. The microfluidic channel has been fabricated onto a nickel oxide nanorod-based electrode co-immobilized with cholesterol esterase (ChEt) and cholesterol oxidase (ChOx) that serves as the working electrode. Bare indium tin oxide served as the counter electrode. A Ag/AgCl wire introduced to the outlet of the microchannel acts as a reference electrode. The fabricated NiO nanorod-based electrode has been characterized using X-ray diffraction, Raman spectroscopy, HR-TEM, FT-IR, UV-visible spectroscopy and electrochemical techniques. The presented NRs-NiO based microfluidic sensor exhibits linearity in the range of 1.5-10.3 mM, a high sensitivity of 0.12 mA mM(-1) cm(-2) and a low value of 0.16 mM of the Michaelis-Menten constant (Km).

  11. Highly efficient red phosphorescent organic light-emitting diodes based on solution processed emissive layer

    International Nuclear Information System (INIS)

    Liu, Baiquan; Xu, Miao; Tao, Hong; Ying, Lei; Zou, Jianhua; Wu, Hongbin; Peng, Junbiao

    2013-01-01

    Highly efficient red phosphorescent organic polymer light-emitting diodes (PhOLEDs) were fabricated based on a solution-processed small-molecule host 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP) by doping an iridium complex, tris(1-(2,6-dimethylphenoxy)-4-(4-chlorophenyl)phthalazine)iridium (III) (Ir(MPCPPZ) 3 ). A hole blocking layer 1,3,5-tri(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl (TPBI) with a function of electron transport was thermally deposited onto the top of CBP layer. The diode with the structure of ITO/PEDOT:PSS (50 nm)/CBP:Ir(MPCPPZ) 3 (55 nm)/TPBI (30 nm)/Ba (4 nm)/Al (120 nm) showed an external quantum efficiency (QE ext ) of 19.3% and luminous efficiency (LE) of 18.3 cd/A at a current density of 0.16 mA/cm 2 , and Commission International de I'Eclairage (CIE) coordinates of (0.607, 0.375). It was suggested that the diodes using TPBI layer exhibited nearly 100% internal quantum efficiency and one order magnitude enhanced LE or QE ext efficiencies. -- Highlights: • Efficient red PhOLEDs based on a solution-processed small-molecule host were fabricated. • By altering volume ratio of chloroform/chlorobenzene solvent, we got best film quality of CBP. • EQE of the diode was 19.3%, indicating nearly 100% internal quantum yield was achieved

  12. Characterization of high-purity niobium structures fabricated using the electron beam melting process

    Science.gov (United States)

    Terrazas Najera, Cesar Adrian

    Additive Manufacturing (AM) refers to the varied set of technologies utilized for the fabrication of complex 3D components from digital data in a layer-by-layer fashion. The use of these technologies promises to revolutionize the manufacturing industry. The electron beam melting (EBM) process has been utilized for the fabrication of fully dense near-net-shape components from various metallic materials. This process, catalogued as a powder bed fusion technology, consists of the deposition of thin layers (50 - 120microm) of metallic powder particles which are fused by the use of a high energy electron beam and has been commercialized by Swedish company Arcam AB. Superconducting radio frequency (SRF) cavities are key components that are used in linear accelerators and other light sources for studies of elemental physics. Currently, cavity fabrication is done by employing different forming processes including deep-drawing and spinning. In both of the latter techniques, a feedstock high-purity niobium sheet with a thickness ranging from 3-4 mm is mechanically deformed and shaped into the desired geometry. In this manner, half cavities are formed that are later joined by electron beam welding (EBW). The welding step causes variability in the shape of the cavity and can also introduce impurities at the surface of the weld interface. The processing route and the purity of niobium are also of utmost importance since the presence of impurities such as inclusions or defects can be detrimental for the SRF properties of cavities. The focus of this research was the use of the EBM process in the manufacture of high purity niobium parts with potential SRF applications. Reactor grade niobium was plasma atomized and used as the precursor material for fabrication using EBM. An Arcam A2 system was utilized for the fabrication. The system had all internal components of the fabrication chamber replaced and was cleaned to prevent contamination of niobium powder. A mini-vat, developed at

  13. Self-assembled hierarchical nanostructures for high-efficiency porous photonic crystals.

    Science.gov (United States)

    Passoni, Luca; Criante, Luigino; Fumagalli, Francesco; Scotognella, Francesco; Lanzani, Guglielmo; Di Fonzo, Fabio

    2014-12-23

    The nanoscale modulation of material properties such as porosity and morphology is used in the natural world to mold the flow of light and to obtain structural colors. The ability to mimic these strategies while adding technological functionality has the potential to open up a broad array of applications. Porous photonic crystals are one such technological candidate, but have typically underachieved in terms of available materials, structural and optical quality, compatibility with different substrates (e.g., silicon, flexible organics), and scalability. We report here an alternative fabrication method based on the bottom-up self-assembly of elementary building blocks from the gas phase into high surface area photonic hierarchical nanostructures at room temperature. Periodic refractive index modulation is achieved by stacking layers with different nanoarchitectures. High-efficiency porous Bragg reflectors are successfully fabricated with sub-micrometer thick films on glass, silicon, and flexible substrates. High diffraction efficiency broadband mirrors (R≈1), opto-fluidic switches, and arrays of photonic crystal pixels with size<10 μm are demonstrated. Possible applications in filtering, sensing, electro-optical modulation, solar cells, and photocatalysis are envisioned.

  14. Design and fabrication of a high-damage threshold infrared Smattt interferometer

    International Nuclear Information System (INIS)

    Hammond, R.B.; Gibbs, A.J.

    1981-01-01

    It has been shown that a Smartt interferometer may be used as a very precise alignment tool for infrared lasers. This interferometer may also be used effectively to investigate the phase front of a laser pulse. To use this tool for applications to high-power, fast-pulse laser systems such as Helios and Antares; however, it has been necessary to fabricate a structure with the unique optical characteristics of the Smartt interferometer combined with a very high optical-damage threshold. We have been successful in this effort by utilizing the high technology, process control, and unique properties of semiconductor-grade, single-crystal Si

  15. High-Efficiency Colloidal Quantum Dot Photovoltaics via Robust Self-Assembled Monolayers

    KAUST Repository

    Kim, Gi-Hwan

    2015-11-11

    © 2015 American Chemical Society. The optoelectronic tunability offered by colloidal quantum dots (CQDs) is attractive for photovoltaic applications but demands proper band alignment at electrodes for efficient charge extraction at minimal cost to voltage. With this goal in mind, self-assembled monolayers (SAMs) can be used to modify interface energy levels locally. However, to be effective SAMs must be made robust to treatment using the various solvents and ligands required for to fabricate high quality CQD solids. We report robust self-assembled monolayers (R-SAMs) that enable us to increase the efficiency of CQD photovoltaics. Only by developing a process for secure anchoring of aromatic SAMs, aided by deposition of the SAMs in a water-free deposition environment, were we able to provide an interface modification that was robust against the ensuing chemical treatments needed in the fabrication of CQD solids. The energy alignment at the rectifying interface was tailored by tuning the R-SAM for optimal alignment relative to the CQD quantum-confined electron energy levels. This resulted in a CQD PV record power conversion efficiency (PCE) of 10.7% with enhanced reproducibility relative to controls.

  16. The emerging High Efficiency Video Coding standard (HEVC)

    International Nuclear Information System (INIS)

    Raja, Gulistan; Khan, Awais

    2013-01-01

    High definition video (HDV) is becoming popular day by day. This paper describes the performance analysis of latest upcoming video standard known as High Efficiency Video Coding (HEVC). HEVC is designed to fulfil all the requirements for future high definition videos. In this paper, three configurations (intra only, low delay and random access) of HEVC are analyzed using various 480p, 720p and 1080p high definition test video sequences. Simulation results show the superior objective and subjective quality of HEVC

  17. Design and Fabrication of a Piezoresistive Pressure Sensor for Ultra High Temperature Environment

    International Nuclear Information System (INIS)

    Zhao, L B; Zhao, Y L; Jiang, Z D

    2006-01-01

    In order to solve the pressure measurement problem in the harsh environment, a piezoresistive pressure sensor has been developed, which can be used under high temperature above 200 deg. C and is able to endure instantaneous ultra high temperature (2000deg. C, duration≤2s) impact. Based on the MEMS (Micro Electro-Mechanical System) and integrated circuit technology, the piezoresistive pressure sensor's sensitive element was fabricated and constituted by silicon substrate, a thin buried silicon dioxide layer, four p-type resistors in the measuring circuit layer by boron ion implantation and photolithography, the top SiO2 layer by oxidation, stress matching Si3N4 layer, and a Ti-Pt-Au beam lead layer for connecting p-type resistors by sputtering. In order to decrease the leak-current influence to sensor in high temperature above 200deg. C, the buried SiO2 layer with the thickness 367 nm was fabricated by the SIMOX (Separation by Implantation of Oxygen) technology, which was instead of p-n junction to isolate the upper measuring circuit layer from Si substrate. In order to endure instantaneous ultra high temperature impact, the mechanical structure with cantilever and diaphragm and transmitting beam was designed. By laser welding and high temperature packaging technology, the high temperature piezoresistive pressure sensor was fabricated with range of 120MPa. After the thermal compensation, the sensor's thermal zero drift k 0 and thermal sensitivity drift k s were easy to be less than 3x10 -4 FS/deg. C. The experimental results show that the developed piezoresistive pressure sensor has good performances under high temperature and is able to endure instantaneous ultra high temperature impact, which meets the requirements of modern industry, such as aviation, oil, engine, etc

  18. High quality, high efficiency welding technology for nuclear power plants

    International Nuclear Information System (INIS)

    Aoki, Shigeyuki; Nagura, Yasumi

    1996-01-01

    For nuclear power plants, it is required to ensure the safety under the high reliability and to attain the high rate of operation. In the manufacture and installation of the machinery and equipment, the welding techniques which become the basis exert large influence to them. For the purpose of improving joint performance and excluding human errors, welding heat input and the number of passes have been reduced, the automation of welding has been advanced, and at present, narrow gap arc welding and high energy density welding such as electron beam welding and laser welding have been put to practical use. Also in the welding of pipings, automatic gas metal arc welding is employed. As for the welding of main machinery and equipment, there are the welding of the joints that constitute pressure boundaries, the build-up welding on the internal surfaces of pressure vessels for separating primary water from them, and the sealing welding of heating tubes and tube plates in steam generators. These weldings are explained. The welding of pipings and the state of development and application of new welding methods are reported. (K.I.)

  19. High-concentration planar microtracking photovoltaic system exceeding 30% efficiency

    Science.gov (United States)

    Price, Jared S.; Grede, Alex J.; Wang, Baomin; Lipski, Michael V.; Fisher, Brent; Lee, Kyu-Tae; He, Junwen; Brulo, Gregory S.; Ma, Xiaokun; Burroughs, Scott; Rahn, Christopher D.; Nuzzo, Ralph G.; Rogers, John A.; Giebink, Noel C.

    2017-08-01

    Prospects for concentrating photovoltaic (CPV) power are growing as the market increasingly values high power conversion efficiency to leverage now-dominant balance of system and soft costs. This trend is particularly acute for rooftop photovoltaic power, where delivering the high efficiency of traditional CPV in the form factor of a standard rooftop photovoltaic panel could be transformative. Here, we demonstrate a fully automated planar microtracking CPV system 660× concentration ratio over a 140∘ full field of view. In outdoor testing over the course of two sunny days, the system operates automatically from sunrise to sunset, outperforming a 17%-efficient commercial silicon solar cell by generating >50% more energy per unit area per day in a direct head-to-head competition. These results support the technical feasibility of planar microtracking CPV to deliver a step change in the efficiency of rooftop solar panels at a commercially relevant concentration ratio.

  20. Efficient Unsteady Flow Visualization with High-Order Access Dependencies

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiang; Guo, Hanqi; Yuan, Xiaoru

    2016-04-19

    We present a novel high-order access dependencies based model for efficient pathline computation in unsteady flow visualization. By taking longer access sequences into account to model more sophisticated data access patterns in particle tracing, our method greatly improves the accuracy and reliability in data access prediction. In our work, high-order access dependencies are calculated by tracing uniformly-seeded pathlines in both forward and backward directions in a preprocessing stage. The effectiveness of our proposed approach is demonstrated through a parallel particle tracing framework with high-order data prefetching. Results show that our method achieves higher data locality and hence improves the efficiency of pathline computation.

  1. Fabrication and characterization of high quality n-ZnO/p-GaN heterojunction light emission diodes

    International Nuclear Information System (INIS)

    Zheng Hao; Mei, Z.X.; Zeng, Z.Q.; Liu, Y.Z.; Guo, L.W.; Jia, J.F.; Xue, Q.K.; Zhang, Z.; Du, X.L.

    2011-01-01

    High quality single crystalline n-type ZnO film was grown on p-type GaN substrate using molecular beam epitaxy. Transmission electron microscopy reveals a sharp ZnO/GaN interface. Light-emitting diode was fabricated from this heterostructure, and a turn-on voltage of ∼ 3.4 V was demonstrated. We found that the emission peak shifts from violet (430 nm) to near-ultraviolet (375 nm) when the driving current increases from 0.38 mA to 3.08 mA. This intriguing phenomenon can be understood by charged carrier's radical recombination occurring at both sides of the device, and the current enhancement of ZnO emission efficiency.

  2. Efficient estimation for ergodic diffusions sampled at high frequency

    DEFF Research Database (Denmark)

    Sørensen, Michael

    A general theory of efficient estimation for ergodic diffusions sampled at high fre- quency is presented. High frequency sampling is now possible in many applications, in particular in finance. The theory is formulated in term of approximate martingale estimating functions and covers a large class...

  3. High-Efficiency Klystron Design for the CLIC Project

    CERN Document Server

    Mollard, Antoine; Peauger, Franck; Plouin, Juliette; Beunas, Armel; Marchesin, Rodolphe

    2017-01-01

    The CLIC project requests new type of RF sources for the high power conditioning of the accelerating cavities. We are working on the development of a new kind of high-efficiency klystron to fulfill this need. This work is performed under the EuCARD-2 European program and involves theoretical and experimental study of a brand new klystron concept.

  4. Efficient estimation for high similarities using odd sketches

    DEFF Research Database (Denmark)

    Mitzenmacher, Michael; Pagh, Rasmus; Pham, Ninh Dang

    2014-01-01

    . This means that Odd Sketches provide a highly space-efficient estimator for sets of high similarity, which is relevant in applications such as web duplicate detection, collaborative filtering, and association rule learning. The method extends to weighted Jaccard similarity, relevant e.g. for TF-IDF vector...... and web duplicate detection tasks....

  5. Design of High Efficiency Illumination for LED Lighting

    Directory of Open Access Journals (Sweden)

    Yong-Nong Chang

    2013-01-01

    Full Text Available A high efficiency illumination for LED street lighting is proposed. For energy saving, this paper uses Class-E resonant inverter as main electric circuit to improve efficiency. In addition, single dimming control has the best efficiency, simplest control scheme and lowest circuit cost among other types of dimming techniques. Multiple serial-connected transformers used to drive the LED strings as they can provide galvanic isolation and have the advantage of good current distribution against device difference. Finally, a prototype circuit for driving 112 W LEDs in total was built and tested to verify the theoretical analysis.

  6. High-Efficient Low-Cost Photovoltaics Recent Developments

    CERN Document Server

    Petrova-Koch, Vesselinka; Goetzberger, Adolf

    2009-01-01

    A bird's-eye view of the development and problems of recent photovoltaic cells and systems and prospects for Si feedstock is presented. High-efficient low-cost PV modules, making use of novel efficient solar cells (based on c-Si or III-V materials), and low cost solar concentrators are in the focus of this book. Recent developments of organic photovoltaics, which is expected to overcome its difficulties and to enter the market soon, are also included.

  7. Wearable supercapacitors on polyethylene terephthalate fabrics with good wash fastness and high flexibility

    Science.gov (United States)

    Wang, Guixia; Babaahmadi, Vahid; He, Nanfei; Liu, Yixin; Pan, Qin; Montazer, Majid; Gao, Wei

    2017-11-01

    All solid-state micro-supercapacitors (MSC) have emerged as attractive energy-storage units for portable and wearable electronics. Here, we describe a textile-based solid-state MSC via laser scribing of graphene oxide (GO) coatings on a flexible polyethylene terephthalate (PET) fabric. The laser-scribed graphene oxide layers (LGO) possess three-dimensionally porous structure suitable for electrochemical-double-layer formation. To improve the wash fastness and the flexibility of the as-prepared MSCs, glutaraldehyde (GA) was employed to crosslink the GO layers and PVA-gel electrolyte onto the PET fabric. The resultant all solid-state MSCs exhibited excellent flexibility, high areal specific capacitance (756 μF·cm-2 at 20 mV·s-1), and good rate capability when subject to bending and laundering. Furthermore, the MSC device showed a high power density of about 1.4 W·cm-3 and an energy density of 5.3 × 10-5 Wh·cm-3, and retained 98.3% of its initial capacitance after 1000 cycles at a current density of 0.5 mA·cm-2. This work is the first demonstration of in-plane MSCs on PET fabric surfaces with enhanced durability and flexibility.

  8. Ru nanostructure fabrication using an anodic aluminum oxide nanotemplate and highly conformal Ru atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo-Hee; Park, Sang-Joon; Son, Jong-Yeog; Kim, Hyungjun [Department of Material Science and Engineering, POSTECH Pohang University of Science and Technology, San 31, Hyoja-Dong, Nam-Gu, Pohang 790-784 (Korea, Republic of)

    2008-01-30

    We fabricated metallic nanostructures directly on Si substrates through a hybrid nanoprocess combining atomic layer deposition (ALD) and a self-assembled anodic aluminum oxide (AAO) nanotemplate. ALD Ru films with Ru(DMPD)(EtCp) as a precursor and O{sub 2} as a reactant exhibited high purity and low resistivity with negligible nucleation delay and low roughness. These good growth characteristics resulted in the excellent conformality for nanometer-scale vias and trenches. Additionally, AAO nanotemplates were fabricated directly on Si and Ti/Si substrates through a multiple anodization process. AAO nanotemplates with various hole sizes (30-100 nm) and aspect ratios (2:1-20:1) were fabricated by controlling the anodizing process parameters. The barrier layers between AAO nanotemplates and Si substrates were completely removed by reactive ion etching (RIE) using BCl{sub 3} plasma. By combining the ALD Ru and the AAO nanotemplate, Ru nanostructures with controllable sizes and shapes were prepared on Si and Ti/Si substrates. The Ru nanowire array devices as a platform for sensor devices exhibited befitting properties of good ohmic contact and high surface/volume ratio.

  9. High Speed, Low Cost Fabrication of Gas Diffusion Electrodes for Membrane Electrode Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    DeCastro, Emory S.; Tsou, Yu-Min; Liu, Zhenyu

    2013-09-20

    Fabrication of membrane electrode assemblies (MEAs) depends on creating inks or pastes of catalyst and binder, and applying this suspension to either the membrane (catalyst coated membrane) or gas diffusion media (gas diffusion electrode) and respectively laminating either gas diffusion media or gas diffusion electrodes (GDEs) to the membrane. One barrier to cost effective fabrication for either of these approaches is the development of stable and consistent suspensions. This program investigated the fundamental forces that destabilize the suspensions and developed innovative approaches to create new, highly stable formulations. These more concentrated formulations needed fewer application passes, could be coated over longer and wider substrates, and resulted in significantly lower coating defects. In March of 2012 BASF Fuel Cell released a new high temperature product based on these advances, whereby our customers received higher performing, more uniform MEAs resulting in higher stack build yields. Furthermore, these new materials resulted in an “instant” increase in capacity due to higher product yields and material throughput. Although not part of the original scope of this program, these new formulations have also led us to materials that demonstrate equivalent performance with 30% less precious metal in the anode. This program has achieved two key milestones in DOE’s Manufacturing R&D program: demonstration of processes for direct coating of electrodes and continuous in-line measurement for component fabrication.

  10. Fabrication of 4H-SiC Schottky barrier diodes with high breakdown voltages

    CERN Document Server

    Kum, B H; Shin, M W; Park, J D

    1999-01-01

    This paper discusses the fabrication and the breakdown characteristics of 4H-SiC Schottky barrier diodes (SBDs). Optimal processing conditions for the ohmic contacts were extracted using the transmission-line method (TLM) and were applied to the device fabrication. The Ti/4H-SiC SBDs with Si sub x B sub y passivation showed a maximum reverse breakdown voltage of 268 V with a forward current density as high as 70 mA/cm sup 2 at a forward voltage of 2 V. The breakdown of the Pt. 4H-SiC SBDs without any passivation occurred at near 110 V. It is concluded that the breakdown enhancement in the Ti/4H-SiC SBDs can be attributed to the passivation; otherwise, excess surface charge near the edge of the Schottky contact would lead to electric fields of sufficient magnitude to cause field emission.

  11. Quality assurance during fabrication of high-damping rubber isolation bearings

    Energy Technology Data Exchange (ETDEWEB)

    Way, D.; Greaves, W.C. [Base Isolation Consultants, Inc., San Francisco, CA (United States)

    1995-12-01

    Successful implementation of a high-damping rubber (HDR) base isolation project requires the application of Quality Assurance/Quality Control (QA/QC) methodology through all phases of the bearing fabrication process. HDR base isolation bearings must be fabricated with uniform physical characteristics while being produced in large quantities. To satisfy this requirement, manufacturing processes must be controlled. Prototype tests that include dynamic testing of small samples of rubber are necessary. Stringent full scale bearing testing must be carried out prior to beginning production, during which manufacturing is strictly regulated by small rubber sample and production bearing testing. All such activities should be supervised and continuously inspected by independent and experienced QA/QC personnel.

  12. A top-down approach to fabrication of high quality vertical heterostructure nanowire arrays.

    Science.gov (United States)

    Wang, Hua; Sun, Minghua; Ding, Kang; Hill, Martin T; Ning, Cun-Zheng

    2011-04-13

    We demonstrate a novel top-down approach for fabricating nanowires with unprecedented complexity and optical quality by taking advantage of a nanoscale self-masking effect. We realized vertical arrays of nanowires of 20-40 nm in diameter with 16 segments of complex longitudinal InGaAsP/InP structures. The unprecedented high quality of etched wires is evidenced by the narrowest photoluminescence linewidth ever produced in similar wavelengths, indistinguishable from that of the corresponding wafer. This top-down, mask-free, large scale approach is compatible with the established device fabrication processes and could serve as an important alternative to the bottom-up approach, significantly expanding ranges and varieties of applications of nanowire technology.

  13. High efficiency fluorescent white OLEDs based on DOPPP

    Science.gov (United States)

    Zhang, Gang; Chen, Chen; Lang, Jihui; Zhao, Lina; Jiang, Wenlong

    2017-08-01

    The white organic light-emitting devices (WOLED) with the structures of ITO/m-MTDATA (10 nm)/NPB (30 nm)/Rubrene (0.2 nm)/DOPPP (x nm)/TAz (10 nm)/Alq3 (30 nm)/LiF (0.5 nm)/Al and ITO/NPB (30 nm)/DPAVBi:Rubrene (2 wt.%, 20 nm)/ DOPPP (x nm)/TAZ (10 nm)/Alq3 (30 nm)/LiF (0.5 nm)/Al (100 nm) have been fabricated by the vacuum thermal evaporation method. The results show that the chroma of the non-doped device is the best and the color coordinates are in the range of white light. The maximum luminance is 12,750 cd/m2 and the maximum current efficiency is 8.55 cd/A. The doped device A has the maximum luminance (16,570 cd/m2), when the thickness of blue layer DOPPP is 25 nm, and the doped device B achieves the highest efficiency (10.47 cd/A), when the thickness of DOPPP is 15 nm. All the performances of the doped devices are better than the non-doped one. The results demonstrate that the doped structures can realize the energy transfer and then improve the performance of the device effectively.

  14. Fabrication of Nonvolatile Memory Effects in High-k Dielectric Thin Films Using Electron Irradiation

    International Nuclear Information System (INIS)

    Park, Chanrock; Cho, Daehee; Kim, Jeongeun; Hwang, Jinha

    2010-01-01

    Electron Irradiation can be applied towards nano-floating gate memories which are recognized as one of the next-generation nonvolatile memory semiconductors. NFGMs can overcome the preexisting limitations encountered in Dynamic Random Access Memories and Flash memories with the excellent advantages, i. e. high-density information storage, high response speed, high compactness, etc. The traditional nano-floating gate memories are fabricated through multi-layered nano structures of the dissimilar materials where the charge-trapping portions are sandwiched into the high-k dielectrics. However, this work reports the unique nonvolatile responses in single-layered high-k dielectric thin films if irradiated with highly accelerated electron beams. The implications of the electron irradiation will be discussed towards high-performance nano-floating gate memories

  15. Self-aligned photolithography for the fabrication of fully transparent high-voltage devices

    Science.gov (United States)

    Zhang, Yonghui; Mei, Zengxia; Huo, Wenxing; Wang, Tao; Liang, Huili; Du, Xiaolong

    2018-05-01

    High-voltage devices, working in the range of hundreds of volts, are indispensable elements in the driving or readout circuits for various kinds of displays, integrated microelectromechanical systems and x-ray imaging sensors. However, the device performances are found hardly uniform or repeatable due to the misalignment issue, which are extremely common for offset drain high-voltage devices. To resolve this issue, this article reports a set of self-aligned photolithography technology for the fabrication of high-voltage devices. High-performance fully-transparent high-voltage thin film transistors, diodes and logic inverters are successfully fabricated with this technology. Unlike other self-aligned routes, opaque masks are introduced on the backside of the transparent substrate to facilitate proximity exposure method. The photolithography process is simulated and analyzed with technology computer aided design simulation to explain the working principle of the proximity exposure method. The substrate thickness is found to be vital for the implementation of this technology based on both simulation and experimental results. The electrical performance of high-voltage devices is dependent on the offset length, which can be delicately modulated by changing the exposure dose. The presented self-aligned photolithography technology is proved to be feasible in high-voltage circuits, demonstrating its huge potential in practical industrial applications.

  16. Fabrication of novel AFM probe with high-aspect-ratio ultra-sharp three-face silicon nitride tips

    NARCIS (Netherlands)

    Vermeer, Rolf; Berenschot, Johan W.; Sarajlic, Edin; Tas, Niels Roelof; Jansen, Henricus V.

    In this paper we present the wafer-scale fabrication of molded AFM probes with high aspect ratio ultra-sharp three-plane silicon nitride tips. Using $\\langle$111$\\rangle$ silicon wafers a dedicated process is developed to fabricate molds in the silicon wafer that have a flat triangular bottom

  17. Low-cost, high-performance and efficiency computational photometer design

    Science.gov (United States)

    Siewert, Sam B.; Shihadeh, Jeries; Myers, Randall; Khandhar, Jay; Ivanov, Vitaly

    2014-05-01

    Researchers at the University of Alaska Anchorage and University of Colorado Boulder have built a low cost high performance and efficiency drop-in-place Computational Photometer (CP) to test in field applications ranging from port security and safety monitoring to environmental compliance monitoring and surveying. The CP integrates off-the-shelf visible spectrum cameras with near to long wavelength infrared detectors and high resolution digital snapshots in a single device. The proof of concept combines three or more detectors into a single multichannel imaging system that can time correlate read-out, capture, and image process all of the channels concurrently with high performance and energy efficiency. The dual-channel continuous read-out is combined with a third high definition digital snapshot capability and has been designed using an FPGA (Field Programmable Gate Array) to capture, decimate, down-convert, re-encode, and transform images from two standard definition CCD (Charge Coupled Device) cameras at 30Hz. The continuous stereo vision can be time correlated to megapixel high definition snapshots. This proof of concept has been fabricated as a fourlayer PCB (Printed Circuit Board) suitable for use in education and research for low cost high efficiency field monitoring applications that need multispectral and three dimensional imaging capabilities. Initial testing is in progress and includes field testing in ports, potential test flights in un-manned aerial systems, and future planned missions to image harsh environments in the arctic including volcanic plumes, ice formation, and arctic marine life.

  18. Fabrication of superhydrophobic cotton fabrics using crosslinking polymerization method

    Science.gov (United States)

    Jiang, Bin; Chen, Zhenxing; Sun, Yongli; Yang, Huawei; Zhang, Hongjie; Dou, Haozhen; Zhang, Luhong

    2018-05-01

    With the aim of removing and recycling oil and organic solvent from water, a facile and low-cost crosslinking polymerization method was first applied on surface modification of cotton fabrics for water/oil separation. Micro-nano hierarchical rough structure was constructed by triethylenetetramine (TETA) and trimesoyl chloride (TMC) that formed a polymeric layer on the surface of the fabric and anchored Al2O3 nanoparticles firmly between the fabric surface and the polymer layer. Superhydrophobic property was further obtained through self-assembly grafting of hydrophobic groups on the rough surface. The as-prepared cotton fabric exhibited superoleophilicity in atmosphere and superhydrophobicity both in atmosphere and under oil with the water contact angle of 153° and 152° respectively. Water/oil separation test showed that the as-prepared cotton fabric can handle with various oil-water mixtures with a high separation efficiency over 99%. More importantly, the separation efficiency remained above 98% over 20 cycles of reusing without losing its superhydrophobicity which demonstrated excellent reusability in oil/water separation process. Moreover, the as-prepared cotton fabric possessed good contamination resistance ability and self-cleaning property. Simulation washing process test showed the superhydrophobic cotton fabric maintained high value of water contact angle above 150° after 100 times washing, indicating great stability and durability. In summary, this work provides a brand-new way to surface modification of cotton fabric and makes it a promising candidate material for oil/water separation.

  19. Thermal Stability-Enhanced and High-Efficiency Planar Perovskite Solar Cells with Interface Passivation.

    Science.gov (United States)

    Zhang, Weihai; Xiong, Juan; Jiang, Li; Wang, Jianying; Mei, Tao; Wang, Xianbao; Gu, Haoshuang; Daoud, Walid A; Li, Jinhua

    2017-11-08

    As the electron transport layer (ETL) of perovskite solar cells, oxide semiconductor zinc oxide (ZnO) has been attracting great attention due to its relatively high mobility, optical transparency, low-temperature fabrication, and good environment stability. However, the nature of ZnO will react with the patron on methylamine, which would deteriorate the performance of cells. Although many methods, including high-temperature annealing, doping, and surface modification, have been studied to improve the efficiency and stability of perovskite solar cells with ZnO ETL, devices remain relatively low in efficiency and stability. Herein, we adopted a novel multistep annealing method to deposit a porous PbI 2 film and improved the quality and uniformity of perovskite films. The cells with ZnO ETL were fabricated at the temperature of perovskite film. Interestingly, the PCE of PCBM-passivated cells could reach nearly 19.1%. To our best knowledge, this is the highest PCE value of ZnO-based perovskite solar cells until now. More importantly, PCBM modification could effectively suppress the decomposition of MAPbI 3 and improve the thermal stability of cells. Therefore, the ZnO is a promising candidate of electron transport material for perovskite solar cells in future applications.

  20. High efficiency heat transport and power conversion system for cascade

    International Nuclear Information System (INIS)

    Maya, I.; Bourque, R.F.; Creedon, R.L.; Schultz, K.R.

    1985-02-01

    The Cascade ICF reactor features a flowing blanket of solid BeO and LiAlO 2 granules with very high temperature capability (up to approx. 2300 K). The authors present here the design of a high temperature granule transport and heat exchange system, and two options for high efficiency power conversion. The centrifugal-throw transport system uses the peripheral speed imparted to the granules by the rotating chamber to effect granule transport and requires no additional equipment. The heat exchanger design is a vacuum heat transfer concept utilizing gravity-induced flow of the granules over ceramic heat exchange surfaces. A reference Brayton power cycle is presented which achieves 55% net efficiency with 1300 K peak helium temperature. A modified Field steam cycle (a hybrid Rankine/Brayton cycle) is presented as an alternate which achieves 56% net efficiency

  1. Highly Efficient Coherent Optical Memory Based on Electromagnetically Induced Transparency

    Science.gov (United States)

    Hsiao, Ya-Fen; Tsai, Pin-Ju; Chen, Hung-Shiue; Lin, Sheng-Xiang; Hung, Chih-Chiao; Lee, Chih-Hsi; Chen, Yi-Hsin; Chen, Yong-Fan; Yu, Ite A.; Chen, Ying-Cheng

    2018-05-01

    Quantum memory is an important component in the long-distance quantum communication based on the quantum repeater protocol. To outperform the direct transmission of photons with quantum repeaters, it is crucial to develop quantum memories with high fidelity, high efficiency and a long storage time. Here, we achieve a storage efficiency of 92.0 (1.5)% for a coherent optical memory based on the electromagnetically induced transparency scheme in optically dense cold atomic media. We also obtain a useful time-bandwidth product of 1200, considering only storage where the retrieval efficiency remains above 50%. Both are the best record to date in all kinds of schemes for the realization of optical memory. Our work significantly advances the pursuit of a high-performance optical memory and should have important applications in quantum information science.

  2. Thermal, structural, and fabrication aspects of diamond windows for high power synchrotron x-ray beamlines

    International Nuclear Information System (INIS)

    Khounsary, A.M.; Phillips, W.

    1992-01-01

    Recent advances in chemical vapor deposition (CVD) technology have made it possible to produce thin free-standing diamond foils that can be used as the window material in high heat load, synchrotron beamlines. Numerical simulations suggest that these windows can offer an attractive and at times the only altemative to beryllium windows for use in third generation x-ray synchrotron radiation beamlines. Utilization, design, and fabrication aspects of diamond windows for high heat load x-ray beamlines are discussed, as are the microstructure characteristics bearing on diamond's performance in this role. Analytic and numerical results are also presented to provide a basis for the design and testing of such windows

  3. Method and alloys for fabricating wrought components for high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Thompson, L.D.; Johnson, W.R.

    1983-01-01

    Wrought, nickel-based alloys, suitable for components of a high-temperature gas-cooled reactor exhibit strength and excellent resistance to carburization at elevated temperatures and include aluminum and titanium in amounts and ratios to promote the growth of carburization resistant films while preserving the wrought character of the alloys. These alloys also include substantial amounts of molybdenum and/or tungsten as solid-solution strengtheners. Chromium may be included in concentrations less than 10% to assist in fabrication. Minor amounts of carbon and one or more carbide-forming metals also contribute to high-temperature strength. The range of compositions of these alloys is given. (author)

  4. Printed freeform lens arrays on multi-core fibers for highly efficient coupling in astrophotonic systems.

    Science.gov (United States)

    Dietrich, Philipp-Immanuel; Harris, Robert J; Blaicher, Matthias; Corrigan, Mark K; Morris, Tim M; Freude, Wolfgang; Quirrenbach, Andreas; Koos, Christian

    2017-07-24

    Coupling of light into multi-core fibers (MCF) for spatially resolved spectroscopy is of great importance to astronomical instrumentation. To achieve high coupling efficiencies along with fill-fractions close to unity, micro-optical elements are required to concentrate the incoming light to the individual cores of the MCF. In this paper we demonstrate facet-attached lens arrays (LA) fabricated by two-photon polymerization. The LA provide close to 100% fill-fraction along with efficiencies of up to 73% (down to 1.4 dB loss) for coupling of light from free space into an MCF core. We show the viability of the concept for astrophotonic applications by integrating an MCF-LA assembly in an adaptive-optics test bed and by assessing its performance as a tip/tilt sensor.

  5. High-efficiency helical traveling-wave tube with dynamic velocity taper and advanced multistage depressed collector

    Science.gov (United States)

    Curren, Arthur N.; Palmer, Raymond W.; Force, Dale A.; Dombro, Louis; Long, James A.

    A NASA-sponsored research and development contract has been established with the Watkins-Johnson Company to fabricate high-efficiency 20-watt helical traveling wave tubes (TWTs) operating at 8.4 to 8.43 GHz. The TWTs employ dynamic velocity tapers (DVTs) and advanced multistage depressed collectors (MDCs) having electrodes with low secondary electron emission characteristics. The TWT designs include two different DVTs; one for maximum efficiency and the other for minimum distortion and phase shift. The MDC designs include electrodes of untreated and ion-textured graphite as well as copper which has been treated for secondary electron emission suppression. Objectives of the program include achieving at least 55 percent overall efficiency. Tests with the first TWTs (with undepressed collectors) indicate good agreement between predicted and measured RF efficiencies with as high as 30 percent improvement in RF efficiency over conventional helix designs.

  6. High-efficiency helical traveling-wave tube with dynamic velocity taper and advanced multistage depressed collector

    Science.gov (United States)

    Curren, Arthur N.; Palmer, Raymond W.; Force, Dale A.; Dombro, Louis; Long, James A.

    1987-01-01

    A NASA-sponsored research and development contract has been established with the Watkins-Johnson Company to fabricate high-efficiency 20-watt helical traveling wave tubes (TWTs) operating at 8.4 to 8.43 GHz. The TWTs employ dynamic velocity tapers (DVTs) and advanced multistage depressed collectors (MDCs) having electrodes with low secondary electron emission characteristics. The TWT designs include two different DVTs; one for maximum efficiency and the other for minimum distortion and phase shift. The MDC designs include electrodes of untreated and ion-textured graphite as well as copper which has been treated for secondary electron emission suppression. Objectives of the program include achieving at least 55 percent overall efficiency. Tests with the first TWTs (with undepressed collectors) indicate good agreement between predicted and measured RF efficiencies with as high as 30 percent improvement in RF efficiency over conventional helix designs.

  7. Thin silicon foils produced by epoxy-induced spalling of silicon for high efficiency solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Martini, R., E-mail: roberto.martini@imec.be [Department of Electrical Engineering, KU Leuven, Kasteelpark 10, 3001 Leuven (Belgium); imec, Kapeldreef 75, 3001 Leuven (Belgium); Kepa, J.; Stesmans, A. [Department of Physics, KU Leuven, Celestijnenlaan 200 D, 3001 Leuven (Belgium); Debucquoy, M.; Depauw, V.; Gonzalez, M.; Gordon, I. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Poortmans, J. [Department of Electrical Engineering, KU Leuven, Kasteelpark 10, 3001 Leuven (Belgium); imec, Kapeldreef 75, 3001 Leuven (Belgium); Universiteit Hasselt, Martelarenlaan 42, B-3500 Hasselt (Belgium)

    2014-10-27

    We report on the drastic improvement of the quality of thin silicon foils produced by epoxy-induced spalling. In the past, researchers have proposed to fabricate silicon foils by spalling silicon substrates with different stress-inducing materials to manufacture thin silicon solar cells. However, the reported values of effective minority carrier lifetime of the fabricated foils remained always limited to ∼100 μs or below. In this work, we investigate epoxy-induced exfoliated foils by electron spin resonance to analyze the limiting factors of the minority carrier lifetime. These measurements highlight the presence of disordered dangling bonds and dislocation-like defects generated by the exfoliation process. A solution to remove these defects compatible with the process flow to fabricate solar cells is proposed. After etching off less than 1 μm of material, the lifetime of the foil increases by more than a factor of 4.5, reaching a value of 461 μs. This corresponds to a lower limit of the diffusion length of more than 7 times the foil thickness. Regions with different lifetime correlate well with the roughness of the crack surface which suggests that the lifetime is now limited by the quality of the passivation of rough surfaces. The reported values of the minority carrier lifetime show a potential for high efficiency (>22%) thin silicon solar cells.

  8. Thin silicon foils produced by epoxy-induced spalling of silicon for high efficiency solar cells

    International Nuclear Information System (INIS)

    Martini, R.; Kepa, J.; Stesmans, A.; Debucquoy, M.; Depauw, V.; Gonzalez, M.; Gordon, I.; Poortmans, J.

    2014-01-01

    We report on the drastic improvement of the quality of thin silicon foils produced by epoxy-induced spalling. In the past, researchers have proposed to fabricate silicon foils by spalling silicon substrates with different stress-inducing materials to manufacture thin silicon solar cells. However, the reported values of effective minority carrier lifetime of the fabricated foils remained always limited to ∼100 μs or below. In this work, we investigate epoxy-induced exfoliated foils by electron spin resonance to analyze the limiting factors of the minority carrier lifetime. These measurements highlight the presence of disordered dangling bonds and dislocation-like defects generated by the exfoliation process. A solution to remove these defects compatible with the process flow to fabricate solar cells is proposed. After etching off less than 1 μm of material, the lifetime of the foil increases by more than a factor of 4.5, reaching a value of 461 μs. This corresponds to a lower limit of the diffusion length of more than 7 times the foil thickness. Regions with different lifetime correlate well with the roughness of the crack surface which suggests that the lifetime is now limited by the quality of the passivation of rough surfaces. The reported values of the minority carrier lifetime show a potential for high efficiency (>22%) thin silicon solar cells.

  9. Wafer-scale high-throughput ordered arrays of Si and coaxial Si/Si(1-x)Ge(x) wires: fabrication, characterization, and photovoltaic application.

    Science.gov (United States)

    Pan, Caofeng; Luo, Zhixiang; Xu, Chen; Luo, Jun; Liang, Renrong; Zhu, Guang; Wu, Wenzhuo; Guo, Wenxi; Yan, Xingxu; Xu, Jun; Wang, Zhong Lin; Zhu, Jing

    2011-08-23

    We have developed a method combining lithography and catalytic etching to fabricate large-area (uniform coverage over an entire 5-in. wafer) arrays of vertically aligned single-crystal Si nanowires with high throughput. Coaxial n-Si/p-SiGe wire arrays are also fabricated by further coating single-crystal epitaxial SiGe layers on the Si wires using ultrahigh vacuum chemical vapor deposition (UHVCVD). This method allows precise control over the diameter, length, density, spacing, orientation, shape, pattern and location of the Si and Si/SiGe nanowire arrays, making it possible to fabricate an array of devices based on rationally designed nanowire arrays. A proposed fabrication mechanism of the etching process is presented. Inspired by the excellent antireflection properties of the Si/SiGe wire arrays, we built solar cells based on the arrays of these wires containing radial junctions, an example of which exhibits an open circuit voltage (V(oc)) of 650 mV, a short-circuit current density (J(sc)) of 8.38 mA/cm(2), a fill factor of 0.60, and an energy conversion efficiency (η) of 3.26%. Such a p-n radial structure will have a great potential application for cost-efficient photovoltaic (PV) solar energy conversion. © 2011 American Chemical Society

  10. NEW LENSLET BASED IFS WITH HIGH DETECTOR PIXEL EFFICIENCY

    Science.gov (United States)

    Gong, Qian

    2018-01-01

    Three IFS types currently used for optical design are: lenslet array, imager slicer, and lenslet array and fiber combined. Lenslet array based Integral Field Spectroscopy (IFS) is very popular for many astrophysics applications due to its compactness, simplicity, as well as cost and mass savings. The disadvantage of lenslet based IFS is its low detector pixel efficiency. Enough spacing is needed between adjacent spectral traces in cross dispersion direction to avoid wavelength cross-talk, because the same wavelength is not aligned to the same column on detector. Such as on a recent exoplanet coronagraph instrument study to support the coming astrophysics decadal survey (LUVOIR), to cover a 45 λ/D Field of View (FOV) with a spectral resolving power of 200 at shortest wavelength, a 4k x 4k detector array is needed. This large format EMCCD pushes the detector into technology development area with a low TRL. Besides the future mission, it will help WFIRST coronagraph IFS by packing all spectra into a smaller area on detector, which will reduce the chance for electrons to be trapped in pixels, and slow the detector degradation during the mission.The innovation we propose here is to increase the detector packing efficiency by grouping a number of lenslets together to form many mini slits. In other words, a number of spots (Point Spread Function at lenslet focus) are aligned into a line to resemble a mini slit. Therefore, wavelength cross-talk is no longer a concern anymore. This combines the advantage of lenslet array and imager slicer together. The isolation rows between spectral traces in cross dispersion direction can be reduced or removed. So the packing efficiency is greatly increased. Furthermore, the today’s microlithography and etching technique is capable of making such a lenslet array, which will relax the detector demand significantly. It will finally contribute to the habitable exoplanets study to analyzing their spectra from direct images. Detailed theory

  11. Low Cost, High Efficiency, High Pressure Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Mark Leavitt

    2010-03-31

    A technical and design evaluation was carried out to meet DOE hydrogen fuel targets for 2010. These targets consisted of a system gravimetric capacity of 2.0 kWh/kg, a system volumetric capacity of 1.5 kWh/L and a system cost of $4/kWh. In compressed hydrogen storage systems, the vast majority of the weight and volume is associated with the hydrogen storage tank. In order to meet gravimetric targets for compressed hydrogen tanks, 10,000 psi carbon resin composites were used to provide the high strength required as well as low weight. For the 10,000 psi tanks, carbon fiber is the largest portion of their cost. Quantum Technologies is a tier one hydrogen system supplier for automotive companies around the world. Over the course of the program Quantum focused on development of technology to allow the compressed hydrogen storage tank to meet DOE goals. At the start of the program in 2004 Quantum was supplying systems with a specific energy of 1.1-1.6 kWh/kg, a volumetric capacity of 1.3 kWh/L and a cost of $73/kWh. Based on the inequities between DOE targets and Quantum’s then current capabilities, focus was placed first on cost reduction and second on weight reduction. Both of these were to be accomplished without reduction of the fuel system’s performance or reliability. Three distinct areas were investigated; optimization of composite structures, development of “smart tanks” that could monitor health of tank thus allowing for lower design safety factor, and the development of “Cool Fuel” technology to allow higher density gas to be stored, thus allowing smaller/lower pressure tanks that would hold the required fuel supply. The second phase of the project deals with three additional distinct tasks focusing on composite structure optimization, liner optimization, and metal.

  12. High Efficient Bidirectional Battery Converter for residential PV Systems

    DEFF Research Database (Denmark)

    Pham, Cam; Kerekes, Tamas; Teodorescu, Remus

    2012-01-01

    Photovoltaic (PV) installation is suited for the residential environment and the generation pattern follows the distribution of residential power consumption in daylight hours. In the cases of unbalance between generation and demand, the Smart PV with its battery storage can absorb or inject...... the power to balance it. High efficient bidirectional converter for the battery storage is required due high system cost and because the power is processed twice. A 1.5kW prototype is designed and built with CoolMOS and SiC diodes, >;95% efficiency has been obtained with 200 kHz hard switching....

  13. Fabricating High-Quality 3D-Printed Alloys for Dental Applications

    Directory of Open Access Journals (Sweden)

    Min-Ho Hong

    2017-07-01

    Full Text Available Metal additive manufacturing (AM, especially selective laser melting (SLM, has been receiving particular attention because metallic functional structures with complicated configurations can be effectively fabricated using the technique. However, there still exist some future challenges for the fabrication of high-quality SLM products for dental applications. First, the surface quality of SLM products should be further improved by standardizing the laser process parameters or by appropriately post-treating the surface. Second, it should be guaranteed that dental SLM restorations have good dimensional accuracy and, in particular, a good marginal fit. Third, a definitive standard regarding building and scanning strategies, which affect the anisotropy, should be established to optimize the mechanical properties and fatigue resistance of SLM dental structures. Fourth, the SLM substructure’s bonding and support to veneering ceramic should be further studied to facilitate the use of esthetic dental restorations. Finally, the biocompatibility of SLM dental alloys should be carefully examined and improved to minimize the potential release of toxic metal ions from the alloys. Future research of SLM should focus on solving the above challenges, as well as on fabricating dental structures with “controlled” porosity.

  14. Pinhole diffraction holography for fabrication of high-resolution Fresnel zone plates.

    Science.gov (United States)

    Sarkar, Sankha S; Solak, Harun H; David, Christian; van der Veen, J Friso

    2014-01-27

    Fresnel zone plates (FZPs) play an essential role in high spatial resolution x-ray imaging and analysis of materials in many fields. These diffractive lenses are commonly made by serial writing techniques such as electron beam or focused ion beam lithography. Here we show that pinhole diffraction holography has potential to generate FZP patterns that are free from aberrations and imperfections that may be present in alternative fabrication techniques. In this presented method, FZPs are fabricated by recording interference pattern of a spherical wave generated by diffraction through a pinhole, illuminated with coherent plane wave at extreme ultraviolet (EUV) wavelength. Fundamental and practical issues involved in formation and recording of the interference pattern are considered. It is found that resolution of the produced FZP is directly related to the diameter of the pinhole used and the pinhole size cannot be made arbitrarily small as the transmission of EUV or x-ray light through small pinholes diminishes due to poor refractive index contrast found between materials in these spectral ranges. We also find that the practical restrictions on exposure time due to the light intensity available from current sources directly imposes a limit on the number of zones that can be printed with this method. Therefore a trade-off between the resolution and the FZP diameter exists. Overall, we find that this method can be used to fabricate aberration free FZPs down to a resolution of about 10 nm.

  15. Toward High-Efficiency Solution-Processed Planar Heterojunction Sb2S3 Solar Cells.

    Science.gov (United States)

    Zimmermann, Eugen; Pfadler, Thomas; Kalb, Julian; Dorman, James A; Sommer, Daniel; Hahn, Giso; Weickert, Jonas; Schmidt-Mende, Lukas

    2015-05-01

    Low-cost hybrid solar cells have made tremendous steps forward during the past decade owing to the implementation of extremely thin inorganic coatings as absorber layers, typically in combination with organic hole transporters. Using only extremely thin films of these absorbers reduces the requirement of single crystalline high-quality materials and paves the way for low-cost solution processing compatible with roll-to-roll fabrication processes. To date, the most efficient absorber material, except for the recently introduced organic-inorganic lead halide perovskites, has been Sb 2 S 3 , which can be implemented in hybrid photovoltaics using a simple chemical bath deposition. Current high-efficiency Sb 2 S 3 devices utilize absorber coatings on nanostructured TiO 2 electrodes in combination with polymeric hole transporters. This geometry has so far been the state of the art, even though flat junction devices would be conceptually simpler with the additional potential of higher open circuit voltages due to reduced charge carrier recombination. Besides, the role of the hole transporter is not completely clarified yet. In particular, additional photocurrent contribution from the polymers has not been directly shown, which points toward detrimental parasitic light absorption in the polymers. This study presents a fine-tuned chemical bath deposition method that allows fabricating solution-processed low-cost flat junction Sb 2 S 3 solar cells with the highest open circuit voltage reported so far for chemical bath devices and efficiencies exceeding 4%. Characterization of back-illuminated solar cells in combination with transfer matrix-based simulations further allows to address the issue of absorption losses in the hole transport material and outline a pathway toward more efficient future devices.

  16. High energy ballistic and fracture comparison between multilayered armor systems using non-woven curaua fabric composites and aramid laminates

    Directory of Open Access Journals (Sweden)

    Fábio de Oliveira Braga

    2017-10-01

    Full Text Available For personal protection against high kinetic energy projectiles, multilayered armor systems (MAS are usually the best option. They combine synergistically the properties of different materials such as ceramics, composites and metals. In the present work, ballistic tests were performed to evaluate multilayered armor systems (MAS using curaua non-woven fabric epoxy composites as second layer. A comparison to a MAS using aramid (Kevlar™ fabric laminates was made. The results showed that the curaua non-woven fabric composites are suitable to the high ballistic applications, and are promising substitutes for aramid fabric laminates. Keywords: Composite, Natural fiber, Curaua fiber, Non-woven fabric, Aramid laminate, Ballistic test

  17. Fabrication of high-quality single-crystal Cu thin films using radio-frequency sputtering.

    Science.gov (United States)

    Lee, Seunghun; Kim, Ji Young; Lee, Tae-Woo; Kim, Won-Kyung; Kim, Bum-Su; Park, Ji Hun; Bae, Jong-Seong; Cho, Yong Chan; Kim, Jungdae; Oh, Min-Wook; Hwang, Cheol Seong; Jeong, Se-Young

    2014-08-29

    Copper (Cu) thin films have been widely used as electrodes and interconnection wires in integrated electronic circuits, and more recently as substrates for the synthesis of graphene. However, the ultra-high vacuum processes required for high-quality Cu film fabrication, such as molecular beam epitaxy (MBE), restricts mass production with low cost. In this work, we demonstrated high-quality Cu thin films using a single-crystal Cu target and radio-frequency (RF) sputtering technique; the resulting film quality was comparable to that produced using MBE, even under unfavorable conditions for pure Cu film growth. The Cu thin film was epitaxially grown on an Al2O3 (sapphire) (0001) substrate, and had high crystalline orientation along the (111) direction. Despite the 10(-3) Pa vacuum conditions, the resulting thin film was oxygen free due to the high chemical stability of the sputtered specimen from a single-crystal target; moreover, the deposited film had >5× higher adhesion force than that produced using a polycrystalline target. This fabrication method enabled Cu films to be obtained using a simple, manufacturing-friendly process on a large-area substrate, making our findings relevant for industrial applications.

  18. Innovative-Simplified Nuclear Power Plant Efficiency Evaluation with High-Efficiency Steam Injector System

    International Nuclear Information System (INIS)

    Shoji, Goto; Shuichi, Ohmori; Michitsugu, Mori

    2006-01-01

    It is possible to establish simplified system with reduced space and total equipment weight using high-efficiency Steam Injectors (SI) instead of low-pressure feedwater heaters in Nuclear Power Plant (NPP). The SI works as a heat exchanger through direct contact between feedwater from condensers and extracted steam from turbines. It can get higher pressure than supplied steam pressure. The maintenance and reliability are still higher than the feedwater ones because SI has no movable parts. This paper describes the analysis of the heat balance, plant efficiency and the operation of this Innovative-Simplified NPP with high-efficiency SI. The plant efficiency and operation are compared with the electric power of 1100 MWe-class BWR system and the Innovative-Simplified BWR system with SI. The SI model is adapted into the heat balance simulator with a simplified model. The results show that plant efficiencies of the Innovated-Simplified BWR system are almost equal to original BWR ones. The present research is one of the projects that are carried out by Tokyo Electric Power Company, Toshiba Corporation, and six Universities in Japan, funded from the Institute of Applied Energy (IAE) of Japan as the national public research-funded program. (authors)

  19. Highly Efficient White Organic Light-Emitting Diodes with Ultrathin Emissive Layers and a Spacer-Free Structure

    Science.gov (United States)

    Wu, Shengfan; Li, Sihua; Sun, Qi; Huang, Chenchao; Fung, Man-Keung

    2016-05-01

    Ultrathin emissive layers (UEMLs) of phosphorescent materials with a layer thickness of less than 0.3 nm were introduced for high-efficiency organic light-emitting diodes (OLEDs). All the UEMLs for white OLEDs can be prepared without the use of interlayers or spacers. Compared with devices fabricated with interlayers inserted in-between the UEMLs, our spacer-free structure not only significantly improves device efficiency, but also simplifies the fabrication process, thus it has a great potential in lowering the cost of OLED panels. In addition, its spacer-free structure decreases the number of interfaces which often introduce unnecessary energy barriers in these devices. In the present work, UEMLs of red, green and blue-emitting phosphorescent materials and yellow and blue phosphorescent emitters are utilized for the demonstration of spacer-free white OLEDs. Upon optimization of the device structure, we demonstrated spacer-free and simple-structured white-emitting OLEDs with a good device performance. The current and power efficiencies of our white-emitting devices are as high as 56.0 cd/A and 55.5 lm/W, respectively. These efficiencies are the highest ever reported for OLEDs fabricated with the UEML approach.

  20. Facile fabrication of Bi{sub 2}S{sub 3}/SnS{sub 2} heterojunction photocatalysts with efficient photocatalytic activity under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xiaomin; Huang, Guanbo [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Gao, Haihuan [Tianjin Fourth Middle School, Tianjin 300021 (China); Pan, Cheng; Wang, Huan [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Yan, Jing, E-mail: yanjingls2012@163.com [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072 (China); Liu, Yu [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Qiu, Haixia [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072 (China); Ma, Ning [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Gao, Jianping [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072 (China)

    2016-07-25

    In this work, Bi{sub 2}S{sub 3}/SnS{sub 2} heterojunction photocatalysts were prepared by combining a hydrothermal technique and a facile in situ growth method. The nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, inductively coupled plasma spectroscopy, X-ray photoelectron spectroscopy, UV–Vis diffusion reflectance spectroscopy and room-temperature photoluminescence spectra. Their photocatalytic performances were evaluated by degrading methyl orange (MO) in aqueous solution (50 mg/L) under visible light (λ > 420 nm) irradiation. It was found that when the mass percentage of Bi{sub 2}S{sub 3} in Bi{sub 2}S{sub 3}/SnS{sub 2} was 7.95 wt%, the as-prepared Bi{sub 2}S{sub 3}/SnS{sub 2} nanocomposite showed the best photocatalytic activity for the degradation of MO. The highly improved performance of the Bi{sub 2}S{sub 3}/SnS{sub 2} nanocomposite was mainly ascribed to the efficient charge separation. - Highlights: • Facile fabrication of novel Bi{sub 2}S{sub 3}/SnS{sub 2} heterojunction photocatalysts. • High-performance photocatalyst for the degradation of organic pollutants. • Good recyclability of catalyst without photo-corrosion. • The photocatalytic mechanism was proposed.