WorldWideScience

Sample records for fabric softener emissions

  1. Influence of amino-functional macro and micro silicone softeners on the properties of cotton fabric

    International Nuclear Information System (INIS)

    Jatoi, A.W.; Khatri, Z.

    2015-01-01

    Amino-functional silicone softeners are most widely used type of soft finishes owing to their outstanding permanent softness, smoothness and handle characteristics. These soft finishes are prepared in different emulsion droplet sizes such as macro and micro emulsions providing varying characteristics on the textile on which they are applied. The macroemulsions due to their larger droplet sizes lubricate fabric and yarn surfaces, while the micro-emulsion, thanks to their smaller sizes penetrate inside fiber pores. In this research amino-functional macro and micro emulsions have been applied on dyed cotton fabric in 1:1 combination and compared against their influence on physical properties such as bending length, abrasion resistance, tensile strength, crease resistance and water repellency. These emulsions have also been compared for their influence on colorimetric properties; color difference and color strength (K/S values). The results reveal that the softener application in combination improves the properties deteriorated by each softener when applied separately. (author)

  2. Strain-softening behavior of an Fe-6.5 wt%Si alloy during warm deformation and its applications

    International Nuclear Information System (INIS)

    Fu Huadong; Zhang Zhihao; Yang Qiang; Xie Jianxin

    2011-01-01

    Research highlights: → An Fe-6.5 wt%Si alloy exhibits strain-softening behavior after large deformation. → The decrease of the order degree is responsible for the strain-softening behavior. → The strain-softening behavior of Fe-6.5 wt%Si alloy can be applied in cold rolling. → An Fe-6.5 wt%Si thin strip with thickness of 0.20 mm is fabricated by cold rolling. - Abstract: An Fe-6.5 wt%Si alloy with columnar grains was compressed at a temperature below its recrystallization temperature. The Vickers hardness and structure of the alloy before and after deformation were investigated. The results showed that with an increase in the degree of deformation, Vickers hardness of the alloy initially increased rapidly and then decreased slowly, indicating that the alloy had a strain-softening behavior after a large deformation. Meanwhile, the work-hardening exponent of the alloy decreased significantly. Transmission electron microscopy confirmed that the decrease of the order degree was responsible for the strain-softening behavior of the deformed alloy. Applying its softening behavior, the Fe-6.5 wt%Si alloy with columnar grains was rolled at 400 deg. C and then at room temperature. An Fe-6.5 wt%Si thin strip with thickness of 0.20 mm was fabricated. The surface of the strip was bright and had no obvious edge cracks.

  3. Pilling Resistance of Knitted Fabrics

    Directory of Open Access Journals (Sweden)

    Gita BUSILIENĖ

    2011-09-01

    Full Text Available Knitted fabrics with different quantity of elastane, conspicuous by high viscosity and elasticity, having one of the most important performance properties - resistance to pilling are often used in the production of high quality sportswear. During technological process imitating operating conditions, the behaviour of knitted fabrics may be changed by different industrial softeners from 12 % to 20 % of active substance, for example fatty acid condensate (Tubingal 5051 or silicone micro emulsion (Tubingal SMF. The aim of this investigation is to define the influence of fibrous composition and chemical softeners to the propensity of fuzzing and pilling of plain and plated jersey pattern knitted fabrics. The results of investigations showed that fibrous composition and thickness of materials (up to 6 % and washing as well as softening (from 33 % to 67 % change the resistance of knitted fabrics to pilling.http://dx.doi.org/10.5755/j01.ms.17.3.597

  4. Modification of Textile Materials' Surface Properties Using Chemical Softener

    Directory of Open Access Journals (Sweden)

    Jurgita KOŽENIAUSKIENĖ

    2011-03-01

    Full Text Available In the present study the effect of technological treatment involving the processes of washing or washing and softening with chemical cationic softener "Surcase" produced in Great Britain on the surface properties of cellulosic textile materials manufactured from cotton, bamboo and viscose spun yarns was investigated. The changes in textile materials surface properties were evaluated using KTU-Griff-Tester device and FEI Quanta 200 FEG scanning electron microscope (SEM. It was observed that the worst hand properties and the higher surface roughness are observed of cotton materials if compared with those of bamboo and viscose materials. Also, it was shown that depending on the material structure the handle parameters of knitted materials are the better than the ones of woven fabrics.http://dx.doi.org/10.5755/j01.ms.17.1.249

  5. Influence of Laundering on the Quality of Sewn Cotton and Bamboo Woven Fabrics

    Directory of Open Access Journals (Sweden)

    Jurgita KOŽENIAUSKIENĖ

    2013-03-01

    Full Text Available In the presented study the effect of laundering on the quality of sewn cotton and bamboo plain woven fabrics was investigated considering both the textile parameters and the type of chemical treatment. Quality parameters of sewn cotton and bamboo woven fabrics such as: fabric strength, seam strength and seam slippage at the moment of 4 mm seam opening were evaluated before and after washing with “Tide” washing powder without softeners or with softeners: “Surcare” and “Pflege Weicspuler”. There was also determined surface density, warp and weft densities as well as thicknesses under the pressures 0.625 kPa and 3.125 kPa, and calculated the comparative thickness that was considered as softness or porosity of fabrics. Notwithstanding that both the investigated fabrics were cellulosic their behavior after laundering was different. Under the tested conditions, unwashed and laundered with or without chemical softeners cotton fabric didn’t demonstrate seam slippage. The seam slippage resistance of laundered without or with softener specimens of bamboo fabric was increased in respect to control fabric. The larger changes in seam efficiency and seam strength because of laundering were determined for bamboo woven fabric then for cotton fabric. They could be influenced by the higher changes in bamboo fabric’s structure. The highest difference between the structure parameters of both fabrics was determined for comparative thickness. It was significantly increased for cotton fabric and decreased for bamboo fabric after chemical softening comparing to untreated fabrics.DOI: http://dx.doi.org/10.5755/j01.ms.19.1.3831

  6. Phases of fracture process zone and tension softening properties of concrete

    International Nuclear Information System (INIS)

    Mihashi, H.; Nomura, N.

    1991-01-01

    The safety and serviceability of concrete structures are influenced very much by the cracking behavior of concrete. Since comprehensive numerical analysis techniques have been extensively developed to predict the mechanical behavior of concrete structures in the limit state, it is essential to study the constitutive laws to describe the cracking behavior of concrete in detail. The tension softening behavior of concrete is highly dominated by the existence of a fracture process zone (FPZ) ahead of a crack tip. Since the direct observation of the FPZ of concrete is hardly possible, the indirect techniques are applied, but it is still ambiguous what happens in the FPZ and how it affects the tension softening property. The purpose of this study is to present the property of the FPZ focusing on the influence of material structures by means of three-dimensional acoustic emission. These results are correlated to tension softening behavior evaluated by a numerical analysis to discuss how the tension softening property is related to the characteristics of the FPZ. The test procedure and the results are reported. (K.I.)

  7. Reaction softening by dissolution–precipitation creep in a retrograde greenschist facies ductile shear zone, New Hampshire, USA

    Science.gov (United States)

    McAleer, Ryan J.; Bish, David L.; Kunk, Michael J.; Sicard, Karri R.; Valley, Peter M.; Walsh, Gregory J.; Wathen, Bryan A.; Wintsch, R.P.

    2016-01-01

    We describe strain localization by a mixed process of reaction and microstructural softening in a lower greenschist facies ductile fault zone that transposes and replaces middle to upper amphibolite facies fabrics and mineral assemblages in the host schist of the Littleton Formation near Claremont, New Hampshire. Here, Na-poor muscovite and chlorite progressively replace first staurolite, then garnet, and finally biotite porphyroblasts as the core of the fault zone is approached. Across the transect, higher grade fabric-forming Na-rich muscovite is also progressively replaced by fabric-forming Na-poor muscovite. The mineralogy of the new phyllonitic fault-rock produced is dominated by Na-poor muscovite and chlorite together with late albite porphyroblasts. The replacement of the amphibolite facies porphyroblasts by muscovite and chlorite is pseudomorphic in some samples and shows that the chemical metastability of the porphyroblasts is sufficient to drive replacement. In contrast, element mapping shows that fabric-forming Na-rich muscovite is selectively replaced at high-strain microstructural sites, indicating that strain energy played an important role in activating the dissolution of the compositionally metastable muscovite. The replacement of strong, high-grade porphyroblasts by weaker Na-poor muscovite and chlorite constitutes reaction softening. The crystallization of parallel and contiguous mica in the retrograde foliation at the expense of the earlier and locally crenulated Na-rich muscovite-defined foliation destroys not only the metastable high-grade mineralogy, but also its stronger geometry. This process constitutes both reaction and microstructural softening. The deformation mechanism here was thus one of dissolution–precipitation creep, activated at considerably lower stresses than might be predicted in quartzofeldspathic rocks at the same lower greenschist facies conditions.

  8. Explosive-emission cathode fabricated using track method

    International Nuclear Information System (INIS)

    Akap'ev, G.N.; Korenev, S.A.

    1989-01-01

    Fabrication technique for large area multipoint cathodes is described. The technique is based on channels filling with metal in the ion-irradiated dielectric film producted after channel etching. It is shown, that cathode may be used under explosive emission conditions. Characteristics of diode with the mentioned type cathodes are measured

  9. Two-step fabrication of ZnO-PVP composites with tunable visible emissions

    Science.gov (United States)

    Agulto, Verdad C.; Empizo, Melvin John F.; Kawano, Keisuke; Minami, Yuki; Yamanoi, Kohei; Sarukura, Nobuhiko; Yago, Allan Christopher C.; Sarmago, Roland V.

    2018-02-01

    We report a two-step fabrication of zinc oxide-polyvinylpyrrolidone (ZnO-PVP) composites for potential phosphor-based applications. The composites are fabricated by initially preparing ZnO microrods using hydrothermal growth method and then dip-coating the microrods into aqueous PVP solutions with varying molar concentrations. The as-prepared ZnO microrods exhibit smooth surfaces and broad visible emissions, while the ZnO-PVP composites have pitted surfaces with shifted and reduced visible emissions. These changes in the structural and optical properties, which are found to depend on the PVP concentration, are attributed to the adsorption of PVP on the microrod surface. Although the surface morphology and visible emission are modified by PVP, the composites still maintain a hexagonal wurtzite crystal structure and near-band-edge ultraviolet (UV) emission similar with the as-prepared microrods. Our results therefore suggest that the ZnO-PVP composites can be used as phosphors that offer not only properties found in both ZnO and PVP but also tunable visible emissions which can be controlled during material fabrication.

  10. Irradiation softening in pure iron single crystals

    International Nuclear Information System (INIS)

    Meshii, M.

    1975-01-01

    The characteristics of irradiation softening in Fe were studied. Results show that irradiation softening effect can be explained by the intrinsic mechanism, namely, the interaction of screw dislocations with randomly dispersed interstitials. At least some of the solid solution softening phenomena observed in alloys can be explained by the same mechanism. However, the alloying may be accompanied by an additional effect such as solute segregation to dislocations which may also strongly affect the yield stress. This effect may mask the softening effect partially or totally. Changes in the dislocation structure of deformed specimens caused by alloying, which are often reported in electron microscopic investigations, support this contention. The alloying, therefore, may not be as good as the low temperature irradiation in studying the effect of random solutes on dislocation motion and yield stress

  11. Ceramic nanostructures and methods of fabrication

    Science.gov (United States)

    Ripley, Edward B [Knoxville, TN; Seals, Roland D [Oak Ridge, TN; Morrell, Jonathan S [Knoxville, TN

    2009-11-24

    Structures and methods for the fabrication of ceramic nanostructures. Structures include metal particles, preferably comprising copper, disposed on a ceramic substrate. The structures are heated, preferably in the presence of microwaves, to a temperature that softens the metal particles and preferably forms a pool of molten ceramic under the softened metal particle. A nano-generator is created wherein ceramic material diffuses through the molten particle and forms ceramic nanostructures on a polar site of the metal particle. The nanostructures may comprise silica, alumina, titania, or compounds or mixtures thereof.

  12. Direct Integration of Dynamic Emissive Displays into Knitted Fabric Structures

    Science.gov (United States)

    Bellingham, Alyssa

    Smart textiles are revolutionizing the textile industry by combining technology into fabric to give clothing new abilities including communication, transformation, and energy conduction. The advent of electroluminescent fibers, which emit light in response to an applied electric field, has opened the door for fabric-integrated emissive displays in textiles. This thesis focuses on the development of a flexible and scalable emissive fabric display with individually addressable pixels disposed within a fabric matrix. The pixels are formed in areas where a fiber supporting the dielectric and phosphor layers of an electroluminescent structure contacts a conductive surface. This conductive surface can be an external conductive fiber, yarn or wire, or a translucent conductive material layer deposited at set points along the electroluminescent fibers. Different contacting methods are introduced and the different ways the EL yarns can be incorporated into the knitted fabric are discussed. EL fibers were fabricated using a single yarn coating system with a custom, adjustable 3D printed slot die coater for even distribution of material onto the supporting fiber substrates. These fibers are mechanically characterized inside of and outside of a knitted fabric matrix to determine their potential for various applications, including wearables. A 4-pixel dynamic emissive display prototype is fabricated and characterized. This is the first demonstration of an all-knit emissive display with individually controllable pixels. The prototype is composed of a grid of fibers supporting the dielectric and phosphor layers of an electroluminescent (EL) device structure, called EL fibers, and conductive fibers acting as the top electrode. This grid is integrated into a biaxial weft knit structure where the EL fibers make up the rows and conductive fibers make up the columns of the reinforcement yarns inside the supporting weft knit. The pixels exist as individual segments of

  13. Fabrication of graphene and ZnO nanocones hybrid structure for transparent field emission device

    Energy Technology Data Exchange (ETDEWEB)

    Zulkifli, Zurita [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology (Japan); Faculty of Electrical Engineering, Universiti Teknologi Mara (Malaysia); Shinde, Sachin M.; Suguira, Takatoshi [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology (Japan); Kalita, Golap, E-mail: kalita.golap@nitech.ac.jp [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology (Japan); Center for Fostering Young and Innovative Researchers, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Tanemura, Masaki [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology (Japan)

    2015-11-30

    Graphical abstract: Fabrication of a transparent field emission device with chemical vapor deposited graphene and zinc oxide nanocones showing low turn-on field due to locally enhance electric field. - Highlights: • Demonstrated transparent field emission device with CVD graphene and ZnO nanocones. • Graphene film was coated on carbon doped ZnO nanocone prepared by ion irradiation. • Low turn-on field for the graphene/C:ZnO nanocones hybrid structure is achieved. • Graphene/C:ZnO heterostructure is promising for transparent field emission devices. - Abstract: Fabrication of a transparent and high performance electron emission device is the key challenge for suitable display applications. Here, we demonstrate fabrication of a transparent and efficient field emission device integrating large-area chemical vapor deposited graphene and carbon doped zinc oxide (C:ZnO) nanocones. The ZnO nanocones were obtained with ion irradiation process at room temperature, over which the graphene film was transferred without destroying nanocone tips. Significant enhancement in field emission properties were observed with the transferred graphene film on C:ZnO nanocones. The threshold field for hybrid and pristine C:ZnO nanocones film at current density of 1 μA/cm{sup 2} was obtained as 4.3 V/μm and 6.5 V/μm, respectively. The enhanced field emission properties with low turn-on field for the graphene/C:ZnO nanocones can be attributed to locally enhance electric field. Our finding shows that a graphene/C:ZnO hybridized structure is very promising to fabricate field emission devices without compromising with high transparency.

  14. Curvature Effect and the Spectral Softening Phenomenon Detected ...

    Indian Academy of Sciences (India)

    soft spectral evolution, indicating that this spectral softening is not a rare phenomenon .... of time, there exists a temporal steep decay phase accompanied by spectral softening. (d) In most cases, the temporal power law index α and the spectral.

  15. Cation Exchange Water Softeners

    Science.gov (United States)

    WaterSense released a notice of intent to develop a specification for cation exchange water softeners. The program has made the decision not to move forward with a spec at this time, but is making this information available.

  16. Stress-Softening Formulae of Polymer Bearings

    Directory of Open Access Journals (Sweden)

    M. H. B. M. Shariff

    2015-01-01

    Full Text Available The motivation for this work was the absence of closed form solutions that can reasonably describe the axial deformation behaviour of stress-softening polymer bearings. In this paper, new closed form solutions that exhibit Mullins phenomenon are developed. We show that the apparent Young modulus depends on the shape factor and the minimal infinitesimal strain. We furthermore found that, in a nonlinear deformation, the shape factor plays an important role in stress softening. The solutions are design friendly and are consistent with expected results.

  17. Influence of softening sequencing on electrocoagulation treatment of produced water.

    Science.gov (United States)

    Esmaeilirad, Nasim; Carlson, Ken; Omur Ozbek, Pinar

    2015-01-01

    Electrocoagulation has been used to remove solids and some metals from both water and wastewater sources for decades. Additionally, chemical softening is commonly employed in water treatment systems to remove hardness. This paper assesses the combination and sequence of softening and EC methods to treat hydraulic fracturing flowback and produced water from shale oil and gas operations. EC is one of the available technologies to treat produced water for reuse in frac fluids, eliminating not only the need to transport more water but also the costs of providing fresh water. In this paper, the influence of chemical softening on EC was studied. In the softening process, pH was raised to 9.5 and 10.2 before and after EC, respectively. Softening, when practiced before EC was more effective for removing turbidity with samples from wells older than one month (99% versus 88%). However, neither method was successful in treating samples collected from early flowback (1-day and 2-day samples), likely due to the high concentration of organic matter. For total organic carbon, hardness, Ba, Sr, and B removal, application of softening before EC appeared to be the most efficient approach, likely due to the formation of solids before the coagulation process. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Life cycle assessment of central softening of very hard drinking water

    DEFF Research Database (Denmark)

    Godskesen, Berit; Hauschild, Michael Zwicky; Rygaard, Martin

    2012-01-01

    Life Cycle Assessment (LCA) to quantify the environmental impacts of central softening of drinking water considering both the negative effects at the waterworks and the positive effects imposed by the changed water quality in the households. The LCA modeling considered central softening of drinking......Many consumers prefer softened water due to convenience issues such as avoidance of removing limescale deposits from household appliances and surfaces, and to reduce consumption of cleaning agents and laundry detergents leading to lower household expenses. Even though central softening of drinking...... water entailed an increased use of energy, sand and chemicals at the waterworks, the distributed and softened drinking water supported a decrease in consumption of energy and chemical agents in the households along with a prolonged service life of household appliances which heat water. This study used...

  19. Life cycle assessment of central softening of very hard drinking water.

    Science.gov (United States)

    Godskesen, B; Hauschild, M; Rygaard, M; Zambrano, K; Albrechtsen, H-J

    2012-08-30

    Many consumers prefer softened water due to convenience issues such as avoidance of removing limescale deposits from household appliances and surfaces, and to reduce consumption of cleaning agents and laundry detergents leading to lower household expenses. Even though central softening of drinking water entailed an increased use of energy, sand and chemicals at the waterworks, the distributed and softened drinking water supported a decrease in consumption of energy and chemical agents in the households along with a prolonged service life of household appliances which heat water. This study used Life Cycle Assessment (LCA) to quantify the environmental impacts of central softening of drinking water considering both the negative effects at the waterworks and the positive effects imposed by the changed water quality in the households. The LCA modeling considered central softening of drinking water from the initial hardness of the region of study (Copenhagen, Denmark) which is 362 mg/L as CaCO(3) to a final hardness as CaCO(3) of 254 (a softening depth of 108) mg/L or 145 (a softening depth of 217) mg/L. Our study showed that the consumer preference can be met together with reducing the impact on the environment and the resource consumption. Environmental impacts decreased by up to 3 mPET (milli Personal Equivalent Targeted) and the break-even point from where central softening becomes environmentally beneficial was reached at a softening depth of only 22 mg/L as CaCO(3). Both energy-related and chemically related environmental impacts were reduced as well as the consumption of resources. Based on scarcity criteria, nickel was identified as the most problematic non-renewable resource in the system, and savings of up to 8 mPR (milli Person Reserve) were found. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Stress-Softening and Residual Strain Effects in Suture Materials

    Directory of Open Access Journals (Sweden)

    Alex Elías-Zúñiga

    2013-01-01

    Full Text Available This work focuses on the experimental characterization of suture material samples of MonoPlus, Monosyn, polyglycolic acid, polydioxanone 2–0, polydioxanone 4–0, poly(glycolide-co-epsilon-caprolactone, nylon, and polypropylene when subjected to cyclic loading and unloading conditions. It is found that all tested suture materials exhibit stress-softening and residual strain effects related to the microstructural material damage upon deformation from the natural, undistorted state of the virgin suture material. To predict experimental observations, a new constitutive material model that takes into account stress-softening and residual strain effects is developed. The basis of this model is the inclusion of a phenomenological nonmonotonous softening function that depends on the strain intensity between loading and unloading cycles. The theory is illustrated by modifying the non-Gaussian average-stretch, full-network model to capture stress-softening and residual strains by using pseudoelasticity concepts. It is shown that results obtained from theoretical simulations compare well with suture material experimental data.

  1. Static softening following multistage hot deformation of 7150 aluminum alloy: Experiment and modeling

    International Nuclear Information System (INIS)

    Jiang, Fulin; Zurob, Hatem S.; Purdy, Gary R.; Zhang, Hui

    2015-01-01

    Previous studies have demonstrated that the static softening kinetics of 7150 aluminum alloy showed typical sigmoidal behavior at 400 °C and softening plateaus at 300 °C (F.L. Jiang, et al., Mater. Sci. Eng. A, vol. 552, 2012, pp. 269–275). In present work, the static softening mechanisms, the microstructural evolution during post-deformation holding was studied by optical microscopy, scanning electron microscope, electron back-scattered diffraction and transmission electron microscopy. It was demonstrated that recrystallization is essentially absent during post-deformation holding, and that static recovery was the main contribution to static softening. Strain induced precipitation and coarsening caused softening plateaus at 300 °C. In order to better understand the static softening mechanism, physically-based modeling, which integrated recovery and multicomponent particle coarsening modeling, was employed to rationalize the experimental results.

  2. Cost-benefit analysis of central softening for production of drinking water.

    Science.gov (United States)

    Van der Bruggen, B; Goossens, H; Everard, P A; Stemgée, K; Rogge, W

    2009-01-01

    Softening drinking water before distribution yields advantages with environmental impact, such as lower household products consumption, less scaling in piping and machines, and the avoidance of decentralized, domestic softeners. Central softening is under consideration in Flanders by the largest water supplier, VMW (Dutch acronym for "Flemish Company for Water Supply"), to deliver soft (15 degrees F) water to their customers. A case study is presented for a region with hard water (47 degrees F). The chosen technique is the pellet reactor, based on precipitation of CaCO(3) by NaOH addition. This softening operation has possibly large impact on the environment and the water consumption pattern. A cost-benefit analysis has been made to estimate the added value of central softening, by investigating the impact on the drinking water company, on their customers, on employment, on environment, on health, etc. The analysis for the region of study revealed benefits for customers which were higher than the costs for the drinking water company. However, pricing of drinking water remains an important problem. A sensitivity analysis of these results has also been made, to evaluate the impact of important hypothesis, and to be able to expand this study to other regions. The conclusions for this part show that softening is beneficial if water hardness is to be decreased by at least 5 degrees F.

  3. Metadynamic and static recrystallization softening behavior of a bainite steel

    Science.gov (United States)

    Li, Lixin; Zheng, Liangyu; Ye, Ben; Tong, Zeqiong

    2018-01-01

    The metadynamic recrystallization (MDRX) and static recrystallization (SRX) softening behavior of a bainite steel was investigated by two-pass isothermal compression experiments at temperatures of 1173, 1273, 1373, and 1473 K and strain rates of 0.01, 0.1, 1, and 10 s-1 with inter-pass times of 1, 5, 10, and 30 s on a Gleeble-1500 thermo-mechanical simulator. Kinetic equations were developed to evaluate the softening fractions caused by MDRX and SRX. A comparison between the experimental and predicted softening fractions showed that the proposed kinetic equations can provide a precise estimation of the MDRX and SRX behavior of the studied steel. The results based on the kinetic equations indicated that the MDRX and SRX softening fraction increases with the increase in strain rate, deformation temperature, inter-pass time, and pre-strain; the activation energy of MDRX is much smaller than that of SRX; and the no-recrystallization temperature of the investigated steel is 1179.4 K.

  4. Improvement and Application of the Softened Strut-and-Tie Model

    Science.gov (United States)

    Fan, Guoxi; Wang, Debin; Diao, Yuhong; Shang, Huaishuai; Tang, Xiaocheng; Sun, Hai

    2017-11-01

    Previous experimental researches indicate that reinforced concrete beam-column joints play an important role in the mechanical properties of moment resisting frame structures, so as to require proper design. The aims of this paper are to predict the joint carrying capacity and cracks development theoretically. Thus, a rational model needs to be developed. Based on the former considerations, the softened strut-and-tie model is selected to be introduced and analyzed. Four adjustments including modifications of the depth of the diagonal strut, the inclination angle of diagonal compression strut, the smeared stress of mild steel bars embedded in concrete, as well as the softening coefficient are made. After that, the carrying capacity of beam-column joint and cracks development are predicted using the improved softened strut-and-tie model. Based on the test results, it is not difficult to find that the improved softened strut-and-tie model can be used to predict the joint carrying capacity and cracks development with sufficient accuracy.

  5. A novel eco-friendly technique for efficient control of lime water softening process.

    Science.gov (United States)

    Ostovar, Mohamad; Amiri, Mohamad

    2013-12-01

    Lime softening is an established type of water treatment used for water softening. The performance of this process is highly dependent on lime dosage. Currently, lime dosage is adjusted manually based on chemical tests, aimed at maintaining the phenolphthalein (P) and total (M) alkalinities within a certain range (2 P - M > or = 5). In this paper, a critical study of the softening process has been presented. It has been shown that the current method is frequently incorrect. Furthermore, electrical conductivity (EC) has been introduced as a novel indicator for effectively characterizing the lime softening process.This novel technique has several advantages over the current alkalinities method. Because no chemical reagents are needed for titration, which is a simple test, there is a considerable reduction in test costs. Additionally, there is a reduction in the treated water hardness and generated sludge during the lime softening process. Therefore, it is highly eco-friendly, and is a very cost effective alternative technique for efficient control of the lime softening process.

  6. Viscosity and Softening Behavior of Alkali Zinc Sulfophosphate Glasses

    DEFF Research Database (Denmark)

    Da, Ning; Krolikowski, Sebastian; Nielsen, Karsten Hansgaard

    2010-01-01

    We report on the softening properties and viscosity of glasses from the system ZnO-Na2O-SO3-P2O5 for low-temperature sealing applications. Up to a ratio of network-forming ions PO(4)3-:SO(4)2- of about 2:1, a gradual substitution of P2O5 by SO3 results in decreasing glass transition and softening...

  7. Hypoxia-responsive ERFs involved in postdeastringency softening of persimmon fruit.

    Science.gov (United States)

    Wang, Miao-Miao; Zhu, Qing-Gang; Deng, Chu-Li; Luo, Zheng-Rong; Sun, Ning-Jing; Grierson, Donald; Yin, Xue-Ren; Chen, Kun-Song

    2017-11-01

    Removal of astringency by endogenously formed acetaldehyde, achieved by postharvest anaerobic treatment, is of critical importance for many types of persimmon fruit. Although an anaerobic environment accelerates de-astringency, it also has the deleterious effect of promoting excessive softening, reducing shelf life and marketability. Some hypoxia-responsive ethylene response factors (ERFs) participate in anaerobic de-astringency, but their role in accelerated softening was unclear. Undesirable rapid softening induced by high CO 2 (95%) was ameliorated by adding the ethylene inhibitor 1-MCP (1 μL/L), resulting in reduced astringency while maintaining firmness, suggesting that CO 2 -induced softening involves ethylene signalling. Among the hypoxia-responsive genes, expression of eight involved in fruit cell wall metabolism (Dkβ-gal1/4, DkEGase1, DkPE1/2, DkPG1, DkXTH9/10) and three ethylene response factor genes (DkERF8/16/19) showed significant correlations with postdeastringency fruit softening. Dual-luciferase assay indicated that DkERF8/16/19 could trans-activate the DkXTH9 promoter and this interaction was abolished by a mutation introduced into the C-repeat/dehydration-responsive element of the DkXTH9 promoter, supporting the conclusion that these DkERFs bind directly to the DkXTH9 promoter and regulate this gene, which encodes an important cell wall metabolism enzyme. Some hypoxia-responsive ERF genes are involved in deastringency and softening, and this linkage was uncoupled by 1-MCP. Fruit of the Japanese cultivar 'Tonewase' provide a model for altered anaerobic response, as they lost astringency yet maintained firmness after CO 2 treatment without 1-MCP and changes in cell wall enzymes and ERFs did not occur. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  8. Softening behaviour of concrete : numerical research

    NARCIS (Netherlands)

    Bongers, J.P.W.; Rutten, H.S.; Fijneman, H.J.

    1994-01-01

    Experimental research shows, apart from the influence of multiaxial loading conditions, that softening of concrete loaded in compression is accompanied by localization of deformations. Therefore, numerical modelling of concrete material behaviour has to take this effect into account. This implies

  9. High Efficient THz Emission From Unbiased and Biased Semiconductor Nanowires Fabricated Using Electron Beam Lithography

    Energy Technology Data Exchange (ETDEWEB)

    Balci, Soner; Czaplewski, David A.; Jung, Il Woong; Kim, Ju-Hyung; Hatami, Fariba; Kung, Patrick; Kim, Seongsin Margaret

    2017-07-01

    Besides having perfect control on structural features, such as vertical alignment and uniform distribution by fabricating the wires via e-beam lithography and etching process, we also investigated the THz emission from these fabricated nanowires when they are applied DC bias voltage. To be able to apply a voltage bias, an interdigitated gold (Au) electrode was patterned on the high-quality InGaAs epilayer grown on InP substrate bymolecular beam epitaxy. Afterwards, perfect vertically aligned and uniformly distributed nanowires were fabricated in between the electrodes of this interdigitated pattern so that we could apply voltage bias to improve the THz emission. As a result, we achieved enhancement in the emitted THz radiation by ~four times, about 12 dB increase in power ratio at 0.25 THz with a DC biased electric field compared with unbiased NWs.

  10. Fabrication, Light Emission, and Magnetism of Silica Nanoparticles Hybridized with AIE Luminogens and Inorganic Nanostructures

    Science.gov (United States)

    Faisal, Mahtab

    Much research efforts have been devoted in developing new synthetic approaches for fluorescent silica nanoparticles (FSNPs) due to their potential high-technological applications. However, light emissions from most of the FSNPs prepared so far have been rather weak. This is due to the emission quenching caused by the aggregation of fluorophores in the solid state. We have observed a novel phenomenon of aggregation-induced emission (AIE): a series of propeller-shaped molecules such as tetraphenylethene (TPE) and silole are induced to emit efficiently by aggregate formation. Thus, they are ideal fluorophors for the construction of FSNPs and my thesis work focuses on the synthesis of silica nanoparticles containing these luminogens and magnetic nanostructures. Highly emissive FSNPs with core-shell structures are fabricated by surfactant-free sol-gel reactions of tetraphenylethene- (TPE) and silole-functionalized siloxanes followed by the reactions with tetraethoxysilane. The FSNPs are uniformly sized, surface-charged and colloidally stable. The diameters of the FSNPs are tunable in the range of 45--295 nm by changing the reaction conditions. Whereas their TPE and silole precursors are non-emissive, the FSNPs emit strong visible lights, thanks to the novel aggregation-induced emission characteristics of the TPE and silole aggregates in the hybrid nanoparticles. The FSNPs pose no toxicity to living cells and can be utilized to selectively image cytoplasm of HeLa cells. Applying the same tool in the presence of citrate-coated magnetite nanoparticles, uniform magnetic fluorescent silica nanoparticles (MFSNPs) with smooth surfaces are fabricated. These particles exhibit appreciable surface charges and hence good colloidal stability. They are superparamagnetic, exhibiting no hysteresis at room temperature. UV irradiation of a suspension of MFSNPs in ethanol gives strong blue and green emissions. The MFSNPs can selectively stain the cytoplasmic regions of the living cells

  11. Contribution of Drinking Water Softeners to Daily Phosphate Intake in Slovenia.

    Science.gov (United States)

    Jereb, Gregor; Poljšak, Borut; Eržen, Ivan

    2017-10-06

    The cumulative phosphate intake in a typical daily diet is high and, according to several studies, already exceeds recommended values. The exposure of the general population to phosphorus via drinking water is generally not known. One of the hidden sources of phosphorus in a daily diet is sodium polyphosphate, commonly used as a drinking water softener. In Slovenia, softening of drinking water is carried out exclusively within the internal (household) drinking water supply systems to prevent the accumulation of limescale. The aim of the study was to determine the prevalence of sodium phosphates in the drinking water in Slovenia in different types of buildings, to determine residents' awareness of the presence of chemical softeners in their drinking water, and to provide an exposure assessment on the phosphorus intake from drinking water. In the current study, the presence of phosphates in the samples of drinking water was determined using a spectrophotometric method with ammonium molybdate. In nearly half of the samples, the presence of phosphates as water softeners was confirmed. The measured concentrations varied substantially from 0.2 mg PO4/L to 24.6 mg PO4/L. Nearly 70% of the respondents were not familiar with the exact data on water softening in their buildings. It follows that concentrations of added phosphates should be controlled and the consumers should be informed of the added chemicals in their drinking water. The health risks of using sodium polyphosphate as a drinking water softener have not been sufficiently investigated and assessed. It is highly recommended that proper guidelines and regulations are developed and introduced to protect human health from adverse effects of chemicals in water intended for human consumption.

  12. Far-Infrared Emission Characteristics and Wear Comfort Property of ZrC-Imbedded Heat Storage Knitted Fabrics for Emotional Garments

    Directory of Open Access Journals (Sweden)

    Kim Hyun Ah

    2017-06-01

    Full Text Available This study examined the far-infrared emission characteristics and wear comfort properties of ZrC-imbedded heat storage knitted fabrics. For this purpose, ZrC-imbedded, heat storage PET (polyethylene terephthalate was spun from high-viscosity PET with imbedded ZrC powder on the core part and low-viscosity PET on the sheath part using a conjugated spinning method. ZrC-imbedded PET knitted fabric was also prepared and its physical properties were measured and compared with those of regular PET knitted fabric. In addition, ingredient analysis and the far-infrared emission characteristics of the ZrC-imbedded knitted fabrics were analyzed by energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy. The thermal properties, moisture absorption, and drying properties of the ZrC-imbedded PET knitted fabric were measured and compared with those of the regular PET knitted fabric. The mechanical properties using the FAST (fabric assurance by simple testing system and the dye affinity of the ZrC-imbedded knitted fabric were also measured and compared with those of regular PET knitted fabric.

  13. Analysis of Balanced Double Lap Joints with a Bi-Linear Softening Adhesive

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg; Stang, Henrik; Schmidt, Jacob Wittrup

    2010-01-01

    of cracked concrete disks strengthened with adhesive bonded fiber reinforced polymers (FRP), or in any other structure comparable to a double lap joint with a softening interface. The present constitutive model can be changed to fit any model with the same shape of constitutive relationship, see Figure 1.......The response of a bonded symmetric balanced double lap joint under tensile loading with a bilinear softening adhesive is described with a closed form solution. Since bonded joints in concrete structures undergo softening, a versatile model to describe the response for a wide range of constitutive...

  14. Increased sustainability of softening by producing pure calcite pellets for reuse

    NARCIS (Netherlands)

    Hofs, B; Baars, ET; Palmen, LJ; Elings, JA; Kors, L.J.; Kramer, O.J.I.; Koppers, H; van der Hoek, J.P.

    2015-01-01

    About 50% of the drinking water in the Netherlands is centrally softened by the drinking water companies in a process known as pellet softening. In this process a base and seeding material are mixed in an upflow reactor, where subsequently CaCO3 precipitates on a seed core as pellets. The seeding

  15. REMOVAL OF BERYLLIUM FROM DRINKING WATER BY CHEMICAL COAGULATION AND LIME SOFTENING

    Science.gov (United States)

    The effectiveness of conventional drinking water treatment and lime softening was evaluated for beryllium removal from two drinking water sources. ar test studies were conducted to determine how common coagulants (aluminum sulfate and ferric chloride and lime softening performed ...

  16. Pemanfaatan ter sebagai softener dalam pembuatan karet riklim

    Directory of Open Access Journals (Sweden)

    Arum Yuniari

    2006-07-01

    Full Text Available The aims of this research was to study the effect of Coal Tar as softener for reclaim rubber production from waste of rubber of tyre rethreading as input materials was scrap rubber. Coal Tar as softener was used with variation; 2,5; 5; 7,5; 10; 12,5 and 15% respectively from total scrap rubber. Reclaimed rubber was made at temperature 1200C for 1 hour in autoclave and than it was subsequently ground with two rolls mills. The characteristics of the reclaimed rubber was tested for the vulcanization and physical properties. The results showed that Coal Tar could be utilized as softener for reclaimed rubber. Reclaimed rubber production containing Coal Tar 15% would give good vulcanization and physical properties. The vulcanization 1062 seconds, maximum torque 39,08 kgf-cm, minimum torque 4,71 kgf-cm. Good physical properties : tensile strength 80,74 kg/cm2 elongation at break 444,62%, hardness 49 shore A, tear strength 40,39 kg/cm, density 1,15 g/cm3, abrasion resistance 1,87 mm3/kgm, and no crack detected on the flex cracking test of 150 kcs

  17. Nitride superluminescent diodes with broadened emission spectrum fabricated using laterally patterned substrate.

    Science.gov (United States)

    Kafar, A; Stanczyk, S; Sarzynski, M; Grzanka, S; Goss, J; Targowski, G; Nowakowska-Siwinska, A; Suski, T; Perlin, P

    2016-05-02

    We demonstrate InGaN/GaN superluminescent diodes with broadened emission spectra fabricated on surface-shaped bulk GaN (0001) substrates. The patterning changes the local vicinal angle linearly along the device waveguide, which results in an indium incorporation profile in InGaN quantum wells. The structure was investigated by microphotoluminescence mapping, showing a shift of central emission wavelength from 413 nm to 430 nm. Spectral full width at half maximum of processed superluminescent diodes is equal to 6.1 nm, while the reference chips show 3.4 nm. This approach may open the path for using nitride devices in applications requiring broad emission spectrum and high beam quality, such as optical coherence tomography.

  18. Contribution of Drinking Water Softeners to Daily Phosphate Intake in Slovenia

    Directory of Open Access Journals (Sweden)

    Gregor Jereb

    2017-10-01

    Full Text Available The cumulative phosphate intake in a typical daily diet is high and, according to several studies, already exceeds recommended values. The exposure of the general population to phosphorus via drinking water is generally not known. One of the hidden sources of phosphorus in a daily diet is sodium polyphosphate, commonly used as a drinking water softener. In Slovenia, softening of drinking water is carried out exclusively within the internal (household drinking water supply systems to prevent the accumulation of limescale. The aim of the study was to determine the prevalence of sodium phosphates in the drinking water in Slovenia in different types of buildings, to determine residents’ awareness of the presence of chemical softeners in their drinking water, and to provide an exposure assessment on the phosphorus intake from drinking water. In the current study, the presence of phosphates in the samples of drinking water was determined using a spectrophotometric method with ammonium molybdate. In nearly half of the samples, the presence of phosphates as water softeners was confirmed. The measured concentrations varied substantially from 0.2 mg PO4/L to 24.6 mg PO4/L. Nearly 70% of the respondents were not familiar with the exact data on water softening in their buildings. It follows that concentrations of added phosphates should be controlled and the consumers should be informed of the added chemicals in their drinking water. The health risks of using sodium polyphosphate as a drinking water softener have not been sufficiently investigated and assessed. It is highly recommended that proper guidelines and regulations are developed and introduced to protect human health from adverse effects of chemicals in water intended for human consumption.

  19. Not changing minds but softening hearts.

    Science.gov (United States)

    Morey, Jerad

    2013-01-01

    When a political decision threatened to divide communities, the Minnesota Council of Churches found a way not to change minds but to soften hearts. The Respectful Conversations Project built empathy and improved relationships, and is still helping to bring peace to communities and strengthening civic engagement in the state.

  20. Softening behaviour of concrete : experimental research

    NARCIS (Netherlands)

    Geel, van H.J.G.M.; Rutten, H.S.; Fijneman, H.J.

    1994-01-01

    Uniaxial compressive softening tests on two types of concrete have been carried out, varying the type of loading platen and specimen size. In total 37 specimens were tested, 18 with polished steel loading platens and 19 with teflon loading platens. Half of the specimens were made of normal strength

  1. Modelling irradiation-induced softening in BCC iron by crystal plasticity approach

    International Nuclear Information System (INIS)

    Xiao, Xiazi; Terentyev, Dmitry; Yu, Long; Song, Dingkun; Bakaev, A.; Duan, Huiling

    2015-01-01

    Crystal plasticity model (CPM) for BCC iron to account for radiation-induced strain softening is proposed. CPM is based on the plastically-driven and thermally-activated removal of dislocation loops. Atomistic simulations are applied to parameterize dislocation-defect interactions. Combining experimental microstructures, defect-hardening/absorption rules from atomistic simulations, and CPM fitted to properties of non-irradiated iron, the model achieves a good agreement with experimental data regarding radiation-induced strain softening and flow stress increase under neutron irradiation. - Highlights: • A stress- and thermal-activated defect absorption model is proposed for the dislocation-loop interaction. • A temperature-dependent plasticity theory is proposed for the irradiation-induced strain softening of irradiated BCC metals. • The numerical results of the model match with the corresponding experimental data.

  2. Modelling irradiation-induced softening in BCC iron by crystal plasticity approach

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xiazi [State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871 (China); CAPT, HEDPS and IFSA Collaborative Innovation Center of MoE, Peking University, Beijing 100871 (China); Terentyev, Dmitry, E-mail: dterenty@SCKCEN.BE [Structural Material Group, Institute of Nuclear Materials Science, SCK-CEN, Mol (Belgium); Yu, Long; Song, Dingkun [State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871 (China); Bakaev, A. [Structural Material Group, Institute of Nuclear Materials Science, SCK-CEN, Mol (Belgium); Duan, Huiling, E-mail: hlduan@pku.edu.cn [State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871 (China); CAPT, HEDPS and IFSA Collaborative Innovation Center of MoE, Peking University, Beijing 100871 (China)

    2015-11-15

    Crystal plasticity model (CPM) for BCC iron to account for radiation-induced strain softening is proposed. CPM is based on the plastically-driven and thermally-activated removal of dislocation loops. Atomistic simulations are applied to parameterize dislocation-defect interactions. Combining experimental microstructures, defect-hardening/absorption rules from atomistic simulations, and CPM fitted to properties of non-irradiated iron, the model achieves a good agreement with experimental data regarding radiation-induced strain softening and flow stress increase under neutron irradiation. - Highlights: • A stress- and thermal-activated defect absorption model is proposed for the dislocation-loop interaction. • A temperature-dependent plasticity theory is proposed for the irradiation-induced strain softening of irradiated BCC metals. • The numerical results of the model match with the corresponding experimental data.

  3. Predicting the mixed-mode I/II spatial damage propagation along 3D-printed soft interfacial layer via a hyperelastic softening model

    Science.gov (United States)

    Liu, Lei; Li, Yaning

    2018-07-01

    A methodology was developed to use a hyperelastic softening model to predict the constitutive behavior and the spatial damage propagation of nonlinear materials with damage-induced softening under mixed-mode loading. A user subroutine (ABAQUS/VUMAT) was developed for numerical implementation of the model. 3D-printed wavy soft rubbery interfacial layer was used as a material system to verify and validate the methodology. The Arruda - Boyce hyperelastic model is incorporated with the softening model to capture the nonlinear pre-and post- damage behavior of the interfacial layer under mixed Mode I/II loads. To characterize model parameters of the 3D-printed rubbery interfacial layer, a series of scarf-joint specimens were designed, which enabled systematic variation of stress triaxiality via a single geometric parameter, the slant angle. It was found that the important model parameter m is exponentially related to the stress triaxiality. Compact tension specimens of the sinusoidal wavy interfacial layer with different waviness were designed and fabricated via multi-material 3D printing. Finite element (FE) simulations were conducted to predict the spatial damage propagation of the material within the wavy interfacial layer. Compact tension experiments were performed to verify the model prediction. The results show that the model developed is able to accurately predict the damage propagation of the 3D-printed rubbery interfacial layer under complicated stress-state without pre-defined failure criteria.

  4. Hardening and softening analysis of pure titanium based on the dislocation density during torsion deformation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Han; Li, Fuguo, E-mail: fuguolx@nwpu.edu.cn; Li, Jinghui; Ma, Xinkai; Li, Jiang; Wan, Qiong

    2016-08-01

    The hardening and softening phenomena during torsion deformation are studied based on the Taylor dislocation model for pure titanium. The hardening and softening phenomena are observed through the hardness analysis during micro-indentation test and micro-hardness test. Besides, the variations of indentation size also verify the existence of hardening and softening phenomena during torsion. The variations of geometric necessary dislocations (GNDs) and statistic store dislocations (SSDs) state that the positions of high dislocation density and low dislocation density correspond to the positions of hardening and softening. The results from the microstructure, grain boundaries evolution and twins analysis indicate the twins play an important role in appearance of hardening and softening phenomena. The appearance of hardening and softening phenomena are attributed to the combination of different slip systems and twinning systems combining with the Schmid Factor (SF) analysis and the transmission electron microscope (TEM). The appearance of hardening and softening phenomena can be explained by the Taylor dislocation theory based on TEM analysis. - Highlights: • The phenomena can be characterized by Taylor dislocation model. • The variation of GNDs leads to the phenomena. • The phenomena are proved by micro-hardness, indentation hardness. • The {10-12} twin and {11-24} twin play an important role in the phenomena.

  5. Communication: Surface-facilitated softening of ordinary and vapor-deposited glasses

    Science.gov (United States)

    Cubeta, Ulyana; Bhattacharya, Deepanjan; Sadtchenko, Vlad

    2017-08-01

    A common distinction between the ordinary glasses formed by melt cooling and the stable amorphous films formed by vapor deposition is the apparent mechanism of their devitrification. Using quasi-adiabatic, fast scanning calorimetry that is capable of heating rates in excess of 105 K s-1, we have investigated the softening kinetics of micrometer-scale, ordinary glass films of methylbenzene and 2-propanol. At the limit of high heating rates, the transformation mechanism of ordinary glasses is identical to that of their stable vapor-deposited counterparts. In both cases, softening is likely to begin at the sample surface and progress into its bulk via a transformation front. Furthermore, such a surface-facilitated mechanism complies with zero-order, Arrhenius rate law. The activation energy barriers for the softening transformation imply that the kinetics must be defined, at least in part, by the initial thermodynamic and structural state of the samples.

  6. Hardening and softening mechanisms of pearlitic steel wire under torsion

    International Nuclear Information System (INIS)

    Zhao, Tian-Zhang; Zhang, Shi-Hong; Zhang, Guang-Liang; Song, Hong-Wu; Cheng, Ming

    2014-01-01

    Highlights: • Mechanical behavior of pearlitic steel wire is studied using torsion. • Work hardening results from refinement lamellar pearlitic structure. • Softening results from recovery, shear bands and lamellar fragmentations. • A microstructure based analytical flow stress model is established. - Abstract: The mechanical behaviors and microstructure evolution of pearlitic steel wires under monotonic shear deformation have been investigated by a torsion test and a number of electron microscopy techniques including scanning electron microscopy (SEM) and transmission electron microscopy (TEM), with an aim to reveal the softening and hardening mechanisms of a randomly oriented pearlitic structure during a monotonic stain path. Significantly different from the remarkable strain hardening in cold wire drawing, the strain hardening rate during torsion drops to zero quickly after a short hardening stage. The microstructure observations indicate that the inter-lamellar spacing (ILS) decreases and the dislocations accumulate with strain, which leads to hardening of the material. Meanwhile, when the strain is larger than 0.154, the enhancement of dynamic recovery, shear bands (SBs) and cementite fragmentations results in the softening and balances the strain hardening. A microstructure based analytical flow stress model with considering the influence of ILS on the mean free path of dislocations and the softening caused by SBs and cementite fragmentations, has been established and the predicted flow shear curve meets well with the measured curve in the torsion test

  7. Genetic improvement of tomato by targeted control of fruit softening

    KAUST Repository

    Uluisik, Selman; Chapman, Natalie H; Smith, Rebecca; Poole, Mervin; Adams, Gary; Gillis, Richard B; Besong, Tabot M.D.; Sheldon, Judith; Stiegelmeyer, Suzy; Perez, Laura; Samsulrizal, Nurul; Wang, Duoduo; Fisk, Ian D; Yang, Ni; Baxter, Charles; Rickett, Daniel; Fray, Rupert; Blanco-Ulate, Barbara; Powell, Ann L T; Harding, Stephen E; Craigon, Jim; Rose, Jocelyn K C; Fich, Eric A; Sun, Li; Domozych, David S; Fraser, Paul D; Tucker, Gregory A; Grierson, Don; Seymour, Graham B

    2016-01-01

    Controlling the rate of softening to extend shelf life was a key target for researchers engineering genetically modified (GM) tomatoes in the 1990s, but only modest improvements were achieved. Hybrids grown nowadays contain 'non-ripening mutations' that slow ripening and improve shelf life, but adversely affect flavor and color. We report substantial, targeted control of tomato softening, without affecting other aspects of ripening, by silencing a gene encoding a pectate lyase. © 2016 Nature America, Inc. All rights reserved.

  8. Genetic improvement of tomato by targeted control of fruit softening

    KAUST Repository

    Uluisik, Selman

    2016-07-25

    Controlling the rate of softening to extend shelf life was a key target for researchers engineering genetically modified (GM) tomatoes in the 1990s, but only modest improvements were achieved. Hybrids grown nowadays contain \\'non-ripening mutations\\' that slow ripening and improve shelf life, but adversely affect flavor and color. We report substantial, targeted control of tomato softening, without affecting other aspects of ripening, by silencing a gene encoding a pectate lyase. © 2016 Nature America, Inc. All rights reserved.

  9. Basic process of irradiation softening

    International Nuclear Information System (INIS)

    Makii, Koichi; Tsutsumi, Tetsuo; Aono, Yasuhisa; Kuramoto, Eiichi

    1987-01-01

    The authors have been engaged in research that uses the Johnson-Wilson potential (i.e., potential between two bodies) to analyze the interaction between the core of a spiral dislocation and point defects (interstitial atoms) under stress. Metals with the body-centered cubic structure, however, have covalent bonding nature and multi-body effects of d-electrons cannot be ignored. In the present work, the N-body potential, which takes into account such multi-body effects of d-electrons, is compared with the Johnson-Wilson potential. Compared to the Johnson-Wilson potential, the N-body potential suffers a considerably smaller misfit energy and allows computer simulation of the interaction to be performed at an external force level closer to that used in measurement. Low-stress, long-period relaxation causes pipe diffusion of crowdions. This causes the expansion of ''three-kink configuration'', leading to hardening. As a result of the pipe diffusion, crowdions are absorbed into spiral dislocations and released out of the crystal. It has been reported that during a tensile test at 77 K, irradiated samples are softened at the yield point and the degree of softening recovers as the strain increases. This also supports the idea that the number of defects decreases due to the interaction between dislocations and interstitial atoms. (Nogami, K.)

  10. Enamel softening with Coca-Cola and rehardening with milk or saliva.

    Science.gov (United States)

    Gedalia, I; Dakuar, A; Shapira, L; Lewinstein, I; Goultschin, J; Rahamim, E

    1991-06-01

    Rehardening effects by cow's milk and by secreted saliva were investigated, in situ, following softening of human enamel with an acidic beverage (Coca-Cola). Volunteers wearing orthodontic removable appliances participated in the study. The intra-oral test was chosen for measuring microhardness of enamel slabs inserted into the dental appliance. The softening and the rehardening degrees were defined as the alterations between initial- and experimental-microhardness value at the enamel surface. In addition, SEM photos were prepared from the initial and experimental stages. Exposure of enamel slabs to the acidic beverage during 1 hour had a softening effect as expressed by the hardness decrease and visualized by the SEM photo. Rehardening effects following milk or saliva exposures respectively were evident, presumably due to deposited organic and mineral material on the enamel surface.

  11. Design and fabrication of carbon nanotube field-emission cathode with coaxial gate and ballast resistor.

    Science.gov (United States)

    Sun, Yonghai; Yeow, John T W; Jaffray, David A

    2013-10-25

    A low density vertically aligned carbon nanotube-based field-emission cathode with a ballast resistor and coaxial gate is designed and fabricated. The ballast resistor can overcome the non-uniformity of the local field-enhancement factor at the emitter apex. The self-aligned fabrication process of the coaxial gate can avoid the effects of emitter tip misalignment and height non-uniformity. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Fabrication of White Light-emitting Electrochemical Cells with Stable Emission from Exciplexes.

    Science.gov (United States)

    Uchida, Soichi; Takizawa, Daisuke; Ikeda, Satoru; Takeuchi, Hironori; Nishimura, Suzushi; Nishide, Hiroyuki; Nishikitani, Yoshinori

    2016-11-15

    The authors present an approach for fabricating stable white light emission from polymer light-emitting electrochemical cells (PLECs) having an active layer which consists of blue-fluorescent poly(9,9-di-n-dodecylfluorenyl-2,7-diyl) (PFD) and π-conjugated triphenylamine molecules. This white light emission originates from exciplexes formed between PFD and amines in electronically excited states. A device containing PFD, 4,4',4''-tris[2-naphthyl(phenyl)amino]triphenylamine (2-TNATA), Poly(ethylene oxide) and K2CF3SO3 showed white light emission with Commission internationale de l'éclairage (CIE) coordinates of (0.33, 0.43) and a Color Rendering Index (CRI) of Ra = 73 at an applied voltage of 3.5 V. Constant voltage measurements showed that the CIE coordinates of (0.27, 0.37), Ra of 67, and the emission color observed immediately after application of a voltage of 5 V were nearly unchanged and stable after 300 sec.

  13. Nonlinear response to the multiple sine wave excitation of a softening--hardening system

    International Nuclear Information System (INIS)

    Koplik, B.; Subudhi, M.; Curreri, J.

    1979-01-01

    In studying the earthquake response of the HTGR core, it was observed that the system can display softening--hardening characteristics. This is of great consequence in evaluating the structural safety aspects of the core. In order to obtain a better understanding of the governing parameters, an investigation was undertaken with a single-degree-of-freedom system having a softening--hardening spring characteristic and excited by multiple sine waves. A parametric study varying the input amplitudes and the spring characteristic was performed. Transients were introduced into the system, and the jump phenomena between the lower softening characteristics to the higher hardening curve was studied

  14. Cyclically induced softening due to low-angle boundary annihilation in a martensitic steel

    International Nuclear Information System (INIS)

    Sauzay, Maxime; Brillet, Helene; Monnet, Isabelle; Mottot, Michel; Barcelo, Francoise; Fournier, Benjamin; Pineau, Andre

    2005-01-01

    Martensitic steels are known for their softening during cyclic tests carried out at high temperature. The softening has been at least partially explained by lath and sub-grain boundary elimination. This article is dedicated to an attempt at modelling both phenomena. Thanks to mechanical tests it is shown that the softening is mainly due to a decrease of the backstress. Transmission electron microscopy allows us to propose a mechanism of low-angle boundary elimination. Annihilation between dislocations of low-angle boundaries and incident mobile dislocations is modelled. The macroscopic backstress is finally computed using a Hall-Petch law and the Taylor model

  15. Water Softeners: How Much Sodium Do They Add?

    Science.gov (United States)

    ... diet is by putting away the saltshaker and cutting back on processed foods. With Sheldon G. Sheps, ... Original article: http://www.mayoclinic.org/healthy-lifestyle/nutrition-and-healthy-eating/expert-answers/water-softeners-sodium/ ...

  16. Simulation and fabrication of carbon nanotubes field emission pressure sensors

    International Nuclear Information System (INIS)

    Qian Kaiyou; Chen Ting; Yan Bingyong; Lin Yangkui; Xu Dong; Sun Zhuo; Cai Bingchu

    2006-01-01

    A novel field emission pressure sensor has been achieved utilizing carbon nanotubes (CNTs) as the electron source. The sensor consists of the anode sensing film fabricated by wet etching process and multi-wall carbon nanotubes (MWNTs) cathode in the micro-vacuum chamber. MWNTs on the silicon substrate were grown by thermal CVD. The prototype pressure sensor has a measured sensitivity of about 0.17-0.77 nA/Pa (101-550 KPa). The work shows the potential use of CNTs-based field-emitter in microsensors, such as accelerometers and tactile sensors

  17. Softening and elution of monomers in ethanol

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Asmussen, Erik; Munksgaard, E Christian

    2009-01-01

    The purpose of this study was to investigate the effect of light-curing protocol on softening and elution of monomers in ethanol as measured on a model polymer. It was a further aim to correlate the measured values with previously reported data on degree of conversion and glass transition...

  18. Salivary a-amylase protects enamel surface against acid induced softening

    DEFF Research Database (Denmark)

    Lazovic, Maja Bruvo; Moe, Dennis; Kirkeby, Svend

    Objectives: Recently we have demonstrated individual differences in protection against acid-induced enamel softening offered by experimentally developed saliva pellicles. Although ethnicity seemed to be related to protection level, the saliva proteins responsible for the differences were not iden......Objectives: Recently we have demonstrated individual differences in protection against acid-induced enamel softening offered by experimentally developed saliva pellicles. Although ethnicity seemed to be related to protection level, the saliva proteins responsible for the differences were......, and one Chinese. After collection, saliva was dialysed and lyophilised and re-dissolved at 0.5% in Type I water. Next, four polished bovine enamel specimens were immersed into each sample under gentle and constant shaking for 12 hours. Last, specimens were exposed to an erosive challenge of pH 2.3 for 4......-TOF mass fingerprinting following trypsin digestion. Each persistent peak in the HPLC chromatograms was related to the protective effect against acid-induced enamel softening obtained by the corresponding saliva sample by multiple regression analysis. Results: One peak identified as a-amylase had...

  19. A multicentre randomised controlled trial and economic evaluation of ion-exchange water softeners for the treatment of eczema in children: the Softened Water Eczema Trial (SWET).

    Science.gov (United States)

    Thomas, K S; Koller, K; Dean, T; O'Leary, C J; Sach, T H; Frost, A; Pallett, I; Crook, A M; Meredith, S; Nunn, A J; Burrows, N; Pollock, I; Graham-Brown, R; O'Toole, E; Potter, D; Williams, H C

    2011-02-01

    To determine whether installation of an ion-exchange water softener in the home could improve atopic eczema in children and, if so, to establish its likely cost and cost-effectiveness. An observer-blind, parallel-group randomised controlled trial of 12 weeks duration followed by a 4-week observational period. Eczema was assessed by research nurses blinded to intervention at baseline, 4 weeks, 12 weeks and 16 weeks. The primary outcome was analysed as intent-to-treat, using the randomised allocation rather than actual treatment received. A secondary per-protocol analysis excluded participants who failed to receive their allocated treatment and who were deemed to be protocol violators. Secondary and primary care referral centres in England (UK) serving a variety of ethnic and social groups and including children living in both urban and periurban homes. Three hundred and thirty-six children (aged 6 months to 16 years) with moderate/severe atopic eczema, living in homes in England supplied by hard water (≥ 200 mg/l calcium carbonate). Participants were randomised to either installation of an ion-exchange water softener plus usual eczema care (group A) for 12 weeks or usual eczema care alone (group B) for 12 weeks. This was followed by a 4-week observational period, during which water softeners were switched off/removed from group A homes and installed in group B homes. Standard procedure was to soften all water in the home, but to provide mains (hard) water at a faucet-style tap in the kitchen for drinking and cooking. Participants were therefore exposed to softened water for bathing and washing of clothes, but continued to drink mains (hard) water. Usual care was defined as any treatment that the child was currently using in order to control his or her eczema. New treatment regimens used during the trial period were documented. Primary outcome was the difference between group A and group B in mean change in disease severity at 12 weeks compared with baseline, as

  20. STUDY ON SOFTENING AND DROPPING PROPERTIES OF METALIZED BURDEN INSIDE BLAST FURNACE

    Directory of Open Access Journals (Sweden)

    Bi-yang Tuo

    2014-12-01

    Full Text Available The inferences of burden metallization rate on softening-melting dropping properties were investigated through softening-melting dropping test of three kinds of metalized burden pressure drop. The results indicated that the softeningmelting temperature interval of pre-reduction mixed burden is bigger than primeval mixed burden, the melting interval narrow with the rise of metallization rate of ferric burden as well as dropping temperature interval. The average pressure drop, maximum pressure drop and softening-melting dropping properties eigenvalue decrease with the rise of metallization rate of ferric burden. Besides, the dropping temperature of burden reduces with the rise of carbon content of molten iron. The combination high metalized burden and higher carbon content of molten iron is benefit to decreasing thickness of cohesive zone and improve permeability of cohesive zone.

  1. Experimental evidence of zone-center optical phonon softening by accumulating holes in thin Ge

    Directory of Open Access Journals (Sweden)

    Shoichi Kabuyanagi

    2016-01-01

    Full Text Available We discuss the impact of free carriers on the zone-center optical phonon frequency in germanium (Ge. By taking advantage of the Ge-on-insulator structure, we measured the Raman spectroscopy by applying back-gate bias. Phonon softening by accumulating holes in Ge film was clearly observed. This fact strongly suggests that the phonon softening in heavily-doped Ge is mainly attributed to the free carrier effect rather than the dopant atom counterpart. Furthermore, we propose that the free carrier effect on phonon softening is simply understandable from the viewpoint of covalent bonding modification by free carriers.

  2. Strain softening during tension in cold drawn Cu–Ag alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chang, L.L., E-mail: lilichang@sdu.edu.cn [School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061 (China); Wen, S.; Li, S.L.; Zhu, X.D. [School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061 (China); Shang, X.J. [Jinan Baoshida Industrial Development Co., Ltd, Jinan, Shandong 250061 (China)

    2015-10-15

    Experiments were conducted on Cu–0.1wt.%Ag alloys to evaluate the influence of producing procedures and annealing conditions on microstructure evolution and mechanical properties of Cu–Ag alloys. Optical microscopy (OM), electron back-scattered diffraction (EBSD), X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used for microstructural evaluation and mechanical properties were characterized by tensile tests. The results indicated that hot-extruded Cu–Ag alloys had a typical dynamic recrystallized microstructure with equiaxed grains. Cold drawing at room temperature leaded to partial recrystallized microstructure with a mixture of coarse and fine grains. The dominate {001}<100 > cubic texture formed during hot extrusion was changed to be {112}<111 > copper texture by cold drawing. Strain softening occurred during room temperature tension of cold drawn Cu–Ag alloys with an average grain size of 13–19.7 μm. - Highlights: • Strain softening occurred during tension of Cu–Ag alloys with coarse grain size. • Work hardening was observed in hot-extruded and annealed Cu–0.1wt.%Ag alloys. • Strain softening was ascribed to dynamic recovery and dynamic recrystallization.

  3. Solving the Standard Model Problems in Softened Gravity

    CERN Document Server

    Salvio, Alberto

    2016-11-16

    The Higgs naturalness problem is solved if the growth of Einstein's gravitational interaction is softened at an energy $ \\lesssim 10^{11}\\,$GeV (softened gravity). We work here within an explicit realization where the Einstein-Hilbert Lagrangian is extended to include terms quadratic in the curvature and a non-minimal coupling with the Higgs. We show that this solution is preserved by adding three right-handed neutrinos with masses below the electroweak scale, accounting for neutrino oscillations, dark matter and the baryon asymmetry. The smallness of the right-handed neutrino masses (compared to the Planck scale) and the QCD $\\theta$-term are also shown to be natural. We prove that a possible gravitational source of CP violation cannot spoil the model, thanks to the presence of right-handed neutrinos. Starobinsky inflation can occur in this context, even if we live in a metastable vacuum.

  4. Field Emission of Wet Transferred Suspended Graphene Fabricated on Interdigitated Electrodes.

    Science.gov (United States)

    Xu, Ji; Wang, Qilong; Tao, Zhi; Qi, Zhiyang; Zhai, Yusheng; Wu, Shengqi; Zhang, Xiaobing; Lei, Wei

    2016-02-10

    Suspended graphene (SG) membranes could enable strain-engineering of ballistic Dirac fermion transport and eliminate the extrinsic bulk disorder by annealing. When freely suspended without contact to any substrates, graphene could be considered as the ultimate two-dimensional (2D) morphology, leading to special field characteristics with the 2D geometrical effect and effectively utilized as an outstanding structure to explore the fundamental electronic or optoelectronic mechanism. In this paper, we report field emission characterization on an individual suspended few-layer graphene. A controllable wet transfer method is used to obtain the continuous and suspended graphene membrane on interdigitated gold electrodes. This suspended structure displays an overall field emission from the entirely surface, except for the variation in the emitting positions, acquiring a better enhancement than the exfoliated graphene on the conventional flat substrate. We also observe the transition process from space charge flow at low bias to the Fowler-Nordheim theory at high current emission regime. It could enable theoretical and experimental investigation of the typical electron emission properties of the 2D regime. Numerical simulations are also carried out to study the electrical properties of the suspended structure. Further improvement on the fabrication would realize low disorder, high quality, and large-scale suspended graphene devices.

  5. Fabrication of fluorescent silica nanoparticles with aggregation-induced emission luminogens for cell imaging.

    Science.gov (United States)

    Chen, Sijie; Lam, Jacky W Y; Tang, Ben Zhong

    2013-01-01

    Fluorescence-based techniques have found wide applications in life science. Among various luminogenic materials, fluorescent nanoparticles have attracted much attention due to their fabulous emission properties and potential applications as sensors. Here, we describe the fabrication of fluorescent silica nanoparticles (FSNPs) containing aggregation-induced emission (AIE) luminogens. By employing surfactant-free sol-gel reaction, FSNPs with uniform size and high surface charge and colloidal stability are generated. The FSNPs emit strong light upon photoexcitation, due to the AIE characteristic of the silole -aggregates in the hybrid nanoparticles. The FSNPs are cytocompatible and can be utilized as fluorescent visualizer for intracellular imaging for HeLa cells.

  6. Optimization of hardening/softening behavior of plane frame structures using nonlinear normal modes

    DEFF Research Database (Denmark)

    Dou, Suguang; Jensen, Jakob Søndergaard

    2016-01-01

    Devices that exploit essential nonlinear behavior such as hardening/softening and inter-modal coupling effects are increasingly used in engineering and fundamental studies. Based on nonlinear normal modes, we present a gradient-based structural optimization method for tailoring the hardening...... involving plane frame structures where the hardening/softening behavior is qualitatively and quantitatively tuned by simple changes in the geometry of the structures....

  7. Hypersensitive ethylene signaling and ZMdPG1 expression lead to fruit softening and dehiscence.

    Directory of Open Access Journals (Sweden)

    Min Li

    Full Text Available 'Taishanzaoxia' fruit rapid softening and dehiscence during ripening stage and this process is very sensitive to endogenous ethylene. In this study, we cloned five ethylene signal transcription factors (ZMdEIL1, ZMdEIL2, ZMdEIL3, ZMdERF1 and ZMdERF2 and one functional gene, ZMdPG1, encoding polygalacturonase that could loose the cell connection which associated with fruit firmness decrease and fruit dehiscence to illustrate the reasons for this specific fruit phenotypic and physiological changes. Expression analysis showed that ZMdERF1 and ZMdEIL2 transcription were more abundant in 'Taishanzaoxia' softening fruit and dehiscent fruit and their expression was inhibited by an ethylene inhibitor 1-methylcyclopropene. Therefore, ZMdERF1 and ZMdEIL2 expression were responses to endogenous ethylene and associated with fruit softening and dehiscence. ZMdPG1 expression was induced when fruit softening and dehiscence but this induction can be blocked by 1-MCP, indicating that ZMdPG1 was essential for fruit softening and dehiscence and its expression was mediated by the endogenously occurred ethylene. ZMdPG1 overexpression in Arabidopsis led to silique early dehiscence while suppressing ZMdPG1 expression by antisense ZMdPG1 prevented silique naturally opening. The result also suggested that ZMdPG1 related with the connection between cells that contributed to fruit softening and dehiscence. ZMdERF1 was more closely related with ethylene signaling but it was not directly regulated the ZMdPG1, which might be regulated by the synergic pattern of ethylene transcription factors because of both the ZMdERF1 and ZMdERF2 could interact with ZMdEIL2.

  8. Effect of softening function on the cohesive crack fracture ...

    Indian Academy of Sciences (India)

    The cohesive crack model with linear softening yields the fracture process zones lower by ..... ignored during numerical simulation. In the crack band ..... performed with developed computer program using MATLAB for the following numerical.

  9. Development of parametric material, energy, and emission inventories for wafer fabrication in the semiconductor industry.

    Science.gov (United States)

    Murphy, Cynthia F; Kenig, George A; Allen, David T; Laurent, Jean-Philippe; Dyer, David E

    2003-12-01

    Currently available data suggest that most of the energy and material consumption related to the production of an integrated circuit is due to the wafer fabrication process. The complexity of wafer manufacturing, requiring hundreds of steps that vary from product to product and from facility to facility and which change every few years, has discouraged the development of material, energy, and emission inventory modules for the purpose of insertion into life cycle assessments. To address this difficulty, a flexible, process-based system for estimating material requirements, energy requirements, and emissions in wafer fabrication has been developed. The method accounts for mass and energy use atthe unit operation level. Parametric unit operation modules have been developed that can be used to predict changes in inventory as the result of changes in product design, equipment selection, or process flow. A case study of the application of the modules is given for energy consumption, but a similar methodology can be used for materials, individually or aggregated.

  10. Fabrication and field emission study of novel rod-shaped diamond-like carbon nanostructures

    International Nuclear Information System (INIS)

    Varshney, Deepak; Makarov, Vladimir I; Saxena, Puja; Weiner, Brad R; Morell, Gerardo; Gonzalez-BerrIos, Adolfo; Scott, James F

    2010-01-01

    Novel sp 3 rich diamond-like carbon nanorod films were fabricated by a hot filament chemical vapour deposition technique. The results are indicative of a bottom-up synthesis process, which results in a hierarchical structure that consists of microscale papillae comprising numerous nanorods. The papillae have diameters ranging from 2 to 4 μm and the nanorods have diameters in the 35-45 nm range. A growth mechanism based on the vapour-liquid-solid mechanism is proposed that accounts for the morphological aspects at the microscale and nanoscale. Investigation of field emission properties of fabricated nanorods reveals a low turn-on field of about 4.9 V μm -1 at 1 nA and a high field-enhancement factor.

  11. Softened food reduces weight loss in the streptozotocin-induced male mouse model of diabetic nephropathy.

    Science.gov (United States)

    Nørgaard, Sisse A; Sand, Fredrik W; Sørensen, Dorte B; Abelson, Klas Sp; Søndergaard, Henrik

    2018-01-01

    The streptozotocin (STZ)-induced diabetic mouse is a widely used model of diabetes and diabetic nephropathy (DN). However, it is a well-known issue that this model is challenged by high weight loss, which despite supportive measures often results in high euthanization rates. To overcome these issues, we hypothesized that supplementing STZ-induced diabetic mice with water-softened chow in addition to normal chow would reduce weight loss, lower the need for supportive treatment, and reduce the number of mice reaching the humane endpoint of 20% weight loss. In a 15 week STZ-induced DN study we demonstrated that diabetic male mice receiving softened chow had reduced acute weight loss following STZ treatment ( p = 0.045) and additionally fewer mice were euthanized due to weight loss. By supplementing the diabetic mice with softened chow, no mice reached 20% weight loss whereas 37.5% of the mice without this supplement reached this humane endpoint ( p = 0.0027). Excretion of corticosterone metabolites in faeces was reduced in diabetic mice on softened chow ( p = 0.0007), suggesting lower levels of general stress. Finally, it was demonstrated that the water-softened chow supplement did not significantly affect the induction of key disease parameters, i.e. %HbA1C and albuminuria nor result in abnormal teeth wear. In conclusion, supplementation of softened food is refining the STZ-induced diabetic mouse model significantly by reducing stress, weight loss and the number of animals sacrificed due to humane endpoints, while maintaining the key phenotypes of diabetes and nephropathy.

  12. Creep deformation of high Cr-Mo ferritic/martensitic steels by material softening

    International Nuclear Information System (INIS)

    Kim, Sung Ho; Song, B. J.; Ryu, Woo Seog

    2005-01-01

    High Cr (9-12%Cr) ferritic/martensitic steels represent a valuable alternative to austenitic stainless steel for high temperature applications up to 600 .deg. C both in power and petrochemical plant, as well as good resistance to oxidation and corrosion. Material softening is the main physical phenomenon observed in the crept material. Thermally-induced change (such as particle coarsening or matrix solute depletion) and strain-induced change (such as dynamic subgrain growth) of microstructure degraded the alloy strength. These microstructural changes during a creep test cause the material softening, so the strength of the materials decreased. Many researches have been performed for the microstructural changes during a creep test, but the strength of crept materials has not been measured. In the present work, we measured the yield and tensile strength of crept materials using Indentationtyped Tensile Test System (AIS 2000). Material softening was quantitatively evaluated with a creep test condition, such as temperature and applied stress

  13. Sweet cherry softening accompanied with moisture migration and loss during low-temperature storage.

    Science.gov (United States)

    Zhu, Danshi; Liang, Jieyu; Liu, He; Cao, Xuehui; Ge, Yonghong; Li, Jianrong

    2017-12-18

    Hardness is one of the important qualities influencing consumer appeal and marketing of fresh sweet cherry (Prunus avium L.). Moisture loss is one of the main causative factors of cherry softening. In this work, moisture loss and softening process of sweet cherry during postharvest storage at 0 and 4 °C were studied. In addition, low-field 1 H nuclear magnetic resonance (LF-NMR) was used to analyze water distribution and migration in sweet cherry during storage at 4 °C. Moisture content correlated significantly (p Contents of cytoplasmic (p content increased gradually, and then internal damage occurred. Sweet cherry softening closely correlated with moisture loss during low-temperature storage. LF-NMR is a useful technique to investigate moisture migration of fruits and vegetables. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Hardening by annealing and softening by deformation in nanostructured metals

    DEFF Research Database (Denmark)

    Huang, X.; Hansen, N.; Tsuji, N.

    2006-01-01

    We observe that a nanostructured metal can be hardened by annealing and softened when subsequently deformed, which is in contrast to the typical behavior of a metal. Microstructural investigation points to an effect of the structural scale on fundamental mechanisms of dislocation-dislocation and ......We observe that a nanostructured metal can be hardened by annealing and softened when subsequently deformed, which is in contrast to the typical behavior of a metal. Microstructural investigation points to an effect of the structural scale on fundamental mechanisms of dislocation....... As a consequence, the strength decreases and the ductility increases. These observations suggest that for materials such as the nanostructured aluminum studied here, deformation should be used as an optimizing procedure instead of annealing....

  15. Visceral and somatic disorders: tissue softening with frequency-specific microcurrent.

    Science.gov (United States)

    McMakin, Carolyn R; Oschman, James L

    2013-02-01

    Frequency-specific microcurrent (FSM) is an emerging technique for treating many health conditions. Pairs of frequencies of microampere-level electrical stimulation are applied to particular places on the skin of a patient via combinations of conductive graphite gloves, moistened towels, or gel electrode patches. A consistent finding is a profound and palpable tissue softening and warming within seconds of applying frequencies appropriate for treating particular conditions. Similar phenomena are often observed with successful acupuncture, cranial-sacral, and other energy-based techniques. This article explores possible mechanisms involved in tissue softening. In the 1970s, neuroscientist and osteopathic researcher Irvin Korr developed a "γ-loop hypothesis" to explain the persistence of increased systemic muscle tone associated with various somatic dysfunctions. This article summarizes how physiologists, neuroscientists, osteopaths, chiropractors, and fascial researchers have expanded on Korr's ideas by exploring various mechanisms by which injury or disease increase local muscle tension or systemic muscle tone. Following on Korr's hypothesis, it is suggested that most patients actually present with elevated muscle tone or tense areas due to prior traumas or other disorders, and that tissue softening indicates that FSM or other methods are affecting the cause of their pathophysiology. The authors believe this concept and the research it has led to will be of interest to a wide range of energetic, bodywork, and movement therapists.

  16. Electron emission from nano-structured carbon composite materials and fabrication of high-quality electron emitters by using plasma technology

    International Nuclear Information System (INIS)

    Hiraki, H.; Hiraki, A.; Jiang, N.; Wang, H. X.

    2006-01-01

    Many trials have been done to fabricate high-quality electron-emitters from nano-composite carbon materials (such as nano-diamond, carbon nano tubes and others) by means of a variety of plasma chemical-vapor-deposition (CVD) techniques. Based upon the mechanism of electron emission, we have proposed several strategic guide lines for the fabrication of good emitters. Then, following these lines, several types of emitters were tried. One of the emitters has shown a worldclass, top ranking for fabricating very bright lamps: namely, a low turn-on voltage (0.5 ∼ 1 V/μm to induce 10 μA/cm 2 emission current) to emit a 1 mA/cm 2 current at 3 V/μm and 100 mA/cm 2 current at a slightly higher applied voltage. The bright lamps are Mercury-free fluorescence lamps to exhibit brightness of ∼10 5 cd/m 2 with high efficiency of ∼100 lm/w.

  17. Stress Softening Behavior in the Mucosa-Submucosa and Muscle Layers in Normal and Diabetic Rat Esophagus

    DEFF Research Database (Denmark)

    Jiang, Hongbo; Liao, Donghua; Zhao, Jingbo

    2015-01-01

    Background & aims: Stress softening is a feature of mechanical preconditioning in soft tissue. Previously, we demonstrated that esophageal stress softening is reversible by muscle activation with KCl. Since the esophagus consists of muscle and mucosa-submucosa layers, the aim was to study...... the stress softening behavior in these layers in normal and diabetic rat esophagus and how diabetes affect the reversibility of esophageal stress softening.Methods: Ten Wistar rats were injected with STZ and the average blood glucose level reached 25 mmol/L after 8 weeks. Ten rats were used as the normal......M KCl was added for maximum contraction for 3min. KCl was washed out to permit relaxation and contractions were eliminated by immersion into Ca2+-free solution. After 1h rest, the tubes were exposed to five repeated ramp distensions conformed to the aforesaid two series. Stress-strain curves were used...

  18. The Etiology and Treatment of the Softened Phallus after the Radial Forearm Osteocutaneous Free Flap Phalloplasty

    Directory of Open Access Journals (Sweden)

    Seok-Kwun Kim

    2012-07-01

    Full Text Available BackgroundThe radial forearm osteocutaneous free flap is considered to be the standard technique for penile construction. One year after their operation, most patients experience a softened phallus, so that they suffer from difficulties in sexual intercourse. In this report, we present our experience with phalloplasty by radial forearm osteocutaneous free flap, as well as an evaluation of the etiology and treatment of the softened phallus.MethodsBetween March 2005 and February 2010, 58 patients underwent phalloplasty by radial forearm osteocutaneous free flap. Most of their neophallus had been softened subjectively and among them, 12 patients who wanted correction were investigated. We performed repetitive fat injection, artificial dermis grafting, silicone rod insertion, and rib bone with cartilaginous tip graft. Physical examination, plain radiograph, computed tomography, bone scintigraphy, and satisfaction scores were investigated.ResultsMost of the participants' penises have been softened after phalloplasty, and the skin elasticity had been also decreased. On plain radiograph, the distal end of the bone was self-rounded; however, the bone shape of the neophallus had no significant interval changes or resorption. Computed tomography showed equivocal density of cortical bone. On bone scintigraphy, the bone metabolism was active at 3 months postoperatively, and remained active 9 years postoperatively.ConclusionsThe use of a rib bone with cartilaginous tip graft could be an option for improvement of the softened phallus. Silicon rod insertion is also worth considering for rigidity of the softened phallus. Decreased rigidity due to soft tissue atrophy could be alleviated with repeated fat injection and artificial dermis grafting.

  19. High Current Emission from Patterned Aligned Carbon Nanotubes Fabricated by Plasma-Enhanced Chemical Vapor Deposition

    Science.gov (United States)

    Cui, Linfan; Chen, Jiangtao; Yang, Bingjun; Jiao, Tifeng

    2015-12-01

    Vertically, carbon nanotube (CNT) arrays were successfully fabricated on hexagon patterned Si substrates through radio frequency plasma-enhanced chemical vapor deposition using gas mixtures of acetylene (C2H2) and hydrogen (H2) with Fe/Al2O3 catalysts. The CNTs were found to be graphitized with multi-walled structures. Different H2/C2H2 gas flow rate ratio was used to investigate the effect on CNT growth, and the field emission properties were optimized. The CNT emitters exhibited excellent field emission performance (the turn-on and threshold fields were 2.1 and 2.4 V/μm, respectively). The largest emission current could reach 70 mA/cm2. The emission current was stable, and no obvious deterioration was observed during the long-term stability test of 50 h. The results were relevant for practical applications based on CNTs.

  20. Effect of a core-softened O-O interatomic interaction on the shock compression of fused silica

    Science.gov (United States)

    Izvekov, Sergei; Weingarten, N. Scott; Byrd, Edward F. C.

    2018-03-01

    Isotropic soft-core potentials have attracted considerable attention due to their ability to reproduce thermodynamic, dynamic, and structural anomalies observed in tetrahedral network-forming compounds such as water and silica. The aim of the present work is to assess the relevance of effective core-softening pertinent to the oxygen-oxygen interaction in silica to the thermodynamics and phase change mechanisms that occur in shock compressed fused silica. We utilize the MD simulation method with a recently published numerical interatomic potential derived from an ab initio MD simulation of liquid silica via force-matching. The resulting potential indicates an effective shoulder-like core-softening of the oxygen-oxygen repulsion. To better understand the role of the core-softening we analyze two derivative force-matching potentials in which the soft-core is replaced with a repulsive core either in the three-body potential term or in all the potential terms. Our analysis is further augmented by a comparison with several popular empirical models for silica that lack an explicit core-softening. The first outstanding feature of shock compressed glass reproduced with the soft-core models but not with the other models is that the shock compression values at pressures above 20 GPa are larger than those observed under hydrostatic compression (an anomalous shock Hugoniot densification). Our calculations indicate the occurrence of a phase transformation along the shock Hugoniot that we link to the O-O repulsion core-softening. The phase transformation is associated with a Hugoniot temperature reversal similar to that observed experimentally. With the soft-core models, the phase change is an isostructural transformation between amorphous polymorphs with no associated melting event. We further examine the nature of the structural transformation by comparing it to the Hugoniot calculations for stishovite. For stishovite, the Hugoniot exhibits temperature reversal and associated

  1. By-product reuse in drinking water softening: influence of operating conditions on calcium carbonate pellet characteristics

    DEFF Research Database (Denmark)

    Tang, Camilla; Rosshaug, P. S.; Kristensen, J. B.

    both socio-economic and environmental benefits. However, optimal implementation of softening requires a holistic approach including e.g. possibilities for by-product reuse. A pellet reactor is one widely used softening technology that may produce up to 350 kg calcium carbonate pellets per 1000 m3...

  2. Regularized finite element modeling of progressive failure in soils within nonlocal softening plasticity

    Science.gov (United States)

    Huang, Maosong; Qu, Xie; Lü, Xilin

    2017-11-01

    By solving a nonlinear complementarity problem for the consistency condition, an improved implicit stress return iterative algorithm for a generalized over-nonlocal strain softening plasticity was proposed, and the consistent tangent matrix was obtained. The proposed algorithm was embodied into existing finite element codes, and it enables the nonlocal regularization of ill-posed boundary value problem caused by the pressure independent and dependent strain softening plasticity. The algorithm was verified by the numerical modeling of strain localization in a plane strain compression test. The results showed that a fast convergence can be achieved and the mesh-dependency caused by strain softening can be effectively eliminated. The influences of hardening modulus and material characteristic length on the simulation were obtained. The proposed algorithm was further used in the simulations of the bearing capacity of a strip footing; the results are mesh-independent, and the progressive failure process of the soil was well captured.

  3. Dynamic induced softening in frictional granular materials investigated by discrete-element-method simulation

    Science.gov (United States)

    Lemrich, Laure; Carmeliet, Jan; Johnson, Paul A.; Guyer, Robert; Jia, Xiaoping

    2017-12-01

    A granular system composed of frictional glass beads is simulated using the discrete element method. The intergrain forces are based on the Hertz contact law in the normal direction with frictional tangential force. The damping due to collision is also accounted for. Systems are loaded at various stresses and their quasistatic elastic moduli are characterized. Each system is subjected to an extensive dynamic testing protocol by measuring the resonant response to a broad range of ac drive amplitudes and frequencies via a set of diagnostic strains. The system, linear at small ac drive amplitudes, has resonance frequencies that shift downward (i.e., modulus softening) with increased ac drive amplitude. Detailed testing shows that the slipping contact ratio does not contribute significantly to this dynamic modulus softening, but the coordination number is strongly correlated to this reduction. This suggests that the softening arises from the extended structural change via break and remake of contacts during the rearrangement of bead positions driven by the ac amplitude.

  4. Cyclic softening in annealed Zircaloy-2: Role of edge dislocation dipoles and vacancies

    Science.gov (United States)

    Sudhakar Rao, G.; Singh, S. R.; Krsjak, Vladimir; Singh, Vakil

    2018-04-01

    The mechanism of cyclic softening in annealed Zircaloy-2 at low strain amplitudes under strain controlled fatigue at room temperature is rationalized. The unusual softening due to continuous decrease in the phenomenological friction stress is found to be associated with decrease in the resistance against movement of dislocations because of the formation and easy glide of pure edge dislocation dipoles and consequent decrease in friction stress from reduction in the shear modulus. Positron annihilation spectroscopy data strongly support the increase in edge dislocation density containing jogs, from increased positron trapping and increase in annihilation lifetime.

  5. Acoustic softening in metals during ultrasonic assisted deformation via CP-FEM

    KAUST Repository

    Siddiq, Amir

    2011-01-01

    In this paper, a phenomenological crystal plasticity model is modified to account for acoustic (ultrasonic) softening effects based on the level of ultrasonic intensity supplied to single and polycrystalline metals. The material parameters are identified using the inverse modeling approach by interfacing the crystal plasticity model with an optimization tool. The proposed model is validated and verified by comparing the microstructure evolution with experimental EBSD results reported in the literature. The model is able to capture the ultrasonic softening effect and the results show that as the ultrasonic intensity increases, the plastic deformation also increases. Differences in the stress-strain response are explained based on the slip system orientation tensor (Schmidt factors) which depends upon the crystal orientation. © 2010 Elsevier B.V. All rights reserved.

  6. Searching for Terrain Softening near Mercury's North Pole

    Science.gov (United States)

    Cobian, P. S.; Vilas, F.; Lederer, S. M.; Barlow, N. G.

    2004-01-01

    In 1999, following the initial discovery of radar bright craters near both poles of Mercury measured the depth-todiameter (d/D) ratios of 170 impact craters in Mariner 10 images covering four different regions on Mercury s surface. Rapid softening of crater structure, indicated by lower d/D ratios, could indicate the possibility of subsurface water ice in Mercury's terrain originating from an internal source in the planet. Their study included 3 specific radar bright craters suggested to contain ice. They concluded that no terrain softening was apparent, and a rapidly emplaced exogenic water source was the most likely source for the proposed ice in these craters. Recent radar observations of the Mercurian North pole have pinpointed many additional radar bright areas with a resolution 10x better than previous radar measurements, and which correlate with craters imaged by Mariner 10. These craters are correlated with regions that are permanently shaded from direct sunlight, and are consistent with observations of clean water ice. We have expanded the initial study by Barlow et al. to include d/D measurements of 12 craters newly identified as radar bright at latitudes poleward of +80o. The radar reflectivity resemblances to Mars south polar cap and echoes from three icy Galilean satellites suggest that these craters too may have polar ice on Mercury. The effect of subsurface H20 on impact craters is a decrease in its d/D ratio, and softening of crater rims over a period of time. The study of Barlow et al., focused on determining the d/D ratios of 170 impact craters in the Borealis (north polar), Tolstoj (equatorial), Kuiper (equatorial), and Bach (south polar) quadrangles. This work focuses on the newly discovered radar bright craters, investigating their d/D ratios as an expansion of the earlier work..We compare our results to the statistical results from Barlow et al. here. With the upcoming Messenger spacecraft mission to Mercury, this is an especially timely study

  7. Acoustic softening in metals during ultrasonic assisted deformation via CP-FEM

    KAUST Repository

    Siddiq, Amir; El Sayed, Tamer S.

    2011-01-01

    In this paper, a phenomenological crystal plasticity model is modified to account for acoustic (ultrasonic) softening effects based on the level of ultrasonic intensity supplied to single and polycrystalline metals. The material parameters

  8. Mechanistic insight into softening of Canadian wonder common beans (Phaseolus vulgaris) during cooking.

    Science.gov (United States)

    Chigwedere, Claire Maria; Olaoye, Taye Foyeke; Kyomugasho, Clare; Jamsazzadeh Kermani, Zahra; Pallares Pallares, Andrea; Van Loey, Ann M; Grauwet, Tara; Hendrickx, Marc E

    2018-04-01

    The relative contributions of cotyledons and seed coats towards hardening of common beans (Phaseolus vulgaris) were investigated and the rate-limiting process which controls bean softening during cooking was determined. Fresh or aged whole beans and cotyledons were soaked and cooked in demineralised water or 0.1 M NaHCO 3 solution, and texture evolution, microstructure changes and thermal properties were studied. Fresh and aged whole beans cooked in demineralised water had significantly different softening rate constants and so did fresh and aged cotyledons. The comparable softening rate constants of aged whole beans and cotyledons indicated an insignificant role of the seed coat in hardening during storage. All samples cooked faster in 0.1 M NaHCO 3 solution. Disintegration of cooked tissues followed by microscopic examination revealed a transition from cell breakage through a phase of cell breakage and separation to complete cell separation with increased cooking time wherefore texture decayed. Therefore, progressive solubilization of pectin in the middle lamella greatly promoted texture decay. While residual birefringence even after substantial cooking time suggested some molecular order of the starch, calorimetric analyses revealed complete starch gelatinisation before complete cell separation occurred. This implies an insignificant role of starch in texture decay during cooking but its hindered uncoiling into a viscous gel after gelatinisation due to the restricting cell wall could promote its retrogradation. Therefore, we suggest that the rate-determining process in bean softening relates to cell wall/middle lamella changes influencing pectin solubilization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Influence of liquid temperature and flow rate on enamel erosion and surface softening.

    Science.gov (United States)

    Eisenburger, M; Addy, M

    2003-11-01

    Enamel erosion and softening are based on chemical processes which could be influenced by many factors including temperature and acid flow rate. Knowledge of the influence of these variables could have relevance to research experiments and clinical outcomes. Both parameters were investigated using an ultrasonication and profilometry method to assess erosion depth and surface softening of enamel. The influence of temperature was studied by eroding polished human enamel samples at 4, 20, 35 or 50 degrees C for 2 h. Secondly, different liquid flow conditions were established by varying acid agitation. Additionally, a slow laminar flow and a jet of citric acid, to simulate drinking through a straw, were applied to specimens. Erosion depth increased significantly with acid temperature from 11.0 microm at 4 degrees C to 35.8 microm at 50 degrees C. Surface softening increased much more slowly and plateaued at 2.9 microm to 3.5 microm after 35 degrees C. A strong dependence of erosion on liquid flow was revealed. In unstirred conditions only 8.6 microm erosion occurred, which increased to 22.2 microm with slow stirring and 40.9 microm with fast stirring. Surface softening did not increase correspondingly with its largest extent at slow stirring at 3.4 microm.The implication of these data are: first, the conditions for erosion experiments in vitro or in situ need to be specified for reliable comparisons between studies. Secondly, erosion of teeth by soft drinks are likely to be influenced both by the temperature of the drink and individual drinking habits.

  10. Softening behaviour of brown coal ashes. Influence of ash components and gas atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Hegermann, R; Huettinger, K J [Karlsruhe Univ. (T.H.) (Germany, F.R.). Inst. fuer Chemische Technik

    1990-03-01

    The softening behaviour of brown coal ashes during gasification is important for three reasons: (1) Formation of large agglomerates, (2) inactivation of catalytically active ash components, (3) encapsulation of parts of the coal. The softening behaviour of the ashes was studied with a high temperature dilatometer at ambient pressure in various atmospheres (air, CO{sub 2}, Ar/H{sub 2}O, Ar, H{sub 2}/H{sub 2}O, H{sub 2}) using a push-rod with a conical tip. The heating rate was 5 Kmin{sup -1}, the final temperature 1000deg C, the residence time 1 h. (orig.).

  11. Fatigue hardening and softening studies on strain hardened 18-8 austenitic stainless steel

    International Nuclear Information System (INIS)

    Ramakrishna Prasad, C.; Vasudevan, R.

    1976-01-01

    Metals when subjected to fatigue harden or soften depending on their previous mechanical history. Annealed or mildly cold worked metals are known to harden while severely cold worked metals soften when subjected to fatigue loading. In the present work samples of austenitic 18-8 steel cold worked to 11% and 22% reduction in area were mounted in a vertical pulsator and fatigued in axial tension-compression. Clear cut effects were produced and it was noticed that these depended on the extent of cold work, the amplitude as well as the number of cycles of fatigue and mean stress if any. (orig.) [de

  12. Cell wall structures leading to cultivar differences in softening rates develop early during apple (Malus x domestica) fruit growth.

    Science.gov (United States)

    Ng, Jovyn K T; Schröder, Roswitha; Sutherland, Paul W; Hallett, Ian C; Hall, Miriam I; Prakash, Roneel; Smith, Bronwen G; Melton, Laurence D; Johnston, Jason W

    2013-11-19

    There is a paucity of information regarding development of fruit tissue microstructure and changes in the cell walls during fruit growth, and how these developmental processes differ between cultivars with contrasting softening behaviour. In this study we compare two apple cultivars that show different softening rates during fruit development and ripening. We investigate whether these different softening behaviours manifest themselves late during ethylene-induced softening in the ripening phase, or early during fruit expansion and maturation. 'Scifresh' (slow softening) and 'Royal Gala' (rapid softening) apples show differences in cortical microstructure and cell adhesion as early as the cell expansion phase. 'Scifresh' apples showed reduced loss of firmness and greater dry matter accumulation compared with 'Royal Gala' during early fruit development, suggesting differences in resource allocation that influence tissue structural properties. Tricellular junctions in 'Scifresh' were rich in highly-esterified pectin, contributing to stronger cell adhesion and an increased resistance to the development of large airspaces during cell expansion. Consequently, mature fruit of 'Scifresh' showed larger, more angular shaped cells than 'Royal Gala', with less airspaces and denser tissue. Stronger cell adhesion in ripe 'Scifresh' resulted in tissue fracture by cell rupture rather than by cell-to-cell-separation as seen in 'Royal Gala'. CDTA-soluble pectin differed in both cultivars during development, implicating its involvement in cell adhesion. Low pectin methylesterase activity during early stages of fruit development coupled with the lack of immuno-detectable PG was associated with increased cell adhesion in 'Scifresh'. Our results indicate that cell wall structures leading to differences in softening rates of apple fruit develop early during fruit growth and well before the induction of the ripening process.

  13. A new constitutive equation for strain hardening and softening of fcc metals during severe plastic deformation

    International Nuclear Information System (INIS)

    Wei, W.; Wei, K.X.; Fan, G.J.

    2008-01-01

    The stress-strain relationship for strain hardening and softening of high-purity aluminum and copper, which were deformed by equal channel angular pressing (ECAP) at ambient temperature, was analyzed by combining the Estrin and Mecking (EM) model and an Avrami-type equation with experimental data during severe plastic deformation. The initial strain hardening can be described by the EM model, while the flow stress arrives at the peak stress after it was saturated. However, strain softening similar to plastic deformation at high temperatures is observed after the peak stress. Moreover, the peak strain at the maximum flow stress is ∼4 for copper and ∼2 for aluminum. A new constitutive equation was developed to describe strain softening at high strain levels, which was supported well by tensile, compression and microhardness tests at room temperature and low strain rate. It was observed that dynamic recovery and recrystallization occurs in copper, and recrystallized grains and their growth in aluminum. The results indicate that dynamic recovery and recrystallization was the dominant softening mechanism, which was confirmed by scanning electron microscopy-electron channeling contrast observations and the abnormal relationship between the imposed strain during ECAP and subsequent recrystallization temperature after ECAP

  14. Analysis of papaya cell wall-related genes during fruit ripening indicates a central role of polygalacturonases during pulp softening.

    Directory of Open Access Journals (Sweden)

    João Paulo Fabi

    Full Text Available Papaya (Carica papaya L. is a climacteric fleshy fruit that undergoes dramatic changes during ripening, most noticeably a severe pulp softening. However, little is known regarding the genetics of the cell wall metabolism in papayas. The present work describes the identification and characterization of genes related to pulp softening. We used gene expression profiling to analyze the correlations and co-expression networks of cell wall-related genes, and the results suggest that papaya pulp softening is accomplished by the interactions of multiple glycoside hydrolases. The polygalacturonase cpPG1 appeared to play a central role in the network and was further studied. The transient expression of cpPG1 in papaya results in pulp softening and leaf necrosis in the absence of ethylene action and confirms its role in papaya fruit ripening.

  15. Fabrication and characterization of high quality n-ZnO/p-GaN heterojunction light emission diodes

    International Nuclear Information System (INIS)

    Zheng Hao; Mei, Z.X.; Zeng, Z.Q.; Liu, Y.Z.; Guo, L.W.; Jia, J.F.; Xue, Q.K.; Zhang, Z.; Du, X.L.

    2011-01-01

    High quality single crystalline n-type ZnO film was grown on p-type GaN substrate using molecular beam epitaxy. Transmission electron microscopy reveals a sharp ZnO/GaN interface. Light-emitting diode was fabricated from this heterostructure, and a turn-on voltage of ∼ 3.4 V was demonstrated. We found that the emission peak shifts from violet (430 nm) to near-ultraviolet (375 nm) when the driving current increases from 0.38 mA to 3.08 mA. This intriguing phenomenon can be understood by charged carrier's radical recombination occurring at both sides of the device, and the current enhancement of ZnO emission efficiency.

  16. Softened food reduces weight loss in the streptozotocin-induced male mouse model of diabetic nephropathy

    DEFF Research Database (Denmark)

    Nørgaard, Sisse A; Sand, Fredrik W; Sørensen, Dorte B

    2018-01-01

    The streptozotocin (STZ)-induced diabetic mouse is a widely used model of diabetes and diabetic nephropathy (DN). However, it is a well-known issue that this model is challenged by high weight loss, which despite supportive measures often results in high euthanization rates. To overcome...... these issues, we hypothesized that supplementing STZ-induced diabetic mice with water-softened chow in addition to normal chow would reduce weight loss, lower the need for supportive treatment, and reduce the number of mice reaching the humane endpoint of 20% weight loss. In a 15 week STZ-induced DN study we...... demonstrated that diabetic male mice receiving softened chow had reduced acute weight loss following STZ treatment ( p = 0.045) and additionally fewer mice were euthanized due to weight loss. By supplementing the diabetic mice with softened chow, no mice reached 20% weight loss whereas 37.5% of the mice...

  17. Effects Of Various Parameters On The Thickening Of Softening Plant Sludges

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Baumann, E. R.; Larson, M. A.

    1989-01-01

    Spectroscopic and thermal data for sludges from full-scale softening plants showed calcium and magnesium precipitated as calcite and an amorphous hydrated hydroxide, respectively. Magnesium ions were not incorporated into the calcium lattice to form a magnesian calcite. Scanning electron...

  18. 40 CFR 141.553 - My system practices lime softening-is there any special provision regarding my combined filter...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false My system practices lime softening-is... Filter Effluent Requirements § 141.553 My system practices lime softening—is there any special provision regarding my combined filter effluent? If your system practices lime softening, you may acidify...

  19. Simultaneous fabrication of nanogap electrodes using field-emission-induced electromigration

    International Nuclear Information System (INIS)

    Ito, Mitsuki; Yagi, Mamiko; Morihara, Kohei; Shirakashi, Jun-ichi

    2015-01-01

    We present a simple technique for simultaneous control of the electrical properties of multiple Ni nanogaps. This technique is based on electromigration induced by a field emission current and is called “activation.” Simultaneous tuning of the tunnel resistance of multiple nanogaps was achieved by passing a Fowler–Nordheim (F-N) field emission current through an initial group of three Ni nanogaps connected in series. The Ni nanogaps, which had asymmetrical shapes with initial gap separations in the 80–110-nm range, were fabricated by electron-beam lithography and a lift-off process. By performing the activation procedure, the current–voltage properties of the series-connected nanogaps were varied simultaneously from “insulating” to “metallic” via “tunneling” properties by increasing the preset current of the activation procedure. We can also simultaneously control the tunnel resistances of the series-connected nanogaps, which range from a resistance of the order of 100 TΩ–100 kΩ, by increasing the preset current from 1 nA to 30 μA. This tendency is quite similar to that of individually activated nanogaps, and the tunnel resistance values of the simultaneously activated nanogaps were almost the same at each preset current. These results clearly imply that the electrical properties of the series-connected nanogaps can be controlled simultaneously via the activation procedure

  20. Nanoscale thermal-mechanical probe determination of 'softening transitions' in thin polymer films

    International Nuclear Information System (INIS)

    Zhou Jing; Berry, Brian; Douglas, Jack F; Karim, Alamgir; Snyder, Chad R; Soles, Christopher

    2008-01-01

    We report a quantitative study of the softening behavior of glassy polystyrene (PS) films at length scales on the order of 100 nm using nano-thermomechanometry (nano-TM), an emerging scanning probe technique in which a highly doped silicon atomic force microscopy (AFM) tip is resistively heated on the surface of a polymer film. The apparent 'softening temperature' T s of the film is found to depend on the logarithm of the square root of the thermal ramping rate R. This relation allows us to estimate a quasi-equilibrium (or zero rate) softening transition temperature T s0 by extrapolation. We observe marked shifts of T s0 with decreasing film thickness, but the nature of these shifts, and even their sign, depend strongly on both the thermal and mechanical properties of the supporting substrate. Finite element simulations suggest that thin PS films on rigid substrates with large thermal conductivities lead to increasing T s0 with decreasing film thickness, whereas softer, less thermally conductive substrates promote reductions in T s0 . Experimental observations on a range of substrates confirm this behavior and indicate a complicated interplay between the thermal and mechanical properties of the thin PS film and the substrate. This study directly points to relevant factors for quantitative measurements of thermophysical properties of materials at the nanoscale using this nano-TM based method.

  1. Bacterial Colonization of Pellet Softening Reactors Used during Drinking Water Treatment

    NARCIS (Netherlands)

    Hammes, F.; Boon, N.; Vital, M.; Ross, P.; Magic-Knezev, A.; Dignum, M.

    2010-01-01

    Pellet softening reactors are used in centralized and decentralized drinking water treatment plants for the removal of calcium (hardness) through chemically induced precipitation of calcite. This is accomplished in fluidized pellet reactors, where a strong base is added to the influent to increase

  2. Problems of softening the Chernobyl accident consequences. Proceedings of the International seminar. Pt. 1

    International Nuclear Information System (INIS)

    1993-01-01

    Proceedings of the International seminar on the Problems to soften the Chernobyl accident consequences held by the International Association of Dissemination of Knowledge and the Russian branch of the Society on the Dissemination of Knowledge in Bryansk in 1993. The proceedings of the seminar deal with the study of scientific and practical activity linked with the elimination of the Chernobyl accident effects. Main theoretical concepts used as the basis of the elaborated regulations are presented, as well; ways and techniques to soften the consequences of the Chernobyl accident to decontaminate the affected territories and to protect the population health are discussed

  3. Experimental study and simulation of cyclic softening of tempered martensite ferritic steels

    International Nuclear Information System (INIS)

    Giroux, P.-F.

    2011-01-01

    The present work focuses on the high temperature mechanical behaviour of 9% Cr tempered martensite steels, considered as potential candidates for structural components in the next Generation IV nuclear power plants. Already used for energy production in fossil power plants, they are sensitive to softening during high-temperature cycling and creep-fatigue. This phenomenon is coupled to a pronounced microstructural degradation: mainly vanishing of subgrain boundaries and decrease in dislocation density. This study aims at (i) linking the macroscopic cyclic softening of 9% Cr steels and their microstructural evolution during cycling and (ii) proposing a physically-based modelling of deformation mechanisms in order to predict the macroscopic mechanical behaviour of these steels during cycling. Mechanical study includes uniaxial tensile and cyclic test at 550 C performed on a Grade 92 steel (9Cr-0,5Mo-1,8W-V-Nb). The effect of both strain amplitude and rate on mechanical behaviour is studied. Examination of tensile specimens suggests that the physical mechanism responsible for slight measured softening is mainly the necking phenomenon and the evolution of mean subgrain size, which increases by more than 15 % compared to the as-received state. The evolution of the macroscopic stress during cycling shows that cyclic softening is due to the decrease in kinematic stress. TEM observations highlights that the mean subgrain size increases by 60 to 100 % while the dislocation density decreases by more than 50 % during cycling, compared to the as-received state. A self-consistent homogenization model based on crystalline elasto-visco-plasticity and dislocation densities, predicting the mechanical behaviour of the material and its microstructural evolution during deformation is proposed. This model takes some of the main physical deformation mechanisms into account and only the two parameters of crystalline visco-plasticity should be adjusted (the effective activation energy and

  4. Characterization of major ripening events during softening in grape: turgor, sugar accumulation, abscisic acid metabolism, colour development, and their relationship with growth.

    Science.gov (United States)

    Castellarin, Simone D; Gambetta, Gregory A; Wada, Hiroshi; Krasnow, Mark N; Cramer, Grant R; Peterlunger, Enrico; Shackel, Kenneth A; Matthews, Mark A

    2016-02-01

    Along with sugar accumulation and colour development, softening is an important physiological change during the onset of ripening in fruits. In this work, we investigated the relationships among major events during softening in grape (Vitis vinifera L.) by quantifying elasticity in individual berries. In addition, we delayed softening and inhibited sugar accumulation using a mechanical growth-preventing treatment in order to identify processes that are sugar and/or growth dependent. Ripening processes commenced on various days after anthesis, but always at similarly low elasticity and turgor. Much of the softening occurred in the absence of other changes in berry physiology investigated here. Several genes encoding key cell wall-modifying enzymes were not up-regulated until softening was largely completed, suggesting softening may result primarily from decreases in turgor. Similarly, there was no decrease in solute potential, increase in sugar concentration, or colour development until elasticity and turgor were near minimum values, and these processes were inhibited when berry growth was prevented. Increases in abscisic acid occurred early during softening and in the absence of significant expression of the V. vinifera 9-cis-epoxycarotenoid dioxygenases. However, these increases were coincident with decreases in the abscisic acid catabolite diphasic acid, indicating that initial increases in abscisic acid may result from decreases in catabolism and/or exogenous import. These data suggest that softening, decreases in turgor, and increases in abscisic acid represent some of the earliest events during the onset of ripening. Later, physical growth, further increases in abscisic acid, and the accumulation of sugar are integral for colour development. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Effects of Nitrogen Content on the HAZ Softening of Ti-Containing High Strength Steels Manufactured by Accelerated Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Kook-soo; Jung, Ho-shin; Park, Chan [Pukyong National University, Busan (Korea, Republic of)

    2017-03-15

    The effects of nitrogen content on the HAZ softening of Ti-containing high strength steels manufactured by accelerating cooling were investigated and interpreted in terms of the microstructures in the softening zone. Regardless of their content, all of the steels investigated showed a softened zone 9-10 mm wide. The minimum hardness in the zone, however, was different, with lower hardness in the higher nitrogen content steel. Microstructural observations of the steel showed that the amount of soft ferrite was increased in the zone with an increase of nitrogen content of the steel, suggesting that microstructural evolution in the HAZ is influenced by the nitrogen content. Measurements of TiN particles showed that the degree of particles coarsening in the HAZ was lower in the higher nitrogen content steel. Therefore, it is believed that finer TiN particles in the HAZ inhibit austenite grain growth more effectively, and lead to an accelerated ferrite transformation in higher nitrogen content steel, resulting in a higher amount of soft ferrite microstructure in the softened zone.

  6. Bio-softening of mature coconut husk for facile coir recovery.

    Science.gov (United States)

    Suganya, D S; Pradeep, S; Jayapriya, J; Subramanian, S

    2007-06-01

    Bio-softening of the mature coconut husk using Basidiomyceteous fungi was attempted to recover the soft and whiter fibers. The process was faster and more efficient in degrading lignin and toxic phenolics. Phanerochaete chrysosporium, Pleurotus eryngii and Ceriporiopsis subvermispora were found to degrade lignin efficiently without any appreciable loss of cellulose, yielding good quality fiber ideal for dyeing.

  7. Fabrication of microlens arrays using a CO2-assisted embossing technique

    International Nuclear Information System (INIS)

    Huang, Tzu-Chien; Chan, Bin-Da; Ciou, Jyun-Kai; Yang, Sen-Yeu

    2009-01-01

    This paper reports a method to fabricate microlens arrays with a low processing temperature and a low pressure. The method is based on embossing a softened polymeric substrate over a mold with micro-hole arrays. Due to the effect of capillary and surface tension, microlens arrays can be formed. The embossing medium is CO 2 gas, which supplies a uniform pressing pressure so that large-area microlens arrays can be fabricated. CO 2 gas also acts as a solvent to plasticize the polymer substrates. With the special dissolving ability and isotropic pressing capacity of CO 2 gas, microlens arrays can be fabricated at a low temperature (lower than T g ) and free of thermal-induced residual stress. Such a combined mechanism of dissolving and embossing with CO 2 gas makes the fabrication of microlens arrays direct with complex processes, and is more compatible for optical usage. In the study, it is also found that the sag height of microlens changes when different CO 2 dissolving pressure and time are used. This makes it easy to fabricate microlens arrays of different geometries without using different molds. The quality, uniformity and optical property of the fabricated microlens arrays have been verified with measurements of the dimensions, surface smoothness, focal length, transmittance and light intensity through the fabricated microlens arrays

  8. Simulation of crack propagation in steel plate with strain softening model

    Energy Technology Data Exchange (ETDEWEB)

    Chan, O.B.; Elwi, A.E.; Grondin, G.Y.

    2006-05-15

    A new material model for simulating the fracture behaviour of structural steel was presented. Recent research on crack initiation and continuum damage mechanics was presented. A modified continuum damage model was also evaluated. Strain softening elements were then used to simulate material cracks in a steel structure. The analysis then compared load versus displacement and load versus clip-gauge displacement curves from various different experimental and numerical studies. A finite element analysis technique was used to simulate the fracture behaviour of 3-points bending specimens. Results of the analysis showed that the model predicted 90 per cent of the load and stress intensity factor at fracture initiation. A BE 365 electric shovel boom was used in the study to simulate fracture behaviour. Coupon test specimens were used to validate analysis predictions. It was concluded that the model was able to reduce the stiffness of the boom when the softening element reached yield strength limits during fracture initiation. 29 refs., 12 tabs., 58 figs.

  9. Nonlinear dynamics of spring softening and hardening in folded-mems comb drive resonators

    KAUST Repository

    Elshurafa, Amro M.; Khirallah, Kareem; Tawfik, Hani H.; Emira, Ahmed; Abdel Aziz, Ahmed K S; Sedky, Sherif M.

    2011-01-01

    This paper studies analytically and numerically the spring softening and hardening phenomena that occur in electrostatically actuated microelectromechanical systems comb drive resonators utilizing folded suspension beams. An analytical expression

  10. Identification of Differentially Expressed Genes Associated with Apple Fruit Ripening and Softening by Suppression Subtractive Hybridization.

    Science.gov (United States)

    Zhang, Zongying; Jiang, Shenghui; Wang, Nan; Li, Min; Ji, Xiaohao; Sun, Shasha; Liu, Jingxuan; Wang, Deyun; Xu, Haifeng; Qi, Sumin; Wu, Shujing; Fei, Zhangjun; Feng, Shouqian; Chen, Xuesen

    2015-01-01

    Apple is one of the most economically important horticultural fruit crops worldwide. It is critical to gain insights into fruit ripening and softening to improve apple fruit quality and extend shelf life. In this study, forward and reverse suppression subtractive hybridization libraries were generated from 'Taishanzaoxia' apple fruits sampled around the ethylene climacteric to isolate ripening- and softening-related genes. A set of 648 unigenes were derived from sequence alignment and cluster assembly of 918 expressed sequence tags. According to gene ontology functional classification, 390 out of 443 unigenes (88%) were assigned to the biological process category, 356 unigenes (80%) were classified in the molecular function category, and 381 unigenes (86%) were allocated to the cellular component category. A total of 26 unigenes differentially expressed during fruit development period were analyzed by quantitative RT-PCR. These genes were involved in cell wall modification, anthocyanin biosynthesis, aroma production, stress response, metabolism, transcription, or were non-annotated. Some genes associated with cell wall modification, anthocyanin biosynthesis and aroma production were up-regulated and significantly correlated with ethylene production, suggesting that fruit texture, coloration and aroma may be regulated by ethylene in 'Taishanzaoxia'. Some of the identified unigenes associated with fruit ripening and softening have not been characterized in public databases. The results contribute to an improved characterization of changes in gene expression during apple fruit ripening and softening.

  11. The rapid decline of the prompt emission in Gamma-Ray Bursts

    CERN Document Server

    Dado, Shlomo; De Rújula, Alvaro

    2008-01-01

    Many gamma ray bursts (GRBs) have been observed with the Burst-Alert and X-Ray telescopes of the SWIFT satellite. The successive `pulses' of these GRBs end with a fast decline and a fast spectral softening, until they are overtaken by another pulse, or the last pulse's decline is overtaken by a less rapidly-varying `afterglow'. The fast decline-phase has been attributed, in the standard fireball model of GRBs, to `high-latitude' synchrotron emission from a collision of two conical shells. This interpretation does not agree with the observed spectral softening. The temporal behaviour and the spectral evolution during the fast-decline phase agree with the predictions of the cannonball model of GRBs.

  12. The Value of Fighting Irreversible Demise by Softening the Irreversible Cost

    NARCIS (Netherlands)

    Magis, P.; Sbuelz, A.

    2005-01-01

    We study a novel issue in the real-options-based technology innovation literature by means of double barrier contingent claims analysis.We show how much a ¯rm with the monopoly over a project is willing to spend in investment technology innovation that softens the irreversible cost of accessing the

  13. Arsenic removal by lime softening

    DEFF Research Database (Denmark)

    Kaosol, T.; Suksaroj, C.; Bregnhøj, Henrik

    2002-01-01

    This paper focuses on the study of arsenic removal for drinking water by lime softening. The initial arsenic (V) concentration was 500 and 1,000 ug/L in synthetic groundwater. The experiments were performed as batch tests with varying lime dosages and mixing time. For the synthetic groundwater......, arsenic (V) removal increased with increasing lime dosage and mixing time, as well as with the resulting pH. The residual arsenic (V) in all cases was lower than the WHO guideline of 10 ug/L at pH higher than 11.5. Kinetic of arsenic (V) removal can be described by a first-order equation as C1 = C0*e......^-k*t. The relation between the constant (k value) and increasing lime dosage was found to be linear, described by k = 0.0034 (Dlime). The results support a theory from the literature that the arsenic (V) was removed by precipitation af Ca3(AsO4)2. The results obtained in the present study suggest that lime...

  14. The effect of hardening laws and thermal softening on modeling residual stresses in FSW of aluminum alloy 2024-T3

    DEFF Research Database (Denmark)

    Sonne, Mads Rostgaard; Tutum, Cem Celal; Hattel, Jesper Henri

    2013-01-01

    or kinematic hardening together with the metallurgical softening model were applied in order to give a first impression of the tendencies in residual stresses in friction stir welds when choosing different hardening and softening behaviors. Secondly, real friction stir butt welding of aluminum alloy 2024-T3...

  15. Production, use and reuse of Dutch calcite in drinking water pellet softening

    NARCIS (Netherlands)

    Palmen, LJ; Schetters, M.J.A.; van der Hoek, J.P.; Kramer, O.J.I.; Kors, L.J.; Hofs, B; Koppers, H

    2014-01-01

    In The Netherlands, 50% of the drinking water is treated with pellet softening for various reasons: i) public health (heavy metal solubility), ii) costs (warm water device maintenance, energy and soap requirement), iii) environmental benefits (energy and soap requirement) and iv) customer comfort

  16. Softening during deformation of Zr alloys

    International Nuclear Information System (INIS)

    Kral, R.; Trojanova, Z.; Lukac, P.

    1994-01-01

    The strain hardening behaviour is described by the work hardening rate. The work hardening rate depends on the dislocation density changes which result from the competition between the rate of dislocation storage and the rate of annihilation of dislocations. In the present work the deformation behaviour of Zr-based alloys is investigated. From the stress-strain curves the work hardening rate is calculated and its stress dependence is studied at various temperatures between 300 and 1000 K. Experimental investigations show that at first the work hardening rate decreases quasi-linearly with increasing stress. After a certain stress is reached, the work hardening rate decreases more slowly with increasing stress. We discuss the influence of hardening and softening processes on the deformation behaviour. Analytical models are compared with experimental results. (orig.)

  17. Evaluation of the impact of lime softening waste disposal in natural environments

    Science.gov (United States)

    Drinking water treatment residues (WTR), generated from the lime softening processes, are commonly reused or disposed of in a number of applications; these include use as a soil amendment or a subsurface fill. Recently questions were posed by the Florida regulatory community on w...

  18. ARSENIC REMOVAL FROM DRINKING WATER BY COAGULATION/FILTRATION AND LIME SOFTENING PLANTS

    Science.gov (United States)

    This report documents a long term performance (one year) study of 3 water treatment plants to remove arsenic from drinking water sources. The 3 plants consisted of 2 conventional coagulation/filtration plants and 1 lime softening plant. The study involved the collecting of weekly...

  19. Solute softening and defect generation during prismatic slip in magnesium alloys

    Science.gov (United States)

    Yi, Peng; Cammarata, Robert C.; Falk, Michael L.

    2017-12-01

    Temperature and solute effects on prismatic slip of 〈a〉 dislocations in Mg are studied using molecular dynamics simulation. Prismatic slip is controlled by the low mobility screw dislocation. The screw dislocation glides on the prismatic plane through alternating cross-slip between the basal plane and the prismatic plane. In doing so, it exhibits a locking-unlocking mechanism at low temperatures and a more continuous wavy propagation at high temperatures. The dislocation dissociates into partials on the basal plane and the constriction formation of the partials is identified to be the rate-limiting process for unlocking. In addition, the diffusion of partials on the basal plane enables the formation of jogs and superjogs for prismatic slip, which lead to the generation of vacancies and dislocation loops. Solute softening in Mg alloys was observed in the presence of both Al and Y solute. The softening in prismatic slip is found to be due to solute pinning on the basal plane, instead of the relative energy change of the screw dislocation on the basal and prismatic planes, as has been hypothesized.

  20. Development of Tensile Softening Model for Plain Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.K.; Song, Y.C. [Korea Electric Power Research Institute, Taejon (Korea)

    2002-07-01

    Large-scale direct tensile softenng tests using plate concrete specimens(4000, 5000psi) with notch were performed under uniaxial stress. There were presented the basic physical properties and the complete load-CMOD(Crack Mouth Opening Displacement) curves for them And them the fracture energy was evaluated using the complete load-CMOD curves respectively, and there was presents optimal tensile softening model which is modified by a little revision of an existing one. Therefore, here provided the real verification data through the tests for developing other nonlinear concrete finite element models. (author). 32 refs., 38 figs., 4 tabs.

  1. Visceral and Somatic Disorders: Tissue Softening with Frequency-Specific Microcurrent

    OpenAIRE

    McMakin, Carolyn R.; Oschman, James L.

    2013-01-01

    Frequency-specific microcurrent (FSM) is an emerging technique for treating many health conditions. Pairs of frequencies of microampere-level electrical stimulation are applied to particular places on the skin of a patient via combinations of conductive graphite gloves, moistened towels, or gel electrode patches. A consistent finding is a profound and palpable tissue softening and warming within seconds of applying frequencies appropriate for treating particular conditions. Similar phenomena ...

  2. Analysis of Field Emission of Fabricated Nanogap in Pd Strips for Surface Conduction Electron-Emitter Displays

    Science.gov (United States)

    Lo, Hsiang-Yu; Li, Yiming; Tsai, Chih-Hao; Pan, Fu-Ming

    2008-04-01

    We study the field emission (FE) property of a nanometer-scale gap structure in a palladium strip, which was fabricated by hydrogen absorption under high-pressure treatment. A vigorous cracking process could be accompanied by extensive atomic migration during the hydrogen treatment. A three-dimensional finite-difference time-domain particle-in-cell method is adopted to simulate the electron emission in a surface-conduction electron-emitter display (SED) device. Examinations of conducting characteristics, FE efficiency, the local field around the emitter, and the current density on the anode plate with one FE emitter are conducted. The image of a light spot is successfully produced on a phosphor plate, which implies that the explored electrode with nanometer separation possesses a potential SED application. Experimental observation and numerical simulation show that the proposed structure can be used as a surface conduction electron emitter and has a high FE efficiency with low turn-on voltage and a different electron emission mechanism. This study benefits the advanced SED design for a new type of electron source.

  3. Internal friction and elastic softening in polycrystalline Nb3Sn

    International Nuclear Information System (INIS)

    Bussiere, J.F.; Faucher, B.; Snead, C.L. Jr.; Welch, D.O.

    1981-01-01

    The vibrating-reed technique was used to measure internal friction and Young's modulus of polycrystalline Nb 3 Sn in the form of composite Nb/Nb 3 Sn tapes from 6 to 300 K. In tapes with only small residual strain in the A15 layers, a dramatic increase in internal friction with decreasing temperature is observed with an abrupt onset at approx.48 K. The internal friction Q -1 between 6 and 48 K is believed to be associated with stress-induced motion of martensitic-domain walls. In this temperature range, Q -1 is approximately proportional to the square of the tetragonal strain of the martensitic phase; Q -1 α (c/a-1) 2 . With residual compressive strains of approx.0.2%, the internal friction associated with domain-wall motion is considerably reduced. This is attributed to a biasing of domain-wall orientation with residual stress, which reduces wall motion induced by the (much smaller) applied stress. The transformation temperature, however, is unchanged (within +- 1 K) by residual strains of up to 0.2%. Young's modulus exhibits substantial softening on cooling from 300 to 6 K. This softening, is substantially reduced in the presence of small residual compressive strains, indicating a highly nonlinear stress-strain relationship as previously reported for V 3 Si

  4. Biocompatible water softening system using cationic protein from moringa oleifera extract

    Science.gov (United States)

    Nisha, R. R.; Jegathambal, P.; Parameswari, K.; Kirupa, K.

    2017-10-01

    In developing countries like India, the deciding factors for the selection of the specific water purification system are the flow rate, cost of implementation and maintenance, availability of materials for fabrication or assembling, technical manpower, energy requirement and reliability. But most of them are energy and cost intensive which necessitate the development of cost-effective water purification system. In this study, the feasibility of development of an efficient and cost-effective water purifier using Moringa oleifera cationic protein coated sand column to treat drinking water is presented. Moringa oleifera seeds contain cationic antimicrobial protein which acts as biocoagulant in the removal of turbidity and also aids in water softening. The main disadvantage of using Moringa seeds in water purification is that the dissolved organic matter (DOM) which is left over in the water contributes to growth of any pathogens that come into contact with the stored water. To overcome this limitation, the Moringa oleifera cationic protein coated sand (MOCP c-sand) is prepared in which the flocculant and antimicrobial properties of the MOCP are maintained and the DOM to be rinsed away. The efficiency of MOCP c-sand in removing suspended particles and reducing total hardness (TH), chloride, total dissolved solids (TDS), electrical conductivity (EC) was also studied. Also, it is shown that the functionalized sand showed the same treatment efficiency even after being stored dry and in dehydrated condition for 3 months. This confirms MOCP c-sand's potential as a locally sustainable water treatment option for developing countries since other chemicals used in water purification are expensive.

  5. Effect of attractive interactions on the water-like anomalies of a core-softened model potential.

    Science.gov (United States)

    Pant, Shashank; Gera, Tarun; Choudhury, Niharendu

    2013-12-28

    It is now well established that water-like anomalies can be reproduced by a spherically symmetric potential with two length scales, popularly known as core-softened potential. In the present study we aim to investigate the effect of attractive interactions among the particles in a model fluid interacting with core-softened potential on the existence and location of various water-like anomalies in the temperature-pressure plane. We employ extensive molecular dynamic simulations to study anomalous nature of various order parameters and properties under isothermal compression. Order map analyses have also been done for all the potentials. We observe that all the systems with varying depth of attractive wells show structural, dynamic, and thermodynamic anomalies. As many of the previous studies involving model water and a class of core softened potentials have concluded that the structural anomaly region encloses the diffusion anomaly region, which in turn, encloses the density anomaly region, the same pattern has also been observed in the present study for the systems with less depth of attractive well. For the systems with deeper attractive well, we observe that the diffusion anomaly region shifts toward higher densities and is not always enclosed by the structural anomaly region. Also, density anomaly region is not completely enclosed by diffusion anomaly region in this case.

  6. White organic light-emitting devices with tunable color emission fabricated utilizing exciplex formation at heterointerfaces including m-MDATA

    International Nuclear Information System (INIS)

    Lee, Kwang Seop; Choo, Dong Chul; Kim, Tae Whan

    2011-01-01

    The electrical and the optical properties of organic light-emitting devices (OLEDs) fabricated utilizing a 4,4',4''-tris(2-methylphenyl-phenylamino)triphenylamine (m-MTDATA) were investigated to clarify the effect of exciplex on their color stabilization and color purity. The electrons combined with the holes at heterointerfaces between the m-MTDATA layer and the 9,10-di(2-naphthyl)anthracene (MADN) and the 4-(dicyanomethylene)-2-methyl-6-(p-dimethyl aminostyryl)-4H-pyran (DCM1) emitting layer (EML) resulted in the formation of the exciplex. The emission peak of the electroluminescence spectra for the OLEDs fabricated utilizing the m-MTDATA layer shifted to a lower energy side in comparison with that of the EML. This was due to the interaction of the holes in the m-MTDATA layer and the electrons in the MADN EML. Carriers in white OLEDs (WOLEDs) with exciplex emissions existed at the heterointerfaces between the m-MTDATA and the EML because the DCM1 EML was too thin to affect the EL peak related to the m-MTDATA layer. The Commission Internationale de l'Eclairage coordinates of WOLEDs at 9.5 V were (0.33, 0.36), and their maximum current efficiency at 46 mA/cm 2 was 2.03 cd/A.

  7. White organic light-emitting devices with tunable color emission fabricated utilizing exciplex formation at heterointerfaces including m-MDATA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Seop; Choo, Dong Chul; Kim, Tae Whan, E-mail: twk@hanyang.ac.kr

    2011-05-31

    The electrical and the optical properties of organic light-emitting devices (OLEDs) fabricated utilizing a 4,4',4''-tris(2-methylphenyl-phenylamino)triphenylamine (m-MTDATA) were investigated to clarify the effect of exciplex on their color stabilization and color purity. The electrons combined with the holes at heterointerfaces between the m-MTDATA layer and the 9,10-di(2-naphthyl)anthracene (MADN) and the 4-(dicyanomethylene)-2-methyl-6-(p-dimethyl aminostyryl)-4H-pyran (DCM1) emitting layer (EML) resulted in the formation of the exciplex. The emission peak of the electroluminescence spectra for the OLEDs fabricated utilizing the m-MTDATA layer shifted to a lower energy side in comparison with that of the EML. This was due to the interaction of the holes in the m-MTDATA layer and the electrons in the MADN EML. Carriers in white OLEDs (WOLEDs) with exciplex emissions existed at the heterointerfaces between the m-MTDATA and the EML because the DCM1 EML was too thin to affect the EL peak related to the m-MTDATA layer. The Commission Internationale de l'Eclairage coordinates of WOLEDs at 9.5 V were (0.33, 0.36), and their maximum current efficiency at 46 mA/cm{sup 2} was 2.03 cd/A.

  8. Deformation twins and related softening behavior in nanocrystalline Cu–30% Zn alloy

    International Nuclear Information System (INIS)

    Bahmanpour, Hamed; Youssef, Khaled M.; Horky, Jelena; Setman, Daria; Atwater, Mark A.; Zehetbauer, Michael J.; Scattergood, Ronald O.; Koch, Carl C.

    2012-01-01

    Nanocrystalline Cu–30% Zn samples were produced by high energy ball milling at 77 K and room temperature. Cryomilled flakes were further processed by ultrahigh strain high pressure torsion (HPT) or room temperature milling to produce bulk artifact-free samples. Deformation-induced grain growth and a reduction in twin probability were observed in HPT consolidated samples. Investigations of the mechanical properties by hardness measurements and tensile tests revealed that at small grain sizes of less than ∼35 nm Cu–30% Zn deviates from the classical Hall–Petch relation and the strength of nanocrsytalline Cu–30% Zn is comparable with that of nanocrystalline pure copper. High resolution transmission electron microscopy studies show a high density of finely spaced deformation nanotwins, formed due to the low stacking fault energy of 14 mJ m –2 and low temperature severe plastic deformation. Possible softening mechanisms proposed in the literature for nanotwin copper are addressed and the twin-related softening behavior in nanotwinned Cu is extended to the Cu–30% Zn alloy based on detwinning mechanisms.

  9. Cyclic softening as a parameter for prediction of remnant creep rupture life of a Indian reduced activation ferritic–martensitic (IN-RAFM) steel subjected to fatigue exposures

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Aritra, E-mail: aritra@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India); Vijayanand, V.D.; Shankar, Vani; Parameswaran, P.; Sandhya, R.; Laha, K.; Mathew, M.D.; Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India); Rajendrakumar, E. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat (India)

    2014-12-15

    Sequential fatigue-creep tests were conducted on Indian reduced activation ferritic–martensitic steel at 823 K leading to sharp decrease in residual creep life with increase in prior fatigue exposures. Extensive recovery of martensitic-lath structure taking place during fatigue deformation, manifested as cyclic softening in the cyclic stress response, shortens the residual creep life. Based on the experimental results, cyclic softening occurring during fatigue stage can be correlated with residual creep life, evolving in an empirical model which predicts residual creep life as a function of cyclic softening. Predicted creep lives for specimens pre-cycled at various strain amplitudes are explained on the basis of mechanism of cyclic softening.

  10. Color-tunable and stable-efficiency white organic light-emitting diode fabricated with fluorescent-phosphorescent emission layers

    International Nuclear Information System (INIS)

    Yang, Su-Hua; Shih, Po-Jen; Wu, Wen-Jie; Huang, Yi-Hua

    2013-01-01

    White organic light emitting diodes (OLEDs) were fabricated for color-tunable lighting applications. Fluorescent and phosphorescent hybrid emission layers (EMLs) were used to enhance the luminance and stability of the devices, which have blue-EML/CBP interlayer/green-EML/phosphorescent-sensitized-EML/red-EML structures. The influence of the composition and structure of the EMLs on the electroluminescence properties of the devices were investigated from the viewpoint of their emission spectra. The possible exciton harvesting, diffusion, transport, and annihilation processes occurring in the EMLs were also evaluated. A maximum luminance intensity of 7400 cd/m 2 and a highly stable current efficiency of 3.2 cd/A were obtained. Good color tunability was achieved for the white OLEDs; the chromatic coordinates linearly shifted from pure white (0.300, 0.398) to cold white (0.261, 0.367) when the applied voltage was varied from 10 to 14 V. -- Highlights: • Exciton harvesting, diffusion, transport, and annihilation processes were evaluated. • The electroluminescence properties were investigated from the viewpoint of the emission spectra. • Good color tunability and stable-efficiency were achieved for the white OLEDs

  11. Brine reuse in ion-exchange softening: salt discharge, hardness leakage, and capacity tradeoffs.

    Science.gov (United States)

    Flodman, Hunter R; Dvorak, Bruce I

    2012-06-01

    Ion-exchange water softening results in the discharge of excess sodium chloride to the aquatic environment during the regeneration cycle. In order to reduce sodium chloride use and subsequent discharge from ion-exchange processes, either brine reclaim operations can be implemented or salt application during regeneration can be reduced. Both result in tradeoffs related to loss of bed volumes treated per cycle and increased hardness leakage. An experimentally validated model was used to compare concurrent water softening operations at various salt application quantities with and without the direct reuse of waste brine for treated tap water of typical midwestern water quality. Both approaches were able to reduce salt use and subsequent discharge. Reducing salt use and discharge by lowering the salt application rate during regeneration consequently increased hardness leakage and decreased treatment capacity. Single or two tank brine recycling systems are capable of reducing salt use and discharge without increasing hardness leakage, although treatment capacity is reduced.

  12. Softening of the elastic shear mode C{sub 66} in iron-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Boehmer, Anna; Burger, Philipp [Karlsruher Institut fuer Technologie, Institut fuer Festkoerperphysik, D-76021 Karlsruhe (Germany); Karlsruher Institut fuer Technologie, Fakultaet fuer Physik, D-76128 Karlsruhe (Germany); Hardy, Frederic; Schweiss, Peter; Fromknecht, Rainer; Wolf, Thomas; Meingast, Christoph [Karlsruher Institut fuer Technologie, Institut fuer Festkoerperphysik, D-76021 Karlsruhe (Germany); Reinecker, Marius; Schranz, Wilfried [Universitaet Wien, Fakultaet fuer Physik, A-1090 Wien, Vienna (Austria)

    2013-07-01

    The structural phase transition of underdoped iron-based superconductors is accompanied by a large softening of the elastic shear mode C{sub 66}, which has attracted considerable attention. This softening has been discussed both in terms of orbital and spin-nematic fluctuations which would be responsible for the structural phase transition and, possibly, superconductivity. However, sample requirements have so far restricted experimental investigations of C{sub 66} (via measurements of the ultrasound velocity) to the Ba(Fe,Co){sub 2}As{sub 2} system. Here, we report on a new technique, based on a three-point bending setup, to probe the Young's modulus of a sample with a capacitance dilatometer. For certain orientations, the Young's modulus is related to the elastic constant C{sub 66} whose effective temperature dependence can be obtained. Platelet-like samples, as frequently encountered for iron-based systems, are easily studied with our setup. Data on several systems are presented and discussed.

  13. Diagnostics of glass fiber reinforced polymers and comparative analysis of their fabrication techniques with the use of acoustic emission

    Science.gov (United States)

    Bashkov, O. V.; Bryansky, A. A.; Panin, S. V.; Zaikov, V. I.

    2016-11-01

    Strength properties of the glass fiber reinforced polymers (GFRP) fabricated by vacuum and vacuum autoclave molding techniques were analyzed. Measurements of porosity of the GFRP parts manufactured by various molding techniques were conducted with the help of optical microscopy. On the basis of experimental data obtained by means of acoustic emission hardware/software setup, the technique for running diagnostics and forecasting the bearing capacity of polymeric composite materials based on the result of three-point bending tests has been developed. The operation principle of the technique is underlined by the evaluation of the power function index change which takes place on the dependence of the total acoustic emission counts versus the loading stress.

  14. A randomised controlled trial of ion-exchange water softeners for the treatment of eczema in children.

    Directory of Open Access Journals (Sweden)

    Kim S Thomas

    2011-02-01

    Full Text Available Epidemiological studies and anecdotal reports suggest a possible link between household use of hard water and atopic eczema. We sought to test whether installation of an ion-exchange water softener in the home can improve eczema in children.This was an observer-blind randomised trial involving 336 children (aged 6 months to 16 years with moderate/severe atopic eczema. All lived in hard water areas (≥200 mg/l calcium carbonate. Participants were randomised to either installation of an ion-exchange water softener plus usual eczema care, or usual eczema care alone. The primary outcome was change in eczema severity (Six Area Six Sign Atopic Dermatitis Score, SASSAD at 12 weeks, measured by research nurses who were blinded to treatment allocation. Analysis was based on the intent-to-treat population. Eczema severity improved for both groups during the trial. The mean change in SASSAD at 12 weeks was -5.0 (20% improvement for the water softener group and -5.7 (22% improvement for the usual care group (mean difference 0.66, 95% confidence interval -1.37 to 2.69, p = 0.53. No between-group differences were noted in the use of topical corticosteroids or calcineurin inhibitors.Water softeners provided no additional benefit to usual care in this study population. Small but statistically significant differences were found in some secondary outcomes as reported by parents, but it is likely that such improvements were the result of response bias, since participants were aware of their treatment allocation. A detailed report for this trial is also available at http://www.hta.ac.uk.Current Controlled Trials ISRCTN71423189 Please see later in the article for the Editors' Summary.

  15. Acoustic emission

    International Nuclear Information System (INIS)

    Nichols, R.W.

    1976-01-01

    The volume contains six papers which together provide an overall review of the inspection technique known as acoustic emission or stress wave emission. The titles are: a welder's introduction to acoustic emission technology; use of acoustic emission for detection of defects as they arise during fabrication; examples of laboratory application and assessment of acoustic emission in the United Kingdom; (Part I: acoustic emission behaviour of low alloy steels; Part II: fatigue crack assessment from proof testing and continuous monitoring); inspection of selected areas of engineering structures by acoustic emission; Japanese experience in laboratory and practical applications of acoustic emission to welded structures; and ASME acoustic emission code status. (U.K.)

  16. Influence of curing rate on softening in ethanol, degree of conversion, and wear of resin composite

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Peutzfeldt, Anne; Asmussen, Erik

    2011-01-01

    PURPOSE: To investigate the effect of curing rate on softening in ethanol, degree of conversion, and wear of resin composites. METHOD: With a given energy density and for each of two different light-curing units (QTH or LED), the curing rate was reduced by modulating the curing mode. Thus......, the irradiation of resin composite specimens (Filtek Z250, Tetric Ceram, Esthet-X) was performed in a continuous curing mode and in a pulse-delay curing mode. Wallace hardness was used to determine the softening of resin composite after storage in ethanol. Degree of conversion was determined by infrared...... exposed to the pulse-delay curing mode were softer than resin composites exposed to continuous cure (Pconversion (P

  17. A multicentre randomised controlled trial and economic evaluation of ion-exchange water softeners for the treatment of eczema in children:the Softened Water Eczema Trial (SWET)

    OpenAIRE

    Thomas, K. S.; Koller, K.; Dean, Tara; O'Leary, C. J.; Sach, T. H.; Frost, A.; Pallett, I.; Crook, A. M.; Meredith, S.; Nunn, A. J.; Burrows, N.; Pollock, I.; Graham-Brown, R.; O'Toole, E.; Potter, D.

    2011-01-01

    Objectives: To determine whether installation of an ion-exchange water softener in the home could improve atopic eczema in children and, if so, to establish its likely cost and cost-effectiveness. Design: An observer-blind, parallel-group randomised controlled trial of 12 weeks duration followed by a 4-week observational period. Eczema was assessed by research nurses blinded to intervention at baseline, 4 weeks, 12 weeks and 16 weeks. The primary outcome was analysed as intent-to-treat, using...

  18. Measurement of mesoscopic Si:P delta-doped devices fabricated by rapid STM hydrogen depassivation lithography via field-emission

    Science.gov (United States)

    Rudolph, M.; Carr, S. M.; Subramania, G.; Ten Eyck, G.; Dominguez, J.; Lilly, M. P.; Carroll, M. S.; Bussmann, E.

    2014-03-01

    Recently, a method to fabricate nanoelectronic and quantum devices has been developed that utilizes scanning tunneling microscopy (STM) to place dopants (P) into Si with deterministic atomic-precision. Dopant placement is achieved via STM hydrogen depassivation lithography (HDL). Typically HDL is performed in a low-voltage tunneling mode where electrons desorb one H at a time, which requires extremely slow scan rates. Here, we introduce a high-voltage field-emission HDL, increasing patterning scan rate by an order of magnitude. Using the field-emission mode, we fabricated several HDL-patterned Si:P delta-doped devices, including a microscale multi-terminal Hall Effect device and a nanoscale quantum point contact. Low temperature transport measurements of the Hall device reveal a dopant density of 1014 cm-2, resistance of 2 k Ω/square, and mobility of 30 cm2/Vs. The quantum point contact showed a blockaded voltage range of 80 mV, comparable to other similar devices patterned using conventional HDL. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE, Office of Basic Energy Sciences user facility. The work was supported by the Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  19. Knife-edge thin film field emission cathodes

    International Nuclear Information System (INIS)

    Lee, B.; Demroff, H.P.; Drew, M.M.; Elliott, T.S.; Mazumdar, T.K.; McIntyre, P.M.; Pang, Y.; Smith, D.D.; Trost, H.J.

    1993-01-01

    Cathodes made of thin-film field emission arrays (FEA) have the advantages of high current density, pulsed emission, and low bias voltage operation. The authors have developed a technology to fabricate knife-edge field emission cathodes on (110) silicon wafers. The emitter geometry is optimized for efficient modulation at high frequency. Cathode fabrication progress and preliminary analysis of their applications in RF power sources are presented

  20. Finite strain logarithmic hyperelasto-plasticity with softening: a strongly non-local implicit gradient framework

    NARCIS (Netherlands)

    Geers, M.G.D.

    2004-01-01

    This paper addresses the extension of a Eulerian logarithmic finite strain hyperelasto-plasticity model in order to incorporate an isotropic plastic damage variable that leads to softening and failure of the plastic material. It is shown that a logarithmic elasto-plastic model with a strongly

  1. The N-glycan processing enzymes α-mannosidase and β-D-N-acetylhexosaminidase are involved in ripening-associated softening in the non-climacteric fruits of capsicum

    Science.gov (United States)

    Ghosh, Sumit; Meli, Vijaykumar S.; Kumar, Anil; Thakur, Archana; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2011-01-01

    Excessive softening of fruits during the ripening process leads to deterioration. This is of significant global importance as softening-mediated deterioration leads to huge postharvest losses. N-glycan processing enzymes are reported to play an important role during climacteric fruit softening: however, to date these enzymes have not been characterized in non-climacteric fruit. Two ripening-specific N-glycan processing enzymes, α-mannosidase (α-Man) and β-D-N-acetylhexosaminidase (β-Hex), have been identified and targeted to enhance the shelf life in non-climacteric fruits such as capsicum (Capsicum annuum). The purification, cloning, and functional characterization of α-Man and β-Hex from capsicum, which belong to glycosyl hydrolase (GH) families 38 and 20, respectively, are described here. α-Man and β-Hex are cell wall glycoproteins that are able to cleave terminal α-mannose and β-D-N-acetylglucosamine residues of N-glycans, respectively. α-Man and β-Hex transcripts as well as enzyme activity increase with the ripening and/or softening of capsicum. The function of α-Man and β-Hex in capsicum softening is investigated through RNA interference (RNAi) in fruits. α-Man and β-Hex RNAi fruits were approximately two times firmer compared with the control and fruit deterioration was delayed by approximately 7 d. It is shown that silencing of α-Man and β-Hex enhances fruit shelf life due to the reduced degradation of N-glycoproteins which resulted in delayed softening. Altogether, the results provide evidence for the involvement of N-glycan processing in non-climacteric fruit softening. In conclusion, genetic engineering of N-glycan processing can be a common strategy in both climacteric and non-climacteric species to reduce the post-harvest crop losses. PMID:21030387

  2. Synthetic Musk Fragrances in a Conventional Drinking Water Treatment Plant with Lime Softening.

    Science.gov (United States)

    Wombacher, William D; Hornbuckle, Keri C

    2009-11-01

    Synthetic musk fragrances are common personal care product additives and wastewater contaminants that are routinely detected in the environment. This study examines the presence eight synthetic musk fragrances (AHTN, HHCB, ATII, ADBI, AHMI, musk xylene, and musk ketone) in source water and the removal of these compounds as they flow through a Midwestern conventional drinking water plant with lime softening. The compounds were measured in water, waste sludge, and air throughout the plant. HHCB and AHTN were detected in 100% of the samples and at the highest concentrations. A mass balance on HHCB and AHTN was performed under warm and cold weather conditions. The total removal efficiency for HHCB and AHTN, which averaged between 67% to 89%, is dominated by adsorption to water softener sludge and its consequent removal by sludge wasting and media filtration. Volatilization, chlorine disinfection, and the disposal of backwash water play a minor role in the removal of both compounds. As a result of inefficient overall removal, HHCB and AHTN are a constant presence at low levels in finished drinking water.

  3. Het voorkomen en gedrag van ditalg-dimethyl-ammoniumchloride (DTDMAC) tijdens de drinkwaterproduktie

    NARCIS (Netherlands)

    Versteegh JFM; Bergers PJM; de Groot AC

    1991-01-01

    Cationic quaternary ammonium compounds are used as fabric softeners. DTDMAC, a technical product with an ecotoxicological risk for aquatic organisms, is the most well known. Ecotoxicological risk values have been determined, followed by an agreement to ban the product from fabric softeners. The

  4. Core-softened fluids, water-like anomalies, and the liquid-liquid critical points.

    Science.gov (United States)

    Salcedo, Evy; de Oliveira, Alan Barros; Barraz, Ney M; Chakravarty, Charusita; Barbosa, Marcia C

    2011-07-28

    Molecular dynamics simulations are used to examine the relationship between water-like anomalies and the liquid-liquid critical point in a family of model fluids with multi-Gaussian, core-softened pair interactions. The core-softened pair interactions have two length scales, such that the longer length scale associated with a shallow, attractive well is kept constant while the shorter length scale associated with the repulsive shoulder is varied from an inflection point to a minimum of progressively increasing depth. The maximum depth of the shoulder well is chosen so that the resulting potential reproduces the oxygen-oxygen radial distribution function of the ST4 model of water. As the shoulder well depth increases, the pressure required to form the high density liquid decreases and the temperature up to which the high-density liquid is stable increases, resulting in the shift of the liquid-liquid critical point to much lower pressures and higher temperatures. To understand the entropic effects associated with the changes in the interaction potential, the pair correlation entropy is computed to show that the excess entropy anomaly diminishes when the shoulder well depth increases. Excess entropy scaling of diffusivity in this class of fluids is demonstrated, showing that decreasing strength of the excess entropy anomaly with increasing shoulder depth results in the progressive loss of water-like thermodynamic, structural and transport anomalies. Instantaneous normal mode analysis was used to index the overall curvature distribution of the fluid and the fraction of imaginary frequency modes was shown to correlate well with the anomalous behavior of the diffusivity and the pair correlation entropy. The results suggest in the case of core-softened potentials, in addition to the presence of two length scales, energetic, and entropic effects associated with local minima and curvatures of the pair interaction play an important role in determining the presence of water

  5. Transcriptome analysis and ultrastructure observation reveal that hawthorn fruit softening is due to cellulose/hemicellulose degradation

    Directory of Open Access Journals (Sweden)

    Jiayu Xu

    2016-10-01

    Full Text Available Softening, a common phenomenon in many fruits, is a well coordinated and genetically determined process. However, the process of flesh softening during ripening has rarely been described in hawthorn. In this study, we found that ‘Ruanrou Shanlihong 3 Hao’ fruits became softer during ripening, whereas ‘Qiu JinXing’ fruits remained hard. At late developmental stages, the firmness of ‘Ruanrou Shanlihong 3 Hao’ fruits rapidly declined, and that of ‘Qiu JinXing’ fruits remained essentially unchanged. According to transmission electron microscopy (TEM, the middle lamella of ‘Qiu JinXing’ and ‘Ruanrou Shanlihong 3 Hao’ fruit flesh was largely degraded as the fruits matured. Microfilaments in ‘Qiu JinXing’ flesh were arranged close together and were deep in color, whereas those in ‘Ruanrou Shanlihong 3 Hao’ fruit flesh were arranged loosely, partially degraded and light in color. RNA-Seq analysis yielded approximately 46.72 Gb of clean data and 72,837 unigenes. Galactose metabolism and pentose and glucuronate interconversions are involved in cell wall metabolism, play an important role in hawthorn texture. We identified 85 unigenes related to the cell wall between hard- and soft-fleshed hawthorn fruits. Based on data analysis and real-time PCR, we suggest that β-GAL and PE4 have important functions in early fruit softening. The genes Ffase, Gns, α-GAL, PE63, XTH and CWP, which are involved in cell wall degradation, are responsible for the different textures of hawthorn fruits. Thus, we hypothesize that the different textures of ‘Qiu JinXing’ and ‘Ruanrou Shanlihong 3 Hao’ fruits at maturity mainly result from cellulose/hemicelluloses degradation rather than from lamella degradation. Overall, we propose that different types of hydrolytic enzymes in cells interact to degrade the cell wall, resulting in ultramicroscopic Structure changes in the cell wall and, consequently, fruit softening. These results provide

  6. Circular economy in drinking water treatment: reuse of ground pellets as seeding material in the pellet softening process.

    Science.gov (United States)

    Schetters, M J A; van der Hoek, J P; Kramer, O J I; Kors, L J; Palmen, L J; Hofs, B; Koppers, H

    2015-01-01

    Calcium carbonate pellets are produced as a by-product in the pellet softening process. In the Netherlands, these pellets are applied as a raw material in several industrial and agricultural processes. The sand grain inside the pellet hinders the application in some high-potential market segments such as paper and glass. Substitution of the sand grain with a calcite grain (100% calcium carbonate) is in principle possible, and could significantly improve the pellet quality. In this study, the grinding and sieving of pellets, and the subsequent reuse as seeding material in pellet softening were tested with two pilot reactors in parallel. In one reactor, garnet sand was used as seeding material, in the other ground calcite. Garnet sand and ground calcite performed equally well. An economic comparison and a life-cycle assessment were made as well. The results show that the reuse of ground calcite as seeding material in pellet softening is technologically possible, reduces the operational costs by €38,000 (1%) and reduces the environmental impact by 5%. Therefore, at the drinking water facility, Weesperkarspel of Waternet, the transition from garnet sand to ground calcite will be made at full scale, based on this pilot plant research.

  7. Softening the supersymmetric flavor problem in orbifold grand unified theories

    International Nuclear Information System (INIS)

    Kajiyama, Yuji; Terao, Haruhiko; Kubo, Jisuke

    2004-01-01

    The infrared attractive force of the bulk gauge interactions is applied to soften the supersymmetric flavor problem in the orbifold SU(5) grand unified theory of Kawamura. Then this force aligns in the infrared regime the soft supersymmetry breaking terms out of their anarchical disorder at a fundamental scale, in such a way that flavor-changing neutral currents as well as dangerous CP-violating phases are suppressed at low energies. It is found that this dynamical alignment is sufficiently good compared with the current experimental bounds, as long as the diagonalization matrices of the Yukawa couplings are CKM-like

  8. Fabrication, microstructure, and mechanical properties of high strength cobalt sub-micron structures

    International Nuclear Information System (INIS)

    Jin Sumin; Burek, Michael J.; Evans, Robert D.; Jahed, Zeinab; Leung, Michael C.; Evans, Neal D.; Tsui, Ting Y.

    2012-01-01

    The mechanical properties exhibited by sub-micron scale columnar structures of cobalt, fabricated by electron beam lithography and electroplating techniques, were investigated through uniaxial compression. Transmission electron microscopy analyses show these specimens possess a microstructure with sub-micron grains which are elongated and aligned near to the pillar loading axis. In addition, small nanocrystalline cobalt crystals are also present within the columnar structure. These specimens display exceptional mechanical strength comparable with both bulk polycrystalline and nanocrystalline cobalt deposited by electroplating. Size-dependent softening with shrinking sample dimensions is also observed in this work. Additionally, the strength of these sub-micron structures appears to be strain rate sensitive and comparable with bulk nanocrystalline cobalt specimens.

  9. Application of trilinear softening functions based on a cohesive crack approach to the simulation of the fracture behaviour of fibre reinforced cementitious materials.

    Science.gov (United States)

    Enfedaque, A.; Alberti, M. G.; Gálvez, J. C.

    2017-09-01

    The relevance of fibre reinforced cementitious materials (FRC) has increased due to the appearance of regulations that establish the requirements needed to take into account the contribution of the fibres in the structural design. However, in order to exploit the properties of such materials it is a key aspect being able to simulate their behaviour under fracture conditions. Considering a cohesive crack approach, several authors have studied the suitability of using several softening functions. However, none of these functions can be directly applied to FRC. The present contribution analyses the suitability of multilinear softening functions in order to obtain simulation results of fracture tests of a wide variety of FRC. The implementation of multilinear softening functions has been successfully performed by means of a material user subroutine in a commercial finite element code obtaining accurate results in a wide variety of FRC. Such softening functions were capable of simulating a ductile unloading behaviour as well as a rapid unloading followed by a reloading and afterwards a slow unloading. Moreover, the implementation performed has been proven as versatile, robust and efficient from a numerical point of view.

  10. Feasibility Assessments of the Use of Recycled Fibers in Nonwoven Fabrics

    Directory of Open Access Journals (Sweden)

    Jia-Horng Lin

    2017-01-01

    Full Text Available Environmental protection has become an increasing concern, which makes recycling and reclaiming highly important. In addition to governmental campaigns and promotion, enterprises should examine each perspective thoroughly in order to prevent excessive resource consumption. In this study, recycled materials, including recycled far-infrared polyester (FPET fiber, three-dimensional crimped hollow flame-retarding (TPET fiber, and low-melting-point polyester (LPET fiber, are used to form nonwoven fabrics. The influence of different amounts of FPET fiber, 0–80 wt %, on the properties of nonwoven fabrics was examined. The sheath of LPET fibers can be melted as a result of hot pressing, which provides cohesion between fibers that mechanically improves the nonwoven fabrics. The tensile strength, tearing strength, air permeability, and far infrared (FIR emissivity of the nonwoven fabrics were examined, thereby determining the optimal parameters. The test results show that the thermally treated nonwoven fabrics have better mechanical properties and FIR emissivity, compared to those of non-thermally treated nonwoven fabrics. Moreover, more FPET fibers cause the mechanical properties along the cross machine direction (CD to decrease by 9% and that along the machine direction (MD to decrease by 5%. In particular, all the thermally treated samples exhibit a FIR emissivity of 0.8, which is health-promoting.

  11. Changes in alpha-L-arabinofuranosidase activity in peel and pulp of banana (Musa sp.) fruits during ripening and softening.

    Science.gov (United States)

    Zhuang, Jun-Ping; Su, Jing; Li, Xue-Ping; Chen, Wei-Xin

    2007-04-01

    Arabinose is one of the most dynamic cell wall glycosyl residues released during fruit ripening, alpha-L-arabinofuranosidase (alpha-Arab) are major glycosidases that may remove arabinose units from fruit cell wall polysaccharides. To find out whether alpha-Arab plays important roles in banana fruit softening, the enzyme activities in peel and pulp, fruit firmness, respiration rate and ethylene release rate were assayed during banana softening. The results showed that alpha-Arab activities in banana pulp and peel increased slightly at the beginning of storage and reached their maxima when the fruit firmness decreased drastically, alpha-Arab activity increased by more than ten folds in both pulp and peel during ripening and alpha-Arab activities were higher in pulp than in peel. Treatment of banana fruits with ethylene absorbent postponed the time of reaching of its maxima of respiration and ethylene, enhanced the firmness of pup and decreased alpha-Arab activity in the peel and pulp. These results suggest that alpha-Arab induced the decrease of fruit firmness and played an important role in banana fruit softening, and its activity was regulated by ethylene.

  12. On the Rule of Mixtures for Predicting Stress-Softening and Residual Strain Effects in Biological Tissues and Biocompatible Materials

    Directory of Open Access Journals (Sweden)

    Alex Elías-Zúñiga

    2014-01-01

    Full Text Available In this work, we use the rule of mixtures to develop an equivalent material model in which the total strain energy density is split into the isotropic part related to the matrix component and the anisotropic energy contribution related to the fiber effects. For the isotropic energy part, we select the amended non-Gaussian strain energy density model, while the energy fiber effects are added by considering the equivalent anisotropic volumetric fraction contribution, as well as the isotropized representation form of the eight-chain energy model that accounts for the material anisotropic effects. Furthermore, our proposed material model uses a phenomenological non-monotonous softening function that predicts stress softening effects and has an energy term, derived from the pseudo-elasticity theory, that accounts for residual strain deformations. The model’s theoretical predictions are compared with experimental data collected from human vaginal tissues, mice skin, poly(glycolide-co-caprolactone (PGC25 3-0 and polypropylene suture materials and tracheal and brain human tissues. In all cases examined here, our equivalent material model closely follows stress-softening and residual strain effects exhibited by experimental data.

  13. On the Rule of Mixtures for Predicting Stress-Softening and Residual Strain Effects in Biological Tissues and Biocompatible Materials

    Science.gov (United States)

    Elías-Zúñiga, Alex; Baylón, Karen; Ferrer, Inés; Serenó, Lídia; Garcia-Romeu, Maria Luisa; Bagudanch, Isabel; Grabalosa, Jordi; Pérez-Recio, Tania; Martínez-Romero, Oscar; Ortega-Lara, Wendy; Elizalde, Luis Ernesto

    2014-01-01

    In this work, we use the rule of mixtures to develop an equivalent material model in which the total strain energy density is split into the isotropic part related to the matrix component and the anisotropic energy contribution related to the fiber effects. For the isotropic energy part, we select the amended non-Gaussian strain energy density model, while the energy fiber effects are added by considering the equivalent anisotropic volumetric fraction contribution, as well as the isotropized representation form of the eight-chain energy model that accounts for the material anisotropic effects. Furthermore, our proposed material model uses a phenomenological non-monotonous softening function that predicts stress softening effects and has an energy term, derived from the pseudo-elasticity theory, that accounts for residual strain deformations. The model’s theoretical predictions are compared with experimental data collected from human vaginal tissues, mice skin, poly(glycolide-co-caprolactone) (PGC25 3-0) and polypropylene suture materials and tracheal and brain human tissues. In all cases examined here, our equivalent material model closely follows stress-softening and residual strain effects exhibited by experimental data. PMID:28788466

  14. Escape time, relaxation, and sticky states of a softened Henon-Heiles model: Low-frequency vibrational mode effects and glass relaxation

    Science.gov (United States)

    Toledo-Marín, J. Quetzalcóatl; Naumis, Gerardo G.

    2018-04-01

    Here we study the relaxation of a chain consisting of three masses joined by nonlinear springs and periodic conditions when the stiffness is weakened. This system, when expressed in their normal coordinates, yields a softened Henon-Heiles system. By reducing the stiffness of one low-frequency vibrational mode, a faster relaxation is enabled. This is due to a reduction of the energy barrier heights along the softened normal mode as well as for a widening of the opening channels of the energy landscape in configurational space. The relaxation is for the most part exponential, and can be explained by a simple flux equation. Yet, for some initial conditions the relaxation follows as a power law, and in many cases there is a regime change from exponential to power-law decay. We pinpoint the initial conditions for the power-law decay, finding two regions of sticky states. For such states, quasiperiodic orbits are found since almost for all components of the initial momentum orientation, the system is trapped inside two pockets of configurational space. The softened Henon-Heiles model presented here is intended as the simplest model in order to understand the interplay of rigidity, nonlinear interactions and relaxation for nonequilibrium systems such as glass-forming melts or soft matter. Our softened system can be applied to model β relaxation in glasses and suggest that local reorientational jumps can have an exponential and a nonexponential contribution for relaxation, the latter due to asymmetric molecules sticking in cages for certain orientations.

  15. Waterlike anomalies in a two-dimensional core-softened potential

    Science.gov (United States)

    Bordin, José Rafael; Barbosa, Marcia C.

    2018-02-01

    We investigate the structural, thermodynamic, and dynamic behavior of a two-dimensional (2D) core-corona system using Langevin dynamics simulations. The particles are modeled by employing a core-softened potential which exhibits waterlike anomalies in three dimensions. In previous studies in a quasi-2D system a new region in the pressure versus temperature phase diagram of structural anomalies was observed. Here we show that for the two-dimensional case two regions in the pressure versus temperature phase diagram with structural, density, and diffusion anomalies are observed. Our findings indicate that, while the anomalous region at lower densities is due the competition between the two length scales in the potential at higher densities, the anomalous region is related to the reentrance of the melting line.

  16. The Work Softening by Deformation-Induced Disordering and Cold Rolling of 6.5 wt pct Si Steel Thin Sheets

    Science.gov (United States)

    Wang, Xianglong; Li, Haoze; Zhang, Weina; Liu, Zhenyu; Wang, Guodong; Luo, Zhonghan; Zhang, Fengquan

    2016-09-01

    As-cast strip of 6.5 wt pct Si steel was fabricated by twin-roll strip casting. After hot rolling at 1323 K (1050 °C), thin sheets with the thickness of 0.35 mm were produced by warm rolling at 373 K (100 °C) with rolling reductions of 15, 25, 35, 45, 55, and 65 pct. Influence of warm rolling reduction on ductility was investigated by room temperature bending test. The measurement of macro-hardness showed that "work softening" could begin when the warm rolling reduction exceeded 35 pct. The room temperature ductility of the thin sheets gradually increased with the increase of warm rolling reductions, and the plastic deformation during bending began to form when the warm rolling reduction was greater than 45 pct, the 65 pct rolled thin sheet exhibited the maximum plastic deformation of about 0.6 pct during bending at room temperature, with a few small dimples having been observed on the fracture surfaces. B2-ordered domains were formed in the 15, 25, 35, 45, and 55 pct rolled specimens, and their average size decreased with the increase of warm rolling reductions. By contrast, no B2-ordered domain could be found in the 65 pct rolled specimen. It had been observed that large-ordered domains could be split into several small parts by the slip of partial super-dislocations during warm rolling, which led to significant decrease of the order degree to cause the phenomenon of deformation-induced disordering. On the basis of these results, cold rolling schedule was developed to successfully fabricate 0.25-mm-thick sheets with good surface qualities and magnetic properties from warm rolled sheets.

  17. Finite element implementation of the Hoek-Brown material model with general strain softening behavior

    DEFF Research Database (Denmark)

    Sørensen, Emil Smed; Clausen, Johan Christian; Damkilde, Lars

    2015-01-01

    A numerical implementation of the Hoek–Brown criterion is presented, which is capable of modeling different post-failure behaviors observed in jointed rock mass. This is done by making the material parameters a function of the accumulated plastic strain. The implementation is for use in finite...... for perfectly-plastic, brittle and strain softening material behavior and the results are compared with known solutions....

  18. Softening in Random Networks of Non-Identical Beams.

    Science.gov (United States)

    Ban, Ehsan; Barocas, Victor H; Shephard, Mark S; Picu, Catalin R

    2016-02-01

    Random fiber networks are assemblies of elastic elements connected in random configurations. They are used as models for a broad range of fibrous materials including biopolymer gels and synthetic nonwovens. Although the mechanics of networks made from the same type of fibers has been studied extensively, the behavior of composite systems of fibers with different properties has received less attention. In this work we numerically and theoretically study random networks of beams and springs of different mechanical properties. We observe that the overall network stiffness decreases on average as the variability of fiber stiffness increases, at constant mean fiber stiffness. Numerical results and analytical arguments show that for small variabilities in fiber stiffness the amount of network softening scales linearly with the variance of the fiber stiffness distribution. This result holds for any beam structure and is expected to apply to a broad range of materials including cellular solids.

  19. A simple cost-effective and eco-friendly wet chemical process for the fabrication of superhydrophobic cotton fabrics

    International Nuclear Information System (INIS)

    Richard, Edna; Lakshmi, R.V.; Aruna, S.T.; Basu, Bharathibai J.

    2013-01-01

    Superhydrophobic surfaces were created on hydrophilic cotton fabrics by a simple wet chemical process. The fabric was immersed in a colloidal suspension of zinc hydroxide followed by subsequent hydrophobization with stearic acid. The wettability of the modified cotton fabric sample was studied by water contact angle (WCA) and water shedding angle (WSA) measurements. The modified cotton fabrics exhibited superhydrophobicity with a WCA of 151° for 8 μL water droplet and a WSA of 5–10° for 40 μL water droplet. The superhydrophobic cotton sample was also characterized by field emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectroscopy (EDX). The method is simple, eco-friendly and cost-effective and can be applied to large area of cotton fabric materials. It was shown that superhydrophobicity of the fabric was due to the combined effect of surface roughness imparted by zinc hydroxide and the low surface energy of stearic acid.

  20. A simple cost-effective and eco-friendly wet chemical process for the fabrication of superhydrophobic cotton fabrics

    Energy Technology Data Exchange (ETDEWEB)

    Richard, Edna; Lakshmi, R.V.; Aruna, S.T., E-mail: aruna_reddy@nal.res.in; Basu, Bharathibai J.

    2013-07-15

    Superhydrophobic surfaces were created on hydrophilic cotton fabrics by a simple wet chemical process. The fabric was immersed in a colloidal suspension of zinc hydroxide followed by subsequent hydrophobization with stearic acid. The wettability of the modified cotton fabric sample was studied by water contact angle (WCA) and water shedding angle (WSA) measurements. The modified cotton fabrics exhibited superhydrophobicity with a WCA of 151° for 8 μL water droplet and a WSA of 5–10° for 40 μL water droplet. The superhydrophobic cotton sample was also characterized by field emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectroscopy (EDX). The method is simple, eco-friendly and cost-effective and can be applied to large area of cotton fabric materials. It was shown that superhydrophobicity of the fabric was due to the combined effect of surface roughness imparted by zinc hydroxide and the low surface energy of stearic acid.

  1. Altered cell wall disassembly during ripening of Cnr tomato fruit: implications for cell adhesion and fruit softening

    DEFF Research Database (Denmark)

    Orfila, C.; Huisman, M.M.H.; Willats, William George Tycho

    2002-01-01

    The Cnr (Colourless non-ripening) tomato (Lycopersicon esculentum Mill.) mutant has an aberrant fruit-ripening phenotype in which fruit do not soften and have reduced cell adhesion between pericarp cells. Cell walls from Cnr fruit were analysed in order to assess the possible contribution of pectic...... polysaccharides to the non-softening and altered cell adhesion phenotype. Cell wall material (CWM) and solubilised fractions of mature green and red ripe fruit were analysed by chemical, enzymatic and immunochemical techniques. No major differences in CWM sugar composition were detected although differences were...... that was chelator-soluble was 50% less in Cnr cell walls at both the mature green and red ripe stages. Chelator-soluble material from ripe-stage Cnr was more susceptible to endo-polygalacturonase degradation than the corresponding material from wild-type fruit. In addition, cell walls from Cnr fruit contained...

  2. Synthetic Musk Fragrances in a Conventional Drinking Water Treatment Plant with Lime Softening

    OpenAIRE

    Wombacher, William D.; Hornbuckle, Keri C.

    2009-01-01

    Synthetic musk fragrances are common personal care product additives and wastewater contaminants that are routinely detected in the environment. This study examines the presence eight synthetic musk fragrances (AHTN, HHCB, ATII, ADBI, AHMI, musk xylene, and musk ketone) in source water and the removal of these compounds as they flow through a Midwestern conventional drinking water plant with lime softening. The compounds were measured in water, waste sludge, and air throughout the plant. HHCB...

  3. The Softening of Journalistic Political Communication: A Comprehensive Framework Model of Sensationalism, Soft News, Infotainment, and Tabloidization

    NARCIS (Netherlands)

    Otto, L.; Glogger, I.; Boukes, M.

    Despite the scholarly popularity of important developments of political communication, concepts like soft news or infotainment lack conceptual clarity. This article tackles that problem and introduces a multilevel framework model of softening of journalistic political communication, which shows that

  4. Direct prediction of the solute softening-to-hardening transition in W–Re alloys using stochastic simulations of screw dislocation motion

    Science.gov (United States)

    Zhao, Yue; Marian, Jaime

    2018-06-01

    Interactions among dislocations and solute atoms are the basis of several important processes in metal plasticity. In body-centered cubic (bcc) metals and alloys, low-temperature plastic flow is controlled by screw dislocation glide, which is known to take place by the nucleation and sideward relaxation of kink pairs across two consecutive Peierls valleys. In alloys, dislocations and solutes affect each other’s kinetics via long-range stress field coupling and short-range inelastic interactions. It is known that in certain substitutional bcc alloys a transition from solute softening to solute hardening is observed at a critical concentration. In this paper, we develop a kinetic Monte Carlo model of screw dislocation glide and solute diffusion in substitutional W–Re alloys. We find that dislocation kinetics is governed by two competing mechanisms. At low solute concentrations, nucleation is enhanced by the softening of the Peierls stress, which dominates over the elastic repulsion of Re atoms on kinks. This trend is reversed at higher concentrations, resulting in a minimum in the flow stress that is concentration and temperature dependent. This minimum marks the transition from solute softening to hardening, which is found to be in reasonable agreement with experiments.

  5. Low-temperature behavior of core-softened models: Water and silica behavior

    International Nuclear Information System (INIS)

    Jagla, E. A.

    2001-01-01

    A core-softened model of a glass forming fluid is numerically studied in the limit of very low temperatures. The model shows two qualitatively different behaviors depending on the strength of the attraction between particles. For no or low attraction, the changes of density as a function of pressure are smooth, although hysteretic due to mechanical metastabilities. For larger attraction, sudden changes of density upon compressing and decompressing occur. This global mechanical instability is correlated to the existence of a thermodynamic first-order amorphous-amorphous transition. The two different behaviors obtained correspond qualitatively to the different phenomenology observed in silica and water

  6. Fabrication of silver tips for scanning tunneling microscope induced luminescence.

    Science.gov (United States)

    Zhang, C; Gao, B; Chen, L G; Meng, Q S; Yang, H; Zhang, R; Tao, X; Gao, H Y; Liao, Y; Dong, Z C

    2011-08-01

    We describe a reliable fabrication procedure of silver tips for scanning tunneling microscope (STM) induced luminescence experiments. The tip was first etched electrochemically to yield a sharp cone shape using selected electrolyte solutions and then sputter cleaned in ultrahigh vacuum to remove surface oxidation. The tip status, in particular the tip induced plasmon mode and its emission intensity, can be further tuned through field emission and voltage pulse. The quality of silver tips thus fabricated not only offers atomically resolved STM imaging, but more importantly, also allows us to perform challenging "color" photon mapping with emission spectra taken at each pixel simultaneously during the STM scan under relatively small tunnel currents and relatively short exposure time.

  7. Softenin, a novel protein that softens the connective tissue of sea cucumbers through inhibiting interaction between collagen fibrils.

    Directory of Open Access Journals (Sweden)

    Yasuhiro Takehana

    Full Text Available The dermis in the holothurian body wall is a typical catch connective tissue or mutable collagenous tissue that shows rapid changes in stiffness. Some chemical factors that change the stiffness of the tissue were found in previous studies, but the molecular mechanisms of the changes are not yet fully understood. Detection of factors that change the stiffness by working directly on the extracellular matrix was vital to clarify the mechanisms of the change. We isolated from the body wall of the sea cucumber Stichopus chloronotus a novel protein, softenin, that softened the body-wall dermis. The apparent molecular mass was 20 kDa. The N-terminal sequence of 17 amino acids had low homology to that of known proteins. We performed sequential chemical and physical dissections of the dermis and tested the effects of softenin on each dissection stage by dynamic mechanical tests. Softenin softened Triton-treated dermis whose cells had been disrupted by detergent. The Triton-treated dermis was subjected to repetitive freeze-and-thawing to make Triton-Freeze-Thaw (TFT dermis that was softer than the Triton-treated dermis, implying that some force-bearing structure had been disrupted by this treatment. TFT dermis was stiffened by tensilin, a stiffening protein of sea cucumbers. Softenin softened the tensilin-stiffened TFT dermis while it had no effect on the TFT dermis without tensilin treatment. We isolated collagen from the dermis. When tensilin was applied to the suspending solution of collagen fibrils, they made a large compact aggregate that was dissolved by the application of softenin or by repetitive freeze-and-thawing. These results strongly suggested that softenin decreased dermal stiffness through inhibiting cross-bridge formation between collagen fibrils; the formation was augmented by tensilin and the bridges were broken by the freeze-thaw treatment. Softenin is thus the first softener of catch connective tissue shown to work on the cross

  8. A truly Newtonian softening length for disc simulations

    Science.gov (United States)

    Huré, J.-M.; Trova, A.

    2015-02-01

    The softened point mass model is commonly used in simulations of gaseous discs including self-gravity while the value of associated length λ remains, to some degree, controversial. This `parameter' is however fully constrained when, in a discretized disc, all fluid cells are demanded to obey Newton's law. We examine the topology of solutions in this context, focusing on cylindrical cells more or less vertically elongated. We find that not only the nominal length depends critically on the cell's shape (curvature, radial extension, height), but it is either a real or an imaginary number. Setting λ as a fraction of the local disc thickness - as usually done - is indeed not the optimal choice. We then propose a novel prescription valid irrespective of the disc properties and grid spacings. The benefit, which amounts to 2-3 more digits typically, is illustrated in a few concrete cases. A detailed mathematical analysis is in progress.

  9. Multi scale analysis by acoustic emission of damage mechanisms in natural fibre woven fabrics/epoxy composites.

    Directory of Open Access Journals (Sweden)

    Touchard F.

    2010-06-01

    Full Text Available This paper proposes to develop an experimental program to characterize the type and the development of damage in composite with complex microstructure. A multi-scale analysis by acoustic emission has been developed and applied to hemp fibre woven fabrics/epoxy composite. The experimental program consists of tensile tests performed on single yarn, neat epoxy resin and composite materials to identify their AE amplitude signatures. A statistical analysis of AE amplitude signals has been realised and correlated with microscopic observations. Results have enabled to identify three types of damage in composites and their associated AE amplitudes: matrix cracking, interfacial debonding and reinforcement damage and fracture. Tracking of these damage mechanisms in hemp/epoxy composites has been performed to show the process of damage development in natural fibre reinforced composites.

  10. Prediction of HS Soderberg plant PAH emissions from a laboratory evaluation of a pitch

    Energy Technology Data Exchange (ETDEWEB)

    Castonguay, L.; Mirtchi, A. A.; Proulx, A. L.; Savard, G.; Simard, E.; Steward, N.; Tremblay, C. [Alcan International Ltd., Arvida Research and Development Centre, Jonquiere, PQ (Canada)

    1998-12-31

    The presence of certain polycyclic aromatic hydrocarbons (PAHs) in coal tar pitch has been identified as a possible limit to the long-term viability of horizontal stud (HS) Soderberg technology, a technology of importance in the aluminum industry. This paper presents the results of a comparative study of pitch PAH content and HS Soderberg cell emissions. Laboratory results are compared with plant emissions for two regular and low PAH pitches with the same softening points. The results indicate the existence of a correlation between pitch PAH content and cell emission, which is valid for regular tar pitches, low tar pitches, as well as for hybrid pitches. These findings make it possible to predict the quantity and distribution of HS Soderberg cell PAH emissions from the analysis of PAHs in the pitch. The results also justify the conclusion that the emission of genotoxic compounds from pitch in the HS Soderberg technology can be decreased by using a pitch with low PAH content. 4 refs., 5 tabs., 5 figs.

  11. On the thermochemical conversions of hard coal pitches in the process of raising the softening point to 358-363 K

    Energy Technology Data Exchange (ETDEWEB)

    Kekin, N.A.; Belkina, T.V.; Stepanenko, M.A.; Gordienko, V.G.

    1983-09-01

    High resolution paramagnetic resonance and infrared spectroscopy are used to obtain data on the nature of changes in hydrogen content of various groups in the substances of soluble functions in raw pitch and its thermoproducts during the process of producing binders with an increased softening point of 358-363 K. It was shown that thermal treatment of pitch during the process of raising the softening point leads to enrichment of the pitch structure with aromatic hydrogen and to reduction in the structure of the hydrogen in aliphatic bonds. The basis of these conversions is the splitting off of CH/SUB/3 groups and the formation of new structures containing CH/SUB/2 groups. (11 refs.)

  12. Inelastic constitutive models for the simulation of a cyclic softening behavior of modified 9Cr-lMo steel at elevated temperatures

    International Nuclear Information System (INIS)

    Koo, Gyeong Hoi; Lee, Jae Han

    2007-01-01

    In this paper, the inelastic constitutive models for the simulations of the cyclic softening behavior of the modified 9Cr-1Mo steel, which has a significant cyclic softening characteristic especially in elevated temperature regions, are investigated in detail. To do this, the plastic modulus, which primarily governs the calculation scheme of the plasticity, is formulated for the inelastic constitutive models such as the Armstrong-Frederick model, Chaboche model, and Ohno-Wang model. By implementing the extracted plastic modulus and the consistency conditions into the computer program, the inelastic constitutive parameters are identified to present the best fit of the uniaxial cyclic test data by strain-controlled simulations. From the computer simulations by using the obtained constitutive parameters, it is found that the Armstrong-Frederick model is simple to use but it causes significant overestimated strain results when compared with the Chaboche and the Ohno-Wang models. And from the ratcheting simulation results, it is found that the cyclic softening behavior of the modified 9Cr-1Mo steel can invoke a ratcheting instability when the applied cyclic loads exceed a certain level of the ratchet loading condition

  13. Cyclic softening based on dislocation annihilation at sub-cell boundary for SA333 Grade-6 C-Mn steel

    Science.gov (United States)

    Bhattacharjee, S.; Dhar, S.; Acharyya, S. K.; Gupta, S. K.

    2018-01-01

    In this work, the response of SA333 Grade-6 C-Mn steel subjected to uniaxial and in-phase biaxial tension-torsion cyclic loading is experimented and an attempt is made to model the material behaviour. Experimentally observed cyclic softening is modelled based on ‘dislocation annihilation at low angle grain boundary’, while Ohno-Wang kinematic hardening rule is used to simulate the stress-strain hysteresis loops. The relevant material parameters are extracted from the appropriate experimental results and metallurgical investigations. The material model is plugged as user material subroutine into ABAQUS FE platform to simulate pre-saturation low cycle fatigue loops with cyclic softening and other cyclic plastic behaviour under prescribed loading. The stress-strain hysteresis loops and peak stress with cycles were compared with the experimental results and good agreements between experimental and simulated results validated the material model.

  14. Assessment of dynamic softening mechanisms in Allvac 718Plus{sup TM} by EBSD analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mitsche, Stefan, E-mail: stefan.mitsche@felmi-zfe.at [Institute for Electron Microscopy, Graz University of Technology, Steyrergasse 17, Graz (Austria); Sommitsch, Christof [Institute for Material Science and Welding, Christian Doppler Laboratory for Materials Modelling and Simulation, Graz University of Technology, Graz (Austria); Huber, Daniel; Stockinger, Martin [Boehler Schmiedetechnik GmbH and Co KG, Kapfenberg (Austria); Poelt, Peter [Institute for Electron Microscopy, Graz University of Technology, Steyrergasse 17, Graz (Austria)

    2011-04-25

    Research highlights: {yields} EBSD investigations of hot deformed superalloy Allvac 718Plus{sup TM}. {yields} Dynamic softening (recovery, DDRX and CDRX) in dependence on the temperature and strain rate. {yields} At high temperature (1050 deg. C) and high strain rate (10 s{sup -1}) mainly DDRX. {yields} At high temperature (1050 deg. C) and low strain rate (0.1 s{sup -1}) combination of DDRX, CDRX and recovery. - Abstract: The nickel-based superalloy Allvac 718Plus{sup TM} is a future candidate for turbine disc applications, as this new material combines the formability and cost advantages of Alloy 718 with the higher temperature capability of Waspaloy. Due to the strong influence of the microstructure on the final mechanical properties, a fundamental knowledge of the dynamic recrystallization mechanism of Allvac 718Plus{sup TM} is of great importance in order to develop precise microstructure evolution models for this material. Compression tests were performed at temperatures of 900 deg. C to 1050 deg. C and strain rates between 0.1 s{sup -1} and 10 s{sup -1}. The microstructures obtained were analyzed by electron backscatter diffraction (EBSD) to evaluate the influence of the different hot forming parameters on the dynamic softening processes of Allvac 718Plus{sup TM}.

  15. Quantitative assessment of cervical softening during pregnancy in the Rhesus macaque with shear wave elasticity imaging

    Science.gov (United States)

    Rosado-Mendez, Ivan M.; Carlson, Lindsey C.; Woo, Kaitlin M.; Santoso, Andrew P.; Guerrero, Quinton W.; Palmeri, Mark L.; Feltovich, Helen; Hall, Timothy J.

    2018-04-01

    Abnormal parturition, e.g. pre- or post-term birth, is associated with maternal and neonatal morbidity and increased economic burden. This could potentially be prevented by accurate detection of abnormal softening of the uterine cervix. Shear wave elasticity imaging (SWEI) techniques that quantify tissue softness, such as shear wave speed (SWS) measurement, are promising for evaluation of the cervix. Still, interpretation of results can be complicated by biological variability (i.e. spatial variations of cervix stiffness, parity), as well as by experimental factors (i.e. type of transducer, posture during scanning). Here we investigated the ability of SWEI to detect cervical softening, as well as sources of SWS variability that can affect this task, in the pregnant and nonpregnant Rhesus macaque. Specifically, we evaluated SWS differences when imaging the cervix transabdominally with a typical linear array abdominal transducer, and transrectally with a prototype intracavitary linear array transducer. Linear mixed effects (LME) models were used to model SWS as a function of menstrual cycle day (in nonpregnant animals) and gestational age (in pregnant animals). Other variables included parity, shear wave direction, and cervix side (anterior versus posterior). In the nonpregnant cervix, the LME model indicated that SWS increased by 2% (95% confidence interval 0–3%) per day, starting eight days before menstruation. During pregnancy, SWS significantly decreased at a rate of 6% (95% CI 5–7%) per week (intracavitary approach) and 3% (95% CI 2–4%) per week (transabdominal approach), and interactions between the scanning approach and other fixed effects were also significant. These results suggest that, while absolute SWS values are influenced by factors such as scanning approach and SWEI implementation, these sources of variability do not compromise the sensitivity of SWEI to cervical softening. Our results also highlight the importance of standardizing SWEI

  16. Thermochemical transformations of hard-coal pitches at the stage of raising the softening temperature to 358-363 K

    Energy Technology Data Exchange (ETDEWEB)

    Kekin, N.A.; Belkina, T.V.; Stepanenko, M.A.; Gordienko, V.G.

    1983-01-01

    Using high-resolution NMR together with infra-red spectroscopy, data were obtained characterising changes in hydrogen content in various groups of compounds dissolved in fractions of the original pitch and its thermal product when raising the softening temperature to 358-363 K.

  17. Evaluation of microplastic release caused by textile washing processes of synthetic fabrics.

    Science.gov (United States)

    De Falco, Francesca; Gullo, Maria Pia; Gentile, Gennaro; Di Pace, Emilia; Cocca, Mariacristina; Gelabert, Laura; Brouta-Agnésa, Marolda; Rovira, Angels; Escudero, Rosa; Villalba, Raquel; Mossotti, Raffaella; Montarsolo, Alessio; Gavignano, Sara; Tonin, Claudio; Avella, Maurizio

    2018-05-01

    A new and more alarming source of marine contamination has been recently identified in micro and nanosized plastic fragments. Microplastics are difficult to see with the naked eye and to biodegrade in marine environment, representing a problem since they can be ingested by plankton or other marine organisms, potentially entering the food web. An important source of microplastics appears to be through sewage contaminated by synthetic fibres from washing clothes. Since this phenomenon still lacks of a comprehensive analysis, the objective of this contribution was to investigate the role of washing processes of synthetic textiles on microplastic release. In particular, an analytical protocol was set up, based on the filtration of the washing water of synthetic fabrics and on the analysis of the filters by scanning electron microscopy. The quantification of the microfibre shedding from three different synthetic fabric types, woven polyester, knitted polyester, and woven polypropylene, during washing trials simulating domestic conditions, was achieved and statistically analysed. The highest release of microplastics was recorded for the wash of woven polyester and this phenomenon was correlated to the fabric characteristics. Moreover, the extent of microfibre release from woven polyester fabrics due to different detergents, washing parameters and industrial washes was evaluated. The number of microfibres released from a typical 5 kg wash load of polyester fabrics was estimated to be over 6,000,000 depending on the type of detergent used. The usage of a softener during washes reduces the number of microfibres released of more than 35%. The amount and size of the released microfibres confirm that they could not be totally retained by wastewater treatments plants, and potentially affect the aquatic environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Twenty years of experience with central softening in The Netherlands : Water quality – Environmental benefits – Costs

    NARCIS (Netherlands)

    Hofman, J.A.M.H.; Kramer, O.J.I.; van der Hoek, J.P.; Nederlof, M; Groenendijk, M

    2006-01-01

    Central softening has been utilized by the Dutch water utilities since the late 1970s. It was introduced in the water treatment process as a method to supply water with an optimum water composition to prevent lead and copper release and to prevent excessive scaling. Twenty years of experience show

  19. Normal and Fibrotic Rat Livers Demonstrate Shear Strain Softening and Compression Stiffening: A Model for Soft Tissue Mechanics.

    Directory of Open Access Journals (Sweden)

    Maryna Perepelyuk

    Full Text Available Tissues including liver stiffen and acquire more extracellular matrix with fibrosis. The relationship between matrix content and stiffness, however, is non-linear, and stiffness is only one component of tissue mechanics. The mechanical response of tissues such as liver to physiological stresses is not well described, and models of tissue mechanics are limited. To better understand the mechanics of the normal and fibrotic rat liver, we carried out a series of studies using parallel plate rheometry, measuring the response to compressive, extensional, and shear strains. We found that the shear storage and loss moduli G' and G" and the apparent Young's moduli measured by uniaxial strain orthogonal to the shear direction increased markedly with both progressive fibrosis and increasing compression, that livers shear strain softened, and that significant increases in shear modulus with compressional stress occurred within a range consistent with increased sinusoidal pressures in liver disease. Proteoglycan content and integrin-matrix interactions were significant determinants of liver mechanics, particularly in compression. We propose a new non-linear constitutive model of the liver. A key feature of this model is that, while it assumes overall liver incompressibility, it takes into account water flow and solid phase compressibility. In sum, we report a detailed study of non-linear liver mechanics under physiological strains in the normal state, early fibrosis, and late fibrosis. We propose a constitutive model that captures compression stiffening, tension softening, and shear softening, and can be understood in terms of the cellular and matrix components of the liver.

  20. Design, Fabrication, and Characterization of Carbon Nanotube Field Emission Devices for Advanced Applications

    Science.gov (United States)

    Radauscher, Erich Justin

    Carbon nanotubes (CNTs) have recently emerged as promising candidates for electron field emission (FE) cathodes in integrated FE devices. These nanostructured carbon materials possess exceptional properties and their synthesis can be thoroughly controlled. Their integration into advanced electronic devices, including not only FE cathodes, but sensors, energy storage devices, and circuit components, has seen rapid growth in recent years. The results of the studies presented here demonstrate that the CNT field emitter is an excellent candidate for next generation vacuum microelectronics and related electron emission devices in several advanced applications. The work presented in this study addresses determining factors that currently confine the performance and application of CNT-FE devices. Characterization studies and improvements to the FE properties of CNTs, along with Micro-Electro-Mechanical Systems (MEMS) design and fabrication, were utilized in achieving these goals. Important performance limiting parameters, including emitter lifetime and failure from poor substrate adhesion, are examined. The compatibility and integration of CNT emitters with the governing MEMS substrate (i.e., polycrystalline silicon), and its impact on these performance limiting parameters, are reported. CNT growth mechanisms and kinetics were investigated and compared to silicon (100) to improve the design of CNT emitter integrated MEMS based electronic devices, specifically in vacuum microelectronic device (VMD) applications. Improved growth allowed for design and development of novel cold-cathode FE devices utilizing CNT field emitters. A chemical ionization (CI) source based on a CNT-FE electron source was developed and evaluated in a commercial desktop mass spectrometer for explosives trace detection. This work demonstrated the first reported use of a CNT-based ion source capable of collecting CI mass spectra. The CNT-FE source demonstrated low power requirements, pulsing

  1. Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating

    DEFF Research Database (Denmark)

    Sandstrom, Andreas; Dam, Henrik Friis; Krebs, Frederik C

    2012-01-01

    available in smartphones, but the promise of a continuous ambient fabrication has unfortunately not materialized yet, as organic light-emitting diodes invariably depend on the use of one or more time-and energy-consuming process steps under vacuum. Here we report an all-solution-based fabrication...... of an alternative emissive device, a light-emitting electrochemical cell, using a slot-die roll-coating apparatus. The fabricated flexible sheets exhibit bidirectional and uniform light emission, and feature a fault-tolerant >1-mu m-thick active material that is doped in situ during operation. It is notable...

  2. Softening and re-hardening of hadron transverse mass spectra in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Isse, M.; Otuka, N.; Ohnishi, A.; Sahu, P.K.; Nara, Y.

    2002-01-01

    At RHIC experiments, started at 2000, the data obtained recently seem to exhibit QGP formation, but the conclusion is not drawn yet. Here, we pay out attention to the collective motion at hadronic freeze-out as an evidence of QGP formation. The transverse mass spectra may show softening to re-hardening with increasing incident energy. We compare simulated results obtained in JAM' - a hadronic cascade model - with experimental data, and discuss weather the QGP is formed or not. (author)

  3. The use of coal-tar pitches of very high softening point and low carcinogen content as binders for industrial carbon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    It has been demonstrated that the content of known carcinogenic polynuclear aromatic hydrocarbons (PAH) in coal-tar pitches may be reduced to levels which comply with existing and/or proposed environmental legislation, typically by distillation at low pressures, and preferably using a form of thin-film evaporation apparatus. However, the immediate products of such distillations usually have very high softening points, typically above 200{degree}C, and are unsuitable for direct utilization in conventional commercial carbon manufacturing processes as a result of the need for very high mixing temperatures. Advantage has been taken of the of a low-PAH coal-tar pitch, supplied in powder form, which has a softening point above 200{degree}C. Methods were examined which might allow mixing and forming of the hard pitch and a petroleum coke aggregate blend either at room temperature or at conventional processing temperature, and hot-pressuring or sintering procedures in which mixtures of the hard pitch and petroleum coke aggregate were formed at or above the softening temperature of the pitch. All the formed products were baked to give carbons which were evaluated for the major properties of density, electrical resistivity and strength. A comparison was also made between the volatiles evolved during the baking of products made with the low-PAH pitch and those made with a conventional coal-tar binder pitch.

  4. Experimental research on the characteristics of softening and melting of iron ores as significant factor of influence on gas permeability of blast furnace charge

    International Nuclear Information System (INIS)

    Branescu, E; Blajan, A O; Constantin, N

    2015-01-01

    It is widely accepted as a cohesive zone is directly influenced by softening and melting properties of iron ores, preparations (crowded, pellets, which represents about 90%, of the loads with metal furnace intake), or uncooked (raw ores ranked). Important results can be obtained through the study of behavior of ferrous materials at temperatures above 1000 ° C. Starting from research methods presented in the literature, this paper presents itself in carrying out their own laboratory experiments, conducted with the aim of analysing the softening and melting properties of sinter iron cores. (paper)

  5. Softening Behavior of a New Al-Zn-Mg-Cu Alloy Due to TIG Welding

    Science.gov (United States)

    Zhang, Liang; Li, Xiaoyan; Nie, Zuoren; Huang, Hui; Sun, Jiantong

    2016-05-01

    A new Al-Zn-Mg-Cu alloy with T6 temper was welded by TIG welding, and the softening behavior of the joint was evaluated. Results show that the ultimate tensile strength of the joint is 436.2 ± 26.4 MPa which is about 64.5% of that of the base metal (BM). Fusion zone (FZ) is the weakest region even though its microhardness increases from 107.6 to 131.3 HV within 90 days after welding. Microhardness of the heat-affected zone (HAZ) adjacent to FZ increases from 125.2 to 162.3 HV within 90 days. However, a valley value of microhardness appears in the rest of the HAZ that increases from 112.1 to 128.1 HV within 90 days. The variation of grain size and precipitates is regarded as the main cause of softening in both FZ and HAZ. The grain size of FZ is about 33.9 μm, whereas 8.7 and 8.4 μm for HAZ and BM, respectively. A large number of η' phases distribute dispersively in BM, whereas precipitates in FZ identified as GPI zones are finer and fewer. Besides, precipitates in HAZ adjacent to FZ are also GPI zones. Precipitates in HAZ far away from FZ are coarser and fewer than those in BM and η phases begin to emerge.

  6. 40 CFR 141.564 - My system practices lime softening-is there any special provision regarding my individual filter...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false My system practices lime softening-is... People Individual Filter Turbidity Requirements § 141.564 My system practices lime softening—is there any special provision regarding my individual filter turbidity monitoring? If your system utilizes lime...

  7. Colliding Stellar Winds Structure and X-ray Emission

    Science.gov (United States)

    Pittard, J. M.; Dawson, B.

    2018-04-01

    We investigate the structure and X-ray emission from the colliding stellar winds in massive star binaries. We find that the opening angle of the contact discontinuity (CD) is overestimated by several formulae in the literature at very small values of the wind momentum ratio, η. We find also that the shocks in the primary (dominant) and secondary winds flare by ≈20° compared to the CD, and that the entire secondary wind is shocked when η ≲ 0.02. Analytical expressions for the opening angles of the shocks, and the fraction of each wind that is shocked, are provided. We find that the X-ray luminosity Lx∝η, and that the spectrum softens slightly as η decreases.

  8. Influence of Softening Temperature of Azobenzene Polymers and External Electric Field on Diffraction Efficiency of Polarization Holograms

    Directory of Open Access Journals (Sweden)

    Nicolay Davidenko

    2017-12-01

    Full Text Available Growth of the diffraction efficiency and recording velocity was found in the films of copolymers 4-((2- nitrophenyl diazeniylphenylmethacrylate with octylmethacrylate at room temperature holographic recording for copolymer with less softening temperature. Effect of strengthening of the diffraction efficiency was observed when charging surface of the films with recorded hologram in crown discharge.

  9. Application of the specular and diffuse reflection analysis for in vitro diagnostics of dental erosion: correlation with enamel softening, roughness, and calcium release

    Science.gov (United States)

    Rakhmatullina, Ekaterina; Bossen, Anke; Höschele, Christoph; Wang, Xiaojie; Beyeler, Barbara; Meier, Christoph; Lussi, Adrian

    2011-10-01

    We present assembly and application of an optical reflectometer for the analysis of dental erosion. The erosive procedure involved acid-induced softening and initial substance loss phases, which are considered to be difficult for visual diagnosis in a clinic. Change of the specular reflection signal showed the highest sensitivity for the detection of the early softening phase of erosion among tested methods. The exponential decrease of the specular reflection intensity with erosive duration was compared to the increase of enamel roughness. Surface roughness was measured by optical analysis, and the observed tendency was correlated with scanning electron microscopy images of eroded enamel. A high correlation between specular reflection intensity and measurement of enamel softening (r2 >= -0.86) as well as calcium release (r2 >= -0.86) was found during erosion progression. Measurement of diffuse reflection revealed higher tooth-to-tooth deviation in contrast to the analysis of specular reflection intensity and lower correlation with other applied methods (r2 = 0.42-0.48). The proposed optical method allows simple and fast surface analysis and could be used for further optimization and construction of the first noncontact and cost-effective diagnostic tool for early erosion assessment in vivo.

  10. Zn doped GaN for single-photon emission

    Energy Technology Data Exchange (ETDEWEB)

    Behrends, Arne; Ledig, Johannes; Al-Suleiman, Mohamed Aid Mansur; Bakin, Andrey; Waag, Andreas [Institute of Semiconductor Technology, University of Technology Braunschweig, Hans-Sommer-Str. 66, 38106 Braunschweig (Germany); Peters, Silke; Racu, Ana Maria; Schmunk, Waldemar; Hofer, Helmut; Kueck, Stefan [Physikalisch Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany)

    2012-03-15

    In this work we report on the optical investigation of Zn doped GaN films fabricated by metal organic chemical vapor deposition. The samples show bright emission in the blue spectral range around 2.9 eV when Si codoping is provided. This emission is suggested to be used for single-photon emission, thus the density of the Zn-Si pairs was drastically reduced leading to a decrease of the blue luminescence. For electrically excited single-photon sources these Zn-Si pairs have to be incorporated into LEDs, therefore we fabricated GaN-based nano-LEDs which show electroluminescence at 430 nm (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. The fabrication of millimeter-wavelength accelerating structures

    International Nuclear Information System (INIS)

    Chou, P.J.; Bowden, G.B.; Copeland, M.R.

    1996-11-01

    There is a growing interest in the development of high gradient (≥ 1 GeV/m) accelerating structures. The need for high gradient acceleration based on current microwave technology requires the structures to be operated in the millimeter wavelength. Fabrication of accelerating structures at millimeter scale with sub-micron tolerances poses great challenges. The accelerating structures impose strict requirements on surface smoothness and finish to suppress field emission and multipactor effects. Various fabrication techniques based on conventional machining and micromachining have been evaluated and tested. These will be discussed and measurement results presented

  12. TO SELECTION OF TECHNOLOGICAL SCHEME OF SOFTENING HEAT TREATMENT FOR HIGH CHROMIUM CAST IRON

    Directory of Open Access Journals (Sweden)

    V. G. Efremenko

    2014-03-01

    Full Text Available Purpose. High chromium cast irons with austenitic matrix have low machinability. The aim of work is search of new energy-saving modes of preliminary softening heat treatment enhancing the machinability of castings by forming an optimum microstructure. Methodology. Metallographic analysis, hardness testing and machinability testing are applied. Findings. It was found out that high temperature annealing with continuous cooling yields to martensite-austenite matrix in cast iron 270Х15Г2Н1MPhT, which abruptly affects the machinability of cast iron. Significant improvement of machinability is achieved by forming of structure "ferrite + granular carbides" and by decline of hardness to 37-39 HRC in the case of two-stage isothermal annealing in the subcritical temperature range or by the use of quenching and tempering (two-step or cyclic. Originality. It was found that the formation of the optimal structure of the matrix and achievement of desired hardness level needed for improving machinability of high chromium cast iron containing 3 % austenite-forming elements, can be obtained: 1 due to pearlite original austenite followed by spherodization eutectoid carbides, and 2 by getting predominantly martensite structure followed by the decay of martensite and carbides coagulation at high-temperature tempering. Practical value. The new energy-saving schemes of softening heat treatment to ensure the growth of machinability of high chromium cast iron, alloyed by higher quantity of austenite forming elements, are proposed.

  13. Magnetic enhancement and softening of fault gouges during seismic slip: Laboratory observation and implications

    Science.gov (United States)

    Yang, T.; Chen, J.; Dekkers, M. J.

    2017-12-01

    Anomalous rock magnetic properties have been reported in slip zones of many previous earthquakes (e.g., the 1995 Kobe earthquake, Japan; the 1999 Chi-Chi earthquake, Taiwan, and the 2008 Wenchuan earthquake, China). However, it is unclear whether short-duration frictional heating can actually induce such rock magnetic anomalies in fault zones; identification of this process in natural fault zones is not that straightforward. A promising approach to solve this problem is to conduct high-velocity friction (HVF) experiments that reproduce seismic fault movements and frictional heating in a simulated fault zone. Afterwards natural fault zones can be analyzed with renewed insight. Our HVF experiments on fault gouges that are simulating large amounts of earthquake slip, show significant magnetic enhancement and softening of sheared gouges. Mineral magnetic measurements reveal that magnetite was formed due to thermal decomposition of smectite during the HVF experiment on the paramagnetic fault gouge. Also, goethite was transformed to intermediate magnetite during the HVF experiment on the goethite-bearing fault gouge. Magnetic susceptibility, saturation remanence and saturation magnetization of sheared samples are linearly increasing with and strongly depend on the temperature rise induced by frictional heating; in contrast, coecivities are decreasing with increasing temperature. Thus, frictional heating can induce thermal decomposition/transformation during short-duration, high-velocity seismic slip, leading to magnetic enhancement and softening of a slip zone. Mineral magnetic methods are suited for diagnosing earthquake slip and estimating the temperature rise of co-seismic frictional heating.

  14. Direct Cytoskeleton Forces Cause Membrane Softening in Red Blood Cells

    Science.gov (United States)

    Rodríguez-García, Ruddi; López-Montero, Iván; Mell, Michael; Egea, Gustavo; Gov, Nir S.; Monroy, Francisco

    2015-01-01

    Erythrocytes are flexible cells specialized in the systemic transport of oxygen in vertebrates. This physiological function is connected to their outstanding ability to deform in passing through narrow capillaries. In recent years, there has been an influx of experimental evidence of enhanced cell-shape fluctuations related to metabolically driven activity of the erythroid membrane skeleton. However, no direct observation of the active cytoskeleton forces has yet been reported to our knowledge. Here, we show experimental evidence of the presence of temporally correlated forces superposed over the thermal fluctuations of the erythrocyte membrane. These forces are ATP-dependent and drive enhanced flickering motions in human erythrocytes. Theoretical analyses provide support for a direct force exerted on the membrane by the cytoskeleton nodes as pulses of well-defined average duration. In addition, such metabolically regulated active forces cause global membrane softening, a mechanical attribute related to the functional erythroid deformability. PMID:26083919

  15. Fabrication of electrospun nanofibrous membranes for membrane distillation application

    KAUST Repository

    Francis, Lijo; Maab, Husnul; Alsaadi, Ahmad Salem; Nunes, Suzana Pereira; Ghaffour, NorEddine; Amy, Gary L.

    2013-01-01

    Nanofibrous membranes of Matrimid have been successfully fabricated using an electrospinning technique under optimized conditions. Nanofibrous membranes are found to be highly hydrophobic with a high water contact angle of 130°. Field emission

  16. Improve the material absorption of light and enhance the laser tube bending process utilizing laser softening heat treatment

    Science.gov (United States)

    Imhan, Khalil Ibraheem; Baharudin, B. T. H. T.; Zakaria, Azmi; Ismail, Mohd Idris Shah B.; Alsabti, Naseer Mahdi Hadi; Ahmad, Ahmad Kamal

    2018-02-01

    Laser forming is a flexible control process that has a wide spectrum of applications; particularly, laser tube bending. It offers the perfect solution for many industrial fields, such as aerospace, engines, heat exchangers, and air conditioners. A high power pulsed Nd-YAG laser with a maximum average power of 300 W emitting at 1064 nm and fiber-coupled is used to irradiate stainless steel 304 (SS304) tubes of 12.7 mm diameter, 0.6 mm thickness and 70 mm length. Moreover, a motorized rotation stage with a computer controller is employed to hold and rotate the tube. In this paper, an experimental investigation is carried out to improve the laser tube bending process by enhancing the absorption coefficient of the material and the mechanical formability using laser softening heat treatment. The material surface is coated with an oxidization layer; hence, the material absorption of laser light is increased and the temperature rapidly rises. The processing speed is enhanced and the output bending angle is increased to 1.9° with an increment of 70% after the laser softening heat treatment.

  17. Application of the specular and diffuse reflection analysis for in vitro diagnostics of dental erosion: correlation with enamel softening, roughness, and calcium release

    Science.gov (United States)

    Rakhmatullina, Ekaterina; Bossen, Anke; Höschele, Christoph; Wang, Xiaojie; Beyeler, Barbara; Meier, Christoph; Lussi, Adrian

    2011-01-01

    We present assembly and application of an optical reflectometer for the analysis of dental erosion. The erosive procedure involved acid-induced softening and initial substance loss phases, which are considered to be difficult for visual diagnosis in a clinic. Change of the specular reflection signal showed the highest sensitivity for the detection of the early softening phase of erosion among tested methods. The exponential decrease of the specular reflection intensity with erosive duration was compared to the increase of enamel roughness. Surface roughness was measured by optical analysis, and the observed tendency was correlated with scanning electron microscopy images of eroded enamel. A high correlation between specular reflection intensity and measurement of enamel softening (r2 ≥ −0.86) as well as calcium release (r2 ≥ −0.86) was found during erosion progression. Measurement of diffuse reflection revealed higher tooth-to-tooth deviation in contrast to the analysis of specular reflection intensity and lower correlation with other applied methods (r2 = 0.42–0.48). The proposed optical method allows simple and fast surface analysis and could be used for further optimization and construction of the first noncontact and cost-effective diagnostic tool for early erosion assessment in vivo. PMID:22029364

  18. Process system and method for fabricating submicron field emission cathodes

    Science.gov (United States)

    Jankowski, Alan F.; Hayes, Jeffrey P.

    1998-01-01

    A process method and system for making field emission cathodes exists. The deposition source divergence is controlled to produce field emission cathodes with height-to-base aspect ratios that are uniform over large substrate surface areas while using very short source-to-substrate distances. The rate of hole closure is controlled from the cone source. The substrate surface is coated in well defined increments. The deposition source is apertured to coat pixel areas on the substrate. The entire substrate is coated using a manipulator to incrementally move the whole substrate surface past the deposition source. Either collimated sputtering or evaporative deposition sources can be used. The position of the aperture and its size and shape are used to control the field emission cathode size and shape.

  19. Ethylene regulates Apple (Malus x domestica) fruit softening through a dose x time-dependent mechanism and through differential sensitivities and dependencies of cell wall-modifying genes.

    Science.gov (United States)

    Ireland, Hilary S; Gunaseelan, Kularajathevan; Muddumage, Ratnasiri; Tacken, Emma J; Putterill, Jo; Johnston, Jason W; Schaffer, Robert J

    2014-05-01

    In fleshy fruit species that have a strong requirement for ethylene to ripen, ethylene is synthesized autocatalytically, producing increasing concentrations as the fruits ripen. Apple fruit with the ACC OXIDASE 1 (ACO1) gene suppressed cannot produce ethylene autocatalytically at ripening. Using these apple lines, an ethylene sensitivity dependency model was previously proposed, with traits such as softening showing a high dependency for ethylene as well as low sensitivity. In this study, it is shown that the molecular control of fruit softening is a complex process, with different cell wall-related genes being independently regulated and exhibiting differential sensitivities to and dependencies on ethylene at the transcriptional level. This regulation is controlled through a dose × time mechanism, which results in a temporal transcriptional response that would allow for progressive cell wall disassembly and thus softening. This research builds on the sensitivity dependency model and shows that ethylene-dependent traits can progress over time to the same degree with lower levels of ethylene. This suggests that a developmental clock measuring cumulative ethylene controls the fruit ripening process.

  20. Fabrication of Spin-Transfer Nano-Oscillator by Colloidal Lithography

    Directory of Open Access Journals (Sweden)

    Bin Fang

    2015-01-01

    Full Text Available We fabricate nanoscale spin-transfer oscillators (STOs by utilizing colloidal nanoparticles as a lithographic mask. By this approach, high quality STO devices can be fabricated, and as an example the fabricated STO devices using MgO magnetic tunnel junction as the basic cell exhibit current-induced microwave emission with a large frequency tunability of 0.22 GHz/mA. Compared to the conventional approaches that involve a step of defining nanoscale elements by means of electron beam lithography, which is not readily available for many groups, our strategy for STO fabrication does not require the sophisticated equipment (~ million dollars per unit and expensive lithography resist, while being cost-effective and easy to use in laboratory level. This will accelerate efforts to implement STO into on-chip integrated high-radio frequency applications.

  1. Analysis of CO2, CO and HC emission reduction in automobiles

    Science.gov (United States)

    Balan, K. N.; Valarmathi, T. N.; Reddy, Mannem Soma Harish; Aravinda Reddy, Gireddy; Sai Srinivas, Jammalamadaka K. M. K.; Vasan

    2017-05-01

    In the present scenario, the emission from automobiles is becoming a serious problem to the environment. Automobiles, thermal power stations and Industries majorly constitute to the emission of CO2, CO and HC. Though the CO2 available in the atmosphere will be captured by oceans, grasslands; they are not enough to control CO2 present in the atmosphere completely. Also advances in engine and vehicle technology continuously to reduce the emission from engine exhaust are not sufficient to reduce the HC and CO emission. This work concentrates on design, fabrication and analysis to reduce CO2, CO and HC emission from exhaust of automobiles by using molecular sieve 5A of 1.5mm. In this paper, the details of the fabrication, results and discussion about the process are discussed.

  2. White light emission from fluorescent SiC with porous surface

    DEFF Research Database (Denmark)

    Lu, Weifang; Ou, Yiyu; Fiordaliso, Elisabetta Maria

    2017-01-01

    We report for the frst time a NUV light to white light conversion in a N-B co-doped 6H-SiC (fuorescent SiC) layer containing a hybrid structure. The surface of fuorescent SiC sample contains porous structures fabricated by anodic oxidation method. After passivation by 20nm thick Al2O3, the photol......We report for the frst time a NUV light to white light conversion in a N-B co-doped 6H-SiC (fuorescent SiC) layer containing a hybrid structure. The surface of fuorescent SiC sample contains porous structures fabricated by anodic oxidation method. After passivation by 20nm thick Al2O3...... the bulk fuorescent SiC layer. A high color rendering index of 81.1 has been achieved. Photoluminescence spectra in porous layers fabricated in both commercial n-type and lab grown N-B co-doped 6H-SiC show two emission peaks centered approximately at 460nm and 530nm. Such bluegreen emission phenomenon can......, the photoluminescence intensity from the porous layer was signifcant enhanced by a factor of more than 12. Using a porous layer of moderate thickness (~10µm), high-quality white light emission was realized by combining the independent emissions of blue-green emission from the porous layer and yellow emission from...

  3. Field electron emission from pencil-drawn cold cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiangtao; Yang, Bingjun; Liu, Xiahui; Yang, Juan; Yan, Xingbin, E-mail: xbyan@licp.cas.cn [Laboratory of Clean Energy Chemistry and Materials, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2016-05-09

    Field electron emitters with flat, curved, and linear profiles are fabricated on flexible copy papers by direct pencil-drawing method. This one-step method is free of many restricted conditions such as high-temperature, high vacuum, organic solvents, and multistep. The cold cathodes display good field emission performance and achieve high emission current density of 78 mA/cm{sup 2} at an electric field of 3.73 V/μm. The approach proposed here would bring a rapid, low-cost, and eco-friendly route to fabricate but not limited to flexible field emitter devices.

  4. Investigation of Wear Behaviour of Sewn Assemblies of Viscose Linings with Different Treatment

    Directory of Open Access Journals (Sweden)

    Dainora BAČKAUSKAITĖ

    2011-07-01

    Full Text Available Different types of chemical treatment of textile are widely applied in advanced textile. Finishing of textile can provide additional functional properties for products or/and to improve the appearance of final product as well as to improve their mechanical properties. In this research the influence of the industrial treatment of viscose linings on the parameters of fabric surface friction, on fabric surface appearance as well as on the slippage resistance of yarns at a seam was investigated. Raw, dyed, dyed and softened, dyed and non-slip finished plain weaved linings were investigated. The slippage resistance of yarns at a seam in woven fabrics was evaluated according to standard EN ISO 13936-1:2004. The friction was investigated according to the standard DIN 53375 in a fabric-fabric friction pair. Surface of raw, dyed, dyed and softened viscose lining was investigated using SEM. The obtained results have shown that the friction parameters as well as the parameters of seam slippage resistance of dyed or dyed and softened fabrics were higher than the ones of raw fabric. The highest differences in those parameters were obtained for lining that was dyed and treated with non-slip finishing. That type of finishing influenced the break of lining yarns without typical to the other investigated linings slipping near a stitching line.http://dx.doi.org/10.5755/j01.ms.17.2.485

  5. Aligned carbon nanotubes. Physics, concepts, fabrication and devices

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng; Lan, Yucheng [Boston College, Chestnut Hill, MA (United States). Dept. of Physics; Wang, Yang [South China Normal Univ. Guangzhou (China). Inst. for Advanced Materials

    2013-07-01

    This book gives a survey of the physics and fabrication of carbon nanotubes and their applications in optics, electronics, chemistry and biotechnology. It focuses on the structural characterization of various carbon nanotubes, fabrication of vertically or parallel aligned carbon nanotubes on substrates or in composites, physical properties for their alignment, and applications of aligned carbon nanotubes in field emission, optical antennas, light transmission, solar cells, chemical devices, bio-devices, and many others. Major fabrication methods are illustrated in detail, particularly the most widely used PECVD growth technique on which various device integration schemes are based, followed by applications such as electrical interconnects, nanodiodes, optical antennas, and nanocoax solar cells, whereas current limitations and challenges are also be discussed to lay the foundation for future developments.

  6. White-light emission from porous-silicon-aluminium Schottky junctions

    International Nuclear Information System (INIS)

    Masini, G.; La Monica, S.; Maiello, G.

    1996-01-01

    Porous-silicon-based white-light-emitting devices are presented. The fabrication process on different substrates is described. The peculiarities of technological steps for device fabrication (porous-silicon formation and aluminium treatment) are underlined. Doping profile of the porous layer, current-voltage characteristics, time response, lifetime tests and electroluminescence emission spectrum of the device are presented. A model for electrical behaviour of Al/porous silicon Schottky junction is presented. Electroluminescence spectrum of the presented devices showed strong similarities with white emission from crystalline silicon junctions in the breakdown region

  7. Electroplex emission at PVK/Bphen interface for application in white organic light-emitting diodes

    International Nuclear Information System (INIS)

    Wen Liang; Li Fushan; Xie Jiangxing; Wu Chaoxing; Zheng Yong; Chen Dongling; Xu Sheng; Guo Tailiang; Qu Bo; Chen Zhijian; Gong Qihuang

    2011-01-01

    White organic light-emitting diode (WOLED) with a structure of ITO/poly(N-vinylcarbazole) (PVK)/4,7-diphenyl-1, 10-phenanthroline (Bphen)/tris(8-hydroxyquinoline)aluminum (Alq 3 )/LiF/Al has been fabricated via the thermal evaporation technique. The electroluminescence (EL) spectrum of the as-fabricated WOLED covers from 380 to 700 nm of the visible light region with a wide blue emission from PVK and an interesting new red emission. The red emission at 613 nm in EL spectra of the WOLED was attributed to electroplex emission at PVK/Bphen interface since it was not observed in photoluminescence spectra. The WOLED showed a Commission International De l'Eclairage coordinate of (0.31, 0.32), which is very close to the standard white coordinate (0.33, 0.33). - Highlights: → A white organic light-emitting diode was fabricated by vacuum deposition. → A new red emission at 613 nm was observed in the electroluminescence spectra. → Red emission comes from electroplex instead of exciplex at PVK/Bphen interface. → The device has a CIE coordinate of (0.31, 0.32).

  8. The thermochemical transformations of hard-coal pitches at the stage of raising the softening temperature to 358-363K

    Energy Technology Data Exchange (ETDEWEB)

    Kekin, N.A.; Belkina, T.V.; Gordienko, V.G.; Stepanenko, M.A.

    1983-01-01

    By using the PMR method in association with IR spectroscopy, information has been obtained on the nature of the change in the amount of hydrogen in various groups of substances of the soluble fraction of the initial pitch and its thermal product at the stage of raising the softening temperature to 358-363K.

  9. Study of energy transfer in single and multi-emissive layer using Gaussian peak fitting

    International Nuclear Information System (INIS)

    Yoon, Ju-An; Kim, You-Hyun; Kim, Nam Ho; Moon, Chang-Bum; He, Gufeng; Kim, Woo Young

    2014-01-01

    White organic light-emitting diodes(WOLEDs) were fabricated with the device structure of ITO(1800 Å)/NPB(700 Å)/emissive layer(300 Å)/Bphen(300 Å)/Liq(20 Å)/Al(1200 Å) using the two complementary colors method. Then, we investigated their electrical and optical characteristics to determine luminous efficiency, luminance and color coordinates of single, double, triple and quadruple emissive layered-WOLED. Thickness of emissive layer was fixed at 30 Å, and DPASN and BAlq were used for blue emissive host material and DCJTB was added as red dopant in the emissive layer. Then, we investigated the performance of OLEDs via its charge blocking structure and its different emissive region with emissive layers. Luminous efficiency of 5.30 cd/A at 50 mA/cm 2 of current density is obtained in WOLED device with double emissive layer of DPASN:DCJTB-0.1% (150 Å)/BAlq:DCJTB-0.1% (150 Å) and these are 80% higher than WOLED device with single emissive layer of DPASN:DCJTB-0.1% (300 Å). - Highlights: • White OLEDs with multiple-emissive layer were fabricated using p- and n-type emissive materials. • We fabricated WOLEDs only using a small quantity of fluorescent red dopant materials. • The spectroscopic analysis using multi-peak fits with a Gaussian function. • The explain electroluminescence spectra of white OLEDs with the multiple-emissive layer. • We examine changes in the number of emissive layer about white OLEDs performance

  10. Explosive-emission cathode fabricated from superconducting cable

    International Nuclear Information System (INIS)

    Vavra, I.; Korenev, S.A.

    1989-01-01

    The authors describe on explosive-emission cathode that is based on stock superconducting cable - type NT-50, for example - that is bunched and held in a copper matrix. The copper matrix is partially etched away to create a multipoint structure for the cathode-plasma initiators. With 100-300 kV on the diode and a distance of 1 cm between the anode and cathode, electron currents of 20-80 and 60-300 A are obtained with cathode diameters of 0.5 and 1 cm, respectively

  11. Fabrication and Spectral Properties of Wood-Based Luminescent Nanocomposites

    Directory of Open Access Journals (Sweden)

    Xianjun Li

    2014-01-01

    Full Text Available Pressure impregnation pretreatment is a conventional method to fabricate wood-based nanocomposites. In this paper, the wood-based luminescent nanocomposites were fabricated with the method and its spectral properties were investigated. The results show that it is feasible to fabricate wood-based luminescent nanocomposites using microwave modified wood and nanophosphor powders. The luminescent strength is in positive correlation with the amount of phosphor powders dispersed in urea-formaldehyde resin. Phosphors absorb UV and blue light efficiently in the range of 400–470 nm and show a broad band of bluish-green emission centered at 500 nm, which makes them good candidates for potential blue-green luminescent materials.

  12. In vitro study of the effect of a dentifrice containing 8% arginine, calcium carbonate, and sodium monofluorophosphate on acid-softened enamel.

    Science.gov (United States)

    Rege, Aarti; Heu, Rod; Stranick, Michael; Sullivan, Richard J

    2014-01-01

    To investigate the possible mode of action of a dentifrice containing 8% arginine and calcium carbonate (Pro-Argin Technology), and sodium monofluorophosphate in delivering the benefits of preventing acid erosion and rehardening acid-softened enamel. The surfaces of acid-softened bovine enamel specimens were evaluated after application of a dentifrice containing 8% arginine, calcium carbonate, and sodium monofluorophosphate in vitro. Scanning Electron Microscopy (SEM), Electronic Spectrometry for Chemical Analysis (ESCA), and Secondary Ion Mass Spectrometry (SIMS) were used to characterize the enamel surfaces. Exposure of pristine enamel surfaces to citric acid resulted in clear roughening of the surface. Multiple applications of a dentifrice containing 8% arginine, calcium carbonate, and sodium monofluorophosphate to the surface of the enamel resulted in the disappearance of the microscopic voids observed by SEM as a function of treatment applications. The ESCA analysis demonstrated that both the nitrogen and carbonate levels increased as the number of treatments increased, which provides evidence that arginine and calcium carbonate were bound to the surface. Observance of arginine's signature mass fragmentation pattern by SIMS analysis confirmed the identity of arginine on the enamel surface. A series of in vitro experiments has demonstrated a possible mode of action by which a dentifrice containing 8% arginine, calcium carbonate, and sodium monofluorophosphate delivers the benefits of preventing acid erosion and rehardening acid-softened enamel. The combination of arginine and calcium carbonate adheres to the enamel surface and helps to fill the microscopic gaps created by acid, which in turn helps repair the enamel and provides a protective coating against future acid attacks.

  13. Marshmallowing of nanopillar arrays by field emission

    International Nuclear Information System (INIS)

    Park, J; Qin, H; Kim, H-S; Blick, R H

    2009-01-01

    We have fabricated mechanically flexible field electron emitters formed by highly-doped silicon nanopillars on a silicon membrane. Electron beam induced deposition of carbon-based contaminants is employed to probe the spatial activity of electron emission from the nanopillars. The experimental configuration provides a powerful tool to investigate the physics of the field electron emission (FEE). In contrast to the general assumption that field emission only occurs at the tips of nanoscale emitters, we found that the emission from the nanopillars' sidewalls is as strong as from their tips.

  14. Study of Post-Peak Strain Softening Mechanical Behaviour of Rock Material Based on Hoek–Brown Criterion

    OpenAIRE

    Qibin Lin; Ping Cao; Peixin Wang

    2018-01-01

    In order to build the post-peak strain softening model of rock, the evolution laws of rock parameters m,s were obtained by using the evolutionary mode of piecewise linear function regarding the maximum principle stress. Based on the nonlinear Hoek–Brown criterion, the analytical relationship of the rock strength parameters m,s, cohesion c, and friction angle φ has been developed by theoretical derivation. According to the analysis on the four different types of rock, it is found that, within ...

  15. Controlled fabrication of the strong emission YVO4:Eu3+ nanoparticles and nanowires by microwave assisted chemical synthesis

    International Nuclear Information System (INIS)

    Huong, Tran Thu; Vinh, Le Thi; Phuong, Ha Thi; Khuyen, Hoang Thi; Anh, Tran Kim; Tu, Vu Duc; Minh, Le Quoc

    2016-01-01

    In this report, we are presenting the controlled fabrication results of the strong emission YVO 4 : Eu 3+ nanoparticles and nanowires by microwave which is assisted chemical synthesis. The effects of incorporated synthesis conditions such as microwave irradiated powers, pH values and concentration of chemical composition on properties of nanomaterials are also investigated to obtain the controllable size and homogenous morphology. Morphological and optical properties of YVO 4 : Eu 3+ prepared products which have been characterized by X-ray diffraction (XRD), field emission micrcroscopy (FESEM) and photoluminescence spectroscopy. As based from result of synthesized samples, we found that the changing of pH values, microwave irradiated powers and chemical composition rise to change reform the size and shape of materials from nanoparticles (diameter about 20 nm) to wires shape (with about 500÷800 nm length and 10÷20 nm width). The photoluminescence (PL) spectroscopy measurements of YVO 4 : Eu 3+ nanostructure materials under UV excitation showed that: the strong luminescence in red region with narrow lines corresponding to the intra-4f transitions of 5 D 0 – 7 F j (j=1, 2, 3, and 4) of Eu 3+ ions with the highest luminescence intensity of 5 D 0 → 7 F 2 transition. - Highlights: • The strong emission YVO 4 :Eu 3+ nanostructure materials were successfully synthesized by microwave assisted chemical synthesis. • The size, morphology and luminescence of the YVO 4 :Eu 3+ nanostructure materials can be controlled by the solution pH, microwave irradiated powers and chemical composition. • These YVO 4 :Eu 3+ nanostructure materials above can potentially applied in various fields of application, especially in luminescent labeling and visualization in biomedical application.

  16. Integrated porous-silicon light-emitting diodes: A fabrication process using graded doping profiles

    International Nuclear Information System (INIS)

    Barillaro, G.; Diligenti, A.; Pieri, F.; Fuso, F.; Allegrini, M.

    2001-01-01

    A fabrication process, compatible with an industrial bipolar+complementary metal - oxide - semiconductor (MOS)+diffusion MOS technology, has been developed for the fabrication of efficient porous-silicon-based light-emitting diodes. The electrical contact is fabricated with a double n + /p doping, achieving a high current injection efficiency and thus lower biasing voltages. The anodization is performed as the last step of the process, thus reducing potential incompatibilities with industrial processes. The fabricated devices show yellow-orange electroluminescence, visible with the naked eye in room lighting. A spectral characterization of light emission is presented and briefly discussed. [copyright] 2001 American Institute of Physics

  17. Fabrication and characterization of active nanostructures

    Science.gov (United States)

    Opondo, Noah F.

    Three different nanostructure active devices have been designed, fabricated and characterized. Junctionless transistors based on highly-doped silicon nanowires fabricated using a bottom-up fabrication approach are first discussed. The fabrication avoids the ion implantation step since silicon nanowires are doped in-situ during growth. Germanium junctionless transistors fabricated with a top down approach starting from a germanium on insulator substrate and using a gate stack of high-k dielectrics and GeO2 are also presented. The levels and origin of low-frequency noise in junctionless transistor devices fabricated from silicon nanowires and also from GeOI devices are reported. Low-frequency noise is an indicator of the quality of the material, hence its characterization can reveal the quality and perhaps reliability of fabricated transistors. A novel method based on low-frequency noise measurement to envisage trap density in the semiconductor bandgap near the semiconductor/oxide interface of nanoscale silicon junctionless transistors (JLTs) is presented. Low-frequency noise characterization of JLTs biased in saturation is conducted at different gate biases. The noise spectrum indicates either a Lorentzian or 1/f. A simple analysis of the low-frequency noise data leads to the density of traps and their energy within the semiconductor bandgap. The level of noise in silicon JLT devices is lower than reported values on transistors fabricated using a top-down approach. This noise level can be significantly improved by improving the quality of dielectric and the channel interface. A micro-vacuum electron device based on silicon field emitters for cold cathode emission is also presented. The presented work utilizes vertical Si nanowires fabricated by means of self-assembly, standard lithography and etching techniques as field emitters in this dissertation. To obtain a high nanowire density, hence a high current density, a simple and inexpensive Langmuir Blodgett technique

  18. Fabrication and performance of ACTFEL display devices using manganese-doped zinc germanate as a green-emitting electroluminescent layer

    International Nuclear Information System (INIS)

    Kim, Joo Han; Yoon, Kyung Ho

    2010-01-01

    Alternating-current thin-film electroluminescent (ACTFEL) display devices fabricated using manganese-doped zinc germanate (Zn 2 GeO 4 :Mn) as a green-emitting electroluminescent layer material are described. The ACTFEL display devices were fabricated with a standard bottom emission structure having a multilayer stack of thin films in the metal/semiconductor/insulator/ metal (MSIM) configuration. The device was constructed on a transparent Corning glass substrate through which the emitted EL light passed. The Zn 2 GeO 4 :Mn emission layer was synthesized by using a RF magnetron sputter deposition method, followed by post-annealing at 700 .deg. C in air ambient for 1 hour. The obtained Zn 2 GeO 4 :Mn films were found to be polycrystalline with a rhombohedral crystal structure. A green emission spectrum with a maximum at approximately 538 nm was produced from the fabricated device. The chromaticity color coordinates of the EL emission were measured to be x = 0.308 and y = 0.657. The device demonstrated a sharp increase in the intensity of green EL emission upon increasing the AC peak voltage applied to the device above a threshold of 148 V.

  19. High performance field emission of silicon carbide nanowires and their applications in flexible field emission displays

    Science.gov (United States)

    Cui, Yunkang; Chen, Jing; Di, Yunsong; Zhang, Xiaobing; Lei, Wei

    2017-12-01

    In this paper, a facile method to fabricate the flexible field emission devices (FEDs) based on SiC nanostructure emitters by a thermal evaporation method has been demonstrated. The composition characteristics of SiC nanowires was characterized by X-ray diffraction (XRD), selected area electron diffraction (SAED) and energy dispersive X-ray spectrometer (EDX), while the morphology was revealed by field emission scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The results showed that the SiC nanowires grew along the [111] direction with the diameter of ˜110 nm and length of˜30 μm. The flexible FEDs have been fabricated by transferring and screen-printing the SiC nanowires onto the flexible substrates exhibited excellent field emission properties, such as the low turn-on field (˜0.95 V/μm) and threshold field (˜3.26 V/μm), and the high field enhancement factor (β=4670). It is worth noting the current density degradation can be controlled lower than 2% per hour during the stability tests. In addition, the flexible FEDs based on SiC nanowire emitters exhibit uniform bright emission modes under bending test conditions. As a result, this strategy is very useful for its potential application in the commercial flexible FEDs.

  20. High performance field emission of silicon carbide nanowires and their applications in flexible field emission displays

    Directory of Open Access Journals (Sweden)

    Yunkang Cui

    2017-12-01

    Full Text Available In this paper, a facile method to fabricate the flexible field emission devices (FEDs based on SiC nanostructure emitters by a thermal evaporation method has been demonstrated. The composition characteristics of SiC nanowires was characterized by X-ray diffraction (XRD, selected area electron diffraction (SAED and energy dispersive X-ray spectrometer (EDX, while the morphology was revealed by field emission scanning electron microscopy (SEM and high resolution transmission electron microscopy (HRTEM. The results showed that the SiC nanowires grew along the [111] direction with the diameter of ∼110 nm and length of∼30 μm. The flexible FEDs have been fabricated by transferring and screen-printing the SiC nanowires onto the flexible substrates exhibited excellent field emission properties, such as the low turn-on field (∼0.95 V/μm and threshold field (∼3.26 V/μm, and the high field enhancement factor (β=4670. It is worth noting the current density degradation can be controlled lower than 2% per hour during the stability tests. In addition, the flexible FEDs based on SiC nanowire emitters exhibit uniform bright emission modes under bending test conditions. As a result, this strategy is very useful for its potential application in the commercial flexible FEDs.

  1. Noise-induced chaos and basin erosion in softening Duffing oscillator

    International Nuclear Information System (INIS)

    Gan Chunbiao

    2005-01-01

    It is common for many dynamical systems to have two or more attractors coexist and in such cases the basin boundary is fractal. The purpose of this paper is to study the noise-induced chaos and discuss the effect of noises on erosion of safe basin in the softening Duffing oscillator. The Melnikov approach is used to obtain the necessary condition for the rising of chaos, and the largest Lyapunov exponent is computed to identify the chaotic nature of the sample time series from the system. According to the Melnikov condition, the safe basins are simulated for both the deterministic and the stochastic cases of the system. It is shown that the external Gaussian white noise excitation is robust for inducing the chaos, while the external bounded noise is weak. Moreover, the erosion of the safe basin can be aggravated by both the Gaussian white and the bounded noise excitations, and fractal boundary can appear when the system is only excited by the random processes, which means noise-induced chaotic response is induced

  2. Submicroscopic structure role in resistance of microplastic deformation of precipitation hardening nickel-chromium base alloys. 2. Softening stage

    International Nuclear Information System (INIS)

    Gitgarts, M.I.; Kukareko, V.A.

    1985-01-01

    Reasons for decrease of elastic limit and hardness of KhN77TYuR, KhN56VMTYu and KhN67VMTYu alloys at early stages of ageing are analyzed. Alloy softening is shown to be conditioned by development of spatial ordering of γ'-particles by the matrix volume. It is concluded that regularity in particle disposition reduces resistance to microplastic shear to a greater extent than to macroplastic strains

  3. Electronic emission and electron spin resonance of irradiated clothes: (cottons, synthetic clothes)

    International Nuclear Information System (INIS)

    El Ajouz Rima, H.

    1984-10-01

    This thesis is devoted to a new method of dosimetry applicable to accidental irradiations. It is based on the use of cotton and synthetic fabric clothes as detectors. It enables absorbed doses and body dose distributions to be estimated after an accidental irradiation. A bibliography on textile fibres used for clothing is presented in the first chapter: origin, structure, industrial treatments, effects of heat, light, ionizing radiations. In the second chapter, electronic emission generated by double stimulation (thermal and optic) is described. This phenomenon reveals changes in the surface state of cotton. Exo-emission was chosen because of its high sensitivity in dosimetry. The third chapter is devoted to the application of electron paramagnetic resonance to the dosimetry of irradiated fabrics. After a brief description of the spectrometer used, the results obtained with commercial cotton fabrics and with a special fabric realized by the Institut Textile de France are described some of these fabrics were subjected to special treatments either before or after irradiation. Synthetic fabrics (polyesters and polypropylene) have also been studied. (author)

  4. Cooperative emission in ion implanted Yb:YAG waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, G V; Desirena, H; De la Rosa, E [Centro de Investigaciones en Optica, Loma del Bosque 115, Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Flores-Romero, E; Rickards, J; Trejo-Luna, R [Instituto de Fisica, UNAM, Apartado Postal 20364, 01000 Mexico, D. F. (Mexico); Marquez, H, E-mail: gvvazquez@cio.mx [Departamento de Optica, CICESE, Km 107 Carr. Tijuana-Ensenada, 22860 Ensenada, B. C. (Mexico)

    2011-01-01

    In this work, we report the analysis of spectroscopic properties of waveguides fabricated by ion implantation in YAG doped with Yb{sup 3+} ions. Three emission bands were detected in the blue, green and red regions under 970-nm excitation. The strong blue-green emission can be explained by a cooperative process between ytterbium ion pairs, leading to emission centered at 514 nm. The additional blue bands as well as green and red emission bands are attributed to the presence of Tm{sup 3+} and Er{sup 3+} traces. The results include absorption and emission curves as well as decay time rates.

  5. Cooperative emission in ion implanted Yb:YAG waveguides

    International Nuclear Information System (INIS)

    Vazquez, G V; Desirena, H; De la Rosa, E; Flores-Romero, E; Rickards, J; Trejo-Luna, R; Marquez, H

    2011-01-01

    In this work, we report the analysis of spectroscopic properties of waveguides fabricated by ion implantation in YAG doped with Yb 3+ ions. Three emission bands were detected in the blue, green and red regions under 970-nm excitation. The strong blue-green emission can be explained by a cooperative process between ytterbium ion pairs, leading to emission centered at 514 nm. The additional blue bands as well as green and red emission bands are attributed to the presence of Tm 3+ and Er 3+ traces. The results include absorption and emission curves as well as decay time rates.

  6. Marshmallowing of nanopillar arrays by field emission

    International Nuclear Information System (INIS)

    Qin Hua; Kim, Hyun-Seok; Blick, Robert H.

    2010-01-01

    We fabricated nanoscale field electron emitters formed by highly-doped silicon nanopillars on a silicon membrane. Electron-beam induced deposition of carbon-based contaminants is employed as a probe of the spatial activity of electron emission from the nanopillars. In stark contrast to the general assumption that field emission only occurs at the tips of nanoscale emitters, we found strong emission from the sidewalls of the nanopillars. This is revealed by the deposition of carbon contaminants on these sidewalls, so that the nanopillars finally resemble marshmallows. We conclude that field emission from nanostructured surfaces is more intricate than previously expected.

  7. Improved actuation strain of PDMS-based DEA materials chemically modified with softening agents

    Science.gov (United States)

    Biedermann, Miriam; Blümke, Martin; Wegener, Michael; Krüger, Hartmut

    2015-04-01

    Dielectric elastomer actuators (DEAs) are smart materials that gained much in interest particularly in recent years. One active field of research is the improvement of their properties by modification of their structural framework. The object of this work is to improve the actuation properties of polydimethylsiloxane (PDMS)-based DEAs by covalent incorporation of mono-vinyl-terminated low-molecular PDMS chains into the PDMS network. These low-molecular units act as a kind of softener within the PDMS network. The loose chain ends interfere with the network formation and lower the network's density. PDMS films with up to 50wt% of low-molecular PDMS additives were manufactured and the chemical, mechanical, electrical, and electromechanical properties of these novel materials were investigated.

  8. Electrospun dye-doped fiber networks: lasing emission from randomly distributed cavities

    DEFF Research Database (Denmark)

    Krammer, Sarah; Vannahme, Christoph; Smith, Cameron

    2015-01-01

    Dye-doped polymer fiber networks fabricated with electrospinning exhibit comb-like laser emission. We identify randomly distributed ring resonators being responsible for lasing emission by making use of spatially resolved spectroscopy. Numerical simulations confirm this result quantitatively....

  9. Stress-Strain Law for Confined Concrete with Hardening or Softening Behavior

    Directory of Open Access Journals (Sweden)

    Piero Colajanni

    2013-01-01

    Full Text Available This paper provides a new general stress-strain law for concrete confined by steel, fiber reinforced polymer (FRP, or fiber reinforced cementitious matrix (FRCM, obtained by a suitable modification of the well-known Sargin’s curve for steel confined concrete. The proposed law is able to reproduce stress-strain curve of any shape, having both hardening or softening behavior, by using a single closed-form simple algebraic expression with constant coefficients. The coefficients are defined on the basis of the stress and the tangent modulus of the confined concrete in three characteristic points of the curve, thus being related to physical meaningful parameters. It will be shown that if the values of the parameters of the law are deduced from experimental tests, the model is able to accurately reproduce the experimental curve. If they are evaluated on the basis of an analysis-oriented model, the proposed model provides a handy equivalent design model.

  10. Fabrication of miniaturized electrostatic deflectors using LIGA

    International Nuclear Information System (INIS)

    Jackson, K.H.; Khan-Malek, C.; Muray, L.P.

    1997-01-01

    Miniaturized electron beam columns (open-quotes microcolumnsclose quotes) have been demonstrated to be suitable candidates for scanning electron microscopy (SEM), e-beam lithography and other high resolution, low voltage applications. In the present technology, microcolumns consist of open-quotes selectively scaledclose quotes micro-sized lenses and apertures, fabricated from silicon membranes with e-beam lithography, reactive ion beam etching and other semiconductor thin-film techniques. These miniaturized electron-optical elements provide significant advantages over conventional optics in performance and ease of fabrication. Since lens aberrations scale roughly with size, it is possible to fabricate simple microcolumns with extremely high brightness sources and electrostatic objective lenses, with resolution and beam current comparable to conventional e-beam columns. Moreover since microcolumns typically operate at low voltages (1 KeV), the proximity effects encountered in e-beam lithography become negligible. For high throughput applications, batch fabrication methods may be used to build large parallel arrays of microcolumns. To date, the best reported performance with a 1 keV cold field emission cathode, is 30 nm resolution at a working distance of 2mm in a 3.5mm column. Fabrication of the microcolumn deflector and stigmator, however, have remained beyond the capabilities of conventional machining operations and semiconductor processing technology. This work examines the LIGA process as a superior alternative to fabrication of the deflectors, especially in terms of degree of miniaturization, dimensional control, placement accuracy, run-out, facet smoothness and choice of suitable materials. LIGA is a combination of deep X-ray lithography, electroplating, and injection molding processes which allow the fabrication of microstructures

  11. Magnetic resonance colonography without bowel cleansing using oral and rectal stool softeners (fecal cracking) - a feasibility study

    International Nuclear Information System (INIS)

    Ajaj, Waleed; Lauenstein, Thomas C.; Kuehle, Christiane; Herborn, Christoph U.; Goehde, Susanne C.; Schneemann, Hubert; Ruehm, Stefan G.; Goyen, Mathias

    2005-01-01

    The aim of our study was to assess the effect of oral and rectal stool softeners on dark-lumen magnetic resonance (MR) colonography without bowel cleansing. Ten volunteers underwent MR colonography without colonic cleansing. A baseline examination was performed without oral or rectal administration of stool softeners. In a second set, volunteers ingested 60 ml of lactulose 24 h prior to MR examination. In a third examination, water as a rectal enema was replaced by a solution of 0.5%-docusate sodium (DS). A fourth MR examination was performed, in conjunction with both oral administration of lactulose and rectal application of DS. A T1-weighted data set was acquired at scanning times of 0, 5 and 10 min after colonic filling. A fourth data set was acquired 75 s after i.v. injection of contrast agent. Signal intensity of stool was calculated for all colonic segments. Without oral ingestion of lactulose or rectal enema with DS stool signal intensity was high and did not decrease over time. However, lactulose and DS caused a decrease in stool signal intensity. Both substances together led to a decreasing signal intensity of feces. Combination of lactulose and DS provided the lowest signal intensity of stool. Thus, feces could hardly be distinguished from dark rectal enema allowing for the assessment of the colonic wall. (orig.)

  12. Self-catalyzed photo-initiated RAFT polymerization for fabrication of fluorescent polymeric nanoparticles with aggregation-induced emission feature.

    Science.gov (United States)

    Zeng, Guangjian; Liu, Meiying; Jiang, Ruming; Huang, Qiang; Huang, Long; Wan, Qing; Dai, Yanfeng; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2018-02-01

    In recent years, the fluorescent polymeric nanoparticles (FPNs) with aggregation-induced emission (AIE) feature have been extensively exploited in various biomedical fields owing to their advantages, such as low toxicity, biodegradation, excellent biocompatibility, good designability and optical properties. Therefore, development of a facile, efficient and well designable strategy should be of great importance for the biomedical applications of these AIE-active FPNs. In this work, a novel method for the fabrication of AIE-active FPNs has been developed through the self-catalyzed photo-initiated reversible addition fragmentation chain transfer (RAFT) polymerization using an AIE dye containing chain transfer agent (CTA), which could initiate the RAFT polymerization under light irradiation. The results suggested that the final AIE-active FPNs (named as TPE-poly(St-PEGMA)) showed great potential for biomedical applications owing to their optical and biological properties. More importantly, the method described in the work is rather simple and effective and can be further extended to prepare many other different AIE-active FPNs owing to the good monomer adoptability of RAFT polymerization. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Modification of Thermal Emission via Metallic Photonic Crystals

    International Nuclear Information System (INIS)

    Norris, David J.; Stein, Andreas; George, Steven M.

    2012-01-01

    Photonic crystals are materials that are periodically structured on an optical length scale. It was previously demonstrated that the glow, or thermal emission, of tungsten photonic crystals that have a specific structure - known as the 'woodpile structure' - could be modified to reduce the amount of infrared radiation from the material. This ability has implications for improving the efficiency of thermal emission sources and for thermophotovoltaic devices. The study of this effect had been limited because the fabrication of metallic woodpile structures had previously required a complex fabrication process. In this project we pursued several approaches to simplify the fabrication of metallic photonic crystals that are useful for modification of thermal emission. First, we used the self-assembly of micrometer-scale spheres into colloidal crystals known as synthetic opals. These opals can then be infiltrated with a metal and the spheres removed to obtain a structure, known as an inverse opal, in which a three-dimensional array of bubbles is embedded in a film. Second, we used direct laser writing, in which the focus of an infrared laser is moved through a thin film of photoresist to form lines by multiphoton polymerization. Proper layering of such lines can lead to a scaffold with the woodpile structure, which can be coated with a refractory metal. Third, we explored a completely new approach to modified thermal emission - thin metal foils that contain a simple periodic surface pattern, as shown in Fig. 1. When such a foil is heated, surface plasmons are excited that propagate along the metal interface. If these waves strike the pattern, they can be converted into thermal emission with specific properties.

  14. Fabrication of electrospun nanofibrous membranes for membrane distillation application

    KAUST Repository

    Francis, Lijo

    2013-02-01

    Nanofibrous membranes of Matrimid have been successfully fabricated using an electrospinning technique under optimized conditions. Nanofibrous membranes are found to be highly hydrophobic with a high water contact angle of 130°. Field emission scanning electron microscopy and pore size distribution analysis revealed the big pore size structure of electrospun membranes to be greater than 2 μm and the pore size distribution is found to be narrow. Flat sheet Matrimid membranes were fabricated via casting followed by phase inversion. The morphology, pore size distribution, and water contact angle were measured and compared with the electrospun membranes. Both membranes fabricated by electrospinning and phase inversion techniques were tested in a direct contact membrane distillation process. Electrospun membranes showed high water vapor flux of 56 kg/m2-h, which is very high compared to the casted membrane as well as most of the fabricated and commercially available highly hydrophobic membranes. ©2013 Desalination Publications.

  15. Application of printed nanocrystalline diamond film for electron emission cathode

    International Nuclear Information System (INIS)

    Zhang Xiuxia; Wei Shuyi; Lei Chongmin; Wei Jie; Lu Bingheng; Ding Yucheng; Zhu Changchun

    2011-01-01

    The low-cost and large area screen-printed nano-diamond film (NDF) for electronic emission was fabricated. The edges and corners of nanocrystalline diamond are natural field-emitters. The nano-diamond paste for screen-printing was fabricated of mixing nano-graphite and other inorganic or organic vehicles. Through enough disperse in isopropyl alcohol by ultrasonic nano-diamond paste was screen-printed on the substrates to form NDF. SEM images showed that the surface morphology of NDF was improved, and the nano-diamond emitters were exposed from NDF through the special thermal-sintering technique and post-treatment process. The field emission characteristics of NDF were measured under all conditions with 10 -6 Pa pressure. The results indicated that the field emission stability and emission uniformity of NDF were improved through hydrogen plasma post-treatment process. The turn-on field decreased from 1.60 V/μm to 1.25 V/μm. The screen-printed NDF can be applied to the displays electronic emission cathode for low-cost outdoor in large area.

  16. Imported emissions. The world trade stowaway

    International Nuclear Information System (INIS)

    Fink, Meike; Gautier, Celia

    2013-05-01

    This study first gives an overview of existing tools and methodological challenges to account emissions included in consumed products fabricated elsewhere. It notably discusses the passage from a methodology based on a production principle to a methodology based on a consumption principle, outlines the different methodologies associated with the different analysis levels, and the importance of uncertainty sources. The second part proposes a view on emission flows included in exports and imports. It addresses the following issues: the international level, increasing importance of emissions transferred via world trade, emissions related to consumption per capita and per social class, carbon and energy intensity of products at the origin of emissions, composition of imported and exported products and intensity of their emissions, impact of a methodological change on greenhouse gas emissions by France, extent of emissions imported in France, and Germany as the first trade partner and emission importer of France. The third part discusses the political implications of an accounting of emissions related to consumption and to world trade

  17. Fabricating ZnO single microwire light-emitting diode with transparent conductive ITO film

    International Nuclear Information System (INIS)

    Xu, Yingtian; Dai, Jun; Shi, Zhifeng; Long, Beihong; Wu, Bin; Cai, Xupu; Chu, Xianwei; Du, Guotong; Zhang, Baolin; Yin, Jingzhi

    2014-01-01

    In this paper, n-ZnO single microwire/p + -Si heterojunction LEDs are fabricated using the transparent conductive ITO film as an electrode. A distinct UV emission resulting from free exciton recombination in a ZnO single microwire is observed in the electroluminescence. Size difference of ZnO single microwire shows significant influence on emission efficiency. The EL spectra of n-ZnO single microwire/p-Si heterostructure exhibited relatively stronger UV emission which was compared with the EL spectra of n-ZnO single nanowire/p-Si heterostructure and n-ZnO film/p-Si heterostructure, respectively. - Highlights: • The ZnO microwires were synthesized with a vapor phase transport method. • ZnO single microwire/Si LEDs were fabricated using the ITO film as an electrode. • The EL spectra had been compared with n-ZnO film/p-Si heterostructure. • The EL spectra had been compared with n-ZnO single nanowire/p-Si heterostructure

  18. Degradation of Spacesuit Fabrics in Low Earth Orbit

    Science.gov (United States)

    Gaier, James R.; Baldwin, Sammantha M.; Folz, Angela D.; Waters, Deborah L.; McCue, Terry R.; Jaworske, Donald A.; Clark, Gregory W.; Rogers, Kerry J.; Batman, Brittany; Bruce, John; hide

    2012-01-01

    Six samples of pristine and dust-abraded outer layer spacesuit fabrics were included in the Materials International Space Station Experiment-7, in which they were exposed to the wake-side low Earth orbit environment on the International Space Station (ISS) for 18 months in order to determine whether abrasion by lunar dust increases radiation degradation. The fabric samples were characterized using optical microscopy, optical spectroscopy, field emission scanning electron microscopy, atomic force microscopy, and tensile testing before and after exposure on the ISS. Comparison of pre- and post-flight characterizations showed that the environment darkened and reddened all six fabrics, increasing their integrated solar absorptance by 7 to 38 percent. There was a decrease in the ultimate tensile strength and elongation to failure of lunar dust abraded Apollo spacesuit fibers by a factor of four and an increase in the elastic modulus by a factor of two.

  19. Smart textile framework: Photochromic and fluorescent cellulosic fabric printed by strontium aluminate pigment.

    Science.gov (United States)

    Khattab, Tawfik A; Rehan, Mohamed; Hamouda, Tamer

    2018-09-01

    Smart clothing can be defined as textiles that respond to a certain stimulus accompanied by a change in their properties. A specific class herein is the photochromic and fluorescent textiles that change color with light. A photochromic and fluorescent cotton fabric based on pigment printing is obtained. Such fabric is prepared by aqueous-based pigment-binder printing formulation containing inorganic pigment phosphor characterized by good photo- and thermal stability. It exhibits optimal excitation wavelength (365 nm) results in color and fluorescence change of the fabric surface. To prepare the transparent pigment-binder composite film, the phosphor pigment must be well-dispersed via physical immobilization without their aggregation. The pigment-binder paste is applied successfully onto cotton fabric using screen printing technique followed by thermal fixation. After screen-printing, a homogenous photochromic film is assembled on a cotton substrate surface, which represents substantial greenish-yellow color development as indicated by CIE Lab color space measurements under ultraviolet light, even at a pigment concentration of 0.08 wt% of the printing paste. The photochromic cotton fabric exhibit three excitation peaks at 272, 325 and 365 nm and three emission peaks at 418, 495 and 520 nm. The fluorescent optical microscope, scanning electron microscope, elemental mapping, energy dispersive X-ray spectroscopy, fluorescence emission and UV/Vis absorption spectroscopic data of the printed cotton fabric are described. The printed fabric showed a reversible and rapid photochromic response during ultra-violet excitation without fatigue. The fastness properties including washing, crocking, perspiration, sublimation/heat, and light are described. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. An Ethology of Urban Fabric(s)

    DEFF Research Database (Denmark)

    Fritsch, Jonas; Thomsen, Bodil Marie Stavning

    2014-01-01

    The article explores a non-metaphorical understanding of urban fabric(s), shifting the attention from a bird’s eye perspective to the actual, textural manifestations of a variety of urban fabric(s) to be studied in their real, processual, ecological and ethological complexity within urban life. We...... effectuate this move by bringing into resonance a range of intersecting fields that all deal with urban fabric(s) in complementary ways (interaction design and urban design activism, fashion, cultural theory, philosophy, urban computing)....

  1. Flame-resistant pure and hybrid woven fabrics from basalt

    Science.gov (United States)

    Jamshaid, H.; Mishra, R.; Militky, J.

    2017-10-01

    This work has been formulated to investigate the burning behavior of different type of fabrics. The main concentration is to see how long the fabric resists after it catches the fire and the propagation of fire can be reduced by using flame resistant fiber i.e basalt. Basalt fiber is an environmental friendly material with low input, high output, low energy consumption and less emission. The goal of present investigations is to show the dependence of fabric flammability on its structure parameters i.e weave type, blend type etc. Fabric weaves have strong effect on flammability properties. Plain weave has the lowest burning rate as the density of the plain weave fabric is more and the structure is tight which gives less chances of flame passing through the fabric. Thermal stability is evaluated with TGA of all hybrid and nonhybrid fabrics and compared. The thermal stability of the basalt fiber is excellent. When comparing thermal analysis curves for hybrid samples it demonstrates that thermal stability of the samples containing basalt is much higher than the non- hybrid samples. Percentage weight loss is less in hybrid samples as compared to non-hybrid samples. The effectiveness of hybridization on samples may be indicated by substantial lowering of the decomposition mass. Correlation was made between flammability with the infrared radiations (IR)

  2. Bandwidth broadening and asymmetric softening of collective spin waves in magnonic crystals

    International Nuclear Information System (INIS)

    Montoncello, F.; Giovannini, L.

    2014-01-01

    We investigate the dependence on the applied field of the frequency/wavevector dispersion relations of collective spin waves in arrays of dots, close to a magnetic transition. In particular, we focus on the low frequency “soft” modes in three different cases: end modes in the transition between two different saturated states in ellipses, fundamental mode in the saturated-to-vortex transition in disks, and gyrotropic mode in the vortex-to-saturated transition in disks. Noteworthy, the spin waves with nonzero Bloch wavevector along the direction of the applied field happen to soften earlier than spin waves with a Bloch wavevector along different directions, and this feature is responsible for an asymmetric broadening of the bandwidth along the different lattice directions. This is particularly useful in magnonic/spin-logic device research, if different binary digits are associated to modes with the same cell function but different propagation directions.

  3. Study of field emission phenomena

    International Nuclear Information System (INIS)

    Ramanathan, Devaki; Vijendran, P.

    1976-01-01

    The theory of field emission has been explained, using Fowler-Nordheim equation and the Fowler-Nordheim plot. The imaging theory is also described in brief. The fabrication details of a field emission microscope (FEM) are mentioned. The design of the tube and the emitter assemblies are explained in detail. Simple experiments that can be demonstrated on the FEM such as indexing, detetermination of work function and surface diffusion constants, etc. are also mentioned. The use of FEM as a simple teaching aid has been brought out. (K.B.)

  4. Fabrication and characterization of microcavity lasers in rhodamine B doped SU8 using high energy proton beam

    Science.gov (United States)

    Venugopal Rao, S.; Bettiol, A. A.; Vishnubhatla, K. C.; Bhaktha, S. N. B.; Narayana Rao, D.; Watt, F.

    2007-03-01

    The authors present their results on the characterization of individual dye-doped microcavity polymer lasers fabricated using a high energy proton beam. The lasers were fabricated in rhodamine B doped SU8 resist with a single exposure step followed by chemical processing. The resulting trapezoidal shaped cavities had dimensions of ˜250×250μm2. Physical characterization of these structures was performed using a scanning electron microscope while the optical characterization was carried out by recording the emission subsequent to pumping the lasers with 532nm, 6 nanosecond pulses. The authors observed intense, narrow emission near 624nm with the best emission linewidth full width at half maximum of ˜9nm and a threshold ˜150μJ/mm2.

  5. Field Emission of ITO-Coated Vertically Aligned Nanowire Array.

    KAUST Repository

    Lee, Changhwa

    2010-04-29

    An indium tin oxide (ITO)-coated vertically aligned nanowire array is fabricated, and the field emission characteristics of the nanowire array are investigated. An array of vertically aligned nanowires is considered an ideal structure for a field emitter because of its parallel orientation to the applied electric field. In this letter, a vertically aligned nanowire array is fabricated by modified conventional UV lithography and coated with 0.1-μm-thick ITO. The turn-on electric field intensity is about 2.0 V/μm, and the field enhancement factor, β, is approximately 3,078 when the gap for field emission is 0.6 μm, as measured with a nanomanipulator in a scanning electron microscope.

  6. Field Emission of ITO-Coated Vertically Aligned Nanowire Array.

    KAUST Repository

    Lee, Changhwa; Lee, Seokwoo; Lee, Seung S

    2010-01-01

    An indium tin oxide (ITO)-coated vertically aligned nanowire array is fabricated, and the field emission characteristics of the nanowire array are investigated. An array of vertically aligned nanowires is considered an ideal structure for a field emitter because of its parallel orientation to the applied electric field. In this letter, a vertically aligned nanowire array is fabricated by modified conventional UV lithography and coated with 0.1-μm-thick ITO. The turn-on electric field intensity is about 2.0 V/μm, and the field enhancement factor, β, is approximately 3,078 when the gap for field emission is 0.6 μm, as measured with a nanomanipulator in a scanning electron microscope.

  7. Low Thermal Budget Fabrication of III-V Quantum Nanostructures on Si Substrates

    International Nuclear Information System (INIS)

    Bietti, S; Somaschini, C; Sanguinetti, S; Koguchi, N; Isella, G; Chrastina, D; Fedorov, A

    2010-01-01

    We show the possibility to integrate high quality III-V quantum nanostructures tunable in shape and emission energy on Si-Ge Virtual Substrate. Strong photoemission is observed, also at room temperature, from two different kind of GaAs quantum nanostructures fabricated on Silicon substrate. Due to the low thermal budget of the procedure used for the fabrication of the active layer, Droplet Epitaxy is to be considered an excellent candidate for implementation of optoelectronic devices on CMOS circuits.

  8. Dynamics of a clamped–clamped microbeam resonator considering fabrication imperfections

    KAUST Repository

    Bataineh, Ahmad M.

    2014-10-18

    We present an investigation into the static and dynamic behavior of an electrostatically actuated clamped–clamped polysilicon microbeam resonator accounting for its fabrication imperfections, which are commonly encountered in similar microstructures. These are mainly because of the initial deformation of the beam due to stress gradient and its flexible anchors. First, we show experimental data of the microbeam when driven electrically by varying the amplitude and frequency of the voltage loads. The results reveal several interesting nonlinear phenomena of jumps, hysteresis, and softening behaviors. Theoretical investigation is then conducted to model the microbeam, and hence, interpret the experimental data. We solve the Eigen value problem governing the natural frequencies analytically. We then utilize a Galerkin-based procedure to derive a reduced order model, which is then used to simulate both the static and dynamic responses. To achieve good matching between theory and experiment, we show that the exact profile of the deformed beam needs to be utilized in the reduced order model, as measured from the optical profiler, combined with a shooting technique simulation, which is capable of tracing the resonant frequency branches under very-low damping conditions.

  9. Demonstration of Li-based alloy coatings as low-voltage stable electron-emission surfaces for field-emission devices

    International Nuclear Information System (INIS)

    Auciello, O.; Krauss, A.R.; Gruen, D.M.; Shah, P.; Corrigan, T.; Kordesch, M.E.; Chang, R.P.; Barr, T.L.

    1999-01-01

    Alkali metals have extremely low work functions and are, therefore, expected to result in significant enhancement of the electron emission if they are used as coatings on Mo or Si microtip field-emission arrays (FEAs). However, the alkali metals are physically and chemically unstable in layers exceeding a few Angstrom in thickness. Maximum enhancement of electron emission occurs for alkali - metal layers 0.5 - 1 ML thick, but it is extremely difficult to fabricate and maintain such a thin alkali - metal coating. We present here an alternative means of producing chemically and thermally stable, self-replenishing lithium coatings approximately 1 ML thick, which results in a 13-fold reduction in the threshold voltage for electron emission compared with uncoated Si FEAs. copyright 1999 American Institute of Physics

  10. Characterization of Si:O:C:H films fabricated using electron emission enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Durrant, Steven F. [Laboratorio de Plasmas Tecnologicos, Campus Experimental de Sorocaba, Universidade Estadual Paulista-UNESP, Avenida Tres de Marco, 511, Alto da Boa Vista, 18087-180, Soracaba, SP (Brazil)], E-mail: steve@sorocaba.unesp.br; Rouxinol, Francisco P.M.; Gelamo, Rogerio V. [Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, 13083-970, Campinas, SP (Brazil); Trasferetti, B. Claudio [Present address: Superintendencia Regional da Policia Federal em Sao Paulo, Setor Tecnico-Cientifico, Rua Hugo d' Antola 95/10o Andar, Lapa de Baixo, 05038-090 Sao Paulo, SP (Brazil); Davanzo, C.U. [Instituto de Quimica, Universidade Estadual de Campinas, 13083-970, Campinas, SP (Brazil); Bica de Moraes, Mario A. [Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, 13083-970, Campinas, SP (Brazil)

    2008-01-15

    Silicon-based polymers and oxides may be formed when vapours of oxygen-containing organosilicone compounds are exposed to energetic electrons drawn from a hot filament by a bias potential applied to a second electrode in a controlled atmosphere in a vacuum chamber. As little deposition occurs in the absence of the bias potential, electron impact fragmentation is the key mechanism in film fabrication using electron-emission enhanced chemical vapour deposition (EEECVD). The feasibility of depositing amorphous hydrogenated carbon films also containing silicon from plasmas of tetramethylsilane or hexamethyldisiloxane has already been shown. In this work, we report the deposition of diverse films from plasmas of tetraethoxysilane (TEOS)-argon mixtures and the characterization of the materials obtained. The effects of changes in the substrate holder bias (V{sub S}) and of the proportion of TEOS in the mixture (X{sub T}) on the chemical structure of the films are examined by infrared-reflection absorption spectroscopy (IRRAS) at near-normal and oblique incidence using unpolarised and p-polarised, light, respectively. The latter is particularly useful in detecting vibrational modes not observed when using conventional near-normal incidence. Elemental analyses of the film were carried out by X-ray photoelectron spectroscopy (XPS), which was also useful in complementary structural investigations. In addition, the dependencies of the deposition rate on V{sub S} and X{sub T} are presented.

  11. Characterization of Si:O:C:H films fabricated using electron emission enhanced chemical vapour deposition

    International Nuclear Information System (INIS)

    Durrant, Steven F.; Rouxinol, Francisco P.M.; Gelamo, Rogerio V.; Trasferetti, B. Claudio; Davanzo, C.U.; Bica de Moraes, Mario A.

    2008-01-01

    Silicon-based polymers and oxides may be formed when vapours of oxygen-containing organosilicone compounds are exposed to energetic electrons drawn from a hot filament by a bias potential applied to a second electrode in a controlled atmosphere in a vacuum chamber. As little deposition occurs in the absence of the bias potential, electron impact fragmentation is the key mechanism in film fabrication using electron-emission enhanced chemical vapour deposition (EEECVD). The feasibility of depositing amorphous hydrogenated carbon films also containing silicon from plasmas of tetramethylsilane or hexamethyldisiloxane has already been shown. In this work, we report the deposition of diverse films from plasmas of tetraethoxysilane (TEOS)-argon mixtures and the characterization of the materials obtained. The effects of changes in the substrate holder bias (V S ) and of the proportion of TEOS in the mixture (X T ) on the chemical structure of the films are examined by infrared-reflection absorption spectroscopy (IRRAS) at near-normal and oblique incidence using unpolarised and p-polarised, light, respectively. The latter is particularly useful in detecting vibrational modes not observed when using conventional near-normal incidence. Elemental analyses of the film were carried out by X-ray photoelectron spectroscopy (XPS), which was also useful in complementary structural investigations. In addition, the dependencies of the deposition rate on V S and X T are presented

  12. Ultrasonically assisted drilling: A finite-element model incorporating acoustic softening effects

    International Nuclear Information System (INIS)

    Phadnis, V A; Roy, A; Silberschmidt, V V

    2013-01-01

    Ultrasonically assisted drilling (UAD) is a novel machining technique suitable for drilling in hard-to-machine quasi-brittle materials such as carbon fibre reinforced polymer composites (CFRP). UAD has been shown to possess several advantages compared to conventional drilling (CD), including reduced thrust forces, diminished burr formation at drill exit and an overall improvement in roundness and surface finish of the drilled hole. Recently, our in-house experiments of UAD in CFRP composites demonstrated remarkable reductions in thrust-force and torque measurements (average force reductions in excess of 80%) when compared to CD with the same machining parameters. In this study, a 3D finite-element model of drilling in CFRP is developed. In order to model acoustic (ultrasonic) softening effects, a phenomenological model, which accounts for ultrasonically induced plastic strain, was implemented in ABAQUS/Explicit. The model also accounts for dynamic frictional effects, which also contribute to the overall improved machining characteristics in UAD. The model is validated with experimental findings, where an excellent correlation between the reduced thrust force and torque magnitude was achieved

  13. Impulsive and long duration high-energy gamma-ray emission from the very bright 2012 March 7 solar flares

    Energy Technology Data Exchange (ETDEWEB)

    Ajello, M. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Albert, A.; Allafort, A.; Caliandro, G. A.; Cameron, R. A.; Charles, E. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Baldini, L. [Università di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa I-56127 Pisa (Italy); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D.; Buson, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bissaldi, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, and Università di Trieste, I-34127 Trieste (Italy); Bonamente, E.; Cecchi, C. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Brigida, M. [Dipartimento di Fisica " M. Merlin" dell' Università e del Politecnico di Bari, I-70126 Bari (Italy); Bruel, P. [Laboratoire Leprince-Ringuet, École polytechnique, CNRS/IN2P3, Palaiseau (France); Buehler, R. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Caraveo, P. A., E-mail: nicola.omodei@stanford.edu, E-mail: vahep@stanford.edu, E-mail: melissa.pesce.rollins@pi.infn.it [INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica, I-20133 Milano (Italy); and others

    2014-07-01

    The Fermi Large Area Telescope (LAT) detected gamma-rays up to 4 GeV from two bright X-class solar flares on 2012 March 7, showing both an impulsive and temporally extended emission phases. The gamma-rays appear to originate from the same active region as the X-rays associated with these flares. The >100 MeV gamma-ray flux decreases monotonically during the first hour (impulsive phase) followed by a slower decrease for the next 20 hr. A power law with a high-energy exponential cutoff can adequately describe the photon spectrum. Assuming that the gamma rays result from the decay of pions produced by accelerated protons and ions with a power-law spectrum, we find that the index of that spectrum is ∼3, with minor variations during the impulsive phase. During the extended phase the photon spectrum softens monotonically, requiring the proton index varying from ∼4 to >5. The >30 MeV proton flux observed by the GOES satellites also shows a flux decrease and spectral softening, but with a harder spectrum (index ∼2-3). Based on these observations, we explore the relative merits of prompt or continuous acceleration scenarios, hadronic or leptonic emission processes, and acceleration at the solar corona or by the fast coronal mass ejections. We conclude that the most likely scenario is continuous acceleration of protons in the solar corona that penetrate the lower solar atmosphere and produce pions that decay into gamma rays. However, acceleration in the downstream of the shock cannot be definitely ruled out.

  14. The effect of samarium doping on structure and enhanced thermionic emission properties of lanthanum hexaboride fabricated by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shenlin; Hu, Qianglin [College of Mathematics and Physics, Jinggangshan University, Jian (China); Zhang, Jiuxing; Liu, Danmin [Key Laboratory of Advanced Functional Materials, Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing (China); Huang, Qingzhen [NIST Center for Neutron Research, National Institute of Standards and Technology, MD (United States)

    2014-03-15

    Single-phase polycrystalline solid solutions (La{sub 1-x}Sm{sub x})B{sub 6} (x = 0, 0.2, 0.4, 0.8, 1) are fabricated by spark plasma sintering (SPS). This study demonstrates a systematic investigation of structure-property relationships in Sm-doped LaB{sub 6} ternary rare-earth hexaborides. The microstructure, crystallographic orientation, electrical resistivity, and thermionic emission performance of these compounds are investigated. Analysis of the results indicates that samarium (Sm) doping has a noticeable effect on the structure and performance of lanthanum hexaboride (LaB{sub 6}). The analytical investigation of the electron backscatter diffraction confirms that (La{sub 0.6}Sm{sub 0.4})B{sub 6} exhibits a clear (001) texture that results in a low work function. Work functions are determined by pulsed thermionic diode measurements at 1500-1873 K. The (La{sub 0.6}Sm{sub 0.4})B{sub 6} possesses improved thermionic emission properties compared to LaB{sub 6}. The current density of (La{sub 0.6}Sm{sub 0.4})B{sub 6} is 42.4 A cm{sup -2} at 1873 K, which is 17.5% larger than that of LaB{sub 6}. The values of Φ{sub R} for (La{sub 0.6}Sm{sub 0.4})B{sub 6} and LaB{sub 6} are 1.98 ± 0.03 and 1.67 ± 0.03 eV, respectively. Furthermore, the Sm substitution of lanthanum (La) effectively increases the electrical resistivity. These results reveal that Sm doping lead to significantly enhanced thermionic emission properties of LaB{sub 6}. The compound (La{sub 0.6}Sm{sub 0.4})B{sub 6} appears most promising as a future emitter material. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Controlled fabrication of the strong emission YVO{sub 4}:Eu{sup 3+} nanoparticles and nanowires by microwave assisted chemical synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Huong, Tran Thu, E-mail: tthuongims@gmail.com [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi (Viet Nam); Vinh, Le Thi [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi (Viet Nam); Department of Chemistry, Hanoi University of Mining and Geology (Viet Nam); Phuong, Ha Thi [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi (Viet Nam); Department of Chemistry, Hanoi University of Medicine (Viet Nam); Khuyen, Hoang Thi [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi (Viet Nam); Anh, Tran Kim [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi (Viet Nam); Duy Tan University, 14/25 Quang Trung, Da Nang (Viet Nam); Tu, Vu Duc [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi (Viet Nam); Physics, National Chung Cheng University, 168 University Road, Min-Hsiung, Chia-Yi 62102, Taiwan (China); Minh, Le Quoc [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi (Viet Nam); Duy Tan University, 14/25 Quang Trung, Da Nang (Viet Nam)

    2016-05-15

    In this report, we are presenting the controlled fabrication results of the strong emission YVO{sub 4}: Eu{sup 3+} nanoparticles and nanowires by microwave which is assisted chemical synthesis. The effects of incorporated synthesis conditions such as microwave irradiated powers, pH values and concentration of chemical composition on properties of nanomaterials are also investigated to obtain the controllable size and homogenous morphology. Morphological and optical properties of YVO{sub 4}: Eu{sup 3+} prepared products which have been characterized by X-ray diffraction (XRD), field emission micrcroscopy (FESEM) and photoluminescence spectroscopy. As based from result of synthesized samples, we found that the changing of pH values, microwave irradiated powers and chemical composition rise to change reform the size and shape of materials from nanoparticles (diameter about 20 nm) to wires shape (with about 500÷800 nm length and 10÷20 nm width). The photoluminescence (PL) spectroscopy measurements of YVO{sub 4}: Eu{sup 3+} nanostructure materials under UV excitation showed that: the strong luminescence in red region with narrow lines corresponding to the intra-4f transitions of {sup 5}D{sub 0}–{sup 7}F{sub j} (j=1, 2, 3, and 4) of Eu{sup 3+} ions with the highest luminescence intensity of {sup 5}D{sub 0}→{sup 7}F{sub 2} transition. - Highlights: • The strong emission YVO{sub 4}:Eu{sup 3+} nanostructure materials were successfully synthesized by microwave assisted chemical synthesis. • The size, morphology and luminescence of the YVO{sub 4}:Eu{sup 3+} nanostructure materials can be controlled by the solution pH, microwave irradiated powers and chemical composition. • These YVO{sub 4}:Eu{sup 3+} nanostructure materials above can potentially applied in various fields of application, especially in luminescent labeling and visualization in biomedical application.

  16. Firmness at Harvest Impacts Postharvest Fruit Softening and Internal Browning Development in Mechanically Damaged and Non-damaged Highbush Blueberries (Vaccinium corymbosum L.).

    Science.gov (United States)

    Moggia, Claudia; Graell, Jordi; Lara, Isabel; González, Guillermina; Lobos, Gustavo A

    2017-01-01

    Fresh blueberries are very susceptible to mechanical damage, which limits postharvest life and firmness. Softening and susceptibility of cultivars "Duke" and "Brigitta" to developing internal browning (IB) after mechanical impact and subsequent storage was evaluated during a 2-year study (2011/2012, 2012/2013). On each season fruit were carefully hand-picked, segregated into soft (<1.60 N), medium (1.61-1.80 N), and firm (1.81-2.00 N) categories, and then either were dropped (32 cm) onto a hard plastic surface or remained non-dropped. All fruit were kept under refrigerated storage (0°C and 85-88% relative humidity) to assess firmness loss and IB after 7, 14, 21, 28, and 35 days. In general, regardless of cultivar or season, high variability in fruit firmness was observed within each commercial harvest, and significant differences in IB and softening rates were found. "Duke" exhibited high softening rates, as well as high and significant r 2 between firmness and IB, but little differences for dropped vs. non-dropped fruit. "Brigitta," having lesser firmness rates, exhibited almost no relationships between firmness and IB (especially for non-dropped fruit), but marked differences between dropping treatments. Firmness loss and IB development were related to firmness at harvest, soft and firm fruit being the most and least damaged, respectively. Soft fruit were characterized by greater IB development during storage along with high soluble solids/acid ratio, which could be used together with firmness to estimate harvest date and storage potential of fruit. Results of this work suggest that the differences in fruit quality traits at harvest could be related to the time that fruit stay on the plant after turning blue, soft fruit being more advanced in maturity. Finally, the observed differences between segregated categories reinforce the importance of analyzing fruit condition for each sorted group separately.

  17. Surfing Silicon Nanofacets for Cold Cathode Electron Emission Sites.

    Science.gov (United States)

    Basu, Tanmoy; Kumar, Mohit; Saini, Mahesh; Ghatak, Jay; Satpati, Biswarup; Som, Tapobrata

    2017-11-08

    Point sources exhibit low threshold electron emission due to local field enhancement at the tip. In the case of silicon, however, the realization of tip emitters has been hampered by unwanted oxidation, limiting the number of emission sites and the overall current. In contrast to this, here, we report the fascinating low threshold (∼0.67 V μm -1 ) cold cathode electron emission from silicon nanofacets (Si-NFs). The ensembles of nanofacets fabricated at different time scales, under low energy ion impacts, yield tunable field emission with a Fowler-Nordheim tunneling field in the range of 0.67-4.75 V μm -1 . The local probe surface microscopy-based tunneling current mapping in conjunction with Kelvin probe force microscopy measurements revealed that the valleys and a part of the sidewalls of the nanofacets contribute more to the field emission process. The observed lowest turn-on field is attributed to the absence of native oxide on the sidewalls of the smallest facets as well as their lowest work function. In addition, first-principle density functional theory-based simulation revealed a crystal orientation-dependent work function of Si, which corroborates well with our experimental observations. The present study demonstrates a novel way to address the origin of the cold cathode electron emission sites from Si-NFs fabricated at room temperature. In principle, the present methodology can be extended to probe the cold cathode electron emission sites from any nanostructured material.

  18. Fabrication of recyclable superhydrophobic cotton fabrics

    Science.gov (United States)

    Han, Sang Wook; Park, Eun Ji; Jeong, Myung-Geun; Kim, Il Hee; Seo, Hyun Ook; Kim, Ju Hwan; Kim, Kwang-Dae; Kim, Young Dok

    2017-04-01

    Commercial cotton fabric was coated with SiO2 nanoparticles wrapped with a polydimethylsiloxane (PDMS) layer, and the resulting material surface showed a water contact angle greater than 160°. The superhydrophobic fabric showed resistance to water-soluble contaminants and maintained its original superhydrophobic properties with almost no alteration even after many times of absorption-washing cycles of oil. Moreover, superhydrophobic fabric can be used as a filter to separate oil from water. We demonstrated a simple method of fabrication of superhydrophobic fabric with potential interest for use in a variety of applications.

  19. Characteristics of plastic scintillators fabricated by a polymerization reaction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheol Ho; Son, Jaebum; Kim, Tae Hoon; Kim, Yong Kyun [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of)

    2017-04-15

    Three plastic scintillators of 4.5 cm diameter and 2.5-cm length were fabricated for comparison with commercial plastic scintillators using polymerization of the styrene monomer 2.5-diphenyloxazole (PPO) and 1,4-bis benzene (POPOP). Their maximum emission wavelengths were determined at 426.06 nm, 426.06 nm, and 425.00 nm with a standard error of 0.2% using a Varian spectrophotometer (Agilent, Santa Clara, CA, USA). Compton edge spectra were measured using three gamma ray sources [i.e., cesium 137 ({sup 137}Cs), sodium 22 ({sup 22}Na), and cobalt 60 ({sup 60}Co)]. Energy was calibrated by analyzing the Compton edge spectra. The fabricated scintillators possessed more than 99.7% energy linearity. Light output was comparable to that of the BC-408 scintillator (Saint-Gobain, Paris, France). The fabricated scintillators showed a light output of approximately 59–64% of that of the BC-408 scintillator.

  20. Advanced Emissions Control Development Program

    Energy Technology Data Exchange (ETDEWEB)

    A.P.Evans; K.E. Redinger; M.J. Holmes

    1998-04-01

    The objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPS), fabric filters (baghouse), and wet flue gas desulfurization. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate and hydrogen chloride. Following the construction and evaluation of a representative air toxics test facility in Phase I, Phase II focused on the evaluation of mercury and several other air toxics emissions. The AECDP is jointly funded by the United States Department of Energy's Federal Energy Technology Center (DOE), the Ohio Coal Development Office within the Ohio Department of Development (oCDO), and Babcock& Wilcox-a McDermott company (B&W).

  1. Unconventional emergence of elastic softening induced by magnetic fields in the unusual heavy-fermion compound PrFe sub 4 P sub 1 sub 2

    CERN Document Server

    Nakanishi, Y; Yamaguchi, T; Hazama, H; Nemoto, Y; Goto, T; Matsuda, T D; Sugawara, H; Sato, H

    2002-01-01

    Ultrasonic measurement on the filled skutterudite compound PrFe sub 4 P sub 1 sub 2 exhibits a mysterious temperature dependence of the elastic constant (C sub 1 sub 1 - C sub 1 sub 2)/2. Pronounced elastic softening at low temperatures is revived by applying a magnetic field. This fact strongly suggests the 4f-multiplet ground state of the Pr ion split by the crystalline electric field (CEF) to be a GAMMA sub 3 non-Kramers doublet. The expectation value of a quadrupole moment with GAMMA sub 3 symmetry in the CEF ground state, which leads to elastic softening at low temperature, was evaluated by theoretical fitting to the present results. This may imply that suppression of the electric quadrupole Kondo effect occurs in PrFe sub 4 P sub 1 sub 2 and the quadrupole moment becomes steady due to the application of a magnetic field. (letter to the editor)

  2. Fabrication and performance analysis of MEMS-based Variable Emissivity Radiator for Space Applications

    International Nuclear Information System (INIS)

    Lee, Changwook; Oh, Hyung-Ung; Kim, Taegyu

    2014-01-01

    All Louver was typically representative as the thermal control device. The louver was not suitable to be applied to small satellite, because it has the disadvantage of increase in weight and volume. So MEMS-based variable radiator was developed to support the disadvantage of the louver MEMS-based variable emissivity radiator was designed for satellite thermal control. Because of its immediate response and low power consumption. Also MEMS- based variable emissivity radiator has been made smaller by using MEMS process, it could be solved the problem of the increase in weight and volume, and it has a high reliability and immediate response by using electrical control. In this study, operation validation of the MEMS radiator had been carried out, resulting that emissivity could be controlled. Numerical model was also designed to predict the thermal control performance of MEMS-based variable emissivity radiator

  3. Overexpression of persimmon DkXTH1 enhanced tolerance to abiotic stress and delayed fruit softening in transgenic plants.

    Science.gov (United States)

    Han, Ye; Han, Shoukun; Ban, Qiuyan; He, Yiheng; Jin, Mijing; Rao, Jingping

    2017-04-01

    DkXTH1 promoted cell elongation and more strength to maintain structural integrity by involving in cell wall assembly, thus enhanced tolerance to abiotic stress with broader phenotype in transgenic plants. Xyloglucan endotransglucosylase/hydrolase (XTH) is thought to play a key role in cell wall modifications by cleaving and re-joining xyloglucan, and participates in the diverse physiological processes. DkXTH1 was found to peak in immature expanding persimmon fruit, and its higher expression level exhibited along with firmer fruit during storage. In the present study, transgenic Arabidopsis and tomato plants were generated with DkXTH1 constitutively expressed. Overexpression of DkXTH1 enhanced tolerance to salt, ABA and drought stresses in transgenic Arabidopsis plants with respect to root and leaf growth, and survival. Transgenic tomatoes collected at the mature green stage, presented delayed fruit softening coupled with postponed color change, a later and lower ethylene peak, and higher firmness in comparison with the wild-type tomatoes during storage. Furthermore, broader leaves and tomato fruit with larger diameter were gained in transgenic Arabidopsis and tomato, respectively. Most importantly, transgenic plants exhibited more large and irregular cells with higher density of cell wall and intercellular spaces, resulting from the overactivity of XET enzymes involving in cell wall assembly. We suggest that DkXTH1 expression resulted in cells with more strength and thickness to maintain structural integrity, and thus enhanced tolerance to abiotic stress and delayed fruit softening in transgenic plants.

  4. Significance, evolution and recent advances in adsorption technology, materials and processes for desalination, water softening and salt removal.

    Science.gov (United States)

    Alaei Shahmirzadi, Mohammad Amin; Hosseini, Seyed Saeid; Luo, Jianquan; Ortiz, Inmaculada

    2018-06-01

    Desalination and softening of sea, brackish, and ground water are becoming increasingly important solutions to overcome water shortage challenges. Various technologies have been developed for salt removal from water resources including multi-stage flash, multi-effect distillation, ion exchange, reverse osmosis, nanofiltration, electrodialysis, as well as adsorption. Recently, removal of solutes by adsorption onto selective adsorbents has shown promising perspectives. Different types of adsorbents such as zeolites, carbon nanotubes (CNTs), activated carbons, graphenes, magnetic adsorbents, and low-cost adsorbents (natural materials, industrial by-products and wastes, bio-sorbents, and biopolymer) have been synthesized and examined for salt removal from aqueous solutions. It is obvious from literature that the existing adsorbents have good potentials for desalination and water softening. Besides, nano-adsorbents have desirable surface area and adsorption capacity, though are not found at economically viable prices and still have challenges in recovery and reuse. On the other hand, natural and modified adsorbents seem to be efficient alternatives for this application compared to other types of adsorbents due to their availability and low cost. Some novel adsorbents are also emerging. Generally, there are a few issues such as low selectivity and adsorption capacity, process efficiency, complexity in preparation or synthesis, and problems associated to recovery and reuse that require considerable improvements in research and process development. Moreover, large-scale applications of sorbents and their practical utility need to be evaluated for possible commercialization and scale up. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Reduced softening of EUROFER 97 under thermo-mechanical and multiaxial fatigue loading and its impact on the design rules

    International Nuclear Information System (INIS)

    Aktaa, J.; Weick, M.; Petersen, C.

    2007-01-01

    Full text of publication follows: Toward test blanket module (TBM) in ITER and DEMO fusion power plants design rules for components built from EUROFER 97 get more and more in the midpoint of interest. One of the specific characteristic of EUROFER 97 as a ferritic-martensitic steel is its cyclic softening yielding to lower stresses under strain controlled fatigue loading and thus longer lifetimes. However our thermo-mechanical and multiaxial fatigue tests showed lifetimes remarkably lower than those expected on the base of isothermal uniaxial fatigue tests. Reduced cyclic softening observed in these experiments is believed as one of the reasons of the shorter fatigue lifetimes. When applying the design rules, derived for EUROFER 97 on the base of isothermal uniaxial data considering the recommendations in the ASME and RCC-MR code, to our thermo-mechanical and multiaxial fatigue tests for verification strong loss in their conservatism has been found. The lifetimes observed in a part of the multiaxial experiments are even lower than the design lifetimes supposed to be sufficiently conservative. To overcome this problem new design rules are proposed among others on the base of damage and lifetime prediction model developed lately for EUROFER 97. In this paper the experimental findings as well as the new design approaches will be presented and discussed. (authors)

  6. The oxidized porous silicon field emission array

    International Nuclear Information System (INIS)

    Smith, D.D.; Demroff, H.P.; Elliott, T.S.; Kasprowicz, T.B.; Lee, B.; Mazumdar, T.K.; McIntyre, P.M.; Pang, Y.; Trost, H.J.

    1993-01-01

    The goal of developing a highly efficient microwave power source has led the authors to investigate new methods of electron field emission. One method presently under consideration involves the use of oxidized porous silicon thin films. The authors have used this technology to fabricate the first working field emission arrays from this substance. This approach reduces the diameter of an individual emitter to the nanometer scale. Tests of the first samples are encouraging, with extracted electron currents to nearly 1 mA resulting from less than 20 V of pulsed DC gate voltage. Modulated emission at 5 MHz was also observed. Developments of a full-scale emission array capable of delivering an electron beam at 18 GHz of minimum density 100 A/cm 2 is in progress

  7. Swift captures the spectrally evolving prompt emission of GRB070616

    Science.gov (United States)

    Starling, R. L. C.; O'Brien, P. T.; Willingale, R.; Page, K. L.; Osborne, J. P.; de Pasquale, M.; Nakagawa, Y. E.; Kuin, N. P. M.; Onda, K.; Norris, J. P.; Ukwatta, T. N.; Kodaka, N.; Burrows, D. N.; Kennea, J. A.; Page, M. J.; Perri, M.; Markwardt, C. B.

    2008-02-01

    The origins of gamma-ray burst (GRB) prompt emission are currently not well understood and in this context long, well-observed events are particularly important to study. We present the case of GRB070616, analysing the exceptionally long-duration multipeaked prompt emission, and later afterglow, captured by all the instruments on-board Swift and by Suzaku Wide-Band All-Sky Monitor (WAM). The high-energy light curve remained generally flat for several hundred seconds before going into a steep decline. Spectral evolution from hard to soft is clearly taking place throughout the prompt emission, beginning at 285s after the trigger and extending to 1200s. We track the movement of the spectral peak energy, whilst observing a softening of the low-energy spectral slope. The steep decline in flux may be caused by a combination of this strong spectral evolution and the curvature effect. We investigate origins for the spectral evolution, ruling out a superposition of two power laws and considering instead an additional component dominant during the late prompt emission. We also discuss origins for the early optical emission and the physics of the afterglow. The case of GRB070616 clearly demonstrates that both broad-band coverage and good time resolution are crucial to pin down the origins of the complex prompt emission in GRBs. This paper is dedicated to the memory of Dr Francesca Tamburelli who died during its production. Francesca played a fundamental role within the team which is in charge of the development of the Swift X-Ray Telescope (XRT) data analysis software at the Italian Space Agency's Science Data Centre in Frascati. She is sadly missed. E-mail: rlcs1@star.le.ac.uk

  8. Comparison of Y{sub 2}O{sub 3}:Bi{sup 3+} phosphor thin films fabricated by the spin coating and radio frequency magnetron techniques

    Energy Technology Data Exchange (ETDEWEB)

    Jafer, R.M.; Yousif, A. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Department of Physics, Faculty of Education, University of Khartoum, P.O. Box 321, Postal Code 11115 Omdurman (Sudan); Kumar, Vinod [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Photovoltaic Laboratory, Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016 (India); Pathak, Trilok Kumar [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Semiconductor Physics Lab, Department of Physics, Gurukula Kangri University, Haridwar (India); Purohit, L.P. [Semiconductor Physics Lab, Department of Physics, Gurukula Kangri University, Haridwar (India); Swart, H.C., E-mail: swarthc@ufs.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Coetsee, E., E-mail: CoetseeE@ufs.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa)

    2016-09-15

    The reactive radio-frequency (RF) magnetron sputtering and spin coating fabrication techniques were used to fabricate Y{sub 2−x}O{sub 3}:Bi{sub x=0.5%} phosphor thin films. The two techniques were analysed and compared as part of investigations being done on the application of down-conversion materials for a Si solar cell. The morphology, structural and optical properties of these thin films were investigated. The X-ray diffraction results of the thin films fabricated by both techniques showed cubic structures with different space groups. The optical properties showed different results because the Bi{sup 3+} ion is very sensitive towards its environment. The luminescence results for the thin film fabricated by the spin coating technique is very similar to the luminescence observed in the powder form. It showed three obvious emission bands in the blue and green regions centered at about 360, 410 and 495 nm. These emissions were related to the {sup 3}P{sub 1}–{sup 1}S{sub 0} transition of the Bi{sup 3+} ion situated in the two different sites of the Y{sub 2}O{sub 3} matrix with I a-3(206) space group. Whereas the thin film fabricated by the radio frequency magnetron technique showed a broad single emission band in the blue region centered at about 416 nm. This was assigned to the {sup 3}P{sub 1}–{sup 1}S{sub 0} transition of the Bi{sup 3+} ion situated in one of the Y{sub 2}O{sub 3} matrix's sites with a Fm-3 (225) space group. The spin coating fabrication technique is suggested to be the best technique to fabricate the Y{sub 2}O{sub 3}:Bi{sup 3+} phosphor thin films. - Highlights: • RF sputtering and spin coating were used to fabricate Y{sub 2−x}O{sub 3}:Bi{sub x=0.5%} phosphor thin films. • XRD results of the two films showed cubic structures with different space groups. • PL showed different emission for the Bi{sup 3+} ions in the two films. • Three emission bands in the blue and green regions centered at about 360, 410 and 495 nm. • RF

  9. Dynamic Softening or Stiffening a Supramolecular Hydrogel by Ultraviolet or Near-Infrared Light.

    Science.gov (United States)

    Zheng, Zhao; Hu, Jingjing; Wang, Hui; Huang, Junlin; Yu, Yihua; Zhang, Qiang; Cheng, Yiyun

    2017-07-26

    The development of light-responsive hydrogels that exhibit switchable size and mechanical properties with temporal and spatial resolution is of great importance in many fields. However, it remains challenging to prepare smart hydrogels that dramatically change their properties in response to both ultraviolet (UV) and near-infrared (NIR) lights. Here, we designed a dual-light responsive supramolecular gel by integrating UV light-switchable host-guest recognition, temperature responsiveness, and NIR photothermal ability in the gel. The gel could rapidly self-heal and is capable of both softening and stiffening controlled by UV and NIR lights, respectively. Besides stiffness modulation, the bending direction of the gel can be controlled by UV or NIR light irradiation. The smart gel makes it possible to generate dynamic materials that respond to both UV and NIR lights and represents a useful tool that might be used to modulate cellular microenvironments with spatiotemporal resolution.

  10. Phase-change materials: vibrational softening upon crystallization and its impact on thermal properties

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, Toshiyuki [Materials Science and Analysis Technology Centre, Panasonic Corporation, Osaka (Japan); Japan Synchrotron Radiation Research Institute Hyogo (Japan); Yamada, Noboru [Digital and Network Technology Development Centre, Panasonic Corporation, Osaka (Japan); Japan Synchrotron Radiation Research Institute Hyogo (Japan); Kojima, Rie [Digital and Network Technology Development Centre, Panasonic Corporation, Osaka (Japan); Shamoto, Shinichi [Neutron Science Research Centre, Japan Atomic Energy Research Institute, Ibaraki (Japan); Sato, Masugu; Tanida, Hajime; Uruga, Tomoya; Kohara, Shinji [Japan Synchrotron Radiation Research Institute, Hyogo (Japan); Takata, Masaki [SPring-8/RIKEN, Hyogo, Japan, Department of Advanced Materials Science, School of Frontier Sciences, The University of Tokyo, Chiba (Japan); Zalden, Peter; Bruns, Gunnar; Wuttig, Matthias [I. Physikalisches Institut und JARA-FIT, RWTH Aachen Univ. (Germany); Sergueev, Ilya [European Synchrotron Radiation Facility, Grenoble (France); Wille, Hans Christian [Deutsches Elektronen-Synchrotron, Hamburg (Germany); Hermann, Raphael Pierre [Juelich Centre for Neutron Science JCNS and Peter Gruenberg, Institut PGI, JARA-FIT, Forschungszentrum Juelich GmbH (Germany); Faculte des Sciences, Universite de Liege (Belgium)

    2011-06-21

    Crystallization of an amorphous solid is usually accompanied by a significant change of transport properties, such as an increase in thermal and electrical conductivity. This fact underlines the importance of crystalline order for the transport of charge and heat. Phase-change materials, however, reveal a remarkably low thermal conductivity in the crystalline state. The small change in this conductivity upon crystallization points to unique lattice properties. The present investigation reveals that the thermal properties of the amorphous and crystalline state of phase-change materials show remarkable differences such as higher thermal displacements and a more pronounced anharmonic behavior in the crystalline phase. These findings are related to the change of bonding upon crystallization, which leads to an increase of the sound velocity and a softening of the optical phonon modes at the same time. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Effects of mean-field and softening of equation of state on elliptic flow in Au+Au collisions at \\sqrt{{s}_{\\rm{NN}}}=5\\,{GeV} from the JAM model

    Science.gov (United States)

    Chen, Jiamin; Luo, Xiaofeng; Liu, Feng; Nara, Yasushi

    2018-01-01

    We perform a systematic study of elliptic flow (v 2) in Au+Au collisions at \\sqrt{{s}NN}}=5 {GeV} by using a microscopic transport model, JAM. The centrality, pseudorapidity, transverse momentum and beam energy dependence of v 2 for charged as well as identified hadrons are studied. We investigate the effects of both the hadronic mean-field and the softening of equation of state (EoS) on elliptic flow. The softening of the EoS is realized by imposing attractive orbits in two body scattering, which can reduce the pressure of the system. We found that the softening of the EoS leads to the enhancement of v 2, while the hadronic mean-field suppresses v 2 relative to the cascade mode. It indicates that elliptic flow at high baryon density regions is highly sensitive to the EoS and the enhancement of v 2 may probe the signature of a first-order phase transition in heavy-ion collisions at beam energies of a strong baryon stopping region. Supported by the MoST of China 973-Project (2015CB856901), NSFC (11575069, 11221504). Y. N. is supported by the Grants-in-Aid for Scientific Research from JSPS (15K05079, 15K05098)

  12. Visible Light Emission from Atomic Scale Patterns Fabricated by the Scanning Tunneling Microscope

    DEFF Research Database (Denmark)

    Thirstrup, C.; Sakurai, M.; Stokbro, Kurt

    1999-01-01

    Scanning tunneling microscope (STM) induced light emission from artificial atomic scale structures comprising silicon dangling bonds on hydrogen-terminated Si(001) surfaces has been mapped spatially and analyzed spectroscopically in the visible spectral range. The light emission is based on a novel...

  13. Experimental model for neutron scattering in disordered systems: static structure factor determination of mode-softening

    International Nuclear Information System (INIS)

    Siegel, E.

    1982-01-01

    The generalized-disorder collective-boson mode-softening universality-principle (GDCBMSUP) for collective-boson mode dispersion in disordered systems (liquids, quantum liquids, glasses, powders, disordered magnets, plasmas...), a unified qualitative and semi-qualitative and semi-quantitative descriptive prescription for treating the properties of very differently disordered systems, is directly dependent upon a measurement (or calculation) of the static structure factor S(k) determined from a frequency average of the dynamic structure factor S(k,w), a multiple of the inelastic differential neutron scattering cross section d 2 sigma/dwdOMEGA. The prescription for this principle is given and, because of its universal applicability to disordered systems of any type with any type and/or degree of disorder, the neutron scattering determination of S(k) takes on renewed importance

  14. A fabrication method for field emitter array of carbon nanotubes with improved carbon nanotube rooting

    Energy Technology Data Exchange (ETDEWEB)

    Chouhan, V., E-mail: vchouhan@post.kek.jp [School of High Energy Accelerator, The Graduate University for Advanced Studies, Tsukuba 305-0801 (Japan); Noguchi, T. [High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 (Japan); Kato, S. [School of High Energy Accelerator, The Graduate University for Advanced Studies, Tsukuba 305-0801 (Japan); High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 (Japan)

    2015-11-30

    We have developed a technique for fabrication of a field emitter array (FEA) of carbon nanotubes (CNTs) to obtain a high emission current along with a high current density. The FEA was prepared with many small equidistant circular emitters of randomly oriented multiwall carbon nanotubes. The fabrication of a FEA substrate followed with deposition of titanium nitride (TiN) film on a tantalum (Ta) substrate and circular titanium (Ti) islands on the TiN coated Ta substrate in a DC magnetron sputtering coater. CNTs were dispersed on the substrate and rooted into the circular Ti islands at a high temperature to prepare an array of circular emitters of CNTs. The TiN film was applied on a Ta substrate to make a reaction barrier between the Ta substrate and CNTs in order to root CNTs only into the Ti islands without a reaction with the Ta substrate at the high temperature. A high emission current of 31.7 mA with an effective current density of 34.5 A/cm{sup 2} was drawn at 6.5 V/μm from a FEA having 130 circular emitters in a diameter of 50 μm and with a pitch of 200 μm. The high emission current was ascribed to the good quality rooting of CNTs into the Ti islands and an edge effect, in which a high emission current was expected from the peripheries of the circular emitters. - Highlights: • We developed a method to fabricate a field emitter array of carbon nanotubes (CNTs). • CNT rooting into array of titanium islands was improved at a high temperature. • Titanium nitride film was used to stop reaction between CNT and tantalum substrate. • Strong edge effect was achieved from an array of small circular emitters of CNTs. • The good quality CNT rooting and the edge effect enhanced an emission current.

  15. Energy and greenhouse gas emissions of Australian cotton : from field to fabric

    Energy Technology Data Exchange (ETDEWEB)

    Khabbaz, B.G.; Chen, G.; Baillie, C. [Southern Queensland Univ., Toowoomba, QLD (Australia). Faculty of Engineering and Surveying, National Centre for Engineering in Agriculture

    2010-07-01

    This paper reported on a study in which a life cycle assessment (LCA) of cotton production in Australia was conducted to evaluate energy use and greenhouse gas (GHG) emissions from tillage to export shipping. The study showed that on-farm indirect cotton-farming is the most energy consuming component, consuming nearly 32.36 GJ/ha of energy. On-farm indirect cotton-farming is the most GHG emitting component, emitting about 1.64 tonne of carbon dioxide (CO{sub 2})/ha. Energy use and the emissions by off-farm direct cotton-farming were calculated as 5.09 GJ/ha and 0.14 tonne CO{sub 2}/ha respectively. Energy consumed by off-farm indirect farming was found to be 0.036 GJ/ha or 0.002 tonne CO{sub 2}/ha. The total energy usage and greenhouse gas emissions in the Australian cotton farming system were estimated to be 46.43 GJ/ha and 2.42 tonnes CO{sub 2}/ha for on-farm, and 5.13 GJ/ha and 0.145 tonne CO{sub 2}/ha for the off-farm sections. In total, after including emissions caused by nitrogen based fertilizers, 51.57 GJ/ha of energy is used and 2.86 tonnes CO{sub 2}/ha is emitted by a typical Australian cotton farming system from tillage to export shipping.

  16. Gamma-ray and neutrino diffuse emissions of the Galaxy above the TeV

    CERN Document Server

    Gaggero, Daniele; Marinelli, Antonio; Urbano, Alfredo; Valli, Mauro

    2016-01-01

    As recently shown, Fermi-LAT measurements of the diffuse gamma-ray emission from the Galaxy favor the presence of a smooth softening in the primary cosmic-ray spectrum with increasing Galactocentric distance. This result can be interpreted in terms of a spatial-dependent rigidity scaling of the diffusion coefficient. The DRAGON code was used to build a model based on such feature. That scenario correctly reproduces the latest Fermi-LAT results as well as local cosmic-ray measurements from PAMELA, AMS-02 and CREAM. Here we show that the model, if extrapolated at larger energies, grasps both the gamma-ray flux measured by MILAGRO at 15 TeV and the H.E.S.S. data from the Galactic ridge, assuming that the cosmic-ray spectral hardening found by those experiments at about 250 GeV/n is present in the whole inner Galactic plane region. Moreover, we show as that model also predicts a neutrino emission which may account for a significant fraction, as well as for the correct spectral shape, of the astrophysical flux mea...

  17. Eco-friendly surface modification on polyester fabrics by esterase treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jindan; Cai, Guoqiang; Liu, Jinqiang; Ge, Huayun; Wang, Jiping, E-mail: jipingwanghz@gmail.com

    2014-03-01

    Graphical abstract: - Highlights: • We used a simple and easy way to measure the enzyme activity. • We studied the mechanism by characterizing the chemical changes in the surface of fabric. • We studied the advantages in surface wettability, fiber integrity and mechanical performance of cutinase treated fabrics. • Cutinase pretreated fibers exhibited much improved fabric wicking and better fiber integrity comparing to alkali treated ones. • Cutinase pretreatment technology promotes energy conservation and emission reduction. - Abstract: Currently, traditional alkali deweighting technology is widely used to improve the hydrophilicity of polyester fabrics. However, the wastewater and heavy chemicals in the effluent cause enormous damage to the environment. Esterase treatment, which is feasible in mild conditions with high selectivity, can provide a clean and efficient way for polyester modification. Under the optimum conditions, the polyester fabric hydrolysis process of esterase had a linear kinetics. X-ray photoelectron spectrometry (XPS) results showed that hydroxyl and carboxyl groups were produced only on the surface of modified fiber without changing the chemical composition of the bulk. These fibers exhibited much improved fabric wicking, as well as greatly improved oily stain removal performance. Compared to the harsh alkali hydrolysis, the enzyme treatment led to smaller weight loss and better fiber integrity. The esterase treatment technology is promising to produce higher-quality polyester textiles with an environmental friendly approach.

  18. The effect of gas tungsten arc welding and pulsed-gas tungsten arc welding processes’ parameters on the heat affected zone-softening behavior of strain-hardened Al–6.7Mg alloy

    International Nuclear Information System (INIS)

    Hadadzadeh, Amir; Ghaznavi, Majid Mahmoudi; Kokabi, Amir Hossein

    2014-01-01

    Highlights: • The strain-hardened Al–6.7Mg alloy was welded using GTAW and PGTAW processes. • The HAZ softening behavior of the welding joint was characterized. • Employing pulsed current in GTAW process eliminated the HAZ softening. • Duration ratio did not affect the weld strength while the frequency influenced it. - Abstract: The heat affected zone (HAZ) softening behavior of strain-hardened Al–6.7Mg alloy welded by gas tungsten arc welding (GTAW) process was investigated. Increasing the heat input during welding led to formation of a wider HAZ. Moreover, the size of the precipitates was increased at higher heat inputs. Consequently, by increasing the heat input, lower strength was obtained for the welding joints. At the second stage of the study, pulsed-GTAW (PGTAW) process was employed to improve the strength of the joints. It was observed that the overall strength of the welding joints was improved and the fracture during tensile test was moved from the HAZ to the fusion zone. Moreover, the effect of duration ratio and pulse frequency was studied. For the current study, the duration ratio did not have a significant effect on the strength and microstructure of the weld, but increasing the frequency led to higher strength of the weld and finer microstructure

  19. The anti-senescence effect of resveratrol reduces postharvest softening rate in cherimoya fruit

    Directory of Open Access Journals (Sweden)

    Aaran Aquilino Morales Pérez

    2014-03-01

    Full Text Available Due to its climateric behavior, the cherimoya fruit (Annona cherimola Mill. is a very perishable commodity. Present research aimed to observe the anti-senescence effect of resveratrol (RVS; this plant bioregulator was applied at 1.6, 0.16, 0.016 and 0 mM at 0, 8 and 15 days before harvest (DBH. At 1, 7 and 15 days of postharvest life, several physical and biochemical determinations were performed on the cherimoya fruit. After 15 days under room temperature conditions, in relation to control fruit, those fruit with 1.6 mM RVS applied 15 DBH reduced skin softening rate 78% and 54% for ‘Fino de Jete’ and ‘Bronceada’, respectively. Similarly, after 15 days of storage, a non-trained group of tasters preferred those fruit treated with 1.6 mM RVS 15 DBH; they qualified the fruit as better than the control fruit in presentation, aroma and taste.

  20. Anisotropic lattice softening near the structural phase transition in the thermosalient crystal 1,2,4,5-tetrabromobenzene.

    Science.gov (United States)

    Zakharov, Boris A; Michalchuk, Adam A L; Morrison, Carole A; Boldyreva, Elena V

    2018-03-28

    The thermosalient effect (crystal jumping on heating) attracts much attention as both an intriguing academic phenomenon and in relation to its potential for the development of molecular actuators but its mechanism remains unclear. 1,2,4,5-Tetrabromobenzene (TBB) is one of the most extensively studied thermosalient compounds that has been shown previously to undergo a phase transition on heating, accompanied by crystal jumping and cracking. The difference in the crystal structures and intermolecular interaction energies of the low- and high-temperature phases is, however, too small to account for the large stress that arises over the course of the transformation. The energy is released spontaneously, and crystals jump across distances that exceed the crystal size by orders of magnitude. In the present work, the anisotropy of lattice strain is followed across the phase transition by single-crystal X-ray diffraction, focusing on the structural evolution from 273 to 343 K. A pronounced lattice softening is observed close to the transition point, with the structure becoming more rigid immediately after the phase transition. The diffraction studies are further supported by theoretical analysis of pairwise intermolecular energies and zone-centre lattice vibrations. Only three modes are found to monotonically soften up to the phase transition, with complex behaviour exhibited by the remaining lattice modes. The thermosalient effect is delayed with respect to the structural transformation itself. This can originate from the martensitic mechanism of the transformation, and the accumulation of stress associated with vibrational switching across the phase transition. The finding of this study sheds more light on the nature of the thermosalient effect in 1,2,4,5-tetrabromobenzene and can be applicable also to other thermosalient compounds.

  1. DEVELOPMENT OF THE MODEL OF GALACTIC INTERSTELLAR EMISSION FOR STANDARD POINT-SOURCE ANALYSIS OF FERMI LARGE AREA TELESCOPE DATA

    Energy Technology Data Exchange (ETDEWEB)

    Acero, F.; Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d’Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Ackermann, M.; Buehler, R. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M. [Department of Physics and Astronomy, Clemson University, Kinard Lab of Physics, Clemson, SC 29634-0978 (United States); Albert, A.; Baldini, L.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A.; Cameron, R. A. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bellazzini, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bissaldi, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Bonino, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, I-10125 Torino (Italy); Brandt, T. J.; Buson, S. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bregeon, J. [Laboratoire Univers et Particules de Montpellier, Université Montpellier, CNRS/IN2P3, Montpellier (France); Bruel, P., E-mail: isabelle.grenier@cea.fr, E-mail: casandjian@cea.fr [Laboratoire Leprince-Ringuet, École polytechnique, CNRS/IN2P3, Palaiseau (France); and others

    2016-04-01

    Most of the celestial γ rays detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope originate from the interstellar medium when energetic cosmic rays interact with interstellar nucleons and photons. Conventional point-source and extended-source studies rely on the modeling of this diffuse emission for accurate characterization. Here, we describe the development of the Galactic Interstellar Emission Model (GIEM), which is the standard adopted by the LAT Collaboration and is publicly available. This model is based on a linear combination of maps for interstellar gas column density in Galactocentric annuli and for the inverse-Compton emission produced in the Galaxy. In the GIEM, we also include large-scale structures like Loop I and the Fermi bubbles. The measured gas emissivity spectra confirm that the cosmic-ray proton density decreases with Galactocentric distance beyond 5 kpc from the Galactic Center. The measurements also suggest a softening of the proton spectrum with Galactocentric distance. We observe that the Fermi bubbles have boundaries with a shape similar to a catenary at latitudes below 20° and we observe an enhanced emission toward their base extending in the north and south Galactic directions and located within ∼4° of the Galactic Center.

  2. Study of green state ceramics damage by acoustic emission

    International Nuclear Information System (INIS)

    Kerboul, Genevieve

    1992-01-01

    Dry pressing is a delicate operation of the conventional process of elaboration of ceramic materials as most of the detected defects in sintered products are appearing during it, this research thesis reports the study of ceramic powder forming by using the non destructive technique of acoustic emission to detect defects in pressed samples as soon as they initiate. An original signal processing system has also been designed to analyse the effective value of acoustic signals emitted during pressing on industrial hydraulic presses, but comprising a single tooling. Three powders have been tested: UO_2, Al_2O_3 and a UO_2-PuO_2 mixture. In a first part, the author recalls some elements regarding the fabrication of nuclear fuel, knowledge on powder pressing, and general principles of acoustic emission. She reports a feasibility study and then defines experimental conditions. In the second part, she presents acoustic emission periods during a pressing cycle, and reports the study of the response of flawless and flawed pressed samples. She reports the examination of their evolution with respect to powder nature and to fabrication process parameters. She reports a detailed analysis of acoustic emission parameters as a basis to define the principle of operation of an in situ and real time detection of flawed pressed samples [fr

  3. Combined effect of structural softening and magneto-elastic coupling on elastic coefficients of Ni-Mn-Ga austenite

    Czech Academy of Sciences Publication Activity Database

    Seiner, Hanuš; Heczko, Oleg; Sedlák, Petr; Bodnárová, Lucie; Novotný, Michal; Kopeček, Jaromír; Landa, Michal

    2013-01-01

    Roč. 577, November 2013 (2013), S131-S135 ISSN 0925-8388 R&D Projects: GA ČR GAP107/10/0824; GA ČR(CZ) GA101/09/0702; GA ČR(CZ) GAP107/11/0391; GA MŠk(CZ) 1M06031 Institutional research plan: CEZ:AV0Z20760514; CEZ:AV0Z10100520 Keywords : Ni2MnGa * elastic constants of Ni-Mn-Ga austenite * magnetic shape memory effect * martensitic transformation * elastic softening Subject RIV: BM - Solid Matter Physics ; Magnetism; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 2.726, year: 2013 http://www.sciencedirect.com/science/article/pii/S0925838812000539

  4. Evaluation of the impact of lime softening waste disposal in ...

    Science.gov (United States)

    Drinking water treatment residues (WTR), generated from the lime softening processes, are commonly reused or disposed of in a number of applications; these include use as a soil amendment or a subsurface fill. Recently questions were posed by the Florida regulatory community on whether lime WTR that contained a small percentage of other treatment additives could appropriately be characterized as lime WTR, in terms of its total element content and leachability. A study was done using a broad range of leaching tests, including a framework of tests recently adopted by the United States-Environmental Protection Agency (EPA) and tests that were modified to account for scenario specific conditions, such as the presence of natural organic matter (NOM). The results of these additional leaching tests demonstrated that certain applications, including disposal in a water body with NOM or in placement anaerobic environment, did result in increased leaching of elements such as Fe, and that a site specific assessment should be conducted prior to using WTR in these types of applications. This study illustrates the importance of leaching test selection when attempting to provide an estimation of release in practice. Although leaching tests are just one component in a beneficial use assessment and other factors including aquifer and soil properties play a significant role in the outcome, leaching tests should be tailored to most appropriately represent the scenario or reuse ap

  5. Method of synthesizing small-diameter carbon nanotubes with electron field emission properties

    Science.gov (United States)

    Liu, Jie (Inventor); Du, Chunsheng (Inventor); Qian, Cheng (Inventor); Gao, Bo (Inventor); Qiu, Qi (Inventor); Zhou, Otto Z. (Inventor)

    2009-01-01

    Carbon nanotube material having an outer diameter less than 10 nm and a number of walls less than ten are disclosed. Also disclosed are an electron field emission device including a substrate, an optionally layer of adhesion-promoting layer, and a layer of electron field emission material. The electron field emission material includes a carbon nanotube having a number of concentric graphene shells per tube of from two to ten, an outer diameter from 2 to 8 nm, and a nanotube length greater than 0.1 microns. One method to fabricate carbon nanotubes includes the steps of (a) producing a catalyst containing Fe and Mo supported on MgO powder, (b) using a mixture of hydrogen and carbon containing gas as precursors, and (c) heating the catalyst to a temperature above 950.degree. C. to produce a carbon nanotube. Another method of fabricating an electron field emission cathode includes the steps of (a) synthesizing electron field emission materials containing carbon nanotubes with a number of concentric graphene shells per tube from two to ten, an outer diameter of from 2 to 8 nm, and a length greater than 0.1 microns, (b) dispersing the electron field emission material in a suitable solvent, (c) depositing the electron field emission materials onto a substrate, and (d) annealing the substrate.

  6. Flaw evolution monitoring by acoustic emission technique

    International Nuclear Information System (INIS)

    Ghia, S.; Sala, A.; Lucia, A.

    1986-01-01

    Flaw evolution monitoring during mechanical fatigue test has been performed by acoustic emission (AE) technique. Testing on 1:5 reduced scale vessel containing fabrication defects was carried out in the frame of an European program for pressure component residual life evaluation. Characteristics of AE signals associated to flaw evolution are discussed

  7. Top-down fabrication of plasmonic nanostructures for deterministic coupling to single quantum emitters

    NARCIS (Netherlands)

    Pfaff, W.; Vos, A.; Hanson, R.

    2013-01-01

    Metal nanostructures can be used to harvest and guide the emission of single photon emitters on-chip via surface plasmon polaritons. In order to develop and characterize photonic devices based on emitter-plasmon hybrid structures, a deterministic and scalable fabrication method for such structures

  8. Green electroluminescence from ZnO/n-InP heterostructure fabricated by metalorganic chemical vapour deposition

    International Nuclear Information System (INIS)

    Zhu Huichao; Zhang Baolin; Li Xiangping; Dong Xin; Li Wancheng; Guan Hesong; Cui Yongguo; Xia Xiaochuan; Yang Tianpeng; Chang Yuchun; Du Guotong

    2007-01-01

    Vertically aligned ZnO films were deposited on n-InP by metalorganic chemical vapour deposition. X-ray diffraction, field emission scanning electron microscopy and photoluminescence measurements demonstrated that the ZnO films had good quality. By evaporating AuZn electrodes on both ZnO and InP surfaces, a ZnO-based light emitting device was fabricated. Under forward voltage, weak green emissions can be observed in darkness

  9. Extraction of pectic enzymes from of Lulo (Solanum quitoense lam) involved in softening

    International Nuclear Information System (INIS)

    Rodriguez Nieto, Jeimmy Marcela; Restrepo Sanchez, Luz Patricia

    2011-01-01

    The main problem of post-harvest deterioration of Lulo (Solanum quitoense lam) is the softening is the main problem of post-harvest deterioration of Lulo that is generated mainly by the activity of pectic enzymes, which attack the structural network of the cell wall. this research was based on finding the best conditions structural cell wall network for extraction and measurement of enzyme activity pectinesterase (PE), polygalacturonase (PG) and pectato liasa (PL); tools needed to study the further role of these enzymes in the deterioration of pectatelyase fruit softening, due to various metabolic changes. It was found that the first two enzymes can be extracted simultaneously with 20 mm phosphate buffer pH 7.0, 0.06 m NaCl and 60 minutes of extraction, ratio 1:2 (plant material: extraction buffer), pectatelyase extracted with 20 mm phosphate buffer pH 7.0, 20 mm cysteine and 30 minutes of extraction, ratio 1:3. for quantification of pectinesterase activity is necessary to incubate 15 minutes at 42 Celsius degrade, 2500 μl of crude enzyme extract (EE) in 20 mm phosphate buffer pH 7.0, to 0.15 m NaCl and 1.6% citrus pectin as (CP) substrate with apparent km values of 3.78% CP and vmax 17.95 mol h+/min, mg prot. for the quantification of pectinesterase activity is necessary to incubate 15 minutes to 42 Celsius degrade 2500 μl of crude enzyme extract (EE) in 20 mm phosphate buffer pH 7.0, 0.15 m NaCl and 1.6% citrus pectin as substrate with apparent km values of 3.78% CP and 17.95 μ vmax mol h+/min Mg prot. for the quantification of polygalacturonase activity is necessary to incubate 15 minutes to 37 Celsius degrade 30 μl (EE) in 200 mm acetate buffer pH 4.5, 0.25 m NaCl and 1.0% of APG as substrate, with apparent km values 0.141% of APG and vmax 28.46 nkat/s mg prot. for the quantification of the pectatelyase activity is necessary to incubate 2 minutes to 17 Celsius degrade, 100 μl (EE) in buffer tris: HCl pH 8.5, 50 mm 4 mm CaCl2 and 0.1% PGA as substrate, with

  10. Waste minimization activities in the Materials Fabrication Division at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Dini, J.W.

    1991-08-01

    The mission of the Materials Fabrication Division (MFD) is to provide fabrication services and technology in support of all programs at Lawrence Livermore National Laboratory (LLNL). MFD involvement is called for when fabrication activity requires levels of expertise, technology, equipment, process development, hazardous processes, security, or scheduling that is typically not commercially available. Customers are encouraged to utilize private industry for fabrication activity requiring routine processing or for production applications. Our waste minimization (WM) program has been directed at source reduction and recycling in concert with the working definition of waste minimization used by EPA. The principal focus of WM activities has been on hazardous wastes as defined by RCRA, however, all pollutant emissions into air, water and land are being considered as part of the program. The incentives include: (1) economics, (2) regulatory conformance, (3) public image and (4) environmental concern. This report discusses the waste minimization program at LLNL

  11. Dust emission from wet, low-emission coke quenching process

    Science.gov (United States)

    Komosiński, Bogusław; Bobik, Bartłomiej; Konieczny, Tomasz; Cieślik, Ewelina

    2018-01-01

    Coke plants, which produce various types of coke (metallurgical, foundry or heating), at temperatures between 600 and 1200°C, with limited access to oxygen, are major emitters of particulates and gaseous pollutants to air, water and soils. Primarily, the process of wet quenching should be mentioned, as one of the most cumbersome. Atmospheric pollutants include particulates, tar substances, organic pollutants including B(a)P and many others. Pollutants are also formed from the decomposition of water used to quench coke (CO, phenol, HCN, H2S, NH3, cresol) and decomposition of hot coke in the first phase of quenching (CO, H2S, SO2) [1]. The development of the coke oven technology has resulted in the changes made to different types of technological installations, such as the use of baffles in quench towers, the removal of nitrogen oxides by selective NOx reduction, and the introduction of fabric filters for particulates removal. The BAT conclusions for coke plants [2] provide a methodology for the measurement of particulate emission from a wet, low-emission technology using Mohrhauer probes. The conclusions define the emission level for wet quenching process as 25 g/Mgcoke. The conducted research was aimed at verification of the presented method. For two of three quench towers (A and C) the requirements included in the BAT conclusions are not met and emissions amount to 87.34 and 61.35 g/Mgcoke respectively. The lowest particulates emission was recorded on the quench tower B and amounted to 22.5 g/Mgcoke, therefore not exceeding the requirements.

  12. Mixing of phosphorescent and exciplex emission in efficient organic electroluminescent devices.

    Science.gov (United States)

    Cherpak, Vladyslav; Stakhira, Pavlo; Minaev, Boris; Baryshnikov, Gleb; Stromylo, Evgeniy; Helzhynskyy, Igor; Chapran, Marian; Volyniuk, Dmytro; Hotra, Zenon; Dabuliene, Asta; Tomkeviciene, Ausra; Voznyak, Lesya; Grazulevicius, Juozas Vidas

    2015-01-21

    We fabricated a yellow organic light-emitting diode (OLED) based on the star-shaped donor compound tri(9-hexylcarbazol-3-yl)amine, which provides formation of the interface exciplexes with the iridium(III) bis[4,6-difluorophenyl]-pyridinato-N,C2']picolinate (FIrpic). The exciplex emission is characterized by a broad band and provides a condition to realize the highly effective white OLED. It consists of a combination of the blue phosphorescent emission from the FIrpic complex and a broad efficient delayed fluorescence induced by thermal activation with additional direct phosphorescence from the triplet exciplex formed at the interface. The fabricated exciplex-type device exhibits a high brightness of 38 000 cd/m(2) and a high external quantum efficiency.

  13. Fabrication of conductive network formed by polyaniline-ZnO composite on fabric surfaces

    International Nuclear Information System (INIS)

    Zhao Yaping; Cai Zaisheng; Zhou Zhaoyi; Fu Xiaolan

    2011-01-01

    A conductive network consisting of polyaniline (PANI) and PANI/nm-ZnO immobilized on the surfaces of poly(ethylene terephthalate) (PET) fabrics was synthesized by a route involving a wet-chemical technique and in-situ chemical oxidative polymerization procedures. Morphological, structural, thermal and electrical properties of the PET fabrics modified with PANI-ZnO composites were analyzed. X-ray diffraction (XRD) measurements of the composites revealed that the crystal structure of incorporated ZnO undergone a weak distortion during the polymerization reaction and the XRD pattern of PANI was predominate. Attenuated total reflection Fourier transform infrared spectroscopic studies indicated the presence of interaction between ZnO nanorods and molecular chains of PANI in the ZnO/PANI layers. Field emission scanning electron microscope images implied the thin composite layers showed a submicro-sized rod like network and the homogeneous distribution on the substrates. Thermogravimetric studies exhibited that the PET-ZnO/PANI composite had a higher thermal stability than anyone of PET and PET-PANI. The surface resistance of ZnO/PANI conductive films was found to be smaller than the PANI film, which was declined as aniline concentration in adsorption bath increased and reached a relatively low value when Zn(NO 3 ) 2 concentration was at 0.03 mol/L in the precursor solution.

  14. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2014. Scientific Opinion on the substantiation of a health claim related to beta-palmitate and contribution to softening of stools pursuant to Article 14 of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    2014-01-01

    Following an application from Specialised Nutrition Europe (formerly IDACE), submitted for authorisation of a health claim pursuant to Article 14 of Regulation (EC) No 1924/2006 via the Competent Authority of France, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked...... to deliver an opinion on the scientific substantiation of a health claim related to beta-palmitate and contribution to softening of stools. The food constituent, beta-palmitate, that is the subject of the health claim, is sufficiently characterised. Contribution to softening of stools is a beneficial...... physiological effect for infants. In weighing the evidence the Panel took into account that, out of two human intervention studies with important methodological limitations, one suggested a stool-softening effect of beta-palmitate whereas the second did not, that one animal study did not support a stool...

  15. Evaluation of hardening and softening behaviors in Zn–21Al–2Cu alloy processed by equal channel angular pressing

    Directory of Open Access Journals (Sweden)

    José Luis Hernández-Rivera

    2017-10-01

    Full Text Available The microstructural evolution of as-cast and homogenized Zn–21Al–2Cu samples after two and six passes in an equal channel angular pressing (ECAP at room temperature was reported. A homogenization treatment for 24 h at 350 °C was applied to the as-cast samples followed by deformation. An annealing heat treatment was performed on all samples after the ECAP process. Our results showed that the homogenized and deformed samples displayed a uniform fine-grained microstructure after annealing, while as-cast samples without homogenization treatment presented only some regions of fine-grained microstructure. The level of microsegregation was higher in the as-cast samples as compared to the homogenized ones even after annealing. Vickers microhardness measurement on samples after deformation is smaller than the original material indicating a softening. However, after the annealing treatment, the microhardness increased, indicating that there was a slight hardening of the material. Keywords: Severe plastic deformation, ECAP, Work softening, Annealing, Hardening, Fine grain

  16. Effect of acoustic softening on the thermal-mechanical process of ultrasonic welding.

    Science.gov (United States)

    Chen, Kunkun; Zhang, Yansong; Wang, Hongze

    2017-03-01

    Application of ultrasonic energy can reduce the static stress necessary for plastic deformation of metallic materials to reduce forming load and energy, namely acoustic softening effect (ASE). Ultrasonic welding (USW) is a rapid joining process utilizing ultrasonic energy to form a solid state joint between two or more pieces of metals. Quantitative characterization of ASE and its influence on specimen deformation and heat generation is essential to clarify the thermal-mechanical process of ultrasonic welding. In the present work, experiments were set up to found out mechanical behavior of copper and aluminum under combined effect of compression force and ultrasonic energy. Constitutive model was proposed and numerical implemented in finite element model of ultrasonic welding. Thermal-mechanical analysis was put forward to explore the effect of ultrasonic energy on the welding process quantitatively. Conclusions can be drawn that ASE increases structural deformation significantly, which is beneficial for joint formation. Meanwhile, heat generation from both frictional work and plastic deformation is slightly influenced by ASE. Based on the proposed model, relationship between ultrasonic energy and thermal-mechanical behavior of structure during ultrasonic welding was constructed. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Enabling area-selective potential-energy engineering in InGaN/GaN quantum wells by post-growth intermixing

    KAUST Repository

    Shen, Chao

    2015-03-19

    We report on a unique area-selective, post-growth approach in engineering the quantum-confined potential-energy profile of InGaN/GaN quantum wells (QWs) utilizing metal/dielectric-coating induced intermixing process. This led to simultaneous realization of adjacent regions with peak emission of 2.74 eV and 2.82 eV with a high spatial resolution (~1 μm) at the coating boundary. The potential profile softening in the intermixed QW light-emitting diode (LED) was experimentally and numerically correlated, shedding light on the origin of alleviated efficiency droop from 30.5% to 16.6% (at 150 A/cm2). The technique is advantageous for fabricating high efficiency light-emitters, and is amenable to monolithic integration of nitride-based photonic devices.

  18. Enabling area-selective potential-energy engineering in InGaN/GaN quantum wells by post-growth intermixing

    KAUST Repository

    Shen, Chao; Ng, Tien Khee; Ooi, Boon S.

    2015-01-01

    We report on a unique area-selective, post-growth approach in engineering the quantum-confined potential-energy profile of InGaN/GaN quantum wells (QWs) utilizing metal/dielectric-coating induced intermixing process. This led to simultaneous realization of adjacent regions with peak emission of 2.74 eV and 2.82 eV with a high spatial resolution (~1 μm) at the coating boundary. The potential profile softening in the intermixed QW light-emitting diode (LED) was experimentally and numerically correlated, shedding light on the origin of alleviated efficiency droop from 30.5% to 16.6% (at 150 A/cm2). The technique is advantageous for fabricating high efficiency light-emitters, and is amenable to monolithic integration of nitride-based photonic devices.

  19. Research on an improved explosive emission cathode

    International Nuclear Information System (INIS)

    Liu Guozhi; Sun Jun; Shao Hao; Chen Changhua; Zhang Xiaowei

    2009-01-01

    This paper presents a physical description of the cathode plasma process of an explosive emission cathode (EEC) and experimental results on a type of oil-immersed graphite EEC. It is believed that the generation of a cathode plasma is mainly dependent on the state of the cathode surface, and that adsorbed gases and dielectrics on the cathode surface play a leading role in the formation of the cathode plasma. Based on these ideas, a type of oil-immersed graphite EEC is proposed and fabricated. The experiments indicate that the oil-immersed cathodes have improved emissive properties and longer lifetimes.

  20. Optical emission spectroscopy during fabrication of indium-tin-oxynitride films by RF-sputtering

    International Nuclear Information System (INIS)

    Koufaki, M.; Sifakis, M.; Iliopoulos, E.; Pelekanos, N.; Modreanu, M.; Cimalla, V.; Ecke, G.; Aperathitis, E.

    2006-01-01

    Indium-tin-oxide (ITO) and indium-tin-oxynitride (ITON) films have been deposited on glass by rf-sputtering from an ITO target, using Ar plasma and N 2 plasma, respectively, and different rf-power. Optical emission spectroscopy (OES) was employed to identify the species present in the plasma and to correlate them with the properties of the ITO and ITON thin films. Emission lines of ionic In could only be detected in N 2 plasma, whereas in the Ar plasma additional lines corresponding to atomic In and InO, were detected. The deposition rate of thin films was correlated with the In species, rather than the nitrogen species, emission intensity in the plasma. The higher resistivity and lower carrier concentration of the ITON films, as compared to the respective properties of the ITO films, were attributed to the incorporation of nitrogen, instead of oxygen, in the ITON structure

  1. Electroluminescence from ZnO/Si heterojunctions fabricated by PLD with bias voltage application

    Science.gov (United States)

    Seno, Yuuki; Konno, Daisuke; Komiyama, Takao; Chonan, Yasunori; Yamaguchi, Hiroyuki; Aoyama, Takashi

    2014-02-01

    Electroluminescence (EL) for ZnO films has been investigated by fabricating n-ZnO/p-Si heterojunctions and changing the VI/II (O/Zn) ratio of the films. In the photoluminescence (PL) spectra, both the near band edge (NBE) emission and the defect-related emission were observed, while in the EL spectra only defect-related emission was observed. The EL spectra were divided into three components: green (550 nm), yellow (618 nm) and red (700 nm) bands; and their intensities were compared. As the VI/II (O/Zn) ratio was increased, the red band emission intensity decreased and the green band emission intensity increased. This implies that the oxygen and the zinc vacancies are related to the red and the green band emissions, respectively. Electron transitions from the conduction band minimum (Ec) to the deep energy levels of these vacancies are suggested to cause the red and the green luminescences while the energy levels of the Zn interstitials are close to the Ec in the band gap and no NBE emission is observed.

  2. Electroluminescence from ZnO/Si heterojunctions fabricated by PLD with bias voltage application

    International Nuclear Information System (INIS)

    Seno, Yuuki; Konno, Daisuke; Komiyama, Takao; Chonan, Yasunori; Yamaguchi, Hiroyuki; Aoyama, Takashi

    2014-01-01

    Electroluminescence (EL) for ZnO films has been investigated by fabricating n-ZnO/p-Si heterojunctions and changing the VI/II (O/Zn) ratio of the films. In the photoluminescence (PL) spectra, both the near band edge (NBE) emission and the defect-related emission were observed, while in the EL spectra only defect-related emission was observed. The EL spectra were divided into three components: green (550 nm), yellow (618 nm) and red (700 nm) bands; and their intensities were compared. As the VI/II (O/Zn) ratio was increased, the red band emission intensity decreased and the green band emission intensity increased. This implies that the oxygen and the zinc vacancies are related to the red and the green band emissions, respectively. Electron transitions from the conduction band minimum (Ec) to the deep energy levels of these vacancies are suggested to cause the red and the green luminescences while the energy levels of the Zn interstitials are close to the Ec in the band gap and no NBE emission is observed

  3. Performance of a carbon nanotube field emission electron gun

    Science.gov (United States)

    Getty, Stephanie A.; King, Todd T.; Bis, Rachael A.; Jones, Hollis H.; Herrero, Federico; Lynch, Bernard A.; Roman, Patrick; Mahaffy, Paul

    2007-04-01

    A cold cathode field emission electron gun (e-gun) based on a patterned carbon nanotube (CNT) film has been fabricated for use in a miniaturized reflectron time-of-flight mass spectrometer (RTOF MS), with future applications in other charged particle spectrometers, and performance of the CNT e-gun has been evaluated. A thermionic electron gun has also been fabricated and evaluated in parallel and its performance is used as a benchmark in the evaluation of our CNT e-gun. Implications for future improvements and integration into the RTOF MS are discussed.

  4. Comfort and Functional Properties of Far-Infrared/Anion-Releasing Warp-Knitted Elastic Composite Fabrics Using Bamboo Charcoal, Copper, and Phase Change Materials

    Directory of Open Access Journals (Sweden)

    Ting-Ting Li

    2016-02-01

    Full Text Available Elastic warp-knitted composite fabrics with far-infrared emissivity and an anion-releasing property were prepared using bamboo charcoal (BC, copper (Cu, and phase-change material (PCM. The functional composite fabric, which was composed of self-made complex yarns with various twisting degrees and material composition, were created using a rotor twister and ring-spinning technique. The fabric structure was diversified by the feeding modes of weft yarn into a crochet-knitting machine. The twist number of complex yarns was optimized by tensile tenacity, twist contraction, and hairiness, and analysis showed that twisting at 12 twists per inch produced the highest tensile tenacity and appropriate twist contraction and hairiness. Comfort evaluation showed that the elastic composite fabrics with BC weft yarns exhibited higher water–vapor transmission rate and air permeability, reaching 876 g/m2∙ day and 73.2 cm3/s/cm2, respectively. Three structures of composite fabric with various weft yarns had >0.85 ε far-infrared emissivity and 350–420 counts/cm3 anion amount. The prepared elastic warp-knitted fabrics can provide a comfortable, dry, and breathable environment to the wearer and can thus be applied as health-care textiles in the future.

  5. Flexible high-loading particle-reinforced polyurethane magnetic nanocomposite fabrication through particle-surface-initiated polymerization

    International Nuclear Information System (INIS)

    Guo Zhanhu; Park, Sung; Wei Suying; Pereira, Tony; Moldovan, Monica; Karki, Amar B; Young, David P; Hahn, H Thomas

    2007-01-01

    Flexible high-loading nanoparticle-reinforced polyurethane magnetic nanocomposites fabricated by the surface-initiated polymerization (SIP) method are reported. Extensive field emission scanning electron microscopic (SEM) and atomic force microscopic (AFM) observations revealed a uniform particle distribution within the polymer matrix. X-ray photoelectron spectrometry (XPS) and differential thermal analysis (DTA) revealed a strong chemical bonding between the nanoparticles and the polymer matrix. The elongation of the SIP nanocomposite under tensile test was about four times greater than that of the composite fabricated by a conventional direct mixing fabrication method. The nanocomposite shows particle-loading-dependent magnetic properties, with an increase of coercive force after the magnetic nanoparticles were embedded into the polymer matrix, arising from the increased interparticle distance and the introduced polymer-particle interactions

  6. Effect of fabrication parameters on morphological and optical properties of highly doped p-porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Zare, Maryam, E-mail: mar.zare@gmail.com [Young Researchers Club, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr (Iran, Islamic Republic of); Shokrollahi, Abbas [Young Researchers Club, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr (Iran, Islamic Republic of); Seraji, Faramarz E. [Optical Communication Group, Iran Telecom Research Center, Tehran (Iran, Islamic Republic of)

    2011-09-01

    Porous silicon (PS) layers were fabricated by anodization of low resistive (highly doped) p-type silicon in HF/ethanol solution, by varying current density, etching time and HF concentration. Atomic force microscopy (AFM) and field emission scanning electron microscope (FESEM) analyses were used to investigate the physical properties and reflection spectrum was used to investigate the optical behavior of PS layers in different fabrication conditions. Vertically aligned mesoporous morphology is observed in fabricated films and with HF concentration higher than 20%. The dependence of porosity, layer thickness and rms roughness of the PS layer on current density, etching time and composition of electrolyte is also observed in obtained results. Correlation between reflectivity and fabrication parameters was also explored. Thermal oxidation was performed on some mesoporous layers that resulted in changes of surface roughness, mean height and reflectivity of the layers.

  7. Emission properties of porphyrin compounds in new polymeric PS:CBP host

    Science.gov (United States)

    Jafari, Mohammad Reza; Bahrami, Bahram

    2015-06-01

    In this study, a device with fundamental structure of ITO/PEDOT:PSS (60 nm)/PS:CBP (70 nm)/Al (150 nm) was fabricated. The electroluminescence spectrum of device designated a red shift rather than PS:CBP photoluminescence spectra. It can be suggested that the electroplex emission occurs at PS:CBP interface. By following this step, red light-emitting devices using porphyrin compounds as a red dopant in a new host material PS:CBP with a configuration of ITO/PEDOT:PSS (60 nm)/PS:CBP:porphyrin compounds(70 nm)/Al (150 nm) have been fabricated and investigated. The electroluminescent spectra of the porphyrin compounds were red-shifted as compared with the PS:CBP blend. OLED devices based on doping 3,4PtTPP and TPPNO2 in PS:CBP showed purer red emission compared with ZnTPP and CoTPP doped devices. We believe that the electroluminescence performance of OLED devices based on porphyrin compounds depends on overlaps between the absorption of the porphyrin compounds and the emission of PS:CBP.

  8. Updated Life-Cycle Assessment of Aluminum Production and Semi-fabrication for the GREET Model

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Qiang [Argonne National Lab. (ANL), Argonne, IL (United States); Kelly, Jarod C. [Argonne National Lab. (ANL), Argonne, IL (United States); Burnham, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Elgowainy, Amgad [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    This report serves as an update for the life-cycle analysis (LCA) of aluminum production based on the most recent data representing the state-of-the-art of the industry in North America. The 2013 Aluminum Association (AA) LCA report on the environmental footprint of semifinished aluminum products in North America provides the basis for the update (The Aluminum Association, 2013). The scope of this study covers primary aluminum production, secondary aluminum production, as well as aluminum semi-fabrication processes including hot rolling, cold rolling, extrusion and shape casting. This report focuses on energy consumptions, material inputs and criteria air pollutant emissions for each process from the cradle-to-gate of aluminum, which starts from bauxite extraction, and ends with manufacturing of semi-fabricated aluminum products. The life-cycle inventory (LCI) tables compiled are to be incorporated into the vehicle cycle model of Argonne National Laboratory’s Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model for the release of its 2015 version.

  9. Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers.

    Science.gov (United States)

    Fang, Zaijin; Xiao, Xusheng; Wang, Xin; Ma, Zhijun; Lewis, Elfed; Farrell, Gerald; Wang, Pengfei; Ren, Jing; Guo, Haitao; Qiu, Jianrong

    2017-03-30

    A glass-ceramic optical fiber containing Ba 2 TiSi 2 O 8 nanocrystals fabricated using a novel combination of the melt-in-tube method and successive heat treatment is reported for the first time. For the melt-in-tube method, fibers act as a precursor at the drawing temperature for which the cladding glass is softened while the core glass is melted. It is demonstrated experimentally that following heat treatment, Ba 2 TiSi 2 O 8 nanocrystals with diameters below 10 nm are evenly distributed throughout the fiber core. Comparing to the conventional rod-in-tube method, the melt-in-tube method is superior in terms of controllability of crystallization to allow for the fabrication of low loss glass-ceramic fibers. When irradiated using a 1030 nm femtosecond laser, an enhanced green emission at a wavelength of 515 nm is observed in the glass-ceramic fiber, which demonstrates second harmonic generation of a laser action in the fabricated glass-ceramic fibers. Therefore, this new glass-ceramic fiber not only provides a highly promising development for frequency conversion of lasers in all optical fiber based networks, but the melt-in-tube fabrication method also offers excellent opportunities for fabricating a wide range of novel glass-ceramic optical fibers for multiple future applications including fiber telecommunications and lasers.

  10. Polymorphous computing fabric

    Science.gov (United States)

    Wolinski, Christophe Czeslaw [Los Alamos, NM; Gokhale, Maya B [Los Alamos, NM; McCabe, Kevin Peter [Los Alamos, NM

    2011-01-18

    Fabric-based computing systems and methods are disclosed. A fabric-based computing system can include a polymorphous computing fabric that can be customized on a per application basis and a host processor in communication with said polymorphous computing fabric. The polymorphous computing fabric includes a cellular architecture that can be highly parameterized to enable a customized synthesis of fabric instances for a variety of enhanced application performances thereof. A global memory concept can also be included that provides the host processor random access to all variables and instructions associated with the polymorphous computing fabric.

  11. Controlled fabrication of luminescent and magnetic nanocomposites

    Science.gov (United States)

    Ma, Yingxin; Zhong, Yucheng; Fan, Jing; Huang, Weiren

    2018-03-01

    Luminescent and magnetic multifunctional nanocomposite is in high demand and widely used in many scales, such as drug delivery, bioseparation, chemical/biosensors, and so on. Although lots of strategies have been successfully developed for the demand of multifunctional nanocomposites, it is not easy to prepare multifunctional nanocomposites by using a simple method, and satisfy all kinds of demands simultaneously. In this work, via a facile and versatile method, luminescent nanocrystals and magnetic nanoparticles were successfully synthesized through self-assembly under vigorous stirring and ultrasonic treatment. These multifunctional nanocomposites are not only water stable but also find wide application such as magnetic separation and concentration with a series of moderate speed, multicolor fluorescence at different emission wavelength, high efficiency of the excitation and emission, and so on. By changing different kinds of luminescent nanocrystals and controlling the amount of luminescent and magnetic nanoparticles, a train of multifunctional nanocomposites was successfully fabricated via a versatile and robust method.

  12. Ultra-thin alumina and silicon nitride MEMS fabricated membranes for the electron multiplication

    Science.gov (United States)

    Prodanović, V.; Chan, H. W.; Graaf, H. V. D.; Sarro, P. M.

    2018-04-01

    In this paper we demonstrate the fabrication of large arrays of ultrathin freestanding membranes (tynodes) for application in a timed photon counter (TiPC), a novel photomultiplier for single electron detection. Low pressure chemical vapour deposited silicon nitride (Si x N y ) and atomic layer deposited alumina (Al2O3) with thicknesses down to only 5 nm are employed for the membrane fabrication. Detailed characterization of structural, mechanical and chemical properties of the utilized films is carried out for different process conditions and thicknesses. Furthermore, the performance of the tynodes is investigated in terms of secondary electron emission, a fundamental attribute that determines their applicability in TiPC. Studied features and presented fabrication methods may be of interest for other MEMS application of alumina and silicon nitride as well, in particular where strong ultra-thin membranes are required.

  13. HIGH-CURRENT COLD CATHODE FIELD EMISSION ARRAY FOR ELECTRON LENS APPLICATION

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L

    2012-12-28

    During Phase I, the following goals were achieved: (1) design and fabrication of a novel, nano-dimensional CNT field emitter assembly for high current density application, with high durability; (2) fabrication of a ceramic based micro channel plate (MCP) and characterization of its secondary electron emission; and (3) characterizing the CNT/MCP cathode for high field emission and durability. As a result of these achievements, a relatively high current density of ~ 1.2 A/cm2 from a CNT cathode and single channel MCP were measured. The emission current was also extremely stable with a peak-to-peak variation of only 1.8%. The emission current could be further enhanced to meet requirements for electron lens applications by increasing the number of MCP channels. A calculation for maximum possible current density with a 1200 channel/cm2 MCP, placed over a cathode with 1200 uniformly functioning CNTs, would be ~1.46 kA/cm2, neglecting space charge limitations. Clearly this level of emission is far greater than what is needed for the electron lens application, but it does offer a highly comforting margin to account for sub-standard emitters and/or to allow the lesser challenge of building a cathode with fewer channels/cm2. A satisfactory goal for the electron lens application would be a controllable emission of 2-4 mA per channel in an ensemble of 800-1200 uniformly-functioning channels/cm2, and a cathode with overall area of about 1 cm2.

  14. Vaginal itching and discharge - child

    Science.gov (United States)

    Pruritus vulvae; Itching - vaginal area; Vulvar itching; Yeast infection - child ... Common causes of vaginal itching and discharge in young girls include: Chemicals such as perfumes and dyes in detergents, fabric softeners, creams, ointments, ...

  15. Towards Washable Electrotextile UHF RFID Tags: Reliability Study of Epoxy-Coated Copper Fabric Antennas

    Directory of Open Access Journals (Sweden)

    Shiqi Wang

    2015-01-01

    Full Text Available We investigate the impact of washing on the performance of passive UHF RFID tags based on dipole antennas fabricated from copper fabric and coated with protective epoxy coating. Initially, the tags achieved read ranges of about 8 meters, under the European RFID emission regulation. To assess the impact of washing on the performance of the tags, they were washed repeatedly in a washing machine and measured after every washing cycle. Despite the reliability challenges related to mechanical stress, the used epoxy coating was found to be a promising coating for electrotextile tags in moist conditions.

  16. Developments in acoustic emission for application to nuclear reactor systems

    International Nuclear Information System (INIS)

    Bentley, P.G.

    1982-01-01

    Developments in acoustic emission are summarised as they relate to the principal applications to nuclear reactors, and light water reactor pressure vessels in particular. Improvement in the understanding of acoustic emission has come from materials tests and these confirm the problems in applying the technique for in-service or periodic proof test monitoring of growing fatique cracks. Applications in LMFBR have confirmed that acoustic emission can be applied in the nuclear environment and the detection of stress corrosion cracking in both BWR and LMFBR seems possible. Some information is included on the developing interest in applying the techniques of acoustic emission for leak detection during shop hydro and in-service monitoring. Acoustic emission is also being developed for weld fabrication monitoring and recently introduced pattern recognition techniques are having a significant impact in this application. (author)

  17. Post-Flight Characterization of Samples for the MISSE-7 Spacesuit Fabric Exposure Experiment

    Science.gov (United States)

    Gaier, James R.; Waters, Deborah L.; Jaworski, Donald A.; McCue, Terry R.; Folz, Angela; Baldwin, Sammantha; Clark, Gregory W.; Batman, Brittany; Bruce, John

    2012-01-01

    Six samples of pristine and dust-abraded outer layer spacesuit fabrics were included in the Materials International Space Station Experiment-7, in which they were exposed to the wake side low Earth orbit environment (LEO) on the International Space Station (ISS) for 18 months in order to determine whether abrasion by lunar dust increases radiation degradation. The fabric samples were characterized using optical microscopy, field emission scanning electron microscopy, and tensile testing before and after exposure on the ISS. Comparison of pre- and post-flight characterizations showed that wake side LEO environment darkened and reddened all six fabrics, increasing their integrated solar absorptance by 7 to 38 percent. There was a decrease in the ultimate tensile strength and elongation to failure of lunar dust abraded Apollo spacesuit fibers by a factor of four and increased the elastic modulus by a factor of two. The severity of the degradation of the fabric samples over this short exposure time demonstrates the necessity to find ways to prevent or mitigate radiation damage to spacesuits when planning extended missions to the Moon.

  18. Fabrication of Gold-coated 3-D Woodpile Structures for Mid-IR Thermal Emitters

    Science.gov (United States)

    Li, Shengkai; Moridani, Amir; Kothari, Rohit; Lee, Jae-Hwang; Watkins, James

    3-D metallic woodpile nanostructures possess enhancements in thermal radiation that are both wavelength and polarization specific and are promising for thermal-optical devices for various applications including thermal photovoltaics, self-cooling devices, and chemical and bio-sensors. However, current fabrication techniques for such structures are limited by slow speed, small area capability, the need for expensive facilities and, in general, are not suitable for high-throughput mass production. Here we demonstrate a new strategy for the fabrication of 3D metallic woodpile structures. Well-defined TiO2 woodpile structures were fabricated using a layer-by-layer nanoimprint method using TiO2 nanoparticle ink dispersions. The TiO2 woodpile was then coated with a high purity, conformal gold film via reactive deposition in supercritical carbon dioxide. The final gold-coated woodpile structures exhibit strong spectral and polarization specific thermal emission enhancements. The fabrication method demonstrated here is promising for high-throughput, low-cost preparation of 3D metallic woodpile structures and other 3D nanostructures. Center for Hierarchical Manufacturing, NSF.

  19. Influence of the fabrication process parameters on microstructures and mechanical properties of 10Cr-1Mo ODS steel

    International Nuclear Information System (INIS)

    Jin, Hyun Ju; Kim, Ki Baik; Choi, Byoung Kwon; Kang, Suk Hoon; Noh, Sang Hoon; Kim, Ga Eon; Kim, Tae Kyu

    2016-01-01

    Oxide dispersion strengthened (ODS) FM steels have been developed as the most promising core structural material for high- temperature components operating in severe environments such as nuclear fusion and fission systems owing to its excellent elevated temperature strength and radiation resistance stemming from the addition of extremely thermally stable oxide particles dispersed in a ferritic/martensitic matrix. To realize the structural components such as plates, sheets and tubes in SFR, the development of manufacturing processes is an essential issue for the ODS FM steel. While the ODS steel has superior radiation resistance and high temperature strength, in comparison with the existing commercial steels, it is difficult for the ODS steel to obtain sufficient workability for the fabrication due to high hardness and low ductility at room temperature, meaning that the manufacturing of the ODS plate including cladding tube can be complicated by the low cold workability. In order to prevent the ODS steel from any damage during the manufacturing process, thus, the introduction of intermediate heat treatments between cold rolling processes is necessary. This study investigates effects of the fabrication process parameters such as the cold working ratio, the intermediate and final heat treatments on the microstructure and mechanical properties of 10Cr-1Mo ODS steel. In an effort to optimize the manufacturing route of the ODS FM steel, the microstructural and mechanical evolutions for the ODS plate manufactured by a control of the fabrication process parameters were evaluated in the present study. In the present study, the effect of a cold rolling and intermediate heat treatments on microstructures and mechanical properties of 10Cr-1Mo FM ODS steel were investigated. During the manufacturing route the hardness measurements remained below the critical value of 400 Hv. Intermediate heat treatment with slow cooling led to a softened ferritic structures which can be further

  20. Evaluation of a dentifrice containing 8% arginine, calcium carbonate, and sodium monofluorophosphate to repair acid-softened enamel using an intra-oral remineralization model.

    Science.gov (United States)

    Sullivan, R; Rege, A; Corby, P; Klaczany, G; Allen, K; Hershkowitz, D; Goldder, B; Wolff, M

    2014-01-01

    An intra-oral remineralization study was conducted to compare the ability of a dentifrice containing 8% arginine and calcium carbonate (Pro-Argin Technology), and 1450 ppm fluoride as sodium monofluorophosphate (MFP) to remineralize acid-softened bovine enamel specimens compared to a silica-based dentifrice with 1450 ppm fluoride as MFP. The intra-oral clinical study employed a double blind, two-treatment, crossover design, and used an upper palatal retainer to expose the enamel specimens to the oral environment during product use and periods of remineralization. The retainer was designed to house three partially demineralized bovine enamel samples. The study population was comprised of 30 adults, ages 18 to 70 years. The study consisted of two treatment phases with a washout period lasting seven (+/- three) days preceding each treatment phase. A silica-based dentifrice without fluoride was used during the washout period. The Test Dentifrice used in this study contained 8% arginine, calcium carbonate, and 1450 ppm fluoride as sodium monofluorophosphate (MFP). The Control Dentifrice was silica-based and contained 1450 ppm fluoride as MFP. The treatment period consisted of a three-day lead-in period with the assigned product. The panelists brushed two times per day during the three-day lead-in period with the assigned product. On the fourth day, the panelists began brushing with the assigned product with the retainer in their mouth. The panelists brushed for one minute, followed by a one-minute swish with the slurry and a rinse with 15 ml of water in the morning, in the afternoon, and night with the retainer in the mouth. The panelists brushed only their teeth and not the specimens directly. Changes in mineral content before and after treatment were measured using a Knoop microhardness tester. The results of the study showed that percent remineralization values for the Test Dentifrice and Control Dentifrice were 14.99% and 8.66%, respectively. A statistical analysis

  1. Influences on the white emission and stability of single layer electroluminescent devices

    International Nuclear Information System (INIS)

    Tekin, Emine

    2013-01-01

    A detailed survey about the influences on the white emission color of polyfluorene based polymer light emitting diodes (PLEDs) is reported. First, the effect of active layer thickness was studied. Subsequently keeping the polymer thickness at optimum level, PLEDs were fabricated varying polymer concentrations. All fabricated devices were fully characterized in terms of luminance, current–voltage characteristics, efficiencies, electroluminescent spectra, and CIE color coordinates. It was found that at higher polymer concentrations, electroluminescence spectra shifted to the bathochromic region so that the resulting color becomes warm white. Furthermore, the accelerated lifetimes of the PLEDs were measured and the results are discussed in terms of polymer inter-chain interactions. Consequently, the 8 mg/ml was found to be the optimum level not only for the device performances but also for the device lifetime. Highlights: • Influences on the white color emission of the polymer OLEDs were investigated. • White emission purity was found to be affected by the polymer concentration. • Lifetimes of the white emitting devices depend on the inter-chain interactions

  2. Fabrication and characterization of vacuum deposited fluorescein thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jalkanen, Pasi, E-mail: pasi.jalkanen@gmail.co [University of Jyvaeskylae, Department of Physics, Nanoscience center (NSC), P.O. Box 35, FI-40014 Jyvaeskylae (Finland); Kulju, Sampo, E-mail: sampo.j.kulju@jyu.f [University of Jyvaeskylae, Department of Physics, Nanoscience center (NSC), P.O. Box 35, FI-40014 Jyvaeskylae (Finland); Arutyunov, Konstantin, E-mail: konstantin.arutyunov@jyu.f [University of Jyvaeskylae, Department of Physics, Nanoscience center (NSC), P.O. Box 35, FI-40014 Jyvaeskylae (Finland); Antila, Liisa, E-mail: liisa.j.antila@jyu.f [University of Jyvaeskylae, Department of Chemistry, Nanoscience center (NSC) P.O. Box 35, FI-40014 Jyvaeskylae (Finland); Myllyperkioe, Pasi, E-mail: pasi.myllyperkio@jyu.f [University of Jyvaeskylae, Department of Chemistry, Nanoscience center (NSC) P.O. Box 35, FI-40014 Jyvaeskylae (Finland); Ihalainen, Teemu, E-mail: teemu.o.ihalainen@jyu.f [University of Jyvaeskylae, Department of Biology, Nanoscience center (NSC), P.O. Box 35, FI-40014 Jyvaeskylae (Finland); Kaeaeriaeinen, Tommi, E-mail: tommi.kaariainen@lut.f [Lappeenranta University of Technology, ASTRal, P.O. Box 181, FI-50101 Mikkeli (Finland); Kaeaeriaeinen, Marja-Leena, E-mail: marja-leena.kaariainen@lut.f [Lappeenranta University of Technology, ASTRal, P.O. Box 181, FI-50101 Mikkeli (Finland); Korppi-Tommola, Jouko, E-mail: jouko.korppi-tommola@jyu.f [University of Jyvaeskylae, Department of Biology, Nanoscience center (NSC), P.O. Box 35, FI-40014 Jyvaeskylae (Finland)

    2011-03-31

    Simple vacuum evaporation technique for deposition of dyes on various solid surfaces has been developed. The method is compatible with conventional solvent-free nanofabrication processing enabling fabrication of nanoscale optoelectronic devices. Thin films of fluorescein were deposited on glass, fluorine-tin-oxide (FTO) coated glass with and without atomically layer deposited (ALD) nanocrystalline 20 nm thick anatase TiO{sub 2} coating. Surface topology, absorption and emission spectra of the films depend on their thickness and the material of supporting substrate. On a smooth glass surface the dye initially forms islands before merging into a uniform layer after 5 to 10 monolayers. On FTO covered glass the absorption spectra are similar to fluorescein solution in ethanol. Absorption spectra on ALD-TiO{sub 2} is red shifted compared to the film deposited on bare FTO. The corresponding emission spectra at {lambda} = 458 nm excitation show various thickness and substrate dependent features, while the emission of films deposited on TiO{sub 2} is quenched due to the effective electron transfer to the semiconductor conduction band.

  3. Vaginal itching and discharge - Adult and adolescent

    Science.gov (United States)

    ... 003158.htm Vaginal itching and discharge - adult and adolescent To use the sharing features on this page, ... fabric softeners, feminine sprays, ointments, creams, douches, and contraceptive foams or jellies or creams. This may irritate ...

  4. Aggregation-induced emission: phenomenon, mechanism and applications.

    Science.gov (United States)

    Hong, Yuning; Lam, Jacky W Y; Tang, Ben Zhong

    2009-08-07

    It is textbook knowledge that chromophore aggregation generally quenches light emission. In this feature article, we give an account on how we observed an opposite phenomenon termed aggregation-induced emission (AIE) and identified the restriction of intramolecular rotation as a main cause for the AIE effect. Based on the mechanistic understanding, we developed a series of new fluorescent and phosphorescent AIE systems with emission colours covering the entire visible spectral region and luminescence quantum yields up to unity. We explored high-tech applications of the AIE luminogens as, for example, fluorescence sensors (for explosive, ion, pH, temperature, viscosity, pressure, etc.), biological probes (for protein, DNA, RNA, sugar, phospholipid, etc.), immunoassay markers, PAGE visualization agents, polarized light emitters, monitors for layer-by-layer assembly, reporters for micelle formation, multistimuli-responsive nanomaterials, and active layers in the fabrication of organic light-emitting diodes.

  5. Red to near-infrared emission from InGaN/GaN quantum-disks-in-nanowires LED

    KAUST Repository

    Ng, Tien Khee; Zhao, Chao; Shen, Chao; Jahangir, Shafat; Janjua, Bilal; Ben Slimane, Ahmed; Kang, Chun Hong; Syed, Ahad A.; Li, Jingqi; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Bhattacharya, Pallab K.; Ooi, Boon S.

    2014-01-01

    The InGaN/GaN quantum-disks-in-nanowire light-emitting diode (LED) with emission centered at ~830nm, the longest emission wavelength ever reported in the InGaN/GaN system, and spectral linewidth of 290nm, has been fabricated with p-side-down on a Cu substrate.

  6. Effect of water treatment additives on lime softening residual trace chemical composition--implications for disposal and reuse.

    Science.gov (United States)

    Cheng, Weizhi; Roessler, Justin; Blaisi, Nawaf I; Townsend, Timothy G

    2014-12-01

    Drinking water treatment residues (WTR) offer potential benefits when recycled through land application. The current guidance in Florida, US allows for unrestricted land application of lime softening WTR; alum and ferric WTR require additional evaluation of total and leachable concentrations of select trace metals prior to land application. In some cases a mixed WTR is produced when lime softening is accompanied by the addition of a coagulant or other treatment chemical; applicability of the current guidance is unclear. The objective of this research was to characterize the total and leachable chemical content of WTR from Florida facilities that utilize multiple treatment chemicals. Lime and mixed lime WTR samples were collected from 18 water treatment facilities in Florida. Total and leachable concentrations of the WTR were measured. To assess the potential for disposal of mixed WTR as clean fill below the water table, leaching tests were conducted at multiple liquid to solid ratios and under reducing conditions. The results were compared to risk-based soil and groundwater contamination thresholds. Total metal concentrations of WTR were found to be below Florida soil contaminant thresholds with Fe found in the highest abundance at a concentration of 3600 mg/kg-dry. Aluminum was the only element that exceeded the Florida groundwater contaminant thresholds using SPLP (95% UCL = 0.23 mg/L; risk threshold = 0.2 mg/L). Tests under reducing conditions showed elevated concentrations of Fe and Mn, ranging from 1 to 3 orders of magnitude higher than SPLP leachates. Mixed lime WTR concentrations (total and leachable) were lower than the ferric and alum WTR concentrations, supporting that mixed WTR are appropriately represented as lime WTR. Testing of WTR under reducing conditions demonstrated the potential for release of certain trace metals (Fe, Al, Mn) above applicable regulatory thresholds; additional evaluation is needed to assess management options where

  7. Effect of softening precipitate composition and surface characteristics on natural organic matter adsorption.

    Science.gov (United States)

    Russell, Caroline G; Lawler, Desmond F; Speitel, Gerald E; Katz, Lynn E

    2009-10-15

    Natural organic matter (NOM) removal during water softening is thought to occur through adsorption onto or coprecipitation with calcium and magnesium solids. However, details of precipitate composition and surface chemistry and subsequent interactions with NOM are relatively unknown. In this study, zeta potentiometry analyses of precipitates formed from inorganic solutions under varying conditions (e.g., Ca-only, Mg-only, Ca + Mg, increasing lime or NaOH dose) indicated that both CaCO3 and Mg(OH)2 were positively charged at higher lime (Ca(OH)2) and NaOH doses (associated with pH values above 11.5), potentially yielding a greater affinity for adsorbing negatively charged organic molecules. Environmental scanning electron microscopy (ESEM) images of CaCO3 solids illustrated the rhombohedral shape characteristic of calcite. In the presence of increasing concentrations of magnesium, the CaCO3 rhombs shifted to more elongated crystals. The CaCO3 solids also exhibited increasingly positive surface charge from Mg incorporation into the crystal lattice, potentially creating more favorable conditions for adsorption of organic matter. NOM adsorption experiments using humic substances extracted from Lake Austin and Missouri River water elucidated the role of surface charge and surface area on adsorption.

  8. Nonlinear dynamics of spring softening and hardening in folded-mems comb drive resonators

    KAUST Repository

    Elshurafa, Amro M.

    2011-08-01

    This paper studies analytically and numerically the spring softening and hardening phenomena that occur in electrostatically actuated microelectromechanical systems comb drive resonators utilizing folded suspension beams. An analytical expression for the electrostatic force generated between the combs of the rotor and the stator is derived and takes into account both the transverse and longitudinal capacitances present. After formulating the problem, the resulting stiff differential equations are solved analytically using the method of multiple scales, and a closed-form solution is obtained. Furthermore, the nonlinear boundary value problem that describes the dynamics of inextensional spring beams is solved using straightforward perturbation to obtain the linear and nonlinear spring constants of the beam. The analytical solution is verified numerically using a Matlab/Simulink environment, and the results from both analyses exhibit excellent agreement. Stability analysis based on phase plane trajectory is also presented and fully explains previously reported empirical results that lacked sufficient theoretical description. Finally, the proposed solutions are, once again, verified with previously published measurement results. The closed-form solutions provided are easy to apply and enable predicting the actual behavior of resonators and gyroscopes with similar structures. © 2011 IEEE.

  9. Estimating greenhouse gas emissions of European cities--modeling emissions with only one spatial and one socioeconomic variable.

    Science.gov (United States)

    Baur, Albert H; Lauf, Steffen; Förster, Michael; Kleinschmit, Birgit

    2015-07-01

    Substantive and concerted action is needed to mitigate climate change. However, international negotiations struggle to adopt ambitious legislation and to anticipate more climate-friendly developments. Thus, stronger actions are needed from other players. Cities, being greenhouse gas emission centers, play a key role in promoting the climate change mitigation movement by becoming hubs for smart and low-carbon lifestyles. In this context, a stronger linkage between greenhouse gas emissions and urban development and policy-making seems promising. Therefore, simple approaches are needed to objectively identify crucial emission drivers for deriving appropriate emission reduction strategies. In analyzing 44 European cities, the authors investigate possible socioeconomic and spatial determinants of urban greenhouse gas emissions. Multiple statistical analyses reveal that the average household size and the edge density of discontinuous dense urban fabric explain up to 86% of the total variance of greenhouse gas emissions of EU cities (when controlled for varying electricity carbon intensities). Finally, based on these findings, a multiple regression model is presented to determine greenhouse gas emissions. It is independently evaluated with ten further EU cities. The reliance on only two indicators shows that the model can be easily applied in addressing important greenhouse gas emission sources of European urbanites, when varying power generations are considered. This knowledge can help cities develop adequate climate change mitigation strategies and promote respective policies on the EU or the regional level. The results can further be used to derive first estimates of urban greenhouse gas emissions, if no other analyses are available. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Electron Emission from Ultra-Large Area MOS Electron Emitters

    DEFF Research Database (Denmark)

    Thomsen, Lasse Bjørchmar; Nielsen, Gunver; Vendelbo, Søren Bastholm

    2009-01-01

    Ultralarge metal-oxide-semiconductor (MOS) devices with an active oxide area of 1 cm2 have been fabricated for use as electron emitters. The MOS structures consist of a Si substrate, a SiO2 tunnel barrier (~5 nm), a Ti wetting layer (3–10 Å), and a Au top layer (5–60 nm). Electron emission from...... layer is varied from 3 to 10 Å which changes the emission efficiency by more than one order of magnitude. The apparent mean free path of ~5 eV electrons in Au is found to be 52 Å. Deposition of Cs on the Au film increased the electron emission efficiency to 4.3% at 4 V by lowering the work function....... Electron emission under high pressures (up to 2 bars) of Ar was observed. ©2009 American Vacuum Society...

  11. Control technology for integrated circuit fabrication at Micro-Circuit Engineering, Incorporated, West Palm Beach, Florida

    Science.gov (United States)

    Mihlan, G. I.; Mitchell, R. I.; Smith, R. K.

    1984-07-01

    A survey to assess control technology for integrated circuit fabrication was conducted. Engineering controls included local and general exhaust ventilation, shielding, and personal protective equipment. Devices or work stations that contained toxic materials that were potentially dangerous were controlled by local exhaust ventilation. Less hazardous areas were controlled by general exhaust ventilation. Process isolation was used in the plasma etching, low pressure chemical vapor deposition, and metallization operations. Shielding was used in ion implantation units to control X-ray emissions, in contact mask alignes to limit ultraviolet (UV) emissions, and in plasma etching units to control radiofrequency and UV emissions. Most operations were automated. Use of personal protective equipment varied by job function.

  12. Fabrication of superhydrophobic cotton fabrics using crosslinking polymerization method

    Science.gov (United States)

    Jiang, Bin; Chen, Zhenxing; Sun, Yongli; Yang, Huawei; Zhang, Hongjie; Dou, Haozhen; Zhang, Luhong

    2018-05-01

    With the aim of removing and recycling oil and organic solvent from water, a facile and low-cost crosslinking polymerization method was first applied on surface modification of cotton fabrics for water/oil separation. Micro-nano hierarchical rough structure was constructed by triethylenetetramine (TETA) and trimesoyl chloride (TMC) that formed a polymeric layer on the surface of the fabric and anchored Al2O3 nanoparticles firmly between the fabric surface and the polymer layer. Superhydrophobic property was further obtained through self-assembly grafting of hydrophobic groups on the rough surface. The as-prepared cotton fabric exhibited superoleophilicity in atmosphere and superhydrophobicity both in atmosphere and under oil with the water contact angle of 153° and 152° respectively. Water/oil separation test showed that the as-prepared cotton fabric can handle with various oil-water mixtures with a high separation efficiency over 99%. More importantly, the separation efficiency remained above 98% over 20 cycles of reusing without losing its superhydrophobicity which demonstrated excellent reusability in oil/water separation process. Moreover, the as-prepared cotton fabric possessed good contamination resistance ability and self-cleaning property. Simulation washing process test showed the superhydrophobic cotton fabric maintained high value of water contact angle above 150° after 100 times washing, indicating great stability and durability. In summary, this work provides a brand-new way to surface modification of cotton fabric and makes it a promising candidate material for oil/water separation.

  13. Particulate emission abatement for Krakow boiler houses

    Energy Technology Data Exchange (ETDEWEB)

    Wysk, R.

    1995-12-31

    Among the many strategies for improving air quality in Krakow, one possible method is to adapt new and improved emission control technology. This project focuses on such a strategy. In order to reduce dust emissions from coal-fueled boilers, a new device called a Core Separator has been introduced in several boiler house applications. This advanced technology has been successfully demonstrated in Poland and several commercial units are now in operation. Particulate emissions from the Core Separator are typically 3 to 5 times lower than those from the best cyclone collectors. It can easily meet the new standard for dust emissions which will be in effect in Poland after 1997. The Core Separator is a completely inertial collector and is based on a unique recirculation method. It can effectively remove dust particles below 10 microns in diameter, the so-called PM-10 emissions. Its performance approaches that of fabric filters, but without the attendant cost and maintenance. It is well-suited to the industrial size boilers located in Krakow. Core Separators are now being marketed and sold by EcoInstal, one of the leading environmental firms in Poland, through a cooperative agreement with LSR Technologies.

  14. Exoelectron emission and its application for dosimetry

    International Nuclear Information System (INIS)

    Kawanishi, Masaharu

    1975-01-01

    The research on exoelectron emission has been recently very active in its fundamentals and applications. In the basic study, exoelectron emission and thermo-luminescence are explained by using energy band model. Physical and chemical properties of material surface, specifically surface adsorption phenomena, have been proven experimentally to give important effect on exoelectron emission by several people. It will be necessary in future that the identification of emitted particles and energy measurement become common in exoelectron physics. In spite of the difficulty to fabricate the uniformly stable materials emitting exoelectrons, much efforts are being made in the researches on the application to radiation dosimeters. The principal materials used to date are BeO, LiF, Al 2 O 3 , CaF 2 and CaSO 4 , the last one being most sensitive. On the other hand, the detectors for thermally stimulated exoelectron emission are important not only as dosimeters but for basic research promotion. The most convenient detector is a gas flow GM tube. Q gas or methane is used as flow gas. Though there remains many unknown fields in exoelectron emission mechanism, success in the application researches to effectively utilize their peculiarity and advantages is expected. (Wakatsuki, Y.)

  15. Study of compounds emitted during thermo-oxidative decomposition of polyester fabrics

    Directory of Open Access Journals (Sweden)

    Dzięcioł Małgorzata

    2016-03-01

    Full Text Available Compounds emitted during thermo-oxidative decomposition of three commercial polyester fabrics for indoor outfit and decorations (upholstery, curtains were studied. The experiments were carried out in a flow tubular furnace at 600°C in an air atmosphere. During decomposition process the complex mixtures of volatile and solid compounds were emitted. The main volatile products were carbon oxides, benzene, acetaldehyde, vinyl benzoate and acetophe-none. The emitted solid compounds consisted mainly of aromatic carboxylic acids and its derivatives, among which the greatest part took terephthalic acid, monovinyl terephthalate and benzoic acid. The small amounts of polycyclic aromatic hydrocarbons were also emitted. The emission profiles of the tested polyester fabrics were similar. The presence of toxic compounds indicates the possibility of serious hazard for people during fire.

  16. Cloud fluid compression and softening in spiral arms and the formation of giant molecular cloud complexes

    International Nuclear Information System (INIS)

    Cowie, L.L.

    1981-01-01

    In this, the second paper of a series on the galactodynamics of the cloudy interstellar medium, we consider the response of such a gas to a forcing potential in the tight-winding density wave theory. The cloud fluid is treated in the hydrodynamic limit with an equation of state which softens at high densities. It is shown that in the inner regions of the galaxy, cooling of the cloud fluid in the arms can result in gravitational instability and the formation of large bound complexes of clouds which we identify with the giant molecular clouds (GMCs). Masses dimensions, distributions, and scale heights of the GMCs are predicted by the theory. It is suggested that the interstellar gas density in the disk is regulated by the gravitational instability mechanism in the arms which siphons material into star formation. Implications for the evolution of individual GMCs and for galactic morphology are discussed

  17. Fabrication of silica ceramic membrane via sol-gel dip-coating method at different nitric acid amount

    Science.gov (United States)

    Kahlib, N. A. Z.; Daud, F. D. M.; Mel, M.; Hairin, A. L. N.; Azhar, A. Z. A.; Hassan, N. A.

    2018-01-01

    Fabrication of silica ceramics via the sol-gel method has offered more advantages over other methods in the fabrication of ceramic membrane, such as simple operation, high purity homogeneous, well defined-structure and complex shapes of end products. This work presents the fabrication of silica ceramic membrane via sol-gel dip-coating methods by varying nitric acid amount. The nitric acid plays an important role as catalyst in fabrication reaction which involved hydrolysis and condensation process. The tubular ceramic support, used as the substrate, was dipped into the sol of Tetrethylorthosilicate (TEOS), distilled water and ethanol with the addition of nitric acid. The fabricated silica membrane was then characterized by (Field Emission Scanning Electron Microscope) FESEM and (Fourier transform infrared spectroscopy) FTIR to determine structural and chemical properties at different amount of acids. From the XRD analysis, the fabricated silica ceramic membrane showed the existence of silicate hydrate in the final product. FESEM images indicated that the silica ceramic membrane has been deposited on the tubular ceramic support as a substrate and penetrate into the pore walls. The intensity peak of FTIR decreased with increasing of amount of acids. Hence, the 8 ml of acid has demonstrated the appropriate amount of catalyst in fabricating good physical and chemical characteristic of silica ceramic membrane.

  18. Anthropogenic Chromium Emissions in China from 1990 to 2009

    Science.gov (United States)

    Cheng, Hongguang; Zhou, Tan; Li, Qian; Lu, Lu; Lin, Chunye

    2014-01-01

    An inventory of chromium emission into the atmosphere and water from anthropogenic activities in China was compiled for 1990 through to 2009. We estimate that the total emission of chromium to the atmosphere is about 1.92×105t. Coal and oil combustion were the two leading sources of chromium emission to the atmosphere in China, while the contribution of them showed opposite annual growth trend. In total, nearly 1.34×104t of chromium was discharged to water, mainly from six industrial categories in 20 years. Among them, the metal fabrication industry and the leather tanning sector were the dominant sources of chromium emissions, accounting for approximately 68.0% and 20.0% of the total emissions and representing increases of15.6% and 10.3% annually, respectively. The spatial trends of Cr emissions show significant variation based on emissions from 2005 to 2009. The emission to the atmosphere was heaviest in Hebei, Shandong, Guangdong, Zhejiang and Shanxi, whose annual emissions reached more than 1000t for the high level of coal and oil consumption. In terms of emission to water, the largest contributors were Guangdong, Jiangsu, Shandong and Zhejiang, where most of the leather production and metal manufacturing occur and these four regions accounted for nearly 47.4% of the total emission to water. PMID:24505309

  19. INFLUENCE OF FABRIC TIGHTNESS ON SPIRALITY OF WEFTKNITTED PLAIN COTTON FABRIC

    Directory of Open Access Journals (Sweden)

    A.K.M. Mobarok Hossain

    2011-01-01

    Full Text Available Global demand for knitted garments is growing at a faster rate than that of woven items.Currently around 50% of clothing needs in the developed countries is met by knit goods. So ensuring the required quality in a knitted fabric is a vital issue for the manufacturer. One of the major problems encountered in knitted fabric is spirality. It affects particularly single jersey fabric and presents a serious problem during garment confection and use. So controlling spirality is a basic requirement for producing quality knitted fabric. Though there are several factors that contribute to knitted fabric spirality, yarn twist and relative tightness of the fabric are said tobe the most significant ones. In this work the basic single jersey fabric, i.e. plain jersey cotton fabrics were produced by a Hosiery knitting machine and spirality values were observed for different yarn T.P.I. and tightness factor at relaxed state. It was found that tightness factor has a direct influence on knitted fabric spirality with a high degree of correlation. The work thus gives an idea to deal this problem by controlling the knitting parameters.

  20. Infrared emission of a freestanding plasmonic membrane

    Science.gov (United States)

    Monshat, Hosein; Liu, Longju; McClelland, John; Biswas, Rana; Lu, Meng

    2018-01-01

    This paper reports a free-standing plasmonic membrane as a thermal emitter in the near- and mid-infrared regions. The plasmonic membrane consists of an ultrathin gold film perforated with a two-dimensional array of holes. The device was fabricated using an imprint and transfer process and fixed on a low-emissivity metal grid. The thermal radiation characteristics of the plasmonic membrane can be engineered by controlling the array period and the thickness of the gold membrane. Plasmonic membranes with two different periods were designed using electromagnetic simulation and then characterized for their transmission and infrared radiation properties. The free-standing membranes exhibit extraordinary optical transmissions with the resonant transmission coefficient as high as 76.8%. After integration with a customized heater, the membranes demonstrate narrowband thermal emission in the wavelength range of 2.5 μm to 5.5 μm. The emission signatures, including peak emission wavelength and bandwidth, are associated with the membrane geometry. The ultrathin membrane infrared emitter can be adopted in applications, such as chemical analysis and thermal imaging.

  1. Light emitting fabric for photodynamic treatment of actinic keratosis

    Science.gov (United States)

    Thecua, E.; Vicentini, C.; Vignion, A.-S.; Lecomte, F.; Deleporte, P.; Mortier, L.; Szeimies, R.-M.; Mordon, S.

    2017-02-01

    The integration of optical fibers into flexible textile structures, by using knitting or weaving processes can allow the development of flexible light sources. The paper aims to present a new technology: Light Emitting Fabrics (LEF), which can be used for example for PDT of Actinic Keratosis in Dermatology. The predetermined macro-bending of optical fibers, led to a homogeneous side emission of light over the entire surface of the fabric. Tests showed that additional curvatures when applying the LEF on non-planar surfaces had no impact on light delivery and proved that LEF can adapt to the human morphology. The ability of the LEF, coupled with a 635nm LASER source, to deliver a homogeneous light to lesions is currently assessed in a clinical trial for the treatment of AK of the scalp by PDT. The low irradiance and progressive activation of the photosensitizer ensure a pain reduction, compared to discomfort levels experienced by patients during a conventional PDT session.

  2. Surface properties and field emission characteristics of chemical vapor deposition diamond grown on Fe/Si substrates

    International Nuclear Information System (INIS)

    Hirakuri, Kenji; Yokoyama, Takahiro; Enomoto, Hirofumi; Mutsukura, Nobuki; Friedbacher, Gernot

    2001-01-01

    Electron field emission characteristics of diamond grains fabricated on iron dot-patterned silicon (Fe/Si) substrates at different methane concentrations have been investigated. The characteristics of the samples could be improved by control of the methane concentration during diamond fabrication. Etching treatment of the as-grown diamond has enhanced the emission properties both with respect to current and threshold voltage. In order to study the influence of etching effects on the field emission characteristics, the respective surfaces were studied by Raman spectroscopy, Auger electron spectroscopy, and electron spectroscopy for chemical analysis (ESCA). ESCA revealed intensive graphite and FeO x peaks on the sample surface grown at high methane concentration. For the etched samples, the peaks of diamond and silicon carbide were observed, and the peaks of nondiamond carbon disappeared. The experimental results show that the etching process removes graphitic and nondiamond carbon components. [copyright] 2001 American Institute of Physics

  3. Fabrication of fluorescent chitosan-containing microcapsules

    Directory of Open Access Journals (Sweden)

    Zhang R.

    2013-08-01

    Full Text Available Intense emission peaks of Eu(DBM3Phen (DBM and Phen are dibenzoylmethane and 1,10-phenanthroline, respectively in the microcapsules containing molecules of quaternary ammonium chitosan (QACS and sodium alginate are observed. The microcapsules are assembled by using CaCO3 particles as template cores by the layer-by-layer (LbL technique. Observation of microcapsules by the fluorescence mode and the transmission mode in the confocal laser scanning microscopy shows that the microcapsules are intact after core decomposition. Fluorescence under ultraviolet irradiation comes directly from the Eu(DBM3Phen. Homogeneous assembly of Eu(DBM3Phen can be deduced due to the homogeneous fluorescence of the microcapsules in the fluorescence micrographs. The microcapsules show adherence to solid substrates due to large quantities of hydroxyl groups of QACS. AFM measurements of dried hollow microcapsules with only 4 bilayers of (CS/SA fabricated with Eu(DBM3Phen show the intact shell with a thickness of 3.0 nm. Regarding the biocompatible natural polysaccharides and the intense fluorescence emission, the microcapsules in this work might be of great importance in potential application in drug delivery and bioassay.

  4. Facile fabrication of a superhydrophobic fabric with mechanical stability and easy-repairability.

    Science.gov (United States)

    Zhu, Xiaotao; Zhang, Zhaozhu; Yang, Jin; Xu, Xianghui; Men, Xuehu; Zhou, Xiaoyan

    2012-08-15

    The poor mechanical stability of superhydrophobic fabrics severely hindered their use in practical applications. Herein, to address this problem, we fabricated a superhydrophobic fabric with both mechanical stability and easy-repairability by a simple method. The mechanical durability of the obtained superhydrophobic fabric was evaluated by finger touching and abrasion with sandpaper. The results show that rough surface textures of the fabric were retained, and the fabric surface still exhibited superhydrophobicity after tests. More importantly, when the fabric lost its superhydrophobicity after a long-time abrasion, it can be easily rendered with superhydrophobicity once more by a regeneration process. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Optical and structural properties of porous zinc oxide fabricated via electrochemical etching method

    International Nuclear Information System (INIS)

    Ching, C.G.; Lee, S.C.; Ooi, P.K.; Ng, S.S.; Hassan, Z.; Hassan, H. Abu; Abdullah, M.J.

    2013-01-01

    Highlights: • Hillock like porous structure zinc oxide was obtained via electrochemical etching. • Anisotropic dominance etching process by KOH etchant. • Reststrahlen features are sensitive to multilayer porous structure. • Determination of porosity from IR reflectance spectrum. -- Abstract: We investigated the optical and structural properties of porous zinc oxide (ZnO) thin film fabricated by ultraviolet light-assisted electrochemical etching. This fabrication process used 10 wt% potassium hydroxide solution as an electrolyte. Hillock-like porous ZnO films were successfully fabricated according to the field emission scanning electron microscopy results. The cross-sectional study of the sample indicated that anisotropic-dominated etching process occurred. However, the atomic force microscopic results showed an increase in surface roughness of the sample after electrochemical etching. A resonance hump induced by the porous structure was observed in the infrared reflectance spectrum. Using theoretical modeling technique, ZnO porosification was verified, and the porosity of the sample was determined

  6. Fabrication and Measurement of Electroluminescence and Electrical Properties of Organic Light-Emitting Diodes Containing Mott Insulator Nanocrystals.

    Science.gov (United States)

    Nozoe, Soichiro; Kinoshita, Nobuaki; Matsuda, Masaki

    2016-04-01

    By using the short-time electrocrystallization technique, phthalocyanine (Pc)-based Mott insulator Co(Pc)(CN)2 . 2CHCl3 nanocrystals were fabricated and applied to organic light-emiting diodes (OLEDs). The fabricated device having the configuration ITO/Co(Pc)(CN)2 . 2CHCl3/Alq3/Al, in which ITO is indium-tin oxide and Alq3 is tris(8-hydroxyquinolinato)aluminum, showed clear emission from Alq3, suggesting the Mott insulator Co(Pc)(CN)2 . 2CHCl3 can work as useful hole-injection and transport material in OLEDs.

  7. Decay Time Measurement for Different Energy Depositions of Plastic Scintillator Fabricated by High Temperature Polymerization Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheol Ho; Son, Jaebum; Lee, Sangmin; Kim, Tae Hoon; Kim, Yong-Kyun [Hanyang University, Seoul (Korea, Republic of)

    2016-10-15

    Plastic scintillators are based on organic fluorite. They have many advantages such as fast rise and decay time, high optical transmission, ease of manufacturing, low cost, and large available size. For these reasons they are widely used for particle identification. Also, protection of people against a variety of threats (such as nuclear, radiological, and explosive) represents a true challenge along with the continuing development of science and technology. The plastic scintillator is widely used in various devise, which serves for nuclear, photonics, quantum, and high-energy physics. The plastic scintillator is probably the most widely used organic detector, and polystyrene is one of the most widely used materials in the making of the plastic scintillator detector. Thus, a styrene monomer as a solvent was used to fabricate the plastic scintillator by using high temperature polymerization reaction, and then the emission wavelength and the decay times for different energy depositions were measured by using the fabricated plastic scintillator. A plastic scintillator was fabricated to measure decay time for different energy depositions using the high temperature polymerization. Emission wavelength was measured of 426.05 nm to confirm a scintillator property using the spectrophotometer. Four gamma-ray sources (Cs-137, Co-60, Na-22, and Ba-133) were used to evaluate effect for decay time of different energy depositions. The average decay time of the fabricated plastic scintillator was measured to approximately 4.72 ns slightly higher more than commercial plastic scintillator. In future, light output and linearity will be measured to evaluate other property compared with the commercial scintillator.

  8. Decay Time Measurement for Different Energy Depositions of Plastic Scintillator Fabricated by High Temperature Polymerization Reaction

    International Nuclear Information System (INIS)

    Lee, Cheol Ho; Son, Jaebum; Lee, Sangmin; Kim, Tae Hoon; Kim, Yong-Kyun

    2016-01-01

    Plastic scintillators are based on organic fluorite. They have many advantages such as fast rise and decay time, high optical transmission, ease of manufacturing, low cost, and large available size. For these reasons they are widely used for particle identification. Also, protection of people against a variety of threats (such as nuclear, radiological, and explosive) represents a true challenge along with the continuing development of science and technology. The plastic scintillator is widely used in various devise, which serves for nuclear, photonics, quantum, and high-energy physics. The plastic scintillator is probably the most widely used organic detector, and polystyrene is one of the most widely used materials in the making of the plastic scintillator detector. Thus, a styrene monomer as a solvent was used to fabricate the plastic scintillator by using high temperature polymerization reaction, and then the emission wavelength and the decay times for different energy depositions were measured by using the fabricated plastic scintillator. A plastic scintillator was fabricated to measure decay time for different energy depositions using the high temperature polymerization. Emission wavelength was measured of 426.05 nm to confirm a scintillator property using the spectrophotometer. Four gamma-ray sources (Cs-137, Co-60, Na-22, and Ba-133) were used to evaluate effect for decay time of different energy depositions. The average decay time of the fabricated plastic scintillator was measured to approximately 4.72 ns slightly higher more than commercial plastic scintillator. In future, light output and linearity will be measured to evaluate other property compared with the commercial scintillator

  9. Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding

    Directory of Open Access Journals (Sweden)

    Yoshihiko Hangai

    2015-10-01

    Full Text Available Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding. No deformation of the tube or foaming of the precursor was observed during the friction welding. Next, it was shown that by heat treatment of an ADC12-precursor-bonded A1050 tube, gases generated by the decomposition of the blowing agent expand the softened ADC12 to produce the ADC12 foam interior of the dense A1050 tube. A holding time during the foaming process of approximately tH = 8.5 min with a holding temperature of 948 K was found to be suitable for obtaining a sound ADC12-foam-filled A1050 tube with sufficient foaming, almost uniform pore structures over the entire specimen, and no deformation or reduction in the thickness of the tube.

  10. Softening mechanisms of the AISI 410 martensitic stainless steel under hot torsion simulation

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Thiago Santana de; Silva, Eden Santos; Rodrigues, Samuel Filgueiras; Nascimento, Carmem Celia Francisco; Leal, Valdemar Silva; Reis, Gedeon Silva, E-mail: samuel.filgueiras@ifma.edu.br [Instituto Federal do Maranhao (PPGEM/IFMA), Sao Luis, MA (Brazil)

    2017-03-15

    This study investigated the softening mechanisms of the AISI 410 martensitic stainless steel during torsion simulation under isothermal continuous in the temperature range of 900 to 1150 °C and strain rates of 0.1 to 5.0s{sup -1}. In the first part of the curves, before the peak, the results show that the critical (ε-c) and peak (ε-p) strains are elevated for higher strain rate and lower temperatures contributing for higher strain hardening rate (h). Moreover, this indicated that dynamic recrystallization (DRX) and dynamic recovery (DRV) are not effective in this region. After the peak, the reductions in stresses are associated to the different DRX/DRV competitions. For lower temperatures and higher strain rates there is a delay in the DRX while the DRV is acting predominantly (with low Avrami exponent (n) and high t{sub 0.5}). The steady state was reached after large strains showing DRX grains, formation of retained austenite and the presence of chromium carbide (Cr{sub 23}C{sub 6}) and ferrite δ at the martensitic grain boundaries. These contribute for impairing the toughness and ductility on the material. The constitutive equations at the peak strain indicated changes in the deformation mechanism, with variable strain rate sensitivity (m), which affected the final microstructure. (author)

  11. Estimating greenhouse gas emissions of European cities — Modeling emissions with only one spatial and one socioeconomic variable

    International Nuclear Information System (INIS)

    Baur, Albert H.; Lauf, Steffen; Förster, Michael; Kleinschmit, Birgit

    2015-01-01

    Substantive and concerted action is needed to mitigate climate change. However, international negotiations struggle to adopt ambitious legislation and to anticipate more climate-friendly developments. Thus, stronger actions are needed from other players. Cities, being greenhouse gas emission centers, play a key role in promoting the climate change mitigation movement by becoming hubs for smart and low-carbon lifestyles. In this context, a stronger linkage between greenhouse gas emissions and urban development and policy-making seems promising. Therefore, simple approaches are needed to objectively identify crucial emission drivers for deriving appropriate emission reduction strategies. In analyzing 44 European cities, the authors investigate possible socioeconomic and spatial determinants of urban greenhouse gas emissions. Multiple statistical analyses reveal that the average household size and the edge density of discontinuous dense urban fabric explain up to 86% of the total variance of greenhouse gas emissions of EU cities (when controlled for varying electricity carbon intensities). Finally, based on these findings, a multiple regression model is presented to determine greenhouse gas emissions. It is independently evaluated with ten further EU cities. The reliance on only two indicators shows that the model can be easily applied in addressing important greenhouse gas emission sources of European urbanites, when varying power generations are considered. This knowledge can help cities develop adequate climate change mitigation strategies and promote respective policies on the EU or the regional level. The results can further be used to derive first estimates of urban greenhouse gas emissions, if no other analyses are available. - Highlights: • Two variables determine urban GHG emissions in Europe, assuming equal power generation. • Household size, inner-urban compactness and power generation drive urban GHG emissions. • Climate policies should consider

  12. Estimating greenhouse gas emissions of European cities — Modeling emissions with only one spatial and one socioeconomic variable

    Energy Technology Data Exchange (ETDEWEB)

    Baur, Albert H., E-mail: Albert.H.Baur@campus.tu-berlin.de; Lauf, Steffen; Förster, Michael; Kleinschmit, Birgit

    2015-07-01

    Substantive and concerted action is needed to mitigate climate change. However, international negotiations struggle to adopt ambitious legislation and to anticipate more climate-friendly developments. Thus, stronger actions are needed from other players. Cities, being greenhouse gas emission centers, play a key role in promoting the climate change mitigation movement by becoming hubs for smart and low-carbon lifestyles. In this context, a stronger linkage between greenhouse gas emissions and urban development and policy-making seems promising. Therefore, simple approaches are needed to objectively identify crucial emission drivers for deriving appropriate emission reduction strategies. In analyzing 44 European cities, the authors investigate possible socioeconomic and spatial determinants of urban greenhouse gas emissions. Multiple statistical analyses reveal that the average household size and the edge density of discontinuous dense urban fabric explain up to 86% of the total variance of greenhouse gas emissions of EU cities (when controlled for varying electricity carbon intensities). Finally, based on these findings, a multiple regression model is presented to determine greenhouse gas emissions. It is independently evaluated with ten further EU cities. The reliance on only two indicators shows that the model can be easily applied in addressing important greenhouse gas emission sources of European urbanites, when varying power generations are considered. This knowledge can help cities develop adequate climate change mitigation strategies and promote respective policies on the EU or the regional level. The results can further be used to derive first estimates of urban greenhouse gas emissions, if no other analyses are available. - Highlights: • Two variables determine urban GHG emissions in Europe, assuming equal power generation. • Household size, inner-urban compactness and power generation drive urban GHG emissions. • Climate policies should consider

  13. Fabrication and characterization of a solid-state nanopore with self-aligned carbon nanoelectrodes for molecular detection

    International Nuclear Information System (INIS)

    Spinney, Patrick S; Collins, Scott D; Smith, Rosemary L; Howitt, David G

    2012-01-01

    Stochastic molecular sensors based on resistive pulse nanopore modalities are envisioned as facile DNA sequencers. However, recent advances in nanotechnology fabrication have highlighted promising alternative detection mechanisms with higher sensitivity and potential single-base resolution. In this paper we present the novel self-aligned fabrication of a solid-state nanopore device with integrated transverse graphene-like carbon nanoelectrodes for polyelectrolyte molecular detection. The electrochemical transduction mechanism is characterized and found to result primarily from thermionic emission between the two transverse electrodes. Response of the nanopore to Lambda dsDNA and short (16-mer) ssDNA is demonstrated and distinguished. (paper)

  14. Study on the fabrication and photoluminescence characteristics of LiPO3 glass scintillators with the lanthanides activators

    International Nuclear Information System (INIS)

    Jeong, S. Z.; Lee, J. M.; Hwang, J. H.; Choi, S. H.

    2001-01-01

    In this syudy, LiPO 3 glass scintillators were fabricated, and lanthanides (except Pm) oxides or chlorides were used as an activator. For the fabrication of LiPO 3 glasses, optimum heating conditions were obtained, and the photoluminescence of the glasses was measured by the monochromator. For the best transparency of the glass samples, optimum heating temperature and time is 950 .deg. C and 90 min, respectively. As the result of photoluminescence analysis, it was impossible to apply Pr, Nd, Gd, Ho, Er, Tm, Yb, and Lu to activator. Because emission spectrum of samples with them was equal to that of sample without activator. In case of samples with Europium, the peak of emission spectrum of Eu(II) and Eu(III) is 420 nm and 620 nm, separately. And Samples with Ce(III) are about 380 nm, and Tb(III) are about 550 nm. On the fabrication of LiPO 3 glass samples, PL intensity was increased by adding sugar as reductant, and using Ar reduction atmosphere. And the optimum reduction conditions were differed as to the kinds of activators. Samples with Eu(II) and Tb(III) have the best PL intensity in the Ar reduction atmosphere, and sample with Ce(III) have the best intensity by added sugar

  15. Fabric circuits and method of manufacturing fabric circuits

    Science.gov (United States)

    Chu, Andrew W. (Inventor); Dobbins, Justin A. (Inventor); Scully, Robert C. (Inventor); Trevino, Robert C. (Inventor); Lin, Greg Y. (Inventor); Fink, Patrick W. (Inventor)

    2011-01-01

    A flexible, fabric-based circuit comprises a non-conductive flexible layer of fabric and a conductive flexible layer of fabric adjacent thereto. A non-conductive thread, an adhesive, and/or other means may be used for attaching the conductive layer to the non-conductive layer. In some embodiments, the layers are attached by a computer-driven embroidery machine at pre-determined portions or locations in accordance with a pre-determined attachment layout before automated cutting. In some other embodiments, an automated milling machine or a computer-driven laser using a pre-designed circuit trace as a template cuts the conductive layer so as to separate an undesired portion of the conductive layer from a desired portion of the conductive layer. Additional layers of conductive fabric may be attached in some embodiments to form a multi-layer construct.

  16. Color-tunable electrophosphorescent device fabricated by a photo-bleaching method

    International Nuclear Information System (INIS)

    Kim, Tae-Ho; Park, Jong Hyeok; Park, O Ok

    2011-01-01

    We demonstrated an efficient color-tunable electrophosphorescent device fabricated by a photo-bleaching method. Electroluminescence studies indicate that excellent device performance can be achieved through efficient Foerster energy transfer from the conjugated polymer to the iridium complexes by improving their miscibility. The use of a very low concentration of red phosphorescent dye and the easy degradation characteristics of conjugated structure of the red dopant enable color-tuning from red to green emission by a simple UV-irradiation process without a sacrifice of luminescent properties.tp

  17. High-Color-Quality White Top-Emitting Organic Electroluminescent Devices Based on Both Exciton and Electroplex Emission

    Science.gov (United States)

    Zhang, Mingxiao; Chen, Zhijian; Xiao, Lixin; Qu, Bo; Gong, Qihuang

    2011-08-01

    A high-color-quality white top-emitting organic electroluminescent device (TOLED) with a simple structure was fabricated using both exciton and electroplex emission. White emission was achieved by combining the exciton emission of 4,4'-bis(2,2'-diphenylvinyl)-1,1'-biphenyl (DPVBi) and the broad band emission of electroplex generated between DPVBi and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP). The white emission spectra showed excellent stability at different bias voltages. By inserting a blend film of DPVBi:BCP and adjusting the ratio of DPVBi to BCP in the blend film, the CIE coordinates of the white emission can be tuned to (0.30, 0.33) and the electroluminescence efficiency can also be enhanced.

  18. Effluent Treatment Facility tritium emissions monitoring

    International Nuclear Information System (INIS)

    Dunn, D.L.

    1991-01-01

    An Environmental Protection Agency (EPA) approved sampling and analysis protocol was developed and executed to verify atmospheric emissions compliance for the new Savannah River Site (SRS) F/H area Effluent Treatment Facility. Sampling equipment was fabricated, installed, and tested at stack monitoring points for filtrable particulate radionuclides, radioactive iodine, and tritium. The only detectable anthropogenic radionuclides released from Effluent Treatment Facility stacks during monitoring were iodine-129 and tritium oxide. This paper only examines the collection and analysis of tritium oxide

  19. Fabrication Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Fabrication Facilities are a direct result of years of testing support. Through years of experience, the three fabrication facilities (Fort Hood, Fort Lewis, and...

  20. Shear Behavior Models of Steel Fiber Reinforced Concrete Beams Modifying Softened Truss Model Approaches.

    Science.gov (United States)

    Hwang, Jin-Ha; Lee, Deuck Hang; Ju, Hyunjin; Kim, Kang Su; Seo, Soo-Yeon; Kang, Joo-Won

    2013-10-23

    Recognizing that steel fibers can supplement the brittle tensile characteristics of concrete, many studies have been conducted on the shear performance of steel fiber reinforced concrete (SFRC) members. However, previous studies were mostly focused on the shear strength and proposed empirical shear strength equations based on their experimental results. Thus, this study attempts to estimate the strains and stresses in steel fibers by considering the detailed characteristics of steel fibers in SFRC members, from which more accurate estimation on the shear behavior and strength of SFRC members is possible, and the failure mode of steel fibers can be also identified. Four shear behavior models for SFRC members have been proposed, which have been modified from the softened truss models for reinforced concrete members, and they can estimate the contribution of steel fibers to the total shear strength of the SFRC member. The performances of all the models proposed in this study were also evaluated by a large number of test results. The contribution of steel fibers to the shear strength varied from 5% to 50% according to their amount, and the most optimized volume fraction of steel fibers was estimated as 1%-1.5%, in terms of shear performance.

  1. Study on the fabrication and photoluminescence characteristics of LiBO2 glass scintillators with the lanthanides activators

    International Nuclear Information System (INIS)

    Sin, S. W.; Hwang, J. H.; Choi, S. H.; Sumarokov, S. Yu.

    2002-01-01

    LiBO 2 glass scintillators were fabricated, and lanthanides(except Pm) oxides or chlorides were used as an activator. For the fabrication of LiBO 2 glasses, optimum heating conditions were obtained, and the photoluminescence of the glasses was measured by the monochromator. For the best transparency of the glass samples, optimum heating temperature and time are 1000 .deg. C and 40 min, respectively. The result of photoluminescence analysis shows that Pr, Nd, Gd, Ho, Er, Tm, Yb, and Lu are not good as activator. Because emission spectrum of samples with them was equal to that of sample without activator. In the case of samples with Europium, the peak of emission spectrum of Eu(III) is 810 nm. And Samples with Ce(III) are 760 nm, and Tb(III) are about 535 nm. Samples with Ce(III) and Tb(III) have the best PL intensity with added sugar in Ar reduction atmosphere, and sample with Eu(III) has the best intensity without a reducing process

  2. The optimisation of the laser-induced forward transfer process for fabrication of polyfluorene-based organic light-emitting diode pixels

    Science.gov (United States)

    Shaw-Stewart, James; Mattle, Thomas; Lippert, Thomas; Nagel, Matthias; Nüesch, Frank; Wokaun, Alexander

    2013-08-01

    Laser-induced forward transfer (LIFT) has already been used to fabricate various types of organic light-emitting diodes (OLEDs), and the process itself has been optimised and refined considerably since OLED pixels were first demonstrated. In particular, a dynamic release layer (DRL) of triazene polymer has been used, the environmental pressure has been reduced down to a medium vacuum, and the donor receiver gap has been controlled with the use of spacers. Insight into the LIFT process's effect upon OLED pixel performance is presented here, obtained through optimisation of three-colour polyfluorene-based OLEDs. A marked dependence of the pixel morphology quality on the cathode metal is observed, and the laser transfer fluence dependence is also analysed. The pixel device performances are compared to conventionally fabricated devices, and cathode effects have been looked at in detail. The silver cathode pixels show more heterogeneous pixel morphologies, and a correspondingly poorer efficiency characteristics. The aluminium cathode pixels have greater green electroluminescent emission than both the silver cathode pixels and the conventionally fabricated aluminium devices, and the green emission has a fluence dependence for silver cathode pixels.

  3. The optimisation of the laser-induced forward transfer process for fabrication of polyfluorene-based organic light-emitting diode pixels

    Energy Technology Data Exchange (ETDEWEB)

    Shaw-Stewart, James, E-mail: james.shaw-stewart@ed.ac.uk [Materials Group, General Energies Department, Paul Scherrer Institut, CH-5232 Villigen-PSI (Switzerland); Laboratory for Functional Polymers, Empa Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Mattle, Thomas [Materials Group, General Energies Department, Paul Scherrer Institut, CH-5232 Villigen-PSI (Switzerland); Lippert, Thomas, E-mail: thomas.lippert@psi.ch [Materials Group, General Energies Department, Paul Scherrer Institut, CH-5232 Villigen-PSI (Switzerland); Nagel, Matthias [Laboratory for Functional Polymers, Empa Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Nüesch, Frank, E-mail: frank.nueesch@empa.ch [Laboratory for Functional Polymers, Empa Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Section de science et génie des matériaux, EPFL, CH-1015 Lausanne (Switzerland); Wokaun, Alexander [Materials Group, General Energies Department, Paul Scherrer Institut, CH-5232 Villigen-PSI (Switzerland)

    2013-08-01

    Laser-induced forward transfer (LIFT) has already been used to fabricate various types of organic light-emitting diodes (OLEDs), and the process itself has been optimised and refined considerably since OLED pixels were first demonstrated. In particular, a dynamic release layer (DRL) of triazene polymer has been used, the environmental pressure has been reduced down to a medium vacuum, and the donor receiver gap has been controlled with the use of spacers. Insight into the LIFT process's effect upon OLED pixel performance is presented here, obtained through optimisation of three-colour polyfluorene-based OLEDs. A marked dependence of the pixel morphology quality on the cathode metal is observed, and the laser transfer fluence dependence is also analysed. The pixel device performances are compared to conventionally fabricated devices, and cathode effects have been looked at in detail. The silver cathode pixels show more heterogeneous pixel morphologies, and a correspondingly poorer efficiency characteristics. The aluminium cathode pixels have greater green electroluminescent emission than both the silver cathode pixels and the conventionally fabricated aluminium devices, and the green emission has a fluence dependence for silver cathode pixels.

  4. Highly efficient tandem organic light-emitting devices employing an easily fabricated charge generation unit

    Science.gov (United States)

    Yang, Huishan; Yu, Yaoyao; Wu, Lishuang; Qu, Biao; Lin, Wenyan; Yu, Ye; Wu, Zhijun; Xie, Wenfa

    2018-02-01

    We have realized highly efficient tandem organic light-emitting devices (OLEDs) employing an easily fabricated charge generation unit (CGU) combining 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile with ultrathin bilayers of CsN3 and Al. The charge generation and separation processes of the CGU have been demonstrated by studying the differences in the current density-voltage characteristics of external-carrier-excluding devices. At high luminances of 1000 and 10000 cd/m2, the current efficiencies of the phosphorescent tandem device are about 2.2- and 2.3-fold those of the corresponding single-unit device, respectively. Simultaneously, an efficient tandem white OLED exhibiting high color stability and warm white emission has also been fabricated.

  5. Impact of inter-sectoral trade on national and global CO2 emissions: An empirical analysis of China and US

    International Nuclear Information System (INIS)

    Guo Jie; Zou Lele; Wei Yiming

    2010-01-01

    This paper attempts to discuss the CO 2 emissions embodied in Sino-US international trade using a sector approach. Based on an input-output model established in this study, we quantify the impact of Sino-US international trade on national and global CO 2 emissions. Our initial findings reveal that: In 2005, the US reduced 190.13 Mt CO 2 emissions through the consumption of imported goods from China, while increasing global CO 2 emissions by about 515.25 Mt. Similarly, China reduced 178.62 Mt CO 2 emissions through the consumption of US goods, while reducing global CO 2 emissions by 129.93 Mt. Sino-US international trade increased global CO 2 emissions by 385.32 Mt as a whole, of which the Chemical, Fabricated Metal Products, Non-metallic Mineral Products and Transportation Equipment sectors contributed an 86.71% share. Therefore, we suggest that accelerating the adjustment of China's trade structure and export of US advanced technologies and experience related to clean production and energy efficiency to China as the way to reduce the negative impact of Sino-US trade on national and global CO 2 emissions. This behavior should take into account the processing and manufacturing industries as a priority, especially the Chemical, Fabricated Metal Products, Non-metallic Mineral Products and Transportation Equipment sectors.

  6. CANDU reactors and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Andseta, S.; Thompson, M.J.; Jarrell, J.P.; Pendergast, D.R.

    1999-01-01

    This paper was originally presented at the 11th Pacific Basin Nuclear Conference, Banff, Alberta, Canada, May 3-7, 1998. It has been updated to include additional lifecycle data on chemical releases from ore treatment and CANDU fuel fabrication. It is sometimes stated that nuclear power plants can supply electricity with zero emissions of greenhouse gases. In fact, consideration of the entire fuel cycle indicates that some greenhouse gases are generated during their construction and decommissioning and by the preparation of fuel and other materials required for their operation. This follows from the use of fossil fuels in the preparation of materials and during the construction and decommissioning of the plants. This paper reviews life cycle studies of several different kinds of power plants. Greenhouse gases generated by fossil fuels during the preparation of fuel and heavy water used by operating CANDU power plants are estimated. The total greenhouse gas emissions from CANDU nuclear plants, per unit of electricity ultimately produced, are very small in comparison with emissions from most other types of power plants. (author)

  7. CANDU reactors and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Andseta, S.; Thompson, M.J.; Jarrell, J.P.; Pendergast, D.R.

    1998-01-01

    This paper was originally presented at the 11th Pacific Basin Nuclear Conference, Banff, Alberta, Canada, May 3-7, 1998. It has been updated to include additional lifecycle data on chemical releases from ore treatment and CANDU fuel fabrication. It is sometimes stated that nuclear power plants can supply electricity with zero emissions of greenhouse gases. In fact, consideration of the entire fuel cycle indicates that some greenhouse gases are generated during their construction and decommissioning and by the preparation of fuel and other materials required for their operation. This follows from the use of fossil fuels in the preparation of materials and during the construction and decommissioning of the plants. This paper reviews life cycle studies of several different kinds of power plants. Greenhouse gases generated by fossil fuels during the preparation of fuel and heavy water used by operating CANDU power plants are estimated. The total greenhouse gas emissions from CANDU nuclear plants, per unit of electricity ultimately produced, are very small in comparison with emissions from most other types of power plants. (author)

  8. Explosive emission cathode on the base of carbon plastic fibre

    International Nuclear Information System (INIS)

    Korenev, S.A.; Baranov, A.M.; Kostyuchenko, S.V.; Chernenko, N.M.

    1989-01-01

    A fabrication process for explosive emission cathodes on the base of carbon plastic fibre of practically any geometrical shape and dimensions is developed. Experimental studies of electron beam current collection from cathodes, 2cm in diameter, at voltages across the diode of 10 and 150-250kV. It is shown that the ignition voltage for cathode plasma is ∼2kV at the interelectrode diode gap of 5mm and residual gas pressure of ∼5x10 -5 Torr. The carbon-fibre cathode, fabricated in this way, provides more stable current collection of an electron beam (without oscillations) than other cathodes

  9. Fabrication of poly (lactic-co-glycolic acid) microcontainers using solvent evaporation with polydimethylsiloxane stencil

    Science.gov (United States)

    Kim, Chul Min; Byul Lee, Han; Kim, Jong Uk; Kim, Gyu Man

    2017-12-01

    We present a fabrication method using polydimethylsiloxane (PDMS) stencils and solvent evaporation to prepare microcontainers with a desired shape made from a biodegradable polymer. Poly(lactic-co-glycolic acid) (PLGA) was used for preparing microcontainers, but most polymers are applicable in the proposed method in which solvent evaporation is used to construct microstructures in confined spaces in the stencil. Microcontainers with various shapes were fabricated by controlling the stencil geometry. Furthermore, a porous structure could be prepared in a micromembrane using water porogen. The porous structure was observed using a field emission scanning electron microscope and mass transfer across the porous membrane was examined using a fluorescent dye. The flexibility of the PDMS stencil allowed the fabrication of microcontainers on a curved surface. Finally, it was demonstrated that microcontainers can be used to contain a localized cell culture. The viability and morphology of cultured cells were observed using confocal microscopy over a period of 3 weeks.

  10. Fabrication Process and Reliability Evaluation of Shape Memory Alloy Composite

    International Nuclear Information System (INIS)

    Lee, Jin Kyung; Choi, Il Kook; Park, Young Chul; Lee, Kyu Chang; Lee, Joon Hyun

    2001-01-01

    Shape memory alloy has been used to improve the tensile strength of composite by the occurrence of compressive residual stress in matrix using its shape memory effect. In order to fabricate shape memory alloy composite, TiNi alloy and A16061 were used as reinforcing material and mix, respectively. In this study, TiNi/A16061 shape memory alloy composite was made by using hot press method. However, the specimen fabricated by this method had the bonding problem at the boundary between TiNi fiber and Al matrix when the load was applied to it. A cold rolling was imposed to the specimen to improve the bonding effect. It was found that tensile strength of specimen subjected to cold rolling was more increased than that of specimen which did not underwent cold rolling. In addition, acoustic emission technique was used to quantify the microscopic damage behavior of cold rolled TiNi/A16061 shape memory alloy composite at high temperature

  11. Fabrication of nano-electrode arrays of free-standing carbon nanotubes on nano-patterned substrate by imprint method

    Energy Technology Data Exchange (ETDEWEB)

    Chang, W.S., E-mail: paul@kimm.re.kr [Department of Nano Mechanics, Korea Institute of Machinery and Materials, 104 Sinseongno, Yuseong-gu Daejeon 305-343 (Korea, Republic of); Kim, J.W. [Gyeongbuk Hybrid Technology Institute, 36 Goeyeon-dong, Yeongcheon, Gyeongbuk 770-170 (Korea, Republic of); Choi, D.G. [Department of Nano Mechanics, Korea Institute of Machinery and Materials, 104 Sinseongno, Yuseong-gu Daejeon 305-343 (Korea, Republic of); Han, C.S. [Gyeongbuk Hybrid Technology Institute, 36 Goeyeon-dong, Yeongcheon, Gyeongbuk 770-170 (Korea, Republic of)

    2011-01-15

    The synthesis of isolated carbon nanotubes with uniform outer diameters and ordered spacing over wafer-scale areas was investigated for fabrication of nano-electrode arrays on silicon wafers for field emission and sensor devices. Multi-walled carbon nanotubes (MWCNTs) were grown on TiN electrode layer with iron catalyst patterned by nano-imprint lithography (NIL), which allows the precise placement of individual CNTs on a substrate. The proposed techniques, including plasma-enhanced chemical vapor deposition (PECVD) and NIL, are simple, inexpensive, and reproducible methods for fabrication of nano-scale devices in large areas. The catalyst patterns were defined by an array of circles with 200 nm in diameter, and variable lengths of pitch. The nano-patterned master and Fe catalyst were observed with good pattern fidelity over a large area by atomic force microscope (AFM) and scanning electron microscopy (SEM). Nano-electrodes of MWCNTs had diameters ranging from 50 nm to 100 nm and lengths of about 300 nm. Field emission tests showed the reducing ignition voltage as the geometry of nanotube arrays was controlled by catalyst patterning. These results showed a wafer-scale approach to the control of the size, pitch, and position of nano-electrodes of nanotubes for various applications including electron field-emission sources, electrochemical probes, functionalized sensor elements, and so on.

  12. Relaxing the electrostatic screening effect by patterning vertically-aligned silicon nanowire arrays into bundles for field emission application

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Yung-Jr, E-mail: yungjrhung@gmail.com [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Department of Photonics, National Sun Yat-sen University, No. 70, Lienhai Rd., Kaohsiung 80424, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Lee, San-Liang [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Beng, Looi Choon [Faculty of Engineering, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia); Chang, Hsuan-Chen [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Huang, Yung-Jui [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Lee, Kuei-Yi; Huang, Ying-Sheng [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China)

    2014-04-01

    Top-down fabrication strategies are proposed and demonstrated to realize arrays of vertically-aligned silicon nanowire bundles and bundle arrays of carbon nanotube–silicon nanowire (CNT–SiNW) heterojunctions, aiming for releasing the electrostatic screening effect and improving the field emission characteristics. The trade-off between the reduction in the electrostatic screening effect and the decrease of emission sites leads to an optimal SiNW bundle arrangement which enables the lowest turn-on electric field of 1.4 V/μm and highest emission current density of 191 μA/cm{sup 2} among all testing SiNW samples. Benefiting from the superior thermal and electrical properties of CNTs and the flexible patterning technologies available for SiNWs, bundle arrays of CNT–SiNW heterojunctions show improved and highly-uniform field emission with a lower turn-on electric field of 0.9 V/μm and higher emission current density of 5.86 mA/cm{sup 2}. The application of these materials and their corresponding fabrication approaches is not limited to the field emission but can be used for a variety of emerging fields like nanoelectronics, lithium-ion batteries, and solar cells. - Highlights: • Aligned silicon nanowire (SiNW) bundle arrays are realized with top-down methods. • Growing carbon nanotubes atop SiNW bundle arrays enable uniform field emission. • A turn-on field of 0.9 V/μm and an emission current of > 5 mA/cm{sup 2} are achieved.

  13. Near-infrared emission from mesoporous crystalline germanium

    Energy Technology Data Exchange (ETDEWEB)

    Boucherif, Abderraouf; Aimez, Vincent; Arès, Richard, E-mail: richard.ares@usherbrooke.ca [Institut Interdisciplinaire d’Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard Université, Sherbrooke, J1K OA5, Québec (Canada); Laboratoire Nanotechnologies Nanosystèmes (LN2)-CNRS UMI-3463, Université de Sherbrooke, 3000 Boulevard Université, Sherbrooke, J1K OA5, Québec (Canada); Korinek, Andreas [Canadian Centre for Electron Microscopy, Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, L8S 4M1 (Canada)

    2014-10-15

    Mesoporous crystalline germanium was fabricated by bipolar electrochemical etching of Ge wafer in HF-based electrolyte. It yields uniform mesoporous germanium layers composed of high density of crystallites with an average size 5-7 nm. Subsequent extended chemical etching allows tuning of crystallites size while preserving the same chemical composition. This highly controllable nanostructure exhibits photoluminescence emission above the bulk Ge bandgap, in the near-infrared range (1095-1360nm) with strong evidence of quantum confinement within the crystallites.

  14. Acoustic emission: technical review for PWR applications

    International Nuclear Information System (INIS)

    Bentley, P.G.

    1981-07-01

    Acoustic emission has been studied since the early 1960's, particularly with a view to periodic or continuous monitoring of steel pressure vessels. In the years 1970-75 it was realised that ductile steels, used in nuclear vessels, give small amplitude signals which are barely detectable by available instruments. The technique for application in periodic or continuous monitoring and also as applied to leak detection and weld fabrication monitoring is reviewed. It is concluded that manufacturing defects may be detectable during pre-service hydrotest, but that there is insufficient evidence on which to base an estimate of detection probability. In-service hydrotest or continuous monitoring is unlikely to detect growing cracks because of the quiet nature of the material and the noisy reactor background. Both leak detection and fabrication weld monitoring show some promise of successful application in the future. (author)

  15. Structural and magnetic properties of Ni{sub 78}Fe{sub 22} thin films sandwiched between low-softening-point glasses and application in spin devices

    Energy Technology Data Exchange (ETDEWEB)

    Misawa, Takahiro; Mori, Sumito [Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020 (Japan); Komine, Takashi [Faculty of Engineering, Ibaraki University, Hitachi, Ibaraki 316-8511 (Japan); Fujioka, Masaya; Nishii, Junji [Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020 (Japan); Kaiju, Hideo, E-mail: kaiju@es.hokudai.ac.jp [Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020 (Japan)

    2016-12-30

    proposed and established technique, especially, the thermal pressing technique, is a significant advance in the surface and interface engineering and spin-device application. - Highlights: • Ni{sub 78}Fe{sub 22} films between low-softening-point glasses were formed by thermal pressing. • The thermal pressing technique gives rise to a 100-fold enhancement in coercivity. • The stray magnetic field is uniformly generated from the Ni{sub 78}Fe{sub 22} thin-film edge. • The calculation revealed the generation of a high stray field of 5 kOe in SQC device. - Abstract: We investigate the structural and magnetic properties of Ni{sub 78}Fe{sub 22} thin films sandwiched between low-softening-point (LSP) glasses, which can be used in spin quantum cross (SQC) devices utilizing stray magnetic fields generated from magnetic thin-film edges. We also calculate the stray magnetic field generated between the two edges of Ni{sub 78}Fe{sub 22} thin-film electrodes in SQC devices and discuss the applicability to spin-filter devices. Using the established fabrication technique, we successfully demonstrate the formation of LSP-glass/Ni{sub 78}Fe{sub 22}/LSP-glass structures with smooth and clear interfaces. The coercivity of the Ni{sub 78}Fe{sub 22} thin films is enhanced from 0.9 to 103 Oe by increasing the applied pressure from 0 to 1.0 MPa in the thermal pressing process. According to the random anisotropy model, the enhancement of the coercivity is attributed to the increase in the crystal grain size. The stray magnetic field is also uniformly generated from the Ni{sub 78}Fe{sub 22} thin-film edge in the direction perpendicular to the cross section of the LSP-glass/Ni{sub 78}Fe{sub 22}/LSP-glass structures. Theoretical calculation reveals that a high stray field of approximately 5 kOe is generated when the distance between two edges of the Ni{sub 78}Fe{sub 22} thin-film electrodes is less than 5 nm and the thickness of Ni{sub 78}Fe{sub 22} is greater than 20 nm. These experimental and

  16. Assessing the allelotypic effect of two aminocyclopropane carboxylic acid synthase-encoding genes MdACS1 and MdACS3a on fruit ethylene production and softening in Malus

    Science.gov (United States)

    Dougherty, Laura; Zhu, Yuandi; Xu, Kenong

    2016-01-01

    Phytohormone ethylene largely determines apple fruit shelf life and storability. Previous studies demonstrated that MdACS1 and MdACS3a, which encode 1-aminocyclopropane-1-carboxylic acid synthases (ACS), are crucial in apple fruit ethylene production. MdACS1 is well-known to be intimately involved in the climacteric ethylene burst in fruit ripening, while MdACS3a has been regarded a main regulator for ethylene production transition from system 1 (during fruit development) to system 2 (during fruit ripening). However, MdACS3a was also shown to have limited roles in initiating the ripening process lately. To better assess their roles, fruit ethylene production and softening were evaluated at five time points during a 20-day post-harvest period in 97 Malus accessions and in 34 progeny from 2 controlled crosses. Allelotyping was accomplished using an existing marker (ACS1) for MdACS1 and two markers (CAPS866 and CAPS870) developed here to specifically detect the two null alleles (ACS3a-G289V and Mdacs3a) of MdACS3a. In total, 952 Malus accessions were allelotyped with the three markers. The major findings included: The effect of MdACS1 was significant on fruit ethylene production and softening while that of MdACS3a was less detectable; allele MdACS1–2 was significantly associated with low ethylene and slow softening; under the same background of the MdACS1 allelotypes, null allele Mdacs3a (not ACS3a-G289V) could confer a significant delay of ethylene peak; alleles MdACS1–2 and Mdacs3a (excluding ACS3a-G289V) were highly enriched in M. domestica and M. hybrid when compared with those in M. sieversii. These findings are of practical implications in developing apples of low and delayed ethylene profiles by utilizing the beneficial alleles MdACS1-2 and Mdacs3a. PMID:27231553

  17. Enhanced stimulated emission in ZnO thin films using microdisk top-down structuring

    Energy Technology Data Exchange (ETDEWEB)

    Nomenyo, K.; Kostcheev, S.; Lérondel, G. [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Institut Charles Delaunay, CNRS UMR 6281, Université de Technologie de Troyes, 12 rue Marie Curie, CS 42060, 10004 Troyes Cedex (France); Gadallah, A.-S. [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Institut Charles Delaunay, CNRS UMR 6281, Université de Technologie de Troyes, 12 rue Marie Curie, CS 42060, 10004 Troyes Cedex (France); Department of Laser Sciences and Interactions, National Institute of Laser Enhanced Sciences, Cairo University, Giza (Egypt); Rogers, D. J. [Nanovation, 8, route de Chevreuse, 78117 Châteaufort (France)

    2014-05-05

    Microdisks were fabricated in zinc oxide (ZnO) thin films using a top-down approach combining electron beam lithography and reactive ion etching. These microdisk structured thin films exhibit a stimulated surface emission between 3 and 7 times higher than that from a reference film depending on the excitation power density. Emission peak narrowing, reduction in lasing threshold and blue-shifting of the emission wavelength were observed along with enhancement in the emitted intensity. Results indicate that this enhancement is due to an increase in the internal quantum efficiency combined with an amplification of the stimulated emission. An analysis in terms of waveguiding is presented in order to explain these effects. These results demonstrate that very significant gains in emission can be obtained through conventional microstructuration without the need for more onerous top-down nanostructuration techniques.

  18. Digital fabrication

    CERN Document Server

    2012-01-01

    The Winter 2012 (vol. 14 no. 3) issue of the Nexus Network Journal features seven original papers dedicated to the theme “Digital Fabrication”. Digital fabrication is changing architecture in fundamental ways in every phase, from concept to artifact. Projects growing out of research in digital fabrication are dependent on software that is entirely surface-oriented in its underlying mathematics. Decisions made during design, prototyping, fabrication and assembly rely on codes, scripts, parameters, operating systems and software, creating the need for teams with multidisciplinary expertise and different skills, from IT to architecture, design, material engineering, and mathematics, among others The papers grew out of a Lisbon symposium hosted by the ISCTE-Instituto Universitario de Lisboa entitled “Digital Fabrication – A State of the Art”. The issue is completed with four other research papers which address different mathematical instruments applied to architecture, including geometric tracing system...

  19. Light emission from silicon with tin-containing nanocrystals

    Directory of Open Access Journals (Sweden)

    Søren Roesgaard

    2015-07-01

    Full Text Available Tin-containing nanocrystals, embedded in silicon, have been fabricated by growing an epitaxial layer of Si1−x−ySnxCy, where x = 1.6 % and y = 0.04 % on a silicon substrate, followed by annealing at various temperatures ranging from 650 ∘C to 900 ∘C. The nanocrystal density and average diameters are determined by scanning transmission-electron microscopy to ≈1017 cm−3 and ≈5 nm, respectively. Photoluminescence spectroscopy demonstrates that the light emission is very pronounced for samples annealed at 725 ∘C, and Rutherford back-scattering spectrometry shows that the nanocrystals are predominantly in the diamond-structured phase at this particular annealing temperature. The origin of the light emission is discussed.

  20. High-Performance Field Emission from a Carbonized Cork.

    Science.gov (United States)

    Lee, Jeong Seok; Lee, Hak Jun; Yoo, Jae Man; Kim, Taewoo; Kim, Yong Hyup

    2017-12-20

    To broaden the range of application of electron beams, low-power field emitters are needed that are miniature and light. Here, we introduce carbonized cork as a material for field emitters. The light natural cork becomes a graphitic honeycomb upon carbonization, with the honeycomb cell walls 100-200 nm thick and the aspect ratio larger than 100, providing an ideal structure for the field electron emission. Compared to nanocarbon field emitters, the cork emitter produces a high current density and long-term stability with a low turn-on field. The nature of the cork material makes it quite simple to fabricate the emitter. Furthermore, any desired shape of the emitter tailored for the final application can easily be prepared for point, line, or planar emission.

  1. Fabric based supercapacitor

    International Nuclear Information System (INIS)

    Yong, S; Tudor, M J; Beeby, S P; Owen, J R

    2013-01-01

    Flexible supercapacitors with electrodes coated on inexpensive fabrics by the dipping technique. This paper present details of the design, fabrication and characterisation of fabric supercapacitor. The sandwich structured supercapacitors can achieve specific capacitances of 11.1F/g, area capacitance 105 mF.cm −2 and maintain 95% of the initial capacitance after cycling the device for more than 15000 times

  2. Metamaterial-based half Maxwell fish-eye lens for broadband directive emissions

    Science.gov (United States)

    Dhouibi, Abdallah; Nawaz Burokur, Shah; de Lustrac, André; Priou, Alain

    2013-01-01

    The broadband directive emission from a metamaterial surface is numerically and experimentally reported. The metasurface, composed of non-resonant complementary closed ring structures, is designed to obey the refractive index of a half Maxwell fish-eye lens. A planar microstrip Vivaldi antenna is used as transverse magnetic polarized wave launcher for the lens. A prototype of the lens associated with its feed structure has been fabricated using standard lithography techniques. To experimentally demonstrate the broadband focusing properties and directive emissions, both the far-field radiation patterns and the near-field distributions have been measured. Measurements agree quantitatively and qualitatively with theoretical simulations.

  3. Shear Behavior Models of Steel Fiber Reinforced Concrete Beams Modifying Softened Truss Model Approaches

    Directory of Open Access Journals (Sweden)

    Joo-Won Kang

    2013-10-01

    Full Text Available Recognizing that steel fibers can supplement the brittle tensile characteristics of concrete, many studies have been conducted on the shear performance of steel fiber reinforced concrete (SFRC members. However, previous studies were mostly focused on the shear strength and proposed empirical shear strength equations based on their experimental results. Thus, this study attempts to estimate the strains and stresses in steel fibers by considering the detailed characteristics of steel fibers in SFRC members, from which more accurate estimation on the shear behavior and strength of SFRC members is possible, and the failure mode of steel fibers can be also identified. Four shear behavior models for SFRC members have been proposed, which have been modified from the softened truss models for reinforced concrete members, and they can estimate the contribution of steel fibers to the total shear strength of the SFRC member. The performances of all the models proposed in this study were also evaluated by a large number of test results. The contribution of steel fibers to the shear strength varied from 5% to 50% according to their amount, and the most optimized volume fraction of steel fibers was estimated as 1%–1.5%, in terms of shear performance.

  4. Fabrication of Si surface pattern by Ar beam irradiation and annealing method

    International Nuclear Information System (INIS)

    Zhang, J.; Momota, S.; Maeda, K.; Terauchi, H.; Furuta, M.; Kawaharamura, T.; Nitta, N.; Wang, D.

    2012-01-01

    The fabrication process of crater structures on Si crystal has been studied by an irradiation of Ar beam and a thermal annealing at 600 °C. The fabricated surface was measured by field emission scanning electron microscope and atomic force microscope. The results have shown the controllability of specifications of crater formation such as density, diameter and depth by changing two irradiation parameters, fluence and energy of Ar ions. By changing the fluence over a range of 1 ∼ 10 × 10 16 /cm 2 , we could control a density of crater 0 ∼ 39 counts/100μm 2 . By changing the energy over a range of 90 ∼ 270 keV, we could control a diameter and a depth of crater in 0.8 ∼ 4.1μm and 99 ∼ 229nm, respectively. The present result is consistent with the previously proposed model that the crater structure would be arising from an exfoliated surface layer of silicon. The present result has indicated the possibility of the crater production phenomena as a hopeful method to fabricate the surface pattern on a micro-nano meter scale.

  5. Sensory irritation and multiple chemical sensitivity.

    Science.gov (United States)

    Anderson, R C; Anderson, J H

    1999-01-01

    Many of the symptoms described in Sick Building Syndrome (SBS) and multiple chemical sensitivity (MCS) resemble the symptoms known to be elicited by airborne irritant chemicals. Irritation of the eye, nose, and throat is common to SBS, MCS, and sensory irritation (SI). Difficulty of breathing is often seen with SBS, MCS, and pulmonary irritation (PI). We therefore asked the question: can indoor air pollutants cause SI and/or PI? In laboratory testing in which mice breathed the dilute volatile emissions of air fresheners, fabric softeners, colognes, and mattresses for 1 h, we measured various combinations of SI and PI as well as airflow decreases (analogous to asthma attacks). Air samples taken from sites associated with repeated human complaints of poor air quality also caused SI, PI, and airflow limitation (AFL) in the mice. In previous publications, we have documented numerous behavior changes in mice (which we formally studied with a functional observational battery) after exposure to product emissions or complaint site air; neurological complaints are a prominent part of SBS and MCS. All together, these data suggest that many symptoms of SBS and MCS can be described as SI, PI, AFL, and neurotoxicity. All these problems can be caused by airborne irritant chemicals such as those emitted by common commercial products and found in polluted indoor air. With some chemical mixtures (e.g., emissions of some fabric softeners, disposable diapers, and vinyl mattress covers) but not others (e.g., emissions of a solid air freshener), the SI response became larger (2- to 4-fold) when we administered a series of two or three 1-h exposures over a 24-h period. Since with each exposure the intensity of the stimulus was constant yet the magnitude of the response increased, we concluded that there was a change in the sensitivity of the mice to these chemicals. The response was not a generalized stress response because it occurred with only some mixtures of irritants and not others

  6. Highly efficient fully flexible indium tin oxide free organic light emitting diodes fabricated directly on barrier-foil

    International Nuclear Information System (INIS)

    Bocksrocker, Tobias; Hülsmann, Neele; Eschenbaum, Carsten; Pargner, Andreas; Höfle, Stefan; Maier-Flaig, Florian; Lemmer, Uli

    2013-01-01

    We present a simple method for the fabrication of highly conductive and fully flexible metal/polymer hybrid anodes for efficient organic light emitting diodes (OLEDs). By incorporating ultra-thin metal grids into a conductive polymer, we fabricated anodes with very low sheet resistances and high transparency. After optimizing the metallic grid, OLEDs with these hybrid anodes are superior to OLEDs with standard indium tin oxide (ITO) anodes in luminous efficacy by a factor of ∼ 2. Furthermore, the sheet resistance can be reduced by up to an order of magnitude compared to ITO on polyethylene terephthalate (PET). The devices show a very low turn-on voltage and the hybrid anodes do not change the emissive spectra of the OLEDs. In addition, we fabricated the anodes directly on a barrier foil, making the double sided encapsulation of a typically used PET-substrate unnecessary

  7. 40 CFR Table 1 to Subpart Oooo of... - Emission Limits for New or Reconstructed and Existing Affected Sources in the Printing, Coating...

    Science.gov (United States)

    2010-07-01

    ... Reconstructed and Existing Affected Sources in the Printing, Coating and Dyeing of Fabrics and Other Textiles... SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Printing, Coating, and Dyeing...—Emission Limits for New or Reconstructed and Existing Affected Sources in the Printing, Coating and Dyeing...

  8. 40 CFR Table 3 to Subpart Ddddd of... - Operating Limits for Boilers and Process Heaters With Mercury Emission Limits and Boilers and...

    Science.gov (United States)

    2010-07-01

    ... operating limits: If you demonstrate compliance with applicable mercury and/or total selected metals... applicable emission limits for mercury and/or total selected metals. 2. Fabric filter control a. Install and... applicable emission limits for mercury and/or total selected metals. 4. Dry scrubber or carbon injection...

  9. Thermionic and Photo-Excited Electron Emission for Energy-Conversion Processes

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, Patrick T. [Birck Nanotechnology Center, School of Mechanical Engineering, Purdue University, West Lafayette, IN (United States); Reifenberger, Ronald G. [Birck Nanotechnology Center, School of Physics, Purdue University, West Lafayette, IN (United States); Fisher, Timothy S., E-mail: tsfisher@purdue.edu [Birck Nanotechnology Center, School of Mechanical Engineering, Purdue University, West Lafayette, IN (United States)

    2014-12-09

    This article describes advances in thermionic and photo-emission materials and applications dating back to the work on thermionic emission by Guthrie (1873) and the photoelectric effect by Hertz (1893). Thermionic emission has been employed for electron beam generation from Edison’s work with the light bulb to modern day technologies such as scanning and transmission electron microscopy. The photoelectric effect has been utilized in common devices such as cameras and photocopiers while photovoltaic cells continue to be widely successful and further researched. Limitations in device efficiency and materials have thus far restricted large-scale energy generation sources based on thermionic and photoemission. However, recent advances in the fabrication of nanoscale emitters suggest promising routes for improving both thermionic and photo-enhanced electron emission along with newly developed research concepts, e.g., photonically enhanced thermionic emission. However, the abundance of new emitter materials and reduced dimensions of some nanoscale emitters increases the complexity of electron-emission theory and engender new questions related to the dimensionality of the emitter. This work presents derivations of basic two and three-dimensional thermionic and photo-emission theory along with comparisons to experimentally acquired data. The resulting theory can be applied to many different material types regardless of composition, bulk, and surface structure.

  10. Characteristics of Fabricated SiC Neutron Detectors for Neutron Flux Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han Soo; Ha, Jang Ho; Park, Se Hwan; Lee, Kyu Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Cheol Ho [Hanyang University, Seoul (Korea, Republic of)

    2011-05-15

    An SPND (Self-powered Neutron Detector) is commonly used for neutron detection in NPP (Nuclear Power Plant) by virtue of un-reactivity for gamma-rays. But it has a drawback, which is that it cannot detect neutrons in real time due to beta emissions (about > 48 s) after reactions between neutrons and {sup 103}Rh in an SPND. And Generation IV reactors such as MSR (Molten-salt reactor), SFR (Sodium-cooled fast reactor), and GFR (Gas-cooled fast reactor) are designed to compact size and integration type. For GEN IV reactor, neutron monitor also must be compact-sized to apply such reactor easily and much more reliable. The wide band-gap semiconductors such as SiC, AlN, and diamond make them an attractive alternative in applications in harsh environments by virtue of the lower operating voltage, faster charge-collection times compared with gas-filled detectors, and compact size.1) In this study, two PIN-type SiC semiconductor neutron detectors, which are for fast neutron detection by elastic and inelastic scattering SiC atoms and for thermal neutron detection by charged particle emissions of 6LiF reaction, were designed and fabricated for NPP-related applications. Preliminary tests such as I-V and alpha response were performed and neutron responses at ENF in HANARO research reactor were also addressed. The application feasibility of the fabricated SiC neutron detector as an in-core neutron monitor was discussed

  11. Field emission current from a junction field-effect transistor

    International Nuclear Information System (INIS)

    Monshipouri, Mahta; Abdi, Yaser

    2015-01-01

    Fabrication of a titanium dioxide/carbon nanotube (TiO 2 /CNT)-based transistor is reported. The transistor can be considered as a combination of a field emission transistor and a junction field-effect transistor. Using direct current plasma-enhanced chemical vapor deposition (DC-PECVD) technique, CNTs were grown on a p-typed (100)-oriented silicon substrate. The CNTs were then covered by TiO 2 nanoparticles 2–5 nm in size, using an atmospheric pressure CVD technique. In this device, TiO 2 /CNT junction is responsible for controlling the emission current. High on/off-current ratio and proper gate control are the most important advantages of device. A model based on Fowler–Nordheim equation is utilized for calculation of the emission current and the results are compared with experimental data. The effect of TiO 2 /CNT hetero-structure is also investigated, and well modeled

  12. Fabrication of high permeability non-oriented electrical steels by increasing 〈0 0 1〉 recrystallization texture using compacted strip casting processes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hai-Tao, E-mail: liuht@ral.neu.edu.cn [State Key Laboratory of Rolling and Automation, Northeastern University, PO Box 105, Shenyang 110819 (China); Institute of Research of Iron and Steel, Shasteel, Zhangjiagang 215625, Jiangsu (China); Schneider, J. [Institut für Metallformung, Technische Universität Bergakademie Freiberg, Bernhard-von-Cotta-Str. 4, D-09596 Freiberg (Germany); Li, Hua-Long [Institute of Research of Iron and Steel, Shasteel, Zhangjiagang 215625, Jiangsu (China); Sun, Yu; Gao, Fei; Lu, Hui-Hu; Song, Hong-Yu [State Key Laboratory of Rolling and Automation, Northeastern University, PO Box 105, Shenyang 110819 (China); Li, Lei; Geng, Dian-Qiao [Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); Liu, Zhen-Yu; Wang, Guo-Dong [State Key Laboratory of Rolling and Automation, Northeastern University, PO Box 105, Shenyang 110819 (China)

    2015-01-15

    In this paper we will report on the application of the twin-roll casting technique to get a 2 mm thick material of Fe-3.2%Si alloy, which was finally hot rolled, cold rolled and annealed. After a mild hot rolling to a thickness of 1 mm and a mild cold rolling to a thickness of 0.35 mm, we obtained a high intensity of λ-fiber (〈0 0 1〉|| ND) and η-fiber (〈0 0 1〉|| RD) texture concentrated on cube ({0 0 1}〈0 1 0〉) component and a diminishing intensity of the γ-fiber (〈1 1 1〉|| ND) texture, and a large average grain size in the final processed material. The experimental results for the evolution of the microstructure and texture along the used processing routes were described within the paper in detail. The formation mechanism for the desired recrystallization textures were explained in terms of oriented nucleation, micro-growth selection, accumulated deformation stored energy, geometric softening and orientation pinning. It will be demonstrated that this new processing route using the compact strip casting offers the possibility to fabricate high permeability non-oriented electrical steels without additional fabrication steps like hot band annealing or two step cold rolling with intermediate annealing as in the case of conventional processing route. - Highlights: • High permeability non-oriented electrical steel was fabricated by strip casting processes. • Hot band annealing or two step cold rolling with intermediate annealing was eliminated. • Prevailing of 〈0 0 1〉|| ND and 〈0 0 1〉|| RD textures over diminishing 〈1 1 1〉|| ND texture was realized. • Evolution of microstructure and texture along the used processing routes were described.

  13. Digitally tunable dual wavelength emission from semiconductor ring lasers with filtered optical feedback

    International Nuclear Information System (INIS)

    Khoder, Mulham; Verschaffelt, Guy; Nguimdo, Romain Modeste; Danckaert, Jan; Leijtens, Xaveer; Bolk, Jeroen

    2013-01-01

    We report on a novel integrated approach to obtain dual wavelength emission from a semiconductor laser based on on-chip filtered optical feedback. Using this approach, we show experiments and numerical simulations of dual wavelength emission of a semiconductor ring laser. The filtered optical feedback is realized on-chip by employing two arrayed waveguide gratings to split/recombine light into different wavelength channels. Semiconductor optical amplifiers are placed in the feedback loop in order to control the feedback strength of each wavelength channel independently. By tuning the current injected into each of the amplifiers, we can effectively cancel the gain difference between the wavelength channels due to fabrication and material dichroism, thus resulting in stable dual wavelength emission. We also explore the accuracy needed in the operational parameters to maintain this dual wavelength emission. (letter)

  14. The change of CO2 emission on manufacturing sectors in Indonesia: An input-output analysis

    Science.gov (United States)

    Putranti, Titi Muswati; Imansyah, Muhammad Handry

    2017-12-01

    The objective of this paper is to evaluate the change of CO2 emission on manufacturing sectors in Indonesia using input-output analysis. The method used supply perspective can measure the impact of an increase in the value added of different productive on manufacturing sectors on total CO2 emission and can identify the productive sectors responsible for the increase in CO2 emission when there is an increase in the value added of the economy. The data used are based on Input-Output Energy Table 1990, 1995 and 2010. The method applied the elasticity of CO2 emission to value added. Using the elasticity approach, one can identify the highest elasticity on manufacturing sector as the change of value added provides high response to CO2 emission. Therefore, policy maker can concentrate on manufacturing sectors with the high response of CO2 emission due to the increase of value added. The approach shows the contribution of the various sectors that deserve more consideration for mitigation policy. Five of highest elasticity of manufacturing sectors of CO2 emission are Spinning & Weaving, Other foods, Tobacco, Wearing apparel, and other fabricated textiles products in 1990. Meanwhile, the most sensitive sectors Petroleum refinery products, Other chemical products, Timber & Wooden Products, Iron & Steel Products and Other non-metallic mineral products in 1995. Two sectors of the 1990 were still in the big ten, i.e. Spinning & weaving and Other foods in 1995 for the most sensitive sectors. The six sectors of 1995 in the ten highest elasticity of CO2 emission on manufacturing which were Plastic products, Other chemical products,Other fabricated metal products, Cement, Iron & steel products, Iron & steel, still existed in 2010 condition. The result of this research shows that there is a change in the most elastic CO2 emission of manufacturing sectors which tends from simple and light manufacturing to be a more complex and heavier manufacturing. Consequently, CO2 emission jumped

  15. Evaluation on microscopic damage and fabrication process of shape memory alloy

    International Nuclear Information System (INIS)

    Lee, Jin Kyung; Choi, Il Kook; Park, Young Chul; Lee, Kyu Chang; Lee, Jun Hyun

    2002-01-01

    Shape memory alloy has been used to improve the tensile strength of composite by the occurrence of compressive residual stress in matrix using its shape memory effect. In order to fabricate shape memory alloy composite, TiNi alloy and Al6061 were used as reinforcing material and matrix, respectively. In this study, TiNi/Al6061 shape memory alloy composite was made by using hot press method. However, the specimen fabricated by this method had the bonding problem at tile boundary between TiNi fiber anti Al matrix when the load was applied to it. A cold rolling was imposed to the specimen to improve the bonding effort. It was found that tensile strength of specimen subjected to cold rolling was more increased than that of specimen which did not underwent cold rolling. In addition, acoustic emission technique was used to quantify the microscopic damage behavior of cold rolled TiNi/Al6061 shape memory alloy composite at high temperature.

  16. Field emission properties of ring-shaped Si ridges with DLC coating

    Science.gov (United States)

    Prommesberger, Christian; Ławrowski, Robert; Langer, Christoph; Mecani, Mirgen; Huang, Yifeng; She, Juncong; Schreiner, Rupert

    2017-05-01

    We report on the fabrication and the emission characterization of single ring-shaped Si ridges with a coating of diamond-like carbon (DLC). The reactive ion etching and the subsequent inductively coupled plasma step were adjusted to realize ring-shaped Si ridges with a height of 7.5 μm respectively 15 μm and an apex radius of 20 - 25 nm. The samples were coated with a DLC layer (thickness ≈ 2 - 5 nm) by a filtered cathodic vacuum arc deposition system in order to lower the work function of the emitter and to improve the field emission characteristics. The field emission characterizations were done in diode configuration with cathode and anode separated by a 50 μm thick mica spacer. A higher emission current was carried out for the ring-shaped Si ridge in comparison to the point-shaped Si tips due to the increased emission area. The highest emission current of 0.22 μA at 1000 V was measured on a DLC-coated sample with the highest aspect ratio. No degradation of the emission current was observed in the plateau regime during a measurement period of 6 h. Finally, no decreasing performance of the field emission properties was found due to changes in the geometry or destructions.

  17. Fabrication of cotton fabric with superhydrophobicity and flame retardancy.

    Science.gov (United States)

    Zhang, Ming; Wang, Chengyu

    2013-07-25

    A simple and facile method for fabricating the cotton fabric with superhydrophobicity and flame retardancy is described in the present work. The cotton fabric with the maximal WCA of 160° has been prepared by the covalent deposition of amino-silica nanospheres and the further graft with (heptadecafluoro-1,1,2,2-tetradecyl) trimethoxysilane. The geometric microstructure of silica spheres was measured by transmission electron microscopy (TEM). The cotton textiles before and after treatment were characterized by using scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The wetting behavior of cotton samples was investigated by water contact angle measurement. Moreover, diverse performances of superhydrophobic cotton textiles have been evaluated as well. The results exhibited the outstanding superhydrophobicity, excellent waterproofing durability and flame retardancy of the cotton fabric after treatment, offering a good opportunity to accelerate the large-scale production of superhydrophobic textiles materials for new industrial applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. 78 FR 49701 - Approval and Promulgation of Implementation Plans; Connecticut; Control of Visible Emissions...

    Science.gov (United States)

    2013-08-15

    ... Harbor 3.... Bridgeport/ Coal/Oil Operating Adaro Adaro Coal, Fairfield. Coal/Residual Oil. Electrostatic precipitator, Activated carbon injection, Pulse jet fabric filter baghouse, Low NOX Burner Technology w... by 52 percent, the maximum allowable NO X emission rate for existing coal-fired boilers was reduced...

  19. Exciplex or electroplex emissions from the interface between aromatic diamine and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline?

    Science.gov (United States)

    Zhu, Haina; Xu, Zheng; Zhang, Fujun; Zhao, Suling; Song, Dandan

    2008-06-01

    Organic light-emitting diodes (OLEDs) have been fabricated which consist of N, N'-diphenyl- N, N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine) (TPD), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), and tris(8-hydroxyquinoline) aluminum (Alq 3). Four emission peaks located at about 401 nm, 425 nm, 452 nm and 480 nm have been obtained in the electroluminescence (EL) spectra of these devices. The former two emissions originate from the exciton emission of TPD molecular. The last two emissions could be attributed to local (LOC) exiplex emission and charge transfer (CT) exiplex emission at the interface between TPD and BCP layers, respectively.

  20. The effect of electric field strength on electroplex emission at the interface of NPB/PBD organic light-emitting diodes

    Science.gov (United States)

    Zhao, De-Wei; Xu, Zheng; Zhang, Fu-Jun; Song, Shu-Fang; Zhao, Su-Ling; Wang, Yong; Yuan, Guang-Cai; Zhang, Yan-Fei; Xu, Hong-Hua

    2007-02-01

    Organic light-emitting diode (OLED) based on two kinds of blue emission materials N, N'-bis(1-naphthyl)- N, N'-diphenyl-l,l'-diphenyl-4,4'-diamine (NPB) and 2-(4-biphenylyl)-5(4- tert-butyl-phenyl)-1,3,4-oxadiazole (PBD) was fabricated. There is only one emission peak in photoluminescence (PL) spectrum which originates from NPB exciton emission. And the electroluminescence (EL) emission peaks have an apparent red-shift with the increase of driving voltage. The red-shift emission from exciplex emission could be ruled out. Thus, by the method of Gaussian fitting it should be ascribed to the overlap of exciton emission and electroplex emission which occurs at the interface between NPB and PBD. The formation of the electroplex emission under high electric field is analyzed.

  1. Nuclear Fabrication Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Levesque, Stephen [EWI, Columbus, OH (United States)

    2013-04-05

    This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectively engage with each other and rebuild the capacity of this supply chain by : Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. Supporting industry in helping to create a larger qualified nuclear supplier network. Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication Consortium

  2. Physical Sciences Facility Air Emission Control Equivalency Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, David M.; Belew, Shan T.

    2008-10-17

    This document presents the adequacy evaluation for the application of technology standards during design, fabrication, installation and testing of radioactive air exhaust systems at the Physical Sciences Facility (PSF), located on the Horn Rapids Triangle north of the Pacific Northwest National Laboratory (PNNL) complex. The analysis specifically covers the exhaust portion of the heating, ventilation and air conditioning (HVAC) systems associated with emission units EP-3410-01-S, EP-3420-01-S and EP 3430-01-S.

  3. Application of exciplex in the fabrication of white organic light emitting devices with mixed fluorescent and phosphorescent layers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dan; Duan, Yahui; Yang, Yongqiang [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012 (China); Hu, Nan [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012 (China); Changchun University of Science and Technology, Changchun 130012 (China); Wang, Xiao [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012 (China); Sun, Fengbo [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012 (China); Changchun University of Science and Technology, Changchun 130012 (China); Duan, Yu, E-mail: duanyu@jlu.edu.cn [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012 (China)

    2015-10-15

    In this study, a highly efficient fluorescent/phosphorescent white organic light-emitting device (WOLED) was fabricated using exciplex light emission. The hole-transport material 4,4',4''-tris(N-carbazolyl)triphenylamine (TCTA), and electron-transport material, 4,7-diphenyl-1,10-phenanthroline (Bphen), were mixed to afford a blue-emitting exciplex. The WOLED was fabricated with a yellow phosphorescent dye, Ir(III) bis(4-phenylthieno [3,2-c] pyridinato-N,C{sup 2'}) acetylacetonate (PO-01), combined with the exciplex. In this structure, the energy can be efficiently transferred from the blend layer to the yellow phosphorescent dye, thus improving the efficiency of the utilization of the triplet exciton. The maximum power efficiency of the WOLED reached a value 9.03 lm/W with an external quantum efficiency of 4.3%. The Commission Internationale de I'Eclairage (CIE) color coordinates (x,y) of the device were from (0.39, 0.45) to (0.27, 0.31), with a voltage range of 4–9 V. - Highlights: • An exciplex/phosphorescence hybrid white OLED was fabricated for the first time with blue/orange complementary emitters. • By using exciplex as the blue emitter, non-radiative triplet-states on the exciplex can be harvested for light-emission by transferring them to low triplet-state phosphors.

  4. Application of exciplex in the fabrication of white organic light emitting devices with mixed fluorescent and phosphorescent layers

    International Nuclear Information System (INIS)

    Yang, Dan; Duan, Yahui; Yang, Yongqiang; Hu, Nan; Wang, Xiao; Sun, Fengbo; Duan, Yu

    2015-01-01

    In this study, a highly efficient fluorescent/phosphorescent white organic light-emitting device (WOLED) was fabricated using exciplex light emission. The hole-transport material 4,4',4''-tris(N-carbazolyl)triphenylamine (TCTA), and electron-transport material, 4,7-diphenyl-1,10-phenanthroline (Bphen), were mixed to afford a blue-emitting exciplex. The WOLED was fabricated with a yellow phosphorescent dye, Ir(III) bis(4-phenylthieno [3,2-c] pyridinato-N,C 2' ) acetylacetonate (PO-01), combined with the exciplex. In this structure, the energy can be efficiently transferred from the blend layer to the yellow phosphorescent dye, thus improving the efficiency of the utilization of the triplet exciton. The maximum power efficiency of the WOLED reached a value 9.03 lm/W with an external quantum efficiency of 4.3%. The Commission Internationale de I'Eclairage (CIE) color coordinates (x,y) of the device were from (0.39, 0.45) to (0.27, 0.31), with a voltage range of 4–9 V. - Highlights: • An exciplex/phosphorescence hybrid white OLED was fabricated for the first time with blue/orange complementary emitters. • By using exciplex as the blue emitter, non-radiative triplet-states on the exciplex can be harvested for light-emission by transferring them to low triplet-state phosphors

  5. New polymorphous computing fabric

    International Nuclear Information System (INIS)

    Wolinski, Christophe; Gokhale, Maya; McCabe, Kevin P.

    2002-01-01

    This paper introduces a new polymorphous computing Fabric well suited to DSP and Image Processing and describes its implementation on a Configurable System on a Chip (CSOC). The architecture is highly parameterized and enables customization of the synthesized Fabric to achieve high performance for a specific class of application. For this reason it can be considered to be a generic model for hardware accelerator synthesis from a high level specification. Another important innovation is the Fabric uses a global memory concept, which gives the host processor random access to all the variables and instructions on the Fabric. The Fabric supports different computing models including MIMD, SPMD and systolic flow and permits dynamic reconfiguration. We present a specific implementation of a bank of FIR filters on a Fabric composed of 52 cells on the Altera Excalibur ARM running at 33 MHz. The theoretical performance of this Fabric is 1.8 GMACh. For the FIR application we obtain 1.6 GMAC/s real performance. Some automatic tools have been developed like the tool to provide a host access utility and assembler.

  6. Secure Automated Fabrication: an overview of remote breeder fuel fabrication

    International Nuclear Information System (INIS)

    Nyman, D.H.; Graham, R.A.

    1983-10-01

    The Secure Automated Fabrication (SAF) line is an automated, remotely controlled breeder fuel pin fabrication process which is to be installed in the Fuels and Materials Examination Facility (FMEF). The FMEF is presently under construction at Hanford and is scheduled for completion in 1984. The SAF line is scheduled for startup in 1987 and will produce mixed uranium-plutonium fuel pins for the Fast Flux Test Facility (FFTF) and the Clinch River Breeder Reactor Plant (CRBRP). The fabrication line and support systems are described

  7. Upconversion emission and cathodoluminescence of Er"3"+-doped NaYbF_4 nanoparticles for low-temperature thermometry and field emission displays

    International Nuclear Information System (INIS)

    Du, Peng; Yu, Jae Su; Luo, Laihui

    2017-01-01

    The Er"3"+-doped NaYbF_4 nanoparticles were fabricated by a hydrothermal method. The green and red emissions located at around 525, 542 and 657 nm corresponding to the "2H_1_1_/_2 → "4I_1_5_/_2, "4S_3_/_2 → "4I_1_5_/_2 and "4F_9_/_2 → "4I_1_5_/_2 transitions of Er"3"+ ions, respectively, were observed when pumped at 980 nm light. Furthermore, with the help of the fluorescence intensity ratio technique, the thermometric properties of as-prepared products from the thermally coupled "2H_1_1_/_2 and "4S_3_/_2 levels of Er"3"+ ions were studied by analyzing temperature-dependent upconversion (UC) emission spectra. The maximum sensitivity for the Er"3"+-doped NaYbF_4 nanoparticles was found to be around 0.0043 K"- "1 with a temperature range of 93-293 K. In addition, the cathodoluminescence (CL) spectrum of the synthesized nanoparticles was nearly the same as the UC emission spectrum and the CL emission intensity did not exhibit saturation with the increase of accelerating voltage and filament current. (orig.)

  8. Acoustic Emission Precursors of M6.0 2004 Parkfield and M7.0 1989Loma Prieta Earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Korneev, Valeri

    2005-02-01

    Two recent strike-slip earthquakes on the San Andreas Fault(SAF) in California, the M6.0 2004 Parkfield and M7.0 1989 Loma Prietaevents, revealed peaks in the acoustic emission (AE) activity in thesurrounding crust several months prior to the main events. Earthquakesdirectly within the SAF zone were intentionally excluded from theanalysis. The observed increase in AE is assumed to be a signature of theincreasing stress level in the surrounding crust, while the peak andsubsequent decrease in AE starting several months prior to the mainevents is attributed to damage-induced softening processes as discussedherein. Further, distinctive zones of low seismic activity surroundingthe epicentral regions in the pre-event time period are present for thetwo studied events. Both AE increases in the crust surrounding apotential future event and the development of a low-seismicity epicentralzone can be regarded as promising precursory information that could helpsignal the arrival of large earthquakes.

  9. Fabric Reconstruction Based on Sustainable Development: Take the Type of Fabric Recycling as an Example

    Directory of Open Access Journals (Sweden)

    Zhangting Guan

    2017-07-01

    Full Text Available Sustainable development is a very important concept of our time, it wants to do is to live in harmony with people, to protect the environment where our human survival. Fabric recycling refers to the use of a variety of traditional and high-tech means of the existing fabric fabric design and processing. So that the surface of a rich visual texture and tactile texture "through the fabric recycling approach. However, the fabric form and clothing design coordination between the clothing design is essential to the link! Garment fabric is not only the material basis of clothing modeling But also an important form of plastic arts. Fabric recycling art has gradually become a new breakthrough point of fashion design! And become an important means to increase the added value of clothing products. But at the same time fabric recycling also follow the concept of sustainable development. This paper analyzes the relationship between fabric reengineering and sustainable development. Combined with practice to explore the fabric processing technology and its creative ideas and some of its environmental performance.

  10. Optimum processing parameters for the fabrication of twill flax fabric-reinforced polypropylene (PP) composites

    Science.gov (United States)

    Zuhudi, Nurul Zuhairah Mahmud; Minhat, Mulia; Shamsuddin, Mohd Hafizi; Isa, Mohd Dali; Nur, Nurhayati Mohd

    2017-12-01

    In recent years, natural fabric thermoplastic composites such as flax have received much attention due to its attractive capabilities for structural applications. It is crucial to study the processing of flax fabric materials in order to achieve good quality and cost-effectiveness in fibre reinforced composites. Though flax fabric has been widely utilized for several years in composite applications due to its high strength and abundance in nature, much work has been concentrated on short flax fibre and very little work focused on using flax fabric. The effectiveness of the flax fabric is expected to give higher strength performance due to its structure but the processing needs to be optimised. Flax fabric composites were fabricated using compression moulding due to its simplicity, gives good surface finish and relatively low cost in terms of labour and production. Further, the impregnation of the polymer into the fabric is easier in this process. As the fabric weave structure contributes to the impregnation quality which leads to the overall performance, the processing parameters of consolidation i.e. pressure, time, and weight fraction of fabric were optimized using the Taguchi method. This optimization enhances the consolidation quality of the composite by improving the composite mechanical properties, three main tests were conducted i.e. tensile, flexural and impact test. It is observed that the processing parameter significantly affected the consolidation and quality of composite.

  11. Fundamental and future prospects of printed ambipolar fluorene-type polymer light-emitting transistors for improved external quantum efficiency, mobility, and emission pattern

    Science.gov (United States)

    Kajii, Hirotake

    2018-05-01

    In this review, we focus on the improved external quantum efficiency, field-effect mobility, and emission pattern of top-gate-type polymer light-emitting transistors (PLETs) based on ambipolar fluorene-type polymers. A low-temperature, high-efficiency, printable red phosphorescent PLET based on poly(alkylfluorene) with modified alkyl side chains fabricated by a film transfer process is demonstrated. Device fabrication based on oriented films leads to an improved EL intensity owing to the increase in field-effect mobility. There are three factors that affect the transport of carriers, i.e., the energy level, threshold voltage, and mobility of each layer for heterostructure PLETs, which result in various emission patterns such as the line-shaped, multicolor and in-plane emission pattern in the full-channel area between source and drain electrodes. Fundamentals and future prospects in heterostructure devices are discussed and reviewed.

  12. International light water nuclear fuel fabrication supply. Are fabrication services assured?

    International Nuclear Information System (INIS)

    Rothwell, Geoffrey

    2010-01-01

    This paper examines the cost structure of fabricating light water reactor (LWR) fuel with low-enriched uranium (LEU, with less than 5% enrichment). The LWR-LEU fuel industry is decades old, and (except for the high entry cost of designing and licensing a fuel fabrication facility and its fuel), labor and additional fabrication lines can be added at Nth-of-a-Kind cost to the maximum capacity allowed by a site license. The industry appears to be competitive: nuclear fuel fabrication capacity is assured with many competitors and reasonable prices. However, nuclear fuel assurance has become an important issue for nations now to considering new nuclear power plants. To provide this assurance many proposals equate 'nuclear fuel banks' (which would require fuel for specific reactors) with 'LEU banks' (where LEU could be blended into nuclear fuel with the proper enrichment) with local fuel fabrication. The policy issues (which are presented, but not answered in this paper) become (1) whether the construction of new nuclear fuel fabrication facilities in new nuclear power nations could lead to the proliferation of nuclear weapons, and (2) whether nuclear fuel quality can be guaranteed under current industry arrangements, given that fuel failure at one reactor can lead to forced shutdowns at many others. (author)

  13. Slow-light enhancement of spontaneous emission in active photonic crystal waveguides

    DEFF Research Database (Denmark)

    Ek, Sara; Chen, Yaohui; Semenova, Elizaveta

    2012-01-01

    Photonic crystal defect waveguides with embedded active layers containing single or multiple quantum wells or quantum dots have been fabricated. Spontaneous emission spectra are enhanced close to the bandedge, consistently with the enhancement of gain by slow light effects. These are promising...... results for future compact devices for terabit/s communication, such as miniaturised semiconductor optical amplifiers and mode-locked lasers....

  14. Fabrication of GaAs quantum dots by droplet epitaxy on Si/Ge virtual substrate

    International Nuclear Information System (INIS)

    Bietti, S; Sanguinetti, S; Somaschini, C; Koguchi, N; Isella, G; Chrastina, D; Fedorov, A

    2009-01-01

    We present here the fabrication, via droplet epitaxy, of GaAs/AlGaAs quantum dots with high optical efficiency on Si. The growth substrate lattice parameter was adapted to that of (Al)GaAs via Ge virtual substrates (GeVS). The samples clearly show the presence of quantum dot self-assembly, with the designed shape and density. Photoluminescence measurements, performed at low temperature, show an intense emission band from the quantum dots.

  15. Fabrication of single-phase ε-GaSe films on Si(100) substrate by metal organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chia-Chen; Zeng, Jia-Xian; Lan, Shan-Ming [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Uen, Wu-Yih, E-mail: uenwuyih@ms37.hinet.net [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Liao, Sen-Mao [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Yang, Tsun-Neng; Ma, Wei-Yang [Institute of Nuclear Energy Research, P.O. Box 3-11, Lungtan 32500, Taiwan (China); Chang, Kuo-Jen [Chung-Shan Institute of Science and Technology, No.15, Shi Qi Zi, Gaoping Village, Longtan Township, Taoyuan County, Taiwan (China)

    2013-09-02

    Single-phase ε-gallium selenide (GaSe) films were fabricated on Si(100) substrate by metal organic chemical vapor deposition using dual-source precursors: triethylgallium (TEG) and hydrogen selenide (H{sub 2}Se) with the flow ratio of [H{sub 2}Se]/[TEG] being maintained at 1.2. In particular, an arsine (AsH{sub 3}) flow was introduced to the Si substrate before the film deposition to induce an arsenic (As)-passivation effect on the substrate. The crystalline structure of GaSe films prepared was analyzed using X-ray diffraction and the surface morphology of them was characterized by scanning electron microscopy. It was found that the film quality could be improved by the As-passivation effect. The optical properties of the films were studied by temperature dependent photoluminescence (PL) measurements. PL spectra obtained with different distributions and intensities favored for resolving the superior material quality of the films produced on the substrate with As-passivation compared to those produced on the substrate without As-passivation. The former was dominated by the excitonic emissions for the whole temperature range of 20–300 K examined, while the latter was initially dominated by the defect-related emission at 1.907 eV for a low-temperature range ≦ 80 K and then became dominated by the weak excitonic emission band instead. The ε modification of GaSe films prepared was further recognized by the Raman scattering measurements conducted at room temperature. - Highlights: • Gallium selenide (GaSe) layered structures are fabricated on Si(100) substrate. • Metal–organic chemical vapor deposition is used for film fabrication. • Arsenic-passivation effects of Si substrate on the GaSe film quality are analyzed. • Photoluminescence measurements of GaSe polycrystals are reported.

  16. Field emission current from a junction field-effect transistor

    Energy Technology Data Exchange (ETDEWEB)

    Monshipouri, Mahta; Abdi, Yaser, E-mail: y.abdi@ut.ac.ir [University of Tehran, Nano-Physics Research Laboratory, Department of Physics (Iran, Islamic Republic of)

    2015-04-15

    Fabrication of a titanium dioxide/carbon nanotube (TiO{sub 2}/CNT)-based transistor is reported. The transistor can be considered as a combination of a field emission transistor and a junction field-effect transistor. Using direct current plasma-enhanced chemical vapor deposition (DC-PECVD) technique, CNTs were grown on a p-typed (100)-oriented silicon substrate. The CNTs were then covered by TiO{sub 2} nanoparticles 2–5 nm in size, using an atmospheric pressure CVD technique. In this device, TiO{sub 2}/CNT junction is responsible for controlling the emission current. High on/off-current ratio and proper gate control are the most important advantages of device. A model based on Fowler–Nordheim equation is utilized for calculation of the emission current and the results are compared with experimental data. The effect of TiO{sub 2}/CNT hetero-structure is also investigated, and well modeled.

  17. Practical silicon Light emitting devices fabricated by standard IC technology

    International Nuclear Information System (INIS)

    Aharoni, H.; Monuko du Plessis; Snyman, L.W.

    2004-01-01

    Full Text:Research activities are described with regard to the development of a comprehensive approach for the practical realization of single crystal Silicon Light Emitting Devices (Si-LEDs). Several interesting suggestions for the fabrication of such devices were made in the literature but they were not adopted by the semiconductor industry because they involve non-standard fabrication schemes, requiring special production lines. Our work presents an alternative approach, proposed and realized in practice by us, permitting the fabrication of Si-LEDs using the standard conventional fully industrialized IC technology ''as is'' without any adaptation. It enables their fabrication in the same production lines of the presently existing IC industry. This means that Si-LEDs can now be fabricated simultaneously with other components, such as transistors, on the same silicon chip, using the same masks and processing procedures. The result is that the yield, reliability, and price of the above Si-LEDs are the same as the other Si devices integrated on the same chip. In this work some structural details of several practical Si-LED's designed by us, as well as experimental results describing their performance are presented. These Si-LED's were fabricated to our specifications utilizing standard CMOS/BiCMOS technology, a fact which comprises an achievement by itself. The structure of the Si-LED's, is designed according to specifications such as the required operating voltage, overall light output intensity, its dependence(linear, or non-linear) on the input signal (voltage or current), light generations location (bulk, or near-surface), the emission pattern and uniformity. Such structural design present a problem since the designer can not use any structural parameters (such as doping levels and junction depths for example) but only those which already exist in the production lines. Since the fabrication procedures in these lines are originally designed for processing of

  18. Fabrication of free-standing copper foils covered with highly-ordered copper nanowire arrays

    Science.gov (United States)

    Zaraska, Leszek; Sulka, Grzegorz D.; Jaskuła, Marian

    2012-07-01

    The through-hole nanoporous anodic aluminum oxide (AAO) membranes with relatively large surface area (ca. 2 cm2) were employed for fabrication of free-standing and mechanically stable copper foils covered with close-packed and highly-ordered copper nanowire arrays. The home-made AAO membranes with different pore diameters and interpore distances were fabricated via a two-step self-organized anodization of aluminum performed in sulfuric acid, oxalic acid and phosphoric acid followed by the pore opening/widening procedure. The direct current (DC) electrodeposition of copper was performed efficiently on both sides of AAO templates. The bottom side of the AAO templates was not insulated and consequently Cu nanowire arrays on thick Cu layers were obtained. The proposed template-assisted fabrication of free-standing copper nanowire array electrodes is a promising method for synthesis of nanostructured current collectors. The composition of Cu nanowires was confirmed by energy dispersive X-Ray spectroscopy (EDS) and X-ray diffraction (XRD) analyses. The structural features of nanowires were evaluated from field emission scanning electron microscopy (FE-SEM) images and compared with the characteristic parameters of anodic alumina membranes.

  19. Fabrication of free-standing copper foils covered with highly-ordered copper nanowire arrays

    International Nuclear Information System (INIS)

    Zaraska, Leszek; Sulka, Grzegorz D.; Jaskuła, Marian

    2012-01-01

    The through-hole nanoporous anodic aluminum oxide (AAO) membranes with relatively large surface area (ca. 2 cm 2 ) were employed for fabrication of free-standing and mechanically stable copper foils covered with close-packed and highly-ordered copper nanowire arrays. The home-made AAO membranes with different pore diameters and interpore distances were fabricated via a two-step self-organized anodization of aluminum performed in sulfuric acid, oxalic acid and phosphoric acid followed by the pore opening/widening procedure. The direct current (DC) electrodeposition of copper was performed efficiently on both sides of AAO templates. The bottom side of the AAO templates was not insulated and consequently Cu nanowire arrays on thick Cu layers were obtained. The proposed template-assisted fabrication of free-standing copper nanowire array electrodes is a promising method for synthesis of nanostructured current collectors. The composition of Cu nanowires was confirmed by energy dispersive X-Ray spectroscopy (EDS) and X-ray diffraction (XRD) analyses. The structural features of nanowires were evaluated from field emission scanning electron microscopy (FE-SEM) images and compared with the characteristic parameters of anodic alumina membranes.

  20. Research and Development of Natural Draft Ultra-Low Emissions Burners for Gas Appliances

    Energy Technology Data Exchange (ETDEWEB)

    Therkelsen, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cheng, Robert [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sholes, Darren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-31

    Combustion systems used in residential and commercial cooking appliances must be robust and easy to use while meeting air quality standards. Current air quality standards for cooking appliances are far greater than other stationary combustion equipment. By developing an advanced low emission combustion system for cooking appliances, the air quality impacts from these devices can be reduced. This project adapted the Lawrence Berkeley National Laboratory (LBNL) Ring-Stabilizer Burner combustion technology for residential and commercial natural gas fired cooking appliances (such as ovens, ranges, and cooktops). LBNL originally developed the Ring-Stabilizer Burner for a NASA funded microgravity experiment. This natural draft combustion technology reduces NOx emissions significantly below current SCAQMD emissions standards without post combustion treatment. Additionally, the Ring-Stabilizer Burner technology does not require the assistance of a blower to achieve an ultra-low emission lean premix flame. The research team evaluated the Ring-Stabilizer Burner and fabricated the most promising designs based on their emissions and turndown.

  1. Synthesis of organic EL materials with cyano group and evaluation of emission characteristics in organic EL devices

    International Nuclear Information System (INIS)

    Kim, Dong Uk

    1999-01-01

    Nobel electroluminescent materials, polymer material, PU-BCN and low molar mass material, D-BCN with the same chromophores were designed and synthesized. A molecular structure of chromophore was composed of bisstyrylbenzene derivative with cyano groups as electron injection and transport and phenylamine groups as hole injection and transport. Device structures with PU-BCN and D-BCN as an emission layer were fabricated, which were a single-layer device(SL), Indium-tin oxide(ITO)/emission layer/MgAg, and two kinds of double-layer devices which were composed of ITO/emission layer/oxadiazole derivative/MgAg as a DL-E device and ITO/triphenylamine derivative/emission layer/MgAg as a DL-H device. The two emission materials, PU-BCN and D-BCN with the same emission-chromophore were evaluated as having excellent performance of charge injection and transport and revealed almost the same emission characteristics in high current density. EL emission maximum peaks of two material were detected at about 640 nm wavelength of red emission region

  2. A facile fabrication of multifunctional knit polyester fabric based on chitosan and polyaniline polymer nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiaoning [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Tian, Mingwei [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); Qu, Lijun, E-mail: lijunqu@126.com [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); Zhu, Shifeng [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Guo, Xiaoqing [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); Han, Guangting [Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); and others

    2014-10-30

    Highlights: • Multifunctional knit polyester fabric was facile fabricated by the combination of pad-dry-cure process and in situ chemical polymerization route. • High electrical conductivity and efficient water-repellent properties were endowed to the polymer nanocomposite coated fabric. • The polymer nanocomposite coated fabric also performed efficient and durable photocatalytic activities under the illumination of ultraviolet light. - Abstract: Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric.

  3. A facile fabrication of multifunctional knit polyester fabric based on chitosan and polyaniline polymer nanocomposite

    International Nuclear Information System (INIS)

    Tang, Xiaoning; Tian, Mingwei; Qu, Lijun; Zhu, Shifeng; Guo, Xiaoqing; Han, Guangting

    2014-01-01

    Highlights: • Multifunctional knit polyester fabric was facile fabricated by the combination of pad-dry-cure process and in situ chemical polymerization route. • High electrical conductivity and efficient water-repellent properties were endowed to the polymer nanocomposite coated fabric. • The polymer nanocomposite coated fabric also performed efficient and durable photocatalytic activities under the illumination of ultraviolet light. - Abstract: Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric

  4. Processing and performance of organic insulators as a gate layer in ...

    Indian Academy of Sciences (India)

    Abstract. Fabrication of organic thin film transistor (OTFT) on flexible substrates is a challenge, because of its low softening temperature, high roughness and flexible nature. Although several organic dielectrics have been used as gate insulator, it is difficult to choose one in absence of a comparative study covering ...

  5. Fabrication of Si/ZnS radial nanowire heterojunction arrays for white light emitting devices on Si substrates.

    Science.gov (United States)

    Katiyar, Ajit K; Sinha, Arun Kumar; Manna, Santanu; Ray, Samit K

    2014-09-10

    Well-separated Si/ZnS radial nanowire heterojunction-based light-emitting devices have been fabricated on large-area substrates by depositing n-ZnS film on p-type nanoporous Si nanowire templates. Vertically oriented porous Si nanowires on p-Si substrates have been grown by metal-assisted chemical etching catalyzed using Au nanoparticles. Isolated Si nanowires with needle-shaped arrays have been made by KOH treatment before ZnS deposition. Electrically driven efficient white light emission from radial heterojunction arrays has been achieved under a low forward bias condition. The observed white light emission is attributed to blue and green emission from the defect-related radiative transition of ZnS and Si/ZnS interface, respectively, while the red arises from the porous surface of the Si nanowire core. The observed white light emission from the Si/ZnS nanowire heterojunction could open up the new possibility to integrate Si-based optical sources on a large scale.

  6. Plasmon-Induced Selective Enhancement of Green Emission in Lanthanide-Doped Nanoparticles.

    Science.gov (United States)

    Zhang, Weina; Li, Juan; Lei, Hongxiang; Li, Baojun

    2017-12-13

    By introducing an 18 nm thick Au nanofilm, selective enhancement of green emission from lanthanide-doped (β-NaYF 4 :Yb 3+ /Er 3+ ) upconversion nanoparticles (UCNPs) is demonstrated. The Au nanofilm is deposited on a microfiber surface by the sputtering method and then covered with the UCNPs. The plasma on the surface of the Au nanofilm can be excited by launching a 980 nm wavelength laser beam into the microfiber, resulting in an enhancement of the local electric field and a strong thermal effect. A 36-fold luminescence intensity enhancement of the UCNPs at 523 nm is observed, with no obvious reduction in the photostability of the UCNPs. Further, the intensity ratios of the emissions at 523-545 nm and at 523-655 nm are enhanced with increasing pump power, which is attributed to the increasing plasmon-induced thermal effect. Therefore, the fabricated device is further demonstrated to exhibit an excellent ability in temperature sensing. By controlling the pump power and the UCNP concentration, a wide temperature range (325-811 K) and a high temperature resolution (0.035-0.046 K) are achieved in the fabricated device.

  7. Recombination region improvement for reduced efficiency roll-off in phosphorescent OLEDs with dual emissive layers

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhu; Zhou, Shunliang [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Hu, Song [Chengdu Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209 (China); Yu, Junsheng, E-mail: jsyu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2014-10-15

    High-performance phosphorescent organic light-emitting diodes (PhOLEDs) by using dual-emissive-layer (DEL) structure to reduce efficiency roll-off were fabricated. The DEL was comprised of a hole-transport-type host of N, N′-bis(naphthalen-1-yl)-N, N′-bis(phenyl)-benzidine (NPB) and a bipolar host of 4,4′-bis(carbazol-9-yl)biphenyl (CBP), which were both doped with an orange phosphorescent dopant of bis[2-(4-tert-butylphenyl)-benzothiazolato-N,C2′]iridium (acetylacetonate) [(t-bt){sub 2}Ir(acac)]. After the optimization of doping concentration of the first emissive layer (FEL), the device with DEL exhibited 11% lower roll-off power efficiency than single emissive layer devices (SED) when the luminance increased from 1000 cd/m{sup 2} to 10,000 cd/m{sup 2}. The hole–electron recombination zone in DEL was illuminated by inserting an ultrathin fluorescent probe of 4-(dicyanomethylene)-2-tert-butyl-6 (1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) in different emissive regions. The performance improvement was attributed to the optimization of energy barrier and the expansion of exciton formation zone within the DEL. - Highlights: • PhOLEDs by using a dual-emissive-layer structure to reduce efficiency roll-off were fabricated. • The DED exhibited 11% lower efficiency roll-off, 57% lower turn-on voltage, and 174% higher brightness than SED. • A DCJTB fluorescent probe was inserted at different positions of DED to investigate the expansion of exciton formation zone.

  8. Green Composites Reinforced with Plant-Based Fabrics: Cost and Eco-Impact Assessment

    Directory of Open Access Journals (Sweden)

    Georgios Koronis

    2018-02-01

    Full Text Available This study considers a green composite under a twofold assessment; evaluating its process-based cost and environmental footprint profile. The initial objective was to project the manufacturing cost and allow for an additional material comparison of alternative scenarios in the resin transfer molding processes. The additional aim is to have an intermediate environmental assessment to assist in selecting materials and adjust manufacturing parameters which would minimize the energy spent and the CO2 emissions. As it has been noted in numerous applications, the incorporation of natural fiber fabrics, as opposed to glass fabrics, bring together weight savings and consequently cost savings. However, the economic analysis suggests that a glass reinforced composite is marginally cheaper at the production volume of 300 parts (1.9% lower cost in contrast to a possible green solution (ramie. Considering jute instead of ramie as a reinforcement, the cost gets immediately lower, and further decreases with proposed improvements to the manufacturing process. Additional reduction of up to 10% in the production cost can be achieved by process upgrade. As indicated by the Eco-Audit analysis, 36% less energy and 44% CO2 per kilo will be generated, respectively when swapping from glass to ramie fabrics in the production of the automotive hood.

  9. Design and fabrication of spectrally selective emitter for thermophotovoltaic system by using nano-imprint lithography

    Science.gov (United States)

    Kim, Jong-Moo; Park, Keum-Hwan; Kim, Da-Som; Hwang, Bo-yeon; Kim, Sun-Kyung; Chae, Hee-Man; Ju, Byeong-Kwon; Kim, Young-Seok

    2018-01-01

    Thermophotovoltaic (TPV) systems have attracted attention as promising power generation systems that can directly convert the radiant energy produced by the combustion of fuel into electrical energy. However, there is a fundamental limit of their conversion efficiency due to the broadband distribution of the radiant spectrum. To overcome this problem, several spectrally selective thermal emitter technologies have been investigated, including the fabrication of photonic crystal (PhC) structures. In this paper, we present some design rules based on finite-a difference time-domain (FDTD) simulation results for tungsten (W) PhC emitter. The W 2D PhC was fabricated by a simple nano-imprint lithography (NIL) process, and inductive coupled plasma reactive ion etching (ICP-RIE) with an isotropic etching process, the benefits and parameters of which are presented. The fabricated W PhC emitter showed spectrally selective emission near the infrared wavelength range, and the optical properties varied depending on the size of the nano-patterns. The measured results of the fabricated prototype structure correspond well to the simulated values. Finally, compared with the performance of a flat W emitter, the total thermal emitter efficiency was almost 3.25 times better with the 2D W PhC structure.

  10. Properties of Erbium Doped Hydrogenated Amorphous Carbon Layers Fabricated by Sputtering and Plasma Assisted Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    V. Prajzler

    2008-01-01

    Full Text Available We report about properties of carbon layers doped with Er3+ ions fabricated by Plasma Assisted Chemical Vapor Deposition (PACVD and by sputtering on silicon or glass substrates. The structure of the samples was characterized by X-ray diffraction and their composition was determined by Rutherford Backscattering Spectroscopy and Elastic Recoil Detection Analysis. The Absorbance spectrum was taken in the spectral range from 400 nm to 600 nm. Photoluminescence spectra were obtained using two types of Ar laser (λex=514.5 nm, lex=488 nm and also using a semiconductor laser (λex=980 nm. Samples fabricated by magnetron sputtering exhibited typical emission at 1530 nm when pumped at 514.5 nm. 

  11. Fe nanodot system fabricated by non-lithographic method and its structural properties

    International Nuclear Information System (INIS)

    Chu Van Chiem; Nguyen Thi Thu Ha; Ngo Thi Thanh Tam; Nguyen Van Chuc; Phan Ngoc Minh; Li Huying; Seo Jae Muyng

    2009-01-01

    In this work, we study the magnetic structure and morphology of the Fe nanodot system fabricated by the non-lithographic method, using anodic aluminum oxide (AAO) membrane as a template. By the two-steps aluminum anodization, the AAO patterns with the hexagonal pore arrangement have been achieved. Using AAO pattern as a template, under suitable conditions we successfully deposited the iron metal in the pores by the thermal vacuum evaporation. By the exposure of the deposited system from the bottom of the AAO membrane, the hexagonal ordered Fe nanodot system has been obtained. The morphologies of the nanodot system were imaged by the Atomic Force Microscopy (AFM) and Field Emission Scanning Microscopy (FESEM) methods. The magnetic structures were investigated by the Energy Dispersive X-Ray Fluorescence Spectroscopy (EDS) and Magnetic Force Microscopy (MFM) methods. Experimental results confirmed that the MFM image of the fabricated Fe nanodot system is similar to their AFM image.

  12. Fe nanodot system fabricated by non-lithographic method and its structural properties

    Energy Technology Data Exchange (ETDEWEB)

    Chiem, Chu Van; Thu Ha, Nguyen Thi; Thanh Tam, Ngo Thi; Chuc, Nguyen Van; Minh, Phan Ngoc [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay Distr., Hanoi (Viet Nam); Huying, Li; Seo Jae Muyng [Physics department, Chonbuk National University (Korea, Republic of)], E-mail: chucnv@ims.vast.ac.vn

    2009-09-01

    In this work, we study the magnetic structure and morphology of the Fe nanodot system fabricated by the non-lithographic method, using anodic aluminum oxide (AAO) membrane as a template. By the two-steps aluminum anodization, the AAO patterns with the hexagonal pore arrangement have been achieved. Using AAO pattern as a template, under suitable conditions we successfully deposited the iron metal in the pores by the thermal vacuum evaporation. By the exposure of the deposited system from the bottom of the AAO membrane, the hexagonal ordered Fe nanodot system has been obtained. The morphologies of the nanodot system were imaged by the Atomic Force Microscopy (AFM) and Field Emission Scanning Microscopy (FESEM) methods. The magnetic structures were investigated by the Energy Dispersive X-Ray Fluorescence Spectroscopy (EDS) and Magnetic Force Microscopy (MFM) methods. Experimental results confirmed that the MFM image of the fabricated Fe nanodot system is similar to their AFM image.

  13. Drip bloodstain appearance on inclined apparel fabrics: Effect of prior-laundering, fibre content and fabric structure.

    Science.gov (United States)

    de Castro, Therese C; Carr, Debra J; Taylor, Michael C; Kieser, Jules A; Duncan, Warwick

    2016-09-01

    The interaction of blood and fabrics is currently a 'hot topic', since the understanding and interpretation of these stains is still in its infancy. A recent simplified perpendicular impact experimental programme considering bloodstains generated on fabrics laid the foundations for understanding more complex scenarios. Blood rarely impacts apparel fabrics perpendicular; therefore a systematic study was conducted to characterise the appearance of drip stains on inclined fabrics. The final drip stain appearance for 45° and 15° impact angles on torso apparel fabrics (100% cotton plain woven, 100% polyester plain woven, a blend of polyester and cotton plain woven and 100% cotton single jersey knit) that had been laundered for six, 26 and 52 cycles prior to testing was investigated. The relationship between drop parameters (height and volume), angle and the stain characteristics (parent stain area, axis 1 and 2 and number of satellite stains) for each fabric was examined using analysis of variance. The appearance of the drip stains on these fabrics was distorted, in comparison to drip stains on hard-smooth surface. Examining the parent stain allowed for classification of stains occurring at an angle, however the same could not be said for the satellite stains produced. All of the dried stains visible on the surface of the fabric were larger than just after the impacting event, indicating within fabric spreading of blood due to capillary force (wicking). The cotton-containing fabrics spread the blood within the fabrics in all directions along the stain's circumference, while spreading within the polyester plain woven fabric occurred in only the weft (width of the fabric) and warp (length) directions. Laundering affected the formation of bloodstain on the blend plain woven fabric at both impact angles, although not all characteristics were significantly affected for the three impact conditions considered. The bloodstain characteristics varied due to the fibre content

  14. Influence of Fabric Parameters on Thermal Comfort Performance of Double Layer Knitted Interlock Fabrics

    Directory of Open Access Journals (Sweden)

    Afzal Ali

    2017-03-01

    Full Text Available The aim of this study was to analyse the effects of various fabric parameters on the thermal resistance, thermal conductivity, thermal transmittance, thermal absorptivity and thermal insulation of polyester/cotton double layer knitted interlock fabrics. It was found that by increasing fibre content with higher specific heat increases the thermal insulation while decreases the thermal transmittance and absorptivity of the fabric. It was concluded that double layer knitted fabrics developed with higher specific heat fibres, coarser yarn linear densities, higher knitting loop length and fabric thickness could be adequately used for winter clothing purposes.

  15. A facile method to fabricate superhydrophobic cotton fabrics

    Science.gov (United States)

    Zhang, Ming; Wang, Shuliang; Wang, Chengyu; Li, Jian

    2012-11-01

    A facile and novel method for fabricating superhydrophobic cotton fabrics is described in the present work. The superhydrophobic surface has been prepared by utilizing cationic poly (dimethyldiallylammonium chloride) and silica particles together with subsequent modification of (heptadecafluoro-1,1,2,2-tetradecyl) trimethoxysilane. The size distribution of silica particles was measured by Particle Size Analyzer. The cotton textiles before and after treatment were characterized by using scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The wetting behavior of cotton samples was investigated by water contact angle measurement. Moreover, the superhydrophobic durability of coated cotton textiles has been evaluated by exposure, immersion and washing tests. The results show that the treated cotton fabrics exhibited excellent chemical stability and outstanding non-wettability with the WCA of 155 ± 2°, which offers an opportunity to accelerate the large-scale production of superhydrophobic textiles materials for new industrial applications.

  16. Effect of fabrication conditions on the properties of indium tin oxide powders

    International Nuclear Information System (INIS)

    Xie Wei

    2008-01-01

    This paper reports that indium tin oxide (ITO) crystalline powders are prepared by coprecipitation method. Fabrication conditions mainly as sintering temperature and Sn doping content are correlated with the phase, microstructure, infrared emissivity in and powder resistivity of indium tin oxides by means of x-ray diffraction, Fourier transform infrared, and transmission electron microscope. The optimum sintering temperature of 1350°C and Sn doping content 6∼8wt% are determined. The application of ITO in the military camouflage field is proposed. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  17. Fabrication and characterization of solution processed vertically aligned ZnO microrods

    Energy Technology Data Exchange (ETDEWEB)

    Gadallah, A.-S., E-mail: agadallah@niles.edu.eg [Laboratoire de Nanotechnologie et d’Instrumentation Optique, Institut Charles Delaunay, CNRS UMR 6279, Université de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France); Department of Laser Sciences and Interactions, National Institute of Laser Enhanced Sciences, Cairo University, 12613 Giza (Egypt)

    2014-08-30

    Simple and effective cost high quality vertically aligned densely packed ZnO microrods have been prepared using solution processed two-step deposition process, specifically sol–gel spin coating combined with chemical bath deposition. X-ray diffraction pattern and scanning electron microscope show that there has been preferential crystal orientation along c-axis and the growth of the microrods has occurred normal to the glass substrate and the facets of the these microrods are hexagons. Photoluminescence measurements showed an emission band in the UV region and another weak band in the visible region with the emission intensity of UV band grows superlinearly with the excitation intensity. The film shows an electrical resistivity of 136 Ω cm as evaluated from four-point probe method. The fabricated film has been used as UV detector through Au/SiO{sub 2}/ZnO structure on glass substrate as the structure shows higher current under illumination compared to without illumination.

  18. White polymer light-emitting electrochemical cells using emission from exciplexes with long intermolecular distances formed between polyfluorene and π-conjugated amine molecules

    Science.gov (United States)

    Nishikitani, Y.; Takeuchi, H.; Nishide, H.; Uchida, S.; Yazaki, S.; Nishimura, S.

    2015-12-01

    The authors present white polymer light-emitting electrochemical cells (PLECs) fabricated with polymer blend films of poly(9,9-di-n-dodecylfluorenyl-2,7-diyl) (PFD) and π-conjugated triphenylamine molecules. The PLECs have bulk heterojunction structures composed of van der Waals interfaces between the PFD segments and the amine molecules. White-light electroluminescence (EL) can be achieved via light-mixing of the blue exciton emission from PFD and long-wavelength exciplex emission from excited complexes consisting of PFD segments (acceptors (As)) and the amine molecules (donors (Ds)). Precise control of the distances between the PFD and the amine molecules, affected through proper choice of the concentrations of PFD, amine molecules, and polymeric solid electrolytes, is critical to realizing white emission. White PLECs can be fabricated with PFD and amine molecules whose highest occupied molecular orbital (HOMO) levels range from -5.3 eV to -5.0 eV. Meanwhile, PLECs fabricated with amine molecules whose HOMO levels are lower than -5.6 eV cannot produce exciplex emission. The distances between the PFD and amine molecules of the exciplexes appear to be larger than 0.4 nm. These experimental data are explained by perturbation theory using the charge-transfer state ( A - D + ), the locally excited state ( A * D ), which is assumed to be the locally excited acceptor state in which there is no interaction with the donor molecule; and the energy gap between the HOMO levels of the PFD and the amine molecules. Color-stable white PLECs were fabricated using 4,4',4″-tris[N-(2-naphthyl)-N-phenylamino]-triphenylamine, which has a HOMO level of -5.2 eV, as the amine molecule, and the color stability of the device is a function of the fact that PFD forms exciplexes with these molecules.

  19. Patterned growth of carbon nanotubes over vertically aligned silicon nanowire bundles for achieving uniform field emission.

    Science.gov (United States)

    Hung, Yung-Jr; Huang, Yung-Jui; Chang, Hsuan-Chen; Lee, Kuei-Yi; Lee, San-Liang

    2014-01-01

    A fabrication strategy is proposed to enable precise coverage of as-grown carbon nanotube (CNT) mats atop vertically aligned silicon nanowire (VA-SiNW) bundles in order to realize a uniform bundle array of CNT-SiNW heterojunctions over a large sample area. No obvious electrical degradation of as-fabricated SiNWs is observed according to the measured current-voltage characteristic of a two-terminal single-nanowire device. Bundle arrangement of CNT-SiNW heterojunctions is optimized to relax the electrostatic screening effect and to maximize the field enhancement factor. As a result, superior field emission performance and relatively stable emission current over 12 h is obtained. A bright and uniform fluorescent radiation is observed from CNT-SiNW-based field emitters regardless of its bundle periodicity, verifying the existence of high-density and efficient field emitters on the proposed CNT-SiNW bundle arrays.

  20. A Building Brick Principle to Create Transparent Composite Films with Multicolor Emission and Self-Healing Function.

    Science.gov (United States)

    Xiong, Yuan; Zhu, Minshen; Wang, Zhenguang; Schneider, Julian; Huang, He; Kershaw, Stephen V; Zhi, Chunyi; Rogach, Andrey L

    2018-05-01

    A cellulose paper is used impregnated with light-emitting CdTe nanocrystals and carbon dots, and filled with a polyurethane to fabricate uniform transparent composite films with bright photoluminescence of red (R), green (G), and blue (B) (RGB) colors. A building brick-like assembly method is introduced to realize RGB multicolor emission patterns from this composite material. By sectioning out individual pixels from monochrome-emissive composite sheets, the advantage of the self-healing properties of polyurethane is taken to arrange and weld them into a RGB patterned fabric by brief exposure to ethanol. This provides an approach to form single layer RGB light-emitting pixels, such as potentially required in the display applications, without the use of any lithographic or etching processing. The method can utilize a wide range of different solution-based kinds of light-emitting materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Fabrication of 4H-SiC Schottky barrier diodes with high breakdown voltages

    CERN Document Server

    Kum, B H; Shin, M W; Park, J D

    1999-01-01

    This paper discusses the fabrication and the breakdown characteristics of 4H-SiC Schottky barrier diodes (SBDs). Optimal processing conditions for the ohmic contacts were extracted using the transmission-line method (TLM) and were applied to the device fabrication. The Ti/4H-SiC SBDs with Si sub x B sub y passivation showed a maximum reverse breakdown voltage of 268 V with a forward current density as high as 70 mA/cm sup 2 at a forward voltage of 2 V. The breakdown of the Pt. 4H-SiC SBDs without any passivation occurred at near 110 V. It is concluded that the breakdown enhancement in the Ti/4H-SiC SBDs can be attributed to the passivation; otherwise, excess surface charge near the edge of the Schottky contact would lead to electric fields of sufficient magnitude to cause field emission.

  2. Improving the environment for weaned piglets using polypropylene fabrics above the animals in cold periods.

    Science.gov (United States)

    Dolz, Noé; Babot, Daniel; Álvarez-Rodríguez, Javier; Forcada, Fernando

    2015-12-01

    This study aimed at evaluating the use of polypropylene fabrics in weaned pig facilities (5-10 weeks of age) during the winter period to improve thermal environment and energy saving for heating. Two experiments were conducted to validate the effects of fabrics (F) compared to control (C) in three 2-week periods using natural ventilation (assay 1, 2013) and forced ventilation (assay 2, 2014). Air temperature was greater in F than in C compartments in both years, particularly during the first 2-week periods (2 °C of mean difference). Natural ventilation was not enough to maintain relative humidity levels below 70 % at the end of the postweaning period (9-10 weeks of age) in both groups (F and C), whereas forced ventilation allowed controlling daily mean relative humidity levels <60 %. About 12-26 % of the radiant heat was transmitted through the fabrics cover, depending on the wavelength. There were no differences on growth performance of piglets in the two compartments in both years. The use of polypropylene fabrics was associated with a significant electric energy saving for heating during the first (data available only in 2014) and second 2-week period in both years. In conclusion, polypropylene fabrics may be an interesting tool to provide optimal environmental conditions for weaned piglets in winter, especially during the two first weeks after weaning. Their transmittance properties allow trapping infrared emission produced by the piglets and heating, avoiding heat losses through the roof, and therefore saving heating energy.

  3. Fabrication and characterization of organic light-emitting diodes using zinc complexes as hole-blocking layer.

    Science.gov (United States)

    Kim, Won Sam; You, Jung Min; Lee, Burm-Jong; Jang, Yoon-Ki; Kim, Dong-Eun; Kwon, Young-Soo

    2006-11-01

    2-(2-Hydroxyphenyl)benzoxazole (HPB) was employed as organic ligand and the corresponding zinc complexes (Zn(HPB)2 and Zn(HPB)q) were synthesized. And their EL properties were characterized. The structures of zinc complexes were determined with FT-NMR, FT-IR, UV-Vis, and XPS. The thermal stability showed up to about 300 degrees C under nitrogen flow, which was measured by TGA. The photoluminescence (PL) of zinc complexes were measured from the DMF solution. The PL emitted in blue and yellow region, respectively. The EL devices were fabricated by the vacuum deposition. Two kinds of OLEDs devices were fabricated; ITO/NPB (40 nm)/Zn complexes (60 nm)/LiF/Al and ITO/NPB (40 nm)/Alq3 (60 nm)/Zn complexes (5 nm)/LiF/Al. Both of the EL properties as the emitting and the hole-blocking layer were investigated. The EL emission of Zn(HPB)q exhibited green light centered at 532 nm. The device showed a turn-on voltage at 5 V and a luminance of 6073 cd/m2 at 10 V. Meanwhile, the maximum EL the emission of the Zn(HPB)2 device was found to be at 447 nm. And the device showed a luminance of 2813 cd/m2 at 10 V. The ITO/NPB (40 nm)/Alq3 (60 nm)/Zn(HPB)2 (5 nm)/LiF/Al device showed increased luminance of L=17000 cd/m2 compared to L=12000 cd/m2 for similar device fabricated without the hole-blocking layer. And the turn-on voltage was significantly affected by the existence of the hole-blocking layer.

  4. Fabric Reconstruction Based on Sustainable Development: Take the Type of Fabric Recycling as an Example

    OpenAIRE

    Zhangting Guan

    2017-01-01

    Sustainable development is a very important concept of our time, it wants to do is to live in harmony with people, to protect the environment where our human survival. Fabric recycling refers to the use of a variety of traditional and high-tech means of the existing fabric fabric design and processing. So that the surface of a rich visual texture and tactile texture "through the fabric recycling approach. However, the fabric form and clothing design coordination between the clothing design is...

  5. Enhancing Light Emission of ZnO-Nanofilm/Si-Micropillar Heterostructure Arrays by Piezo-Phototronic Effect.

    Science.gov (United States)

    Li, Xiaoyi; Chen, Mengxiao; Yu, Ruomeng; Zhang, Taiping; Song, Dongsheng; Liang, Renrong; Zhang, Qinglin; Cheng, Shaobo; Dong, Lin; Pan, Anlian; Wang, Zhong Lin; Zhu, Jing; Pan, Caofeng

    2015-06-22

    n-ZnO nanofilm/p-Si micropillar heterostructure light-emitting diode (LED) arrays for white light emissions are achieved and the light emission intensity of LED array is enhanced by 120% under -0.05% compressive strains. These results indicate a promising approach to fabricate Si-based light-emitting components with high performances enhanced by piezo-phototronic effect, with potential applications in touchpad technology, personalized signatures, smart skin, and silicon-based photonic integrated circuits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Silicon-based metallic micro grid for electron field emission

    International Nuclear Information System (INIS)

    Kim, Jaehong; Jeon, Seok-Gy; Kim, Jung-Il; Kim, Geun-Ju; Heo, Duchang; Shin, Dong Hoon; Sun, Yuning; Lee, Cheol Jin

    2012-01-01

    A micro-scale metal grid based on a silicon frame for application to electron field emission devices is introduced and experimentally demonstrated. A silicon lattice containing aperture holes with an area of 80 × 80 µm 2 and a thickness of 10 µm is precisely manufactured by dry etching the silicon on one side of a double-polished silicon wafer and by wet etching the opposite side. Because a silicon lattice is more rigid than a pure metal lattice, a thin layer of Au/Ti deposited on the silicon lattice for voltage application can be more resistant to the geometric stress caused by the applied electric field. The micro-fabrication process, the images of the fabricated grid with 88% geometric transparency and the surface profile measurement after thermal feasibility testing up to 700 °C are presented. (paper)

  7. An assessment of acoustic emission for nuclear pressure vessel monitoring

    International Nuclear Information System (INIS)

    Scruby, C.B.

    1983-01-01

    Recent research has greatly improved our understanding of the basic mechanisms of deformation and fracture that generate detectable acoustic emission signals in structural steels. A critical review of the application of acoustic emission (AE) to the fabrication, proof testing and in-service monitoring of nuclear pressure vessels is presented in the light of this improved understanding. The detectability of deformation and fracture processes in pressure vessel steels is discussed, and recommendations made for improving source location accuracy and the development of quantitative source assessment techniques. Published data suggest that AE can make an important contribution to fabrication monitoring, and to the detection of defects in lower toughness materials during vessel proof testing. In high toughness materials, however, the signals generated during ductile crack growth may frequently be too weak for reliable detection. The feasibility of AE for continuous monitoring has not yet been adequately demonstrated because of high background noise levels and uncertainty about AE signal strengths from the defect growth processes that occur in service. In-service leak detection by AE shows considerable promise. It is recommended that further tests are carried out with realistic defects, and under realistic conditions of loading (including thermal shock and fatigue) and of environment. (author)

  8. Towards real energy economics: Energy policy driven by life-cycle carbon emission

    International Nuclear Information System (INIS)

    Kenny, R.; Law, C.; Pearce, J.M.

    2010-01-01

    Alternative energy technologies (AETs) have emerged as a solution to the challenge of simultaneously meeting rising electricity demand while reducing carbon emissions. However, as all AETs are responsible for some greenhouse gas (GHG) emissions during their construction, carbon emission 'Ponzi Schemes' are currently possible, wherein an AET industry expands so quickly that the GHG emissions prevented by a given technology are negated to fabricate the next wave of AET deployment. In an era where there are physical constraints to the GHG emissions the climate can sustain in the short term this may be unacceptable. To provide quantitative solutions to this problem, this paper introduces the concept of dynamic carbon life-cycle analyses, which generate carbon-neutral growth rates. These conceptual tools become increasingly important as the world transitions to a low-carbon economy by reducing fossil fuel combustion. In choosing this method of evaluation it was possible to focus uniquely on reducing carbon emissions to the recommended levels by outlining the most carbon-effective approach to climate change mitigation. The results of using dynamic life-cycle analysis provide policy makers with standardized information that will drive the optimization of electricity generation for effective climate change mitigation.

  9. Improved field emission performance of carbon nanotube by introducing copper metallic particles

    Directory of Open Access Journals (Sweden)

    Chen Yiren

    2011-01-01

    Full Text Available Abstract To improve the field emission performance of carbon nanotubes (CNTs, a simple and low-cost method was adopted in this article. We introduced copper particles for decorating the CNTs so as to form copper particle-CNT composites. The composites were fabricated by electrophoretic deposition technique which produced copper metallic particles localized on the outer wall of CNTs and deposited them onto indium tin oxide (ITO electrode. The results showed that the conductivity increased from 10-5 to 4 × 10-5 S while the turn-on field was reduced from 3.4 to 2.2 V/μm. Moreover, the field emission current tended to be undiminished after continuous emission for 24 h. The reasons were summarized that introducing copper metallic particles to decorate CNTs could increase the surface roughness of the CNTs which was beneficial to field emission, restrain field emission current from saturating when the applied electric field was above the critical field. In addition, it could also improve the electrical contact by increasing the contact area between CNT and ITO electrode that was beneficial to the electron transport and avoided instable electron emission caused by thermal injury of CNTs.

  10. A light-assisted in situ embedment of silver nanoparticles to prepare functionalized fabrics

    Directory of Open Access Journals (Sweden)

    Toh HS

    2017-11-01

    Full Text Available Her Shuang Toh,1 Roxanne Line Faure,2 Liyana Bte Mohd Amin,1 Crystal Yu Fang Hay,1 Saji George1,3 1Centre of Sustainable Nanotechnology, School of Chemical and Life Sciences, Nanyang Polytechnic, Singapore, Singapore; 2DUT Analyses Biologiques et Biochimiques, IUT Génie Biologique, Dijon, France; 3Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Sainte-Anne-de-Bellevue, QC, Canada Abstract: This article presents a simple, one-step, in situ generation of silver nanoparticle-functionalized fabrics with antibacterial properties, circumventing the conventional, multistep, time-consuming methods. Silver nanoparticle formation was studied with a library of capping agents (branched polyethylenimine [BPEI] of molecular weight [Mw] 10,000 and 25,000, polyvinylpyrrolidone, polyethylene glycol, polyvinylalcohol and citrate mixed with silver nitrate. The mixture was then exposed to an assortment of light wavelengths (ultraviolet, infrared and simulated solar light for studying the light-assisted synthesis of nanoparticles. The formation of nanoparticles corresponded with the reducing capabilities of the polymers wherein BPEI gave the best response. Notably, the irradiation wavelengths had little effect on the formation of the nanoparticle when the total irradiation energy was kept constant. The feasibility of utilizing this method for in situ nanoparticle synthesis on textile fabrics (towel [100% cotton], gauze [100% cotton], rayon, felt [100% polyester] and microfiber [15% nylon, 85% polyester] was verified by exposing the fabrics soaked in an aqueous solution of 1% (w/v AgNO3 and 1% (w/v BPEI (Mw 25,000 to light. The formation of nanoparticles on fabrics and their retention after washing was verified using scanning electron microscopy and quantified by inductively coupled plasma optical emission spectrometry. The functional property of the fabric as an antibacterial surface was successfully demonstrated using

  11. Metallic Reactor Fuel Fabrication for SFR

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hoon; Kim, Jong-Hwan; Ko, Young-Mo; Woo, Yoon-Myung; Kim, Ki-Hwan; Lee, Chan-Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The metal fuel for an SFR has such advantages such as simple fabrication procedures, good neutron economy, high thermal conductivity, excellent compatibility with a Na coolant, and inherent passive safety 1. U-Zr metal fuel for SFR is now being developed by KAERI as a national R and D program of Korea. The fabrication technology of metal fuel for SFR has been under development in Korea as a national nuclear R and D program since 2007. The fabrication process for SFR fuel is composed of (1) fuel slug casting, (2) loading and fabrication of the fuel rods, and (3) fabrication of the final fuel assemblies. Fuel slug casting is the dominant source of fuel losses and recycled streams in this fabrication process. Fabrication on the rod type metallic fuel was carried out for the purpose of establishing a practical fabrication method. Rod-type fuel slugs were fabricated by injection casting. Metallic fuel slugs fabricated showed a general appearance was smooth.

  12. One-pot fabrication and antimicrobial properties of novel PET nonwoven fabrics

    International Nuclear Information System (INIS)

    Lin Song; Wang Zheng; Qi Jiancheng; Wu Jinhui; Tian Tao; Hao Limei; Yang Jingquan; Hou Lili

    2011-01-01

    Recently, with the ever-growing demand for healthy living, more and more research is focused on materials capable of killing harmful microorganisms around the world. It is believed that designing such protective materials for hygienic and biomedical applications can benefit people in professional areas and daily life. Thus, in this paper, one novel kind of antibacterial poly(ethylene terephthalate) (PET) nonwoven fabrics was conveniently one-pot prepared, with the combined immobilization of two biological antimicrobial agents, i.e. ε-polylysine and natamycin, by using the soft methacrylate nonwoven fabrics adhesives. Then, the antimicrobial activities of the functional fabrics were investigated by using the standard shaking-flask method, showing excellent antibacterial efficiency (AE) against both Escherichia coli (8099) and Staphylococcus aureus (ATCC 6538) (AE > 99.99%) compared with untreated PET nonwoven fabrics. The anti-bioaerosol tests also showed similar trends. Meantime, scanning electron microscopy analysis indicated that the bacteria on the antibacterial PET appeared to be partly bacteriolyzed and showed much less viability than those on the pristine ones. Moreover, the long residual biocidal action of such modified PET fabrics was also evaluated, and the antibacterial activity of antibacterial fibers was unaffected by the 3 month artificially accelerated aging.

  13. One-pot fabrication and antimicrobial properties of novel PET nonwoven fabrics

    Energy Technology Data Exchange (ETDEWEB)

    Lin Song; Wang Zheng; Qi Jiancheng; Wu Jinhui; Tian Tao; Hao Limei; Yang Jingquan [Institute of Medical Equipment, Academy of Military Medical Sciences, Tianjin 300161 (China); Hou Lili, E-mail: yjq789@sohu.com [National Bio-protection Engineering Center, Tianjin 300161 (China)

    2011-08-15

    Recently, with the ever-growing demand for healthy living, more and more research is focused on materials capable of killing harmful microorganisms around the world. It is believed that designing such protective materials for hygienic and biomedical applications can benefit people in professional areas and daily life. Thus, in this paper, one novel kind of antibacterial poly(ethylene terephthalate) (PET) nonwoven fabrics was conveniently one-pot prepared, with the combined immobilization of two biological antimicrobial agents, i.e. {epsilon}-polylysine and natamycin, by using the soft methacrylate nonwoven fabrics adhesives. Then, the antimicrobial activities of the functional fabrics were investigated by using the standard shaking-flask method, showing excellent antibacterial efficiency (AE) against both Escherichia coli (8099) and Staphylococcus aureus (ATCC 6538) (AE > 99.99%) compared with untreated PET nonwoven fabrics. The anti-bioaerosol tests also showed similar trends. Meantime, scanning electron microscopy analysis indicated that the bacteria on the antibacterial PET appeared to be partly bacteriolyzed and showed much less viability than those on the pristine ones. Moreover, the long residual biocidal action of such modified PET fabrics was also evaluated, and the antibacterial activity of antibacterial fibers was unaffected by the 3 month artificially accelerated aging.

  14. Fabrication and optical properties of SnS thin films by SILAR method

    International Nuclear Information System (INIS)

    Ghosh, Biswajit; Das, Madhumita; Banerjee, Pushan; Das, Subrata

    2008-01-01

    Although the fabrication of tin disulfide thin films by SILAR method is quiet common, there is, however, no report is available on the growth of SnS thin film using above technique. In the present work, SnS films of 0.20 μm thickness were grown on glass and ITO substrates by SILAR method using SnSO 4 and Na 2 S solution. The as-grown films were smooth and strongly adherent to the substrate. XRD confirmed the deposition of SnS thin films. Scanning electron micrograph revealed almost equal distribution of the particle size well covered on the surface of the substrate. EDAX showed that as-grown SnS films were slightly rich in tin component while UV-vis transmission spectra exhibited high absorption in the visible region. The intense and sharp emission peaks at 680 and 825 nm (near band edge emission) dominated the photoluminescence spectra

  15. Fabrication of integrated metallic MEMS devices

    DEFF Research Database (Denmark)

    Yalcinkaya, Arda Deniz; Ravnkilde, Jan Tue; Hansen, Ole

    2002-01-01

    A simple and complementary metal oxide semiconductor (CMOS) compatible fabrication technique for microelectromechanical (MEMS) devices is presented. The fabrication technology makes use of electroplated metal layers. Among the fabricated devices, high quality factor microresonators are characteri......A simple and complementary metal oxide semiconductor (CMOS) compatible fabrication technique for microelectromechanical (MEMS) devices is presented. The fabrication technology makes use of electroplated metal layers. Among the fabricated devices, high quality factor microresonators...

  16. Optics fabrication technical challenges

    International Nuclear Information System (INIS)

    Chabassier, G.; Ferriou, N.; Lavastre, E.; Maunier, C.; Neauport, J.; Taroux, D.; Balla, D.; Fornerod, J.C.

    2004-01-01

    Before the production of all the LMJ (MEGAJOULE laser) optics, the CEA had to proceed with the fabrication of about 300 large optics for the LIL (laser integration line) laser. Thanks to a fruitful collaboration with high-tech optics companies in Europe, this challenge has been successfully hit. In order to achieve the very tight requirements for cleanliness, laser damage threshold and all the other high demanding fabrication specifications, it has been necessary to develop and to set completely new fabrication process going and to build special outsize fabrication equipment. Through a couple of examples, this paper gives an overview of the work which has been done and shows some of the results which have been obtained: continuous laser glass melting, fabrication of the laser slabs, rapid-growth KDP (potassium dihydrogen phosphate) technology, large diffractive transmission gratings engraving and characterization. (authors)

  17. Considerable Enhancement of Field Emission of SnO2Nanowires by Post-Annealing Process in Oxygen at High Temperature

    Directory of Open Access Journals (Sweden)

    Fang XS

    2009-01-01

    Full Text Available Abstract The field emission properties of SnO2nanowires fabricated by chemical vapor deposition with metallic catalyst-assistance were investigated. For the as-fabricated SnO2nanowires, the turn-on and threshold field were 4.03 and 5.4 V/μm, respectively. Considerable enhancement of field emission of SnO2nanowires was obtained by a post-annealing process in oxygen at high temperature. When the SnO2nanowires were post-annealed at 1,000 °C in oxygen, the turn-on and threshold field were decreased to 3.77 and 4.4 V/μm, respectively, and the current density was increased to 6.58 from 0.3 mA/cm2at the same applied electric field of 5.0 V/μm.

  18. Processing and performance of organic insulators as a gate layer in ...

    Indian Academy of Sciences (India)

    Fabrication of organic thin film transistor (OTFT) on flexible substrates is a challenge, because of its low softening temperature, high roughness and flexible nature. Although several organic dielectrics have been used as gate insulator, it is difficult to choose one in absence of a comparative study covering processing of ...

  19. Fabrication of White Organic Light Emitting Diode Using Two Types of Zn-Complexes as an Emitting Layer.

    Science.gov (United States)

    Kim, Dong-Eun; Kwon, Young-Soo; Shin, Hoon-Kyu

    2015-01-01

    We have studied white OLED using two types of Zn-complexes as an emitting layer. We synthesized brand new two emissive materials, Zn(HPQ)2 as a yellow emitting material and Zn(HPB)2 as a blue emitting material. The Zn-complexes are low-molecular compounds and stable thermally. The fundamental structures of the fabricated OLED was ITO/NPB (40 nm)/Zn(HPB)2 (30 nm)/Zn(HPQ)2/LiF/Al. We varied the thickness of the Zn(HPQ)2 layer by 20, 30, and 40 nm. When the thickness of the Zn(HPQ)2 layer was 20 nm, the white emission was achieved. The maximum luminance was 12,000 cd/m2 at a current density of 800 mA/cm2. The CIE coordinates of the white emission were (0.319, 0.338) at an applied voltage of 10 V.

  20. Fabricating architectural volume

    DEFF Research Database (Denmark)

    Feringa, Jelle; Søndergaard, Asbjørn

    2015-01-01

    The 2011 edition of Fabricate inspired a number of collaborations, this article seeks to highlight three of these. There is a common thread amongst the projects presented: sharing the ambition to close the rift between design and fabrication while incorporating structural design aspects early on...

  1. Organic nanowire hierarchy over fabric platform for flexible cold cathode

    Science.gov (United States)

    Maiti, Soumen; Narayan Maiti, Uday; Pal, Shreyasi; Chattopadhyay, Kalyan Kumar

    2013-11-01

    Organic charge transfer (CT) complexes initiated a growing interest in modern electronic devices owing to their easy processability and unique characteristics. In this work, three-dimensional field emitters comprising metal-organic charge transfer complex nanostructures of AgTCNQ and CuTCNQ (TCNQ, 7,7,8,8-tetracyanoquinodimethane) over flexible fabric substrate are realized. Deliberate control over the reaction parameter during organic solid phase reaction leads to modification in structural parameters of the nanowires (i.e. length, diameter) as well as their arrangement atop the carbon fibers. The optimized arrays of AgTCNQ and CuTCNQ nanowires exhibit excellent field electron emission performance with very low turn-on (1.72 and 2.56 V μm-1) and threshold fields (4.21 and 6.33 V μm-1) respectively, which are comparable to those of the best organic field emitters reported to date. The underlying conducting carbon cloth with special woven-like geometry not only offers a flexible platform for nanowire growth, but also provides an additional field enhancement to ease the electron emission.

  2. Organic nanowire hierarchy over fabric platform for flexible cold cathode

    International Nuclear Information System (INIS)

    Maiti, Soumen; Pal, Shreyasi; Chattopadhyay, Kalyan Kumar; Maiti, Uday Narayan

    2013-01-01

    Organic charge transfer (CT) complexes initiated a growing interest in modern electronic devices owing to their easy processability and unique characteristics. In this work, three-dimensional field emitters comprising metal–organic charge transfer complex nanostructures of AgTCNQ and CuTCNQ (TCNQ, 7,7,8,8-tetracyanoquinodimethane) over flexible fabric substrate are realized. Deliberate control over the reaction parameter during organic solid phase reaction leads to modification in structural parameters of the nanowires (i.e. length, diameter) as well as their arrangement atop the carbon fibers. The optimized arrays of AgTCNQ and CuTCNQ nanowires exhibit excellent field electron emission performance with very low turn-on (1.72 and 2.56 V μm −1 ) and threshold fields (4.21 and 6.33 V μm −1 ) respectively, which are comparable to those of the best organic field emitters reported to date. The underlying conducting carbon cloth with special woven-like geometry not only offers a flexible platform for nanowire growth, but also provides an additional field enhancement to ease the electron emission. (paper)

  3. Synthesis, property and field-emission behaviour of amorphous polypyrrole nanowires

    International Nuclear Information System (INIS)

    Yan Hongliang; Zhang Lan; Shen Jiaoyan; Chen Zhaojia; Shi Gaoquan; Zhang Binglin

    2006-01-01

    Polypyrrole nanowires have been electrosynthesized by direct oxidation of 0.1 mol l -1 pyrrole in a medium of 75% isopropyl alcohol + 20% boron trifluoride diethyl etherate + 5% poly (ethylene glycol) (by volume) using porous alumina membranes as the templates. The as-prepared nanowires had a smooth surface and uniform diameter and were arranged in an orderly manner in a high density. The conductivity of a single nanowire was measured by the four-electrode technique to be 23.4 S cm -1 at room temperature. The field emission devices based on the nanowire array were fabricated and their operations were explored. The experimental results indicated that the field emission characteristics of the devices fitted well to the Fowler-Nordheim model of emission. The turn-on electric field was only 1.2 V μm -1 and the current density reached 200 μA cm -2 at 2.6 V μm -1

  4. Room-temperature light-emission from Ge quantum dots in photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Xia Jinsong [Advanced Research Laboratories, Musashi Institute of Technolgy, 8-15-1 Todoroki, Setagaya-ku, Tokyo 158-0082 (Japan)], E-mail: jxia@sc.musashi-tech.ac.jp; Nemoto, Koudai; Ikegami, Yuta [Advanced Research Laboratories, Musashi Institute of Technolgy, 8-15-1 Todoroki, Setagaya-ku, Tokyo 158-0082 (Japan); Usami, Noritaka [Institute of Materials Research, Tohoku University, 2-2-1 Katahira, Aoba-ku, Sendai Japan (Japan)], E-mail: usa@imr.tohoku.ac.jp; Nakata, Yasushi [Horiba, Ltd., 1-7-8 Higashi-Kanda, Chiyoda-ku, Tokyo 101-0031 (Japan)], E-mail: yasushi.nakata@horiba.com; Shiraki, Yasuhiro [Advanced Research Laboratories, Musashi Institute of Technolgy, 8-15-1 Todoroki, Setagaya-ku, Tokyo 158-0082 (Japan)

    2008-11-03

    Multiple layers of Ge self-assembled quantum dots were embedded into two-dimensional silicon photonic crystal microcavities fabricated on silicon-on-insulator substrates. Microphotoluminescence was used to study the light-emission characteristic of the Ge quantum dots in the microcavities. Strong resonant room-temperature light-emission was observed in the telecommunication wavelength region. Significant enhancement of the luminescence from Ge dots was obtained due to the resonance in the cavities. Multiple sharp resonant peaks dominated the spectrum, showing strong optical resonance inside the cavity. By changing the lattice constant of photonic crystal structure, the wavelengths of the resonant peaks are tuned in the wide wavelength range from 1.2 to 1.6 {mu}m.

  5. Fabrication of Durably Superhydrophobic Cotton Fabrics by Atmospheric Pressure Plasma Treatment with a Siloxane Precursor

    Directory of Open Access Journals (Sweden)

    Jing Yang

    2018-04-01

    Full Text Available The surface treatment of fabrics in an atmospheric environment may pave the way for commercially viable plasma modifications of fibrous matters. In this paper, we demonstrate a durably superhydrophobic cotton cellulose fabric prepared in a single-step graft polymerization of hexamethyldisiloxane (HMDSO by N2 and O2 atmospheric pressure plasma. We systematically investigated effects on contact angle (CA and surface morphology of the cotton fabric under three operational parameters: precursor value; ionization gas flow rate; and plasma cycle time. Surface morphology, element composition, chemical structure and hydrophobic properties of the treated fabric were characterized by scanning electron microscope (SEM, EDS, FTIR and CA on the fabrics. The results indicated that a layer of thin film and nano-particles were evenly deposited on the cotton fibers, and graft polymerization occurred between cellulose and HMDSO. The fabric treated by O2 plasma exhibited a higher CA of 162° than that treated by N2 plasma which was about 149°. Furthermore, the CA of treated fabrics decreased only 0°~10° after storing at the ambient conditions for four months, and treated fabrics could also endure the standard textile laundering procedure in AATCC 61-2006 with minimum change. Therefore, this single-step plasma treatment method is shown to be a novel and environment-friendly way to make durable and superhydrophobic cotton fabrics.

  6. Plasma-induced field emission and plasma expansion of carbon nanotube cathodes

    International Nuclear Information System (INIS)

    Liao Qingliang; Zhang Yue; Qi Junjie; Huang Yunhua; Xia Liansheng; Gao Zhanjun; Gu Yousong

    2007-01-01

    High intensity electron emission cathodes based on carbon nanotube films have been successfully fabricated. An investigation of the explosive field emission properties of the carbon nanotube cathode in a double-pulse mode was presented and a high emission current density of 245 A cm -2 was obtained. The formation of the cathode plasma layer was proved and the production process of the electron beams from the cathode was explained. The time and space resolution of the electron beams flow from the cathode was investigated. The plasma expanded at a velocity of ∼8.17 cm μs -1 towards the anode and influenced on the intensity and distribution of electron beams obviously. The formation of cathode plasma had no preferential position and the local enhancement of electron beams was random. This carbon nanotube cathode appears to be suitable for high-power microwave device applications

  7. Thermionic and Photo-excited Electron Emission for Energy Conversion Processes

    Directory of Open Access Journals (Sweden)

    Patrick T. McCarthy

    2014-12-01

    Full Text Available This article describes advances in thermionic and photoemission materials and applications dating back to the work on thermionic emission by Guthrie in 1873 and the photoelectric effect by Hertz in 1887. Thermionic emission has been employed for electron beam generation from Edison’s work with the light bulb to modern day technologies such as scanning and transmission electron microscopy. The photoelectric effect has been utilized in common devices such as cameras and photocopiers while photovoltaic cells continue to be widely successful and further researched. Limitations in device efficiency and materials have thus far restricted large-scale energy generation sources based on thermionic and photoemission. However, recent advances in the fabrication of nanoscale emitters suggest promising routes for improving both thermionic and photo-enhanced electron emission along with newly developed research concepts, e.g., photonically enhanced thermionic emission. However, the abundance of new emitter materials and reduced dimensions of some nanoscale emitters increases the complexity of electron emission theory and engender new questions related to the dimensionality of the emitter. This work presents derivations of basic two and three-dimensional thermionic and photoemission theory along with comparisons to experimentally acquired data. The resulting theory can be applied to many different material types regardless of composition, bulk and surface structure.

  8. Evaluation of the impact of lime softening waste disposal in natural environments

    International Nuclear Information System (INIS)

    Blaisi, Nawaf I.; Roessler, Justin; Cheng, Weizhi; Townsend, Timothy; Al-Abed, Souhail R.

    2015-01-01

    Highlights: • Leaching tests conducted on WTR to assess potential for trace element release. • Aluminum leaching found to be elevated with respect to risk threshold. • Release in anaerobic conditions evaluated with column test run in nitrogen chamber. • Increased release of certain elements seen from residues under anaerobic conditions. • Different leaching tests produced results on two sides of regulatory threshold. - Abstract: Drinking water treatment residues (WTR), generated from the lime softening processes, are commonly reused or disposed of in a number of applications; these include use as a soil amendment or a subsurface fill. Recently questions were posed by the Florida regulatory community on whether lime WTR that contained a small percentage of other treatment additives could appropriately be characterized as lime WTR, in terms of total element content and leachability. A study was done using a broad range of leaching tests, including a framework of tests recently adopted by the United States-Environmental Protection Agency (EPA) and tests that were modified to account for scenario specific conditions, such as the presence of natural organic matter (NOM). The results of these additional leaching tests demonstrated that certain applications, including disposal in a water body with NOM or in placement anaerobic environment, did result in increased leaching of elements such as Fe, and that a site specific assessment should be conducted prior to using WTR in these types of applications. This study illustrates the importance of leaching test selection when attempting to provide an estimation of release in practice. Although leaching tests are just one component in a beneficial use assessment and other factors including aquifer and soil properties play a significant role in the outcome, leaching tests should be tailored to most appropriately represent the scenario or reuse application being evaluated

  9. Evaluation of the impact of lime softening waste disposal in natural environments

    Energy Technology Data Exchange (ETDEWEB)

    Blaisi, Nawaf I.; Roessler, Justin; Cheng, Weizhi [Department of Environmental Engineering Sciences, University of Florida, PO Box 116450, Gainesville, FL 32611-6450 (United States); Townsend, Timothy, E-mail: ttown@ufl.edu [Department of Environmental Engineering Sciences, University of Florida, PO Box 116450, Gainesville, FL 32611-6450 (United States); Al-Abed, Souhail R. [National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 (United States)

    2015-09-15

    Highlights: • Leaching tests conducted on WTR to assess potential for trace element release. • Aluminum leaching found to be elevated with respect to risk threshold. • Release in anaerobic conditions evaluated with column test run in nitrogen chamber. • Increased release of certain elements seen from residues under anaerobic conditions. • Different leaching tests produced results on two sides of regulatory threshold. - Abstract: Drinking water treatment residues (WTR), generated from the lime softening processes, are commonly reused or disposed of in a number of applications; these include use as a soil amendment or a subsurface fill. Recently questions were posed by the Florida regulatory community on whether lime WTR that contained a small percentage of other treatment additives could appropriately be characterized as lime WTR, in terms of total element content and leachability. A study was done using a broad range of leaching tests, including a framework of tests recently adopted by the United States-Environmental Protection Agency (EPA) and tests that were modified to account for scenario specific conditions, such as the presence of natural organic matter (NOM). The results of these additional leaching tests demonstrated that certain applications, including disposal in a water body with NOM or in placement anaerobic environment, did result in increased leaching of elements such as Fe, and that a site specific assessment should be conducted prior to using WTR in these types of applications. This study illustrates the importance of leaching test selection when attempting to provide an estimation of release in practice. Although leaching tests are just one component in a beneficial use assessment and other factors including aquifer and soil properties play a significant role in the outcome, leaching tests should be tailored to most appropriately represent the scenario or reuse application being evaluated.

  10. White emission from nano-structured top-emitting organic light-emitting diodes based on a blue emitting layer

    International Nuclear Information System (INIS)

    Hyun, Woo Jin; Park, Jung Jin; Park, O Ok; Im, Sang Hyuk; Chin, Byung Doo

    2013-01-01

    We demonstrated that white emission can be obtained from nano-structured top-emitting organic light-emitting diodes (TEOLEDs) based on a blue emitting layer (EML). The nano-structured TEOLEDs were fabricated on nano-patterned substrates, in which both optical micro-cavity and scattering effects occur simultaneously. Due to the combination of these two effects, the electroluminescence spectra of the nano-structured device with a blue EML exhibited not only blue but also yellow colours, which corresponded to the intrinsic emission of the EML and the resonant emission of the micro-cavity effect. Consequently, it was possible to produce white emission from nano-structured TEOLEDs without employing a multimode micro-cavity. The intrinsic emission wavelength can be varied by altering the dopant used for the EML. Furthermore, the emissive characteristics turned out to be strongly dependent on the nano-pattern sizes of the nano-structured devices. (paper)

  11. In situ manipulation and characterizations using nanomanipulators inside a field emission-scanning electron microscope

    International Nuclear Information System (INIS)

    Kim, Keun Soo; Lim, Seong Chu; Lee, Im Bok; An, Key Heyok; Bae, Dong Jae; Choi, Shinje; Yoo, Jae-Eun; Lee, Young Hee

    2003-01-01

    We have used two piezoelectric nanomanipulators to manage the multiwalled carbon nanotubes (MWCNTs) within the field emission-scanning electron microscope (FE-SEM). For an easy access of a tungsten tip to MWCNTs, we prepared the tungsten tip in sharp and long tip geometry using different electrochemical etching parameters. In addition, the sample stage was tilted by 45 deg. from the normal direction of the surface to allow a better incident angle to the approaching tungsten tip. For manipulations, a nanotube or the bundles were attached at the tungsten tip using an electron beam-induced deposition (EBID). Using two manipulators, we have then fabricated a CNT-based transistor, a cross-junction of MWCNTs, and a CNT-attached atomic force microscopy tip. After these fabrications, the field emission properties of the MWCNT and junction properties of the MWCNT and the tungsten tip have been investigated. We found that the EBID approach was very useful to weld the nanostructured materials on the tungsten tip by simply irradiating the electron beam, although this sometimes increased the contact resistance by depositing hydrocarbon materials

  12. Structure and yarn sensor for fabric

    Science.gov (United States)

    Mee, D.K.; Allgood, G.O.; Mooney, L.R.; Duncan, M.G.; Turner, J.C.; Treece, D.A.

    1998-10-20

    A structure and yarn sensor for fabric directly determines pick density in a fabric thereby allowing fabric length and velocity to be calculated from a count of the picks made by the sensor over known time intervals. The structure and yarn sensor is also capable of detecting full length woven defects and fabric. As a result, an inexpensive on-line pick (or course) density measurement can be performed which allows a loom or knitting machine to be adjusted by either manual or automatic means to maintain closer fiber density tolerances. Such a sensor apparatus dramatically reduces fabric production costs and significantly improves fabric consistency and quality for woven or knitted fabric. 13 figs.

  13. Effect of the polymer emission on the electroluminescence characteristics of n-ZnO nanorods/p-polymer hybrid light emitting diode

    Science.gov (United States)

    Zaman, S.; Zainelabdin, A.; Amin, G.; Nur, O.; Willander, M.

    2011-09-01

    Hybrid light emitting diodes (LEDs) based on zinc oxide (ZnO) nanorods and polymers (single and blended) were fabricated and characterized. The ZnO nanorods were grown by the chemical bath deposition method at 50°C. Three different LEDs, with blue emitting, orange-red emitting or their blended polymer together with ZnO nanorods, were fabricated and studied. The current-voltage characteristics show good diode behavior with an ideality factor in the range of 2.1 to 2.27 for all three devices. The electroluminescence spectrum (EL) of the blended device has an emission range from 450 nm to 750 nm, due to the intermixing of the blue emission generated by poly(9,9-dioctylfluorene) denoted as PFO with orange-red emission produced by poly(2-methoxy-5(20-ethyl-hexyloxy)-1,4-phenylenevinylene) 1,4-phenylenevinylene) symbolized as MEH PPV combined with the deep-band emission (DBE) of the ZnO nanorods, i.e. it covers the whole visible region and is manifested as white light. The CIE color coordinates showed bluish, orange-red and white emission from the PFO, MEH PPV and blended LEDs with ZnO nanorods, respectively. These results indicate that the choice of the polymer with proper concentration is critical to the emitted color in ZnO nanorods/p-organic polymer LEDs and careful design should be considered to obtain intrinsic white light sources.

  14. Lipídios estruturados obtidos a partir da mistura de gordura de frango, sua estearina e triacilgliceróis de cadeia média: II- pontos de amolecimento e fusão Structured lipids from chicken fat, its stearin, and medium chain triacyglycerol blends: II- softening and melting points

    Directory of Open Access Journals (Sweden)

    Ming Chih Chiu

    2008-01-01

    Full Text Available The aim of the present work is to investigate the effects of blending and chemical interesterification reactions on the softening and melting behavior of chicken fat, its stearin and medium chain triacylglycerols, and blends thereof in various ratios. Chemical interesterification is a promising alternative to the current processes of modifying the physical properties of fats. In the experimental design 7 samples corresponding to 7 different blend proportions were used. The results were represented in triangular diagrams. The addition of stearin influenced the softening and melting points. The mixture response surface methodology proved to be an extremely useful tool for the optimization of the fat mixtures.

  15. Fabrics in Function

    DEFF Research Database (Denmark)

    Bang, Anne Louise

    2007-01-01

    sensing of fabrics in function. It is proposed that tactile and visual sensing of fabrics is a way to investigate and express emotional utility values. The further purpose is to use experiments with repertory grid models as part of the mapping of the entire research project and also as a basis...

  16. Growth and characterization of GaN nanostructures under various ammoniating time with fabricated Schottky gas sensor based on Si substrate

    Science.gov (United States)

    Abdullah, Q. N.; Ahmed, A. R.; Ali, A. M.; Yam, F. K.; Hassan, Z.; Bououdina, M.; Almessiere, M. A.

    2018-05-01

    This paper presents the investigation of the influence of the ammoniating time of GaN nanowires (NWs) on the crystalline structure, surface morphology, and optical characteristics. Morphological analysis indicates the growth of good quality and high density of NWs with diameters around 50 nm and lengths up to tens of microns after ammoniating for 30 min. Structural analysis shows that GaN NWs have a typical hexagonal wurtzite crystal structure. Raman spectroscopy confirms the formation of GaN compound with the presence of compressive stress. Photoluminescence (PL) measurements revealed two band emissions, an UV and a broad visible emission. Hydrogen sensor was subsequently fabricated by depositing Pt Schottky contact onto GaN NWs film. The sensor response was measured at various H2 concentrations ranged from 200 up to 1200 ppm at room temperature. It was found that the response increases significantly for low H2 concentration (200-300 ppm) to reach about 50% then increases smoothly to reach 60% at 1200 ppm. The as-fabricated sensor possesses higher performances as compared to similar devices reported in the literature.

  17. Fabrication and Prototyping Lab

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The Fabrication and Prototyping Lab for composite structures provides a wide variety of fabrication capabilities critical to enabling hands-on research and...

  18. Sonochemical fabrication of 8-hydroxyquinoline aluminum (Alq3) nanoflowers with high electrogenerated chemiluminescence.

    Science.gov (United States)

    Mao, Chang-Jie; Wang, Dan-Chen; Pan, Hong-Cheng; Zhu, Jun-Jie

    2011-03-01

    Well-defined Alq(3) nanoflowers were fabricated via a facile and fast sonochemical route. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the structure and shape of the as-prepared product. The results showed that the resulting Alq(3) was composed of nanobelts with thickness about 50 nm, average widths of 200 nm, and length up to 10 μm. The Alq(3) nanoflowers exhibited good electrogenerated chemiluminescence behavior. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Fabrication and applications of copper sulfide (CuS) nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Shamraiz, Umair, E-mail: umairshamraiz@gmail.com; Hussain, Raja Azadar, E-mail: hussainazadar@gamil.com; Badshah, Amin, E-mail: aminbadshah@yahoo.com

    2016-06-15

    This review article presents different fabrication procedures (under the headlines of solvothermal routes, aerosol methods, solution methods and thermolysis), and applications (photocatalytic degradation, ablation of cancer cells, electrode material in lithium ion batteries and in gas sensing, organic solar cells, field emission properties, super capacitor applications, photoelectrochemical performance of QDSCs, photocatalytic reduction of organic pollutants, electrochemical bio sensing, enhanced PEC characteristics of pre-annealed CuS film electrodes) of copper sulfide (Covellite). - Highlights: • This review article presents the synthesis and applications of copper sulfide. • CuS has been used over the years for different applications in nanoscience. • Different synthetic protocols are followed for their preparation which help in the possible modifications in the morphology of CuS.

  20. A facile fabrication of multifunctional knit polyester fabric based on chitosan and polyaniline polymer nanocomposite

    Science.gov (United States)

    Tang, Xiaoning; Tian, Mingwei; Qu, Lijun; Zhu, Shifeng; Guo, Xiaoqing; Han, Guangting; Sun, Kaikai; Hu, Xili; Wang, Yujiao; Xu, Xiaoqi

    2014-10-01

    Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric.

  1. Near-infrared electroluminescence from double-emission-layers devices based on Ytterbium (III) complexes

    International Nuclear Information System (INIS)

    Li Zhefeng; Zhang Hongjie; Yu Jiangbo

    2012-01-01

    We investigated near-infrared electroluminescence properties of two lanthanide complexes Yb(PMBP) 3 Bath [PMBP = tris(1-phenyl-3-methyl-4-(4-tert-butylbenzacyl)-5-pyrazolone); Bath = bathophenanthroline] and Yb(PMIP) 3 TP 2 [PMIP = tris(1-phenyl-3-methyl-4-isobutyryl-5-pyrazolone); TP = triphenyl phosphine oxide] by fabricated the double-emission-layers devices. From the device characteristics, it is known that holes are easier to transport in Yb(PMIP) 3 TP 2 layer and electrons are easier to transport in Yb(PMBP) 3 Bath layer, at the same time, both of the two complexes can be acted as emission layers in the device. The recombination region of carriers has been confined in the interface of Yb(PMIP) 3 TP 2 /Yb(PMBP) 3 Bath, and pure Yb 3+ ion characteristic emission centered at 980 nm has been obtained. The device shows the maximum near-infrared irradiance as 14.7 mW/m 2 at the applied voltage of 17.8 V. - Highlights: ► Near-infrared electroluminescent devices with Yb(III) complexes as emission layers. ► Double-emission layer device structure introduced to balance carriers. ► Improved performance of double-emission layer device.

  2. Efficient polymer white-light-emitting diodes with a single-emission layer of fluorescent polymer blend

    International Nuclear Information System (INIS)

    Niu Qiaoli; Xu Yunhua; Jiang Jiaxing; Peng Junbiao; Cao Yong

    2007-01-01

    Efficient polymer white-light-emitting diodes (WPLEDs) have been fabricated with a single layer of fluorescent polymer blend. The device structure consists of ITO/PEDOT/PVK/emissive layer/Ba/Al. The emissive layer is a blend of poly(9,9-dioctylfluorene) (PFO), phenyl-substituted PPV derivative (P-PPV) and a copolymer of 9,9-dioctylfluorene and 4,7-di(4-hexylthien-2-yl)-2,1,3-benzothiadiazole (PFO-DHTBT), which, respectively, emits blue, green and red light. The emission of pure and efficient white light was implemented by tuning the blend weight ratio of PFO: P-PPV: PFO-DHTBT to 96:4:0.4. The maximum current efficiency and luminance are, respectively, 7.6 cd/A at 6.7 V and 11930 cd/m 2 at 11.2 V. The CIE coordinates of white-light emission were stable with the drive voltages

  3. White organic light-emitting diodes utilized by near UV-deep blue emitter and exciplex emission.

    Science.gov (United States)

    Park, Young Wook; Kim, Young Min; Choi, Jin Hwan; Park, Tae Hyun; Choi, Hyun Ju; Yu, Hong Jung; Cho, Min Ju; Choi, Dong Hoon; Kim, Sung Hyun; Ju, Byeong Kwon

    2011-02-01

    Numerous investigations have been made into the development of wide color gamut displays for deep-blue OLEDs, including the RGB sub pixels, and white OLEDs (WOLEDs). One of the well known deep-blue emissive dopants, tris(phenyl-methyl-benzimidazolyl)iridium(III) [Ir(pmb)3], successfully introduced its fascinating color coordinate of Commission Internationale de l'Eclairage (CIE) 1931 (0.17, 0.06), however there have been no reports utilizing its accomplishments as WOLEDs. In this report, using only one phosphorescent dopant, the near UV-deep blue emissive Ir(pmb)3, the WOLEDs having the CIE 1931 coordinate of (0.33, 0.38) at 100 cd/m2 with a color rendering index of 85 are demonstrated. The white emission of the fabricated OLEDs are oriented from the near UV-deep blue emission of Ir(pmb)3 and the successfully controlled exciplex emission, between the Ir(pmb)3-host, and the Ir(pmb)3-interfaced material.

  4. Mass fabrication of homogeneously Yb-doped silica nanoparticles and their spectroscopic properties

    International Nuclear Information System (INIS)

    Xiong Liangming; Sekiya, Edson H; Saito, Kazuya

    2009-01-01

    A large number of homogeneously Yb-doped silica nanoparticles were continually fabricated in a vapor synthesis route, in which the Yb doping level can be well controlled by varying either the heating temperature or the carrier gas flow rate of the Yb precursor. The sizes, shapes, and morphologies of the nanoparticles were examined, and no crystallites and no Yb 2 O 3 clusters were observed in the nanoparticles. These nanoparticles exhibit a clear Yb 3+ -derived absorption at around 973-975 nm and a dependence of the emission intensity and decay time on the doping level, much different from that of sintered pellets.

  5. Design of crude oil storage tank for acoustic emission testing

    International Nuclear Information System (INIS)

    Shukri Mohd; Masrul Nizam Salleh; Abd Razak Hamzah; Norasiah Abd Kasim

    2005-01-01

    The integrity of crude oil storage tank needs to be well managed because they can contain a large inventory of hazardous material and because of the high cost such as cleaning and waste disposal prior to disposal and maintenance. Costs involved in cleaning and inspection can be up to several hundreds thousand Malaysian Ranting. If the floor then proves to be in good condition, these costs have been wasted. Acoustic Emission (AE) is proposed to be use for monitoring the floor of the storage tank on line without doing cleaning and waste disposal. A storage tank will be fabricated for storing the crude oil and then the corrosion process will be monitor using AE method. This paper will discuss the background, material and is technical specification, design and also the difficulties faced during design and fabrication process. (Author)

  6. MOX fuel fabrication at AECL

    International Nuclear Information System (INIS)

    Dimayuga, F.C.; Jeffs, A.T.

    1995-01-01

    Atomic Energy of Canada Limited's mixed-oxide (MOX) fuel fabrication activities are conducted in the Recycle Fuel Fabrication Laboratories (RFFL) at the Chalk River Laboratories. The RFFL facility is designed to produce experimental quantities of CANDU MOX fuel for reactor physics tests or demonstration irradiations. From 1979 to 1987, several MOX fuel fabrication campaigns were run in the RFFL, producing various quantities of fuel with different compositions. About 150 bundles, containing over three tonnes of MOX, were fabricated in the RFFL before operations in the facility were suspended. In late 1987, the RFFL was placed in a state of active standby, a condition where no fuel fabrication activities are conducted, but the monitoring and ventilation systems in the facility are maintained. Currently, a project to rehabilitate the RFFL and resume MOX fuel fabrication is nearing completion. This project is funded by the CANDU Owners' Group (COG). The initial fabrication campaign will consist of the production of thirty-eight 37-element (U,Pu)O 2 bundles containing 0.2 wt% Pu in Heavy Element (H.E.) destined for physics tests in the zero-power ZED-2 reactor. An overview of the Rehabilitation Project will be given. (author)

  7. 14 CFR 29.605 - Fabrication methods.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fabrication methods. 29.605 Section 29.605... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process...

  8. Unified description of the softening behavior of beta-metastable and alpha+beta titanium alloys during hot deformation

    International Nuclear Information System (INIS)

    Poletti, Cecilia; Germain, Lionel; Warchomicka, Fernando; Dikovits, Martina; Mitsche, Stefan

    2016-01-01

    In this work, we propose a unified description of the softening behavior of a β metastable alloy and Ti6Al4V alloy. In the first part we provide sound evidence that the hot deformation of Ti6Al4V of the beta phase above and below the beta transus temperature takes place solely by dynamic recovery at moderate strains, similarly to the behavior of the Ti5Al5Mo5V3Cr1Zr near-beta alloy. This study was possible due to the combination of the fast cooling rates achieved after controlled hot deformation and the reconstruction of the parent beta phase from electron backscattered diffraction measurements of the frozen alpha phase by using an innovative developed algorithm. The dynamic recovery as a common dynamic restoration behavior for Ti6Al4V and Ti5Al5Mo5V3Cr1Zr is described mathematically with a Derby type relationship of the subgrain size and the stress of the beta phase. A rule of mixture allows the determination of the load partition between the two allotropic phases.

  9. 14 CFR 27.605 - Fabrication methods.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fabrication methods. 27.605 Section 27.605... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process (such as...

  10. 14 CFR 25.605 - Fabrication methods.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fabrication methods. 25.605 Section 25.605... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction General § 25.605 Fabrication methods. (a) The methods of fabrication used must produce a consistently sound structure. If a fabrication process...

  11. Nanopillar arrays on semiconductor membranes as electron emission amplifiers.

    Science.gov (United States)

    Qin, Hua; Kim, Hyun-Seok; Blick, Robert H

    2008-03-05

    A new transmission-type electron multiplier was fabricated from silicon-on-insulator (SOI) material by integrating an array of one-dimensional (1D) silicon nanopillars onto a two-dimensional (2D) silicon membrane. Primary electrons are injected into the nanopillar-membrane (NPM) system from the flat surface of the membrane, while electron emission from the nanopillars is probed by an anode. The secondary electron yield (SEY) from the nanopillars in the current device is found to be about 1.8 times that of the plain silicon membrane. This gain in electron number is slightly enhanced by the electric field applied from the anode. Further optimization of the dimensions of the NPM and an application of field emission promise an even higher gain for detector applications and allow for probing of electronic/mechanical excitations in an NPM system stimulated by incident particles or radiation.

  12. Development of technology for fabrication of lithium CPS on basis of CNT-reinforced carboxylic fabric

    Energy Technology Data Exchange (ETDEWEB)

    Tazhibayeva, Irina, E-mail: tazhibayeva@ntsc.kz [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Baklanov, Viktor; Ponkratov, Yuriy [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Abdullin, Khabibulla [Institute of Experimental and Theoretical Physics of Kazakh National University, Almaty (Kazakhstan); Kulsartov, Timur; Gordienko, Yuriy; Zaurbekova, Zhanna [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Lyublinski, Igor [JSC «Red Star», Moscow (Russian Federation); NRNU «MEPhI», Moscow (Russian Federation); Vertkov, Alexey [JSC «Red Star», Moscow (Russian Federation); Skakov, Mazhyn [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan)

    2017-04-15

    Highlights: • Preliminary study of carboxylic fabric wettability with liquid lithium is presented. • Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673,773 and 873 К in vacuum during long time. • A scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. • The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed. - Abstract: The paper describes the analysis of liquid lithium interaction with materials based on carbon, the manufacture technology of capillary-porous system (CPS) matrix on basis of CNT-reinforced carboxylic fabric. Preliminary study of carboxylic fabric wettability with liquid lithium is presented. The development of technology includes: microstructural studies of carboxylic fabric before its CNT-reinforcing; validation of CNT-reinforcing technology; mode validation of CVD-method for CNT synthesize; study of synthesized carbon structures. Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673, 773 and 873 К in vacuum during long time. The scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed.

  13. Development of technology for fabrication of lithium CPS on basis of CNT-reinforced carboxylic fabric

    International Nuclear Information System (INIS)

    Tazhibayeva, Irina; Baklanov, Viktor; Ponkratov, Yuriy; Abdullin, Khabibulla; Kulsartov, Timur; Gordienko, Yuriy; Zaurbekova, Zhanna; Lyublinski, Igor; Vertkov, Alexey; Skakov, Mazhyn

    2017-01-01

    Highlights: • Preliminary study of carboxylic fabric wettability with liquid lithium is presented. • Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673,773 and 873 К in vacuum during long time. • A scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. • The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed. - Abstract: The paper describes the analysis of liquid lithium interaction with materials based on carbon, the manufacture technology of capillary-porous system (CPS) matrix on basis of CNT-reinforced carboxylic fabric. Preliminary study of carboxylic fabric wettability with liquid lithium is presented. The development of technology includes: microstructural studies of carboxylic fabric before its CNT-reinforcing; validation of CNT-reinforcing technology; mode validation of CVD-method for CNT synthesize; study of synthesized carbon structures. Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673, 773 and 873 К in vacuum during long time. The scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed.

  14. Upconversion emission and cathodoluminescence of Er{sup 3+}-doped NaYbF{sub 4} nanoparticles for low-temperature thermometry and field emission displays

    Energy Technology Data Exchange (ETDEWEB)

    Du, Peng; Yu, Jae Su [Kyung Hee University, Department of Electronics and Radio Engineering, Yongin (Korea, Republic of); Luo, Laihui [Ningbo University, Department of Microelectronic Science and Engineering, Ningbo (China)

    2017-03-15

    The Er{sup 3+}-doped NaYbF{sub 4} nanoparticles were fabricated by a hydrothermal method. The green and red emissions located at around 525, 542 and 657 nm corresponding to the {sup 2}H{sub 11/2} → {sup 4}I{sub 15/2}, {sup 4}S{sub 3/2} → {sup 4}I{sub 15/2} and {sup 4}F{sub 9/2} → {sup 4}I{sub 15/2} transitions of Er{sup 3+} ions, respectively, were observed when pumped at 980 nm light. Furthermore, with the help of the fluorescence intensity ratio technique, the thermometric properties of as-prepared products from the thermally coupled {sup 2}H{sub 11/2} and {sup 4}S{sub 3/2} levels of Er{sup 3+} ions were studied by analyzing temperature-dependent upconversion (UC) emission spectra. The maximum sensitivity for the Er{sup 3+}-doped NaYbF{sub 4} nanoparticles was found to be around 0.0043 K{sup -} {sup 1} with a temperature range of 93-293 K. In addition, the cathodoluminescence (CL) spectrum of the synthesized nanoparticles was nearly the same as the UC emission spectrum and the CL emission intensity did not exhibit saturation with the increase of accelerating voltage and filament current. (orig.)

  15. Structural origination of charge transfer complex nanostructures: Excellent candidate for field emission

    International Nuclear Information System (INIS)

    Pal, Shreyasi; Chattopadhyay, Kalyan Kumar

    2016-01-01

    Worldwide strategies for amalgamating rationally controlled one-dimensional organic nanowires are of fundamental importance for their applications in flexible, cheaper and lighter electronics. In this work we have fabricated large-area, ordered CuTCNQ (copper-7,7,8,8-tetracyanoquinodimethane) nano architecture arrays over flexible conducting substrate and discussed the rational growth and integration of nanostructures. Here we adopted the organic solid phase reaction (VLS) technique for the growth of organic hierarchies and investigated how field emission properties changes by tuning the nanostructures morphology i.e., by varying length, diameter, alignment and orientation over flexible substrate. The CuTCNQ nanowires with optimized geometry exhibit excellent high field emission performance with low turn-on and threshold field values. The result strongly indicate that CuTCNQ nanowires on flexible carbon cloth substrate are promising candidates for constructing cold cathode based emission display devices, vacuum nanoelectronics, and etc.

  16. Structural origination of charge transfer complex nanostructures: Excellent candidate for field emission

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Shreyasi; Chattopadhyay, Kalyan Kumar [Thin Films and Nanoscience Laboratory, Department of Physics, Jadavpur University, Kolkata 700032 (India)

    2016-05-23

    Worldwide strategies for amalgamating rationally controlled one-dimensional organic nanowires are of fundamental importance for their applications in flexible, cheaper and lighter electronics. In this work we have fabricated large-area, ordered CuTCNQ (copper-7,7,8,8-tetracyanoquinodimethane) nano architecture arrays over flexible conducting substrate and discussed the rational growth and integration of nanostructures. Here we adopted the organic solid phase reaction (VLS) technique for the growth of organic hierarchies and investigated how field emission properties changes by tuning the nanostructures morphology i.e., by varying length, diameter, alignment and orientation over flexible substrate. The CuTCNQ nanowires with optimized geometry exhibit excellent high field emission performance with low turn-on and threshold field values. The result strongly indicate that CuTCNQ nanowires on flexible carbon cloth substrate are promising candidates for constructing cold cathode based emission display devices, vacuum nanoelectronics, and etc.

  17. Advanced gas-emission anode design for microfluidic fuel cell eliminating bubble accumulation

    International Nuclear Information System (INIS)

    Zhang, Hao; Xuan, Jin; Wang, Huizhi; Leung, Dennis Y C; Xu, Hong; Zhang, Li

    2017-01-01

    A microfluidic fuel cell is a low cost, easily fabricated energy device and is considered a promising energy supplier for portable electronics. However, the currently developed microfluidic fuel cells that are fed with hydrocarbon fuels are confronted with a bubble problem especially when operating at high current density conditions. In this work, a gas-emission anode is presented to eliminate the gas accumulation at the anode. This gas-emission anode is verified as a valid design for discharging gaseous products, which is especially beneficial for stable operation of microfluidic fuel cells. The electrochemical performance of a counter-flow microfluidic fuel cell equipped with a gas-emission anode was measured. The results indicate that the specific design of the gas-emission anode is essential for reducing the oxygen reduction reaction parasitic effect at the anode. Fuel utilization of 76.4% was achieved at a flow rate of 0.35 µ l min −1 . Current–voltage curves of single electrodes were measured and the parasitic effect at the anode was identified as the main performance limiting factor in the presented anode design. (paper)

  18. 14 CFR 23.605 - Fabrication methods.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fabrication methods. 23.605 Section 23.605... Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a... fabrication method must be substantiated by a test program. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964; 30 FR...

  19. Fabrication of novel SnO2 nanofibers bundle and their optical properties

    International Nuclear Information System (INIS)

    Butt, Faheem K.; Cao, Chuanbao; Khan, Waheed S.; Ali, Zulfiqar; Mahmood, Tariq; Ahmed, R.; Hussain, Sajad; Nabi, Ghulam

    2012-01-01

    Here we report on the synthesis of novel SnO 2 nanofibers bundle (NFB) by using ball milled Fe powders via chemical vapor deposition (CVD). The reaction was carried out in a horizontal tube furnace (HTF) at 1100 °C under Ar flow. The as prepared product was characterized by X-ray diffraction (XRD), scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, high resolution transmission electron microscopy and selected area electron diffraction (SAED). The microscopy analysis reveals the existence of tubular structure that might be formed by the accumulation of nanofibers. The Raman spectrum reveals that the product is rutile SnO 2 with additional peaks ascribed to defects or oxygen vacancies. Room temperature Photoluminescence (PL) spectrum exhibits three emission bands at 369, 450 and 466.6 nm. Using optical absorbance data, a direct optical bandgap of 3.68 eV was calculated. -- Graphical abstract: Novel SnO 2 nanofibers bundle (NFB) fabricated via CVD method. Field emission scanning electron microscopy image of novel SnO 2 NFB and their room temperature PL emission. Highlights: ► Synthesis of novel SnO 2 nanofibers bundle at 1100 °C under partial flow of Ar gas. ► A VLS mechanism is proposed for the formation of SnO 2 nanofibers. ► The PL spectrum exhibits three emission bands at 369, 450 and 466.6 nm. ► A direct optical bandgap of 3.68 eV was calculated.

  20. Single step fabrication method of fullerene/TiO2 composite photocatalyst for hydrogen production

    International Nuclear Information System (INIS)

    Kum, Jong Min; Cho, Sung Oh

    2011-01-01

    Hydrogen is one of the most promising alternative energy sources. Fossil fuel, which is the most widely used energy source, has two defects. One is CO 2 emission causing global warming. The other is exhaustion. On the other hand, hydrogen emits no CO 2 and can be produced by splitting water which is renewable and easily obtainable source. However, about 95% of hydrogen is derived from fossil fuel. It limits the merits of hydrogen. Hydrogen from fossil fuel is not a renewable energy anymore. To maximize the merits of hydrogen, renewability and no CO 2 emission, unconventional hydrogen production methods without using fossil fuel are required. Photocatalytic water-splitting is one of the unconventional hydrogen production methods. Photocatalytic water-splitting that uses hole/electron pairs of semiconductor is expectable way to produce clean and renewable hydrogen from solar energy. TiO 2 is the semiconductor material which has been most widely used as photocatalyst. TiO 2 shows high photocatalytic reactivity and stability in water. However, its wide band gap only absorbs UV light which is only 5% of sun light. To enhance the visible light responsibility, composition with fullerene based materials has been investigated. 1-2 Methano-fullerene carboxylic acid (FCA) is one of the fullerene based materials. We tried to fabricate FCA/TiO 2 composite using UV assisted single step method. The method not only simplified the fabrication procedures, but enhanced hydrogen production rate