WorldWideScience

Sample records for fabric reinforced cement

  1. Influence of Fabric Geometrical Structure on Bonding of the Fabric Reinforced Cement Composites

    Institute of Scientific and Technical Information of China (English)

    YU Qiao-zhen

    2007-01-01

    Influence of fabric geometrical parameters,including the number of filling yams per 10 cm, yarntwist and fiber type, on bonding of the fabric reinforcedcement composites is studied by fabric pull-out test andSEM microstructure analysis. The results show that thebonding strength increase with the increase of the numberof filling yams per 10 cm in the range of this study. Butthe influence of fabric count on the interfacial bonding isdual and there is a critical value. The twist of yarns hasa little effect on the bending strength and interfacialbonding behaves of nylon fabric reinforced cementcomposites. There is an optimum twist range. Withinthis range, the bonding strength increase slowly with theincrease of yarn twist. Beyond this range, it is versus.The bonding strength is strongly affected by the fabriccharacter. The bonding between the nylon fiber fabricand cement is good; that of between glass fiber fabric andcement is moderate and that of between the carbon fiberfabric and cement is poor.

  2. Tensile and Flexural Properties of Cement Composites Reinforced with Flax Nonwoven Fabrics

    Directory of Open Access Journals (Sweden)

    Josep Claramunt

    2017-02-01

    Full Text Available The aim of this study is to develop a process to produce high-performance cement-based composites reinforced with flax nonwoven fabrics, analyzing the influence of the fabric structure—thickness and entanglement—on mechanical behavior under flexural and tensile loadings. For this purpose, composite with flax nonwoven fabrics with different thicknesses were first prepared and their cement infiltration was evaluated with backscattered electron (BSE images. The nonwoven fabrics with the optimized thickness were then subjected to a water treatment to improve their stability to humid environments and the fiber-matrix adhesion. For a fixed thickness, the effect of the nonwoven entanglement on the mechanical behavior was evaluated under flexural and direct tension tests. The obtained results indicate that the flax nonwoven fabric reinforcement leads to cement composites with substantial enhancement of ductility.

  3. Tensile and Flexural Properties of Cement Composites Reinforced with Flax Nonwoven Fabrics

    Science.gov (United States)

    Claramunt, Josep; Ventura, Heura; Fernández-Carrasco, Lucía J; Ardanuy, Mònica

    2017-01-01

    The aim of this study is to develop a process to produce high-performance cement-based composites reinforced with flax nonwoven fabrics, analyzing the influence of the fabric structure—thickness and entanglement—on mechanical behavior under flexural and tensile loadings. For this purpose, composite with flax nonwoven fabrics with different thicknesses were first prepared and their cement infiltration was evaluated with backscattered electron (BSE) images. The nonwoven fabrics with the optimized thickness were then subjected to a water treatment to improve their stability to humid environments and the fiber-matrix adhesion. For a fixed thickness, the effect of the nonwoven entanglement on the mechanical behavior was evaluated under flexural and direct tension tests. The obtained results indicate that the flax nonwoven fabric reinforcement leads to cement composites with substantial enhancement of ductility. PMID:28772573

  4. Seating load parameters impact on dental ceramic reinforcement conferred by cementation with resin-cements.

    LENUS (Irish Health Repository)

    Addison, Owen

    2010-09-01

    Cementation of all-ceramic restorations with resin-cements has been demonstrated to reduce the incidence of fracture in service. The aim was to investigate the influence of loading force and loading duration applied during cementation on the reinforcement conferred by a resin-cement on a leucite reinforced glass-ceramic.

  5. Serviceability and Reinforcement of Low Content Whisker in Portland Cement

    Institute of Scientific and Technical Information of China (English)

    CAO Mingli; WEI Jianqiang; WANG Lijiu

    2011-01-01

    In order to explore the serviceability and reinforcement of CaCO3 whisker in portland cement matrix,the durability of CaCO3 whisker and effect of low whisker content(0%-4.0%)on the working performance and mechanical properties of portland cement were investigated.The experimental results show that CaCO3 whiskers have a good stability and serviceability in cement,and should not significantly alter the rheological properties of the cement paste.The flexural and compressive strength of portland cement reinforced by CaCO3 whiskers was increased by 33.3% and 12.83%,respectively.

  6. Dynamic Properties of Fiber Reinforced Cement Mortar

    Institute of Scientific and Technical Information of China (English)

    唐志平; 徐松林; 胡晓军; 廖香丽; 蔡建

    2004-01-01

    Based on the shear wave tracing(SWT) technique proposed by Tang Z P, particle velocity gauge and the dual internal measurement for pressure and shear waves (IMPS) system are applied to investigate the responses of fiber reinforced cement subjected to impact loading. Series of experiments are conducted. The results show that there exist four critical points, A, B, C, D, in p-V Hugoniot curves. They correspond to the Hugoniot elastic limit (HEL) of the material, the critical point for shear strength limit and transition from damage state to failure state, void collapse, and solid compression, respectively. The critical point B is difficult to be aware of and never reported. However, it can be clearly disclosed with SWT method. Based on the analyses of shear strength, it can be concluded that the transversal wave, especially the unloading transversal wave, is especially important for the dynamic damage investigation of brittle materials.

  7. Modeling of properties of fiber reinforced cement composites

    Directory of Open Access Journals (Sweden)

    Jevtić Dragica

    2008-01-01

    Full Text Available This paper presents the results of authors' laboratory testing of the influence of steel fibers as fiber reinforcement on the change of properties of cement composite mortar and concrete type materials. Mixtures adopted - compositions of mortars had identical amounts of components: cement, sand and silica fume. The second type of mortar contained 60 kg/m3 of fiber reinforcement, as well as the addition of the latest generation of superplasticizer. Physical and mechanical properties of fiber reinforced mortars and etalon mixtures (density, flexural strength, compressive strength were compared. Tests on concrete type cement composites included: density, mechanical strengths and the deformation properties. The tests showed an improvement in the properties of fiber reinforced composites.

  8. High Performance Fiber Reinforced Cement Composites 6 HPFRCC 6

    CERN Document Server

    Reinhardt, Hans; Naaman, A

    2012-01-01

    High Performance Fiber Reinforced Cement Composites (HPFRCC) represent a class of cement composites whose stress-strain response in tension undergoes strain hardening behaviour accompanied by multiple cracking, leading to a high strain prior to failure. The primary objective of this International Workshop was to provide a compendium of up-to-date information on the most recent developments and research advances in the field of High Performance Fiber Reinforced Cement Composites. Approximately 65 contributions from leading world experts are assembled in these proceedings and provide an authoritative perspective on the subject. Special topics include fresh and hardening state properties; self-compacting mixtures; mechanical behavior under compressive, tensile, and shear loading; structural applications; impact, earthquake and fire resistance; durability issues; ultra-high performance fiber reinforced concrete; and textile reinforced concrete. Target readers: graduate students, researchers, fiber producers, desi...

  9. Isotropic Compression Behaviour of Fibre Reinforced Cemented Sand

    Directory of Open Access Journals (Sweden)

    Salahuddin

    2013-07-01

    Full Text Available Fibre-reinforced cemented sands have many applications in improving the response of soils. In this paper, an experimental investigation for the analysis of fiber-reinforced cemented sand in the framework of isotropic compression is presented. The experimental investigations were carried out using a high pressure triaxial apparatus having the capacity of 64 MPa of confining pressure. Tests have been conducted on Portaway sand specimens reinforced with randomly oriented discrete polypropylene fibers with different percentages of fiber and cement contents. Results are presented in the form of e-logp` curves as well as SEM (Scanning Electron Microscopy micrographs. The effects of the addition of fibre in sand and cemented sand for different initial void ratios were investigated. The results demonstrate that the influence of fibre is not significant in both cemented and uncemented sand during the isotropic compression stage. Moreover, from the SEM micrographs it could be seen that there is breakage of sand particles and cement bonds. The fiber threads were seen pinched and found rarely broken in the specimen exhumed after isotropic compression.

  10. Apatite bone cement reinforced with calcium silicate fibers.

    Science.gov (United States)

    Motisuke, Mariana; Santos, Verônica R; Bazanini, Naiana C; Bertran, Celso A

    2014-10-01

    Several research efforts have been made in the attempt to reinforce calcium phosphate cements (CPCs) with polymeric and carbon fibers. Due to their low compatibility with the cement matrix, results were not satisfactory. In this context, calcium silicate fibers (CaSiO3) may be an alternative material to overcome the main drawback of reinforced CPCs since, despite of their good mechanical properties, they may interact chemically with the CPC matrix. In this work CaSiO3 fibers, with aspect ratio of 9.6, were synthesized by a reactive molten salt synthesis and used as reinforcement in apatite cement. 5 wt.% of reinforcement addition has increased the compressive strength of the CPC by 250% (from 14.5 to 50.4 MPa) without preventing the cement to set. Ca and Si release in samples containing fibers could be explained by CaSiO3 partial hydrolysis which leads to a quick increase in Ca concentration and in silica gel precipitation. The latter may be responsible for apatite precipitation in needle like form during cement setting reaction. The material developed presents potential properties to be employed in bone repair treatment.

  11. Stimuli-responsive cement-reinforced rubber.

    Science.gov (United States)

    Musso, Simone; Robisson, Agathe; Maheshwar, Sudeep; Ulm, Franz-Josef

    2014-05-14

    In this work, we report the successful development of a cement-rubber reactive composite with reversible mechanical properties. Initially, the composite behaves like rubber containing inert filler, but when exposed to water, it increases in volume and reaches a stiffness that is intermediate between that of hydrogenated nitrile butadiene rubber (HNBR) and hydrated cement, while maintaining a relatively large ductility characteristic of rubber. After drying, the modulus increases even further up to 400 MPa. Wet/drying cycles prove that the elastic modulus can reversibly change between 150 and 400 MPa. Utilizing attenuated total reflection Fourier transform infrared spectroscopy), we demonstrate that the high pH produced by the hydration of cement triggers the hydrolysis of the rubber nitrile groups into carboxylate anions. Thus, the salt bridges, generated between the carboxylate anions of the elastomer and the cations of the filler, are responsible for the reversible variations in volume and elastic modulus of the composite as a consequence of environmental moisture exposure. These results reveal that cement nanoparticles can successfully be used to accomplish a twofold task: (a) achieve an original postpolymerization modification that allows one to work with carboxylate HNBR (HXNBR) not obtained by direct copolymerization of carboxylate monomers with butadiene, and (b) synthesize a stimuli-responsive polymeric composite. This new type of material, having an ideal behavior for sealing application, could be used as an alternative to cement for oil field zonal isolation applications.

  12. Reinforcement of cement-based matrices with graphite nanomaterials

    Science.gov (United States)

    Sadiq, Muhammad Maqbool

    Cement-based materials offer a desirable balance of compressive strength, moisture resistance, durability, economy and energy-efficiency; their tensile strength, fracture energy and durability in aggressive environments, however, could benefit from further improvements. An option for realizing some of these improvements involves introduction of discrete fibers into concrete. When compared with today's micro-scale (steel, polypropylene, glass, etc.) fibers, graphite nanomaterials (carbon nanotube, nanofiber and graphite nanoplatelet) offer superior geometric, mechanical and physical characteristics. Graphite nanomaterials would realize their reinforcement potential as far as they are thoroughly dispersed within cement-based matrices, and effectively bond to cement hydrates. The research reported herein developed non-covalent and covalent surface modification techniques to improve the dispersion and interfacial interactions of graphite nanomaterials in cement-based matrices with a dense and well graded micro-structure. The most successful approach involved polymer wrapping of nanomaterials for increasing the density of hydrophilic groups on the nanomaterial surface without causing any damage to the their structure. The nanomaterials were characterized using various spectrometry techniques, and SEM (Scanning Electron Microscopy). The graphite nanomaterials were dispersed via selected sonication procedures in the mixing water of the cement-based matrix; conventional mixing and sample preparation techniques were then employed to prepare the cement-based nanocomposite samples, which were subjected to steam curing. Comprehensive engineering and durability characteristics of cement-based nanocomposites were determined and their chemical composition, microstructure and failure mechanisms were also assessed through various spectrometry, thermogravimetry, electron microscopy and elemental analyses. Both functionalized and non-functionalized nanomaterials as well as different

  13. Seebeck effect in carbon fiber-reinforced cement

    Energy Technology Data Exchange (ETDEWEB)

    Wen, S.; Chung, D.D.L.

    1999-12-01

    The Seebeck effect in carbon fiber-reinforced cement paste was found to involve electrons from the cement matrix and holes from the biers. The two contributions were equal at the percolation threshold, with a fiber content between 0.5 and 1.0% by mass of cement. The hole contribution increased monotonically with increasing fiber content below and above the percolation threshold. The fiber addition increased the linearity and reversibility of the Seebeck effect. Silica fume and latex as admixtures had minor influence on the Seebeck effect. The Seebeck effect in concrete is of interest because it gives the concrete the ability to sense its own temperature. No attached or embedded sensor is needed since the concrete itself is the sensor. This means low cost, high durability, large sensing volume, and absence of mechanical property degradation due to embedded sensors. As the temperature affects the performance and reliability of concrete, its detection is valuable.

  14. Smart Behavior of Carbon Fiber Reinforced Cement-based Composite

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The electrical characteristics of cement-based material can be remarkably improved by the addition of short carbon fibers.Carbon fiber reinforced cement composite (CFRC) is an intrinsically smart material that can sense not only the stress andstrain, but also the temperature. In this paper, variations of electrical resistivity with external applied load, and relationof thermoelectric force and temperature were investigated. Test results indicated that the electrical signal is related to theincrease in the material volume resistivity during crack generation or propagation and the decrease in the resistivity duringcrack closure. Moreover, it was found that the fiber addition increased the linearity and reversibility of the Seebeck effect inthe cement-based materials. The change of electrical characteristics reflects large amount of information of inner damage andtemperature differential of composite, which can be used for stress-strain or thermal self-monitoring by embedding it in theconcrete structures.

  15. Corrosion inhibitor mechanisms on reinforcing steel in Portland cement pastes

    Science.gov (United States)

    Martin, Farrel James

    2001-07-01

    The mechanisms of corrosion inhibitor interaction with reinforcing steel are investigated in the present work, with particular emphasis on effects associated with corrosion inhibitors admixed into Portland cement paste. The principal objective in reinforcing steel corrosion inhibition for Portland cement concrete is observed to be preservation of the naturally passive steel surface condition established by the alkaline environment. Introduction of chloride ions to the steel surface accelerates damage to the passive film. Excessive damage to the passive film leads to loss of passivity and a destabilization of conditions that facilitate repair of the passive film. Passive film preservation in presence of chloride ions is achieved either through stabilization of the passive film or by modification of the chemical environment near the steel surface. Availability of inhibitors to the steel surface and their tendency to stabilize passive film defects are observed to be of critical importance. Availability of admixed corrosion inhibitors to the passive film is affected by binding of inhibitors during cement paste hydration. It is determined that pore solution concentrations of inorganic admixed inhibitors tend to be lower than the admixed concentration, while pore solution concentrations of organic admixed inhibitors tend to be higher than the admixed concentration. A fundamental difference of inhibitor function is observed between film-forming and defect stabilizing corrosion inhibitors. Experiments are conducted using coupons of reinforcing steel that are exposed to environments simulating chloride-contaminated Portland cement concrete. A study of the steel/cement paste interface is also performed, and compounds forming at this interface are identified using X-Ray diffraction.

  16. Durability of Cement Composites Reinforced with Sisal Fiber

    Science.gov (United States)

    Wei, Jianqiang

    This dissertation focuses mainly on investigating the aging mechanisms and degradation kinetics of sisal fiber, as well as the approaches to mitigate its degradation in the matrix of cement composites. In contrast to previous works reported in the literature, a novel approach is proposed in this study to directly determine the fiber's degradation rate by separately studying the composition changes, mechanical and physical properties of the embedded sisal fibers. Cement hydration is presented to be a crucial factor in understanding fiber degradation behavior. The degradation mechanisms of natural fiber consist of mineralization of cell walls, alkali hydrolysis of lignin and hemicellulose, as well as the cellulose decomposition which includes stripping of cellulose microfibrils and alkaline hydrolysis of amorphous regions in cellulose chains. Two mineralization mechanisms, CH-mineralization and self-mineralization, are proposed. The degradation kinetics of sisal fiber in the cement matrix are also analyzed and a model to predict the degradation rate of cellulose for natural fiber embedded in cement is outlined. The results indicate that the time needed to completely degrade the cellulose in the matrix with cement replacement by 30wt.% metakaolin is 13 times longer than that in pure cement. A novel and scientific method is presented to determine accelerated aging conditions, and to evaluating sisal fiber's degradation rate and durability of natural fiber-reinforced cement composites. Among the static aggressive environments, the most effective approach for accelerating the degradation of natural fiber in cement composites is to soak the samples or change the humidity at 70 °C and higher temperature. However, the dynamic wetting and drying cycling treatment has a more accelerating effect on the alkali hydrolysis of fiber's amorphous components evidenced by the highest crystallinity indices, minimum content of holocellulose, and lowest tensile strength. Based on the

  17. Bond behaviour of GFRP reinforced geopolymer cement concrete

    Directory of Open Access Journals (Sweden)

    Hailu Tekle Biruk

    2017-01-01

    Full Text Available Bond plays a key role in the performance of reinforced concrete structures. Glass fibre reinforced polymer (GFRP reinforcing bar and Geopolymer cement (GPC concrete are promising alternative construction materials for steel bars and Ordinary Portland Cement (OPC concrete respectively. In this study, the bond behaviour between these two materials is investigated by using beam-end specimen tests. The bond behaviour of 15.9 mm diameter sand-coated GFRP bar was investigated. An embedment length of six and nine times the bar diameter were used. The free end and the loaded end bond-slip-relationships, the bond failure mode and the average bond stress were used to analyse each of the specimens. Additionally, the distribution of tensile and bond stress along the embedment length was investigated by installing strain gauges along the embedment length in some of the specimens. Test results indicate that a significant difference exists between the free end and loaded end bond-slip curves, which is due to the lower elastic modulus of the GFRP bars. Furthermore, it was found that the tensile and bond stress distribution along the embedment length is nonlinear and the nonlinearity changes with the load.

  18. Performance and Durability Evaluation of Bamboo Reinforced Cement Concrete Beams

    Directory of Open Access Journals (Sweden)

    Ankit Singh Mehra

    2016-04-01

    Full Text Available A big part of population in India is still homeless due to raising unaffordability of housing structures. People sleeping on roadsides and living in slums is a common sight in Indian cities. To overcome this problem India today needs millions of houses for their growing population, making concrete as the most widely to be used material in the country. Concrete has found to have excellent compressive strength but poor in tensile strength, to take care of the tensile stresses steel is commonly used as reinforcing material in concrete. Production of steel is a very costly business and its use in concrete as reinforcing material increases the cost of construction by many folds. Also production of steel emits a large amount of green house gases causing considerable deterioration of the environment. The above mentioned socio-economic and environmental factors creates a necessity for finding an appropriate environment friendly and cheap material that can successfully substitute steel as reinforcement in concrete elements of a low cost dwelling for the poor and homeless people of the country. It is here that engineered bamboo can be of great value to Civil Engineers owning to its several net worthy features. Production of every tone of bamboo consumes about a tone of atmospheric CO2 in addition to releasing fresh O2. From structural point of view bamboo has been used as a structural material from the earlier times as it possesses excellent flexure and tensile strength as well as high strength to weight ratio. All this necessitates examining bamboo-reinforced cement concrete in detail for its appropriateness as a structural material for construction of a low cost dwelling unit. The study focuses on evaluating the mechanical and durability properties of cement-concrete beams both singly and doubly reinforced with bamboo splints.

  19. Fibre-reinforced calcium phosphate cements: a review.

    Science.gov (United States)

    Canal, C; Ginebra, M P

    2011-11-01

    Calcium phosphate cements (CPC) consist of one or more calcium orthophosphate powders, which upon mixing with water or an aqueous solution, form a paste that is able to set and harden after being implanted within the body. Different issues remain still to be improved in CPC, such as their mechanical properties to more closely mimic those of natural bone, or their macroporosity to favour osteointegration of the artificial grafts. To this end, blends of CPC with polymer and ceramic fibres in different forms have been investigated. The present work aims at providing an overview of the different approaches taken and identifying the most significant achievements in the field of fibre-reinforced calcium phosphate cements for clinical applications, with special focus on their mechanical properties.

  20. Glass fibre reinforced cement based composite: fatigue and fracture parameters

    Directory of Open Access Journals (Sweden)

    Seitl S.

    2009-12-01

    Full Text Available This paper introduces the basic fracture mechanics parameters of advanced building material – glass fibres reinforced cement based composite and its fracture and fatigue behaviour is investigated. To this aim three-point bend (3PB specimens with starting notch were prepared and tested under static (l–d diagram and cyclic loading (Paris law and Ẅöhler curve. To evaluate the results, the finite element method was used for estimation of the corresponding values of stress intensity factor for the 3PB specimen used. The results obtained are compared with literature data.

  1. Reinforcement of tungsten carbide grains by nanoprecipitates in cemented carbides.

    Science.gov (United States)

    Liu, Xingwei; Song, Xiaoyan; Wang, Haibin; Hou, Chao; Liu, Xuemei; Wang, Xilong

    2016-10-14

    In contrast to the conventional method that obtains a high fracture strength of tungsten carbide-cobalt (WC-Co) cemented carbides by reducing WC grain size to near-nano or nanoscale, a new approach has been developed to achieve ultrahigh fracture strength by strengthening the WC grains through precipitate reinforcement. The cemented carbides were prepared by liquid-state sintering the in situ synthesized WC-Co composite powders with a little excess carbon and pre-milled Cr3C2 particles having different size scales. It was found that the nanoscale dispersed particles precipitate in the WC grains, which mainly have a coherent or semi-coherent interface with the matrix. The pinning effect of the nanoparticles on the motion of dislocations within the WC grains was observed. The mechanisms for the precipitation of nanoparticles in the WC grains were discussed, based on which a new method to enhance the resistance against the transgranular fracture of cemented carbides was proposed.

  2. Reinforcement of tungsten carbide grains by nanoprecipitates in cemented carbides

    Science.gov (United States)

    Liu, Xingwei; Song, Xiaoyan; Wang, Haibin; Hou, Chao; Liu, Xuemei; Wang, Xilong

    2016-10-01

    In contrast to the conventional method that obtains a high fracture strength of tungsten carbide-cobalt (WC-Co) cemented carbides by reducing WC grain size to near-nano or nanoscale, a new approach has been developed to achieve ultrahigh fracture strength by strengthening the WC grains through precipitate reinforcement. The cemented carbides were prepared by liquid-state sintering the in situ synthesized WC-Co composite powders with a little excess carbon and pre-milled Cr3C2 particles having different size scales. It was found that the nanoscale dispersed particles precipitate in the WC grains, which mainly have a coherent or semi-coherent interface with the matrix. The pinning effect of the nanoparticles on the motion of dislocations within the WC grains was observed. The mechanisms for the precipitation of nanoparticles in the WC grains were discussed, based on which a new method to enhance the resistance against the transgranular fracture of cemented carbides was proposed.

  3. Influence of Portland Cement Class on the Corrosion Rate of Steel Reinforcement in Cement Mortar Caused by Penetrating Chloride and Sulfate from the Environment

    OpenAIRE

    Bikić, F.; Cacan, M.; Rizvanović, M.

    2013-01-01

    The influence of portland cement class on the corrosion rate of steel reinforcement in cement mortar caused by penetrating chloride or sulfate from the environment in already hardened cement mortar is investigated in this paper. Three classes of portland cement have been used for the tests, PC 35, PC 45 and PC 55. Cylindrical samples of cement mortar with steel reinfor- cement in the middle were treated 6 months at room temperature in the follow...

  4. Piezoresistivity in Carbon Fiber Reinforced Cement Based Composites

    Institute of Scientific and Technical Information of China (English)

    Bing CHEN; Keru WU; Wu YAO

    2004-01-01

    The resu lts of some i nteresti ng investigation on the piezoresistivity of ca rbon fi ber reinforced cement based com posites (CFRC) are presented with the prospect of developing a new nondestructive testing method to assess the integrity of the composite. The addition of short carbon fibers to cement-based mortar or concrete improves the structural performance and at the same time significantly decreases the bulk electrical resistivity. This makes CFRC responsive to the smart behavior by measuring the resistance change with uniaxial pressure. The piezoresistivity of CFRC under different stress was studied, at the same time the damage occurring inner specimens was detected by acoustic emission as well. Test results show that there exists a marking pressure dependence of the conductivity in CFRC, in which the so-called negative pressure coefficient of resistive (NPCR) and positive pressure coefficient of resistive (PPCR) are observed under low and high pressure. Under constant pressures, time-dependent resistivity is an outstanding characteristic for the composites, which is defined as resistance creep. The breakdown and rebuild-up process of conductive network under pressure may be responsible for the pressure dependence of resistivity.

  5. A new resin-reinforced glass ionomer cement for use with orthodontic attachments.

    Science.gov (United States)

    Cohen, M; Silverman, E

    1997-08-01

    Resin cements are commonly used to bond orthodontic appliances. However, etching enamel and bracket bonding is an extremely technique-sensitive process. Moisture and saliva control, particularly in the gingival third of posterior teeth, is difficult and time-consuming, but is critical to success. Recently, a light-cure resin-reinforced glass ionomer cement was shown to perform with equal bonding capacity. This is accomplished in a wet field, without etching, and with the glass ionomer feature of fluoride release. Now, a self-cure resin-reinforced glass ionomer cement has been introduced. The self-cure cement will provide equal clinical success in areas where light curing is not possible or desired. This article compares traditional resin cements and glass ionomer cements for bonding orthodontic appliances.

  6. Microstructure of a cement matrix composite reinforced with polypropylene fibers

    Directory of Open Access Journals (Sweden)

    Rincón, J. M.

    2004-06-01

    Full Text Available The present investigation deals with the microstructural characterization of a composite material, which is comprised of polypropylene fibers in an cement matrix, by means of environmental scanning electron microscopy (ESEM and field emission scanning electron microscopy (FESEM. The microstructure of the different phases that compose the matrix is very heterogeneous, though there is a uniform distribution of the fibers inside it. The surface of this composite is different after setting, cured and hardening depending if the zone is or not in touch with the walls of the mould. The interface between the different crystalline regions of the cement matrix and the dispersed fibers shows compatibility between the matrix and the polymeric fibers. The mechanical properties (compression and bending strength have also been evaluated. The use of melamine formaldehyde as additive leads to a reinforcement of the cement matrix and to the improvement of the mechanical properties.

    Se ha llevado a cabo una observacíón microestructural detallada de un material compuesto de fibras de polipropileno embebidas en una matriz de cemento usando los nuevos tipos de microscopía electrónica de barrido, tales como: un microscopio electrónico medioambiental (acrónimo en inglés: ESEM y uno de emisión de campo (acrónimo en inglés: FESEM. La microestructura de las diferentes fases que componen la matriz es muy heterogénea, aunque hay una distribución uniforme de las fibras dentro de ellas. La superficie de este material compuesto es diferente después del fraguado, curado y endurecimiento según qué zonas estén o no en contacto con las paredes del molde. La interfase entre las diferentes fases cristalinas de la matriz de cemento y las fibras dispersadas se ha observado a diferentes aumentos, comprobándose compatibilidad entre la matriz y las fibras poliméricas. Las propiedades de resistencia mecánica (tanto a flexión como a compresión han sido tambi

  7. THE USE OF SISAL FIBRE AS REINFORCEMENT IN CEMENT BASED COMPOSITES

    Directory of Open Access Journals (Sweden)

    Romildo Dias Tolêdo Filho

    1999-08-01

    Full Text Available ABSTRACT The inclusion of fibre reinforcement in concrete, mortar and cement paste can enhance many of the engineering properties of the basic materials, such as fracture toughness, flexural strength and resistance to fatigue, impact, thermal shock and spalling. In recent years, a great deal of interest has been created worldwide on the potential applications of natural fibre reinforced, cement based composites. Investigations have been carried out in many countries on various mechanical properties, physical performance and durability of cement based matrices reinforced with naturally occurring fibres including sisal, coconut, jute, bamboo and wood fibres. These fibres have always been considered promising as reinforcement of cement based matrices because of their availability, low cost and low consumption of energy. In this review, the general properties of the composites are described in relation to fibre content, length, strength and stiffness. A chronological development of sisal fibre reinforced, cement based matrices is reported and experimental data are provided to illustrate the performance of sisal fibre reinforced cement composites. A brief description on the use of these composite materials as building products has been included. The influence of sisal fibres on the development of plastic shrinkage in the pre-hardened state, on tensile, compressive and bending strength in the hardened state of mortar mixes is discussed. Creep and drying shrinkage of the composites and the durability of natural fibres in cement based matrices are of particular interest and are also highlighted. The results show that the composites reinforced with sisal fibres are reliable materials to be used in practice for the production of structural elements to be used in rural and civil construction. This material could be a substitute asbestos-cement composite, which is a serious hazard to human and animal health and is prohibited in industrialized countries. The

  8. PREPARATION OF CEMENT MORTAR REINFORCED BY MODIFIED MICROFIBER IN A TURBULENT MIXER

    Directory of Open Access Journals (Sweden)

    Belova Tat’yana Konstantinovna

    2016-03-01

    Full Text Available The improvement of the structure of cement mortars on micro- and nanolevels by means of disperse reinforcement by modified microfibers promotes the considerable improvement of operational characteristics of the designs made on their basis. However, the absence of the developed technology of preparing the cement mortars reinforced by the modified microfiber providing the uniform distribution of the microfibres in volume of a composite constrains the widespread introduction of such solutions in the construction practice. The results of the researches of the technological parameters of preparing the microfiber reinforced cement mortars in the turbulent mixer are presented in article. The results of the production experiment on determining the bending durability are reflected as well as the variation coefficient of the durability of the reinforced samples prepared by means of the turbulent mixer. The results of the influence of the water-cement relation of the mortar mix and influence of the time of mixing the components in the turbulent mixer on change of mobility of the mix and strength characteristics of the hardened solution are presented. The results of the tests indicated the efficiency of preparing cement mortar reinforced by modified microfiber in the turbulent mixer. The reinforced samples are characterized by the increased bending durability and high uniformity of the strength characteristics. In case of turbulent mixing of the components of mortar mix its mobility increases from 5 to 25% in comparison with the mix prepared manually. The time of mixing the components in the turbulent mixer has an impact on the strength characteristics of the fiber reinforced solution. The optimum time of mixing the components contributes to a certain water-cement relation of the mortar mix. Therefore, the preparation of the cement mortar reinforced by the modified microfiber in the turbulent mixer is characterized by high efficiency and productivity, the

  9. Effects of fibre reinforcement on the mechanical properties of brushite cement.

    Science.gov (United States)

    Gorst, N J S; Perrie, Y; Gbureck, U; Hutton, A L; Hofmann, M P; Grover, L M; Barralet, J E

    2006-01-01

    In this study the effect of structure and amount of polyglactin fibre incorporation into a brushite forming calcium phosphate cement system and the effect of mechanical compaction on the fibre modified system were investigated. In comparison the effect of resorbable polycaprolactone surface coating of cement specimens was investigated. The results showed that, apart from the mechanical properties of the reinforcing material, the structure of the incorporated fibres, regular or random, is crucial for the resulting flexural strength and modulus of elasticity. Fibre reinforcement could also be combined with mechanical compaction of the cement/fibre composite paste leading to a possible 7-fold increase in flexural strength or an almost 5-fold increase in modulus of elasticity. Reinforcement of the tensile surface of cement grafts may ultimately improve strength where required, especially in conjunction with bone fixation devices.

  10. The Integration of EIS parameters and bulk matrix characterization in studying reinforced cement-based materials

    NARCIS (Netherlands)

    Koleva, D.A.; Van Breugel, K.

    2012-01-01

    Corrosion in reinforced concrete is a major and costly concern, arising from the higher complexity of involved phenomena on different levels of material science (e.g. electrochemistry, concrete material science) and material properties (macro/micro/ nano). Reinforced cement-based systems (e.g. reinf

  11. The integration of eis parameters and bulk matrix characteristics in studying reinforced cement-based materials

    NARCIS (Netherlands)

    Koleva, D.A.; Van Breugel, K.

    2011-01-01

    Corrosion in reinforced concrete is a major and costly concern, arising from the higher complexity of involved phenomena on different levels of material science (e.g. electrochemistry, concrete material science) and material properties (macro/micro/ nano). Reinforced cement-based systems (e.g. reinf

  12. The integration of eis parameters and bulk matrix characteristics in studying reinforced cement-based materials

    NARCIS (Netherlands)

    Koleva, D.A.; Van Breugel, K.

    2011-01-01

    Corrosion in reinforced concrete is a major and costly concern, arising from the higher complexity of involved phenomena on different levels of material science (e.g. electrochemistry, concrete material science) and material properties (macro/micro/ nano). Reinforced cement-based systems (e.g.

  13. The Integration of EIS parameters and bulk matrix characterization in studying reinforced cement-based materials

    NARCIS (Netherlands)

    Koleva, D.A.; Van Breugel, K.

    2012-01-01

    Corrosion in reinforced concrete is a major and costly concern, arising from the higher complexity of involved phenomena on different levels of material science (e.g. electrochemistry, concrete material science) and material properties (macro/micro/ nano). Reinforced cement-based systems (e.g.

  14. Strength and Deformability of Fiber Reinforced Cement Paste on the Basis of Basalt Fiber

    Directory of Open Access Journals (Sweden)

    Yury Barabanshchikov

    2016-01-01

    Full Text Available The research object of the paper is cement paste with the particulate reinforcement of basalt fiber. Regardless of fibers’ length at the same fiber cement mix workability and cement consumption equality compressive solidity of the specimens is reduced with increasing fiber content. This is due to the necessity to increase the water-cement ratio to obtain a given workability. The flexural stability of the specimens with increasing fiber content increments in the same conditions. There is an optimum value of the fibers’ dosage. That is why stability has a maximum when crooking. The basaltic fiber particulate reinforcement usage can abruptly increase the cement paste level limiting extensibility, which is extremely important in terms of crack resistance.

  15. Bond Mechanisms in Fiber Reinforced Cement-Based Composites

    Science.gov (United States)

    1989-08-01

    Symposium on "Cement Based Composites: Bonding in Cementitious Composites," S. Mindess and S. Shah, Editors. 44. Nilson, A. H., "Bond Stress-Slip...Society Symposium on "Cement Based Composites: Bonding in Cementitious Composites," held in Boston, December 2 to 4, 1987, S. Mindess and S. Shah, 0

  16. Chairside fabricated fiber-reinforced composite fixed partial denture

    OpenAIRE

    Garoushi, Sufyan; Vallittu, Pekka K

    2007-01-01

    The advances in the materials and techniques for adhesive dentistry have allowed the development of non-invasive or minimally invasive approaches for replacing a missing tooth in those clinical situations when conservation of adjacent teeth is needed. Good mechanical and cosmetic/aesthetic properties of fiber-reinforced composite (FRC), with good bonding properties with composite resin cement and veneering composite are needed in FRC devices. Some recent studies have shown that adhesives of c...

  17. Strong and tough magnesium wire reinforced phosphate cement composites for load-bearing bone replacement.

    Science.gov (United States)

    Krüger, Reinhard; Seitz, Jan-Marten; Ewald, Andrea; Bach, Friedrich-Wilhelm; Groll, Jürgen

    2013-04-01

    Calcium phosphate cements are brittle biomaterials of low bending strength. One promising approach to improve their mechanical properties is reinforcement with fibers. State of the art degradable reinforced composites contain fibers made of polymers, resorbable glass or whiskers of calcium minerals. We introduce a new class of composite that is reinforced with degradable magnesium alloy wires. Bending strength and ductility of the composites increased with aspect ratio and volume content of the reinforcements up to a maximal bending strength of 139±41MPa. Hybrid reinforcement with metal and polymer fibers (PLA) further improved the qualitative fracture behavior and gave indication of enhanced strength and ductility. Immersion tests of composites in SBF for seven weeks showed high corrosion stability of ZEK100 wires and slow degradation of the magnesium calcium phosphate cement by struvite dissolution. Finally, in vitro tests with the osteoblast-like cell line MG63 demonstrate cytocompatibility of the composite materials.

  18. Flexural Properties of WeftKnitted Fabric Reinforced Composites

    Institute of Scientific and Technical Information of China (English)

    龙海如; 冯勋伟

    2001-01-01

    Several different kinds of weft knitted fabrics from glass fiber yarns were used as reinforcement to make fabric/polyester composite laminates. Flexural tests were carried out to examine stress- deflection process and compare the mechanical properties in course and wale directions of these composites. The experimental results indicate that the numbers of load-bearing yarn in course and wale direction and the fabric density are the main factors influencing the ultimate tensile strength and initial elastic modulus of specimens.

  19. Effects of glass fiber modified with calcium silicate hydrate (C-S-H(I)) reinforced cement

    Science.gov (United States)

    Xin, M.; Zhang, L.; Ge, S.; Cheng, X.

    2017-03-01

    In this paper, calcium silicate hydrate (C-S-H(I)) and glass fiber modified with C-S-H(I) (SiF) at ambient temperature were synthesized. SiF and untreated fiber (OF) were incorporated into cement paste. Phase composition of C-S-H(I), SiF and OF was characterized by XRD. The surface morphologies were characterized by SEM. Flexural performance of fiber reinforced cement (FRC) at different curing ages was investigated. Results indicated that both SiF and OF could reinforce cement paste. SiF had a more positive effect on improving the flexural performance of FRC than OF. The strength of SiF reinforced cement was 11.48MPa after 28 days curing when fiber volume was 1.0%, 12.55% higher than that of OF reinforced cement. The flexural strength increased with the addition of fiber volume. However, the large dosage of fiber might cause a decrease in flexural strength of FRC.

  20. Monitoring ageing of alkali resistant glass fiber reinforced cement (GRC) using guided ultrasonic waves

    Science.gov (United States)

    Eiras, J. N.; Amjad, U.; Mahmoudabadi, E.; Payá, J.; Bonilla, M.; Kundu, T.

    2013-04-01

    Glass fiber reinforced cement (GRC) is a Portland cement based composite with alkali resistant (AR) glass fibers. The main drawback of this material is the ageing of the reinforcing fibers with time and especially in presence of humidity in the environment. Until now only destructive methods have been used to evaluate the durability of GRC. In this study ultrasonic guided wave inspection of plate shaped specimens has been carried out. The results obtained here show that acoustic signatures are capable of discerning ageing in GRC. Therefore, the ultrasonic guided wave based inspection technique is a promising method for the nondestructive evaluation of the durability of the GRC.

  1. Utilizing wood wastes as reinforcement in wood cement composite bricks

    Directory of Open Access Journals (Sweden)

    Nusirat Aderinsola Sadiku

    2015-07-01

    Full Text Available This paper presents the research work undertaken to study the properties of Wood Cement Composite Bricks (WCCB from different wood wastes and cement / wood content. The WCBBs with nominal density of 1200 kg m-3 were produced from three tropical wood species and at varying cement and wood content of 2:1, 2.5:1 and 3:1 on a weight to weight basis. The properties evaluated were compressive strength, Ultra Pulse Velocity (UPV, water absorption (WA and thickness swelling (TS. The Compressive strength values ranged from 0.25 to 1.13 N mm-2 and UPV values ranged from 18753 to 49992 m s-1. The mean values of WA after 672 hours (28 days of water soaking of the WCCBs ranged from 9.50% to 47.13% where there were no noticeable change in the TS of the bricks. The observed density (OD ranged from 627 to 1159 kg m-3. A. zygia from the three wood/cement content were more dimensionally stable and better in compressive strength than the other two species where T. scleroxylon had the best performance in terms of UPV. All the properties improved with increasing cement content. WCCBs at 3.0:1 cement/wood content are suitable for structural application such as panelling, ceiling and partitioning

  2. Spring forward of woven fabric reinforced composites

    NARCIS (Netherlands)

    Wijskamp, Sebastiaan; Lamers, E.A.D.; Akkerman, Remko

    2002-01-01

    Continuous-fibre-reinforced plastic products are usually formed at elevated temperatures. They exhibit distortions when they are cooled to room temperature and released from the mould. For example, the enclosed angle of an L-shaped product decreases, see Fig. 1. This effect is known as

  3. Potential of Carbon Nanotube Reinforced Cement Composites as Concrete Repair Material

    Directory of Open Access Journals (Sweden)

    Tanvir Manzur

    2016-01-01

    Full Text Available Carbon nanotubes (CNTs are a virtually ideal reinforcing agent due to extremely high aspect ratios and ultra high strengths. It is evident from contemporary research that utilization of CNT in producing new cement-based composite materials has a great potential. Consequently, possible practical application of CNT reinforced cementitious composites has immense prospect in the field of applied nanotechnology within construction industry. Several repair, retrofit, and strengthening techniques are currently available to enhance the integrity and durability of concrete structures with cracks and spalling, but applicability and/or reliability is/are often limited. Therefore, there is always a need for innovative high performing concrete repair materials with good mechanical, rheological, and durability properties. Considering the mechanical properties of carbon nanotubes (CNTs and the test results of CNT reinforced cement composites, it is apparent that such composites could be used conveniently as concrete repair material. With this end in view, the applicability of multiwalled carbon nanotube (MWNT reinforced cement composites as concrete repair material has been evaluated in this study in terms of setting time, bleeding, and bonding strength (slant shear tests. It has been found that MWNT reinforced cement mortar has good prospective as concrete repair material since such composites exhibited desirable behavior in setting time, bleeding, and slant shear.

  4. Processes for fabricating composite reinforced material

    Energy Technology Data Exchange (ETDEWEB)

    Seals, Roland D.; Ripley, Edward B.; Ludtka, Gerard M.

    2015-11-24

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  5. Strengthening of concrete structures using carbon fibre reinforced polymers and cement-based adhesives

    OpenAIRE

    Hashemi, Siavash

    2017-01-01

    The research project conducted in this study concerns the investigation of the application of cement-based adhesives in CFRP strengthening of reinforced concrete members. The results demonstrate that mineral-based adhesives can provide the desired matrices for CFRP reinforcement. The literature review covers the background of CFRP application with conventional techniques. The bond characteristics of CFRP to concrete substrate, the flexural performance of retrofitted RC beams, and the fa...

  6. Development of technology for fabrication of lithium CPS on basis of CNT-reinforced carboxylic fabric

    Energy Technology Data Exchange (ETDEWEB)

    Tazhibayeva, Irina, E-mail: tazhibayeva@ntsc.kz [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Baklanov, Viktor; Ponkratov, Yuriy [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Abdullin, Khabibulla [Institute of Experimental and Theoretical Physics of Kazakh National University, Almaty (Kazakhstan); Kulsartov, Timur; Gordienko, Yuriy; Zaurbekova, Zhanna [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Lyublinski, Igor [JSC «Red Star», Moscow (Russian Federation); NRNU «MEPhI», Moscow (Russian Federation); Vertkov, Alexey [JSC «Red Star», Moscow (Russian Federation); Skakov, Mazhyn [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan)

    2017-04-15

    Highlights: • Preliminary study of carboxylic fabric wettability with liquid lithium is presented. • Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673,773 and 873 К in vacuum during long time. • A scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. • The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed. - Abstract: The paper describes the analysis of liquid lithium interaction with materials based on carbon, the manufacture technology of capillary-porous system (CPS) matrix on basis of CNT-reinforced carboxylic fabric. Preliminary study of carboxylic fabric wettability with liquid lithium is presented. The development of technology includes: microstructural studies of carboxylic fabric before its CNT-reinforcing; validation of CNT-reinforcing technology; mode validation of CVD-method for CNT synthesize; study of synthesized carbon structures. Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673, 773 and 873 К in vacuum during long time. The scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed.

  7. Dental glass ionomer cement reinforced by cellulose microfibers and cellulose nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Rafael M. [Departamento de Odontologia, Universidade Federal do Vale do Jequitinhonha e Mucuri, UFVJM, Diamantina CEP: 39100-000, MG (Brazil); Centro Avançado de Avaliação e Desenvolvimento de Biomateriais, BioMat, Universidade Federal do Vale do Jequitinhonha e Mucuri, UFVJM, Diamantina CEP: 39100-000, MG (Brazil); Pereira, Fabiano V., E-mail: fabianovp@ufmg.br [Departamento de Química, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte CEP: 31270-901, MG (Brazil); Mota, Felipe A.P. [Centro Avançado de Avaliação e Desenvolvimento de Biomateriais, BioMat, Universidade Federal do Vale do Jequitinhonha e Mucuri, UFVJM, Diamantina CEP: 39100-000, MG (Brazil); Watanabe, Evandro [Departamento de Odontologia Restauradora, Faculdade de Odontologia de Ribeirão Preto, USP, Ribeirão Preto CEP: 14040-904, SP (Brazil); Soares, Suelleng M.C.S. [Departamento de Odontologia, Universidade Federal do Vale do Jequitinhonha e Mucuri, UFVJM, Diamantina CEP: 39100-000, MG (Brazil); Santos, Maria Helena [Departamento de Odontologia, Universidade Federal do Vale do Jequitinhonha e Mucuri, UFVJM, Diamantina CEP: 39100-000, MG (Brazil); Centro Avançado de Avaliação e Desenvolvimento de Biomateriais, BioMat, Universidade Federal do Vale do Jequitinhonha e Mucuri, UFVJM, Diamantina CEP: 39100-000, MG (Brazil)

    2016-01-01

    The aim of this work was to evaluate if the addition of cellulose microfibers (CmF) or cellulose nanocrystals (CNC) would improve the mechanical properties of a commercial dental glass ionomer cement (GIC). Different amounts of CmF and CNC were previously prepared and then added to reinforce the GIC matrix while it was being manipulated. Test specimens with various concentrations of CmF or CNC in their total masses were fabricated and submitted to mechanical tests (to evaluate their compressive and diametral tensile strength, modulus, surface microhardness and wear resistance) and characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). The incorporation of CmF in the GIC matrix did not greatly improve the mechanical properties of GIC. However, the addition of a small amount of CNC in the GIC led to significant improvements in all of the mechanical properties evaluated: compressive strength (increased up to 110% compared with the control group), elastic modulus increased by 161%, diametral tensile strength increased by 53%, and the mass loss decreased from 10.95 to 3.87%. Because the composites presented a considerable increase in mechanical properties, the modification of the conventional GIC with CNC can represent a new and promising dental restorative material. - Highlights: • Cellulose microfibers (CmF) and cellulose nanocrystals (CNC) were prepared. • The CmF and CNC were incorporated in commercial dental glass ionomer cement (GIC). • Small amount of CNC improved significantly all the mechanical properties evaluated. • Modified GIC with CNC can represent a new and promising dental restorative material.

  8. Use of Fiber-Reinforced Cements in Masonry Construction and Structural Rehabilitation

    Directory of Open Access Journals (Sweden)

    Ece Erdogmus

    2015-02-01

    Full Text Available The use of fiber reinforcement in traditional concrete mixes has been extensively studied and has been slowly finding its regular use in practice. In contrast, opportunities for the use of fibers in masonry applications and structural rehabilitation projects (masonry and concrete structures have not been as deeply investigated, where the base matrix may be a weaker cementitious mixture. This paper will summarize the findings of the author’s research over the past 10 years in these particular applications of fiber reinforced cements (FRC. For masonry, considering both mortar and mortar-unit bond characteristics, a 0.5% volume fraction of micro fibers in type N Portland cement lime mortar appear to be a viable recipe for most masonry joint applications both for clay and concrete units. In general, clay units perform better with high water content fiber reinforced mortar (FRM while concrete masonry units (CMUs perform better with drier mixtures, so 130% and 110% flow rates should be targeted, respectively. For earth block masonry applications, fibers’ benefits are observed in improving local damage and water pressure resistance. The FRC retrofit technique proposed for the rehabilitation of reinforced concrete two-way slabs has exceeded expectations in terms of capacity increase for a relatively low cost in comparison to the common but expensive fiber reinforced polymer applications. For all of these applications of fiber-reinforced cements, further research with larger data pools would lead to further optimization of fiber type, size, and amount.

  9. Tensile Properties of Weft Knitted Fabric Reinforced Composites

    Institute of Scientific and Technical Information of China (English)

    龙海如

    2001-01-01

    Seven kinds of weft knitted fabrics from glass fiber yarns were used as reinforcement to make fabric/epoxy composite laminates. Tensile tests were carried out to examine and compare the mechanical properties in course and wale direction of these composites. On the basis of experimental results, attempts have been made to analyze some main factors influencing stress-strain curve, ultimate tensile strength and initial elastic modulus of specimens.

  10. Development of high performance fiber reinforced cement composites (HPFRCC for application as a transition layer of reinforced beams

    Directory of Open Access Journals (Sweden)

    V. J. Ferrari

    Full Text Available This study presents the development and behavior analysis of high performance fiber reinforced cement composites (HPFRCC. The describedmaterials were specifically developed for application as a transition layer: a repair layer that constitutes the stressed chord of reinforcedconcrete beams strengthened in flexure with carbon fiber reinforced polymers (CFRP. Nineteen different composites were produced by thehybridization process, varying the conventional short steel fiber and steel microfiber (manufactured exclusively for this research contentsto modify the microstructure of the material, thus enhancing the stress transfer process from the cement matrix to the fibers. To analyze theresponse to flexural loading, the composites underwent three point bending tests in notched prism specimens. The response of the materialwas obtained considering strength and tenacity parameters (flexural and fracture. There was evidence of high performance by the composites with a pseudo-hardening behavior.

  11. Chairside fabricated fiber-reinforced composite fixed partial denture

    Directory of Open Access Journals (Sweden)

    Sufyan Garoushi

    2007-01-01

    Full Text Available The advances in the materials and techniques for adhesive dentistry have allowed the development of non-invasive or minimally invasive approaches for replacing a missing tooth in those clinical situations when conservation of adjacent teeth is needed. Good mechanical and cosmetic/aesthetic properties of fiber-reinforced composite (FRC, with good bonding properties with composite resin cement and veneering composite are needed in FRC devices. Some recent studies have shown that adhesives of composite resins and luting cements allow diffusion of the adhesives to the FRC framework of the bridges. By this so-called interdiffusion bonding is formed [1]. FRC bridges can be made in dental laboratories or chairside. This article describes a clinical case of chairside (directly made FRC Bridge, which was used according to the principles of minimal invasive approach. Treatment was performed by Professor Vallittu from the University of Turku, Finland.

  12. Dental glass ionomer cement reinforced by cellulose microfibers and cellulose nanocrystals.

    Science.gov (United States)

    Silva, Rafael M; Pereira, Fabiano V; Mota, Felipe A P; Watanabe, Evandro; Soares, Suelleng M C S; Santos, Maria Helena

    2016-01-01

    The aim of this work was to evaluate if the addition of cellulose microfibers (CmF) or cellulose nanocrystals (CNC) would improve the mechanical properties of a commercial dental glass ionomer cement (GIC). Different amounts of CmF and CNC were previously prepared and then added to reinforce the GIC matrix while it was being manipulated. Test specimens with various concentrations of CmF or CNC in their total masses were fabricated and submitted to mechanical tests (to evaluate their compressive and diametral tensile strength,modulus, surface microhardness and wear resistance) and characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). The incorporation of CmF in the GIC matrix did not greatly improve the mechanical properties of GIC. However, the addition of a small amount of CNC in the GIC led to significant improvements in all of the mechanical properties evaluated: compressive strength (increased up to 110% compared with the control group), elastic modulus increased by 161%, diametral tensile strength increased by 53%, and the mass loss decreased from 10.95 to 3.87%. Because the composites presented a considerable increase in mechanical properties, the modification of the conventional GIC with CNC can represent a new and promising dental restorative material.

  13. The effect of CNTs reinforcement on thermal and electrical properties of cement-based materials

    Science.gov (United States)

    Exarchos, D. A.; Dalla, P. T.; Tragazikis, I. K.; Matikas, T. E.

    2015-03-01

    This research aims to investigate the influence of the nano-reinforcement on the thermal properties of cement mortar. Nano-modified cement mortar with carbon nanotubes (CNTs) leading to the development of innovative materials possessing multi-functionality and smartness. Such multifunctional properties include enhanced mechanical behavior, electrical and thermal conductivity, and piezo-electric characteristics. The assessment of the thermal behavior was evaluated using IR Thermography. Two different thermographic techniques are used to monitor the influence of the nano-reinforcement. To eliminate any extrinsic effects (e.g. humidity) the specimens were dried in an oven before testing. The electrical resistivity was measured with a contact test method using a custom made apparatus and applying a known D.C. voltage. This study indicate that the CNTs nano-reinforcement enhance the thermal and electrical properties and demonstrate them useful as sensors in a wide variety of applications.

  14. Static and Dynamic Strain Monitoring of Reinforced Concrete Components through Embedded Carbon Nanotube Cement-Based Sensors

    Directory of Open Access Journals (Sweden)

    Antonella D’Alessandro

    2017-01-01

    Full Text Available The paper presents a study on the use of cement-based sensors doped with carbon nanotubes as embedded smart sensors for static and dynamic strain monitoring of reinforced concrete (RC elements. Such novel sensors can be used for the monitoring of civil infrastructures. Because they are fabricated from a structural material and are easy to utilize, these sensors can be integrated into structural elements for monitoring of different types of constructions during their service life. Despite the scientific attention that such sensors have received in recent years, further research is needed to understand (i the repeatability and accuracy of sensors’ behavior over a meaningful number of sensors, (ii testing configurations and calibration methods, and (iii the sensors’ ability to provide static and dynamic strain measurements when actually embedded in RC elements. To address these research needs, this paper presents a preliminary characterization of the self-sensing capabilities and the dynamic properties of a meaningful number of cement-based sensors and studies their application as embedded sensors in a full-scale RC beam. Results from electrical and electromechanical tests conducted on small and full-scale specimens using different electrical measurement methods confirm that smart cement-based sensors show promise for both static and vibration-based structural health monitoring applications of concrete elements but that calibration of each sensor seems to be necessary.

  15. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; McLaughlin, J.C. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.; Probst, K.J.; Anderson, T.J. [Univ. of Florida, Gainesville, FL (United States). Dept. of Chemical Engineering; Starr, T.L. [Georgia Inst. of Tech., Atlanta, GA (United States). Dept. of Materials Science and Engineering

    1997-12-01

    Silicon carbide-based heat exchanger tubes are of interest to energy production and conversion systems due to their excellent high temperature properties. Fiber-reinforced SiC is of particular importance for these applications since it is substantially tougher than monolithic SiC, and therefore more damage and thermal shock tolerant. This paper reviews a program to develop a scaled-up system for the chemical vapor infiltration of tubular shapes of fiber-reinforced SiC. The efforts include producing a unique furnace design, extensive process and system modeling, and experimental efforts to demonstrate tube fabrication.

  16. Weaving multi-layer fabrics for reinforcement of engineering components

    Science.gov (United States)

    Hill, B. J.; Mcilhagger, R.; Mclaughlin, P.

    1993-01-01

    The performance of interlinked, multi-layer fabrics and near net shape preforms for engineering applications, woven on a 48 shaft dobby loom using glass, aramid, and carbon continuous filament yarns is assessed. The interlinking was formed using the warp yarns. Two basic types of structure were used. The first used a single warp beam and hence each of the warp yarns followed a similar path to form four layer interlinked reinforcements and preforms. In the second two warp beams were used, one for the interlinking yarns which pass from the top to the bottom layer through-the-thickness of the fabric and vice versa, and the other to provide 'straight' yarns in the body of the structure to carry the axial loading. Fabrics up to 15mm in thickness were constructed with varying amounts of through-the-thickness reinforcement. Tapered T and I sections were also woven, with the shaping produced by progressive removal of ends during construction. These fabrics and preforms were impregnated with resin and cured to form composite samples for testing. Using these two basic types of construction, the influence of reinforcement construction and the proportion and type of interlinking yarn on the performance of the composite was assessed.

  17. Micromechanics of the Interface in Fibre-Reinforced Cement Materials

    DEFF Research Database (Denmark)

    Stang, Henrik; Shah, S.P.

    1996-01-01

    the strength and ductility of the brittlematrix material rather than changing the overall stiffness,the ability of the fibres to interact with cracking processes in thematrix material is essential. Furthermore, since matrix cracking in afibre reinforced material can only take place with simultaneousinterfacial...

  18. Fabrication and characterization of S. cilliare fibre reinforced polymer composites

    Indian Academy of Sciences (India)

    A S Singha; Vijay Kumar Thakur

    2009-02-01

    In the recent times, there has been an ever-increasing interest in green composite materials for its applications in the field of industries, aerospace, sports, household etc and in many other fields. In this paper, fabrication of Saccharum cilliare fibre reinforced green polymer composites using resorcinol formaldehyde (RF) as a novel matrix has been reported. A systematic approach for processing of polymer is presented. Effect of fibre loading on mechanical properties like flexural, tensile, compressive and wear resistances has also been determined. Reinforcing of the RF resin with Saccharum cilliare (SC) fibre was done in the form of particle size (200 micron). Present work reveals that mechanical properties of the RF resin have been found to increase up to 30% fibre loading and then decreases. Morphological and thermal studies of the resin, fibre and particle reinforced (P-Rnf) green composites have also been studied.

  19. Toughened carbon fibre fabric-reinforced thermoplastic composites

    OpenAIRE

    Abt, Tobias Martin; Sánchez Soto, Miguel; Maspoch Rulduà, Mª Lluïsa; Velasco Perero, José Ignacio

    2014-01-01

    Toughened carbon fibre fabric-reinforced composites were obtained by compression moulding of powder prepregs, using a modified cyclic butylene terephthalate (pCBT) matrix and a bi-directional [0°/90°] carbon fibre fabric. Modification of the pCBT matrix was done by adding small amounts of epoxy resin or isocyanates, acting as toughening agents. Homogeneous CBT/epoxy and CBT/isocyanate blends were obtained by melt blending in a lab-scale batch mixer by applying low temperatures and short proce...

  20. Fusion bonding of carbon fabric reinforced polyphenylene sulphide

    OpenAIRE

    Degrieck J.; Van Paepegem W.; De Baere I.

    2011-01-01

    In recent years, there is a growing interest in joining techniques for thermoplastic composites as an alternative to adhesive bonding. In this manuscript, a fusion bonding process called hot-tool welding is investigated for this purpose and the used material is a carbon fabric reinforced polyphenylene sulphide. The quality of the welds is experimentally assessed using a short three-point bending setup, which has an interesting distribution of interlaminar shear stresses. It can be conc...

  1. Expansive cement couplers: A means of pre-tensioning fibre-reinforced plastic tendons

    OpenAIRE

    1995-01-01

    This is the peer reviewed version of: Lees J.M., Gruffydd-Jones, B. and Burgoyne C.J. (1995) "Expansive Cement Couplers - A Means of Pre-tensioning Fibre-Reinforced Plastic Tendons", published in 'Construction and Building Materials', v. 9, is. 6, pp. 413-423 December 1995. The published version is at http://dx.doi.org/10.1016/0950-0618(95)00070-4 Fibre reinforced plastics describes a group of materials composed of inorganic or organic fibres embedded in a resin matrix. frps are strong, n...

  2. Selected Bibliography on Fiber-Reinforced Cement and Concrete. Supplement Number 4.

    Science.gov (United States)

    1982-08-01

    Building Industry," L’Industria Italiana del Cemento , Vol 50, No. 12, Dec 1980, pp 1135-1144. 19. Bartos, P., "Pullout Failure of Fibres Embedded in Cement...Vol 43, No. 11, Nov 1977, pp 561-564. 21. Bassan, M., "Model of Behavior of Fiber-Reinforced Concretes Under Impact Stresses," il Cemento , Vol 74, No...Pastes," il Cemento , Vol 75, No. 3, Jul-Sep 1978, pp 277-284. 210. Mills, R. H., "Age-Embrittlement of Glass-Reinforced Concrete Containing Blastfurance

  3. Effect of silane activation on shear bond strength of fiber-reinforced composite post to resin cement

    OpenAIRE

    Kim, Hyun-Dong; Lee, Joo-Hee; Ahn, Kang-Min; Kim, Hee-Sun; Cha, Hyun-Suk

    2013-01-01

    PURPOSE Among the surface treatment methods suggested to enhance the adhesion of resin cement to fiber-reinforced composite posts, conflicting results have been obtained with silanization. In this study, the effects of silanization, heat activation after silanization, on the bond strength between fiber-reinforced composite post and resin cement were determined. MATERIALS AND METHODS Six groups (n=7) were established to evaluate two types of fiber post (FRC Postec Plus, D.T. Light Post) and th...

  4. Electrical resistance stability of high content carbon fiber reinforced cement composite

    Institute of Scientific and Technical Information of China (English)

    YANG Zai-fu; TANG Zu-quan; LI Zhuo-qiu; QIAN Jue-shi

    2005-01-01

    The influences of curing time, the content of free evaporable water in cement paste, environmental temperature, and alternative heating and cooling on the electrical resistance of high content carbon fiber reinforced cement (CFRC) paste are studied by experiments with specimens of Portland cement 42.5 with 10 mm PAN-based carbon fiber and methylcellulose. Experimental results indicate that the electrical resistance of CFRC increases relatively by 24% within a hydration time of 90 d and almost keeps constant after 14 d, changes hardly with the mass loss of free evaporable water in the concrete dried at 50℃C, increases relatively by 4% when ambient temperature decreases from 15℃ to-20℃, and decreases relatively by 13% with temperature increasing by 88℃. It is suggested that the electric resistance of the CFRC is stable, which is testified by the stable power output obtained by electrifying the CFRC slab with a given voltage. This implies that such kind of high content carbon fiber reinforced cement composite is potentially a desirable electrothermal material for airfield runways and road surfaces deicing.

  5. Fabrication of a biocomposite reinforced with hydrophilic eggshell proteins

    Energy Technology Data Exchange (ETDEWEB)

    Kim, GeunHyung [Bio-Mechatronics Team, Division of Nano-Mechanical System, Korea Institute of Machinery and Materials (KIMM), 171 Jang-dong, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Min, Taijin [Bio-Mechatronics Team, Division of Nano-Mechanical System, Korea Institute of Machinery and Materials (KIMM), 171 Jang-dong, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Park, Su A [Bio-Mechatronics Team, Division of Nano-Mechanical System, Korea Institute of Machinery and Materials (KIMM), 171 Jang-dong, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Kim, Wan Doo [Bio-Mechatronics Team, Division of Nano-Mechanical System, Korea Institute of Machinery and Materials (KIMM), 171 Jang-dong, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Koh, Young Ho [1605-4 Gwanyang-dong, Dongan-Gu, ILSONG Institute of Life Science, Hallym Medical School, Hallym University, Anyang, Kyunggi-do 431-060 (Korea, Republic of)

    2007-12-15

    Soluble eggshell proteins were used as a reinforcing material of electrospun micro/nanofibers for tissue engineering. A biocomposite composed of poly({epsilon}-caprolactone) (PCL) micro/nanofibers and soluble eggshell protein was fabricated with a two-step fabrication method, which is an electrospinning process followed by an air-spraying process. To achieve a stable electrospinning process, we used an auxiliary cylindrical electrode connected with a spinning nozzle. PCL biocomposite was characterized in water contact angle and mechanical properties as well as cell proliferation for its application as a tissue engineering material. It showed an improved hydrophilic characteristic compared with that of a micro/nanofiber web generated from a pure PCL solution using a typical electrospinning process. Moreover, the fabricated biocomposite had good mechanical properties compared to a typical electrospun micro/nanofiber mat. The fabricated biocomposite made human dermal fibroblasts grow better than pure PCL. From the results, the reinforced polymeric micro/nanofiber scaffold can be easily achieved with these modified processes.

  6. Novel fabrication method for zirconia restorations: bonding strength of machinable ceramic to zirconia with resin cements.

    Science.gov (United States)

    Kuriyama, Soichi; Terui, Yuichi; Higuchi, Daisuke; Goto, Daisuke; Hotta, Yasuhiro; Manabe, Atsufumi; Miyazaki, Takashi

    2011-01-01

    A novel method was developed to fabricate all-ceramic restorations which comprised CAD/CAM-fabricated machinable ceramic bonded to CAD/CAM-fabricated zirconia framework using resin cement. The feasibility of this fabrication method was assessed in this study by investigating the bonding strength of a machinable ceramic to zirconia. A machinable ceramic was bonded to a zirconia plate using three kinds of resin cements: ResiCem (RE), Panavia (PA), and Multilink (ML). Conventional porcelain-fused-to-zirconia specimens were also prepared to serve as control. Shear bond strength test (SBT) and Schwickerath crack initiation test (SCT) were carried out. SBT revealed that PA (40.42 MPa) yielded a significantly higher bonding strength than RE (28.01 MPa) and ML (18.89 MPa). SCT revealed that the bonding strengths of test groups using resin cement were significantly higher than those of Control. Notably, the bonding strengths of RE and ML were above 25 MPa even after 10,000 times of thermal cycling -adequately meeting the ISO 9693 standard for metal-ceramic restorations. These results affirmed the feasibility of the novel fabrication method, in that a CAD/CAM-fabricated machinable ceramic is bonded to a CAD/CAM-fabricated zirconia framework using a resin cement.

  7. Fusion bonding of carbon fabric reinforced polyphenylene sulphide

    Science.gov (United States)

    de Baere, I.; van Paepegem, W.; Degrieck, J.

    2010-06-01

    In recent years, there is a growing interest in joining techniques for thermoplastic composites as an alternative to adhesive bonding. In this manuscript, a fusion bonding process called hot-tool welding is investigated for this purpose and the used material is a carbon fabric reinforced polyphenylene sulphide. The quality of the welds is experimentally assessed using a short three-point bending setup, which has an interesting distribution of interlaminar shear stresses. It can be concluded that although the hot-tool welding process shows high short-beam strengths, it has some drawbacks. Therefore, a design of an infrared welding setup is presented.

  8. Fusion bonding of carbon fabric reinforced polyphenylene sulphide

    Directory of Open Access Journals (Sweden)

    Degrieck J.

    2010-06-01

    Full Text Available In recent years, there is a growing interest in joining techniques for thermoplastic composites as an alternative to adhesive bonding. In this manuscript, a fusion bonding process called hot-tool welding is investigated for this purpose and the used material is a carbon fabric reinforced polyphenylene sulphide. The quality of the welds is experimentally assessed using a short three-point bending setup, which has an interesting distribution of interlaminar shear stresses. It can be concluded that although the hot-tool welding process shows high short-beam strengths, it has some drawbacks. Therefore, a design of an infrared welding setup is presented.

  9. Fabrication of aluminum matrix composite reinforced with carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1.0 wt.% carbon nanotube (CNT) reinforced 2024A1 matrix composite was fabricated by cold isostatic press and subsequent hot extrusion techniques. The mechanical properties of the composite were measured by a tensile test. Meanwhile, the fracture surfaces were examined using field emission scanning electron microscopy. The experimental results show that CNTs are dispersed homogeneously in the composite and that the interfaces of the Al matrix and the CNT bond well. Although the tensile strength and the Young's modulus of the composite are enhanced markedly, the elongation does not decrease when compared with the matrix material fabricated under the same process. The reasons for the increments may be the extraordinary mechanical properties of CNTs, and the bridging and pulling-out role of CNTs in the Al matrix composite.

  10. Microstructure and Mechanical Properties of CaCO3 Whisker-reinforced Cement

    Institute of Scientific and Technical Information of China (English)

    CAO Mingli; WEI Jianqiang

    2011-01-01

    Composite Portland cement (PC) played an important role in various kinds of construction engineering owing to low hydration heat,low-cost,and application of solid industrial waste,but its brittleness and low strength limited its use in stress-bearing locations.The aim of this study is to improve the toughness and fracture resistance by incorporating CaCO3 whisker in cement matrix.Effect of different content of calcium carbonate whiskers on the mechanical properties of PC was investigated.The results showed that the flexural strength,impact strength and split tensile strength were increased by 39.7%,39.25% and 36.34% at maximum,respectively.Microstructure and elements of the whiskers in hardened cement were observed and analyzed by SEM/EDS.The mechanisms of the reinforcement of CaCO3 whisker on cement were also discussed,and the conclusion was that the improvement could be correlated to energy-dissipating processes owing to crack bridging,crack deflection,and whisker pull-out at the crack tips.

  11. Piezoresistive properties of cement composites reinforced by functionalized carbon nanotubes using photo-assisted Fenton

    Science.gov (United States)

    Jianlin, Luo; Kwok L, Chung; Qiuyi, Li; Shunjian, Chen; Lu, Li; Dongshuai, Hou; Chunwei, Zhang

    2017-03-01

    A combined chemical technique for surface functionalization of carbon nanotubes (CNTs) is presented in this paper. The functionalized CNTs (f-CNTs) were employed to reinforce both the mechanical and electromechanical properties of cementitious composites for the purpose of developing intrinsic self-sensing sensors. With moderate functionalization, the f-CNTs were found to easily disperse in an aqueous system while just aiding with low fraction of dispersants: (a) polyethylene oxide (MPEG), (b) Trition X-100 (Tx-100). Both the FTIR and DSC results show that the oxidation effect of this combined technique were not as strong as those when using conventional strong oxidation methods. As a result, the integrity of electronic structure inside the f-CNT reinforced cement matrixes can be effectively maintained. This paper is aimed at exploring the electrical resistivity and piezoresistive properties of the f-CNT reinforced cement composites (f-CNT-RCCs). Both the monoaxial and cyclic compression tests were undertaken on the specimens with different f-CNT doping levels of 0.1%, 0.2% and 0.3%. Experimental results indicated that excellent piezoresistive properties were achieved at the doping level of 0.3%, wherein high strain sensitivity were recorded as 254.9 and 286.6 for the cases of adding small amounts of surfactants, MPEG and combination of MPEG and Tx100, respectively.

  12. Electrical Resistance and Microstructure of Latex Modified Carbon Fiber Reinforced Cement Composites

    Institute of Scientific and Technical Information of China (English)

    WEI Jian; CHENG Feng; YUAN Hudie

    2012-01-01

    The electrical resistance,flexural strength,and microstructure of carbon fiber reinforced cement composites (CFRC) were improved greatly by adding water-redispersible latex powder.The electrical resistance of CFRC was investigated by two-probe method.The input range of CFRC based strain sensors was therefore increased,whereas electrical resistance was increased and remained in the perfect range of CFRC sensors.The analysis of scanning electron microscopy indicated that elastic latex bridges and a latex layer existed among the interspaces of the adjacent cement hydration products which were responsible for the enhancement of the flexural strength and electrical resistance.The formation mechanism of the elastic latex bridges was also discussed in detail.The continuous moving of two opposite interfaces of the latex solution-air along the interspaces of the adjacent hydrated crystals or colloids was attributed to the formation of the elastic latex bridges.

  13. Sisal fibre pull-out behaviour as a guide to matrix selection for the production of sisal fibre reinforced cement matrix composites

    CSIR Research Space (South Africa)

    Mapiravana, Joe

    2011-12-01

    Full Text Available Natural fibre reinforced cement composites are promising potential materials for use in panelised construction. The structural properties of these composite materials are yet to be fully understood. As the role of the natural fibre is to reinforce...

  14. The influence of stiffeners on axial crushing of glass-fabric-reinforced epoxy composite shells

    Directory of Open Access Journals (Sweden)

    A. Vasanthanathan

    2017-01-01

    Full Text Available A generic static and impact experimental procedure has been developed in this work aimed at improving the stability of glass fabric reinforced epoxy shell structures by bonding with axial stiffeners. Crashworthy structures fabricated from composite laminate with stiffeners would offer energy absorption superior to metallic structures under compressive loading situations. An experimental material characterisation of the glass fabric reinforced epoxy composite under uni-axial tension has been carried out in this study. This work provides a numerical simulation procedure to describe the static and dynamic response of unstiffened glass fabric reinforced epoxy composite shell (without stiffeners and stiffened glass fabric reinforced epoxy composite shell (with axial stiffeners under static and impact loading using the Finite Element Method. The finite element calculation for the present study was made with ANSYS®-LS-DYNA® software. Based upon the experimental and numerical investigations, it has been asserted that glass fabric reinforced epoxy shells stiffened with GFRP stiffeners are better than unstiffened glass fabric reinforced epoxy shell and glass fabric reinforced epoxy shell stiffened with aluminium stiffeners. The failure surfaces of the glass fabric reinforced epoxy composite shell structures tested under impact were examined by SEM.

  15. Multifunctional Cement Composites Strain and Damage Sensors Applied on Reinforced Concrete (RC Structural Elements

    Directory of Open Access Journals (Sweden)

    Pedro Garcés

    2013-03-01

    Full Text Available In this research, strain-sensing and damage-sensing functional properties of cement composites have been studied on a conventional reinforced concrete (RC beam. Carbon nanofiber (CNFCC and fiber (CFCC cement composites were used as sensors on a 4 m long RC beam. Different casting conditions (in situ or attached, service location (under tension or compression and electrical contacts (embedded or superficial were compared. Both CNFCC and CFCC were suitable as strain sensors in reversible (elastic sensing condition testing. CNFCC showed higher sensitivities (gage factor up to 191.8, while CFCC only reached gage factors values of 178.9 (tension or 49.5 (compression. Furthermore, damage-sensing tests were run, increasing the applied load progressively up to the RC beam failure. In these conditions, CNFCC sensors were also strain sensitive, but no damage sensing mechanism was detected for the strain levels achieved during the tests. Hence, these cement composites could act as strain sensors, even for severe damaged structures near to their collapse.

  16. Experimental Study of Cement Mortar-Steel Fiber Reinforced Rammed Earth Wall

    Directory of Open Access Journals (Sweden)

    Shuai Yang

    2012-10-01

    Full Text Available Rammed earth construction is an ancient technique which has recently attracted renewed interest throughout the world. Although rammed earth is currently regarded as a promising material in the construction industry in the context of sustainable development, it is difficult to quantify its bearing capacity, mechanical performance, as well as retrofitting approach, which discourages people from large-scale application in architectural engineering. This paper is devoted to the study of these problems based on rammed earth wall model experimentation. Three different models are studied considering different material components as well as structural configurations. By measuring the strain and deformation of the rammed earth wall models subjected to uniformly-distributed vertical loading, their ultimate bearing capacities are tested based on experimental investigation. Then the method of cement mortar-steel fiber reinforcement (CMSF is carried out to study the ultimate bearing capacity enhancement of the wall models. Results show that the method of cement mortar-steel fiber reinforcement can increase the ultimate bearing capacity of the rammed earth wall models significantly, which is of relevant engineering significance in practical application.

  17. Formability Analysis of Bamboo Fabric Reinforced Poly (Lactic Acid Composites

    Directory of Open Access Journals (Sweden)

    Nurul Fazita M. R.

    2016-07-01

    Full Text Available Poly (lactic acid (PLA composites have made their way into various applications that may require thermoforming to produce 3D shapes. Wrinkles are common in many forming processes and identification of the forming parameters to prevent them in the useful part of the mechanical component is a key consideration. Better prediction of such defects helps to significantly reduce the time required for a tooling design process. The purpose of the experiment discussed here is to investigate the effects of different test parameters on the occurrence of deformations during sheet forming of double curvature shapes with bamboo fabric reinforced-PLA composites. The results demonstrated that the domes formed using hot tooling conditions were better in quality than those formed using cold tooling conditions. Wrinkles were more profound in the warp direction of the composite domes compared to the weft direction. Grid Strain Analysis (GSA identifies the regions of severe deformation and provides useful information regarding the optimisation of processing parameters.

  18. Sustained release of small molecules from carbon nanotube-reinforced monetite calcium phosphate cement.

    Science.gov (United States)

    Lin, Boren; Zhou, Huan; Leaman, Douglas W; Goel, Vijay K; Agarwal, Anand K; Bhaduri, Sarit B

    2014-10-01

    The interest in developing calcium phosphate cement (CPC) as a drug delivery system has risen because of its capability to achieve local and controlled treatment to the site of the bone disease. The purpose of this study was to investigate the release pattern of drug-carrying carboxylic acid-functionalized multi-walled carbon nanotube (MWCNT)-reinforced monetite (DCPA, CaHPO4)-based CPC. Z-Leu-Leu-Leu-al (MG132), a small peptide molecule inhibiting NF-κB-mediated osteoclastic resorption, was used as a model drug. MG132 was added into the cement during setting and released into the medium used to culture indicator cells. Significant cell death was observed in osteoblast MC3T3-E1 cells cultured in the medium incubated with MG132-loaded CPC; however, with the presence of MWCNTs in the cement, the toxic effect was not detectable. NF-κB activation was quantified using a NF-κB promoter-driving luciferase reporter in human embryonic kidney 293 cells. The medium collected after incubation with drug-incorporated CPC with or without MWCNT inhibited TNFα-induced NF-κB activation indicating that the effective amount of MG132 was released. CPC/drug complex showed a rapid release within 24h whereas incorporation of MWCNTs attenuated this burst release effect. In addition, suppression of TNFα-induced osteoclast differentiation in RAW 264.7 cell culture also confirmed the sustained release of MWCNT/CPC/drug. Our data demonstrated the drug delivery capability of this cement composite, which can potentially be used to carry therapeutic molecules to improve bone regeneration in conjunction with its fracture stabilizing function. Furthermore, it suggested a novel approach to lessen the burst release effect of the CPC-based drug delivery system by incorporating functionalized MWCNTs.

  19. Flax fabric reinforced arylated soy protein composites: A brittle-matrix behaviour

    CSIR Research Space (South Africa)

    Kumar, R

    2012-05-01

    Full Text Available Biocomposites were successfully prepared by the reinforcement of soy protein isolate (SPI) with different weight fractions of woven flax fabric. The flax-fabric-reinforced SPI-based composites were then arylated with 2,2-diphenyl-2-hydroxyethanoic...

  20. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic: The effect of surface conditioning

    NARCIS (Netherlands)

    Amaral, R.; Ozcan, M.; Bottino, M.A.; Valandro, L.F.

    2006-01-01

    Objectives. This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Methods. Thirty blocks (5 x 5 x 4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR, VI

  1. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic : The effect of surface conditioning

    NARCIS (Netherlands)

    Amaral, R; Ozcan, M; Bottino, MA; Valandro, LF

    2006-01-01

    Objectives. This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Methods. Thirty blocks (5 x 5 x 4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR, VI

  2. Bond strength of a resin cement to high-alumina and zirconia-reinforced ceramics : The effect of surface conditioning

    NARCIS (Netherlands)

    Felipe Valandro, Luiz; Ozcan, Mutlu; Bottino, Marco Cicero; Bottino, Marco Antonio; Scotti, Roberto; Della Bona, Alvaro

    2006-01-01

    Purpose: The aim of this study was to evaluate the effect of two surface conditioning methods on the microtensile bond strength of a resin cement to three high-strength core ceramics: high alumina-based (In-Ceram Alumina, Procera AllCeram) and zirconia-reinforced alumina-based (in-Ceram Zirconia) ce

  3. Bond strength of a resin cement to high-alumina and zirconia-reinforced ceramics: The effect of surface conditioning

    NARCIS (Netherlands)

    Valandro, L.F.; Ozcan, M.; Bottino, M.C.; Bottino, M.A.; Scotti, R.; Della Bona, A.

    2006-01-01

    Purpose: The aim of this study was to evaluate the effect of two surface conditioning methods on the microtensile bond strength of a resin cement to three high-strength core ceramics: high alumina-based (In-Ceram Alumina, Procera AllCeram) and zirconia-reinforced alumina-based (in-Ceram Zirconia) ce

  4. A non-destructive test method to monitor corrosion products and corrosion-induced cracking in reinforced cement based materials

    DEFF Research Database (Denmark)

    Michel, Alexander; Pease, Bradley Justin; Peterova, Adela;

    2011-01-01

    ) was conducted to describe the impact of water-to-cement ratio and corrosion current density (i.e., corrosion rate) on the reinforcement corrosion process. Focus was placed, in particular on the determination of the corrosion accommodating region (CAR) and time to corrosion-induced cracking. Experimental results...

  5. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic : The effect of surface conditioning

    NARCIS (Netherlands)

    Amaral, R; Ozcan, M; Bottino, MA; Valandro, LF

    Objectives. This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Methods. Thirty blocks (5 x 5 x 4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR,

  6. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic: The effect of surface conditioning

    NARCIS (Netherlands)

    Amaral, R.; Ozcan, M.; Bottino, M.A.; Valandro, L.F.

    2006-01-01

    Objectives. This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Methods. Thirty blocks (5 x 5 x 4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR,

  7. Bond strength of a resin cement to high-alumina and zirconia-reinforced ceramics: The effect of surface conditioning

    NARCIS (Netherlands)

    Valandro, L.F.; Ozcan, M.; Bottino, M.C.; Bottino, M.A.; Scotti, R.; Della Bona, A.

    2006-01-01

    Purpose: The aim of this study was to evaluate the effect of two surface conditioning methods on the microtensile bond strength of a resin cement to three high-strength core ceramics: high alumina-based (In-Ceram Alumina, Procera AllCeram) and zirconia-reinforced alumina-based (in-Ceram Zirconia)

  8. Enhanced mechanical properties of a novel, injectable, fiber-reinforced brushite cement.

    Science.gov (United States)

    Maenz, Stefan; Kunisch, Elke; Mühlstädt, Mike; Böhm, Anne; Kopsch, Victoria; Bossert, Jörg; Kinne, Raimund W; Jandt, Klaus D

    2014-11-01

    Injectable, brushite-forming calcium phosphate cements (CPCs) have great potential as bone replacement materials due to enhanced degradability and long-term inclusion in bone remodeling. However, the use of such brushite-forming CPCs in load-bearing areas is limited by their low mechanical strength. One approach to overcome this limitation is the use of reinforcing fibers. Thus, an injectable, biodegradable, brushite-forming CPC based on beta-tricalcium phosphate/phosphoric acid with fiber reinforcement was developed for minimally invasive surgery. The fibers (diameter 25 µm; length 0.25, 1 or 2mm) were extruded from poly(l-lactide-co-glycolide) acid (PLGA) and added to the CPC (2.5, 5 or 7.5% (w/w)). Independent of the fiber content, injectability of the CPC was retained up to a fiber length of 1mm. The addition of all PLGA fiber types increased diametral tensile strength, biaxial flexural strength, and flexural strength by up to 25% (p ≤ 0.05 for the diametral tensile strength for the CPC with 5% (w/w) 1mm fibers and the biaxial flexural strength of the CPC with 5% (w/w) 0.25 mm fibers). In contrast, the work of fracture strongly and significantly increased (pfiber content, the mechanical properties of the fiber-reinforced CPC were mostly augmented with increasing fiber length. Also, the addition of PLGA fibers to the brushite-forming CPC (up to 7.5% (w/w)) only transiently delayed cell growth and did not decrease cell viability. Fiber reinforcement of CPCs thus augments their mechanical strength while preserving the injectability and biocompatibility required for their application in modern surgery.

  9. Influence of geometry on the fracturing behavior of textile reinforced cement monitored by acoustic emission

    Science.gov (United States)

    Aggelis, D. G.; Blom, J.; El Kadi, M.; Wastiels, J.

    2014-03-01

    In this work the flexural behavior of textile reinforced cement (TRC) laminate is examined using acoustic emission (AE). The TRC composite is a combination of inorganic phosphate cement (IPC) with randomly distributed glass fibres. IPC has been developed at the "Vrije Universiteit Brussel" and shows a neutral pH meaning that glass fibers are hardly attacked. During bending, stresses lead to the activation of damage mechanisms like matrix cracking, delaminations and fiber pull-out being in succession or overlapping in time. AE records the responses of the damage propagation events and allows the monitoring of the fracture behavior from the onset to the final stage. The effect of the span in three-point bending tests, which is varied to create different stress fields, is targeted. Parameters like duration and frequency reveal information about the mode of the damage sources in relation to the span. Results show that as the span decreases, the dominant damage mode shifts away from bending and acquires more shear characteristics by increasing the interlaminar shearing events.

  10. Effect of sewage wastes on the physico-mechanical properties of cement and reinforced steel

    Directory of Open Access Journals (Sweden)

    Magdy A. Abd El-Aziz

    2013-09-01

    Full Text Available The aggressive chemical attack due to salt water is one of many factors affecting the concrete deterioration. This effect includes corrosion of concrete and steel due to the exposure to the aggressive natural or artificial chemicals such as ammonia and ammonium salts. Ammonia is one of the compounds substantially in each of the remnants of sanitation plants, industrial or service of some units within building industrial waste. This work aims to study the effect of different concentrations of ammonia in the popular image on the physical, chemical and mechanical properties of different types of cement such as SRC; OPC and HSC. The electrochemical measurement (linear polarization systems as well as infrared spectroscopy (IR were used in this study. The behaviour of reinforced steel embedded in SRC; OPC and HSC with (5 wt.% ammonium sulphate solution were determined. The results show that ammonia gets a harmful effect on OPC and SRC mortars but HSC shows high resistivity. Also, the reinforced steel is greatly affected in the aggressive medium containing ammonium solution.

  11. Environmental controls for the precipitation of different fibrous calcite cement fabrics

    Science.gov (United States)

    Ritter, Ann-Christine; Wiethoff, Felix; Neuser, Rolf D.; Richter, Detlev K.; Immenhauser, Adrian

    2016-04-01

    Abiogenic calcite cements are widely used as climate archives. They can yield information on environmental change and climate dynamics at the time when the sediment was lithified in a (marine) diagenetic environment. Radiaxial-fibrous (RFC) and fascicular-optic fibrous (FOFC) calcite cements are two very common and similar pore-filling cement fabrics in Palaeozoic and Mesozoic carbonate rocks (Richter et al., 2011) and in Holocene Mg-calcitic speleothems (Richter et al., 2015). Both fabrics are characterised by distinct crystallographic properties. Current research has shown that these fabrics are often underexplored and that a careful combination of conservative and innovative proxies allows for a better applicability of these carbonate archives to paleoenvironmental reconstructions (Ritter et al., 2015). A main uncertainty in this context is that it is still poorly understood which parameters lead to the formation of either RFC or FOFC and if differential crystallographic parameters affect proxy data from these fabrics. This study aims at a better understanding of the environmental factors that may control either RFC or FOFC precipitation. Therefore, suitable samples (a stalagmite and a Triassic marine cement succession), each with clearly differentiable layers of RFC and FOFC, were identified and analysed in high detail using a multi-proxy approach. Detailed thin section and cathodoluminescence analysis of the samples allowed for a precise identification of layers consisting solely of either RFC or FOFC. Isotopic (δ13C, δ18O) as well as trace elemental compositions have been determined and the comparison of data obtained from these different carbonate archives sheds light on changes in environmental parameters during RFC or FOFC precipitation. References: Richter, D.K., et al., 2011. Radiaxial-fibrous calcites: A new look at an old problem. Sedimentary Geology, 239, 26-36 Richter, D.K., et al., 2015. Radiaxial-fibrous and fascicular-optic Mg-calcitic cave

  12. Preparation and Properties of Alkali Activated Foam Cement Reinforced with Polypropylene Fibers

    Institute of Scientific and Technical Information of China (English)

    WANG Lijiu; TAN Xiaoqian

    2011-01-01

    A new form of foam cement was produced by mixing alkali-activated slag,clay,a small amount of polypropylene fibers with prepared foam during stirring.The preparation of the material is quite different from the normal one,which is produced just at room temperature and without baking.The fabrication of this energy-saving and low-price material can be favorable for lowering carbon emission by using recycled industrial wastes.Thermal conductivity of 0.116 W/(m·k),compressive strength of 3.30 MPa,flexural strength of 0.8 MPa and density of 453 kg/m3 can be achieved after 28 days aging.The hydration product is C-S-H with less Ca(OH)2,calcium aluminum and zeolite,which was characterized by X-ray diffraction(XRD) measurement.This prospective foam cement may be expected to be an excellent economical energy-saving building material.

  13. PMMA-based composite materials with reactive ceramic fillers: part III: radiopacifying particle-reinforced bone cements.

    Science.gov (United States)

    Abboud, M; Vol, S; Duguet, E; Fontanille, M

    2000-05-01

    New acrylic bone cements were prepared from alumina particles previously treated by 3-(trimethoxysilyl)propylmethacrylate (gamma-MPS), able to act both as radiopacifying and reinforcing agents. The present study deals with the handling characteristics and the compressive behavior of such cements. The influence of the particles morphology, their surface-modification by gamma-MPS bonding agent, their concentration in the cement, the powder-to-liquid ratio and the benzoyl peroxide concentration are reported. The role of grafted gamma-MPS molecules as coupling agent was confirmed. For several formulations, compressive strength and modulus reached 150 MPa and 3400 MPa respectively. Limitations in the use of such formulations are also comprehensively discussed.

  14. Ultrafine WC-Ni cemented carbides fabricated by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Rong Huiyong [School of Engineering and Technology, China University of Geosciences at Beijing, Beijing 100083 (China); Peng Zhijian, E-mail: pengzhijian@cugb.edu.cn [School of Engineering and Technology, China University of Geosciences at Beijing, Beijing 100083 (China); Ren Xiaoyong; Peng Ying; Wang Chengbiao; Fu Zhiqiang [School of Engineering and Technology, China University of Geosciences at Beijing, Beijing 100083 (China); Qi Longhao; Miao Hezhuo [State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084 (China)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Ultrafine WC-Ni cemented carbides with average WC grain size of about 330 nm prepared by combination of sparking plasma sintering and grain growth inhibitors. Black-Right-Pointing-Pointer Very short mean free path of about 22 nm for crack in metal binder of the obtained materials. Black-Right-Pointing-Pointer Higher hardness than those of WC-Co cemented carbide counterparts sintered by rapid sintering. Black-Right-Pointing-Pointer Observation of fracture along metal binder and no carbon-carbon fracture face. - Abstract: With VC and TaC as WC grain growth inhibitors, ultrafine WC-Ni cemented carbides with different fractions (6-10 wt%) of binder metal nickel were fabricated by utilizing high energy milling together with spark plasma sintering. In the obtained samples, only WC and Ni phases were detected in X-ray diffraction limit. The microstructure of the specimens was examined on fractural, polished, and polished/etched surfaces by scanning electron microscopy, and the results revealed that the average WC grain size of the WC-Ni cemented carbides was about 330 nm, and there were lots of micro-pores in the samples. The relative density of the samples was all higher than 92%. But the measurement of hardness and flexural strength indicated that the existence of micro-pores had no significant influence on the performance of the obtained materials. On the basis of observation on the micro-fracture surface of the samples, it was found that fractures occurred along the binder metal, and the obtained ultrafine WC-Ni cemented carbides showed a very short binder mean free path (about 22 nm), thus resulting in excellent performance in mechanical strength.

  15. Fabrication of a silicon oxide stamp by edge lithography reinforced with silicon nitride for nanoimprint lithography

    NARCIS (Netherlands)

    Zhao, Yiping; Berenschot, Johan W.; de Boer, M.; de Boer, Meint J.; Jansen, Henricus V.; Tas, Niels Roelof; Huskens, Jurriaan; Elwenspoek, Michael Curt

    2008-01-01

    The fabrication of a stamp reinforced with silicon nitride is presented for its use in nanoimprint lithography. The fabrication process is based on edge lithography using conventional optical lithography and wet anisotropic etching of 110 silicon wafers. SiO2 nano-ridges of 20 nm in width were

  16. Fabrication of latex rubber reinforced with micellar nanoparticle as an interface modifier

    Science.gov (United States)

    Reinforced latex rubbers were fabricated by incorporating small amount of nanoparticles as interface modifier. The rubbers were fabricated in a compression mold at 130°C. The incorporated nanoparticles were prepared from wheat protein (gliadin) and ethyl cyanoacrylate (ECA). These nanoparticles were...

  17. Fatigue damage propagation in unidirectional glass fibre reinforced composites made of a non-crimp fabric

    DEFF Research Database (Denmark)

    Hansen, Jens Zangenberg; Brøndsted, Povl; Gillespie Jr., John W.

    2014-01-01

    Damage progression in unidirectional glass fibre reinforced composites manufactured of a non-crimp fabric subjected to tension-tension fatigue is investigated, and a quantitative explanation is given for the experimentally observed stiffness degradation. The underlying damage-mechanisms are exami......Damage progression in unidirectional glass fibre reinforced composites manufactured of a non-crimp fabric subjected to tension-tension fatigue is investigated, and a quantitative explanation is given for the experimentally observed stiffness degradation. The underlying damage...... fatigue, gives rise to axial fibre fractures and a loss of stiffness, eventually leading to final failure. The uniqueness of the present work is identification of the mechanisms associated with tension fatigue failure of unidirectional non-crimp fabrics used for wind turbine blades. The observed damage...... mechanisms need further attention and understanding in order to improve the fatigue life-time of unidirectional glass fibre reinforced non-crimp fabrics....

  18. Effect of Expansive Admixtures on the Shrinkage and Mechanical Properties of High-Performance Fiber-Reinforced Cement Composites

    Directory of Open Access Journals (Sweden)

    Won-Chang Choi

    2013-01-01

    Full Text Available High-performance fiber-reinforced cement composites (HPFRCCs are characterized by strain-hardening and multiple cracking during the inelastic deformation process, but they also develop high shrinkage strain. This study investigates the effects of replacing Portland cement with calcium sulfoaluminate-based expansive admixtures (CSA EXAs to compensate for the shrinkage and associated mechanical behavior of HPFRCCs. Two types of CSA EXA (CSA-K and CSA-J, each with a different chemical composition, are used in this study. Various replacement ratios (0%, 8%, 10%, 12%, and 14% by weight of cement of CSA EXA are considered for the design of HPFRCC mixtures reinforced with 1.5% polyethylene (PE fibers by volume. Mechanical properties, such as shrinkage compensation, compressive strength, flexural strength, and direct tensile strength, of the HPFRCC mixtures are examined. Also, crack width and development are investigated to determine the effects of the EXAs on the performance of the HPFRCC mixtures, and a performance index is used to quantify the performance of mixture. The results indicate that replacements of 10% CSA-K (Type 1 and 8% CSA-J (Type 2 considerably enhance the mechanical properties and reduce shrinkage of HPFRCCs.

  19. Mechanical Behavior and Thermal Stability of Acid-Base Phosphate Cements and Composites Fabricated at Ambient Temperature

    Science.gov (United States)

    Colorado Lopera, Henry Alonso

    This dissertation presents the study of the mechanical behavior and thermal stability of acid-base phosphate cements (PCs) and composites fabricated at ambient temperature. These materials are also known as chemically bonded phosphate ceramics (CBPCs). Among other advantages of using PCs when compared with traditional cements are the better mechanical properties (compressive and flexural strength), lower density, ultra-fast (controllable) setting time, controllable pH, and an environmentally benign process. Several PCs based on wollastonite and calcium and alumino phosphates after thermal exposure up to 1000°C have been investigated. First, the thermo-mechanical and chemical stability of wollastonite-based PC (Wo-PC) exposed to temperatures up to 1000°C in air environment were studied. The effects of processing conditions on the curing and shrinkage of the wollastonite-based PC were studied. The chemical reactions and phase transformations during the fabrication and during the thermal exposure are analyzed in detail using scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermo-gravimetric analysis (TGA Then, the thermo-mechanical and chemical stability of glass, carbon and basalt fiber reinforced Wo-PC composites, were studied using SEM, XRD, TGA. The flexural strength and Weibull statistics were analyzed. A significant strength degradation in the composites were found after the thermal exposure at elevated temperatures due to the interdifusion and chemical reactions across the fibers and the matrix at temperatures over 600°C. To overcome this barrier, we have developed a new PC based on calcium and alumino-phosphates (Ca-Al PCs). The Ca-Al PCs were studied in detail using SEM, XRD, TGA, curing, shrinkage, Weibull statistics, and compression tests. Our study has confirmed that this new composite material is chemically and mechanically stable at temperatures up to 1000°C. Moreover, the compression strength increases after exposure to 1000

  20. Calculation of the relative uniformity coefficient on the green composites reinforced with cotton and hemp fabric

    Science.gov (United States)

    Baciu, Florin; Hadǎr, Anton; Sava, Mihaela; Marinel, Stǎnescu Marius; Bolcu, Dumitru

    2016-06-01

    In this paper it is studied the influence of discontinuities on elastic and mechanical properties of green composite materials (reinforced with fabric of cotton or hemp). In addition, it is studied the way variations of the volume f the reinforcement influences the elasticity modulus and the tensile strength for the studied composite materials. In order to appreciate the difference in properties between different areas of the composite material, and also the dimensions of the defective areas, we have introduced a relative uniformity coefficient with which the mechanical behavior of the studied composite is compared with a reference composite. To validate the theoretical results we have obtained we made some experiments, using green composites reinforced with fabric, with different imperfection introduced special by cutting the fabric.

  1. Development of multi-walled carbon nanotubes reinforced monetite bionanocomposite cements for orthopedic applications

    Energy Technology Data Exchange (ETDEWEB)

    Boroujeni, Nariman Mansoori [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Zhou, Huan, E-mail: Huan.Zhou@Rockets.utoledo.edu [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Luchini, Timothy J.F. [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Bhaduri, Sarit B. [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Division of Dentistry, The University of Toledo, Toledo, OH (United States)

    2013-10-15

    In this study, we present results of our research on biodegradable monetite (DCPA, CaHPO{sub 4}) cement with surface-modified multi-walled carbon nanotubes (mMWCNTs) as potential bone defect repair material. The cement pastes showed desirable handling properties and possessed a suitable setting time for use in surgical setting. The incorporation of mMWCNTs shortened the setting time of DCPA and increased the compressive strength of DCPA cement from 11.09 ± 1.85 MPa to 21.56 ± 2.47 MPa. The cytocompatibility of the materials was investigated in vitro using the preosteoblast cell line MC3T3-E1. An increase of cell numbers was observed on both DCPA and DCPA-mMWCNTs. Scanning electron microscopy (SEM) results also revealed an obvious cell growth on the surface of the cements. Based on these results, DCPA-mMWCNTs composite cements can be considered as potential bone defect repair materials. - Highlights: • A monetite bone cement for orthopedic applications is reported. • Incorporation of MWCNTs into monetite bone cement is discussed. • Surface functionalized MWCNTs can improve the mechanical strength of monetite cement. • MWCNTs have no impacts on the cytocompatibility of monetite cements.

  2. Influence of the Geometric Parameters on the Mechanical Behaviour of Fabric Reinforced Composite Laminates

    Science.gov (United States)

    Axinte, Andrei; Taranu, Nicolae; Bejan, Liliana

    2016-10-01

    A polymer fabric reinforced composite is a high performance material, which combines strength of the fibres with the flexibility and ductility of the matrix. For a better drapeability, the tows of fibres are interleaved, resulting the woven fabric, used as reinforcement. The complex geometric shape of the fabric is of paramount importance in establishing the deformability of the textile reinforced composite laminates. In this paper, an approach based on Classical Lamination Theory ( CLT), combined with Finite Element Methods ( FEM), using Failure Analysis and Internal Load Redistribution, is utilised, in order to compare the behaviour of the material under specific loads. The main goal is to analyse the deformability of certain types of textile reinforced composite laminates, using carbon fibre satin as reinforcement and epoxy resin as matrix. This is accomplished by studying the variation of the in-plane strains, given the fluctuation of several geometric parameters, namely the width of the reinforcing tow, the gap between two consecutive tows, the angle of laminae in a multi-layered configuration and the tows fibre volume fraction.

  3. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; Stinton, D.P. [Oak Ridge National Lab., TN (United States); Matlin, W.M.; Liaw, P.K. [Univ. of Tennessee, Knoxville, TN (United States)

    1996-08-01

    Processing equipment for the infiltration of fiber-reinforced composite tubes is being designed that incorporates improvements over the equipment used to infiltrate disks. A computer-controlled machine-man interface is being developed to allow for total control of all processing variables. Additionally, several improvements are being made to the furnace that will reduce the complexity and cost of the process. These improvements include the incorporation of free standing preforms, cast mandrels, and simpler graphite heating elements.

  4. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; Matlin, W.M.; Stinton, D.P.; Liaw, P.K.

    1996-06-01

    Processing equipment for the infiltration of fiber-reinforced composite tubes is being designed that incorporates improvements over the equipment used to infiltrate disks. A computer-controlled machine-man interface is being developed to allow for total control of all processing variables. Additionally, several improvements are being made to the furnace that will reduce the complexity and cost of the process. These improvements include the incorporation of free standing preforms, cast mandrels, and simpler graphite heating elements.

  5. As-Fabricated Reinforced Carbon/Carbon Characterized

    Science.gov (United States)

    Jacobson, Nathan S.; Calomino, Anthony M.; Webster, Neal

    2004-01-01

    Reinforced carbon/carbon (RCC) is a critical material for the space shuttle orbiter. It is used on the wing leading edge and the nose cap, where maximum temperatures are reached on reentry. The existing leading-edge system is a single-plate RCC composite construction with a wall thickness of approximately 1/4 in., making it a prime reliant protection scheme for vehicle operation.

  6. A rapid cyclic voltammetric method for studying cement factors affecting the corrosion of reinforced concrete

    Energy Technology Data Exchange (ETDEWEB)

    Foulkes, F.R.; McGrath, P. (Univ. of Toronto, Ontario (Canada))

    1999-06-01

    A rapid cyclic voltammetric method for studying the influence of cement factors on the corrosion of embedded iron and steel in hardened cement paste is described. The technique employs a cement electrode'' consisting of an iron or steel wire embedded in a miniature cylinder of hardened cement paste. The rapid cyclic voltammetric method is fast, reproducible, and provides information on the corrosiveness of the pore solution environment surrounding the embedded metal. The usefulness of the method is demonstrated by showing how it can be used to evaluate the threshold chloride content of hardened ordinary portland cement paste at which corrosion begins and by using it to evaluate the relative efficacy of several admixed corrosion inhibitors.

  7. Development of multi-walled carbon nanotubes reinforced monetite bionanocomposite cements for orthopedic applications.

    Science.gov (United States)

    Boroujeni, Nariman Mansoori; Zhou, Huan; Luchini, Timothy J F; Bhaduri, Sarit B

    2013-10-01

    In this study, we present results of our research on biodegradable monetite (DCPA, CaHPO4) cement with surface-modified multi-walled carbon nanotubes (mMWCNTs) as potential bone defect repair material. The cement pastes showed desirable handling properties and possessed a suitable setting time for use in surgical setting. The incorporation of mMWCNTs shortened the setting time of DCPA and increased the compressive strength of DCPA cement from 11.09±1.85 MPa to 21.56±2.47 MPa. The cytocompatibility of the materials was investigated in vitro using the preosteoblast cell line MC3T3-E1. An increase of cell numbers was observed on both DCPA and DCPA-mMWCNTs. Scanning electron microscopy (SEM) results also revealed an obvious cell growth on the surface of the cements. Based on these results, DCPA-mMWCNTs composite cements can be considered as potential bone defect repair materials.

  8. A Fully Contained Resin Infusion Process for Fiber-Reinforced Polymer Composite Fabrication and Repair

    Science.gov (United States)

    2013-01-01

    Assisted Resin Transfer Molding ( VARTM ) process is applicable for fiber-reinforced polymer (FRP) composite fabrication and repair. However, VARTM in...scenario is a fully enclosed VARTM system that limits the need for laboratory or manufacturing equipment. The Bladder-Bag VARTM (BBVARTM) technique...composite fabrication, VARTM , composite repair, in-field repair 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER

  9. Assessment of the infrared welding process for a carbon fabric reinforced pps

    OpenAIRE

    Allaer, Klaas; De Baere, Ives; Jacques, Stefan; Van Paepegem, Wim; Degrieck, Joris

    2012-01-01

    This study assesses the use of infrared welding for a carbon fabric reinforced polyphenylene sulphide. Infrared light is used in order to melt the thermoplastic matrix of the two components, after which they are joined together under pressure. Welding parameters such as power of the infrared lights, heating time, contact pressure and consolidation time are optimised. Next, a series of joints is fabricated and the interlaminar behaviour of the weld is characterised. For the mode I behaviour, t...

  10. Fabrication of Zirconia-Reinforced Lithium Silicate Ceramic Restorations Using a Complete Digital Workflow

    OpenAIRE

    Sven Rinke; Matthias Rödiger; Dirk Ziebolz; Anne-Kathrin Schmidt

    2015-01-01

    This case report describes the fabrication of monolithic all-ceramic restorations using zirconia-reinforced lithium silicate (ZLS) ceramics. The use of powder-free intraoral scanner, generative fabrication technology of the working model, and CAD/CAM of the restorations in the dental laboratory allows a completely digitized workflow. The newly introduced ZLS ceramics offer a unique combination of fracture strength (>420 MPa), excellent optical properties, and optimum polishing characteristics...

  11. Fabrication and tribological properties of Al reinforced with carbon fibres

    Energy Technology Data Exchange (ETDEWEB)

    Estrems Amestoy, M.; Faura Mateu, F. [Universidad Politecnica de Cartagena (Spain); Froyen, L. [Department of Metallurgy and Materials Engineering. Katholieke Universiteit Lewen. Heverlee. Belgium (Belgium)

    2000-07-01

    The present work studies the manufacturing process of Al reinforced with Carbon Fibres (CF) by Squeeze Casting, establishing the variables for obtaining and acceptable product with little Al{sub 4}C{sub 3} at the interface. Friction and wear tests are performed and the necessary conditions for the formation of a tribofilm are established. The tests how an increasing resistance to abrasion due to their own wear mechanism. Certain design criteria for those components subjected to friction are recommended in order to maximize the mechanical performance of the tribological system. (Author ) 16 refs.

  12. Reinforcing graphene oxide/cement composite with NH$_2$ functionalizing group

    Indian Academy of Sciences (India)

    M EBRAHIMIZADEH ABRISHAMI; V ZAHABI

    2016-08-01

    In this study, pure and NH$_2$-functionalized graphene oxide (GO) nanosheets have been added to the cement mortar with different weight percents (0.05, 0.10, 0.15, 0.20 and 0.25 wt%). In addition, the effects of functionalizing GO on the microstructure and mechanical properties (flexural/compressive strengths) of cement composite have been investigated for the first time. Scanning electron microscopy (SEM) images showed that GO filledthe pores and well dispersed in concrete matrix, whereas exceeding GO additive from 0.10 wt% caused the formation of agglomerates and microcracks. In addition, mercury intrusion porosimetry confirmed the significant effects of GO and functionalizing groups on filling the pores. NH2-functionalizing helped to improve the cohesion between GO nanosheets and cement composite. Compressive strengths increased from 39 MPa for the sample without GO to54.23 MPa for the cement composites containing 0.10 wt% of NH$_2$-functionalized GO. Moreover, the flexural strength increased to 23.4 and 38.4% by compositing the cement paste with 0.10 wt% of pure and NH$_2$-functionalized GO, compared to the sample without GO, respectively. It was shown that functionalizing considerably enhanced the mechanical properties of GO/cement composite due to the interfacial strength between calcium silicatehydrates (C-S-H) gel and functionalized GO nanosheets as observed in SEM images. The morphological results were in good agreement with the trend obtained in mechanical properties of GO/cement composites.

  13. Shape distortions in fabric reinforced composite products due to processing induced fibre reorientation

    NARCIS (Netherlands)

    Lamers, Edwin Adriaan Derk

    2004-01-01

    Woven fabric reinforced composite materials are typically applied in plate or shell structures, such as ribs, stiffeners and skins. Products of these types can be produced with several production processes. A few examples are diaphragm forming, matched metal die forming and rubber press forming. Sha

  14. Shape distortions in fabric reinforced composite products due to processing induced fibre reorientation

    NARCIS (Netherlands)

    Lamers, E.A.D.

    2004-01-01

    Woven fabric reinforced composite materials are typically applied in plate or shell structures, such as ribs, stiffeners and skins. Products of these types can be produced with several production processes. A few examples are diaphragm forming, matched metal die forming and rubber press forming.

  15. The Effect of Pre-Tension on Deformation Behaviour of Natural Fabric Reinforced Composite

    Directory of Open Access Journals (Sweden)

    Paulė BEKAMPIENĖ

    2011-03-01

    Full Text Available In the fiber-reinforced composites industry together with the promotion of environmental friendly production, synthetic materials are attempted to be replaced by renewable, biodegradable and recyclable materials. The most important challenge is to improve strength and durability of these materials. Matrix that supports the fiber-reinforcement in composite generally is brittle and deformation causes fragmentation of the matrix. Pre-tension of reinforcement is a well-known method to increase tensile strength of woven material. The current study develops the idea to use pre-tension of woven fabric in order to improve quality and strength properties of the obtained composite. Natural (cotton fiber and synthetic (glass fiber woven fabrics were investigated. The pressure forming operation was carried out in order to study clamping imposed strain variation across the surface of woven fabric. The uniaxial tension test of single-layer composite specimens with and without pre-tension was performed to study the effect of pre-tension on strength properties of composite. The results have shown that pre-tension imposed by clamping is an effective method to improve the quality of shaped composite parts (more smoothed contour is obtained and to increase the strength properties of composite reinforced by woven natural fabric. After pre-tension the tensile strength at break increased in 12 % in warp direction, in 58 % in weft direction and in 39 % in bias direction.http://dx.doi.org/10.5755/j01.ms.17.1.250

  16. Effect of water absorption on the mechanical properties of cotton fabric-reinforced geopolymer composites

    Directory of Open Access Journals (Sweden)

    T. Alomayri

    2014-09-01

    Full Text Available Cotton fabric (CF reinforced geopolymer composites are fabricated with fibre loadings of 4.5, 6.2 and 8.3 wt%. Results show that flexural strength, flexural modulus, impact strength, hardness and fracture toughness are increased as the fibre content increased. The ultimate mechanical properties were achieved with a fibre content of 8.3 wt%. The effect of water absorption on mechanical and physical properties of CF reinforced geopolymer composites is also investigated. The magnitude of maximum water uptake and diffusion coefficient is increased with an increase in fibre content. Flexural strength, modulus, impact strength, hardness and fracture toughness values are decreased as a result of water absorption. Scanning electron microscopy (SEM is used to characterise the microstructure and failure mechanisms of dry and wet cotton fibre reinforced geopolymer composites.

  17. Shape memory performance of asymmetrically reinforced epoxy/carbon fibre fabric composites in flexure

    Directory of Open Access Journals (Sweden)

    M. Fejos

    2013-06-01

    Full Text Available In this study asymmetrically reinforced epoxy (EP/carbon fibre (CF fabric composites were prepared and their shape memory properties were quantified in both unconstrained and fully constrained flexural tests performed in a dynamic mechanical analyser (DMA. Asymmetric layering was achieved by incorporating two and four CF fabric layers whereby setting a resin- and reinforcement-rich layer ratio of 1/4 and 1/2, respectively. The recovery stress was markedly increased with increasing CF content. The related stress was always higher when the CF-rich layer experienced tension load locally. Specimens with CF-rich layers on the tension side yielded better shape fixity ratio, than those with reinforcement layering on the compression side. Cyclic unconstrained shape memory tests were also run up to five cycles on specimens having the CF-rich layer under local tension. This resulted in marginal changes in the shape fixity and recovery ratios.

  18. In-situ SEM and Stereomicroscope Study Delamination Evolution of Glass Fabric Reinforced Polycarbonate Composite

    Institute of Scientific and Technical Information of China (English)

    WANG Jun-bo; LI Ying-ming; XUE Ji-wen; SUN Yong-qi; ZHENG Shui-rong; SUN Man-lin

    2002-01-01

    The main objective of this study is to investigate the dynamic processes of the interlaminar fracture of the glass woven fabric reinforced polycarbonate composites through in- situ observation of specimen under mode I loading by SEM and stereomicroscope. The results show that the evolution processes of interlaminar damage consist of micro-crack initiation, growth and coalescence and advance forward of the main crack tip. The mode of crack propagation in fabric composite observed here seem to be the propagation along interface, interface change and fabric separation.

  19. Study on an Improved Phosphate Cement Binder for the Development of Fiber-Reinforced Inorganic Polymer Composites

    Directory of Open Access Journals (Sweden)

    Zhu Ding

    2014-11-01

    Full Text Available Magnesium phosphate cement (MPC has been proven to be a very good repair material for deteriorated concrete structures. It has excellent adhesion performance, leading to high bonding strength with old concrete substrates. This paper presents an experimental study into the properties of MPC binder as the matrix of carbon fiber sheets to form fiber-reinforced inorganic polymer (FRIP composites. The physical and mechanical performance of the fresh mixed and the hardened MPC paste, the bond strength of carbon fiber sheets in the MPC matrix, the tensile strength of the carbon FRIP composites and the microstructure of the MPC matrix and fiber-reinforced MPC composites were investigated. The test results showed that the improved MPC binder is well suited for developing FRIP composites, which can be a promising alternative to externally-bonded fiber-reinforced polymer (FRP composites for the strengthening of concrete structures. Through the present study, an in-depth understanding of the behavior of fiber-reinforced inorganic MPC composites has been achieved.

  20. Waste Cellulose from Tetra Pak Packages as Reinforcement of Cement Concrete

    National Research Council Canada - National Science Library

    Martínez-Barrera, Gonzalo; Barrera-Díaz, Carlos E; Cuevas-Yañez, Erick; Varela-Guerrero, Víctor; Vigueras-Santiago, Enrique; Ávila-Córdoba, Liliana; Martínez-López, Miguel

    2015-01-01

    ... for modification of physicochemical properties of materials. The aim of this work is to study the effects of waste cellulose from Tetra Pak packing and gamma radiation on the mechanical properties of cement concrete...

  1. Evaluation of electromagnetic shielding effectiveness of multi-axial fabrics and their reinforced PES composites

    Indian Academy of Sciences (India)

    RAMAZAN ERDEM

    2016-08-01

    The usage of electrical and electronic equipments has been increasing in daily life, which has a potential hazardous impact on humans and other living organisms. In this paper, multi-axial fabrics containing steel yarns and carbon filaments, and their polyester (PES) resin-reinforced composites have been prepared for electromagnetic shielding applications. The electromagnetic shielding effectiveness (EMSE) of these structures was determined by using coaxial transmission line measurement technique. There were eight different multi-axial fabrics constructed. It was observed that the amount and the orientation of carbon and stainless steel yarns influenced the EMSE performances of multi-axial fabrics and their reinforced PES composites. The structures containing both carbon filaments and stainless steel yarns exhibited better EMSE than the ones including only one type of conductive yarns or filaments. Also, the EMSE performance of multi-axial fabrics was found better than their reinforced composites. The best EMSE results were obtained for the fabric, including two layers of yarns (steel and carbon) on top of each otherin the centre with the angle of 45 and $−$45$^{\\circ}$.

  2. Shape Effect of Electrochemical Chloride Extraction in Structural Reinforced Concrete Elements Using a New Cement-Based Anodic System

    Directory of Open Access Journals (Sweden)

    Jesús Carmona

    2015-05-01

    Full Text Available This article shows the research carried out by the authors focused on how the shape of structural reinforced concrete elements treated with electrochemical chloride extraction can affect the efficiency of this process. Assuming the current use of different anode systems, the present study considers the comparison of results between conventional anodes based on Ti-RuO2 wire mesh and a cement-based anodic system such as a paste of graphite-cement. Reinforced concrete elements of a meter length were molded to serve as laboratory specimens, to closely represent authentic structural supports, with circular and rectangular sections. Results confirm almost equal performances for both types of anode systems when electrochemical chloride extraction is applied to isotropic structural elements. In the case of anisotropic ones, such as rectangular sections with no uniformly distributed rebar, differences in electrical flow density were detected during the treatment. Those differences were more extreme for Ti-RuO2 mesh anode system. This particular shape effect is evidenced by obtaining the efficiencies of electrochemical chloride extraction in different points of specimens.

  3. Fabrication and characterization of carbon nanotube reinforced magnesium matrix composites

    Science.gov (United States)

    Mindivan, Harun; Efe, Arife; Kosatepe, A. Hadi; Kayali, E. Sabri

    2014-11-01

    In the present investigation, Mg chips are recycled to produce Mg-6 wt.% Al reinforced with 0.5, 1, 2 and 4 wt.% nanosized CNTs by mechanical ball milling, cold pressing and subsequently hot extrusion process without sintering step. The microstructure, mechanical properties and corrosion behavior of Mg/Al without CNT (base alloy) and composites were evaluated. The distribution of CNTs was analyzed using a Scanning Electron Microscopy (SEM) equipped with Energy Dispersive Spectroscopy (EDS) analyzer and a Wavelength Dispersive X-Ray Fluorescence spectrometer (WDXRF). Microstructural analysis revealed that the CNTs on the Mg chips were present throughout the extrusion direction and the uniform distribution of CNTs at the chip surface decreased with increase in the CNT content. The results of the mechanical and corrosion test showed that small addition of CNTs (0.5 wt.%) evidently improved the hardness and corrosion resistance of the composite by comparing with the base alloy, while increase in the CNT weight fraction in the initial mixture resulted in a significant decrease of hardness, compression strength, wear rate and corrosion resistance.

  4. Fabrication and properties of graphene reinforced silicon nitride composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yaping; Li, Bin, E-mail: libin@nudt.edu.cn; Zhang, Changrui; Wang, Siqing; Liu, Kun; Yang, Bei

    2015-09-17

    Silicon nitride (Si{sub 3}N{sub 4}) ceramic composites reinforced with graphene platelets (GPLs) were prepared by hot pressed sintering and pressureless sintering respectively. Adequate intermixing of the GPLs and the ceramic powders was achieved in nmethyl-pyrrolidone (NMP) under ultrasonic vibration followed by ball-milling. The microstructure and phases of the Si{sub 3}N{sub 4} ceramic composites were investigated by Field Emission Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). The effects of GPLs on the composites' mechanical properties were analyzed. The results showed that GPLs were well dispersed in the Si{sub 3}N{sub 4} ceramic matrix. β-Si{sub 3}N{sub 4,} O′-sialon and GPLs were present in the hot-pressed composites while pressureless sintered composites contain β-Si{sub 3}N{sub 4}, Si, SiC and GPLs. Graphene has the potential to improve the mechanical properties of both the hot pressed and pressureless sintered composites. Toughening effect of GPLs on the pressureless sintered composites appeared more effective than that on the hot pressed composites. Toughening mechanisms, such as pull-out, crack bridging and crack deflection induced by GPLs were observed in the composites prepared by the two methods.

  5. Fabrication and tribological properties of Al reinforced with carbon fibers

    Directory of Open Access Journals (Sweden)

    Estrems Amestoy, Manuel

    2000-10-01

    Full Text Available The present work studies the manufacturing process of Al reinforced with Carbon Fibres (CF by "Squeeze Casting", establishing the variables for obtaining an acceptable product with little Al4C3 at the interface. Friction and wear tests are performed and the necessary conditions for the formation of a tribofilm are established. The tests show an increasing resistance to abrasion due to their own wear mechanism. Certain design criteria for those components subjected to friction are recommended in order to maximise the mechanical performance of the tribological system.

    Este trabajo estudia el proceso de fabricación de composites Al reforzado con fibras de carbono mediante la técnica ''Squeeze Casting'', estableciendo las variables para obtener un producto aceptable que tenga poca cantidad de Al4C3 en la interfase. Se han realizado ensayos de fricción y desgaste y se han establecido las condiciones necesarias para la formación de la tribocapa. Se muestra la alta capacidad de resistencia a la abrasión de las piezas producidas debido a su propio mecanismo de desgaste y se recomiendan ciertos criterios de diseño para componentes mecánicos con el fin de optimizar las prestaciones mecánicas en un sistema tribológico.

  6. Effect of Sea Water and Natural Ageing on Residual Strength of Epoxy Laminates, Reinforced with Glass and Carbon Woven Fabrics

    Directory of Open Access Journals (Sweden)

    Andrzej Komorek

    2016-01-01

    Full Text Available This paper reports the results of the effect of sea water, natural ageing, and cross-impact loading on flexural strength and residual flexural strength of epoxy laminates with glass woven fabrics and hybrid reinforcement with glass and carbon woven fabrics. The tests were conducted on samples with different fibre reinforcement both before and after low energy cross-impact loading. Carbon fabrics decreased residual strength of the composites.

  7. Behaviour of alkaline cement mortars reinforced with acrylic and polypropylene fibres

    Directory of Open Access Journals (Sweden)

    Puertas, P.

    2000-09-01

    Full Text Available In the present work, the behaviour of alkaline cement mortars reinforced with fibres of different nature (acrylic and polypropylene fibres is studied. Also the chemical stability of those fibres in strong alkaline medium has been investigated. Three different matrixes have been used: glass blast furnace slag activated with NaOH 2M (room temperature, 22 ºC; fly ash activated with NaOH 8M, cured at 85ºC during 24 hours and 50% fly ash / 50% slag activated with NaOH 8M, room temperature. The fibre content was 0,2 and 1% in mortar volume. The tests carried out were: tenacity and tenacity index, impact resistance and drying shrinkage. On the specimens tested, a microstructural study by SEM/EDX was carried out. The results obtained have demonstrated the following: a The acrylic and polypropylene fibres are stable in strong basic media, although the first undergo hydrolysis/ hydration processes showed by the alteration of the surface texture, b with low fibre contents (0,2% in volume, tenacity and tenacity index of these mortars remain unaffected. With higher contents (1%, an increase of the corresponding values is produced. This increment is higher in mortars with alkaline activated slag, c For the three matrixes studied, the polypropylene fibres increase the impact strength in higher degree than the acrylic ones. The reinforcement effect is more significative in matrix A and when the fibre content is 1% in volume, d the shrinkage of these mortars is modified depending on the matrix and fibre type. In mortars of activated slag, fibres do not reduce the shrinkage. In mortars of activated fly ash reinforced with acrylic fibres, shrinkage is lower than those containing polypropylene fibres are. Finally, in mortars of fly ash/ activated slag, the two fibres decrease the drying shrinkage.

    En el presente trabajo se estudia el comportamiento de morteros de cementos alcalinos reforzados con fibras de distinta naturaleza (acrílica y de polipropileno

  8. Corrosion performance of reinforced mortar in the presence of polymeric nano-aggregates: electrochemical behavior, surface analysis, and properties of the steel/cement paste interface

    OpenAIRE

    Hu, J; Koleva, D. A.; Breugel, K. van

    2012-01-01

    This study reports on the effect of admixed polyethylene oxide-b-polystyrene (PEO113-b-PS70)micelles on corrosion behavior of reinforced mortar. The electrochemical measurement shows that the corrosion performance of the reinforcing steel was not significantly improved. However, surface analysis and microstructural investigation at the steel/cement paste interface reveal that the admixed micelles lead to a steel surface layer with enhanced barrier properties in terms of morphology and composi...

  9. Flexural strengthening of reinforced concrete beams with carbon fibers reinforced polymer (CFRP sheet bonded to a transition layer of high performance cement-based composite

    Directory of Open Access Journals (Sweden)

    V. J. Ferrari

    Full Text Available Resistance to corrosion, high tensile strength, low weight, easiness and rapidity of application, are characteristics that have contributed to the spread of the strengthening technique characterized by bonding of carbon fibers reinforced polymer (CFRP. This research aimed to develop an innovate strengthening method for RC beams, based on a high performance cement-based composite of steel fibers (macro + microfibers to be applied as a transition layer. The purpose of this transition layer is better control the cracking of concrete and detain or even avoid premature debonding of strengthening. A preliminary study in short beams molded with steel fibers and strengthened with CFRP sheet, was carried out where was verified that the conception of the transition layer is valid. Tests were developed to get a cement-based composite with adequate characteristics to constitute the layer transition. Results showed the possibility to develop a high performance material with a pseudo strain-hardening behavior, high strength and fracture toughness. The application of the strengthening on the transition layer surface had significantly to improve the performance levels of the strengthened beam. It summary, it was proven the efficiency of the new strengthening technique, and much information can be used as criteria of projects for repaired and strengthened structures.

  10. Green Route Fabrication of Graphene Oxide Reinforced Polymer Composites with Enhanced Mechanical Properties

    OpenAIRE

    Mahendran, R.; Sridharan, D.; Santhakumar, K.; G. Gnanasekaran

    2016-01-01

    A facile and “Green” route has been applied to fabricate graphene oxide (GO) reinforced polymer composites utilizing “deionized water” as solvent. The GO was reinforced into water soluble poly(vinyl alcohol) (PVA) and poly-2-acrylamido-2-methyl-1-propanesulfonic acid (PAMPS) matrix by ultrasonication followed by mechanical stirring. The incorporation and dispersion of the GO in the polymer matrix were analyzed by XRD, FE-SEM, AFM, FT-IR, and TGA. Further, the FE-SEM and AFM images revealed th...

  11. Longitudinal Mechanical Properties of Small-Diameter Polyurethane Vascular Graft Reinforced by Tubular Knitted Fabric

    Institute of Scientific and Technical Information of China (English)

    ZHOU Fei; XU Wei-lin; OUYANG Chen-xi; LIU Xiu-ying; XU Hai-ye; YAO Mu

    2008-01-01

    The vascular graft with 4 nun diameter was prepared by casting one layer of polyurethane (PU) film onto the knitting tubular fabric as the reinforced support. The effects of different PU content and wall thickness on the longitudinal mechanical properties of vascular graft were investigated. The breaking elongation, breaking force, initial modulus and breaking work were studied. The results showed that the longitudinal mechanical properties of vascular graft were enhanced as the content of polyurethane increased, which resulted from the combination of PU excellent elasticity and fabric preferable strength.

  12. Fabrication of Zirconia-Reinforced Lithium Silicate Ceramic Restorations Using a Complete Digital Workflow

    Directory of Open Access Journals (Sweden)

    Sven Rinke

    2015-01-01

    Full Text Available This case report describes the fabrication of monolithic all-ceramic restorations using zirconia-reinforced lithium silicate (ZLS ceramics. The use of powder-free intraoral scanner, generative fabrication technology of the working model, and CAD/CAM of the restorations in the dental laboratory allows a completely digitized workflow. The newly introduced ZLS ceramics offer a unique combination of fracture strength (>420 MPa, excellent optical properties, and optimum polishing characteristics, thus making them an interesting material option for monolithic restorations in the digital workflow.

  13. Viscoelastic and thermal properties of woven sisal fabric reinforced natural rubber biocomposites

    CSIR Research Space (South Africa)

    John, MJ

    2009-01-01

    Full Text Available P.O. Kottayam, Kerala, India. -686 560 3 Central Power Research Institute, Polymer Laboratory, Bangalore, India-560 080. Abstract Textile- rubber biocomposites were prepared by reinforcing natural rubber with woven sisal fabric...-matrix interface. *Corresponding author E-mail: mjohn@csir.oc.za,mayajacobkunnel@yahoo.com Page 1 of 27 John Wiley & Sons, Inc. Journal of Applied Polymer Science For Peer Revie w 2 1. INTRODUCTION Developments in composite technology have...

  14. Feasibility study of fusion bonding for carbon fabric reinforced Polyphenylene Sulphide by hot-tool welding

    OpenAIRE

    De Baere, Ives; Van Paepegem, Wim; Degrieck, Joris

    2012-01-01

    In recent years, there is a growing interest in joining techniques for thermoplastic composites as an alternative to adhesive bonding. In this article, a fusion bonding process called hot-tool welding is investigated for this purpose and the used material is a carbon fabric reinforced polyphenylene sulphide. The welds are first observed through a microscope, after which the quality is experimentally assessed using a short three-point bending setup. A comparison is made between the welded spec...

  15. RC beams shear-strengthened with fabric-reinforced-cementitious-matrix (FRCM) composite

    Science.gov (United States)

    Loreto, Giovanni; Babaeidarabad, Saman; Leardini, Lorenzo; Nanni, Antonio

    2015-12-01

    The interest in retrofit/rehabilitation of existing concrete structures has increased due to degradation and/or introduction of more stringent design requirements. Among the externally-bonded strengthening systems fiber-reinforced polymers is the most widely known technology. Despite its effectiveness as a material system, the presence of an organic binder has some drawbacks that could be addressed by using in its place a cementitious binder as in fabric-reinforced cementitious matrix (FRCM) systems. The purpose of this paper is to evaluate the behavior of reinforced concrete (RC) beams strengthened in shear with U-wraps made of FRCM. An extensive experimental program was undertaken in order to understand and characterize this composite when used as a strengthening system. The laboratory results demonstrate the technical viability of FRCM for shear strengthening of RC beams. Based on the experimental and analytical results, FRCM increases shear strength but not proportionally to the number of fabric plies installed. On the other hand, FRCM failure modes are related with a high consistency to the amount of external reinforcement applied. Design considerations based on the algorithms proposed by ACI guidelines are also provided.

  16. Study of the Microstructure Evolution of Low-pH Cements Based on Ordinary Portland Cement (OPC) by Mid- and Near-Infrared Spectroscopy, and Their Influence on Corrosion of Steel Reinforcement.

    Science.gov (United States)

    García Calvo, José Luis; Sánchez Moreno, Mercedes; Alonso Alonso, María Cruz; Hidalgo López, Ana; García Olmo, Juan

    2013-06-18

    Low-pH cements are designed to be used in underground repositories for high level waste. When they are based on Ordinary Portland Cements (OPC), high mineral admixture contents must be used which significantly modify their microstructure properties and performance. This paper evaluates the microstructure evolution of low-pH cement pastes based on OPC plus silica fume and/or fly ashes, using Mid-Infrared and Near-Infrared spectroscopy to detect cement pastes mainly composed of high polymerized C-A-S-H gels with low C/S ratios. In addition, the lower pore solution pH of these special cementitious materials have been monitored with embedded metallic sensors. Besides, as the use of reinforced concrete can be required in underground repositories, the influence of low-pH cementitious materials on steel reinforcement corrosion was analysed. Due to their lower pore solution pH and their different pore solution chemical composition a clear influence on steel reinforcement corrosion was detected.

  17. Optimisation of Fabric Reinforced Polymer Composites Using a Variant of Genetic Algorithm

    Science.gov (United States)

    Axinte, Andrei; Taranu, Nicolae; Bejan, Liliana; Hudisteanu, Iuliana

    2017-03-01

    Fabric reinforced polymeric composites are high performance materials with a rather complex fabric geometry. Therefore, modelling this type of material is a cumbersome task, especially when an efficient use is targeted. One of the most important issue of its design process is the optimisation of the individual laminae and of the laminated structure as a whole. In order to do that, a parametric model of the material has been defined, emphasising the many geometric variables needed to be correlated in the complex process of optimisation. The input parameters involved in this work, include: widths or heights of the tows and the laminate stacking sequence, which are discrete variables, while the gaps between adjacent tows and the height of the neat matrix are continuous variables. This work is one of the first attempts of using a Genetic Algorithm (GA) to optimise the geometrical parameters of satin reinforced multi-layer composites. Given the mixed type of the input parameters involved, an original software called SOMGA (Satin Optimisation with a Modified Genetic Algorithm) has been conceived and utilised in this work. The main goal is to find the best possible solution to the problem of designing a composite material which is able to withstand to a given set of external, in-plane, loads. The optimisation process has been performed using a fitness function which can analyse and compare mechanical behaviour of different fabric reinforced composites, the results being correlated with the ultimate strains, which demonstrate the efficiency of the composite structure.

  18. Mechanical Characterization of High-Performance Steel-Fiber Reinforced Cement Composites with Self-Healing Effect

    Directory of Open Access Journals (Sweden)

    Dong Joo Kim

    2014-01-01

    Full Text Available The crack self-healing behavior of high-performance steel-fiber reinforced cement composites (HPSFRCs was investigated. High-strength deformed steel fibers were employed in a high strength mortar with very fine silica sand to decreasing the crack width by generating higher interfacial bond strength. The width of micro-cracks, strongly affected by the type of fiber and sand, clearly produced the effects on the self-healing behavior. The use of fine silica sand in HPSFRCs with high strength deformed steel fibers successfully led to rapid healing owing to very fine cracks with width less than 20 µm. The use of very fine silica sand instead of normal sand produced 17%–19% higher tensile strength and 51%–58% smaller width of micro-cracks.

  19. CAD/CAM-fabricated template for locating implant abutment screws in cement-retained anatomic zirconia restorations.

    Science.gov (United States)

    Lee, Du-Hyeong

    2015-09-01

    Currently, appropriate access to the abutment screw within cement-retained implant restorations is determined using labor-intensive techniques. The introduction of computer-aided design/computer-aided manufacture technology has facilitated a digitized fabrication process to yield a template that can enhance the accuracy of drilling a screw channel. This article describes the method used to create these guide templates by using advanced dental design programs and machining.

  20. Analysis of knitted fabric reinforced flexible composites and applications in thermoforming

    Science.gov (United States)

    Bekisli, Burak

    In this study, large deformation behavior of knitted fabric reinforced composites is investigated. In order to fully utilize the unique stretchability of knitted fabric reinforcements, elastomeric materials are used as the matrix material, resulting in "flexible composites" capable of reaching several hundred percent stretch before failing. These non-traditional composites are ideal candidates for many engineering applications where large deformation is desired, including energy/impact absorption and novel forming processes. A multi-level nonlinear finite element (FE) procedure is developed to analyze the deformation behavior of plain weft-knitted fabrics and the composites derived from these materials. The hierarchy of the model is composed of a 3D unit cell analysis (micro/meso-scale) and a 2D global analysis (macro scale). Using results from different numerical experiments performed in the micro/meso scale, a mechanical behavior database of knit fabric geometries is constructed, both for the uniaxial and biaxial stretch cases. Through an optimization procedure, these results are used to determine the mechanical properties of nonlinear truss elements needed for modeling in the macro scale. A hexagonal honeycomb structure, which closely resembles the knit fabric architecture, is formed using these nonlinear trusses. This truss structure is then used to efficiently model a large number of loops generally found in a fabric. Results from uniaxial experimental measurements are presented for knitted fabrics to validate the FE model. Appropriate hyperelastic material models are determined for the elastomeric matrix, using a curve fit to experimental data. Examples of raw fabric and composite deformation simulations in the global scale are presented in this study. Two types of composites are studied experimentally and numerically: (1) knitted fabric embedded in an elastomeric medium, and (2) the sandwich type composites with elastomeric skins and fabric core. The strain

  1. The In-situ Reinforcement of Calcium Phosphate Cement and Its Micro-structural Analysis

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Carbon nanotubes ( CNTs ) and polyacrylic acid were employed to modify the setting process and hydration products of β- TCP/ TTCP calcium phosphate cement. The micro-structure of hydration product and the fashion of how additives and hydration particles interconnected were investigated. With the modification effect of CNTs, the setting particles and CNTs got winded and interconnected and thus made the composite more compact and denser.

  2. Fabrication Of Carbon-Boron Reinforced Dry Polymer Matrix Composite Tape

    Science.gov (United States)

    Belvin, Harry L.; Cano, Roberto J.; Treasure, Monte; Shahood, Thomas W.

    1999-01-01

    Future generation aerospace vehicles will require specialized hybrid material forms for component structure fabrication. For this reason, high temperature composite prepregs in both dry and wet forms are being developed at NASA Langley Research Center (LaRC). In an attempt to improve compressive properties of carbon fiber reinforced composites, a hybrid carbon-boron tape was developed and used to fabricate composite laminates which were subsequently cut into flexural and compression specimens and tested. The hybrid material, given the designation HYCARB, was fabricated by modifying a previously developed process for the manufacture of dry polymer matrix composite (PMC) tape at LaRC. In this work, boron fibers were processed with IM7/LaRC(TradeMark)IAX poly(amide acid) solution-coated prepreg to form a dry hybrid tape for Automated Tow Placement (ATP). Boron fibers were encapsulated between two (2) layers of reduced volatile, low fiber areal weight poly(amide acid) solution-coated prepreg. The hybrid prepreg was then fully imidized and consolidated into a dry tape suitable for ATP. The fabrication of a hybrid boron material form for tow placement aids in the reduction of the overall manufacturing cost of boron reinforced composites, while realizing the improved compression strengths. Composite specimens were press-molded from the hybrid material and exhibited excellent mechanical properties.

  3. Micromechanics Fatigue Damage Analysis Modeling for Fabric Reinforced Ceramic Matrix Composites

    Science.gov (United States)

    Min, J. B.; Xue, D.; Shi, Y.

    2013-01-01

    A micromechanics analysis modeling method was developed to analyze the damage progression and fatigue failure of fabric reinforced composite structures, especially for the brittle ceramic matrix material composites. A repeating unit cell concept of fabric reinforced composites was used to represent the global composite structure. The thermal and mechanical properties of the repeating unit cell were considered as the same as those of the global composite structure. The three-phase micromechanics, the shear-lag, and the continuum fracture mechanics models were integrated with a statistical model in the repeating unit cell to predict the progressive damages and fatigue life of the composite structures. The global structure failure was defined as the loss of loading capability of the repeating unit cell, which depends on the stiffness reduction due to material slice failures and nonlinear material properties in the repeating unit cell. The present methodology is demonstrated with the analysis results evaluated through the experimental test performed with carbon fiber reinforced silicon carbide matrix plain weave composite specimens.

  4. Low Cost Fabrication of Silicon Carbide Based Ceramics and Fiber Reinforced Composites

    Science.gov (United States)

    Singh, M.; Levine, S. R.

    1995-01-01

    A low cost processing technique called reaction forming for the fabrication of near-net and complex shaped components of silicon carbide based ceramics and composites is presented. This process consists of the production of a microporous carbon preform and subsequent infiltration with liquid silicon or silicon-refractory metal alloys. The microporous preforms are made by the pyrolysis of a polymerized resin mixture with very good control of pore volume and pore size thereby yielding materials with tailorable microstructure and composition. Mechanical properties (elastic modulus, flexural strength, and fracture toughness) of reaction-formed silicon carbide ceramics are presented. This processing approach is suitable for various kinds of reinforcements such as whiskers, particulates, fibers (tows, weaves, and filaments), and 3-D architectures. This approach has also been used to fabricate continuous silicon carbide fiber reinforced ceramic composites (CFCC's) with silicon carbide based matrices. Strong and tough composites with tailorable matrix microstructure and composition have been obtained. Microstructure and thermomechanical properties of a silicon carbide (SCS-6) fiber reinforced reaction-formed silicon carbide matrix composites are discussed.

  5. Effects of hydrogen peroxide pretreatment and heat activation of silane on the shear bond strength of fiber-reinforced composite posts to resin cement

    OpenAIRE

    Pyun, Jung-Hoon; Shin, Tae-Bong; Lee, Joo-Hee; Ahn, Kang-Min; Kim, Tae-Hyung; Cha, Hyun-Suk

    2016-01-01

    PURPOSE To evaluate the effects of hydrogen peroxide pretreatment and heat activation of silane on the shear bond strength of fiber-reinforced composite posts to resin cement. MATERIALS AND METHODS The specimens were prepared to evaluate the bond strength of epoxy resin-based fiber posts (D.T. Light-Post) to dual-curing resin cement (RelyX U200). The specimens were divided into four groups (n=18) according to different surface treatments: group 1, no treatment; group 2, silanization; group 3,...

  6. Fabrication and evaluation of mechanical properties of alkaline treated sisal/hemp fiber reinforced hybrid composite

    Science.gov (United States)

    Venkatesha Gupta, N. S.; Akash; Sreenivasa Rao, K. V.; kumar, D. S. Arun

    2016-09-01

    Fiber reinforced polymer composite have acquired a dominant place in variety of applications because of higher specific strength and modulus, the plant based natural fiber are partially replacing currently used synthetic fiber as reinforcement for polymer composites. In this research work going to develop a new material which posses a strength to weight ratio that for exceed any of the present material. The hybrid composite sisal/hemp reinforced with epoxy matrix has been developed by compression moulding technique according to ASTM standards. Sodium hydroxide (NAOH) was used as alkali for treating the fibers. The amount of reinforcement was varied from 10% to 50% in steps of 10%. Prepared specimens were examined for mechanical properties such as tensile strength, flexural strength, and hardness. Hybrid composite with 40wt% sisal/hemp fiber were found to posses higher strength (tensile strength = 53.13Mpa and flexural strength = 82.07Mpa) among the fabricated hybrid composite specimens. Hardness value increases with increasing the fiber volume. Morphological examinations are carried out to analyze the interfacial characteristics, internal structure and fractured surfaces by using scanning electron microscope.

  7. Mechanical Properties of Natural Jute Fabric/Jute Mat Fiber Reinforced Polymer Matrix Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Elsayed A. Elbadry

    2012-01-01

    Full Text Available Recycled needle punched jute fiber mats as a first natural fiber reinforcement system and these jute mats used as a core needle punched with recycled jute fabric cloths as skin layers as a second natural fiber reinforcement system were used for unsaturated polyester matrix composites via modifying the hand lay-up technique with resin preimpregnation into the jute fiber in vacuum. The effect of skin jute fabric on the tensile and bending properties of jute mat composites was investigated for different fiber weight contents. Moreover, the notch sensitivity of these composites was also compared by using the characteristic distance do calculated by Finite Element Method (FEM. The results showed that the tensile and flexural properties of jute mat composites increased by increasing the fiber weight content and by adding the jute fabric as skin layers. On the other hand, by adding the skins, the characteristic distance decreased and, therefore, the notch sensitivity of the composites increased. The fracture behavior investigated by SEM showed that extensive fiber pull-out mechanism was revealed at the tension side of jute mat composites under the bending load and by adding the jute cloth, the failure mode of jute mat was changed to fiber bridge mechanism.

  8. Waste Cellulose from Tetra Pak Packages as Reinforcement of Cement Concrete

    Directory of Open Access Journals (Sweden)

    Gonzalo Martínez-Barrera

    2015-01-01

    Full Text Available The development of the packaging industry has promoted indiscriminately the use of disposable packing as Tetra Pak, which after a very short useful life turns into garbage, helping to spoil the environment. One of the known processes that can be used for achievement of the compatibility between waste materials and the environment is the gamma radiation, which had proved to be a good tool for modification of physicochemical properties of materials. The aim of this work is to study the effects of waste cellulose from Tetra Pak packing and gamma radiation on the mechanical properties of cement concrete. Concrete specimens were elaborated with waste cellulose at concentrations of 3, 5, and 7 wt% and irradiated at 200, 250, and 300 kGy of gamma dose. The results show highest improvement on the mechanical properties for concrete with 3 wt% of waste cellulose and irradiated at 300 kGy; such improvements were related with the surface morphology of fracture zones of cement concrete observed by SEM microscopy.

  9. Numerically design the injection process parameters of parts fabricated with ramie fiber reinforced green composites

    Science.gov (United States)

    Chen, L. P.; He, L. P.; Chen, D. C.; Lu, G.; Li, W. J.; Yuan, J. M.

    2017-01-01

    The warpage deformation plays an important role on the performance of automobile interior components fabricated with natural fiber reinforced composites. The present work investigated the influence of process parameters on the warpage behavior of A pillar trim made of ramie fiber (RF) reinforced polypropylene (PP) composites (RF/PP) via numerical simulation with orthogonal experiment method and range analysis. The results indicated that fiber addition and packing pressure were the most important factors affecting warpage. The A pillar trim can achieved the minimum warpage value as of 2.124 mm under the optimum parameters. The optimal process parameters are: 70% percent of the default value of injection pressure for the packing pressure, 20 wt% for the fiber addition, 185 °C for the melt °C for the mold temperature, 7 s for the filling time and 17 s for the packing time.

  10. Non-conventional cement-based composites reinforced with vegetable fibers: A review of strategies to improve durability

    Directory of Open Access Journals (Sweden)

    Santos, S. F.

    2015-03-01

    Full Text Available The present review shows the state-of-art on the approachs about improving the processing, physical- mechanical performance and durability of non-conventional fiber-cement composites. The objective of this review is to show some of these strategies to mitigate the degradation of the vegetable fibers used as reinforcement in cost-effective and non-conventional fiber-cement and, consequently, to improve their mechanical and durability properties for applications in the housing construction. Beyond the introduction about vegetable fibers, the content of this review is divided in the following sections: (i surface modification of the fibers; (ii improving fiber-to-cement interface; (iii natural pozzolans; (iv accelerated carbonation; (v applications of nanoscience; and (vi principles of functionally graded materials and extrusion process were briefly discussed with focus on future research needs.La presente revisión explora la actualidad en el campo de los compuestos de fibrocemento no convencionales en relación a mejoras en el proceso productivo, el rendimiento físico-mecánico y la durabilidad. El objetivo de esta revisión es exponer algunas estrategias para mitigar la degradación de las fibras vegetales utilizadas como refuerzo en fibrocementos no convencionales y rentables, obteniendo en consecuencia una mejoría en el rendimiento de sus propiedades mecánicas y durabilidad para su aplicación en el área de la construcción de viviendas. Además de la introducción en relación a las fibras vegetales, el contenido de esta revisión se divide en las siguientes secciones: (i modificación de la superficie de las fibras; (ii mejoramiento de la interfaz fibra-cemento; (iii puzolanas naturales; (iv carbonatación acelerada; (v aplicaciones de la nanociencia; y (vi principios de los materiales funcionalmente graduados y el proceso de extrusión fueron discutidos brevemente con un enfoque a investigaciones futuras.

  11. TiB{sub 2} reinforced aluminum based in situ composites fabricated by stir casting

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Chen, Zongning [Laboratory of Special Processing of Raw Materials, Dalian University of Technology, Dalian 116024 (China); Mao, Feng [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Wang, Tongmin, E-mail: tmwang@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Cao, Zhiqiang, E-mail: caozq@dlut.edu.cn [Laboratory of Special Processing of Raw Materials, Dalian University of Technology, Dalian 116024 (China)

    2015-02-11

    In this study, a new technique involving mechanical stirring at the salts/aluminum interface was developed to fabricate TiB{sub 2} particulate reinforced aluminum based in situ composites with improved particle distribution. Processing parameters in terms of stirring intensity, stirring duration and stirring start time were optimized according to the microstructure and mechanical properties evaluation. The results show that, the first and last 15 min of the entire 60 min holding are of prime importance to the particle distribution of the final composites. When applying 180 rpm (revolutions per minute) stirring at the salts/aluminum interface in these two intervals, a more uniform microstructure can be achieved and the Al-4 wt% TiB{sub 2} composite thus produced exhibits superior mechanical performance. Synchrotron radiation X-ray computed tomography (SR-CT) was used to give a full-scale imaging of the particle distribution. From the SR-CT results, the in situ Al–xTiB{sub 2} composites (x=1, 4 and 7, all in wt%) fabricated by the present technique are characterized by fine and clean TiB{sub 2} particles distributed uniformly throughout the Al matrix. These composites not only have higher yield strength (σ{sub 0.2}) and ultimate tensile strength (UTS), but also exhibit superior ductility, with respect to the Al–TiB{sub 2} composites fabricated by the conventional process. The σ{sub 0.2} and UTS of the Al–7TiB{sub 2} composite in the present work, are 260% and 180% higher than those of the matrix. A combined mechanism was also presented to interpret the improvements in yield strength of the composites as influenced by their microstructures and processing history. The predicted values are in good agreement with the experimental results, strongly supporting the strengthening mechanism we proposed. Fractography reveals that the composites thus fabricated, follow ductile fracture mechanism in spite of the presence of stiff reinforcements.

  12. Assessment of Tensile Bond Strength of Fiber-Reinforced Composite Resin to Enamel Using Two Types of Resin Cements and Three Surface Treatment Methods

    Directory of Open Access Journals (Sweden)

    Tahereh Ghaffari

    2015-10-01

    Full Text Available Background: Resin-bonded bridgework with a metal framework is one of the most conservative ways to replace a tooth with intact abutments. Visibility of metal substructure and debonding are the complications of these bridgeworks. Today, with the introduction of fiber-reinforced composite resins, it is possible to overcome these complications. The aim of this study was to evaluate the bond strength of fiber-reinforced composite resin materials (FRC to enamel. Methods: Seventy-two labial cross-sections were prepared from intact extracted teeth. Seventy-two rectangular samples of cured Vectris were prepared and their thickness was increased by adding Targis. The samples were divided into 3 groups for three different surface treatments: sandblasting, etching with 9% hydrofluoric acid, and roughening with a round tapered diamond bur. Each group was then divided into two subgroups for bonding to etched enamel by Enforce and Variolink II resin cements. Instron universal testing machine was used to apply a tensile force. The fracture force was recorded and the mode of failure was identified under a reflective microscope. Results: There were no significant differences in bond strength between the three surface treatment groups (P=0.53. The mean bond strength of Variolink II cement was greater than that of Enforce (P=0.04. There was no relationship between the failure modes (cohesive and adhesive and the two cement types. There was some association between surface treatment and failure mode. There were adhesive failures in sandblasted and diamond-roughened groups and the cohesive failure was dominant in the etched group. Conclusion: It is recommended that restorations made of fiber-reinforced composite resin be cemented with VariolinkII and surface-treated by hydrofluoric acid. Keywords: Tensile bond strength; surface treatment methods; fiber-reinforced composite resin

  13. Mechanical properties of waste paper/jute fabric reinforced polyester resin matrix hybrid composites.

    Science.gov (United States)

    Das, Sekhar

    2017-09-15

    Hybrid composites were prepared with jute fabric and un-shredded newspaper in polyester resin matrix. The experiment was designed 1:2 weights ratio jute and unshredded newspaper to have 42 (w/w)% fibre content hybrid composites and two different sequences jute/paper/jute and paper/jute/paper of waste newspaper and jute fabric arrangement. Reinforcing material is characterized by chemically, X-ray diffraction methods, Fourier transform infrared spectroscopy and tensile testing. The tensile, flexural and interlaminar shear strength and fracture surface morphology of composites were evaluated and compared. It was found that tensile and flexural properties of the hybrid composite are higher than that of pure paper-based composite but less than pure woven jute composite. The hybridization effect of woven jute fabric and layering pattern effect on mechanical properties of newspaper/woven jute fabric hybrid composites were studied. The test results of composites were analyzed by one-way ANOVA (α=0.05), it showed significant differences among the groups. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Studies on the mechanical properties of woven jute fabric reinforced poly(l-lactic acid composites

    Directory of Open Access Journals (Sweden)

    G.M. Arifuzzaman Khan

    2016-01-01

    Full Text Available Development of ecofriendly biocomposites to replace non-biodegradable synthetic fiber composites is the main objective of this study. To highlight the biocomposites as a perfect replacement, the plain woven jute fabric (WJF reinforced poly(l-lactic acid (PLLA composites were prepared by the hot press molding method. The influence of woven structure and direction on the mechanical properties i.e. tensile, flexural and impact properties was investigated. The average tensile strength (TS, tensile modulus (TM, flexural strength (FS, flexural modulus (FM, and impact strength (IS of untreated woven jute composite (in warp direction were improved about 103%, 211%, 95.2%, 42.4% and 85.9%, respectively and strain at maximum tensile stress for composite samples was enhanced by 11.7%. It was also found that the strengths and modulus of composites in warp direction are higher than those in weft direction. WJF composites in warp and weft directions presented superior mechanical properties than non-woven jute fabric (NWJF composites. Chemical treatment of jute fabric through benzoylation showed a positive effect on the properties of composites. Morphological studies by SEM demonstrated that better adhesion between the treated fabric and PLLA was achieved.

  15. Comparison of tensile strength of different carbon fabric reinforced epoxy composites

    Directory of Open Access Journals (Sweden)

    Jane Maria Faulstich de Paiva

    2006-03-01

    Full Text Available Carbon fabric/epoxy composites are materials used in aeronautical industry to manufacture several components as flaps, aileron, landing-gear doors and others. To evaluate these materials become important to know their mechanical properties, for example, the tensile strength. Tensile tests are usually performed in aeronautical industry to determinate tensile property data for material specifications, quality assurance and structural analysis. For this work, it was manufactured four different laminate families (F155/PW, F155/HS, F584/PW and F584/HS using pre-impregnated materials (prepregs based on F155TM and F584TM epoxy resins reinforced with carbon fiber fabric styles Plain Weave (PW and Eight Harness Satin (8HS. The matrix F155TM code is an epoxy resin type DGEBA (diglycidil ether of bisphenol A that contains a curing agent and the F584TM code is a modified epoxy resin type. The laminates were obtained by handing lay-up process following an appropriate curing cycle in autoclave. The samples were evaluated by tensile tests according to the ASTM D3039. The F584/PW laminates presented the highest values of tensile strength. However, the highest modulus results were determined for the 8HS composite laminates. The correlation of these results emphasizes the importance of the adequate combination of the polymeric matrix and the reinforcement arrangement in the structural composite manufacture. The microscopic analyses of the tested specimens show valid failure modes for composites used in aeronautical industry.

  16. Polycarboxylate Based Superplasticizers as Dispersant Agents for Exfoliated Graphene Nanoplatelets Reinforcing Cement Based Materials

    Directory of Open Access Journals (Sweden)

    Z. S. Metaxa

    2015-12-01

    Full Text Available Graphene nanoplatelets (GNPs are considered one of the most advanced nanomaterials that hold the promise of providing multifunctional characteristics to the cementitious matrix. To effectively employ the GNPs as a nanoreinforcement, their uniform dispersion within the matrix must be achieved. The present study investigates the efficiency of four different polycarboxylate based superplasticizers, which are fully compatible with cement-based materials, to be exploited as GNPs dispersant agents. Exfoliated GNPs were selected that had a quite small diameter/lateral size of ~5 µm. The dispersing efficiency of the superplasticizers was investigated experimentally by measuring the electrical resistivity of the resulting nanocomposites. A discussion explaining the dispersing mechanism of these types of surfactants is provided. The use of a superplasticizer in conjunction with ultrasonic energy application was found to be necessary to properly disperse the GNPs. The results prove that the polycarboxylate based superplasticizers can be employed to promote the GNPs uniform distribution in cementitious materials. The polycarboxylate ester superplasticizer showed poor results, while the polycarboxylate polymer superplasticizers were found to be more effective to uniformly disperse the GNPs.

  17. 水泥土深层搅拌法在地基加固中的应用%Application of the Cement Deep Mixing Method in Foundation Reinforcement

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    The reinforcement of foundation is difficult in fou-ndation treatment construction. There are many methods of rei-nforcement, and the cement soil deep mixing method is one of them. In order to improve the application level of cement deep mixing method in foundation reinforcement, this paper based on the analysis of the application role of this reinforcement m-ethod, studies its concrete construction method.%  地基的加固,是建筑工程地基处理的难点。其加固的方法很多,水泥土深层搅拌法就是其中的一种。为了提高水泥深层搅拌法在地基加固中的应用水平,本文将在对这种加固方法应用作用分析的基础上,研究其具体的施工方法。

  18. Design, fabrication, and properties of 2-2 connectivity cement/polymer based piezoelectric composites with varied piezoelectric phase distribution

    Energy Technology Data Exchange (ETDEWEB)

    Dongyu, Xu [Shandong Provincial Key Laboratory of Construction Materials Preparation and Measurement, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022 (China); Department of Mechanical Engineering, University of South Carolina, Columbia, South Carolina 29208 (United States); Xin, Cheng; Shifeng, Huang [Shandong Provincial Key Laboratory of Construction Materials Preparation and Measurement, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022 (China); Banerjee, Sourav [Department of Mechanical Engineering, University of South Carolina, Columbia, South Carolina 29208 (United States)

    2014-12-28

    The laminated 2-2 connectivity cement/polymer based piezoelectric composites with varied piezoelectric phase distribution were fabricated by employing Lead Zirconium Titanate ceramic as active phase, and mixture of cement powder, epoxy resin, and hardener as matrix phase with a mass proportion of 4:4:1. The dielectric, piezoelectric, and electromechanical coupling properties of the composites were studied. The composites with large total volume fraction of piezoelectric phase have large piezoelectric strain constant and relative permittivity, and the piezoelectric and dielectric properties of the composites are independent of the dimensional variations of the piezoelectric ceramic layer. The composites with small total volume fraction of piezoelectric phase have large piezoelectric voltage constant, but also large dielectric loss. The composite with gradually increased dimension of piezoelectric ceramic layer has the smallest dielectric loss, and that with the gradually increased dimension of matrix layer has the largest piezoelectric voltage constant. The novel piezoelectric composites show potential applications in fabricating ultrasonic transducers with varied surface vibration amplitude of the transducer.

  19. The effect of temperature and moisture on electrical resistance, strain sensitivity and crack sensitivity of steel fiber reinforced smart cement composite

    Science.gov (United States)

    Teomete, Egemen

    2016-07-01

    Earthquakes, material degradations and other environmental factors necessitate structural health monitoring (SHM). Metal foil strain gages used for SHM have low durability and low sensitivity. These factors motivated researchers to work on cement based strain sensors. In this study, the effects of temperature and moisture on electrical resistance, compressive and tensile strain gage factors (strain sensitivity) and crack sensitivity were determined for steel fiber reinforced cement based composite. A rapid increase of electrical resistance at 200 °C was observed due to damage occurring between cement paste, aggregates and steel fibers. The moisture—electrical resistance relationship was investigated. The specimens taken out of the cure were saturated with water and had a moisture content of 9.49%. The minimum electrical resistance was obtained at 9% moisture at which fiber-fiber and fiber-matrix contact was maximum and the water in micro voids was acting as an electrolyte, conducting electrons. The variation of compressive and tensile strain gage factors (strain sensitivities) and crack sensitivity were investigated by conducting compression, split tensile and notched bending tests with different moisture contents. The highest gage factor for the compression test was obtained at optimal moisture content, at which electrical resistance was minimum. The tensile strain gage factor for split tensile test and crack sensitivity increased by decreasing moisture content. The mechanisms between moisture content, electrical resistance, gage factors and crack sensitivity were elucidated. The relations of moisture content with electrical resistance, gage factors and crack sensitivities have been presented for the first time in this study for steel fiber reinforced cement based composites. The results are important for the development of self sensing cement based smart materials.

  20. Parametric characterization of a mesomechanic kinematic caused by ondulation in fabric reinforced composites: analytical and numerical investigations

    Directory of Open Access Journals (Sweden)

    Marco Romano

    2017-01-01

    Full Text Available A parametric characterization of a mesomechanic kinematic caused by ondulation in fabric reinforced composites is investigated by analytical and numerical investigations. Due to the definition of plain representative sequences of balanced plain-weave fabric reinforced single layers based on sines the variable geometric parameters are the amplitude and the length of the ondulation. The mesomechanic kinematic can be observed in both the analytic model and the FE-analyses. The analytic model yields hyperbolic correlations due to the strongly simplifying presumptions that neglect elasticity. In contrast the FE-analyses yield linear correlations in much smaller amounts due to the consideration of elastic parts, yet distinctly.

  1. Application of acoustic emission on the characterization of fracture in textile reinforced cement laminates.

    Science.gov (United States)

    Blom, J; Wastiels, J; Aggelis, D G

    2014-01-01

    This work studies the acoustic emission (AE) behavior of textile reinforced cementitious (TRC) composites under flexural loading. The main objective is to link specific AE parameters to the fracture mechanisms that are successively dominating the failure of this laminated material. At relatively low load, fracture is initiated by matrix cracking while, at the moment of peak load and thereafter, the fiber pull-out stage is reached. Stress modeling of the material under bending reveals that initiation of shear phenomena can also be activated depending on the shape (curvature) of the plate specimens. Preliminary results show that AE waveform parameters like frequency and energy are changing during loading, following the shift of fracturing mechanisms. Additionally, the AE behavior of specimens with different curvature is very indicative of the stress mode confirming the results of modeling. Moreover, AE source location shows the extent of the fracture process zone and its development in relation to the load. It is seen that AE monitoring yields valuable real time information on the fracture of the material and at the same time supplies valuable feedback to the stress modeling.

  2. Optimization of compressive strength in admixture-reinforced cement-based grouts

    Directory of Open Access Journals (Sweden)

    Sahin Zaimoglu, A.

    2007-12-01

    Full Text Available The Taguchi method was used in this study to optimize the unconfined (7-, 14- and 28-day compressive strength of cement-based grouts with bentonite, fly ash and silica fume admixtures. The experiments were designed using an L16 orthogonal array in which the three factors considered were bentonite (0%, 0.5%, 1.0% and 3%, fly ash (10%, 20%, 30% and 40% and silica fume (0%, 5%, 10% and 20% content. The experimental results, which were analyzed by ANOVA and the Taguchi method, showed that fly ash and silica fume content play a significant role in unconfined compressive strength. The optimum conditions were found to be: 0% bentonite, 10% fly ash, 20% silica fume and 28 days of curing time. The maximum unconfined compressive strength reached under the above optimum conditions was 17.1 MPa.En el presente trabajo se ha intentado optimizar, mediante el método de Taguchi, las resistencias a compresión (a las edades de 7, 14 y 28 días de lechadas de cemento reforzadas con bentonita, cenizas volantes y humo de sílice. Se diseñaron los experimentos de acuerdo con un arreglo ortogonal tipo L16 en el que se contemplaban tres factores: la bentonita (0, 0,5, 1 y 3%, las cenizas volantes (10, 20, 30 y 40% y el humo de sílice (0, 5, 10 y 20% (porcentajes en peso del sólido. Los datos obtenidos se analizaron con mediante ANOVA y el método de Taguchi. De acuerdo con los resultados experimentales, el contenido tanto de cenizas volantes como de humo de sílice desempeña un papel significativo en la resistencia a compresión. Por otra parte, las condiciones óptimas que se han identificado son: 0% bentonita, 10% cenizas volantes, 20% humo de sílice y 28 días de tiempo de curado. La resistencia a compresión máxima conseguida en las anteriores condiciones era de 17,1 MPa.

  3. Design and fabrication of multi-walled hollow nanofibers by triaxial electrospinning as reinforcing agents in nanocomposites

    OpenAIRE

    2015-01-01

    Multi-walled triaxial hollow fibers with two different outer wall materials are fabricated by core-sheath electrospinning process and integrated into epoxy matrix with or without primary glass fiber reinforcement to produce composites with enhanced mechanical properties. The morphologies of multi-walled hollow fibers are tailored by controlling the materials and processing parameters such as polymer and solvent types. The triaxial hollow fiber fabrication is achieved through using a nozzle co...

  4. Fabrication of α-chitin whisker-reinforced poly(vinyl alcohol) nanocomposite nanofibres by electrospinning

    Science.gov (United States)

    Junkasem, Jirawut; Rujiravanit, Ratana; Supaphol, Pitt

    2006-09-01

    The present contribution reports, for the first time, the successful fabrication of α-chitin whisker-reinforced poly(vinyl alcohol) (PVA) nanocomposite nanofibres by electrospinning. The α-chitin whiskers were prepared from α-chitin flakes from shrimp shells by acid hydrolysis. The as-prepared chitin whiskers exhibited lengths in the range 231-969 nm and widths in the range 12-65 nm, with the average length and width being about 549 and 31 nm, respectively. Successful incorporation of the chitin whiskers within the as-spun PVA/chitin whisker nanocomposite nanofibres was verified by infrared spectroscopic and thermogravimetric methods. The incorporation of chitin whiskers within the as-spun nanocomposite fibre mats increased the Young's modulus by about 4-8 times over that of the neat as-spun PVA fibre mat.

  5. Fabrication of {alpha}-chitin whisker-reinforced poly(vinyl alcohol) nanocomposite nanofibres by electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Junkasem, Jirawut; Rujiravanit, Ratana; Supaphol, Pitt [Technological Center for Electrospun Fibers and the Petroleum and Petrochemical College, Chulalongkorn University, Soi Chula 12, Phyathai Road, Pathumwan, Bangkok 10300 (Thailand)

    2006-09-14

    The present contribution reports, for the first time, the successful fabrication of {alpha}-chitin whisker-reinforced poly(vinyl alcohol) (PVA) nanocomposite nanofibres by electrospinning. The {alpha}-chitin whiskers were prepared from {alpha}-chitin flakes from shrimp shells by acid hydrolysis. The as-prepared chitin whiskers exhibited lengths in the range 231-969 nm and widths in the range 12-65 nm, with the average length and width being about 549 and 31 nm, respectively. Successful incorporation of the chitin whiskers within the as-spun PVA/chitin whisker nanocomposite nanofibres was verified by infrared spectroscopic and thermogravimetric methods. The incorporation of chitin whiskers within the as-spun nanocomposite fibre mats increased the Young's modulus by about 4-8 times over that of the neat as-spun PVA fibre mat.

  6. Investigation of different carbon nanotube reinforcements for fabricating bulk AlMg5 matrix nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Kallip, Kaspar, E-mail: kaspar.kallip@empa.ch [Empa, Swiss Federal Laboratories for Material Science and Technology, Laboratory for Advanced Materials Processing, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland); Leparoux, Marc [Empa, Swiss Federal Laboratories for Material Science and Technology, Laboratory for Advanced Materials Processing, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland); AlOgab, Khaled A. [King Abdulaziz City for Science and Technology (KACST), National Centers for Advanced Materials, P O Box 6086, Riyadh, 11442 (Saudi Arabia); Clerc, Steve; Deguilhem, Guillaume [Empa, Swiss Federal Laboratories for Material Science and Technology, Laboratory for Advanced Materials Processing, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland); Arroyo, Yadira [Empa, Swiss Federal Laboratories for Material Science and Technology, Electron Microscopy Center, Ueberlandstrasse 129, CH-8600 Dübendorf (Switzerland); Kwon, Hansang [Empa, Swiss Federal Laboratories for Material Science and Technology, Laboratory for Advanced Materials Processing, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland); Pukyong National University, Department of Materials System Engineering, 365 Sinseon-ro, Busan 608-739 (Korea, Republic of)

    2015-10-15

    AlMg5-based metal matrix composites were successfully fabricated using high energy planetary ball-milling and hot pressing. The influence of 6 types of carbon nanotubes (CNTs) with different properties was investigated for reinforcement. Over 3 fold increase in hardness and ultimate tensile strength was achieved with maximum values of 200 HV{sub 20} and 720 MPa respectively by varying CNT content from 0.5 to 5 vol%. The state, the dispersion as well as the reactivity of the different CNTs were investigated by Raman spectroscopy, X-Ray diffraction and microscopy. The CNTs were considered to be dispersed homogeneously, but were shortened due to high energy milling. No significant differences in mechanical performances could be observed depending either on the nature or on the agglomeration initial state of the investigated CNTs. The milling time has to be however adjusted to the CNT content as higher concentrations require a longer milling time for achieving dispersion of the nano-reinforcement. - Highlights: • CNTs sustained the milling process and became homogeneously dispersed. • 3 times strengthening over unreinforced alloy achieved. • Flexible processing route for dispersing wide range of nanoparticulate materials.

  7. Reinforcing effect of calcium sulfate cement bovine bone morphogenetic protein on vertebral in the rabbit model of osteoporosis

    Institute of Scientific and Technical Information of China (English)

    Jie Zhang; Yu-Ming Chen; Chen Sheng-Guo; Kaken Habaerxi; Shawuti Alimujiang; Yu Chen; Ming-Zhen Peng; Rong Yue; Yu-Lian Wu; De-Quan Wang

    2014-01-01

    Objective:To observe reinforcing effect of calcium sulfate cement(CSC) bovine bone morphogenetic protein(bBMP) on vertebral in the rabbit model of osteoporosis.Methods:A total of48NewZealand white rabbits were randomly divided into groupⅠ(blank control group), group Ⅱ(CSC injection group), group Ⅲ(CSC/bBMP injection group) and control group.White rabbit osteoporosis model was established rapidly by using castration method+methylprednisolone candidate.After modeling, groups Ⅱ, Ⅲ were given corresponding vertebral body injection material, and4 animals were sacrificed respectively at24 h,6 weeks,12 weeks after vertebral plasty.Tissue pathological status, vertebral mineral density and vertebral body bone mechanical strength were observed.Results:Vertebral body structure form was normal in the groups Ⅱand Ⅲ.Trabecular bone coarsens, connection and repair were observed in micro fracture and bone defects, bone trabecular connectivity was superior to group Ⅰ significantly; vertebral body compression strength in the groupⅠ was on the decline, vertebral compression strength in the groups Ⅱand Ⅲ was on the rise, the largest vertebra.PostoperativeBMC andBMD in groups Ⅱand Ⅲ were incresed, andsignificantly higher than group Ⅰ after6 weeks(P<0.05),BMC and BMD in group Ⅲ after12 weeks were higher than the other three groups.Conclusion:Compound bBMPCSC has good bone induction.It can improve the three-dimensional construction effect for osteoporosis vertebral trabecula, and can significantly improve the vertebral strength, as a vertebral packing material with good application prospect.

  8. CERAMIC WASTES AS RAW MATERIALS IN PORTLAND CEMENT CLINKER FABRICATION.· CHARACTERIZATION AND ALKALINE ACTIVATION

    OpenAIRE

    2006-01-01

    [EN] The world-wide cementindustry is seeking experimentalavenues that wi// lead to cementproduction that is less energy-intensive/ less damaging to the surrounding environment and less prolific in GHGemissions. In Spain andEurope in general, this approach is who//y consistent with the concept of sustainability and compliance with the Kyoto Protocol. The use ofdifferent kinds of industrial waste and by-products as alternative materials in cement manufacture has proved to ...

  9. Long-Term Isothermal Aging Effects on Carbon Fabric-Reinforced PMR-15 Composites: Compression Strength

    Science.gov (United States)

    Bowles, Kenneth J.; Roberts, Gary D.; Kamvouris, John E.

    1996-01-01

    A study was conducted to determine the effects of long-term isothermal thermo-oxidative aging on the compressive properties of T-650-35 fabric reinforced PMR-15 composites. The temperatures that were studied were 204, 260, 288, 316, and 343 C. Specimens of different geometries were evaluated. Cut edge-to-surface ratios of 0.03 to 0.89 were fabricated and aged. Aging times extended to a period in excess of 15,000 hours for the lower temperature runs. The unaged and aged specimens were tested in compression in accordance with ASTM D-695. Both thin and thick (plasma) specimens were tested. Three specimens were tested at each time/temperature/geometry condition. The failure modes appeared to be initiated by fiber kinking with longitudinal, interlaminar splitting. In general, it appears that the thermo-oxidative degradation of the compression strength of the composite material may occur by both thermal (time-dependent) and oxidative (weight-loss) mechanisms. Both mechanisms appear to be specimen-thickness dependent.

  10. Finite strain formulation of viscoelastic damage model for simulation of fabric reinforced polymers under dynamic loading

    Directory of Open Access Journals (Sweden)

    Treutenaere S.

    2015-01-01

    Full Text Available The use of fabric reinforced polymers in the automotive industry is growing significantly. The high specific stiffness and strength, the ease of shaping as well as the great impact performance of these materials widely encourage their diffusion. The present model increases the predictability of explicit finite element analysis and push the boundaries of the ongoing phenomenological model. Carbon fibre composites made up various preforms were tested by applying different mechanical load up to dynamic loading. This experimental campaign highlighted the physical mechanisms affecting the initial mechanical properties, namely intra- and interlaminar matrix damage, viscoelasticty and fibre failure. The intralaminar behaviour model is based on the explicit formulation of the matrix damage model developed by the ONERA as the given damage formulation correlates with the experimental observation. Coupling with a Maxwell-Wiechert model, the viscoelasticity is included without losing the direct explicit formulation. Additionally, the model is formulated under a total Lagrangian scheme in order to maintain consistency for finite strain. Thus, the material frame-indifference as well as anisotropy are ensured. This allows reorientation of fibres to be taken into account particularly for in-plane shear loading. Moreover, fall within the framework of the total Lagrangian scheme greatly makes the parameter identification easier, as based on the initial configuration. This intralaminar model thus relies upon a physical description of the behaviour of fabric composites and the numerical simulations show a good correlation with the experimental results.

  11. Low temperature fabrication of spherical brushite granules by cement paste emulsion.

    Science.gov (United States)

    Moseke, Claus; Bayer, Christoph; Vorndran, Elke; Barralet, Jake E; Groll, Jürgen; Gbureck, Uwe

    2012-11-01

    Secondary protonated calcium phosphates such as brushite (CaHPO(4)·2H(2)O) or monetite (CaHPO(4)) have a higher resorption potential in bone defects than sintered ceramics, e.g. tricalcium phosphate or hydroxyapatite. However, processing of these phosphates to monolithic blocks or granules is not possible by sintering due to thermal decomposition of protonated phosphates at higher temperatures. In this study a low temperature technique for the preparation of spherical brushite granules in a cement setting reaction is presented. These granules were synthesized by dispersing a calcium phosphate cement paste composed of β-tricalcium phosphate and monocalcium phosphate together with a surfactant to an oil/water emulsion. The reaction products were characterized regarding their size distribution, morphology, and phase composition. Clinically relevant granule sizes ranging from 200 μm to 1 mm were obtained, whereas generally smaller granules were received with higher oil viscosity, increasing temperature or higher powder to liquid ratios of the cement paste. The hardened granules were microporous with a specific surface area of 0.7 m(2)/g and consisted of plate-like brushite (>95 % according to XRD) crystals of 0.5-7 μm size. Furthermore it was shown that the granules may be also used for drug delivery applications. This was demonstrated by adsorption of vancomycin from an aqueous solution, where a load of 1.45-1.88 mg drug per g granules and an almost complete release within 2 h was obtained.

  12. Fabrication of SiC Reinforced Zr0{sub 2} Composites via Polymeric Precursor Route

    Energy Technology Data Exchange (ETDEWEB)

    Mistarihi, Qusai M.; Hong, Soon Hyung; Ryu, Ho Jin [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    This indicates that as a result of the decomposition of the SMP-730 at temperatures less than or equal to 1500 .deg. C, amorphous SiC was formed. This study suggests that a higher compaction pressure followed by an intermediate decomposition temperature of the polymeric precursor and a higher sintering temperature are needed in order to fabricate interconnected SiC-ZrO{sub 2} composites. A. Ortona et al. fabricated ZrB2-SiC composites with SiC phase surrounding the grains of ZrB2 matrix through a polymeric precursor route by using Si and phenol. S. Li et al. measured the thermal conductivity of Al composites reinforced with a continuous phase SiC and SiC particles and found that the difference in the thermal conductivity measured at room temperature was about 70.2 W/m.K. To the best of authors' knowledge, no study has been performed about the fabrication of the connected SiC microstructure to improve the thermophysical properties of oxides. Zirconium dioxide (ZrO{sub 2}) is one of the potential candidates for use as a matrix for inert matrix fuels (IMF) due to its low neutron absorption cross section, chemical stability, and the compatibility with water. Irradiation and chemical stability testes performed on yttria stabilized zirconia (YSZ) and calcium stabilized zirconia (CSZ) have shown that they have a good irradiation and chemical stability. Despite the good irradiation and chemical stability, its low thermal conductivity is considered the main disadvantage of YSZ. Core loading with the YSZ IMF pellets experienced about a 100 K higher center line temperature than the limit specified for UO{sub 2}.

  13. Mineral resource of the month: hydraulic cement

    Science.gov (United States)

    van Oss, Hendrik G.

    2012-01-01

    Hydraulic cements are the binders in concrete and most mortars and stuccos. Concrete, particularly the reinforced variety, is the most versatile of all construction materials, and most of the hydraulic cement produced worldwide is portland cement or similar cements that have portland cement as a basis, such as blended cements and masonry cements. Cement typically makes up less than 15 percent of the concrete mix; most of the rest is aggregates. Not counting the weight of reinforcing media, 1 ton of cement will typically yield about 8 tons of concrete.

  14. Mg-Zn based composites reinforced with bioactive glass (45S5) fabricated via powder metallurgy

    Science.gov (United States)

    Ab llah, N.; Jamaludin, S. B.; Daud, Z. C.; Zaludin, M. A. F.

    2016-07-01

    Metallic implants are shifting from bio-inert to bioactive and biodegradable materials. These changes are made in order to improve the stress shielding effect and bio-compatibility and also avoid the second surgery procedure. Second surgery procedure is required if the patient experienced infection and implant loosening. An implant is predicted to be well for 15 to 20 years inside patient body. Currently, magnesium alloys are found to be the new biomaterials because of their properties close to the human bones and also able to degrade in the human body. In this work, magnesium-zinc based composites reinforced with different content (5, 15, 20 wt. %) of bioactive glass (45S5) were fabricated through powder metallurgy technique. The composites were sintered at 450˚C. Density and porosity of the composites were determined using the gas pycnometer. Microstructure of the composites was observed using an optical microscope. In-vitro bioactivity behavior was evaluated in the simulated body fluid (SBF) for 7 days. Fourier Transform Infrared (FTIR) was used to characterize the apatite forming on the samples surface. The microstructure of the composite showed that the pore segregated near the grain boundaries and bioglass clustering was observed with increasing content of bioglass. The true density of the composites increased with the increasing content of bioglass and the highest value of porosity was indicated by the Mg-Zn reinforced with 20 wt.% of bioglass. The addition of bio-glass to the Mg-Zn has also induced the formation of apatite layer after soaking in SBF solution.

  15. Effect of sewage sludge ash (SSA on the mechanical performance and corrosion levels of reinforced Portland cement mortars

    Directory of Open Access Journals (Sweden)

    Andión, L. G.ª

    2006-06-01

    Full Text Available The article describes a study conducted to determinecorrosion in reinforcement embedded in Portland cement(PC mortars with different percentages of sewage sludgeash (SSA admixtures. The polarization resistancetechnique was used to determine the steel corrosion rate(Icorr in the test specimens. The samples were subjectedto different environmental conditions and aggressiveagents: 100% relative humidity (RH, accelerated carbonationat 70% RH and seawater immersion. Portlandcement was partially substituted for SSA in the mixes atrates of 0, 10, 20, 30 and 60% (by mass to make thedifferent mortars. The results show that where cementwas replaced by SSA at rates of up to 10% by mass,mortar corrosion performance was comparable to thebehaviour observed in SSA-free mortars (control mortar:0% SSA. Data for higher rates are also shown. From themechanical standpoint, SSA exhibited moderate pozzolanicactivity and the best performance when SSA wasadded at a rate of 10% to mixes with a water/(binder:PC + SSA (w/b ratio of 0.5.Se ha estudiado el nivel de corrosion que presentan lasarmaduras embebidas en morteros fabricados con cementoPortland (CP con diferentes porcentajes de sustitucion deceniza de lodo de depuradora (CLD. Se ha utilizado la tecnicade la Resistencia a la Polarizacion para determinar lavelocidad de corrosion del acero embebido en las muestrasestudiadas. Las muestras se han sometido a diferentes condicionesambientales y agentes agresivos: 100% de humedadrelativa (HR, carbonatacion acelerada al 70% HR einmersion en agua de mar. Para la fabricacion de los distintosmorteros, el cemento Portland ha sido parcialmente sustituidopor CLD en los siguientes porcentajes en masa: 0,10, 20, 30 y 60%. Los resultados muestran que sustitucionesde cemento por CLD de hasta el 10% en masa no alteranel comportamiento frente a la corrosion de los morterosal compararlos con los morteros libres de CLD (morteroscontrol: 0% de sustitucion de cemento por CLD. Se

  16. Fabrication of macroporous cement scaffolds using PEG particles: In vitro evaluation with induced pluripotent stem cell-derived mesenchymal progenitors.

    Science.gov (United States)

    Sladkova, Martina; Palmer, Michael; Öhman, Caroline; Alhaddad, Rawan Jaragh; Esmael, Asmaa; Engqvist, Håkan; de Peppo, Giuseppe Maria

    2016-12-01

    Calcium phosphate cements (CPCs) have been extensively used in reconstructive dentistry and orthopedics, but it is only recently that CPCs have been combined with stem cells to engineer biological substitutes with enhanced healing potential. In the present study, macroporous CPC scaffolds with defined composition were fabricated using an easily reproduced synthesis method, with minimal fabrication and processing steps. Scaffold pore size and porosity, essential for cell infiltration and tissue ingrowth, were tuned by varying the content and size of polyethylene glycol (PEG) particles, resulting in 9 groups with different architectural features. The scaffolds were characterized for chemical composition, porosity and mechanical properties, then tested in vitro with human mesenchymal progenitors derived from induced pluripotent stem cells (iPSC-MPs). Biomimetic decellularized bone scaffolds were used as reference material in this study. Our manufacturing process resulted in the formation of macroporous monetite scaffolds with no residual traces of PEG. The size and content of PEG particles was found to affect scaffold porosity, and thus mechanical properties. Irrespective of pore size and porosity, the CPC scaffolds fabricated in this study supported adhesion and viability of human iPSC-MPs similarly to decellularized bone scaffolds. However, the architectural features of the scaffolds were found to affect the expression of bone specific genes, suggesting that specific scaffold groups could be more suitable to direct human iPSC-MPs in vitro toward an osteoblastic phenotype. Our simplistic fabrication method allows rapid, inexpensive and reproducible construction of macroporous CPC scaffolds with tunable architecture for potential use in dental and orthopedic applications.

  17. One-step fabrication of free-standing flexible membranes reinforced with self-assembled arrays of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Grilli, S.; Coppola, S.; Vespini, V.; Pagliarulo, V.; Ferraro, P. [Istituto Nazionale di Ottica (CNR) Via Campi Flegrei, 34 Pozzuoli, Napoli (Italy); Nasti, G. [Department of Chemical Materials and Production Engineering, University of Naples Federico II, PiazzaleTecchio 80 (Naples) (Italy); Institute for Polymers Composites and Biomaterials, National Council of Research of Italy, Via Campi Flegrei 34, 80078 Pozzuoli (Italy); Carfagna, C. [Department of Chemical Materials and Production Engineering, University of Naples Federico II, PiazzaleTecchio 80 (Naples) (Italy)

    2014-10-13

    Here, we report on a single step approach for fabricating free-standing polymer membranes reinforced with arrayed self-assembled carbon nanotubes (CNTs). The CNTs are self-assembled spontaneously by electrode-free DC dielectrophoresis based on surface charge templates. The electrical charge template is generated through the pyroelectric effect onto periodically poled lithium niobate ferroelectric crystals. A thermal stimulus enables simultaneously the self-assembly of the CNTs and the cross-linking of the host polymer. Examples of thin polydimethylsiloxane membranes reinforced with CNT patterns are shown.

  18. Fabrication and characterization of laminated SiC composites reinforced with graphene nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Pereira dos Santos Tonello, Karolina, E-mail: karolina.pereira@polito.it; Padovano, Elisa; Badini, Claudio; Biamino, Sara; Pavese, Matteo; Fino, Paolo

    2016-04-06

    Nanosized allotropes of carbon have been attracting a lot of attention recently, but despite the steady growth of the number of scientific works on materials based on graphene family, there is still much to be explored. These two-dimensional carbon materials, such as graphene nanoplatelets, multilayer graphene or few layer graphene have emerged as a possible second phase for reinforcing ceramics, resulting in remarkable properties of these composites. Typically, graphene ceramic matrix composites are prepared by a colloidal or a powder route followed by pressure assisted sintering. Recently other traditional ceramic processes, such as tape casting, were also successfully studied. The aim of this research is to fabricate α-SiC multi-layer composites containing 2, 4 and 8 vol% of graphene nanoplatelets (GNP) by tape casting and study the effect of these additions on the mechanical behavior of the composites. In order to achieve this purpose, samples were pressureless sintered and tested for density and mechanical properties. The elastic modulus was measured by the impulse excitation of vibration method, the hardness by Vickers indentation and fracture toughness using micro Vickers indentation and by three-point bending applying the pre-cracked beam approach. Results showed that up to 4 vol%, the density and mechanical properties were directly proportional to the amount of GNP added but showed a dramatic decrease for 8 vol% of GNP. Composites with 4 vol% of GNP had a 23% increment elastic modulus, while the fracture toughness had a 34% increment compared to SiC tapes fabricated under the same conditions. Higher amounts of GNP induces porosity in the samples, thus decreasing the mechanical properties. This study, therefore, indicates that 4% is an optimal amount of GNP and suggests that excessive amounts of GNP are rather detrimental to the mechanical properties of silicon carbide ceramic materials prepared by tape casting.

  19. Comparing the reinforcing effects of a resin modified glassionomer cement, Flowable compomer, and Flowable composite in the restoration of calcium hydroxide-treated immature roots in vitro

    Directory of Open Access Journals (Sweden)

    S Prathibha Rani

    2011-01-01

    Full Text Available One hundred and sixty human permanent central incisors were enlarged to a 120 file size after crown removal procedure to simulate immature teeth. The root canals were filled with calcium hydroxide and stored for 15 days (phase I, 30 days (phase II, 90 days (phase III, and 180 days (Phase IV. At the end of these selected time periods, calcium hydroxide was cleaned off the root canals of forty teeth that were randomly selected and obturated with gutta-percha points in the apical 2 mm of the root canals with a sealer. The specimens were further equally divided into four groups. Unrestored Group I served as control and the root canals of teeth in the other three group specimens were reinforced with resin modified glassionomer cement (RMGIC (Group II, Flowable Compomer (Group III, and Flowable Composite (Group IV, respectively, using a translucent curing post. All specimens were subjected to compressive force using an Instron Testing machine, until fracture occurred. All the materials evaluated substantially reinforced the root specimens compared to the control. At the end of 180 days, Flowable composites showed maximum reinforcement compared to the other groups; however, no significant differences were found between the reinforcement capabilities of Flowable Compomer and RMGIC.

  20. Comparing the reinforcing effects of a resin modified glassionomer cement, Flowable compomer, and Flowable composite in the restoration of calcium hydroxide-treated immature roots in vitro.

    Science.gov (United States)

    Prathibha, Rani S

    2011-01-01

    One hundred and sixty human permanent central incisors were enlarged to a 120 file size after crown removal procedure to simulate immature teeth. The root canals were filled with calcium hydroxide and stored for 15 days (phase I), 30 days (phase II), 90 days (phase III), and 180 days (Phase IV). At the end of these selected time periods, calcium hydroxide was cleaned off the root canals of forty teeth that were randomly selected and obturated with gutta-percha points in the apical 2 mm of the root canals with a sealer. The specimens were further equally divided into four groups. Unrestored Group I served as control and the root canals of teeth in the other three group specimens were reinforced with resin modified glassionomer cement (RMGIC) (Group II), Flowable Compomer (Group III), and Flowable Composite (Group IV), respectively, using a translucent curing post. All specimens were subjected to compressive force using an Instron Testing machine, until fracture occurred. All the materials evaluated substantially reinforced the root specimens compared to the control. At the end of 180 days, Flowable composites showed maximum reinforcement compared to the other groups; however, no significant differences were found between the reinforcement capabilities of Flowable Compomer and RMGIC.

  1. Analysis of Self-Adhesive Resin Cement Microshear Bond Strength on Leucite-Reinforced Glass-Ceramic with/without Pure Silane Primer or Universal Adhesive Surface Treatment

    Directory of Open Access Journals (Sweden)

    Yoon Lee

    2015-01-01

    Full Text Available Objective. To evaluate the microshear bond strength (μSBS of self-adhesive resin (SA cement on leucite-reinforced glass-ceramic using silane or universal adhesive. Materials and Methods. Ceramic blocks were etched with 9.5% hydrofluoric acid and divided into three groups (n=16: (1 negative control (NC without treatment; (2 Single Bond Universal (SBU; (3 RelyX Ceramic Primer as positive control (PC. RelyX Unicem resin cement was light-cured, and μSBS was evaluated with/without thermocycling. The μSBS was analyzed using one-way analysis of variance. The fractured surfaces were examined using stereomicroscopy and scanning electron microscopy (SEM. Results. Without thermocycling, μSBS was highest for PC (30.50 MPa ± 3.40, followed by SBU (27.33 MPa ± 2.81 and NC (20.18 MPa ± 2.01 (P0.05. PC and NC predominantly fractured by cohesive failure within the ceramic and mixed failure, respectively. Conclusion. SBU treatment improves μSBS between SA cement and glass ceramics, but to a lower value than PC, and the improvement is eradicated by thermocycling. NC exhibited the lowest μSBS, which remained unchanged after thermocycling.

  2. Analysis of Self-Adhesive Resin Cement Microshear Bond Strength on Leucite-Reinforced Glass-Ceramic with/without Pure Silane Primer or Universal Adhesive Surface Treatment

    Science.gov (United States)

    Lee, Yoon; Kim, Jae-Hoon; Woo, Jung-Soo; Yi, Young-Ah; Hwang, Ji-Yun; Seo, Deog-Gyu

    2015-01-01

    Objective. To evaluate the microshear bond strength (μSBS) of self-adhesive resin (SA) cement on leucite-reinforced glass-ceramic using silane or universal adhesive. Materials and Methods. Ceramic blocks were etched with 9.5% hydrofluoric acid and divided into three groups (n = 16): (1) negative control (NC) without treatment; (2) Single Bond Universal (SBU); (3) RelyX Ceramic Primer as positive control (PC). RelyX Unicem resin cement was light-cured, and μSBS was evaluated with/without thermocycling. The μSBS was analyzed using one-way analysis of variance. The fractured surfaces were examined using stereomicroscopy and scanning electron microscopy (SEM). Results. Without thermocycling, μSBS was highest for PC (30.50 MPa ± 3.40), followed by SBU (27.33 MPa ± 2.81) and NC (20.18 MPa ± 2.01) (P 0.05). PC and NC predominantly fractured by cohesive failure within the ceramic and mixed failure, respectively. Conclusion. SBU treatment improves μSBS between SA cement and glass ceramics, but to a lower value than PC, and the improvement is eradicated by thermocycling. NC exhibited the lowest μSBS, which remained unchanged after thermocycling. PMID:26557660

  3. Comparative Investigation of Tungsten Fibre Nets Reinforced Tungsten Composite Fabricated by Three Different Methods

    Directory of Open Access Journals (Sweden)

    Linhui Zhang

    2017-07-01

    Full Text Available Tungsten fibre nets reinforced tungsten composites (Wf/W containing four net layers were fabricated by spark plasma sintering (SPS, hot pressing (HP and cold rolling after HP (HPCR, with the weight fraction of fibres being 17.4%, 10.5% and 10.5%, respectively. The relative density of the HPCRed samples is the highest (99.8% while that of the HPed composites is the lowest (95.1%. Optical and scanning electron microscopy and electron back scattering diffraction were exploited to characterize the microstructure, while tensile and hardness tests were used to evaluate the mechanical properties of the samples. It was found that partial recrystallization of fibres occurred after the sintering at 1800 °C. The SPSed and HPed Wf/W composites begin to exhibit plastic deformation at 600 °C with tensile strength (TS of 536 and 425 MPa and total elongation at break (TE of 11.6% and 23.0%, respectively, while the HPCRed Wf/W composites exhibit plastic deformation at around 400 °C. The TS and TE of the HPCRed Wf/W composites at 400 °C are 784 MPa and 8.4%, respectively. The enhanced mechanical performance of the Wf/W composites over the pure tungsten can be attributed to the necking, cracking, and debonding of the tungsten fibres.

  4. Fabrication of a nanocomposite from in situ iron nanoparticle reinforced copper alloy

    Science.gov (United States)

    Wang, Zidong; Wang, Xuewen; Wang, Qiangsong; Shih, I.; Xu, J. J.

    2009-02-01

    In situ iron nanoparticle reinforced Cu-3Sn-8Zn-6Pb alloy has been fabricated by centrifugal casting in a vacuum chamber with a medium frequency electrical furnace. The microstructure of this alloy was analyzed with a scanning electron microscope (SEM) and a high-resolution transmission electron microscope (HRTEM), and the results show that the grains of Cu-3Sn-8Zn-6Pb alloy without iron have a typical dendrite structure with dimensions from 500 to 1500 µm, and the grains of the alloy with the addition of 1% iron are small and equiaxed, with dimensions from 20 to 60 µm. Then, the relatively uniform dispersed particles in the copper matrix were identified with the HRTEM to be pure iron with dimensions in the order of 2-20 nm. The mechanical properties of the alloys were measured and the results show a significant increase in the tensile strength of the alloy with iron nanoparticles and a slight increase of the elongation compared to that without iron. The mechanism of formation of the iron nanoparticles was analyzed by thermodynamic and dynamic theories, and the results indicate that the in situ iron nanoparticles of Cu-3Sn-8Zn-6Pb alloy can reasonably form during solidification in the centrifugal casting technique.

  5. Preparation and electrochemical properties of polymer Li-ion battery reinforced by non-woven fabric

    Institute of Scientific and Technical Information of China (English)

    HU Yong-jun; CHEN Bai-zhen; YUAN Yan

    2007-01-01

    A polymer electrolyte based on poly(vinylidene)fluoride-hexafluoropropylene was prepared by evaporating the solvent of dimethyl for mamide, and non-woven fabric was used to reinforce the mechanical strength of polymer electrolyte and maintain a good interfacial property between the polymer electrolyte and electrodes. Polymer lithium batteries were assembled by using LiCoO2 as cathode material and lithium foil as anode material. Scanning electron microscopy, alternating current impedance, linear sweep voltammetry and charge-discharge tests were used to study the properties of polymer membrane and polymer Li-ion batteries. The results show that the technics of preparing polymer electrolyte by directly evaporating solvent is simple.The polymer membrane has rich micro.porous structure on both sides and exhibits 280% uptake of electrolyte solution.The electrochemical stability window of this polymer electrolyte is about 5.5 V, and its ionic conductivity at room temperature reaches 0.151 S/m.The polymer lithium battery displays an initial discharge capacity of 138 mA·h/g and discharge plateau of about 3.9 V at 0.2 current rate.After 30 cycles, its loss of discharge capacity is only 2%. When the battery discharges at 0.5 current rate, the voltage plateau is still 3.7 V The discharge capacities of 0.5 and 1.0 current rates are 96%and 93% of mat of 0.1 current rate.respectively.

  6. Fabrication, nanomechanical characterization, and cytocompatibility of gold-reinforced chitosan bio-nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Nimitt G. [Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, NY, 13699 (United States); Materials Science and Engineering PhD Program, Clarkson University, Potsdam, NY, 13699 (United States); Kumar, Ajeet [Center for Advanced Materials Processing, Clarkson University, Potsdam, NY, 13699 (United States); Jayawardana, Veroni N. [Department of Mathematics, Clarkson University, Potsdam, NY, 13699 (United States); Woodworth, Craig D. [Department of Biology, Clarkson University, Potsdam, NY, 13699 (United States); Yuya, Philip A., E-mail: pyuya@clarkson.edu [Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, NY, 13699 (United States)

    2014-11-01

    Chitosan, a naturally derived polymer represents one of the most technologically important classes of active materials with applications in a variety of industrial and biomedical fields. Gold nanoparticles (∼ 32 nm) were synthesized via a citrate reduction method from chloroauric acid and incorporated in Chitosan matrix. Bio-nanocomposite films with varying concentrations of gold nanoparticles were prepared through solution casting process. Uniform distribution of gold nanoparticles was achieved throughout the chitosan matrix and was confirmed with SEM. Synthesis outcomes and prepared nanocomposites were characterized using SEM, TEM, EDX, SAED, UV–vis, XRD, DLS, and Zeta potential for their physical, morphological and structural properties. Nanoscale properties of materials under the influence of temperature were characterized through nanoindentation techniques. From quasi-static nanoindentation, it was observed that hardness and reduced modulus of the nanocomposites were increased significantly in direct proportion to the gold nanoparticle concentration. Gold nanoparticle concentration also showed positive impact on storage modulus and thermal stability of the material. The obtained films were confirmed to be biocompatible by their ability to support growth of human cells in vitro. In summary, the results show enhanced mechanical properties with increasing gold nanoparticle concentration, and provide better understanding of the structure–property relationships of such biocompatible materials for potential biomedical applications. - Highlights: • We fabricated gold reinforced chitosan nanocomposite for biomedical applications. • Gold nanoparticles significantly enhanced nanomechanical properties of chitosan. • Nanocomposite films supported growth of human cells in vitro. • Gold nanoparticles significantly improved cell proliferation on chitosan films.

  7. Fabrication of Glass Fiber Reinforced Composites Based on Bio-Oil Phenol Formaldehyde Resin

    Directory of Open Access Journals (Sweden)

    Yong Cui

    2016-11-01

    Full Text Available In this study, bio-oil from fast pyrolysis of renewable biomass was added by the mass of phenol to synthesize bio-oil phenol formaldehyde (BPF resins, which were used to fabricate glass fiber (GF reinforced BPF resin (GF/BPF composites. The properties of the BPF resin and the GF/BPF composites prepared were tested. The functional groups and thermal property of BPF resin were thoroughly investigated by Fourier transform infrared (FTIR spectra and dynamic thermomechanical analysis (DMA. Results indicated that the addition of 20% bio-oil exhibited favorable adaptability for enhancing the stiffness and heat resistance of phenol formaldehyde (PF resin. Besides, high-performance GF/BPF composites could be successfully prepared with the BPF resin based on hand lay-up process. The interface characteristics of GF/BPF composites were determined by the analysis of dynamic wettability (DW and scanning electron microscopy (SEM. It exhibited that GF could be well wetted and embedded in the BPF resin with the bio-oil addition of 20%.

  8. Fabrication and characterization of regenerated silk scaffolds reinforced with natural silk fibers for bone tissue engineering.

    Science.gov (United States)

    Mobini, Sahba; Hoyer, Birgit; Solati-Hashjin, Mehran; Lode, Anja; Nosoudi, Nasim; Samadikuchaksaraei, Ali; Gelinsky, Michael

    2013-08-01

    We introduce a novel Bombyx mori silk-based composite material developed for bone tissue engineering. Three-dimensional scaffolds were fabricated by embedding of natural degummed silk fibers in a matrix of regenerated fibroin, followed by freeze-drying. Different ratios of fibers to fibroin were investigated with respect to their influence on mechanical and biological properties. For all scaffold types, an interconnected porous structure suitable for cell penetration was proven by scanning electron microscopy. Compressive tests, carried out in static and cyclic mode under dry as well as wet conditions, revealed a strong impact of fiber reinforcement on compressive modulus and compressive stress. Cell culture experiments with human mesenchymal stem cells demonstrated that the fiber/fibroin composite scaffolds support cell attachment, proliferation, as well as differentiation along the osteoblastic lineage. Considering the excellent mechanical and biological properties, novel fiber/fibroin scaffolds appear to be an interesting structure for prospect studies in bone tissue engineering. Copyright © 2013 Wiley Periodicals, Inc.

  9. Fabrication and characterization of gold nanoparticle reinforced Chitosan nanocomposites for biomedical applications

    Science.gov (United States)

    Patel, Nimitt G.

    Chitosan is a naturally derived polymer, which represents one of the most technologically important classes of active materials with applications in a variety of industrial and biomedical fields. Polymeric materials can be regarded as promising candidates for next generation devices due to their low energy payback time. These devices can be fabricated by high-throughput processing methodologies, such as spin coating, inkjet printing, gravure and flexographic printing onto flexible substrates. However, the extensive applications of polymeric films are still limited because of disadvantages such as poor electromechanical properties, high brittleness with a low strain at break, and sensitivity to water. For certain critical applications the need for modification of physical, mechanical and electrical properties of the polymer is essential. When blends of polymer films with other materials are used, as is commonly the case, device performance directly depends on the nanoscale morphology and phase separation of the blend components. To prepare nanocomposite thin films with the desired functional properties, both the film composition and microstructure have to be thoroughly characterized and controlled. Chitosan reinforced bio-nanocomposite films with varying concentrations of gold nanoparticles were prepared through a solution casting method. Gold nanoparticles (˜ 32 nm diameter) were synthesized via a citrate reduction method from chloroauric acid and incorporated in the prepared Chitosan solution. Uniform distribution of gold nanoparticles was achieved throughout the chitosan matrix and was confirmed by SEM images. Synthesis outcomes and prepared nanocomposites were characterized using TEM, SAED, SEM, EDX, XRD, UV-Vis, particle size analysis, zeta potential and FT-IR for their physical, morphological and structural properties. Nanoscale mechanical properties of the nanocomposite films were characterized at room temperature, human body temperatures and higher

  10. Fabrications of zinc-releasing biocement combining zinc calcium phosphate to calcium phosphate cement.

    Science.gov (United States)

    Horiuchi, Shinya; Hiasa, Masahiro; Yasue, Akihiro; Sekine, Kazumitsu; Hamada, Kenichi; Asaoka, Kenzo; Tanaka, Eiji

    2014-01-01

    Recently, zinc-releasing bioceramics have been the focus of much attention owing to their bone-forming ability. Thus, some types of zinc-containing calcium phosphate (e.g., zinc-doped tricalcium phosphate and zinc-substituted hydroxyapatite) are examined and their osteoblastic cell responses determined. In this investigation, we studied the effects of zinc calcium phosphate (ZCP) derived from zinc phosphate incorporated into calcium phosphate cement (CPC) in terms of its setting reaction and MC3T3-E1 osteoblast-like cell responses. Compositional analysis by powder X-ray diffraction analysis revealed that HAP crystals were precipitated in the CPC containing 10 or 30wt% ZCP after successfully hardening. However, the crystal growth observed by scanning electron microscopy was delayed in the presence of additional ZCP. These findings indicate that the additional zinc inhibits crystal growth and the conversion of CPC to the HAP crystals. The proliferation of the cells and alkaline phosphatase (ALP) activity were enhanced when 10wt% ZCP was added to CPC. Taken together, ZCP added CPC at an appropriate fraction has a potent promotional effect on bone substitute biomaterials.

  11. Fabrication of Novel Biodegradable α-Tricalcium Phosphate Cement Set by Chelating Capability of Inositol Phosphate and Its Biocompatibility

    Directory of Open Access Journals (Sweden)

    Toshiisa Konishi

    2013-01-01

    Full Text Available Biodegradable α-tricalcium phosphate (α-TCP cement based on the chelate-setting mechanism of inositol phosphate (IP6 was developed. This paper examined the effect of the milling time of α-TCP powder on the material properties of the cement. In addition, biocompatibility of the result cement in vitro using osteoblasts and in vivo using rabbit models will be studied as well. The α-TCP powders were ballmilled using ZrO2 beads in pure water for various durations up to 270 minutes, with a single-phase α-TCP obtained at ballmilling for 120 minutes. The resulting cement was mostly composed of α-TCP phase, and the compressive strength of the cement was 8.5±1.1 MPa, which suggested that the cements set with keeping the crystallite phase of starting cement powder. The cell-culture test indicated that the resulting cements were biocompatible materials. In vivo studies showed that the newly formed bones increased with milling time at a slight distance from the cement specimens and grew mature at 24 weeks, and the surface of the cement was resorbed by tartrate-resistant acid phosphatase-(TRAP-positive osteoclast-like cells until 24 weeks of implantation. The present α-TCP cement is promising for application as a novel paste-like artificial bone with biodegradability and osteoconductivity.

  12. The elastic and inelastic behavior of woven graphite fabric reinforced polyimide composites

    Science.gov (United States)

    Searles, Kevin H.

    In many aerospace and conventional engineering applications, load-bearing composite structures are designed with the intent of being subjected to uniaxial stresses that are predominantly tensile or compressive. However, it is likely that biaxial and possibly triaxial states of stress will exist throughout the in-service life of the structure or component. The existing paradigm suggests that unidirectional tape materials are superior under uniaxial conditions since the vast majority of fibers lie in-plane and can be aligned to the loading axis. This may be true, but not without detriment to impact performance, interlaminar strength, strain to failure and complexity of part geometry. In circumstances where a sufficient balance of these properties is required, composites based on woven fabric reinforcements become attractive choices. In this thesis, the micro- and mesoscale elastic behavior of composites based on 8HS woven graphite fabric architectures and polyimide matrices is studied analytically and numerically. An analytical model is proposed to predict the composite elastic constants and is verified using numerical strain energy methods of equivalence. The model shows good agreement with the experiments and numerical strain energy equivalence. Lamina stresses generated numerically from in-plane shear loading show substantial shear and transverse normal stress concentrations in the transverse undulated tow which potentially leads to intralaminar damage. The macroscale inelastic behavior of the same composites is also studied experimentally and numerically. On an experimental basis, the biaxial and modified biaxial Iosipescu test methods are employed to study the weaker-mode shear and biaxial failure properties at room and elevated temperatures. On a numerical basis, the macroscale inelastic shear behavior of the composites is studied. Structural nonlinearities and material nonlinearities are identified and resolved. In terms of specimen-to-fixture interactions

  13. Fabrication and mechanical characterization of graphene oxide-reinforced poly (acrylic acid)/gelatin composite hydrogels

    Science.gov (United States)

    Faghihi, Shahab; Gheysour, Mahsa; Karimi, Alireza; Salarian, Reza

    2014-02-01

    Hydrogels have found many practical uses in drug release, wound dressing, and tissue engineering. However, their applications are restricted due to their weak mechanical properties. The role of graphene oxide nanosheets (GONS) as reinforcement agent in poly (acrylic acid) (PAA)/Gelatin (Gel) composite hydrogels is investigated. Composite hydrogels are synthesized by thermal initiated redox polymerization method. Samples are then prepared with 20 and 40 wt. % of PAA, an increasing amount of GONS (0.1, 0.2, and 0.3 wt. %), and a constant amount of Gel. Subsequently, cylindrical hydrogel samples are subjected to a series of compression tests in order to measure their elastic modulus, maximum stress and strain. The results exhibit that the addition of GONS increases the Young's modulus and maximum stress of hydrogels significantly as compared with control (0.0 wt. % GONS). The highest Young's modulus is observed for hydrogel with GO (0.2 wt. %)/PAA (20 wt. %), whereas the highest maximum stress is detected for GO (0.2 wt. %)/PAA (40 wt. %) specimen. The addition of higher amounts of GONS leads to a decrease in the maximum stress of the hydrogel GO (0.3 wt. %)/PAA (40 wt. %). No significant differences are detected for the maximum strain among the hydrogel samples, as the amount of GONS increased. These results suggest that the application of GONS could be used to improve mechanical properties of hydrogel materials. This study may provide an alternative for the fabrication of low-cost graphene/polymer composites with enhanced mechanical properties beneficial for tissue engineering applications.

  14. Influence of Fabric Parameters on Microstructure, Mechanical Properties and Failure Mechanisms in Carbon-Fibre Reinforced Composites

    Institute of Scientific and Technical Information of China (English)

    B.Wielage; D.Richter; H.Mucha; Th.Lampke

    2008-01-01

    The effects of fibre/matrix bonding,fabric density,fibre volume fraction and bundle size on microstructure,mechanical properties and failure mechanisms in carbon fibre reinforced composites (plastic and carbon matrix) have been investigated.The microstructure of unloaded and cracked samples was studied by optical microscopy and scanning electron microscopy (SEM),respectively whereas the mechanical behaviour was examined by 3-point bending experiments.Exclusively one type of experimental resole type phenolic resin was applied.A strong fibre/matrix bonding,which is needed for high strength of carbon fibre reinforced plastic (CFRP) materials leads to severe composite damages during the pyrolysis resulting in low strength,brittle failure and a very low utilisation of the fibres strain to failure in C/C composites.Inherent fabric parameters such as an increasing fabric density or bundle size or a reduced fibre volume fraction introduce inhomogenities to the CFRP's microstructure.Results are lower strength and stiffness whereas the strain to failure increases or remains unchanged.Toughness is almost not affected.In C/C composites inhomogenities due to a reduced bundle size reduce strain to failure,strength,stiffness and toughness.Vice versa a declining fibre volume fraction leads to exactly the opposite behaviour.Increasing the fabric density (weight per unit area) causes similar effects as in CFRPs.

  15. Fabrication and mechanical properties of AlCoNiCrFe high-entropy alloy particle reinforced Cu matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jian, E-mail: chenjian@xatu.edu.cn [School of Materials Science and Chemical Engineering, Xi' an Technological University, Xi' an, Shaanxi 710021 (China); Niu, Pengyun; Wei, Ting [School of Materials Science and Chemical Engineering, Xi' an Technological University, Xi' an, Shaanxi 710021 (China); Hao, Liang [College of Architecture and Civil Engineering, Xi' an University of Science and Technology, Xi' an 710054 (China); Liu, Yunzi [School of Materials Science and Chemical Engineering, Xi' an Technological University, Xi' an, Shaanxi 710021 (China); Wang, Xianhui, E-mail: xhwang693@xaut.edu.cn [School of Materials Science and Engineering, Xi' an University of Technology, Xi' an, Shaanxi 710048 (China); Peng, Yuli [School of Materials Science and Chemical Engineering, Xi' an Technological University, Xi' an, Shaanxi 710021 (China)

    2015-11-15

    The AlCoNiCrFe high-entropy alloy was prepared by mechanical alloying and the AlCoNiCrFe high-entropy alloy reinforced Cu matrix composites were subsequently fabricated by powder metallurgy. The phase constituents and morphology of the alloying powders were characterized by X-ray diffractometer and scanning electron microscope, the microstructures of the Cu base composites were characterized by scanning electron microscope and transmission electron microscope, and the compression tests were made as well. The results show that the AlCoNiCrFe high-entropy alloy can form after milling for 24 h. During sintering process, no grain growth occurs and no intermetallic phases present in the AlCoNiCrFe high-entropy alloy in the Cu base composite. Compression tests show that the AlCoNiCrFe high-entropy alloy has a better strengthening effect than metallic glasses and the yield strength of the Cu matrix composite reinforced with the AlCoNiCrFe high-entropy alloy is close to the value predicted by the Voigt model based on the equal strain assumption. - Graphical abstract: AlCoNiCrFe HEA has a better strengthening effect than metallic glasses for particulate reinforced metal matrix composites. The yield strength of the Cu base composite reinforced with the AlCoNiCrFe HEA is close to the upper bound calculated by Voigt model. - Highlights: • AlCoNiCrFe high-entropy alloy was prepared by mechanical alloying. • A novel Cu base composite reinforced with AlCoNiCrFe was fabricated. • No grain growth and no intermetallic phase present in AlCoNiCrFe during sintering. • AlCoNiCrFe has a better strengthening effect than metallic glassy in composites.

  16. Mechanical properties and fabrication of small boat using woven glass/sugar palm fibres reinforced unsaturated polyester hybrid composite

    Science.gov (United States)

    Misri, S.; Leman, Z.; Sapuan, S. M.; Ishak, M. R.

    2010-05-01

    In recent years, sugar palm fibre has been found to have great potential to be used as fibre reinforcement in polymer matrix composites. This research investigates the mechanical properties of woven glass/sugar palm fibres reinforced unsaturated polyester hybrid composite. The composite specimens made of different layer of fibres such as strand mat, natural and hand woven of sugar palm fibres. The composites were fabricated using a compression moulding technique. The tensile and impact test was carried out in accordance to ASTM 5083 and ASTM D256 standard. The fibre glass boat is a familiar material used in boat industry. A lot of research on fabrication process such as lay-up, vacuum infusion mould and resin transfer mould has been conducted. Hybrid material of sugar palm fibre and fibre glass was used in fabricating the boat. This research investigates the method selection for fabrication of small boat application of natural fibre composites. The composite specimens made of different layer of fibres; woven glass fibre, strand mat, natural and hand woven of woven sugar palm fibres were prepared. The small boat were fabricated using a compression moulding and lay up technique. The results of the experiment showed that the tensile strength, tensile modulus, elongation at break value and impact strength were higher than the natural woven sugar palm fibre. The best method for fabricating the small boat was compression moulding technique. As a general conclusion, the usage of glass fibre had improved the tensile properties sugar palm fibre composites and compression moulding technique is suitable to be used in making a small boat application of natural fibre composites.

  17. Static and dynamic experimental study of strengthened reinforced short concrete corbel by using carbon fabrics, crack path in shear zone

    Directory of Open Access Journals (Sweden)

    I. Ivanova

    2015-10-01

    Full Text Available The paper presents an experimental analysis of tracking the path of the cracks and crack growth in strengthened or repair reinforced concrete short corbels bonded by carbon fiber fabrics under static and dynamic loads. The reinforced short concrete corbel is a used precast element, for industrial buildings and structures. In fact, their functioning interestingly unconventional is compared to classical beam type elements. Then the effects of bending and shearing are combined in this case. The horizontal reinforced steel is localized to resist to tensile strength induced in bending top and a transversal strength-absorbing contribution. The introduction of carbon fiber composite in the field of Civil Engineering allows to strengthen or repair reinforced concrete structures using adhesive. So the carbon fiber material has many advantages as its low weight, flexibility, easier handling and also interesting physicochemical properties. However maintenance of civil engineering works is to protect them by ensuring better sealing or limiting corrosion. Then strengthening is to repair structures by using bonding technique to compensate their rigidity loss and limit the cracking. This allows to improve their performance and durability. Bonding of composite material in tensile zone of corbel retrieves most tensile stress and allows the structure to extend their load-bearing capacity. The local behavior of the structure is measured by means of the extensometer technique based on electrical strain gauges. This technique allowed to measure strains of steel, carbon fiber fabrics and concrete. The results of this investigation showed that strengthened reinforced concrete corbel bonded by carbon fiber fabrics can improve the ultimate load to twice and stiffens less than a third. The ultimate load, strain and displacement of the specimen are compared to reference experimental model of monotonic and cyclic applied loads. The success of strengthening depends strongly

  18. Synthesis and characterization of poly(methyl methacrylate)-based experimental bone cements reinforced with TiO2-SrO nanotubes.

    Science.gov (United States)

    Khaled, S M Z; Charpentier, Paul A; Rizkalla, Amin S

    2010-08-01

    In an attempt to overcome existing limitations of experimental bone cements we here demonstrate a simple approach to synthesizing strontium-modified titania nanotubes (n-SrO-TiO(2) tubes) and functionalize them using the bifunctional monomer methacrylic acid. Then, using 'grafting from' polymerization with methyl methacrylate, experimental bone cements were produced with excellent mechanical properties, radiopacity and biocompatibility. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive spectroscopy mapping and backscattered SEM micrographs revealed a uniform distribution of SrO throughout the titanium matrix, with retention of the nanotubular morphology. Nanocomposites were then reinforced with 1, 2, 4 and 6 wt.% of the functionalized metal oxide nanotubes. Under the mixing and dispersion regime employed in this study, 2 wt.% appeared optimal, exhibiting a more uniform dispersion and stronger adhesion of the nanotubes in the poly(methyl methacrylate) matrix, as shown by TEM and SEM. Moreover, this optimum loading provided a significant increase in the fracture toughness (K(IC)) (20%) and flexural strength (40%) in comparison with the control matrix (unfilled) at P<0.05. Examination of the fracture surfaces by SEM showed that toughening was provided by the nanotubes interlocking with the acrylic matrix and crack bridging during fracture. On modifying the n-TiO(2) tubes with strontium oxide the nanocomposites exhibited a similar radiopacity to a commercial bone cement (CMW 1), while exhibiting a significant enhancement of osteoblast cell proliferation (242%) in vitro compared with the control at P<0.05. Copyright 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. The fabrication of carbon nanotubes reinforced copper coating by a kinetic spray process.

    Science.gov (United States)

    Xiong, Yuming; Kang, Kicheol; Yoon, Sanghoon; Lee, Changhee

    2008-10-01

    In this paper, multiwalled carbon nanotubes (MWCNTs) reinforced copper coating was deposited on copper sheet through kinetic spraying process. Effect of heat treatment on microstructure, conductivity, and hardness of the coating was investigated. The incompact MWCNTs reinforced copper coating exhibits a comparable hardness, but higher electrical resistivity than pure copper coating. After heat treatment at 600 degrees C for 2 h, the hardness of copper coatings significantly decreased due to the substantial grain growth. MWCNTs reinforced copper coating showed stable hardness and electrical conductivity against heat treatment owing to the inhibition of CNTs to grain growth and the intimate contact between CNTs and copper matrix.

  20. In-situ fabrication of particulate reinforced aluminum matrix composites under high-frequency pulsed electromagnetic field

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Pulsed magnetic field is generated when imposing pulse signal on high-frequency magnetic field. Distribution of the inner magnetic intensity in induction coils tends to be uniform. Furthermore oscillation and disturbance phenomena appear in the melt. Insitu Al2O3 and Al3Zr particulate reinforced aluminum matrix composites have been synthesized by direct melt reaction using Al-Zr(CO3)2 components under a foreign field. The size of reinforced particulates is 2-3 μm. They are well distributed in the matrix.Thermodynamic and kinetic analysis show that high-frequency pulsed magnetic field accelerates heat and mass transfer processes and improves the kinetic condition of in-situ fabrication.

  1. Design, fabrication, and characterization of lightweight and broadband microwave absorbing structure reinforced by two dimensional composite lattice

    Science.gov (United States)

    Chen, Mingji; Pei, Yongmao; Fang, Daining

    2012-07-01

    Microwave absorbing structures (MASs) reinforced by two dimensional (2D) composite lattice elements have been designed and fabricated. The density of these MASs is lower than 0.5 g/cm3. Experimental measurements show that the sandwich structure with glass fiber reinforced composite (GFRC) lattice core can serve as a broadband MAS with its reflectivity below -10 dB over the frequency range of 4-18 GHz. The low permittivity GFRC is indicated to be the proper material for both the structural element of the core and the transparent face sheet. Calculations by the periodic moment method (PMM) demonstrate that the 2D Kagome lattice performs better for microwave absorbing than the square one at relatively low frequencies. The volume fraction and cell size of the structural element are also revealed to be key factors for microwave absorbing performance.

  2. 玻璃纤维增强水泥(GRC)研究与发展综述%Research and development review on glass ifber reinforced cement

    Institute of Scientific and Technical Information of China (English)

    刘志成; 崔琪; 李清海

    2015-01-01

    玻璃纤维增强水泥(GRC)因其优异的性能而受到了国内外学者的广泛关注,而且其工程应用广泛.本文以目前国内外学者对GRC的研究成果及典型工程为基础,系统介绍了GRC的主要性能、发展历史、增强机理、破坏机理和工程应用等情况.近年来随着原材料的更新,生产工艺的改进,尤其是3D打印技术的推广,GRC在未来将有更多的研究方向和更加广阔的应用领域.%Due to its excellent performance,glass fiber reinforced cement (GRC) received wide attention of scholars around the world and it had an extensive application prospects.The performances developing history reinforcement mechanism fracture mechanism and engineering applications of GRC were briefly introduced based on the research results of the domestic and overseas scholars and typical application projects.GRC would have more research directions and application fields in the future according to the update of raw materials,improvement of manufacturing techniques, especially the promotion of 3D printing technology.

  3. Chairside Fabrication of an All-Ceramic Partial Crown Using a Zirconia-Reinforced Lithium Silicate Ceramic

    Science.gov (United States)

    Pabel, Anne-Kathrin; Rödiger, Matthias

    2016-01-01

    The chairside fabrication of a monolithic partial crown using a zirconia-reinforced lithium silicate (ZLS) ceramic is described. The fully digitized model-free workflow in a dental practice is possible due to the use of a powder-free intraoral scanner and the computer-aided design/computer-assisted manufacturing (CAD/CAM) of the restorations. The innovative ZLS material offers a singular combination of fracture strength (>370 Mpa), optimum polishing characteristics, and excellent optical properties. Therefore, this ceramic is an interesting alternative material for monolithic restorations produced in a digital workflow. PMID:27042362

  4. Chairside Fabrication of an All-Ceramic Partial Crown Using a Zirconia-Reinforced Lithium Silicate Ceramic

    Directory of Open Access Journals (Sweden)

    Sven Rinke

    2016-01-01

    Full Text Available The chairside fabrication of a monolithic partial crown using a zirconia-reinforced lithium silicate (ZLS ceramic is described. The fully digitized model-free workflow in a dental practice is possible due to the use of a powder-free intraoral scanner and the computer-aided design/computer-assisted manufacturing (CAD/CAM of the restorations. The innovative ZLS material offers a singular combination of fracture strength (>370 Mpa, optimum polishing characteristics, and excellent optical properties. Therefore, this ceramic is an interesting alternative material for monolithic restorations produced in a digital workflow.

  5. Designing of epoxy composites reinforced with carbon nanotubes grown carbon fiber fabric for improved electromagnetic interference shielding

    Directory of Open Access Journals (Sweden)

    B. P. Singh

    2012-06-01

    Full Text Available In this letter, we report preparation of strongly anchored multiwall carbon nanotubes (MWCNTs carbon fiber (CF fabric preforms. These preforms were reinforced in epoxy resin to make multi scale composites for microwave absorption in the X-band (8.2-12.4GHz. The incorporation of MWCNTs on the carbon fabric produced a significant enhancement in the electromagnetic interference shielding effectiveness (EMI-SE from −29.4 dB for CF/epoxy-composite to −51.1 dB for CF-MWCNT/epoxy multiscale composites of 2 mm thickness. In addition to enhanced EMI-SE, interlaminar shear strength improved from 23 MPa for CF/epoxy-composites to 50 MPa for multiscale composites indicating their usefulness for making structurally strong microwave shields.

  6. Effects of oxygen plasma treatment on interfacial shear strength and post-peak residual strength of a PLGA fiber-reinforced brushite cement.

    Science.gov (United States)

    Maenz, Stefan; Hennig, Max; Mühlstädt, Mike; Kunisch, Elke; Bungartz, Matthias; Brinkmann, Olaf; Bossert, Jörg; Kinne, Raimund W; Jandt, Klaus D

    2016-04-01

    Biodegradable calcium phosphate cements (CPCs) are promising materials for minimally invasive treatment of bone defects. However, CPCs have low mechanical strength and fracture toughness. One approach to overcome these limitations is the modification of the CPC with reinforcing fibers. The matrix-fiber interfacial shear strength (ISS) is pivotal for the biomechanical properties of fiber-reinforced CPCs. The aim of the current study was to control the ISS between a brushite-forming CPC and degradable PLGA fibers by oxygen plasma treatment and to analyze the impact of the ISS alterations on its bulk mechanical properties. The ISS between CPC matrix and PLGA fibers, tested in a single-fiber pull-out test, increased up to 2.3-fold to max. 3.22±0.92MPa after fiber oxygen plasma treatment (100-300W, 1-10min), likely due to altered surface chemistry and morphology of the fibers. This ISS increase led to more efficient crack bridging and a subsequent increase of the post-peak residual strength at biomechanically relevant, moderate strains (up to 1%). At the same time, the work of fracture significantly decreased, possibly due to an increased proportion of fractured fibers unable to further absorb energy by frictional sliding. Flexural strength and flexural modulus were not affected by the oxygen plasma treatment. This study shows for the first time that the matrix-fiber ISS and some of the resulting mechanical properties of fiber-reinforced CPCs can be improved by chemical modifications such as oxygen plasma treatment, generating the possibility of avoiding catastrophic failures at the implant site and thus enhancing the applicability of biodegradable CPCs for the treatment of (load-bearing) bone defects.

  7. Fabrication of novel fiber reinforced aluminum composites by friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Arab, Seyyed Mohammad; Karimi, Saeed; Jahromi, Seyyed Ahmad Jenabali, E-mail: jahromi@shirazu.ac.ir; Javadpour, Sirus; Zebarjad, Seyyed Mojtaba

    2015-04-24

    In this study, chopped and attrition milled high strength carbon, E-glass, and S-glass fibers have been used as the reinforcing agents in an aluminum alloy (Al1100) considered as the matrix. The Surface Metal Matrix Composites (SMMCs) then are produced by Friction Stir Processing (FSP). Tensile and micro-hardness examinations represent a magnificent improvement in the hardness, strength, ductility and toughness for all of the processed samples. Scanning Electron Micrographs reveal a proper distribution of the reinforcements in the matrix and a change in the fracture behavior of the FSPed specimens. The synergetic effects of reinforcing by fibers and Severe Plastic Deformation (SPD) lead to an extra ordinary improvement in the mechanical properties.

  8. Fabrication and Testing of Carbon Fiber Reinforced Truss Core Sandwich Panels

    Institute of Scientific and Technical Information of China (English)

    Bing Wang; Linzhi Wu; Li Ma; Qiang Wang; Shanyi Du

    2009-01-01

    Truss core sandwich panels reinforced by carbon fibers were assembled with bonded laminate facesheets and carbon fiber reinforced truss cores. The top and bottom facesheets were interconnected with truss cores. Both ends of the truss cores were embedded into four layers of top and bottom facesheets. The mechanical properties of truss core sandwich panels were then investigated under out-of-plane and in-plane compression loadings to reveal the failure mechanisms of sandwich panels. Experimental results indicated that the mechanical behavior of sandwich structure under in-plane loading is dominated by the buckling and debonding of facesheets.

  9. Disposal Options of Bamboo Fabric-Reinforced Poly(Lactic Acid Composites for Sustainable Packaging: Biodegradability and Recyclability

    Directory of Open Access Journals (Sweden)

    M.R. Nurul Fazita

    2015-08-01

    Full Text Available The present study was conducted to determine the recyclability and biodegradability of bamboo fabric-reinforced poly(lactic acid (BF-PLA composites for sustainable packaging. BF-PLA composite was recycled through the granulation, extrusion, pelletization and injection processes. Subsequently, mechanical properties (tensile, flexural and impact strength, thermal stability and the morphological appearance of recycled BF-PLA composites were determined and compared to BF-PLA composite (initial materials and virgin PLA. It was observed that the BF-PLA composites had the adequate mechanical rigidity and thermal stability to be recycled and reused. Moreover, the biodegradability of BF-PLA composite was evaluated in controlled and real composting conditions, and the rate of biodegradability of BF-PLA composites was compared to the virgin PLA. Morphological and thermal characteristics of the biodegradable BF-PLA and virgin PLA were obtained by using environment scanning electron microscopy (ESEM and differential scanning calorimetry (DSC, respectively. The first order decay rate was found to be 0.0278 and 0.0151 day−1 in a controlled composting condition and 0.0008 and 0.0009 day−1 in real composting conditions for virgin PLA and BF-PLA composite, respectively. Results indicate that the reinforcement of bamboo fabric in PLA matrix minimizes the degradation rate of BF-PLA composite. Thus, BF-PLA composite has the potential to be used in product packaging for providing sustainable packaging.

  10. Development and Evaluation of Cement-Based Materials for Repair of Corrosion-Damaged Reinforced Concrete Slabs

    OpenAIRE

    Liu, Rongtang; Olek, J.

    2001-01-01

    In this study, the results of an extensive laboratory investigation conducted to evaluate the properties of concrete mixes used as patching materials to repair reinforced concrete slabs damaged by corrosion are reported. Seven special concrete mixes containing various combinations of chemical or mineral admixtures were developed and used as a patching material to improve the durability of the repaired slabs. Physical and mechanical properties of these mixes, such as compressive strength, stat...

  11. Flax fiber reinforced PLA composites: studies on types of PLA and different methods of fabrication

    CSIR Research Space (South Africa)

    Kumar, R

    2011-05-01

    Full Text Available hand, injection molded flax fiber reinforced PLA specimens showed higher tensile modulus (TM) (3.0 GPa) than solution cast cum compression molded specimens (1.9 GPa). In addition, the properties of the composites depend on the nature of PLA used...

  12. Fabrication and mechanical properties of self-reinforced poly(ethylene terephthalate composites

    Directory of Open Access Journals (Sweden)

    2011-03-01

    Full Text Available Self-reinforced poly(ethylene terephthalate (PET composites prepared by using a modified film-stacking technique were examined in this study. The starting materials included a high tenacity PET yarn (reinforcement and a low melting temperature biodegradable polyester resin (matrix, both of which differ in their melting temperatures with a value of 56°C. This experiment produced composite sheets at three consolidation temperatures (Tc: 215, 225, and 235°C at a constant holding time (th: 6.5 min, and three holding times (3, 6.5 and 10 min at a constant consolidation temperature of 225°C. This study observed a significant improvement in the mechanical properties obtained in self-reinforced PET composites compared to the pure polyester resin. The results of tensile, flexural, and Izod impact tests proved that optimal conditions are low consolidation temperature and short holding time. The absorbed impact energy of the best self-reinforced PET composite material was 854.0 J/m, which is 63 times that of pure polyester resin.

  13. Effect of montmorillonite clay on flax fabric reinforced poly lactic acid composites with amphiphilic additives

    CSIR Research Space (South Africa)

    Kumar, R

    2010-01-01

    Full Text Available Bio-composites (PF) were successfully prepared by reinforcing poly lactic acid (PLA) with woven flax fibers (F) in the presence of mandelic acid, benzilic acid, dicumyl peroxide (DCP) and zein as dditives. To improve the mechanical properties...

  14. Fabrication of BN Nanosheet Reinforced ZrO{sub 2} Composite Pellets for Inert Matrix Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Shukeir, Malik; Umer, Malik; Lee, Bin; Ryu, Ho Jin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    Plutonium also can be resulted from the dismantlement of nuclear weapons. This will result in the increase of the stockpile of plutonium. For that purpose many organizations are focusing their R-D work on the concept of Inert Matrix Fuel IMF, where a U-free matrix is used to eliminate the U-Pu conversion. R-D work was standardized around Zirconiabased IMF as a result of many screening and ranking studies performed on various candidates. Regardless of its outstanding radiation resistance, chemical stability and its high melting point, it has a very low thermal conductivity, which could be detrimental for the fuel matrix especially in case of accidents. A reinforcement phase could be used for the enhancement of the thermomechanical properties. Among many possible reinforcements, 2D structured nanosheets have emerged as an excellent candidate to enhance the thermal properties and mechanical properties simultaneously. In this approach Boron Nitride Nanosheets BNNS are used for that purpose. BNNS have a very low density, very high thermal conductivity, very high mechanical properties and high neutron absorption cross-section for Boron which is used frequently as a burnable poison. They have properties similar to graphene but they exhibit superior thermal stability in the oxide structure. Despite all the studies on other reinforcements, BNNS reinforced ZrO{sub 2} has not yet been reported. In this study, pure ZrO{sub 2} and partially stabilized Zirconia PSZ (using Yttria) ceramics are mixed with different volume fractions of BNNS.

  15. Experimental characterisation of recycled (glass/tpu woven fabric) flake reinforced thermoplastic composites

    NARCIS (Netherlands)

    Abdul Rasheed, M.I.; Rietman, A.D.; Visser, H.A.; Akkerman, R.; Hoa, S.V.; Hubert, P.

    2013-01-01

    Recycling of continuously reinforced thermoplastic composites (TPC) has a substantial prospect at present and in future due to its increasing availability and rapidly growing application regime. This study focusses on the first steps in using TPC process scrap on a scale in which its maximum potenti

  16. Mechanical properties of uniaxial natural fabric Grewia tilifolia reinforced epoxy based composites: Effects of chemical treatment

    CSIR Research Space (South Africa)

    Jayaramudu, J

    2014-07-01

    Full Text Available The effects of chemical treatment on the mechanical, morphological, and chemical resistance properties of uniaxial natural fabrics, Grewia tilifolia/epoxy composites, were studied. In order to enhance the interfacial bonding between the epoxy matrix...

  17. Fabrication and characterization of nanoclay modified PMR type polyimide composites reinforced with 3D woven basalt fabric

    Science.gov (United States)

    Xie, Jianfei; Qiu, Yiping

    2009-07-01

    Nanoclay modified PMR type polyimide composites were prepared from 3D orthogonal woven basalt fiber performs and nanoclay modified polyimide matrix resin, which derived from methylene dianiline (MDA), dimethyl ester of 3,3',4,4'- oxydiphthalic acid (ODPE), monomethyl ester of cis-5-norbornene-endo-2,3-dicarboxylic acid (NE) and nanoclay. The Na+-montmorillonite was organically treated using a 1:1 molar ratio mixture of dodecylamine (C12) and MDA. The rheological properties of neat B-stage PMR polyimide and 2% clay modified B-stage PMR polyimide were investigated. Based on the results obtained from the rheological tests, a two step compression molding process can be established for the composites. In the first step, the 3D fabric preforms were impregnated with polyimide resin in a vacuum oven and heated up for degassing the volatiles and by-products. In the second step, composites were compressed. The internal structure of the composites was observed by a microscope. Incorporation of 2% clay showed an improvement in the Tg and stiffness of the PMR polyimide. The resulting composites exhibited high thermal stability and good mechanical properties.

  18. Diagnostics of glass fiber reinforced polymers and comparative analysis of their fabrication techniques with the use of acoustic emission

    Science.gov (United States)

    Bashkov, O. V.; Bryansky, A. A.; Panin, S. V.; Zaikov, V. I.

    2016-11-01

    Strength properties of the glass fiber reinforced polymers (GFRP) fabricated by vacuum and vacuum autoclave molding techniques were analyzed. Measurements of porosity of the GFRP parts manufactured by various molding techniques were conducted with the help of optical microscopy. On the basis of experimental data obtained by means of acoustic emission hardware/software setup, the technique for running diagnostics and forecasting the bearing capacity of polymeric composite materials based on the result of three-point bending tests has been developed. The operation principle of the technique is underlined by the evaluation of the power function index change which takes place on the dependence of the total acoustic emission counts versus the loading stress.

  19. Multi-Scaled Modeling the Mechanical Properties of Tubular Composites Reinforced with Innovated 3D Weft Knitted Spacer Fabrics

    Science.gov (United States)

    Omrani, Elahe; Hasani, Hossein; Dibajian, Sayed Houssain

    2017-06-01

    Textile composites of 3D integrated spacer configurations have been recently focused by several researchers all over the world. In the present study, newly-designed tubular composites reinforced with 3D spacer weft knitted fabrics were considered and the effects of their structural parameters on some applicable mechanical properties were investigated. For this purpose, two different samples of 3D spacer weft knitted textile types in tubular form were produced on an electronic flat knitting machine, using glass/nylon hybrid yarns. Thermoset tubular-shaped composite parts were manufactured via vacuum infusion molding process using epoxy resin. The mechanical properties of the produced knitted composites in term of external static and internal hydrostatic pressures were evaluated. Resistance of the produced composites against the external static and internal hydrostatic pressures was numerically simulated using multi-scale modeling method. The finding revealed that there is acceptable correlation between experimental and theoretical results.

  20. Carbon-Coated-Nylon-Fiber-Reinforced Cement Composites as an Intrinsically Smart Concrete for Damage Assessment during Dynamic Loading

    Institute of Scientific and Technical Information of China (English)

    Zhenjun ZHOU; Zhiguo XIAO; Wei PAN; Zhipeng XIE; Xixian LUO; Lei JIN

    2003-01-01

    Concrete containing short carbon-coated-nylon fibers (0.4~2.0 vol. pct) exhibited quasi-ductile response by developing a large damage zone prior to fracture localization. In the damage zone, the material was microcracked but continued to local strain-harden. The carbon-coated-nylon-fiber-reinforced concrete composites (NFRC) were found to be an intrinsically smart concrete that could sense elastic and inelastic deformation, as well as fracture. The fibers served to bridge the cracks and the carbon coating gave the conduction path. The signal provided came from the change in electrical resistance, which was reversible for elastic deformation and irreversible for inelastic deformation and fracture. The resistance decrease was due to the reduction of surface touch resistance between fiber and matrix and the crack closure. The resistance irreversible increase resulted from the crack opening and breakage of the carbon coating on nylon fiber.

  1. Wet-laid soy fiber reinforced hydrogel scaffold: Fabrication, mechano-morphological and cell studies.

    Science.gov (United States)

    Wood, Andrew T; Everett, Dominique; Budhwani, Karim I; Dickinson, Brenna; Thomas, Vinoy

    2016-06-01

    Among materials used in biomedical applications, hydrogels have received consistent linear growth in interest over the past decade due to their large water volume and saliency to the natural extracellular matrix. These materials are often limited due to their sub-optimal mechanical properties which are typically improved via chemical or physical crosslinking. Chemical crosslinking forms strong inter-polymer bonds but typically uses reagents that are cytotoxic while physical crosslinking is more temperamental to environmental changes but can be formed without these toxic reagents. In this study, we added a fiber-reinforcement phase to a poly(vinyl alcohol) (PVA) hydrogel formed through successive freezing-thawing cycles by incorporating a non-woven microfiber mat formed by the wet-lay process. By reinforcing the hydrogel with a wet-laid fibrous mat, the ultimate tensile strength and modulus increased from 0.11 ± 0.01 MPa and 0.17 ± 0.02 kPa to 0.24 ± 0.02 MPa and 5.76 ± 1.12 kPa, respectively. An increase in toughness and elongation was also found increasing from 2.52 ± 0.37 MPa to 25.6 ± 3.84 and 51.89 ± 5.16% to 111.16 ± 9.68%, respectively. The soy fibers were also found to induce minimal cytotoxicity with endothelial cell viability showing 96.51% ± 1.91 living cells after a 48 h incubation. This approach to hydrogel-reinforcement presents a rapid, tunable method by which hydrogels can attain increased mechanical properties without sacrificing their inherent biologically favorable properties.

  2. Fabrication of continuous fiber-reinforced ceramics with a nanosized mullite precursor

    Energy Technology Data Exchange (ETDEWEB)

    Reese, O.; Saruhan, B.; Kanka, B.; Schneider, H. [Institute of Materials Research, Cologne (Germany)

    1995-12-01

    Chemically synthesized mullite precursor powders which are suitable materials for the production of continuous fiber-reinforced mullite composites, owing to their high sintering activity at relatively low processing temperatures were used as a matrix material. Since commercially available polycrystalline mullite fibers become instable at high temperatures, optimized slip-casting and sintering conditions were used which allowed hot-pressing of the composites at temperatures lower than 1250{degrees}C. A strong interfacial bonding between fiber and matrix has been observed due to the preferential grain growth which starts on the fiber surfaces and extends into the matrix.

  3. Optimized process parameters for fabricating metal particles reinforced 5083 Al composite by friction stir processing.

    Science.gov (United States)

    Bauri, Ranjit; Yadav, Devinder; Shyam Kumar, C N; Janaki Ram, G D

    2015-12-01

    Metal matrix composites (MMCs) exhibit improved strength but suffer from low ductility. Metal particles reinforcement can be an alternative to retain the ductility in MMCs (Bauri and Yadav, 2010; Thakur and Gupta, 2007) [1,2]. However, processing such composites by conventional routes is difficult. The data presented here relates to friction stir processing (FSP) that was used to process metal particles reinforced aluminum matrix composites. The data is the processing parameters, rotation and traverse speeds, which were optimized to incorporate Ni particles. A wide range of parameters covering tool rotation speeds from 1000 rpm to 1800 rpm and a range of traverse speeds from 6 mm/min to 24 mm/min were explored in order to get a defect free stir zone and uniform distribution of particles. The right combination of rotation and traverse speed was found from these experiments. Both as-received coarse particles (70 μm) and ball-milled finer particles (10 μm) were incorporated in the Al matrix using the optimized parameters.

  4. Optimized process parameters for fabricating metal particles reinforced 5083 Al composite by friction stir processing

    Directory of Open Access Journals (Sweden)

    Ranjit Bauri

    2015-12-01

    Full Text Available Metal matrix composites (MMCs exhibit improved strength but suffer from low ductility. Metal particles reinforcement can be an alternative to retain the ductility in MMCs (Bauri and Yadav, 2010; Thakur and Gupta, 2007 [1,2]. However, processing such composites by conventional routes is difficult. The data presented here relates to friction stir processing (FSP that was used to process metal particles reinforced aluminum matrix composites. The data is the processing parameters, rotation and traverse speeds, which were optimized to incorporate Ni particles. A wide range of parameters covering tool rotation speeds from 1000 rpm to 1800 rpm and a range of traverse speeds from 6 mm/min to 24 mm/min were explored in order to get a defect free stir zone and uniform distribution of particles. The right combination of rotation and traverse speed was found from these experiments. Both as-received coarse particles (70 μm and ball-milled finer particles (10 μm were incorporated in the Al matrix using the optimized parameters.

  5. Shape recovery in a thermoset shape memory polymer and its fabric-reinforced composites

    Directory of Open Access Journals (Sweden)

    2011-03-01

    Full Text Available A shape memory polymer (SMP can be deformed from a permanent to a temporary shape above their transformation temperature. Upon reheating, the SMP spontaneously returns to the permanent shape. SMP’s show high deformability, but the recovery stresses are very low, thus limiting the size of the components. This paper presents the first results of an ongoing research to develop large sized components based on SMP. To achieve higher recovery stresses, asymmetric fibre reinforced shape memory composites were produced (SMPC using resin transfer moulding. The results show a 30-fold increase in recovery stress, compared to the neat SMP resin. The recovery stress is independent of the deformation temperature, but is strongly affected by the degree of deformation. At higher deformation levels, crazing occurs. Even though the visible effects of the crazing disappear during reheating, it does influence the recovery stress. This indicates that the ability to recover the permanent shape might change in cyclic loading. All composites tested show complete recovery upon reheating. The rate of shape recovery is higher when the fibre reinforcement is loaded in compression.

  6. Hybrid composite laminates reinforced with Kevlar/carbon/glass woven fabrics for ballistic impact testing.

    Science.gov (United States)

    Randjbaran, Elias; Zahari, Rizal; Jalil, Nawal Aswan Abdul; Majid, Dayang Laila Abang Abdul

    2014-01-01

    Current study reported a facile method to investigate the effects of stacking sequence layers of hybrid composite materials on ballistic energy absorption by running the ballistic test at the high velocity ballistic impact conditions. The velocity and absorbed energy were accordingly calculated as well. The specimens were fabricated from Kevlar, carbon, and glass woven fabrics and resin and were experimentally investigated under impact conditions. All the specimens possessed equal mass, shape, and density; nevertheless, the layers were ordered in different stacking sequence. After running the ballistic test at the same conditions, the final velocities of the cylindrical AISI 4340 Steel pellet showed how much energy was absorbed by the samples. The energy absorption of each sample through the ballistic impact was calculated; accordingly, the proper ballistic impact resistance materials could be found by conducting the test. This paper can be further studied in order to characterise the material properties for the different layers.

  7. Hybrid Composite Laminates Reinforced with Kevlar/Carbon/Glass Woven Fabrics for Ballistic Impact Testing

    Directory of Open Access Journals (Sweden)

    Elias Randjbaran

    2014-01-01

    Full Text Available Current study reported a facile method to investigate the effects of stacking sequence layers of hybrid composite materials on ballistic energy absorption by running the ballistic test at the high velocity ballistic impact conditions. The velocity and absorbed energy were accordingly calculated as well. The specimens were fabricated from Kevlar, carbon, and glass woven fabrics and resin and were experimentally investigated under impact conditions. All the specimens possessed equal mass, shape, and density; nevertheless, the layers were ordered in different stacking sequence. After running the ballistic test at the same conditions, the final velocities of the cylindrical AISI 4340 Steel pellet showed how much energy was absorbed by the samples. The energy absorption of each sample through the ballistic impact was calculated; accordingly, the proper ballistic impact resistance materials could be found by conducting the test. This paper can be further studied in order to characterise the material properties for the different layers.

  8. Effect of fabric structure and polymer matrix on flexural strength, interlaminar shear stress, and energy dissipation of glass fiber-reinforced polymer composites

    Science.gov (United States)

    We report the effect of glass fiber structure and the epoxy polymer system on the flexural strength, interlaminar shear stress (ILSS), and energy absorption properties of glass fiber-reinforced polymer (GFRP) composites. Four different GFRP composites were fabricated from two glass fiber textiles of...

  9. LOSS FACTOR AND DYNAMIC YOUNG MODULUS DETERMINATION FOR COMPOSITE SANDWICH BARS REINFORCED WITH STEEL FABRIC

    Directory of Open Access Journals (Sweden)

    Cosmin-Mihai MIRIŢOIU

    2015-05-01

    Full Text Available In this paper I have build some composite sandwich bars. For these bars I have determined the dynamic response by recording their free vibrations. These bars have the core made of polypropylene honeycomb with upper and lower layers reinforced with steel wire mesh. For these bars I have determined the the eigenfrequency of the first eigenmode in this way: the bar was embedded at one end and free at the other where there was placed an accelerometer at 10 mm distance from the edge and I applied an initial force at the free end. I have determined the eigenfrequency because I will use its values for the loss factor and dynamic Young modulus determination.

  10. Sets of Reports and Articles Regarding Cement Wastes Forms Containing Alpha Emitters that are Potentially Useful for Development of Russian Federation Waste Treatment Processes for Solidification of Weapons Plutonium MOX Fuel Fabrication Wastes for

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, L J

    2003-06-12

    This is a set of nine reports and articles that were kindly provided by Dr. Christine A. Langton from the Savannah River Site (SRS) to L. J. Jardine LLNL in June 2003. The reports discuss cement waste forms and primarily focus on gas generation in cement waste forms from alpha particle decays. However other items such as various cement compositions, cement product performance test results and some cement process parameters are also included. This set of documents was put into this Lawrence Livermore National Laboratory (LLNL) releasable report for the sole purpose to provide a set of documents to Russian technical experts now beginning to study cement waste treatment processes for wastes from an excess weapons plutonium MOX fuel fabrication facility. The intent is to provide these reports for use at a US RF Experts Technical Meeting on: the Management of Wastes from MOX Fuel Fabrication Facilities, in Moscow July 9-11, 2003. The Russian experts should find these reports to be very useful for their technical and economic feasibility studies and the supporting R&D activities required to develop acceptable waste treatment processes for use in Russia as part of the ongoing Joint US RF Plutonium Disposition Activities.

  11. SMART PROPERTIES OF CARBON FIBER REINFORCED SULPHOALUMINATE CEMENT%碳纤维硫铝酸盐水泥基机敏复合材料

    Institute of Scientific and Technical Information of China (English)

    王守德; 黄世峰; 陈文; 程新

    2005-01-01

    采用压制成型方法制备了碳纤维硫铝酸盐水泥基复合材料(Carbon Fiber Reinforced Sulphoaluminate Cement,简称CFRS).用XRD和孔结构分析仪对复合材料的物相和孔径与孔体积的关系进行了分析,研究了不同碳纤维掺量对复合材料在单调压应力和循环压应力下的机敏性能的影响.XRD和孔结构分析研究结果表明,压制成形的试样水化14天硫铝酸盐水泥水化仍不完全,试样结构致密,孔隙率较小,孔径基本小于0.9μm;单调压应力下机敏测试性能表明,碳纤维掺量为0.3%和0.5%的CFRS试样电容变化率与压应力近似成线性关系,机敏性能较好;循环压应力下碳纤维掺量为0.7%的CFRS试样电容变化率与循环压应力成一一对应关系,表现出较好的机敏特性.

  12. FABRICATION AND CHARACTERIZATION OF UHMWPE REINFORCED BY FORSTERITE NANO CRYSTALLITES AS AN IMPLANT BIOCOMPOSITE

    Directory of Open Access Journals (Sweden)

    Mehran Jaberzadeh

    2016-05-01

    Full Text Available Forsterite nano crystallite was synthesized by mixing talc and MgCO₃ in a ball mill for ten hours and then heating at 1000°C for ten minutes. Using twin-screw extrusion and then compression molding, an ultra high molecular weight polyethylene (UHMWPE reinforced by forsterite nano crystallites with volume fraction of 0/5 was produced as a composite sheet. Scanning electron microscopy images showed homogeneous distribution of forsterite particles in the UHMWPE matrix with size scale of less than 1 μm. In vitro evaluation test in simulated body fluid (SBF solution revealed the bioactivity of this composite. Mechanical properties of the produced composite were then evaluated using standard tensile test. Results showed that this composite has a strong Young modulus which is ten times higher than that of pure UHMWPE. In addition, the excellent toughness of pure UHMWPE was approximately maintained using 0/5 volume fraction of forsterite nano crystallite which is gained by over 300% fracture strain.

  13. Fabrication and characterization of Polymer laminate composites reinforced with bi-woven carbon fibers

    Directory of Open Access Journals (Sweden)

    P.V.Sanjeev Kumar

    2015-04-01

    Full Text Available The present paper evaluate slaminatedcarbonbi-wove fibers Reinforced with vinyl ester composites. Vinyl ester was used as a matrix to prepare composites by in situ polymerization technique. Four planar layers were made simultaneously by keeping one over the other and each layer made sure to be weighed off by 15% which was maintained in all layers with different orientations. Pre-assumed Layer-1 is (50/5050%,0º; Layer-2 is (35/35/30 35% 0º, 35% +45º,30%,0;Layer-3is (25/50/25 25% 0º, 50%+45º,25-45º; and Layer-4is (25/25/25/25 (25% 0º, 25% +45º,25% -45º,25% 90º.The composite was prepared with the help of hand layup technique. Test ready specimens were tested with the help of shearing machine in accordance with ASTM Standards .It was observed that vinyl ester made good interface with parent fiber material. Flexural strength and Tensile strength have improved up to 3rd layer and decreased afterwards whereas Flexural modulus and Tensile modulus have linearly increased up to 4th layer. Thermal stability and Glass transition temperature have also been found to be satisfactory for all the laminated layers. Chemical resistance was good for the entire chemicals except sodium hydroxide.

  14. Fabrication of single crystalline diamond reinforced aluminum matrix composite by powder metallurgy route

    Science.gov (United States)

    Kwon, Hansang; Leparoux, Marc; Heintz, Jean-Marc; Silvain, Jean-François; Kawasaki, Akira

    2011-10-01

    We have successfully fabricated highly densified aluminum (Al)-diamond composite materials by a simple hot press method. The thermal conductivity of the Al-diamond composite materials was measured. These materials had different types, sizes and fractions of diamond. These obtained values were discussed based on theoretically calculated values. The thermal conductivity of the composite materials, measured by Laser-Flash method, was found to have slightly increased compared to that of pure bulk Al. The obtained microstructures of the composite materials showed a lot of cleavage existing in the interface between the Al matrix and the diamond particles, which led to the low increment of the thermal conductivity. Moreover, Al-diamond bulk materials with different sintering temperatures in solid state, liquid phase, and transient region between solid and liquid of Al, have been synthesized.

  15. Analysis of Load Transfer Mechanism in Cu Reinforced with Carbon Nanotubes Fabricated by Powder Metallurgy Route

    Science.gov (United States)

    Akbarpour, Mohammad Reza

    2016-05-01

    In this research, ductile and high-strength Cu-carbon nanotube (Cu-CNT) composites with different volume fractions of CNTs were fabricated using powder metallurgy route including mechanical milling and hot pressing and microstructure and tensile properties of the resulting materials were studied. Microstructural characterization through scanning electron microscope and quantifying the CNT agglomeration revealed that uniform dispersion of CNTs in Cu matrix decreases with increasing CNT volume fraction. In case of the higher volume fraction of CNTs (i.e., 8 vol.%), ~ 40% of CNTs were observed as agglomerates in the microstructure. Compared to unreinforced Cu, the yield and ultimate tensile strengths increased considerably (about 33% and 12%, respectively) with incorporation of CNTs up to 4 vol.%, but remained constant afterward. Meanwhile, the elongation decreased from 15.6% for Cu to 6.9% for Cu with 8 vol.% CNT. The relationship between the change in yield strength of the composite and the microstructure was investigated using analytical models. The results showed good consistency between calculated and measured data when the negative effect of CNT agglomerates in the models were taken into account.

  16. Fractographic Analysis of High Performance Fabric Reinforced Composites after Ballistic Impact

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hua-peng; SHI Mei-wu; ZHANG Jian-chun; WANG Shan-yuan

    2002-01-01

    To improve the ballistic resistance of the ballistic resistant composites, this paper deals with the microscopically fractographic analysis of their failure caused by Fragments Simulated Projectiles (FSP) and bullet with the objective to clarify the failure modes of the compoosites, and to further improve the ballistic resistance of the ballistic systems by hybridizing based on the currently market available materials.After the analysis, it has been found that the penetration of the FSP into the panels causes shear failure in the impact side of the target but extensive tension failure in the distal side of the composite target. The failure modes also include matrix fragmentation, and delamination, and with resin content as high as 30%,more filaments are broken by cutting in the composite.Compared with the failure caused by bullet, there are more cutting or shearing for the failure caused by FSP,but more compressive failure caused by bullet. This paper also discusses the effects of hybridizing different types of fabrics on the ballistic resistance of the composite based on the observations and numerical simulation.

  17. Fabrication and biological characteristics of beta-tricalcium phosphate porous ceramic scaffolds reinforced with calcium phosphate glass.

    Science.gov (United States)

    Cai, S; Xu, G H; Yu, X Z; Zhang, W J; Xiao, Z Y; Yao, K D

    2009-01-01

    The fabrication process, compressive strength and biocompatibility of porous beta-tricalcium phosphate (beta-TCP) ceramic scaffolds reinforced with 45P(2)O(5)-22CaO-25Na(2)O-8MgO bioglass (beta-TCP/BG) were investigated for their suitability as bone engineering materials. Porous beta-TCP/BG scaffolds with macropore sizes of 200-500 muicrom were prepared by coating porous polyurethane template with beta-TCP/BG slurry. The beta-TCP/BG scaffolds showed interconnected porous structures and exhibited enhanced mechanical properties to those pure beta-TCP scaffolds. In order to assess the effects of chemical composition of this bioglass on the behavior of osteoblasts cultured in vitro, porous scaffolds were immersed in simulated body fluid (SBF) for 2 weeks, and original specimens (without soaked in SBF) seeded with MC3T3-E1 were cultured for the same period. The ability of inducing apatite crystals in simulated body fluid and the attachment of osteoblasts were examined. Results suggest that apatite agglomerates are formed on the surface of the beta-TCP/BG scaffolds and its Ca/P molar ratio is approximately 1.42. Controlling the crystallization from the beta-TCP/BG matrix could influence the releasing speed of inorganic ions and further adjust the microenvironment of the solution around the beta-TCP/BG, which could improve the interaction between osteoblasts and the scaffolds.

  18. Effects of curing protocol and storage time on the micro-hardness of resin cements used to lute fiber-reinforced resin posts

    Directory of Open Access Journals (Sweden)

    Marcelo Barbosa Ramos

    2012-10-01

    Full Text Available OBJECTIVES: To determine the micro-hardness profile of two dual cure resin cements (RelyX - U100®, 3M-eSPe and Panavia F 2.0®, Kuraray used for cementing fiberreinforced resin posts (Fibrekor® - Jeneric Pentron under three different curing protocols and two water storage times. MATERIAL AND METHODS: Sixty 16mm long bovine incisor roots were endodontically treated and prepared for cementation of the Fibrekor posts. The cements were mixed as instructed, dispensed in the canal, the posts were seated and the curing performed as follows: a no light activation; b light-activation immediately after seating the post, and; c light-activation delayed 5 minutes after seating the post. The teeth were stored in water and retrieved for analysis after 7 days and 3 months. The roots were longitudinally sectioned and the microhardness was determined at the cervical, middle and apical regions along the cement line. The data was analyzed by the three-way ANOVA test (curing mode, storage time and thirds for each cement. The Tukey test was used for the post-hoc analysis. RESULTS: Light-activation resulted in a significant increase in the microhardness. This was more evident for the cervical region and for the Panavia cement. Storage in water for 3 months caused a reduction of the micro-hardness for both cements. The U100 cement showed less variation in the micro-hardness regardless of the curing protocol and storage time. CONCLUSIONS: The micro-hardness of the cements was affected by the curing and storage variables and were material-dependent.

  19. Fabrication and characterization of calcium phosphate cement scaffolds; Obtencao e caracterizacao de scaffolds de cimento de fosfato de calcio

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, E. de; Motisuke, M., E-mail: eliandra.sousa@unifesp.br [Universidade Federal de Sao Paulo (UNIFESP), Sao Jose dos Campos, SP (Brazil). Instituto de Ciencia e Tecnologia; Bertran, C.A. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Quimica

    2011-07-01

    In Tissue Engineering, the need for scaffolds which are capable of guiding the organization, differentiation and growth of cells leading to the formation of new tissues is highly relevant. For the development of new scaffolds focused on bone tissue therapy, calcium phosphate cements (CPC) have great potential, because besides their resorbability, they present morphology and chemical composition similar to the bone mineral phase. Moreover, there are several processing techniques to produce ceramic scaffolds: polymeric sponge replication, incorporation of organic material into the ceramic powder, gelcasting, emulsion, among others. The aim of this work was to obtain CPCs scaffolds by using two techniques, emulsion and gelcasting. The scaffolds were characterized by their physical and mechanical properties and the crystalline phases formed after the setting reaction of cement were determined by X-ray diffraction. The samples obtained by both methods presented porosity between 61-65% and the microstructure consists of nearly spherical pores (d5o = 50-100 μm). The mechanical strength of the samples ranged from 5.5 to 1.5 MPa. The crystalline phases found were monetite (CaHPO{sub 4}) and brushite (CaHPO{sub 4} 2H{sub 2}O). (author)

  20. Cement Conundrum

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    China aims to streamline the crowded cement industry Policymakers are looking to build a concrete wall around the cement-making industry as they seek to solidify the fluid cement market and cut excessive production.

  1. Fabrication of carbon nanofiber-reinforced aluminum matrix composites assisted by aluminum coating formed on nanofiber surface by in situ chemical vapor deposition

    Science.gov (United States)

    Ogawa, Fumio; Masuda, Chitoshi

    2015-01-01

    The van der Waals agglomeration of carbon nanofibers (CNFs) and the weight difference and poor wettability between CNFs and aluminum hinder the fabrication of dense CNF-reinforced aluminum matrix composites with superior properties. In this study, to improve this situation, CNFs were coated with aluminum by a simple and low-cost in situ chemical vapor deposition (in situ CVD). Iodine was used to accelerate the transport of aluminum atoms. The coating layer formed by the in situ CVD was characterized using scanning electron microscopy, transmission electron microscopy, x-ray diffraction, Fourier transform-infrared spectroscopy, and x-ray photoelectron spectroscopy. The results confirmed that the CNFs were successfully coated with aluminum. The composites were fabricated to investigate the effect of the aluminum coating formed on the CNFs. The dispersion of CNFs, density, Vickers micro-hardness and thermal conductivity of the composites fabricated by powder metallurgy were improved. Pressure-less infiltration experiments were conducted to fabricate composites by casting. The results demonstrated that the wettability and infiltration were dramatically improved by the aluminum coating layer on CNFs. The aluminum coating formed by the in situ CVD technique was proved to be effective for the fabrication of CNF-reinforced aluminum matrix composites.

  2. Self-Shrinkage Behaviors of Waste Paper Fiber Reinforced Cement Paste considering Its Self-Curing Effect at Early-Ages

    Directory of Open Access Journals (Sweden)

    Zhengwu Jiang

    2016-01-01

    Full Text Available The aim of this paper was to study how the early-age self-shrinkage behavior of cement paste is affected by the addition of the waste paper fibers under sealed conditions. Although the primary focus was to determine whether the waste paper fibers are suitable to mitigate self-shrinkage as an internal curing agent under different adding ways, evaluating their strength, pore structure, and hydration properties provided further insight into the self-cured behavior of cement paste. Under the wet mixing condition, the waste paper fibers could mitigate the self-shrinkage of cement paste and, at additions of 0.2% by mass of cement, the waste paper fibers were found to show significant self-shrinkage cracking control while providing some internal curing. In addition, the self-curing efficiency results were analyzed based on the strength and the self-shrinkage behaviors of cement paste. Results indicated that, under a low water cement ratio, an optimal dosage and adding ways of the waste paper fibers could enhance the self-curing efficiency of cement paste.

  3. Piezoresistivity of carbon fiber reinforced cement-matrix composites%碳纤维增强水泥基复合材料的压阻效应

    Institute of Scientific and Technical Information of China (English)

    赵晓华; 李国宝; 王玉林; 李庚英

    2011-01-01

    The piezoresistivity of short carbon fiber reinforced cement-matrix composites(CFRC) was experimentally studied.The whole process of transition from positive to negative piezoresistivity was observed.The results show that under continuously drying and uniaxially cyclic loading,both positive and negative piezoresistivity occur in CFRC due to the variation of moisture content in the composites.For most cases the electrical resistivity of the composites decreases monotonically upon longitudinal compression,and piezoresistivity tends to be positive.However,its magnitude varies.Lower moisture content leads to stronger piezoresistivity.When moisture content reduces to about 3.19%~4.04%,the electrical resistivity of the composites increases monotonically upon compressive strain,and piezoresistivity tends to be negative.This effect is much stronger than that of positive piezoresistivity.It is proposed that the occurrence of these phenomena is attributable to both the tunneling effect between fibers and decreasing in pore network connectivity during compression.%试验研究了短切碳纤维增强水泥基复合材料(CFRC)的压阻效应,获得了正、负两种压阻效应相互转换的全过程。从隧道效应和孔隙的连通性角度对该现象的产生机理进行了探讨。结果表明,在连续烘干和单向循环加载条件下,CFRC的压阻效应会随含水量变化而发生改变。多数情况下,CFRC的体积电阻率随压应变单调减少,压阻效应为正。含水量越少,正压阻效应越明显。当含水量减少到约3.19%~4.04%的范围时,CFRC的体积电阻率随压应变单调增加,压阻效应为负。与正压阻效应相比,负压阻效应表现更强。CFRC的正、负压阻效应及其相互转换是隧道效应和孔隙连通性两方面相互影响的必然结果。

  4. Effect on dispersion and reinforcement of CaCO 3 whisker-reinforced Portland cement caused by mechanical grinding method%机械粉磨对碳酸钙晶须在硅酸盐水泥中的分散性及增强效果的影响

    Institute of Scientific and Technical Information of China (English)

    张聪; 曹明莉; 姜道旭; 李昂

    2014-01-01

    碳酸钙晶须对硅酸盐水泥的增强效果已经得到了证实,但是同时存在着晶须团聚以及晶须与水泥基质界面黏结强度较弱等问题。试图采用机械粉磨手段,尝试解决碳酸钙晶须在硅酸盐水泥中的分散性问题,并通过分析试验结果,对碳酸钙晶须增强硅酸盐水泥的机理进行了讨论。%The positive effect of CaCO3 whisker-reinforced Portland cement has been confirmed,however,it still has some issues needed to solve,e.g.,aggragation of whisker and the interfacial bonding strength between whisker and cement need to be increased ,and so on.And the object is aiming at solving the issue of dispersion by mechanical grinding method.At the same time ,this paper discussed the toughening mechanisms of whisker-reinforced Portland cement composite based on the analysis of the test results.

  5. Using in situ dynamic cultures to rapidly biofabricate fabric-reinforced composites of chitosan/bacterial nanocellulose for antibacterial wound dressings

    Directory of Open Access Journals (Sweden)

    Peng eZhang

    2016-03-01

    Full Text Available Bacterial nano-cellulose (BNC is considered to possess incredible potential in biomedical applications due to its innate unrivalled nano-fibrillar structure and versatile properties. However its use is largely restricted by inefficient production and by insufficient strength when it is in a highly swollen state. In this study, a fabric skeleton reinforced chitosan (CS/BNC hydrogel with high mechanical reliability and antibacterial activity was fabricated by using an efficient dynamic culture that could reserve the nano-fibrillar structure. By adding CS in culture media to 0.25-0.75% (w/v during bacterial cultivation, the CS/BNC composite hydrogel was biosynthesized in situ on a rotating drum composed of fabrics. With the proposed method, BNC biosynthesis became less sensitive to the adverse antibacterial effects of CS and the production time of the composite hydrogel with desirable thickness could be halved from 10 days to 5 days as compared to the conventional static cultures. Although its concentration was low in the medium, CS accounted for more than 38% of the CS/BNC dry weight. FE-SEM observation confirmed conservation of the nano-fibrillar networks and covering of CS on BNC. ATR-FTIR showed a decrease in the degree of intra-molecular hydrogen bonding and water absorption capacity was improved after compositing with CS. The fabric-reinforced CS/BNC composite exhibited bacteriostatic properties against Escherichia coli and Staphylococcus aureus and significantly improved mechanical properties as compared to the BNC sheets from static culture. In summary, the fabric-reinforced CS/BNC composite constitutes a desired candidate for advanced wound dressings. From another perspective, coating of BNC or CS/BNC could upgrade the conventional wound dressings made of cotton gauze to reduce pain during wound healing, especially for burn patients.

  6. Fabrication of an Interlocked Antibiotic/Cement-Coated Carbon Fiber Nail for the Treatment of Long Bone Osteomyelitis.

    Science.gov (United States)

    Mauffrey, Cyril; Butler, Nathan; Hake, Mark E

    2016-08-01

    Successful management of intramedullary long bone osteomyelitis remains a challenge for both surgeons and patients. Patients are often immune compromised and have endured multiple surgeries. Treatment principles include antibiotic administration (systemically ± locally), surgical debridement of the infection site, and stabilization. Since their description in 2002, antibiotic-coated nails have become part of the armamentarium for the treatment of osteomyelitis allowing both local elution of antibiotics and stabilization of a debrided long bone. Limitations to their utilization have remained, in part from the technical difficulty of fabrication and magnetic resonance imaging artifacts. We describe a new surgical technique of fabrication that has the advantages of being simple, reproducible, with an end product free of magnetic resonance imaging artifacts.

  7. Effect of surface treatments of laboratory-fabricated composites on the microtensile bond strength to a luting resin cement.

    Science.gov (United States)

    Soares, Carlos José; Giannini, Marcelo; Oliveira, Marcelo Tavares de; Paulillo, Luis Alexandre Maffei Sartini; Martins, Luis Roberto Marcondes

    2004-03-01

    The purpose of this study was to evaluate the influence of different surface treatments on composite resin on the microtensile bond strength to a luting resin cement. Two laboratory composites for indirect restorations, Solidex and Targis, and a conventional composite, Filtek Z250, were tested. Forty-eight composite resin blocks (5.0 x 5.0 x 5.0mm) were incrementally manufactured, which were randomly divided into six groups, according to the surface treatments: 1- control, 600-grit SiC paper (C); 2- silane priming (SI); 3- sandblasting with 50 mm Al2O3 for 10s (SA); 4- etching with 10% hydrofluoric acid for 60 s (HF); 5- HF + SI; 6 - SA + SI. Composite blocks submitted to similar surface treatments were bonded together with the resin adhesive Single Bond and Rely X luting composite. A 500-g load was applied for 5 minutes and the samples were light-cured for 40s. The bonded blocks were serially sectioned into 3 slabs with 0.9mm of thickness perpendicularly to the bonded interface (n = 12). Slabs were trimmed to a dumbbell shape and tested in tension at 0.5mm/min. For all composites tested, the application of a silane primer after sandblasting provided the highest bond strength means.

  8. Reinforcing Wooden Composite with Glass Fiber Fabric - Manufacturing Technology as a Factor Limiting Mechanical Properties and Reliability

    Directory of Open Access Journals (Sweden)

    Deskiewicz Adam

    2016-07-01

    Full Text Available This paper investigates the strength and reliability of the wooden composites reinforced with glass fiber for the skateboard application. Three different methods of glass-fiber reinforcement have been used to prepare totally 94 samples, including control trial. Two lamination methods have been utilized: vacuum and HPL (High Pressure Lamination. Conducted analysis allowed to determine preferred production technique.

  9. Comportamento à compressão de argamassas reforçadas com fibras vegetais da Amazônia Behavior of cement mortar reinforced with Amazonian fibers subjected to compression

    Directory of Open Access Journals (Sweden)

    Marcelo de Souza Picanço

    2008-03-01

    matriz.In recent years, there has been intense research worldwide for alternative materials to substitute asbestos fiber, a component of asbestos cement, which has been found to be hazardous to human and animal health and has been banned in many countries. Since 1979 the Non-conventional Materials Research Group of PUC-Rio has carried out research on the application of vegetable fibers, available in abundance in Brazil, for the fabrication of construction components, aiming mainly at the fabrication of popular housing. The Curaúa fiber has been studied, as it is already of popular use in the manufacture of ropes, baskets and carpets in the region, known as Baixo Amazonas, in the state of Para, Brazil, where the first plantations have been organized on a commercial scale. In this work, mechanical properties of the Curauá fiber, as well as their application as a cementicious matrix reinforcement, have been studied. The performance of Curauá fiber and its composites was compared with other vegetable fibers, such as sisal and jute, as a substitute for asbestos fiber and its composites. The data on sisal fibres from previous works by the same research group at PUC-Rio was considered for comparison. The behavior of jute fiber, as well as cementicious composites, reinforced with jute and sisal fibers, has also been studied in this work. The results have shown that the Curauá fiber has appropriate physical and mechanical characteristics that make it suitable to be used as reinforcement of cementicious matrixes, with a high ductility and post-cracking resistance capacity.

  10. Corrosion performance of reinforced mortar in the presence of polymeric nano-aggregates: electrochemical behavior, surface analysis, and properties of the steel/cement paste interface

    NARCIS (Netherlands)

    Hu, J.; Koleva, D.A.; Van Breugel, K.

    2012-01-01

    This study reports on the effect of admixed polyethylene oxide-b-polystyrene (PEO113-b-PS70)micelles on corrosion behavior of reinforced mortar. The electrochemical measurement shows that the corrosion performance of the reinforcing steel was not significantly improved. However, surface analysis and

  11. 表层处理砂浆中预埋钢筋的腐蚀行为%CORROSION BEHAVIOR OF STEEL REINFORCEMENT EMBEDDED IN CEMENT MORTAR WITH SURFACE TREATMENT

    Institute of Scientific and Technical Information of China (English)

    宋学锋; 魏俊发; 何廷树; 李国新

    2009-01-01

    The surface of cement mortar was treated with an impregnating agent named alkyl-alkoxyl silane (AAS) and a su-per-absorbent resin (SAR) synthesized in situ, respectively. The corrosion risk and the current density of steel reinforcement in the treated cement mortar immersed at sodium chloride solution of 3.5% were evaluated by corrosion potential monitoring and linear polarization resistance (LPR) techniques. The results show that the water-repellent layer of the AAS and the swelling hydrogel of the SAR as a protective layer can improve the resistance to the chloride permeability of the cement mortar; the corrosion potential of the treated specimens is higher and the corrosion current density is lower, compared to that of the untreated specimens. The AAS and the SAR synthesized in situ as surface treatment materials can retard the corrosion behavior of reinforcing steel in cement mortar.%利用有机硅浸渍剂(alkyl-alkoxyl silane,AAS)和原位合成高吸水性树脂(supcr-absorbent resin,SAR)分别对含有预埋钢筋的砂浆试样进行表层处理,并将处理前后的砂浆试样浸没于3.5%NaCl溶液中进行了加速腐蚀试验.测试了不同腐蚀龄期内的自然腐蚀电位和极化电流密度.结果表明:存在于砂浆表层的AAS斥水膜层和SAR吸水膨胀凝胶能够显著降低Cl-在砂浆基材中的渗透性;处理砂浆试样中预埋钢筋在相同腐蚀时间内的自然腐蚀电位较未处理试样显著增高,而相应的腐蚀电流密度显著降低;SAR和AAS作为表层处理材料均能延缓砂浆中预埋钢筋的腐蚀过程,且SAR的延缓效果更佳.

  12. Fabrication

    Directory of Open Access Journals (Sweden)

    E.M.S. Azzam

    2013-12-01

    Full Text Available In the present work, the nanoclay composites were fabricated using the synthesized poly 6-(3-aminophenoxy hexane-1-thiol, poly 8-(3-aminophenoxy octane-1-thiol and poly 10-(3-aminophenoxy decane-1-thiol surfactants with gold nanoparticles. The polymeric thiol surfactants were first assembled on gold nanoparticles and then impregnated into the clay matrix. Different spectroscopic and microscopic techniques such as X-ray diffraction (XRD, Scanning electron microscope (SEM and Transmission microscope (TEM were used to characterize the fabricated nanoclay composites. The results showed that the polymeric thiol surfactants assembled on gold nanoparticles are located in the interlayer space of the clay mineral and affected the clay structure.

  13. Long-term Isothermal Aging Effects on Weight Loss, Compression Properties, and Dimensions of T650-35 Fabric-reinforced PMR-15 Composites-data

    Science.gov (United States)

    Bowles, Kenneth J.; Tsuji, Luis; Kamvouris, John; Roberts, Gary D.

    2003-01-01

    A cooperative program was conducted with the General Electric Aircraft Engines plant in Evendale, Ohio, to study the effects of long-term isothermal aging at elevated temperatures on compression and thermal durability properties of T650 35 fabric-reinforced PMR 15 composites. This degradation study was conducted over an approximate time period of 3 1/2 yr. The aging temperatures were 204, 260, 288, 316, and 343 C. Specimens of different dimensions were evaluated. Specimens with ratios of the cut edge to total surface area of 0.03 to 0.89 were fabricated and aged. The aged and unaged specimens were tested in compression as specified in Test Method for Compressive Properties of Rigid Plastics (ASTM D695M). Thickness changes, degraded surface layer growth, weight loss, and failure modes were monitored and recorded. All property changes were thickness dependent.

  14. Cement Formation

    DEFF Research Database (Denmark)

    Telschow, Samira; Jappe Frandsen, Flemming; Theisen, Kirsten

    2012-01-01

    Cement production has been subject to several technological changes, each of which requires detailed knowledge about the high multiplicity of processes, especially the high temperature process involved in the rotary kiln. This article gives an introduction to the topic of cement, including...... an overview of cement production, selected cement properties, and clinker phase relations. An extended summary of laboratory-scale investigations on clinkerization reactions, the most important reactions in cement production, is provided. Clinker formations by solid state reactions, solid−liquid and liquid...

  15. Innovative concepts for lightweight and manufacturing friendly vehicle components based on glassfibre fabric reinforced thermoplastics; Innovative Leichtbau- und Fertigungskonzepte fuer Fahrzeugstrukturbauteile mit glasgewebeverstaerkten Thermoplasten

    Energy Technology Data Exchange (ETDEWEB)

    Mehn, R. [BMW AG, EW-1, Muenchen (Germany); Seidl, F.; Peis, R.

    1995-12-31

    Fabric as well as knit reinforced thermoplastics (GF-T) are engineering composites possessing material and manufacturing potentials predestinating them for well selected applications of highly loaded vehicle components, e.g. structural frameworks of a slidedoor and a safety seat. Economical viable manufacturing of complex thermoformed GF-T space frames can be succesfully achieved under series relevant conditions by using a cost efficient thermoforming process, a joining step based on high frequency welding and the usage of recycled GF-T material manufactured by an injection-press moulding process. Detailed calculations of the economical conditions have been proven, that competitive part cost are strongly depending on acceptable material cost. An attractive solution to gain this objective can be obtained by using novel reinforced fabrics based on textile impregnated knits. (orig.) [Deutsch] Glasgewebe und -gestrickverstaerkte, technische Thermoplaste (GF-T) weisen als `Engineering Composites` werkstoff- und fertigungsspezifische Potentiale auf, die sie fuer ausgewaehlte Fahrzeugtragstrukturen, z.B. fuer einen im Crahsfall hochbelasteten Sicherheitssitz und eine Seitentuer, praedestinieren. Eine wirtschaftliche Fertigung von komplex geformten GF-T-Tragrahmen gelingt unter seriennahen Bedingungen, wenn ein kostenguenstiges Thermoformverfahren und ein Fuegeverfahren, basierend auf einem HF-Schweissprozess, und Spritzpressteile aus GF-T-Recyclat eingesetzt werden. Wirtschaftlichkeitsbetrachtungen fuer GF-T-Fahrzeugstrukturteile haben gezeigt, dass konkurrenzfaehige Gesamtkosten nur bei akzeptablen GF-T-Halbzeugkosten erreichbar sind. Ein aussichtsreicher Weg dahin ist mit dem Einsatz von textiltechnisch impraegnierten GF-T-Gestricken/Gewirken gegeben. (orig.)

  16. Caractérisation microstructurale et mécanique d’un composite cimentaire renforcé par des fibres de lin Characterizations mechanical and microstructural of flax fibre cement composite reinforced

    Directory of Open Access Journals (Sweden)

    Boutouil M.

    2012-09-01

    Full Text Available Dans la perspective de valorisation des fibres de lin dans les matériaux de construction, la présente étude s’intéresse à la caractérisation microstructurale et mécanique d’un composite cimentaire renforcé par des fibres de lin. Les analyses microstructurales au MEB ont été menées pour évaluer l’homogénéité de la distribution des fibres, la qualité de l’interaction fibre/matrice et l’influence de leur présence sur les défauts microstructuraux. Le comportement mécanique en flexion du mortier renforcé par les fibres de lin est étudié en fonction de la longueur et la teneur en fibres. Les résultats indiquent une bonne adhésion entre les fibres et la matrice à l’état frais. Mais les fibres étant hydrophiles, elles gonflent pendant la prise du ciment et le retrait lors du séchage engendre alors des déchaussements. Les résultats de caractérisation mécanique sont encourageants. Tout d’abord, la fissuration du mortier due au retrait au jeune âge est fortement réduite du fait de la présence des fibres. Ensuite, la rupture brutale de la matrice en monolithe laisse place à un comportement quasi-ductile quand la teneur ou la longueur de fibre augmente. Ce changement de comportement, analysé en termes d’indice de ténacité, illustre la capacité remarquable des fibres de lin à renforcer les matrices cimentaires du fait de leurs bonnes propriétés mécaniques. With the purpose of the flax fibre valuing in construction materials, this study focuses on the characterizations mechanical and microstructural of flax fibre cement composite reinforced. The mechanical strength was studied as the function of fibre volume ratio and length. Meanwhile, the microstructural analysis investigated the homogeneity of fibre scattering, the interaction fibre/cement matrix and the influence of flax fibres on the defects microstructures. The results show the interesting mechanical properties of flax fibre in comparison with

  17. EXPERIMENTAL STUDY ON ASBESTOS FIBER REINFORCED FLY ASH SOIL-CEMENT FOR SOFT SOIL ENHANCEMENT%石棉纤维粉煤灰水泥加固软土试验研究

    Institute of Scientific and Technical Information of China (English)

    张艳军; 于沉香; 凌飞; 严稳平; 刘续; 陈铂

    2015-01-01

    This paper aims to improve the brittle fracture characteristics of cement soil and to study the engineering properties and mechanical mechanism of asbestos fiber reinforced soft soil.It adds the asbestos fiber into fly ash and cement soil.Thus it creates a new kind of composite soil and carries out a series of experiments on the new soil.In these experiments,asbestos fiber is added into fly ash and cement soil with different ratios(0%~9%),which results in different composite soil samples with different content of asbestos fiber.All of the composite soil samples are subjected to the direct shear test,the unconfined compression test,the diametral compression test and the scanning electron microscopy test (SEM).Thus the mechanical behavior and mechanism of fiber reinforced soft soil are illustrated.It is found that the combination of asbestos fiber and fly-ash cement can significantly enhance the strength and stability of soft soil and improve brittle fracture characteristics of cement soil.There is a range of optimal content of asbestos fiber regarding the enhancement of the strength value of the composite soil.This range is between 3%~6%.Other asbestos fiber content outside the range can reduce the enhancement effect.%为研究石棉纤维加固软土的效果和机理,改善水泥土的脆性破坏特点,提出将石棉纤维的物理加筋作用与水泥、粉煤灰的化学加固作用相结合,通过对不同纤维掺量(0%~9%)的石棉纤维粉煤水泥复合土进行直剪试验、无侧限抗压强度试验、劈裂试验、扫描电镜试验,进而对石棉纤维加筋水泥土的强度性质和影响机理进行探讨。研究表明,石棉纤维配合水泥与粉煤灰能显著提高软土的强度和稳定性,改善水泥土的破坏形式。水泥粉煤灰配比一定时,石棉纤维增强水泥复合土各强度指标值存在最优掺量,纤维添加量在3%~6%之间,石棉纤维的加筋效果在水泥土中能得到

  18. Fabrication of Poly(ε-caprolactone Scaffolds Reinforced with Cellulose Nanofibers, with and without the Addition of Hydroxyapatite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Pedro Morouço

    2016-01-01

    Full Text Available Biomaterial properties and controlled architecture of scaffolds are essential features to provide an adequate biological and mechanical support for tissue regeneration, mimicking the ingrowth tissues. In this study, a bioextrusion system was used to produce 3D biodegradable scaffolds with controlled architecture, comprising three types of constructs: (i poly(ε-caprolactone (PCL matrix as reference; (ii PCL-based matrix reinforced with cellulose nanofibers (CNF; and (iii PCL-based matrix reinforced with CNF and hydroxyapatite nanoparticles (HANP. The effect of the addition and/or combination of CNF and HANP into the polymeric matrix of PCL was investigated, with the effects of the biomaterial composition on the constructs (morphological, thermal, and mechanical performances being analysed. Scaffolds were produced using a single lay-down pattern of 0/90°, with the same processing parameters among all constructs being assured. The performed morphological analyses showed a satisfactory distribution of CNF within the polymer matrix and high reliability was obtained among the produced scaffolds. Significant effects on surface wettability and thermal properties were observed, among scaffolds. Regarding the mechanical properties, higher scaffold stiffness in the reinforced scaffolds was obtained. Results from the cytotoxicity assay suggest that all the composite scaffolds presented good biocompatibility. The results of this first study on cellulose and hydroxyapatite reinforced constructs with controlled architecture clearly demonstrate the potential of these 3D composite constructs for cell cultivation with enhanced mechanical properties.

  19. Fabrication of Poly(ε-caprolactone) Scaffolds Reinforced with Cellulose Nanofibers, with and without the Addition of Hydroxyapatite Nanoparticles.

    Science.gov (United States)

    Morouço, Pedro; Biscaia, Sara; Viana, Tânia; Franco, Margarida; Malça, Cândida; Mateus, Artur; Moura, Carla; Ferreira, Frederico C; Mitchell, Geoffrey; Alves, Nuno M

    2016-01-01

    Biomaterial properties and controlled architecture of scaffolds are essential features to provide an adequate biological and mechanical support for tissue regeneration, mimicking the ingrowth tissues. In this study, a bioextrusion system was used to produce 3D biodegradable scaffolds with controlled architecture, comprising three types of constructs: (i) poly(ε-caprolactone) (PCL) matrix as reference; (ii) PCL-based matrix reinforced with cellulose nanofibers (CNF); and (iii) PCL-based matrix reinforced with CNF and hydroxyapatite nanoparticles (HANP). The effect of the addition and/or combination of CNF and HANP into the polymeric matrix of PCL was investigated, with the effects of the biomaterial composition on the constructs (morphological, thermal, and mechanical performances) being analysed. Scaffolds were produced using a single lay-down pattern of 0/90°, with the same processing parameters among all constructs being assured. The performed morphological analyses showed a satisfactory distribution of CNF within the polymer matrix and high reliability was obtained among the produced scaffolds. Significant effects on surface wettability and thermal properties were observed, among scaffolds. Regarding the mechanical properties, higher scaffold stiffness in the reinforced scaffolds was obtained. Results from the cytotoxicity assay suggest that all the composite scaffolds presented good biocompatibility. The results of this first study on cellulose and hydroxyapatite reinforced constructs with controlled architecture clearly demonstrate the potential of these 3D composite constructs for cell cultivation with enhanced mechanical properties.

  20. Composition and Morphology of Product Layers in the Steel/Cement Paste Interface in Conditions of Corrosion and Cathodic Protection in Reinforced Concrete

    NARCIS (Netherlands)

    Koleva, D.A.; Van Breugel, K.; De Wit, J.H.W.; Fraaij, A.L.A.; Boshkov, N.

    2007-01-01

    The present study explores the formation of corrosion products on the steel surface in reinforced concrete in conditions of corrosion and subsequent transformation of these layers in conditions of cathodic protection (CP). Of particular interest was to investigate if the introduced pulse CP (as cost

  1. Grout cement. ; Grout cement to fill ground/grout cement to fill cracks. Chunyuyo cement. ; Jiban chunyuyo cement /hibiware chunyuyo cement

    Energy Technology Data Exchange (ETDEWEB)

    Okaue, H. (Nittetsu Cement Co. Ltd., Hokkaido (Japan))

    1991-09-01

    Ground grout cement is grouted into the ground under high pressure in high water ratio (100 to 1000%) in the form of milk differing from concrete in terms of the water-cement ratio. The grouted milk is governed by characteristics of the cement the milk itself possesses, resulting in variable grouting modes, which are divided in fracture grouting, permeation grouting and boundary grouting. Their applications include cutting off of water in dams, ground reinforcement, prevention of water gushing in tunnel excavation, natural ground reinforcement, improvement of sandy soil and prevention of its collapse, and stabilization of ground for urban civil engineering works such as subway, water supply and sewerage constructions. Grout cement to fill cracks in concrete structures is so grouted into cracks that the slurry fills up contiguous cracks to a certain level and goes upward while pushing out air or water existing in the cracks. The slurry filled into the cracks solidifies and hardens while being absorbed into the concrete, and finally integrates with the concrete. The grout cement is used to rework such concrete structures as dams, tunnels, and bridge bases. 6 figs., 4 tabs.

  2. Processing and mechanical properties of SiC particulate reinforced AZ91 composites fabricated by stir casting

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-jun; WU Kun; PENG De-lin; ZHANG Hai-feng; ZHENG Ming-yi; HUANG Wen-xian

    2006-01-01

    The influence of stirring parameters (stirring temperature, stirring speed and stirring time) on the particle distribution of 10%(volume fraction) SiC particulate reinforced AZ91 composites (SiCp/AZ91) was studied. It is found that it is necessary for 10 μm SiC particulate reinforced AZ91 composites to stir the molten composites in semi-solid condition with vortex formation, or else the cluster of the reinforcements would not be eliminated. Compared with the monolithic alloy, the SiCp/AZ91 composite has higher strength, especially for yield strength, but the elongation is reduced. For the as-cast composite, the particles often segregate within the grain boundary regions. Extrusion can effectively reduce the segregation of SiC particles and improve the mechanical properties of the composite. The extrusion-induced reduction in particle size varies with extrusion temperatures and extrusion ratios. The effect of extrusion-induced reduction in particle size on the mechanical properties of the composites is not always beneficial.

  3. Caracterização mecânica de laminados cimentíceos esbeltos reforçados com fibras de sisal Mechanical characterization of cement-based thin-walled laminates reinforced with sisal fibre

    Directory of Open Access Journals (Sweden)

    Paulo R. L. Lima

    2007-12-01

    Full Text Available Com a proibição progressiva do uso de fibras de asbesto na fabricação de laminados à base de cimento, novos produtos têm sido desenvolvidos para suprir esta demanda do setor construtivo. A utilização de fibras de sisal como substituto ao asbesto, além de ser uma proposta ecológica tem grande importância socioeconômica, pois agregará valor a um produto cultivado com sucesso no semi-árido nordestino. Produziram-se, neste trabalho, placas laminadas com matriz de argamassa reforçadas com fibras longas de sisal. Ensaios de flexão em três pontos foram realizados com o objetivo de se estudar a influência da adição de fibras (3%, do número de camadas (2 e 3, da orientação das camadas (0 e 90° e da pressão de moldagem (0 e 2 MPa sobre o comportamento à flexão dos laminados. Os resultados indicam que a adição de fibras de sisal aumentou, para todos os casos estudados, a capacidade de absorver energia, a resistência à flexão pós-fissuração e a deflexão última do material. Os laminados reforçados com 3% de fibras de sisal, distribuídas em três camadas ortogonais à direção do carregamento e submetidos à pressão de moldagem de 2 MPa, apresentaram o melhor comportamento mecânico.Because of hazards to human and animal health, the use of asbestos and its products is being prohibited all around the world and academic institutions and fibre cement producers have been engaged in intensive research to find asbestos-free cement products. The application of natural fibres such as sisal to replace asbestos fibres can bring economical and ecological benefits due to their availability, low cost, low consumption of energy and suitability to the semi-arid area of the Northeast of Brazil (where not many plants can grow. In this paper, cement-based laminates reinforced with continuous sisal fibre were produced. Three point bending tests were carried out to evaluate the influence of addition of fibre (3%, number of layers of

  4. 短切芳纶纤维增强水泥砂浆准静态下力学性能研究%Research on Quasi-static Mechanical Properties of Short Cut Aramid Fiber-Reinforced Cement Mortar

    Institute of Scientific and Technical Information of China (English)

    胡海涛; 李妮; 熊杰

    2011-01-01

    Cement mortar reinforced with different volume fraction of aramid fiber is prepared by two-step dispersions of aramid fibers, the mechanical properties of composites materials are researched when adds cement additives sodium carboxymethylcellulose(CMC) and silicon powder. Result shows that sodium carboxymethylcellulose can improve fibers dispersion effectively. Silicon powder can improve samples' compression strength. The samples' bending strength is increased from 2. 6 MPa to 8. 3 MPa, and the compression strength increased from 29. 5 MPa to 54. 3 MPa, when the volume fraction of aramid fiber is 5vol%.%采用二步法制备不同纤维掺量的短切芳纶纤维增强水泥砂浆试样,研究添加剂羧甲基纤维素钠(CMC)和硅微粉对复合材料力学性能的影响.结果表明:羧甲基纤维素钠能够有效地促进纤维在水中的分散,进而促进其在水泥砂浆中的分散;掺加一定量的硅微粉能够进一步提高试样的压缩强度.当纤维体积分数为5%时,试样的力学性能最好,弯曲强度从2.6 MPa提高到了8.3 MPa,压缩强度也从29.5 MPa提高到了54.3 MPa.

  5. Clinical comparison between a resin-reinforced self-cured glass ionomer cement and a composite resin for direct bonding of orthodontic brackets. Part 2: Bonding on dry enamel and on enamel soaked with saliva.

    Science.gov (United States)

    Cacciafesta, V; Bosch, C; Melsen, B

    1999-11-01

    The purposes of this investigation were to compare the clinical performance of a resin-reinforced self-cured glass ionomer cement to a standard composite resin in the direct bonding of orthodontic brackets when bonded onto: a) dry teeth and b) teeth soaked with saliva. The two bonding agents were compared using a split-mouth design. In that, both systems were used for direct bonding of stainless steel brackets in every patient. Thirty-eight consecutive patients with fixed appliances were followed for a period of 12 months. The patients were randomly divided into two groups: group A (11 patients) and group B (27 patients). In group A, the performance of 220 stainless steel brackets was evaluated: 110 brackets were bonded with GC Fuji Ortho glass ionomer cement (GC Industrial Co., Tokyo, Japan) onto dry teeth, and 110 bonded with System 1+ composite resin (Ormco Corp., Glendora, CA). In group B, the performance of 540 stainless steel brackets was evaluated: 270 brackets were bonded with GC Fuji Ortho onto teeth soaked with saliva, and 270 bonded with System 1+. In group A, GC Fuji Ortho recorded an overall failure rate (34.5%) significantly higher (p 0.05) between the failure rates of the two bonding agents were found when GC Fuji Ortho was used on teeth soaked with saliva. It was concluded, therefore, that GC Fuji Ortho shows clinically acceptable bond strengths when bonded onto moist teeth, but not when used on dry enamel. Both bonding agents failed mostly at the enamel/adhesive interface, without causing any enamel damage.

  6. Preparation and Properties of Bacterial Cellulose Reinforced Cement Composites%细菌纤维素增强水泥复合材料的制备及性能

    Institute of Scientific and Technical Information of China (English)

    吕淑珍; 陈宁; 裴重华; 彭艳华; 黄太福

    2011-01-01

    对细菌纤维素增强水泥复合材料进行研究,探讨细菌纤维素含量、长度对水泥基复合材料抗折、抗压强度的影响以及细菌纤维素对水泥凝结时间和水化过程的影响.结果表明:细菌纤维素的加入能明显改善水泥基复合材料力学性能,细菌纤维素质量分数为0.02%是实验最佳掺量,材料抗折、抗压强度分别提高了20%和8%;过长细菌纤维素将导致分散不均,使浆体结构疏松;细菌纤维素对水泥浆体pH值和凝结时间无明显影响:细菌纤维素促进水化过程中CaO-SiO2-H2O凝胶生成.%The properties of bacterial cellulose reinforced cement composites were investigated. The analysis was focused on the influence of content and length of bacterial cellulose on strength, setting time and hydration of cement composites. The results showed that the flexural strength and compressive strength increased 20% and 8% respectively when the mass fraction of bacterial cellulose was 0.02%. There were less significant impact of bacterial cellulose on pH and setting time, but the bacterial cellulose accelerated the production of Ca0-Si02-H2O gel during hydration.

  7. 碳纤维增强磷酸钙骨水泥%The calcium phosphate bone cement reinforced by carbon fiber

    Institute of Scientific and Technical Information of China (English)

    张睿; 张彭风; 薛润苗; 王志强

    2012-01-01

    以碳纤维为增强相,Na2HPO4/柠檬酸为调和液,α-磷酸三钙、磷酸四钙、磷酸二氢钙、羟基磷灰石和碳酸钙为原料制备骨水泥,研究不同掺杂比例的短碳纤维对其性能的影响.在磷酸钙骨水泥中掺杂碳纤维能够提高样品的致密性,缩短固化时间,提高抗压强度.当掺杂质量分数0.5%的碳纤维时,骨水泥的初凝、终凝时间分别为9.3和24.9 min,模拟体液中浸泡28 d后抗压强度最大为38.24MPa.掺杂的碳纤维对浸泡液pH影响不大,pH在小范围内浮动,均在人体安全范围内.%The effect of carbon fiber on the performance of calcium phosphate bone cement was studied. Calcium phosphate bone cement doped with carbon fiber was prepared from crtricalcium phosphate, tetracalcium phosphate, monocalcium phosphate monohydrate, hydroxyapatite and calcium carbonate, in which Na2 HPO4/citric acid was added as mixing liquid. The results show that carbon fiber doped in calcium phosphate cement can increase the density, reduce the setting time and enhance the compressive strength. When the doping amount of carbon fiber is 0.5%, the initial setting time and the final setting time is respectively 9. 3 and 24. 9 min. The compressive strength reaches up to 38. 24 MPa after immersed 28 d in the simulated body fluid. Meanwhile, the doping of carbon fiber has little influence on the change of pH, which is in the range of human security.

  8. Modification of carbon fabrics by radio-frequency capacitive discharge at low pressure to regulate mechanical properties of carbon fiber reinforced plastics based on it

    Science.gov (United States)

    Garifullin, A. R.; Krasina, I. V.; Skidchenko, E. A.; Shaekhov, M. F.; Tikhonova, N. V.

    2017-01-01

    To increase the values of mechanical properties of carbon fiber (CF) composite materials used in sports equipment production the method of radio-frequency capacitive (RFC) low-pressure plasma treatment in air was proposed. Previously it was found that this type of modification allows to effectively regulate the surface properties of fibers of different nature. This treatment method differs from the traditional ones by efficiency and environmental friendliness as it does not require the use of aggressive, environmentally hazardous chemicals. In this paper it was established that RFC low-pressure air plasma treatment of carbon fabrics enhances the interlaminar shear strength (ILSS) of carbon fiber reinforced plastic (CFRP). As a result of experimental studies of CF by Fourier Transform Infrared (FTIR) spectroscopy method it was proved that after radio-frequency capacitive plasma treatment at low pressure in air the oxygen-containing functional groups is grafted on the surface. These groups improve adhesion at the interface “matrix-fiber”.

  9. Fabrication and Mechanical Properties of Sm2O3 Doped CeO2 Reinforced Ti3AlC2 Nano Composite

    Institute of Scientific and Technical Information of China (English)

    Jae Ho Han; Sang Whan Park; Young Do Kim

    2004-01-01

    The fabrication process of Sm2O3 doped CeO2 reinforced Ti3AlC2 nano composites including the nano particle dispersion process by a hetero-coagulation process was developed using in-situ synthesis and densification process of Ti3AlC2. The effects of Sm2O2 doped CeO2 nano particles on mechanical properties of Ti3AlC2 were investigated. It was found that the presence of 20SDC nano particles in Ti3AlC2 was very effective to improve the mechanical properties of Ti3AlC2 without spoiling the unique characteristics of Ti3AlC2temary carbide.

  10. Numerical Simulation and Experimental Verification of Hollow and Foam-Filled Flax-Fabric-Reinforced Epoxy Tubular Energy Absorbers Subjected to Crashing

    Science.gov (United States)

    Sliseris, J.; Yan, L.; Kasal, B.

    2017-09-01

    Numerical methods for simulating hollow and foam-filled flax-fabric-reinforced epoxy tubular energy absorbers subjected to lateral crashing are presented. The crashing characteristics, such as the progressive failure, load-displacement response, absorbed energy, peak load, and failure modes, of the tubes were simulated and calculated numerically. A 3D nonlinear finite-element model that allows for the plasticity of materials using an isotropic hardening model with strain rate dependence and failure is proposed. An explicit finite-element solver is used to address the lateral crashing of the tubes considering large displacements and strains, plasticity, and damage. The experimental nonlinear crashing load vs. displacement data are successfully described by using the finite-element model proposed. The simulated peak loads and absorbed energy of the tubes are also in good agreement with experimental results.

  11. Microstructure and wear property of the Ti5Si3/TiC reinforced Co-based coatings fabricated by laser cladding on Ti-6Al-4V

    Science.gov (United States)

    Weng, Fei; Yu, Huijun; Liu, Jianli; Chen, Chuanzhong; Dai, Jingjie; Zhao, Zhihuan

    2017-07-01

    Ti5Si3/TiC reinforced Co-based composite coatings were fabricated on Ti-6Al-4V titanium alloy by laser cladding with Co42 and SiC mixture. Microstructure and wear property of the cladding coatings with different content of SiC were investigated. During the cladding process, the original SiC dissolved and reacted with Ti forming Ti5Si3 and TiC. The complex in situ formed phases were found beneficial to the improvement of the coating property. Results indicated that the microhardness of the composite coatings was enhanced to over 3 times the substrate. The wear resistance of the coatings also showed distinct improvement (18.4-57.4 times). More SiC gave rise to better wear resistance within certain limits. However, too much SiC (20 wt%) was not good for the further improvement of the wear property.

  12. Fatigue damage assessment of uni-directional non-crimp fabric reinforced polyester composite using X-ray computed tomography

    DEFF Research Database (Denmark)

    Jespersen, Kristine Munk; Zangenberg Hansen, Jens; Lowe, Tristan

    2016-01-01

    In this study, the progression of tension-tension fatigue (R=0.1) damage in a unidirectional (UD) composite made from a non-crimp glass fibre fabric used for wind turbine blades is investigated using multi-scale 3D X-ray computed tomography (CT). Initially, a representative volume is examined...

  13. Emergency direct fabrication of a resin fixed partial denture by using a ceramometal crown with reinforcing woven polyethylene ribbon as a pontic.

    Science.gov (United States)

    Miller, T E; Rudo, D N

    1995-01-01

    In this emergency case of a fractured tooth, immediate short-term treatment was necessary to relieve pain and replace a missing coronal portion of the maxillary central incisor. The need to remove additional fractured root fragments subgingivally precluded accessibility to the remaining root for conventional restorative procedures. The patient could not decide which course of treatment to accept, so a fixed partial denture was fabricated, with the ceramometal crown restoration as a provisional pontic splinted to the adjacent teeth. Restoring and reinforcing the posterior composite splint with a gas plasma-treated woven polyethylene ribbon has been detailed and illustrated. This ribbon material reputed to be 10 times stronger than steel by volume, is a true reinforcing material because it is woven. Mechanically, it becomes an integral part of the splint. Because it is gas plasma-treated, the superficial layer, when placed in BIS-GMA or polymethyl methacrylate, reacts chemically with the resin. The pliable, memory-free fiber--together with the open, woven, lacelike, lock stitch leno--allows the ribbon to follow the contours of the teeth and dental arch easily. The ribbon design reduces and dissipates forces exerted onto the splinting resin. The neutral color of the material permits it to have a chameleonlike effect on the color of the resin into which it is positioned. This ribbon product has been used in other dental applications: periodontal splinting, orthodontic retention, indirect composite fixed partial dentures, long-term temporary restorations with applicability in implant treatments, repair and conversion of prostheses, and reinforcing endodontically treated teeth, and complete dentures and orthodontic retainers when weaknesses are anticipated, such as shallow palatal vaults of complete dentures against a full complement of mandibular natural teeth, and the horseshoe mandibular removable modified Hawley retainer.

  14. Design, fabrication, and properties of a continuous carbon-fiber reinforced Sm{sub 2}O{sub 3}/polyimide gamma ray/neutron shielding material

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng [Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Tang, Xiaobin, E-mail: tangxiaobin@nuaa.edu.cn [Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Jiangsu Key Laboratory of Nuclear Energy Equipment Materials Engineering, Nanjing 210016 (China); Chai, Hao [Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Chen, Da [Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Jiangsu Key Laboratory of Nuclear Energy Equipment Materials Engineering, Nanjing 210016 (China); Qiu, Yunlong [ZhongXing Energy Equipment Co., Ltd, Haimen, Nantong 226100 (China)

    2015-12-15

    Highlights: • Sm{sub 2}O{sub 3} is used for neutron absorber instead of B{sub 4}C, and Sm{sub 2}O{sub 3} has a good photon-shielding effect. • Carbon-fiber cloth and polyimide were used to enhance shielding materials’ mechanical behavior and thermal behavior. • Both Monte Carlo method and shielding test were used to evaluate shielding performance of the novel shielding material. - Abstract: The design and fabrication of shielding materials with good heat-resistance and mechanical properties is a major problem in the radiation shielding field. In this paper, based on gamma ray and neutron shielding theory, a continuous carbon-fiber reinforced Sm{sub 2}O{sub 3}/polyimide gamma ray/neutron shielding material was fabricated by hot-pressing method. The material's application behavior was subsequently evaluated using neutron shielding, photon shielding, mechanical tensile, and thermogravimetric analysis–differential scanning calorimetry tests. The results show that the tensile strength of the novel shielding material exceeds 200 MPa, which makes it of similar strength to aluminum alloy. The material does not undergo crosslinking and decomposition reactions at 300 °C and it can be used in such environments for long periods of time. The continuous carbon-fiber reinforced Sm{sub 2}O{sub 3}/polyimide material has a good shielding performance with respect to gamma rays and neutrons. The material thus has good prospects for use in fusion reactor system and nuclear waste disposal applications.

  15. Microstructural characterization of titanium matrix composite coatings reinforced by in situ synthesized TiB + TiC fabricated on Ti6Al4V by laser cladding

    Institute of Scientific and Technical Information of China (English)

    LI Jun; YU Zhishui; WANG Huiping; LI Manping

    2010-01-01

    Titanium-based composite coatings reinforced by in situ synthesized TiB and TiC particles between titanium and B4C were successfully fab-ricated on Ti6A14V by laser cladding. Phase constituents of the coatings were predicted by thermodynamic calculations in the Ti-B4C-Al and Ti-B-C-Al systems, respectively, and were validated well by X-ray diffraction (XRD) analysis results. Microstructural and metallographic analyses were made by scanning electron microscopy (SEM) and electron probe micro-analysis (EPMA). The results show that the coatings are mainly composed of α-Ti cellular dendrites and the eutecticum in which a large number of needle-shaped TiB and a few equiaxial TiC particles are embedded. C is enriched in α-Ti cellular dendrites and far exceeds the theoretical maximum dissolubility, owing to the extension of saturation during laser cladding. The coatings have a good metallurgical bond with the substrate due to the existence of the dilution zone, in which a great amount of lamella β-Ti grains consisting of a thin needle-shaped martensitic microstructurc are present and grow parallel to the heat flux direction; a few TiB and TiC reinforcements are observed at the boundaries of initial β-Ti grains.

  16. N-Acetyl cysteine (NAC)-mediated reinforcement of alpha-tricalcium phosphate/silk fibroin (α-TCP/SF) cement.

    Science.gov (United States)

    Feng, Tao; Pi, Bin; Li, Bin; Jiang, Lei; Wang, Yi-Meng; Zhu, Xue-Song; Yang, Hui-Lin

    2015-12-01

    Calcium phosphate cements (CPCs) are popular bone filling materials and drug carriers. However poor mechanical properties and lack of osteoinduction restrict their clinical applications. Recent studies suggested the osteogenic properties of NAC. In our study, we incorporated NAC with α-TCP/SF. We found that the compressive strength of α-TCP/SF-NAC composites increased with increase in NAC concentration, possibly due to complex three-dimensional networks of SF induced by NAC, which was large and chemically heterogeneous and induced compact oriented growth of HA crystals. However the setting time increased slightly with the addition of NAC, due to the ruptured disulfide bonds in SF. The α-TCP/SF-NAC composites also showed decent biocompatibility in vitro. As a result, these composites hold great potential as bone filling materials for clinical applications, including minimally invasive surgeries.

  17. Evaluation of fit of cement-retained implant-supported 3-unit structures fabricated with direct metal laser sintering and vacuum casting techniques.

    Science.gov (United States)

    Oyagüe, Raquel Castillo; Sánchez-Turrión, Andrés; López-Lozano, José Francisco; Montero, Javier; Albaladejo, Alberto; Suárez-García, María Jesús

    2012-07-01

    This study evaluated the vertical discrepancy of implant-fixed 3-unit structures. Frameworks were constructed with laser-sintered Co-Cr, and vacuum-cast Co-Cr, Ni-Cr-Ti, and Pd-Au. Samples of each alloy group were randomly luted in standard fashion using resin-modified glass-ionomer, self-adhesive, and acrylic/urethane-based cements (n = 12 each). Discrepancies were SEM analyzed. Three-way ANOVA and Student-Newman-Keuls tests were run (P Laser-sintered structures achieved the best fit per cement tested. Within each alloy group, resin-modified glass-ionomer and acrylic/urethane-based cements produced comparably lower discrepancies than the self-adhesive agent. The abutment position did not yield significant differences. All misfit values could be considered clinically acceptable.

  18. Esthetic rehabilitation with laminated ceramic veneers reinforced by lithium disilicate.

    Science.gov (United States)

    Soares, Paulo Vinícius; Spini, Pedro Henrique Rezende; Spini, Pedro Henrique; Carvalho, Valessa Florindo; Souza, Paula Gomes; Gonzaga, Ramon Corrêa de Queiroz; Gonzaga, Ramon Corrêa; Tolentino, Andrea Barros; Machado, Alexandre Coelho

    2014-02-01

    Because of their predictable results and conservation of tooth structure, ceramic veneers are indicated for the esthetic treatment of anterior teeth with anomalous positions or appearance. The objective of this case report is to highlight the steps in dental rehabilitation using ceramic veneers reinforced by lithium disilicate. In this case the patient had diastemas between the mandibular incisors. After preliminary procedures, diagnostic models, waxing, and mock-up were completed, an impression was made with addition silicone, and the veneers were fabricated and cemented with light-cure cement. As a result, the esthetics and function expected by the patient were achieved. The use of ceramic veneers enabled a conservative and esthetically successful rehabilitation treatment.

  19. A new method for designing floor slabs on grade due to the difficulty of applying simplified design methods, amongst them being the Portland Cement Association (PCA and Wire Reinforcement Institute (WRI methods

    Directory of Open Access Journals (Sweden)

    Hugo Ernesto Camero Sanabrial

    2010-04-01

    Full Text Available This article presents a methodology for designing slabs on grade for industrial floors where there is an eccentricity between the slab centroid and the gravity centre loads of the loaded axle of forklift trucks travelling over the floor. An example was used for analysing how Portland Cement Association (PCA and the Wire Reinforcement Institute (WRI methods are inadequate for designing floors sublected to this condition. The new proposal for designing slabs on grade for industrial floors has been called the Camero method. An example of an industrial floor designed to be capable of sustaining an infinite number of load applications (or 50-year life was compared to the results of the Camero method and PCA and WRI’s simplified methods. Industrial floors should be capable of sustaining an infinite number of load applications (50-year life if designed with the Camero method; on the other hand, if designed using PCA and WRI methods they will only last one year (in this example the number of axle load applications in a 1-year period was equal to the number of allowable repetitions because they will not be able to sustain an infinite number of load applications. It was concluded that designing plain concrete slabs (without reinforcement on grade according to PCA and the WRI methods leads to slab fatigue, even though extreme fibre stress should not exceed 50 percent (50% of static modulus of concrete rupture and slabs should sustain an infinite number of load repetitions (infinite amount of forklift truck traffic were considered parameters in their design.

  20. Influence of the temperature on the cement disintegration in cement-retained implant restorations.

    Science.gov (United States)

    Linkevicius, Tomas; Vindasiute, Egle; Puisys, Algirdas; Linkeviciene, Laura; Svediene, Olga

    2012-01-01

    The aim of this study was to estimate the average disintegration temperature of three dental cements used for the cementation of the implant-supported prostheses. One hundred and twenty metal frameworks were fabricated and cemented on the prosthetic abutments with different dental cements. After heat treatment in the dental furnace, the samples were set for the separation to test the integration of the cement. Results have shown that resin-modified glass-ionomer cement (RGIC) exhibited the lowest disintegration temperature (pcement (ZPC) and dual cure resin cement (RC) (p>0.05). Average separation temperatures: RGIC - 306 ± 23 °C, RC - 363 ± 71 °C, it could not be calculated for the ZPC due to the eight unseparated specimens. Within the limitations of the study, it could be concluded that RGIC cement disintegrates at the lowest temperature and ZPC is not prone to break down after exposure to temperature.

  1. Ni-Al{sub x}Ni{sub y} core–shell structured particle reinforced Al-based composites fabricated by in-situ powder metallurgy technique

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wenqian; Guo, Baisong; Xue, Yang; Shen, Rujuan; Ni, Song; Song, Min, E-mail: msong@csu.edu.cn

    2015-06-15

    Ni-Al{sub x}Ni{sub y} core–shell structured particle reinforced aluminum based composites were fabricated using in-situ powder metallurgy method. Scanning electron microscope, X-ray diffraction, density analysis, hardness and compressive tests were used to investigate the effects of volume fraction of Ni particles and sintering atmosphere on the microstructures and mechanical properties of the composites. It has been shown that compared to Ar sintering atmosphere, N{sub 2} atmosphere is active sintering atmosphere for fabricating the composites. The AlN formed during the sintering process, which can substantially increase the density and hardness of the composites. The strength of the composites sintered under N{sub 2} atmosphere is higher than that of the composites sintered under Ar, while the ductility is slightly lower. It can be confirmed that the Ni-Al{sub x}Ni{sub y} core–shell structures are of great benefit not only to increase the strength but also to remain the plasticity of the composites. - Highlights: • A new metal matrix composite (MMC) has been developed. • The developed MMC has a matrix/shell/core structure. • The developed MMC has both high strength and plasticity.

  2. The influence of cement type and temperature on chloride binding in cement paste

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Korzen, Migge Sofie Hoffmann; Skibsted, Jørgen

    1998-01-01

    This paper describes effects of cement type and temperature on chloride binding in cement paste, which is an important subject in relation to life-time modelling of reinforced concrete structures. The influence of cement type on chloride binding is investigated by substituting cement with pure...... cement clinker. Both theoretical considerations and experimental data for chloride binding in cement pastes are presented. A physico-chemically based model to describe the influence of temperature on physical binding of chloride is presented. Solid-state 27Al and 29Si magic-angle spinning (MAS) nuclear...... magnetic resonance (NMR) spectroscopy has been used for quantification of the anhydrous and hydrated aluminate and silicate phases in the chloride exposed cement pastes. The 27Al isotropic chemical shift and nuclear quadrupole coupling is reported for a synthetic sample of Friedel's salt, Ca2Al(OH)6Cl×2H2O....

  3. Comparison of Graphite Fabric Reinforced PMR-15 and Avimid N Composites After Long Term Isothermal Aging at Various Temperatures

    Science.gov (United States)

    Bowles, Kenneth J.; McCorkle, Linda; Ingrahm, Linda

    1998-01-01

    Extensive effort is currently being expended to demonstrate the feasibility of using high-performance, polymer-matrix composites as engine structural materials over the expected operating lifetime of the aircraft, which can extend from 18,000 to 30,000 hr. The goal is to develop light-weight, high-strength, and high-modulus materials for use in higher temperature sections of advanced 21 st century aircraft propulsion systems. To accomplish this goal, it is necessary to pursue the development of thermal and mechanical durability models for graphite-fiber-reinforced, polymer-matrix composites. Numerous investigations have been reported regarding the thermo-oxidative stability (TOS) of the polyimide PMR-15 (1-5). A significant amount of this work has been directed at edge and geometry effects, reinforcement fiber influences, and empirical modeling of high-temperature weight loss behavior. It is yet to be determined if the information obtained from the PMR-15 composite tests is applicable to other polyimide-matrix composites. The condensation-curing polymer Avimid N is another advanced composite material often considered for structural applications at high temperatures. Avimid N has better thermo-oxidative stability than PMR-15 (6), but the latter is more easily processed. The most comprehensive study of the thermo-oxidative stability of Avimid N neat resin and composites at 371 (infinity)C is found in Salin and Seferis (7). The purposes of the work described herein were to compare the thermal aging behavior of these two matrix polymers and to determine the reasons for and the consequences of the difference in thermal durability. These results might be of some use in improving future polymer development through the incorporation of the desirable characteristics of both polyimides.

  4. 碳纤维硫铝酸盐水泥基复合材料的机敏性能%Influence of Forming Pressure on Smart Properties of Carbon Fiber Reinforced Sulphoaluminate Cement Composites

    Institute of Scientific and Technical Information of China (English)

    王守德; 黄世峰; 程新; 陈文; 韩洪亮

    2006-01-01

    采用压制成型方法,制备了碳纤维硫铝酸盐水泥基复合材料(carbon fiber reinforced sulphoaluminate cement composites,简称CFSC),研究了成型压力对CFSC压阻效应和温阻效应的影响.结果表明:成型压力为7,10 MPa时,CFSC的压阻性能较好,压应力与CFSC的电阻率之间呈现一一对应关系;碳纤维掺量相同时,成型压力越大,CFSC的电阻率越小;测量频率越大,CFSC的电阻率越小,这与CFSC的极化有关;成型压力对CFSC的温度-电阻率曲线的变化规律没有影响;压制成型CFSC的温度-电导率曲线(1/T-lnσ曲线)在-40~85℃内近似呈线性关系,可以应用此特性来测量周围的环境温度.

  5. STUDY ON THE PREPARATION AND MECHANICAL PROPERTIES OF CARBON FMER REINFORCED CEMENT COMPOSITES%炭纤维增强水泥复合材料的制备及力学性能研究

    Institute of Scientific and Technical Information of China (English)

    郑争旗; 余洋; 闫曦; 史景利; 郭全贵

    2009-01-01

    本文采用羧甲基纤维素钠(Sodium Carbonxymethyl Cellulose,CMC)与硅微粉(Fine Silica Fumes,SF)作为复合分散剂对PAN基炭纤维进行协同分散来制备炭纤维增强水泥复合材料(Carbon Fiber Reinforced Cement Composites,CFRCC),研究了炭纤维用量、分散剂配比及水灰比对其强度的影响.试验结果表明,此法对纤维具有良好的分散效果.经过对各个掺量进行优选发现,在炭纤维为水泥掺量的1%,CMC和SF的分别为0.05%和15%,水灰比为0.30~0.32时效果最好,所得CFRCC7d(7天)的抗折和抗压强度分别提高了31.22%和41.25%.

  6. Radiographic appearance of commonly used cements in implant dentistry.

    Science.gov (United States)

    Pette, Gregory A; Ganeles, Jeffrey; Norkin, Frederic J

    2013-01-01

    Cement-retained restorations allow for a conventional fixed partial denture approach to restoring dental implants. However, inadequate removal of excess cement at the time of cementation may introduce a severe complication: cement-induced peri-implantitis. Radiopaque cements are more easily detected on radiographs and should improve the recognition of extravasated cement at the time of insertion. The purpose of this study was to evaluate the radiopacity of commercially available cements in vitro. Eighteen different cements commonly used for luting restorations to implants were tested at both 0.5- and 1.0-mm thicknesses. The cements examined were zinc oxide eugenol, zinc oxide, zinc polycarboxylate, zinc phosphate, resin-reinforced glass ionomer, urethane resin, resin, and composite resin. Two samples of each cement thickness underwent standardized radiography next to an aluminum step wedge as a reference. The mean grayscale value of each of the nine 1-mm steps in the step wedge were used as reference values and compared to each of the cement samples. Temp Bond Clear (resin), IMProv (urethane resin), Premier Implant Cement (resin), and Temrex NE (resin) were not radiographically detectable at either sample thickness. Cements containing zinc were the most detectable upon radiographic analysis. There are significant differences in the radiopacity of many commonly used cements. Since cementinduced peri-implantitis can lead to late implant failure, cements that can be visualized radiographically may reduce the incidence of this problem.

  7. Mechanical effect of calcium polyphosphate fiber on reinforcing calcium phosphate bone cement composites%聚磷酸钙纤维增强增韧磷酸钙骨水泥的力学效应

    Institute of Scientific and Technical Information of China (English)

    徐立新; 史雪婷; 王彦平; 石宗利

    2009-01-01

    AIM: To prepare α-tricalcium phosphate (α-TCP)/calcium polyphosphate (CPP) fiber and to study the feasibility of CPP fiber to reinforce calcium phosphate bone cement composites. METHODS: Firstly,α-TCP powder was synthesized using chemical sediment method. Secondly, the α-TCP was mixed with CPP fiber according to different contents and lengths. Finally, bone cement was tempered with firming agent. Solidification time and mechanical property of the samples were measured. Microstructure of hardened sample was observed with scanning electron microscope. RESULTS: When the amount of CPP fibers was 10% and the length was 2 mm, the compressive strength reached 62.5 MPa and the rupture strength reached 12.4 MPa. Scanning electron microscope suggested that CPP fibers with great associativity were well distributed in bone cement. After immersing in Ringer fluid for two months, the CPP fibers did not biodegrade obviously and still had certain function to increase strength and toughness. CONCLUSION: To a certain extent, the CPP fiber can increase strength and toughness of bone cement. Furthermore, α-TCP/CPP composites have good mechanical properties and biocompatibility.%目的:制备α-磷酸三钙/聚磷酸钙纤维复合材料,探讨聚磷酸钙纤维增强磷酸钙骨水泥的可行性.方法:首先利用沉淀法合成出α-磷酸三钙粉末,然后将其与不同质量比、不同长度聚磷酸钙纤维混合,最后用固化液调和制得骨水泥.对样品进行凝固时间、力学性能测试,利用扫描电镜观察固化体微观结构.结果:当聚磷酸钙纤维的含量为10%、长度为2 mm时,复合材料抗压强度达到62.5 MPa,抗折强度达到12.4 MPa.扫描电镜显示适量的聚磷酸钙纤维在骨水泥基体中分布均匀,与基体结合性好.在Ringer溶液中浸泡2个月后,纤维未发生明显的降解作用,仍具有一定的增强增韧效果.结论:聚磷酸钙纤维在一定程度上可对骨水泥起到增强作用.α-磷酸三

  8. Develop and demonstrate manufacturing processes for fabricating graphite filament reinforced polymide (Gr/PI) composite structural elements

    Science.gov (United States)

    Chase, V. A.; Harrison, E. S.

    1985-01-01

    A study was conducted to assess the merits of using graphite/polyimide, NR-150B2 resin, for structural applications on advanced space launch vehicles. The program was divided into two phases: (1) Fabrication Process Development; and (2) Demonstration Components. The first phase of the program involved the selection of a graphite fiber, quality assurance of the NR-150B2 polyimide resin, and the quality assurance of the graphite/polyimide prepreg. In the second phase of the program, a limited number of components were fabricated before the NR-150B2 resin system was removed from the market by the supplier, Du Pont. The advancement of the NR-150B2 polyimide resin binder was found to vary significantly based on previous time and temperature history during the prepregging operation. Strength retention at 316C (600F) was found to be 50% that of room temperature strength. However, the composite would retain its initial strength after 200 hours exposure at 316C (600F). Basic chemistry studies are required for determining NR-150B2 resin binder quality assurance parameters. Graphite fibers are available that can withstand high temperature cure and postcure cycles.

  9. Thermal performance of sisal fiber-cement roofing tiles for rural constructions

    National Research Council Canada - National Science Library

    Tonoli, Gustavo Henrique Denzin; Santos, Sérgio Francisco dos; Rabi, José Antonio; Santos, Wilson Nunes dos; Savastano Junior, Holmer

    2011-01-01

    .... Nonasbestos fiber-cement roofing components reinforced with cellulose pulp from sisal (Agave sisalana) were produced by slurry and dewatering techniques, with an optional addition of polypropylene fibers...

  10. Fabrication and evaluation of thin layer PVDF composites using MWCNT reinforcement: Mechanical, electrical and enhanced electromagnetic interference shielding properties

    Directory of Open Access Journals (Sweden)

    B. V. Bhaskara Rao

    2016-06-01

    Full Text Available Radar X-band electromagnetic interference shielding (EMS is one of the prime requirements for any air vehicle coating; with limitations on the balance between strength and thickness of the EMS material. Nanocomposite of multiwalled-carbon-nanotubes (MWCNT has been homogeneously integrated (0 – 9 wt% with polymer, poly (vinylidene fluoride, PVDF to yield 300 micron film. The PVDF + 9 wt% MWCNT sample of density 1.41 g/cm3 show specific shielding effectiveness (SSE of 17.7 dB/(g/cm3 (99.6% EMS, with maintained hardness and improved conductivity. With multilayer stacking (900 microns of these films of density 1.37 g/cm3, the sample showed increase in SSE to 23.3 dB/(g/cm3 (99.93% EMS. Uniform dispersion of MWCNTs in the PVDF matrix gives rise to increased conductivity in the sample beyond 5 wt% MWCNT reinforcement. The results are correlated to the hardness, reflection loss, absorption loss, percolation threshold, permittivity and the conductivity data. An extremely thin film with maximum EMS property is hence proposed.

  11. CONCRETE BASED ON MODIFIED DISPERSE CEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    D. V. Rudenko

    2016-08-01

    Full Text Available Purpose. The article considers definition of the bond types occurring in a modified cement concrete matrix, and the evaluation of the quality of these links in a non-uniform material to determine the geometrical and physical relationships between the structure and the cement matrix modifiers. Methodology. To achieve this purpose the studies covered the microstructure of dispersed modified concrete cement matrix, the structure formation mechanism of the modified cement concrete system of natural hardening; as well as identification of the methods of sound concrete strength assessment. Findings. The author proposed a model of the spatial structure of the concrete cement matrix, modified by particulate reinforcement crystal hydrates. The initial object of study is a set of volume elements (cells of the cement matrix and the system of the spatial distribution of reinforcing crystallohydrates in these volume elements. It is found that the most dangerous defects such as cracks in the concrete volume during hardening are formed as a result of internal stresses, mainly in the zone of cement matrix-filler contact or in the area bordering with the largest pores of the concrete. Originality. The result of the study is the defined mechanism of the process of formation of the initial strength and stiffness of the modified cement matrix due to the rapid growth of crystallohydrates in the space among the dispersed reinforcing modifier particles. Since the lack of space prevents from the free growth of crystals, the latter cross-penetrate, forming a dense structure, which contributes to the growth of strength. Practical value. Dispersed modifying cement matrix provides a durable concrete for special purposes with the design performance characteristics. The developed technology of dispersed cement system modification, the defined features of its structure formation mechanism and the use of congruence principle for the complex of technological impacts of physical

  12. Fabrication and densification enhancement of SiC-particulate-reinforced copper matrix composites prepared via the sinter-forging process

    Institute of Scientific and Technical Information of China (English)

    Mohammadmehdi Shabani; Mohammad Hossein Paydar; Mohammad Mohsen Moshksar

    2014-01-01

    The fabrication of copper (Cu) and copper matrix silicon carbide (Cu/SiCp) particulate composites via the sinter-forging process was investigated. Sintering and sinter-forging processes were performed under an inert Ar atmosphere. The influence of sinter-forging time, tempera-ture, and compressive stress on the relative density and hardness of the prepared samples was systematically investigated and subsequently com-pared with that of the samples prepared by the conventional sintering process. The relative density and hardness of the composites were enhanced when they were prepared by the sinter-forging process. The relative density values of all Cu/SiCp composite samples were observed to decrease with the increase in SiC content.

  13. Calcium Orthophosphate Cements and Concretes

    Directory of Open Access Journals (Sweden)

    Sergey V. Dorozhkin

    2009-03-01

    Full Text Available In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are a bioactive and biodegradable grafting material in the form of a powder and a liquid. Both phases form after mixing a viscous paste that after being implanted, sets and hardens within the body as either a non-stoichiometric calcium deficient hydroxyapatite (CDHA or brushite, sometimes blended with unreacted particles and other phases. As both CDHA and brushite are remarkably biocompartible and bioresorbable (therefore, in vivo they can be replaced with newly forming bone, calcium orthophosphate cements represent a good correction technique for non-weight-bearing bone fractures or defects and appear to be very promising materials for bone grafting applications. Besides, these cements possess an excellent osteoconductivity, molding capabilities and easy manipulation. Furthermore, reinforced cement formulations are available, which in a certain sense might be described as calcium orthophosphate concretes. The concepts established by calcium orthophosphate cement pioneers in the early 1980s were used as a platform to initiate a new generation of bone substitute materials for commercialization. Since then, advances have been made in the composition, performance and manufacturing; several beneficial formulations have already been introduced as a result. Many other compositions are in experimental stages. In this review, an insight into calcium orthophosphate cements and concretes, as excellent biomaterials suitable for both dental and bone grafting application, has been provided.

  14. Water Resistance, Hydration Product and Microstructure of Glass Fiber Reinforced Magnesium Oxychloride Cement Exterior Wall Cladding%玻镁外墙挂板的抗水性、水化产物和微观结构

    Institute of Scientific and Technical Information of China (English)

    董金美; 余红发; 刘倩倩; 李颖; 林启红

    2011-01-01

    Bending mechanical properties and deformations in natural state and wet state under water of common and high-performance glass fiber reinforced magnesium oxychloride cement ( GRMC ) exterior wall cladding were tested in this study. Hydration product components and microstructure were observed by X-ray diffraction ( XRD ) and scanning electron microscopy ( SEM). The results indicated that, in wet state under water, the main hydration product 5 ·1 ·8 was hydrolysed, microstructure is destroyed and bending strength is decreased for common GRMC exterior wall cladding. For high-performance GRMC exterior wall cladding with a complex water-repellent admixture and mixed minerals, the main hydration product 3 ·1 ·8 is stable existing in cement matrix and microstructure has been changed little. The sample reveals high water resistance. So, hydration product components and microstructure stability of GRMC exterior wall cladding are important prerequisites for high water resistance.%试验测定了普通玻镁外墙挂板、掺加复合抗水外加剂和矿物掺合料的高性能玻镁外墙挂板在自然和浸水状态下的弯曲力学性能和变形性能,并运用X射线衍射仪(XRD)和扫描电镜(SEM)分析了水化产物的组成和微观结构特征.结果表明:在浸水条件下,普通玻镁外墙挂板的主要水化产物5 ·1·8相发生了分解,破坏了微观结构,导致其抗弯强度降低;而掺加复合抗水外加剂和矿物掺合料的高性能玻镁外墙挂板的水化产物5·1·8相保持稳定,微观结构未发生变化,显示出较高的抗水性.因此,玻镁外墙挂板的水化产物组成和微观结构的稳定性是确保其抗水性的重要前提.

  15. Fabrication and Evaluation of Graphite Fiber-Reinforced Polyimide Composite Tube Forms Using Modified Resin Transfer Molding

    Science.gov (United States)

    Exum, Daniel B.; Ilias, S.; Avva, V. S.; Sadler, Bob

    1997-01-01

    The techniques necessary for the fabrication of a complex three-dimensional tubular form using a PMR-type resin have been developed to allow for the construction of several tubes with good physical and mechanical properties. Employing established resin transfer molding practices, the relatively non-hazardous AMB-21 in acetone formulation was used to successfully impregnate four layers of AS4 braided graphite fiber preform previously loaded around an aluminum cylindrical core in an enclosed mold cavity. Using heat and vacuum, the solvent was evaporated to form a prepreg followed by a partial imidization and removal of condensation products. The aluminum core was replaced by a silicone rubber bladder and the cure cycle continued to the final stage of 550 F with a bladder internal pressure of 200 lbs/sq in while simultaneously applying a strong vacuum to the prepreg for removal of any additional imidization products. A combination of several modifications to the standard resin transfer molding methodology enabled the mold to 'breathe', allowing the imidization products a pathway for escape. AMB-21 resin was chosen because of the carcinogenic nature of the primary commercial polyimide PMR-15. The AMB-21 resin was formulated using commercially available monomers or monomer precursors and dissolved in a mixture of methyl alcohol and acetone. The viscosity of the resulting monomer solution was checked by use of a Brookfield rheometer and adjusted by adding acetone to an easily pumpable viscosity of about 600 cP. In addition, several types of chromatographic and thermal analyses were of the braids, and excess handling of the preforms broke some of the microscopic fibers, needlessly decreasing the strength of the finished part. In addition, three dimensional braided preforms with fibers along the length of the tube will be significantly stronger in tension than the braided preforms used in this study.

  16. Cure Cycle Design Methodology for Fabricating Reactive Resin Matrix Fiber Reinforced Composites: A Protocol for Producing Void-free Quality Laminates

    Science.gov (United States)

    Hou, Tan-Hung

    2014-01-01

    For the fabrication of resin matrix fiber reinforced composite laminates, a workable cure cycle (i.e., temperature and pressure profiles as a function of processing time) is needed and is critical for achieving void-free laminate consolidation. Design of such a cure cycle is not trivial, especially when dealing with reactive matrix resins. An empirical "trial and error" approach has been used as common practice in the composite industry. Such an approach is not only costly, but also ineffective at establishing the optimal processing conditions for a specific resin/fiber composite system. In this report, a rational "processing science" based approach is established, and a universal cure cycle design protocol is proposed. Following this protocol, a workable and optimal cure cycle can be readily and rationally designed for most reactive resin systems in a cost effective way. This design protocol has been validated through experimental studies of several reactive polyimide composites for a wide spectrum of usage that has been documented in the previous publications.

  17. Microstructure and Mechanical Properties of MWCNTs Reinforced A356 Aluminum Alloys Cast Nanocomposites Fabricated by Using a Combination of Rheocasting and Squeeze Casting Techniques

    Directory of Open Access Journals (Sweden)

    Abou Bakr Elshalakany

    2014-01-01

    Full Text Available A356 hypoeutectic aluminum-silicon alloys matrix composites reinforced by different contents of multiwalled carbon nanotubes (MWCNTs were fabricated using a combination of rheocasting and squeeze casting techniques. A novel approach by adding MWCNTs into A356 aluminum alloy matrix with CNTs has been performed. This method is significant in debundling and preventing flotation of the CNTs within the molten alloy. The microstructures of nanocomposites and the interface between the aluminum alloy matrix and the MWCNTs were examined by using an optical microscopy (OM and scanning electron microscopy (SEM equipped with an energy dispersive X-ray analysis (EDX. This method remarkably facilitated a uniform dispersion of nanotubes within A356 aluminum alloy matrix as well as a refinement of grain size. In addition, the effects of weight fraction (0.5, 1.0, 1.5, 2.0, and 2.5 wt% of the CNT-blended matrix on mechanical properties were evaluated. The results have indicated that a significant improvement in ultimate tensile strength and elongation percentage of nanocomposite occurred at the optimal amount of 1.5 wt% MWCNTs which represents an increase in their values by a ratio of about 50% and 280%, respectively, compared to their corresponding values of monolithic alloy. Hardness of the samples was also significantly increased by the addition of CNTs.

  18. Fabrication of Nano-SiC Particulate Reinforced Mg-8Al-1Sn Composites by Powder Metallurgy Combined with Hot Extrusion

    Science.gov (United States)

    Li, Chuan-Peng; Wang, Zhi-Guo; Wang, Hui-Yuan; Zhu, Xian; Wu, Min; Jiang, Qi-Chuan

    2016-09-01

    Nano-SiC particulates (n-SiCp) reinforced Mg-8Al-1Sn (AT81) composites with different volume fractions (0, 0.25, 0.5 and 1.0 vol.%) were fabricated by powder metallurgy process (P/M) combined with hot extrusion. The mechanical properties of the composite increased as the n-SiCp content increased until the n-SiCp content exceeded 0.5 vol.%, at which point they began to decrease. For this reason, the 0.5 vol.% n-SiCp/AT81 composite was considered optimal. The 0.2% offset yield strength (YS), ultimate tensile strength (UTS) and elongation (ɛ) of 0.5 vol.% n-SiCp/AT81 composites increased from 175, 318 MPa and 4.5% to 239, 381 MPa and 8.3%, respectively, compared to AT81. Both, the strength and plasticity of the 0.5 vol.% n-SiCp/AT81 composites were improved as well. The improvement in mechanical properties can be attributed to the progressively refined matrix grain size, relatively uniform distribution of n-SiCP and the well-bonded interfaces between n-SiCp and the matrix.

  19. The fabrication and tribological behavior of epoxy composites modified by the three-dimensional polyurethane sponge reinforced with dopamine functionalized carbon nanotubes

    Science.gov (United States)

    Wang, Rui; Wang, Huaiyuan; Sun, Liyuan; Wang, Enqun; Zhu, Yixing; Zhu, Yanji

    2016-01-01

    Three-dimensional (3D) interpenetrating network structure epoxy composites were fabricated based on the modified carbon nanotube (CNT) reinforced flexible polyurethane (PU) sponge. CNTs were first functionalized with polydopamine (PDA) as revealed by TEM imaging, which is formed via the oxidative self-polymerization of dopamine. Then the functionalized CNTs (CNT-PDA) were successfully anchored on the skeleton surfaces of sponge, forming a continuous 3D carbon network. The interfacial interaction between modified PU sponge and epoxy (EP) matrix was significantly enhanced due to the covalent linkage of PDA. Improvement in the thermal stability of CNT-PDA/PU3D/EP composites was observed by TG analysis and related to the CNTs anchored on the skeleton of sponge. The tribological properties of pure EP, PU3D/EP and CNT-PDA/PU3D/EP composites were comparatively investigated in terms of different loads and velocities. Results demonstrated that CNT-PDA/PU3D/EP composites exhibited the best tribological performance owing to the strong interfacial interaction and the 3D carbon network structure. In particular, the wear resistance of CNT-PDA/PU3D/EP composites was 6.2 times and 3 times higher than those of pure EP and PU3D/EP composites under the applied load of 1.6 MPa, respectively.

  20. Fabrication of Nano-SiC Particulate Reinforced Mg-8Al-1Sn Composites by Powder Metallurgy Combined with Hot Extrusion

    Science.gov (United States)

    Li, Chuan-Peng; Wang, Zhi-Guo; Wang, Hui-Yuan; Zhu, Xian; Wu, Min; Jiang, Qi-Chuan

    2016-11-01

    Nano-SiC particulates (n-SiCp) reinforced Mg-8Al-1Sn (AT81) composites with different volume fractions (0, 0.25, 0.5 and 1.0 vol.%) were fabricated by powder metallurgy process (P/M) combined with hot extrusion. The mechanical properties of the composite increased as the n-SiCp content increased until the n-SiCp content exceeded 0.5 vol.%, at which point they began to decrease. For this reason, the 0.5 vol.% n-SiCp/AT81 composite was considered optimal. The 0.2% offset yield strength (YS), ultimate tensile strength (UTS) and elongation (ɛ) of 0.5 vol.% n-SiCp/AT81 composites increased from 175, 318 MPa and 4.5% to 239, 381 MPa and 8.3%, respectively, compared to AT81. Both, the strength and plasticity of the 0.5 vol.% n-SiCp/AT81 composites were improved as well. The improvement in mechanical properties can be attributed to the progressively refined matrix grain size, relatively uniform distribution of n-SiCP and the well-bonded interfaces between n-SiCp and the matrix.

  1. Effect of Naphthalene Water Reducer on the Corrosion Behavior of Reinforcing Steel in Hardened Cement Paste and Simulated Concrete Pore Solution%萘系减水剂对硬化水泥浆体及孔隙液中钢筋腐蚀的影响

    Institute of Scientific and Technical Information of China (English)

    唐聿明; 张杰; 左禹

    2009-01-01

    Hardened cement paste and simulated concrete pore solution were prepared.The effects of naphthalene water reducer added in the simulated concrete pore solution and hardened cement paste on the corrosion behavior of reinforcing steels were studied.Results show that naphthalene water reducer can slightly accelerate the corrosion of the reinforcing steel in the simulated concrete pore solution.However,the addition of the naphthalene water reducer up to 0.5% in hardened cement paste led to decrease of the corrosion rate of the reinforcing steel,and the antirusting ability of naphthalene water reducer for the reinforcing steel increased with increasing time.The reasons may be that the introduction of naphthalene water reducer contributed to reduced amount of pores and increased the density of the hardened cement paste,hence inhibiting the corrosion of the reinforcing steel.%为了研究外加剂对混凝土中钢筋腐蚀的影响,模拟了混凝土孔隙液及制备了硬化水泥浆体,研究了添加不同含量的萘系减水剂对钢筋腐蚀的影响.结果表明:在模拟混凝土孔隙液中加入萘系减水剂对钢筋腐蚀有轻微的促进作用,当减水剂含量达到一定值时腐蚀增大的趋势就会消失;在硬化水泥浆体中加入萘系减水剂可以减缓钢筋的腐蚀,添加0.5%萘系减水剂阻锈效果最明显,且随着时间的延长,萘系减水剂对硬化水泥浆体中钢筋的阻锈效果增加;加入减水剂增强了硬化水泥浆体的密实性,从而减缓了钢筋的腐蚀.

  2. Fabrication and performance characterization of magnesium phosphate bone cement%磷酸镁生物骨胶的制备与性能表征

    Institute of Scientific and Technical Information of China (English)

    李均明; 王爱娟; 蒋百灵; 马安博; 杨光

    2011-01-01

    Magnesium phosphate bone cement(MPC) was prepared using magnesium oxide,potassium dihydrogen phosphate and deionized water.Effect of solid/liquid ratio,calicination temperature of magnesium oxide on setting time of the bone cement was studied,and the phases and microstructure of the MPC were also examined.The results indicate that the setting time increased as the decrease of the solid/liquid ratio and increased as the increase of magnesium oxide calcination temperature.Magnesium phosphate bone cement is composed of magnesium oxide and hydrate products,and a large amount of cracks existed in the bone cement possibly because of the thermal stress and volume expansion during solidifying.%研究了液固比和氧化镁煅烧温度对磷酸镁生物骨胶固化时间的影响,并分析了生物骨胶的相组成、微观结构。结果表明:降低液固比或提高氧化镁煅烧温度,生物骨胶的固化时间有所增加;生物骨胶主要由未参与反应的氧化镁和水化产物构成,内部含有大量微裂纹,分析认为很可能是由于固化过程中释放的热应力及固化过程中体积发生膨胀引起的。

  3. Carbon Nanotubes Reinforced Composites for Biomedical Applications

    OpenAIRE

    Wei Wang; Yuhe Zhu; Susan Liao; Jiajia Li

    2014-01-01

    This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The review introduced fabrication of CNTs reinforced composites (CNTs reinforced metal matrix composites, CNTs reinforced polymer matr...

  4. Digital imaging and fabrication.

    Science.gov (United States)

    Zandparsa, Roya

    2014-01-01

    Bioceramics have been adopted in dental restorations for implants, bridges, inlays, onlays, and all-ceramic crowns. Dental bioceramics include glass ceramics, reinforced porcelains, zirconias, aluminas, fiber-reinforced ceramic composites, and multilayered ceramic structures. The process of additive manufacturing is ideally suited to dentistry. Models are designed using data from a computed tomography scan or magnetic resonance imaging. Since its development in 2001, direct ceramic machining of presintered yttria tetragonal zirconia polycrystal has become increasingly popular in dentistry. There are wide variety commercially available cements for luting all-ceramic restorations. However, resin cements have lower solubility and better aesthetic characteristics.

  5. 玻纤乙烯酯-混凝土柱增强系统及其性能%Research on the Reinforcement of Concrete Column Cylinder by Glass Non-crimp Fabric-vinyl Ester Composite Wraps

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this study,the compressive behavior of the concrete column cylinder reinforced through glass non-crimp fabric-vinyl ester resin composite wraps are tested and analyzed. The effect of the fiber orientation in non-crimp fabrics on the reinforcing effectiveness of the concrete column cylinders is discussed. The resistance of the reinforcing system to the impact and to heat and water is also investigated. It is concluded that the results be used as references in the assessment of the property of the concrete structure with fiber reinforced composites%采用玻璃长丝无折皱织物、乙烯酯复合材料对水泥混凝土柱进行包裹增强,对其抗压性能进行了测试和分析。探讨了织物纤维取向不同对系统增强效果的影响。同时对增强系统抗冲击、抗环境-水与热的性能也进行了研究。为探索纤维复合材料在水泥混凝土增强修补领域的研究和实际应用提供依据。

  6. 有机酸对钢筋腐蚀和水泥浆体性能的影响%Influence of organic acids on the corrosion performance of reinforcement and material properties of cement paste

    Institute of Scientific and Technical Information of China (English)

    朱洋洋; 吴喜涛; 胡捷

    2015-01-01

    为了揭示有机酸粪污废水对钢筋混凝土构筑物材料性能和耐久性的影响,本文采用电化学方法和扫描电镜研究了浸没在含有不同体积分数有机酸的模拟混凝土孔溶液中的钢筋的电化学行为和表面形态,并采用X射线衍射仪和体视显微镜研究了模拟有机酸溶液对水泥净浆水化产物和微观结构的影响。研究结果表明:在模拟孔溶液中,不同体积分数的有机酸均能诱发钢筋腐蚀,经有机酸侵蚀后的钢筋腐蚀电位负移、腐蚀电流升高、腐蚀速度加快;且当模拟溶液中的有机酸体积分数越大时,钢筋的腐蚀速度越快。同时,X RD和表面分析试验结果表明,经有机酸侵蚀的水泥净浆基体,其中的氢氧化钙、硅酸二钙、钙矾石等组分被有机酸溶解,表面出现裂缝、分层和剥落,抗压强度下降。%In order to elucidate the influence of organic acids on the material properties and durability of reinforced concrete ,elec‐trochemical methods and scanning electron microscopy were used to investigate the electrochemical behavior and surface morphol‐ogy of reinforcement immersed in simulated pore solutions containing organic acids with different volume fractions .X‐ray diffrac‐tion and stereo microscope were used to evaluate the influence of organic acids on the hydration products and microstructure of ce‐ment paste .The results indicate that the corrosion potential of the reinforcement is negatively shifted and corrosion current densi‐ty is significantly increased ,and corrosion rate is accelerated in the presence of organic acids .Further more ,a higher corrosion rate is related to a higher concentration of organic acids .Meanwhile ,the component such as Ca(OH)2 ,dicalcium silicate and en‐ttringite in cement paste is dissolved after erosion by organic acids ,leading to the cracking ,layering and spalling on the surfaces , and a decrease of compressive strength .

  7. Compósitos à base de cimento reforçado com polpa celulósica de bambu. Parte II: Uso de resíduos cerâmicos na matriz Cement-based composite reinforced with bamboo pulp. Part II: Use of ceramic residues in matrix

    Directory of Open Access Journals (Sweden)

    Marcos A. S. dos Anjos

    2003-08-01

    Full Text Available Este é o segundo dos dois artigos relativos aos resultados experimentais da combinação de matriz cimentícia reforçada com polpa celulósica de bambu. Neste trabalho, são mostrados os resultados da investigação da substituição parcial do cimento por resíduo de fábrica de blocos cerâmicos. O cimento foi substituído em percentagens de 20, 30 e 40% em relação à massa de cimento. Essas combinações foram reforçadas com polpa de bambu refinada. Os procedimentos e programas experimentais foram os mesmos adotados no artigo anterior (Parte 1. Considerando-se os resultados dos ensaios de obtenção das propriedades mecânicas, a substituição de 20% foi a que apresentou melhor performance.This paper is the second part of a series of two articles concerning the experimental results of newly developed composite with cementations matrix reinforced with bamboo pulp. In this part the results of the investigations concerning the partial substitution of Portland cement by grinded residues from a brick factory are presented. The cement was partially replaced in percentages of 20, 30 and 40% by weight. These composites were reinforced with only refined bamboo pulp. The same procedures described in Part I were adopted and used in the experimental program. Considering the results of the mechanical properties it is verified that 20% of cement replacement presented the best results.

  8. A study on provisional cements, cementation techniques, and their effects on bonding of porcelain laminate veneers.

    Science.gov (United States)

    Vinod Kumar, G; Soorya Poduval, T; Bipin Reddy; Shesha Reddy, P

    2014-03-01

    Minimal tooth preparation is required for porcelain laminate veneers, but interim restorations are a must to protect their teeth against thermal insult, chemical irritation, and to provide aesthetics. Cement remaining after the removal of the provisional restoration can impair the etching quality of the tooth surface and fit and final bonding of the porcelain laminate veneer. This in vitro study examined the tooth surface for remaining debris of cement after removal of a provisional restoration. Determine the presence of cement debris on prepared tooth surface subsequent to the removal of provisional restoration. Determine the cement with the least residue following the cleansing procedures. Determine the effect of smear layer on the amount of residual luting cement. Eighty-four extracted natural anterior teeth were prepared for porcelain laminate veneers. For half of the teeth, the smear layer was removed before luting provisional restorations. Veneer provisional restorations were fabricated and luted to teeth with six bonding methods: varnish combined with glass ionomer cement (GIC), varnish combined with resin modified GIC, varnish, spot etching combined with dual-cure luting cement, adhesive combined with GIC, adhesive combined with resin modified GIC, and adhesive, spot etching combined with dual-cure luting cement. After removal of provisional restorations 1 week later, the tooth surface was examined for residual luting material with SEM. Traces of cement debris were found on all the prepared teeth surfaces for all six groups which were cemented with different methods. Cement debris was seen on teeth subsequent to the removal of provisional's. Dual-cure cement had the least residue following the cleansing procedures. Presence of smear layer had no statistical significance in comparison with cement residue. With the use of adhesive the cement debris was always found to be more than with the use of varnish. GIC showed maximum residual cement followed by dual-cure.

  9. Multiscale Lattice Boltzmann-Finite Element Modelling of Transport Properties in Cement-based Materials

    NARCIS (Netherlands)

    Zhang, M.

    2013-01-01

    Cement-based materials are the most widely used man-made materials in the world. The durability of cement-based materials has been a major concern due to the premature failure and serviceability issues of many reinforced concrete structures. Durability of cement-based materials is to a large content

  10. Multiscale Lattice Boltzmann-Finite Element Modelling of Transport Properties in Cement-based Materials

    NARCIS (Netherlands)

    Zhang, M.

    2013-01-01

    Cement-based materials are the most widely used man-made materials in the world. The durability of cement-based materials has been a major concern due to the premature failure and serviceability issues of many reinforced concrete structures. Durability of cement-based materials is to a large content

  11. Un nuevo método de diseño de losas para pisos industriales ante la inaplicabilidad de los métodos simplificados de diseño, entre ellos los de la portland cement association (pca) y wire reinforcement institute (wri)

    OpenAIRE

    Camero Sanabrial, Hugo Ernesto

    2010-01-01

    Se presenta una metodología para el diseño de losas sobre terreno para pisos industriales en donde hay excentricidad entre el centroide de la losa y el centro de gravedad de las cargas del ele cargado del montacargas que transita sobre el piso. Mediante un ejemplo se analiza cómo los métodos de diseño de pisos de la Portland Cement Association (PCA) y la Wire Reinforcement Institute (WRI) son inadecuados para el diseño de pisos sometidos a esta condición. El nuevo método propuesto para diseña...

  12. Polypropylene Fibers in Portland Cement Concrete Pavements.

    Science.gov (United States)

    1992-08-01

    Bibliography on Fiber- Reinforced Cement and Concrete," Miscellaneous Paper C-76-6, with supplements 1, 2, 3, and 4 ( 1977 , 1979, 1980, and 1982), US Army... Mindess , S., Bentur, A., Yan, C., and Vondran, G., "Impact Resistance of Concrete Containing Both Conventional Steel Reinforcement and Fibrillated...Roads, Streets, Walks, and Open Storage Areas," TM 5-822-6/AFM 88-7, Chap. 7, Washington, DC, 1977 . 18. __ , "Concrete Floor Slabs on Grade Subjected

  13. CEMENT SLURRIES FOR GEOTHERMAL WELLS CEMENTING

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1994-12-01

    Full Text Available During a well cementing special place belongs to the cement slurry design. To ensure the best quality of cementing, a thorough understanding of well parameters is essential, as well as behaviour of cement slurry (especially at high temperatures and application of proven cementing techniques. Many cement jobs fail because of bad job planning. Well cementing without regarding what should be accomplished, can lead to well problems (channels in the cement, unwanted water, gas or fluid production, pipe corrosion and expensive well repairs. Cementing temperature conditions are important because bot-tomhole circulating temperatures affect slurry thickening time, arheology, set time and compressive strength development. Knowing the actual temperature which cement encounters during placement allows the selection of proper cementing materials for a specific application. Slurry design is affected by well depth, bottom hole circulating temperature and static temperature, type or drilling fluid, slurry density, pumping time, quality of mix water, fluid loss control, flow regime, settling and free water, quality of cement, dry or liquid additives, strength development, and quality of the lab cement testing and equipment. Most Portland cements and Class J cement have shown suitable performances in geot-hermal wells. Cement system designs for geothermal wells differ from those for conventional high temperature oil and gas wells in the exclusive use of silica flour instead of silica sand, and the avoidance of fly ash as an extender. In this paper, Portland cement behaviour at high temperatures is described. Cement slurry and set cement properties are also described. Published in literature, the composition of cement slurries which were tested in geothermal conditions and which obtained required compressive strength and water permeability are listed. As a case of our practice geothermal wells Velika Ciglena-1 and Velika Ciglena-la are described.

  14. Fabrication of metallic reinforcement fibres for metal matrix composites by in-rotating-liquid spinning. Herstellung metallischer Verstaerkungsfasern fuer Metallmatrixverbundwerkstoffe durch Schmelzspinnen in eine rotierende Fluessigkeit

    Energy Technology Data Exchange (ETDEWEB)

    Heyder, B.; Frommeyer, G. (Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany). Abt. Werkstofftechnik)

    1992-02-01

    The application of reinforced metal matrix composites reinforced by continuous fibres are in particular limited by the lack of inexpensive and high-strength reinforcement fibres. Starting-points for a solution offer new methods of rapid solidification technology such as the in-rotating-liquid spinning that is suitable for a broad acceptance by industry. Fundamental investigations of the influence factors and the process parameters showed the aptitude of this method. (orig.).

  15. Bonding strength of resin cement to silicate glass ceramics for dental CAD/CAM systems is enhanced by combination treatment of the bonding surface.

    Science.gov (United States)

    Shimakura, Yusuke; Hotta, Yasuhiro; Fujishima, Akihiro; Kunii, Jun; Miyazaki, Takashi; Kawawa, Tadaharu

    2007-09-01

    To increase the bond strength of CAD/CAM-fabricated, leucite-reinforced glass ceramics with a resin cement, the effects of the following were investigated: surface modification by tribochemical (TBC) treatment, followed by combined application of a silane coupling agent and a functional monomer as a primer. Bond strength was evaluated by a shear bond test. It was found that a silane coupling agent was useful for all the surfaces, particularly for the TBC-treated surface. This was because of the presence of a silica layer on the modified surface. The combination of a silane coupling agent and a functional monomer on the TBC surface allowed marked improvement in bonding, whereby the bonding endured 20,000 cycles of thermal cycling. Therefore, TBC treatment in combination with a silane coupling agent and a functional monomer as a primer substantially increased the bond strength of CAD/CAM-fabricated glass ceramics with resin cement, if the treatment conditions were appropriate.

  16. Compósitos à base de cimento reforçados com polpa celulósica de bambu. Parte I: Determinação do teor de reforço ótimo Cement-based composite reinforced with bamboo pulp. Part I: Determination of optimum reinforcement percentage

    Directory of Open Access Journals (Sweden)

    Marcos A. S. dos Anjos

    2003-08-01

    Full Text Available Este trabalho apresenta os resultados experimentais de um estudo em que se procurou desenvolver compósitos de matriz cimentícia reforçada com polpa de bambu. Foram usados dois tipos de polpa: refinada e sem refino. Fez-se variar o teor de fibras de 0 a 16% em massa de cimento e se desenvolveu um processo com sucção, moldagem e prensagem para fabricação dos compósitos. As relações constitutivas dos compósitos foram definidas através de ensaio a compressão e tração de corpos-de-prova cilíndricos de 5x10 cm e do ensaio de flexão em três pontos. A partir delas, foi obtida a capacidade de absorção de energia. Determinaram-se, também, algumas propriedades físicas, como absorção, porosidade aparente, densidade seca e úmida dos compósitos. Os resultados mostraram melhor performance dos compósitos com fibras refinadas em relação àquelas com fibras sem refino e também indicaram que o teor ótimo de fibras refinadas se situou em torno de 8%, quando promoveram notáveis melhoramentos das propriedades mecânicas dos compósitos em relação à matriz plena.This work presents the experimental results of a study which intended to develop a composite with cementations matrix reinforced with bamboo pulp. Two types of pulps were used: refined and unrefined pulps. The fibre content varied between 0 and 16% cement (weight basis. After the preparation of fresh composite mix the experimental specimens were prepared applying a specially developed process based on Hastshek method using suction then moulding and pressing. The compression, tension and the flexural behavior and their constitutive relations were established using 5 cm diameter by 10 cm high cylindrical specimens and three point bending tests at respectively. The energy absorbing capacity of the new composites was also established. Physical properties such as water absorption, apparent porosity, dry and humid density were also obtained. The results showed a better performance

  17. Evaluation of structural behaviour and corrosion resistant of austenitic AISI 304 and duplex AISI 2304 stainless steel reinforcements embedded in ordinary Portland cement mortars; Evaluacion del comportamiento estructural y de resistencia a la corrosion de armaduras de acero inoxidable austenitico AISI 304 y duplex AISI 2304 embebidas en morteros de cemento Portland

    Energy Technology Data Exchange (ETDEWEB)

    Medina, E.; Cobo, A.; Bastidas, D. M.

    2012-07-01

    The mechanical and structural behaviour of two stainless steels reinforcements, with grades austenitic EN 1.4301 (AISI 304) and duplex EN 1.4362 (AISI 2304) have been studied, and compared with the conventional carbon steel B500SD rebar. The study was conducted at three levels: at rebar level, at section level and at structural element level. The different mechanical properties of stainless steel directly influence the behaviour at section level and structural element level. The study of the corrosion behaviour of the two stainless steels has been performed by electrochemical measurements, monitoring the corrosion potential and the lineal polarization resistance (LPR), of reinforcements embedded in ordinary Portland cement (OPC) mortar specimens contaminated with different amount of chloride over one year time exposure. Both stainless steels specimens embedded in OPC mortar remain in the passive state for all the chloride concentration range studied after one year exposure. (Author) 26 refs.

  18. Lunar cement

    Science.gov (United States)

    Agosto, William N.

    1992-01-01

    With the exception of water, the major oxide constituents of terrestrial cements are present at all nine lunar sites from which samples have been returned. However, with the exception of relatively rare cristobalite, the lunar oxides are not present as individual phases but are combined in silicates and in mixed oxides. Lime (CaO) is most abundant on the Moon in the plagioclase (CaAl2Si2O8) of highland anorthosites. It may be possible to enrich the lime content of anorthite to levels like those of Portland cement by pyrolyzing it with lunar-derived phosphate. The phosphate consumed in such a reaction can be regenerated by reacting the phosphorus product with lunar augite pyroxenes at elevated temperatures. Other possible sources of lunar phosphate and other oxides are discussed.

  19. glass fabric reinforced epoxy composite

    African Journals Online (AJOL)

    user

    and steam turbine blades, gears of locomotives, conveyer belts, pump impellers in mineral slurry processing, where the components .... Care was taken to avoid formation of air bubbles during pouring. Pressure .... Materials and Design, Vol.

  20. Mechanical Properties of MgO Whisker Reinforced Magnesium Phosphate Cement%MgO晶须增强磷酸镁水泥力学性能的研究

    Institute of Scientific and Technical Information of China (English)

    贾兴文; 冉少念; 吴洲

    2015-01-01

    Strength and toughness of magnesium phosphate cement (MPC)can be significantly improved by the addition of MgO whisker owing to its high modulus and length/diameter ratio.The effects of water/binder ratio and the content of retarder on the mechanical properties of MgO-whisker-reinforced MPC were investigated.Distribution characteristics and hydration properties of MgO whisker in MPC were analyzed by SEM and gravimetric method,and the mechanisms of MgO whisker reinforced on the strengthening and MPC were discussed.Results showed that a high early age compressive or flexural strength gain can be achieved when MgO whisker was added (3% to 5% by mass) into mixes of the high water/binder ratio and retarder content.An overlap network structure of MgO whisker is formed leading to bridging action and crack deflection,which significantly improves the strength gain at early ages. Bond strength and compatibility between MgO whisker and MPC are improved as a result of MgO whisker hydration. With development of hydration,higher long-term compressive strength of MPC,but decreased long-term flexural strength with respect due to the weakened crack bridging effect exerted by the slimmed whisker is found.%MgO 晶须弹性模量高,长径比大,掺加到磷酸镁水泥(MPC)中可以产生增强增韧作用。研究了水料比、缓凝剂掺量不同时 MgO 晶须对 MPC 力学性能的影响,采用 SEM 和重量法研究了 MgO 晶须在 MPC 中的分布及水化,分析了 MgO 晶须增强 MPC 的机理。结果表明,掺加3%~5%的 MgO 晶须使 MPC 在水料比和缓凝剂掺量较高时获得良好的早期强度;MgO 晶须在 MPC 中搭接形成网络结构,并通过晶须桥联、裂缝偏转等作用,使 MPC 的早期力学性能显著增强;MgO 晶须参与水化,提高了晶须与 MPC 基体的握裹力和相容性;随着龄期延长,晶须水化程度加深,使 MPC 基体更加致密,后期抗压强度增长明显,但晶须的桥联作用逐渐减弱,MPC 的后期抗折强度增长幅度较小。

  1. Control of in vivo mineral bone cement degradation.

    Science.gov (United States)

    Kanter, Britta; Geffers, Martha; Ignatius, Anita; Gbureck, Uwe

    2014-07-01

    The current study aimed to prevent the formation of hydroxyapatite reprecipitates in brushite-forming biocements by minimizing the availability of free Ca(2+) ions in the cement matrix. This was achieved by both maximizing the degree of cement setting to avoid unreacted, calcium-rich cement raw materials which can deliver Ca(2+) directly to the cement matrix after dissolution, and by a reduction in porosity to reduce Ca(2+) diffusion into the set cement matrix. In addition, a biocement based on the formation of the magnesium phosphate mineral struvite (MgNH4PO4·6H2O) was tested, which should prevent the formation of low-solubility hydroxyapatite reprecipitates due to the high magnesium content. Different porosity levels were fabricated by altering the powder-to-liquid ratio at which the cements were mixed and the materials were implanted into mechanically unloaded femoral defects in sheep for up to 10 months. While the higher-porosity brushite cement quantitatively transformed into crystalline octacalcium phosphate after 10 months, slowing down cement resorption, a lower-porosity brushite cement modification was found to be chemically stable with the absence of reprecipitate formation and minor cement resorption from the implant surface. In contrast, struvite-forming cements were much more degradable due to the absence of mineral reprecipitates and a nearly quantitative cement degradation was found after 10 months of implantation.

  2. Evaluation of a metal shear web selectively reinforced with filamentary composites for space shuttle application. Phase 2: summary report: Shear web component fabrication

    Science.gov (United States)

    Laakso, J. H.; Smith, D. D.; Zimmerman, D. K.

    1973-01-01

    The fabrication of two shear web test elements and three large scale shear web test components are reported. In addition, the fabrication of test fixtures for the elements and components is described. The center-loaded beam test fixtures were configured to have a test side and a dummy or permanent side. The test fixtures were fabricated from standard extruded aluminum sections and plates and were designed to be reuseable.

  3. Carbon Nanotubes Reinforced Composites for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-01-01

    Full Text Available This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The review introduced fabrication of CNTs reinforced composites (CNTs reinforced metal matrix composites, CNTs reinforced polymer matrix composites, and CNTs reinforced ceramic matrix composites, their mechanical properties, cell experiments in vitro, and biocompatibility tests in vivo.

  4. Carbon nanotubes reinforced composites for biomedical applications.

    Science.gov (United States)

    Wang, Wei; Zhu, Yuhe; Liao, Susan; Li, Jiajia

    2014-01-01

    This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The review introduced fabrication of CNTs reinforced composites (CNTs reinforced metal matrix composites, CNTs reinforced polymer matrix composites, and CNTs reinforced ceramic matrix composites), their mechanical properties, cell experiments in vitro, and biocompatibility tests in vivo.

  5. 碳纤维增强磷酸镁水泥砂浆的力学性能研究∗%Mechanical Properties of Carbon Fiber Reinforced Magnesium Phosphate Cement Mortar

    Institute of Scientific and Technical Information of China (English)

    贾兴文; 司端科; 张新; 吴洲

    2016-01-01

    Toughening magnesium phosphate cement mortar (MPCM)will boost the application of MPCM in concrete structure reinforcement and repair.Aiming to toughen MPCM,the effect of untreated and pretreated carbon fibers on the mechanical properties of MPCM was studied,and the toughening mechanism of carbon fibers was ana-lyzed.The results show that the flexural strength of MPCM increased by 44.5% with the addition of 0.4% carbon fi-bers.Carbon fibers with a length of 3-6 mm was conducive to improving the compressive strength of MPCM,and carbon fibers with a length of 6-10 mm could contributed to the flexural strength of MPCM.The properties of MPCM toughened by untreated carbon fibers had no obvious improvement,because of the physical bonding between untreated carbon fibers and hydration products of MPC.Pretreated carbon fibers which were immersed in 68% nitrite acid solution at 40-60 ℃ for 60 min,were beneficial to promoting the interface bonding between carbon fibers and hydration products of MPC.Based on chimerical reaction between hydration products and pretreated carbon fibers,the mechanical properties and toughness of MPCM were significantly improved.%改善磷酸镁水泥砂浆(MPCM)的韧性有利于促进其在混凝土结构加固和修复领域的应用。为了增强MPCM的韧性,对比研究了未处理和硝酸预处理碳纤维对 MPCM力学性能的影响,分析了碳纤维增韧 MPCM的机制。结果表明,当碳纤维质量掺量为0.4%时,MPCM 7 d抗折强度增大44.5%;3~6 mm碳纤维有利于提高MPCM的抗压强度,而6~10 mm碳纤维更有利于提高 MPCM的抗折强度;未处理碳纤维与磷酸镁水泥(MPC)水化产物之间为物理作用,碳纤维未能充分发挥增韧效果;在40~60℃、浓度68%的硝酸中浸泡30~60 min有利于改善碳纤维与MPC水化产物的界面粘结,使预处理后的碳纤维和MPC水化产物产生嵌合作用,显著增强了MPCM的力学性能和韧性。

  6. ULTRA-LIGHTWEIGHT CEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2002-07-30

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems, including foamed and sodium silicate slurries. During this project quarter, a comparison study of the three cement systems examined the effect that cement drillout has on the three cement systems. Testing to determine the effect of pressure cycling on the shear bond properties of the cement systems was also conducted. This report discusses testing that was performed to analyze the alkali-silica reactivity of ULHS in cement slurries.

  7. Transport Properties of Carbon-Nanotube/Cement Composites

    NARCIS (Netherlands)

    Han, B.; Yang, Z.; Shi, X.; Yu, X.

    2012-01-01

    This paper preliminarily investigates the general transport properties (i.e., water sorptivity, water permeability, and gas permeability) of carbon-nanotube/cement composites. Carboxyl multi-walled carbon nanotubes (MWNTs) are dispersed into cement mortar to fabricate the carbon nanotubes (CNTs) rei

  8. Stress State Analysis and Failure Mechanisms of Masonry Columns Reinforced with FRP under Concentric Compressive Load

    Directory of Open Access Journals (Sweden)

    Jiří Witzany

    2016-04-01

    Full Text Available The strengthening and stabilization of damaged compressed masonry columns with composites based on fabrics of high-strength fibers and epoxy resin, or polymer-modified cement mixtures, belongs to novel, partially non-invasive and reversible progressive methods. The stabilizing and reinforcing effect of these fabrics significantly applies to masonry structures under concentric compressive loading whose failure mechanism is characterized by the appearance and development of vertical tensile cracks accompanied by an increase in horizontal masonry strain. During the appearance of micro and hairline cracks (10−3 to 10−1 mm, the effect of non-pre-stressed wrapping composite is very small. The favorable effect of passive wrapping is only intensively manifested after the appearance of cracks (10−1 mm and bigger at higher loading levels. In the case of “optimum” reinforcement of a masonry column, the experimental research showed an increase in vertical displacements δy (up to 247%, horizontal displacements δx (up to 742% and ultimate load-bearing capacity (up to 136% compared to the values reached in unreinforced masonry columns. In the case of masonry structures in which no intensive “bed joint filler–masonry unit” interaction occurs, e.g., in regular coursed masonry with little differences in the mechanical characteristics of masonry units and the binder, the reinforcing effect of the fabric applies only partially.

  9. Color difference of composite resins after cementation with different shades of resin luting cement.

    Science.gov (United States)

    Cengiz, Esra; Kurtulmus-Yilmaz, Sevcan; Karakaya, Izgen; Aktore, Huseyin

    2017-07-26

    The purpose of this study was to evaluate the color difference of nanohybrid and ormocer-based composite resins with different thicknesses when 4 different shades of resin luting cement were used. 56 disc specimens of each composite resin (Aelite aesthetic enamel, Ceram-X mono) with 0.5 and 1 mm thicknesses were fabricated. Baseline color measurements were performed using a clinical spectrophotometer. The specimens of each thicknesses of each resin were randomly divided into 4 groups according to the shades of resin luting cement (white/A1, yellow/universal/A3, transparent and white opaque) (n = 7). Mixed resin cement was applied onto the resin specimens using a Teflon mold in 0.1 mm thickness. Color measurements of cemented composite resin specimens were repeated and color difference (∆E) between baseline and after cementation measurements was calculated. ANOVA and Tukey's test were used for statistical analysis. The opaque shade had significantly increased ∆E values as compared to the other shades (p resins in terms of ∆E values. The shade of resin cement and the type of the resin affected the final color; however, the thickness of composite resin had no influence on the final color of restoration. Selecting the shade of resin luting cement before cementation of indirect composite laminate restoration is important to achieve final color match.

  10. A mild alkali treated jute fibre controlling the hydration behaviour of greener cement paste

    Science.gov (United States)

    Jo, Byung-Wan; Chakraborty, Sumit

    2015-01-01

    To reduce the antagonistic effect of jute fibre on the setting and hydration of jute reinforced cement, modified jute fibre reinforcement would be a unique approach. The present investigation deals with the effectiveness of mild alkali treated (0.5%) jute fibre on the setting and hydration behaviour of cement. Setting time measurement, hydration test and analytical characterizations of the hardened samples (viz., FTIR, XRD, DSC, TGA, and free lime estimation) were used to evaluate the effect of alkali treated jute fibre. From the hydration test, the time (t) required to reach maximum temperature for the hydration of control cement sample is estimated to be 860 min, whilst the time (t) is measured to be 1040 min for the hydration of a raw jute reinforced cement sample. However, the time (t) is estimated to be 1020 min for the hydration of an alkali treated jute reinforced cement sample. Additionally, from the analytical characterizations, it is determined that fibre-cement compatibility is increased and hydration delaying effect is minimized by using alkali treated jute fibre as fibre reinforcement. Based on the analyses, a model has been proposed to explain the setting and hydration behaviour of alkali treated jute fibre reinforced cement composite.

  11. Bending Mechanical Properties of Cement Concrete with Fiber Grid Reinforcement%纤维格栅增强水泥混凝土的弯曲力学特性

    Institute of Scientific and Technical Information of China (English)

    颜祥程; 翁兴中; 寇雅楠; 梁磊; 张广显

    2012-01-01

    In order to investigate the influence of fiber grid type, surface treatment and coarse aggregate limiting grain size on bending mechanical properties of cement concrete, fourteen group specimens with dimensions of 150 mm X ISO mm x 600 mm were tested through four-point bending experiments. The failure processes of the specimens were analyzed, the mechanical mechanism of the interaction between fiber grid and cement concrete was discussed, and some suggestions about the use of fiber grid were proposed. The research result shows that brittle failure characterizes the damage of the specimens. Fiber grid greatly improves the bending mechanical properties of cement concrete, and the bending strength of cement concrete is improved by 6. 62% to 31.40%. When coarse aggregate limiting grain size is 20 mm compared with 40 mm, the bending strength of cement concrete increases by 2.72% to 9.97%. The bending strength of cement concrete is improved by 8. 30% to 11. 88% when fiber grid surface is treated with epoxy resin.%为研究纤维格栅类型、纤维格栅表面处理及粗集料最大粒径对水泥混凝土弯曲力学特性的影响,对14组150 mm× 150 mm ×600 mm的水泥混凝土试件进行了四点弯曲试验,分析了试件破坏过程,探讨了纤维格栅与水泥混凝土相互作用的力学机理,提出了纤维格栅使用的若干建议.结果表明:试件属于脆性破坏;纤维格栅明显改善了水泥混凝土的弯曲力学特性,使水泥混凝土的抗弯强度提高6.62% ~31.40%;与粗集料最大粒径为40mm时相比,粗集料最大粒径为20mm时,水泥混凝土的抗弯强度提高2.72% ~9.97%;纤维格栅表面经环氧树脂处理后,试件的抗弯强度提高8.30% ~ 11.88%.

  12. Pullout behavior of steel fibers from cement-based composites

    DEFF Research Database (Denmark)

    Shannag, M. Jamal; Brincker, Rune; Hansen, Will

    1997-01-01

    A comprehensive experimental program on pullout tests of steel fibers from cement based matrices is described. A specially designed single fiber pullout apparatus was used to provide a quantitative determination of interfacial properties that are relevant to toughening brittle materials through...... fiber reinforcement. The parameters investigated included a specially designed high strength cement based matrix called Densified Small Particles system (DSP), a conventional mortar matrix, fiber embeddment length, and the fiber volume fraction. The mediums from which the fiber was pulled included...

  13. EQUIVALENT MODEL OF EXPANSION OF CEMENT MORTAR UNDER SULPHATE EROSION

    Institute of Scientific and Technical Information of China (English)

    Jue Zhu; Minqiang Jiaug; Jiankang Chen

    2008-01-01

    The expansion property of cement mortar under the attack of sulfate ions is studied by experimental and theoretical methods.First,cement mortars are fabricated with the ratio of water to cement of 0.4,0.6,and 0.8.Secondly,the expansion of specimen immerged in sulphate solution is measured at different times.Thirdly,a theoretical model of expansion of cement mortar under sulphate erosion is suggested by virtue of represent volume element method.In this model, the damage evolution due to the interaction between delayed ettringite and cement mortar is taken into account.Finally,the numerical calculation is performed.The numerical and experimental results indicate that the model perfectly describes the expansion of the cement mortar.

  14. Fabricación de compuesto de matriz epoxi reforzado con fibras largas de henequén orientadas aleatoriamente//Fabrication of a composite with epoxy matrix and henequen fibers as reinforcement long and with random orientation

    Directory of Open Access Journals (Sweden)

    Angel A. Rodríguez Soto

    2015-05-01

    Full Text Available Se obtuvo el procedimiento para la fabricación de un material compuesto con matriz de epoxi reforzado con fibras de henequén largas orientadas aleatoriamente. Fueron diseñados y elaborados seis moldes de tipo caja para la fabricación por el método de prensado en frío. Se produjeron 37 placas con 0, 6, 9, 12, 16, 22, 26 y 28 % de fibras en relación másica. La inclusión de los refuerzos fue manual y los materiales fabricados se sometieron a un proceso de cura a 70 ºC por 24 horas. Los especímenes obtenidos presentaron buena calidad estando libres de defectos y asegurando la distribución correcta de las fibras. El método de fabricación es adecuado para placas con pequeñas y grandes cantidades de fibra.Palabras claves: plásticos reforzados con fibras (PRF, fibras vegetales, compuesto de matriz termoestable, moldeo por compresión en frío.______________________________________________________________________________AbstractIs presented a procedure for the fabrication of the composite material with epoxy as matrix reinforced with henequen fibers, long and random. Was designed and fabricated six molds of box type for the manufacture of the plates using cold pressing procedure. Was make 37 plates with 0, 6, 9, 12, 16, 22, 26 and 28 % of fiber´s inclusions in mass relation. The inclusion of the reinforcements was making manually and the obtained materials was submitted to a process of cure bellow 70ºC during 24 hours. The obtained specimens showed a good quality being free of defects and guarantee the correct distribution of the fibers. The fabrication method is de adequate for plates with small and large quantities of fiber.Key words: fiber reinforced plastics (FRP, natural fibers, composite with thermoset matrix, cold compression molded.

  15. Durability of pulp fiber-cement composites

    Science.gov (United States)

    Mohr, Benjamin J.

    Wood pulp fibers are a unique reinforcing material as they are non-hazardous, renewable, and readily available at relatively low cost compared to other commercially available fibers. Today, pulp fiber-cement composites can be found in products such as extruded non-pressure pipes and non-structural building materials, mainly thin-sheet products. Although natural fibers have been used historically to reinforce various building materials, little scientific effort has been devoted to the examination of natural fibers to reinforce engineering materials until recently. The need for this type of fundamental research has been emphasized by widespread awareness of moisture-related failures of some engineered materials; these failures have led to the filing of national- and state-level class action lawsuits against several manufacturers. Thus, if pulp fiber-cement composites are to be used for exterior structural applications, the effects of cyclical wet/dry (rain/heat) exposure on performance must be known. Pulp fiber-cement composites have been tested in flexure to examine the progression of strength and toughness degradation. Based on scanning electron microscopy (SEM), environmental scanning electron microscopy (ESEM), energy dispersive spectroscopy (EDS), a three-part model describing the mechanisms of progressive degradation has been proposed: (1) initial fiber-cement/fiber interlayer debonding, (2) reprecipitation of crystalline and amorphous ettringite within the void space at the former fiber-cement interface, and (3) fiber embrittlement due to reprecipitation of calcium hydroxide filling the spaces within the fiber cell wall structure. Finally, as a means to mitigate kraft pulp fiber-cement composite degradation, the effects of partial portland cement replacement with various supplementary cementitious materials (SCMs) has been investigated for their effect on mitigating kraft pulp fiber-cement composite mechanical property degradation (i.e., strength and toughness

  16. Development of nanosilica bonded monetite cement from egg shells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Huan, E-mail: huanzhou@cczu.edu.cn [Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu (China); Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Luchini, Timothy J.F.; Boroujeni, Nariman Mansouri [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Agarwal, Anand K.; Goel, Vijay K. [Department of Bioengineering, The University of Toledo, Toledo, OH (United States); Bhaduri, Sarit B. [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Division of Dentistry, The University of Toledo, Toledo, OH (United States)

    2015-05-01

    This work represents further effort from our group in developing monetite based calcium phosphate cements (CPC). These cements start with a calcium phosphate powder (MW-CPC) that is manufactured using microwave irradiation. Due to the robustness of the cement production process, we report that the starting materials can be derived from egg shells, a waste product from the poultry industry. The CPC were prepared with MW-CPC and aqueous setting solution. Results showed that the CPC hardened after mixing powdered cement with water for about 12.5 ± 1 min. The compressive strength after 24 h of incubation was approximately 8.45 ± 1.29 MPa. In addition, adding colloidal nanosilica to CPC can accelerate the cement hardening (10 ± 1 min) process by about 2.5 min and improve compressive strength (20.16 ± 4.39 MPa), which is more than double the original strength. The interaction between nanosilica and CPC was monitored using an environmental scanning electron microscope (ESEM). While hardening, nanosilica can bond to the CPC crystal network for stabilization. The physical and biological studies performed on both cements suggest that they can potentially be used in orthopedics. - Highlights: • Cement raw powder is derived from egg shells. • A microwave assisted system is used for preparing monetite bone cement. • Colloidal silica is used to reinforce cement.

  17. Hybrid Polyvinyl Alcohol and Cellulose Fiber Pulp Instead of Asbestos Fibers in Cement-Based Composites

    Science.gov (United States)

    Shokrieh, M. M.; Mahmoudi, A.; Shadkam, H. R.

    2015-05-01

    The Taguchi method was used to determine the optimum content of a four-parameters cellulose fiber pulp, polyvinyl alcohol (PVA) fibers, a silica fume, and bentonite for cement-based composite sheets. Then cement composite sheets from the hybrid of PVA and the cellulose fiber pulp were manufactured, and their moduli of rapture were determined experimentally. The result obtained showed that cement composites with a hybrid of PVA and cellulose fiber pulp had a higher flexural strength than cellulose-fiber- reinforced cement ones, but this strength was rather similar to that of asbestos-fiber-reinforced cement composites. Also, using the results of flexural tests and an analytical method, the tensile and compressive moduli of the hybrid of PVA and cement sheet were calculated. The hybrid of PVA and cellulose fiber pulp is proposed as an appropriate alternative for substituting asbestos in the Hatschek process.

  18. Acceleration Life Test and Microscopic Mechanism of High Performance Glass Fiber Reinforced Magnesium Oxychloride Cement%高性能玻璃纤维增强氯氧镁水泥的加速寿命试验与微观机理

    Institute of Scientific and Technical Information of China (English)

    余红发; 董金美; 刘倩倩; 李颖; 林启红

    2012-01-01

    利用SIC( strand in cement)试验方法,测定了玻璃纤维增强氯氧镁水泥(glass fiber reinforced magnesium oxychloride cement,GRMC)板材在80℃热水加速老化试验条件下的弯曲强度变化,研究了其加速试验寿命,并运用XRD、DSC -TG、FT-IR和SEM分析其水化产物组成和微观结构形貌,观察了玻璃纤维在氯氧镁水泥基体中的腐蚀特征.结果表明:未添加任何改性剂的普通GRMC在80℃热水加速老化2.5d后,其主要水化产物5·1 ·8大量分解,物相以叶片状的Mg( OH)2为主,促使玻璃纤维被基体腐蚀,导致力学性能急剧下降,预期使用寿命不超过4y.掺加复合抗水外加剂和矿渣的高性能GRMC由于5·1 ·8相的稳定存在和玻璃纤维不被腐蚀,在加速老化试验条件下的强度保留率高达60%以上,预期使用寿命超过了50 y.因此,5·1 ·8的稳定存在是保证高性能GRMC的玻璃纤维稳定性和长期耐久性的重要基础.%Bending strength change of glass fiber reinforced magnesium oxychloride cement (GRMC) board at 80 °C hot water accelerated aging was tested by the strand-in-cement ( SIC) method. Hydration product component, microscopic structure and corrosion feature of glass fibers in the oxychloride magnesium cement matrix were observed by XRD, DSC-TG, FT-IR and SEM. The results showed that its main hydration product 5·1·8 was hydrolysed and Mg(OH)2 became the main phase for common GRMC board after accelerated aging 2. 5 d at 80 °C. Hot water which led to the corrosion of glass fiber caused by matrix and rapid degradation of mechanical property , so the expected service life was not more than 4 years. For high performance GRMC board doped with compound water-repellent admixtures and slag,strength retention was higher than 60% at accelerated aging state because of the stability of 5 · 1 · 8 and noncorrision of glass fiber. Its expected service life exceeded 50 years. So, the stability of 5 · 1 · 8 was the important factor

  19. Diamond-Dispersed Fiber-Reinforced Composite for Superior Friction and Wear Properties in Extreme Environments and Method for Fabricating the Same

    Science.gov (United States)

    Street, Kenneth (Inventor); Voronov, Oleg A (Inventor); Kear, Bernard H (Inventor)

    2017-01-01

    Systems, methods, and articles of manufacture related to composite materials are discussed herein. These materials can be based on a mixture of diamond particles with a matrix and fibers or fabrics. The matrix can be formed into the composite material through optional pressurization and via heat treatment. These materials display exceptionally low friction coefficient and superior wear resistance in extreme environments.

  20. Personal exposure to inhalable cement dust among construction workers.

    Science.gov (United States)

    Peters, Susan; Thomassen, Yngvar; Fechter-Rink, Edeltraud; Kromhout, Hans

    2009-01-01

    Objective- A case study was carried out to assess cement dust exposure and its determinants among construction workers and for comparison among workers in cement and concrete production.Methods- Full-shift personal exposure measurements were performed and samples were analysed for inhalable dust and its cement content. Exposure variability was modelled with linear mixed models.Results- Inhalable dust concentrations at the construction site ranged from 0.05 to 34 mg/m(3), with a mean of 1.0 mg/m(3). Average concentration for inhalable cement dust was 0.3 mg/m(3) (GM; range 0.02-17 mg/m(3)). Levels in the ready-mix and pre-cast concrete plants were on average 0.5 mg/m(3) (GM) for inhalable dust and 0.2 mg/m(3) (GM) for inhalable cement dust. Highest concentrations were measured in cement production, particularly during cleaning tasks (inhalable dust GM = 55 mg/m(3); inhalable cement dust GM = 33 mg/m(3)) at which point the workers wore personal protective equipment. Elemental measurements showed highest but very variable cement percentages in the cement plant and very low percentages during reinforcement work and pouring. Most likely other sources were contributing to dust concentrations, particularly at the construction site. Within job groups, temporal variability in exposure concentrations generally outweighed differences in average concentrations between workers. 'Using a broom', 'outdoor wind speed' and 'presence of rain' were overall the most influential factors affecting inhalable (cement) dust exposure.Conclusion- Job type appeared to be the main predictor of exposure to inhalable (cement) dust at the construction site. Inhalable dust concentrations in cement production plants, especially during cleaning tasks, are usually considerably higher than at the construction site.

  1. Perawatan Satu Kunjungan Restorasi Pasak Fiber Reinforced Composite Pada Gigi Insisivus Atas

    Directory of Open Access Journals (Sweden)

    Ria Ariani

    2013-06-01

    Full Text Available Perawatan saluran akar satu kali kunjungan memberikan keuntungan antara lain memperkecil resiko kontaminasi mikroorganisme dan menghemat waktu perawatan. Pasak fiber reinforced composite memiliki ikatan yang baik dengan dentin menggunakan semen resin dan inti dari resin. Penggunaan pasak bisa mengurangi risiko fraktur. Tujuan penulisan laporan kasus ini adalah untuk mengevaluasi hasil restorasi gigi 11 nekrosis pulpa pasca perawatan saluran akar disertai restorasi dengan pasak fiber reinforced composite. Pasien wanita, 22 tahun datang ke Klinik Konservasi RSGM FKG UGM untuk merawat gigi depan atas kanan yang berlubang. Berdasarkan pemeriksaan subjektif, objektif dan radiografis diperoleh diagnosis gigi 11 nekrosis pulpa. pasca perawatan saluran akar gigi Gigi direstorasi dengan resin komposit dan pasak fiber reinforced composite. Kesimpula dari hasil evaluasi klinis saat kontrol tidak ada keluhan rasa sakit dan pasien merasa puas. One Visit Treatment of Fiber Reinforced Compositerestoration in Maxillary Right First Incisivus. One visit root canal treatment is advantageous to minimize the risk of microorganism contamination. It saves time and more tolerable for the patients. Fiber reinforced composite post is fabricated, and it has been known to have a good bond with dentinal wall of root space, resin cement and composite resin core. The use of this post could decrease the risk of fracture. The purpose of this paper is to report the results of dental restoration 11 pulp necrosis after root canal treatment with resin composite restorations and post fiber reinforced composite. A 22 year-old female patient who came to Faculty of Dentistry UGM complained about her maxillary right incisor teeth which decayed and needed a treatment. Based on the subjective, objective and radiograph examinations, it was diagnosed that the pulp was necrotic. After one visit root canal treatment and based on clinical evaluation, it is concluded that the right upper

  2. Self-compacting fibre-reinforced concrete

    NARCIS (Netherlands)

    Grunewald, S.; Walraven, J.C.

    2001-01-01

    The project 'self-compacting fibre-reinforced concrete (SCFRC)' is part of the Dutch STW/PPM program - 'cement-bonded materials' - DCT.4010. Subproject III to which the project ,SCFRC' belongs deals with the development of new high performance concretes. The project 'SCFRC' aims at investigating the

  3. Fracture Toughness of Fiber Reinforced Concrete.

    Science.gov (United States)

    1983-06-01

    14, 1979, pp. 443-449. 5 Mindess , S., Lawrence, F. V., and Kesler, C. E., "The J-Integral as a Fracture Criterion for Fiber Reinforced Concrete...34 Cement and Con- crete Research, Vol. 7, 1977 , pp. 731-742. 6 Velazco, G., Visalvanich, K., and Shah, S. P., "Fracture Behavior and Analysis of Fiber

  4. ULTRA-LIGHTWEIGHT CEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2001-04-15

    The objective of this project is to develop an improved ultra-lightweight cement using ultralight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Problems and Task 3: Test Ultra-Lightweight Cements. Results reported this quarter include a review and summary of Halliburton Energy Services (HES) and BJ Services historical performance data for lightweight cement applications. These data are analyzed and compared to ULHS cement and foamed cement performances. Similar data is expected from Schlumberger, and an analysis of this data will be completed in the following phases of the project. Quality control testing of materials used to formulate ULHS cements in the laboratory was completed to establish baseline material performance standards. A testing protocol was developed employing standard procedures as well as procedures tailored to evaluate ULHS and foamed cement. This protocol is presented and discussed. Results of further testing of ULHS cements are presented along with an analysis to establish cement performance design criteria to be used during the remainder of the project. Finally, a list of relevant literature on lightweight cement performance is compiled for review during the next quarter.

  5. Producing Durable Continuously Reinforced Concrete Pavement using Glass-ceramic Coated Reinforcing Steel

    Science.gov (United States)

    2010-02-01

    Portland cement is manufactured by firing the clinker at 1400 C Enamel application produces no changes BUILDING STRONG® Treatment Average Peak...ceramic Coated Reinforcing Steel 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER... transition zone at the surface of the reinforcement steel is often the most permeable part of the concrete BUILDING STRONG® Schematic of Ceramic

  6. Comparison of retention of provisional crowns cemented with temporary cements containing stannous fluoride and sodium fluoride-an in vitro study.

    Science.gov (United States)

    Sachin, Bhuvana

    2013-12-01

    The objective of this study was to evaluate the effect of the addition of stannous fluoride (SnF2) and sodium fluoride (NaF) to luting cements on the retention of provisional crowns. Provisional crowns were fabricated using methyl methacrylate and bis-acryl composite resin for 32 chamfer prepared molars. For control group A, crowns were cemented with Freegenol and RelyX Temp NE non-eugenol cements. For test group B, crowns were cemented using the above cements with the addition of SnF2. For test group C, crowns were cemented using the above cements with the addition of NaF. The specimens were thermocycled and retention test was conducted after 7 days. The addition of SnF2 significantly increased the retentive strength of both the cements in the range of 27-48 %, whereas addition of NaF decreased the retentive strength of both the cements in the range of 14-23 %. SnF2 can be mixed with non-eugenol luting cements to improve the retention of both methyl methacrylate and bis-acryl composite crowns. The different effects of NaF and SnF2 on retention indicate that it may be useful to have two different types of provisional luting cements for short-term and long-term cementation, as appropriate.

  7. Fabrication of Al-based composites reinforced with Al2O3-Tib2 ceramic composite particulates using vortex-casting method

    Directory of Open Access Journals (Sweden)

    Roshan M.R.

    2013-01-01

    Full Text Available Vortex casting is one of the simplest methods of producing metal matrix composites (MMCs. However, this simple method does have some drawbacks, which reduce the mechanical properties of the produced composites. In this study, we tried to modify the process of composite production before, during, and after the casting procedure. Low-cost Al2O3-TiB2 ceramic composite particles, which produced after combustion synthesis, were used as reinforcement. These powders, which are thermodynamically stable with molten aluminum below 900°C, were mixed with aluminum and magnesium powders before casting using ball milling and the mixed powders were injected into the molten metal (pure Al. This process was applied to enhance the wettability of ceramic particles with molten aluminum. After casting, warm equal channel angular pressing (ECAP and hot extrusion processes were applied to investigate their effects on the mechanical properties of the final composites. It was revealed that both warm ECAP and hot extrusion have a strong influence on increasing the mechanical properties mainly due to decreasing the amount of porosities.

  8. Mechanical, physical and tribological characterization of nano-cellulose fibers reinforced bio-epoxy composites: An attempt to fabricate and scale the 'Green' composite.

    Science.gov (United States)

    Barari, Bamdad; Omrani, Emad; Dorri Moghadam, Afsaneh; Menezes, Pradeep L; Pillai, Krishna M; Rohatgi, Pradeep K

    2016-08-20

    The development of bio-based composites is essential in order to protect the environment while enhancing energy efficiencies. In the present investigation, the plant-derived cellulose nano-fibers (CNFs)/bio-based epoxy composites were manufactured using the Liquid Composite Molding (LCM) process. More specifically, the CNFs with and without chemical modification were utilized in the composites. The curing kinetics of the prepared composites was studied using both the isothermal and dynamic Differential Scanning Calorimetry (DSC) methods. The microstructure as well as the mechanical and tribological properties were investigated on the cured composites in order to understand the structure-property correlations of the composites. The results indicated that the manufactured composites showed improved mechanical and tribological properties when compared to the pure epoxy samples. Furthermore, the chemically modified CNFs reinforced composites outperformed the untreated composites. The surface modification of the fibers improved the curing of the resin by reducing the activation energy, and led to an improvement in the mechanical properties. The CNFs/bio-based epoxy composites form uniform tribo-layer during sliding which minimizes the direct contact between surfaces, thus reducing both the friction and wear of the composites.

  9. Tensile Properties of Co-Woven-Knitted Fabric Reinforced Composites%机织针织复合结构增强复合材料的拉伸性能

    Institute of Scientific and Technical Information of China (English)

    徐艳华; 袁新林; 胡红

    2011-01-01

    经纬纱和针织纱分别使用玻璃纤维和高强涤纶编织新型机织针织复合织物作为增强体,采用真空辅助树脂传递模塑(VARTM)工艺制作聚乙烯树脂复合材料.对该新型复合材料的横向、纵向和斜向拉伸性能进行测试,并对拉伸应力-应变特征曲线及其拉伸断裂形态进行分析.研究表明:该类复合材料具有较好的拉伸性能,横向和纵向的拉伸性能均优于斜向,其拉伸断裂都为脆性断裂.研究结果为该新型织物增强复合材料的应用提供了必要的基础.%A novel co-woven-knitted fabric was produced using glass filaments as warp and weft inserted yarns and high tenacity polyester as stitch yarn and used for reinforcing the co-woven-knitted composites by Vacuum Assisted Resin Transfer Molding(VARTM) process.Tensile tests were carried out in the course, wale and bias directions.The mechanical properties of the composites were investigated by analyzing the stress-strain curves and the damage modes.The results revealed that the tensile strength and the elastic modulus in the course and wale directions were all better than in the bias direction, and the damage modes were the brittle fracture.These provided a basis for the application of the co-woven-knitted reinforced composites.

  10. Possibility of Using Wood Pulp in the Preparation of Cement Composites

    Science.gov (United States)

    Kidalova, Lucia; Stevulova, Nadezda; Geffert, Anton

    2014-06-01

    Sustainable building materials are based on the use of renewable materials instead of non-renewable. Large group of renewable materials composes of plant fibres having high tensile strength are used as fillers into building material with reinforcement function of composite. This study aimed to establish the mechanical and physical properties of cement composites with organic fillers, such as wood pulp. Wood pulp cellulose is very interesting material as reinforcement in cement which contributes to a reduction of pollutants. Varying the producing technology (wood pulp and cement ratio in mixture) it is possible to obtain composites with density from 940 to 1260 kgm-3 and with compressive strength from 1.02 to 5.44 MPa after 28 days of hardening. Based on the experimental results, cement composites with using unbleached wood pulp reach higher values than composites based on bleached wood pulp. Volume ratio of unbleached wood pulp in composites influences water absorbability of cement composites

  11. Possibility of Using Wood Pulp in the Preparation of Cement Composites

    Directory of Open Access Journals (Sweden)

    Kidalova Lucia

    2014-06-01

    Full Text Available Sustainable building materials are based on the use of renewable materials instead of non-renewable. Large group of renewable materials composes of plant fibres having high tensile strength are used as fillers into building material with reinforcement function of composite. This study aimed to establish the mechanical and physical properties of cement composites with organic fillers, such as wood pulp. Wood pulp cellulose is very interesting material as reinforcement in cement which contributes to a reduction of pollutants. Varying the producing technology (wood pulp and cement ratio in mixture it is possible to obtain composites with density from 940 to 1260 kgm-3 and with compressive strength from 1.02 to 5.44 MPa after 28 days of hardening. Based on the experimental results, cement composites with using unbleached wood pulp reach higher values than composites based on bleached wood pulp. Volume ratio of unbleached wood pulp in composites influences water absorbability of cement composites

  12. 苯并三唑对水泥砂浆中钢筋的阻锈作用%Effect of Benzotriazole as Corrosion Inhibitor for Reinforcing Steel in Cement Mortar

    Institute of Scientific and Technical Information of China (English)

    施锦杰; 孙伟

    2011-01-01

    应用腐蚀电位(Ecorr)、极化电阻(Rp)和砂浆保护层电阻率(ρc)研究了苯并三唑(BTA)对钢筋电极腐蚀电化学行为的影响.通过电化学阻抗谱(EIS)、循环极化(CP)和循环伏安(CV)结果对比了BTA与NaNO2(SN)对钢筋电极在未处理、预锈蚀和内掺氯盐3种状态下3.5%(w)氯盐浸泡360 d后的阻锈效率.利用环境扫描电镜(ESEM)与能谱分析(EDS)解释了BTA对水泥基材料中钢筋的阻锈机理.结果表明:3种状态下BTA均能明显降低砂浆中钢筋的均匀腐蚀速率,且其阻锈效率高于SN.在未处理与预锈状态下,BTA抑制点蚀的能力稍弱于SN;但在内掺氯盐的状态下,BTA表现出了较大的点蚀阻力.BTA除了能在钢筋表面形成复杂的保护膜,从而有效抑制氯盐的破钝化作用.ESEM/EDS结果表明BTA还能与砂浆基体形成较多富钙C-S-H凝胶,可能优化了钢筋,砂浆界面区的孔结构,形成更致密的微观结构,显著延缓了氯盐向钢筋表面的传输进程,较好地保护了钢筋.适量的BTA对砂浆360 d的基本力学性能无明显影响.%The effects of benzotriazole (BTA) on the corrosion behavior of reinforcing steel in mortar specimens were studied by corrosion potential (Ecorr), polarization resistance (Rp), and resistivity of mortar cover (ρc).Additionally, the corrosion inhibiting efficiencies of BTA and NaNO2 (SN) were compared after exposure to 3.5% (w) NaCl solution for 360 d.Three samples with different surface conditions (as-received reinforcing steel, pre-rusted reinforcing steel, and chloride-admixed in mortar) were studied using electrochemical impendence spectroscopy (EIS), cyclic polarization (CP) and cyclic voltammetry (CV).Environmental scanning electron microscopy (ESEM) and energy dispersive spectroscopy (EDS) were employed to obtain the mechanism of the inhibiting efficiency of BTA in cementitious materials.The results show that under all three conditions, BTA strongly reduces the uniform corrosion

  13. Formulation of an injectable phosphocalcium cement

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, S. [CIRIMAT Equipe de Physico-Chimie des Phosphates ENSCT INP, Toulouse (France); TEKNIMED, Vic en Bigorre (France); Brouchet, A.; Delisle, B. [CHU Rangueil, Toulouse (France). Service d' Anatomie Pathologie; Freche, M.; Lacout, J.L. [CIRIMAT Equipe de Physico-Chimie des Phosphates ENSCT INP, Toulouse (France); Rodriguez, F. [Lab. de Galenique, Chmin des Maraichers, Toulouse (France)

    2001-07-01

    In orthopedic surgery, the loss or the reinforcement of osseous substance often requires filling of the defective part. In order to make the surgical operations easier we sought to make an injectable form. This study examined the effect of silicone and polyglycol on the injectability, setting time and mechanical properties of the cement. The basic solid phase was composed of a mixture of tetracalcium phosphate (Ca{sub 4}(PO{sub 4}){sub 2}O), {alpha}-tricalcium phosphate (Ca{sub 3}(PO{sub 4}){sub 2}) and sodium glycerophosphate. The basic liquid phase was made up of lime, orthophosphoric acid and water. Silicone was previously dissolved in cyclohexane and introduced in the solid phase. Polyglycol is a water-soluble compound so it is introduced in the liquid phase. For the mechanical properties, the strong increase in the percentage of additives decreased the compressive strength. Silicone and polyglycol made it possible to improve viscosity without modifying the basic setting time. The rate of evolution was different with the two different additives. From the data it was possible to optimize the formulation of cements to give predicted properties. Testing the in vivo implantation of the cement has already started. Preliminary results show the perfect osteointegration of the new cements without reactions to the foreign body in spite of the presence of silicone. (orig.)

  14. 碳纤维水泥基复合材料力电性能及尺寸效应研究进展%RESEARCH ADVANCES ON FORCE-ELECTRICITY PROPERTIES AND SIZE EFFECT OF CARBON FIBER REINFORCED CEMENT BASED COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    刘汉; 童谷生

    2011-01-01

    碳纤维水泥基复合材料(CFRC)是一种新型功能材料,既可作为结构材料又可作为智能材料,与普通混凝土相比,它不仅具有纤维增强所带来的较高的抗拉、抗压、抗折强度与韧性,还具有相对较小的电阻率与力电机敏性等优越性能.本文介绍了碳纤维水泥基复合材料的制备方法、力电性能、应用及其尺寸效应的最新研究进展,展望了其在功能材料方面的研究应用前景.%Carbon fiber reinforced cement based composite is a new kind of functional materials,which can be used as structural material as well as smart material. Compared with normal concrete, it has high tensile, compres sive resistance and flexural strength and toughness, which also has a relatively low resistivity, superior performance of smart and so on. This article introduces the preparation methods, mechanical and electrical performance, application and the latest research advances on its size effect, prospects the development of its research and application on the functional materials.

  15. Radiopacity of portland cement associated with different radiopacifying agents.

    Science.gov (United States)

    Húngaro Duarte, Marco Antonio; de Oliveira El Kadre, Guâniara D'arc; Vivan, Rodrigo Ricci; Guerreiro Tanomaru, Juliane Maria; Tanomaru Filho, Mário; de Moraes, Ivaldo Gomes

    2009-05-01

    This study evaluated the radiopacity of Portland cement associated with the following radiopacifying agents: bismuth oxide, zinc oxide, lead oxide, bismuth subnitrate, bismuth carbonate, barium sulfate, iodoform, calcium tungstate, and zirconium oxide. A ratio of 20% radiopacifier and 80% white Portland cement by weight was used for analysis. Pure Portland cement and dentin served as controls. Cement/radiopacifier and dentin disc-shaped specimens were fabricated, and radiopacity testing was performed according to the ISO 6876/2001 standard for dental root sealing materials. Using Insight occlusal films, the specimens were radiographed near to a graduated aluminum stepwedge varying from 2 to 16 mm in thickness. The radiographs were digitized and radiopacity compared with the aluminum stepwedge using Digora software (Orion Corporation Soredex, Helsinki, Finland). The radiographic density data were converted into mmAl and analyzed statistically by analysis of variance and Tukey-Kramer test (alpha = 0.05). The radiopacity of pure Portland cement was significantly lower (p oxide and Portland cement/lead oxide presented the highest radiopacity values and differed significantly from the other materials (p oxide presented the lowest radiopacity values of all mixtures (p < 0.05). All tested substances presented higher radiopacity than that of dentin and may potentially be added to the Portland cement as radiopacifying agents. However, the possible interference of the radiopacifiers with the setting chemistry, biocompatibility, and physical properties of the Portland cement should be further investigated before any clinical recommendation can be done.

  16. Effect of carbon fiber on calcium phosphate bone cement

    Institute of Scientific and Technical Information of China (English)

    戴红莲; 王欣宇; 黄健; 闫玉华; 李世普

    2004-01-01

    The calcium phosphate cement (α-TCP/TTCP) was reinforced with oxidation-treated carbon fibers. The effect of aspect ratio and content of carbon fiber on the compression strength and bending strength of the hardened body was discussed. The results show that the reinforcing effect is optimal as the aspect ratio is 375 and the additive amount is 0.3% (mass fraction). Under this condition, the compressive strength is increased by 55% (maximum 63.46 MPa), and the bending strength is nearly increased by 100% (maximum 11.95 MPa), respectively. However, if the additive quantity and aspect ratio are too high, the effect of the carbon fibers is limited because it can not be dispersed uniformly in the hardened body. The biological evaluation indicates that the calcium phosphate cement reinforced by carbon fibers has good biocompatibility.

  17. ULTRA-LIGHTWEIGHT CEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2002-01-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems: foamed and sodium silicate slurries. Comparison studies of the three cement systems examined several properties: tensile strength, Young's modulus, water permeability, and shear bond. Testing was also done to determine the effect that temperature cycling has on the shear bond properties of the cement systems. In addition, analysis was carried out to examine alkali silica reactivity of slurries containing ULHS. Data is also presented from a study investigating the effects of mixing and pump circulation on breakage of ULHS. Information is also presented about the field application of ULHS in cementing a 7-in. intermediate casing in south Texas.

  18. Engineering fabrics in transportation construction

    Science.gov (United States)

    Herman, S. C.

    1983-11-01

    The following areas are discussed: treatments for reduction of reflective cracking of asphalt overlays on jointed-concrete pavements in Georgia; laboratory testing of fabric interlayers for asphalt concrete paving: interim report; reflection cracking models: review and laboratory evaluation of engineering fabrics; optimum-depth method for design of fabric-reinforced unsurfaced roads; dynamic test to predict field behavior of filter fabrics used in pavement subdrains; mechanism of geotextile performance in soil-fabric systems for drainage and erosion control; permeability tests of selected filter fabrics for use with a loess-derived alluvium; geotextile filter criteria; use of fabrics for improving the placement of till on peat foundation; geotextile earth-reinforced retaining wall tests: Glenwood Canyon, Colorado; New York State Department of Transportation's experience and guidelines for use of geotextiles; evaluation of two geotextile installations in excess of a decade old; and, long-term in situ properties of geotextiles.

  19. Review of technologies for mercury removal from flue gas from cement production processes

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Anker Degn; Windelin, Christian

    2012-01-01

    Mercury is a pollutant of concern and mercury emissions from cement plants are under environmental regulation. After coal-fired power plants, mercury emissions from cement and mineral production are the second largest anthropogenic sources. Compared to fuels, cement raw materials are the major....... The sorbent injection system should be installed downstream of the main kiln filter and upstream of a new added polishing fabric filter to avoid the cement kiln dust recycling and disposal issues. To reduce the sorbent cost and possible disposal expense, non-carbon based sorbents that could be added to cement...... or regenerated in-situ are desired and should be developed.Various mathematical models have been developed to simulate mercury removal in fixed-bed reactors and by sorbent injection upstream of a fabric filter. The fabric filter adsorption models use the adsorption isotherms coupled with diffusion in the sorbent...

  20. Cement stabilized red earth as building block and structural pavement layer

    Directory of Open Access Journals (Sweden)

    G.V. RAMA SUBBARAO

    2014-12-01

    Full Text Available Red Earth is most commonly used as material in the building and road construction. Many a times, the red earth found in various quarries is found not suitable for construction. Cement of 4 and 8% of dry mass of red earth was added to improve its suitability as building block and structural pavement material. To know the influence of waste plastic fiber on cement stabilized red earth, 1% fiber was also added to the mixture. It is shown that the compressive strength of cement stabilized red earth blocks was improved with seven days of curing. The addition of cement to red earth enhanced soaked CBR value. The soaked CBR value of fiber reinforced cement stabilized red earth was about 1.3 to 1.5 times that of unreinforced cement stabilized red earth.

  1. Effects of laser ablation on cemented tungsten carbide surface quality

    Energy Technology Data Exchange (ETDEWEB)

    Tan, J.L.; Butler, D.L.; Sim, L.M.; Jarfors, A.E.W. [Singapore Institute of Manufacturing Technology, Singapore (Singapore)

    2010-11-15

    Although laser micromachining has been touted as being the most promising way to fabricate micro tools, there has been no proper evaluation of the effects of laser ablation on bulk material properties. The current work demonstrates the effects of laser ablation on the properties of a cemented tungsten carbide surface. Of particular interest is the resultant increase in compressive residual stresses in the ablated surface. From this study it is seen that there are no adverse effects from laser ablation of cemented tungsten carbide that would preclude its use for the fabrication of micro-tools but a finishing process may not be avoidable. (orig.)

  2. Effects of laser ablation on cemented tungsten carbide surface quality

    Science.gov (United States)

    Tan, J. L.; Butler, D. L.; Sim, L. M.; Jarfors, A. E. W.

    2010-11-01

    Although laser micromachining has been touted as being the most promising way to fabricate micro tools, there has been no proper evaluation of the effects of laser ablation on bulk material properties. The current work demonstrates the effects of laser ablation on the properties of a cemented tungsten carbide surface. Of particular interest is the resultant increase in compressive residual stresses in the ablated surface. From this study it is seen that there are no adverse effects from laser ablation of cemented tungsten carbide that would preclude its use for the fabrication of micro-tools but a finishing process may not be avoidable.

  3. 运用FLAC3D对水泥土桩加固液化砂土地基的分析%ANALYSIS ON LIQUESCENT SAND FOUNDATION SOIL REINFORCED BY CEMENT PILE WITH FLAC3D

    Institute of Scientific and Technical Information of China (English)

    牛琪瑛; 刘峰; 郭英; 刘少文

    2013-01-01

    该文运用三维有限差分软件FLAC3D(Fast Lagrangian Analysis of Continua)对水泥土桩加固的液化砂土地基建立模型并进行地震响应分析,从计算机数值模拟的角度对水泥土桩加固模型地基竖向位移、超静孔隙水压力、孔压比、剪应变增量、接触面剪力及表面加速度作了较系统地分析,总结了这些参数的变化规律,得到了一些有价值的结论,对实际工程有一定的指导意义.%The three-dimensional finite difference program FLAC3D (Fast Lagrangian Analysis of Continua) is used to establish the model of the improved foundation soil by cement piles and to analyze seismic response.From the point of the numerical analysis,it adopts a visualized way to make a systematic analysis about the vertical displacement,the excess pore water pressure,the pore pressure ratio,the shear strain increment,the shear stress on interface elements and the surface acceleration.It helps us to obtain some valuable conclusions by summarizing the changing patterns of above parameters.It has definite instruct meaning for practical projects in the future.

  4. Review of Japanese recommendations on design and construction of different classes of fiber reinforced concrete and application examples

    DEFF Research Database (Denmark)

    Uchida, Yuichi; Fischer, Gregor; Hishiki, Yoshihiro

    2008-01-01

    Reinforced Cement Composites (HPFRCC) with strain hardening and multiple cracking behavior, and Ultra High-strength Fiber Reinforced concrete (UFC) with increased tensile strength. The recommendations on the design, production, and application of these classes of fiber reinforced concrete have been...

  5. Study on Utilization of Carboxyl Group Decorated Carbon Nanotubes and Carbonation Reaction for Improving Strengths and Microstructures of Cement Paste

    Directory of Open Access Journals (Sweden)

    Xiantong Yan

    2016-08-01

    Full Text Available Carbon nanotubes (CNTs have excellent mechanical properties and can be used to reinforce cement-based materials. On the other hand, the reaction product of carbonation with hydroxides in hydrated cement paste can reduce the porosity of cement-based materials. In this study, a novel method to improve the strength of cement paste was developed through a synergy of carbon nanotubes decorated with carboxyl group and carbonation reactions. The experimental results showed that the carboxyl group (–COOH of decorated carbon nanotubes and the surfactant can control the morphology of the calcium carbonate crystal of carbonation products in hydrated cement paste. The spindle-like calcium carbonate crystals showed great morphological differences from those observed in the conventional carbonation of cement paste. The spindle-like calcium carbonate crystals can serve as fiber-like reinforcements to reinforce the cement paste. By the synergy of the carbon nanotubes and carbonation reactions, the compressive and flexural strengths of cement paste were significantly improved and increased by 14% and 55%, respectively, when compared to those of plain cement paste.

  6. Use of fiber-reinforced composites to improve the durability of bridge elements

    Science.gov (United States)

    Garon, Ronald; Balaguru, P. N.; Cao, Yong; Lee, K. Wayne

    2000-04-01

    Fiber composites made of carbon fibers and organic polymers are being used to strengthen plain, reinforced, and prestressed concrete structures. The composites are becoming more popular as compared to traditional strengthening with steel plates and jackets because they do not corrode and also have a very high strength to weight ratio. Organic polymers have been used as protective coatings for more than thirty years. The impermeable membrane of the polymer seals the concrete surface of the structures preventing the ingress of salts. Their main drawback is their inability to release vapor pressure buildup that causes damage in the concrete and delamination of the bonded fiber reinforced plastic. As a result of this and other weaknesses in the organic polymers, a new generation of breathable coating materials is being developed. These compositions range from epoxy modified portland cement coatings to completely inorganic silicate systems. The durability of five of the most promising compositions was evaluated under freeze-thaw, wet-dry, and scaling conditions. The silicate matrix was also used to bond carbon tows and fabrics to unreinforced concrete members. These beams were tested after exposure to wet-dry and scaling conditions. The results indicate that the inorganic matrix can be effectively used for repairs. The carbon tows can be used to replace the existing corroded reinforcing bars. The possibility of embedding optical fibers with the carbon fibers to monitor the field performance is being studied.

  7. Interactions between chloride and cement-paste materials.

    Science.gov (United States)

    Barberon, Fabien; Baroghel-Bouny, Véronique; Zanni, Hélène; Bresson, Bruno; d'Espinose de la Caillerie, Jean-Baptiste; Malosse, Lucie; Gan, Zehong

    2005-02-01

    The durability of cement-based materials with respect to exterior aggressions is one of the current priorities in civil engineering. Depending on their use, the cement-based materials can be exposed to different types of aggressive environments. For instance, damages to concrete structures in contact with a saline environment (sea water on bridges, deicing salts on roads, etc.) are of utmost importance. Upon exposure to saline water, Cl- ions penetrate into the structures and subsequently lead to reinforcement corrosion. Chloride attack is often combined with other aggressive influences such as temperature (e.g., freezing) or the ingress of other ions (e.g., sulfates in sea water). We therefore aim to explore the effect of sodium chloride (NaCl) on the structural chemistry of cement paste. Existing studies about reinforcement corrosion by chloride have focused on the penetration of Cl- ions and the comparison between "free" ions (water-soluble ions) and bound ones. However, little is known about the fixation mechanisms, the localization of Cl in the cement matrix and the structural interaction between Cl and the silicate and aluminate hydrate phases present in cement paste. We present here results of a multinuclear nuclear magnetic resonance study on the fixation of chloride in the hydration products and the characterization of new phases potentially appearing due to chloride ingress.

  8. Corrosion of steel bars in cracked concrete made with ordinary portland, slag and fly ash cements

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, T.U.; Yamaji, T.; Hamada, H. [Port and Harbor Research Inst., Ministry of Land, Infrastructure and Transport (Japan); Aoyama, T. [PS Corp. (Japan)

    2001-07-01

    A study was conducted in which the marine durability of ordinary portland cement, slag and fly ash cement was examined using 15 year old plain and reinforced concrete cylindrical specimens. The performance of these cements was then examined for pre-cracked reinforced concrete prism samples. The process of manufacturing cement emits huge amounts of carbon dioxide into the global atmosphere. Replacing a portion of the cement with by-products from the steel industry and thermal power plants (which are both huge emitters of carbon dioxide) can lower carbon dioxide emissions and also solve the disposal issue of slag and fly ash while increasing the long-term durability of concrete structures. In this study, concrete cylindrical specimens were made of ordinary portland cement, slag and fly ash cements. The specimens were 100 x 100 x 600 mm prisms of different types of cement. Water-to-cement ratios were 0.45 and 0.55. Both tap water and seawater were used as mixing water. The samples were exposed in tidal pools for 15 years to evaluate the compressive strength of the concrete, corrosion of the steel bars, and chloride-ion concentrations in the concrete. It was shown that, with the exception of fly ash cements, the compressive strength of most cements increased after 15 years of exposure compared to its 28 day strength. Type C slag cement demonstrated the best performance against chloride-ion at the surface of concrete made with slag and fly ash. Voids in the steel-concrete interface make it possible for corrosion pits to develop. The use of seawater as mixing water results in earlier strength development at 28 days and does not cause to the strength of the concrete to regress after 15-years of exposure, but it causes more corrosion of steel bars at a lower cover depth. Corrosion of steel bars is not an issue at deeper cover depths. 15 refs., 19 tabs., 13 figs.

  9. Characteristics of Resistivity-temperature for Carbon Fiber Reinforced Concrete

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The resistance response to temperature change of carbon fiber reinforced cement-based composites (CFRC) is reported, which shows some outstanding phenomena of positive temperature coefficient (PTC) of resistance and negative temperature coefficient (NTC) of resistance during the temperature rising.The influences of carbon fiber, cement-based matrix and thermal cycles on the characteristics of temperature-resistivity for the system were also discussed.Because of the special characteristics for temperature resistivity, carbon fiber cement based composites can be useful in structure with the function of alarm for fire.

  10. Large-scale direct shear testing of geocell reinforced soil

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The tests on the shear property of geocell reinforced soils were carried out by using large-scale direct shear equipment with shear-box-dimensions of 500 mm×500 mm×400 mm (length×width×height).Three types of specimens,silty gravel soil,geoceli reinforced silty gravel soil and geoceli reinforood cement stabilizing silty gravel soil were used to investigate the shear stress-displacement behavior,the shear strength and the strengthening mechanism of geocell reinforced soils.The comparisons of large-scale shear test with triaxial compression test for the same type of soil were conducted to evaluate the influences of testing method on the shear strength as well.The test results show that the unreinforced soil and geocell reinforced soil give similar nonlinear features on the behavior of shear stress and displacement.The geocell reinforced cement stabilizing soil has a quasi-elastic characteristic in the case of normal stress coming up to 1.0 GPa.The tests with the reinforcement of geocell result in an increase of 244% in cohesion,and the tests with the geocell and the cement stabilization result in an increase of 10 times in cohesion compared with the unreinforced soil.The friction angle does not change markedly.The geocell reinforcement develops a large amount of cohesion on the shear strength of soils.

  11. Cement and concrete

    Science.gov (United States)

    Corley, Gene; Haskin, Larry A.

    1992-01-01

    To produce lunar cement, high-temperature processing will be required. It may be possible to make calcium-rich silicate and aluminate for cement by solar heating of lunar pyroxene and feldspar, or chemical treatment may be required to enrich the calcium and aluminum in lunar soil. The effects of magnesium and ferrous iron present in the starting materials and products would need to be evaluated. So would the problems of grinding to produce cement, mixing, forming in vacuo and low gravity, and minimizing water loss.

  12. PHYSICO-CHEMICAL MODIFICATION OF MONOLITHIC CONCRETE CEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    D. V. Rudenko

    2015-10-01

    Full Text Available Purpose. The paper is aimed to the development of scientific bases of the technology of modified concrete of new generation for special facilities by managing the processes of structure formation of modified cement system in conditions of hardening. Methodology. For the achievement the goal: 1 the research of rheological characteristics of modified concrete mixes for special facilities purpose and processes of structure formation of modified cement system of natural curing concrete was conducted; 2 there were defined methods of reliable evaluation of concrete strength at the removal time of formwork and transmission of loads to the constructions where the concrete has not reached the designed strength. Findings. The author found that the structure formation process develops in the hydrating modified cement system as a result of interaction of various macroions. In this process its active parts prevail, which considerably exceed its dissipative part compared to normal conditions of hardening. Originality. There were established the regularities of structure formation of modified cement system, reinforced with synthesized, well crystallized helical filamentary crystals, mechanical grip of which is considered as a principal source of strength in combination with an additional coupling achieved due to cross-germination of crystals. Practical value. In the study the increased binding capacity of cement in high strength concretes and the use of modified cement systems in the special conditions of concreting were considered. The organo-mineral modifying complex that provides the dispersed reinforcement of concrete cement matrix which allows modifying the process of cement matrix structure formation by changing the nature of the surface of binder and modifier was developed. The temperature factor has no negative influence on the hardening concrete and complex modifier provides the improved physico-mechanical characteristics of cement matrix and concrete

  13. POZZOLAN AND CEMENTS WITH POZZOLAN

    OpenAIRE

    Hasan KAPLAN; Hanifi BİNİCİ

    1995-01-01

    Cement, one of the basic material of construction engineering, has an important place in view of strength and cost of structures. Cement consumption is increasing parallel to development of building construction sector. For cement producers, minimal cost is desired by using new and economical material sources. On the other hand, the controllers and contractors need cheaper, safer and higher strength materials. From this respect cement industry tends to use cement with pozzolan. In Türkiye, ce...

  14. Reinforcement Strategies for Load-Bearing Calcium Phosphate Biocements

    Directory of Open Access Journals (Sweden)

    Martha Geffers

    2015-05-01

    Full Text Available Calcium phosphate biocements based on calcium phosphate chemistry are well-established biomaterials for the repair of non-load bearing bone defects due to the brittle nature and low flexural strength of such cements. This article features reinforcement strategies of biocements based on various intrinsic or extrinsic material modifications to improve their strength and toughness. Altering particle size distribution in conjunction with using liquefiers reduces the amount of cement liquid necessary for cement paste preparation. This in turn decreases cement porosity and increases the mechanical performance, but does not change the brittle nature of the cements. The use of fibers may lead to a reinforcement of the matrix with a toughness increase of up to two orders of magnitude, but restricts at the same time cement injection for minimal invasive application techniques. A novel promising approach is the concept of dual-setting cements, in which a second hydrogel phase is simultaneously formed during setting, leading to more ductile cement–hydrogel composites with largely unaffected application properties.

  15. Fluoride ion release and solubility of fluoride enriched interim cements.

    Science.gov (United States)

    Lewinstein, Israel; Block, Jonathan; Melamed, Guy; Dolev, Eran; Matalon, Shlomo; Ormianer, Zeev

    2014-08-01

    Interim and definitive restorations cemented with interim cements for a prolonged interval are susceptible to bacterial infiltration and caries formation. The purpose of this in vitro study was to evaluate the long-term fluoride release and solubility of aged ZnO-based interim cements enriched separately with 0.4% NaF and SnF2. Four different brands of cements (Tempbond, Tempbond NE, Procem, and Freegenol) were tested for fluoride release and solubility. For every test, 6 disk specimens of each cement with NaF and SnF2, and 6 with no fluoride enrichment (control) were fabricated, for a total of 72 specimens. The disks were incubated in deionized water. Fluoride ion release was recorded at 1, 7, 14, 21, 63, 91, and 182 days. Solubility was calculated as weight percent after 90 days of incubation. The data were analyzed by analysis of variance with repeated measures and the Tukey honestly significant difference post hoc test (Pfluorides released fluoride ions for at least 182 days. Cements mixed with NaF released more fluoride ions than those mixed with SnF2 (P.97), indicating a diffusion-controlled fluoride release. Cement and fluoride types were the main affecting factors in fluoride ion release. The addition of fluorides slightly increased the solubility of the cements. Given their long-term sustained and diffusive controlled release, these fluorides, particularly NaF when mixed with ZnO-based interim cements, may be useful for caries prevention under provisionally cemented restorations. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  16. Quantitative sensing of corroded steel rebar embedded in cement mortar specimens using ultrasonic testing

    Science.gov (United States)

    Owusu Twumasi, Jones; Le, Viet; Tang, Qixiang; Yu, Tzuyang

    2016-04-01

    Corrosion of steel reinforcing bars (rebars) is the primary cause for the deterioration of reinforced concrete structures. Traditional corrosion monitoring methods such as half-cell potential and linear polarization resistance can only detect the presence of corrosion but cannot quantify it. This study presents an experimental investigation of quantifying degree of corrosion of steel rebar inside cement mortar specimens using ultrasonic testing (UT). A UT device with two 54 kHz transducers was used to measure ultrasonic pulse velocity (UPV) of cement mortar, uncorroded and corroded reinforced cement mortar specimens, utilizing the direct transmission method. The results obtained from the study show that UPV decreases linearly with increase in degree of corrosion and corrosion-induced cracks (surface cracks). With respect to quantifying the degree of corrosion, a model was developed by simultaneously fitting UPV and surface crack width measurements to a two-parameter linear model. The proposed model can be used for predicting the degree of corrosion of steel rebar embedded in cement mortar under similar conditions used in this study up to 3.03%. Furthermore, the modeling approach can be applied to corroded reinforced concrete specimens with additional modification. The findings from this study show that UT has the potential of quantifying the degree of corrosion inside reinforced cement mortar specimens.

  17. Synergistic effect of graphene-oxide-doping and microwave-curing on mechanical strength of cement

    Science.gov (United States)

    Qin, Hao; Wei, Wei; Hang Hu, Yun

    2017-04-01

    In this communication, efficient reinforcement of cement matrix was obtained by graphene-oxide (GO) doping and curing treatments. The compressive strength of plain cement is 14.3±0.2 MPa. When the cement contained 0.5 wt% GO, its strength reached 19.4±0.9 MPa. The strength can be further enhanced by curing, which follows the sequence: Microwave-cured GO-cement > Microwave and water-cured GO-cement > Water-cured GO-cement > GO-cement without curing. The highest compressive strength (32.4±0.7 MPa), which was achieved by combining GO-doping and microwave curing, is 126.6±8.1% higher than that without GO-doping and microwave curing. This demonstrates a synergistic effect of GO doping and microwave-curing on the strength of cement composite materials. Furthermore, X-ray diffraction (XRD), Fourier transform Infrared Spectroscopy (FTIR), and field emission scanning electron microscope (FESEM) characterizations revealed that the combination of GO doping and microwave-curing remarkably accelerated cement hydration, leading to the regular and compact structure and thus a high compressive strength. This work provides a new way to improve the mechanical properties of cement composites.

  18. Measuring dynamic fracture toughness of cement rock using a short rod specimen

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    As Daqing Oilfield is developing oil layer with a big potential,the requirement for the quality of well cementation is higher than ever before.Cement rock is a brittle material containing a great number of microcracks and defects.In order to reduce the damage to cement ring and improve sealed cementing property at the interface,it is necessary to conduct research on the modification of the cement rock available.According to the principle of super mixed composite materials,various fillers are added to the ingredients of cement rock.Dynamic fracture toughness of cement rock will be changed under the influence of filler.In this paper,short rod specimens of cement rock are employed in the experiments to investigate the dynamic fracture toughness of cement rocks with different ingredients using split Hopkinson Pressure Bar,and partial experimental results are given.The results indicate that fiber reinforcement is an effective way to improve the impact resistance of cement rock.

  19. Temperature influence on water transport in hardened cement pastes

    Energy Technology Data Exchange (ETDEWEB)

    Drouet, Emeline [CEA, DEN, DPC, SECR, Laboratoire d' Etude du Comportement des Bétons et des Argiles, F-91191 Gif sur Yvette Cedex (France); Poyet, Stéphane, E-mail: stephane.poyet@cea.fr [CEA, DEN, DPC, SECR, Laboratoire d' Etude du Comportement des Bétons et des Argiles, F-91191 Gif sur Yvette Cedex (France); Torrenti, Jean-Michel [Université Paris-Est, IFSTTAR, Département Matériaux & Structures, 14-52 boulevard Newton, F-77447 Marne la Vallée cedex 2 (France)

    2015-10-15

    Describing water transport in concrete is an important issue for the durability assessment of radioactive waste management reinforced concrete structures. Due to the waste thermal output such structures would be submitted to moderate temperatures (up to 80 °C). We have then studied the influence of temperature on water transport within hardened cement pastes of four different formulations. Using a simplified approach (describing only the permeation of liquid water) we characterized the properties needed to describe water transport (up to 80 °C) using dedicated experiments. For each hardened cement paste the results are presented and discussed.

  20. Room-Temperature and High-Temperature Tensile Mechanical Properties of TA15 Titanium Alloy and TiB Whisker-Reinforced TA15 Matrix Composites Fabricated by Vacuum Hot-Pressing Sintering

    Directory of Open Access Journals (Sweden)

    Yangju Feng

    2017-04-01

    Full Text Available In this paper, the microstructure, the room-temperature and high-temperature tensile mechanical properties of monolithic TA15 alloy and TiB whisker-reinforced TA15 titanium matrix composites (TiBw/TA15 fabricated by vacuum hot-pressing sintering were investigated. The microstructure results showed that there were no obvious differences in the microstructure between monolithic TA15 alloy and TiBw/TA15 composites, except whether or not the grain boundaries contained TiBw. After sintering, the matrix microstructure presented a typical Widmanstätten structure and the size of primary β grain was consistent with the size of spherical TA15 titanium metallic powders. This result demonstrated that TiBw was not the only factor limiting grain coarsening of the primary β grain. Moreover, the grain coarsening of α colonies was obvious, and high-angle grain boundaries (HAGBs were distributed within the primary β grain. In addition, TiBw played an important role in the microstructure evolution. In the composites, TiBw were randomly distributed in the matrix and surrounded by a large number of low-angle grain boundaries (LAGBs. Globularization of α phase occurred prior, near the TiBw region, because TiBw provided the nucleation site for the equiaxed α phase. The room-temperature and high-temperature tensile results showed that TiBw distributed at the primary β grain boundaries can strengthen the grain boundary, but reduce the connectivity of the matrix. Therefore, compared to the monolithic TA15 alloy fabricated by the same process, the tensile strength of the composites increased, and the tensile elongation decreased. Moreover, with the addition of TiBw, the fracture mechanism was changed to a mixture of brittle fracture and ductile failure (composites from ductile failure (monolithic TA15 alloy. The fracture surfaces of TiBw/TA15 composites were the grain boundaries of the primary β grain where the majority of TiB whiskers distributed, i.e., the

  1. Fabrication of A356 composite reinforced with micro and nano Al{sub 2}O{sub 3} particles by a developed compocasting method and study of its properties

    Energy Technology Data Exchange (ETDEWEB)

    Sajjadi, S.A., E-mail: sajjadi@um.ac.ir [Department of Materials Science and Metallurgical Engineering, Engineering Faculty, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Torabi Parizi, M. [Department of Materials Science and Engineering, Saveh Branch, Islamic Azad University, Saveh (Iran, Islamic Republic of); Ezatpour, H.R. [Department of Materials Science and Metallurgical Engineering, Engineering Faculty, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Sedghi, A. [Department of Materials Science and Metallurgical Engineering, Engineering Faculty, Imam Khomeini International University of Qazvin, Qazvin (Iran, Islamic Republic of)

    2012-01-15

    Highlights: > In the current research micro and nano-composites of A356/Al{sub 2}O{sub 3} were produced by compocasting method in various conditions. > The effects of different fabrication parameters on the microstructure and some physical and mechanical properties of the composites have been investigated. > The results revealed that application of the compocasting process leads to a transformation of a dendritic to a nondendritic structure of the matrix alloy. - Abstract: Aluminum/alumina composites are used in automotive and aerospace industries due to their low density and good mechanical strength. In this study, compocasting was used to fabricate aluminum-matrix composite reinforced with micro and nano-alumina particles. Different weight fractions of micro (3, 5 and 7.5 wt.%) and nano (1, 2, 3 and 4 wt.%) alumina particles were injected by argon gas into the semi-solid state A356 aluminum alloy and stirred by a mechanical stirrer with different speeds of 200, 300 and 450 rpm. The microstructure of the composite samples was investigated by Optical and Scanning Electron Microscopy. Also, density and hardness variation of micro and nano composites were measured. The microstructure study results revealed that application of compocasting process led to a transformation of a dendritic to a nondendritic structure of the matrix alloy. The SEM micrographs revealed that Al{sub 2}O{sub 3} nano particles were surrounded by silicon eutectic and inclined to move toward inter-dendritic regions. They were dispersed uniformly in the matrix when 1, 2 and 3 wt.% nano Al{sub 2}O{sub 3} or 3 and 5 wt.% micro Al{sub 2}O{sub 3} was added, while, further increase in Al{sub 2}O{sub 3} (4 wt.% nano Al{sub 2}O{sub 3} and 7.5 wt.% micro Al{sub 2}O{sub 3}) led to agglomeration. The density measurements showed that the amount of porosity in the composites increased with increasing weight fraction and speed of stirring and decreasing particle size. The hardness results indicated that the

  2. Fracture load of implant-supported zirconia all-ceramic crowns luted with various cements.

    Science.gov (United States)

    Lim, Hyun-Pil; Yoo, Jeong-Min; Park, Sang-Won; Yang, Hong-So

    2010-01-01

    This study compared the fracture load and failure types of implant-supported zirconia all-ceramic crowns cemented with various luting agents. The ceramic frameworks were fabricated from a presintered yttria-stabilized zirconium dioxide block using computer-aided design/computer-assisted manufacturing technology, and were then veneered with feldspathic porcelain. Three luting agents were used. Composite resin cement (1,560.78 +/- 39.43 N) showed the highest mean fracture load, followed by acrylic/urethane cement (1,116.20 +/- 77.32 N) and zinc oxide eugenol cement (741.21 +/- 41.95 N) (P < .05). The types of failure varied between groups.

  3. The influence of cement type and admixture on life span of reinforced concrete utility poles subjected to the high salinity environment of Northeastern Brazil, studied by corrosion potential testing A influência do tipo de cimento e adição na vida útil de postes de concreto armado submetidos ao ambiente de alta salinidade do Nordeste do Brasil, estudada pela técnica de potencial de corrosão

    Directory of Open Access Journals (Sweden)

    A. Joukoski

    2004-03-01

    Full Text Available Reinforced concrete structures installed in coastal zones have constantly been threatened by environmental damaging elements. The chloride ion is known as one of the most aggressive of these elements, causing, among other damages, corrosion of the steel reinforcement and then degradation of the concrete matrix. The goal of this work was to determine the influence of cement type on the resistance and durability of reinforced concrete samples with 25 mm cover thickness, when submitted to aging in a 3.4% sodium chloride aqueous solution and in a high salinity marine environment. Reinforced concrete light poles were cast following the same batching procedures, and after the curing period, they were exposed to atmosphere in a corrosion station near Aracaju, Sergipe State, Northeastern Brazil's coast. Two concrete mixtures were made using CPII-F 32 (filler-modified Portland cement: a mix with no admixture and a mix with addition of 8% silica fume swapping fine aggregates. Another mixture was batched with CPV-ARI RS (high-early-strength Portland cement, with sulfur resistance. All the three mixtures were designed with cement content of about 350 kg/m³. The performance of the structures was evaluated from the results of physicochemical, mechanical and electrochemical testing, after over a year of natural aging. Corrosion potentials of the reinforced concrete samples and of the cast utility poles were measured in terms of the aging time at the natural environment and under chloride ion accelerated aging at laboratory. The half-cell potential measurements showed that the best results were obtained from the mixture containing CPII-F 32 cement and silica fume, followed by the concrete made with CPV-ARI RS cement. The mixture batched with CPII-F 32 cement without admixture presented the worst durability performance.Estruturas de concreto armado instaladas em zonas costeiras têm sido constantemente ameaçadas por elementos ambientais nocivos. O íon cloreto

  4. Ionic modification of calcium phosphate cement viscosity. Part II: hypodermic injection and strength improvement of brushite cement.

    Science.gov (United States)

    Barralet, J E; Grover, L M; Gbureck, U

    2004-05-01

    Brushite-forming calcium phosphate cements are of great interest as bone replacement materials because they are resorbable in physiological conditions. However, their short setting times, low mechanical strengths and limited injectability limit broad clinical application. In this study, we showed that a significant improvement of these properties of brushite cement could be achieved by the use of sodium citrate or citric acid as setting retardants, such that workable cement pastes with a powder to liquid ratio of up to 5 could be manufactured. The cement used in this study consisted of an equimolar powder mixture of beta-tricalcium phosphate and monocalcium phosphate hydrate The use of 500 mM-1M retardant solutions as liquid phase enabled initial setting times of 8-12 min. Wet compressive strength were found to be in the range between 12-18 MPa after immersion of uncompacted cement samples in serum for 24 h. A further strength improvement to 32 MPa was obtained by compaction of the cement paste during samples preparation. This is significant because high-temperature processes cannot be used to fabricate hydrated calcium phosphate materials. Cement pastes were injectable through a hypodermic needle at a powder to liquid ratio of 3.3 g/ml when a 1M citric acid was used as liquid phase, thus enabling precise controlled delivery to small defects.

  5. The Use of Micro and Nano Particulate Fillers to Modify the Mechanical and Material Properties of Acrylic Bone Cement

    Science.gov (United States)

    Slane, Joshua A.

    Acrylic bone cement (polymethyl methacrylate) is widely used in total joint replacements to provide long-term fixation of implants. In essence, bone cement acts as a grout by filling in the voids left between the implant and the patient's bone, forming a mechanical interlock. While bone cement is considered the `gold standard' for implant fixation, issues such as mechanical failure of the cement mantle (aseptic loosening) and the development of prosthetic joint infection (PJI) still plague joint replacement procedures and often necessitate revision arthroplasty. In an effort to address these failures, various modifications are commonly made to bone cement such as mechanical reinforcement with particles/fibers and the addition of antibiotics to mitigate PJI. Despite these attempts, issues such as poor particle interfacial adhesion, inadequate drug release, and the development of multidrug resistant bacteria limit the effectiveness of bone cement modifications. Therefore, the overall goal of this work was to use micro and nanoparticles to enhance the properties of acrylic bone cement, with particular emphasis placed on improving the mechanical properties, cumulative antibiotic release, and antimicrobial properties. An acrylic bone cement (Palacos R) was modified with three types of particles in various loading ratios: mesoporous silica nanoparticles (for mechanical reinforcement), xylitol microparticles (for increased antibiotic release), and silver nanoparticles (as an antimicrobial agent). These particles were used as sole modifications, not in tandem with one another. The resulting cement composites were characterized using a variety of mechanical (macro to nano, fatigue, fracture, and dynamic), imaging, chemical, thermal, biological, and antimicrobial testing techniques. The primary outcomes of this dissertation demonstrate that: (1) mesoporous silica, as used in this work, is a poor reinforcement phase for acrylic bone cement, (2) xylitol can significantly

  6. New System of Shrinkage Measurement through Cement Mortars Drying

    Science.gov (United States)

    Morón, Carlos; Saiz, Pablo; Ferrández, Daniel; García-Fuentevilla, Luisa

    2017-01-01

    Cement mortar is used as a conglomerate in the majority of construction work. There are multiple variants of cement according to the type of aggregate used in its fabrication. One of the major problems that occurs while working with this type of material is the excessive loss of moisture during cement hydration (setting and hardening), known as shrinkage, which provokes a great number of construction pathologies that are difficult to repair. In this way, the design of a new sensor able to measure the moisture loss of mortars at different age levels is useful to establish long-term predictions concerning mortar mass volume loss. The purpose of this research is the design and fabrication of a new capacitive sensor able to measure the moisture of mortars and to relate it with the shrinkage. PMID:28272297

  7. Properties and interfacial microstructure of cement-based materials with composite micro-grains

    Institute of Scientific and Technical Information of China (English)

    FENG Qi; BA Heng-jing; LIU Jun-zhe

    2005-01-01

    Silica fume, fly ash and nano-fiber mineral materials (NR powder) are employed to incorporate into cement-based materials. According to the grain grading mathematical model of cement-based materials, two packing systems, namely, spherical grading system and nano-fiber reinforced system were designed. Properties and interfacial microstructure of the two systems were studied according to secondary interface theory. It was shown that nano-fiber mineral materials can improve the grain grading of the admixture, increase the density of the system, improve the microstructure of the interface and the hardened paste, and enhance the uniformity of cement-based materials mixed with composite micro-grains and greatly increase their wearable rigidity and flexure strength. In this paper, two kinds of interface models, including spherical grain model and nano-fiber reinforced interface model of the cement-based materials mixed with composite micro-grains, were brought forward.

  8. 三维碳纤维机织物增强PMR型聚酰亚胺复合材料的成型与性能研究%FABRICATION AND CHARACTERIZATION OF 3D WOVEN CARBON FIBER FABRIC REINFORCED PMR POLYIMIDE COMPOSITE

    Institute of Scientific and Technical Information of China (English)

    谢剑飞; 姚澜; 邱夷平

    2012-01-01

    3D woven fabric reinforced PMR type polyimide composites were prepared from 3D woven carbon fiber perform and PMR type polyimide matrix resin, which derived from 4,4' -methylenediamine (MDA) , diethyl ester of 3,3' ,4,4'-oxydiphthalic acid (ODPE), monoethyl ester of cis-5-norbornene-endo-2,3-dicarboxylic acid ( NE). The rheological property of the PMR polyimide matrix resins was investigated. From the results of analysis, a two-step impregnation/hot-compression method can be established for the composites processing. In the first step, the 3D fabric preforms were impregnated with polyimide resin in a vacuum oven and heated up to 2001 for degassing the volatiles and by-products. In the second step, composites were compressed. The initiative decomposition temperature (Td) and the decomposition temperature at 5% of weight loss ( T5) were higher than 590℃ and 760℃, respectively. The internal structure was observed by a microscope. The resulting composites also exhibited good mechanical properties.%使用PMR型聚酰亚胺预聚物溶液和三维碳纤维机织物预制件制作了三维机织物增强PMR型聚酰亚胺复合材料.通过对制备的PMR型聚酰亚胺预聚物的红外特征光谱(FT-IR)的分析和熔融流变性能的测试,设计优化了一种“两步浸渍热压法”制作三维机织物增强PMR型聚酰亚胺基复合材料,对复合材料的内部结构、热性能以及力学性能进行了表征与测试.

  9. Effect of surfactants on pressure-sensitivity of CNT filled cement mortar composites

    Science.gov (United States)

    Han, Baoguo; Yu, Xun

    2014-11-01

    Sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (NaDDBS) were used as surfactants to disperse multi-walled carbon nanotubes (MWNT) in cement mortar and fabricate pressure-sensitive carbon nanotubes filled cement mortar composites. The pressure-sensitivity of cement mortar composites with different concentrations of MWNT and different surfactants was explored under repeated loading and impulsive loading, respectively. Experimental results indicate that the response of the electrical resistance of composites with NaDDBS to external force is more stable and sensitive than that of composites with SDS. Therefore, NaDDBS has higher efficiency than SDS for the dispersion of MWNT in cement mortar, and it is an effective surfactant for fabricating MWNT filled cement mortar composites with superior pressure-sensitivity.

  10. Experimental investigation of braided fabric forming

    Science.gov (United States)

    Wang, Peng; Soulat, Damien; Legrand, Xavier; Zemni, Lilia; Jacquot, Pierre-Baptiste

    2016-10-01

    Woven and braided textile structures are largely used as the composite reinforcements. Forming of the continuous fibre reinforcements and thermoplastic resin commingled yarns can be performed at room temperature. The "cool" forming stage is well-controlled and more economical compared to thermoforming. Many studies have been addressed for carbon and glass fibres / thermoplastic commingled yarns reinforced composite forming for woven structure. On the contrary, few research works has deal with the natural fibre reinforced textile forming and none concerns the braided fabrics forming. In this present work, the Flax/Polyamide 12 commingled yarns are used to produce braided fabric and then to analyze their deformability behaviour.

  11. ULTRA-LIGHTWEIGHT CEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2001-10-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses tasks performed in the fourth quarter as well as the other three quarters of the past year. The subjects that were covered in previous reports and that are also discussed in this report include: Analysis of field laboratory data of active cement applications from three oil-well service companies; Preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; Summary of pertinent information from Russian ultra-lightweight cement literature review; and Comparison of compressive strengths of ULHS systems using ultrasonic and crush methods Results reported from the fourth quarter include laboratory testing of ULHS systems along with other lightweight cement systems--foamed and sodium silicate slurries. These comparison studies were completed for two different densities (10.0 and 11.5 lb/gal) and three different field application scenarios. Additional testing included the mechanical properties of ULHS systems and other lightweight systems. Studies were also performed to examine the effect that circulation by centrifugal pump during mixing has on breakage of ULHS.

  12. 玄武岩纤维改进亚麻纤维/不饱和聚酯复合材料的耐候性%Aging-resistant performance of flax/basalt fiber fabrics reinforced unsaturated polyester resin hybrid composites

    Institute of Scientific and Technical Information of China (English)

    杨越飞; 徐建锋; 赖佳佳; 郑峰; 宋剑斌; 杨文斌

    2015-01-01

    In recent years, there has been increasing interest in the use of natural fiber reinforced polymer in many fields due to low density, high specific strength and eco-friendly property. However, the application of composites is faced with difficulties in outdoor environment, such as water absorption, degradation, low mechanic strength and dimensional stability. In order to improve the aging-resistant property of flax fiber fabrics/basalt fiber fabrics reinforced UP (unsaturated polyester resin), the author used the artificial simulating climate box (ultraviolet and condensation) to accelerate ageing process of HCM (hybrid composite materials), which was composed of different sandwich layers and included H1, H2 and H3 representing basalt fiber content of total fibers of 20.3%, 41.5%and 63.7%, respectively. Mechanical properties, DMA (dynamic mechanical analysis) performance and microstructure of HCM were affected by basalt fiber content and aging time. The result showed that both flexural strength and impact strength first increased and then decreased with aging time. The retention of flexural strength was 62.5%, 58.1%and 57.0%for H1, H2 and H3, respectively. With regard to impact strength, the figures were 66.8%, 66.7%and 53.2%for H1, H2 and H3, respectively. The results of ANOVA (analysis of variance) and LSD (least-significant difference) illustrated that ultraviolet aging time had significant effects on flexural strength of H3 (P0.05). As ultraviolet aging time increased, rigidity and frangibility of HCM increased gradually. The poor interfacial adhesion was demonstrated between flax fiber and UP by DMA. The result of SEM (scan electron microscope) indicated a poor interfacial adhesion between flax and UP matrix, such as debonding and more voids. However, basalt fibers and UP matrix were combined closely and matrix fragments around basalt fibers were found. The main reason was that hydrogen bond produced after absorbing water destroyed the interface between flax

  13. Prompt gamma analysis of fly ash, silica fume and Superpozz blended cement concrete specimen.

    Science.gov (United States)

    Naqvi, A A; Garwan, M A; Maslehuddin, M; Nagadi, M M; Al-Amoudi, O S B; Khateeb-ur-Rehman; Raashid, M

    2009-09-01

    Preventive measures against corrosion of reinforcing steel require making the concrete dense by adding pozzolanic materials, such as fly ash, silica fume, Superpozz, blast furnace slag, etc. to Portland cement. In order to obtain the desired strength and durability of concrete, it is desirable to monitor the concentration of the pozzolan in the blended cement concrete. Addition of pozzolan to blended cement changes the overall concentration of calcium and silicon in the blended cement concrete. The resulting variation in calcium and silicon gamma-ray yield ratio from blended cement concrete has found to have an inverse correlation with concentration of fly ash, silica fume, Superpozz, blast furnace slag in the blended cement concrete. For experimental verification of the correlation, intensities of calcium and silicon prompt gamma-ray due to capture of thermal neutrons in blended cement concrete samples containing 5-80% (by weight of cement) silica fume, fly ash and Superpozz were measured. The gamma-ray intensity ratio was measured from 6.42 MeV gamma-rays from calcium and 4.94 MeV gamma-ray from silicon. The experimentally measured values of calcium to silicon gamma-ray yield ratio in the fly ash, silica fume and Superpozz cement concrete specimens agree very well with the results of the Monte Carlo simulations.

  14. Prompt gamma analysis of fly ash, silica fume and Superpozz blended cement concrete specimen

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)], E-mail: aanaqvi@kfupm.edu.sa; Garwan, M.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Maslehuddin, M. [Center for Engineering Research, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Nagadi, M.M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Khateeb-ur-Rehman; Raashid, M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2009-09-15

    Preventive measures against corrosion of reinforcing steel require making the concrete dense by adding pozzolanic materials, such as fly ash, silica fume, Superpozz, blast furnace slag, etc. to Portland cement. In order to obtain the desired strength and durability of concrete, it is desirable to monitor the concentration of the pozzolan in the blended cement concrete. Addition of pozzolan to blended cement changes the overall concentration of calcium and silicon in the blended cement concrete. The resulting variation in calcium and silicon gamma-ray yield ratio from blended cement concrete has found to have an inverse correlation with concentration of fly ash, silica fume, Superpozz, blast furnace slag in the blended cement concrete. For experimental verification of the correlation, intensities of calcium and silicon prompt gamma-ray due to capture of thermal neutrons in blended cement concrete samples containing 5-80% (by weight of cement) silica fume, fly ash and Superpozz were measured. The gamma-ray intensity ratio was measured from 6.42 MeV gamma-rays from calcium and 4.94 MeV gamma-ray from silicon. The experimentally measured values of calcium to silicon gamma-ray yield ratio in the fly ash, silica fume and Superpozz cement concrete specimens agree very well with the results of the Monte Carlo simulations.

  15. PART II. HYDRATED CEMENTS

    Directory of Open Access Journals (Sweden)

    Milan Drabik

    2014-09-01

    Full Text Available Essential focus of the study has been to acquire thermoanalytical events, incl. enthalpies of decompositions - ΔH, of technological materials based on two types of Portland cements. The values of thermoanalytical events and also ΔH of probes of technological compositions, if related with the data of a choice of minerals of calcium-silicate-sulfate-aluminate hydrates, served as a valued input for the assessment of phases present and phase changes due to the topical hydraulic processes. The results indicate mainly the effects of "standard humidity" or "wet storage" of the entire hydration/hydraulic treatment, but also the presence of cement residues alongside calcium-silicate-sulfate-aluminate hydrates (during the tested period of treatment. "A diluting" effect of unhydrated cement residues upon the values of decomposition enthalpies in the studied multiphase system is postulated and discussed

  16. Influence of curing conditions on durability of alkali-resistant glass fibres in cement matrix

    Indian Academy of Sciences (India)

    Arabi Nourredine

    2011-07-01

    Glass fibres in concrete material often increase the flexural strength. However, these fibres when in contact with cement are altered by alkali reactions due to the presence of portlandite. This study presents the results of investigation to show the effect of curing conditions on the durability of alkali-resistant glass fibres in cement matrix. Test results show that even alkali resistant fibres treated with zirconium oxide present the same degradation phenomenon. They also show that the nature of the cement has a large influence on the protection of the fibres: the Portland CEM II is less damaging than the CEM I. The substitutions of a part of cement by silica fume gave no substantial improvements to the mechanical strength of the glass fibre reinforced cement (GFRC). However, the observed microstructures in the samples show that the degradation is weakened with the addition of silica fumes. The analytical techniques used in this study are scanning electron microscope (SEM) and X-ray diffraction.

  17. Optimization of fly ash as sand replacement materials (SRM) in cement composites containing coconut fiber

    Science.gov (United States)

    Nadzri, N. I. M.; Jamaludin, S. B.; Mazlee, M. N.; Jamal, Z. A. Z.

    2016-07-01

    The need of utilizing industrial and agricultural wastes is very important to maintain sustainability. These wastes are often incorporated with cement composites to improve performances in term of physical and mechanical properties. This study presents the results of the investigation of the response of cement composites containing coconut fiber as reinforcement and fly ash use as substitution of sand at different hardening days. Hardening periods of time (7, 14 and 28 days) were selected to study the properties of cement composites. Optimization result showed that 20 wt. % of fly ash (FA) is a suitable material for sand replacement (SRM). Meanwhile 14 days of hardening period gave highest compressive strength (70.12 MPa) from the cement composite containing 9 wt. % of coconut fiber and fly ash. This strength was comparable with the cement without coconut fiber (74.19 MPa) after 28 days of curing.

  18. Fresh-water cementation of a 1,000-year-old oolite

    Science.gov (United States)

    Halley, R. B.; Harris, P. M.

    1979-01-01

    Calcite cementation of aragonite ooid sand is producing oolite on Joulters Cays, Bahamas. During the last 1,000 years, calcite cement has formed at an average rate of between 27 and 55 cm3 /m3 /yr and is derived from dissolution of ooid aragonite in fresh water. The dissolution-reprecipitation of carbonate minerals in the aquifer results in ground waters of unusually high Sr content. Sea water and mixtures of fresh and sea water appear to inhibit cementation. A pronounced cement fabric change occurs across the water table and has produced an obvious petrographic record of fresh-water diagenesis. Above the water table, cement is typically near grain contact positions, where water is held by capillarity; below the water table, cement is more randomly distributed around grains. At the water table a transition zone, 1 meter thick, marks the boundary between cement textures. No porosity reduction is associated with cementation; calcite cement precipitation is apparently compensated by an equal or greater amount of aragonite dissolution in the interval undergoing cementation. Permeability is more variable above the water table than below it, reflecting early channelling of flow patterns in the vadose zone. Effective permeability below the water table is one to two orders of magnitude higher than above the water table because of entrained gas in the vadose zone. This permeability difference promotes preservation of unstable minerals above the water table and continued diagenetic alteration below the water table.

  19. Comparison of shear bond strength of resin reinforced chemical cure glass ionomer, conventional chemical cure glass ionomer and chemical cure composite resin in direct bonding systems: an in vitro study.

    Science.gov (United States)

    Rao, Kolasani Srinivasa; Reddy, T Praveen Kumar; Yugandhar, Garlapati; Kumar, B Sunil; Reddy, S N Chandrasekhar; Babu, Devatha Ashok

    2013-01-01

    The acid pretreatment and use of composite resins as the bonding medium has disadvantages like scratching and loss of surface enamel, decalcification, etc. To overcome disadvantages of composite resins, glass ionomers and its modifications are being used for bonding. The study was conducted to evaluate the efficiency of resin reinforced glass ionomer as a direct bonding system with conventional glass ionomer cement and composite resin. The study showed that shear bond strength of composite resin has the higher value than both resin reinforced glass ionomer and conventional glass ionomer cement in both 1 and 24 hours duration and it increased from 1 to 24 hours in all groups. The shear bond strength of resin reinforced glass ionomer cement was higher than the conventional glass ionomer cement in both 1 and 24 hours duration. Conditioning with polyacrylic acid improved the bond strength of resin reinforced glass ionomer cement significantly but not statistically significant in the case of conventional glass ionomer cement.

  20. Applications and Properties of Fibre Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Amit Rai1 ,

    2014-05-01

    Full Text Available In conventional concrete, micro-cracks develop before structure is loaded because of drying shrinkage and other causes of volume change. When the structure is loaded, the micro cracks open up and propagate because of development of such micro-cracks, results in inelastic deformation in concrete. Fibre reinforced concrete (FRC is cementing concrete reinforced mixture with more or less randomly distributed small fibres. In the FRC, a numbers of small fibres are dispersed and distributed randomly in the concrete at the time of mixing, and thus improve concrete properties in all directions. The fibers help to transfer load to the internal micro cracks. FRC is cement based composite material that has been developed in recent years. It has been successfully used in construction with its excellent flexural-tensile strength, resistance to spitting, impact resistance and excellent permeability and frost resistance. It is an effective way to increase toughness, shock resistance and resistance to plastic shrinkage cracking of the mortar. These fibers have many benefits. Steel fibers can improve the structural strength to reduce in the heavy steel reinforcement requirement. Freeze thaw resistance of the concrete is improved. Durability of the concrete is improved to reduce in the crack widths. Polypropylene and Nylon fibers are used to improve the impact resistance. Many developments have been made in the fiber reinforced concrete.

  1. Long-term compressive creep deformation and damage in acrylic bone cements.

    Science.gov (United States)

    Chwirut, D J

    1984-01-01

    Compressive creep tests were performed on five commercially available acrylic bone cements under conditions simulating in vivo usage. Measured creep strains are quite large, generally exceeding elastic strains. Large variations in creep response were noted among the various cements, with a carbon-reinforced cement by far the most resistant to creep. The empirical model epsilon = a exp(b sigma)tn was found to predict creep strains within about 10% of the measured values. Microscopic examination of some specimens after testing revealed significant cracking, resulting from long-term loading, that could be a contributing cause of time-dependent failure.

  2. The mechanical effect of the existing cement mantle on the in-cement femoral revision.

    LENUS (Irish Health Repository)

    Keeling, Parnell

    2012-08-01

    Cement-in-cement revision hip arthroplasty is an increasingly popular technique to replace a loose femoral stem which retains much of the original cement mantle. However, some concern exists regarding the retention of the existing fatigued and aged cement in such cement-in-cement revisions. This study investigates whether leaving an existing fatigued and aged cement mantle degrades the mechanical performance of a cement-in-cement revision construct.

  3. Cement Mason's Curriculum. Instructional Units.

    Science.gov (United States)

    Hendirx, Laborn J.; Patton, Bob

    To assist cement mason instructors in providing comprehensive instruction to their students, this curriculum guide treats both the skills and information necessary for cement masons in commercial and industrial construction. Ten sections are included, as follow: related information, covering orientation, safety, the history of cement, and applying…

  4. Reducing cement's CO2 footprint

    Science.gov (United States)

    van Oss, Hendrik G.

    2011-01-01

    The manufacturing process for Portland cement causes high levels of greenhouse gas emissions. However, environmental impacts can be reduced by using more energy-efficient kilns and replacing fossil energy with alternative fuels. Although carbon capture and new cements with less CO2 emission are still in the experimental phase, all these innovations can help develop a cleaner cement industry.

  5. Technology Roadmaps: Cement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    To support its roadmap work focusing on key technologies for emissions reductions, the International Energy Agency (IEA) also investigated one particular industry: cement. Cement production includes technologies that are both specific to this industry and those that are shared with other industries (e.g., grinding, fuel preparation, combustion, crushing, transport). An industry specific roadmap provides an effective mechanism to bring together several technology options. It outlines the potential for technological advancement for emissions reductions in one industry, as well as potential cross-industry collaboration.

  6. Cementing a wellbore using cementing material encapsulated in a shell

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Floyd, III, William C.; Spadaccini, Christopher M.; Vericella, John J.; Cowan, Kenneth Michael

    2017-03-14

    A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in the space between the wellbore and the pipe.

  7. Cementing a wellbore using cementing material encapsulated in a shell

    Science.gov (United States)

    Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Spadaccini, Christopher M.; Cowan, Kenneth Michael

    2016-08-16

    A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in the space between the wellbore and the pipe.

  8. Cementing a wellbore using cementing material encapsulated in a shell

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Spadaccini, Christopher M.; Cowan, Kenneth Michael

    2016-08-16

    A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in the space between the wellbore and the pipe.

  9. REINFORCED COMPOSITE PANEL

    DEFF Research Database (Denmark)

    2003-01-01

    A composite panel having front and back faces, the panel comprising facing reinforcement, backing reinforcement and matrix material binding to the facing and backing reinforcements, the facing and backing reinforcements each independently comprising one or more reinforcing sheets, the facing...... by matrix material, the facing and backing reinforcements being interconnected to resist out-of-plane relative movement. The reinforced composite panel is useful as a barrier element for shielding structures, equipment and personnel from blast and/or ballistic impact damage....

  10. REINFORCED COMPOSITE PANEL

    DEFF Research Database (Denmark)

    2003-01-01

    A composite panel having front and back faces, the panel comprising facing reinforcement, backing reinforcement and matrix material binding to the facing and backing reinforcements, the facing and backing reinforcements each independently comprising one or more reinforcing sheets, the facing rein...... by matrix material, the facing and backing reinforcements being interconnected to resist out-of-plane relative movement. The reinforced composite panel is useful as a barrier element for shielding structures, equipment and personnel from blast and/or ballistic impact damage....

  11. Research on Quartz Fabric Reinforced Polyimide Composites by Resin Transfer Molding%RTM成型石英布增强聚酰亚胺复合材料研究

    Institute of Scientific and Technical Information of China (English)

    左小彪; 余瑞莲; 石松; 杨云华; 牛光明; 李杰; 冯志海

    2009-01-01

    以PEPA封端的聚酰亚胺低聚体PI-1和PI-2为基体树脂,以平纹石英布为增强材料,通过树脂传递模塑成型工艺(RTM)成功制备了2种石英布增强聚酰亚胺复合材料C-1和C-2.C-1和C-2表现出突出的耐热稳定性、优异的高温力学性能、低的孔隙率(<1%)以及良好的介电性能.由于在分子结构中引入了低摩尔极化率的C-F键和非极性的含氟基团,C-2比C-1具有更低的介电常数和损耗因子.由于综合性能优异,上述2种石英布/聚酰亚胺复合材料C-1和C-2有望在航天航空领域中的耐高温结构部件和透波部件中得到应用.%Using resin transfer molding technology, two kinds of quartz fabric reinforced polyimide composites, C-1 and C-2, were prepared successfully based on PI-1 and PI-2. The two composites of C-1 and C-2 exhibited outstanding thermal stabilities, excellent high-temperature mechanical properties from room temperature to 300 ℃, low void (<1% ). Moreover, C-1 and C-2 also showed excellent and stable dielectric properties with low dielectric constants (<3.6) and low dissipation factors (<0.01). Due to the small dipole and low polarizability of C-F bond as well as the non-polar character of the fluorocarbon groups, C-2 exhibited lower dielectric constant and dissipation factors than that of C-1. In conclusion, the excellent combined properties of C-1 and C-2 would make them potential candidates for high-temperature structural and microwave transparent materials in aerospace fields.

  12. The influence of blast furnace slag, fly ash and silica fume on corrosion of reinforced concrete in marine environment

    NARCIS (Netherlands)

    Polder, R.B.

    1996-01-01

    Chloride penetration from sea water may cause corrosion of reinforcement in concrete structures. Adding reactive inorganic materials such as blast furnace slag, fly ash or silica fume to the cement matrix improves the resistance against chloride penetration as compared to Portland cement concrete. A

  13. The effect of different surfactants/plastisizers on the electrical behavior of CNT nano-modified cement mortars

    Science.gov (United States)

    Dalla, P. T.; Alafogianni, P.; Tragazikis, I. K.; Exarchos, D. A.; Dassios, K.; Barkoula, N.-M.; Matikas, T. E.

    2015-03-01

    Cement-based materials have in general low electrical conductivity. Electrical conductivity is the measure of the ability of the material to resist the passage of electrical current. The addition of a conductive admixture such as Multi-Walled Carbon Nanotubes (MWCNTs) in a cement-based material increases the conductivity of the structure. This research aims to characterize nano-modified cement mortars with MWCNT reinforcements. Such nano-composites would possess smartness and multi-functionality. Multifunctional properties include electrical, thermal and piezo-electric characteristics. One of these properties, the electrical conductivity, was measured using a custom made apparatus that allows application of known D.C. voltage on the nano-composite. In this study, the influence of different surfactants/plasticizers on CNT nano-modified cement mortar specimens with various concentrations of CNTs (0.2% wt. cement CNTs - 0.8% wt. cement CNTs) on the electrical conductivity is assessed.

  14. FOAM CONCRETE REINFORCEMENT BY BASALT FIBRES

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich

    2012-10-01

    Full Text Available The authors demonstrate that the foam concrete performance can be improved by dispersed reinforcement, including methods that involve basalt fibres. They address the results of the foam concrete modeling technology and assess the importance of technology-related parameters. Reinforcement efficiency criteria are also provided in the article. Dispersed reinforcement improves the plasticity of the concrete mix and reduces the settlement crack formation rate. Conventional reinforcement that involves metal laths and rods demonstrates its limited application in the production of concrete used for thermal insulation and structural purposes. Dispersed reinforcement is preferable. This technology contemplates the infusion of fibres into porous mixes. Metal, polymeric, basalt and glass fibres are used as reinforcing components. It has been identified that products reinforced by polypropylene fibres demonstrate substantial abradability and deformability rates even under the influence of minor tensile stresses due to the low adhesion strength of polypropylene in the cement matrix. The objective of the research was to develop the type of polypropylene of D500 grade that would demonstrate the operating properties similar to those of Hebel and Ytong polypropylenes. Dispersed reinforcement was performed by the basalt fibre. This project contemplates an autoclave-free technology to optimize the consumption of electricity. Dispersed reinforcement is aimed at the reduction of the block settlement in the course of hardening at early stages of their operation, the improvement of their strength and other operating properties. Reduction in the humidity rate of the mix is based on the plasticizing properties of fibres, as well as the application of the dry mineralization method. Selection of optimal parameters of the process-related technology was performed with the help of G-BAT-2011 Software, developed at Moscow State University of Civil Engineering. The authors also

  15. Osteotransductive bone cements.

    Science.gov (United States)

    Driessens, F C; Planell, J A; Boltong, M G; Khairoun, I; Ginebra, M P

    1998-01-01

    Calcium phosphate bone cements (CPBCs) are osteotransductive, i.e. after implantation in bone they are transformed into new bone tissue. Furthermore, due to the fact that they are mouldable, their osteointegration is immediate. Their chemistry has been established previously. Some CPBCs contain amorphous calcium phosphate (ACP) and set by a sol-gel transition. The others are crystalline and can give as the reaction product dicalcium phosphate dihydrate (DCPD), calcium-deficient hydroxyapatite (CDHA), carbonated apatite (CA) or hydroxyapatite (HA). Mixed-type gypsum-DCPD cements are also described. In vivo rates of osteotransduction vary as follows: gypsum-DCPD > DCPD > CDHA approximately CA > HA. The osteotransduction of CDHA-type cements may be increased by adding dicalcium phosphate anhydrous (DCP) and/or CaCO3 to the cement powder. CPBCs can be used for healing of bone defects, bone augmentation and bone reconstruction. Incorporation of drugs like antibiotics and bone morphogenetic protein is envisaged. Load-bearing applications are allowed for CHDA-type, CA-type and HA-type CPBCs as they have a higher compressive strength than human trabecular bone (10 MPa).

  16. Basal Reinforced Piled Embankments

    NARCIS (Netherlands)

    Van Eekelen, S.J.M.

    2015-01-01

    A basal reinforced piled embankment consists of a reinforced embankment on a pile foundation. The reinforcement consists of one or more horizontal layers of geosynthetic reinforcement (GR) installed at the base of the embankment. The design of the GR is the subject of this thesis. A basal reinforce

  17. Basal Reinforced Piled Embankments

    NARCIS (Netherlands)

    Van Eekelen, S.J.M.

    2015-01-01

    A basal reinforced piled embankment consists of a reinforced embankment on a pile foundation. The reinforcement consists of one or more horizontal layers of geosynthetic reinforcement (GR) installed at the base of the embankment. The design of the GR is the subject of this thesis. A basal reinforce

  18. Effect of filler size on wear resistance of resin cement.

    Science.gov (United States)

    Shinkai, K; Suzuki, S; Katoh, Y

    2001-11-01

    The purpose of this study was to evaluate the effect of filler size on the wear of resin cements. Materials tested included four experimental dual-cure resin cements (Kuraray) consisting of different-sized filler particles. A rectangular box cavity was prepared on the flattened occlusal surface of extracted human molars. Ceramic inlays for the cavities were fabricated using the Cerec 2 system. The Cerec inlays were cemented with the respective cements and adhesive systems according to the manufacturer's directions. The restored surface was finished by wet-grinding with an 800-grit silicon carbide paper. Six specimens were prepared for each resin cement. Half of the specimens were subjected to a three-body wear test for 200,000 cycles, and the others were subjected to a toothbrush abrasion test for 30,000 cycles. The worn surface of each restoration was scanned by a profilometer (Surfcom 475 A) at eight different points for each restoration. The wear value was determined by measuring the vertical gap depth on the profilometric tracings. The data were statistically analyzed by one-way analysis of variance (ANOVA) and Scheffe's test. The results showed that, with increase of filler size, the wear value decreased in the toothbrush test and increased in the three-body wear test. The cement with 0.04-microm filler exhibited the lowest wear value among the materials in the three-body wear test, and the same wear value as the cement with 0.97-microm filler in the toothbrush test. Based upon the results of this study, it is concluded that the wear of resin cements was affected by the filler size as well as the mode of wear test.

  19. Compressive Behaviours of Concrete Cylinders Wrapped with 2-D Glass Fabrics

    Institute of Scientific and Technical Information of China (English)

    HUANG Gu; ZUO Zhong-e

    2007-01-01

    Concrete cylinders wrapped with glass fabrics of various constructions were fabricated. Compressive behaviours of cylinders with and without fabric wrapping were investigated. Comparisons of the compressive characters while using different fabrication parameters were made. It was demonstrated that the effect of the fabric reinforcement was obvious. The tensile strength of the filament used in the fabric played an important role as far as the anti-compression behaviour of the reinforced cylinders is concerned.

  20. Laminate mechanics for balanced woven fabrics

    NARCIS (Netherlands)

    Akkerman, Remko

    2006-01-01

    Laminate mechanics equations are presented for composites with balanced woven fabric reinforcements. It is shown that mimicking these textile composites with equivalent transversely isotropic (‘unidirectional’) layers requires disputable manipulations. Various micromechanics predictions of textile

  1. The effect of cement creep and cement fatigue damage on the micromechanics of the cement-bone interface.

    NARCIS (Netherlands)

    Waanders, D.; Janssen, D.; Mann, K.A.; Verdonschot, N.J.J.

    2010-01-01

    The cement-bone interface provides fixation for the cement mantle within the bone. The cement-bone interface is affected by fatigue loading in terms of fatigue damage or microcracks and creep, both mostly in the cement. This study investigates how fatigue damage and cement creep separately affect

  2. Yemen watched from cement plant construction work. Cement plant koji wo toshite mita Yemen

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, M. (Kajima Corp., Tokyo (Japan))

    1993-06-25

    Construction of a cement plant was planned at southern part of Yemen. This is a cement plant with annual production 500,000 tons. The term of work was from January, 1990 to February, 1993. The present paper describes an outline the construction of this Cement Plant, the nationality and living environment in Yemen, and construction equipment which was used. The construction work consisted of 113,000m[sup 3] of digging, 82,000m[sup 3] of backfilling, 66,100m[sup 3] of concreting, and 29,285m[sup 3] of asphalt pavement. Reinforcing steel weighing 6,400 tons and steel frame weighing 3,600 tons were totally used. Equipment weighing 7,912 tons and electric devices weighing 1,299 tons were totally installed. For this construction work, two crawler cranes, six hydraulic cranes, aggregate plant, concrete mixers, and construction equipment, such as bulldozers, shovels, and dumpers, were brought from Japan. 5 figs.

  3. Manipulating cement-steel interface by means of electric field: Experiment and potential applications

    Directory of Open Access Journals (Sweden)

    Kamila Gawel

    2016-08-01

    Full Text Available Good shear bonding and hydraulic bonding between cement and steel play a crucial role in well integrity of oil and gas wells. In this experimental study, we investigate the effect that constant electric field may have on the bonding at cement-steel interfaces. Constant voltage (18 V was applied between two stainless-steel electrodes immersed into a cement slurry. It was found that bonding was significantly improved at the positive electrode, while it was significantly worse at the negative electrode. The effect was due to the negatively-charged cement particles being attracted to the positive electrode. The effect may potentially be used for manipulation and control of casing-cement and reinforcement-concrete bonding strengths in oil & gas and construction industries, respectively. Side-effects that might reduce the applicability of this technology, are gas production at both electrodes (and especially at the negative one and significant corrosion at the positive electrode due to electrochemical reactions at metal surfaces. Poor bonding at the negative electrode may potentially be used for cleaning of cement equipment, such as cement pumps, pipes, tanks, and mixers used on the rigs to perform well cementing jobs in oil & gas industry.

  4. POZZOLAN AND CEMENTS WITH POZZOLAN

    Directory of Open Access Journals (Sweden)

    Hasan KAPLAN

    1995-02-01

    Full Text Available Cement, one of the basic material of construction engineering, has an important place in view of strength and cost of structures. Cement consumption is increasing parallel to development of building construction sector. For cement producers, minimal cost is desired by using new and economical material sources. On the other hand, the controllers and contractors need cheaper, safer and higher strength materials. From this respect cement industry tends to use cement with pozzolan. In Türkiye, cement with pozzolan is produced by adding the pozzolan, which has a large reservoir in the country, in cement in sertain amount. However this type of cement is consumed in the construction sector, sortage of scientific investigation and speculative news on the subject.are worried the users and producers. In this paper, prior to an experimental study on the cements having pozzolan additive, historical development of pozzolan, reservoir of Turkiye, and comparison with portland cement is carried out. Advantages and disadvantages of pozzolan are also discussed in some points.

  5. Cement from magnesium substituted hydroxyapatite.

    Science.gov (United States)

    Lilley, K J; Gbureck, U; Knowles, J C; Farrar, D F; Barralet, J E

    2005-05-01

    Brushite cement may be used as a bone graft material and is more soluble than apatite in physiological conditions. Consequently it is considerably more resorbable in vivo than apatite forming cements. Brushite cement formation has previously been reported by our group following the mixture of nanocrystalline hydroxyapatite and phosphoric acid. In this study, brushite cement was formed from the reaction of nanocrystalline magnesium-substituted hydroxyapatite with phosphoric acid in an attempt to produce a magnesium substituted brushite cement. The presence of magnesium was shown to have a strong effect on cement composition and strength. Additionally the presence of magnesium in brushite cement was found to reduce the extent of brushite hydrolysis resulting in the formation of HA. By incorporating magnesium ions in the apatite reactant structure the concentration of magnesium ions in the liquid phase of the cement was controlled by the dissolution rate of the apatite. This approach may be used to supply other ions to cement systems during setting as a means to manipulate the clinical performance and characteristics of brushite cements.

  6. Apatite formation on calcined kaolin-white Portland cement geopolymer.

    Science.gov (United States)

    Pangdaeng, S; Sata, V; Aguiar, J B; Pacheco-Torgal, F; Chindaprasirt, P

    2015-06-01

    In this study, calcined kaolin-white Portland cement geopolymer was investigated for use as biomaterial. Sodium hydroxide and sodium silicate were used as activators. In vitro test was performed with simulated body fluid (SBF) for bioactivity characterization. The formation of hydroxyapatite bio-layer on the 28-day soaked samples surface was tested using SEM, EDS and XRD analyses. The results showed that the morphology of hydroxyapatite was affected by the source material composition, alkali concentration and curing temperature. The calcined kaolin-white Portland cement geopolymer with relatively high compressive strength could be fabricated for use as biomaterial. The mix with 50% white Portland cement and 50% calcined kaolin had 28-day compressive strength of 59.0MPa and the hydroxyapatite bio-layer on the 28-day soaked sample surface was clearly evident. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. US cement industry

    Energy Technology Data Exchange (ETDEWEB)

    Nisbet, M.A.

    1997-12-31

    This paper describes the cement and concrete industry, and provides data on energy use and carbon dioxide emissions. The potential impact of an energy tax on the industry is briefly assessed. Opportunities identified for reducing carbon dioxide emissions include improved energy efficiency, alternative fuels, and alternative materials. The key factor in determining CO{sub 2} emissions is the level of domestic production. The projected improvement in energy efficiency and the relatively slow growth in domestic shipments indicate that CO{sub 2} emissions in 2000 should be about 5% above the 1990 target. However, due to the cyclical nature of cement demand, emissions will probably be above target levels during peak demand and below target levels during demand troughs. 7 figs., 2 tabs.

  8. Performance of Cement Containing Laterite as Supplementary Cementing Material

    Directory of Open Access Journals (Sweden)

    Abbas Bukhari, Z. S.

    2013-03-01

    Full Text Available The utilization of different industrial waste, by-products or other materials such as ground granulated blast furnace slag, silica fume, fly ash, limestone, and kiln dust, etc. as supplemen- tary cementing materials has received considerable attention in recent years. A study has been conducted to look into the performance of laterite as Supplementary Cementing Materials (SCM. The study focuses on compressive strength performance of blended cement containing different percentage of laterite. The cement is replaced accordingly with percentage of 2 %, 5 %, 7 % and 10 % by weight. In addition, the effect of use of three chemically different laterites have been studied on physical performance of cement as in setting time, Le-Chatlier expansion, loss on ignition, insoluble residue, free lime and specifically compressive strength of cement cubes tested at the age of 3, 7, and 28 days. The results show that the strength of cement blended with laterite as SCM is enhanced. Key words: Portland cement, supplementary cementing materials (SCM, laterite, compressive strength KUI – 6/2013 Received January 4, 2012 Accepted February 11, 2013

  9. Comparative study of interim materials for direct fixed dental prostheses and their fabrication with CAD/CAM technique.

    Science.gov (United States)

    Peñate, Lissethe; Basilio, Juan; Roig, Miguel; Mercadé, Montserrat

    2015-08-01

    Prosthodontic treatment sometimes requires a long-term interim fixed dental prosthesis (FDP) until the definitive restoration can be cemented. However, some interim materials are weak and do not have an adequate marginal seal. The purpose of this study was to compare the marginal fit and fracture strengths of interim FDPs fabricated by using a direct technique with different materials (Structur 3, Trim, and DuraLay) with interim prostheses (Telio CAD) made with a computer-aided design and computer-aided manufacturing (CAD/CAM) system. Seventy interim FDPs were fabricated by using different materials (Structur 3, Trim, DuraLay, and Telio CAD) on a metal master model. Resin-impregnated, light-polymerizing glass fiber (GrandTEC) was used to reinforce 10 interim FDPs per material fabricated with the direct technique. Interim FDPs were stored at 37°C for 24 hours before thermocycling. Marginal fit was analyzed at 6 points in each interim FDP before and after thermocycling with either 2500 or 5000 cycles. After fracturing the interim FDPs with a universal testing machine, fracture strength, fragments separation, and fracture point were recorded. Marginal fit data were analyzed with 2-way repeated measure analysis of variance (ANOVA), fracture strength with 1-way ANOVA, and fragments separation and fracture point with the chi-square test at a 99% confidence interval. All interim materials showed marginal discrepancies over time, but no significant differences were found among groups (P>.001), except in the marginal fit of interim FDPs reinforced with glass fiber (S3F), which showed the smallest marginal gap after 5000 cycles (P.001). Finally, significant differences were observed in the fracture point and frequency of separation (P<.001). Bis-acryl reinforced with glass fiber showed the least marginal discrepancy. No differences were found between the fracture strengths of interim FDPs fabricated with CAD/CAM system and interim FDPs reinforced with glass fiber. No

  10. Finite element analysis and experimental verification of Polymer reinforced CRC improved for close-in detonation

    DEFF Research Database (Denmark)

    Riisgaard, Benjamin; Georgakis, Christos; Stang, Henrik

    2007-01-01

    Compact Reinforced Composite, CRC, is a high-strength cement-based composite that holds an enormous flexural and energy-absorbing capacity due to the close-spaced high strength steel reinforcement and a high-strength cement-based fiber DSP matrix. The material has been used in various constructions...... without breaching. This paper introduces an efficient method for implementing high fractions of polymer shock reinforcement in a CRC element. Experimental tests and explicit finite element analysis is used to demonstrate the potentials of this material. This paper also provides the reader...... with the information and data needed to formulate a simple material model for High-Strength Fiber-Reinforced Concrete suitable for predicting the responses of Polymer reinforced CRC under close-in detonations using the general purpose transient dynamic finite element program LS-DYNA....

  11. Mechanical interaction between concrete and structural reinforcement in the tension stiffening process

    DEFF Research Database (Denmark)

    Lárusson, Lárus Helgi; Fischer, Gregor; Jönsson, Jeppe

    2011-01-01

    investigated using an image-based deformation measurement and analysis system. This allowed for detailed view of surface deformations and the implications on the resulting response of the member in tension. In this study, conventional concrete and a ductile, strain hardening cement composite, known......The interaction between structural reinforcement and the surrounding concrete matrix in tension is a governing mechanism in the structural response of reinforced concrete members. The tension stiffening process, defined as the concrete ´s contribution to tensile response of the composite, has been...... as Engineered Cementitious Composite (ECC), have been combined with steel and glass fiber reinforced polymer (GFRP) reinforcement to contrast the effects of brittle and ductile cement matrices as well as elastic/plastic and elastic reinforcement on the tension stiffening process. Particular focus...

  12. Hybrid fiber and nanopowder reinforced composites for wind turbine blades

    Directory of Open Access Journals (Sweden)

    Nikoloz M. Chikhradze

    2015-01-01

    Full Text Available The results of an investigation into the production of wind turbine blades manufactured using polymer composites reinforced by hybrid (carbon, basalt, glass fibers and strengthened by various nanopowders (oxides, carbides, borides are presented. The hybrid fiber-reinforced composites (HFRC were manufactured with prepreg technology by molding pre-saturated epoxy-strengthened matrix-reinforced fabric. Performance of the manufactured composites was estimated with values of the coefficient of operating condition (COC at a moderate and elevated temperature.

  13. Advances in Glass Ionomer Cements

    OpenAIRE

    KAYA, Dt. Tuğba; TİRALİ, Yard. Doç. Dr. Resmiye Ebru

    2013-01-01

    In recent years there have been a number of innovations and developments with respect to glass ionomer cements and their applications in clinical dentistry. This article considers some of the recent outstanding studies regarding the field of glass ionomer cement applications, adhesion and setting mechanisms, types, advantage and disadvantages among themselves and also to enhance the physical and antibacterial properties under the title of 'Advances in Glass Ionomer Cements'. As their biologic...

  14. Cement penetration after patella venting.

    Science.gov (United States)

    Jones, Christopher W; Lam, Li-On; Butler, Adam; Wood, David J; Walsh, William R

    2009-01-01

    There is a high rate of patellofemoral complications following total knee arthroplasty. Optimization of the cement-bone interface by venting and suction of the tibial plateau has been shown to improve cement penetration. Our study was designed to investigate if venting the patella prior to cementing improved cement penetration. Ten paired cadaver patellae were allocated prior to resurfacing to be vented or non-vented. Bone mineral density (BMD) was measured by DEXA scanning. In vented specimens, a 1.6 mm Kirschner wire was used to breach the anterior cortex at the center. Specimens were resurfaced with standard Profix instrumentation and Versabond bone cement (Smith and Nephew PLC, UK). Cement penetration was assessed from Faxitron and sectioned images by a digital image software package (ImageJ V1.38, NIH, USA). Wilcoxon rank sum test was used to assess the difference in cement penetration between groups. The relationship between BMD and cement penetration was analyzed by Pearson correlation coefficient. There was a strong negative correlation between peak BMD and cement penetration when analyzed independent of experimental grouping (r(2)=-0.812, p=0.004). Wilcoxon rank sum testing demonstrated no significant difference (rank sum statistic W=27, p=0.579) in cement penetration between vented (10.53%+/-4.66; mean+/-std dev) and non-vented patellae (11.51%+/-6.23; mean+/-std dev). Venting the patella using a Kirschner wire does not have a significant effect on the amount of cement penetration achieved in vitro using Profix instrumentation and Versabond cement.

  15. [Haemotoxicity of dental luting cements].

    Science.gov (United States)

    Anders, A; Welker, D

    1989-06-01

    A glass ionomer luting cement (AquaCem) shows a relatively low haemolytic activity in comparison with two zinc phosphate cements. Especially the initial irritation by this cement is smaller. Although it is possible that AquaCem particularly, in unfavourable cases, may damage the pulpa dentin system; this is due to the slowly decrease of the haemolytic activity with increasing of the probes. We found that Adhesor showed in dependence of the batches a varying quality.

  16. Strength and durability of mixed glass-fibre-reinforced laminates

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Ya.; Limonov, V.A.; Mikel`son, M.; Tamuzh, V. [Inst. Mekhaniki Polimerov AN Latvii, Riga (Russian Federation)

    1994-01-01

    For unidirectional fabric-reinforced and mixed fiber glass plastics the results of static and fatigue tests are presented. Elastic and strength properties have been determined using plain and tubular specimens. Combination of unidirectional and glass fabric reinforcing layers is found to increase considerably torsional strength at inconsiderable decrease of tensile and compression strength. Results of layer-by-layer failure analysis agree well with experimental data. 12 refs.

  17. Ductile Cement-Based Composites with Wood Fibres - material design and experimental approach

    NARCIS (Netherlands)

    Sierra-Beltran, M.G.

    2011-01-01

    In order to turn a brittle cement matrix into a ductile composite different types of man-made fibres such as steel, glass and polyvinyl alcohol are currently used as reinforcement, as well as some natural fibres. Compared to synthetic fibres, natural fibres are more easily available worldwide and th

  18. Innovation based on tradition: Blast furnace slag cement for durable concrete structures in Norway?

    NARCIS (Netherlands)

    Polder, R.B.; Nijland, T.; De Rooij, M.; Larsen, C.K.; Pedersen, B.

    2014-01-01

    Blast furnace slag cement (BFSC) has been used to build reinforced concrete structures in marine and road environment in The Netherlands for nearly a century. The experience is good and structures with long service lives can be obtained, as has been shown by several field studies. This is caused by

  19. Marine durability of 15 year old concrete specimens made with ordinary portland, slag, and fly ash cements

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, T.U.; Yamaji, T.; Hamada, H. [Port and Harbor Research Inst., Ministry of Land, Infrastructure and Transport (Japan); Aoyama, T. [PS Corp. (Japan)

    2001-07-01

    A study was conducted in which the marine durability of ordinary portland cement, slag and fly ash cement was examined using 15 year old plain and reinforced concrete cylindrical specimens. In addition, the performance of these cements was also examined in another study for pre-cracked reinforced concrete prism samples. The process of manufacturing cement emits huge amounts of carbon dioxide into the global atmosphere. Replacing a portion of the cement with by-products from the steel industry and thermal power plants (which are both huge emitters of carbon dioxide) can lower carbon dioxide emissions and also solve the disposal issue of slag and fly ash while increasing the long-term durability of concrete structures. In this study, concrete cylindrical specimens were made of ordinary portland cement, slag and fly ash cements. Water-to-cement ratios were 0.45 and 0.55 and the compressive strength of the concrete, corrosion of the steel bars, and chloride-ion concentrations in the concrete were evaluated. It was shown that, with the exception of fly ash cements, the compressive strength of most cements increased after 15 years of exposure compared to its 28 day strength. Type C slag cement demonstrated the best performance against chloride-ion at the surface of concrete made with slag and fly ash. Voids in the steel-concrete interface make it possible for corrosion pits to develop. The use of seawater as mixing water results in earlier strength development at 28 days and does not cause to the strength of the concrete to regress after 15-years of exposure, but it causes more corrosion of steel bars at a lower cover depth. Corrosion of steel bars is not an issue at deeper cover depths. 15 refs., 18 tabs., 8 figs.

  20. Neutron imaging of water penetration into cracked steel reinforced concrete

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, P. [Center for Durability and Sustainability Studies of Shandong Province, Qingdao Technological University, Qingdao 266033 (China); Wittmann, F.H., E-mail: wittmann@aedificat.d [Center for Durability and Sustainability Studies of Shandong Province, Qingdao Technological University, Qingdao 266033 (China); Aedificat Institute Freiburg, Schlierbergstr. 80, D-79100 Freiburg (Germany); Zhao, T. [Center for Durability and Sustainability Studies of Shandong Province, Qingdao Technological University, Qingdao 266033 (China); Lehmann, E.H. [Neutron Imaging and Activation Group (NIAG), Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2010-04-01

    Service life and durability of reinforced concrete structures have become a crucial issue because of the economical and ecological implications. Service life of reinforced concrete structures is often limited by penetration of water and chemical compounds dissolved in water into the porous cement-based material. By now it is well-known that cracks in reinforced concrete are preferential paths for ingress of aggressive substances. Neutron radiography was successfully applied to study the process of water penetration into cracked steel reinforced concrete. In addition, the effectiveness of integral water repellent concrete to prevent ingress of water and salt solutions was investigated. Results are described in detail in this contribution. It will be shown that neutron radiography is a powerful method to visualize the process of water penetration into cracked and uncracked cement-based materials. On the basis of the obtained experimental data, it is possible to quantify the time-dependent water distributions in concrete with high accuracy and spatial resolution. It is of particular interest that penetration of water and salt solutions into damaged interfaces between concrete and steel can be visualized by means of neutron radiography. Deteriorating processes in cracked reinforced concrete structures can be studied in a completely new way. This advanced technology will help and find adequate ways to improve durability and service life of reinforced concrete structures. This will mean at the same time an essential contribution to improved sustainability.

  1. Influence of artificially-induced porosity on the compressive strength of calcium phosphate bone cements.

    Science.gov (United States)

    Mouzakis, Dionysios; Zaoutsos, Stefanos Polymeros; Bouropoulos, Nikolaos; Rokidi, Stamatia; Papanicolaou, George

    2016-07-01

    The biological and mechanical nature of calcium phosphate cements (CPC's) matches well with that of bone tissues, thus they can be considered as an appropriate environment for bone repair as bone defect fillers. The current study focuses on the experimental characterization of the mechanical properties of CPCs that are favorably used in clinical applications. Aiming on evaluation of their mechanical performance, tests in compression loading were conducted in order to determine the mechanical properties of the material under study. In this context, experimental results occurring from the above mechanical tests on porous specimens that were fabricated from three different porous additives, namely albumin, gelatin and sodium alginate, are provided, while assessment of their mechanical properties in respect to the used porous media is performed. Additionally, samples reinforced with hydroxyapatite crystals were also tested in compression and the results are compared with those of the above tested porous CPCs. The knowledge obtained allows the improvement of their biomechanical properties by controlling their structure in a micro level, and finds a way to compromise between mechanical and biological response.

  2. The strength of two reinforced glass ionomer materials.

    Science.gov (United States)

    Mazarakis, E; van der Vyver, P J; Janse van Rensburg, S D; de Wet, F A

    1994-08-01

    Preformed stainless steel crowns survive longer than multi-surface amalgams on deciduous molars. With the use of reinforced glass ionomers the bulk of the lost tooth structure can be replaced and the stainless steel crown cemented simultaneously. The purpose of this study was to compare two glass ionomer cements with regard to their shear bond strength (SBS) to the dentine of extracted primary molars and to their diametral tensile strength (DTS). The results showed that Vitremer was significantly (p < 0.01) stronger (DTS:x = 19.21; SBS:x = 7.63) than Ketac-Silver (DTS:x = 8.94; SBS:x = 2.92).

  3. Effect of Provisional Cements on Shear Bond Strength of Porcelain Laminate Veneers

    OpenAIRE

    Altintas, Subutay Han; Tak, Onjen; Secilmis, Asli; Usumez, Aslihan

    2011-01-01

    Objectives: The purpose of this study was to evaluate the effect of three provisional cements and two cleaning techniques on the final bond strength of porcelain laminate veneers. Methods: The occlusal third of the crowns of forty molar teeth were sectioned and embedded in autopolymerizing acrylic resin. Dentin surfaces were polished and specimens were randomly divided into four groups (n=10). Provisional restorations were fabricated and two provisional restorations were cemented onto each to...

  4. Basal Reinforced Piled Embankments

    NARCIS (Netherlands)

    Van Eekelen, S.J.M.

    2015-01-01

    A basal reinforced piled embankment consists of a reinforced embankment on a pile foundation. The reinforcement consists of one or more horizontal layers of geosynthetic reinforcement (GR) installed at the base of the embankment. The design of the GR is the subject of this thesis. A basal

  5. The Reinforcement Hierarchy

    Science.gov (United States)

    Forness, Steven R.

    1973-01-01

    Reinforcement hierarchy implies movement along a continuum from top to bottom, from primitive levels of reinforcement to more sophisticated levels. Unless it is immediately obvious that a child cannot function without the use of lower-order reinforcers, we should approach him as though he responds to topmost reinforcers until he demonstrates…

  6. High elastic modulus nanopowder reinforced resin composites for dental applications

    Science.gov (United States)

    Wang, Yijun

    2007-12-01

    Dental restorations account for more than $3 billion dollars a year on the market. Among them, all-ceramic dental crowns draw more and more attention and their popularity has risen because of their superior aesthetics and biocompatibility. However, their relatively high failure rate and labor-intensive fabrication procedure still limit their application. In this thesis, a new family of high elastic modulus nanopowder reinforced resin composites and their mechanical properties are studied. Materials with higher elastic modulus, such as alumina and diamond, are used to replace the routine filler material, silica, in dental resin composites to achieve the desired properties. This class of composites is developed to serve (1) as a high stiffness support to all-ceramic crowns and (2) as a means of joining independently fabricated crown core and veneer layers. Most of the work focuses on nano-sized Al2O3 (average particle size 47 nm) reinforcement in a polymeric matrix with 50:50 Bisphenol A glycidyl methacrylate (Bis-GMA): triethylene glycol dimethacrylate (TEGDMA) monomers. Surfactants, silanizing agents and primers are examined to obtain higher filler levels and enhance the bonding between filler and matrix. Silane agents work best. The elastic modulus of a 57.5 vol% alumina/resin composite is 31.5 GPa compared to current commercial resin composites with elastic modulus alumina, diamond/resin composites are studied. An elastic modulus of about 45 GPa is obtained for a 57 vol% diamond/resin composite. Our results indicate that with a generally monodispersed nano-sized high modulus filler, relatively high elastic modulus resin-based composite cements are possible. Time-dependent behavior of our resin composites is also investigated. This is valuable for understanding the behavior of our material and possible fatigue testing in the future. Our results indicate that with effective coupling agents and higher filler loading, viscous flow can be greatly decreased due to the

  7. Durable high strength cement concrete topping for asphalt roads

    Science.gov (United States)

    Vyrozhemskyi, Valerii; Krayushkina, Kateryna; Bidnenko, Nataliia

    2017-09-01

    Work on improving riding qualities of pavements by means of placing a thin cement layer with high roughness and strength properties on the existing asphalt pavement were conducted in Ukraine for the first time. Such pavement is called HPCM (High Performance Cementitious Material). This is a high-strength thin cement-layer pavement of 8-9 mm thickness reinforced with metal or polymer fiber of less than 5 mm length. Increased grip properties are caused by placement of stone material of 3-5 mm fraction on the concrete surface. As a result of the research, the preparation and placement technology of high-strength cement thin-layer pavement reinforced with fiber was developed to improve friction properties of existing asphalt pavements which ensures their roughness and durability. It must be emphasized that HPCM is a fundamentally new type of thin-layer pavement in which a rigid layer of 10 mm thickness is placed on a non-rigid base thereby improving riding qualities of asphalt pavement at any season of a year.

  8. Bond strength of resin cements to leucitereinforced ceramics

    Directory of Open Access Journals (Sweden)

    Rubens Nazareno Garcia

    2012-06-01

    Full Text Available Objective: The aim of this study was to evaluate the shear bond strength (SBS of two resin cements to four leucite-reinforced ceramics. Material and methods: Forty ceramic blocks (4 mm wide, 14 mm length and 2 mm thick were used and the samples abraded with aluminum oxide (90 µm. The samples were divided into eight groups (n = 5. Two resin cements (conventional RelyX ARC and self-adhesive RelyX U100 – 3M ESPE were bonded to Creapress (CRE-Creation/Klema, Finesse All-Ceramic (FIN-Dentsply/ Ceramco, IPS Empress Esthetic (IEE-Ivoclar Vivadent and Vita PM9 (PM9-Vita. For all groups and in each ceramic block, after application of 10% hydrofluoric acid and silanation, three Tygon tubings were positioned over the ceramics, which were filled in with the resin cements (light-cure for 40 s. The tubings were removed to expose the specimens in format of cylinders (area: 0.38 mm2 and samples were stored in relative humidity at 24±2 °C for one week. After this period, each sample was attached to testing machine and the specimens were submitted to shear bond test (applied at the base of the specimen/cement cylinder with a thin wire/0.2 mm at speed of 0.5 mm/ min, until failure. The results were analyzed by two-way ANOVA (resin cements and ceramic systems and Tukey test (p<0.05. Results: The means (SD were (in MPa: ARC + CRE = 32.1±4.3; ARC + FIN = 28.3±3.7; ARC + IEE = 25.9±4.4; ARC + PM9 = 22.2±2.1; U100 + CRE = 38.0±5.2; U100 + FIN = 36.9±2.8; U100 + IEE = 38.4±2.9; U100 + PM9 = 34.3 ±7.3. U100 showed higher SBS to ceramics than ARC. U100 had higher SBS when applied on IEE ceramic than on PM9. For ARC, SBS obtained with CRE was higher than with IEE and PM9. Conclusion: RelyX U100 can provide higher SBS to leucite-reinforced ceramics than conventional resin cement. The resin cements applied on the PM9 ceramic surface resulted in lower SBS.

  9. Phosphate based oil well cements

    Science.gov (United States)

    Natarajan, Ramkumar

    The main application of the cement in an oil well is to stabilize the steel casing in the borehole and protect it from corrosion. The cement is pumped through the borehole and is pushed upwards through the annulus between the casing and the formation. The cement will be exposed to temperature and pressure gradients of the borehole. Modified Portland cement that is being used presently has several shortcomings for borehole sealant. The setting of the Portland cement in permafrost regions is poor because the water in it will freeze even before the cement sets and because of high porosity and calcium oxide, a major ingredient it gets easily affected by the down hole gases such as carbon dioxide. The concept of phosphate bonded cements was born out of considerable work at Argonne National Laboratory (ANL) on their use in stabilization of radioactive and hazardous wastes. Novel cements were synthesized by an acid base reaction between a metal oxide and acid phosphate solution. The major objective of this research is to develop phosphate based oil well cements. We have used thermodynamics along with solution chemistry principles to select calcined magnesium oxide as candidate metal oxide for temperatures up to 200°F (93.3°C) and alumina for temperatures greater than 200°F (93.3°C). Solution chemistry helped us in selecting mono potassium phosphate as the acid component for temperatures less than 200°F (93.3°C) and phosphoric acid solution greater than 200°F (93.3°C). These phosphate cements have performance superior to common Portland well cements in providing suitable thickening time, better mechanical and physical properties.

  10. Thermal Shock-resistant Cement

    Energy Technology Data Exchange (ETDEWEB)

    Sugama T.; Pyatina, T.; Gill, S.

    2012-02-01

    We studied the effectiveness of sodium silicate-activated Class F fly ash in improving the thermal shock resistance and in extending the onset of hydration of Secar #80 refractory cement. When the dry mix cement, consisting of Secar #80, Class F fly ash, and sodium silicate, came in contact with water, NaOH derived from the dissolution of sodium silicate preferentially reacted with Class F fly ash, rather than the #80, to dissociate silicate anions from Class F fly ash. Then, these dissociated silicate ions delayed significantly the hydration of #80 possessing a rapid setting behavior. We undertook a multiple heating -water cooling quenching-cycle test to evaluate the cement’s resistance to thermal shock. In one cycle, we heated the 200 and #61616;C-autoclaved cement at 500 and #61616;C for 24 hours, and then the heated cement was rapidly immersed in water at 25 and #61616;C. This cycle was repeated five times. The phase composition of the autoclaved #80/Class F fly ash blend cements comprised four crystalline hydration products, boehmite, katoite, hydrogrossular, and hydroxysodalite, responsible for strengthening cement. After a test of 5-cycle heat-water quenching, we observed three crystalline phase-transformations in this autoclaved cement: boehmite and #61614; and #61543;-Al2O3, katoite and #61614; calcite, and hydroxysodalite and #61614; carbonated sodalite. Among those, the hydroxysodalite and #61614; carbonated sodalite transformation not only played a pivotal role in densifying the cementitious structure and in sustaining the original compressive strength developed after autoclaving, but also offered an improved resistance of the #80 cement to thermal shock. In contrast, autoclaved Class G well cement with and without Class F fly ash and quartz flour failed this cycle test, generating multiple cracks in the cement. The major reason for such impairment was the hydration of lime derived from the dehydroxylation of portlandite formed in the autoclaved

  11. Durability of cracked fibre reinforced concrete structures

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place

    1998-01-01

    Durability studies are carried out at BKM as part of the research project "Design Methods for Fibre Reinforced Concrete" (FRC) involving BKM, The Concrete Research Center at DTI, Building Technology at Aalborg University, Rambøll, 4K-Beton and Rasmussen & Schiøtz. Concrete beams with or without...... structure are made on specimens drilled or sawed from beams after unloading (mechanical load). The pore structure of the concretes will be studied by microscopy, sorption and suction curves. The test programme involves three different concrete qualities (water-cement ratios). Both steel fibres (ZP...

  12. Plastic zone analysis and support optimization of shallow roadway with weakly cemented soft strata

    Institute of Scientific and Technical Information of China (English)

    Zhang Jihua; Wang Lianguo; Li Qinghai; Zhu Shuangshuang

    2015-01-01

    Based on a shallow roadway with weakly cemented soft strata in western China, this paper studies the range and degree of plastic zones in soft strata roadways with weak cementation. Geological radars were used to monitor the loose range and level of surrounding rocks. A mechanical model of weakly cemented roadway was established, including granular material based on the measured results. The model was then used to determine the plastic zone radium. The predicted results agree well with measured results which provide valuable theoretical references for the analysis of surrounding rock stability and support reinforcing design of weakly cemented roadways. Finally, a combined supporting scheme of whole sec-tion bolting and grouting was proposed based on the original supporting scheme. It is proved that this support plan can effectively control the deformation and plastic zone expansion of the roadway sur-rounding rock and thus ensure the long-term stable and safe mining.

  13. Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress

    Energy Technology Data Exchange (ETDEWEB)

    Papadakis, V.G.

    2000-02-01

    In this work the durability of Portland cement systems incorporating supplementary cementing materials (SCM; silica fume, low- and high-calcium fly ash) is investigated. Experimental tests simulating the main deterioration mechanisms is reinforced concrete (carbonation and chloride penetration) were carried out. It was found that for all SCM tested, the carbonation depth decreases as aggregate replacement by SCM increases, and increases as cement replacement by SCM increases. The specimens incorporating an SCM, whether it substitutes aggregate or cement, when exposed to chlorides exhibit significantly lower total chloride content for all depths from the surface, apart from a thin layer near the external surface. New parameter values were estimated and existing mathematical models were modified to describe the carbonation propagation and the chloride penetration in concrete incorporating SCM.

  14. Influence of polymeric additives on the cohesion and mechanical properties of calcium phosphate cements.

    Science.gov (United States)

    An, Jie; Wolke, Joop G C; Jansen, John A; Leeuwenburgh, Sander C G

    2016-03-01

    To expand the clinical applicability of calcium phosphate cements (CPCs) to load-bearing anatomical sites, the mechanical and setting properties of CPCs need to be improved. Specifically, organic additives need to be developed that can overcome the disintegration and brittleness of CPCs. Hence, we compared two conventional polymeric additives (i.e. carboxylmethylcellulose (CMC) and hyaluronan (HA)) with a novel organic additive that was designed to bind to calcium phosphate, i.e. hyaluronan-bisphosphonate (HABP). The unmodified cement used in this study consisted of a powder phase of α-tricalcium phosphate (α-TCP) and liquid phase of 4% NaH2PO4·2H2O, while the modified cements were fabricated by adding 0.75 or 1.5 wt% of the polymeric additive to the cement. The cohesion of α-TCP was improved considerably by the addition of CMC and HABP. None of the additives improved the compression and bending strength of the cements, but the addition of 0.75% HABP resulted into a significantly increased cement toughness as compared to the other experimental groups. The stimulatory effects of HABP on the cohesion and toughness of the cements is hypothesized to derive from the strong affinity between the polymer-grafted bisphosphonate ligands and the calcium ions in the cement matrix.

  15. Cytotoxic effects of new MTA-based cement formulations on fibroblast-like MDPL-20 cells.

    Science.gov (United States)

    Garcia, Lucas da Fonseca Roberti; Santos, Alailson Domingos dos; Moraes, João Carlos Silos; Costa, Carlos Alberto de Souza

    2016-01-01

    The present study aimed at evaluating the cytotoxic effects of a novel cement called CER on periodontal fibroblast-like cells of mice (MDPL-20), in comparison with different formulations of Mineral Trioxide Aggregate (MTA), by means of the cell viability test (MTT) and cell morphology analysis. Thirty-two round-shaped samples were fabricated with the following cements: white MTA, white and gray CER and experimental white MTA. The samples were immersed in serum-free culture medium for 24 hours or 7 days (n = 16). The extracts (culture medium + components released from the cements) were applied for 24 hours to previously cultured cells (40.000 cells/cm2) in the wells of 24-well plates. Cells seeded in complete culture medium were used as a negative control. Cell viability was assessed using the MTT assay. Two samples of each cement were used for cell morphology analysis by Scanning Electron Microscopy (SEM). The extracts obtained at the 7-day period presented higher cytotoxicity compared with the 24-hour period (p MTA presented the lowest, similar to the control (p > 0.05). However, at the 7-day period, the experimental white MTA presented no significant difference in comparison with the other cements (p > 0.05). At the 7-day period, CER cement presented cytotoxic effects on fibroblast-like cells, similar to different MTA formulations. However, the immersion period in the culture medium influenced the cytotoxicity of the cements, which was greater for CER cement at 24 hours.

  16. Incorporation of a controlled-release glass into a calcium phosphate cement.

    Science.gov (United States)

    Khairoun, I; Boltong, M G; Gil, F J; Driessens, F C; Planell, J A; Seijas, M M; Martínez, S

    1999-04-01

    A so-called controlled-release glass was synthesized occurring in the system CaO-Na2O-P2O5. A certain sieve fraction of this glass was incorporated in a calcium phosphate cement, of which the powder contained alpha-tricalcium phosphate (alpha-TCP), dicalcium phosphate (DCP) and precipitated hydroxyapatite (HA). The glass appeared to retard the cement setting slightly and it reduced considerably the compressive strength after aging in aqueous solutions which were continuously refreshed. Scanning electron microscope (SEM) pictures and X-ray diffraction (XRD) patterns of the samples after 5 weeks of aging showed that the glass was not dissolved but that large brushite crystals were formed. Thereby, aging in CaCl2 solutions resulted in more brushite formation than aging in NaCl solutions. The brushite crystals did not reinforce the cement. Neither was the aged glass-containing cement weaker than it was before the brushite formation right after complete setting. In conclusion, the incorporation of controlled-release glasses into a calcium phosphate cement and subsequent aging in aqueous solutions did not result in the formation of macropores in the cement structure, but that of brushite crystals. This incorporation reduced the compressive strength of the cement considerably.

  17. In situ 3D monitoring of corrosion on carbon steel and ferritic stainless steel embedded in cement paste

    KAUST Repository

    Itty, Pierre-Adrien

    2014-06-01

    In a X-ray microcomputed tomography study, active corrosion was induced by galvanostatically corroding steel embedded in cement paste. The results give insight into corrosion product build up, crack formation, leaching of products into the cracks and voids, and differences in morphology of corrosion attack in the case of carbon steel or stainless steel reinforcement. Carbon steel was homogeneously etched away with a homogeneous layer of corrosion products forming at the steel/cement paste interface. For ferritic stainless steel, pits were forming, concentrating the corrosion products locally, which led to more extensive damage on the cement paste cover. © 2014 Elsevier Ltd.

  18. Magnesium oxychloride cement concrete

    Indian Academy of Sciences (India)

    A K Misra; Renu Mathur

    2007-06-01

    The scope of magnesium oxychloride (MOC) cement in concrete works has been evaluated. MOC cement concrete compositions of varying strengths having good placing and finishing characteristics were prepared and investigated for their compressive and flexural strengths, -values, abrasion resistance etc. The durability of MOC concrete compositions against extreme environmental conditions viz. heating–cooling, freezing–thawing, wetting–drying and penetration and deposition of salts etc were investigated. The results reveal that MOC concrete has high compressive strength associated with high flexural strength and the ratio of compressive to flexural strength varies between 6 and 8. The elastic moduli of the compositions studied are found to be 23–85 GPa and the abrasion losses between 0.11 and 0.20%. While alternate heating–cooling cycles have no adverse effect on MOC concrete, it can be made durable against freezing–thawing and the excessive exposure to water and salt attack by replacing 10% magnesium chloride solution by magnesium sulphate solution of the same concentration.

  19. Cemented total hip arthroplasty with Boneloc bone cement.

    Science.gov (United States)

    Markel, D C; Hoard, D B; Porretta, C A

    2001-01-01

    Boneloc cement (WK-345, Biomet Inc, Warsaw, Ind) attempted to improve cement characteristics by reducing exotherm during polymerization, lowering residual monomer and solubility, raising molecular weight, and lowering airborne monomer and aromatic amines. To study the efficacy of this cement, a selected group of 20 patients were prospectively enrolled and followed up after hip arthroplasty. All components were cemented. During the enrollment period, approximately 70 other hip arthroplasties were performed. Clinical evaluation was based on the Harris hip score. Radiographic evaluation was based on assessment of position of the components, subsidence, and/or presence of radiolucencies. Patients had follow-up for an average of 42 months (11 to 58 months); 1 was lost to follow-up. Of these, 7 (35%) had failure at last follow-up. Despite its initial promise, Boneloc cement had an unacceptably high failure rate over a relatively short follow-up period and is not recommended for use. Despite the longevity and odor toxicity problems with conventional bone cement, new cement technologies must be approached with caution.

  20. 球囊扩张硫酸钙骨水泥椎体增强与后外侧植骨融合治疗胸腰椎爆裂性骨折的疗效比较%Balloon vertebroplasty reinforced by injectable calcium sulfate cement versus posterolateral fusion for treatment of thoracolumbar burst fractures

    Institute of Scientific and Technical Information of China (English)

    贾其余; 杨宁; 俞宇; 王林; 胡联英; 郑曙翘

    2015-01-01

    目的 比较球囊扩张硫酸钙骨水泥(CSC)椎体增强与后外侧植骨融合结合短节段经伤椎椎弓根钉固定治疗胸腰椎爆裂性骨折的疗效. 方法 对2011年6月至2013年12月手术治疗的44例胸腰椎爆裂性骨折患者资料进行回顾性研究,男30例,女14例;年龄20 ~ 60岁,平均42.5岁.根据治疗方法不同分为球囊扩张CSC椎体增强组(PKP组,22例,采用短节段经伤椎椎弓根复位、固定,再通过球囊扩张复位伤椎塌陷终板并注入CSC治疗)和后外侧植骨组(植骨融合组,22例,采用短节段经伤椎椎弓根复位、固定及后外侧植骨治疗).比较分析两组患者术前、术后、内固定取出前及末次随访时视觉模拟评分(VAS)、Oswestry功能障碍指数(ODI)、伤椎前缘高度比、伤椎中央高度比、伤椎楔变角、矢状面cobb角等指标. 结果 所有患者术后获18 ~46个月(平均24个月)随访.所有患者术后和末次随访时的VAS评分和ODI均较术前改善,差异有统计学意义(P<0.05).术后1周的VAS评分和ODI与末次随访时比较,差异均无统计学意义(P>0.05).术后1周伤椎中央高度比和伤椎楔变角间两组间比较差异均有统计学意义(P<0.05),PKP组优于植骨融合组.末次随访时伤椎前缘高度比、伤椎中央高度比、伤椎楔变角、矢状面cobb角两组间比较差异均有统计学意义(P<0.05),PKP组矫正丢失更少. 结论 球囊扩张CSC椎体增强较后外侧植骨融合早期可更好地恢复伤椎形态和脊柱前、中柱的稳定性,减少矫正度丢失,并在内固定取出后保留了脊柱运动节段功能.%Objective To compare the clinical curative effects of balloon vertebroplasty reinforced by injectable calcium sulfate cement (CSC) and posterolateral fusion after short-segment pedicle screw fixation through the fractured vertebra in treatment of thoracolumbar burst fractures.Methods From June 2011 to December 2013, 44 patients with single

  1. Retention of long-term interim restorations with sodium fluoride enriched interim cement

    Science.gov (United States)

    Strash, Carolyn

    Purpose: Interim fixed dental prostheses, or "provisional restorations", are fabricated to restore teeth when definitive prostheses are made indirectly. Patients undergoing extensive prosthodontic treatment frequently require provisionalization for several months or years. The ideal interim cement would retain the restoration for as long as needed and still allow for ease of removal. It would also avoid recurrent caries by preventing demineralization of tooth structure. This study aims to determine if adding sodium fluoride varnish to interim cement may assist in the retention of interim restorations. Materials and methods: stainless steel dies representing a crown preparation were fabricated. Provisional crowns were milled for the dies using CAD/CAM technology. Crowns were provisionally cemented onto the dies using TempBond NE and NexTemp provisional cements as well as a mixture of TempBond NE and Duraphat fluoride varnish. Samples were stored for 24h then tested or thermocycled for 2500 or 5000 cycles before being tested. Retentive strength of each cement was recorded using a universal testing machine. Results: TempBond NE and NexTemp cements performed similarly when tested after 24h. The addition of Duraphat significantly decreased the retention when added to TempBond NE. NexTemp cement had high variability in retention over all tested time periods. Thermocycling for 2500 and 5000 cycles significantly decreased the retention of all cements. Conclusions: The addition of Duraphat fluoride varnish significantly decreased the retention of TempBond NE and is therefore not recommended for clinical use. Thermocycling significantly reduced the retention of TempBond NE and NexTemp. This may suggest that use of these cements for three months, as simulated in this study, is not recommended.

  2. Use of Solid Waste (Foundry Slag) Mortar and Bamboo Reinforcement in Seismic Analysis for Single Storey Masonry Building

    Science.gov (United States)

    Ahmad, S.; Husain, A.; Ghani, F.; Alam, M. N.

    2013-11-01

    The conversion of large amount of solid waste (foundry slag) into alternate source of building material will contribute not only as a solution to growing waste problem, but also it will conserve the natural resources of other building material and thereby reduce the cost of construction. The present work makes an effort to safe and economic use of recycle mortar (1:6) as a supplementary material. Conventional and recycled twelve prisms were casted with varying percentage of solid waste (foundry slag) added (0, 10, 20, 30 %) replacing cement by weight and tested under compression testing machine. As the replacement is increasing, the strength is decreasing. 10 % replacement curve is very closed to 0 % whereas 20 % is farther and 30 % is farthest. 20 % replacement was chosen for dynamic testing as its strength is within permissible limit as per IS code. A 1:4 scale single storey brick model with half size brick was fabricated on shake table in the lab for dynamic testing using pure friction isolation system (coarse sand as friction material µ = 0.34). Pure friction isolation technique can be adopted economically in developing countries where low-rise building prevails due to their low cost. The superstructure was separated from the foundation at plinth level, so as to permit sliding of superstructure during severe earthquake. The observed values of acceleration and displacement responses compare fairly with the analytical values of the analytical model. It also concluded that 20 % replacement of cement by solid waste (foundry slag) could be safely adopted without endangering the safety of the masonry structures under seismic load.To have an idea that how much energy is dissipated through this isolation, the same model with fixed base was tested and results were compared with the isolated free sliding model and it has been observed that more than 60 % energy is dissipated through this pure friction isolation technique. In case of base isolation, no visible cracks

  3. Advance study of fiber-reinforced self-compacting concrete

    Energy Technology Data Exchange (ETDEWEB)

    Mironova, M., E-mail: mirona@imbm.bas.bg; Ivanova, M., E-mail: magdalena.ivanova@imbm.bas.bg; Naidenov, V., E-mail: valna53@mail.bg [Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 4, Sofia 1113 (Bulgaria); Georgiev, I., E-mail: ivan.georgiev@parallel.bas.bg [Institute of Information and Communication Technologies & Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., Sofia 1113 (Bulgaria); Stary, J., E-mail: stary@ugn.cas.cz [Institute of Geonics Czech Academy of Sciences, Studentska str., Ostrava 1768 (Czech Republic)

    2015-10-28

    Incorporation in concrete composition of steel macro- and micro – fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete.

  4. Advance study of fiber-reinforced self-compacting concrete

    Science.gov (United States)

    Mironova, M.; Ivanova, M.; Naidenov, V.; Georgiev, I.; Stary, J.

    2015-10-01

    Incorporation in concrete composition of steel macro- and micro - fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete.

  5. Sustainability assessment of concrete structure durability under reinforcement corrosion

    DEFF Research Database (Denmark)

    Thybo, Anna Emilie A.; Michel, Alexander; Stang, Henrik

    In the present paper a parametric study is conducted based on an existing finite element based model. The influence of cover layer, reinforcement diameter and water-to-cement ratio is compared to a possible scatter in the results due to insufficient knowledge about the distribution of the corrosion...... current density along the circumference of the reinforcement. Simulations show that the scatter has a greater influence on the results than changing the parameters wherefore it is concluded that further investigation of the non-uniform deposition of corrosion products is essential to better understand...

  6. 21 CFR 888.4200 - Cement dispenser.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement dispenser. 888.4200 Section 888.4200 Food... DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4200 Cement dispenser. (a) Identification. A cement dispenser is a nonpowered syringe-like device intended for use in placing bone cement (§ 888.3027)...

  7. Characteristics of Impact Damage and Post-Impact Strength in Glass-Fibre-Reinforced Plastics with Different Reinforcement Architecture

    Directory of Open Access Journals (Sweden)

    Michał BARCIKOWSKI

    2013-12-01

    Full Text Available Fiber-reinforced plastics (FRP are nowadays used commonly for constructions subjected to impacts of different energies and velocities; therefore, the problem of impact resistance is crucial. This paper presents the results of high-velocity impact tests and post-impact evaluation of damage in glass-fiber-reinforced plastics, depending on the architecture of reinforcing material (different woven fabrics, mat. Composites reinforced with continuous-filament mat, woven roving, roving fabric and twisted-yarn fabric were prepared and subjected to intermediate- and high-velocity impact. After the ballistic impact, damage extent and residual strength, as well as water leakage through the composites, were evaluated. The damage was also investigated under a microscope. The damage extent was confirmed to be linearly dependent on impact energy. The addition of rubber was found to decrease damage extent and increase post-impact residual strength, as well as decrease water leakage rate.

  8. Fabrication Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Fabrication Facilities are a direct result of years of testing support. Through years of experience, the three fabrication facilities (Fort Hood, Fort Lewis, and...

  9. Cements containing by-product gypsum

    Energy Technology Data Exchange (ETDEWEB)

    Bensted, J. [University of Greenwich, London (United Kingdom). School of Biological and Chemical Sciences

    1995-12-31

    Chemical by-product gypsum can readily replace natural gypsum in Portland cements and in blended cements like Portland pfa cement and Portland blast furnace cement without technical detriment in many instances. Indeed, sometimes the technical performance of the cement can be enhanced. The hydration chemistry is often changed, in that where there is at least some retardation of setting, more AFT phase (ettringite) is formed during early hydration at the expense of calcium silicate hydrates. By-product gypsum can also replace natural gypsum in speciality products like calcium aluminate cement-Portland cement mixes for producing quick setting cements and in calcium sulphoaluminate-type expansive cements. However, by-products gypsum have proved to be less successful for utilization in API Classes of oilwell cements, because of the greater difficulty in obtaining batch-to-batch consistency in properties like thickening time and slurry rheology. 11 refs., 3 figs., 5 tabs.

  10. Nano-Inclusions Applied in Cement-Matrix Composites: A Review

    Directory of Open Access Journals (Sweden)

    Guillermo Bastos

    2016-12-01

    Full Text Available Research on cement-based materials is trying to exploit the synergies that nanomaterials can provide. This paper describes the findings reported in the last decade on the improvement of these materials regarding, on the one hand, their mechanical performance and, on the other hand, the new properties they provide. These features are mainly based on the electrical and chemical characteristics of nanomaterials, thus allowing cement-based elements to acquire “smart” functions. In this paper, we provide a quantitative approach to the reinforcements achieved to date. The fundamental concepts of nanoscience are introduced and the need of both sophisticated devices to identify nanostructures and techniques to disperse nanomaterials in the cement paste are also highlighted. Promising results have been obtained, but, in order to turn these advances into commercial products, technical, social and standardisation barriers should be overcome. From the results collected, it can be deduced that nanomaterials are able to reduce the consumption of cement because of their reinforcing effect, as well as to convert cement-based products into electric/thermal sensors or crack repairing materials. The main obstacle to foster the implementation of such applications worldwide is the high cost of their synthesis and dispersion techniques, especially for carbon nanotubes and graphene oxide.

  11. 先驱体转化法制备连续纤维增韧陶瓷基复合材料的研究进展%Research and Development of Continuous-Fiber-Reinforced Ceramic Matrix Composites Fabricated by Precursor-Infiltration-Pyrolysis

    Institute of Scientific and Technical Information of China (English)

    李涛; 陈秋阳; 匡乃航; 王非; 王智博

    2014-01-01

    The research and development of continuous-fiber-reinforced ceramic matrix composites fabricated by pre-cursor-infiltration-pyrolysis was reviewed in this paper .The studies on precursor , fiber and properties were included .The ceramic matrix composites application and development prospects were pointed out at last .%介绍了先驱体转化法制备连续纤维增强陶瓷基复合材料的研究现状,简要综述了聚碳硅烷、聚硅氮烷、聚硅氧烷3种先驱体的研究现状以及增强纤维的种类。分析了陶瓷基复合材料的应用现状和今后的研究方向。

  12. Development of Advanced Cement-Based Building Products

    Institute of Scientific and Technical Information of China (English)

    Zongjin LI; Bin MU; Stanley N.C.CHIU

    2000-01-01

    @@ In this study, short fiber-reinforced cement-based building products of sheets, pipes and honeycomb panels incorporating various mineral admixtures such as slag, silica fume, and metakaolin have been developed by the extrusion technique. The experimental works have shown that these products do have very good mechanical properties. Since the key point for a successful extrusion is the properly designed rheology which controls both internal and external flow properties of ext rudate, a nonlinear viscoelastic model was applied to investigate the rheology behavior of a movable fresh cementitious composite in a single screw extruder channel. The theoretical analysis is used to guide the practical manufacturing.

  13. Cement for Oil Well Cementing Operations in Ghana

    African Journals Online (AJOL)

    Michael

    This research evaluates the ... The paper details results of API specification tests and the physical ... Keywords: Compressive strength, Free fluid, Portland cement, Rheology, Thickening time ..... Geothermal Well Cementing” Proceedings of.

  14. Chloride adsorption by calcined layered double hydroxides in hardened Portland cement paste

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Seyoon [School of Engineering, Kings College, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom); Moon, Juhyuk, E-mail: juhyuk.moon@stonybrook.edu [Civil Engineering Program, Department of Mechanical Engineering, State University of New York at Stony Brook, New York 11794 (United States); Bae, Sungchul [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States); Duan, Xiaonan [Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853 (United States); Giannelis, Emmanuel P. [Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853 (United States); Center for Refining and Petrochemicals, The Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Monteiro, Paulo M. [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States)

    2014-06-01

    This study investigated the feasibility of using calcined layered double hydroxides (CLDHs) to prevent chloride-induced deterioration in reinforced concrete. CLDHs not only adsorbed chloride ions in aqueous solution with a memory effect but also had a much higher binding capacity than the original layered double hydroxides (LDHs) in the cement matrix. We investigated this adsorption in hardened cement paste in batch cultures to determine adsorption isotherms. The measured and theoretical binding capacities (153 mg g{sup −1} and 257 mg g{sup −1}, respectively) of the CLDHs were comparable to the theoretical capacity of Friedel's salt (2 mol mol{sup −1} or 121 mg g{sup −1}), which belongs to the LDH family among cementitious phases. We simulated chloride adsorption by CLDHs through the cement matrix using the Fickian model and compared the simulation result to the X-ray fluorescence (XRF) chlorine map. Based on our results, it is proposed that the adsorption process is governed by the chloride transport through the cement matrix; this process differs from that in an aqueous solution. X-ray diffraction (XRD) analysis showed that the CLDH rebuilds the layered structure in a cementitious environment, thereby demonstrating the feasibility of applying CLDHs to the cement and concrete industries. - Highlights: • We examine the adsorption equilibrium and kinetics of CLDH in the hydrated cement. • CLDH capacity to bind chloride ions in the hydrated cement paste is determined. • We model chloride adsorption by CLDH through the cement matrix. • CLDH reforms the layered structure with ion adsorption in the cement matrix.

  15. CNT Reinforced Silver Nanocomposites: Mechanical and Electrical Studies

    Directory of Open Access Journals (Sweden)

    Dinesh Kumar

    2016-01-01

    Full Text Available Nanoindentation hardness and elastic modulus of the silver/MWCNT (multiwalled carbon nanotubes composites, fabricated by modified wet mixing technique, are studied in the present work. CNT reinforced silver nanocomposites, fabricated by introducing 4.5 volume percentages of CNT in the silver matrix, have increased elastic modulus and approximately 50% higher hardness than pure nanosilver. It is also observed from the results that the electrical conductivity of the fabricated materials was decreased by increasing the CNTs volume %.

  16. Management of Reinforcement Corrosion

    DEFF Research Database (Denmark)

    Küter, André; Geiker, Mette Rica; Møller, Per

    Reinforcement corrosion is the most important cause for deterioration of reinforced concrete structures, both with regard to costs and consequences. Thermodynamically consistent descriptions of corrosion mechanisms are expected to allow the development of innovative concepts for the management...... of reinforcement corrosion....

  17. Partial Planning Reinforcement Learning

    Science.gov (United States)

    2012-08-31

    This project explored several problems in the areas of reinforcement learning , probabilistic planning, and transfer learning. In particular, it...studied Bayesian Optimization for model-based and model-free reinforcement learning , transfer in the context of model-free reinforcement learning based on

  18. Variable Resolution Reinforcement Learning.

    Science.gov (United States)

    1995-04-01

    Can reinforcement learning ever become a practical method for real control problems? This paper begins by reviewing three reinforcement learning algorithms... reinforcement learning . In addition to exploring state space, and developing a control policy to achieve a task, partigame also learns a kd-tree partitioning of

  19. Corrosion Effects on the Strength Properties of Steel Fibre Reinforced Concrete Containing Slag and Corrosion Inhibitor

    OpenAIRE

    Sivakumar Anandan; Sounthararajan Vallarasu Manoharan; Thirumurugan Sengottian

    2014-01-01

    Corrosion in steel can be detrimental in any steel rebar reinforced concrete as well as in the case of steel fibre reinforced concrete. The process of corrosion occurring in steel fibre incorporated concrete subjected to corrosive environment was systematically evaluated in this study. Concrete specimens were prepared with steel fibre inclusions at 1.5% Vf (volume fraction) of concrete and were added in slag based concrete (containing manufactured sand) and replaced with cement at 20%, 40%, ...

  20. Magnesium substitution in brushite cements.

    Science.gov (United States)

    Alkhraisat, Mohammad Hamdan; Cabrejos-Azama, Jatsue; Rodríguez, Carmen Rueda; Jerez, Luis Blanco; Cabarcos, Enrique López

    2013-01-01

    The use of magnesium-doped ceramics has been described to modify brushite cements and improve their biological behavior. However, few studies have analyzed the efficiency of this approach to induce magnesium substitution in brushite crystals. Mg-doped ceramics composed of Mg-substituted β-TCP, stanfieldite and/or farringtonite were reacted with primary monocalcium phosphate (MCP) in the presence of water. The cement setting reaction has resulted in the formation of brushite and newberyite within the cement matrix. Interestingly, the combination of SAED and EDX analyses of single crystal has indicated the occurrence of magnesium substitution within brushite crystals. Moreover, the effect of magnesium ions on the structure, and mechanical and setting properties of the new cements was characterized as well as the release of Ca(2+) and Mg(2+) ions. Further research would enhance the efficiency of the system to incorporate larger amounts of magnesium ions within brushite crystals.

  1. Waiting Time for Coronal Preparation and the Influence of Different Cements on Tensile Strength of Metal Posts

    Directory of Open Access Journals (Sweden)

    Ilione Kruschewsky Costa Sousa Oliveira

    2012-01-01

    Full Text Available This study aimed to assess the effect of post-cementation waiting time for core preparation of cemented cast posts and cores had on retention in the root canal, using two different luting materials. Sixty extracted human canines were sectioned 16 mm from the root apex. After cast nickel-chromium metal posts and cores were fabricated and luted with zinc phosphate (ZP cement or resin cement (RC, the specimens were divided into 3 groups (n = 10 according to the waiting time for core preparation: no preparation (control, 15 minutes, or 1 week after the core cementation. At the appropriate time, the specimens were subjected to a tensile load test (0.5 mm/min until failure. Two-way ANOVA (time versus cement and the Tukey tests (P < 0.05 showed significantly higher (P < 0.05 tensile strength values for the ZP cement groups than for the RC groups. Core preparation and post-cementation waiting time for core recontouring did not influence the retention strength. ZP was the best material for intraradicular metal post cementation.

  2. Soil Reinforcement Techniques

    Directory of Open Access Journals (Sweden)

    Prashant Patil

    2016-08-01

    Full Text Available In many activities concerned with the use of soil, the physical properties like Stiffness, Compressibility and Strength are some of the few important parameters to be considered. Of the many methods involved in improvement of soil properties, soil reinforcement is method concerned with increase of strength properties of soil. In soil reinforcement, the reinforcements or resisting element are of different materials and of various forms depending upon the intended use. The reinforcement can be provided permanently or temporarily to increase strength of adjacent structures. The present topic of discussion involves different materials, forms and applications of soil reinforcement

  3. Portland cement-blast furnace slag blends in oilwell cementing applications

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, D.T.; DiLullo, G.; Hibbeler, J. [and others

    1995-12-31

    Recent investigations of blast furnace slag cementing technologies. have been expanded to include Portland cement/blast furnace slag blends. Mixtures of Portland cement and blast furnace slag, while having a long history of use in the construction industry, have not been used extensively in oilwell cementing applications. Test results indicate that blending blast furnace slag with Portland cement produces a high quality well cementing material. Presented are the design guidelines and laboratory test data relative to mixtures of blast furnace slag and Portland cements. Case histories delineating the use of blast furnace slag - Portland cement blends infield applications are also included.

  4. Microstructure and Mechanical Properties of Calcium Phosphate Cement/Gelatine Composite Scaffold with Oriented Pore Structure for Bone Tissue Engineering

    Institute of Scientific and Technical Information of China (English)

    QI Xiaopeng; HE Fupo; YE Jiandong

    2012-01-01

    The macroporous calcium phosphate(CPC) cement with oriented pore structure was prepared by freeze casting.SEM observation showed that the macropores in the porous calcium phosphate cement were interconnected aligned along the ice growth direction.The porosity of the as-prepared porous CPC was measured to be 87.6% by Archimede's principle.XRD patterns of specimens showed that poorly crystallized hydroxyapatite was the main phase present in the hydrated porous calcium phosphate cement.To improve the mechanical properties of the CPC scaffold,the 15% gelatine solution was infiltrated into the pores under vacuum and then the samples were freeze dried to form the CPC/gelatine composite scaffolds.After reinforced with gelatine,the compressive strength of CPC/gelatine composite increased to 5.12 MPa,around fifty times greater than that of the unreinforced macroporous CPC scaffold,which was only 0.1 MPa.And the toughness of the scaffold has been greatly improved via the gelatine reinforcement with a much greater fracture strain.SEM examination of the specimens indicated good bonding between the cement and gelatine.Participating the external load by the deformable gelatine,patching the defects of the CPC pores wall,and crack deflection were supposed to be the reinforcement mechanisms.In conclusion,the calcium phosphate cement/gelatine composite with oriented pore structure prepared in this work might be a potential scaffold for bone tissue engineering.

  5. Habituation of reinforcer effectiveness

    Directory of Open Access Journals (Sweden)

    David R Lloyd

    2014-01-01

    Full Text Available In this paper we propose an integrative model of habituation of reinforcer effectiveness (HRE that links behavioral and neural based explanations of reinforcement. We argue that habituation of reinforcer effectiveness (HRE is a fundamental property of reinforcing stimuli. Most reinforcement models implicitly suggest that the effectiveness of a reinforcer is stable across repeated presentations. In contrast, an HRE approach predicts decreased effectiveness due to repeated presentation. We argue that repeated presentation of reinforcing stimuli decreases their effectiveness and that these decreases are described by the behavioral characteristics of habituation (McSweeney and Murphy, 2009;Rankin et al., 2009. We describe a neural model that postulates a positive association between dopamine neurotransmission and HRE. We present evidence that stimulant drugs, which artificially increase dopamine neurotransmission, disrupt (slow normally occurring HRE and also provide evidence that stimulant drugs have differential effects on operant responding maintained by reinforcers with rapid vs. slow HRE rates. We hypothesize that abnormal HRE due to genetic and/or environmental factors may underlie some behavioral disorders. For example, recent research indicates that slow-HRE is predictive of obesity. In contrast ADHD may reflect ‘accelerated-HRE’. Consideration of HRE is important for the development of effective reinforcement based treatments. Finally, we point out that most of the reinforcing stimuli that regulate daily behavior are non-consumable environmental/social reinforcers which have rapid-HRE. The almost exclusive use of consumable reinforcers with slow-HRE in pre-clinical studies with animals may have caused the importance of HRE to be overlooked. Further study of reinforcing stimuli with rapid-HRE is needed in order to understand how habituation and reinforcement interact and regulate behavior.

  6. Interfacial fracture of dentin adhesively bonded to quartz-fiber reinforced composite

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Renata M. [Department of Dental Materials and Pronsthodontics at Sao Jose dos Campos Dental Shool, Sao Paulo State University (UNESP), Sao Jose dos Campos, Sao Paulo 12245-820 (Brazil); Rahbar, Nima, E-mail: nrahbar@umassd.edu [Department of Civil and Environmental Engineering, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02720 (United States); Soboyejo, Wole [Department of Mechanical and Aerospace Engineering, Princeton Institute of Science and Technology of Materials (PRISM), Princeton University, Princeton, New Jersey 08544 (United States)

    2011-05-10

    The paper presents the results of an experimental study of interfacial failure in a multilayered structure consisting of a dentin/resin cement/quartz-fiber reinforced composite (FRC). Slices of dentin close to the pulp chamber were sandwiched by two half-circle discs made of a quartz-fiber reinforced composite, bonded with bonding agent (All-bond 2, BISCO, Schaumburg) and resin cement (Duo-link, BISCO, Schaumburg) to make Brazil-nut sandwich specimens for interfacial toughness testing. Interfacial fracture toughness (strain energy release rate, G) was measured as a function of mode mixity by changing loading angles from 0 deg. to 15 deg. The interfacial fracture surfaces were then examined using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDX) to determine the failure modes when loading angles changed. A computational model was also developed to calculate the driving forces, stress intensity factors and mode mixities. Interfacial toughness increased from {approx} 1.5 to 3.2 J/m{sup 2} when the loading angle increases from {approx} 0 to 15 deg. The hybridized dentin/cement interface appeared to be tougher than the resin cement/quartz-fiber reinforced epoxy. The Brazil-nut sandwich specimen was a suitable method to investigate the mechanical integrity of dentin/cement/FRC interfaces.

  7. Low pH Cements

    Energy Technology Data Exchange (ETDEWEB)

    Savage, David; Benbow, Steven [Quintessa Ltd., Henley-on-Thames (United Kingdom)

    2007-05-15

    The development of low-pH cements for use in geological repositories for radioactive waste stems from concerns over the potential for deleterious effects upon the host rock and other EBS materials (notably bentonite) under the hyperalkaline conditions (pH > 12) of cement pore fluids. Low pH cement (also known as low heat cement) was developed by the cement industry for use where large masses of cement (e.g. dams) could cause problems regarding heat generated during curing. In low pH cements, the amount of cement is reduced by substitution of materials such as fly ash, blast furnace slag, silica fume, and/or non-pozzolanic silica flour. SKB and Posiva have ruled out the use of blast furnace slag and fly-ash and are focusing on silica fume as a blending agent. Currently, no preferred composition has been identified by these agencies. SKB and Posiva have defined a pH limit {<=} 11 for cement grout leachates. To attain this pH, blending agents must comprise at least 50 wt % of dry materials. Because low pH cement has little, or no free portlandite, the cement consists predominantly of calcium silicate hydrate (CSH) gel with a Ca/Si ratio {<=} 0.8. Although there are potential implications for the performance of the spent fuel and cladding due to the presence of hyperalkaline fluids from cement, the principal focus for safety assessment lies with the behaviour of bentonite. There are a number of potential constraints on the interaction of hyperalkaline cement pore fluids with bentonite, including mass balance, thermodynamic issues, mass transport, and kinetics, but none of these is likely to be limiting if conventional OPC cements are employed in repository construction. Nevertheless: Low-pH cements may supply approximately 50 % less hydroxyl ions than conventional OPC for a given volume of cement, but mass balance constraints are complicated by the uncertainty concerning the type of secondary minerals produced during cement-bentonite interaction. The change of aqueous

  8. Low pH Cements

    Energy Technology Data Exchange (ETDEWEB)

    Savage, David; Benbow, Steven [Quintessa Ltd., Henley-on-Thames (United Kingdom)

    2007-05-15

    The development of low-pH cements for use in geological repositories for radioactive waste stems from concerns over the potential for deleterious effects upon the host rock and other EBS materials (notably bentonite) under the hyperalkaline conditions (pH > 12) of cement pore fluids. Low pH cement (also known as low heat cement) was developed by the cement industry for use where large masses of cement (e.g. dams) could cause problems regarding heat generated during curing. In low pH cements, the amount of cement is reduced by substitution of materials such as fly ash, blast furnace slag, silica fume, and/or non-pozzolanic silica flour. SKB and Posiva have ruled out the use of blast furnace slag and fly-ash and are focusing on silica fume as a blending agent. Currently, no preferred composition has been identified by these agencies. SKB and Posiva have defined a pH limit {<=} 11 for cement grout leachates. To attain this pH, blending agents must comprise at least 50 wt % of dry materials. Because low pH cement has little, or no free portlandite, the cement consists predominantly of calcium silicate hydrate (CSH) gel with a Ca/Si ratio {<=} 0.8. Although there are potential implications for the performance of the spent fuel and cladding due to the presence of hyperalkaline fluids from cement, the principal focus for safety assessment lies with the behaviour of bentonite. There are a number of potential constraints on the interaction of hyperalkaline cement pore fluids with bentonite, including mass balance, thermodynamic issues, mass transport, and kinetics, but none of these is likely to be limiting if conventional OPC cements are employed in repository construction. Nevertheless: Low-pH cements may supply approximately 50 % less hydroxyl ions than conventional OPC for a given volume of cement, but mass balance constraints are complicated by the uncertainty concerning the type of secondary minerals produced during cement-bentonite interaction. The change of aqueous

  9. Compression Properties of Polyester Needlepunched Fabric

    Directory of Open Access Journals (Sweden)

    Sanjoy Debnath, Ph.D.

    2009-12-01

    Full Text Available In the present paper, a study of the effects of fabricweight, fiber cross-sectional shapes (round, hollowand trilobal and presence of reinforcing materialon the compression properties (initial thickness,percentage compression, percentage thickness lossand percentage compression resilience of polyesterneedle punched industrial nonwoven fabrics ispresented. It was found that for fabrics with noreinforcing material, the initial thickness,compression, and thickness loss were higher thanfabrics with reinforcing material, irrespectiveoffiber cross-section. Compression resilience datashowed the reverse trend. Initial thickness fortrilobal cross-sectional fabric sample was highestfollowed by round and hollow cross-sectionedpolyester needle punched fabrics. The polyesterfabric made from hollow cross-sectioned fibersshowed the least percentage compression at everylevel of fabric weights. The trilobal cross-sectionedpolyester fabric sample showed higher thicknessloss followed by round and hollow cross-sectionedpolyester fabric samples respectively. The hollowcross-sectioned polyester fabric samples showedmaximum compression resilience followed byround and trilobal cross-sectioned polyestersamples irrespective of fabric weights. The initialthickness increases, but percentage compression,thickness loss and compression resilience decreaseswith the increase in fabric weight irrespective offiber cross-sectional shapes.

  10. Sound insulation of honeycomb weave fabric reinforced polyvinyl chloride composite%蜂窝织物增强聚氯乙烯复合材料的隔音性能

    Institute of Scientific and Technical Information of China (English)

    杨天兵; 傅雅琴

    2011-01-01

    In order to study the acoustic insulation property of honeycomb weave fabric/PVC composite material, a honeycomb weave fabric with the same surface density but different repetitions of weave was woven on an automatic sample loom using 58.3 tex × 2 cotton yarn as warp and weft. Honeycomb weave fabric/PVC composite material was fabricated using the halloysite nanotubes (HNTs) filled polyvinyl chloride (PVC) as substrate, and then a sandwich structure composite was made with the honeycomb weave fabric/PVC composite as core material. The sound insulation quality of prepared samples was tested by acoustic analyzer of two-channel. The results showed that repetitions of weave have great influence on the sound insulation effect of honeycomb weave fabric. When the repetitions of weave are 6, the composite material displays good sound insulation. In the case of sandwich composite material with the honeycomb weave fabric/PVC composite as core material, it exhibits good sound insulation to low frequency when the repetitions of weave are 6, and its good sound insulation to high frequency is found when the repetitions of weave are 14.%为研究蜂窝织物聚氯乙烯(PVC)复合材料的隔音性能,选用58.3 tex×2的棉纱为经纬纱,在自动织样机上织造面密度基本相同而组织循环数不同的蜂窝织物,以埃洛石纳米管(HNTs)填充的PVC为基体,制备蜂窝织物/PVC复合材料,再以蜂窝织物/PVC复合材料为芯材,制备三明治结构复合材料.采用双声道声学分析仪,对制备样品的隔音性能进行测试和分析.结果表明:不同循环数的蜂窝织物对复合材料的隔音效果有很大影响,当组织循环数为6时,复合材料显示了良好的隔音效果;对于蜂窝织物复合材料作为芯材的三明治结构复合材料而言,组织循环数为6时,对低频具有良好的隔音性能,组织循环数为14时,对高频率具有良好的隔音性能.

  11. Influence of marginal fit and cement types on microleakage of all-ceramic crown systems

    Directory of Open Access Journals (Sweden)

    Ece Yüksel

    2011-06-01

    Full Text Available The purpose of this study was to evaluate the effects of both marginal fit and cementing with different luting agents on the microleakage of all-ceramic crown systems. Thirty-six extracted upper central incisors were prepared for full-coverage crowns and were divided into three groups. Group 1: CAD/CAM-fabricated ZrO2, Group 2: Heat-pressed lithium-disilicate, and Group 3: Cast Cr-Co copings as the control group. Copings were made following standard techniques, and groups were assigned cementation with either self-adhesive resin cement (A or glass-ionomer luting cement (B. The specimens were subjected to thermocycling, immersed in basic fuchsin solution, sectioned mesiodistally and buccolingually. The surface of each section was digitally photographed under a stereomicroscope. Microleakage was scored using a five-point scale, and the marginal gap was measured using image analysis software. Data were statistically analyzed using 2-way ANOVA, Kruskal-Wallis, and Mann-Whitney U tests (α: 0.05. The marginal discrepancy of each group was 82.7 ± 7 µm, 92.6 ± 4 µm and 96.5 ± 7 µm respectively. Group 1 showed significantly smaller gaps than Group 3 (P = 0.042. Self-adhesive resin cement (A showed a lower level of microleakage than glass-ionomer luting cement (B in all groups (P = 0.029. Microleakage scores of '0' were 83% for 1A, 50% for 1B, 50% for 2A, 16% for 2B, 33% for 3A and none for 3B. Marginal discrepancy and cement type both had significant effects on microleakage. Lower levels of microleakage were recorded with self-adhesive resin cement, while CAD/CAM-fabricated ZrO2 copings showed smaller marginal discrepancy and less microleakage in comparison to cast Cr-Co.

  12. PMMA-based composite materials with reactive ceramic fillers: IV. Radiopacifying particles embedded in PMMA beads for acrylic bone cements.

    Science.gov (United States)

    Abboud, M; Casaubieilh, L; Morvan, F; Fontanille, M; Duguet, E

    2000-01-01

    New acrylic bone cements were prepared from alumina particles previously treated by 3-(trimethoxysilyl)propylmethacrylate (gamma-MPS) and embedded in poly(methylmethacrylate-co-ethylacrylate) beads with about 7 mol% of ethyl acrylate repeating units. The encapsulation was performed through a conventional suspension polymerization process. The influence of (i) the concentration of the dispersion stabilizer and (ii) the alumina content upon the shape, size, and size distribution of the acrylic beads was studied. Cements were prepared from each batch by hand-mixing alumina-filled acrylic beads with a liquid monomer mixture containing methyl methacrylate, n-butyl methacrylate, and N,N-dimethyl-p-toluidine. Benzoyl peroxide was previously added to the solid part. The powder-to-liquid ratio was equal to 2 for each formulation. Compressive strength of cured cement decreases with alumina content, whereas compressive modulus remains roughly constant. These results are in contradiction to those obtained for cements based on a mixture of gamma-MPS-treated alumina and unfilled acrylic beads. Nevertheless, they are interpreted in terms of alumina arrangement in the cement. In the first case, alumina particles contribute to the reinforcement of the dispersed acrylic phase, with poor benefits for the whole materials. In the second case, they allow the reinforcement of the continuous acrylic phase and, therefore, the cement's one.

  13. Theoretical and numerical analysis of reinforced concrete beams with confinement reinforcement

    Directory of Open Access Journals (Sweden)

    R. G. Delalibera

    Full Text Available This paper discusses the use of confinement in over-reinforced concrete beams. This reinforcement consists of square stirrups, placed in the compression zone of the beam cross-section, in order to improve its ductility. A parametric numerical study is initially performed, using a finite element computational program that considers the material nonlinearities and the confinement effect. To investigate the influence of the transverse reinforcing ratio on the beam ductility, an experimental program was also conducted. Four over-reinforced beams were tested; three beam specimens with additional transverse reinforcement to confine the beams, and one without it. All specimens were fabricated with a concrete designed for a compressive strength of 25 MPa. The experimental results show that the post-peak ductility factor is proportional to the confining reinforcement ratio, however the same is not observed for the pre-peak ductility factor, which varied randomly with changes in the confining reinforcement ratio. It was also observed from the experiments that the confinement effect tends to be smaller close to the beam neutral axis.

  14. Comparative Evaluation of Shear Bond Strength of Luting Cements to Different Core Buildup Materials in Lactic Acid Buffer Solution.

    Science.gov (United States)

    Patil, Siddharam M; Kamble, Vikas B; Desai, Raviraj G; Arabbi, Kashinath C; Prakash, Ved

    2015-08-01

    The core buildup material is used to restore badly broken down tooth to provide better retention for fixed restorations. The shear bond strength of a luting agent to core buildup is one of the crucial factors in the success of the cast restoration. The aim of this invitro study was to evaluate and compare the shear bond strength of luting cements with different core buildup materials in lactic acid buffer solution. Two luting cements {Traditional Glass Ionomer luting cement (GIC) and Resin Modified Glass Ionomer luting cement (RMGIC)} and five core buildup materials {Silver Amalgam, Glass ionomer (GI), Glass Ionomer Silver Reinforced (GI Silver reinforced), Composite Resin and Resin Modified Glass Ionomer(RMGIC)} were selected for this study. Total 100 specimens were prepared with 20 specimens for each core buildup material using a stainless steel split metal die. Out of these 20 specimens, 10 specimens were bonded with each luting cement. All the bonded specimens were stored at 37(0)c in a 0.01M lactic acid buffer solution at a pH of 4 for 7days. Shear bond strength was determined using a Universal Testing Machine at a cross head speed of 0.5mm/min. The peak load at fracture was recorded and shear bond strength was calculated. The data was statistically analysed using Two-way ANOVA followed by HOLM-SIDAK method for pair wise comparison at significance level of pstrength of the luting cements (pcore materials (pstrength values than Traditional GIC luting cement for all the core buildup materials. RMGIC core material showed higher bond strength values followed by Composite resin, GI silver reinforced, GI and silver amalgam core materials for both the luting agents. Shear bond strength of RMGIC luting cement was significantly higher than traditional GIC luting cement for all core buildup materials except, for silver amalgam core buildup material. RMGIC core material showed highest shear bond strength values followed by Composite resin, GI Silver Reinforced, GI and

  15. 21 CFR 888.3027 - Polymethylmethacrylate (PMMA) bone cement.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Polymethylmethacrylate (PMMA) bone cement. 888... Polymethylmethacrylate (PMMA) bone cement. (a) Identification. Polymethylmethacrylate (PMMA) bone cement is a device...: Polymethylmethacrylate (PMMA) Bone Cement.”...

  16. Effect of carbon nanotube on physical and mechanical properties of natural fiber/glass fiber/cement composites

    Institute of Scientific and Technical Information of China (English)

    Hamed Younesi Kordkheili; Shokouh Etedali Shehni; Ghorban Niyatzade

    2015-01-01

    The objective of this investigation was to introduce a cement-based composite of higher quality. For this purpose new hybrid nanocomposite from bagasse fiber, glass fiber and multi-wall carbon nanotubes (MWCNTs) were manufactured. The physical and mechanical proper-ties of the manufactured composites were measured according to standard methods. The properties of the manufactured hybrid nanocomposites were dramatically better than traditional composites. Also all the reinforced composites with carbon nanotube, glass fiber or bagasse fiber exhibited better properties rather than neat cement. The results indicated that bagasse fiber proved suitable for substitution of glass fiber as a reinforcing agent in the cement composites. The hybrid nanocomposite containing 10%glass fiber, 10%bagasse fiber and 1.5%MWCNTs was selected as the best compound.

  17. Oxidation of carbon fiber surfaces for use as reinforcement in high-temperature cementitious material systems

    Science.gov (United States)

    Sugama, Toshifumi

    1990-01-01

    The interfacial bond characteristics between carbon fiber and a cement matrix, in high temperature fiber-reinforced cementitious composite systems, can be improved by the oxidative treatment of the fiber surfaces. Compositions and the process for producing the compositions are disclosed.

  18. Electrochemical Behavior, Microstructural Analysis, and Morphological Observations in Reinforced Mortar Subjected to Chloride Ingress

    NARCIS (Netherlands)

    Koleva, D.A.; Van breugel, K.; De Wit, J.H.W.; Van Westing, E.; Boshkov, N.; Fraaij, A.L.A.

    2007-01-01

    The behavior of steel reinforcement was studied using electrochemical impedance spectroscopy (EIS) and polarization resistance (PR) techniques in conditions of chloride-induced corrosion in ordinary Portland cement-mortar specimens immersed in 7% NaCl for a test period of 120 days and compared to sp

  19. Cementation of Loose Sand Particles based on Bio-cement

    Institute of Scientific and Technical Information of China (English)

    RONG Hui; QIAN Chunxiang

    2014-01-01

    Loose sand particles could be cemented to sandstone by bio-cement (microbial induced magnesium carbonate). The bio-sandstone was firstly prepared, and then the compressive strength and the porosity of the sandstone cemented by microbial induced magnesium carbonate were tested to characterize the cementation effectiveness. In addition, the formed mineral composition and the microstructure of bio-sandstone were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The experimental results show that the feasibility of binding loose sand particles using microbial induced magnesium carbonate precipitation is available and the acquired compressive strength of bio-sandstone can be excellent at certain ages. Moreover, the compressive strength and the porosity could be improved with the increase of microbial induced magnesium carbonate content. XRD results indicate that the morphology of magnesium carbonate induced by microbe appears as needles and SEM results show that the cementation of loose sand particles to sandstone mainly relies on the microbial induced formation of magnesium carbonate precipitation around individual particles and at particle-particle contacts.

  20. Formability of tufted 3-dimensional composite reinforcement

    Science.gov (United States)

    Liu, Ling Shan; Wang, Peng; Legrand, Xavier; Soulat, Damien

    2016-10-01

    In the aerospace industry, more and more complex preform for composite parts are needed. Traditionally, laminated reinforcement is largely used as the method. The development of tufting technology has now advanced to a stage whereby it can be employed to produce the 3D textile composite reinforcements. Because the tufting technology is user-friendly, in this study, the tufting parameters (tufting density, tufting length, tufting yarn orientations…) are varied, in order to improve the understanding of formability of the tufted 3D fabric during manufacturing, in particular the influence of the tufting yarns, the present work is performed to analyse the preforming behaviours of tufted 3D reinforcement in the hemispherical stamping process. The preforming behaviours are also compared with the ones of the multilayered forming. Interply sliding and winkling phenomenon during forming are fully influenced by tufting yarns on the material draw-in, by the orientations of tufting yarn, …