WorldWideScience

Sample records for fabric exposure experiment

  1. Post-Flight Characterization of Samples for the MISSE-7 Spacesuit Fabric Exposure Experiment

    Science.gov (United States)

    Gaier, James R.; Waters, Deborah L.; Jaworski, Donald A.; McCue, Terry R.; Folz, Angela; Baldwin, Sammantha; Clark, Gregory W.; Batman, Brittany; Bruce, John

    2012-01-01

    Six samples of pristine and dust-abraded outer layer spacesuit fabrics were included in the Materials International Space Station Experiment-7, in which they were exposed to the wake side low Earth orbit environment (LEO) on the International Space Station (ISS) for 18 months in order to determine whether abrasion by lunar dust increases radiation degradation. The fabric samples were characterized using optical microscopy, field emission scanning electron microscopy, and tensile testing before and after exposure on the ISS. Comparison of pre- and post-flight characterizations showed that wake side LEO environment darkened and reddened all six fabrics, increasing their integrated solar absorptance by 7 to 38 percent. There was a decrease in the ultimate tensile strength and elongation to failure of lunar dust abraded Apollo spacesuit fibers by a factor of four and increased the elastic modulus by a factor of two. The severity of the degradation of the fabric samples over this short exposure time demonstrates the necessity to find ways to prevent or mitigate radiation damage to spacesuits when planning extended missions to the Moon.

  2. Fabrication and operational experience with the interim storage cask

    International Nuclear Information System (INIS)

    Scott, P.L.

    1998-01-01

    This paper discusses the fabrication and operational experience of the Interim Storage Cask (ISC). The ISC is a dry storage cask which is used to safely store a Core Component Container (CCC) containing up to seven Fast Flux Test Facility (FFTF) spent fuel assemblies at the US Department of Energy's Hanford Site. Under contract to B and W Hanford Company (BWHC), General Atomics (GA) designed and fabricated thirty ISC casks which BWHC is remotely loading at the FFTF facility. BWHC designed and fabricated the CCCS. As of December 1997, thirty ISCs have been fabricated, of which eighteen have been loaded and moved to a storage site adjacent to the FFTF facility. Fabrication consisted of three sets of casks. The first unit was completed and acceptance tested before any other units were fabricated. After the first unit passed all acceptance tests, nine more units were fabricated in the first production run. Before those nine units were completed, GA began a production run of twenty more units. The paper provides an overview of the cask design and discusses the problems encountered in fabrication, their resolution, and changes made in the fabrication processes to improve the quality of the casks. The paper also discusses the loading process and operational experiences with loading and handling of the casks. Information on loading times, worker dose exposure, and total dose for loading are presented

  3. A novel method of microneedle array fabrication using inclined deep x-ray exposure

    International Nuclear Information System (INIS)

    Moon, Sang Jun; Jin, Chun Yan; Lee, Seung S

    2006-01-01

    We report a novel fabrication method for the microneedle array with a 3-dimensional feature and its replication method; 'Hot-pressing' process with bio-compatible material, PLLA (Poly L-LActide). Using inclined deep X-ray exposure technique, we fabricate a band type microneedle array with a single body on the same material basement. Since the single body feature does not make adhesion problem with the microneedle shank and basement during peel-off step of a mold, the PMMA (Poly-Methyl-MethAcrylate) microneedle array mold insert can be used for mold process which is used with the soft material mold, PDMS (Poly-Di- Methyl-Siloxane). The side inclined deep X-ray exposure also makes complex 3-dimensional features by the regions which are not exposed during twice successive exposure steps. In addition, the successive exposure does not need an additional mask alignment after the first side exposure. The fabricated band type microneedle array mold inserts are assembled for large area patch type out-of-plane microneedle array. The bio-compatible microneedle array can be fabricated to the laboratory scale mass production by the single body PMMA mold insert and 'Hot-pressing' process

  4. A novel method of microneedle array fabrication using inclined deep x-ray exposure

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Sang Jun; Jin, Chun Yan; Lee, Seung S [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 373-1, Guseong-dong, Yuseong-dong, Daejeon (Korea, Republic of)

    2006-04-01

    We report a novel fabrication method for the microneedle array with a 3-dimensional feature and its replication method; 'Hot-pressing' process with bio-compatible material, PLLA (Poly L-LActide). Using inclined deep X-ray exposure technique, we fabricate a band type microneedle array with a single body on the same material basement. Since the single body feature does not make adhesion problem with the microneedle shank and basement during peel-off step of a mold, the PMMA (Poly-Methyl-MethAcrylate) microneedle array mold insert can be used for mold process which is used with the soft material mold, PDMS (Poly-Di- Methyl-Siloxane). The side inclined deep X-ray exposure also makes complex 3-dimensional features by the regions which are not exposed during twice successive exposure steps. In addition, the successive exposure does not need an additional mask alignment after the first side exposure. The fabricated band type microneedle array mold inserts are assembled for large area patch type out-of-plane microneedle array. The bio-compatible microneedle array can be fabricated to the laboratory scale mass production by the single body PMMA mold insert and 'Hot-pressing' process.

  5. Mortality and cancer incidence experience of employees in a nuclear fuels fabrication plant

    International Nuclear Information System (INIS)

    Hadjimichael, O.C.; Ostfeld, A.M.; D'Atri, D.A.; Brubaker, R.E.

    1983-01-01

    The mortality and cancer incidence experience of 4,106 employees in a nuclear fuels fabrication plant was evaluated in this retrospective cohort study. Standardized mortality (SMR) and incidence ratios were calculated for groups of employees holding different jobs in the company associated with various types of industrial exposures and with low levels of radiation. Connecticut population mortality rates and Connecticut Tumor Registry incidence rates, specific for age-sex, calendar year and cause of death or cancer site, were used for the calculation of expected rates. Results showed the SMR for all male employees to be significantly lower than expected for all causes and what would be expected for all cancer deaths. More deaths were observed than expected from diseases of the central and peripheral nervous system and from obstructive pulmonary disease. The overall cancer incidence experience of the male employees was significantly lower than expected among the industrial employees. There was no risk associated with any particular job exposure group. Log linear models analysis showed no significant effect from industrial and radiation exposures or from their combined influence

  6. Application of Matrix Projection Exposure Using a Liquid Crystal Display Panel to Fabricate Thick Resist Molds

    Science.gov (United States)

    Fukasawa, Hirotoshi; Horiuchi, Toshiyuki

    2009-08-01

    The patterning characteristics of matrix projection exposure using an analog liquid crystal display (LCD) panel in place of a reticle were investigated, in particular for oblique patterns. In addition, a new method for fabricating practical thick resist molds was developed. At first, an exposure system fabricated in past research was reconstructed. Changes in the illumination optics and the projection lens were the main improvements. Using fly's eye lenses, the illumination light intensity distribution was homogenized. The projection lens was changed from a common camera lens to a higher-grade telecentric lens. In addition, although the same metal halide lamp was used as an exposure light source, the central exposure wavelength was slightly shortened from 480 to 450 nm to obtain higher resist sensitivity while maintaining almost equivalent contrast between black and white. Circular and radial patterns with linewidths of approximately 6 µm were uniformly printed in all directions throughout the exposure field owing to these improvements. The patterns were smoothly printed without accompanying stepwise roughness caused by the cell matrix array. On the bases of these results, a new method of fabricating thick resist molds for electroplating was investigated. It is known that thick resist molds fabricated using the negative resist SU-8 (Micro Chem) are useful because very high aspect patterns are printable and the side walls are perpendicular to the substrate surfaces. However, the most suitable exposure wavelength of SU-8 is 365 nm, and SU-8 is insensitive to light of 450 nm wavelength, which is most appropriate for LCD matrix exposure. For this reason, a novel multilayer resist process was proposed, and micromolds of SU-8 of 50 µm thickness were successfully obtained. As a result, feasibility for fabricating complex resist molds including oblique patterns was demonstrated.

  7. Fabrication of open-top microchannel plate using deep X-ray exposure mask made with silicon on insulator substrate

    CERN Document Server

    Fujimura, T; Etoh, S I; Hattori, R; Kuroki, Y; Chang, S S

    2003-01-01

    We propose a high-aspect-ratio open-top microchannel plate structure. This type of microchannel plate has many advantages in electrophoresis. The plate was fabricated by deep X-ray lithography using synchrotron radiation (SR) light and the chemical wet etching process. A deep X-ray exposure mask was fabricated with a silicon on insulator (SOI) substrate. The patterned Si microstructure was micromachined into a thin Si membrane and a thick Au X-ray absorber was embedded in it by electroplating. A plastic material, polymethylmethacrylate (PMMA) was used for the plate substrate. For reduction of the exposure time and high-aspect-ratio fast wet development, the fabrication condition was optimized with respect to not the exposure dose but to the PMMA mean molecular weight (M.W.) changing after deep X-ray exposure as measured by gel permeation chromatography (GPC). Decrement of the PMMA M.W. and increment of the wet developer temperature accelerated the etching rate. Under optimized fabrication conditions, a microc...

  8. Fabrication of vanadium cans for neutron diffraction experiments

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chin man; Baik, Sung Hoon; Park, Sun Kyu

    1999-12-01

    The laser weld technique of vanadium developed to experiment for neutron diffraction of HANARO. The demands for this laser welding technique were applied to process control in vanadium film welding and to fabricate various sizing vanadium cans. The vanadium can had a advantage to have less coherent in neutron. KAERI developed the fabrication jig of 6-12 mm diameter cans using 0.125 mm vanadium thin film, and investigated the laser welding procedure for making the various diameter and length of vanadium cans using the fabricated jigs and Nd:YAG laser. (author)

  9. Natural uranium metallic fuel elements: fabrication and operating experience

    International Nuclear Information System (INIS)

    Hammad, F.H.; Abou-Zahra, A.A.; Sharkawy, S.W.

    1980-01-01

    The main reactor types based on natural uranium metallic fuel element, particularly the early types, are reviewed in this report. The reactor types are: graphite moderated air cooled, graphite moderated gas cooled and heavy water moderated reactors. The design features, fabrication technology of these reactor fuel elements and the operating experience gained during reactor operation are described and discussed. The interrelation between operating experience, fuel design and fabrication was also discussed with emphasis on improving fuel performance. (author)

  10. Fabrication experiments for large helix heat exchangers

    International Nuclear Information System (INIS)

    Burgsmueller, P.

    1978-01-01

    The helical tube has gained increasing attention as a heat transfer element for various kinds of heat exchangers over the last decade. Regardless of reactor type and heat transport medium, nuclear steam generators of the helix type are now in operation, installlation, fabrication or in the project phase. As a rule, projects are based on the extrapolation of existing technologies. In the particlular case of steam generators for HTGR power stations, however, existing experience is with steam generators of up to about 2 m diameter whereas several projects involve units more than twice as large. For this reason it was felt that a fabrication experiment was necessary in order to verify the feasibility of modern steam generator designs. A test rig was erected in the SULZER steam generator shops at Mantes, France, and skilled personnel and conventional production tools were employed in conducting experiments relating to the coiling, handling and threading of large helices. (Auth.)

  11. Fabrication of Foam Shells for ICF Experiments

    Science.gov (United States)

    Czechowicz, D. G.; Acenas, O.; Flowers, J. S.; Nikroo, A.; Paguio, R. R.; Schroen, D. G.; Streit, J.; Takagi, M.

    2004-11-01

    The General Atomics/Schafer team has developed processes to fabricate foam shells targets suitable for ICF experiments. The two most common chemical systems used to produce foam shells have been resorcinol-formaldehyde (R/F) aerogel and divinylbenzene (DVB). Spherical targets have been made in the form of shells and beads having diameters ranging from approximately 0.5 mm to 4.0 mm, and having densities from approximately 100 mg/cc to 250 mg/cc. The work on R/F foam shells has been concentrated on 1) shell fabrication process improvement to obtain high yields ( ˜25%) and 2) depositing a reliable permeation barrier to provide shells for ongoing direct drive experiments at LLE. Development of divinylbenzene foam shells has been mainly directed towards Inertial Fusion Energy applications (at densities as low as 30 mg/cc) and recently for shells for experiments at LLE. Details of the relevant metrology and properties of these foams as well as the range of targets currently available will be discussed.

  12. Low-loss microelectrodes fabricated using reverse-side exposure for a tunable ferroelectric capacitor application

    Science.gov (United States)

    Yoon, Yong-Kyu; Stevenson Kenney, J.; Hunt, Andrew T.; Allen, Mark G.

    2006-02-01

    Narrowly spaced thick microelectrodes are fabricated using a self-aligned multiple reverse-side exposure scheme for an improved quality-factor tunable ferroelectric capacitor. The microelectrodes are fabricated on a functional substrate—a thin film ferroelectric (barium strontium titanate, BST; BaxSr1-xTiO3) coated sapphire substrate, which has an electric-field-dependent dielectric property providing tuning functionality, as well as UV transparency permitting an additional degree of freedom in photolithography steps. The microelectrode process has been applied to interdigitated capacitor fabrication, where a critical challenge is maintaining narrow gaps between electrodes for high tunability, while simultaneously forming thick electrodes to minimize conductor loss. A single mask, self-aligned reverse-side exposure through the transparent substrate achieves both these goals. A single-finger test capacitor with an electrode gap of 1.2 µm and an electrode thickness of 2.2 µm is fabricated and characterized. Tunability (T = 100 × (C0 - Cbias)/C0) of 33% at 10 V has been achieved at 100 kHz. The 2.2 µm thick structure shows improvement of Q-factor compared to that of a 0.1 µm thick structure. To demonstrate the scalability of this process, a 102-finger interdigitated capacitor is fabricated and characterized at 100 kHz and 1 GHz. The structure is embedded in a 25 µm thick epoxy resin SU-8 for passivation. A quality factor decrease of 15-25%, tunability decrease of 2-3% and capacitance increase of 6% are observed due to the expoxy resin after passivation. High frequency performance of the capacitor has been measured to be 15.9 pF of capacitance, 28.1% tunability at 10 V and a quality factor of 16 (at a 10 V dc bias) at 1 GHz.

  13. The fabrication of 3-D nanostructures by a low- voltage EBL

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Seung Hun [Department of Nano Science and Technology, Pusan National University (Korea, Republic of); Kim, Jae Gu [Department of Nano-Mechanical Systems, Korea Institute of Machinery and Materials (Korea, Republic of); Kim, Chang Seok [Department of Cogno-Mechatronics Engineering, Pusan National University (Korea, Republic of); Choi, Doo Sun; Chang, Sunghwan [Department of Nano-Mechanical Systems, Korea Institute of Machinery and Materials (Korea, Republic of); Jeong, Myung Yung, E-mail: myjeong@pusan.ac.kr [Department of Cogno-Mechatronics Engineering, Pusan National University (Korea, Republic of)

    2011-02-15

    Three-dimensional (3-D) structures are used in many applications, including the fabrication of opto-electronic and bio-MEMS devices. Among the various fabrication techniques available for 3-D structures, nano imprint lithography (NIL) is preferred for producing nanoscale 3-D patterns because of its simplicity, relatively short processing time, and high manufacturing precision. For efficient replication in NIL, a precise 3-D stamp must be used as an imprinting tool. Hence, we attempted the fabrication of original 3-D master molds by low-voltage electron beam lithography (EBL). We then fabricated polydimethylsiloxane (PDMS) stamps from the original 3-D mold via replica molding with ultrasonic vibration.First, we experimentally analyzed the characteristics of low-voltage EBL in terms of various parameters such as resist thickness, acceleration voltage, aperture size, and baking temperature. From these e-beam exposure experiments, we found that the exposure depth and width were almost saturated at 3 kV or lesser, even when the electron dosage was increased. This allowed for the fabrication of various stepped 3-D nanostructures at a low voltage. In addition, by using line-dose EBL, V-groove patterns could be fabricated on a cured electron resist (ER) at a low voltage and low baking temperature. Finally, the depth variation could be controlled to within 10 nm through superposition exposure at 1 kV. From these results, we determined the optimum electron beam exposure conditions for the fabrication of various 3-D structures on ERs by low-voltage EBL. We then fabricated PDMS stamps via the replica molding process.

  14. The fabrication of well-interconnected polycaprolactone/hydroxyapatite composite scaffolds, enhancing the exposure of hydroxyapatite using the wire-network molding technique.

    Science.gov (United States)

    Cho, Yong Sang; Hong, Myoung Wha; Jeong, Hoon-Jin; Lee, Seung-Jae; Kim, Young Yul; Cho, Young-Sam

    2017-11-01

    In this study, the fabrication method was proposed for the well-interconnected polycaprolactone/hydroxyapatite composite scaffold with exposed hydroxyapatite using modified WNM technique. To characterize well-interconnected scaffolds in terms of hydroxyapatite exposure, several assessments were performed as follows: morphology, mechanical property, wettability, calcium ion release, and cell response assessments. The results of these assessments were compared with those of control scaffolds which were fabricated by precision extruding deposition (PED) apparatus. The control PED scaffolds have interconnected pores with nonexposed hydroxyapatite. Consequently, cell attachment of proposed WNM scaffold was improved by increased hydrophilicity and surface roughness of scaffold surface resulting from the exposure of hydroxyapatite particles and fabrication process using powders. Moreover, cell proliferation and differentiation of WNM scaffold were increased, because the exposure of hydroxyapatite particles may enhance cell adhesion and calcium ion release. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2315-2325, 2017. © 2016 Wiley Periodicals, Inc.

  15. Injection molded nanofluidic chips: Fabrication method and functional tests using single-molecule DNA experiments

    DEFF Research Database (Denmark)

    Utko, Pawel; Persson, Karl Fredrik; Kristensen, Anders

    2011-01-01

    We demonstrate that fabrication of nanofluidic systems can be greatly simplified by injection molding of polymers. We functionally test our devices by single-molecule DNA experiments in nanochannels.......We demonstrate that fabrication of nanofluidic systems can be greatly simplified by injection molding of polymers. We functionally test our devices by single-molecule DNA experiments in nanochannels....

  16. 3D electrostatic actuator fabricated by non-ablative femtosecond laser exposure and chemical etching

    Directory of Open Access Journals (Sweden)

    Yang Tao

    2015-01-01

    Full Text Available We demonstrate the novel design of an electrostatic micro-actuator based on monolithic three-dimensional (3D shapes fabricated by non-ablative femtosecond laser exposure combined with chemical etching. Further, we present a single-scan stacking approach exploited in the fabrication of the 3D actuator to create crack-free, highcontrast, high fidelity and integrated micro-structures. Influential parameters: energy per pulse, polarization, scanning spacing and stacking directionwere systematically studied to predict and control the etching rate of 3D planes.Finally, we report the characterization of the actuator and its potential application in optomechanics to show a complete scenario of femtosecond laser machined integrated 3D micro-systems incorporating multiple functionalities.

  17. Sun Exposure and Psychotic Experiences

    Directory of Open Access Journals (Sweden)

    Izabela Pilecka

    2017-06-01

    Full Text Available ObjectiveSun exposure is considered the single most important source of vitamin D. Vitamin D deficiency has been suggested to play a role in the etiology of psychotic disorders. The aim of the present study was to evaluate the association between sun exposure and psychotic experiences (PEs in a general population sample of Swedish women.MethodsThe study population included participants from The Swedish Women’s Lifestyle and Health cohort study. The 20-item community assessment of psychic experiences (CAPEs was administered between ages 30 and 50 to establish PEs. Sun exposure as measured by (1 sunbathing holidays and (2 history of sunburn was measured between ages 10 and 39. The association between sun exposure and PEs was evaluated by quantile regression models.Results34,297 women were included in the analysis. Women who reported no sunbathing holidays and 2 or more weeks of sunbathing holidays scored higher on the CAPE scale than women exposed to 1 week of sunbathing holidays across the entire distribution, when adjusting for age and education. Similarly, compared with women who reported a history of one sunburn, the women with none or two or more sunburns showed higher scores on the CAPE scale.ConclusionThe results of the present study suggest that, in a population-based cohort of middle aged women, both low and high sun exposure is associated with increased level of positive PEs.

  18. Fabrication and characterization of one- and two-dimensional regular patterns produced employing multiple exposure holographic lithography

    DEFF Research Database (Denmark)

    Tamulevičius, S.; Jurkevičiute, A.; Armakavičius, N.

    2017-01-01

    In this paper we describe fabrication and characterization methods of two-dimensional periodic microstructures in photoresist with pitch of 1.2 urn and lattice constant 1.2-4.8 μm, formed using two-beam multiple exposure holographic lithography technique. The regular structures were recorded empl...

  19. SuperCDMS Underground Detector Fabrication Facility

    Energy Technology Data Exchange (ETDEWEB)

    Platt, M.; Mahapatra, R.; Bunker, Raymond A.; Orrell, John L.

    2018-03-01

    The SuperCDMS SNOLAB dark matter experiment processes Ge and Si crystals into fully tested phonon and ionization detectors at surface fabrication and test facilities. If not mitigated, it is anticipated that trace-level production of radioisotopes in the crystals due to exposure to cosmic rays at (or above) sea level will result in the dominant source of background events in future dark matter searches using the current SuperCDMS detector technology. Fabrication and testing of detectors in underground facilities shielded from cosmic radiation is one way to directly reduce production of trace levels of radioisotopes, thereby improving experimental sensitivity for the discovery of dark matter beyond the level of the current experiment. In this report, we investigate the cost and feasibility to establish a complete detector fabrication processing chain in an underground location to mitigate cosmogenic activation of the Ge and Si detector substrates. For a specific and concrete evaluation, we explore options for such a facility located at SNOLAB, an underground laboratory in Sudbury, Canada hosting the current and future experimental phases of SuperCDMS.

  20. Quantitative Exposure Assessment of Various Chemical Substances in a Wafer Fabrication Industry Facility

    Directory of Open Access Journals (Sweden)

    Hyunhee Park

    2011-03-01

    Conclusion: Benzene, a known human carcinogen for leukemia, and arsine, a hematologic toxin, were not detected in wafer fabrication sites in this study. Among reproductive toxic substances, n-butyl acetate was not detected, but fluorides and PGMEA existed in small amounts in the air. This investigation was focused on the air-borne chemical concentrations only in regular working conditions. Unconditional exposures during spills and/or maintenance tasks and by-product chemicals were not included. Supplementary studies might be required.

  1. The fabric for frontier experiments project at Fermilab

    International Nuclear Information System (INIS)

    Kirby, Michael

    2014-01-01

    The FabrIc for Frontier Experiments (FIFE) project is a new, far-reaching initiative within the Fermilab Scientific Computing Division to drive the future of computing services for experiments at FNAL and elsewhere. It is a collaborative effort between computing professionals and experiment scientists to produce an end-to-end, fully integrated set of services for computing on the grid and clouds, managing data, accessing databases, and collaborating within experiments. FIFE includes 1) easy to use job submission services for processing physics tasks on the Open Science Grid and elsewhere; 2) an extensive data management system for managing local and remote caches, cataloging, querying, moving, and tracking the use of data; 3) custom and generic database applications for calibrations, beam information, and other purposes; 4) collaboration tools including an electronic log book, speakers bureau database, and experiment membership database. All of these aspects will be discussed in detail. FIFE sets the direction of computing at Fermilab experiments now and in the future, and therefore is a major driver in the design of computing services worldwide.

  2. Design, fabrication and operating experience of Monju ex-vessel fuel storage tank

    International Nuclear Information System (INIS)

    Yokota, Yoshio; Yamagishi, Yoshiaki; Kuroha, Mitsuo; Inoue, Tatsuya

    1995-01-01

    In FBRs there are two methods of storing and cooling the spent fuel - the in-vessel storage and the ex-vessel storage. Because of the sodium leaks through the tank at the beginning of pre-operation, the utilization of the ex-vessel fuel storage tank (EVST) of some FBR plant has been changed from the ex-vessel fuel storage to the interim fuel transfer tank. This led to reactor designers focusing on the material, structure and fabrication of the carbon steel sodium storage tanks worldwide. The Monju EVST was at the final stage of the design, when the leaks occurred. The lesson learned from that experience and the domestic fabrication technology are reflected to the design and fabrication of the Monju EVST. This paper describes the design, fabrication and R and D results for the tank, and operating experience in functional test. The items to be examined are as follows: (1) Overall structure of the tank and design philosophy on the function, (2) Structure of the cover shielding plug and its design philosophy, (3) Structures of the rotating rack and its bearings, and their design philosophy, (4) Cooling method and its design philosophy, (5) Structure and fabrication of the cooling coil support inside EVST with comparison of leaked case, (6) R and D effort for items above. The fabrication of the Monju EVST started in August 1986 and it was shipped to the site in March 1990. Installation was completed in November 1990, and sodium fill after pre-heating started in 1991. The operation has been continued since September 1992. In 1996 when the first spent fuel is stored, its total functions will be examined. (author)

  3. Babcock and Wilcox plate fabrication experience with uranium silicide spherical fuel

    International Nuclear Information System (INIS)

    Todd, Lawrence E.; Pace, Brett W.

    1996-01-01

    This report is written to present the fuel fabrication experience of Babcock and Wilcox using atomized spherical uranium silicide powder. The intent is to demonstrate the ability to fabricate fuel plates using spherical powder and to provide useful information proceeding into the next phase of work using this type of fuel. The limited quantity of resources- spherical powder and time, did not allow for much process optimizing in this work scope. However, the information contained within provides optimism for the future of spherical uranium silicide fuel plate fabrication at Babcock and Wilcox.The success of assembling fuel elements with spherical powder will enable Babcock and Wilcox to reduce overall costs to its customers while still maintaining our reputation for providing high quality research and test reactor products. (author)

  4. Tips for the fabrication of temporary tritium experiments

    International Nuclear Information System (INIS)

    Binning, K.E.; Jenkins, E.M.

    1988-01-01

    The Tritium System Test Assembly (TSTA) is a facility built for the demonstration of tritium handling systems necessary for tritium-burning fusion reactors. The facility has been in operation handling tritium for four years. The current inventory of tritium is approximately one hundred grams, with DOE approval for a maximum inventory of two hundred grams. Not all experiments performed at TSTA require the operation of the main process loop. During the last four years, many small scale experiments have been performed to test the compatibility and operation of tritium processing components in small self-contained experimental packages. These packages are fabricated inside secondary containment gloveboxes and can be operated for hours or months with little monitoring. Construction of these packages need to be tritium compatible, inexpensive, easy to build, and versatile. This paper discusses some of the problems and remedies encountered during the building of temporary experiments

  5. Tips for the fabrication of temporary tritium experiments

    International Nuclear Information System (INIS)

    Binning, K.E.; Jenkins, E.M.

    1988-01-01

    The Tritium System Test Assembly (TSTA) is a facility built for the demonstration of tritium handling systems necessary for tritium-burning fusion reactors. The facility has been in operation handling tritium for four years. The current inventory of tritium is approximately one hundred grams with DOE approval exists for a maximum inventory of two hundred grams. Not all experiments performed at TSTA require the operation of the main process loop. During the last four years, many small scale experiments have been performed to test the compatibility and operation of tritium processing components in small self-contained experimental packages. These packages are fabricated inside secondary containment gloveboxes and can be operated for hours or months with little monitoring. Construction of these packages need to be tritium compatible, inexpensive, easy to build, and versatile. This paper discusses some of the problems and remedies encountered during the building of temporary experiments

  6. Fabrication experience with mixed-oxide LWR fuels at the BELGONUCLEAIRE plant

    International Nuclear Information System (INIS)

    Vanhellemont, G.

    1979-01-01

    For nearly 20 years BELGONUCLEAIRE has been involved in a steadily growing effort to increase its production of mixed oxides. This programme has ranged from basic research and process development through a pilot-scale unit to today's mixed-oxide fuel fabrication plant at Dessel, which has been in operation for just over 5 years. The reference fabrication flow sheet includes UO 2 , PuO 2 and a scraped powder preparation, sintered ground pellets as well as rod fabrication and assembling. With regard to quality, attention is especially paid to the process monitoring and quality controls at the qualification step and during the routine production. Entirely different types of thermal UO 2 -PuO 2 fuel pellets, rods and assemblies have been manufactured for PWR and BWR operation. For these fabrications, some diagrams of the results with regard to the required technical specifications are presented. Special emphasis is placed on the occasional deviations of some finished products from the specifications and on the solutions applied to avoid such problems. Concerning the actual capacity of the mixed-oxide fuel fabrication plant, several limiting factors due to the nature of plutonium itself are discussed. Taking into account all these ambient limitations, a reference PWR mixed-oxide fuel output of nominally 18 t/a is obtained. The industrial feasibility of UO 2 -PuO 2 fuel fabrication has been thoroughly demonstrated by the present BELGONUCLEAIRE plant. The experience obtained has led to progressive improvements of the fabrication process and adaptation of the product controls in order to ensure the requested quality levels. (author)

  7. Experience in developing countries in monitoring procurement and fabrication

    International Nuclear Information System (INIS)

    Csik, B.J.

    1977-01-01

    Owner's responsibility in monitoring procurement and fabrication. Monitoring ectivity, tasks, knowledge and personnel requirements, scope and organization. Contractual arrangements, commitments, responsibilities, rights and obligations. Domestic and foreign supplies. Staff and consultants. Experience in developing countries. Problem areas: availability of qualified staff, organization, methodology standards, codes, specifications, availability and flow of information, language, technical knowledge, access to suppliers' facilities, delays, nuclear safety related components, modifications and additionals. (orig.) [de

  8. Fabrication of vertical nanowire resonators for aerosol exposure assessment

    Science.gov (United States)

    Merzsch, Stephan; Wasisto, Hutomo Suryo; Stranz, Andrej; Hinze, Peter; Weimann, Thomas; Peiner, Erwin; Waag, Andreas

    2013-05-01

    Vertical silicon nanowire (SiNW) resonators are designed and fabricated in order to assess exposure to aerosol nanoparticles (NPs). To realize SiNW arrays, nanolithography and inductively coupled plasma (ICP) deep reactive ion etching (DRIE) at cryogenic temperature are utilized in a top-down fabrication of SiNW arrays which have high aspect ratios (i.e., up to 34). For nanolithography process, a resist film thickness of 350 nm is applied in a vacuum contact mode to serve as a mask. A pattern including various diameters and distances for creating pillars is used (i.e., 400 nm up to 5 μm). In dry etching process, the etch rate is set high of 1.5 μm/min to avoid underetching. The etch profiles of Si wires can be controlled aiming to have either perpendicularly, negatively or positively profiled sidewalls by adjusting the etching parameters (e.g., temperature and oxygen content). Moreover, to further miniaturize the wire, multiple sacrificial thermal oxidations and subsequent oxide stripping are used yielding SiNW arrays of 650 nm in diameter and 40 μm in length. In the resonant frequency test, a piezoelectric shear actuator is integrated with the SiNWs inside a scanning electron microscope (SEM) chamber. The observation of the SiNW deflections are performed and viewed from the topside of the SiNWs to reduce the measurement redundancy. Having a high deflection of ~10 μm during its resonant frequency of 452 kHz and a low mass of 31 pg, the proposed SiNW is potential for assisting the development of a portable aerosol resonant sensor.

  9. Cockle Temperature Exposure Lab Experiment (2016)

    Data.gov (United States)

    U.S. Environmental Protection Agency — We carried out a lab experiment in which we exposed cockles to a range of air temperatures to simulate the physiological rigors of exposure to sunlight and air at...

  10. Fuel-pellet-fabrication experience using direct-denitration-recycle-PuO2-coprecipitated mixed oxide

    International Nuclear Information System (INIS)

    Rasmussen, D.E.; Schaus, P.S.

    1980-01-01

    The fuel pellet fabrication experience described in this paper involved three different feed powders: coprecipitated PuO 2 -UO 2 which was flash calcined in a fluidized bed; co-direct denitrated PuO 2 -UO 2 ; and direct denitrated LWR recycle PuO 2 which was mechanically blended with natural UO 2 . The objectives of this paper are twofold; first, to demonstrate that acceptable quality fuel pellets were fabricated using feed powders manufactured by processes other than the conventional oxalate process; and second, to highlight some pellet fabrication difficulties experienced with the direct denitration LWR recycle PuO 2 feed material, which did not produce acceptable pellets. The direct denitration LWR recycle PuO 2 was available as a by-product and was not specifically produced for use in fuel pellet fabrication. Nevertheless, its characteristics and pellet fabrication behavior serve to re-emphasize the importance of continued process development involving both powder suppliers and fuel fabricators to close the fuel cycle in the future

  11. Estimation of radiation exposure for hot cell workers during DUPIC fuel fabrication process in IMEF M6 cell

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Yong Bum; Baek, Sang Yeol; Park, Dae Kyu

    1997-06-01

    DUPIC(Direct Use of spent PWR fuel In CANDU) fuel cycle to utilize the PWR spent fuel in fabricating CANDU fuel, which is expected to reduce not only the total amount of high level radwastes but the energy sources is underway. IMEF M6 cell to be used as DUPIC fuel fabrication facility is refurbished and retrofitted. Radiation exposure for the hot cell worker by dispersion of the radioactive materials during the DUPIC process were estimated on the basis of the hot cell design information. According to the estimation results, DUPIC fuel fabrication process could be run without any severe impacts to the hot cell workers when the ventilation system to maintain the sufficient pressure difference between hotcell and working area and radiation monitoring system is supports the hot cell operation properly. (author). 4 tabs., 6 figs.

  12. An improved multi-exposure approach for high quality holographic femtosecond laser patterning

    International Nuclear Information System (INIS)

    Zhang, Chenchu; Hu, Yanlei; Li, Jiawen; Lao, Zhaoxin; Ni, Jincheng; Chu, Jiaru; Huang, Wenhao; Wu, Dong

    2014-01-01

    High efficiency two photon polymerization through single exposure via spatial light modulator (SLM) has been used to decrease the fabrication time and rapidly realize various micro/nanostructures, but the surface quality remains a big problem due to the speckle noise of optical intensity distribution at the defocused plane. Here, a multi-exposure approach which used tens of computer generate holograms successively loaded on SLM is presented to significantly improve the optical uniformity without losing efficiency. By applying multi-exposure, we found that the uniformity at the defocused plane was increased from ∼0.02 to ∼0.6 according to our simulation. The fabricated two series of letters “HELLO” and “USTC” under single-and multi-exposure in our experiment also verified that the surface quality was greatly improved. Moreover, by this method, several kinds of beam splitters with high quality, e.g., 2 × 2, 5 × 5 Daman, and complex nonseperate 5 × 5, gratings were fabricated with both of high quality and short time (<1 min, 95% time-saving). This multi-exposure SLM-two-photon polymerization method showed the promising prospect in rapidly fabricating and integrating various binary optical devices and their systems

  13. An improved multi-exposure approach for high quality holographic femtosecond laser patterning

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chenchu; Hu, Yanlei, E-mail: huyl@ustc.edu.cn, E-mail: jwl@ustc.edu.cn; Li, Jiawen, E-mail: huyl@ustc.edu.cn, E-mail: jwl@ustc.edu.cn; Lao, Zhaoxin; Ni, Jincheng; Chu, Jiaru; Huang, Wenhao; Wu, Dong [Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026 (China)

    2014-12-01

    High efficiency two photon polymerization through single exposure via spatial light modulator (SLM) has been used to decrease the fabrication time and rapidly realize various micro/nanostructures, but the surface quality remains a big problem due to the speckle noise of optical intensity distribution at the defocused plane. Here, a multi-exposure approach which used tens of computer generate holograms successively loaded on SLM is presented to significantly improve the optical uniformity without losing efficiency. By applying multi-exposure, we found that the uniformity at the defocused plane was increased from ∼0.02 to ∼0.6 according to our simulation. The fabricated two series of letters “HELLO” and “USTC” under single-and multi-exposure in our experiment also verified that the surface quality was greatly improved. Moreover, by this method, several kinds of beam splitters with high quality, e.g., 2 × 2, 5 × 5 Daman, and complex nonseperate 5 × 5, gratings were fabricated with both of high quality and short time (<1 min, 95% time-saving). This multi-exposure SLM-two-photon polymerization method showed the promising prospect in rapidly fabricating and integrating various binary optical devices and their systems.

  14. Degradation of Spacesuit Fabrics in Low Earth Orbit

    Science.gov (United States)

    Gaier, James R.; Baldwin, Sammantha M.; Folz, Angela D.; Waters, Deborah L.; McCue, Terry R.; Jaworske, Donald A.; Clark, Gregory W.; Rogers, Kerry J.; Batman, Brittany; Bruce, John; hide

    2012-01-01

    Six samples of pristine and dust-abraded outer layer spacesuit fabrics were included in the Materials International Space Station Experiment-7, in which they were exposed to the wake-side low Earth orbit environment on the International Space Station (ISS) for 18 months in order to determine whether abrasion by lunar dust increases radiation degradation. The fabric samples were characterized using optical microscopy, optical spectroscopy, field emission scanning electron microscopy, atomic force microscopy, and tensile testing before and after exposure on the ISS. Comparison of pre- and post-flight characterizations showed that the environment darkened and reddened all six fabrics, increasing their integrated solar absorptance by 7 to 38 percent. There was a decrease in the ultimate tensile strength and elongation to failure of lunar dust abraded Apollo spacesuit fibers by a factor of four and an increase in the elastic modulus by a factor of two.

  15. Techniques for Continuous Monitoring of Airborne Plutonium Activity and Experience of their Use in a Fuel-Element Fabrication Plant

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, D. C.; Perry, K. E.G. [Atomic Energy Establishment. Winfrith, Dorset (United Kingdom); Loosemore, W. R.; Sparke, W. G. [Atomic Energy Research Establishment, Harwell, Berks (United Kingdom)

    1967-12-15

    The development of installed plutonium-in-air monitoring techniques in the U.K.A.E.A. is described together with operational experience in a fuel-element fabrication facility at Winfrith where mixed PuO{sub 2}/UO{sub 2} fuels are manufactured on a tonne scale in freestanding glove boxes for use in reactor physics experiments. Transportable single-point sampling instruments have been designed in which alpha activity collected on a fixed filter paper of area 20 cm{sup 2} is continuously viewed by scintillation or silicon surface barrier detectors. Discrimination against natural alpha activity, typically 10{sup -4}{mu}Ci/m{sup 3}, is achieved by energy analysis: preset alarms operate if an exposure exceeds 5 to 80 maximum permissible concentration hours for plutonium. Evidence is presented which shows that there is no significant chronic exposure to plutonium: inhalation exposure of the workers in this facility results from highly localized releases of airborne activity caused by occasional, minor, often unnoticed damage to box gloves or posting bags. Personal air samplers have been used which show that, in a particular incident, the exposure of an individual may be several orders of magnitude greater than that shown by a continuous monitor only a few metres away, even when many radioactive particles are released. Undesirably large exposures to individuals can occur therefore without an alarm being given by one of the indicating air samplers. In this situation reliance has had to be placed on the early detection of glove damage by frequent surface contamination monitoring. A new monitoring system is now being used to detect localized exposures. Air is monitored at up to 20 positions each near die face of a glove box. Alpha activity on each fixed-filter paper is viewed continuously by silicon surface barrier detectors. An immediate local alarm operates at a count rate equivalent to 80 mpc hours of plutonium. Additionally, each detector is scanned in sequence by a

  16. Fabrication Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Fabrication Facilities are a direct result of years of testing support. Through years of experience, the three fabrication facilities (Fort Hood, Fort Lewis, and...

  17. The usefulness of Al face block fabrication for reducing exposure dose of thyroid glands in mammography

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Eun Ae [Dept. of Diagnostic Radiology, Korea University Guro Hospital, Seoul (Korea, Republic of); Lee, In Ja [Dept. of Radiologic Technology, Dongnam Health College, Suwon (Korea, Republic of)

    2013-03-15

    Currently, there are many studies being conducted around the world to reduce exposure dose to radiation for patients to receive medical treatments in a safe environment. We developed and fabricated of this shield that the patients are protected from the radiation and are need of safety control during breast imaging. In this study, for breast imaging, GE Senography 2000D were used and set at SID 65 cm, 28 kVp, and 63 mAs. The measuring instrument was Flukes Victoreen 6000-529. And we performed Face Block on with 30 patients. The chamber on the actual thyroid glands to take CC and MLO and measure the dosage before and after wearing the Face Block. For the results, after wearing the Face Block, exposure was decreased by 53.8%-100% and 65.8% in average in CC View and by 50%-100% and 60.7% in average in MLO View. The development of the Face Block that practically decreased the exposure dose of thyroid glands, crystalline eyes during breast imaging and reduced the patients anxiety during breast imaging. The Face Block is expected to improve patients satisfaction and contribute to reducing patients exposure dose, but more efforts should be made to reduce exposure dose to medical radiation.

  18. Fabrication of silver tips for scanning tunneling microscope induced luminescence.

    Science.gov (United States)

    Zhang, C; Gao, B; Chen, L G; Meng, Q S; Yang, H; Zhang, R; Tao, X; Gao, H Y; Liao, Y; Dong, Z C

    2011-08-01

    We describe a reliable fabrication procedure of silver tips for scanning tunneling microscope (STM) induced luminescence experiments. The tip was first etched electrochemically to yield a sharp cone shape using selected electrolyte solutions and then sputter cleaned in ultrahigh vacuum to remove surface oxidation. The tip status, in particular the tip induced plasmon mode and its emission intensity, can be further tuned through field emission and voltage pulse. The quality of silver tips thus fabricated not only offers atomically resolved STM imaging, but more importantly, also allows us to perform challenging "color" photon mapping with emission spectra taken at each pixel simultaneously during the STM scan under relatively small tunnel currents and relatively short exposure time.

  19. A facile method to fabricate superhydrophobic cotton fabrics

    Science.gov (United States)

    Zhang, Ming; Wang, Shuliang; Wang, Chengyu; Li, Jian

    2012-11-01

    A facile and novel method for fabricating superhydrophobic cotton fabrics is described in the present work. The superhydrophobic surface has been prepared by utilizing cationic poly (dimethyldiallylammonium chloride) and silica particles together with subsequent modification of (heptadecafluoro-1,1,2,2-tetradecyl) trimethoxysilane. The size distribution of silica particles was measured by Particle Size Analyzer. The cotton textiles before and after treatment were characterized by using scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The wetting behavior of cotton samples was investigated by water contact angle measurement. Moreover, the superhydrophobic durability of coated cotton textiles has been evaluated by exposure, immersion and washing tests. The results show that the treated cotton fabrics exhibited excellent chemical stability and outstanding non-wettability with the WCA of 155 ± 2°, which offers an opportunity to accelerate the large-scale production of superhydrophobic textiles materials for new industrial applications.

  20. Fabrication of the prototype 201.25 MHZ cavity for a muon ionization cooling experiment

    International Nuclear Information System (INIS)

    Rimmer, R.A.; Manning, S.; Manus, R.; Phillips, L.; Stirbet, M.; Worland, K.; Wu, G.; Li, D.; MacGill, R.; Staples, J.; Virostek, S.; Zisman, M.S.; Taminger, K.; Hafley, R.; Martin, R.; Summers, D.; Reep, M.

    2005-01-01

    We describe the fabrication and assembly of the first prototype 201. 25 MHz copper cavity for the muon ionization cooling experiment (MICE). This cavity was developed by the US MUCOOL collaboration and will be tested in the new MUCOOL Test Area at Fermilab. We outline the component and subassembly fabrication steps and the various metal forming and joining methods used to produce the final cavity shape. These include spinning, brazing, TIG welding, electron beam welding, electron beam annealing and deep drawing. Some of the methods developed for this cavity are novel and offer significant cost savings over conventional methods

  1. Experiences in limiting radiation exposure to the embryo/fetus in nuclear power plants

    International Nuclear Information System (INIS)

    Kelly, J.J.

    1991-01-01

    This paper presents the results of a survey of operating nuclear reactors and nuclear fuel fabrication facilities in the US. The survey obtained information on the number of women radiation workers in those plants over the last ten years and the number of workers potentially exposed to radiation while pregnant. Information on plant exposure limits for pregnant workers practiced at these plants and whether these limits comply with NCRP guidance and proposed NRC regulatory limits will also be presented. The discussion will include the effects of unions, labor arbitration, and legal actions on these policies. The unique problems of fuel manufacturers in addressing the proposed NRC regulations for embryo/fetus exposure will also be presented

  2. A Developed Meta-model for Selection of Cotton Fabrics Using Design of Experiments and TOPSIS Method

    Science.gov (United States)

    Chakraborty, Shankar; Chatterjee, Prasenjit

    2017-12-01

    Selection of cotton fabrics for providing optimal clothing comfort is often considered as a multi-criteria decision making problem consisting of an array of candidate alternatives to be evaluated based of several conflicting properties. In this paper, design of experiments and technique for order preference by similarity to ideal solution (TOPSIS) are integrated so as to develop regression meta-models for identifying the most suitable cotton fabrics with respect to the computed TOPSIS scores. The applicability of the adopted method is demonstrated using two real time examples. These developed models can also identify the statistically significant fabric properties and their interactions affecting the measured TOPSIS scores and final selection decisions. There exists good degree of congruence between the ranking patterns as derived using these meta-models and the existing methods for cotton fabric ranking and subsequent selection.

  3. Fabrication of Robust and Antifouling Superhydrophobic Surfaces via Surface-Initiated Atom Transfer Radical Polymerization.

    Science.gov (United States)

    Xue, Chao-Hua; Guo, Xiao-Jing; Ma, Jian-Zhong; Jia, Shun-Tian

    2015-04-22

    Superhydrophobic surfaces were fabricated via surface-initiated atom transfer radical polymerization of fluorinated methacrylates on poly(ethylene terephthalate) (PET) fabrics. The hydrophobicity of the PET fabric was systematically tunable by controlling the polymerization time. The obtained superhydrophobic fabrics showed excellent chemical robustness even after exposure to different chemicals, such as acid, base, salt, acetone, and toluene. Importantly, the fabrics maintained superhydrophobicity after 2500 abrasion cycles, 100 laundering cycles, and long time exposure to UV irradiation. Also, the surface of the superhydrophobic fabrics showed excellent antifouling properties.

  4. Microfluidic DNA microarrays in PMMA chips: streamlined fabrication via simultaneous DNA immobilization and bonding activation by brief UV exposure

    DEFF Research Database (Denmark)

    Sabourin, David; Petersen, J; Snakenborg, Detlef

    2010-01-01

    This report presents and describes a simple and scalable method for producing functional DNA microarrays within enclosed polymeric, PMMA, microfluidic devices. Brief (30 s) exposure to UV simultaneously immobilized poly(T)poly(C)-tagged DNA probes to the surface of unmodified PMMA and activated...... the surface for bonding below the glass transition temperature of the bulk PMMA. Functionality and validation of the enclosed PMMA microarrays was demonstrated as 18 patients were correctly genotyped for all eight mutation sites in the HBB gene interrogated. The fabrication process therefore produced probes...... with desired hybridization properties and sufficient bonding between PMMA layers to allow construction of microfluidic devices. The streamlined fabrication method is suited to the production of low-cost microfluidic microarray-based diagnostic devices and, as such, is equally applicable to the development...

  5. OWR/RTNS-II low exposure spectral effects experiment

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1985-05-01

    The first RTNS-II irradiation of the Low Exposure Spectral Experiment has been completed. The dosimetry has been analyzed, and expressions have been determined that fit the data very well. The effects of including the angular variation of the neutron spectrum were investigated

  6. Patients' experiences of cold exposure during ambulance care.

    Science.gov (United States)

    Aléx, Jonas; Karlsson, Stig; Saveman, Britt-Inger

    2013-06-06

    Exposure to cold temperatures is often a neglected problem in prehospital care. Cold exposure increase thermal discomfort and, if untreated causes disturbances of vital body functions until ultimately reaching hypothermia. It may also impair cognitive function, increase pain and contribute to fear and an overall sense of dissatisfaction. The aim of this study was to investigate injured and ill patients' experiences of cold exposure and to identify related factors. During January to March 2011, 62 consecutively selected patients were observed when they were cared for by ambulance nursing staff in prehospital care in the north of Sweden. The field study was based on observations, questions about thermal discomfort and temperature measurements (mattress air and patients' finger temperature). Based on the observation protocol the participants were divided into two groups, one group that stated it was cold in the patient compartment in the ambulance and another group that did not. Continuous variables were analyzed with independent sample t-test, paired sample t-test and dichotomous variables with cross tabulation. In the ambulance 85% of the patients had a finger temperature below comfort zone and 44% experienced the ambient temperature in the patient compartment in the ambulance to be cold. There was a significant decrease in finger temperature from the first measurement indoor compared to measurement in the ambulance. The mattress temperature at the ambulance ranged from -22.3°C to 8.4°C. Cold exposure in winter time is common in prehospital care. Sick and injured patients immediately react to cold exposure with decreasing finger temperature and experience of discomfort from cold. Keeping the patient in the comfort zone is of great importance. Further studies are needed to increase knowledge which can be a base for implications in prehospital care for patients who probably already suffer for other reasons.

  7. Patients’ experiences of cold exposure during ambulance care

    Science.gov (United States)

    2013-01-01

    Background Exposure to cold temperatures is often a neglected problem in prehospital care. Cold exposure increase thermal discomfort and, if untreated causes disturbances of vital body functions until ultimately reaching hypothermia. It may also impair cognitive function, increase pain and contribute to fear and an overall sense of dissatisfaction. The aim of this study was to investigate injured and ill patients’ experiences of cold exposure and to identify related factors. Method During January to March 2011, 62 consecutively selected patients were observed when they were cared for by ambulance nursing staff in prehospital care in the north of Sweden. The field study was based on observations, questions about thermal discomfort and temperature measurements (mattress air and patients’ finger temperature). Based on the observation protocol the participants were divided into two groups, one group that stated it was cold in the patient compartment in the ambulance and another group that did not. Continuous variables were analyzed with independent sample t-test, paired sample t-test and dichotomous variables with cross tabulation. Results In the ambulance 85% of the patients had a finger temperature below comfort zone and 44% experienced the ambient temperature in the patient compartment in the ambulance to be cold. There was a significant decrease in finger temperature from the first measurement indoor compared to measurement in the ambulance. The mattress temperature at the ambulance ranged from −22.3°C to 8.4°C. Conclusion Cold exposure in winter time is common in prehospital care. Sick and injured patients immediately react to cold exposure with decreasing finger temperature and experience of discomfort from cold. Keeping the patient in the comfort zone is of great importance. Further studies are needed to increase knowledge which can be a base for implications in prehospital care for patients who probably already suffer for other reasons. PMID:23742143

  8. What I make up when I wake up: anti-experience views and narrative fabrication of dreams

    Science.gov (United States)

    Rosen, Melanie G.

    2013-01-01

    I propose a narrative fabrication thesis of dream reports, according to which dream reports are often not accurate representations of experiences that occur during sleep. I begin with an overview of anti-experience theses of Norman Malcolm and Daniel Dennett who reject the received view of dreams, that dreams are experiences we have during sleep which are reported upon waking. Although rejection of the first claim of the received view, that dreams are experiences that occur during sleep, is implausible, I evaluate in more detail the second assumption of the received view, that dream reports are generally accurate. I then propose a “narrative fabrication” view of dreams as an alternative to the received view. Dream reports are often confabulated or fabricated because of poor memory, bizarre dream content, and cognitive deficits. It is well documented that narratives can be altered between initial rapid eye movement sleep awakenings and subsequent reports. I argue that we have reason to suspect that initial reports are prone to inaccuracy. Experiments demonstrate that subjects rationalize strange elements in narratives, leaving out supernatural or bizarre components when reporting waking memories of stories. Inaccuracies in dream reports are exacerbated by rapid memory loss and bizarre dream content. Waking memory is a process of reconstruction and blending of elements, but unlike waking memory, we cannot reality-test for dream memories. Dream experiences involve imaginative elements, and dream content cannot be verified with external evidence. Some dreams may involve wake-like higher cognitive functions, such as lucid dreams. Such dreams are more likely to elicit accurate reports than cognitively deficient dreams. However, dream reports are generally less accurate than waking reports. I then propose methods which could verify the narrative fabrication view, and argue that although the theory cannot be tested with current methods, new techniques and technologies

  9. What I make up when I wake up: anti-experience views and narrative fabrication of dreams

    Directory of Open Access Journals (Sweden)

    Melanie Gillespie Rosen

    2013-08-01

    Full Text Available I propose a narrative fabrication thesis of dream reports, according to which dream reports are often not accurate representations of experiences that occur during sleep. I begin with an overview of anti-experience theses of Norman Malcolm and Daniel Dennett who reject the received view of dreams, that dreams are experiences we have during sleep which are reported upon waking. Although rejection of the first claim of the received view, that dreams are experiences that occur during sleep, is implausible, I evaluate in more detail the second assumption of the received view, that dream reports are generally accurate. I then propose a ‘narrative fabrication’ view of dreams as an alternative to the received view. Dream reports are often confabulated or fabricated because of poor memory, bizarre dream content and cognitive deficits. It is well documented that narratives can alter between initial REM sleep awakenings and subsequent reports. I argue that we have reason to suspect that initial reports are prone to inaccuracy. Experiments demonstrate that subjects rationalise strange elements in narratives, leaving out supernatural or bizarre components when reporting waking memories of stories. Inaccuracies in dream reports are exacerbated by rapid memory loss and bizarre dream content. Waking memory is a process of reconstruction and blending of elements, but unlike waking memory, we cannot reality-test for dream memories. Dream experiences involve imaginative elements, and dream content cannot be verified with external evidence. Some dreams may involve wake-like higher cognitive functions, such as lucid dreams. Such dreams more likely to elicit accurate reports than cognitively deficient dreams. However, dream reports are generally less accurate than waking reports. I then propose methods which could verify the narrative fabrication, and argue that although the theory cannot be tested with current methods, new techniques and technologies may be

  10. Engineering Non-Wetting Antimicrobial Fabrics

    Science.gov (United States)

    van den Berg, Desmond

    This research presents novel techniques and a review of commercially available fabrics for their antimicrobial potential. Based on previous research into the advantages of superhydrophobic self-cleaning surfaces against bacterial contamination, insights into what can make a superhydrophobic fabric inherently antimicrobial were analyzed. Through comparing the characterization results of scanning electron microscopy (SEM) and optical profilometry to microbiology experiments, hypotheses into the relationship between the contact area of a bacterial solution and the extent of contamination is developed. Contact scenario experiments, involving the use of fluorescence microscopy and calculating colony forming units, proved that the contamination potential of any fabric is due to the wetting state exhibited by the fabric, as well as the extent of surface texturing. Transmission experiments, utilizing a novel technique of stamping a contaminated fabric, outlined the importance of retention of solutions or bacteria during interactions within the hospital environment on the extent of contamination.

  11. Astronaut exposure to space radiation - Space Shuttle experience

    International Nuclear Information System (INIS)

    Atwell, W.

    1990-01-01

    Space Shuttle astronauts are exposed to both the trapped radiation and the galactic cosmic radiation environments. In addition, the sun periodically emits high-energy particles which could pose a serious threat to flight crews. NASA adheres to federal regulations and recommended exposure limits for radiation protection and has established a radiological health and risk assessment program. Using models of the space radiation environment, a Shuttle shielding model, and an anatomical human model, crew exposure estimates are made for each Shuttle flight. The various models are reviewed. Dosimeters are worn by each astronaut and are flown at several fixed locations to obtain inflight measurements. The dosimetry complement is discussed in detail. A comparison between the premission calculations and measurements is presented. Extrapolation of Shuttle experience to long-duration exposure is explored. 14 refs

  12. Design and Fabrication of Porous Yttria-Stabilized Zirconia Ceramics for Hot Gas Filtration Applications

    Science.gov (United States)

    Shahini, Shayan

    Hot gas filtration has received growing attention in a variety of applications over the past few years. Yttria-stabilized zirconia (YSZ) is a promising candidate for such an application. In this study, we fabricated disk-type porous YSZ filters using the pore forming procedure, in which poly methyl methacrylate (PMMA) was used as the pore-forming agent. After fabricating the pellets, we characterized them to determine their potential for application as gas filters. We investigated the effect of sintering temperature, polymer particle size, and polymer-to-ceramic ratio on the porosity, pore size, gas permeability, and Vickers hardness of the sintered pellets. Furthermore, we designed two sets of experiments to investigate the robustness of the fabricated pellets--i.e., cyclic heating/cooling and high temperature exposure. This study ushers in a robust technique to fabricate such porous ceramics, which have the potential to be utilized in hot gas filtration.

  13. Investigation on mechanical properties of basalt composite fabrics (experiment study)

    Science.gov (United States)

    Talebi Mazraehshahi, H.; Zamani, H.

    2010-06-01

    To fully appreciate the role and application of composite materials to structures, correct understanding of mechanical behaviors required for selection of optimum material. Fabric reinforced composites are composed of a matrix that is reinforced with pliable fabric, glass fabric is most popular reinforcement for different application specially in aircraft structure, although other fabric material are also used. At this study new fabric material called basalt with epoxy resin introduced and mechanical behaviors of this material investigated from view point of testing. For this study two type of fabric with different thickness used. Comparison between this composite reinforcement with popular reinforcement as carbon, glass, kevlar performed. To determine mechanical properties of epoxy based basalt fabric following test procedure performed : 1). Tensile testing according to ASTM D3039 in 0° and 90° direction to find ultimate strength in tension and shear, modulus of elasticity, elangation and ultimate strain. 2). Compression testing according to EN 2850 ultimate compression strength and maximum deformation under compression loading. 3). Shear testing according to ASTM D3518-94 to find in plane shear response of polymer matrix composites materials. 4). Predict flexural properties of sandwich construction which manufactured from basalt facing with PVC foam core according to ASTM C393-94. Material strength properties must be based on enough tests of material to meet the test procedure specifications [1]. For this reason six specimens were manufactured for testing and the tests were performed on them using an INSTRON machine model 5582. In the study, the effect of percent of resin in basalt reinforced composite was investigated. Also the weights of the ballast based composites with different percent of resin were measured with conventional composites. As the weight is an important parameter in aerospace industry when the designer wants to replace one material with

  14. Experiences with the first prototype MOX fuel rods fabricated at Argentina

    International Nuclear Information System (INIS)

    Marino, Armando Carlos; Perez, Edmundo; Adelfang, Pablo

    1996-01-01

    The irradiation of the first Argentine prototypes of pressurized heavy water reactor (PHWR) (U,Pu)O sub 2 MOX fuels began in 1986. These experiments were carried out in the High Flux Reactor (HFR)-Petten, Holland. The rods were prepared and controlled in the C NEA's alpha Facility. The first rod has been used for destructive pre-irradiation analysis. The second one as a pathfinder to adjust systems in the HFR. Two additional rods including iodine doped pellets were intended to simulate 15000 MWd/T(M) burnup. The remaining two rods were irradiated until 15000 MWd/T(M). One of them underwent a final ramp with the aim of verifying fabrication processes and studying the behaviour under power transients. BACO (BArra COmbustible) code was used to define the power histories and to analyse the experiments. This paper presents a description of the different experiments and a comparison between the results of the postirradiation examinations and the BACO outputs

  15. Analysis of mechanical fabrication experience with CEBAF's production SRF cavities

    International Nuclear Information System (INIS)

    Mammosser, J.; Kneisel, P.; Benesch, J.

    1993-06-01

    CEBAF has received a total of 360 five-cell niobium cavities, the largest group of industrially fabricated superconducting cavities so far. An extensive data base exists on the fabrication, surface treatment, assembly and cavity performance parameters. Analysis of the mechanical features of the cavities includes the following: the spread in fabrication tolerances of the cells derived from field profiles of the ''as fabricated'' cavities and the ''as fabricated'' external Q-values of the fundamental power coupler compared to dimensional deviations. A comparison is made of the pressure sensitivity of cavities made of materials from different manufacturers between 760 torr (4.2 K) and 23 torr (2 K)

  16. Fuel canister and blockage pin fabrication for SLSF Experiment P4

    International Nuclear Information System (INIS)

    Rhude, H.V.; Folkrod, J.R.; Noland, R.A.; Schaus, P.S.; Benecke, M.W.; Delucchi, T.A.

    1983-01-01

    As part of its fast breeder reactor safety research program, Argonne National Laboratory (ANL) has conducted an experiment (SLSF Experiment P4) to determine the extent of fuel-failure propagation resulting from the release of molten fuel from one or more heat-generating fuel canisters. The test conditions consisted of 37 full-length FTR fuel pins operating at FTR rated core nominal peak fuel/reduced coolant conditions. Thirty-four of the the fuel pins were prototypical FTR mixed-oxide fuel pins. The other three fuel pins were fabricated with a mid-core section having an enlarged canister containing fully enriched UO 2 . Two of the canisters were cylindrical and one was fluted. The cylindrical canisters were designed to fail and release molten fuel into the 37-pin fuel cluster at near full power

  17. Investigation on mechanical properties of basalt composite fabrics (experiment study

    Directory of Open Access Journals (Sweden)

    Talebi Mazraehshahi H.

    2010-06-01

    Full Text Available To fully appreciate the role and application of composite materials to structures, correct understanding of mechanical behaviors required for selection of optimum material. Fabric reinforced composites are composed of a matrix that is reinforced with pliable fabric, glass fabric is most popular reinforcement for different application specially in aircraft structure, although other fabric material are also used. At this study new fabric material called basalt with epoxy resin introduced and mechanical behaviors of this material investigated from view point of testing. For this study two type of fabric with different thickness used. Comparison between this composite reinforcement with popular reinforcement as carbon, glass, kevlar performed. To determine mechanical properties of epoxy based basalt fabric following test procedure performed : 1. Tensile testing according to ASTM D3039 in 0° and 90° direction to find ultimate strength in tension and shear, modulus of elasticity, elangation and ultimate strain. 2. Compression testing according to EN 2850 ultimate compression strength and maximum deformation under compression loading. 3. Shear testing according to ASTM D3518-94 to find in plane shear response of polymer matrix composites materials. 4. Predict flexural properties of sandwich construction which manufactured from basalt facing with PVC foam core according to ASTM C393-94. Material strength properties must be based on enough tests of material to meet the test procedure specifications [1]. For this reason six specimens were manufactured for testing and the tests were performed on them using an INSTRON machine model 5582. In the study, the effect of percent of resin in basalt reinforced composite was investigated. Also the weights of the ballast based composites with different percent of resin were measured with conventional composites. As the weight is an important parameter in aerospace industry when the designer wants to replace one

  18. Wafer-scale fabrication of glass-FEP-glass microfluidic devices for lipid bilayer experiments.

    Science.gov (United States)

    Bomer, Johan G; Prokofyev, Alexander V; van den Berg, Albert; Le Gac, Séverine

    2014-12-07

    We report a wafer-scale fabrication process for the production of glass-FEP-glass microdevices using UV-curable adhesive (NOA81) as gluing material, which is applied using a novel "spin & roll" approach. Devices are characterized for the uniformity of the gluing layer, presence of glue in the microchannels, and alignment precision. Experiments on lipid bilayers with electrophysiological recordings using a model pore-forming polypeptide are demonstrated.

  19. Radiological safety aspects in the fabrication of mixed oxide fuel elements

    International Nuclear Information System (INIS)

    Krishnamurthi, T.N.; Janardhanan, S.; Soman, S.D.

    1981-01-01

    The problems of radiological safety in the fabrication of (U, Pu)O 2 fuel assemblies for fast reactors utilising high exposure plutonium are discussed. Derived working limits for plutonium as a function of the burn-up of RAPS (Rajasthan Atomic Power Station) fuel, external gamma and neutron exposures from feed product batches, finished fuel pins and assemblies are presented. Shielding requirements for the various glove box operations are also indicated. In general, high exposure plutonium handling calls for remote fabrication and automation at various stages would play a key role in minimising exposures to personnel in a large production plant. (author)

  20. Additive Manufacturing, Design, Testing, and Fabrication: A Full Engineering Experience at JSC

    Science.gov (United States)

    Zusack, Steven

    2016-01-01

    I worked on several projects this term. While most projects involved additive manufacturing, I was also involved with two design projects, two testing projects, and a fabrication project. The primary mentor for these was Richard Hagen. Secondary mentors were Hai Nguyen, Khadijah Shariff, and fabrication training from James Brown. Overall, my experience at JSC has been successful and what I have learned will continue to help me in my engineering education and profession long after I leave. My 3D printing projects ranged from less than a 1 cubic centimeter to about 1 cubic foot and involved several printers using different printing technologies. It was exciting to become familiar with printing technologies such as industrial grade FDM (Fused Deposition Modeling), the relatively new SLA (Stereolithography), and PolyJet. My primary duty with the FDM printers was to model parts that came in from various sources to print effectively and efficiently. Using methods my mentor taught me and the Stratasys Insight software, I was able to minimize imperfections, hasten build time, improve strength for specific forces (tensile, shear, etc...), and reduce likelihood of a print-failure. Also using FDM, I learned how to repair a part after it was printed. This is done by using a special kind of glue that chemically melts the two faces of plastic parts together to form a fused interface. My first goal with SLA technology was to bring the printer back to operational readiness. In becoming familiar with the Pegasus SLA printer, I researched the leveling, laser settings, and different vats to hold liquid material. With this research, I was successfully able to bring the Pegasus back online and have successfully printed multiple sample parts as well as functional parts. My experience with PolyJet technology has been focused on an understanding of the abilities/limits, costs, and the maintenance for daily use. Still upcoming will be experience with using a composite printer that uses FDM

  1. Fabrics in Function

    DEFF Research Database (Denmark)

    Bang, Anne Louise

    2007-01-01

    sensing of fabrics in function. It is proposed that tactile and visual sensing of fabrics is a way to investigate and express emotional utility values. The further purpose is to use experiments with repertory grid models as part of the mapping of the entire research project and also as a basis...

  2. Design, fabrication and characterization of multi-guard-ring furnished p+n-n+ silicon strip detectors for future HEP experiments

    Science.gov (United States)

    Lalwani, Kavita; Jain, Geetika; Dalal, Ranjeet; Ranjan, Kirti; Bhardwaj, Ashutosh

    2016-07-01

    Si detectors, in various configurations (strips and pixels), have been playing a key role in High Energy Physics (HEP) experiments due to their excellent vertexing and high precision tracking information. In future HEP experiments like upgrade of the Compact Muon Solenoid experiment (CMS) at the Large Hadron Collider (LHC), CERN and the proposed International Linear Collider (ILC), the Si tracking detectors will be operated in a very harsh radiation environment, which leads to both surface and bulk damage in Si detectors which in turn changes their electrical properties, i.e. change in the full depletion voltage, increase in the leakage current and decrease in the charge collection efficiency. In order to achieve the long term durability of Si-detectors in future HEP experiments, it is required to operate these detectors at very high reverse biases, beyond the full depletion voltage, thus requiring higher detector breakdown voltage. Delhi University (DU) is involved in the design, fabrication and characterization of multi-guard-ring furnished ac-coupled, single sided, p+n-n+ Si strip detectors for future HEP experiments. The design has been optimized using a two-dimensional numerical device simulation program (TCAD-Silvaco). The Si strip detectors are fabricated with eight-layers mask process using the planar fabrication technology by Bharat Electronic Lab (BEL), India. Further an electrical characterization set-up is established at DU to ensure the quality performance of fabricated Si strip detectors and test structures. In this work measurement results on non irradiated Si Strip detectors and test structures with multi-guard-rings using Current Voltage (IV) and Capacitance Voltage (CV) characterization set-ups are discussed. The effect of various design parameters, for example guard-ring spacing, number of guard-rings and metal overhang on breakdown voltage of test structures have been studied.

  3. Evaluation of the hazard associated with fabricating beryllium copper alloys

    International Nuclear Information System (INIS)

    Senn, T.J.

    1977-01-01

    Beryllium-copper alloys should be considered toxic materials and proper controls must be used when they are machined, heated, or otherwise fabricated. Air samples should be taken for each type of fabrication to determine the worker's exposure and the effectiveness of the controls in use. It has been shown that aerosols containing beryllium are generated during the four methods of fabrication tested, and that these aerosols can be reduced through local exhaust to undetectable levels. Considering the acute, chronic and possibly carcinogenic effects of exposure to beryllium, effective controls should be required because they are feasible both technologically and economically. The health hazards and control measures are reviewed

  4. A micro-fabricated hydrogen storage module with sub-atmospheric activation and durability in air exposure

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Xi; Payer, Joe H. [Corrosion and Reliability Engineering, Department of Chemical and Biomolecular Engineering, University of Akron, 302 Buchtel Common, Akron, OH 44325 (United States); Wainright, Jesse S.; Dudik, Laurie [Department of Chemical Engineering, Case Western Reserve University, Cleveland, OH 44106 (United States)

    2011-01-15

    The objective of this work was to develop a hydrogen storage module for onboard electrical power sources suitable for use in micro-power systems and micro-electro-mechanical systems (MEMS). Hydrogen storage materials were developed as thin-film inks to be compatible with an integrated manufacturing process. Important design aspects were (a) ready activation at sub-atmospheric hydrogen pressure and room temperature and (b) durability, i.e. capable of hundreds of absorption/desorption cycles and resistance to deactivation on exposure to air. Inks with palladium-treated intermetallic hydrogen storage alloys were developed and are shown here to be compatible with a thin-film micro-fabrication process. These hydrogen storage modules absorb hydrogen readily at atmospheric pressure, and the absorption/desorption rates remained fast even after the ink was exposed to air for 47 weeks. (author)

  5. Advanced fuel fabrication

    International Nuclear Information System (INIS)

    Bernard, H.

    1989-01-01

    This paper deals with the fabrication of advanced fuels, such as mixed oxides for Pressurized Water Reactors or mixed nitrides for Fast Breeder Reactors. Although an extensive production experience exists for the mixed oxides used in the FBR, important work is still needed to improve the theoretical and technical knowledge of the production route which will be introduced in the future European facility, named Melox, at Marcoule. Recently, the feasibility of nitride fuel fabrication in existing commercial oxide facilities was demonstrated in France. The process, based on carbothermic reduction of oxides with subsequent comminution of the reaction product, cold pressing and sintering provides (U, Pu)N pellets with characteristics suitable for irradiation testing. Two experiments named NIMPHE 1 and 2 fabricated in collaboration with ITU, Karlsruhe, involve 16 nitride and 2 carbide pins, operating at a linear power of 45 and 73 kW/m with a smear density of 75-80% TD and a high burn-up target of 15 at%. These experiments are currently being irradiated in Phenix, at Marcoule. (orig.)

  6. A facile method to fabricate close-packed concave microlens array on cylindrical glass

    International Nuclear Information System (INIS)

    Deng, Zefang; Chen, Feng; Yang, Qing; Liu, Hewei; Bian, Hao; Du, Guangqing; Hu, Yang; Si, Jinhai; Meng, Xiangwei; Hou, Xun

    2012-01-01

    This work presents a facile method to fabricate concave microlens arrays (MLAs) with controllable shape and high fill factor on cylindrical silica glass by a femtosecond laser-enhanced chemical wet etching process. The hexagonal and rectangular MLAs are flexibly fabricated on the silica glass cylinder with a diameter of 3 mm. The morphological characteristics of MLAs are measured by a scanning electron microscope and a laser scanning confocal microscope. The measurements show that the good uniformity and high packing density MLA structures are generated. It has also been demonstrated that the shape and size of the concave structures could be easily tuned by changing laser power and the arrangement of laser exposure spots. The convex MLAs replicated by the polymer casting method experience excellent image quality. (paper)

  7. Suspended microstructures of epoxy based photoresists fabricated with UV photolithography

    DEFF Research Database (Denmark)

    Hemanth, Suhith; Anhøj, Thomas Aarøe; Caviglia, Claudia

    2017-01-01

    In this work we present an easy, fast, reliable and low cost microfabrication technique for fabricating suspended microstructures of epoxy based photoresistswith UV photolithography. Two different fabrication processes with epoxy based resins (SU-8 and mr-DWL) using UV exposures at wavelengths...... of 313 nm and 405 nm were optimized and compared in terms of structural stability, control of suspended layer thickness and resolution limits. A novel fabrication process combining the two photoresists SU-8 and mr-DWL with two UV exposures at 365 nm and 405 nm respectively provided a wider processing...... window for definition of well-defined suspended microstructures with lateral dimensions down to 5 μmwhen compared to 313 nm or 365 nm UV photolithography processes....

  8. BWR radiation exposure--experience and projection

    International Nuclear Information System (INIS)

    Falk, C.F.; Wilkinson, C.D.; Hollander, W.R.

    1979-01-01

    The BWR/6 Mark III radiation exposures are projected to be about half of those of current average operating experience of 725 man-rem. These projections are said to be realistic and based on current achievements and not on promises of future development. The several BWRs operating with low primary system radiation levels are positive evidence that radiation sources can be reduced. Improvements have been made in reducing the maintenance times for the BWR/6, and further improvements can be made by further attention to cost-effective plant arrangement and layout during detail design to improve accessibility and maintainability of each system and component

  9. Displacement Talbot lithography: an alternative technique to fabricate nanostructured metamaterials

    Science.gov (United States)

    Le Boulbar, E. D.; Chausse, P. J. P.; Lis, S.; Shields, P. A.

    2017-06-01

    Nanostructured materials are essential for many recent electronic, magnetic and optical devices. Lithography is the most common step used to fabricate organized and well calibrated nanostructures. However, feature sizes less than 200 nm usually require access to deep ultraviolet photolithography, e-beam lithography or soft lithography (nanoimprinting), which are either expensive, have low-throughput or are sensitive to defects. Low-cost, high-throughput and low-defect-density techniques are therefore of interest for the fabrication of nanostructures. In this study, we investigate the potential of displacement Talbot lithography for the fabrication of specific structures of interest within plasmonic and metamaterial research fields. We demonstrate that nanodash arrays and `fishnet'-like structures can be fabricated by using a double exposure of two different linear grating phase masks. Feature sizes can be tuned by varying the exposure doses. Such lithography has been used to fabricate metallic `fishnet'-like structures using a lift-off technique. This proof of principle paves the way to a low-cost, high-throughput, defect-free and large-scale technique for the fabrication of structures that could be useful for metamaterial and plasmonic metasurfaces. With the development of deep ultraviolet displacement Talbot lithography, the feature dimensions could be pushed lower and used for the fabrication of optical metamaterials in the visible range.

  10. Development of technology for fabrication of lithium CPS on basis of CNT-reinforced carboxylic fabric

    Energy Technology Data Exchange (ETDEWEB)

    Tazhibayeva, Irina, E-mail: tazhibayeva@ntsc.kz [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Baklanov, Viktor; Ponkratov, Yuriy [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Abdullin, Khabibulla [Institute of Experimental and Theoretical Physics of Kazakh National University, Almaty (Kazakhstan); Kulsartov, Timur; Gordienko, Yuriy; Zaurbekova, Zhanna [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Lyublinski, Igor [JSC «Red Star», Moscow (Russian Federation); NRNU «MEPhI», Moscow (Russian Federation); Vertkov, Alexey [JSC «Red Star», Moscow (Russian Federation); Skakov, Mazhyn [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan)

    2017-04-15

    Highlights: • Preliminary study of carboxylic fabric wettability with liquid lithium is presented. • Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673,773 and 873 К in vacuum during long time. • A scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. • The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed. - Abstract: The paper describes the analysis of liquid lithium interaction with materials based on carbon, the manufacture technology of capillary-porous system (CPS) matrix on basis of CNT-reinforced carboxylic fabric. Preliminary study of carboxylic fabric wettability with liquid lithium is presented. The development of technology includes: microstructural studies of carboxylic fabric before its CNT-reinforcing; validation of CNT-reinforcing technology; mode validation of CVD-method for CNT synthesize; study of synthesized carbon structures. Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673, 773 and 873 К in vacuum during long time. The scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed.

  11. Development of technology for fabrication of lithium CPS on basis of CNT-reinforced carboxylic fabric

    International Nuclear Information System (INIS)

    Tazhibayeva, Irina; Baklanov, Viktor; Ponkratov, Yuriy; Abdullin, Khabibulla; Kulsartov, Timur; Gordienko, Yuriy; Zaurbekova, Zhanna; Lyublinski, Igor; Vertkov, Alexey; Skakov, Mazhyn

    2017-01-01

    Highlights: • Preliminary study of carboxylic fabric wettability with liquid lithium is presented. • Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673,773 and 873 К in vacuum during long time. • A scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. • The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed. - Abstract: The paper describes the analysis of liquid lithium interaction with materials based on carbon, the manufacture technology of capillary-porous system (CPS) matrix on basis of CNT-reinforced carboxylic fabric. Preliminary study of carboxylic fabric wettability with liquid lithium is presented. The development of technology includes: microstructural studies of carboxylic fabric before its CNT-reinforcing; validation of CNT-reinforcing technology; mode validation of CVD-method for CNT synthesize; study of synthesized carbon structures. Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673, 773 and 873 К in vacuum during long time. The scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed.

  12. Marginal and internal fit of heat pressed versus CAD/CAM fabricated all-ceramic onlays after exposure to thermo-mechanical fatigue

    Science.gov (United States)

    Guess, Petra C.; Vagopoulou, Thaleia; Zhang, Yu; Wolkewitz, Martin; Strub, Joerg R.

    2015-01-01

    Objectives The aim of the study was to evaluate the marginal and internal fit of heat-pressed and CAD/CAM fabricated all-ceramic onlays before and after luting as well as after thermo-mechanical fatigue. Materials and Methods Seventy-two caries-free, extracted human mandibular molars were randomly divided into three groups (n=24/group). All teeth received an onlay preparation with a mesio-occlusal-distal inlay cavity and an occlusal reduction of all cusps. Teeth were restored with heat-pressed IPS-e.max-Press* (IP, *Ivoclar-Vivadent) and Vita-PM9 (VP, Vita-Zahnfabrik) as well as CAD/CAM fabricated IPS-e.max-CAD* (IC, Cerec 3D/InLab/Sirona) all-ceramic materials. After cementation with a dual-polymerizing resin cement (VariolinkII*), all restorations were subjected to mouth-motion fatigue (98N, 1.2 million cycles; 5°C/55°C). Marginal fit discrepancies were examined on epoxy replicas before and after luting as well as after fatigue at 200x magnification. Internal fit was evaluated by multiple sectioning technique. For the statistical analysis, a linear model was fitted with accounting for repeated measurements. Results Adhesive cementation of onlays resulted in significantly increased marginal gap values in all groups, whereas thermo-mechanical fatigue had no effect. Marginal gap values of all test groups were equal after fatigue exposure. Internal discrepancies of CAD/CAM fabricated restorations were significantly higher than both press manufactured onlays. Conclusions Mean marginal gap values of the investigated onlays before and after luting as well as after fatigue were within the clinically acceptable range. Marginal fit was not affected by the investigated heat-press versus CAD/CAM fabrication technique. Press fabrication resulted in a superior internal fit of onlays as compared to the CAD/CAM technique. Clinical Relevance Clinical requirements of 100 μm for marginal fit were fulfilled by the heat-press as well as by the CAD/CAM fabricated all-ceramic onlays

  13. Media Impacts on Women's Fertility Desires: A Prolonged Exposure Experiment.

    Science.gov (United States)

    Knobloch-Westerwick, Silvia; Willis, Laura E; Kennard, Ashley R

    2016-06-01

    Media exposure may have implications for family planning, a public health issue of key importance. Drawing on social comparison theory and social identity theory, a prolonged exposure experiment examined whether media portrayals of women's social roles affect fertility desires among 166 American, nonstudent, never married, childless women ages 21-35 years old. After sign-up and baseline sessions, participants viewed magazine pages five days in a row. Stimuli presented women in either mother/homemaker roles, beauty ideal roles, or professional roles. Three days later, participants again indicated their number of desired children and time planned until first birth. Exposure to mother/homemaker and beauty ideal portrayals increased the number of desired children across time. Exposure to professional portrayals increased the time planned until 1st birth compared to beauty ideal portrayals-this impact was partially mediated by a shift toward more progressive gender norms (per social identity theory) and assimilation (per social comparison theory).

  14. Fabrication of self-written waveguide in photosensitive polyimide resin by controlling photochemical reaction of photosensitizer

    International Nuclear Information System (INIS)

    Yamashita, K.; Kuro, T.; Oe, K.; Mune, K.; Tagawa, K.; Naitou, R.; Mochizuki, A.

    2004-01-01

    We have investigated optical properties of photosensitive polyimide appropriating for long self-written waveguide fabrication. From systematic measurements of absorption properties, it was found that photochemical reaction of photosensitizer dissolved in the photosensitive polyimide resins relates to transparency after the exposure, which limits the length of the fabricated self-written waveguide. By controlling the photochemical reaction, in which the photosensitive polyimide resin has sufficient transparency during exposure, four times longer self-written waveguide core was fabricated

  15. The Relationship Between Digital Technology Experience, Daily Media Exposure and Working Memory Capacity

    Directory of Open Access Journals (Sweden)

    Muhterem DİNDAR

    2016-06-01

    Full Text Available Today’s youngsters interact with digital technologies to a great extent which leads scholars to question the influence of this exposure on human cognitive structure. Through resorting to digital nativity assumptions, it is presumed that cognitive architecture of the youth may change in accordance with digital technology use. In this regard, the current study investigated the relationship between digital technology experience, daily media exposure and working memory capacity of so-called digital native participants. A total of 572 undergraduate students responded to self-report measures, which addressed years of experience for 7 different digital devices and the daily time spent for 14 different digital activities. Participants’ working memory capacity was measured through the Computation Span and the Dot Matrix Test. While the former was used to measure the phonological loop capacity, the latter was used to address the visuo-spatial sketchpad capacity. Correlational analyses revealed that neither the phonological loop capacity nor the visuo-spatial sketchpad capacity was related to digital technology experience and daily media exposure. Thus, the transformative contribution of digital technology experience to human cognitive architecture could not be observed through the current measures

  16. Experiences in transferring of AFA 3G fuel assembly fabrication

    International Nuclear Information System (INIS)

    Yang Xiaodong; Wu Zhiming; Luo Jiankang

    2002-01-01

    Implementation program is developed for the transferring of AFA 3G technology, together with the project management experts designated by Framatome Company, to facilitate the technology import under the guidance of strict program. Technical documents and quality insurance management documents are developed based on the full understanding of the information provided by Framatome to guide the fabrication of AFA 3G fuel elements. Technical requirement suggested by Framatome is adopted as much as possible, considering the practical process capability of YFP. The focus is the technology about fabrication difficulties in the AFA 3G technology, to insure the successful transfer of the AFA 3G fabrication technology

  17. Composite metal foil and ceramic fabric materials

    Science.gov (United States)

    Webb, Brent J.; Antoniak, Zen I.; Prater, John T.; DeSteese, John G.

    1992-01-01

    The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed.

  18. International experience in addressing combined exposures: Increasing the efficiency of assessment

    International Nuclear Information System (INIS)

    Meek, M.E.

    2013-01-01

    More efficient methodology for assessing the impact of combined exposures to multiple chemicals has been considered in a project of the World Health Organization (WHO) International Programme on Chemical Safety (IPCS). Recommendations regarding terminology and the status of development of the framework, its content, review and application are described. Evolving experience in its application is illustrated by example (polybrominated diphenyls) with special emphasis on the critical content of problem formulation, the role of predictive tools in grouping of chemicals for consideration and the importance of explicit delineation of relative uncertainty and sensitivity for tiered assessment. Priorities in increasing the efficiency of risk assessment not only for combined exposures, but more generally based on experience acquired in developing the framework and its application in case studies are identified and recommendations included

  19. Fabrication of Low Noise Borosilicate Glass Nanopores for Single Molecule Sensing.

    Directory of Open Access Journals (Sweden)

    Jayesh A Bafna

    Full Text Available We show low-cost fabrication and characterization of borosilicate glass nanopores for single molecule sensing. Nanopores with diameters of ~100 nm were fabricated in borosilicate glass capillaries using laser assisted glass puller. We further achieve controlled reduction and nanometer-size control in pore diameter by sculpting them under constant electron beam exposure. We successfully fabricate pore diameters down to 6 nm. We next show electrical characterization and low-noise behavior of these borosilicate nanopores and compare their taper geometries. We show, for the first time, a comprehensive characterization of glass nanopore conductance across six-orders of magnitude (1M-1μM of salt conditions, highlighting the role of buffer conditions. Finally, we demonstrate single molecule sensing capabilities of these devices with real-time translocation experiments of individual λ-DNA molecules. We observe distinct current blockage signatures of linear as well as folded DNA molecules as they undergo voltage-driven translocation through the glass nanopores. We find increased signal to noise for single molecule detection for higher trans-nanopore driving voltages. We propose these nanopores will expand the realm of applications for nanopore platform.

  20. Method to fabricate a tilted logpile photonic crystal

    Science.gov (United States)

    Williams, John D.; Sweatt, William C.

    2010-10-26

    A method to fabricate a tilted logpile photonic crystal requires only two lithographic exposures and does not require mask repositioning between exposures. The mask and photoresist-coated substrate are spaced a fixed and constant distance apart using a spacer and the stack is clamped together. The stack is then tilted at a crystallographic symmetry angle (e.g., 45 degrees) relative to the X-ray beam and rotated about the surface normal until the mask is aligned with the X-ray beam. The stack is then rotated in plane by a small stitching angle and exposed to the X-ray beam to pattern the first half of the structure. The stack is then rotated by 180.degree. about the normal and a second exposure patterns the remaining half of the structure. The method can use commercially available DXRL scanner technology and LIGA processes to fabricate large-area, high-quality tilted logpile photonic crystals.

  1. Zero risk fuel fabrication: a systems analysis

    International Nuclear Information System (INIS)

    1979-01-01

    Zero risk is a concept used to ensure that system requirements are developed through a systems approach such that the choice(s) among alternatives represents the balanced viewpoints of performance, achievability and risk. Requirements to ensure characteristics such as stringent accountability, low personnel exposure and etc. are needed to guide the development of component and subsystems for future LMFBR fuel supply systems. To establish a consistent and objective set of requirements, RF and M-TMC has initiated a systems requirements analysis activity. This activity pivots on judgement and experience provided by a Task Force representing industrial companies engaged in fuel fabrication in licensed facilities. The Task Force members are listed in Appendix A. Input developed by this group is presented as a starting point for the systems requirements analysis

  2. Status-Relevant Experiences and Conspicuous Consumption - the Moderating Role of Prenatal Androgen Exposure.

    Science.gov (United States)

    Cornelissen, Gert; Palacios-Fenech, Javier

    2016-09-20

    In this paper we study consumers' interest in acquiring and displaying expensive luxury products. Based on recent insights in consumer psychology, which build on developments in evolutionary biology, we consider luxury products as "costly signals": wasteful and costly goods, whose purpose is to communicate one's biological fitness, and social status, to others. In line with previous research, we show that experiences that trigger mate attraction goals (Study 1: Exposure to others in bathing outfit) or status display goals (Study 2: Experiencing a vicarious victory of one's favorite sports team) can increase people's interest in luxury products. However, we demonstrate that some individuals are predictably more responsive to those experiences than others. We used a physiological measure (the proportion of the length of the index finger and ring finger of the right hand, 2D:4D) as a proxy for individual differences in exposure to prenatal androgens (i.e., testosterone). This measure has been related to dominant and competitive behavior later in life. We predict and find that individuals with a low 2D:4D (i.e., high exposure to prenatal androgens) were more responsive to the status-relevant experiences: they became more interested in luxury goods after these experiences. This was not the case for high 2D:4D individuals.

  3. Firefighting and mental health: Experiences of repeated exposure to trauma.

    Science.gov (United States)

    Jahnke, Sara A; Poston, Walker S Carlos; Haddock, Christopher K; Murphy, Beth

    2016-02-15

    Firefighters must be ready to respond to a broad range of emergencies every duty day. In the course of many of these emergencies, firefighters witness events which have the potential to induce emotional trauma, such as badly injured people, deceased children, and individuals who are highly distraught. Previous research suggests that repeated exposure to these traumas (RET) may have negative impacts on the emotional and mental health of fire service personnel. Research on the mental health of firefighters has been limited to small surveys reporting the prevalence of specific mental health problems such as depression and post-traumatic stress disorder among firefighters. Despite the likelihood that RET leads to negative outcomes in firefighters, data is lacking on how exposure impacts fire service personnel. The current study examines the experiences of firefighters related to RET. Using formative research methods, we examined the beliefs and experiences of firefighters and administrators from across the United States regarding the impact of RET on firefighter health. Study findings highlight the cumulative psychological toll of repeated exposure to traumatic events including desensitization, flashbacks, and irritability. Results of the current study suggest that RET is a significant concern for emergency responders that warrants additional research and attention. It is likely that the long term consequences of RET are closely intertwined with other mental health outcomes and general well-being of this important occupational group.

  4. Trial fabrication of a secondary x-ray spectrometer with high energy resolution for use in x-ray resonant inelastic scattering experiments

    International Nuclear Information System (INIS)

    Iwazumi, Toshiaki

    2004-01-01

    An instrument was fabricated for use of x-ray resonant inelastic scattering with high-energy resolution in expectation of finding new physical phenomena in strongly correlated electron systems. In the scattering x-ray spectrometer, an asymmetric Johanson crystal spectrometer, which was deployed in an asymmetric Rowland configuration, was designed, fabricated and assessed. The performance expected theoretically for the Johanson spectrometer was recognized from experiments by use of synchrotron radiation. (Y. Kazumata)

  5. Optically transparent glass micro-actuator fabricated by femtosecond laser exposure and chemical etching

    NARCIS (Netherlands)

    Lenssen, B.L.K.; Bellouard, Y.

    2012-01-01

    Femtosecond laser manufacturing combined with chemical etching has recently emerged as a flexible platform for fabricating three-dimensional devices and integrated optical elements in glass substrates. Here, we demonstrate an optically transparent micro-actuator fabricated out of a single piece of

  6. U.S. technology for mechanized/automated fabrication of fast reactor fuel

    International Nuclear Information System (INIS)

    Nyman, D.H.; Bennett, D.W.; Claudson, T.T.; Dahl, R.E.; Graham, R.A.; Keating, J.J.; Yatabe, J.M.

    1978-01-01

    The status of the U.S. fast reactor Fuel Fabrication Development Program is discussed. The objectives of the program are to develop and evaluate a high throughput pilot fuel fabrication line including close-coupled chemistry and wet scrap recycle operations. The goals of the program are to demonstrate by mechanized/automated and remote processes: reduced personnel exposure, enhanced safegurads/accountability, improved fuel performance, representative fabrication rates and reduced fuel costs

  7. LDEF fiber-optic exposure experiment No. S-0109

    International Nuclear Information System (INIS)

    Johnston, A.R.; Bergman, L.A.; Hartmayer, R.

    1992-01-01

    Ten fiber optic cable samples of different types were exposed in low-earth orbit for over 5.5 years on the Long-Duration Exposure Facility (LDEF). Four of the samples were mounted externally, and the remaining six were internal, under approximately 0.5 g cm(exp -2) of aluminum. The experiment was recovered in Jan. 1990, and laboratory evaluation of the effects of the exposure has continued since. An increase in fiber loss, presumed to be from radiation darkening, aging effects on polymer materials used in cabling, unique contamination effects on connector terminations, and micrometeoroid impacts were observed. In addition, the sample loss was measured for each sample as a function of temperature before and after the flight. All cable samples were functional, and the best exhibited no measurable change in performance, indicating that conventional fiber optic cables can perform satisfactorily in spacecraft. Experimental results obtained to date are presented and discussed

  8. Exposure of eyes to perfume: a double-blind, placebo-controlled experiment.

    Science.gov (United States)

    Elberling, J; Duus Johansen, J; Dirksen, A; Mosbech, H

    2006-08-01

    Environmental perfume exposure can elicit bothersome respiratory symptoms. Symptoms are induced at exposure levels which most people find tolerable, and the mechanisms are unclear. The aim of the study was to investigate patients with eye and respiratory symptoms related to environmental perfume, by exposing the eyes to perfume in a double-blind, placebo-controlled study.Twenty-one eczema patients with respiratory symptoms elicited by perfume were compared with 21 healthy volunteers in a sex- and age-matched case-control study. The participants completed a symptom questionnaire, and underwent a double-blind, placebo-controlled exposure to perfume. Of the 42 individuals tested, 10 had more eye symptoms (irritation, itching, and tears) during perfume exposure than during placebo exposures, and eight of these individuals (P = 0.07, Fisher's exact test) belonged to the patient group. A true positive eye reaction to perfume was significantly associated with identification of perfume as an active exposure (P perfume elicited irritation in the eyes independently of olfaction, but the relative importance of ocular chemoperception in relation to elicitation of respiratory symptoms from common environmental exposures to perfume remains unclear. We investigated the hypothesis of an association between respiratory symptoms related to perfume and ocular perfume sensitivity by exposing the eyes to perfume in a double blind, placebo-controlled experiment. Vapors of perfume provoked symptoms in the relevant eye in some patients and healthy control persons, but under our exposure conditions, ocular chemesthesis failed to elicit respiratory symptoms.

  9. OSMOSE experiment: high minor actinides contents pellets and pins fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Jankowiak, A.; Leorier, C.; Desmouliere, F.; Donnet, L. [Commissariat a l' Energie Atomique, CEA/DEN/VRH/DTEC/SDTC/LEMA, 30207 Bagnols-sur-Ceze cedex (France); Antony, M. [Commissariat a l' Energie Atomique, CEA/DEN/CAD/DER/SPEX/LPE, 13108 St Paul Lez Durance cedex (France); Bernard, D. [Commissariat a l' Energie Atomique, CEA/DEN/ CAD/DER /SPRC/LEPh, 13108 St Paul Lez Durance cedex (France)

    2008-07-01

    The OSMOSE program aims to provide accurate experimental data on integral neutron cross-sections of isotopes (i.e.: Th{sup 232}, U{sup 233}, U{sup 234}, U{sup 235}, U{sup 236}, U{sup 238}, Np{sup 237}, Pu{sup 238}, Pu{sup 239}, Pu{sup 240}, Pu{sup 241}, Pu{sup 242}, Am{sup 241}, Am{sup 243}, Cm{sup 244} and Cm{sup 245}). The study of these nuclides is performed on a large range of neutron spectra corresponding to specific experimental conditions (thermal, epithermal, moderated/fast, and fast spectra). This program will be used to provide guidance to all nuclear data programs in the world. This program has led to an optimized fabrication process for OSMOSE pellets and pins which were fabricated by the LEMA (Actinide based Materials Study Laboratory) in the ATALANTE facility both in glove box and shielded cell. The fabrication process made possible to obtain the required material characteristics including a high density, a good distribution of the isotopes in the uranium oxide matrices. A particular attention was paid to reduce chemical pollution of the samples. The program has been successfully achieved in July 2007 with the fabrication of the last two Cm doped samples. (authors)

  10. Isoe - information system on occupational exposure. Ten years of experience

    International Nuclear Information System (INIS)

    2002-01-01

    The information System on Occupational Exposure (ISOE) was created in 1992 to provide a forum for radiation protection experts from both utilities and national regulatory authorities to discuss, promote and co-ordinate international co-operative undertakings in the area of worker protection at nuclear power plants. The ISOE System is jointly managed by the OECD Nuclear Energy Agency (NEA) and the International Atomic Energy Agency (IAEA). This report provides an overview of the experience gained from, and benefits provided by, the ISOE System over the past ten years. Active participation of a large number of utilities in ISOE has contributed to a reduction in occupational exposure at nuclear power plants worldwide. (authors)

  11. Research on High Layer Thickness Fabricated of 316L by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Shuo Wang

    2017-09-01

    Full Text Available Selective laser melting (SLM is a potential additive manufacturing (AM technology. However, the application of SLM was confined due to low efficiency. To improve efficiency, SLM fabrication with a high layer thickness and fine powder was systematically researched, and the void areas and hollow powders can be reduced by using fine powder. Single-track experiments were used to narrow down process parameter windows. Multi-layer fabrication relative density can be reached 99.99% at the exposure time-point distance-hatch space of 120 μs-40 μm-240 μm. Also, the building rate can be up to 12 mm3/s, which is about 3–10 times higher than the previous studies. Three typical defects were found by studying deeply, including the un-melted defect between the molten pools, the micro-pore defect within the molten pool, and the irregular distribution of the splashing phenomenon. Moreover, the microstructure is mostly equiaxed crystals and a small amount of columnar crystals. The averages of ultimate tensile strength, yield strength, and elongation are 625 MPa, 525 MPa, and 39.9%, respectively. As exposure time increased from 80 μs to 200 μs, the grain size is gradually grown up from 0.98 μm to 2.23 μm, the grain aspect ratio is close to 1, and the tensile properties are shown as a downward trend. The tensile properties of high layer thickness fabricated are not significantly different than those with a coarse-powder layer thickness of low in previous research.

  12. Research on High Layer Thickness Fabricated of 316L by Selective Laser Melting.

    Science.gov (United States)

    Wang, Shuo; Liu, Yude; Shi, Wentian; Qi, Bin; Yang, Jin; Zhang, Feifei; Han, Dong; Ma, Yingyi

    2017-09-08

    Selective laser melting (SLM) is a potential additive manufacturing (AM) technology. However, the application of SLM was confined due to low efficiency. To improve efficiency, SLM fabrication with a high layer thickness and fine powder was systematically researched, and the void areas and hollow powders can be reduced by using fine powder. Single-track experiments were used to narrow down process parameter windows. Multi-layer fabrication relative density can be reached 99.99% at the exposure time-point distance-hatch space of 120 μs-40 μm-240 μm. Also, the building rate can be up to 12 mm³/s, which is about 3-10 times higher than the previous studies. Three typical defects were found by studying deeply, including the un-melted defect between the molten pools, the micro-pore defect within the molten pool, and the irregular distribution of the splashing phenomenon. Moreover, the microstructure is mostly equiaxed crystals and a small amount of columnar crystals. The averages of ultimate tensile strength, yield strength, and elongation are 625 MPa, 525 MPa, and 39.9%, respectively. As exposure time increased from 80 μs to 200 μs, the grain size is gradually grown up from 0.98 μm to 2.23 μm, the grain aspect ratio is close to 1, and the tensile properties are shown as a downward trend. The tensile properties of high layer thickness fabricated are not significantly different than those with a coarse-powder layer thickness of low in previous research.

  13. Exposure-Relevant Ozone Chemistry in Occupied Spaces

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Beverly Kaye [Univ. of California, Berkeley, CA (United States)

    2009-04-01

    Ozone, an ambient pollutant, is transformed into other airborne pollutants in the indoor environment. In this dissertation, the type and amount of byproducts that result from ozone reactions with common indoor surfaces, surface residues, and vapors were determined, pollutant concentrations were related to occupant exposure, and frameworks were developed to predict byproduct concentrations under various indoor conditions. In Chapter 2, an analysis is presented of secondary organic aerosol formation from the reaction of ozone with gas-phase, terpene-containing consumer products in small chamber experiments under conditions relevant for residential and commercial buildings. The full particle size distribution was continuously monitored, and ultrafine and fine particle concentrations were in the range of 10 to>300 mu g m-3. Particle nucleation and growth dynamics were characterized.Chapter 3 presents an investigation of ozone reactions with aircraft cabin surfaces including carpet, seat fabric, plastics, and laundered and worn clothing fabric. Small chamber experiments were used to determine ozone deposition velocities, ozone reaction probabilities, byproduct emission rates, and byproduct yields for each surface category. The most commonly detected byproducts included C1?C10 saturated aldehydes and skin oil oxidation products. For all materials, emission rates were higher with ozone than without. Experimental results were used to predict byproduct exposure in the cabin and compare to other environments. Byproduct levels are predicted to be similar to ozone levels in the cabin, which have been found to be tens to low hundreds of ppb in the absence of an ozone converter. In Chapter 4, a model is presented that predicts ozone uptake by and byproduct emission from residual chemicals on surfaces. The effects of input parameters (residue surface concentration, ozone concentration, reactivity of the residue and the surface, near-surface airflow conditions, and

  14. Exposure to space radiation of high-performance infrared multilayer filters and materials technology experiments (A0056)

    Science.gov (United States)

    Seeley, J. S.; Hunneman, R.; Whatley, A.; Lipscombe, D. R.

    1984-01-01

    Infrared multilayer interface filter which were used in satellite radiometers were examined. The ability of the filters to withstand the space environment in these applications is critical. An experiment on the LDEF subjects the filters to authoritative spectral measurements following space exposure to ascertain their suitability for spacecraft use and to permit an understanding of degradation mechanisms. The understanding of the effects of prolonged space exposure on spacecraft materials, surface finishes, and adhesive systems is important to the spacecraft designer. Materials technology experiments and experiment on infrared multilayer filters are discussed.

  15. Radiation exposure management over a decade in sealed sources fabrication

    International Nuclear Information System (INIS)

    Chougule, Nitin V.; Swaminathan, N.; Singh, P.; Sreenivas, V.; Bairwa, S.M.; Rath, D.P.; Patil, B.N.; Sastry, K.V.S.

    2008-01-01

    Radioactive sealed sources find innumerable applications in medical and industrial applications. 60 Co teletherapy sources are used for the treatment of cancer. In brachytherapy; 137 Cs and 192 Ir are used. Industrial sources using 60 Co, 137 Cs find applications in nucleonic gauges, tracer studies etc. 60 Co and 192 Ir sources are used in radiography also. In addition, 60 Co is widely used in irradiator facilities. Board of Isotopes and Radiation Technology (BRIT) has committed in supply of these sealed sources to various hospitals and industrial institutions in India. Annually, PetaBq (PBq) level of above mentioned isotopes are handled remotely in hot cells, RLG, BARC. This paper brings out a detailed account on the radiological surveillance provided during the fabrication of these sources implementing ALARA. The decrease in collective dose per activity handled is the outcome of improved operation practices which were carried out at various stages of source fabrication. (author)

  16. Influence of Early Exposure to Family Business Experience on Developing Entrepreneurs

    Science.gov (United States)

    Tarling, Cath; Jones, Paul; Murphy, Lyndon

    2016-01-01

    Purpose: The purpose of this paper is to consider the influences of family business and exposure to family business ideas upon students and graduates during their transition from higher education (HE) towards career identification of entrepreneurship. It explores influences, values and experiences actively impacting on business start-up following…

  17. DRAPING SIMULATION OF WOVEN FABRICS

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, William [General Motors LLC; Jin, Xiaoshi [ESI Group NA; Zhu, Jiang [Optimal CAE; Wathen, Terrence [General Motors LLC; Doroudian2, Mark [ESI Group NA; Aitharaju, Venkat [General Motors LLC

    2016-09-07

    Woven fabric composites are extensively used in molding complex geometrical shapes due to their high conformability compared to other fabrics. Preforming is an important step in the overall process, where the two-dimensional fabric is draped to become the three-dimensional shape of the part prior to resin injection. During preforming, the orientation of the yarns may change significantly compared to the initial orientations. Accurate prediction of the yarn orientations after molding is important for evaluating the structural performance of the final part. This paper presents a systematic investigation of the angle changes during the preform operation for carbon fiber twill and satin weave fabrics. Preforming experiments were conducted using a truncated pyramid mold geometry designed and fabricated at the General Motors Research Laboratories. Predicted results for the yarn orientations were compared with experimental results and good agreement was observed

  18. Fabrication of superconducting niobium radio frequency structures

    International Nuclear Information System (INIS)

    Kirchgessner, J.; Amato, J.; Brawley, J.

    1983-01-01

    During the last several years a variety of superconducting radio frequency structures have been designed, fabricated and tested. The diverse structures and fabrication techniques are described. This paper is a description of the authors' experiences in this field

  19. Experience on inspection at PFPF

    International Nuclear Information System (INIS)

    Aoki, I.; Yamamoto, Y.; Takahashi, Saburo; Ooshima, Hirofumi; Kuniyasu, Kazufusa.

    1993-01-01

    In order to reduce a personal radiation exposure, Plutonium Fuel Production Facility (PFPF) introduced an automated MOX fabrication technology. Safeguards system for the PFPF was designed and installed so as to be compatible with automated process operation as much as possible. Introduction of these system in PFPF made possible to do the inspection measurements with unattended mode and Near Real Time Material Accountancy (NRTA), consequently inspection has been carrying out effectively and efficiently. This paper describes the new Inspection activities as a comparison with old Inspection activities based on our experience. (author)

  20. Minor Actinide Laboratory at JRC-ITU: Fuel fabrication facility

    International Nuclear Information System (INIS)

    Fernandez, A.; McGinley, J.; Somers, J.

    2008-01-01

    The Minor Actinide Laboratory (MA-lab) of the Institute for Transuranium Elements is a unique facility for the fabrication of fuels and targets containing minor actinides (MA). It is of key importance for research on Partitioning and Transmutation in Europe, as it is one of the only dedicated facilities for the fabrication of MA containing materials, either for property measurements or for the production of test pins for irradiation experiments. In this paper a detailed description of the MA-Lab facility and the fabrication processes developed to fabricate fuels and samples containing high content of minor actinides is given. In addition, experience gained and improvements are also outlined. (authors)

  1. Automated breeder fuel fabrication

    International Nuclear Information System (INIS)

    Goldmann, L.H.; Frederickson, J.R.

    1983-01-01

    The objective of the Secure Automated Fabrication (SAF) Project is to develop remotely operated equipment for the processing and manufacturing of breeder reactor fuel pins. The SAF line will be installed in the Fuels and Materials Examination Facility (FMEF). The FMEF is presently under construction at the Department of Energy's (DOE) Hanford site near Richland, Washington, and is operated by the Westinghouse Hanford Company (WHC). The fabrication and support systems of the SAF line are designed for computer-controlled operation from a centralized control room. Remote and automated fuel fabriction operations will result in: reduced radiation exposure to workers; enhanced safeguards; improved product quality; near real-time accountability, and increased productivity. The present schedule calls for installation of SAF line equipment in the FMEF beginning in 1984, with qualifying runs starting in 1986 and production commencing in 1987. 5 figures

  2. UV-LIGA technique for ECF micropumps using back UV exposure and self-alignment

    Science.gov (United States)

    Han, D.; Xia, Y.; Yokota, S.; Kim, J. W.

    2017-12-01

    This paper proposes and develops a novel UV-LIGA technique using back UV exposure and self-alignment to realize high aspect ratio micromachining (HARM) in high power density electro-conjugate fluid (ECF) micropumps. ECF is a functional fluid designed to be able to generate strong and active jet flow (ECF jetting) between anode and cathode in ECF when high DC voltage is applied. We have developed high power density ECF micropumps consisting of triangular prism and slit electrode pairs (TPSEs) fabricated by HARM. The traditional UV-LIGA technique for HARM is mainly divided into two approaches: (a) single thick layer and (b) multiple thin layers. Both methods have limitations—deformed molds in the former and misalignment between layers in the latter. Using the finite element method software COMSOL Multiphysics, we demonstrate that the deformed micro-molds critically impair the performance of ECF micropumps. In addition, we experimentally prove that the misalignment would easily trigger electric discharge in the ECF micropumps. To overcome these limitations, we conceive a new concept utilizing the seed electrode layer for electroforming as the UV shield and pattern photoresist (KMPR) by back UV exposure. The seed electrode layer should be composed of a non-transparent conductor (Au/Ti) for patterning and a transparent conductor (ITO) for wiring. Instead of ITO, we propose the concept of transparency-like electrodes comprised of thin metal line patterns. To verify this concept, KMPR layers with thicknesses of 70, 220, and 500 µm are experimentally investigated. In the case of 500 µm KMPR thickness, the concept of transparency-like electrode was partially proved. As a result, TPSEs with a height of 440 µm were successfully fabricated. Characteristic experiments demonstrated that ECF micropumps (367 mW cm-3) fabricated by back UV achieved almost the same output power density as ECF micropumps (391 mW cm-3) fabricated by front UV. This paper proves that the proposed

  3. UV-LIGA technique for ECF micropumps using back UV exposure and self-alignment

    International Nuclear Information System (INIS)

    Han, D; Xia, Y; Yokota, S; Kim, J W

    2017-01-01

    This paper proposes and develops a novel UV-LIGA technique using back UV exposure and self-alignment to realize high aspect ratio micromachining (HARM) in high power density electro-conjugate fluid (ECF) micropumps. ECF is a functional fluid designed to be able to generate strong and active jet flow (ECF jetting) between anode and cathode in ECF when high DC voltage is applied. We have developed high power density ECF micropumps consisting of triangular prism and slit electrode pairs (TPSEs) fabricated by HARM. The traditional UV-LIGA technique for HARM is mainly divided into two approaches: (a) single thick layer and (b) multiple thin layers. Both methods have limitations—deformed molds in the former and misalignment between layers in the latter. Using the finite element method software COMSOL Multiphysics, we demonstrate that the deformed micro-molds critically impair the performance of ECF micropumps. In addition, we experimentally prove that the misalignment would easily trigger electric discharge in the ECF micropumps. To overcome these limitations, we conceive a new concept utilizing the seed electrode layer for electroforming as the UV shield and pattern photoresist (KMPR) by back UV exposure. The seed electrode layer should be composed of a non-transparent conductor (Au/Ti) for patterning and a transparent conductor (ITO) for wiring. Instead of ITO, we propose the concept of transparency-like electrodes comprised of thin metal line patterns. To verify this concept, KMPR layers with thicknesses of 70, 220, and 500 µ m are experimentally investigated. In the case of 500 µ m KMPR thickness, the concept of transparency-like electrode was partially proved. As a result, TPSEs with a height of 440 µ m were successfully fabricated. Characteristic experiments demonstrated that ECF micropumps (367 mW cm −3 ) fabricated by back UV achieved almost the same output power density as ECF micropumps (391 mW cm −3 ) fabricated by front UV. This paper proves that the

  4. Nuclear target foil fabrication for the Romano Event

    International Nuclear Information System (INIS)

    Weed, J.W.; Romo, J.G. Jr.; Griggs, G.E.

    1984-01-01

    The Vacuum Processes Lab, of LLNL's M.E. Dept. - Material Fabrication Division, was requested to provide 250 coated Parylene target foils for a nuclear physics experiment titled the ROMANO Event. Due to the developmental nature of some of the fabrication procedures, approximately 400 coated foils were produced to satisfy the event's needs. The foils were used in the experiment as subkilovolt x-ray, narrow band pass filters, and wide band ultraviolet filters. This paper is divided into three sections describing: (1) nuclear target foil fabrication, (2) Parylene substrate preparation and production, and (3) foil and substrate inspections

  5. Rural–urban differences in exposure to adverse childhood experiences among South Carolina adults.

    Science.gov (United States)

    Radcliff, Elizabeth; Crouch, Elizabeth; Strompolis, Melissa

    2018-02-01

    Adverse childhood experiences (ACEs) are traumatic events that occur in a child's life between birth and 18 years. Exposure to one or more ACE has been linked to participation in risky health behaviors and the experience of chronic health conditions in adulthood. The risk for poor outcomes increases as the number of ACEs experienced increases. This research investigates rural-urban differences in exposure to ACEs using a sample from a representative southern US state, South Carolina. Using data from the 2014-2015 South Carolina Behavioral Risk Factor Surveillance System (BRFSS) and residential rurality based on UICs, ACE exposure among South Carolina adults was tabulated by urban versus rural residence and selected other demographic characteristics. Using standard descriptive statistics, frequencies and proportions were calculated for each categorical variable. Multivariable regression modeling was used to examine the impact of residential rurality and selected sociodemographic characteristics on overall and specific types of ACE exposure. All analyses used survey sampling weights that accounted for the BRFSS sampling strategy. The analytic sample of 18 176 respondents comprised 15.9% rural residents. Top reported ACEs for both rural and urban residents were the same: parental divorce/separation, emotional abuse, and household substance use. Compared to urban residents, a higher proportion of rural respondents reported experiencing no ACEs (41.4% vs 38.3%, purban respondents had four or more ACEs (purban respondents to report four or more ACEs (adjusted odds ratio 0.75, 95% confidence interval 0.74-0.75). Despite reporting less ACE exposure than urban counterparts, almost 60% of rural residents reported at least one ACE and 15% reported experiencing four or more ACEs. In contrast to urban residents, rural residents may experience more social connections within their families and communities, which may influence ACE exposure; however, care coordination, social

  6. Micro-fabrication of three dimensional pyrolysed carbon microelectrodes

    DEFF Research Database (Denmark)

    2017-01-01

    ; soft baking the photoresist layer; performing a full depth exposure with UV light through a first mask; performing a partial depth exposure with UV light through a second mask; wherein the full depth exposure and the partial depth exposure are aligned to ensure that the first and second latent images...... are connected to each other; post-exposure baking the photoresist layer; and developing the microscale patterned resist template as a free-standing structure of cross-linked resist with lateral hanging structures that are supported by vertical support structures at a free height above the substrate. The method...... is characterized by a soft baking temperature below 70 °C. Repetitive coating and partial depth exposure allows for the fabrication of multiple level laterally interconnected structures. Carbonization of the resist template provides truly three-dimensional carbon microelectrode structures....

  7. Euratom experience in safeguarding reprocessing and thermal reactor mixed oxide fuel fabrication facilities within the European Community

    International Nuclear Information System (INIS)

    1978-11-01

    The legal basis and instruments for the application of safeguards in the European Community are described. Euratom safeguards apply throughout the fuel cycle starting at the ore stage. Euratom has had experience in the application of safeguards to small and medium size reprocessing and MOX fabrication plants. In reprocessing plants accountancy, containment and surveillance methods are applied and the plant is divided into three material balance areas. Similar procedures are applied at fabrication plants. Euratom inspectors apply their main verification activities at strategic points but have the right of access at any time to all places which contain nuclear material. Under the Euratom-IAEA Agreements 'Joint Teams' of Euratom and IAEA inspectors will operate together to minimise the burden on operators and to avoid duplication of effort while enabling both organisations to achieve their safeguards objectives

  8. Remote fabrication of nuclear fuel: a secure automated fabrication overview

    International Nuclear Information System (INIS)

    Nyman, D.H.; Benson, E.M.; Yatabe, J.M.; Nagamoto, T.T.

    1981-01-01

    An automated line for the fabrication of breeder reactor fuel pins is being developed. The line will be installed in the Fuels and Materials Examination Facility (FMEF) presently under construction at the Hanford site near Richland, Washington. The application of automation and remote operations to fuel processing technology is needed to meet program requirements of reduced personnel exposure, enhanced safeguards, improved product quality, and increased productivity. Commercially available robots are being integrated into operations such as handling of radioactive material within a process operation. These and other automated equipment and chemistry analyses systems under development are described

  9. Radon exposure at specific workplaces in Austria experiences and future challenges

    International Nuclear Information System (INIS)

    Gruber, V.; Ringer, W.

    2017-01-01

    Radon exposure at specific workplaces like water works, radon spas, tourist mines and show caves were evaluated in Austria within pilot studies (2004-10) and have been regulated in an ordinance since 2008. In this article, the major results and experiences in radon measurements and dose assessments at those workplaces by the accredited AGES laboratory are presented. (authors)

  10. Radiation exposure of employees in nuclear fuel facilities in fiscal 1982

    International Nuclear Information System (INIS)

    1984-01-01

    The enterprises of nuclear fuel refining, fabrication, reprocessing and usage are obligated by law to keep the radiation exposure dose of the employees below the permissible level. The radiation exposure dose in the respective enterprises in the fiscal year 1982 is summarized in a table as follows: radiation exposure dose distribution, the number of employees, total exposure dose, and average dose. The radiation exposure dose was all well below the permissible level. The enterprises covered were one refining (Power Reactor and Nuclear Fuel Development Corporation), five fabrication (Mitsubishi Nuclear Fuel Co., Ltd., etc.), one reprocessing (Power Reactor and Nuclear Fuel Development Corporation), and ten usage (Power Reactor and Nuclear Fuel Development Corporation, Japan Atomic Energy Research Institute, etc.). (Mori, K.)

  11. Radon exposure, cigarette smoking, and other mining experience in the beaverlodge uranium miners cohort

    International Nuclear Information System (INIS)

    L'Abbe, K.A.; Howe, G.R.; Burch, J.D.; Miller, A.B.; Abbatt, J.; Band, P.; Choi, W.; Du, J.; Feather, J.; Gallagher, R.

    1991-01-01

    A nested case-control study within the Beaverlodge Uranium Miners Cohort was undertaken to assess any possible contribution of confounding by smoking and other mining experience to the risk estimate derived from the original cohort study. Next of kin have been interviewed for 46 lung cancer cases and 95 controls enrolled in the Beaverlodge Uranium Miners Cohort Study who died between 1950 and 1980. Confounding by cigarette smoking and other mining experience appears unlikely to have contributed to the relative risk coefficient for exposure to Rn decay products derived in the parent study. Data for smoking and exposure to Rn decay products are consistent with a multiplicative model, although considerable caution must be applied to this interpretation

  12. Erosion Results of the MISSE 7 Polymers Experiment and Zenith Polymers Experiment After 1.5 Years of Space Exposure

    Science.gov (United States)

    De Groh, Kim K.; Banks, Bruce A.; Yi, Grace T.; Haloua, Athena; Imka, Emily C.; Mitchell, Gianna G.; Asmar, Olivia C.; Leneghan, Halle A.; Sechkar, Edward A.

    2016-01-01

    Polymers and other oxidizable materials on the exterior of spacecraft in the low Earth orbit (LEO) space environment can be eroded due to reaction with atomic oxygen (AO). Therefore, in order to design durable spacecraft it is important to know the LEO AO erosion yield (E(sub y), volume loss per incident oxygen atom) of materials susceptible to AO reaction. Two spaceflight experiments, the Polymers Experiment and the Zenith Polymers Experiment, were developed to determine the AO E(sub y) of various polymers flown in ram, wake or zenith orientations in LEO. These experiments were flown as part of the Materials International Space Station Experiment 7 (MISSE 7) mission for 1.5 years on the exterior of the International Space Station (ISS). The experiments included Kapton H(TradeMark) witness samples for AO fluence determination in ram and zenith orientations. The Polymers Experiment also included samples to determine whether AO erosion of high and low ash containing polymers is dependent on fluence. This paper provides an overview of the MISSE 7 mission, a description of the flight experiments with details on the polymers flown, the characterization techniques used, the AO fluence for each exposure orientation, and the LEO E(sub y) results. The E(sub y) values ranged from 7.99x10(exp -28)cu cm/atom for TiO2/Al2O3 coated Teflon(TradeMark) fluorinated ethylene propylene (FEP) flown in the ram orientation to 1.22x10(exp -23cu cm/atom for polyvinyl alcohol (PVOH) flown in the zenith orientation. The E(sub y) of similar samples flown in different orientations has been compared to help determine solar exposure and associated heating effects on AO erosion. The E(sub y) data from these ISS spaceflight experiments provides valuable information for LEO spacecraft design purposes.

  13. Layerless fabrication with continuous liquid interface production.

    Science.gov (United States)

    Janusziewicz, Rima; Tumbleston, John R; Quintanilla, Adam L; Mecham, Sue J; DeSimone, Joseph M

    2016-10-18

    Despite the increasing popularity of 3D printing, also known as additive manufacturing (AM), the technique has not developed beyond the realm of rapid prototyping. This confinement of the field can be attributed to the inherent flaws of layer-by-layer printing and, in particular, anisotropic mechanical properties that depend on print direction, visible by the staircasing surface finish effect. Continuous liquid interface production (CLIP) is an alternative approach to AM that capitalizes on the fundamental principle of oxygen-inhibited photopolymerization to generate a continual liquid interface of uncured resin between the growing part and the exposure window. This interface eliminates the necessity of an iterative layer-by-layer process, allowing for continuous production. Herein we report the advantages of continuous production, specifically the fabrication of layerless parts. These advantages enable the fabrication of large overhangs without the use of supports, reduction of the staircasing effect without compromising fabrication time, and isotropic mechanical properties. Combined, these advantages result in multiple indicators of layerless and monolithic fabrication using CLIP technology.

  14. Precise fabrication of a 5 nm graphene nanopore with a helium ion microscope for biomolecule detection

    Science.gov (United States)

    Deng, Yunsheng; Huang, Qimeng; Zhao, Yue; Zhou, Daming; Ying, Cuifeng; Wang, Deqiang

    2017-01-01

    We report a scalable method to fabricate high-quality graphene nanopores for biomolecule detection using a helium ion microscope (HIM). HIM milling shows promising capabilities for precisely controlling the size and shape, and may allow for the potential production of nanopores at wafer scale. Nanopores could be fabricated at different sizes ranging from 5 to 30 nm in diameter in few minutes. Compared with the current solid-state nanopore fabrication techniques, e.g. transmission electron microscopy, HIM is fast. Furthermore, we investigated the exposure-time dependence of graphene nanopore formation: the rate of pore expansion did not follow a simple linear relationship with exposure time, but a fast expansion rate at short exposure time and a slow rate at long exposure time. In addition, we performed biomolecule detection with our patterned graphene nanopore. The ionic current signals induced by 20-base single-stranded DNA homopolymers could be used as a basis for homopolymer differentiation. However, the charge interaction of homopolymer chains with graphene nanopores, and the conformations of homopolymer chains need to be further considered to improve the accuracy of discrimination.

  15. Fabrication of off-axis parabolic mirrors

    International Nuclear Information System (INIS)

    Bezik, M.J.; Gerth, H.L.; Sladky, R.E.; Washington, C.A.

    1978-08-01

    The report describes the fabrication process, including metal preparation, copper electroplating, single-crystal-diamond turning, optical inspection, and polishing, used to manufacture the focusing mirrors for the 10-kJ laser fusion experiment being conducted by the Los Alamos Scientific Laboratory. Fabrication of these mirrors by the techniques described resulted in diffraction-limited optics at a 10.6 μm wavelength

  16. Developments in MOX fuel pellet fabrication technology: Indian experience

    International Nuclear Information System (INIS)

    Kamath, H.S.; Majumdar, S.; Purusthotham, D.S.C.

    1998-01-01

    India is interested in mixed oxide (MOX) fuel technology for better utilisation of its nuclear fuel resources. In view of this, a programme involving MOX fuel design, fabrication and irradiation in research and power reactors has been taken up. A number of experimental irradiations in research reactors have been carried out and a few MOX assemblies of ''All Pu'' type have been loaded in our commercial BWRs at Tarapur. An island type of MOX fuel design is under study for use in PHWRs which can increase the burn-up of the fuel by more than 30% compared to natural UO 2 fuel. The MOX fuel pellet fabrication technology for the above purpose and R and D efforts in progress for achieving better fuel performance are described in the paper. The standard MOX fuel fabrication route involves mechanical mixing and milling of UO 2 and PuO 2 powders. After detailed investigations with several types of mixing and milling equipments, dry attritor milling has been found to be the most suitable for this operation. Neutron Coincident Counting (NCC) technique was found to be the most convenient and appropriate technique for quick analysis of Pu content in milled MOX powder and to know Pu mixing is homogenous or not. Both mechanical and hydraulic presses have been used for powder compaction for green pellet production although the latter has been preferred for better reproducibility. Low residue admixed lubricants have been used to facilitate easy compaction. The normal sintering temperature used in Nitrogen-Hydrogen atmosphere is between 1600 deg. C to 1700 deg. C. Low temperature sintering (LTS) using oxidative atmospheres such as carbon dioxide, Nitrogen and coarse vacuum have also been investigated on UO 2 and MOX on experimental scale and irradiation behaviour of such MOX pellets is under study. Ceramic fibre lined batch furnaces have been found to be the most suitable for MOX pellet production as they offer very good flexibility in sintering cycle, and ease of maintainability

  17. Radiation exposure of personnel in nuclear fuel facilities in fiscal 1981

    International Nuclear Information System (INIS)

    1983-01-01

    The owners of refining enterprises, fabrication enterprises and reprocessing enterprises and users are obligated by the law to keep the radiation exposure dose of personnel below the permissible level. In fiscal 1981 (from April, 1981, to March, 1982), the personnel exposure was far below this level. Exposure dose distribution, total exposure dose and average in the fiscal year are given for the personnel of the following enterprises and other personnel, respectively: refining enterprise - Power Reactor and Nuclear Fuel Development Corporation; fabrication enterprises - Mitsubishi Nuclear Fuel Co., Ltd., and four others; reprocessing enterprise - Power Reactor and Nuclear Fuel Development Corporation; users - Power Reactor and Nuclear Fuel Development Corporation, Japan Atomic Energy Research Institute, and four others. (Mori, K.)

  18. Modeling fabrication of nuclear components: An integrative approach

    Energy Technology Data Exchange (ETDEWEB)

    Hench, K.W.

    1996-08-01

    Reduction of the nuclear weapons stockpile and the general downsizing of the nuclear weapons complex has presented challenges for Los Alamos. One is to design an optimized fabrication facility to manufacture nuclear weapon primary components in an environment of intense regulation and shrinking budgets. This dissertation presents an integrative two-stage approach to modeling the casting operation for fabrication of nuclear weapon primary components. The first stage optimizes personnel radiation exposure for the casting operation layout by modeling the operation as a facility layout problem formulated as a quadratic assignment problem. The solution procedure uses an evolutionary heuristic technique. The best solutions to the layout problem are used as input to the second stage - a simulation model that assesses the impact of competing layouts on operational performance. The focus of the simulation model is to determine the layout that minimizes personnel radiation exposures and nuclear material movement, and maximizes the utilization of capacity for finished units.

  19. Advances in target design and fabrication for experiments on NIF

    Directory of Open Access Journals (Sweden)

    Obrey K.

    2013-11-01

    Full Text Available The ability to build target platforms for National Ignition Facility (NIF is a key feature in LANL's (Los Alamos National Laboratory Target Fabrication Program. We recently built and manufactured the first LANL targets to be fielded on NIF in March 2011. Experiments on NIF require precision component manufacturing and accurate knowledge of the materials used in the targets. The characterization of foams and aerogels, the Be ignition capsule, and machining unique components are of main material focus. One important characterization metric the physics' have determined is that the knowledge of density gradients in foams is important. We are making strides in not only locating these density gradients in aerogels and foams as a result of how they are manufactured and machined but also quantifying the density within the foam using 3D confocal micro x-ray fluorescence (μXRF imaging and 3D x-ray computed tomography (CT imaging. In addition, collaborative efforts between General Atomics (GA and LANL in the characterization of the NIF Ignition beryllium capsule have shown that the copper in the capsule migrates radially from the capsule center.

  20. Prenatal drug exposure and teratological risk: one-year experience of an Italian Teratology Information Service.

    Science.gov (United States)

    De Santis, Marco; Cesari, Elena; Ligato, Maria Serena; Nobili, Elena; Straface, Gianluca; Cavaliere, Annafranca; Caruso, Alessandro

    2008-02-01

    Concern about exposure to drugs, radiation, or infection during pregnancy occur often because pregnancy is not always planned. A teratology information service offers rapid scientific counseling to all those worried about prenatal exposure. The aim of this study is to present data on the most common pharmaceutical products responsible for teratogenic risk in the one-year experience of a teratology information service in Italy. The survey was conducted among 8664 callers who contacted our Teratology Information Service in Rome between January and December 2006. Data on maternal age, gravidity, parity, maternal health status, and details of exposure (dose and timing) were collected and stored in a specific data base. Scientific counseling on prenatal exposure was given to the caller by a specialized service operator, specifying the type of risk and suggesting appropriate tests for prenatal diagnosis. Most of the people called regarding drug exposure; increased risk was present in only 5% of the pregnant women calling during pregnancy. Selective serotonin reuptake inhibitors (SSRIs) are the first category that are actually considered of increased risk to the fetus. The second category is represented by antiepileptic drugs. This experience confirms previous data that there is a high teratological risk perception among both women and physicians. The drugs estimated to present increased risk are medications used for chronic neurological diseases, mainly mood disorders and epilepsy. Preconceptional counseling for these women could be an effective strategy to prevent such exposure and to improve maternal and fetal outcome.

  1. Optimization of selective exposure radiography of the chest

    International Nuclear Information System (INIS)

    Naimuddin, S.

    1986-01-01

    A major technical limitation in conventional chest radiography is the mismatch of the x-ray transmission dynamic range with the useful exposure range of a radiographic film when a patient is presented with a uniform incident exposure field. The goal of this project is to develop a faster and more reliable selective exposure system to fabricate and position a compensating filter (or digital beam attenuator, DBA) for clinical use. The essential components of this system include a dose efficient test-image detector, a special purpose field grabber (image memory), a custom made fast printer, a transport channel, and a computer. The fabrication process begins with acquisition of a 64 x 64 format low-dose patient image which undergoes corrections for detector nonuniformity and scatter. The corrected data after log transformation are used to calculate thickness of filter material needed to compensate for the image dynamic range. Using this thickness information the computer controls the printer which fabricates as attenuator by overprinting multiple layers of cerium oxide on a 35 mm film substrate. Although the images are acquired in a 64 x 64 format, the attenuator is constructed in a dithered 16 x 16 format using a special algorithm. After fabrication, the attenuator is automatically conveyed through the transport channel and is positioned in the x-ray beam between the collimator and x-ray tube before the final compensated radiograph is taken

  2. Impediments for Digital Fabrication in Education

    DEFF Research Database (Denmark)

    Smith, Rachel Charlotte; Iversen, Ole Sejer; Veerasawmy, Rune

    2016-01-01

    with eight primary and lower secondary teachers, the findings point to four central impediments for integrating digital fabrication and design into school environments. The findings extend current perceptions of digital technology in education towards exploratory processes of investigation in which......Digital fabrication technologies are increasingly integrated across subjects in primary and secondary education. Focus on the potentials of these technologies has mainly been on the support to STEM oriented learning goals, while emphasis on teachers' roles with the new learning processes...... of technology and design is largely absent. The paper addresses the experiences and challenges that digital fabrication technology present for teachers in educational environments, and the impediments that are linked to the teachers' roles in design processes of digital fabrication. Based on a research study...

  3. Advances in Grid Computing for the Fabric for Frontier Experiments Project at Fermilab

    Science.gov (United States)

    Herner, K.; Alba Hernandez, A. F.; Bhat, S.; Box, D.; Boyd, J.; Di Benedetto, V.; Ding, P.; Dykstra, D.; Fattoruso, M.; Garzoglio, G.; Kirby, M.; Kreymer, A.; Levshina, T.; Mazzacane, A.; Mengel, M.; Mhashilkar, P.; Podstavkov, V.; Retzke, K.; Sharma, N.; Teheran, J.

    2017-10-01

    The Fabric for Frontier Experiments (FIFE) project is a major initiative within the Fermilab Scientific Computing Division charged with leading the computing model for Fermilab experiments. Work within the FIFE project creates close collaboration between experimenters and computing professionals to serve high-energy physics experiments of differing size, scope, and physics area. The FIFE project has worked to develop common tools for job submission, certificate management, software and reference data distribution through CVMFS repositories, robust data transfer, job monitoring, and databases for project tracking. Since the projects inception the experiments under the FIFE umbrella have significantly matured, and present an increasingly complex list of requirements to service providers. To meet these requirements, the FIFE project has been involved in transitioning the Fermilab General Purpose Grid cluster to support a partitionable slot model, expanding the resources available to experiments via the Open Science Grid, assisting with commissioning dedicated high-throughput computing resources for individual experiments, supporting the efforts of the HEP Cloud projects to provision a variety of back end resources, including public clouds and high performance computers, and developing rapid onboarding procedures for new experiments and collaborations. The larger demands also require enhanced job monitoring tools, which the project has developed using such tools as ElasticSearch and Grafana. in helping experiments manage their large-scale production workflows. This group in turn requires a structured service to facilitate smooth management of experiment requests, which FIFE provides in the form of the Production Operations Management Service (POMS). POMS is designed to track and manage requests from the FIFE experiments to run particular workflows, and support troubleshooting and triage in case of problems. Recently a new certificate management infrastructure called

  4. An Ethology of Urban Fabric(s)

    DEFF Research Database (Denmark)

    Fritsch, Jonas; Thomsen, Bodil Marie Stavning

    2014-01-01

    The article explores a non-metaphorical understanding of urban fabric(s), shifting the attention from a bird’s eye perspective to the actual, textural manifestations of a variety of urban fabric(s) to be studied in their real, processual, ecological and ethological complexity within urban life. We...... effectuate this move by bringing into resonance a range of intersecting fields that all deal with urban fabric(s) in complementary ways (interaction design and urban design activism, fashion, cultural theory, philosophy, urban computing)....

  5. Flash μ-fluidics: a rapid prototyping method for fabricating microfluidic devices

    KAUST Repository

    Buttner, Ulrich

    2016-08-01

    Microfluidics has advanced in terms of design and structures; however, fabrication methods are time-consuming or expensive relative to facility costs and equipment needed. This work demonstrates a fast and economically viable 2D/3D maskless digital light-projection method based on a stereolithography process. Unlike other fabrication methods, one exposure step is used to form the whole device. Flash microfluidics is achieved by incorporating bonding and channel fabrication of complex structures in just 2.5 s to 4 s and by fabricating channel heights between 25 μm and 150 μm with photopolymer resin. The features of this fabrication technique, such as time and cost saving and easy fabrication, are used to build devices that are mostly needed in microfluidic/lab-on-chip systems. Due to the fast production method and low initial setup costs, the process could be used for point of care applications. © 2016 The Royal Society of Chemistry.

  6. Flash μ-fluidics: a rapid prototyping method for fabricating microfluidic devices

    KAUST Repository

    Buttner, Ulrich; Sivashankar, Shilpa; Agambayev, Sumeyra; Mashraei, Yousof; Salama, Khaled N.

    2016-01-01

    Microfluidics has advanced in terms of design and structures; however, fabrication methods are time-consuming or expensive relative to facility costs and equipment needed. This work demonstrates a fast and economically viable 2D/3D maskless digital light-projection method based on a stereolithography process. Unlike other fabrication methods, one exposure step is used to form the whole device. Flash microfluidics is achieved by incorporating bonding and channel fabrication of complex structures in just 2.5 s to 4 s and by fabricating channel heights between 25 μm and 150 μm with photopolymer resin. The features of this fabrication technique, such as time and cost saving and easy fabrication, are used to build devices that are mostly needed in microfluidic/lab-on-chip systems. Due to the fast production method and low initial setup costs, the process could be used for point of care applications. © 2016 The Royal Society of Chemistry.

  7. Complete fabrication of target experimental chamber and implement initial target diagnostics to be used for the first target experiments in NDCX-1

    International Nuclear Information System (INIS)

    Bieniosek, F.M.; Bieniosek, F.M.; Dickinson, M.R.; Henestroza, E.; Katayanagi, T.; Jung, J.Y.; Lee, C.W.; Leitner, M.; Ni, P.; Roy, P.; Seidl, P.; Waldron, W.; Welch, D.

    2008-01-01

    The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) has completed the fabrication of a new experimental target chamber facility for future Warm Dense Matter (WDM) experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. This achievement provides to the HIFS-VNL unique and state-of-the-art experimental capabilities in preparation for the planned target heating experiments using intense heavy ion beams

  8. Regulations concerning the fabricating business of nuclear fuel materials

    International Nuclear Information System (INIS)

    1985-01-01

    In the Law for the Regulations of Nuclear Source Material, Nuclear Fuel Material and Reactors, the regulations have all been revised on the fabrication business of nuclear fuel materials. The revised regulations are given : application for permission of the fabrication business, application for permission of the alteration, application for approval of the design and the construction methods, application for approval of the alteration, application for the facilities inspection, facilities inspection, recordings, entry limitations etc. for controlled areas, measures concerning exposure radiation doses etc., operation of the fabrication facilities, transport within the site of the business, storage, disposal within the site of the business, security regulations, designation etc. of the licensed engineer of nuclear fuels, collection of reports, etc. (Mori, K.)

  9. A boiling-water reactor concept for low radiation exposure based on operating experience

    International Nuclear Information System (INIS)

    Koine, Y.; Uchida, S.; Izumiya, M.; Miki, M.

    1983-01-01

    A review of boiling-water reactor (BWR) operating experience indicates the significant role of water chemistry in determining the radiation dose rate contributing to occupational exposure. The major contributor among the radioactive species involved is identified as 60 Co, produced by neutron activation of 59 Co originating from structural materials. Iron crud, a fine solid form of corrosion product in the reactor water, is also shown to enhance the radiation dose rate. A theoretical study, supported by the operating experience and an extensive confirmatory test, led to the computerized analytical model called DR CRUD which is capable of predicting long-term radiation dose buildup. It accounts for the mechanism of radiation buildup through corrosion products such as irons, cobalts and other radioactive elements; their generation, transport, activation, interaction and deposition in the reactor coolant system are simulated. A scoping analysis, using this model as a tool, establishes the base line of the BWR concept for low occupational exposure. The base line consists of a set of target values for an annual exposure of 200 man.rem in an 1100 MW(e) BWR unit. They are the parameters that will be built into the design such as iron and cobalt inputs to the reactor water, and the capability of the reactor and the condensate purification system. Applicable means of technology are identified to meet the targets, ranging from improved water chemistry to the purification technique, optimized material selection and the recommended operational procedure. Extensive test programmes provide specifications of these means for use in BWRs. Combinations of their application are reviewed to define the concept of reduced exposure. Analytical study verifies the effectiveness of the proposed BWR concept in achieving a low radiation dose rate; occupational exposure is reduced to 200 man.rem/a. (author)

  10. The design, fabrication and installation of cable routing mockups in support of Spacelab 2

    Science.gov (United States)

    1981-01-01

    From flight and mockup drawings of Spacelab 2 (SL 2) experiments and hardware, shop ready mockup drawings were produced. Floor panels were the first items considered for fabrication. Cold plate and orthogrid mockups were designed and fabricated. Experiment and other hardware mockups were fabricated of aluminum or plywood, depending on size and configuration. Eighty-three cable routing bracket mockups were fabricated of aluminum and delivered for painting.

  11. Mixed U/Pu oxide fuel fabrication facility co-processed feed, pelletized fuel

    International Nuclear Information System (INIS)

    1978-09-01

    Two conceptual MOX fuel fabrication facilities are discussed in this study. The first facility in the main body of the report is for the fabrication of LWR uranium dioxide - plutonium dioxide (MOX) fuel using co-processed feed. The second facility in the addendum is for the fabrication of co-processed MOX fuel spiked with 60 Co. Both facilities produce pellet fuel. The spiked facility uses the same basic fabrication process as the conventional MOX plant but the fuel feed incorporates a high energy gamma emitter as a safeguard measure against diversion; additional shielding is added to protect personnel from radiation exposure, all operations are automated and remote, and normal maintenance is performed remotely. The report describes the fuel fabrication process and plant layout including scrap and waste processing; and maintenance, ventilation and safety measures

  12. A synchrotron-based X-ray exposure station for radiation biology experiments

    International Nuclear Information System (INIS)

    Thompson, A.C.; Blakely, E.A.; Bjornstad, K.A.; Chang, P.Y.; Rosen, C.J.; Schwarz, R.I.

    2007-01-01

    Synchrotron X-ray sources enable radiation biology experiments that are difficult with conventional sources. A synchrotron source can easily deliver a monochromatic, tunable energy, highly collimated X-ray beam of well-calibrated intensity. An exposure station at beamline 10.3.1 of the Advanced Light Source (ALS) has been developed which delivers a variable energy (5-20 keV) X-ray fan beam with very sharp edges (10-90% in less than 3 μm). A series of experiments have been done with a four-well slide where a stripe (100 μm widex18 mm long) of cells in each well has been irradiated and the dose varied from well to well. With this facility we have begun a series of experiments to study cells adjacent to irradiated cells and how they respond to the damage of their neighbors. Initial results have demonstrated the advantages of using synchrotron radiation for these experiments

  13. A synchrotron-based X-ray exposure station for radiation biology experiments

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, A.C. [Division of Life Sciences, Lawrence Berkeley National Laboratory, Bld. 50A-6120, Berkeley, CA 94720 (United States)], E-mail: acthompson@lbl.gov; Blakely, E.A.; Bjornstad, K.A. [Division of Life Sciences, Lawrence Berkeley National Laboratory, Bld. 50A-6120, Berkeley, CA 94720 (United States); Chang, P.Y. [Division of Life Sciences, Lawrence Berkeley National Laboratory, Bld. 50A-6120, Berkeley, CA 94720 (United States); SRI International, Menlo Park, CA (United States); Rosen, C.J.; Schwarz, R.I. [Division of Life Sciences, Lawrence Berkeley National Laboratory, Bld. 50A-6120, Berkeley, CA 94720 (United States)

    2007-11-11

    Synchrotron X-ray sources enable radiation biology experiments that are difficult with conventional sources. A synchrotron source can easily deliver a monochromatic, tunable energy, highly collimated X-ray beam of well-calibrated intensity. An exposure station at beamline 10.3.1 of the Advanced Light Source (ALS) has been developed which delivers a variable energy (5-20 keV) X-ray fan beam with very sharp edges (10-90% in less than 3 {mu}m). A series of experiments have been done with a four-well slide where a stripe (100 {mu}m widex18 mm long) of cells in each well has been irradiated and the dose varied from well to well. With this facility we have begun a series of experiments to study cells adjacent to irradiated cells and how they respond to the damage of their neighbors. Initial results have demonstrated the advantages of using synchrotron radiation for these experiments.

  14. Practical experience in the application of quality control in water-reactor fuel fabrication

    International Nuclear Information System (INIS)

    Vollath, D.

    1984-07-01

    Highly industrialized countries have gained vast experience in manufacturing water reactor fuel. Manufacturing is followed by a stringent system of quality assurance and quality control. The Seminar on Practical Experience in the Application of Quality Control in Water-Reactor Fuel Fabrication provided a forum for an exchange of information on methods and systems of quality assurance and quality control for reactor fuel. In addition, many developing countries which have started or intend to set up a nuclear fuel industry are interested in the application of quality assurance and quality control. This meeting has been preceded by two different series of conferences: the IAEA meetings 1976 in Oslo, 1978 in Prague and 1979 in Buenos Aires, and the Karlsruhe meetings on Characterization and Quality Control of Nuclear Fuel held in 1978 and 1981. Quality control and quality assurance has many different facets. Unlike the purely technical aspects, covered by the Karlsruhe conference series, the IAEA meetings always relate to a wider field of topics. They include governmental regulations and codes for practical quality assurance. This volume contains the papers presented at the seminar and a record of the discussions. (orig.)

  15. Improved Mechanical Properties of Various Fabric-Reinforced Geocomposite at Elevated Temperature

    Science.gov (United States)

    Samal, Sneha; Phan Thanh, Nhan; Petríková, Iva; Marvalová, Bohadana

    2015-07-01

    This article signifies the improved performance of the various types of fabric reinforcement of geopolymer as a function of physical, thermal, mechanical, and heat-resistant properties at elevated temperatures. Geopolymer mixed with designed Si:Al ratios of 15.6 were synthesized using three different types of fabric reinforcement such as carbon, E-glass, and basalt fibers. Heat testing was conducted on 3-mm-thick panels with 15 × 90 mm surface exposure region. The strength of carbon-based geocomposite increased toward a higher temperature. The basalt-reinforced geocomposite strength decreased due to the catastrophic failure in matrix region. The poor bridging effect and dissolution of fabric was observed in the E-glass-reinforced geocomposite. At an elevated temperature, fiber bridging was observed in carbon fabric-reinforced geopolymer matrix. Among all the fabrics, carbon proved to be suitable candidate for the high-temperature applications in thermal barrier coatings and fire-resistant panels.

  16. National Spherical Torus Experiment (NSTX) Torus Design, Fabrication and Assembly

    International Nuclear Information System (INIS)

    Neumeyer, C.; Barnes, G.; Chrzanowski, J.H.; Heitzenroeder, P.

    1999-01-01

    The National Spherical Torus Experiment (NSTX) is a low aspect ratio spherical torus (ST) located at Princeton Plasma Physics Laboratory (PPPL). Fabrication, assembly, and initial power tests were completed in February of 1999. The majority of the design and construction efforts were constructed on the Torus system components. The Torus system includes the centerstack assembly, external Poloidal and Toroidal coil systems, vacuum vessel, torus support structure and plasma facing components (PFC's). NSTX's low aspect ratio required that the centerstack be made with the smallest radius possible. This, and the need to bake NSTXs carbon-carbon composite plasma facing components at 350 degrees C, was major drivers in the design of NSTX. The Centerstack Assembly consists of the inner legs of the Toroidal Field (TF) windings, the Ohmic Heating (OH) solenoid and its associated tension cylinder, three inner Poloidal Field (PF) coils, thermal insulation, diagnostics and an Inconel casing which forms the inner wall of the vacuum vessel boundary. It took approximately nine months to complete the assembly of the Centerstack. The tight radial clearances and the extreme length of the major components added complexity to the assembly of the Centerstack components. The vacuum vessel was constructed of 304-stainless steel and required approximately seven months to complete and deliver to the Test Cell. Several of the issues associated with the construction of the vacuum vessel were control of dimensional stability following welding and controlling the permeability of the welds. A great deal of time and effort was devoted to defining the correct weld process and material selection to meet our design requirements. The PFCs will be baked out at 350 degrees C while the vessel is maintained at 150 degrees C. This required care in designing the supports so they can accommodate the high electromagnetic loads resulting from plasma disruptions and the resulting relative thermal expansions

  17. Cryogenic Wind Tunnel Models. Design and Fabrication

    Science.gov (United States)

    Young, C. P., Jr. (Compiler); Gloss, B. B. (Compiler)

    1983-01-01

    The principal motivating factor was the National Transonic Facility (NTF). Since the NTF can achieve significantly higher Reynolds numbers at transonic speeds than other wind tunnels in the world, and will therefore occupy a unique position among ground test facilities, every effort is being made to ensure that model design and fabrication technology exists to allow researchers to take advantage of this high Reynolds number capability. Since a great deal of experience in designing and fabricating cryogenic wind tunnel models does not exist, and since the experience that does exist is scattered over a number of organizations, there is a need to bring existing experience in these areas together and share it among all interested parties. Representatives from government, the airframe industry, and universities are included.

  18. Mechanical stop mechanism for overcoming MEMS fabrication tolerances

    International Nuclear Information System (INIS)

    Hussein, Hussein; Bourbon, Gilles; Le Moal, Patrice; Lutz, Philippe; Haddab, Yassine

    2017-01-01

    A mechanical stop mechanism is developed in order to compensate MEMS fabrication tolerances in discrete positioning. The mechanical stop mechanism is designed to be implemented on SOI wafers using a common DRIE etching process. The various fabrication tolerances obtained due to the etching process are presented and discussed in the paper. The principle and design of the mechanism are then presented. Finally, experiments on microfabricated positioning prototypes show accurate steps unaffected by the fabrication tolerances. (technical note)

  19. FABRICATION AND PROPERTIES OVERCOATED RESORCINOL-FORMALDEHYDE SHELLS FOR OMEGA EXPERIMENTS

    International Nuclear Information System (INIS)

    NIKROO, A; CZECHOWICZ, D; PAGUIO, R; GREENWOOD, A.L; TAKAGI, M.

    2003-09-01

    OAK-B135 New high gain designs for direct drive ignition on NIF require foam shells. Scaled down versions of these designs are needed for near term experiments on the OMEGA laser facility at the Laboratory Laser Energetics (LLE). These shells need to be about 1 mm in diameter and 50-100 (micro)m wall thickness and densities of 100-250 mg/cc. In addition, a full density permeation seal needs to be deposited for retention of the fill gas at room temperature or the ice at cryogenic temperatures. They have fabricated such shells using Resorcinol-formaldehyde (R/F) as the selected foam material due to its transparency in the optical region. Extensive characterization of the wall uniformity of these shells has been performed. The foam shells have ∼ 5%-6% non-concentricities on the average. A full density permeation seal has been deposited on the R/F shells using two different techniques. In the first technique R/F shells are coated directly with plasma polymer to thicknesses of 3-4 (micro)m. In the second technique, R/F shells are coated with polyvinylphenol, using a chemical interfacial polymerization technique. Data on surface finish and gas retention for R/F shells coated by both methods are provided

  20. Prediction of dose and field mapping around a shielded plutonium fuel fabrication glovebox

    International Nuclear Information System (INIS)

    Strode, J.N.; Soldat, K.L.; Brackenbush, L.W.

    1984-01-01

    Westinghouse Hanford Company, as the Department of Energy's (DOE) prime contractor for the operation of the Hanford Engineering Development Laboratory (HEDL), is responsible for the development of the Secure Automated Fabrication (SAF) Line which is to be installed in the recently constructed Fuels and Materials Examination Facility (FMEF). The SAF Line will fabricate mixed-oxide (MOX) fuel pins for the Fast Flux Test Facility (FFTF) at an annual throughput rate of six (6) metric tons (MT) of MOX. The SAF Line will also demonstrate the automated manufacture of fuel pins on a production-scale. This paper describes some of the techniques used to reduce personnel exposure on the SAF Line, as well as the prediction and field mapping of doses from a shielded fuel fabrication glovebox. Tables are also presented from which exposure rate estimates can be made for plutonium recovered from fuels having different isotopic compositions as a result of varied burnup

  1. NSRR experiment with un-irradiated uranium-zirconium hydride fuel. Design, fabrication process and inspection data of test fuel rod

    Energy Technology Data Exchange (ETDEWEB)

    Sasajima, Hideo; Fuketa, Toyoshi; Ishijima, Kiyomi; Kuroha, Hiroshi; Ikeda, Yoshikazu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Aizawa, Keiichi

    1998-08-01

    An experiment plan is progressing in the Nuclear Safety Research Reactor (NSRR) to perform pulse-irradiation with uranium-zirconium hydride (U-ZrH{sub x}) fuel. This fuel is widely used in the training research and isotope production reactor of GA (TRIGA). The objectives of the experiment are to determine the fuel rod failure threshold and to investigate fuel behavior under simulated reactivity initiated accident (RIA) conditions. This report summarizes design, fabrication process and inspection data of the test fuel rods before pulse-irradiation. The experiment with U-ZrH{sub x} fuel will realize precise safety evaluation, and improve the TRIGA reactor performance. The data to be obtained in this program will also contribute development of next-generation TRIGA reactor and its safety evaluation. (author)

  2. Design of experiment characterization of microneedle fabrication processes based on dry silicon etching

    Science.gov (United States)

    Held, J.; Gaspar, J.; Ruther, P.; Hagner, M.; Cismak, A.; Heilmann, A.; Paul, O.

    2010-02-01

    This paper reports on the characterization of dry etching-based processes for the fabrication of silicon microneedles using a design of experiment (DoE) approach. The possibility of using such microneedles as protruding microelectrodes able to electroporate adherently growing cells and record intracellular potentials motivates the systematic analysis of the influence of etching parameters on the needle shape. Two processes are characterized: a fully isotropic etch process and a three-step etching approach. In the first case, the shape of the microneedles is defined by a single etch step. For the stepped method, the structures are realized using the following sequence: a first, isotropic step defines the tip; this is followed by anisotropic etching that increases the height of the needle; a final isotropic procedure thins the microneedle and sharpens its tip. From the various process parameters tested, it is concluded that the isotropic fabrication is influenced mostly by four process parameters, whereas six parameters dominantly govern the outcome of the stepped etching technique. The dependence of the needle shape on the etch mask diameter is also investigated. Microneedles with diameters down to the sub-micrometer range and heights below 10 µm are obtained. The experimental design is performed using the D-optimal method. The resulting geometry, i.e. heights, diameters and radii of curvature measured at different positions, is extracted from scanning electron micrographs of needle cross-sections obtained from cuts by focused ion beam. The process parameters are used as inputs and the geometry features of the microneedles as outputs for the analysis of the process.

  3. Design of experiment characterization of microneedle fabrication processes based on dry silicon etching

    International Nuclear Information System (INIS)

    Held, J; Gaspar, J; Ruther, P; Paul, O; Hagner, M; Cismak, A; Heilmann, A

    2010-01-01

    This paper reports on the characterization of dry etching-based processes for the fabrication of silicon microneedles using a design of experiment (DoE) approach. The possibility of using such microneedles as protruding microelectrodes able to electroporate adherently growing cells and record intracellular potentials motivates the systematic analysis of the influence of etching parameters on the needle shape. Two processes are characterized: a fully isotropic etch process and a three-step etching approach. In the first case, the shape of the microneedles is defined by a single etch step. For the stepped method, the structures are realized using the following sequence: a first, isotropic step defines the tip; this is followed by anisotropic etching that increases the height of the needle; a final isotropic procedure thins the microneedle and sharpens its tip. From the various process parameters tested, it is concluded that the isotropic fabrication is influenced mostly by four process parameters, whereas six parameters dominantly govern the outcome of the stepped etching technique. The dependence of the needle shape on the etch mask diameter is also investigated. Microneedles with diameters down to the sub-micrometer range and heights below 10 µm are obtained. The experimental design is performed using the D-optimal method. The resulting geometry, i.e. heights, diameters and radii of curvature measured at different positions, is extracted from scanning electron micrographs of needle cross-sections obtained from cuts by focused ion beam. The process parameters are used as inputs and the geometry features of the microneedles as outputs for the analysis of the process.

  4. The Importance of Moisture in Hybrid Lead Halide Perovskite Thin Film Fabrication.

    Science.gov (United States)

    Eperon, Giles E; Habisreutinger, Severin N; Leijtens, Tomas; Bruijnaers, Bardo J; van Franeker, Jacobus J; deQuilettes, Dane W; Pathak, Sandeep; Sutton, Rebecca J; Grancini, Giulia; Ginger, David S; Janssen, Rene A J; Petrozza, Annamaria; Snaith, Henry J

    2015-09-22

    Moisture, in the form of ambient humidity, has a significant impact on methylammonium lead halide perovskite films. In particular, due to the hygroscopic nature of the methylammonium component, moisture plays a significant role during film formation. This issue has so far not been well understood and neither has the impact of moisture on the physical properties of resultant films. Herein, we carry out a comprehensive and well-controlled study of the effect of moisture exposure on methylammonium lead halide perovskite film formation and properties. We find that films formed in higher humidity atmospheres have a less continuous morphology but significantly improved photoluminescence, and that film formation is faster. In photovoltaic devices, we find that exposure to moisture, either in the precursor solution or in the atmosphere during formation, results in significantly improved open-circuit voltages and hence overall device performance. We then find that by post-treating dry films with moisture exposure, we can enhance photovoltaic performance and photoluminescence in a similar way. The enhanced photoluminescence and open-circuit voltage imply that the material quality is improved in films that have been exposed to moisture. We determine that this improvement stems from a reduction in trap density in the films, which we postulate to be due to the partial solvation of the methylammonium component and "self-healing" of the perovskite lattice. This work highlights the importance of controlled moisture exposure when fabricating high-performance perovskite devices and provides guidelines for the optimum environment for fabrication. Moreover, we note that often an unintentional water exposure is likely responsible for the high performance of solar cells produced in some laboratories, whereas careful synthesis and fabrication in a dry environment will lead to lower-performing devices.

  5. Fabrication of recyclable superhydrophobic cotton fabrics

    Science.gov (United States)

    Han, Sang Wook; Park, Eun Ji; Jeong, Myung-Geun; Kim, Il Hee; Seo, Hyun Ook; Kim, Ju Hwan; Kim, Kwang-Dae; Kim, Young Dok

    2017-04-01

    Commercial cotton fabric was coated with SiO2 nanoparticles wrapped with a polydimethylsiloxane (PDMS) layer, and the resulting material surface showed a water contact angle greater than 160°. The superhydrophobic fabric showed resistance to water-soluble contaminants and maintained its original superhydrophobic properties with almost no alteration even after many times of absorption-washing cycles of oil. Moreover, superhydrophobic fabric can be used as a filter to separate oil from water. We demonstrated a simple method of fabrication of superhydrophobic fabric with potential interest for use in a variety of applications.

  6. 1991 implementation of As Low As Reasonably Achievable (ALARA) administrative radiation exposure levels: Experiences and lessons learned

    International Nuclear Information System (INIS)

    Aldridge, T.L.; Baumann, B.L.

    1993-06-01

    As Low As Reasonably Achievable (ALARA) radiation exposure levels were implemented on January 1, 1991, by Westinghouse Hanford Company (WHC), a prime US Department of Energy (DOE) contractor, located in Richland, Washington. This paper describes the radiation exposure levels which were implemented and the associated experiences and lessons learned. The issue of a report from the Committee on Biological Effectiveness of Ionizing Radiation in 1989 prompted DOE to re-evaluate its position on radiation exposure limits and the resulting doses received by occupational radiation workers. DOE requested that all it's contractors determine the impacts to operations from reduced radiation exposure levels

  7. Prototype exposure chamber of radon for animal experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yuji; Koizumi, Akira; Yonehara, Hidenori; Shimo, Michikuni; Inaba, Jiro [National Institute of Radiological Sciences, Chiba (Japan)

    1998-12-31

    To evaluate a dose conversion factor from the `Working Level of Month` (WLM) of radon to the absorbed dose (mGy), the quality of radon and its progeny was assessed, and exposures controlled for each deposition region were planed as follows: 1) exposure of radon gas to the entire respiratory tract, 2) exposure of `unattached` fractions to the upper respiratory tract, 3) exposure of `attached` fractions onto ultrafine particles to the deep lung, 4) exposure of `attached` fractions onto fine particles to the lower respiratory tract, 5) exposure of `attached` fractions onto coarse particles to the upper respiratory tract. In this preliminary study, a prototype exposure system of radon and its progeny for small rodents was designed. A whole body exposure chamber with a volume of about 0.5 m{sup 3} was used, which it held 20 rats. The aging and mixing chamber separated by the exposure chamber had a volume of about 1 m{sup 3}. As career aerosols of radon progeny, carnauba wax aerosols as solid particles, DOS aerosols as liquid particles and NaCl aerosols as hygroscopic particles were selected. These aerosols generated using a vaporization-condensation method and/or an electrical classification method were almost monodisperse with {sigma}{sub g} of <1.2. The monitoring data on biologically related gases showed an importance in the oxygen injection system and the carbon dioxide absorption system. (author)

  8. Operational experience in the non-destructive assay of fissile material in General Electric's nuclear fuel fabrication facility

    International Nuclear Information System (INIS)

    Stewart, J.P.

    1976-01-01

    Operational experience in the non-destructive assay of fissile material in a variety of forms and containers and incorporation of the assay devices into the accountability measurement system for General Electric's Wilmington Fuel Fabrication Facility measurement control programme is detailed. Description of the purpose and related operational requirements of each non-destructive assay system is also included. In addition, the accountability data acquisition and processing system is described in relation to its interaction with the various non-destructive assay devices and scales used for accountability purposes within the facility. (author)

  9. Respirator use and its impact on particulate matter exposure in aluminum manufacturing facilities.

    Science.gov (United States)

    Liu, Sa; Noth, Elizabeth; Eisen, Ellen; Cullen, Mark R; Hammond, Katharine

    2018-05-31

    Objectives As part of a large epidemiologic study of particulate health effect, this study aimed to report respirator use among total particulate matter (TPM) samples collected in a major aluminum manufacturing company from 1966‒2013 and evaluate the impact of respirator-use adjustment on exposure estimation. Methods Descriptive analyses were performed to evaluate respirator use across facilities and by facility type and job. Protection factors were applied to TPM measurements for recorded respirator use. Estimated TPM exposure for each job ‒ before and after respirator-use adjustment ‒ were compared to assess the impact of adjustment on exposure estimation. Results Respirator use was noted for 37% of 12 402 full-shift personal TPM samples. Measured TPM concentration ranged from less than detectable to 8220 mg/m3, with arithmetic mean, median and standard deviation being 10.6, 0.87 and 130 mg/m 3 , respectively. Respirators were used more often in smelting facilities (52% of TPM measurements) than in fabricating (17%) or refinery facilities (28%) (Pfacilities were subject to respirator-use adjustment, whereas it was 20% and 70% in fabricating and refinery facilities, respectively. Applying protection factors to TPM measurements significantly reduced estimated job mean TPM exposures and changed exposure categories in these facilities, with larger impact in smelting than fabricating facilities. Conclusions Respirator use varied by time, facility and job. Adjusting respirator use resulted in differential impact in smelting and fabricating facilities, which will need to be incorporated into ongoing epidemiologic studies accordingly.

  10. Fast and controlled fabrication of porous graphene oxide: application of AFM tapping for mechano-chemistry

    Science.gov (United States)

    Chu, Liangyong; Korobko, Alexander V.; Bus, Marcel; Boshuizen, Bart; Sudhölter, Ernst J. R.; Besseling, Nicolaas A. M.

    2018-05-01

    This paper describes a novel method to fabricate porous graphene oxide (PGO) from GO by exposure to oxygen plasma. Compared to other methods to fabricate PGO described so far, e.g. the thermal and steam etching methods, oxygen plasma etching method is much faster. We studied the development of the porosity with exposure time using atomic force microscopy (AFM). It was found that the development of PGO upon oxygen-plasma exposure can be controlled by tapping mode AFM scanning using a Si tip. AFM tapping stalls the growth of pores upon further plasma exposure at a level that coincides with the fraction of sp2 carbons in the GO starting material. We suggest that AFM tapping procedure changes the bond structure of the intermediate PGO structure, and these stabilized PGO structures cannot be further etched by oxygen plasma. This constitutes the first report of tapping AFM as a tool for local mechano-chemistry.

  11. The fabrication techniques of Z-pinch targets. Techniques of fabricating self-adapted Z-pinch wire-arrays

    International Nuclear Information System (INIS)

    Qiu Longhui; Wei Yun; Liu Debin; Sun Zuoke; Yuan Yuping

    2002-01-01

    In order to fabricate wire arrays for use in the Z-pinch physical experiments, the fabrication techniques are investigated as follow: Thickness of about 1-1.5 μm of gold is electroplated on the surface of ultra-fine tungsten wires. Fibers of deuterated-polystyrene (DPS) with diameters from 30 to 100 microns are made from molten DPS. And two kinds of planar wire-arrays and four types of annular wire-arrays are designed, which are able to adapt to the variation of the distance between the cathode and anode inside the target chamber. Furthermore, wire-arrays with diameters form 5-24 μm are fabricated with tungsten wires, respectively. The on-site test shows that the wire-arrays can self-adapt to the distance changes perfectly

  12. Advances in Grid Computing for the FabrIc for Frontier Experiments Project at Fermialb

    Energy Technology Data Exchange (ETDEWEB)

    Herner, K. [Fermilab; Alba Hernandex, A. F. [Fermilab; Bhat, S. [Fermilab; Box, D. [Fermilab; Boyd, J. [Fermilab; Di Benedetto, V. [Fermilab; Ding, P. [Fermilab; Dykstra, D. [Fermilab; Fattoruso, M. [Fermilab; Garzoglio, G. [Fermilab; Kirby, M. [Fermilab; Kreymer, A. [Fermilab; Levshina, T. [Fermilab; Mazzacane, A. [Fermilab; Mengel, M. [Fermilab; Mhashilkar, P. [Fermilab; Podstavkov, V. [Fermilab; Retzke, K. [Fermilab; Sharma, N. [Fermilab; Teheran, J. [Fermilab

    2016-01-01

    The FabrIc for Frontier Experiments (FIFE) project is a major initiative within the Fermilab Scientic Computing Division charged with leading the computing model for Fermilab experiments. Work within the FIFE project creates close collaboration between experimenters and computing professionals to serve high-energy physics experiments of diering size, scope, and physics area. The FIFE project has worked to develop common tools for job submission, certicate management, software and reference data distribution through CVMFS repositories, robust data transfer, job monitoring, and databases for project tracking. Since the projects inception the experiments under the FIFE umbrella have signicantly matured, and present an increasingly complex list of requirements to service providers. To meet these requirements, the FIFE project has been involved in transitioning the Fermilab General Purpose Grid cluster to support a partitionable slot model, expanding the resources available to experiments via the Open Science Grid, assisting with commissioning dedicated high-throughput computing resources for individual experiments, supporting the eorts of the HEP Cloud projects to provision a variety of back end resources, including public clouds and high performance computers, and developing rapid onboarding procedures for new experiments and collaborations. The larger demands also require enhanced job monitoring tools, which the project has developed using such tools as ElasticSearch and Grafana. in helping experiments manage their large-scale production work ows. This group in turn requires a structured service to facilitate smooth management of experiment requests, which FIFE provides in the form of the Production Operations Management Service (POMS). POMS is designed to track and manage requests from the FIFE experiments to run particular work ows, and support troubleshooting and triage in case of problems. Recently a new certicate management infrastructure called Distributed

  13. Radiological and environmental safety aspects of uranium fuel fabrication plants at Nuclear Fuel Complex, Hyderabad

    International Nuclear Information System (INIS)

    Viswanathan, S.; Surya Rao, B.; Lakshmanan, A.R.; Krishna Rao, T.

    1991-01-01

    Nuclear Fuel Complex, Hyderabad manufactures uranium dioxide fuel assemblies for PHWRs and BWRs operating in India. Starting materials are magnesium diuranate received from UCIL, Jaduguda and imported UF. Both of these are converted to UO 2 pellets by identical chemical processes and mechanical compacting. Since the uranium handled here is free of daughter product activities, external radiation is not a problem. Inhalation of airborne U compounds is one of the main source of exposure. Engineered protective measures like enclosures around U bearing powder handling equipment and local exhausts reduce worker's exposure. Installation of pre-filters, wet rotoclones and electrostatic precipitators in the ventillation system reduces the release of U into the environment. The criticality hazard in handling slightly enriched uranium is very low due to the built-in control based on geometry and inventory. Where airborne uranium is significant, workers are provided with protective respirators. The workers are regularly monitored for external exposure and also for internal exposure. The environmental releases from the NFC facility is well controlled. Soil, water and air from the NFC environment are routinely collected and analysed for all the possible pollutants. The paper describes the Health Physics experience during the last five years on occupational exposures and on environmental surveillance which reveals the high quality of safety observed in our nuclear fuel fabricating installations. (author). 4 refs., 6 tabs

  14. FBR pellet fabrication - density and dimensional control

    International Nuclear Information System (INIS)

    Rasmussen, D.E.; Schaus, P.S.

    1982-01-01

    The fuel pellet fabricating experience described in this paper involved pellet processing tests using mixed oxide (PuO 2 -UO 2 ) powders to produce fast breeder reactor (FBR) fuel pellets. Objectives of the pellet processing tests were to establish processing parameters for sintered-to-size fuel pellets to be used in an irradiation test in the Fast Flux Test Facility and to establish baseline fabrication control information. 26 figures, 7 tables

  15. What to expect from immersive virtual environment exposure: influences of gender, body mass index, and past experience.

    Science.gov (United States)

    Stanney, Kay M; Hale, Kelly S; Nahmens, Isabelina; Kennedy, Robert S

    2003-01-01

    For those interested in using head-coupled PC-based immersive virtual environment (VE) technology to train, entertain, or inform, it is essential to understand the effects this technology has on its users. This study investigated potential adverse effects, including the sickness associated with exposure and extreme responses (emesis, flashbacks). Participants were exposed to a VE for 15 to 60 min, with either complete or streamlined navigational control and simple or complex scenes, after which time measures of sickness were obtained. More than 80% of participants experienced nausea, oculomotor disturbances, and/or disorientation, with disorientation potentially lasting > 24 hr. Of the participants, 12.9% prematurely ended their exposure because of adverse effects; of these, 9.2% experienced an emetic response, whereas only 1.2% of all participants experienced emesis. The results indicate that designers may be able to reduce these rates by limiting exposure duration and reducing the degrees of freedom of the user's navigational control. Results from gender, body mass, and past experience comparisons indicated it may be possible to identify those who will experience adverse effects attributable to exposure and warn such individuals. Applications for this research include military, entertainment, and any other interactive systems for which designers seek to avoid adverse effects associated with exposure.

  16. Mercuric iodide composite films using polyamide, polycarbonate and polystyrene fabricated by casting

    International Nuclear Information System (INIS)

    Ugucioni, J.C.; Ghilardi Netto, T.; Mulato, M.

    2010-01-01

    Mercuric iodide (HgI 2 ) composite films were obtained by using the casting technique. Insulator polymers such as polyamide, polycarbonate and polystyrene were mixed to HgI 2 crystallites forming a final sub-millimeter thick self-standing film. Fabrication temperature varied from 10 to 100 o C, and total fabrication time reached at most 5 min. The larger the fabrication temperature, the thinner the film and the smaller its electrical resistivity. Electrical characterization was performed in the dark, under UV illumination and under mammographic X-ray exposure. The final properties of the films are discussed and related to fabrication conditions. The optimized composite film might be a better candidate for use as X-ray detector for medical imaging, in place of the single HgI 2 crystalline device.

  17. Enforcement of radiation safety standards and experience in the regulatory control of exposures

    International Nuclear Information System (INIS)

    Krishnamurthi, T.N.

    1997-01-01

    Regulatory provisions for radiation protection and their enforcement in India are discussed in this paper. The rules and regulations framed for radiation safety cover all the nuclear fuel cycle activities as well as the application of radiation sources in industrial, medical and research institutions. The enforcement aspects and experience in the control of exposures are presented. (author)

  18. Effects of acute exercise on fear extinction in rats and exposure therapy in humans: Null findings from five experiments.

    Science.gov (United States)

    Jacquart, Jolene; Roquet, Rheall F; Papini, Santiago; Powers, Mark B; Rosenfield, David; Smits, Jasper A J; Monfils, Marie-H

    2017-08-01

    Exposure therapy is an established learning-based intervention for the treatment of anxiety disorders with an average response rate of nearly 50%, leaving room for improvement. Emerging strategies to enhance exposure therapy in humans and fear extinction retention in animal models are primarily pharmacological. These approaches are limited as many patients report preferring non-pharmacological approaches in therapy. With general cognitive enhancement effects, exercise has emerged as a plausible non-pharmacological augmentation strategy. The present study tested the hypothesis that fear extinction and exposure therapy would be enhanced by a pre-training bout of exercise. We conducted four experiments with rats that involved a standardized conditioning and extinction paradigm and a manipulation of exercise. In a fifth experiment, we manipulated vigorous-intensity exercise prior to a standardized virtual reality exposure therapy session among adults with fear of heights. In experiments 1-4, exercise did not facilitate fear extinction, long-term memory, or fear relapse tests. In experiment 5, human participants showed an overall reduction in fear of heights but exercise did not enhance symptom improvement. Although acute exercise prior to fear extinction or exposure therapy, as operationalized in the present 5 studies, did not enhance outcomes, these results must be interpreted within the context of a broader literature that includes positive findings. Taken all together, this suggests that more research is necessary to identify optimal parameters and key individual differences so that exercise can be implemented successfully to treat anxiety disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Commercialization of Micro-fabrication of Antenna-Coupled Transition Edge Sensor Bolometer Detectors for Studies of the Cosmic Microwave Background

    Science.gov (United States)

    Suzuki, Aritoki; Bebek, Chris; Garcia-Sciveres, Maurice; Holland, Stephen; Kusaka, Akito; Lee, Adrian T.; Palaio, Nicholas; Roe, Natalie; Steinmetz, Leo

    2018-04-01

    We report on the development of commercially fabricated multichroic antenna-coupled transition edge sensor (TES) bolometer arrays for cosmic microwave background (CMB) polarimetry experiments. CMB polarimetry experiments have deployed instruments in stages. Stage II experiments deployed with O(1000) detectors and reported successful detection of B-mode (divergence-free) polarization pattern in the CMB. Stage III experiments have recently started observing with O(10,000) detectors with wider frequency coverage. A concept for a stage IV experiment, CMB-S4, is emerging to make a definitive measurement of CMB polarization from the ground with O(400,000) detectors. The orders of magnitude increase in detector count for CMB-S4 require a new approach in detector fabrication to increase fabrication throughput and reduce the cost. We report on collaborative efforts with two commercial micro-fabrication foundries to fabricate antenna-coupled TES bolometer detectors. The detector design is based on the sinuous antenna-coupled dichroic detector from the POLARBEAR-2 experiment. The TES bolometers showed the expected I-V response, and the RF performance agrees with the simulation. We will discuss the motivation, design consideration, fabrication processes, test results, and how industrial detector fabrication could be a path to fabricate hundreds of detector wafers for future CMB polarimetry experiments.

  20. Surface modification of cotton fabrics by gas plasmas for color strength and adhesion by inkjet ink printing

    International Nuclear Information System (INIS)

    Pransilp, Porntapin; Pruettiphap, Meshaya; Bhanthumnavin, Worawan; Paosawatyanyong, Boonchoat; Kiatkamjornwong, Suda

    2016-01-01

    Graphical abstract: - Highlights: • Both O_2 and N_2 plasma increased cotton surface wettability and higher K/S. • SF6 plasma gave hydrophobicity on cotton surface and increased contact angle to 138°. • Plasma treatment on cotton fabric produced surface roughness. • XPS confirmed the generation of new functional groups on cotton fabric. • Wettability and surface roughness controlled K/S and good ink adhesion. - Abstract: Surface properties of cotton fabric were modified by three types of gas plasma pretreatment, namely, oxygen (O_2), nitrogen (N_2) and sulfur hexafluoride (SF_6), to improve ink absorption of water-based pigmented inkjet inks and color reproduction of the treated surfaces. Effects of gas plasma exposure parameters of power, exposure time and gas pressure on surface physical and chemical properties of the treated fabrics were investigated. XPS (X-ray photoelectron spectroscopy) was used to identify changes in functional groups on the fabric surface while AFM (atomic force microscopy) and SEM (scanning electron microscopy) were used to reveal surface topography of the fabric. Color spectroscopic technique was used to investigate changes in color strength caused by different absorptions of the printed fabrics. The O_2 plasma treatments produced new functional groups, −O−C−O/C=O and O−C=O while N_2 plasma treatments produced additionally new functional groups, C−N and O=C−NH, onto the fabric surface which increased hydrophilic properties and surface energy of the fabric. For cotton fabric treated with SF_6 plasma, the fluorine functionalization was additionally found on the surface. Color strength values (K/S) increased when compared with those of the untreated fabrics. SF_6 plasma-treated fabrics were hydrophobic and caused less ink absorption. Fabric surface roughness caused by plasma etching increased fabric surface areas, captured more ink, and enhanced a larger ink color gamut and ink adhesion. Cotton fabrics exhibited higher

  1. Fabricating a multi-level barrier-integrated microfluidic device using grey-scale photolithography

    International Nuclear Information System (INIS)

    Nam, Yoonkwang; Kim, Minseok; Kim, Taesung

    2013-01-01

    Most polymer-replica-based microfluidic devices are mainly fabricated by using standard soft-lithography technology so that multi-level masters (MLMs) require multiple spin-coatings, mask alignments, exposures, developments, and bakings. In this paper, we describe a simple method for fabricating MLMs for planar microfluidic channels with multi-level barriers (MLBs). A single photomask is necessary for standard photolithography technology to create a polydimethylsiloxane grey-scale photomask (PGSP), which adjusts the total amount of UV absorption in a negative-tone photoresist via a wide range of dye concentrations. Since the PGSP in turn adjusts the degree of cross-linking of the photoresist, this method enables the fabrication of MLMs for an MLB-integrated microfluidic device. Since the PGSP-based soft-lithography technology provides a simple but powerful fabrication method for MLBs in a microfluidic device, we believe that the fabrication method can be widely used for micro total analysis systems that benefit from MLBs. We demonstrate an MLB-integrated microfluidic device that can separate microparticles. (paper)

  2. High-speed imaging using CMOS image sensor with quasi pixel-wise exposure

    Science.gov (United States)

    Sonoda, T.; Nagahara, H.; Endo, K.; Sugiyama, Y.; Taniguchi, R.

    2017-02-01

    Several recent studies in compressive video sensing have realized scene capture beyond the fundamental trade-off limit between spatial resolution and temporal resolution using random space-time sampling. However, most of these studies showed results for higher frame rate video that were produced by simulation experiments or using an optically simulated random sampling camera, because there are currently no commercially available image sensors with random exposure or sampling capabilities. We fabricated a prototype complementary metal oxide semiconductor (CMOS) image sensor with quasi pixel-wise exposure timing that can realize nonuniform space-time sampling. The prototype sensor can reset exposures independently by columns and fix these amount of exposure by rows for each 8x8 pixel block. This CMOS sensor is not fully controllable via the pixels, and has line-dependent controls, but it offers flexibility when compared with regular CMOS or charge-coupled device sensors with global or rolling shutters. We propose a method to realize pseudo-random sampling for high-speed video acquisition that uses the flexibility of the CMOS sensor. We reconstruct the high-speed video sequence from the images produced by pseudo-random sampling using an over-complete dictionary.

  3. Convective heat exposure from large fires to the final filters of ventilation systems

    International Nuclear Information System (INIS)

    Alvares, N.J.

    1979-01-01

    The Fire Science Group of the Hazards Control Department, Lawrence Livermore Laboratory has been asked to design a probable fire scenario for a fuel-pellet fabrication facility. This model was used to estimate the potential for thermal damage to the final HEPA filters. These filters would not experience direct fire exposure because they are the last component of the ventilation system before the exhaust air pumps. However, they would be exposed to hot air and fire gases that are drawn into the ventilation system. Because fire is one of the few occurrences that can defeat the containment integrity of facilities where radioactive materials are stored and processed, the fire scenarios must be defined to ensure that containment systems are adequate to meet the threat of such events. Fire-growth calculations are based on the measured fuel load of materials within the fabrication enclosure and on semi-empirical fire-spread models. It is assumed that the fire never becomes ventilation controlled. The temperature rise of ceiling gases and heat transfer from ventilation ducting are calculated using accepted empirical relationships, and the analysis shows that even under the most severe exposure conditions, heat transfer from the duct reduces the fire gas temperatures to levels that would not hamper filter function

  4. Research on ion implantation in MEMS device fabrication by theory, simulation and experiments

    Science.gov (United States)

    Bai, Minyu; Zhao, Yulong; Jiao, Binbin; Zhu, Lingjian; Zhang, Guodong; Wang, Lei

    2018-06-01

    Ion implantation is widely utilized in microelectromechanical systems (MEMS), applied for embedded lead, resistors, conductivity modifications and so forth. In order to achieve an expected device, the principle of ion implantation must be carefully examined. The elementary theory of ion implantation including implantation mechanism, projectile range and implantation-caused damage in the target were studied, which can be regarded as the guidance of ion implantation in MEMS device design and fabrication. Critical factors including implantations dose, energy and annealing conditions are examined by simulations and experiments. The implantation dose mainly determines the dopant concentration in the target substrate. The implantation energy is the key factor of the depth of the dopant elements. The annealing time mainly affects the repair degree of lattice damage and thus the activated elements’ ratio. These factors all together contribute to ions’ behavior in the substrates and characters of the devices. The results can be referred to in the MEMS design, especially piezoresistive devices.

  5. Enforcement of radiation safety standards and experience in the regulatory control of exposures

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamurthi, T N [Health and Safety Div., Atomic Energy Regulatory Board, Mumbai (India)

    1997-11-01

    Regulatory provisions for radiation protection and their enforcement in India are discussed in this paper. The rules and regulations framed for radiation safety cover all the nuclear fuel cycle activities as well as the application of radiation sources in industrial, medical and research institutions. The enforcement aspects and experience in the control of exposures are presented. (author). 3 refs, 2 tabs.

  6. A novel and simple fabrication method of embedded SU-8 micro channels by direct UV lithography

    International Nuclear Information System (INIS)

    Fu, C; Hung, C; Huang, H

    2006-01-01

    In this paper, we presents a novel and simple method to fabricate embedded micro channels. The method based on different light absorption properties of the SU-8 thick photoresist under different incident UV wavelengths. The channel structures are defined by the ordinary I-line, while the cover layer is patterned by the deep UV. Because the deep UV is obtained directly on the same aligner with a set of filter mirrors, the embedded channel can be easily produced without other rare facilities. Besides, the relationship between the thickness of the top layer and the exposure dose of the deep UV has been measured by an ingeniously designed experiment. The specific thickness of the top layer of the embedded micro channel can then be secured by the specific deep-UV exposure dose. Further more, many meaningful mechanical structures have been realized by this method, the material property of the top layer are also measured

  7. Best practices in energy management: Experience with IAC assessments in the metals fabrication industry

    International Nuclear Information System (INIS)

    Clark, W.J.; Birkmire, L.K.

    1999-01-01

    The Industrial Technology and Energy Management (ITEM) division of the University City Science Center played a managerial role in founding and establishing the Energy Analysis and Diagnostic Center (EADC) program, now known as the Industrial Assessment Center (IAC) program. ITEM is responsible for the field management of 15 IACs in the western US. This DOE funded program utilizes teams of engineering faculty and students to conduct assessments of small to medium-size plants to identify cost savings by conserving energy, minimizing waste, and improving productivity. These assessments are provided at no direct cost to participating manufacturers, who are under no obligation to act on any recommendations. Centers managed by ITEM have conducted assessments in more than 700 plants in the metals fabrication industry (SIC 34). Recommendations made have the potential to reduce energy costs by about 10% on average. The average metals fabrication plant served achieved a 5.7% reduction in annual energy costs. These cost savings are accompanied by a reduction in energy usage of about 1.2 x 10 12 Btu/yr. Another benefit of the program is that it provides hands-on industrial experience and energy efficiency training for engineering students who will take these skills into industry. Since the program began more than 20 years ago, IACs have served less than 2% of the plants in this industry. To provide an effective means for plant managers to access and utilize the knowledge gained over the years ITEM has summarized recommendations that identify specific actions that plant management can take to save money

  8. Tanpopo: Astrobiology Exposure and Micrometeoroid Capture Experiments

    Science.gov (United States)

    Yamagishi, Akihiko; Yano, Hajime; Yamashita, Masamichi; Hashimoto, Hirofumi; Kobayashi, Kensei; Kawai, Hideyuki; Mita, Hajime; Yokobori, Shin-ichi; Tabata, Makoto; Yabuta, Hikaru

    2012-07-01

    There is a long history of the microbe-collection experiments at high altitude (1). Microbes have been collected using balloons, aircraft and meteorological rockets. Spore forming fungi and Bacilli, and Micrococci have been isolated in these experiments (1). It is not clear how high do microbes go up. If the microbes might have been present even at higher altitudes, the fact would endorse the possibility of interplanetary migration of life. Tanpopo, dandelion, is the name of a grass whose seeds with floss are spread by the wind. We propose the analyses of interplanetary migration of microbes, organic compounds and meteoroids on Japan Experimental Module (JEM) of the International Space Station (ISS) (2). Ultra low-density aerogel will be used to capture micrometeoroid and debris. Particles captured by aerogel will be used for several analyses after the initial inspection of the gel and tracks. Careful analysis of the tracks in the aerogel will provide the size and velocity dependence of debris flux. The particles will be analyzed for mineralogical, organic and microbiological characteristics. Aerogels are ready for production in Japan. Aerogels and trays are space proven. All the analytical techniques are ready. In this presentation, we will present the recent results related to the microbiological analyses. The results suggested that the bleaching speeds and the spectra of fluorescence are different between different origins of the fluorescence: whether it is emitted from microbe or not. It is also shown that PCR analysis of the microbe can be used to determine the species. References 1)Yang, Y., Yokobori, S. and Yamagishi, A.: Assessing panspermia hypothesis by microorganisms collected from the high altitude atmosphere. Biol. Sci. Space, 23 (2009), pp. 151-163. 2) Yamagishi, A., H. Yano, K. Kobayashi, K. Kobayashi, S. Yokobori, M. Tabata, H. Kawai, M. Yamashita, H. Hashimoto, H. Naraoka, & H. Mita (2008) TANPOPO: astrobiology exposure and micrometeoroid capture

  9. Fabrication of Large Area Fishnet Optical Metamaterial Structures Operational at Near-IR Wavelengths

    Directory of Open Access Journals (Sweden)

    Dennis W. Prather

    2010-12-01

    Full Text Available In this paper, we demonstrate a fabrication process for large area (2 mm × 2 mm fishnet metamaterial structures for near IR wavelengths. This process involves: (a defining a sacrificial Si template structure onto a quartz wafer using deep-UV lithography and a dry etching process (b deposition of a stack of Au-SiO2-Au layers and (c a ‘lift-off’ process which removes the sacrificial template structure to yield the fishnet structure. The fabrication steps in this process are compatible with today’s CMOS technology making it eminently well suited for batch fabrication. Also, depending on area of the exposure mask available for patterning the template structure, this fabrication process can potentially lead to optical metamaterials spanning across wafer-size areas.

  10. Chemical modification of fibers and fabrics with high-energy radiation

    International Nuclear Information System (INIS)

    Stannett, V.; Walsh, W.K.; Bittencourt, E.; Liepins, R.; Surles, J.R.

    1977-01-01

    Some fundamental considerations related to the radiation modification of fibers and fabrics are discussed. Experiments are described on the radiation ''grafting'' of various phosphorus- and bromine-containing vinyl monomers to polyester, cotton, and their blends to impart flame resistance. It was found that the flame retardancy was more efficient when the grafted polymer was located inside the fiber. The efficiency of the bromine containing polymers was found to be related to the bromine/aliphatic hydrogen ratio and to the thermal stability of the polymers. Experiments are also described illustrating the successful use of radiation processing with a number of vinyl monomers and oligomers to impart water sorbancy, for the bonding of nonwoven fabrics for fabric coating, and for the binding of pigment prints. 11 tables, 18 figures

  11. Off-plane x-ray reflection grating fabrication

    Science.gov (United States)

    Peterson, Thomas J.; DeRoo, Casey T.; Marlowe, Hannah; McEntaffer, Randall L.; Miles, Drew M.; Tutt, James H.; Schultz, Ted B.

    2015-09-01

    Off-plane X-ray diffraction gratings with precision groove profiles at the submicron scale will be used in next generation X-ray spectrometers. Such gratings will be used on a current NASA suborbital rocket mission, the Off-plane Grating Rocket Experiment (OGRE), and have application for future grating missions. The fabrication of these gratings does not come without challenges. High performance off-plane gratings must be fabricated with precise radial grating patterns, optically at surfaces, and specific facet angles. Such gratings can be made using a series of common micro-fabrication techniques. The resulting process is highly customizable, making it useful for a variety of different mission architectures. In this paper, we detail the fabrication method used to produce high performance off-plane gratings and report the results of a preliminary qualification test of a grating fabricated in this manner. The grating was tested in the off-plane `Littrow' configuration, for which the grating is most efficient for a given diffraction order, and found to achieve 42% relative efficiency in the blaze order with respect to all diffracted light.

  12. A New Invention Method to Determine the Reduction Factor for Low Fabric Tension Properties for Head Garment Fabrication

    Directory of Open Access Journals (Sweden)

    Aiman A.F

    2016-01-01

    Full Text Available This paper proposes a new method to determine the reduction factor for producing a head garment with specified targeted pressure output. Pressure garment fabric mostly supplied to the local hospitals with no information of the material properties and the fabrication method generally used a single reduction factor at various body segments. Reduction factor defined as the percentage of reducing the garment size from the original circumference of the body part which contributes to the compression. The objective of this study is to compare the fabrication method of head garment using reduction factor equation from previous research with the new proposed method. The equation to predict the reduction factor requires the parameter of the fabric tension which is obtained from tensile test and radius of curvature of the human body parts. In the new proposed method, a 3D scanning was used for data acquisition to obtain the geometry of the head area. The pressure outputs are measured by a pressure measurement system developed from Flexiforce sensor and Arduino circuit board. By using the equation, the result shows the calculated reduction factor produced an extremely tight head garment compared to the conducted experiments which manage to produce an adequate reduction factor with a targeted pressure output of 20mmHg. The result of the experiment indicates that the reduction factor ranging from 17% to 23% compared to the equation which produces 20% to 47% of reduction factor. As an additional, the proposed experimental method can be used for different type of pressure garment fabrics in order to obtain the relationship between the reduction factor and the circumference of the body parts.

  13. Superhydrophobic Thin Films Fabricated by Reactive Layer-by-Layer Assembly of Azlactone-Functionalized Polymers.

    Science.gov (United States)

    Buck, Maren E; Schwartz, Sarina C; Lynn, David M

    2010-09-11

    We report an approach to the fabrication of superhydrophobic thin films that is based on the 'reactive' layer-by-layer assembly of azlactone-containing polymer multilayers. We demonstrate that films fabricated from alternating layers of the azlactone functionalized polymer poly(2-vinyl-4,4-dimethylazlactone) (PVDMA) and poly(ethyleneimine) (PEI) exhibit micro- and nanoscale surface features that result in water contact angles in excess of 150º. Our results reveal that the formation of these surface features is (i) dependent upon film thickness (i.e., the number of layers of PEI and PVDMA deposited) and (ii) that it is influenced strongly by the presence (or absence) of cyclic azlactone-functionalized oligomers that can form upon storage of the 2-vinyl-4,4-dimethylazlactone (VDMA) used to synthesize PVDMA. For example, films fabricated using polymers synthesized in the presence of these oligomers exhibited rough, textured surfaces and superhydrophobic behavior (i.e., advancing contact angles in excess of 150º). In contrast, films fabricated from PVDMA polymerized in the absence of this oligomer (e.g., using freshly distilled monomer) were smooth and only moderately hydrophobic (i.e., advancing contact angles of ~75º). The addition of authentic, independently synthesized oligomer to samples of distilled VDMA at specified and controlled concentrations permitted reproducible fabrication of superhydrophobic thin films on the surfaces of a variety of different substrates. The surfaces of these films were demonstrated to be superhydrophobic immediately after fabrication, but they became hydrophilic after exposure to water for six days. Additional experiments demonstrated that it was possible to stabilize and prolong the superhydrophobic properties of these films (e.g., advancing contact angles in excess of 150° even after complete submersion in water for at least six weeks) by exploiting the reactivity of residual azlactones to functionalize the surfaces of the films

  14. FABRICATION AND CHARACTERIZATION OF FAST IGNITION TARGETS

    International Nuclear Information System (INIS)

    HILL, D.W; CASTILLO, E; CHEN, K.C; GRANT, S.E; GREENWOOD, A.L; KAAE, J.L; NIKROO, A; PAGUIO, S.P; SHEARER, C; SMITH, J.N Jr.; STEPHENS, R.B; STEINMAN, D.A; WALL, J.

    2003-09-01

    OAK-B135 Fast ignition is a novel scheme for achieving laser fusion. A class of these targets involves cone mounted CH shells. The authors have been fabricating such targets with shells with a wide variety of diameters and wall thicknesses for several years at General Atomics. In addition, recently such shells were needed for implosion experiments at Laboratory for Laser Energetics (LLE) that for the first time were required to be gas retentive. Fabrication of these targets requires producing appropriate cones and shells, assembling the targets, and characterization of the assembled targets. The cones are produced using micromachining and plating techniques. The shells are fabricated using the depolymerizable mandrel technique followed by micromachining a hole for the cone. The cone and the shell then need to be assembled properly for gas retention and precisely in order to position the cone tip at the desired position within the shell. Both are critical for the fast ignition experiments. The presence of the cone in the shell creates new challenges in characterization of the assembled targets. Finally, for targets requiring a gas fill, the cone-shell assembly needs to be tested for gas retention and proper strength at the glue joint. This paper presents an overview of the developmental efforts and technical issues addressed during the fabrication of fast ignition targets

  15. Radiological safety aspects in the fabrication of mixed oxide fuel elements. [Derived working limits in air and water for plutonium, enriched uranium and their mixture

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamurthi, T.N.; Janardhanan, S.; Soman, S.D. (Bhabha Atomic Research Centre, Bombay (India). Health Physics Div.)

    The problems of radiological safety in the fabrication of (U, Pu)O/sub 2/ fuel assemblies for fast reactors utilising high exposure plutonium are discussed. Derived working limits for plutonium as a function of the burn-up of RAPS (Rajasthan Atomic Power Station) fuel, external gamma and neutron exposures from feed product batches, finished fuel pins and assemblies are presented. Shielding requirements for the various glove box operations are also indicated. In general, high exposure plutonium handling calls for remote fabrication and automation at various stages would play a key role in minimising exposures to personnel in a large production plant.

  16. Semiconductors detectors: basics principals, fabrication and repair

    International Nuclear Information System (INIS)

    Souza Coelho, L.F. de.

    1982-05-01

    The fabrication and repairing techniques of semiconductor detectors, are described. These methods are shown in the way they are applied by the semiconductor detector laboratory of the KFA-Julich, where they have been developed during the last 15 years. The history of the semiconductor detectors is presented here, being also described the detector fabrication experiences inside Brazil. The key problems of manufacturing are raised. In order to understand the fabrication and repairing techniques the working principles of these detectors, are described. The cases in which worked during the stay in the KFA-Julich, particularly the fabrication of a plane Ge (Li) detector, with side entry, and the repair of a coaxial Ge (Li) is described. The vanguard problems being researched in Julich are also described. Finally it is discussed a timetable for the semiconductor detector laboratory of the UFRJ, which laboratory is in the mounting stage now. (Author) [pt

  17. Cotton fabrics with UV blocking properties through metal salts deposition

    International Nuclear Information System (INIS)

    Emam, Hossam E.; Bechtold, Thomas

    2015-01-01

    Graphical abstract: - Highlights: • Introducing metal salt based UV-blocking properties into cotton fabric. • A quite simple technique used to produce wash resistant UV-absorbers using different Cu-, Zn- and Ti-salts. • Good UPF was obtained after treatment with Cu and Ti salts, and ranged between 11.6 and 14. • The efficiency of the deposited metal oxides is compared on molar basis. - Abstract: Exposure to sunlight is important for human health as this increases the resistance to diverse pathogens, but the higher doses cause skin problems and diseases. Hence, wearing of sunlight protective fabrics displays a good solution for people working in open atmosphere. The current study offered quite simple and technically feasible ways to prepare good UV protection fabrics based on cotton. Metal salts including Zn, Cu and Ti were immobilized into cotton and oxidized cotton fabrics by using pad-dry-cure technique. Metal contents on fabrics were determined by AAS; the highest metal content was recorded for Cu-fabric and it was 360.6 mmol/kg after treatment of oxidized cotton with 0.5 M of copper nitrate. Ti contents on fabrics were ranged between 168.0 and 200.8 mmol/kg and it showed the lowest release as only 38.1–46.4% leached out fabrics after five laundry washings. Metal containing deposits were specified by scanning electron microscopy and energy dispersive X-ray spectroscopy. UV-transmission radiation over treated fabrics was measured and ultraviolet protection factor (UPF) was calculated. UPF was enhanced after treatment with Cu and Ti salts to be 11.6 and 14, respectively. After five washings, the amount of metal (Cu or Ti) retained indicates acceptable laundering durability.

  18. Evaluation of Whiteness in Linen and Semi-linen Fabrics

    Directory of Open Access Journals (Sweden)

    Liucina Kot

    2015-03-01

    Full Text Available Whiteness of textiles is one of the main "white" product quality indicators described by the following parameters: lightness of a colour, colour tone (white shade, white uniformity and stability under the influence of physical factors. “White” textile products can be perceived by comparing them with a white standard (Pantone colour palette. On the other hand, the whiteness of the fabric can be estimated using the colorimeter and determining lightness of a fabric L. The purpose of a research is to assess the whiteness of a linen and semi-linen fabric using two different methods, to carry out a comparative analysis of the results and to associate fabric whiteness with the fabric structure parameters. Two methods were used for experiment (colorimeter Spectraflash SF450X and expert assessment of whiteness. The analysed colours of a fabric were divided into five colours: white, whitish, light grey, grey and dark grey. The examination of the two methods, different results were obtained: testing with colorimeter, white colour was found in only one fabric, while the experts found the fabrics of white colour much more. The opinions of experts vary also. Fabric lightness L was associated with fabric structure parameters – the warp and weft settings and fabric weave. It was found that these fabric structure parameters affect the lightness of a colour of a fabric L very little.DOI: http://dx.doi.org/10.5755/j01.ms.21.1.5348

  19. Rapid fabrication of microfluidic chips based on the simplest LED lithography

    Science.gov (United States)

    Li, Yue; Wu, Ping; Luo, Zhaofeng; Ren, Yuxuan; Liao, Meixiang; Feng, Lili; Li, Yuting; He, Liqun

    2015-05-01

    Microfluidic chips are generally fabricated by a soft lithography method employing commercial lithography equipment. These heavy machines require a critical room environment and high lamp power, and the cost remains too high for most normal laboratories. Here we present a novel microfluidics fabrication method utilizing a portable ultraviolet (UV) LED as an alternative UV source for photolithography. With this approach, we can repeat several common microchannels as do these conventional commercial exposure machines, and both the verticality of the channel sidewall and lithography resolution are proved to be acceptable. Further microfluidics applications such as mixing, blood typing and microdroplet generation are implemented to validate the practicability of the chips. This simple but innovative method decreases the cost and requirement of chip fabrication dramatically and may be more popular with ordinary laboratories.

  20. Rapid fabrication of microfluidic chips based on the simplest LED lithography

    International Nuclear Information System (INIS)

    Li, Yue; Wu, Ping; Liao, Meixiang; Feng, Lili; Li, Yuting; He, Liqun; Luo, Zhaofeng; Ren, Yuxuan

    2015-01-01

    Microfluidic chips are generally fabricated by a soft lithography method employing commercial lithography equipment. These heavy machines require a critical room environment and high lamp power, and the cost remains too high for most normal laboratories. Here we present a novel microfluidics fabrication method utilizing a portable ultraviolet (UV) LED as an alternative UV source for photolithography. With this approach, we can repeat several common microchannels as do these conventional commercial exposure machines, and both the verticality of the channel sidewall and lithography resolution are proved to be acceptable. Further microfluidics applications such as mixing, blood typing and microdroplet generation are implemented to validate the practicability of the chips. This simple but innovative method decreases the cost and requirement of chip fabrication dramatically and may be more popular with ordinary laboratories. (paper)

  1. Influence of absorbed moisture on desizing of poly(vinyl alcohol) on cotton fabrics during atmospheric pressure plasma jet treatment

    International Nuclear Information System (INIS)

    Peng Shujing; Liu Xiulan; Sun Jie; Gao Zhiqiang; Yao Lan; Qiu Yiping

    2010-01-01

    This paper studies the influence of moisture absorption of cotton fabrics on the effectiveness of atmospheric pressure plasma jet (APPJ) on desizing of polyvinyl alcohol (PVA). Cotton fabrics with three different moisture regains (MR), namely 1.8%, 7.3%, and 28.4% corresponding to 10%, 65%, and 98% of relative humidity respectively, are treated for 16 s, 32 s, 48 s, and 64 s. X-ray photoelectron spectroscopy analysis indicates that the plasma treated PVA has higher oxygen concentration than the control. Mass loss results show that the fabric with the highest MR has the largest mass loss after 64 s plasma exposure. Solubility measurement reveals that the sample with the lowest MR has the highest desizing efficacy and the percent desizing ratio reaches 96% after 64 s exposure plus a 20 min hot wash, which is shown as clean as the unsized sample through scanning electron microscopy analysis. The yarn tensile strength test results show that APPJ has no negative effect on fabric tensile strength.

  2. Fabrication of non-hexagonal close packed colloidal array on a substrate by transfer

    Science.gov (United States)

    Banik, Meneka; Mukherjee, Rabibrata

    Self-organized colloidal arrays find application in fabrication of solar cells with advanced light management strategies. We report a simple spincoating based approach for fabricating two dimensional colloidal crystals with hexagonal and non-hexagonal close packed assembly on flat and nanopatterned substrates. The non-HCP arrays were fabricated by spin coating the particles onto soft lithographically fabricated substrates. The substrate patterns impose directionality to the particles by confining them within the grooves. We have developed a technique by which the HCP and non-HCP arrays can be transferred to any surface. For this purpose the colloidal arrays were fabricated on a UV degradable PMMA layer, resulting in transfer of the particles on UV exposure. This allows the colloidal structures to be transported across substrates irrespective of their surface energy, wettability or morphology. Since the particles are transferred without exposing it to any kind of chemical or thermal environment, it can be utilized for placing particles on top of thin film solar cells for improving their absorption efficiency.

  3. The MISSE 7 Flexural Stress Effects Experiment After 1.5 Years of Wake Space Exposure

    Science.gov (United States)

    Snow, Kate E.; De Groh, Kim K.; Banks, Bruce A.

    2017-01-01

    Low Earth orbit space environment conditions, including ultraviolet radiation, thermal cycling, and atomic oxygen exposure, can cause degradation of exterior spacecraft materials over time. Radiation and thermal exposure often results in bond- breaking and embrittlement of polymers, reducing mechanical strength and structural integrity. An experiment called the Flexural Stress Effects Experiment (FSEE) was flown with the objective of determining the role of space environmental exposure on the degradation of polymers under flexural stress. The FSEE samples were flown in the wake orientation on the exterior of International Space Station for 1.5 years. Twenty-four samples were flown: 12 bent over a 0.375 in. mandrel and 12 were over a 0.25 in. mandrel. This was designed to simulate flight configurations of insulation blankets on spacecraft. The samples consisted of assorted polyimide and fluorinated polymers with various coatings. Half the samples were designated for bend testing and the other half will be tensile tested. A non-standard bend-test procedure was designed to determine the surface strain at which embrittled polymers crack. All ten samples designated for bend testing have been tested. None of the control samples' polymers cracked, even under surface strains up to 19.7%, although one coating cracked. Of the ten flight samples tested, seven show increased embrittlement through bend-test induced cracking at surface strains from 0.70%to 11.73%. These results show that most of the tested polymers are embrittled due to space exposure, when compared to their control samples. Determination of the extent of space induced embrittlement of polymers is important for designing durable spacecraft.

  4. Erosion Data from the MISSE 8 Polymers Experiment After 2 Years of Space Exposure on the International Space Station

    Science.gov (United States)

    de Groh, Kim K.; Banks, Bruce A.; Asmar, Olivia C.; Yi, Grace T.; Mitchell, Gianna G.; Guo, Aobo; Sechkar, Edward A.

    2016-01-01

    The Polymers Experiment was exposed to the low Earth orbit (LEO) space environment for 2.14 and 2.0 years as part of the Materials International Space Station Experiment 8 (MISSE 8) and the Optical Reflector Materials Experiment-III (ORMatE-III), respectively. The experiment contained 42 samples, which were flown in either ram, wake, or zenith orientations. The primary objective was to determine the effect of solar exposure on the atomic oxygen erosion yield (Ey) of fluoropolymers. This paper provides an overview of the experiment with details on the polymers flown, the characterization techniques used, the atomic oxygen fluence for each exposure orientation, and the LEO Ey results. The Ey values for the fluoropolymers range from 1.45 x 10(exp -25) cm(exp 3)/atom for white Tedlar Registered Trademark? (polyvinyl fluoride with white titanium dioxide pigment) flown in the ram orientation to 6.32 x 10(exp -24) cm(exp 3)/atom for aluminized-Teflon Registered Trademark? fluorinated ethylene propylene (Al-FEP) flown in the zenith orientation. Erosion yield data for FEP flown in ram, wake and zenith orientations are compared, and the Ey was found to be highly dependent on orientation, hence environmental exposure. Teflon FEP had an order of magnitude higher Ey when flown in the zenith direction (6.32 x10(exp -24) cm(exp3)/atom) as compared to the ram direction (2.37 x 10(exp -25) cm(exp 3)/atom). The Ey of FEP was found to increase with a direct correlation to the solar exposure/AO fluence ratio showing the effect of solar radiation and/or heating due to solar exposure on FEP erosion. In addition, back-surface carbon painted FEP (C-FEP) flown in the zenith orientation had a significantly higher Ey than clear FEP or Al-FEP further indicating that heating has a significant impact on the erosion of FEP, particularly in the zenith orientation.

  5. Coated fuel particles: requirements and status of fabrication technology

    International Nuclear Information System (INIS)

    Huschka, H.; Vygen, P.

    1977-01-01

    Fuel cycle, design, and irradiation performance requirements impose restraints on the fabrication processes. Both kernel and coating fabrication processes are flexible enough to adapt to the needs of the various existing and proposed high-temperature gas-cooled reactors. Extensive experience has demonstrated that fuel kernels with excellent sphericity and uniformity can be produced by wet chemical processes. Similarly experience has shown that the various multilayer coatings can be produced to fully meet design and specification requirements. Quality reliability of coated fuel particles is ensured by quality control and quality assurance programs operated by an aduiting system that includes licensing officials and the customer

  6. The Material Plasma Exposure eXperiment (MPEX)

    Science.gov (United States)

    Rapp, J.; Biewer, T. M.; Bigelow, T. S.; Canik, J.; Caughman, J. B. O.; Duckworth, R. C.; Goulding, R. H.; Hillis, D. L.; Lore, J. D.; Lumsdaine, A.; McGinnis, W. D.; Meitner, S. J.; Owen, L. W.; Shaw, G. C.; Luo, G.-N.

    2014-10-01

    Next generation plasma generators have to be able to access the plasma conditions expected on the divertor targets in ITER and future devices. The Material Plasma Exposure eXperiment (MPEX) will address this regime with electron temperatures of 1--10 eV and electron densities of 1021--1020 m-3. The resulting heat fluxes are about 10 MW/m2. MPEX is designed to deliver those plasma conditions with a novel Radio Frequency plasma source able to produce high density plasmas and heat electron and ions separately with Electron Bernstein Wave (EBW) heating and Ion Cyclotron Resonance Heating (ICRH). Preliminary modeling has been used for pre-design studies of MPEX. MPEX will be capable to expose neutron irradiated samples. In this concept targets will be irradiated in ORNL's High Flux Isotope Reactor (HFIR) or possibly at the Spallation Neutron Source (SNS) and then subsequently (after a sufficient long cool-down period) exposed to fusion reactor relevant plasmas in MPEX. The current state of the pre-design of MPEX including the concept of handling irradiated samples will be presented. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under Contract DE-AC-05-00OR22725.

  7. Prototypic fabrication of TRIGA irradiated fuel shipping casks

    International Nuclear Information System (INIS)

    Kim, B.K.; Lee, Y.W.; Whang, C.K.; Lee, J.B.

    1980-01-01

    This is the safety analysis report on the prototypic fabrication of ''TRIGA Irradiated Fuel Shipping Cask'' conducted by KAERI in 1980. The results of the evaluation show that the shipping cask is in compliance with the applicable regulation for the normal conditions of transport as well as hypothetical accident conditions. The prototypic fabrication of the shipping cask (type B) was carried out for the first time in Korea after getting technical experience from fabrication of the ''TRIGA Spent Fuel Shipping Cask'' and ''the KO-RI Unit 1 surveillance capsule shipping cask'' in 1979. This report contains structural evaluation, thermal evaluation, shielding, criticality, quality assurance, and handling procedures of the shipping cask

  8. A Wear Geometry Model of Plain Woven Fabric Composites

    Directory of Open Access Journals (Sweden)

    Gu Dapeng

    2014-09-01

    Full Text Available The paper g describes a model meant for analysis of the wear geometry of plain woven fabric composites. The referred model consists of a mathematical description of plain woven fabric based on Peirce’s model coupled with a stratified method for the solution of the wear geometry. The evolutions of the wear area ratio of weft yarn, warp yarn and matrix resin on the worn surface are simulated by MatLab software in combination of warp and weft yarn diameters, warp and weft yarn-to-yarn distances, fabric structure phases (SPs. By comparing theoretical and experimental results from the PTFE/Kevlar fabric wear experiment, it can be concluded that the model can present a trend of the component area ratio variations along with the thickness of fabric, but has a inherently large error in quantitative analysis as an idealized model.

  9. Can hydrate dissolution experiments predict the fate of a natural hydrate system?

    Energy Technology Data Exchange (ETDEWEB)

    Hester, K.C.; Peltzer, E.T.; Dunk, R.M.; Walz, P.M.; Brewer, P.G. [Monterey Bay Aquarium Research Inst., Moss Landing, CA (United States); Dendy Sloan, E. [Colorado School of Mines, Golden, CO (United States). Center for Hydrate Research

    2008-07-01

    Gas hydrates are naturally occurring compounds found in permafrost regions and in oceans. In the natural environment, sufficient temperature and pressure conditions for hydrate formation exist over a significant portion of the ocean. However, in addition to pressure and temperature, the chemical potential of the gas in the hydrate must be equal to the surrounding waters. If the concentration of the gas in surrounding water is under-saturated with respect to the gas in the hydrate, the hydrate will dissolve to drive the system towards chemical equilibrium. This paper presented a dissolution study of exposed hydrate from outcrops at Barkley Canyon, located off Vancouver Island, British Columbia. A previous field experiment on synthetic methane hydrate samples had demonstrated that mass transfer controlled dissolution in under-saturated seawater. However, seafloor hydrate outcrops have been shown to have significant longevity compared to expected dissolution rates based upon convective boundary layer diffusion calculations. An in-situ dissolution experiment was performed on two distinct natural hydrate fabrics in order to help resolve this apparent disconnect between the dissolution rates of synthetic and natural hydrate. The paper presented a map of Barkley Canyon and discussed the field measurements and methods for the study. Exposed outcrops of gas hydrates were cored using a specially constructed stainless steel coring device and a hydraulic ram was located inside the corer. Hydrate samples were cored directly using the a manipulator arm and then injected into a sampling cell. The hydrate was then added to an open mesh exposure container, which allowed for exposure to ambient benthic currents with minimal disturbance. As well, in order to observe the slow dissolution of the hydrate in seawater at Barkley Canyon, time-lapse photography was employed. Last, the paper presented the results of the hydrate fabric porosities and hydrate dissolution rates. It was

  10. Exploring replay value: Shifts and continuities in user experiences between first and second exposure to an interactive story

    OpenAIRE

    Roth, C.; Vermeulen, I.E.; Vorderer, P.A.; Klimmt, C.

    2012-01-01

    While replay value is a common term in interactive entertainment, psychological research on its meaning in terms of user experiences is sparse. An exploratory experiment using the interactive drama "Façade" was conducted (n=50) to examine shifts and continuities in entertainment-related user experiences between first and second exposure to the same system. A questionnaire with brief scales measuring various user-experience dimensions (interaction-related facets such as usability, flow, and pr...

  11. Realistic evaluation of tester exposure based on Florida testing experience

    International Nuclear Information System (INIS)

    Schreiber, R.A.

    1990-01-01

    This paper reports on a radon decay product exposure model for Florida Certified Radon Measurement Technicians that has been formulated based on the guidance of 10CFR20. This model was used to estimate the exposure of 44 Florida measurement technicians from January through November of 1989. Comparing estimated testing and home exposure shows that 100% of the technicians observed received more exposure in the home than during testing activities. Exposure during normal office hours also exceed testing exposure in 86% of the technicians observed. Health and safety exposure data for radon measurement technicians does not follow the standard concepts of occupational radiation exposure normally accepted in 10CFR20

  12. Fabrication of aerogel capsule, bromine-doped capsule, and modified gold cone in modified target for the Fast Ignition Realization Experiment (FIREX) Project

    Science.gov (United States)

    Nagai, Keiji; Yang, H.; Norimatsu, T.; Azechi, H.; Belkada, F.; Fujimoto, Y.; Fujimura, T.; Fujioka, K.; Fujioka, S.; Homma, H.; Ito, F.; Iwamoto, A.; Jitsuno, T.; Kaneyasu, Y.; Nakai, M.; Nemoto, N.; Saika, H.; Shimoyama, T.; Suzuki, Y.; Yamanaka, K.; Mima, K.

    2009-09-01

    The development of target fabrication for the Fast Ignition Realization EXperiment (FIREX) Project is described in this paper. For the first stage of the FIREX Project (FIREX-I), the previously designed target has been modified by using a bromine-doped ablator and coating the inner gold cone with a low-density material. A high-quality bromine-doped capsule without vacuoles was fabricated from bromine-doped deuterated polystyrene. The gold surface was coated with a low-density material by electrochemical plating. For the cryogenic fuel target, a brand new type of aerogel material, phloroglucinol/formaldehyde (PF), was investigated and encapsulated to meet the specifications of 500 µm diameter and 20 µm thickness, with 30 nm nanopores. Polystyrene-based low-density materials were investigated and the relationship between the crosslinker content and the nanopore structure was observed.

  13. Conception and fabrication of innovative Am-Based targets: the ca mix/Cochix experiment

    International Nuclear Information System (INIS)

    Schmidt, N.; Croixmarie, Y.; Abonneau, E.; Ottaviani, J.P.; Donnet, L.; Desmouliere, F.; Konings, R.J.M.; Fernandez, A.

    2003-01-01

    A large experimental programme has been planned to be carried out in the French PHENIX reactor. The purpose is to evaluate the technical feasibility of minor actinide transmutation in fast reactors. Two major series of experiments have been designed for the heterogeneous transmutation mode. The first one, the MATINA (Matrices for Incineration of Actinides) series, aims at testing both different inert matrices in a fast flux and different concepts. The study is generic and focuses on the material behaviour under representative irradiation conditions. Targets are free of minor actinides to make the fabrication and design steps easier and faster. The second one, ECRIX, CAMIX (Compounds of Americium in PHENIX) and COCHIX (Concept Optimized microstructure in PHENIX), is a further step in the demonstration phase of the ''once-through'' transmutation and deals with Am-bearing targets irradiated in a fast neutron spectrum ''locally'' moderated. The moderator materials tested will be calcium hydride CaH 2-x (cases of ECRIX-H, CAMIX and COCHIX) and boron carbide 11 B 4 C (case of ECRIX-B) in order to accelerate the process of transmutation significantly. (author)

  14. Fabrication experiences and operative characteristics of the U.S. SCMC superconducting dipole magnet for MHD research

    International Nuclear Information System (INIS)

    Wang, S.T.; Niemann, R.C.; Kustom, R.L.

    1977-01-01

    The U.S. SCMS superconducting dipole magnet system consists of the superconducting magnet and its cryostat, a helium liquifier and refrigerator/liquifier facility, helium storage dewars, the transfer line, power supply, and a complete system for magnet instrumentations and control. The magnet system has been designed and built by Argonne National Laboratory. The entire magnet system was successfully tested to full design field in May 1977. It was then safely delivered to Moscow in June 1977, and the first energization of the magnet system is expected in early August 1977. The magnet design and the coil cryostability are reviewed; and the experiences of coil fabrication and coil assembly, magnet instrumentation and control, and results of magnet performance tests are described in detail

  15. Investigation of the influence of the proximity effect and randomness on a photolithographically fabricated photonic crystal nanobeam cavity

    Science.gov (United States)

    Tetsumoto, Tomohiro; Kumazaki, Hajime; Ishida, Rammaru; Tanabe, Takasumi

    2018-01-01

    Recent progress on the fabrication techniques used in silicon photonics foundries has enabled us to fabricate photonic crystal (PhC) nanocavities using a complementary metal-oxide-semiconductor (CMOS) compatible process. A high Q two-dimensional PhC nanocavity and a one-dimensional nanobeam PhC cavity with a Q exceeding 100 thousand have been fabricated using ArF excimer laser immersion lithography. These are important steps toward the fusion of silicon photonics devices and PhC devices. Although the fabrication must be reproducible for industrial applications, the properties of PhC nanocavities are sensitively affected by the proximity effect and randomness. In this study, we quantitatively investigated the influence of the proximity effect and randomness on a silicon nanobeam PhC cavity. First, we discussed the optical properties of cavities defined with one- and two-step exposure methods, which revealed the necessity of a multi-stage exposure process for our structure. Then, we investigated the impact of block structures placed next to the cavities. The presence of the blocks modified the resonant wavelength of the cavities by about 10 nm. The highest Q we obtained was over 100 thousand. We also discussed the influence of photomask misalignment, which is also a possible cause of disorders in the photolithographic fabrication process. This study will provide useful information for fabricating integrated photonic circuits with PhC nanocavities using a photolithographic process.

  16. Results of gas exposure experiments for determination of HF concentrations injurious to plants

    Energy Technology Data Exchange (ETDEWEB)

    Guderian, R

    1971-01-01

    Gas exposure experiments were performed under greenhouse conditions to determine the effects of hydrogen fluoride on the growth capacity, yield and quality of plants. Damage to plants was assessed after HF concentrations of 0.85-25 ..mu..g/m/sup 3/. The effects of definite HF quantities on plants are described and relative sensitivities of 17 deciduous trees, 9 evergreens, 24 agricultural garden plants and 17 ornamental plants are presented. 2 references, 7 tables.

  17. Dark Matter Results from 54-Ton-Day Exposure of PandaX-II Experiment

    Science.gov (United States)

    Cui, Xiangyi; Abdukerim, Abdusalam; Chen, Wei; Chen, Xun; Chen, Yunhua; Dong, Binbin; Fang, Deqing; Fu, Changbo; Giboni, Karl; Giuliani, Franco; Gu, Linhui; Gu, Yikun; Guo, Xuyuan; Guo, Zhifan; Han, Ke; He, Changda; Huang, Di; He, Shengming; Huang, Xingtao; Huang, Zhou; Ji, Xiangdong; Ju, Yonglin; Li, Shaoli; Li, Yao; Lin, Heng; Liu, Huaxuan; Liu, Jianglai; Ma, Yugang; Mao, Yajun; Ni, Kaixiang; Ning, Jinhua; Ren, Xiangxiang; Shi, Fang; Tan, Andi; Wang, Cheng; Wang, Hongwei; Wang, Meng; Wang, Qiuhong; Wang, Siguang; Wang, Xiuli; Wang, Xuming; Wu, Qinyu; Wu, Shiyong; Xiao, Mengjiao; Xie, Pengwei; Yan, Binbin; Yang, Yong; Yue, Jianfeng; Zhang, Dan; Zhang, Hongguang; Zhang, Tao; Zhang, Tianqi; Zhao, Li; Zhou, Jifang; Zhou, Ning; Zhou, Xiaopeng; PandaX-II Collaboration

    2017-11-01

    We report a new search for weakly interacting massive particles (WIMPs) using the combined low background data sets acquired in 2016 and 2017 from the PandaX-II experiment in China. The latest data set contains a new exposure of 77.1 live days, with the background reduced to a level of 0.8 ×10-3 evt /kg /day , improved by a factor of 2.5 in comparison to the previous run in 2016. No excess events are found above the expected background. With a total exposure of 5.4 ×104 kg day , the most stringent upper limit on the spin-independent WIMP-nucleon cross section is set for a WIMP with mass larger than 100 GeV /c2 , with the lowest 90% C.L. exclusion at 8.6 ×10-47 cm2 at 40 GeV /c2 .

  18. Occupational radiation exposure in nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    1979-01-01

    Full text: This symposium forms an essential part of the continuing tradition of subjecting nuclear energy to periodic review to assess the adequacy of radiation protection practices and experiences and to identify those areas needing further study and development. Specifically, the symposium focused on a review of statistical data on radiation exposure experience to workers in the nuclear fuel cycle through 1978. The technical sessions were concerned with occupational exposures: experienced in Member States; in research and development facilities; in nuclear power plants; in nuclear Fuel reprocessing facilities; in waste management facilities; and techniques to minimize doses. A critical review was made of internal and external exposures to the following occupational groups: uranium miners; mill workers; fuel fabricators; research personnel, reactor workers; maintenance staff; hot cell workers; reprocessing plant personnel; waste management personnel. In particular, attention was devoted to the work activities causing the highest radiation exposures and successful techniques which have been used to minimize individual and collective doses. Also there was an exchange of information on the trends of occupational exposure over the lifespan of individual nuclear power plants and other facilities in the nuclear fuel cycle. During the last session there was a detailed panel discussion on the conclusions and future needs highlighted during the symposium. While past symposia on nuclear power and its fuel cycle have presented data on occupational dose statistics, this symposium was the first to focus attention on the experience and trends of occupational exposure in recent years. The papers presented an authoritative account of the status of the levels and trends of the average annual individual dose as well as the annual collective dose for occupational workers in most of the world up to 1979. From the data presented it became evident that considerable progress has been

  19. Simple graphene chemiresistors as pH sensors: fabrication and characterization

    Science.gov (United States)

    Lei, Nan; Li, Pengfei; Xue, Wei; Xu, Jie

    2011-10-01

    We report the fabrication and characterization of a simple gate-free graphene device as a pH sensor. The graphene sheets are made by mechanical exfoliation. Platinum contact electrodes are fabricated with a mask-free process using a focused ion beam and then expanded by silver paint. Annealing is used to improve the electrical contact. The experiment on the fabricated graphene device shows that the resistance of the device decreases linearly with increasing pH values (in the range of 4-10) in the surrounding liquid environment. The resolution achieved in our experiments is approximately 0.3 pH in alkali environment. The sensitivity of the device is calculated as approximately 2 kΩ pH-1. The simple configuration, miniaturized size and integration ability make graphene-based sensors promising candidates for future micro/nano applications.

  20. Simple graphene chemiresistors as pH sensors: fabrication and characterization

    International Nuclear Information System (INIS)

    Lei, Nan; Li, Pengfei; Xue, Wei; Xu, Jie

    2011-01-01

    We report the fabrication and characterization of a simple gate-free graphene device as a pH sensor. The graphene sheets are made by mechanical exfoliation. Platinum contact electrodes are fabricated with a mask-free process using a focused ion beam and then expanded by silver paint. Annealing is used to improve the electrical contact. The experiment on the fabricated graphene device shows that the resistance of the device decreases linearly with increasing pH values (in the range of 4–10) in the surrounding liquid environment. The resolution achieved in our experiments is approximately 0.3 pH in alkali environment. The sensitivity of the device is calculated as approximately 2 kΩ pH −1 . The simple configuration, miniaturized size and integration ability make graphene-based sensors promising candidates for future micro/nano applications. (technical design note)

  1. Fabrication of three-dimensional millimeter-height structures using direct ultraviolet lithography on liquid-state photoresist for simple and fast manufacturing

    Science.gov (United States)

    Kim, Jungkwun; Yoon, Yong-Kyu

    2015-07-01

    A rapid three-dimensional (3-D) ultraviolet (UV) lithography process for the fabrication of millimeter-tall high aspect ratio complex structures is presented. The liquid-state negative-tone photosensitive polyurethane, LF55GN, has been directly photopatterned using multidirectionally projected UV light for 3-D micropattern formation. The proposed lithographic scheme enabled us to overcome the maximum height obtained with a photopatternable epoxy, SU8, which has been conventionally most commonly used for the fabrication of tall and high aspect ratio microstructures. Also, the fabrication process time has been significantly reduced by eliminating photoresist-baking steps. Computer-controlled multidirectional UV lithography has been employed to fabricate 3-D structures, where the UV-exposure substrate is dynamically tilt-rotating during UV exposure to create various 3-D ray traces in the polyurethane layer. LF55GN has been characterized to provide feasible fabrication conditions for the multidirectional UV lithography. Very tall structures including a 6-mm tall triangular slab and a 5-mm tall hexablaze have been successfully fabricated. A 4.5-mm tall air-lifted polymer-core bowtie monopole antenna, which is the tallest monopole structure fabricated by photolithography and subsequent metallization, has been successfully demonstrated. The antenna shows a resonant radiation frequency of 12.34 GHz, a return loss of 36 dB, and a 10 dB bandwidth of 7%.

  2. Fabrication of fine imaging devices using an external proton microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, T., E-mail: sakai.takuro@jaea.go.jp [Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Yasuda, R.; Iikura, H.; Nojima, T. [Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Koka, M.; Satoh, T.; Ishii, Y. [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), Takasaki, Gunma 370-1292 (Japan); Oshima, A. [Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047 (Japan)

    2014-08-01

    We have successfully fabricated novel microscopic imaging devices made from UV/EB curable resin using an external scanning proton microbeam. The devices are micro-structured fluorescent plates that consist of an array of micro-pillars that align periodically. The base material used in the pillars is UV/EB curable resin and each pillar contains phosphor grains. The pattern exposures were performed using a proton beam writing technique. The height of the pillars depends on the range of the proton beam. Optical microscopy and scanning electron microscopy have been used to characterize the samples. The results show that the fabricated fluorescent plates are expected to be compatible with both spatial resolution and detection efficiency.

  3. A method for UV-bonding in the fabrication of glass electrophoretic microchips.

    Science.gov (United States)

    Huang, Z; Sanders, J C; Dunsmor, C; Ahmadzadeh, H; Landers, J P

    2001-10-01

    This paper presents an approach for the development of methodologies amenable to simple and inexpensive microchip fabrication, potentially applicable to dissimilar materials bonding and chip integration. The method involves a UV-curable glue that can be used for glass microchip fabrication bonding at room temperature. This involves nothing more than fabrication of glue "guide channels" into the microchip architecture that upon exposure to the appropriate UV light source, bonds the etched plate and cover plate together. The microchip performance was verified by capillary zone electrophoresis (CZE) of small fluorescent molecules with no microchannel surface modification carried out, as well as with a DNA fragment separation following surface modification. The performance of these UV-bonded electrophoretic microchips indicates that this method may provide an alternative to high temperature bonding.

  4. Fabrication characteristics and strength of polymer-impregnated concrete polymerized by accelerated electron

    International Nuclear Information System (INIS)

    Ohgishi, Sakichi; Matsunaga, Katsumi; Ono, Hironobu; Iwamoto, Takeo.

    1977-01-01

    Since the accelerated electron has by far a higher dose rate than gamma-rays, the electron polymerizing method is more suitable for the efficient fabrication of polymer-impregnated concrete (PIC) with a thin cross section. However, there are few published papers on the manufacturing process of PIC polymerized by electron beam. This experiment was carried out to investigate the effects of density of cement mortar, dose rate of electron beam (4 MeV), total exposure dose and other factors which have influences upon the strength of MMA-PIC. The density of mortar, size of cross section of mortar specimens, dose rate of electron, total exposure dose and irradiating time interval were varied respectively as follow; rho=1.55 -- 3.13 g/cm 3 (the kinds of aggregates in cement mortar used are perlite, artificial light weight aggregate, normal river sand and iron sand), t=3.5 -- 40 mm in thickness, 0.55 or 1.10 Mrads/sec, 12.5 -- 100 Mrads per face, and 15 -- 60 sec/cycle. The test results of mechanical strength of PIC show that the optimum total exposure dose is about 40 Mrads at 0.55 Mrads/sec rate and 50 Mrads at 1.1 Mrads/sec in the ordinary mortar. It is also shown that the impregnation depth from the surface of specimen has a linear relation with the density of cement mortar, and that its depth is about 1 cm in conventional mortar. (auth.)

  5. Stimulus threat and exposure context modulate the effect of mere exposure on approach behaviors

    Directory of Open Access Journals (Sweden)

    Steven Young

    2016-11-01

    Full Text Available Mere-exposure research has found that initially neutral objects made familiar are preferred relative to novel objects. Recent work extends these preference judgments into the behavioral domain by illustrating that mere exposure prompts approach-oriented behavior toward familiar stimuli. However, no investigations have examined the effect of mere exposure on approach-oriented behavior toward threatening stimuli. The current work examines this issue and also explores how exposure context interacts with stimulus threat to influence behavioral tendencies. In two experiments participants were presented with both mere-exposed and novel stimuli and approach speed was assessed. In the first experiment, when stimulus threat was presented in a homogeneous format (i.e., participants viewed exclusively neutral or threatening stimuli, mere-exposure potentiated approach behaviors for both neutral and threatening stimuli. However, in the second experiment, in which stimulus threat was presented in a heterogeneous fashion (i.e., participants viewed both neutral and threatening stimuli, mere exposure facilitated approach only for initially neutral stimuli. These results suggest that mere-exposure effects on approach behaviors are highly context sensitive and depend on both stimulus valence and exposure context. Further implications of these findings for the mere-exposure literature are discussed.

  6. Geometrical Modeling of Woven Fabrics Weavability-Limit New Relationships

    Directory of Open Access Journals (Sweden)

    Dalal Mohamed

    2017-03-01

    Full Text Available The weavability limit and tightness for 2D and 3D woven fabrics is an important factor and depends on many geometric parameters. Based on a comprehensive review of the literature on textile fabric construction and property, and related research on fabric geometry, a study of the weavability limit and tightness relationships of 2D and 3D woven fabrics was undertaken. Experiments were conducted on a representative number of polyester and cotton woven fabrics which have been woven in our workshop, using three machines endowed with different insertion systems (rapier, projectiles and air jet. Afterwards, these woven fabrics have been analyzed in the laboratory to determine their physical and mechanical characteristics using air permeability-meter and KES-F KAWABATA Evaluation System for Fabrics. In this study, the current Booten’s weavability limit and tightness relationships based on Ashenhurst’s, Peirce’s, Love’s, Russell’s, Galuszynskl’s theory and maximum-weavability is reviewed and modified as new relationships to expand their use to general cases (2D and 3D woven fabrics, all fiber materiel, all yarns etc…. The theoretical relationships were examined and found to agree with experimental results. It was concluded that the weavability limit and tightness relationships are useful tools for weavers in predicting whether a proposed fabric construction was weavable and also in predicting and explaining their physical and mechanical properties.

  7. Lithography-based fabrication of nanopore arrays in freestanding SiN and graphene membranes

    Science.gov (United States)

    Verschueren, Daniel V.; Yang, Wayne; Dekker, Cees

    2018-04-01

    We report a simple and scalable technique for the fabrication of nanopore arrays on freestanding SiN and graphene membranes based on electron-beam lithography and reactive ion etching. By controlling the dose of the single-shot electron-beam exposure, circular nanopores of any size down to 16 nm in diameter can be fabricated in both materials at high accuracy and precision. We demonstrate the sensing capabilities of these nanopores by translocating dsDNA through pores fabricated using this method, and find signal-to-noise characteristics on par with transmission-electron-microscope-drilled nanopores. This versatile lithography-based approach allows for the high-throughput manufacturing of nanopores and can in principle be used on any substrate, in particular membranes made out of transferable two-dimensional materials.

  8. Microstructure fabrication process induced modulations in CVD graphene

    Energy Technology Data Exchange (ETDEWEB)

    Matsubayashi, Akitomo, E-mail: amatsubayashi@albany.edu; Zhang, Zhenjun; Lee, Ji Ung; LaBella, Vincent P., E-mail: vlabella@albany.edu [College of Nanoscale Science and Engineering, University at Albany, SUNY, Albany, New York 12203 (United States)

    2014-12-15

    The systematic Raman spectroscopic study of a “mimicked” graphene device fabrication is presented. Upon photoresist baking, compressive stress is induced in the graphene which disappears after it is removed. The indirect irradiation from the electron beam (through the photoresist) does not significantly alter graphene characteristic Raman peaks indicating that graphene quality is preserved upon the exposure. The 2D peak shifts and the intensity ratio of 2D and G band, I(2D)/I(G), decreases upon direct metal deposition (Co and Py) suggesting that the electronic modulation occurs due to sp{sup 2} C-C bond weakening. In contrast, a thin metal oxide film deposited graphene does not show either the significant 2D and G peaks shift or I(2D)/I(G) decrease upon the metal deposition suggesting the oxide protect the graphene quality in the fabrication process.

  9. Microstructure fabrication process induced modulations in CVD graphene

    Science.gov (United States)

    Matsubayashi, Akitomo; Zhang, Zhenjun; Lee, Ji Ung; LaBella, Vincent P.

    2014-12-01

    The systematic Raman spectroscopic study of a "mimicked" graphene device fabrication is presented. Upon photoresist baking, compressive stress is induced in the graphene which disappears after it is removed. The indirect irradiation from the electron beam (through the photoresist) does not significantly alter graphene characteristic Raman peaks indicating that graphene quality is preserved upon the exposure. The 2D peak shifts and the intensity ratio of 2D and G band, I(2D)/I(G), decreases upon direct metal deposition (Co and Py) suggesting that the electronic modulation occurs due to sp2 C-C bond weakening. In contrast, a thin metal oxide film deposited graphene does not show either the significant 2D and G peaks shift or I(2D)/I(G) decrease upon the metal deposition suggesting the oxide protect the graphene quality in the fabrication process.

  10. Fabrication of Uranium Oxycarbide Kernels for HTR Fuel

    International Nuclear Information System (INIS)

    Barnes, Charles; Richardson, Clay; Nagley, Scott; Hunn, John; Shaber, Eric

    2010-01-01

    Babcock and Wilcox (B and W) has been producing high quality uranium oxycarbide (UCO) kernels for Advanced Gas Reactor (AGR) fuel tests at the Idaho National Laboratory. In 2005, 350-(micro)m, 19.7% 235U-enriched UCO kernels were produced for the AGR-1 test fuel. Following coating of these kernels and forming the coated-particles into compacts, this fuel was irradiated in the Advanced Test Reactor (ATR) from December 2006 until November 2009. B and W produced 425-(micro)m, 14% enriched UCO kernels in 2008, and these kernels were used to produce fuel for the AGR-2 experiment that was inserted in ATR in 2010. B and W also produced 500-(micro)m, 9.6% enriched UO2 kernels for the AGR-2 experiments. Kernels of the same size and enrichment as AGR-1 were also produced for the AGR-3/4 experiment. In addition to fabricating enriched UCO and UO2 kernels, B and W has produced more than 100 kg of natural uranium UCO kernels which are being used in coating development tests. Successive lots of kernels have demonstrated consistent high quality and also allowed for fabrication process improvements. Improvements in kernel forming were made subsequent to AGR-1 kernel production. Following fabrication of AGR-2 kernels, incremental increases in sintering furnace charge size have been demonstrated. Recently small scale sintering tests using a small development furnace equipped with a residual gas analyzer (RGA) has increased understanding of how kernel sintering parameters affect sintered kernel properties. The steps taken to increase throughput and process knowledge have reduced kernel production costs. Studies have been performed of additional modifications toward the goal of increasing capacity of the current fabrication line to use for production of first core fuel for the Next Generation Nuclear Plant (NGNP) and providing a basis for the design of a full scale fuel fabrication facility.

  11. Keys to evaluating and comparing FR fabric

    Energy Technology Data Exchange (ETDEWEB)

    Enright, M. [Westex Inc., Chicago, IL (United States)

    2008-07-15

    Exposure to electric arc flashes can result in the ignition of clothing, and can kill people at distances of 10 feet. This article discussed recent standards and regulations passed to ensure that employees working on or near energized electrical equipment use protective clothing made of flame resistant (FR) fabrics. The codes will require companies to comply with CSA Standard Z462 and determine which protective garments and FR fabrics are available. Employers will also be required to perform flash hazard analyses in order to determine the potential energy of hazards. Flash hazard analyses are typically performed by calculating the potential incident energy of equipment. Protective clothing is required to meet corresponding hazard risk categories. The ASTM F1506 Standard was developed to provide minimum specifications for protective clothing. The standard requires that the fabric used in protective garments must be resistant to arc flashes of varying energy levels. Many companies are simplifying compliance to the standards by implementing uniform programs that meet the highest requirements of the Standards. Arc flash suits are then made available for tasks involving higher energy level equipment. It was concluded that it is important to identify potential hazards and obtain industry consensus standards before investing in FR protective clothing. 2 figs.

  12. Fabrication of HTTR first loading fuel

    International Nuclear Information System (INIS)

    Kato, S.; Yoshimuta, S.; Hasumi, T.; Sato, K.; Sawa, K.; Suzuki, S.; Mogi, H.; Shiozawa, S.; Tanaka, T.

    2001-01-01

    This paper summarizes the fabrication of the first loading fuel for HTTR, High Temperature engineering Test Reactor constructed by JAERI, Japan Atomic Energy Research Institute. The fuel fabrication started at the HTR fuel facility of NFI, Nuclear Fuel Industries, Ltd., June 1995. 4,770 fuel rods were fabricated through the fuel kernel, coated fuel particle and fuel compaction process, then 150 fuel elements were assembled in the reactor building December 1997. Fabrication technology for the fuel was established through a lot of R and D activities and fabrication experience of irradiation examination samples spread over about 30 years. Most of all, very high quality and production efficiency of fuel were achieved by the development of the fuel kernel process using the vibration dropping technology, the continuous 4-layer coating process and the automatic compaction process. As for the inspection technology, the development of the automatic measurement equipment for coated layer thickness of a coated fuel particle and uranium content of a fuel compact contributed to the higher reliability and rationalization of the inspection process. The data processing system for the fabrication and quality control, which was originally developed by NFI, made possible not only quick feedback of statistical quality data to the fabrication processes, but also automatic document preparation, such as inspection certificates and accountability control reports. The quality of the first loading fuel fully satisfied the design specifications for the fuel. In particular, average bare uranium fraction and SiC defective fraction of fuel compacts were 2x10 -6 and 8x10 -5 , respectively. According to the preceding irradiation examinations being performed at JMTR, Japan Materials Testing Reactor of JAERI, the specimen sampled from the first loading fuel shows good irradiation performance. (author)

  13. Self-aligned photolithography for the fabrication of fully transparent high-voltage devices

    Science.gov (United States)

    Zhang, Yonghui; Mei, Zengxia; Huo, Wenxing; Wang, Tao; Liang, Huili; Du, Xiaolong

    2018-05-01

    High-voltage devices, working in the range of hundreds of volts, are indispensable elements in the driving or readout circuits for various kinds of displays, integrated microelectromechanical systems and x-ray imaging sensors. However, the device performances are found hardly uniform or repeatable due to the misalignment issue, which are extremely common for offset drain high-voltage devices. To resolve this issue, this article reports a set of self-aligned photolithography technology for the fabrication of high-voltage devices. High-performance fully-transparent high-voltage thin film transistors, diodes and logic inverters are successfully fabricated with this technology. Unlike other self-aligned routes, opaque masks are introduced on the backside of the transparent substrate to facilitate proximity exposure method. The photolithography process is simulated and analyzed with technology computer aided design simulation to explain the working principle of the proximity exposure method. The substrate thickness is found to be vital for the implementation of this technology based on both simulation and experimental results. The electrical performance of high-voltage devices is dependent on the offset length, which can be delicately modulated by changing the exposure dose. The presented self-aligned photolithography technology is proved to be feasible in high-voltage circuits, demonstrating its huge potential in practical industrial applications.

  14. Microfluidic Fabrication of Conjugated Polymer Sensor Fibers

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Imsung; Song, Simon [Hanyang University, Seoul (Korea, Republic of)

    2014-10-15

    We propose a fabrication method for polydiacetylene (PDA)-embedded hydrogel microfibers on a microfluidic chip. These fibers can be applied to the detection of cyclodextrines (CDs), which are a family of sugar and aluminum ions. PDA, a family of conjugated polymers, has unique characteristics when used for a sensor, because it undergoes a blue-to-red color transition and nonfluorescence-to-fluorescence transition in response to environmental stimulation. PDAs have different sensing characteristics depending on the head group of PCDA. By taking advantage of ionic crosslinking-induced hydrogel formation and the 3D hydrodynamic focusing effect on a microfluidic chip, PCDA-EDEA-derived diacetylene (DA) monomer-embedded microfibers were successfully fabricated. UV irradiation of the fibers afforded blue-colored PDA, and the resulting blue PDA fibers underwent a phase transition to red and emitted red fluorescence upon exposure to CDs and aluminum ions. Their fluorescence intensity varied depending on the CDs and aluminum ion concentrations. This phase transition was also observed when the fibers were dried.

  15. Polymorphous computing fabric

    Science.gov (United States)

    Wolinski, Christophe Czeslaw [Los Alamos, NM; Gokhale, Maya B [Los Alamos, NM; McCabe, Kevin Peter [Los Alamos, NM

    2011-01-18

    Fabric-based computing systems and methods are disclosed. A fabric-based computing system can include a polymorphous computing fabric that can be customized on a per application basis and a host processor in communication with said polymorphous computing fabric. The polymorphous computing fabric includes a cellular architecture that can be highly parameterized to enable a customized synthesis of fabric instances for a variety of enhanced application performances thereof. A global memory concept can also be included that provides the host processor random access to all variables and instructions associated with the polymorphous computing fabric.

  16. Development of PHWR fuel fabrication in Korea

    International Nuclear Information System (INIS)

    Suh, K.S.; Yang, M.S.; Kim, D.H.; Rim, C.S.

    1988-01-01

    Korea Advanced Energy Research Institute (KAERI) started a research project to develop the PHWR (CANDU) nuclear fuel fabrication technology in 1981. Based on the results of the intensive developmental work, several prototype fuel bundles were fabricated and tested in the Hot Test Loop at KAERI continuously in 1983 and 1984. After that, irradiation test and post-irradiation examination were carried out for two KAERI-made fuel bundles at Chalk River Nuclear Laboratories in Canada in 1984. Since the results of in-pile and out-of-pile tests with prototype fuel bundles proved to be satisfactory, 48 additional fuel bundles were loaded in Wolsung reactor (CANDU) in 1984 and 1985, and all of them were discharged without a defect after excellent performance in the power reactor. In 1985, the Korean government decided that KAERI supplies all the fuel necessary for the Wolsung reactor. For the mass production of nuclear fuel bundle, several process equipment, facilities and automation methods have been improved making use of experience accumulated during research. A quality assurance program was also established, and quality inspection technology was reviewed and improved to fit the mass production. This paper deals with the development experience so far obtained with the design and fabrication of the Korean PHWR fuel

  17. Fabrication issues and technology development for HELEOS

    International Nuclear Information System (INIS)

    Susoeff, A.R.; Hawke, R.S.; Balk, J.K.; Hall, C.A.; McDonald, M.J.

    1989-01-01

    Starfire is a joint railgun of Lawrence Livermore National Laboratory and Sandia National Laboratory-Albuquerque. The goal of Starfire is to develop a Hypervelocity Electromagnetic Launcher for Equation of State (HELEOS) experiments. A two-stage light-gas gun is used as a pre-injector. Each round-bore HELEOS railgun module is 12.7 mm in diameter and 2.4 m long. The muzzle end of the railgun is connected to a vacuum tank. Common materials and fabrication technology are used in the manufacture of all components, and modular design allows for extending the length of the railgun as progress dictates. The launcher uses a ''vee block'' geometry, which is designed to: (1) provide compressive preload, (2) operate with a 300-MPa (3-kbar) internal bore pressure, and (3) easily accommodate interchangeable materials in the bore support structure and rail. The authors have performed full-scale material testing of the railgun and have developed a precision round-bore fabrication process. Air-gage inspection is used to determine bore diameter and straightness. They have also developed a surface mapping system to document the surface topography of the bore before and after an experiment. This paper presents fabrication details, results of tests conducted, and areas for potential improvement

  18. Regulations concerning the fabricating business of nuclear fuel materials

    International Nuclear Information System (INIS)

    1979-01-01

    The regulations are entirely revised under the law for the regulations of nuclear materials, nuclear fuel materials and reactors and provisions concerning the fabricating business in the order for execution of the law. Basic concepts and terms are defined, such as: exposure dose; accumulative dose; controlled area; inspected surrounding area; employee and radioactive waste. The application for permission of the fabricating business shall include: location of processing facilities; structure of building structure and equipment of chemical processing facilities; molding facilities; structure and equipment of covering and assembling facilities, storage facilities of nuclear fuel materials and disposal facilities of radioactive waste, etc. Records shall be made and kept for particular periods in each works and place of enterprise on inspection of processing facilities, control of dose, operation, maintenance, accident of processing facilities and weather. Specified measures shall be taken in controlled area and inspected surrounding area to restrict entrance. Measures shall be made not to exceed permissible exposure dose for employees defined by the Director General of Science and Technology Agency. Inspection and check up of processing facilities shall be carried on by employees more than once a day. Operation of processing facilities, transportation in the works and enterprise, storage, disposal, safety securing, report and measures in dangerous situations, etc. are in detail prescribed. (Okada, K.)

  19. Multi Length Scale Finite Element Design Framework for Advanced Woven Fabrics

    Science.gov (United States)

    Erol, Galip Ozan

    Woven fabrics are integral parts of many engineering applications spanning from personal protective garments to surgical scaffolds. They provide a wide range of opportunities in designing advanced structures because of their high tenacity, flexibility, high strength-to-weight ratios and versatility. These advantages result from their inherent multi scale nature where the filaments are bundled together to create yarns while the yarns are arranged into different weave architectures. Their highly versatile nature opens up potential for a wide range of mechanical properties which can be adjusted based on the application. While woven fabrics are viable options for design of various engineering systems, being able to understand the underlying mechanisms of the deformation and associated highly nonlinear mechanical response is important and necessary. However, the multiscale nature and relationships between these scales make the design process involving woven fabrics a challenging task. The objective of this work is to develop a multiscale numerical design framework using experimentally validated mesoscopic and macroscopic length scale approaches by identifying important deformation mechanisms and recognizing the nonlinear mechanical response of woven fabrics. This framework is exercised by developing mesoscopic length scale constitutive models to investigate plain weave fabric response under a wide range of loading conditions. A hyperelastic transversely isotropic yarn material model with transverse material nonlinearity is developed for woven yarns (commonly used in personal protection garments). The material properties/parameters are determined through an inverse method where unit cell finite element simulations are coupled with experiments. The developed yarn material model is validated by simulating full scale uniaxial tensile, bias extension and indentation experiments, and comparing to experimentally observed mechanical response and deformation mechanisms. Moreover

  20. Health physics experiences in achieving ALARA exposures to plant personnel at NAPS

    International Nuclear Information System (INIS)

    Ramakrishna, V.; Lal Chand

    2000-01-01

    Unit 1 of NAPS achieved first criticality on 12.3.1989 and Unit 2 achieved on 24.10.1991. Till the end of Feb-2000 these units have completed 1890 and 1811 full power days respectively. The performance of NAPS was expected to be better than the earlier Indian reactors in respect of safe production as well as cumulative radiation exposures. This is because of the major design improvements like: fully double containment system, elimination of 41 Ar by introducing light water in calandria vault, reduction of core based fuel failure rate, separation of high radiation equipment to no occupancy areas during normal operation, a separate purification building for the purification of both moderator and PHT systems, a better layout of equipment and plant areas, elimination of unnecessary equipment in various systems besides ensuring the reliability of equipment for safe operation, selection of materials with low corrosion and activation characteristics etc. In this paper, the operational health physics experiences at NAPS to achieve ALARA exposures to plant personnel are described briefly. (author)

  1. Material engineering to fabricate rare earth erbium thin films for exploring nuclear energy sources

    Science.gov (United States)

    Banerjee, A.; Abhilash, S. R.; Umapathy, G. R.; Kabiraj, D.; Ojha, S.; Mandal, S.

    2018-04-01

    High vacuum evaporation and cold-rolling techniques to fabricate thin films of the rare earth lanthanide-erbium have been discussed in this communication. Cold rolling has been used for the first time to successfully fabricate films of enriched and highly expensive erbium metal with areal density in the range of 0.5-1.0 mg/cm2. The fabricated films were used as target materials in an advanced nuclear physics experiment. The experiment was designed to investigate isomeric states in the heavy nuclei mass region for exploring physics related to nuclear energy sources. The films fabricated using different techniques varied in thickness as well as purity. Methods to fabricate films with thickness of the order of 0.9 mg/cm2 were different than those of 0.4 mg/cm2 areal density. All the thin films were characterized using multiple advanced techniques to accurately ascertain levels of contamination as well as to determine their exact surface density. Detailed fabrication methods as well as characterization techniques have been discussed.

  2. MOX fuel fabrication technology in J-MOX

    International Nuclear Information System (INIS)

    Osaka, Shuichi; Yoshida, Ryouichi; Yamazaki, Yukiko; Ikeda, Hiroyuki

    2014-01-01

    Japan Nuclear Fuel Ltd. (JNFL) has constructed JNFL MOX Fuel Fabrication Plant (J-MOX) since 2010. The MIMAS process has been introduced in the powder mixing process from AREVA NC considering a lot of MOX fuel fabrication experiences at MELOX plant in France. The feed material of Pu for J-MOX is MH-MOX powder from Rokkasho Reprocessing Plant (RRP) in Japan. The compatibility of the MH-MOX powder with the MIMAS process was positively evaluated and confirmed in our previous study. This paper describes the influences of the UO2 powder and the recycled scrap powder on the MOX pellet density. (author)

  3. Fabrication of ten-fold photonic quasicrystalline structures

    Directory of Open Access Journals (Sweden)

    XiaoHong Sun

    2015-05-01

    Full Text Available Compared to periodic crystals, quasicrystals have higher point group symmetry and are more favorable in achieving complete band-gaps. In this report, a top-cut prism interferometer is designed to fabricate ten-fold photonic quasicrystalline structures. By optimizing the exposing conditions and material characteristics, appropriate quasicrystals have been obtained in the SU8 photoresist films. Atomic Force Microscopy and laser diffraction are used to characterize the fabricated structures. The measurement results show the consistence between the theoretical design and experiments. This will provide guidance for the large-area and fast production of ten-fold quasicrystalline structures with high quality.

  4. Manipulation of BDNF signaling modifies the experience-dependent plasticity induced by pure tone exposure during the critical period in the primary auditory cortex.

    Science.gov (United States)

    Anomal, Renata; de Villers-Sidani, Etienne; Merzenich, Michael M; Panizzutti, Rogerio

    2013-01-01

    Sensory experience powerfully shapes cortical sensory representations during an early developmental "critical period" of plasticity. In the rat primary auditory cortex (A1), the experience-dependent plasticity is exemplified by significant, long-lasting distortions in frequency representation after mere exposure to repetitive frequencies during the second week of life. In the visual system, the normal unfolding of critical period plasticity is strongly dependent on the elaboration of brain-derived neurotrophic factor (BDNF), which promotes the establishment of inhibition. Here, we tested the hypothesis that BDNF signaling plays a role in the experience-dependent plasticity induced by pure tone exposure during the critical period in the primary auditory cortex. Elvax resin implants filled with either a blocking antibody against BDNF or the BDNF protein were placed on the A1 of rat pups throughout the critical period window. These pups were then exposed to 7 kHz pure tone for 7 consecutive days and their frequency representations were mapped. BDNF blockade completely prevented the shaping of cortical tuning by experience and resulted in poor overall frequency tuning in A1. By contrast, BDNF infusion on the developing A1 amplified the effect of 7 kHz tone exposure compared to control. These results indicate that BDNF signaling participates in the experience-dependent plasticity induced by pure tone exposure during the critical period in A1.

  5. Manipulation of BDNF signaling modifies the experience-dependent plasticity induced by pure tone exposure during the critical period in the primary auditory cortex.

    Directory of Open Access Journals (Sweden)

    Renata Anomal

    Full Text Available Sensory experience powerfully shapes cortical sensory representations during an early developmental "critical period" of plasticity. In the rat primary auditory cortex (A1, the experience-dependent plasticity is exemplified by significant, long-lasting distortions in frequency representation after mere exposure to repetitive frequencies during the second week of life. In the visual system, the normal unfolding of critical period plasticity is strongly dependent on the elaboration of brain-derived neurotrophic factor (BDNF, which promotes the establishment of inhibition. Here, we tested the hypothesis that BDNF signaling plays a role in the experience-dependent plasticity induced by pure tone exposure during the critical period in the primary auditory cortex. Elvax resin implants filled with either a blocking antibody against BDNF or the BDNF protein were placed on the A1 of rat pups throughout the critical period window. These pups were then exposed to 7 kHz pure tone for 7 consecutive days and their frequency representations were mapped. BDNF blockade completely prevented the shaping of cortical tuning by experience and resulted in poor overall frequency tuning in A1. By contrast, BDNF infusion on the developing A1 amplified the effect of 7 kHz tone exposure compared to control. These results indicate that BDNF signaling participates in the experience-dependent plasticity induced by pure tone exposure during the critical period in A1.

  6. Application of waterproof breathable fabric in thermal protective clothing exposed to hot water and steam

    Science.gov (United States)

    Su, Y.; Li, R.; Song, G.; Li, J.

    2017-10-01

    A hot water and steam tester was used to examine thermal protective performance of waterproof and breathable fabric against hot water and steam hazards. Time to cause skin burn and thermal energy absorbed by skin during exposure and cooling phases was employed to characterize the effect of configuration, placing order and properties of waterproof and breathable fabric on the thermal protective performance. The difference of thermal protective performance due to hot water and steam hazards was discussed. The result showed that the configuration of waterproof and breathable fabric presented a significant effect on the thermal protective performance of single- and double-layer fabric system, while the difference between different configurations in steam hazard was greater than that in hot water hazard. The waterproof and breathable fabric as outer layer provided better protection than that as inner layer. Increasing thickness and moisture regain improved the thermal protective performance of fabric system. Additionally, the thermal energy absorbed by skin during the cooling phase was affected by configuration, thickness and moisture regain of fabric. The findings will provide technical data to improve performance of thermal protective clothing in hot water and steam hazards.

  7. Fuel Fabrication Capability Research and Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    Senor, David J.; Burkes, Douglas

    2014-04-17

    The purpose of this document is to provide a comprehensive review of the mission of the Fuel Fabrication Capability (FFC) within the Global Threat Reduction Initiative Convert Program, along with research and development (R&D) needs that have been identified as necessary to ensuring mission success. The design and fabrication of successful nuclear fuels must be closely linked endeavors. Therefore, the overriding motivation behind the FFC R&D program described in this plan is to foster closer integration between fuel design and fabrication to reduce programmatic risk. These motivating factors are all interrelated, and progress addressing one will aid understanding of the others. The FFC R&D needs fall into two principal categories, 1) baseline process optimization, to refine the existing fabrication technologies, and 2) manufacturing process alternatives, to evaluate new fabrication technologies that could provide improvements in quality, repeatability, material utilization, or cost. The FFC R&D Plan examines efforts currently under way in regard to coupon, foil, plate, and fuel element manufacturing, and provides recommendations for a number of R&D topics that are of high priority but not currently funded (i.e., knowledge gaps). The plan ties all FFC R&D efforts into a unified vision that supports the overall Convert Program schedule in general, and the fabrication schedule leading up to the MP-1 and FSP-1 irradiation experiments specifically. The fabrication technology decision gates and down-selection logic and schedules are tied to the schedule for fabricating the MP-1 fuel plates, which will provide the necessary data to make a final fuel fabrication process down-selection. Because of the short turnaround between MP-1 and the follow-on FSP-1 and MP-2 experiments, the suite of specimen types that will be available for MP-1 will be the same as those available for FSP-1 and MP-2. Therefore, the only opportunity to explore parameter space and alternative processing

  8. Development of a Direct Fabrication Technique for Full-Shell X-Ray Optics

    Science.gov (United States)

    Gubarev, M.; Kolodziejczak, J. K.; Griffith, C.; Roche, J.; Smith, W. S.; Kester, T.; Atkins, C.; Arnold, W.; Ramsey, B.

    2016-01-01

    Future astrophysical missions will require fabrication technology capable of producing high angular resolution x-ray optics. A full-shell direct fabrication approach using modern robotic polishing machines has the potential for producing high resolution, light-weight and affordable x-ray mirrors that can be nested to produce large collecting area. This approach to mirror fabrication, based on the use of the metal substrates coated with nickel phosphorous alloy, is being pursued at MSFC. The design of the polishing fixtures for the direct fabrication, the surface figure metrology techniques used and the results of the polishing experiments are presented.

  9. USHPRR FUEL FABRICATION PILLAR: FABRICATION STATUS, PROCESS OPTIMIZATIONS, AND FUTURE PLANS

    Energy Technology Data Exchange (ETDEWEB)

    Wight, Jared M.; Joshi, Vineet V.; Lavender, Curt A.

    2018-03-12

    The Fuel Fabrication (FF) Pillar, a project within the U.S. High Performance Research Reactor Conversion program of the National Nuclear Security Administration’s Office of Material Management and Minimization, is tasked with the scale-up and commercialization of high-density monolithic U-Mo fuel for the conversion of appropriate research reactors to use of low-enriched fuel. The FF Pillar has made significant steps to demonstrate and optimize the baseline co-rolling process using commercial-scale equipment at both the Y-12 National Security Complex (Y-12) and BWX Technologies (BWXT). These demonstrations include the fabrication of the next irradiation experiment, Mini-Plate 1 (MP-1), and casting optimizations at Y-12. The FF Pillar uses a detailed process flow diagram to identify potential gaps in processing knowledge or demonstration, which helps direct the strategic research agenda of the FF Pillar. This paper describes the significant progress made toward understanding the fuel characteristics, and models developed to make informed decisions, increase process yield, and decrease lifecycle waste and costs.

  10. Fabrication of large area woodpile structure in polymer

    Science.gov (United States)

    Gupta, Jaya Prakash; Dutta, Neilanjan; Yao, Peng; Sharkawy, Ahmed S.; Prather, Dennis W.

    2009-02-01

    A fabrication process of three-dimensional Woodpile photonic crystals based on multilayer photolithography from commercially available photo resist SU8 have been demonstrated. A 6-layer, 2 mm × 2mm woodpile has been fabricated. Different factors that influence the spin thickness on multiple resist application have been studied. The fabrication method used removes, the problem of intermixing, and is more repeatable and robust than the multilayer fabrication techniques for three dimensional photonic crystal structures that have been previously reported. Each layer is developed before next layer photo resist spin, instead of developing the whole structure in the final step as used in multilayer process. The desired thickness for each layer is achieved by the calibration of spin speed and use of different photo resist compositions. Deep UV exposure confinement has been the defining parameter in this process. Layer uniformity for every layer is independent of the previous developed layers and depends on the photo resist planarizing capability, spin parameters and baking conditions. The intermixing problem, which results from the previous layers left uncrossed linked photo resist, is completely removed in this process as the previous layers are fully developed, avoiding any intermixing between the newly spun and previous layers. Also this process gives the freedom to redo every spin any number of times without affecting the previously made structure, which is not possible in other multilayer process where intermediate developing is not performed.

  11. W-band LiGA fabricated klystron

    Science.gov (United States)

    Song, Liqun

    2002-01-01

    Klystrino-W-band klystron was proposed by scientists at SLAC to satisfy recent applications in advanced accelerators, medical treatment, radars and communications. LiGA (a German acronym for lithographe, galvanoformung, and abformung) is introduced in the fabrication of klystrino for the first time in the history of microwave tube fabrication. The cold test experiments show that LiGA fabrication yields best surface smoothness compared with an alternative way EDM (Electrical Discharge Machining). Resultantly LiGA fabricated klystrino has the smallest wall loss which maximizes the circuit efficiency of the output structure. A multiple-gap coupled cavity is motivated to be employed as the klystrino output cavity for maximizing the efficiency. Klytrino is simulated by 1-D, 2-D and 3-D simulation codes. Particularly a complete klystrino is simulated intensively using 2-D MAGIC Particle-in-Cell (PIC) code either for beam absence or beam presence. Many simulation techniques are developed such as model transformation from 3-D to 2-D, circuit parameter simulation, dispersion characteristic analysis, pre bunched electron beam mode and so on. Klystrino, as a 3-D structure, is modeled by 3-D MAFIA for analyzing the cold circuit properties. 3-D MAGIC is explored to simulate klystrino for the actual structure analysis and actual beam interaction process observation.

  12. Modeling the transmitted and stored energy in multilayer protective clothing under low-level radiant exposure

    International Nuclear Information System (INIS)

    Su, Yun; He, Jiazhen; Li, Jun

    2016-01-01

    Highlights: • A numerical model from heating source to skin tissues through multilayer fabric system is developed. • The numerical model is comprehensively validated with experimental data. • The model is used to investigate the relationship between the transmitted and stored energy and the influencing factors. - Abstract: A finite difference model was introduced to simulate the transmitted and stored energy in firefighters' protective clothing exposed to low-level thermal radiation. The model domain consists of a three-layer fire-resistant fabric system (outer shell, moisture barrier, and thermal liner), the human skin, and the air gap between clothing and the skin. The model accounted for the relationship between the transmitted heat during the exposure and the discharged heat during the cooling-down period. The numerical model predictions were compared with experimental data. Additionally, the parameters that affect the transmitted and stored energy of protective clothing were investigated. The results demonstrate that for the typical multilayer firefighter protective clothing, the transmitted heat during exposure and the discharged heat after exposure totally determine the skin burn under low-level heat exposure, especially for third-degree skin burns. The findings obtained in this study can be used to engineer fabric systems that provide better protection for the stored thermal burn.

  13. Attentional modulation of the mere exposure effect

    OpenAIRE

    Yagi, Yoshihiko; Ikoma, Shinobu; Kikuchi, Tadashi

    2009-01-01

    The mere exposure effect refers to the phenomenon where previous exposures to stimuli increase participants’ subsequent affective preference for those stimuli. This study explored the effect of selective attention on the mere exposure effect. The experiments manipulated the to-be-attended drawings in the exposure period (either red or green polygons in Experiments 1 and 2; both red and green polygons in Experiments 3 and 4) and black to-be-evaluated drawings in the affective judgment period (...

  14. The magnetic fabrics of experimentally deformed artificial clay-water dispersions

    Science.gov (United States)

    Richter, Carl; Frisch, Wolfgang; Ratschbacher, Lothar; Schwarz, Hans-Ulrich

    1991-12-01

    The development of magnetic fabrics in artificial clay-water dispersions and natural, hematite-bearing mudstones is investigated in plane-strain pure shear laboratory experiments under strain rates of 1.6 × 10 -5 and 2 × 10 -4s-1. The mixtures contain 0,15, 30 and 45% chlorite in an illite matrix, and 0, 1, 3, 6 and 8% magnetite in a kaolin matrix. Shortening up to 40% is imposed. The resulting fabrics show the following characteristics: (1) In the clay mixtures, the principal susceptibility axes ( kmax ≥ kint ≥ kmin) rotate away from the well defined initial fabric orientations into the princip strain directions ( e1 ≥ e2 ≥ e3) at strains > 30%. (2) Both mineralogical composition and initial magnetic fabric, but not the applied strain, influence the magnitudes of the principal susceptibility axes. (3) The illite-chlorite mixture series show an almost linear correlation between mineral concentration and susceptibility magnitudes. (4) Magnetite dominates the fabric of the magnetite-kaolin mixtures; the fabric is independent of the magnetite concentration.

  15. Wood smoke in a controlled exposure experiment with human volunteers

    DEFF Research Database (Denmark)

    Riddervold, Ingunn Skogstad; Bønløkke, Jakob Hjort; Mølhave, Lars

    2011-01-01

    Exposure to wood smoke in the general population is increasing and concurrently, also our awareness. This article describes a wood-smoke generating system for studying human exposure to wood smoke and symptoms related to this exposure. Twenty nonsmoking atopic human participants with normal lung...... function and normal bronchial reactivity were randomly exposed for 3h at three different exposure conditions; clean filtered air (control exposure) and wood smoke with a characteristic particulate matter (PM) concentration of 200 µg/m3 (low) and 400 µg/m3 (high) under controlled environmental conditions.......0007), “irritative body perceptions” (p = 0.0127), “psychological/neurological effects” (p = 0.0075) and “weak inflammatory responses” (p = 0.0003). Furthermore, significant effects (p = 0.0192) on self-reported general mucosa irritation were found. In conclusion, exposure to wood smoke affected symptom rating...

  16. The mere exposure effect for visual image.

    Science.gov (United States)

    Inoue, Kazuya; Yagi, Yoshihiko; Sato, Nobuya

    2018-02-01

    Mere exposure effect refers to a phenomenon in which repeated stimuli are evaluated more positively than novel stimuli. We investigated whether this effect occurs for internally generated visual representations (i.e., visual images). In an exposure phase, a 5 × 5 dot array was presented, and a pair of dots corresponding to the neighboring vertices of an invisible polygon was sequentially flashed (in red), creating an invisible polygon. In Experiments 1, 2, and 4, participants visualized and memorized the shapes of invisible polygons based on different sequences of flashed dots, whereas in Experiment 3, participants only memorized positions of these dots. In a subsequent rating phase, participants visualized the shape of the invisible polygon from allocations of numerical characters on its vertices, and then rated their preference for invisible polygons (Experiments 1, 2, and 3). In contrast, in Experiment 4, participants rated the preference for visible polygons. Results showed that the mere exposure effect appeared only when participants visualized the shape of invisible polygons in both the exposure and rating phases (Experiments 1 and 2), suggesting that the mere exposure effect occurred for internalized visual images. This implies that the sensory inputs from repeated stimuli play a minor role in the mere exposure effect. Absence of the mere exposure effect in Experiment 4 suggests that the consistency of processing between exposure and rating phases plays an important role in the mere exposure effect.

  17. Occupational radiation exposure. Twelfth annual report, 1979

    International Nuclear Information System (INIS)

    Brooks, B.; McDonald, S.; Richardson, E.

    1982-08-01

    This report summarizes the occupational exposure data that is maintained in the US Nuclear Regulatory Commission's Radiation Exposure Information and Reports System (REIRS). This report is usually published on an annual basis and is available at all NRC public document rooms. The bulk of the information contained in the report was extracted from annual statistical reports submitted by all NRC licensees subject to the reporting requirements of 10 CFR 20.407. Four categories of licensees - operating nuclear power reactors, fuel fabricators and reprocessors, industrial radiographers, and manufacturers and distributors of specified quantities of byproduct materials - also submit personal identification and exposure information for terminating employees pursuant to 10 CFR 20.408, and some analysis of this data is also presented in this report

  18. Cea-Expo: A facility exposure matrix to assess passed exposure to chemical carcinogens and radionuclides of nuclear workers

    International Nuclear Information System (INIS)

    Telle-Lamberton, M.; Bouville, P.; Bergot, D.; Gagneau, M.; Marot, S.; Telle-Lamberton, M.; Giraud, J.M.; Gelas, J.M.

    2005-01-01

    A 'Facility-Exposure Matrix' (FEM) is proposed to assess exposure to chemical carcinogens and radionuclides in a cohort of nuclear workers. Exposures are to be attributed in the following way: a worker reports to an administrative unit and/or is monitored for exposure to ionising radiation in a specific workplace. These units are connected with a list of facilities for which exposure is assessed through a group of experts. The entire process of the FEM applied in one of the nuclear centres included in the study shows that the FEM is feasible: exposure durations as well as groups of correlated exposures are presented but have to be considered as possible rather than positive exposures. Considering the number of facilities to assess (330), ways to simplify the method are proposed: (i) the list of exposures will be restricted to 18 chemical products retained from an extensive bibliography study; (ii) for each of the following classes of facilities: nuclear reactors, fuel fabrication, high-activity laboratories and radiation chemistry, accelerators and irradiators, waste treatment, biology, reprocessing, fusion, occupational exposure will be deduced from the information already gathered by the initial method. Besides taking into account confusion factors in the low doses epidemiological study of nuclear workers, the matrix should help in the assessment of internal contamination and chemical exposures in the nuclear industry. (author)

  19. Fabrication of superhydrophobic cotton fabrics using crosslinking polymerization method

    Science.gov (United States)

    Jiang, Bin; Chen, Zhenxing; Sun, Yongli; Yang, Huawei; Zhang, Hongjie; Dou, Haozhen; Zhang, Luhong

    2018-05-01

    With the aim of removing and recycling oil and organic solvent from water, a facile and low-cost crosslinking polymerization method was first applied on surface modification of cotton fabrics for water/oil separation. Micro-nano hierarchical rough structure was constructed by triethylenetetramine (TETA) and trimesoyl chloride (TMC) that formed a polymeric layer on the surface of the fabric and anchored Al2O3 nanoparticles firmly between the fabric surface and the polymer layer. Superhydrophobic property was further obtained through self-assembly grafting of hydrophobic groups on the rough surface. The as-prepared cotton fabric exhibited superoleophilicity in atmosphere and superhydrophobicity both in atmosphere and under oil with the water contact angle of 153° and 152° respectively. Water/oil separation test showed that the as-prepared cotton fabric can handle with various oil-water mixtures with a high separation efficiency over 99%. More importantly, the separation efficiency remained above 98% over 20 cycles of reusing without losing its superhydrophobicity which demonstrated excellent reusability in oil/water separation process. Moreover, the as-prepared cotton fabric possessed good contamination resistance ability and self-cleaning property. Simulation washing process test showed the superhydrophobic cotton fabric maintained high value of water contact angle above 150° after 100 times washing, indicating great stability and durability. In summary, this work provides a brand-new way to surface modification of cotton fabric and makes it a promising candidate material for oil/water separation.

  20. Fabrication of elliptical SRF cavities

    Science.gov (United States)

    Singer, W.

    2017-03-01

    The technological and metallurgical requirements of material for high-gradient superconducting cavities are described. High-purity niobium, as the preferred metal for the fabrication of superconducting accelerating cavities, should meet exact specifications. The content of interstitial impurities such as oxygen, nitrogen, and carbon must be below 10 μg g-1. The hydrogen content should be kept below 2 μg g-1 to prevent degradation of the quality factor (Q-value) under certain cool-down conditions. The material should be free of flaws (foreign material inclusions or cracks and laminations) that can initiate a thermal breakdown. Traditional and alternative cavity mechanical fabrication methods are reviewed. Conventionally, niobium cavities are fabricated from sheet niobium by the formation of half-cells by deep drawing, followed by trim machining and electron beam welding. The welding of half-cells is a delicate procedure, requiring intermediate cleaning steps and a careful choice of weld parameters to achieve full penetration of the joints. A challenge for a welded construction is the tight mechanical and electrical tolerances. These can be maintained by a combination of mechanical and radio-frequency measurements on half-cells and by careful tracking of weld shrinkage. The main aspects of quality assurance and quality management are mentioned. The experiences of 800 cavities produced for the European XFEL are presented. Another cavity fabrication approach is slicing discs from the ingot and producing cavities by deep drawing and electron beam welding. Accelerating gradients at the level of 35-45 MV m-1 can be achieved by applying electrochemical polishing treatment. The single-crystal option (grain boundary free) is discussed. It seems that in this case, high performance can be achieved by a simplified treatment procedure. Fabrication of the elliptical resonators from a seamless pipe as an alternative is briefly described. This technology has yielded good

  1. Status of Research on Pebble Bed HTR Fuel Fabrication Technology in Indonesia

    International Nuclear Information System (INIS)

    Rachmawati, M.; Sarjono; Ridwan; Langenati, R.

    2014-01-01

    Research on pebble bed HTR fuel fabrication is conducted in Indonesia. One of the aims is to build a knowledge base on pebble bed HTR fuel element fabrication technology for fuel procurement. The steps of research strategies are firstly to understand the basic design research of TRISO fuel, properties, and requirements, and secondly to understand the TRISO fuel manufacturing technology, which comprises fabrication and quality control, including its facility. Both steps are adopted from research and experiences of the countries with HTR fuel element fabrication technology. From the knowledge gained in the research, an experimental design of the process and a set of prototype process equipment for fabrication are developed, namely kernels production using external gelation process, TRISO coating of the kernel, and pebble compacting. Experiments using the prototypes have been conducted. Characterization of the kernel product, i.e. diameter, sphericity, density and O/U ratio, shows that the kernel product is still not in compliance with the specification requirements. These are deemed to be caused mainly by the selected vibrating system and the viscosity adjustment. Another major cause is the selected NH3 and air feeding method for both NH3 and air layer in the preparation for spherical droplets of liquid. The FB-CVD TRISO coating of the kernel has been experimented but unsuccessful by using an FB-CVD once‐through continuous coating process. For the pebble compacting, the process is still in the early stage of setting-up compaction equipment. This paper summarizes the current status of research on HTR fuel fabrication technology in Indonesia, the proposed process and its equipment setting-up for improvement of the kernel production. The knowledge and lessons learned gained from the research is useful and can be an assistance in planning for fuel development laboratory facilities procurement, formulating User Requirement Document and Bid Invitation Specification for

  2. Cellular responses to tritium exposure in rainbow trout: HTO- and OBT-spiked feed exposure experiments

    Energy Technology Data Exchange (ETDEWEB)

    Festarini, A.; Shultz, C.; Stuart, M.; Kim, S.B., E-mail: amy.festarini@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Ferreri, C. [National Research Council of Italy, Dept. of Chemical Sciences and Materials Technologies, Bologna (Italy)

    2016-06-15

    Biological effects were evaluated in rainbow trout (Oncorhynchus mykiss) exposed to tritiated water (HTO) or food spiked with organically bound tritium (OBT). An HTO exposure study was conducted using a tritium activity concentration of 7000 Bq/L, and an OBT exposure study was conducted using a tritium activity concentration of 30 000 Bq/L. Following 140 days of in vivo HTO exposure, liver, heart, spleen, kidney, and brain cells did not show statistically significant differences in viability; kidney, liver, and spleen cells did not show significant differences in DNA double-strand break repair activity compared with control cells. Membrane fatty acid composition analysis was conducted on liver cells and no effects of HTO exposure could be detected. Following 140 days of in vivo OBT exposure, viability and DNA double-strand break repair activity were not statistically different from controls in liver, heart, spleen, kidney, and brain cells. Changes, however, were noted in the fatty acid composition of liver and muscle tissues. For both studies, all measurements were performed on each tissue and on a fraction of the same tissue that was exposed to a gamma 4 Gy dose in vitro to test for adaptive responses, and no effects were observed except for fatty acid composition. The findings demonstrated that membrane fatty acid composition is a sensitive marker and that microscopic evaluation of gamma-H2AX foci is more sensitive than the flow cytometric approach. These studies are the first to correlate uptake and depuration with biological health indicators in edible fish for tritium exposures within worldwide drinking water guidelines. (author)

  3. Cellular responses to tritium exposure in rainbow trout: HTO- and OBT-spiked feed exposure experiments

    International Nuclear Information System (INIS)

    Festarini, A.; Shultz, C.; Stuart, M.; Kim, S.B.; Ferreri, C.

    2016-01-01

    Biological effects were evaluated in rainbow trout (Oncorhynchus mykiss) exposed to tritiated water (HTO) or food spiked with organically bound tritium (OBT). An HTO exposure study was conducted using a tritium activity concentration of 7000 Bq/L, and an OBT exposure study was conducted using a tritium activity concentration of 30 000 Bq/L. Following 140 days of in vivo HTO exposure, liver, heart, spleen, kidney, and brain cells did not show statistically significant differences in viability; kidney, liver, and spleen cells did not show significant differences in DNA double-strand break repair activity compared with control cells. Membrane fatty acid composition analysis was conducted on liver cells and no effects of HTO exposure could be detected. Following 140 days of in vivo OBT exposure, viability and DNA double-strand break repair activity were not statistically different from controls in liver, heart, spleen, kidney, and brain cells. Changes, however, were noted in the fatty acid composition of liver and muscle tissues. For both studies, all measurements were performed on each tissue and on a fraction of the same tissue that was exposed to a gamma 4 Gy dose in vitro to test for adaptive responses, and no effects were observed except for fatty acid composition. The findings demonstrated that membrane fatty acid composition is a sensitive marker and that microscopic evaluation of gamma-H2AX foci is more sensitive than the flow cytometric approach. These studies are the first to correlate uptake and depuration with biological health indicators in edible fish for tritium exposures within worldwide drinking water guidelines. (author)

  4. A new fabrication technique for back-to-back varactor diodes

    Science.gov (United States)

    Smith, R. Peter; Choudhury, Debabani; Martin, Suzanne; Frerking, Margaret A.; Liu, John K.; Grunthaner, Frank A.

    1992-01-01

    A new varactor diode process has been developed in which much of the processing is done from the back of an extremely thin semiconductor wafer laminated to a low-dielectric substrate. Back-to-back BNN diodes were fabricated with this technique; excellent DC and low-frequency capacitance measurements were obtained. Advantages of the new technique relative to other techniques include greatly reduced frontside wafer damage from exposure to process chemicals, improved capability to integrate devices (e.g. for antenna patterns, transmission lines, or wafer-scale grids), and higher line yield. BNN diodes fabricated with this technique exhibit approximately the expected capacitance-voltage characteristics while showing leakage currents under 10 mA at voltages three times that needed to deplete the varactor. This leakage is many orders of magnitude better than comparable Schottky diodes.

  5. Characterizing the sorption of polybrominated diphenyl ethers (PBDEs) to cotton and polyester fabrics under controlled conditions

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Amandeep [Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military trail, Toronto, ON M1C 1A4 (Canada); Rauert, Cassandra [School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT (United Kingdom); Simpson, Myrna J. [Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military trail, Toronto, ON M1C 1A4 (Canada); Harrad, Stuart [School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT (United Kingdom); Diamond, Miriam L., E-mail: miriam.diamond@utoronto.ca [Department of Earth Sciences, 22 Russell Street, University of Toronto, Toronto, ON M5S 3B1 (Canada); Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military trail, Toronto, ON M1C 1A4 (Canada)

    2016-09-01

    Cotton and polyester, physically and chemically different fabrics, were characterized for sorption of gas-phase polybrominated diphenyl ethers (PBDEs). Scanning electron microscopic (SEM) images and BET specific surface area (BET-SSA) analysis showed cotton's high microsurface area; NMR analysis showed richness of hexose- and aromatic-carbon in cotton and polyester, respectively. Cotton and polyester sorbed similar concentrations of gas-phase PBDEs in chamber studies, when normalized to planar surface area. However, polyester concentrations were 20–50 times greater than cotton when normalized to BET-SSA, greater than the 10 times difference in BET-SSA. The difference in sorption between cotton and polyester is hypothesized to be due to ‘dilution’ due to cotton's large BET-SSA and/or greater affinity of PBDEs for aromatic-rich polyester. Similar fabric-air area normalized distribution coefficients (K'{sub D}, 10{sup 3} to 10{sup 4} m) for cotton and polyester support air-side controlled uptake under non-equilibrium conditions. K'{sub D} values imply that 1 m{sup 2} of cotton or polyester fabrics would sorb gas-phase PBDEs present in 10{sup 3} to 10{sup 4} m{sup 3} of equivalent air volume at room temperature over one week, assuming similar air flow conditions. Sorption of PBDEs to fabrics has implications for their fate indoors and human exposure. - Highlights: • Sorption of gas-phase PBDEs by cotton and polyester fabrics • Similar sorption to cotton and polyester per unit planar surface area • Greater sorption by polyester/BET-SSA; cotton's dilution or polyester’s affinity • 1 m{sup 2} fabric sorbs PBDEs in 10{sup 3} to 10{sup 4} m{sup 3} of equivalent air volume • Clothing likely a large indoor sink of PBDEs and influence human exposure.

  6. Development of fabrication technology for CANDU advanced fuel -Development of the advanced CANDU technology-

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Beom; Kim, Hyeong Soo; Kim, Sang Won; Seok, Ho Cheon; Shim, Ki Seop; Byeon, Taek Sang; Jang, Ho Il; Kim, Sang Sik; Choi, Il Kwon; Cho, Dae Sik; Sheo, Seung Won; Lee, Soo Cheol; Kim, Yoon Hoi; Park, Choon Ho; Jeong, Seong Hoon; Kang, Myeong Soo; Park, Kwang Seok; Oh, Hee Kwan; Jang, Hong Seop; Kim, Yang Kon; Shin, Won Cheol; Lee, Do Yeon; Beon, Yeong Cheol; Lee, Sang Uh; Sho, Dal Yeong; Han, Eun Deok; Kim, Bong Soon; Park, Cheol Joo; Lee, Kyu Am; Yeon, Jin Yeong; Choi, Seok Mo; Shon, Jae Moon [Korea Atomic Energy Res. Inst., Taejon (Korea, Republic of)

    1994-07-01

    The present study is to develop the advanced CANDU fuel fabrication technologies by means of applying the R and D results and experiences gained from localization of mass production technologies of CANDU fuels. The annual portion of this year study includes following: 1. manufacturing of demo-fuel bundles for out-of-pile testing 2. development of technologies for the fabrication and inspection of advanced fuels 3. design and munufacturing of fuel fabrication facilities 4. performance of fundamental studies related to the development of advanced fuel fabrication technology.

  7. Foil fabrication for the ROMANO event. Revision 1

    International Nuclear Information System (INIS)

    Romo, J.G. Jr.; Weed, J.W.; Griggs, G.E.; Brown, T.G.; Tassano, P.L.

    1984-01-01

    The Vacuum Processes Lab (VPL), of LLNL's M.E. Dept. - Material Fabrication Division (MFD), conducted various vacuum related support activities for the ROMANO nuclear physics experiment. This report focuses on the foil fabrication activities carried out between July and November 1983 for the ROMANO event. Other vacuum related activities for ROMANO, such as outgassing tests of materials, are covered in separate documentation. VPL was asked to provide 270 coated Parylene foils for the ROMANO event. However, due to the developmental nature of some of the procedures, approximately 400 coated foils were processed. In addition, VPL interacted with MFD's Plastics Shop to help supply Parylene substrates to other organizations (i.e., LBL and commercial vendors) which had also been asked to provide coated foils for ROMANO. The purposes of this report are (A) to document the processes developed and the techniques used to produce the foils, and (B) to suggest future directions. The report is divided into four sections describing: (1) nuclear target foil fabrication, (2) Parylene substrate preparation and production, (3) calibration foil fabrication, and (4) foil and substrate inspections

  8. INFLUENCE OF FABRIC TIGHTNESS ON SPIRALITY OF WEFTKNITTED PLAIN COTTON FABRIC

    Directory of Open Access Journals (Sweden)

    A.K.M. Mobarok Hossain

    2011-01-01

    Full Text Available Global demand for knitted garments is growing at a faster rate than that of woven items.Currently around 50% of clothing needs in the developed countries is met by knit goods. So ensuring the required quality in a knitted fabric is a vital issue for the manufacturer. One of the major problems encountered in knitted fabric is spirality. It affects particularly single jersey fabric and presents a serious problem during garment confection and use. So controlling spirality is a basic requirement for producing quality knitted fabric. Though there are several factors that contribute to knitted fabric spirality, yarn twist and relative tightness of the fabric are said tobe the most significant ones. In this work the basic single jersey fabric, i.e. plain jersey cotton fabrics were produced by a Hosiery knitting machine and spirality values were observed for different yarn T.P.I. and tightness factor at relaxed state. It was found that tightness factor has a direct influence on knitted fabric spirality with a high degree of correlation. The work thus gives an idea to deal this problem by controlling the knitting parameters.

  9. Thermal and mechanical properties of aluminized fabrics for use in ferrous metal handling operations.

    Science.gov (United States)

    Wren, J E; Scott, W D; Bates, C E

    1977-11-01

    Protective garments are normally worn in molten handling operations to provide some protection against molten metal splashes. These garments are also intended to provide protection against radiant heat, and they should be as heat resistant and comfortable as possible. Asbestos-based fabrics have been employed for many years, but recently some concern has been expressed over possible asbestos exposure. This program was undertaken to explore the ability of several types of fabrics to resist heat transfer during molten metal impact. A molten metal splash test, along with standard methods for determining tensile strength, flame resistance, and abrasion-flexing resistance were used to evaluate several classes of protective fabrics. The results indicate that there are materials available that offer equal or better mechanical properties and thermal protection compared to aluminized asbestos.

  10. Development of a test device to characterize thermal protective performance of fabrics against hot steam and thermal radiation

    International Nuclear Information System (INIS)

    Su, Yun; Li, Jun

    2016-01-01

    Steam burns severely threaten the life of firefighters in the course of their fire-ground activities. The aim of this paper was to characterize thermal protective performance of flame-retardant fabrics exposed to hot steam and low-level thermal radiation. An improved testing apparatus based on ASTM F2731-11 was developed in order to simulate the routine fire-ground conditions by controlling steam pressure, flow rate and temperature of steam box. The thermal protective performance of single-layer and multi-layer fabric system with/without an air gap was studied based on the calibrated tester. It was indicated that the new testing apparatus effectively evaluated thermal properties of fabric in hot steam and thermal radiation. Hot steam significantly exacerbated the skin burn injuries while the condensed water on the skin’s surface contributed to cool down the skin tissues during the cooling. Also, the absorbed thermal energy during the exposure and the cooling was mainly determined by the fabric’s configuration, the air gap size, the exposure time and the existence of hot steam. The research provides a effective method to characterize the thermal protection of fabric in complex conditions, which will help in optimization of thermal protection performance of clothing and reduction of steam burn. (paper)

  11. Fabricating PFPE Membranes for Capillary Electrophoresis

    Science.gov (United States)

    Lee, Michael C.; Willis, Peter A.; Greer, Frank; Rolland, Jason

    2009-01-01

    A process has been developed for fabricating perfluoropolyether (PFPE) membranes that contain microscopic holes of precise sizes at precise locations. The membranes are to be incorporated into laboratory-on-a-chip microfluidic devices to be used in performing capillary electrophoresis. The present process is a modified version of part of the process, described in the immediately preceding article, that includes a step in which a liquid PFPE layer is cured into solid (membrane) form by use of ultraviolet light. In the present process, one exploits the fact that by masking some locations to prevent exposure to ultraviolet light, one can prevent curing of the PFPE in those locations. The uncured PFPE can be washed away from those locations in the subsequent release and cleaning steps. Thus, holes are formed in the membrane in those locations. The most straightforward way to implement the modification is to use, during the ultraviolet-curing step, an ultraviolet photomask similar to the photomasks used in fabricating microelectronic devices. In lieu of such a photomask, one could use a mask made of any patternable ultraviolet-absorbing material (for example, an ink or a photoresist).

  12. 3D scan line method for identifying void fabric of granular materials

    Directory of Open Access Journals (Sweden)

    Theocharis Alexandros I.

    2017-01-01

    Full Text Available Among other processes measuring the void phase of porous or fractured media, scan line approach is a simplified “graphical” method, mainly used in image processing related procedures. In soil mechanics, the application of scan line method is related to the soil fabric, which is important in characterizing the anisotropic mechanical response of soils. Void fabric is of particular interest, since graphical approaches are well defined experimentally and most of them can also be easily used in numerical experiments, like the scan line method. This is in contrast to the definition of fabric based on contact normal vectors that are extremely difficult to determine, especially considering physical experiments. The scan line method has been proposed by Oda et al [1] and implemented again by Ghedia and O’Sullivan [2]. A modified method based on DEM analysis instead of image measurements of fabric has been previously proposed and implemented by the authors in a 2D scheme [3-4]. In this work, a 3D extension of the modified scan line definition is presented using PFC 3D®. The results show clearly similar trends with the 2D case and the same behaviour of fabric anisotropy is presented.

  13. Polymer scaffolds with no skin-effect for tissue engineering applications fabricated by thermally induced phase separation

    International Nuclear Information System (INIS)

    Kasoju, Naresh; Kubies, Dana; Sedlačík, Tomáš; Kumorek, Marta M.; Rypáček, František; Janoušková, Olga; Koubková, Jana

    2016-01-01

    Thermally induced phase separation (TIPS) based methods are widely used for the fabrication of porous scaffolds for tissue engineering and related applications. However, formation of a less-/non-porous layer at the scaffold’s outer surface at the air–liquid interface, often known as the skin-effect, restricts the cell infiltration inside the scaffold and therefore limits its efficacy. To this end, we demonstrate a TIPS-based process involving the exposure of the just quenched poly(lactide-co-caprolactone):dioxane phases to the pure dioxane for a short time while still being under the quenching strength, herein after termed as the second quenching (2Q). Scanning electron microscopy, mercury intrusion porosimetry and contact angle analysis revealed a direct correlation between the time of 2Q and the gradual disappearance of the skin, followed by the widening of the outer pores and the formation of the fibrous filaments over the surface, with no effect on the internal pore architecture and the overall porosity of scaffolds. The experiments at various quenching temperatures and polymer concentrations revealed the versatility of 2Q in removing the skin. In addition, the in vitro cell culture studies with the human primary fibroblasts showed that the scaffolds prepared by the TIPS based 2Q process, with the optimal exposure time, resulted in a higher cell seeding and viability in contrast to the scaffolds prepared by the regular TIPS. Thus, TIPS including the 2Q step is a facile, versatile and innovative approach to fabricate the polymer scaffolds with a skin-free and fully open porous surface morphology for achieving a better cell response in tissue engineering and related applications. (paper)

  14. Current developments of fuel fabrication technologies at the plutonium fuel production facility, PFPF

    International Nuclear Information System (INIS)

    Asakura, K.; Aono, S.; Yamaguchi, T.; Deguchi, M.

    2000-01-01

    The Japan Nuclear Cycle Development Institute, JNC, designed, constructed and has operated the Plutonium Fuel Production Facility, PFPF, at the JNC Tokai Works to supply MOX fuels to the proto-type Fast Breeder Reactor, FBR, 'MONJU' and the experimental FBR 'JOYO' with 5 tonMOX/year of fabrication capability. Reduction of personal radiation exposure to a large amount of plutonium is one of the most important subjects in the development of MOX fabrication facility on a large scale. As the solution of this issue, the PFPF has introduced automated and/or remote controlled equipment in conjunction with computer controlled operation scheme. The PFPF started its operation in 1988 with JOYO reload fuel fabrication and has demonstrated MOX fuel fabrication on a large scale through JOYO and MONJU fuel fabrication for this decade. Through these operations, it has become obvious that several numbers of equipment initially installed in the PFPF need improvements in their performance and maintenance for commercial utilization of plutonium in the future. Furthermore, fuel fabrication of low density MOX pellets adopted in the MONJU fuel required a complete inspection because of difficulties in pellet fabrication compared with high density pellet for JOYO. This paper describes new pressing equipment with a powder recovery system, and pellet finishing and inspection equipment which has multiple functions, such as grinding measurements of outer diameter and density, and inspection of appearance to improve efficiency in the pellet finishing and inspection steps. Another development of technology concerning an annular pellet and an innovative process for MOX fuel fabrication are also described in this paper. (author)

  15. Stimulus Threat and Exposure Context Modulate the Effect of Mere Exposure on Approach Behaviors.

    Science.gov (United States)

    Young, Steven G; Jones, Isaiah F; Claypool, Heather M

    2016-01-01

    Mere-exposure (ME) research has found that initially neutral objects made familiar are preferred relative to novel objects. Recent work extends these preference judgments into the behavioral domain by illustrating that mere exposure prompts approach-oriented behavior toward familiar stimuli. However, no investigations have examined the effect of mere exposure on approach-oriented behavior toward threatening stimuli. The current work examines this issue and also explores how exposure context interacts with stimulus threat to influence behavioral tendencies. In two experiments participants were presented with both mere-exposed and novel stimuli and approach speed was assessed. In the first experiment, when stimulus threat was presented in a homogeneous format (i.e., participants viewed exclusively neutral or threatening stimuli), ME potentiated approach behaviors for both neutral and threatening stimuli. However, in the second experiment, in which stimulus threat was presented in a heterogeneous fashion (i.e., participants viewed both neutral and threatening stimuli), mere exposure facilitated approach only for initially neutral stimuli. These results suggest that ME effects on approach behaviors are highly context sensitive and depend on both stimulus valence and exposure context. Further implications of these findings for the ME literature are discussed.

  16. Progress in the fabrication of high aspect ratio zone plates by soft x-ray lithography

    International Nuclear Information System (INIS)

    Divan, R.; Mancini, D. C.; Moldovan, N. A.; Lai, B.; Assoufid, L.; Leondard, Q.; Cerrina, F.

    2002-01-01

    Fabrication of Fresnel zone plates for the hard x-ray spectral region combines the challenge of high lateral resolution (∼100 nm) with a large thickness requirement for the phase-shifting material (0.5-3 (micro)m). For achieving a high resolution, the initial mask was fabricated by e-beam lithography and gold electroforming. To prevent the collapse of the structures between the developing and electroforming processes, drying was completely eliminated. Fabrication errors, such as nonuniform gold electroplating and collapse of structures, were systematically analyzed and largely eliminated. We optimized the exposure and developing processes for 950k and 2200k polymethylmethacrylate of different thicknesses and various adhesion promoters. We discuss the effects of these fabrication steps on the zone plate's resolution and aspect ratio. Fresnel zone plates with 110 nm outermost zone width, 150 (micro)m diameter, and 1.3 (micro)m gold thickness were fabricated. Preliminary evaluation of the FZPs was done by scanning electron microscopy and atomic force microscopy. The FZP focusing performance was characterized at the Advanced Photon Source at Argonne National Laboratory

  17. The fabrication of nitrogen detector porous silicon nanostructures

    Science.gov (United States)

    Husairi, F. S.; Othman, N.; Eswar, K. A.; Guliling, Muliyadi; Khusaimi, Z.; Rusop, M.; Abdullah, S.

    2018-05-01

    In this study the porous silicon nanostructure used as a the nitrogen detector was fabricated by using anodization method because of simple and easy to handle. This method using 20 mA/ cm2 of current density and the etching time is from 10 - 40 minutes. The properties of the porous silicon nanostructure analyzed using I-V testing (electrical properties) and photoluminescence spectroscopy. From the I-V testing, sample PsiE40 where the sensitivity is 25.4% is a sensitivity of PSiE40 at 10 seconds exposure time.

  18. Facile fabrication of a superhydrophobic fabric with mechanical stability and easy-repairability.

    Science.gov (United States)

    Zhu, Xiaotao; Zhang, Zhaozhu; Yang, Jin; Xu, Xianghui; Men, Xuehu; Zhou, Xiaoyan

    2012-08-15

    The poor mechanical stability of superhydrophobic fabrics severely hindered their use in practical applications. Herein, to address this problem, we fabricated a superhydrophobic fabric with both mechanical stability and easy-repairability by a simple method. The mechanical durability of the obtained superhydrophobic fabric was evaluated by finger touching and abrasion with sandpaper. The results show that rough surface textures of the fabric were retained, and the fabric surface still exhibited superhydrophobicity after tests. More importantly, when the fabric lost its superhydrophobicity after a long-time abrasion, it can be easily rendered with superhydrophobicity once more by a regeneration process. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Fabrication of nanopores in multi-layered silicon-based membranes using focused electron beam induced etching with XeF_2 gas

    International Nuclear Information System (INIS)

    Liebes-Peer, Yael; Bandalo, Vedran; Sökmen, Ünsal; Tornow, Marc; Ashkenasy, Nurit

    2016-01-01

    The emergent technology of using nanopores for stochastic sensing of biomolecules introduces a demand for the development of simple fabrication methodologies of nanopores in solid state membranes. This process becomes particularly challenging when membranes of composite layer architecture are involved. To overcome this challenge we have employed a focused electron beam induced chemical etching process. We present here the fabrication of nanopores in silicon-on-insulator based membranes in a single step process. In this process, chemical etching of the membrane materials by XeF_2 gas is locally accelerated by an electron beam, resulting in local etching, with a top membrane oxide layer preventing delocalized etching of the silicon underneath. Nanopores with a funnel or conical, 3-dimensional (3D) shape can be fabricated, depending on the duration of exposure to XeF_2, and their diameter is dominated by the time of exposure to the electron beam. The demonstrated ability to form high-aspect ratio nanopores in comparably thick, multi-layered silicon based membranes allows for an easy integration into current silicon process technology and hence is attractive for implementation in biosensing lab-on-chip fabrication technologies. (author)

  20. Aggression from Patients or Next of Kin and Exposure to Bullying Behaviors: A Conglomerate Experience?

    Directory of Open Access Journals (Sweden)

    Iselin Reknes

    2017-01-01

    Full Text Available Although workplace violence and aggression have been identified as important stressors in the nursing profession, studies simultaneously comparing patient-initiated aggression and exposure to bullying behaviors at work are rather scarce. The aim of this study was to compare aggression from patients or next of kin and exposure to bullying behaviors in terms of prevalence, health-related quality of life outcomes, and potential overlap in those targeted. In the period of 2008-2009, data were collected among 2059 members of the Norwegian Nurses Organization. Latent class (LC analysis and a multivariate analysis of variance (MANOVA were used to investigate the proposed relationships. The results showed that aggression from patients or next of kin and exposure to bullying behaviors were perceived as separate and independent stressors. Although aggression from patients or next of kin was more frequent than workplace bullying, the latter was the only significant stressor related to health-related quality of life in terms of reduced mental health functioning. Although being a rather infrequent experience, exposure to bullying behaviors seems to have more severe health-related outcomes for nurses than aggression from patients or next of kin. Hence, the results of the study strengthen previous findings and suggest that managers must aim to maintain a positive psychosocial work environment with zero-tolerance for bullying.

  1. Characterizing oxidative flow reactor SOA production and OH radical exposure from laboratory experiments of complex mixtures (engine exhaust) and simple precursors (monoterpenes)

    Science.gov (United States)

    Michael Link, M. L.; Friedman, B.; Ortega, J. V.; Son, J.; Kim, J.; Park, G.; Park, T.; Kim, K.; Lee, T.; Farmer, D.

    2016-12-01

    Recent commercialization of the Oxidative Flow Reactor (OFR, occasionally described in the literature as a "Potential Aerosol Mass") has created the opportunity for many researchers to explore the mechanisms behind OH-driven aerosol formation on a wide range of oxidative timescales (hours to weeks) in both laboratory and field measurements. These experiments have been conducted in both laboratory and field settings, including simple (i.e. single component) and complex (multi-component) precursors. Standard practices for performing OFR experiments, and interpreting data from the measurements, are still being developed. Measurement of gas and particle phase chemistry, from oxidation products generated in the OFR, through laboratory studies on single precursors and the measurement of SOA from vehicle emissions on short atmospheric timescales represent two very different experiments in which careful experimental design is essential for exploring reaction mechanisms and SOA yields. Two parameters essential in experimental design are (1) the role of seed aerosol in controlling gas-particle partitioning and SOA yields, and (2) the accurate determination of OH exposure during any one experiment. We investigated the role of seed aerosol surface area in controlling the observed SOA yields and gas/particle composition from the OH-initiated oxidation of four monoterpenes using an aerosol chemical ionization time-of-flight mass spectrometer and scanning mobility particle sizer. While the OH exposure during laboratory experiments is simple to constrain, complex mixtures such as diesel exhaust have high estimated OH reactivity values, and thus require careful consideration. We developed methods for constraining OH radical exposure in the OFR during vehicle exhaust oxidation experiments. We observe changes in O/C ratios and highly functionalized species over the temperature gradient employed in the aerosol-CIMS measurement. We relate this observed, speciated chemistry to the

  2. Fabrication of birefringent nanocylinders for single-molecule force and torque measurement

    Science.gov (United States)

    Li, Ping-Chun; Chang, Jen-Chien; La Porta, Arthur; Yu, Edward T.

    2014-06-01

    Optically anisotropic subwavelength scale dielectric particles have been shown to enable studies of the mechanical properties of bio-molecules via optical trapping and manipulation. However, techniques emphasized to date for fabrication of such particles generally suffer from limited uniformity and control over particle dimensions, or low throughput and high cost. Here, an approach for rapid, low-cost, fabrication of large quantities of birefringent quartz nanocylinders with dimensions optimized for optical torque wrench experiments is described. For a typical process, 108 or more quartz cylinders with diameters of 500 nm and heights of 800 nm, with uniformity of ±5% in each dimension, can be fabricated over ˜10 cm2 areas, for binding to a single bio-molecule, and harvested for use in optical trapping experiments. Use of these structures to measure extensional and torsional dynamics of single DNA molecules is demonstrated with measured forces and torques shown to be in very good agreement with previously reported results.

  3. Fabrication of birefringent nanocylinders for single-molecule force and torque measurement

    International Nuclear Information System (INIS)

    Li, Ping-Chun; T Yu, Edward; Chang, Jen-Chien; La Porta, Arthur

    2014-01-01

    Optically anisotropic subwavelength scale dielectric particles have been shown to enable studies of the mechanical properties of bio-molecules via optical trapping and manipulation. However, techniques emphasized to date for fabrication of such particles generally suffer from limited uniformity and control over particle dimensions, or low throughput and high cost. Here, an approach for rapid, low-cost, fabrication of large quantities of birefringent quartz nanocylinders with dimensions optimized for optical torque wrench experiments is described. For a typical process, 10 8 or more quartz cylinders with diameters of 500 nm and heights of 800 nm, with uniformity of ±5% in each dimension, can be fabricated over ∼10 cm 2 areas, for binding to a single bio-molecule, and harvested for use in optical trapping experiments. Use of these structures to measure extensional and torsional dynamics of single DNA molecules is demonstrated with measured forces and torques shown to be in very good agreement with previously reported results. (papers)

  4. [To-day exposure to occupational carcinogens and their effects. The experience of the rubber industry, iron metallurgy, asphalt work and aviculture].

    Science.gov (United States)

    Barbieri, Pietro Gino

    2009-01-01

    While the progressive improvement of hygiene situations in the workplaces has taken to a reduction of chemical carcinogens exposure, in recent years in Italy the number of compensated occupational cancer resulting from carcinogens exposures of distant decades, has been increasing. Nevertheless, several experiences suggest that the proportion of occupational cancers unrecognised and not notified, as required by law, still remains important. This contribution concerns some experiences, performed between 2004-2008 by the Local Occupational Health Service (SPSAL) located in a highly industrialised province, on the working sector of rubber, iron and steel industry, the asphalt working and the poultry stock-breeders. This work concerns the following issues: - the evaluation of carcinogens exposure; - technical preventive measures and personal protection; - the level of workers' information and formation and the registration of exposed workers; - the characterization of work-related cancer. The results of the 5 years of activity allow us to underline that, in the most of 49 plants involved in the study, the carcinogens exposure evaluation and the prevention and protection measures were lacking. Information of workers was largely deficient and the registration of exposed workers was absent. A major attention to detect and to evaluate the work-related cancer has allowed us to recognize 50 new cases in the iron-steel industries and 21 new cases in a rubber industry. Although this experience concerns only few occupational fields, it provides the basis to call for a greater commitment of SPSAL addressed to companies and general practitioners to both, the promotion and surveillance of the correct procedures of carcinogens exposure evaluation and his prevention, and the active detection of occupational cancer, still missing.

  5. MELOX fuel fabrication plant: Operational feedback and future prospects

    International Nuclear Information System (INIS)

    Hugelmann, D.; Greneche, D.

    2000-01-01

    As of December 1, 1998, 32 Europeans LWRs are loaded with MOX fuel. It clearly means that plutonium recycling in MOX fuels is a mature industry, with successful operational experience in fabrication plants in some European countries, especially in France. Indeed, the recycling of plutonium generated in LWRs is one of the objectives of the full Reprocessing-Conditioning-Recycling (RCR) strategy chosen by France in the 70's. The most impressive results of this strategy, is the fact that 31 of the 32 reactors are loaded with MOX fuels supplied by the COGEMA Group from the same efficient fabrication process, the MIMAS process, improved for the MELOX plant to become the A-MIMAS process. In France, 17 reactors are already loaded and 11 additional reactors are technically suited to do so. Indeed, the EDF MOX program plans to use MOX in 28 of its 57 reactors. An EDF 900 MWe reactor core contains 157 assemblies of 264 rods each. 52 fuel assemblies per year are necessary for a 'UO 2 3-batches-MOX 3-batches' core management. In this case, a third of the UO 2 and a third of the MOX assemblies are replaced yearly, that means 36 UO 2 fuel assemblies and 16 MOX fuel assemblies. Some MOX fuelled reactors have now switched from the previously described core management to a so-called 'hybrid core management'. In this case, a quarter of UO 2 assemblies is replaced yearly. The first EDF reactor loaded with MOX fuel was Saint-Laurent B1, in 1987. The in-core experience, based on several hundred assemblies loaded, with reloading on a 1/3 cycle basis, shows that there is no operational difference between UO 2 and MOX fuels, both in terms of performance and safety. MOX fueling of 900 MWe EDF's PWRs, with a limited in-core MOX ratio of 30%, has needed only minor adaptations, such as addition of control rods, modification of the boron concentration in the cooling system and precaution against radiation exposure, easy to set up (optimisation of the fresh MOX fuel handling process, remote

  6. Readiness Review of BWXT for Fabrication of AGR 5/6/7 Compacts

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Douglas William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sharp, Michelle Tracy [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-02-01

    In support of preparations for fabricating compacts for the Advanced Gas Reactor (AGR) fuel qualification irradiation experiments (AGR-5/6/7), Idaho National Laboratory (INL) conducted a readiness review of the BWX Technology (BWXT) procedures, processes, and equipment associated with compact fabrication activities at the BWXT Nuclear Operations Group (BWXT-NOG) facility outside Lynchburg, VirginiaVA. The readiness review used quality assurance requirements taken from the American Society of Mechanical Engineers (ASME) Nuclear Quality Assurance Standard (NQA-1-2008/1a-2009) as a basis to assess readiness to start compact fabrication.

  7. Fabrication of mm-wave undulator cavities using deep x-ray lithography

    International Nuclear Information System (INIS)

    Song, J.J.; Kang, Y.W.; Kustom, R.L.; Lai, B.; Nassiri, A.; Feinerman, A.D.; White, V.; Well, G.M.

    1995-01-01

    The possibility of fabricating mm-wave radio frequency cavities (100-300 GHz) using deep x-ray lithography (DXRL) is being investigated. The fabrication process includes manufacture of precision x-ray masks, exposure of positive resist by x-ray through the mask, resist development, and electroforming of the final microstructure. Highly precise, two-dimensional features can be machined onto wafers using DXRL. Major challenges are: fabrication of the wafers into three-dimensional rf structures; alignment and overlay accuracy of structures; adhesion of the PMMA on the copper substrate; and selection of a developer to obtain high resolution. Rectangular cavity geometry is best suited to this fabrication technique. A 30- or 84-cell 108-GHz mm-wave structure can serve as an electromagnetic undulator. A mm-wave undulator, which will be discussed later, may have special features compared to the conventional undulator. First harmonic undulator radiation at 5.2 KeV would be possible using the Advanced Photon Source (APS) linac system, which provides a low-emittance electron beam by using an rf thermionic gun with an energy as high as 750-MeV. More detailed rf simulation, heat extraction analysis, beam dynamics using a mm-wave structure, and measurements on lOx larger scale models can be found in these proceedings

  8. The design and fabrication of power splitter used in the timescale system of soft X-ray energy dispersive spectrometer in ICF experiment

    International Nuclear Information System (INIS)

    Zhang Huige; China Academy of Engineering Physics, Mianyang; Bai Lixin; Yu Ruizhen; Yang Cunbang; Su Cunxiao

    2006-01-01

    An improved eight power splitter is designed and fabricated newly, which is crucial in the time-scale system of soft X-ray energy dispersive spectrometer. The spectrometer is used in ICF laser facility to measure the evolution of soft X-ray spectrum, whose duration is only several nanoseconds. The synchronization and high bandwidth of signals produced by power splitter are tested, which shows the power splitter could meet the strict requirements of the experiments. The discussion of further improvement of power splitter are also presented. (authors)

  9. Experience matters: prior exposure to plant toxins enhances diversity of gut microbes in herbivores.

    Science.gov (United States)

    Kohl, Kevin D; Dearing, M D

    2012-09-01

    For decades, ecologists have hypothesised that exposure to plant secondary compounds (PSCs) modifies herbivore-associated microbial community composition. This notion has not been critically evaluated in wild mammalian herbivores on evolutionary timescales. We investigated responses of the microbial communities of two woodrat species (Neotoma bryanti and N. lepida). For each species, we compared experienced populations that independently converged to feed on the same toxic plant (creosote bush, Larrea tridentata) to naïve populations with no exposure to creosote toxins. The addition of dietary PSCs significantly altered gut microbial community structure, and the response was dependent on previous experience. Microbial diversity and relative abundances of several dominant phyla increased in experienced woodrats in response to PSCs; however, opposite effects were observed in naïve woodrats. These differential responses were convergent in experienced populations of both species. We hypothesise that adaptation of the foregut microbiota to creosote PSCs in experienced woodrats drives this differential response. © 2012 Blackwell Publishing Ltd/CNRS.

  10. A study of different fabrics to increase radar cross section of humans.

    Science.gov (United States)

    Ödman, Torbjörn; Welinder, Jan; Andersson, Nils; Otterskog, Magnus; Lindén, Maria; Ödman, Natalia; Larsson, Christer

    2015-01-01

    This purpose of the study was to increase the visibility on radar for unprotected pedestrians with the aid of conducting fabric. The experiment comprised measurements of four types of fabric to determine the radio frequency properties, such as radar cross section (RCS) for the vehicle radar frequency 77 GHz and transmission (shielding) in the frequency range 3-18 GHz. Two different thicknesses of polypyrrole (PPy) nonvowen fabric were tested and one thickness for 30 % and 40 % stainless steel fabrics respectively. A jacket with the thinner nonvowen material and one with 40 % steel were tested and compared to an unmodified jacket in the RCS measurement. The measurement showed an increase in RCS of 4 dB for the jacket with the 40 % steel lining compared to the unmodified jacket. The transmission measurement was aimed at determining the fabric with the highest transmission of an incoming radio wave. The 30 % steel fabric and the two thicknesses of the nonvowen fabrics were tested. One practical application is for example the use of radar reflective material in search and rescue (SAR) clothes. The study showed that the 30 % steel fabric was the best candidate for further RCS measurements.

  11. Fabric circuits and method of manufacturing fabric circuits

    Science.gov (United States)

    Chu, Andrew W. (Inventor); Dobbins, Justin A. (Inventor); Scully, Robert C. (Inventor); Trevino, Robert C. (Inventor); Lin, Greg Y. (Inventor); Fink, Patrick W. (Inventor)

    2011-01-01

    A flexible, fabric-based circuit comprises a non-conductive flexible layer of fabric and a conductive flexible layer of fabric adjacent thereto. A non-conductive thread, an adhesive, and/or other means may be used for attaching the conductive layer to the non-conductive layer. In some embodiments, the layers are attached by a computer-driven embroidery machine at pre-determined portions or locations in accordance with a pre-determined attachment layout before automated cutting. In some other embodiments, an automated milling machine or a computer-driven laser using a pre-designed circuit trace as a template cuts the conductive layer so as to separate an undesired portion of the conductive layer from a desired portion of the conductive layer. Additional layers of conductive fabric may be attached in some embodiments to form a multi-layer construct.

  12. Magnetically Triggered Monodispersed Nanocomposite Fabricated by Microfluidic Approach for Drug Delivery

    KAUST Repository

    Yassine, Omar; Li, Erqiang; Alfadhel, Ahmed; Zaher, A.; Kavaldzhiev, Mincho; Thoroddsen, Sigurdur T; Kosel, Jü rgen

    2016-01-01

    Responsive microgel poly(N-isopropylacrylamide) or PNIPAM is a gel that can swell or shrink in response to external stimuli (temperature, pH, etc.). In this work, a nanocomposite gel is developed consisting of PNIPAM and magnetic iron oxide nanobeads for controlled release of liquids (like drugs) upon exposure to an alternating magnetic field. Microparticles of the nanocomposite are fabricated efficiently with a monodisperse size distribution and a diameter ranging from 20 to 500  µ m at a rate of up to 1 kHz using a simple and inexpensive microfluidic system. The nanocomposite is heated through magnetic losses, which is exploited for a remotely stimulated liquid release. The efficiency of the microparticles for controlled drug release applications is tested with a solution of Rhodamine B as a liquid drug model. In continuous and pulsatile mode, a release of 7% and 80% was achieved, respectively. Compared to external thermal actuation that heats the entire surrounding or embedded heaters that need complex fabrication steps, the magnetic actuation provides localized heating and is easy to implement with our microfluidic fabrication method.

  13. Magnetically Triggered Monodispersed Nanocomposite Fabricated by Microfluidic Approach for Drug Delivery

    Directory of Open Access Journals (Sweden)

    O. Yassine

    2016-01-01

    Full Text Available Responsive microgel poly(N-isopropylacrylamide or PNIPAM is a gel that can swell or shrink in response to external stimuli (temperature, pH, etc.. In this work, a nanocomposite gel is developed consisting of PNIPAM and magnetic iron oxide nanobeads for controlled release of liquids (like drugs upon exposure to an alternating magnetic field. Microparticles of the nanocomposite are fabricated efficiently with a monodisperse size distribution and a diameter ranging from 20 to 500 µm at a rate of up to 1 kHz using a simple and inexpensive microfluidic system. The nanocomposite is heated through magnetic losses, which is exploited for a remotely stimulated liquid release. The efficiency of the microparticles for controlled drug release applications is tested with a solution of Rhodamine B as a liquid drug model. In continuous and pulsatile mode, a release of 7% and 80% was achieved, respectively. Compared to external thermal actuation that heats the entire surrounding or embedded heaters that need complex fabrication steps, the magnetic actuation provides localized heating and is easy to implement with our microfluidic fabrication method.

  14. Fabrication and optical characterization of silica optical fibers containing gold nanoparticles.

    Science.gov (United States)

    de Oliveira, Rafael E P; Sjödin, Niclas; Fokine, Michael; Margulis, Walter; de Matos, Christiano J S; Norin, Lars

    2015-01-14

    Gold nanoparticles have been used since antiquity for the production of red-colored glasses. More recently, it was determined that this color is caused by plasmon resonance, which additionally increases the material's nonlinear optical response, allowing for the improvement of numerous optical devices. Interest in silica fibers containing gold nanoparticles has increased recently, aiming at the integration of nonlinear devices with conventional optical fibers. However, fabrication is challenging due to the high temperatures required for silica processing and fibers with gold nanoparticles were solely demonstrated using sol-gel techniques. We show a new fabrication technique based on standard preform/fiber fabrication methods, where nanoparticles are nucleated by heat in a furnace or by laser exposure with unprecedented control over particle size, concentration, and distribution. Plasmon absorption peaks exceeding 800 dB m(-1) at 514-536 nm wavelengths were observed, indicating higher achievable nanoparticle concentrations than previously reported. The measured resonant nonlinear refractive index, (6.75 ± 0.55) × 10(-15) m(2) W(-1), represents an improvement of >50×.

  15. Magnetically Triggered Monodispersed Nanocomposite Fabricated by Microfluidic Approach for Drug Delivery

    KAUST Repository

    Yassine, Omar

    2016-01-01

    Responsive microgel poly(N-isopropylacrylamide) or PNIPAM is a gel that can swell or shrink in response to external stimuli (temperature, pH, etc.). In this work, a nanocomposite gel is developed consisting of PNIPAM and magnetic iron oxide nanobeads for controlled release of liquids (like drugs) upon exposure to an alternating magnetic field. Microparticles of the nanocomposite are fabricated efficiently with a monodisperse size distribution and a diameter ranging from 20 to 500  µ m at a rate of up to 1 kHz using a simple and inexpensive microfluidic system. The nanocomposite is heated through magnetic losses, which is exploited for a remotely stimulated liquid release. The efficiency of the microparticles for controlled drug release applications is tested with a solution of Rhodamine B as a liquid drug model. In continuous and pulsatile mode, a release of 7% and 80% was achieved, respectively. Compared to external thermal actuation that heats the entire surrounding or embedded heaters that need complex fabrication steps, the magnetic actuation provides localized heating and is easy to implement with our microfluidic fabrication method.

  16. Fabrication and characterization of buckypapers for use in air sampling

    Science.gov (United States)

    Oh, Jonghwa

    Occupational exposure to volatile organic compounds (VOCs) is a concern from a public health perspective. In many industrial activities, workers' exposure to VOCs can be sufficiently high to induce adverse health effects, so their monitoring is necessary. In exposure assessment, post sampling extraction and quantification are the typical analytical procedures. Recently, our group developed the photothermal desorption (PTD) technique in which a pulse of light thermally desorbs an analyte directly from a sorbent. Advantages of this technique are; it is solvent free, repeated analysis is possible, sorbents are reusable, and no high cost of equipment is required. PTD overcomes almost all drawbacks of current extraction methods. This study was aimed to develop and test a new sorbent which will efficiently work with PTD. Single-walled carbon nanotubes (SWNTs) were examined as potential sorbents because of their high surface area, great thermal conductivity, and efficient light absorption. SWNTs were fabricated into a self-supporting form (i.e., buckypaper (BP)) which will preserve its physical integrity under normal working conditions. Largely two types of SWNTs were used, arc discharge (AD) and high-pressure carbon monoxide (HiPco), and different fabrication methods were examined. Upon fabrication, their adsorption properties were characterized in terms of Brunauer, Emmett, and Teller (BET) surface area, pore size, and toluene adsorption capacity. HiPco BP and methanol-cleaned AD BP (suspended/rinsed with methanol) were the top two materials, showing the highest surface area (649 and 387 m²/g, respectively) and adsorption capacity (106 and 46 mg/g, respectively) with relatively small mean pore diameter (7.7 and 8.8 nm, respectively). To further improve the adsorption properties, specific heat treatment conditions for each type of BPs were employed. After initial treatments only HiPco BP and acetone-cleaned AD BP (suspended/rinsed with acetone) were selected for further

  17. Paternal exposure and counselling: experience of a Teratology Information Service.

    Science.gov (United States)

    De Santis, Marco; Cesari, Elena; Cavaliere, Annafranca; Ligato, Maria Serena; Nobili, Elena; Visconti, Daniela; Caruso, Alessandro

    2008-09-01

    We describe paternal exposure and counselling in a selected population calling to an Italian Teratology Information Service (TIS). The majority of callers asked for paternal drug exposure (76%, drugs except chemotherapy) and treatment for cancer (17%, chemotherapy and/or radiotherapy). Others asked for exposure to diagnostic radiations (4%), recreational drugs (2%) and occupational chemicals (1%). Among paternal drugs neurological compounds, immunosuppressive drugs and antiviral agents were the main reasons for calling. In humans, there are no evidences of birth defects after paternal exposures, but to minimize any possible risk, counselling in men exposed to radio and chemotherapy should recommend delaying conception for at least 3 months after the end of the therapy. Male patients treated with drugs, whose teratogenic potential has been well assessed or suspected for maternal exposure, should be advised to practice effective birth control during therapy and up to one or two cycles of spermatogenesis and to avoid semen contact with vaginal walls during first trimester of pregnancy.

  18. Fabrication of sub-diffraction-limit molecular structures by scanning near-field photolithography

    Science.gov (United States)

    Ducker, Robert E.; Montague, Matthew T.; Sun, Shuqing; Leggett, Graham J.

    2007-09-01

    Using a scanning near-field optical microscope coupled to a UV laser, an approach we term scanning near-field photolithography (SNP), structures as small as 9 nm (ca. λ/30) may be fabricated in self-assembled monolayers of alkanethiols on gold surfaces. Selective exposure of the adsorbate molecules in the near field leads to photoconversion of the alkylthiolate to a weakly bound alkylsulfonate which may be displaced readily be a contrasting thiol, leading to a chemical pattern, or used as a resist for the selective etching of the underlying metal. A novel ultra-mild etch for gold is reported, and used to etch structures as small as 9 nm. Photopatterning of oligo(ethylene glycol) (OEG) terminated selfassembled monolayers facilitates the fabrication of biomolecular nanostructures. Selective removal of the protein-resistant OEG terminated adsorbates created regions that may be functionalized with a second thiol and derivatized with a biomolecule. Finally, the application of SNP to nanopatterning on oxide surfaces is demonstrated. Selective exposure of monolayers of phosphonic acids adsorbed onto aluminum oxide leads to cleavage of the P-C bond and desorption of the adsorbate molecule. Subsequent etching, using aqueous based, yields structures as small as 100 nm.

  19. Fabrication of ATLAS pixel detector prototypes at IRST

    International Nuclear Information System (INIS)

    Boscardin, M.; Betta, G.-F. Dalla; Gregori, P.; Zen, M.; Zorzi, N.

    2001-01-01

    We report on the development of a fabrication technology for n-on-n silicon pixel detectors oriented to the ATLAS experiment at LHC. The main processing issues and some selected results from the electrical characterization of detector prototypes and related test structures are presented and discussed

  20. The mere exposure effect with scene stimuli

    OpenAIRE

    八木 , 善彦

    2016-01-01

     The mere exposure effect refers to the phenomenon where previous exposures to stimuli increasesubsequent affective preference for those stimuli. It has been indicated that with specific stimulus-category(i.e., paintings, matrices, and photographs of scene), repeated exposure has little or oppositeeffect on affective ratings. In this study, two experiments were conducted in order to explore theeffect of stimulus-category on the mere exposure effects. Photographs of young woman’s(Experiment1)a...

  1. Fabrication and characterization of advanced neutron multipliers for DEMO blanket

    Directory of Open Access Journals (Sweden)

    Masaru Nakamichi

    2016-12-01

    Full Text Available Prototypic pebbles with Be12V composition, which do not undergo a peritectic reaction during cooling, were fabricated and characterized, because this composition is not only unnecessary for the homogenization treatment, but also able to prevent increase of specific surface area. The results of granulation experiments indicated that the prototypic pebbles of single-phase Be12V were successfully fabricated without a homogenization treatment. The results of hydrogen generation reaction experiments showed that the prototypic pebbles with Be12V composition exhibited superior oxidation properties compared to pure Be pebbles and similar to those of as-granulated Be–Ti beryllide pebbles: as-granulated Be12V pebbles exhibited good resistance to water vapor. The results of deuterium retention experiments indicated that beryllides exhibit lower deuterium-trapping efficiency than other tested materials. Because of a small desorption from beryllides, the total retention of deuterium in Be12V was evaluated to be approximately 20% of that in pure Be.

  2. Overview of the MISSE 7 Polymers and Zenith Polymers Experiments After 1.5 Years of Space Exposure

    Science.gov (United States)

    Yi, Grace T.; de Groh, Kim K.; Banks, Bruce A.; Haloua, Athena; Imka, Emily C.; Mitchell, Gianna G.

    2013-01-01

    As part of the Materials International Space Station Experiment 7 (MISSE 7), two experiments called the Polymers Experiment and the Zenith Polymers Experiment were flown on the exterior of the International Space Station (ISS) and exposed to the low Earth orbit (LEO) space environment for 1.5 years. The Polymers Experiment contained 47 samples, which were flown in a ram or wake flight orientation. The objectives of the Polymers Experiment were to determine the LEO atomic oxygen erosion yield (Ey, volume loss per incident oxygen atoms, given in cu cm/atom) of the polymers, and to determine if atomic oxygen erosion of high and low ash containing polymers is dependent on fluence. The Zenith Polymers Experiment was flown in a zenith flight orientation. The primary objective of the Zenith Polymers Experiment was to determine the effect of solar exposure on the erosion of fluoropolymers. Kapton H (DuPont, Wilmington, DE) was flown in each experiment for atomic oxygen fluence determination. This paper provides an introduction to both the MISSE 7 Polymers Experiment and the MISSE 7 Zenith Polymers Experiment, and provides initial erosion yield results.

  3. "Insensitive" to touch: fabric-supported lubricant-swollen polymeric films for omniphobic personal protective gear.

    Science.gov (United States)

    Damle, Viraj G; Tummala, Abhishiktha; Chandrashekar, Sriram; Kido, Cassidee; Roopesh, Ajay; Sun, Xiaoda; Doudrick, Kyle; Chinn, Jeff; Lee, James R; Burgin, Timothy P; Rykaczewski, Konrad

    2015-02-25

    The use of personal protective gear made from omniphobic materials that easily shed drops of all sizes could provide enhanced protection from direct exposure to most liquid-phase biological and chemical hazards and facilitate the postexposure decontamination of the gear. In recent literature, lubricated nanostructured fabrics are seen as attractive candidates for personal protective gear due to their omniphobic and self-healing characteristics. However, the ability of these lubricated fabrics to shed low surface tension liquids after physical contact with other objects in the surrounding, which is critical in demanding healthcare and military field operations, has not been investigated. In this work, we investigate the depletion of oil from lubricated fabrics in contact with highly absorbing porous media and the resulting changes in the wetting characteristics of the fabrics by representative low and high surface tension liquids. In particular, we quantify the loss of the lubricant and the dynamic contact angles of water and ethanol on lubricated fabrics upon repeated pressurized contact with highly absorbent cellulose-fiber wipes at different time intervals. We demonstrate that, in contrast to hydrophobic nanoparticle coated microfibers, fabrics encapsulated within a polymer that swells with the lubricant retain the majority of the oil and are capable of repelling high as well as low surface tension liquids even upon multiple contacts with the highly absorbing wipes. The fabric supported lubricant-swollen polymeric films introduced here, therefore, could provide durable and easy to decontaminate protection against hazardous biological and chemical liquids.

  4. Study of internal exposure to uranium compounds in fuel fabrication plants in Brazil

    International Nuclear Information System (INIS)

    Santos, Maristela Souza

    2006-01-01

    The International Commission on Radiological Protection (ICRP) Publication 66 and Supporting Guidance 3) strongly recommends that specific information on lung retention parameters should be used in preference to default values wherever appropriate, for the derivation of effective doses and for bioassay interpretation of monitoring data. A group of 81 workers exposed to UO 2 at the fuel fabrication facility in Brazil was selected to evaluate the committed effective dose. The workers were monitored for determination of uranium content in the urinary and faecal excretion. The contribution of intakes by ingestion and inhalation were assessed on the basis of the ratios of urinary to fecal excretion. For the selected workers it was concluded that inhalation dominated intake. According to ICRP 66, uranium oxide is classified as insoluble Type S compound. The ICRP Supporting Guidance 3 and some recent studies have recommended specific lung retention parameters to UO 2 . The solubility parameters of the uranium oxide compound handled by the workers at the fuel fabrication facility in Brazil was evaluated on the basis of the ratios of urinary to fecal excretion. Excretion data were corrected for dietary intakes. This paper will discuss the application of lung retention parameters recommended by the ICRP models to these data and also the dependence of the effective committed dose on the lung retention parameters. It will also discuss the problems in the interpretation of monitoring results, when the worker is exposed to several uranium compounds of different solubilities. (author)

  5. Fabrication of Metallic Fuel Slugs for Irradiation Experiments in Fast Breeder Test Reactor

    International Nuclear Information System (INIS)

    Saify, M.T.; Jha, S.K.; Abdulla, K.K.; Kumar, Arun; Prasad, G.J.

    2013-01-01

    Advantages of Metallic fuels for future FBR: → High heavy metal atom density; → Higher thermal conductivity at room temperature that increases with temperature; → Metal fuels can be relatively easily fabricated with close dimensional tolerances; → They have excellent compatibility with liquid metal coolants

  6. Status report, canister fabrication

    International Nuclear Information System (INIS)

    Andersson, Claes-Goeran; Eriksson, Peter; Westman, Marika; Emilsson, Goeran

    2004-06-01

    The report gives an account of the development of material and fabrication technology for copper canisters with cast inserts during the period from 2000 until the start of 2004. The engineering design of the canister and the choice of materials in the constituent components described in previous status reports have not been significantly changed. In the reference canister, the thickness of the copper shell is 50 mm. Fabrication of individual components with a thinner copper thickness is done for the purpose of gaining experience and evaluating fabrication and inspection methods for such canisters. As a part of the development of cast inserts, computer simulations of the casting processes and techniques used at the foundries have been performed for the purpose of optimizing the material properties. These properties have been evaluated by extensive tensile testing and metallographic inspection of test material taken from discs cut at different points along the length of the inserts. The testing results exhibit a relatively large spread. Low elongation values in certain tensile test specimens are due to the presence of poorly formed graphite, porosities, slag or other casting defects. It is concluded in the report that it will not be possible to avoid some presence of observed defects in castings of this size. In the deep repository, the inserts will be exposed to compressive loading and the observed defects are not critical for strength. An analysis of the strength of the inserts and formulation of relevant material requirements must be based on a statistical approach with probabilistic calculations. This work has been initiated and will be concluded during 2004. An initial verifying compression test of a canister in an isostatic press has indicated considerable overstrength in the structure. Seamless copper tubes are fabricated by means of three methods: extrusion, pierce and draw processing, and forging. It can be concluded that extrusion tests have revealed a

  7. Status report, canister fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Claes-Goeran; Eriksson, Peter; Westman, Marika [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Emilsson, Goeran [CSM Materialteknik AB, Linkoeping (Sweden)

    2004-06-01

    The report gives an account of the development of material and fabrication technology for copper canisters with cast inserts during the period from 2000 until the start of 2004. The engineering design of the canister and the choice of materials in the constituent components described in previous status reports have not been significantly changed. In the reference canister, the thickness of the copper shell is 50 mm. Fabrication of individual components with a thinner copper thickness is done for the purpose of gaining experience and evaluating fabrication and inspection methods for such canisters. As a part of the development of cast inserts, computer simulations of the casting processes and techniques used at the foundries have been performed for the purpose of optimizing the material properties. These properties have been evaluated by extensive tensile testing and metallographic inspection of test material taken from discs cut at different points along the length of the inserts. The testing results exhibit a relatively large spread. Low elongation values in certain tensile test specimens are due to the presence of poorly formed graphite, porosities, slag or other casting defects. It is concluded in the report that it will not be possible to avoid some presence of observed defects in castings of this size. In the deep repository, the inserts will be exposed to compressive loading and the observed defects are not critical for strength. An analysis of the strength of the inserts and formulation of relevant material requirements must be based on a statistical approach with probabilistic calculations. This work has been initiated and will be concluded during 2004. An initial verifying compression test of a canister in an isostatic press has indicated considerable overstrength in the structure. Seamless copper tubes are fabricated by means of three methods: extrusion, pierce and draw processing, and forging. It can be concluded that extrusion tests have revealed a

  8. Systematic investigation of drip stains on apparel fabrics: The effects of prior-laundering, fibre content and fabric structure on final stain appearance.

    Science.gov (United States)

    de Castro, Therese C; Taylor, Michael C; Kieser, Jules A; Carr, Debra J; Duncan, W

    2015-05-01

    Bloodstain pattern analysis is the investigation of blood deposited at crime scenes and the interpretation of that pattern. The surface that the blood gets deposited onto could distort the appearance of the bloodstain. The interaction of blood and apparel fabrics is in its infancy, but the interaction of liquids and apparel fabrics has been well documented and investigated in the field of textile science (e.g. the processes of wetting and wicking of fluids on fibres, yarns and fabrics). A systematic study on the final appearance of drip stains on torso apparel fabrics (100% cotton plain woven, 100% polyester plain woven, blend of polyester and cotton plain woven and 100% cotton single jersey knit) that had been laundered for six, 26 and 52 cycles prior to testing was investigated in the paper. The relationship between drop velocity (1.66±0.50m/s, 4.07±0.03m/s, 5.34±0.18m/s) and the stain characteristics (parent stain area, axes 1 and 2 and number of satellite stains) for each fabric was examined using analysis of variance. The experimental design and effect of storing blood were investigated on a reference sample, which indicated that the day (up to five days) at which the drops were generated did not affect the bloodstain. The effect of prior-laundering (six, 26 and 52 laundering cycles), fibre content (cotton vs. polyester vs. blend) and fabric structure (plain woven vs. single jersey knit) on the final appearance of the bloodstain were investigated. Distortion in the bloodstains produced on non-laundered fabrics indicated the importance of laundering fabrics to remove finishing treatments before conducting bloodstain experiments. For laundered fabrics, both the cotton fabrics and the blend had a circular to oval stain appearance, while the polyester fabric had a circular appearance with evidence of spread along the warp and weft yarns, which resulted in square-like stains at the lowest drop velocity. A significant (pfibre content (pfibres/yarns, while for the

  9. Coated U(Mo) Fuel: As-Fabricated Microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Emmanuel Perez; Dennis D. Keiser, Jr.; Ann Leenaers; Sven Van den Berghe; Tom Wiencek

    2014-04-01

    As part of the development of low-enriched uranium fuels, fuel plates have recently been tested in the BR-2 reactor as part of the SELENIUM experiment. These fuel plates contained fuel particles with either Si or ZrN thin film coating (up to 1 µm thickness) around the U-7Mo fuel particles. In order to best understand irradiation performance, it is important to determine the starting microstructure that can be observed in as-fabricated fuel plates. To this end, detailed microstructural characterization was performed on ZrN and Si-coated U-7Mo powder in samples taken from AA6061-clad fuel plates fabricated at 500°C. Of interest was the condition of the thin film coatings after fabrication at a relatively high temperature. Both scanning electron microscopy and transmission electron microscopy were employed. The ZrN thin film coating was observed to consist of columns comprised of very fine ZrN grains. Relatively large amounts of porosity could be found in some areas of the thin film, along with an enrichment of oxygen around each of the the ZrN columns. In the case of the pure Si thin film coating sample, a (U,Mo,Al,Si) interaction layer was observed around the U-7Mo particles. Apparently, the Si reacted with the U-7Mo and Al matrix during fuel plate fabrication at 500°C to form this layer. The microstructure of the formed layer is very similar to those that form in U-7Mo versus Al-Si alloy diffusion couples annealed at higher temperatures and as-fabricated U-7Mo dispersion fuel plates with Al-Si alloy matrix fabricated at 500°C.

  10. Evaluation of magnetostrictive composite coated fabric as a fragment barrier material

    International Nuclear Information System (INIS)

    Son, Kwon Joong; Fahrenthold, Eric P

    2012-01-01

    Over the last decade a surge in fragment barrier research has led to investigation of numerous materials and material augmentations in the attempt to improve the ballistic performance of systems designed to protect personnel, vehicles or infrastructure from impact and blast loads. One widely studied material augmentation approach is the use of coatings, often polymers, to enhance the performance of protection systems constructed from metal, concrete, composite and fabric materials. In recent research the authors have conducted the first experimental study of the ballistic performance of fabrics coated with a magnetically responsive polymer. Zero field impact experiments on coated fabric targets showed a 61% increase in impact energy dissipation, although the coated targets were not competitive with neat fabrics on a protection per unit mass basis. Under an applied field of 110 kA m −1 , the ballistic performance of the coated fabric was reduced. The reduction in performance may be attributed to a reduction in material damping and an increase in material modulus for the magnetostrictive component of the coating. Analysis of the coated fabric response to magnetic preloads suggests that coating tensile stresses and coating–fabric interface stresses induced by the applied field may also adversely affect ballistic performance. (paper)

  11. Treatment experiences among LGBT veterans with discrimination-based trauma exposure: A pilot study.

    Science.gov (United States)

    Shipherd, Jillian C; Ruben, Mollie A; Livingston, Nicholas A; Curreri, Andrew; Skolnik, Avy A

    2018-01-01

    Past research suggests that rates of trauma exposure and Posttraumatic Stress Disorder (PTSD) are elevated among lesbian, gay, bisexual, and transgender (LGBT) veterans compared to heterosexual and cisgender veterans. Given higher rates of trauma exposure and PTSD, and the culture associated with the Department of Defense's history of policies excluding LGBT people, it is important to understand if LGBT veterans are seeking PTSD treatment following discrimination-based traumatic events, where they seek care, and if they are satisfied with treatment. This study aimed to describe the experiences of discrimination-based trauma-exposed LGBT veterans' (n = 47) experiences with PTSD treatment, including location of treatment (Veterans Health Administration [VHA] versus non-VHA) and satisfaction with care. The majority of veterans had received a PTSD diagnosis from a health-care provider in their lifetimes (78.72%, n = 37), and over half reported currently experiencing PTSD symptoms. Approximately 47% of LGBT veterans with discrimination-based trauma histories preferred to seek PTSD treatment exclusively at VHA (46.81%) or with a combination of VHA and non-VHA services (38.30%). Veterans who received PTSD treatment exclusively from VHA reported higher satisfaction ratings (7.44 on 0-9 scale) than veterans who received PTSD treatment exclusively from outside VHA (5.25 on 0-9 scale). For veterans who sought PTSD treatment at both VHA and non-VHA facilities, there were no significant differences regarding satisfaction ratings for their PTSD treatment in the two settings. Results are discussed in terms of VHA's continued efforts to establish equitable, patient-centered health care for all veterans and the importance of non-VHA facilities to recognize veteran identities.

  12. “Can I wear this?” : blending clothing and digital expression by wearing dynamic fabric

    NARCIS (Netherlands)

    Mackey, A.M.; Wakkary, R.L.; Wensveen, S.A.G.; Tomico Plasencia, O

    2017-01-01

    We explore the future scenario of wearing garments with digital display capabilities, or dynamic fabric, in everyday life. Our study, called Greenscreen Dress, investigates the experience of wearing dynamic fabric and how this type of garment quality might alter our daily interactions with clothing

  13. Glass fabrics self-cracking catalytic growth of boron nitride nanotubes

    Science.gov (United States)

    Wang, Jilin; Peng, Daijang; Long, Fei; Wang, Weimin; Gu, Yunle; Mo, Shuyi; Zou, Zhengguang; Fu, Zhengyi

    2017-02-01

    Glass fabrics were used to fabricate boron nitride nanotubes (BNNTs) with a broad diameter range through a combined chemical vapor deposition and self-propagation high-temperature synthesis (CVD-SHS) method at different holding times (0min, 30min, 90min, 180min and 360min). SEM characterization has been employed to investigate the macro and micro structure/morphology changes of the glass fabrics and BNNTs in detail. SEM image analysis has provided direct experimental evidences for the rationality of the optimized self-cracking catalyst VLS growth mechanism, including the transformation situations of the glass fabrics and the BNNTs growth processes respectively. This paper was the further research and compensation for the theory and experiment deficiencies in the new preparation method of BNNTs reported in our previous work. In addition, it is likely that the distinctive self-cracking catalyst VLS growth mechanism could provide a new idea to preparation of other inorganic functional nano-materials using similar one-dimensional raw materials as growth templates and catalysts.

  14. LBNF 1.2 MW TARGET: CONCEPTUAL DESIGN & FABRICATION

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, Cory F. [Fermilab; Ammigan, K. [Fermilab; Anderson, K. [Fermilab; Hartsell, B. [Fermilab; Hurh, P. [Fermilab; Hylen, J. [Fermilab; Zwaska, R. [Fermilab

    2015-06-29

    Fermilab’s Long-Baseline Neutrino Facility (LBNF) will utilize a modified design based on the NuMI low energy target that is reconfigured to accommodate beam operation at 1.2 MW. Achieving this power with a graphite target material and ancillary systems originally rated for 400 kW requires several design changes and R&D efforts related to material bonding and electrical isolation. Target cooling, structural design, and fabrication techniques must address higher stresses and heat loads that will be present during 1.2 MW operation, as the assembly will be subject to cyclic loads and thermal expansion. Mitigations must be balanced against compromises in neutrino yield. Beam monitoring and subsystem instrumentation will be updated and added to ensure confidence in target positioning and monitoring. Remote connection to the target hall support structure must provide for the eventual upgrade to a 2.4 MW target design, without producing excessive radioactive waste or unreasonable exposure to technicians during reconfiguration. Current designs and assembly layouts will be presented, in addition to current findings on processes and possibilities for prototype and final assembly fabrication.

  15. LBNF 1.2 MW Target: Conceptual Design & Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, C. [Fermilab; Ammigan, K. [Fermilab; Anderson, K. [Fermilab; Hartsell, B. [Fermilab; Hurh, P. [Fermilab; Hylen, J. [Fermilab; Zwaska, R. [Fermilab

    2015-06-01

    Fermilab’s Long-Baseline Neutrino Facility (LBNF) will utilize a modified design based on the NuMI low energy target that is reconfigured to accommodate beam operation at 1.2 MW. Achieving this power with a graphite target material and ancillary systems originally rated for 400 kW requires several design changes and R&D efforts related to material bonding and electrical isolation. Target cooling, structural design, and fabrication techniques must address higher stresses and heat loads that will be present during 1.2 MW operation, as the assembly will be subject to cyclic loads and thermal expansion. Mitigations must be balanced against compromises in neutrino yield. Beam monitoring and subsystem instrumentation will be updated and added to ensure confidence in target positioning and monitoring. Remote connection to the target hall support structure must provide for the eventual upgrade to a 2.4 MW target design, without producing excessive radioactive waste or unreasonable exposure to technicians during reconfiguration. Current designs and assembly layouts will be presented, in addition to current findings on processes and possibilities for prototype and final assembly fabrication.

  16. Fabrication of long linear arrays of plastic optical fibers with squared ends for the use of code mark printing lithography

    Science.gov (United States)

    Horiuchi, Toshiyuki; Watanabe, Jun; Suzuki, Yuta; Iwasaki, Jun-ya

    2017-05-01

    Two dimensional code marks are often used for the production management. In particular, in the production lines of liquid-crystal-display panels and others, data on fabrication processes such as production number and process conditions are written on each substrate or device in detail, and they are used for quality managements. For this reason, lithography system specialized in code mark printing is developed. However, conventional systems using lamp projection exposure or laser scan exposure are very expensive. Therefore, development of a low-cost exposure system using light emitting diodes (LEDs) and optical fibers with squared ends arrayed in a matrix is strongly expected. In the past research, feasibility of such a new exposure system was demonstrated using a handmade system equipped with 100 LEDs with a central wavelength of 405 nm, a 10×10 matrix of optical fibers with 1 mm square ends, and a 10X projection lens. Based on these progresses, a new method for fabricating large-scale arrays of finer fibers with squared ends was developed in this paper. At most 40 plastic optical fibers were arranged in a linear gap of an arraying instrument, and simultaneously squared by heating them on a hotplate at 120°C for 7 min. Fiber sizes were homogeneous within 496+/-4 μm. In addition, average light leak was improved from 34.4 to 21.3% by adopting the new method in place of conventional one by one squaring method. Square matrix arrays necessary for printing code marks will be obtained by piling the newly fabricated linear arrays up.

  17. Advances in the simulation of personal protective equipment for the mitigation of exposure to radioactive particulates

    International Nuclear Information System (INIS)

    Roeterink, M.J.; Kelly, D.G.; Dickson, E.F.G; Corcoran, E.C.

    2014-01-01

    Airborne radioactive particulates represent a significant potential hazard to first responders in nuclear related incidents. Personal protective equipment (PPE), in particular radio-opaque fabrics, can be used to reduce wearer exposure to the emitted radiation, but do not offer complete protection. The objective of this project is to create a realistic dosimetric model of the human arm, protected by a sleeve, which can eventually be developed into a tool to assess the full-body dose imparted to the wearer in the event of radiological particulate exposure. A two-fold approach will be employed whereby: (1) a particulate transport model will be used to determine the regional radioactive particulate concentrations; and (2) these concentration data will then be incorporated into a dosimetric model that will use the Monte Carlo N-Particle (MCNP) transport code to determine the dose imparted to the tissue. Benchmarking experiments will be carried out to validate the results generated by the computer models. Such experimentation will be conducted for both the particulate transport and dosimetric models. Model advancement aims to consider whole body dose and will be invaluable in the development of future radiation exposure policies and procedures. (author)

  18. Wafer-scale fabrication of glass-FEP-glass microfluidic devices for lipid bilayer experiments

    NARCIS (Netherlands)

    Bomer, Johan G.; Prokofyev, A.V.; van den Berg, Albert; le Gac, Severine

    2014-01-01

    We report a wafer-scale fabrication process for the production of glass-FEP-glass microdevices using UV-curable adhesive (NOA81) as gluing material, which is applied using a novel "spin & roll" approach. Devices are characterized for the uniformity of the gluing layer, presence of glue in the

  19. Fabrication of the fuel elements cladding for utilization in the fluidized bed nuclear reactor

    International Nuclear Information System (INIS)

    Schaeffer, L.; Sefidvash, F.

    1986-01-01

    A method for the fabrication of cladding of the spherical fuel elements for the utilization in the fluidized bed nuclear reactor is presented. Some prelimminary experiments were performed to adopt a method which adapt itself to mass production with the desired high quality. Still methods for cladding fabrication are under study. (Author) [pt

  20. Disability and Exposure to High Levels of Adverse Childhood Experiences: Effect on Health and Risk Behavior.

    Science.gov (United States)

    Austin, Anna; Herrick, Harry; Proescholdbell, Scott; Simmons, Jacqueline

    2016-01-01

    Health disparities among persons with disabilities have been previously documented. However, there is little research specific to adverse childhood experiences (ACEs) in this population and how ACE exposure affects health outcomes in adulthood. Data from the 2012 North Carolina Behavioral Risk Factor Surveillance System (BRFSS) survey were analyzed to compare the prevalence of ACEs between adults with and without disabilities and high ACE exposure (3-8 ACEs). Adjusted risk ratios of health risks and perceived poor health by disability status were calculated using predicted marginals. A higher percentage of persons with disabilities (36.5%) than those without disabilities (19.6%) reported high ACE exposure. Among those with high ACE exposure, persons with disabilities were more likely to report several ACE categories, particularly childhood sexual abuse. In adjusted analyses, persons with disabilities had an increased risk of smoking (relative risk [RR] = 1.29; 95% CI, 1.10-1.51), poor physical health (RR = 4.34; 95% CI, 3.08-6.11), poor mental health (RR = 4.69; 95% CI, 3.19-6.87), and doctor-diagnosed depression (RR = 2.16; 95% CI, 1.82-2.56) compared to persons without disabilities. The definition of disability derived from the BRFSS survey does not allow for those with disabilities to be categorized according to physical disabilities versus mental or emotional disabilities. In addition, we were unable to determine the timing of ACE exposure in relation to disability onset. A better understanding of the life course associations between ACEs and disability and the impact of exposure to multiple types of childhood adversity on disability and health is needed to inform research and services specific to this vulnerable population. ©2016 by the North Carolina Institute of Medicine and The Duke Endowment. All rights reserved.

  1. Toxicity of platinum, palladium and rhodium to Daphnia magna in single and binary metal exposure experiments.

    Science.gov (United States)

    Zimmermann, Sonja; Wolff, Carolina; Sures, Bernd

    2017-05-01

    Mainly due to automobile traffic, but also due to other sources, the platinum group elements (PGE) platinum (Pt), palladium (Pd) and rhodium (Rh) are introduced into aquatic biotopes where they accumulate in sediments of lakes and rivers. However, the toxicity of these noble metals to aquatic organisms is not well understood and especially toxicity studies under standardized condition are lacking. Thus, the toxicity of Pt, Pd and Rh to Daphnia magna was tested in single metal exposure experiments according to OECD guideline 202. Immobility and lethality was recorded after 24 h and 48 h of exposure and EC 50 and LC 50 , respectively, were determined. As the nominal exposure concentration of Pd differed significantly from the quantified concentration, the control of the real exposure concentration by chemical analysis is mandatory, especially for Pd. The toxicity decreased in the order Pd > Pt ≫ Rh with e.g. LC 50 (48 h) values of 14 μg/L for Pd, 157 μg/L for Pt and 56,800 μg/L for Rh. The exposure period had a clear effect on the toxicity of Pt, Pd and Rh. For Pt and Rh the endpoint immobility was more sensitive than the endpoint lethality whereas Pd toxicity was similar for both endpoints. The Hill slopes, which are a measure for the steepness of the concentration-response curves, showed no significant discrepancies between the different metals. The binary metal exposure to Pt and Pd revealed a more-than-additive, i.e. a synergistic toxicity using the toxic unit approach. The present study is a start to understand the toxicity of interacting PGE. The modes of action behind the synergistic effect are unclear. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Fabrication of superhydrophobic cotton textiles for water-oil separation based on drop-coating route.

    Science.gov (United States)

    Zhang, Ming; Wang, Chengyu; Wang, Shuliang; Li, Jian

    2013-08-14

    In the present study, we are so excited to report a simple drop-coating method for fabricating the superhydrophobic cotton textiles which can remove the water in oil (or the oil in water). It is confirmed that the superhydrophobic composite thin film containing modified-ZnO nanoparticles and polystyren (PS) has been successfully fabricated on the cotton textiles surface by a single-step procedure, and the superhydrophobic cotton textiles displays an excellent property in water-oil separation which is rarely put forward and studied. The static water contact angle on the superhydrophobic cotton sample surface arranges from 153° to 155°, and stays almost the same after exposure to ambient air or immersion in the corrosive liquids and oil, indicating the considerable range of potential applications for the superhydrophobic cotton textiles fabricated by this simple method. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Experiences from occupational exposure limits set on aerosols containing allergenic proteins

    DEFF Research Database (Denmark)

    Nielsen, Gunnar; Larsen, Søren; Hansen, Jitka S

    2012-01-01

    Occupational exposure limits (OELs) together with determined airborne exposures are used in risk assessment based managements of occupational exposures to prevent occupational diseases. In most countries, OELs have only been set for few protein-containing aerosols causing IgE-mediated allergies. ...... is available for setting OELs for proteins and protein-containing aerosols where the critical effect is IgE sensitization and IgE-mediated airway diseases.......Occupational exposure limits (OELs) together with determined airborne exposures are used in risk assessment based managements of occupational exposures to prevent occupational diseases. In most countries, OELs have only been set for few protein-containing aerosols causing IgE-mediated allergies...... for setting OELs. Our aim is to analyse prerequisites for setting OELs for the allergenic protein-containing aerosols. Opposite to the key effect of toxicological reactions, two thresholds, one for the sensitization phase and one for elicitation of IgE-mediated symptoms in sensitized individuals, are used...

  4. NCSX Vacuum Vessel Fabrication

    International Nuclear Information System (INIS)

    Viola ME; Brown T; Heitzenroeder P; Malinowski F; Reiersen W; Sutton L; Goranson P; Nelson B; Cole M; Manuel M; McCorkle D.

    2005-01-01

    The National Compact Stellarator Experiment (NCSX) is being constructed at the Princeton Plasma Physics Laboratory (PPPL) in conjunction with the Oak Ridge National Laboratory (ORNL). The goal of this experiment is to develop a device which has the steady state properties of a traditional stellarator along with the high performance characteristics of a tokamak. A key element of this device is its highly shaped Inconel 625 vacuum vessel. This paper describes the manufacturing of the vessel. The vessel is being fabricated by Major Tool and Machine, Inc. (MTM) in three identical 120 o vessel segments, corresponding to the three NCSX field periods, in order to accommodate assembly of the device. The port extensions are welded on, leak checked, cut off within 1-inch of the vessel surface at MTM and then reattached at PPPL, to accommodate assembly of the close-fitting modular coils that surround the vessel. The 120 o vessel segments are formed by welding two 60 o segments together. Each 60 o segment is fabricated by welding ten press-formed panels together over a collapsible welding fixture which is needed to precisely position the panels. The vessel is joined at assembly by welding via custom machined 8-inch (20.3 cm) wide spacer ''spool pieces''. The vessel must have a total leak rate less than 5 X 10 -6 t-l/s, magnetic permeability less than 1.02(micro), and its contours must be within 0.188-inch (4.76 mm). It is scheduled for completion in January 2006

  5. An automated method for the layup of fiberglass fabric

    Science.gov (United States)

    Zhu, Siqi

    This dissertation presents an automated composite fabric layup solution based on a new method to deform fiberglass fabric referred to as shifting. A layup system was designed and implemented using a large robotic gantry and custom end-effector for shifting. Layup tests proved that the system can deposit fabric onto two-dimensional and three-dimensional tooling surfaces accurately and repeatedly while avoiding out-of-plane deformation. A process planning method was developed to generate tool paths for the layup system based on a geometric model of the tooling surface. The approach is analogous to Computer Numerical Controlled (CNC) machining, where Numerical Control (NC) code from a Computer-Aided Design (CAD) model is generated to drive the milling machine. Layup experiments utilizing the proposed method were conducted to validate the performance. The results show that the process planning software requires minimal time or human intervention and can generate tool paths leading to accurate composite fabric layups. Fiberglass fabric samples processed with shifting deformation were observed for meso-scale deformation. Tow thinning, bending and spacing was observed and measured. Overall, shifting did not create flaws in amounts that would disqualify the method from use in industry. This suggests that shifting is a viable method for use in automated manufacturing. The work of this dissertation provides a new method for the automated layup of broad width composite fabric that is not possible with any available composite automation systems to date.

  6. The consequence of fetal ethanol exposure and adolescent odor re-exposure on the response to ethanol odor in adolescent and adult rats

    Directory of Open Access Journals (Sweden)

    Molina Juan C

    2009-01-01

    Full Text Available Abstract Background An epidemiologic predictive relationship exists between fetal ethanol exposure and the likelihood for adolescent use. Further, an inverse relationship exists between the age of first experience and the probability of adult abuse. Whether and how the combined effects of prenatal and adolescent ethanol experiences contribute to this progressive pattern remains unknown. Fetal ethanol exposure directly changes the odor attributes of ethanol important for both ethanol odor preference behavior and ethanol flavor perception. These effects persist only to adolescence. Here we tested whether adolescent ethanol odor re-exposure: (Experiment 1 augments the fetal effect on the adolescent behavioral response to ethanol odor; and/or (Experiment 2 perpetuates previously observed adolescent behavioral and neurophysiological responses into adulthood. Methods Pregnant rats received either an ethanol or control liquid diet. Progeny (observers experienced ethanol odor in adolescence via social interaction with a peer (demonstrators that received an intragastric infusion of either 1.5 g/kg ethanol or water. Social interactions were scored for the frequency that observers followed their demonstrator. Whole-body plethysmography evaluated the unconditioned behavioral response of observers to ethanol odor in adolescence (P37 or adulthood (P90. The olfactory epithelium of adults was also examined for its neural response to five odorants, including ethanol. Results Experiment 1: Relative to fetal or adolescent exposure alone, adolescent re-exposure enhanced the behavioral response to ethanol odor in P37 animals. Compared to animals with no ethanol experience, rats receiving a single experience (fetal or adolescent show an enhanced, yet equivalent, ethanol odor response. Fetal ethanol experience also increased olfactory-guided following of an intoxicated peer. Experiment 2: Combined exposure yielded persistence of the behavioral effects only in adult

  7. Review of qualifications for fuel assembly fabrication

    International Nuclear Information System (INIS)

    Slabu, Dan; Zemek, Martin; Hellwig, Christian

    2013-01-01

    The required quality of nuclear fuel in industrial production can only be assured by applying processes in fabrication and inspection, which are well mastered and have been proven by an appropriate qualification. The present contribution shows the understanding and experiences of Axpo with respect to qualifications in the frame of nuclear fuel manufacturing and reflects some related expectations of the operator. (orig.)

  8. Effect of Spacecraft Environmental Variables on the Flammability of Fire Resistant Fabrics

    Science.gov (United States)

    Osorio, A. F.; Fernandez-Pello, C.; Takahashi, S.; Rodriguez, J.; Urban, D. L.; Ruff, G.

    2012-01-01

    Fire resistant fabrics are used for firefighter, racecar drivers as well as astronaut suits. However, their fire resistant characteristics depend on the environment conditions and require study. Particularly important is the response of these fabrics to elevated oxygen concentration environments and radiant heat from a source such as an adjacent fire. In this work, experiments using two fire resistant fabrics were conducted to study the effect of oxygen concentration, external radiant flux and oxidizer flow velocity in concurrent flame spread. Results show that for a given fabric the minimum oxygen concentration for flame spread depends strongly on the magnitude of the external radiant flux. At increased oxygen concentrations the external radiant flux required for flame spread decreases. Oxidizer flow velocity influences the external radiant flux only when the convective heat flux from the flame has similar values to the external radiant flux. The results of this work provide further understanding of the flammability characteristics of fire resistant fabrics in environments similar to those of future spacecrafts.

  9. Digital fabrication

    CERN Document Server

    2012-01-01

    The Winter 2012 (vol. 14 no. 3) issue of the Nexus Network Journal features seven original papers dedicated to the theme “Digital Fabrication”. Digital fabrication is changing architecture in fundamental ways in every phase, from concept to artifact. Projects growing out of research in digital fabrication are dependent on software that is entirely surface-oriented in its underlying mathematics. Decisions made during design, prototyping, fabrication and assembly rely on codes, scripts, parameters, operating systems and software, creating the need for teams with multidisciplinary expertise and different skills, from IT to architecture, design, material engineering, and mathematics, among others The papers grew out of a Lisbon symposium hosted by the ISCTE-Instituto Universitario de Lisboa entitled “Digital Fabrication – A State of the Art”. The issue is completed with four other research papers which address different mathematical instruments applied to architecture, including geometric tracing system...

  10. Technique for fabrication of ultrathin foils in cylindrical geometry for liner-plasma implosion experiments with sub-megaampere currents

    Science.gov (United States)

    Yager-Elorriaga, D. A.; Steiner, A. M.; Patel, S. G.; Jordan, N. M.; Lau, Y. Y.; Gilgenbach, R. M.

    2015-11-01

    In this work, we describe a technique for fabricating ultrathin foils in cylindrical geometry for liner-plasma implosion experiments using sub-MA currents. Liners are formed by wrapping a 400 nm, rectangular strip of aluminum foil around a dumbbell-shaped support structure with a non-conducting center rod, so that the liner dimensions are 1 cm in height, 6.55 mm in diameter, and 400 nm in thickness. The liner-plasmas are imploded by discharging ˜600 kA with ˜200 ns rise time using a 1 MA linear transformer driver, and the resulting implosions are imaged four times per shot using laser-shadowgraphy at 532 nm. This technique enables the study of plasma implosion physics, including the magneto Rayleigh-Taylor, sausage, and kink instabilities on initially solid, imploding metallic liners with university-scale pulsed power machines.

  11. The Design, Fabrication and Characterization of a Transparent Atom Chip

    Directory of Open Access Journals (Sweden)

    Ho-Chiao Chuang

    2014-06-01

    Full Text Available This study describes the design and fabrication of transparent atom chips for atomic physics experiments. A fabrication process was developed to define the wire patterns on a transparent glass substrate to create the desired magnetic field for atom trapping experiments. An area on the chip was reserved for the optical access, so that the laser light can penetrate directly through the glass substrate for the laser cooling process. Furthermore, since the thermal conductivity of the glass substrate is poorer than other common materials for atom chip substrate, for example silicon, silicon carbide, aluminum nitride. Thus, heat dissipation copper blocks are designed on the front and back of the glass substrate to improve the electrical current conduction. The testing results showed that a maximum burnout current of 2 A was measured from the wire pattern (with a width of 100 μm and a height of 20 μm without any heat dissipation design and it can increase to 2.5 A with a heat dissipation design on the front side of the atom chips. Therefore, heat dissipation copper blocks were designed and fabricated on the back of the glass substrate just under the wire patterns which increases the maximum burnout current to 4.5 A. Moreover, a maximum burnout current of 6 A was achieved when the entire backside glass substrate was recessed and a thicker copper block was electroplated, which meets most requirements of atomic physics experiments.

  12. The Design, Fabrication and Characterization of a Transparent Atom Chip

    Science.gov (United States)

    Chuang, Ho-Chiao; Huang, Chia-Shiuan; Chen, Hung-Pin; Huang, Chi-Sheng; Lin, Yu-Hsin

    2014-01-01

    This study describes the design and fabrication of transparent atom chips for atomic physics experiments. A fabrication process was developed to define the wire patterns on a transparent glass substrate to create the desired magnetic field for atom trapping experiments. An area on the chip was reserved for the optical access, so that the laser light can penetrate directly through the glass substrate for the laser cooling process. Furthermore, since the thermal conductivity of the glass substrate is poorer than other common materials for atom chip substrate, for example silicon, silicon carbide, aluminum nitride. Thus, heat dissipation copper blocks are designed on the front and back of the glass substrate to improve the electrical current conduction. The testing results showed that a maximum burnout current of 2 A was measured from the wire pattern (with a width of 100 μm and a height of 20 μm) without any heat dissipation design and it can increase to 2.5 A with a heat dissipation design on the front side of the atom chips. Therefore, heat dissipation copper blocks were designed and fabricated on the back of the glass substrate just under the wire patterns which increases the maximum burnout current to 4.5 A. Moreover, a maximum burnout current of 6 A was achieved when the entire backside glass substrate was recessed and a thicker copper block was electroplated, which meets most requirements of atomic physics experiments. PMID:24922456

  13. Occupational exposures to uranium: processes, hazards, and regulations

    International Nuclear Information System (INIS)

    Stoetzel, G.A.; Fisher, D.R.; McCormack, W.D.; Hoenes, G.R.; Marks, S.; Moore, R.H.; Quilici, D.G.; Breitenstein, B.D.

    1981-04-01

    The United States Uranium Registry (USUR) was formed in 1978 to investigate potential hazards from occupational exposure to uranium and to assess the need for special health-related studies of uranium workers. This report provides a summary of Registry work done to date. The history of the uranium industry is outlined first, and the current commercial uranium industry (mining, milling, conversion, enrichment, and fuel fabrication) is described. This description includes information on basic processes and areas of greatest potential radiological exposure. In addition, inactive commercial facilities and other uranium operations are discussed. Regulation of the commercial production industry for uranium fuel is reported, including the historic development of regulations and the current regulatory agencies and procedures for each phase of the industry. A review of radiological health practices in the industry - facility monitoring, exposure control, exposure evaluation, and record-keeping - is presented. A discussion of the nonradiological hazards of the industry is provided, and the final section describes the tissue program developed as part of the Registry

  14. MOX fuel fabrication, in reactor performance and improvement

    International Nuclear Information System (INIS)

    Vliet, J. van; Deramaix, P.; Nigon, J.L.; Fournier, W.

    1998-01-01

    In Europe, MOX fuel for light water reactors (LWRs) has first been manufactured in Belgium and Germany. Belgonucleaire (BN) loaded the first MOX assembly in the BR3 Pressurised Water Reactor (PWR) in 1963. In June 1998, more than 750 tHM LWR MOX fuel assemblies were manufactured on a industrial scale in Europe without any particular difficulty relating to fuel fabrication, reactor operation or fuel behaviour. So, today plutonium recycling through MOX fuel is a mature industry, with successful operational experience and large-scale fabrication plants. In this field, COGEMA and BELGONUCLEAIRE are the main actors by operating simultaneously three complete multidesign fuel production plants: MELOX plant (in Marcoule), CADARACHE plant and P0 plant (in Dessel, Belgium). Present MOX production capacity available to COGEMA and BN fits 175 tHM per year and is to be extended to reach about 325 tHM in the year 2000. This will represent 75% of the total MOX fabrication capacity in Europe. The industrial mastery and the high production level in MOX fabrication assured by high technology processes confer to these companies a large expertise for Pu recycling. This allows COGEMA and BN to be major actors in Pu-based fuels in the coming second nuclear era with advanced fuel cycles. (author)

  15. Fabric based supercapacitor

    International Nuclear Information System (INIS)

    Yong, S; Tudor, M J; Beeby, S P; Owen, J R

    2013-01-01

    Flexible supercapacitors with electrodes coated on inexpensive fabrics by the dipping technique. This paper present details of the design, fabrication and characterisation of fabric supercapacitor. The sandwich structured supercapacitors can achieve specific capacitances of 11.1F/g, area capacitance 105 mF.cm −2 and maintain 95% of the initial capacitance after cycling the device for more than 15000 times

  16. GA-4 half-scale cask model fabrication

    International Nuclear Information System (INIS)

    Meyer, R.J.

    1995-01-01

    Unique fabrication experience was gained during the construction of a half-scale model of the GA-4 Legal Weight Truck Cask. Techniques were developed for forming, welding, and machining XM-19 stainless steel. Noncircular 'rings' of depleted uranium were cast and machined to close tolerances. The noncircular cask body, gamma shield, and cavity liner were produced using a nonconventional approach in which components were first machined to final size and then welded together using a low-distortion electron beam process. Special processes were developed for fabricating the bonded aluminum honeycomb impact limiters. The innovative design of the cask internals required precision deep hole drilling, low-distortion welding, and close tolerance machining. Valuable lessons learned were documented for use in future manufacturing of full-scale prototype and production units

  17. Mere Exposure and Racial Prejudice: Exposure to Other-Race Faces Increases Liking for Strangers of That Race.

    Science.gov (United States)

    Zebrowitz, Leslie A; White, Benjamin; Wieneke, Kristin

    2008-01-01

    White participants were exposed to other-race or own-race faces to test the generalized mere exposure hypothesis in the domain of face perception, namely that exposure to a set of faces yields increased liking for similar faces that have never been seen. In Experiment 1, rapid supraliminal exposures to Asian faces increased White participants' subsequent liking for a different set of Asian faces. In Experiment 2, subliminal exposures to Black faces increased White participants' subsequent liking for a different set of Black faces. The findings are consistent with prominent explanations for mere exposure effects as well as with the familiar face overgeneralization hypothesis that prejudice derives in part from negative reactions to faces that deviate from the familiar own-race prototype.

  18. Radiation dose to workers due to the inhalation of dust during granite fabrication

    International Nuclear Information System (INIS)

    Zwack, L M; Stewart, J H; McCarthy, J F; Allen, J G; McCarthy, W B

    2014-01-01

    There has been very little research conducted to determine internal radiation doses resulting from worker exposure to ionising radiation in granite fabrication shops. To address this issue, we estimated the effective radiation dose of granite workers in US fabrication shops who were exposed to the maximum respirable dust and silica concentrations allowed under current US regulations, and also to concentrations reported in the literature. Radiation doses were calculated using standard methods developed by the International Commission on Radiological Protection. The calculated internal doses were very low, and below both US occupational standards (50 mSv yr −1 ) and limits applicable to the general public (1 mSv yr −1 ). Workers exposed to respirable granite dust concentrations at the US Occupational Safety and Health Administration (OSHA) respirable dust permissible exposure limit (PEL) of 5 mg m −3 over a full year had an estimated radiation dose of 0.062 mSv yr −1 . Workers exposed to respirable granite dust concentrations at the OSHA silica PEL and at the American Conference of Governmental Industrial Hygienists Threshold Limit Value for a full year had expected radiation doses of 0.007 mSv yr −1 and 0.002 mSv yr −1 , respectively. Using data from studies of respirable granite dust and silica concentrations measured in granite fabrication shops, we calculated median expected radiation doses that ranged from <0.001 to 0.101 mSv yr −1 . (paper)

  19. Analysis of Weld Fabrication Flaws in High-Level Radioactive Waste Disposal Containers: Experiences from the US Programme

    International Nuclear Information System (INIS)

    Bullen, Daniel; Apted, Mick

    2002-11-01

    The purpose of this report is to examine key issues regarding the fabrication, closure and defect detection in canisters for radioactive waste disposal in a deep geological repository. As a preliminary step, a review is made of the closure-weld design and non-destructive evaluation (NDE) of the closure seal for the US high-level waste repository programme. This includes statistical analysis of the data obtained by NDE and identification of key areas of investigation where additional data are required. Information from other industrial experiences on closure and flaw detection of metal containers is also reviewed. The canister material and closure methods for the US programme and industrial activities reviewed here differ from those of SKB's KBS-3 reference design. The issues and approaches to issue resolution identified from the US programme and industrial analogues, however, can provide an initial basis for preparing for independent review of SKB's canister closure plans and encapsulation facility

  20. Exposure to stressful life events during pregnancy predicts psychotic experiences via behaviour problems in childhood.

    Science.gov (United States)

    Betts, Kim S; Williams, Gail M; Najman, Jakob M; Scott, James; Alati, Rosa

    2014-12-01

    Exposure to stressful life events during pregnancy has been associated with later schizophrenia in offspring. We explore how prenatal stress and neurodevelopmental abnormalities in childhood associate to increase the risk of later psychotic experiences. Participants from the Mater University Study of Pregnancy (MUSP), an Australian based, pre-birth cohort study were examined for lifetime DSM-IV positive psychotic experiences at 21 years by a semi-structured interview (n = 2227). Structural equation modelling suggested psychotic experiences were best represented with a bifactor model including a general psychosis factor and two group factors. We tested for an association between prenatal stressful life events with the psychotic experiences, and examined for potential moderation and mediation by behaviour problems and cognitive ability in childhood. Prenatal stressful life events predicted psychotic experiences indirectly via behaviour problems at child age five years, and this relationship was not confounded by maternal stressful life events at child age five. We found no statistical evidence for an interaction between prenatal stressful life events and behaviour problems or cognitive ability. The measurable effect of prenatal stressful life events on later psychotic experiences in offspring manifested as behaviour problems by age 5. By identifying early abnormal behavioural development as an intermediary, this finding further confirms the role of prenatal stress to later psychotic disorders. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The Relationship between Elastic Properties and Shear Fabric in Clay-Rich Fault Gouge

    Science.gov (United States)

    Kenigsberg, A.; Saffer, D. M.; Riviere, J.; Ryan, K. L.; Marone, C.

    2016-12-01

    The low mechanical strength of major crustal faults remains a fundamental problem in geophysics and earthquake mechanics. Although both clay abundance and shear fabric are known as key controls on the frictional weakening of faults, the detailed links between fabric, elastic properties, composition, and fault strength remain poorly understood. This gap in information is in part because data are lacking to fully characterize the evolution of gouge microstructures and elastic properties during shearing. Here, we use seismic wave propagation to probe gouge ultrasonic and elastic properties, as a proxy for the development of shear fabrics. We report on a suite of direct shear experiments that include ultrasonic wave transmission to monitor compressional and shear wave velocities (Vp, Vs), during progressive shear of synthetic, clay-rich fault gouge. In order to better understand when and how clay grain alignment and nano-coatings begin to dominate the affect of shear fabric and local gouge density on elastic properties and shear strength, we studied a suite of synthetic gouges composed of Ca-montmorillonite and quartz ranging from 0-100% clay. Our laboratory experiments document friction coefficients (μ) ranging from 0.21 for gouges composed of 100% smectite to 0.62 for 100% quartz, with μ decreasing as clay content increases. We find that Vp and Vs increases as shear progresses and porosity decreases. Ongoing analyses of ultrasonic waves will assess variations of Vp, Vs, and elastic moduli throughout shear and as a function of gouge composition. We anticipate that these variations will be linked to formation of fabric elements observed via microstructural analysis, and will be indicative of whether quartz or clay is dominating how the fabrics form. Finally, we expect that clay content will be the dominant factor controlling shear fabric evolution and, consequently, the key control on the evolution of elastic properties with shear.

  2. Four-year experience with methotrexate exposures.

    Science.gov (United States)

    LoVecchio, Frank; Katz, Kenneth; Watts, David; Wood, Ian

    2008-09-01

    Unintentional methotrexate (MTX) acute oral overdose is rarely reported. We conducted a retrospective chart review of all human exposure calls (>150,000 charts) for MTX ingestions reported to our Poison Center during 2000-2003. Thirteen patients met the criteria. The average amount of MTX ingested was 13.03 mg (data from 7 cases), and the average patient age was 43 years (20 months to 80 years). No significant toxicities occurred. Although intravenous MTX toxicity can be severe, this does not appear to be a phenomenon associated with either acute unintentional or suicidal oral ingestion.

  3. ITER SAFETY TASK NID-10A:CANDU occupational exposure experience: ORE for ITER fuel cycle and cooling systems

    International Nuclear Information System (INIS)

    Lee, D.

    1995-02-01

    This report contains information on TRITIUM Occupational Exposure (Internal Dose) from typical CANDU Nuclear Generating Stations. In addition to dose, airborne tritium levels are provided, as these strongly influence operational exposure. The exposure dose data presented in this report cover a period of five years of operation and maintenance experience from four CANDU Reactors and are considered representative of other CANDU reactors. The data are broken down according to occupational function ( Operators, Maintenance and Support Service etc.). The referenced systems are mainly centered on CANDU Hear Transport System, Moderator System, Tritium Removal Facility and Heavy Water (D20) Upgrading System. These systems contain the bulk part of tritium contamination in the CANDU Reactor. Because of certain similarities between ITER and CANDU systems, this data can be used as the most relevant TRITIUM OCCUPATIONAL DOSE information for ITER COOLING and FUEL CYCLE systems dose assessment purpose, if similar design and operation principles as described in the report are adopted. (author). 16 refs., 8 tabs., 13 figs

  4. New fabrication techniques for the nuclear fuels of tomorrow

    International Nuclear Information System (INIS)

    Babelot, J.F.; Bokelund, H.; Gerontopoulos, P.; Gueugnon, J.F.; Richter, K.

    1995-01-01

    The shift of the emphasis of the work at the Institute for Transuranium Elements (ITU) from the development of fuels based on uranium and plutonium to safety aspects concerning the use of plutonium and other of actinides, necessitates the production of targets containing appreciable amounts of minor actinides for irradiation experiments. The handling of minor actinides requires additional protective measures, combined with improved fuel fabrication techniques. The boundary conditions for a suitable process are flexibility, adaptability to remote control, and minimization of dust formation. A method based on the sol-gel fabrication technique meets these criteria, and was selected for the present developments at ITU. (author)

  5. Restrictions on Measurement of Roughness of Textile Fabrics by Laser Triangulation: A Phenomenological Approach

    International Nuclear Information System (INIS)

    Berberi, Pellumb; Tabaku, Burhan

    2010-01-01

    Laser triangulation method is one of the methods used for contactless measurement of roughness of textile fabrics. Method is based on measurement of distance between the sensor and the object by imaging the light scattered from the surface. However, experimental results, especially for high values of roughness, show a strong dependence to duration of exposure time to laser pulses. Use of very short exposure times and long exposures times causes appearance on the surface of the scanned textile of pixels with Active peak heights. The number of Active peaks increases with decrease of exposure time down to 0.1 ms, and increases with increase of exposure time up to 100 ms. Appearance of Active peaks leads to nonrealistic increase of roughness of the surface both for short exposure times and long exposure times reaching a minimum somewhere in the region of medium exposure times, 1 to 2 ms. The above effect suggests a careful analysis of experimental data and, also, becomes an important restriction to the method. In this paper we attempt to make a phenomenological approach to the mechanisms leading to these effects. We suppose that effect is related both to scattering properties of scanned surface and to physical parameters of CCD sensors. The first factor becomes more important in the region of long exposure times, while second factor becomes more important in the region of short exposure times.

  6. Development of techniques for fabrication of film probe sensor assembly

    International Nuclear Information System (INIS)

    Moorhead, A.J.

    1982-10-01

    Pulsed laser welding and brazing techniques were developed for fabrication of sensors designed to measure liquid film properties in out-of-reactor safety tests that simulate a loss-of-coolant accident in a pressurized-water nuclear reactor. These sensors were made possible by a unique ceramic-to-metal seal system based on a cermet insulator and a brazing filler metal, both developed at ORNL. This seal system was shown to resist steam to an exposure of at least 100 h at 700 0 C (1292 0 F) and to resist repetitive thermal transients of 300 0 C/s (540 0 F). Procedures were also developed for induction brazing the instrumentation cables to a stainless steel end cap and for laser welding this component to the brazed sensor body itself. Cable end seals and sensor bodies fabricated with these designs and techniques maintained excellent helium leaktightness ( -6 cm 3 /s) after 20 severe thermal shock tests from 500 0 C air into water at 80 0 C

  7. Openness to experience and adapting to change: Cardiovascular stress habituation to change in acute stress exposure.

    Science.gov (United States)

    Ó Súilleabháin, Páraic S; Howard, Siobhán; Hughes, Brian M

    2018-05-01

    Underlying psychophysiological mechanisms of effect linking openness to experience to health outcomes, and particularly cardiovascular well-being, are unknown. This study examined the role of openness in the context of cardiovascular responsivity to acute psychological stress. Continuous cardiovascular response data were collected for 74 healthy young female adults across an experimental protocol, including differing counterbalanced acute stressors. Openness was measured via self-report questionnaire. Analysis of covariance revealed openness was associated with systolic blood pressure (SBP; p = .016), and diastolic blood pressure (DBP; p = .036) responsivity across the protocol. Openness was also associated with heart rate (HR) responding to the initial stress exposure (p = .044). Examination of cardiovascular adaptation revealed that higher openness was associated with significant SBP (p = .001), DBP (p = .009), and HR (p = .002) habituation in response to the second differing acute stress exposure. Taken together, the findings suggest persons higher in openness are characterized by an adaptive cardiovascular stress response profile within the context of changing acute stress exposures. This study is also the first to demonstrate individual differences in cardiovascular adaptation across a protocol consisting of differing stress exposures. More broadly, this research also suggests that future research may benefit from conceptualizing an adaptive fitness of openness within the context of change. In summary, the present study provides evidence that higher openness stimulates short-term stress responsivity, while ensuring cardiovascular habituation to change in stress across time. © 2017 Society for Psychophysiological Research.

  8. Fabrication of cotton fabric with superhydrophobicity and flame retardancy.

    Science.gov (United States)

    Zhang, Ming; Wang, Chengyu

    2013-07-25

    A simple and facile method for fabricating the cotton fabric with superhydrophobicity and flame retardancy is described in the present work. The cotton fabric with the maximal WCA of 160° has been prepared by the covalent deposition of amino-silica nanospheres and the further graft with (heptadecafluoro-1,1,2,2-tetradecyl) trimethoxysilane. The geometric microstructure of silica spheres was measured by transmission electron microscopy (TEM). The cotton textiles before and after treatment were characterized by using scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The wetting behavior of cotton samples was investigated by water contact angle measurement. Moreover, diverse performances of superhydrophobic cotton textiles have been evaluated as well. The results exhibited the outstanding superhydrophobicity, excellent waterproofing durability and flame retardancy of the cotton fabric after treatment, offering a good opportunity to accelerate the large-scale production of superhydrophobic textiles materials for new industrial applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Occupational exposure to radon progeny: Importance, experience with control, regulatory approaches

    International Nuclear Information System (INIS)

    Kraus, W.; Schwedt, J.

    2002-01-01

    An overview of possible occupational exposures to enhanced natural radiation in Germany is given, based on an analysis of the German Radiological Protection Commission. So far, the most significant exposure source is radon at underground and above ground workplaces. As a result of relevant regulations, in East Germany since the 70's a systematic monitoring of exposures to radon progeny has been introduced step by step in the uranium industry, in conventional ore mining, in show caves and mines, in enterprises for securing mining areas against subsidence, in radon spas and in water works in radon affected areas. Individual exposures have been assessed. The monitoring results for the period 1975-1998 are presented. Successful protection measures leading to a significant reduction of the exposures are discussed. using workplace monitoring results and registered occupancy times. In West Germany no regulations in this area were in force. Nevertheless, voluntary measuring programmes at similar workplaces were carried out. In case of unacceptable exposures successful protection measures were implemented. At present a systematic approach to control occupational exposures to radon is laid down in the European Directive 96/29/Euratom which has to be taken over in the national legislation to come. The expected number of workplaces to be included in the radiation protection system in Germany, the recommendable way of including different workplace types taking into account appropriate reference levels, and possible approaches to a graded system of workplace and individual monitoring are discussed in detail. (author)

  10. Mechanical design and fabrication of pure-permanent magnet undulator

    International Nuclear Information System (INIS)

    Chouksey, Sanjay; Vinit Kumar; Abhay Kumar; Krishnagopal, Srinivas

    2003-01-01

    A 50 mm period, 2.5 m long (50 periods), pure permanent magnet, variable gap undulator using NdFeB magnets is being built in two sections, each 1.25 m long. We present details of the mechanical design, fabrication experience, assembly and inspection of the undulator. (author)

  11. Fabrication of an alumina torus for thermonuclear fusion containment

    International Nuclear Information System (INIS)

    Hauth, W.E.; Blake, R.D.; Dickinson, J.M.; Rutz, H.L.; Stoddard, S.D.

    1978-05-01

    A 235-cm-diam torus has been fabricated for plasma containment during thermonuclear fusion experiments. This 30-cm-diam torus consists of sixty 99.5%-alumina segments, 80% of which are assembled by forming vacuum-tight ceramic-to-ceramic seals. Selection of sealing materials and techniques are discussed

  12. Recent advances in fuel fabrication techniques and prospects for the nineties

    International Nuclear Information System (INIS)

    Frain, R.G.; Caudill, H.L.; Faulhaber, R.

    1987-01-01

    Advanced Nuclear Fuels Corporation's approach and experience with the application of a flexible, just-in-time manufacturing philosophy to the production of customized nuclear fuel is described. Automation approaches to improve productivity are described. The transfer of technology across product lines is discussed as well as the challenges presented by a multiple product fabrication facility which produces a wide variety of BWR and PWR designs. This paper also describes the method of managing vendor quality control programs in support of standardization and clarity of documentation. Process simplification and the ensuing experience are discussed. Prospects for fabrication process advancements in the nineties are given with emphasis on the benefits of dry conversion of UF 6 to UO 2 powder, and increased use of automated and computerized inspection techniques. (author)

  13. Nuclear Fabrication Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Levesque, Stephen [EWI, Columbus, OH (United States)

    2013-04-05

    This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectively engage with each other and rebuild the capacity of this supply chain by : Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. Supporting industry in helping to create a larger qualified nuclear supplier network. Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication Consortium

  14. Fire-Resistant Hydrogel-Fabric Laminates: A Simple Concept That May Save Lives.

    Science.gov (United States)

    Illeperuma, Widusha R K; Rothemund, Philipp; Suo, Zhigang; Vlassak, Joost J

    2016-01-27

    There is a large demand for fabrics that can survive high-temperature fires for an extended period of time, and protect the skin from burn injuries. Even though fire-resistant polymer fabrics are commercially available, many of these fabrics are expensive, decompose rapidly, and/or become very hot when exposed to high temperatures. We have developed a new class of fire-retarding materials by laminating a hydrogel and a fabric. The hydrogel contains around 90% water, which has a large heat capacity and enthalpy of vaporization. When the laminate is exposed to fire, a large amount of energy is absorbed as water heats up and evaporates. The temperature of the hydrogel cannot exceed 100 °C until it is fully dehydrated. The fabric has a low thermal conductivity and maintains the temperature gradient between the hydrogel and the skin. The laminates are fabricated using a recently developed tough hydrogel to ensure integrity of the laminate during processing and use. A thermal model predicts the performance of the laminates and shows that they have excellent heat resistance in good agreement with experiments, making them viable candidates in life saving applications such as fire-resistant blankets or apparel.

  15. Radiological control aspects of the fabrication of the Light Water Breeder Reactor core (LWBR Development Program)

    International Nuclear Information System (INIS)

    Schultz, B.G.

    1979-05-01

    A description is presented of the radiological control aspects of the fabrication of the Light Water Breeder Reactor (LWBR) core. Included are the radiological control criteria applied for the design and use of fabrication facilities, the controls and limits imposed to minimize radiaion exposure to personnel, and an evaluation of the applied radiological program in meeting the program objectives. The goal of the LWBR program is to develop the technology to breed in light water reactors so that nuclear fuel may be used significantly more efficiently in these reactors. This technology is being developed by designing and fabricating a breeder reactor core, utilizing thoria (ThO 2 ) and binary thoria--urania (ThO 2 - 233 UO 2 ) fuel, to be operated in the existing pressurized water reactor plant owned by the Department of Energy at Shippingport, Pennsylvania

  16. Fabrication of 3D polymer photonic crystals for near-IR applications

    Science.gov (United States)

    Yao, Peng; Qiu, Liang; Shi, Shouyuan; Schneider, Garrett J.; Prather, Dennis W.; Sharkawy, Ahmed; Kelmelis, Eric

    2008-02-01

    Photonic crystals[1, 2] have stirred enormous research interest and became a growing enterprise in the last 15 years. Generally, PhCs consist of periodic structures that possess periodicity comparable with the wavelength that the PhCs are designed to modulate. If material and periodic pattern are properly selected, PhCs can be applied to many applications based on their unique properties, including photonic band gaps (PBG)[3], self-collimation[4], super prism[5], etc. Strictly speaking, PhCs need to possess periodicity in three dimensions to maximize their advantageous capabilities. However, many current research is based on scaled two-dimensional PhCs, mainly due to the difficulty of fabrication such three-dimensional PhCs. Many approaches have been explored for the fabrication of 3D photonic crystals, including layer-by-layer surface micromachining[6], glancing angle deposition[7], 3D micro-sculpture method[8], self-assembly[9] and lithographical methods[10-12]. Among them, lithographic methods became increasingly accepted due to low costs and precise control over the photonic crystal structure. There are three mostly developed lithographical methods, namely X-ray lithography[10], holographic lithography[11] and two-photon polymerization[12]. Although significant progress has been made in developing these lithography-based technologies, these approaches still suffer from significant disadvantages. X-ray lithography relies on an expensive radiation source. Holographic lithography lacks the flexibility to create engineered defects, and multi-photon polymerization is not suitable for parallel fabrication. In our previous work, we developed a multi-layer photolithography processes[13, 14] that is based on multiple resist application and enhanced absorption upon exposure. Using a negative lift-off resist (LOR) and 254nm DUV source, we have demonstrated fabrication of 3D arbitrary structures with feature size of several microns. However, severe intermixing problem

  17. Fabrication of lithium ceramic pellets, rings and single crystals for irradiation in BEATRIX-II

    International Nuclear Information System (INIS)

    Slagle, O.D.; Noda, K.; Takahashi, T.

    1989-04-01

    BEATRIX-II is an IEA sponsored experiment of lithium ceramic solid breeder materials in the FFTF/MOTA. Li 2 O solid pellets and annular ring specimens were fabricated for in-situ tritium release tests. In addition, a series of single crystal and polycrystalline lithium ceramic samples were fabricated to determine the irradiation behavior and beryllium compatibility. 6 refs., 10 figs., 4 tabs

  18. Increased mortality exposure within the family rather than individual mortality experiences triggers faster life-history strategies in historic human populations

    NARCIS (Netherlands)

    Störmer, Charlotte; Lummaa, Virpi

    2014-01-01

    impact of family versus individual-level effects of mortality exposure on two central life-history parameters, ages at first marriage and first birth, in three historical human populations (Germany, Finland, Canada). Mortality experience is measured as the confrontation with sibling deaths within

  19. Fabrication of modified lithium orthosilicate pebbles by addition of titania

    Energy Technology Data Exchange (ETDEWEB)

    Knitter, R., E-mail: regina.knitter@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-WPT), Karlsruhe, 76021 (Germany); Kolb, M.H.H.; Kaufmann, U. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-WPT), Karlsruhe, 76021 (Germany); Goraieb, A.A. [Goraieb Versuchstechnik (GVT), Karlsruhe, 76227 (Germany)

    2013-11-15

    Highlights: ► Lithium orthosilicate pebbles with additions of titania were fabricated by a modified melt-based process. ► The fabricated pebbles exhibit a very fine-grained microstructure with lithium metatitanate as a secondary phase. ► Due to the addition of titanate, the crush load of the pebbles was significantly increased. ► The closed porosity was found to be slightly increased with increasing titanate content. -- Abstract: Lithium orthosilicate pebbles are one of the ceramic tritium breeder materials destined for the European solid breeder test blanket modules of ITER, the large-scale scientific experiment intended to prove the viability of fusion as an energy source, presently under construction in Cadarache, France. While the current reference material is fabricated by melt-spraying with 2.5 wt.% excess of silica, resulting in a two-phase material of lithium orthosilicate and metasilicate, a modified melt-based process was used to fabricate breeder pebbles with additions of titania in order to obtain pebbles with lithium metatitanate as a secondary phase. The fabricated two-phase pebbles exhibit a fine-grained microstructure and increased crush loads. The optimum titanate content has yet to be evaluated, nonetheless the pebbles may have the potential to combine the advantages of both lithium orthosilicate and metatitanate breeder ceramics.

  20. Surface activation of dyed fabric for cellulase treatment.

    Science.gov (United States)

    Schimper, Christian B; Ibanescu, Constanta; Bechtold, Thomas

    2011-10-01

    Surface activation of fabric made from cellulose fibres, such as viscose, lyocell, modal fibres and cotton, can be achieved by printing of a concentrated NaOH-containing paste. From the concentration of reducing sugars formed in solution, an increase in intensity of the cellulase hydrolysis by a factor of six to eight was observed, which was mainly concentrated at the activated parts of the fabric surface. This method of local activation is of particular interest for modification of materials that have been dyed with special processes to attain an uneven distribution of dyestuff within the yarn cross-section, e.g., indigo ring-dyed denim yarn for jeans production. Fabrics made from regenerated cellulose fibres were used as model substrate to express the effects of surface activation on indigo-dyed material. Wash-down experiments on indigo-dyed denim demonstrated significant colour removal from the activated surface at low overall weight loss of 4-5%. The method is of relevance for a more eco-friendly processing of jeans in the garment industry. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. New polymorphous computing fabric

    International Nuclear Information System (INIS)

    Wolinski, Christophe; Gokhale, Maya; McCabe, Kevin P.

    2002-01-01

    This paper introduces a new polymorphous computing Fabric well suited to DSP and Image Processing and describes its implementation on a Configurable System on a Chip (CSOC). The architecture is highly parameterized and enables customization of the synthesized Fabric to achieve high performance for a specific class of application. For this reason it can be considered to be a generic model for hardware accelerator synthesis from a high level specification. Another important innovation is the Fabric uses a global memory concept, which gives the host processor random access to all the variables and instructions on the Fabric. The Fabric supports different computing models including MIMD, SPMD and systolic flow and permits dynamic reconfiguration. We present a specific implementation of a bank of FIR filters on a Fabric composed of 52 cells on the Altera Excalibur ARM running at 33 MHz. The theoretical performance of this Fabric is 1.8 GMACh. For the FIR application we obtain 1.6 GMAC/s real performance. Some automatic tools have been developed like the tool to provide a host access utility and assembler.

  2. Secure Automated Fabrication: an overview of remote breeder fuel fabrication

    International Nuclear Information System (INIS)

    Nyman, D.H.; Graham, R.A.

    1983-10-01

    The Secure Automated Fabrication (SAF) line is an automated, remotely controlled breeder fuel pin fabrication process which is to be installed in the Fuels and Materials Examination Facility (FMEF). The FMEF is presently under construction at Hanford and is scheduled for completion in 1984. The SAF line is scheduled for startup in 1987 and will produce mixed uranium-plutonium fuel pins for the Fast Flux Test Facility (FFTF) and the Clinch River Breeder Reactor Plant (CRBRP). The fabrication line and support systems are described

  3. Exposure to a heat wave under food limitation makes an agricultural insecticide lethal: a mechanistic laboratory experiment

    DEFF Research Database (Denmark)

    Dinh, Khuong Van; Janssens, Lizanne; Stoks, Robby

    2016-01-01

    Extreme temperatures and exposure to agricultural pesticides are becoming more frequent and intense under global change. Their combination may be especially problematic when animals suffer food limitation. We exposed Coenagrion puella damselfly larvae to a simulated heat wave combined with food...... limitation and subsequently to a widespread agricultural pesticide (chlorpyrifos) in an indoor laboratory experiment designed to obtain mechanistic insights in the direct effects of these stressors in isolation and when combined. The heat wave reduced immune function (activity of phenoloxidase, PO...... variables. While the immediate effects of the heat wave were subtle, our results indicate the importance of delayed effects in shaping the total fitness impact of a heat wave when followed by pesticide exposure. Firstly, the combination of delayed negative effects of the heat wave and starvation...

  4. Occupational risk and lifetime exposure

    International Nuclear Information System (INIS)

    Lapp, R.E.

    1991-01-01

    Any lowering of annual radiation limits for occupational exposure should be based on industry experience with lifetime doses and not on a worst case career exposure of 47 years. Two decades of experience show a lifetime accumulation of less than 1.5 rem for workers with measurable exposure. This is 5% of the normal lifetime exposure of Americans to natural and medical radiation. Any epidemiology of the US nuclear power workforce's two decade long exposure would have to focus on excess leukemia. Application of the Hiroshima and Nagasaki cancer mortality shows that too few leukemias would be expressed to permit a feasible epidemiology. Ionizing radiation appears to be a mild carcinogen as compared to physical and chemical agents presented in the occupational environment. A realistic factor in determining any change in occupational exposure limits for ionizing radiation should take into account the past performance of the licensee and potential health effects applicable to the workplace. Specifically, the lifetime exposure data for workers at nuclear power plants and naval shipyards should be considered. The nuclear industry and the US Navy have detailed data on the annual exposure of workers with a combined collective exposure approaching 1 million worker-rem. The lifetime dose for naval personnel and shipyard workers averages 1.1 rem J 1990. Shipyard workers have an annual dose of 0.28 rem per work-year and a mean exposure time of 4.4 years. The data apply to workers with measurable dose

  5. Plasma treatment of polyester fabric to impart the water repellency ...

    Indian Academy of Sciences (India)

    test method 39 (1971). ... pilot production line [7]. It is found that prior .... experiment was set up for testing the absorbancy of modified polyester fabric as in case of .... New Delhi for providing the research grant under TAPTEC scheme. We are ...

  6. Drop Impact on Textile Material: Effect of Fabric Properties

    Directory of Open Access Journals (Sweden)

    Romdhani Zouhaier

    2014-09-01

    Full Text Available This paper presents an experimental study of impact of water drop on a surface in a spreading regime with no splashing. Three surfaces were studied: virgin glass, coating film and woven cotton fabric at different construction parameters. All experiments were carried out using water drop with the same free fall high. Digidrop with high-resolution camera is used to measure the different parameters characterising this phenomenon. Results show an important effect of the height of the free fall on the drop profile and the spreading behaviour. An important drop deformation at the surface impact was observed. Then, fabric construction as the weft count deeply affects the drop impact. For plain weave, an increase of weft count causes a decrease in penetration and increase in the spreading rate. The same result was obtained for coated fabric. Therefore, the impact energy was modified and the drop shape was affected, which directly influenced the spreading rate.

  7. Fabric Reconstruction Based on Sustainable Development: Take the Type of Fabric Recycling as an Example

    Directory of Open Access Journals (Sweden)

    Zhangting Guan

    2017-07-01

    Full Text Available Sustainable development is a very important concept of our time, it wants to do is to live in harmony with people, to protect the environment where our human survival. Fabric recycling refers to the use of a variety of traditional and high-tech means of the existing fabric fabric design and processing. So that the surface of a rich visual texture and tactile texture "through the fabric recycling approach. However, the fabric form and clothing design coordination between the clothing design is essential to the link! Garment fabric is not only the material basis of clothing modeling But also an important form of plastic arts. Fabric recycling art has gradually become a new breakthrough point of fashion design! And become an important means to increase the added value of clothing products. But at the same time fabric recycling also follow the concept of sustainable development. This paper analyzes the relationship between fabric reengineering and sustainable development. Combined with practice to explore the fabric processing technology and its creative ideas and some of its environmental performance.

  8. Exposure to Traumatic Experiences Among Asylum Seekers from Eritrea and Sudan During Migration to Israel.

    Science.gov (United States)

    Nakash, Ora; Langer, Benjamin; Nagar, Maayan; Shoham, Shahar; Lurie, Ido; Davidovitch, Nadav

    2015-08-01

    Little is known about the experiences of displaced individuals en route to destination countries. We investigated the reported prevalence of exposure to traumatic experiences during migration among a consecutive sample of adult asylum seekers (n = 895 Eritrean, n = 149 Sudanese) who sought health services in the Physicians for Human Rights Open-Clinic in Israel. Percentage of Eritrean and Sudanese men and women who reported witnessing violence (Eritrea: men: 41.3 %, women: 29.3 %; Sudan: men: 16.8 %, women: 22.2 %) and/or being a victim of violence (Eritrea: men: 56.0 %, Women: 34.9 %; Sudan: men: 51.9 % women: 44.4 %) during migration varied by gender and country of origin. Findings highlight the need for a well-coordinated international cooperation to document and prevent these transgressions.

  9. Progress in the Development of a High Power Helicon Plasma Source for the Materials Plasma Exposure Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Goulding, Richard Howell [ORNL; Caughman, John B. [ORNL; Rapp, Juergen [ORNL; Biewer, Theodore M. [ORNL; Bigelow, Tim S. [ORNL; Campbell, Ian H. [ORNL; Caneses Marin, Juan F. [ORNL; Donovan, David C. [ORNL; Kafle, Nischal [ORNL; Martin, Elijah H. [ORNL; Ray, Holly B. [ORNL; Shaw, Guinevere C. [ORNL; Showers, Melissa A. [ORNL

    2017-09-01

    Proto-MPEX is a linear plasma device being used to study a novel RF source concept for the planned Material Plasma Exposure eXperiment (MPEX), which will address plasma-materials interaction (PMI) for nuclear fusion reactors. Plasmas are produced using a large diameter helicon source operating at a frequency of 13.56 MHz at power levels up to 120 kW. In recent experiments the helicon source has produced deuterium plasmas with densities up to ~6 × 1019 m–3 measured at a location 2 m downstream from the antenna and 0.4 m from the target. Previous plasma production experiments on Proto-MPEX have generated lower density plasmas with hollow electron temperature profiles and target power deposition peaked far off axis. The latest experiments have produced flat Te profiles with a large portion of the power deposited on the target near the axis. This and other evidence points to the excitation of a helicon mode in this case.

  10. Fabrication of mm-wave undulator cavities using deep x-ray lithography

    International Nuclear Information System (INIS)

    Song, J.; Feinerman, A.; Kang, Y.; Kustom, R.; Lai, B.; Nassiri, A.; White, V.; Well, G.M.

    1996-01-01

    The possibility of fabricating mm-wave radio frequency cavities (100 endash 300 GHz) using deep x-ray lithography (DXRL) is being investigated. The fabrication process includes manufacture of precision x-ray masks, exposure of positive resist by x-ray through the mask, resist development, and electroforming of the final microstructure. Highly precise, two-dimensional features can be machined onto wafers using DXRL. Major challenges are: fabrication of the wafers into three-dimensional rf structures; alignment and overlay accuracy of structures; adhesion of the PMMA on the copper substrate; and selection of a developer to obtain high resolution. Rectangular cavity geometry is best suited to this fabrication technique. A 30- or 84-cell 108-GHz mm-wave structure can serve as an electromagnetic undulator. A mm-wave undulator, which will be discussed later, may have special features compared to the conventional undulator. First harmonic undulator radiation at 5.2 keV would be possible using the Advanced Photon Source (APS) linac system, which provides a low-emittance electron beam by using an rf thermionic gun with an energy as high as 750 MeV. More detailed rf simulation, heat extraction analysis, beam dynamics using a mm-wave structure, and measurements on 10x larger scale models can be found in these proceedings [Y.W. Kang et al., open-quote open-quote Design and Construction of Planar mm-wave Accelerating Cavity Structures close-quote close-quote] copyright 1996 American Institute of Physics

  11. Los Alamos National Laboratory summary plan to fabricate mixed oxide lead assemblies for the fissile material disposition program

    International Nuclear Information System (INIS)

    Buksa, J.J.; Eaton, S.L.; Trellue, H.R.; Chidester, K.; Bowidowicz, M.; Morley, R.A.; Barr, M.

    1997-12-01

    This report summarizes an approach for using existing Los Alamos National Laboratory (Laboratory) mixed oxide (MOX) fuel-fabrication and plutonium processing capabilities to expedite and assure progress in the MOX/Reactor Plutonium Disposition Program. Lead Assembly MOX fabrication is required to provide prototypic fuel for testing in support of fuel qualification and licensing requirements. It is also required to provide a bridge for the full utilization of the European fabrication experience. In part, this bridge helps establish, for the first time since the early 1980s, a US experience base for meeting the safety, licensing, safeguards, security, and materials control and accountability requirements of the Department of Energy and Nuclear Regulatory Commission. In addition, a link is needed between the current research and development program and the production of disposition mission fuel. This link would also help provide a knowledge base for US regulators. Early MOX fabrication and irradiation testing in commercial nuclear reactors would provide a positive demonstration to Russia (and to potential vendors, designers, fabricators, and utilities) that the US has serious intent to proceed with plutonium disposition. This report summarizes an approach to fabricating lead assembly MOX fuel using the existing MOX fuel-fabrication infrastructure at the Laboratory

  12. Los Alamos National Laboratory summary plan to fabricate mixed oxide lead assemblies for the fissile material disposition program

    Energy Technology Data Exchange (ETDEWEB)

    Buksa, J.J.; Eaton, S.L.; Trellue, H.R.; Chidester, K.; Bowidowicz, M.; Morley, R.A.; Barr, M.

    1997-12-01

    This report summarizes an approach for using existing Los Alamos National Laboratory (Laboratory) mixed oxide (MOX) fuel-fabrication and plutonium processing capabilities to expedite and assure progress in the MOX/Reactor Plutonium Disposition Program. Lead Assembly MOX fabrication is required to provide prototypic fuel for testing in support of fuel qualification and licensing requirements. It is also required to provide a bridge for the full utilization of the European fabrication experience. In part, this bridge helps establish, for the first time since the early 1980s, a US experience base for meeting the safety, licensing, safeguards, security, and materials control and accountability requirements of the Department of Energy and Nuclear Regulatory Commission. In addition, a link is needed between the current research and development program and the production of disposition mission fuel. This link would also help provide a knowledge base for US regulators. Early MOX fabrication and irradiation testing in commercial nuclear reactors would provide a positive demonstration to Russia (and to potential vendors, designers, fabricators, and utilities) that the US has serious intent to proceed with plutonium disposition. This report summarizes an approach to fabricating lead assembly MOX fuel using the existing MOX fuel-fabrication infrastructure at the Laboratory.

  13. Fabrication of Metallic Microneedle by Electroplating and Sharpening of it by Electrochemical Etching

    Science.gov (United States)

    Huang, Chih-Hao; Tanaka, Takahiro; Takaoki, Yutaka; Izumi, Hayato; Takahashi, Tomokazu; Suzuki, Masato; Aoyagi, Seiji

    Aiming at the use in low-invasive medical treatments, this paper reports a fabrication of metallic microneedle, which has a three-dimensionally sharp tip. Compared to a silicon or polymer needle which we previously proposed, a metallic needle has toughness to evade breakage. Even if it is broken, it does not become small pieces thanks to its ductility, which increases the safety for a human body. A nickel needle was fabricated using electroplating, followed by sharpening it by electrochemical etching. A smooth tip surface is obtained due to electrochemical etching reactions. Sharpness and smoothness of the tip are effective for easy insertion in the viewpoint of large stress concentration and small friction, respectively. An experiment of inserting the fabricated needle into an artificial skin of silicone rubber was carried out. The resistance force during insertion was much reduced compared to that of commercial stainless needle (23 G: shank diameter 650 µm). Although a fabricated metallic needle was inserted and pulled-out for several times, it was not broken in any trial. By changing the angle between object surface and needle axis, the insertion experiments were carried out. Fabricated nickel needle was not broken for any angle, while silicon needle was broken in case the angle is small, i.e., the needle is much inclined from normal direction of the surface, which ensures the safety of metallic microneedle to human body in the viewpoint of breakage.

  14. Optimum processing parameters for the fabrication of twill flax fabric-reinforced polypropylene (PP) composites

    Science.gov (United States)

    Zuhudi, Nurul Zuhairah Mahmud; Minhat, Mulia; Shamsuddin, Mohd Hafizi; Isa, Mohd Dali; Nur, Nurhayati Mohd

    2017-12-01

    In recent years, natural fabric thermoplastic composites such as flax have received much attention due to its attractive capabilities for structural applications. It is crucial to study the processing of flax fabric materials in order to achieve good quality and cost-effectiveness in fibre reinforced composites. Though flax fabric has been widely utilized for several years in composite applications due to its high strength and abundance in nature, much work has been concentrated on short flax fibre and very little work focused on using flax fabric. The effectiveness of the flax fabric is expected to give higher strength performance due to its structure but the processing needs to be optimised. Flax fabric composites were fabricated using compression moulding due to its simplicity, gives good surface finish and relatively low cost in terms of labour and production. Further, the impregnation of the polymer into the fabric is easier in this process. As the fabric weave structure contributes to the impregnation quality which leads to the overall performance, the processing parameters of consolidation i.e. pressure, time, and weight fraction of fabric were optimized using the Taguchi method. This optimization enhances the consolidation quality of the composite by improving the composite mechanical properties, three main tests were conducted i.e. tensile, flexural and impact test. It is observed that the processing parameter significantly affected the consolidation and quality of composite.

  15. An integrated biomarker response index for the mussel Mytilus edulis based on laboratory exposure to anthracene and field transplantation experiments

    Science.gov (United States)

    Yuan, Mengqi; Wang, You; Zhou, Bin; Jian, Xiaoyang; Dong, Wenlong; Tang, Xuexi

    2017-09-01

    Organic pollution is a serious environmental problem in coastal areas and it is important to establish quantitative methods for monitoring this pollution. This study screened a series of sensitive biomarkers to construct an integrated biomarker response (IBR) index using Mytilus edulis. Mussels were exposed to the polycyclic aromatic hydrocarbon anthracene under controlled laboratory conditions and the activities of components of the glutathione antioxidant system, and the concentrations of oxidative-damage markers, were measured in the gills and digestive glands. Anthracene exposure resulted in increased levels of malondialdehyde (MDA) and superoxide radicals (O 2 • ), indicating that oxidative damage had occurred. Correspondingly, anthracene exposure induced increased activities of glutathione S-transferase (GST), glutathione peroxidase (GPx) and reduced glutathione (GSH) in digestive glands, and GPx and glutathione reductase (GR) in gills, consistent with stimulation of the antioxidant system. A field experiment was set up, in which mussels from a relatively clean area were transplanted to a contaminated site. One month later, the activities of GST, GPx and GR had increased in several tissues, particularly in the digestive glands. Based on the laboratory experiment, an IBR, which showed a positive relationship with anthracene exposure, was constructed. The IBR is suggested to be a potentially useful tool for assessing anthracene pollution.

  16. Individual monitoring of internal exposure to uranium oxides in two fuel fabrication plants

    International Nuclear Information System (INIS)

    Bourdeix, F.; Achiary, J.; Berard, P.

    1989-01-01

    Individual monitoring of personal exposure to inhalation of uranium oxides throughout the manufacture of fuel for pressurized water reactor (PWR) includes lung gamma-spectrometry, fecal analysis and urine analysis. Examination of the results shows the following: internal exposure is the consequence of repeated intake incidents as revealed by early peaks of urinary and particularly fecal elimination; a shift is often observed with the results of aerosol concentration measured through air collectors; the measured variations of uranium lung incorporations are relatively fast (apparent mean period 165 d). Correct evaluation of the effective dose equivalent from inhalation requires further information concerning the aerosol size distribution at work stations, the physico-chemical characteristics of the product leading to an estimate of its actual biological solubility, and the measurement of the fraction of aerosol liable to intake with an individual portable collector [fr

  17. Mechanical components: fabrication of major reactor structures

    International Nuclear Information System (INIS)

    Nicholson, S.

    1985-01-01

    The paper examines the validity of criticisms of quality assurance of mechanical plant and welded products within major reactor structures, taking into account experience gained on the AGR's. Various constructive recommendations are made aimed at furthering the objectives of quality assurance in the nuclear industry and making it more cost-effective. Current levels of quality related costs in the fabrication industry are provided as a basis for discussion. (U.K.)

  18. International light water nuclear fuel fabrication supply. Are fabrication services assured?

    International Nuclear Information System (INIS)

    Rothwell, Geoffrey

    2010-01-01

    This paper examines the cost structure of fabricating light water reactor (LWR) fuel with low-enriched uranium (LEU, with less than 5% enrichment). The LWR-LEU fuel industry is decades old, and (except for the high entry cost of designing and licensing a fuel fabrication facility and its fuel), labor and additional fabrication lines can be added at Nth-of-a-Kind cost to the maximum capacity allowed by a site license. The industry appears to be competitive: nuclear fuel fabrication capacity is assured with many competitors and reasonable prices. However, nuclear fuel assurance has become an important issue for nations now to considering new nuclear power plants. To provide this assurance many proposals equate 'nuclear fuel banks' (which would require fuel for specific reactors) with 'LEU banks' (where LEU could be blended into nuclear fuel with the proper enrichment) with local fuel fabrication. The policy issues (which are presented, but not answered in this paper) become (1) whether the construction of new nuclear fuel fabrication facilities in new nuclear power nations could lead to the proliferation of nuclear weapons, and (2) whether nuclear fuel quality can be guaranteed under current industry arrangements, given that fuel failure at one reactor can lead to forced shutdowns at many others. (author)

  19. Assessment and characterization of degradation effect for the varied degrees of ultra-violet radiation onto the collagen-bonded polypropylene non-woven fabric surfaces.

    Science.gov (United States)

    Tyan, Yu-Chang; Liao, Jiunn-Der; Klauser, Ruth; Wu, Ie-Der; Weng, Chih-Chiang

    2002-01-01

    Exposure to ultra-violet (UV)-C radiation is a frequently used method to prevent bacteria from invasion of blood-contact biomedical products. Potential damage induced by UV radiation to collagen is of concern due to the decay of bioactivity, considerably correlated with structural alterations. Our current investigation studies the collagen-bonded non-woven polypropylene (PP) fabric surface. In this experiment, antenna-coupling microwave plasma is utilized to activate PP fabric and then the sample is grafted with acrylic acid (AAc). Type III collagen is immobilized by using water soluble 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide as coupling agent. The collagen-bonded samples with sample temperature ca. 4 degrees C are then exposed to UV-254nm radiation for different time intervals. By using fourier-transformed infrared with attenuated total reflection (FTIR-ATR) and XPS (X-ray photoelectron spectroscopy), we examine the chemical structures of samples with different treatments. Coomassie brilliant blue G250 method is utilized to quantify the immobilized collagen on the PP fabric surfaces. Blood-clotting effects are evaluated by activated partial thromboplastin time, thrombin time, and fibrinogen concentration tests. By means of cell counter and scanning electron microscopy we count red blood cells and platelets adhesion in the modified porous matrix. Our experimental results have demonstrated that with pAAc-grafting of ca. 173 microg cm(-2) and immobilized collagen of 80.5+/-4.7 microg cm(-2), for human plasma incubated samples of various intervals of UV-254 nm radiation, fibrinogen concentration decreases in human plasma, while platelets and red blood cells adhesions increase before UV radiation. However, the required time for thrombination shows significant change for UV radiation exposure of less than 20 h (alpha = 0.05). The decay of bioactivity for the UV-irradiated, collagen-bonded surfaces is thus evaluated. Surface analyses indicate that the decrease of

  20. Enabling laboratory EUV research with a compact exposure tool

    Science.gov (United States)

    Brose, Sascha; Danylyuk, Serhiy; Tempeler, Jenny; Kim, Hyun-su; Loosen, Peter; Juschkin, Larissa

    2016-03-01

    In this work we present the capabilities of the designed and realized extreme ultraviolet laboratory exposure tool (EUVLET) which has been developed at the RWTH-Aachen, Chair for the Technology of Optical Systems (TOS), in cooperation with the Fraunhofer Institute for Laser Technology (ILT) and Bruker ASC GmbH. Main purpose of this laboratory setup is the direct application in research facilities and companies with small batch production, where the fabrication of high resolution periodic arrays over large areas is required. The setup can also be utilized for resist characterization and evaluation of its pre- and post-exposure processing. The tool utilizes a partially coherent discharge produced plasma (DPP) source and minimizes the number of other critical components to a transmission grating, the photoresist coated wafer and the positioning system for wafer and grating and utilizes the Talbot lithography approach. To identify the limits of this approach first each component is analyzed and optimized separately and relations between these components are identified. The EUV source has been optimized to achieve the best values for spatial and temporal coherence. Phase-shifting and amplitude transmission gratings have been fabricated and exposed. Several commercially available electron beam resists and one EUV resist have been characterized by open frame exposures to determine their contrast under EUV radiation. Cold development procedure has been performed to further increase the resist contrast. By analyzing the exposure results it can be demonstrated that only a 1:1 copy of the mask structure can be fully resolved by the utilization of amplitude masks. The utilized phase-shift masks offer higher 1st order diffraction efficiency and allow a demagnification of the mask structure in the achromatic Talbot plane.

  1. A sacrificial process for fabrication of biodegradable polymer membranes with submicron thickness.

    Science.gov (United States)

    Beardslee, Luke A; Stolwijk, Judith; Khaladj, Dimitrius A; Trebak, Mohamed; Halman, Justin; Torrejon, Karen Y; Niamsiri, Nuttawee; Bergkvist, Magnus

    2016-08-01

    A new sacrificial molding process using a single mask has been developed to fabricate ultrathin 2-dimensional membranes from several biocompatible polymeric materials. The fabrication process is similar to a sacrificial microelectromechanical systems (MEMS) process flow, where a mold is created from a material that can be coated with a biodegradable polymer and subsequently etched away, leaving behind a very thin polymer membrane. In this work, two different sacrificial mold materials, silicon dioxide (SiO2 ) and Liftoff Resist (LOR) were used. Three different biodegradable materials; polycaprolactone (PCL), poly(lactic-co-glycolic acid) (PLGA), and polyglycidyl methacrylate (PGMA), were chosen as model polymers. We demonstrate that this process is capable of fabricating 200-500 nm thin, through-hole polymer membranes with various geometries, pore-sizes and spatial features approaching 2.5 µm using a mold fabricated via a single contact photolithography exposure. In addition, the membranes can be mounted to support rings made from either SU8 or PCL for easy handling after release. Cell culture compatibility of the fabricated membranes was evaluated with human dermal microvascular endothelial cells (HDMECs) seeded onto the ultrathin porous membranes, where the cells grew and formed confluent layers with well-established cell-cell contacts. Furthermore, human trabecular meshwork cells (HTMCs) cultured on these scaffolds showed similar proliferation as on flat PCL substrates, further validating its compatibility. All together, these results demonstrated the feasibility of our sacrificial fabrication process to produce biocompatible, ultra-thin membranes with defined microstructures (i.e., pores) with the potential to be used as substrates for tissue engineering applications. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1192-1201, 2016. © 2015 Wiley Periodicals, Inc.

  2. Fruit-flies in low-dose exposure experiments

    International Nuclear Information System (INIS)

    Zajnullin, V.G.; Moskalev, A.A.; Shaposhnikov, M.V.; Sheptyakova, A.I.

    2002-01-01

    In vivo exposure of fruit-flies of Drosophila melanogaster line to low doses provided new data indicating that mechanisms of induced genetic instability are involved in radiation-induced alteration of genotype. It is true for increase of genetic variance due to change in transposition number, for change in adaptation capabilities due to modification of gene expression, and for mutability-associated reparation and apoptosis. (author)

  3. Mechanical design and fabrication processes for the ALS third-harmonic cavities

    International Nuclear Information System (INIS)

    Franks, M.; Henderson, T.; Hernandez, K.; Otting, D.; Plate, D.; Rimmer, R.

    1999-01-01

    It is planned to install five third-harmonic (1.5 GHz) RF Cavities in May/June 1999 as an upgrade to the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory (LBNL). This paper presents mechanical design features, their experiences in using electronic design models to expedite the manufacturing process, and the fabrication processes employed to produce these cavities for the ALS. They discuss some of the lessons learned from the PEP-II RF Cavity design and fabrication, and outline the improvements incorporated in the new design. They also report observations from the current effort

  4. Detecting exposure to environmental organic toxins in individual cells: towards development of a micro-fabricated device

    International Nuclear Information System (INIS)

    Holman, Hoi-Ying N.; Zhang, Miqin; Goth-Goldstein, Regine; Martin, Michael C.; Russell, Marion; McKinney, Wayne R.; Ferrari, Mauro; Hunter-Cevera, Jennie C.

    1999-01-01

    A new method is being developed to quickly screen for the human exposure potential to polycyclic aromatic hydrocarbons (PAHs) and organochlorines (OCs). The development involves two key elements: identifying suitable signals that represent intracellular changes that are specific to PAH and OC exposure, and constructing a device to guide the biological cell growth so that signals from individual cells are consistent and reproducible. We are completing the identification of suitable signals by using synchrotron radiation-based (SR) Fourier-transform infrared (FTIR) spectromicroscopy in the mid-infrared region (4000-400 cm-1). Distinct changes have been observed in the IR spectra after treatment of human cells in culture medium with PAHs and OCs. The potential use of this method for detecting exposure to PAHs and OCs has been tested and compared to a reverse transcription polymerase chain reaction (RT-PCR) assay that quantifies increased expression of the CYP1A1 gene in response to exposure to PAHs or OCs

  5. Plasma-assisted quartz-to-quartz direct bonding for the fabrication of a multilayered quartz template for nanoimprint lithography

    International Nuclear Information System (INIS)

    Lee, Jihye; Ali, Altun; Kim, Ki-don; Choi, Dae-guen; Choi, Jun-Hyuk; Jeong, Jun-ho; Kim, Jae-Hyun

    2010-01-01

    In this paper, a low-temperature plasma-assisted process is developed to realize a uniform, ultraviolet (UV) transparent and chemically inert quartz-to-quartz direct bonding. Two sets of pretests are performed in order to understand how the bond surface energy changes with the plasma exposure time and the wet etching of quartz, respectively. The developed technique is used to fabricate a multilayered quartz template for UV nanoimprint lithography (UV-NIL). The multilayered quartz template is fabricated by bonding a square piece of a standard quartz wafer, which is about 625 µm in thickness, to a wet-etched 6.35 mm thick quartz photomask plate. A fabricated multilayered template is loaded to the commercial UV-NIL tool Imprio(TM) 100, and NIL was performed successfully. The developed direct bonding technique makes it possible for standard quartz wafers, which are compatible with high-resolution semiconductor fabrication processes, to be utilized as the templates in commercial UV-NIL machines with enhanced mechanical stability.

  6. Foreign Language Educators' Exposure to Research: Reported Experiences, Exposure via Citations, and a Proposal for Action

    Science.gov (United States)

    Marsden, Emma; Kasprowicz, Rowena

    2017-01-01

    This article reports on 2 connected studies that provide data about the flow of research to foreign language (FL) educators in majority Anglophone contexts. The first study investigated exposure to research among FL educators in the United Kingdom using 2 surveys (n = 391; n = 183). The data showed (a) some limited exposure to research via…

  7. Attentional Modulation of the Mere Exposure Effect

    Science.gov (United States)

    Yagi, Yoshihiko; Ikoma, Shinobu; Kikuchi, Tadashi

    2009-01-01

    The "mere exposure effect" refers to the phenomenon where previous exposures to stimuli increase participants' subsequent affective preference for those stimuli. This study explored the effect of selective attention on the mere exposure effect. The experiments manipulated the to-be-attended drawings in the exposure period (either red or green…

  8. A Confined Fabrication of Perovskite Quantum Dots in Oriented MOF Thin Film.

    Science.gov (United States)

    Chen, Zheng; Gu, Zhi-Gang; Fu, Wen-Qiang; Wang, Fei; Zhang, Jian

    2016-10-26

    Organic-inorganic hybrid lead organohalide perovskites are inexpensive materials for high-efficiency photovoltaic solar cells, optical properties, and superior electrical conductivity. However, the fabrication of their quantum dots (QDs) with uniform ultrasmall particles is still a challenge. Here we use oriented microporous metal-organic framework (MOF) thin film prepared by liquid phase epitaxy approach as a template for CH 3 NH 3 PbI 2 X (X = Cl, Br, and I) perovskite QDs fabrication. By introducing the PbI 2 and CH 3 NH 3 X (MAX) precursors into MOF HKUST-1 (Cu 3 (BTC) 2 , BTC = 1,3,5-benzene tricarboxylate) thin film in a stepwise approach, the resulting perovskite MAPbI 2 X (X = Cl, Br, and I) QDs with uniform diameters of 1.5-2 nm match the pore size of HKUST-1. Furthermore, the photoluminescent properties and stability in the moist air of the perovskite QDs loaded HKUST-1 thin film were studied. This confined fabrication strategy demonstrates that the perovskite QDs loaded MOF thin film will be insensitive to air exposure and offers a novel means of confining the uniform size of the similar perovskite QDs according to the oriented porous MOF materials.

  9. Persuasion Via Mere Exposure

    Science.gov (United States)

    Tucker, Raymond K.; Ware, Paul D.

    1971-01-01

    Describes an experiment which sought to effect persuasion by merely exposing subjects to the name of a stimulus object for a specified number of times. Through illustration, explains the theoretical basis and methodology employed in a mere exposure experiment. (Author)

  10. A facile fabrication of multifunctional knit polyester fabric based on chitosan and polyaniline polymer nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiaoning [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Tian, Mingwei [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); Qu, Lijun, E-mail: lijunqu@126.com [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); Zhu, Shifeng [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Guo, Xiaoqing [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); Han, Guangting [Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); and others

    2014-10-30

    Highlights: • Multifunctional knit polyester fabric was facile fabricated by the combination of pad-dry-cure process and in situ chemical polymerization route. • High electrical conductivity and efficient water-repellent properties were endowed to the polymer nanocomposite coated fabric. • The polymer nanocomposite coated fabric also performed efficient and durable photocatalytic activities under the illumination of ultraviolet light. - Abstract: Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric.

  11. A facile fabrication of multifunctional knit polyester fabric based on chitosan and polyaniline polymer nanocomposite

    International Nuclear Information System (INIS)

    Tang, Xiaoning; Tian, Mingwei; Qu, Lijun; Zhu, Shifeng; Guo, Xiaoqing; Han, Guangting

    2014-01-01

    Highlights: • Multifunctional knit polyester fabric was facile fabricated by the combination of pad-dry-cure process and in situ chemical polymerization route. • High electrical conductivity and efficient water-repellent properties were endowed to the polymer nanocomposite coated fabric. • The polymer nanocomposite coated fabric also performed efficient and durable photocatalytic activities under the illumination of ultraviolet light. - Abstract: Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric

  12. Long-Term CO2 Exposure Experiments - Geochemical Effects on Brine-Saturated Reservoir Sandstone

    Science.gov (United States)

    Fischer, Sebastian; Zemke, Kornelia; Liebscher, Axel; Wandrey, Maren

    2010-05-01

    The injection of CO2 into deep saline aquifers is the most promising strategy for the reduction of CO2 emissions to the atmosphere via long-term geological storage. The study is part of the CO2SINK project conducted at Ketzin, situated 40 km west of Berlin. There, food grade CO2 has been pumped into the Upper Triassic Stuttgart Formation since June 2008. The main objective of the experimental program is to investigate the effects of long-term CO2 exposure on the physico-chemical properties of the reservoir rock. To achieve this goal, core samples from observation well Ktzi 202 have been saturated with synthetic brine and exposed to CO2 in high quality steel autoclaves at simulated reservoir P-T-conditions of 5.5 MPa and 40 ° C. The synthetic brine had a composition representative of the formation fluid (Förster et al., 2006) of 172.8 g/l NaCl, 8.0 g/l MgCl2×2H2O, 4.8 g/l CaCl2×2H2O and 0.6 g/l KCl. After 15 months, the first set of CO2-exposed samples was removed from the pressure vessels. Thin sections, XRD, SEM as well as EMP data were used to determine the mineralogical features of the reservoir rocks before and after the experiments. Additionally, NMR relaxation and MP was performed to measure poroperm and pore size distribution values of the twin samples. The analyzed samples are fine- to medium grained, moderately well- to well sorted and weakly consolidated sandstones. Quartz and plagioclase are the major components, while K-feldspar, hematite, white & dark mica, chlorite and illite are present in minor and varying amounts. Cements are composed of analcime, dolomite and anhydrite. Some samples show mm- to cm-scale cross-beddings. The laminae comprise lighter, quartz- and feldspar-dominated layers and dark-brownish layers with notably less quartz and feldspars. The results are consistent with those of Blaschke et al. (2008). The plagioclase composition indicates preferred dissolution of the Ca-component and a trend toward albite-rich phases or even pure

  13. High-Strength Composite Fabric Tested at Structural Benchmark Test Facility

    Science.gov (United States)

    Krause, David L.

    2002-01-01

    Large sheets of ultrahigh strength fabric were put to the test at NASA Glenn Research Center's Structural Benchmark Test Facility. The material was stretched like a snare drum head until the last ounce of strength was reached, when it burst with a cacophonous release of tension. Along the way, the 3-ft square samples were also pulled, warped, tweaked, pinched, and yanked to predict the material's physical reactions to the many loads that it will experience during its proposed use. The material tested was a unique multi-ply composite fabric, reinforced with fibers that had a tensile strength eight times that of common carbon steel. The fiber plies were oriented at 0 and 90 to provide great membrane stiffness, as well as oriented at 45 to provide an unusually high resistance to shear distortion. The fabric's heritage is in astronaut space suits and other NASA programs.

  14. Fabrication of Games and Learning

    DEFF Research Database (Denmark)

    Schoenau-Fog, Henrik; Reng, Lars; Kofoed, Lise

    2015-01-01

    The concept of Game based learning has proven to have many possibilities for supporting better learning outcomes, when using educational or commercial games in the classroom. However, there is also a great potential in using game development as a motivator in several other kinds of learning...... scenarios. Using game development as an approach for including game based learning in various educations has become more accessible due to more user friendly game development tools and systems. This study will thus focus on an exploration on how game development motivates students and what they learn when...... creating games. We exemplify the potential of using game fabrication as a learning environment with the investigation of a game production, which involved over 25 students across semesters. In order to investigate students’ experiences during this purposive game production, we set up an experiment where...

  15. Fast exposure time decision in multi-exposure HDR imaging

    Science.gov (United States)

    Piao, Yongjie; Jin, Guang

    2012-10-01

    Currently available imaging and display system exists the problem of insufficient dynamic range, and the system cannot restore all the information for an high dynamic range (HDR) scene. The number of low dynamic range(LDR) image samples and fastness of exposure time decision impacts the real-time performance of the system dramatically. In order to realize a real-time HDR video acquisition system, this paper proposed a fast and robust method for exposure time selection in under and over exposure area which is based on system response function. The method utilized the monotony of the imaging system. According to this characteristic the exposure time is adjusted to an initial value to make the median value of the image equals to the middle value of the system output range; then adjust the exposure time to make the pixel value on two sides of histogram be the middle value of the system output range. Thus three low dynamic range images are acquired. Experiments show that the proposed method for adjusting the initial exposure time can converge in two iterations which is more fast and stable than average gray control method. As to the exposure time adjusting in under and over exposed area, the proposed method can use the dynamic range of the system more efficiently than fixed exposure time method.

  16. Single step sequential polydimethylsiloxane wet etching to fabricate a microfluidic channel with various cross-sectional geometries

    Science.gov (United States)

    Wang, C.-K.; Liao, W.-H.; Wu, H.-M.; Lo, Y.-H.; Lin, T.-R.; Tung, Y.-C.

    2017-11-01

    Polydimethylsiloxane (PDMS) has become a widely used material to construct microfluidic devices for various biomedical and chemical applications due to its desirable material properties and manufacturability. PDMS microfluidic devices are usually fabricated using soft lithography replica molding methods with master molds made of photolithogrpahy patterned photoresist layers on silicon wafers. The fabricated microfluidic channels often have rectangular cross-sectional geometries with single or multiple heights. In this paper, we develop a single step sequential PDMS wet etching process that can be used to fabricate microfluidic channels with various cross-sectional geometries from single-layer PDMS microfluidic channels. The cross-sections of the fabricated channel can be non-rectangular, and varied along the flow direction. Furthermore, the fabricated cross-sectional geometries can be numerically simulated beforehand. In the experiments, we fabricate microfluidic channels with various cross-sectional geometries using the developed technique. In addition, we fabricate a microfluidic mixer with alternative mirrored cross-sectional geometries along the flow direction to demonstrate the practical usage of the developed technique.

  17. The controlled fabrication of nanopores by focused electron-beam-induced etching

    International Nuclear Information System (INIS)

    Yemini, M; Ashkenasy, N; Hadad, B; Goldner, A; Liebes, Y

    2009-01-01

    The fabrication of nanometric holes within thin silicon-based membranes is of great importance for various nanotechnology applications. The preparation of such holes with accurate control over their size and shape is, thus, gaining a lot of interest. In this work we demonstrate the use of a focused electron-beam-induced etching (FEBIE) process as a promising tool for the fabrication of such nanopores in silicon nitride membranes and study the process parameters. The reduction of silicon nitride by the electron beam followed by chemical etching of the residual elemental silicon results in a linear dependence of pore diameter on electron beam exposure time, enabling accurate control of nanopore size in the range of 17-200 nm in diameter. An optimal pressure of 5.3 x 10 -6 Torr for the production of smaller pores with faster process rates, as a result of mass transport effects, was found. The pore formation process is also shown to be dependent on the details of the pulsed process cycle, which control the rate of the pore extension, and its minimal and maximal size. Our results suggest that the FEBIE process may play a key role in the fabrication of nanopores for future devices both in sensing and nano-electronics applications.

  18. Multi-exposure and clustering of adverse childhood experiences, socioeconomic differences and psychotropic medication in young adults.

    Science.gov (United States)

    Björkenstam, Emma; Hjern, Anders; Mittendorfer-Rutz, Ellenor; Vinnerljung, Bo; Hallqvist, Johan; Ljung, Rickard

    2013-01-01

    Stressful childhood experiences have negative long-term health consequences. The present study examines the association between adverse childhood experiences, socioeconomic position, and risk of psychotropic medication in young adulthood. This register-based cohort study comprises the birth cohorts between 1985 and 1988 in Sweden. We followed 362 663 individuals for use of psychotropic medication from January 2006 until December 2008. Adverse childhood experiences were severe criminality among parents, parental alcohol or drug abuse, social assistance recipiency, parental separation or single household, child welfare intervention before the age of 12, mentally ill or suicidal parents, familial death, and number of changes in place of residency. Estimates of risk of psychotropic medication were calculated as odds ratio (OR) with 95% confidence intervals (CIs) using logistic regression analysis. Adverse childhood experiences were associated with increased risks of psychotropic medication. The OR for more than three adverse childhood experiences and risk of psychotropic medication was for women 2.4 (95% CI 2.3-2.5) and for men 3.1 (95% CI 2.9-3.2). The risk of psychotropic medication increased with a higher rate of adverse childhood experiences, a relationship similar in all socioeconomic groups. Accumulation of adverse childhood experiences increases the risk of psychotropic medication in young adults. Parental educational level is of less importance when adjusting for adverse childhood experiences. The higher risk for future mental health problems among children from lower socioeconomic groups, compared to peers from more advantaged backgrounds, seems to be linked to a higher rate of exposure to adverse childhood experiences.

  19. Multi-exposure and clustering of adverse childhood experiences, socioeconomic differences and psychotropic medication in young adults.

    Directory of Open Access Journals (Sweden)

    Emma Björkenstam

    Full Text Available PURPOSE: Stressful childhood experiences have negative long-term health consequences. The present study examines the association between adverse childhood experiences, socioeconomic position, and risk of psychotropic medication in young adulthood. METHODS: This register-based cohort study comprises the birth cohorts between 1985 and 1988 in Sweden. We followed 362 663 individuals for use of psychotropic medication from January 2006 until December 2008. Adverse childhood experiences were severe criminality among parents, parental alcohol or drug abuse, social assistance recipiency, parental separation or single household, child welfare intervention before the age of 12, mentally ill or suicidal parents, familial death, and number of changes in place of residency. Estimates of risk of psychotropic medication were calculated as odds ratio (OR with 95% confidence intervals (CIs using logistic regression analysis. RESULTS: Adverse childhood experiences were associated with increased risks of psychotropic medication. The OR for more than three adverse childhood experiences and risk of psychotropic medication was for women 2.4 (95% CI 2.3-2.5 and for men 3.1 (95% CI 2.9-3.2. The risk of psychotropic medication increased with a higher rate of adverse childhood experiences, a relationship similar in all socioeconomic groups. CONCLUSIONS: Accumulation of adverse childhood experiences increases the risk of psychotropic medication in young adults. Parental educational level is of less importance when adjusting for adverse childhood experiences. The higher risk for future mental health problems among children from lower socioeconomic groups, compared to peers from more advantaged backgrounds, seems to be linked to a higher rate of exposure to adverse childhood experiences.

  20. Methyldibromo glutaronitrile: clinical experience and exposure-based risk assessment.

    Science.gov (United States)

    Zachariae, Claus; Rastogi, Suresh; Devantier, Charlotte; Menné, Torkil; Johansen, Jeanne Duus

    2003-03-01

    In the year 2000, the level of methyldibromo glutaronitrile (MDGN) allergy in dermatology clinics in Europe exceeded the level of allergies to all other preservatives, with a prevalence of 3.5%. In the present study, cases of primary sensitization and elicitation to MDGN due to cosmetic products were collected over an 8-month period at the Department of Dermatology, Gentofte University Hospital. The aim was to identify the products related to hand eczema, assess exposure to MDGN in these products and relate the findings to results from a newly developed updated risk assessment model for contact allergy. Out of 24 patients with a positive patch test to MDGN, 17 patients with hand eczema were identified. In 11 of these patients, cosmetic products used in relation to the onset of the disease were shown to contain MDGN (65%). In 8 of these 11 cases, primary sensitization was probable, 5 due to hand/body lotions and 3 due to lotions and/or liquid hand soap. Chemical analysis of 12 products showed that lotions contained 149-390 ppm of MDGN, liquid hand soap 144-399 ppm, a rinsing cream 293 ppm and shampoos 78-79 ppm. The shampoo exposure was not of certain relevance to the eczema. Applying the newly developed updated risk assessment model showed that the concentrations of MDGN in lotions of 149-390 ppm exceeded the calculated maximum acceptable exposure level for MDGN, which would be expected to lead to sensitization in consumers using such products, as seen in the current study. The present cases and updated exposure-based risk assessment process add to the evidence and need for re-defining safe-use concentrations of MDGN in cosmetic products.

  1. On fabrication procedures of Li-ion conducting garnets

    Energy Technology Data Exchange (ETDEWEB)

    Hanc, Emil [The Mineral and Energy Economy Research Institute, Polish Academy of Sciences, ul. Wybickiego 7, 31-261 Kraków (Poland); Zając, Wojciech, E-mail: wojciech.zajac@agh.edu.pl [AGH University of Science and Technology, Faculty of Energy and Fuels, al. Mickiewicza 30, 30-059 Kraków (Poland); Lu, Li; Yan, Binggong; Kotobuki, Masashi [Materials Science Group, Department of Mechanical Engineering, National University of Singapore (Singapore); Ziąbka, Magdalena [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Kraków (Poland); Molenda, Janina [AGH University of Science and Technology, Faculty of Energy and Fuels, al. Mickiewicza 30, 30-059 Kraków (Poland)

    2017-04-15

    Ceramic oxides exhibiting high lithium-ion mobility at room temperature receive broad attention as candidate electrolytes for lithium batteries. Lithium-stuffed garnets from the Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} group seem to be especially promising because of their high ionic conductivity at room temperature and their electrochemical stability. In this work, we discuss factors that affect formation of the garnet in its bulk form or in the form of thick and thin films. We demonstrate that zinc oxide can be applied as a sintering aid that facilitate the formation of the highly conducting cubic Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} garnet phase in a single-step sintering procedure. Based on our experience with the single-step sintering experiments, we successfully fabricated a thick-film membrane consisting of a garnet solid electrolyte using the tape casting technique. In order to reduce the thickness of the electrolyte even further we investigated the fabrication of a thin-film Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} electrolyte by means of the pulsed laser deposition technique.

  2. Fabrication of ORNL Fuel Irradiated in the Peach Bottom Reactor and Postirradiation Examination of Recycle Test Elements 7 and 4

    International Nuclear Information System (INIS)

    Long, Jr. E.L.

    2001-01-01

    Seven full-sized Peach Bottom Reactor fuel elements were fabricated in a cooperative effort by Oak Ridge National Laboratory (ORNL) and Gulf General Atomic (GGA) as part of the National HTGR Fuel Recycle Development Program. These elements contain bonded fuel rods and loose beds of particles made from several combinations of fertile and fissile particles of interest for present and future use in the High-Temperature Gas-Cooled Reactor (HTGR). The portion of the fuel prepared for these elements by ORNL is described in detail in this report, and it is in conjunction with the GGA report (GA-10109) a complete fabrication description of the test. In addition, this report describes the results obtained to date from postirradiation examination of the first two elements removed from the Peach Bottom Reactor, RTE-7 and -4. The fuel examined had relatively low exposure, up to about 1.5 x 10 21 neutrons/cm* fast (>0.18 MeV) fluence, compared with the peak anticipated HTGR fluence of 8.0 x 10 21 , but it has performed well at this exposure. Dimensional data indicate greater irradiation shrinkage than expected from accelerated test data to higher exposures. This suggests that either the method of extrapolation of the higher exposure data back to low exposure is faulty, or the behavior of the coated particles in the neutron spectrum characteristic of the accelerated tests does not adequately represent the behavior in an HTGR spectrum

  3. Drip bloodstain appearance on inclined apparel fabrics: Effect of prior-laundering, fibre content and fabric structure.

    Science.gov (United States)

    de Castro, Therese C; Carr, Debra J; Taylor, Michael C; Kieser, Jules A; Duncan, Warwick

    2016-09-01

    The interaction of blood and fabrics is currently a 'hot topic', since the understanding and interpretation of these stains is still in its infancy. A recent simplified perpendicular impact experimental programme considering bloodstains generated on fabrics laid the foundations for understanding more complex scenarios. Blood rarely impacts apparel fabrics perpendicular; therefore a systematic study was conducted to characterise the appearance of drip stains on inclined fabrics. The final drip stain appearance for 45° and 15° impact angles on torso apparel fabrics (100% cotton plain woven, 100% polyester plain woven, a blend of polyester and cotton plain woven and 100% cotton single jersey knit) that had been laundered for six, 26 and 52 cycles prior to testing was investigated. The relationship between drop parameters (height and volume), angle and the stain characteristics (parent stain area, axis 1 and 2 and number of satellite stains) for each fabric was examined using analysis of variance. The appearance of the drip stains on these fabrics was distorted, in comparison to drip stains on hard-smooth surface. Examining the parent stain allowed for classification of stains occurring at an angle, however the same could not be said for the satellite stains produced. All of the dried stains visible on the surface of the fabric were larger than just after the impacting event, indicating within fabric spreading of blood due to capillary force (wicking). The cotton-containing fabrics spread the blood within the fabrics in all directions along the stain's circumference, while spreading within the polyester plain woven fabric occurred in only the weft (width of the fabric) and warp (length) directions. Laundering affected the formation of bloodstain on the blend plain woven fabric at both impact angles, although not all characteristics were significantly affected for the three impact conditions considered. The bloodstain characteristics varied due to the fibre content

  4. Influence of Fabric Parameters on Thermal Comfort Performance of Double Layer Knitted Interlock Fabrics

    Directory of Open Access Journals (Sweden)

    Afzal Ali

    2017-03-01

    Full Text Available The aim of this study was to analyse the effects of various fabric parameters on the thermal resistance, thermal conductivity, thermal transmittance, thermal absorptivity and thermal insulation of polyester/cotton double layer knitted interlock fabrics. It was found that by increasing fibre content with higher specific heat increases the thermal insulation while decreases the thermal transmittance and absorptivity of the fabric. It was concluded that double layer knitted fabrics developed with higher specific heat fibres, coarser yarn linear densities, higher knitting loop length and fabric thickness could be adequately used for winter clothing purposes.

  5. Fabrication and testing history prototypes and production units

    Energy Technology Data Exchange (ETDEWEB)

    1954-09-01

    From April, 1951 to Aug, 1954, New York Shipbuilding Corp. carried out a subcontract with E.I. du Pont de Nemours & Company that was without parallel in the shipyard`s history. The work, designated the NYX Project for reasons of security, was vital to the operations of the Savannah River Plant, Aiken, S.C., which was then being designed and constructed by du Pont for the Atomic Energy Commission. It consisted of three broad parts: developmental and experimental work; fabrication and testing of a prototype unit; fabrication of production units. Five production units were ultimately built, one of them converted from the prototype. All were fabricated from stainless steel, and involved welding techniques, control of thermal distortion and tolerances never previously attempted on assemblies of comparable size. Du Pont`s technical experience and the background of New York Ship in heavy construction, particularly in the fabrication of naval gun turrets, were combined from the outset to resolve the difficult fabrication problems that occurred almost daily. Representatives of both companies worked together as a team in the shops and at supervisory levels to an unprecedented extent. The report is intended primarily to summarize New York Ship`s part in the project, but also includes some of du Pont`s activities since the work of the two organizations was so interrelated. Because of the scope of the program, it will not always be possible to provide detailed information, but rather to record what happened in general terms. Where the reader desires more specific data, he should refer to original plans and records, including various reports compiled during the course of the project.

  6. Design, fabrication, and testing of stellar coronagraphs for exoplanet imaging

    Science.gov (United States)

    Knight, Justin M.; Brewer, John; Hamilton, Ryan; Ward, Karen; Milster, Tom D.; Guyon, Olivier

    2017-09-01

    Complex-mask coronagraphs destructively interfere unwanted starlight with itself to enable direct imaging of exoplanets. This is accomplished using a focal plane mask (FPM); a FPM can be a simple occulter mask, or in the case of a complex-mask, is a multi-zoned device designed to phase-shift starlight over multiple wavelengths to create a deep achromatic null in the stellar point spread function. Creating these masks requires microfabrication techniques, yet many such methods remain largely unexplored in this context. We explore methods of fabrication of complex FPMs for a Phased-Induced Amplitude Apodization Complex-Mask Coronagraph (PIAACMC). Previous FPM fabrication efforts for PIAACMC have concentrated on mask manufacturability while modeling science yield, as well as assessing broadband wavelength operation. Moreover current fabrication efforts are concentrated on assessing coronagraph performance given a single approach. We present FPMs fabricated using several process paths, including deep reactive ion etching and focused ion beam etching using a silicon substrate. The characteristic size of the mask features is 5μm with depths ranging over 1μm. The masks are characterized for manufacturing quality using an optical interferometer and a scanning electron microscope. Initial testing is performed at the Subaru Extreme Adaptive Optics testbed, providing a baseline for future experiments to determine and improve coronagraph performance within fabrication tolerances.

  7. Design of Tailored Non-Crimp Fabrics Based on Stitching Geometry

    Science.gov (United States)

    Krieger, Helga; Gries, Thomas; Stapleton, Scott E.

    2018-02-01

    Automation of the preforming process brings up two opposing requirements for the used engineering fabric. On the one hand, the fabric requires a sufficient drapeability, or low shear stiffness, for forming into double-curved geometries; but on the other hand, the fabric requires a high form stability, or high shear stiffness, for automated handling. To meet both requirements tailored non-crimp fabrics (TNCFs) are proposed. While the stitching has little structural influence on the final part, it virtually dictates the TNCFs local capability to shear and drape over a mold during preforming. The shear stiffness of TNCFs is designed by defining the local stitching geometry. NCFs with chain stitch have a comparatively high shear stiffness and NCFs with a stitch angle close to the symmetry stitch angle have a very low shear stiffness. A method to design the component specific local stitching parameters of TNCFs is discussed. For validation of the method, NCFs with designed tailored stitching parameters were manufactured and compared to benchmark NCFs with uniform stitching parameters. The designed TNCFs showed both, generally a high form stability and in locally required zones a good drapeability, in drape experiments over an elongated hemisphere.

  8. Three-Dimensional Glass Monolithic Micro-Flexure Fabricated by Femtosecond Laser Exposure and Chemical Etching

    Directory of Open Access Journals (Sweden)

    Viktor Tielen

    2014-09-01

    Full Text Available Flexures are components of micro-mechanisms efficiently replacing classical multi-part joints found at the macroscale. So far, flexures have been limited to two-dimensional planar designs due to the lack of a suitable three-dimensional micromanufacturing process. Here we demonstrate and characterize a high-strength transparent monolithic three-dimensional flexural component fabricated out of fused silica using non-ablative femtosecond laser processing combined with chemical etching. As an illustration of the potential use of this flexure, we propose a design of a Hoecken linkage entirely made with three-dimensional cross-spring pivot hinges.

  9. A Comparative Application for Evaluating Composite Fabrics Used in Electromagnetic Shielding

    Directory of Open Access Journals (Sweden)

    F. G. Kizilcay Abdulla

    2017-12-01

    Full Text Available Composite fabrics containing metal filaments are used widely for preventing electromagnetic radiation. Many experiments involving them are carried out continuously. Results are simulated in order to analyze their performance. Coding in Matlab is a popular method to compare the electromagnetic shielding properties of composite fabrics but for different options Matlab codes must be edited each time. Scientists who are not experts in coding have difficulties on editing such codes. To overcome this, an application written in C# in Visual Studio with .Net platform was developed. This application is integrated with Bunifu, which allows the application to be well designed. The proposed interface is user friendly and lets the user choose the available fabric with its stitch length from panel section. By setting options one can get the electromagnetic parameters such as scattering (S parameters, reflection, transmission and absorption coefficients and total shielding effectiveness (SE values with one click. As the application is integrated with Matlab codes, output is given as a Matlab graph with desired options. In this way the distinctions between the chosen fabrics can be analyzed easily.

  10. Superconducting focusing quadrupoles for heavy ion fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sabbi, G.L.; Faltens, A.; Leitner, M.; Lietzke, A.; Seidl, P.; Barnard, J.; Lund, S.; Martovetsky, N.; Gung, C.; Minervini, J.; Radovinsky, A.; Schultz, J.; Meinke, R.

    2003-05-01

    The Heavy Ion Fusion (HIF) Program is developing superconducting focusing magnets for both near-term experiments and future driver accelerators. In particular, single bore quadrupoles have been fabricated and tested for use in the High Current Experiment (HCX) at Lawrence Berkeley National Laboratory (LBNL). The next steps involve the development of magnets for the planned Integrated Beam Experiment (IBX) and the fabrication of the first prototype multi-beam focusing arrays for fusion driver accelerators. The status of the magnet R&D program is reported, including experimental requirements, design issues and test results.

  11. Children and Caregivers' Exposure to Adverse Childhood Experiences (ACES): Association with Children's and Caregivers' Psychological Outcomes in a Therapeutic Preschool Program.

    Science.gov (United States)

    Ziv, Yair; Sofri, Inbar; Capps Umphlet, Kristen L; Olarte, Stephanie; Venza, Jimmy

    2018-03-31

    Exposure to adverse childhood experiences (ACE) has been found to have a profound negative impact on multiple child outcomes, including academic achievement, social cognition patterns, and behavioral adjustment. However, these links have yet to be examined in preschool children that are already experiencing behavior or social-emotional problems. Thus, the present study examined the links between the caregiver's and the child's exposure to ACE and multiple child and caregiver's outcomes in a sample of 30 preschool children enrolled in a Therapeutic Nursery Program (TNP). Children are typically referred to this TNP due to significant delays in their social emotional development that often result in difficulty functioning in typical childcare, home, and community settings. Analyses revealed some contradictory patterns that may be specific to this clinical sample. Children with higher exposure to ACE showed more biased social information processing patterns and their caregivers reported lower child social skills than caregivers of children with less exposure, however their inhibitory control levels were higher (better control) and staff reported that these children exhibited better social skills as well as better approaches to learning than children with less exposure. No such contradictions were found in relation to the caregiver's exposure to ACE, as it was positively associated with a number of negative child and caregiver outcomes.

  12. Increased mortality exposure within the family rather than individual mortality experiences triggers faster life-history strategies in historic human populations.

    Science.gov (United States)

    Störmer, Charlotte; Lummaa, Virpi

    2014-01-01

    Life History Theory predicts that extrinsic mortality risk is one of the most important factors shaping (human) life histories. Evidence from contemporary populations suggests that individuals confronted with high mortality environments show characteristic traits of fast life-history strategies: they marry and reproduce earlier, have shorter birth intervals and invest less in their offspring. However, little is known of the impact of mortality experiences on the speed of life histories in historical human populations with generally higher mortality risk, and on male life histories in particular. Furthermore, it remains unknown whether individual-level mortality experiences within the family have a greater effect on life-history decisions or family membership explains life-history variation. In a comparative approach using event history analyses, we study the impact of family versus individual-level effects of mortality exposure on two central life-history parameters, ages at first marriage and first birth, in three historical human populations (Germany, Finland, Canada). Mortality experience is measured as the confrontation with sibling deaths within the natal family up to an individual's age of 15. Results show that the speed of life histories is not adjusted according to individual-level mortality experiences but is due to family-level effects. The general finding of lower ages at marriage/reproduction after exposure to higher mortality in the family holds for both females and males. This study provides evidence for the importance of the family environment for reproductive timing while individual-level mortality experiences seem to play only a minor role in reproductive life history decisions in humans.

  13. Tissue engineering of heart valves: in vitro experiences.

    Science.gov (United States)

    Sodian, R; Hoerstrup, S P; Sperling, J S; Daebritz, S H; Martin, D P; Schoen, F J; Vacanti, J P; Mayer, J E

    2000-07-01

    Tissue engineering is a new approach, whereby techniques are being developed to transplant autologous cells onto biodegradable scaffolds to ultimately form new functional tissue in vitro and in vivo. Our laboratory has focused on the tissue engineering of heart valves, and we have fabricated a trileaflet heart valve scaffold from a biodegradable polymer, a polyhydroxyalkanoate. In this experiment we evaluated the suitability of this scaffold material as well as in vitro conditioning to create viable tissue for tissue engineering of a trileaflet heart valve. We constructed a biodegradable and biocompatible trileaflet heart valve scaffold from a porous polyhydroxyalkanoate (Meatabolix Inc, Cambridge, MA). The scaffold consisted of a cylindrical stent (1 x 15 x 20 mm inner diameter) and leaflets (0.3 mm thick), which were attached to the stent by thermal processing techniques. The porous heart valve scaffold (pore size 100 to 240 microm) was seeded with vascular cells grown and expanded from an ovine carotid artery and placed into a pulsatile flow bioreactor for 1, 4, and 8 days. Analysis of the engineered tissue included biochemical examination, enviromental scanning electron microscopy, and histology. It was possible to create a trileaflet heart valve scaffold from polyhydroxyalkanoate, which opened and closed synchronously in a pulsatile flow bioreactor. The cells grew into the pores and formed a confluent layer after incubation and pulsatile flow exposure. The cells were mostly viable and formed connective tissue between the inside and the outside of the porous heart valve scaffold. Additionally, we demonstrated cell proliferation (DNA assay) and the capacity to generate collagen as measured by hydroxyproline assay and movat-stained glycosaminoglycans under in vitro pulsatile flow conditions. Polyhydroxyalkanoates can be used to fabricate a porous, biodegradable heart valve scaffold. The cells appear to be viable and extracellular matrix formation was induced

  14. Fabric Reconstruction Based on Sustainable Development: Take the Type of Fabric Recycling as an Example

    OpenAIRE

    Zhangting Guan

    2017-01-01

    Sustainable development is a very important concept of our time, it wants to do is to live in harmony with people, to protect the environment where our human survival. Fabric recycling refers to the use of a variety of traditional and high-tech means of the existing fabric fabric design and processing. So that the surface of a rich visual texture and tactile texture "through the fabric recycling approach. However, the fabric form and clothing design coordination between the clothing design is...

  15. SEM and TEM Characterization of As-Fabricated U-7Mo Disperson Fuel Plates

    International Nuclear Information System (INIS)

    Keiser, D.D. Jr.; Yao, B.; Perez, E.; Sohn, Y.H.

    2009-01-01

    The starting microstructure of a dispersion fuel plate can have a dramatic impact on the overall performance of the plate during irradiation. To improve the understanding of the as-fabricated microstructures of dispersion fuel plates, SEM and TEM analysis have been performed on RERTR-9A archive fuel plates, which went through an additional hot isostatic procsssing (HIP) step during fabrication. The fuel plates had depleted U-7Mo fuel particles dispersed in either Al-2Si or 4043 Al alloy matrix. For the characterized samples, it was observed that a large fraction of the ?-phase U-7Mo alloy particles had decomposed during fabrication, and in areas near the fuel/matrix interface where the transformation products were present significant fuel/matrix interaction had occurred. Relatively thin Si-rich interaction layers were also observed around the U-7Mo particles. In the thick interaction layers, (U)(Al,Si)3 and U6Mo4Al43 were identified, and in the thin interaction layers U(Al,Si)3, U3Si3Al2, U3Si5, and USi1.88-type phases were observed. The U3Si3Al2 phase contained some Mo. Based on the results of this work, exposure of dispersion fuel plates to relatively high temperatures during fabrication impacts the overall microstructure, particularly the nature of the interaction layers around the fuel particles. The time and temperature of fabrication should be carefully controlled in order to produce the most uniform Si-rich layers around the U-7Mo particles.

  16. Superhydrophilicity of a nanofiber-covered aluminum surface fabricated via pyrophosphoric acid anodizing

    Science.gov (United States)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2016-12-01

    A superhydrophilic aluminum surface covered by numerous alumina nanofibers was fabricated via pyrophosphoric acid anodizing. High-density anodic alumina nanofibers grow on the bottom of a honeycomb oxide via anodizing in concentrated pyrophosphoric acid. The water contact angle on the nanofiber-covered aluminum surface decreased with time after a 4 μL droplet was placed on the surface, and a superhydrophilic behavior with a contact angle measuring 2.2° was observed within 2 s; this contact angle is considerably lower than those observed for electropolished and porous alumina-covered aluminum surfaces. There was no dependence of the superhydrophilicity on the density of alumina nanofibers fabricated via different constant voltage anodizing conditions. The superhydrophilic property of the surface covered by anodic alumina nanofibers was maintained during an exposure test for 359 h. The quick-drying and snow-sliding behaviors of the superhydrophilic aluminum covered with anodic alumina nanofibers were demonstrated.

  17. Metallic Reactor Fuel Fabrication for SFR

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hoon; Kim, Jong-Hwan; Ko, Young-Mo; Woo, Yoon-Myung; Kim, Ki-Hwan; Lee, Chan-Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The metal fuel for an SFR has such advantages such as simple fabrication procedures, good neutron economy, high thermal conductivity, excellent compatibility with a Na coolant, and inherent passive safety 1. U-Zr metal fuel for SFR is now being developed by KAERI as a national R and D program of Korea. The fabrication technology of metal fuel for SFR has been under development in Korea as a national nuclear R and D program since 2007. The fabrication process for SFR fuel is composed of (1) fuel slug casting, (2) loading and fabrication of the fuel rods, and (3) fabrication of the final fuel assemblies. Fuel slug casting is the dominant source of fuel losses and recycled streams in this fabrication process. Fabrication on the rod type metallic fuel was carried out for the purpose of establishing a practical fabrication method. Rod-type fuel slugs were fabricated by injection casting. Metallic fuel slugs fabricated showed a general appearance was smooth.

  18. One-pot fabrication and antimicrobial properties of novel PET nonwoven fabrics

    International Nuclear Information System (INIS)

    Lin Song; Wang Zheng; Qi Jiancheng; Wu Jinhui; Tian Tao; Hao Limei; Yang Jingquan; Hou Lili

    2011-01-01

    Recently, with the ever-growing demand for healthy living, more and more research is focused on materials capable of killing harmful microorganisms around the world. It is believed that designing such protective materials for hygienic and biomedical applications can benefit people in professional areas and daily life. Thus, in this paper, one novel kind of antibacterial poly(ethylene terephthalate) (PET) nonwoven fabrics was conveniently one-pot prepared, with the combined immobilization of two biological antimicrobial agents, i.e. ε-polylysine and natamycin, by using the soft methacrylate nonwoven fabrics adhesives. Then, the antimicrobial activities of the functional fabrics were investigated by using the standard shaking-flask method, showing excellent antibacterial efficiency (AE) against both Escherichia coli (8099) and Staphylococcus aureus (ATCC 6538) (AE > 99.99%) compared with untreated PET nonwoven fabrics. The anti-bioaerosol tests also showed similar trends. Meantime, scanning electron microscopy analysis indicated that the bacteria on the antibacterial PET appeared to be partly bacteriolyzed and showed much less viability than those on the pristine ones. Moreover, the long residual biocidal action of such modified PET fabrics was also evaluated, and the antibacterial activity of antibacterial fibers was unaffected by the 3 month artificially accelerated aging.

  19. One-pot fabrication and antimicrobial properties of novel PET nonwoven fabrics

    Energy Technology Data Exchange (ETDEWEB)

    Lin Song; Wang Zheng; Qi Jiancheng; Wu Jinhui; Tian Tao; Hao Limei; Yang Jingquan [Institute of Medical Equipment, Academy of Military Medical Sciences, Tianjin 300161 (China); Hou Lili, E-mail: yjq789@sohu.com [National Bio-protection Engineering Center, Tianjin 300161 (China)

    2011-08-15

    Recently, with the ever-growing demand for healthy living, more and more research is focused on materials capable of killing harmful microorganisms around the world. It is believed that designing such protective materials for hygienic and biomedical applications can benefit people in professional areas and daily life. Thus, in this paper, one novel kind of antibacterial poly(ethylene terephthalate) (PET) nonwoven fabrics was conveniently one-pot prepared, with the combined immobilization of two biological antimicrobial agents, i.e. {epsilon}-polylysine and natamycin, by using the soft methacrylate nonwoven fabrics adhesives. Then, the antimicrobial activities of the functional fabrics were investigated by using the standard shaking-flask method, showing excellent antibacterial efficiency (AE) against both Escherichia coli (8099) and Staphylococcus aureus (ATCC 6538) (AE > 99.99%) compared with untreated PET nonwoven fabrics. The anti-bioaerosol tests also showed similar trends. Meantime, scanning electron microscopy analysis indicated that the bacteria on the antibacterial PET appeared to be partly bacteriolyzed and showed much less viability than those on the pristine ones. Moreover, the long residual biocidal action of such modified PET fabrics was also evaluated, and the antibacterial activity of antibacterial fibers was unaffected by the 3 month artificially accelerated aging.

  20. Fabrication of integrated metallic MEMS devices

    DEFF Research Database (Denmark)

    Yalcinkaya, Arda Deniz; Ravnkilde, Jan Tue; Hansen, Ole

    2002-01-01

    A simple and complementary metal oxide semiconductor (CMOS) compatible fabrication technique for microelectromechanical (MEMS) devices is presented. The fabrication technology makes use of electroplated metal layers. Among the fabricated devices, high quality factor microresonators are characteri......A simple and complementary metal oxide semiconductor (CMOS) compatible fabrication technique for microelectromechanical (MEMS) devices is presented. The fabrication technology makes use of electroplated metal layers. Among the fabricated devices, high quality factor microresonators...

  1. Optics fabrication technical challenges

    International Nuclear Information System (INIS)

    Chabassier, G.; Ferriou, N.; Lavastre, E.; Maunier, C.; Neauport, J.; Taroux, D.; Balla, D.; Fornerod, J.C.

    2004-01-01

    Before the production of all the LMJ (MEGAJOULE laser) optics, the CEA had to proceed with the fabrication of about 300 large optics for the LIL (laser integration line) laser. Thanks to a fruitful collaboration with high-tech optics companies in Europe, this challenge has been successfully hit. In order to achieve the very tight requirements for cleanliness, laser damage threshold and all the other high demanding fabrication specifications, it has been necessary to develop and to set completely new fabrication process going and to build special outsize fabrication equipment. Through a couple of examples, this paper gives an overview of the work which has been done and shows some of the results which have been obtained: continuous laser glass melting, fabrication of the laser slabs, rapid-growth KDP (potassium dihydrogen phosphate) technology, large diffractive transmission gratings engraving and characterization. (authors)

  2. Interference experiment with asymmetric double slit by using 1.2-MV field emission transmission electron microscope.

    Science.gov (United States)

    Harada, Ken; Akashi, Tetsuya; Niitsu, Kodai; Shimada, Keiko; Ono, Yoshimasa A; Shindo, Daisuke; Shinada, Hiroyuki; Mori, Shigeo

    2018-01-17

    Advanced electron microscopy technologies have made it possible to perform precise double-slit interference experiments. We used a 1.2-MV field emission electron microscope providing coherent electron waves and a direct detection camera system enabling single-electron detections at a sub-second exposure time. We developed a method to perform the interference experiment by using an asymmetric double-slit fabricated by a focused ion beam instrument and by operating the microscope under a "pre-Fraunhofer" condition, different from the Fraunhofer condition of conventional double-slit experiments. Here, pre-Fraunhofer condition means that each single-slit observation was performed under the Fraunhofer condition, while the double-slit observations were performed under the Fresnel condition. The interference experiments with each single slit and with the asymmetric double slit were carried out under two different electron dose conditions: high-dose for calculation of electron probability distribution and low-dose for each single electron distribution. Finally, we exemplified the distribution of single electrons by color-coding according to the above three types of experiments as a composite image.

  3. Highly ordered uniform single-crystal Bi nanowires: fabrication and characterization

    International Nuclear Information System (INIS)

    Bisrat, Y; Luo, Z P; Davis, D; Lagoudas, D

    2007-01-01

    A mechanical pressure injection technique has been used to fabricate uniform bismuth (Bi) nanowires in the pores of an anodic aluminum oxide (AAO) template. The AAO template was prepared from general purity aluminum by a two-step anodization followed by heat treatment to achieve highly ordered nanochannels. The nanowires were then fabricated by an injection technique whereby the molten Bi was injected into the AAO template using a hydraulic pressure method. The Bi nanowires prepared by this method were found to be dense and continuous with uniform diameter throughout the length. Electron diffraction experiments using the transmission electron microscope on cross-sectional and free-standing longitudinal Bi nanowires showed that the majority of the individual nanowires were single crystalline, with preferred orientation of growth along the [011] zone axis of the pseudo-cubic structure. The work presented here provides an inexpensive and effective way of fabricating highly ordered single-crystalline Bi nanowires, with uniform size distributions

  4. The development of nonwoven fabric and agricultural bed soil using kapok fiber for industrial usages

    International Nuclear Information System (INIS)

    Chung, Byung Yeoup; Kim, Jin Hong; Lee, Seung Sik

    2010-01-01

    The purpose of this project is the development of nonwoven fabric using natural kapok fiber and synthetic fiber for industrial usages and the development of manufacturing techniques for nursery bed soil using kapok fiber. Research scopes include the development of agricultural bed soil using kapok fiber and nonwoven fabric using kapok fiber. Main results are as follow; the physico-chemical characterization of kapok fiber (water holding capacity, bulk density, water retention curve, viscoelastic measurement, oil adsorption capacity, analysis of essential elements, measurement of anion and cation); the physico-chemical characterization of kapok bed soil; the evidence experiment of kapok bed soil; the optimum content of kapok fiber and synthetic fiber for nonwoven fabric; establishment of the optimum radiation dose for manufacturing kapok nonwoven fabric

  5. Simple fabrication of closed-packed IR microlens arrays on silicon by femtosecond laser wet etching

    Science.gov (United States)

    Meng, Xiangwei; Chen, Feng; Yang, Qing; Bian, Hao; Du, Guangqing; Hou, Xun

    2015-10-01

    We demonstrate a simple route to fabricate closed-packed infrared (IR) silicon microlens arrays (MLAs) based on femtosecond laser irradiation assisted by wet etching method. The fabricated MLAs show high fill factor, smooth surface and good uniformity. They can be used as optical devices for IR applications. The exposure and etching parameters are optimized to obtain reproducible microlens with hexagonal and rectangular arrangements. The surface roughness of the concave MLAs is only 56 nm. This presented method is a maskless process and can flexibly change the size, shape and the fill factor of the MLAs by controlling the experimental parameters. The concave MLAs on silicon can work in IR region and can be used for IR sensors and imaging applications.

  6. Fabricating architectural volume

    DEFF Research Database (Denmark)

    Feringa, Jelle; Søndergaard, Asbjørn

    2015-01-01

    The 2011 edition of Fabricate inspired a number of collaborations, this article seeks to highlight three of these. There is a common thread amongst the projects presented: sharing the ambition to close the rift between design and fabrication while incorporating structural design aspects early on...

  7. Waste management in MOX fuel fabrication plants

    International Nuclear Information System (INIS)

    Schneider, V.

    1982-01-01

    After a short description of a MOX fuel fabrication plant's activities the waste arisings in such a plant are discussed according to nature, composition, Pu-content. Experience has shown that proper recording leads to a reduction of waste arisings by waste awareness. Aspects of the treatment of α-waste are given and a number of treatment processes are reviewed. Finally, the current waste management practice and the α-waste treatment facility under construction at ALKEM are outlined. (orig./RW)

  8. Optomechanical fabrication of EDiFiSE spectrometer

    Science.gov (United States)

    Arredondo-Vega, Luis; Pérez-Santos, Carlos; Pompa-Carrera, Octavio; Ruiz-Márquez, Armando; Hurtado-Ortega, José; Paez, Gonzalo

    2011-09-01

    The purpose of this work is to describe some optical and mechanical issues relating to the fabrication of the camera and the collimator of the Equalized and Diffraction-Limited Field Spectrograph Experiment (EDiFiSE), an instrument which forms part of a bigger project of the Instituto de Astrofísica de Canarias (IAC), Spain, and that was designed and manufactured within the facilities of Centro de Investigaciones en Óptica in León, México.

  9. Fabrication and testing of the recoil mass spectrometer at Bombay ...

    Indian Academy of Sciences (India)

    A recoil mass spectrometer (RMS) has been designed, fabricated and installed ... first order and only mass dispersion is obtained at the focal plane of the ... more details, like, the specifications and a typical beam profile through the ... Further experiments are now in progress to characterize the spectrometer, i.e., to measure.

  10. New Fabrication Method of Three-Electrode System on Cylindrical Capillary Surface as a Flexible Implantable Microneedle

    Science.gov (United States)

    Yang, Zhuoqing; Zhang, Yi; Itoh, Toshihiro; Maeda, Ryutaro

    2013-04-01

    In this present paper, a three-electrode system has been fabricated and integrated on the cylindrical polymer capillary surface by micromachining technology, which could be used as a flexible and implantable microneedle for glucose sensor application in future. A UV lithography system is successfully developed for high resolution alignment on cylindrical substrates. The multilayer alignment exposure for cylindrical polymer capillary substrate is for the first time realized utilizing the lithography system. The ±1 μm alignment precision has been realized on the 330 μm-outer diameter polymer capillary surface, on which the three-electrode structure consisting of two platinum electrodes and one Ag/AgCl reference electrode has been fabricated. The fabricated whole device as microneedle for glucose sensor application has been also characterized in 1 mol/L KCl and 0.02 mol/L K3Fe(CN)6 mix solution. The measured cyclic voltammetry curve shows that the prepared three-electrode system has a good redox property.

  11. Fabrication of Self-Cleaning, Reusable Titania Templates for Nanometer and Micrometer Scale Protein Patterning.

    Science.gov (United States)

    Moxey, Mark; Johnson, Alexander; El-Zubir, Osama; Cartron, Michael; Dinachali, Saman Safari; Hunter, C Neil; Saifullah, Mohammad S M; Chong, Karen S L; Leggett, Graham J

    2015-06-23

    The photocatalytic self-cleaning characteristics of titania facilitate the fabrication of reuseable templates for protein nanopatterning. Titania nanostructures were fabricated over square centimeter areas by interferometric lithography (IL) and nanoimprint lithography (NIL). With the use of a Lloyd's mirror two-beam interferometer, self-assembled monolayers of alkylphosphonates adsorbed on the native oxide of a Ti film were patterned by photocatalytic nanolithography. In regions exposed to a maximum in the interferogram, the monolayer was removed by photocatalytic oxidation. In regions exposed to an intensity minimum, the monolayer remained intact. After exposure, the sample was etched in piranha solution to yield Ti nanostructures with widths as small as 30 nm. NIL was performed by using a silicon stamp to imprint a spin-cast film of titanium dioxide resin; after calcination and reactive ion etching, TiO2 nanopillars were formed. For both fabrication techniques, subsequent adsorption of an oligo(ethylene glycol) functionalized trichlorosilane yielded an entirely passive, protein-resistant surface. Near-UV exposure caused removal of this protein-resistant film from the titania regions by photocatalytic degradation, leaving the passivating silane film intact on the silicon dioxide regions. Proteins labeled with fluorescent dyes were adsorbed to the titanium dioxide regions, yielding nanopatterns with bright fluorescence. Subsequent near-UV irradiation of the samples removed the protein from the titanium dioxide nanostructures by photocatalytic degradation facilitating the adsorption of a different protein. The process was repeated multiple times. These simple methods appear to yield durable, reuseable samples that may be of value to laboratories that require nanostructured biological interfaces but do not have access to the infrastructure required for nanofabrication.

  12. Rats avoid exposure to HVdc electric fields: a dose response study.

    Science.gov (United States)

    Creim, J A; Lovely, R H; Weigel, R J; Forsythe, W C; Anderson, L E

    1993-01-01

    Rats, given the choice, avoid exposure to alternating current (ac) 60-Hz electric fields at intensities > or = 75 kV/m. This study investigated the generality of this behavior by studying the response of rats when exposed to high voltage direct current (HVdc) electric fields. Three hundred eighty male Long Evans rats were studied in 9 experiments with 40 rats per experiment and in one experiment with 20 rats to determine 1) if rats avoid exposure to HVdc electric fields of varying field strengths, and 2) if avoidance did occur, what role, if any, the concentration of air ions would have on the avoidance behavior. In all experiments a three-compartment glass shuttlebox was used; either the left or right compartment could be exposed to a combination of HVdc electric fields and air ions while the other compartment remained sham-exposed. The third, center compartment was a transition zone between exposure and sham-exposure. In each experiment, the rats were individually assessed in 1-h sessions where half of the rats (n = 20) had the choice to locomote between the two sides being exposed or sham-exposed, while the other half of the rats (n = 20) were sham-exposed regardless of their location, except in one experiment where there was no sham-exposed group. The exposure levels for the first six experiments were 80, 55, 42.5, 30, -36, and -55 kV/m, respectively. The air ion concentration was constant at 1.4 x 10(6) ions/cc for the four positive exposure levels and -1.4 x 10(6) ions/cc for the two negative exposure levels. Rats having a choice between exposure and non-exposure relative to always sham-exposed control animals significantly reduced the amount of time spent on the exposed side at 80 kV/m (P HVdc exposure level was held constant at either -55 kV/m (for three experiments) or -55 kV/m (for 1 experiment) while the air ion concentration was varied between experiments at 2.5 x 10(5) ions/cc, 1.0 x 10(4) for two of the experiments and was below the measurement limit

  13. Fabrication and Analysis of Photonic Crystals

    Science.gov (United States)

    Campbell, Dean J.; Korte, Kylee E.; Xia, Younan

    2007-01-01

    These laboratory experiments are designed to explore aspects of nanoscale chemistry by constructing and spectroscopically analyzing thin films of photonic crystals. Films comprised of colloidal spheres and polydimethylsiloxane exhibit diffraction-based stop bands that shift reversibly upon exposure to some common solvents. Topics covered in these…

  14. Fabrication of Durably Superhydrophobic Cotton Fabrics by Atmospheric Pressure Plasma Treatment with a Siloxane Precursor

    Directory of Open Access Journals (Sweden)

    Jing Yang

    2018-04-01

    Full Text Available The surface treatment of fabrics in an atmospheric environment may pave the way for commercially viable plasma modifications of fibrous matters. In this paper, we demonstrate a durably superhydrophobic cotton cellulose fabric prepared in a single-step graft polymerization of hexamethyldisiloxane (HMDSO by N2 and O2 atmospheric pressure plasma. We systematically investigated effects on contact angle (CA and surface morphology of the cotton fabric under three operational parameters: precursor value; ionization gas flow rate; and plasma cycle time. Surface morphology, element composition, chemical structure and hydrophobic properties of the treated fabric were characterized by scanning electron microscope (SEM, EDS, FTIR and CA on the fabrics. The results indicated that a layer of thin film and nano-particles were evenly deposited on the cotton fibers, and graft polymerization occurred between cellulose and HMDSO. The fabric treated by O2 plasma exhibited a higher CA of 162° than that treated by N2 plasma which was about 149°. Furthermore, the CA of treated fabrics decreased only 0°~10° after storing at the ambient conditions for four months, and treated fabrics could also endure the standard textile laundering procedure in AATCC 61-2006 with minimum change. Therefore, this single-step plasma treatment method is shown to be a novel and environment-friendly way to make durable and superhydrophobic cotton fabrics.

  15. Fabrication and Performance of a Lithium X-Ray Lens

    Science.gov (United States)

    Young, Kristina; Khounsary, Ali; Jansen, Andrew N.; Dufresne, Eric M.; Nash, Philip

    2007-01-01

    Compound refractive lenses (CRLs) are arrays of concave lenses whose simple design and ease in implementation and alignment make them an attractive optic to focus x-rays. Factors considered in designing CRLs include lens material, fabrication, and assembly. Lithium is a desirable material because it provides the largest index of refraction decrement per unit absorption length of any solid elements. Lithium is a difficult material to handle and fabricate because it is rather malleable and more importantly, it reacts with moisture, and to a lesser extent, with oxygen and nitrogen in air. It also tends to adhere to molds and dies. We report on the fabrication and performance of a parabolic lithium lens consisting of 32 lenslets. Lenslets are fabricated in a precision press using an indenter with a parabolic profile and a 100 μm tip radius. The indenter is made of stainless steel and is figured using a computer numerically controlled (CNC) machine. The lens is designed to have a 1.7 m focal length at 10 keV energy. In an experiment conducted at the Advanced Photon Source (APS), a 0.5 mm × 0.5 mm monochromatic undulator beam strikes the lens. A focal length of 1.71, a focal spot size of 24 μm × 34 μm, and a peak intensity gain of over 18 are obtained.

  16. Fabrication and Performance of a Lithium X-Ray Lens

    International Nuclear Information System (INIS)

    Young, Kristina; Khounsary, Ali; Jansen, Andrew N.; Dufresne, Eric M.; Nash, Philip

    2007-01-01

    Compound refractive lenses (CRLs) are arrays of concave lenses whose simple design and ease in implementation and alignment make them an attractive optic to focus x-rays. Factors considered in designing CRLs include lens material, fabrication, and assembly. Lithium is a desirable material because it provides the largest index of refraction decrement per unit absorption length of any solid elements. Lithium is a difficult material to handle and fabricate because it is rather malleable and more importantly, it reacts with moisture, and to a lesser extent, with oxygen and nitrogen in air. It also tends to adhere to molds and dies.We report on the fabrication and performance of a parabolic lithium lens consisting of 32 lenslets. Lenslets are fabricated in a precision press using an indenter with a parabolic profile and a 100 μm tip radius. The indenter is made of stainless steel and is figured using a computer numerically controlled (CNC) machine. The lens is designed to have a 1.7 m focal length at 10 keV energy. In an experiment conducted at the Advanced Photon Source (APS), a 0.5 mm x 0.5 mm monochromatic undulator beam strikes the lens. A focal length of 1.71, a focal spot size of 24 μm x 34 μm, and a peak intensity gain of over 18 are obtained

  17. Exposure is not enough: suppressing stimuli from awareness can abolish the mere exposure effect.

    Directory of Open Access Journals (Sweden)

    Daniel de Zilva

    Full Text Available Passive exposure to neutral stimuli increases subsequent liking of those stimuli--the mere exposure effect. Because of the broad implications for understanding and controlling human preferences, the role of conscious awareness in mere exposure has received much attention. Previous studies have claimed that the mere exposure effect can occur without conscious awareness of the stimuli. In two experiments, we applied a technique new to the mere exposure literature, called continuous flash suppression, to expose stimuli for a controlled duration with and without awareness. To ensure the reliability of the awareness manipulation, awareness was monitored on a trial-by-trial basis. Our results show that under these conditions the mere exposure effect does not occur without conscious awareness. In contrast, only when participants were aware of the stimuli did exposure increase liking and recognition. Together these data are consistent with the idea that the mere exposure effect requires conscious awareness and has important implications for theories of memory and affect.

  18. Exposure is not enough: suppressing stimuli from awareness can abolish the mere exposure effect.

    Science.gov (United States)

    de Zilva, Daniel; Vu, Luke; Newell, Ben R; Pearson, Joel

    2013-01-01

    Passive exposure to neutral stimuli increases subsequent liking of those stimuli--the mere exposure effect. Because of the broad implications for understanding and controlling human preferences, the role of conscious awareness in mere exposure has received much attention. Previous studies have claimed that the mere exposure effect can occur without conscious awareness of the stimuli. In two experiments, we applied a technique new to the mere exposure literature, called continuous flash suppression, to expose stimuli for a controlled duration with and without awareness. To ensure the reliability of the awareness manipulation, awareness was monitored on a trial-by-trial basis. Our results show that under these conditions the mere exposure effect does not occur without conscious awareness. In contrast, only when participants were aware of the stimuli did exposure increase liking and recognition. Together these data are consistent with the idea that the mere exposure effect requires conscious awareness and has important implications for theories of memory and affect.

  19. Design and fabrication of a CH/Al dual-layer perturbation target for hydrodynamic instability experiments in ICF

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jun [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Xie, Zhiyong [Shanghai Institute of Laser Plasma, Shanghai 201800 (China); Du, Ai [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Ye, Junjian [Shanghai Institute of Laser Plasma, Shanghai 201800 (China); Zhang, Zhihua; Shen, Jun [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Zhou, Bin, E-mail: zhoubin863@tongji.edu.cn [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China)

    2014-04-15

    Highlights: • Sinusoidal perturbed Al foil was prepared by single-point diamond turning. • Perturbed Al foil was measured by surface profiler and white light interferometer. • Perturbed Al foil and CH layer adhered with each other via a hot-press process. • Parameters and cross-section of the CH–Al perturbation target was characterized. - Abstract: A polystyrene (CH)/aluminum (Al) dual-layer perturbation target for hydrodynamic instability experiments in inertial confinement fusion (ICF) was designed and fabricated. The target was composed of a perturbed 40 μm Al foil and a CH layer. The detailed fabrication method consisted of four steps. The 40 μm Al foil was first prepared by roll and polish process; the perturbation patterns were then introduced on the surface of the Al foil by the single-point diamond turning (SPDT) technology; the CH layer was prepared via a simple method which called spin-coating process; finally, the CH layer was directly coated on the perturbation surface of Al foil by a hot-press process to avoid the use of a sticker and to eliminate the gaps between the CH layer and the Al foil. The parameters of the target, such as the perturbation wavelength (T) and perturbation amplitude (A), were characterized by a QC-5000 tool microscope, an alpha-step 500 surface profiler and a NT1100 white light interferometer. The results showed that T and A of the target were about 52 μm and 7.34 μm, respectively. Thickness of the Al foil (H1), thickness of the CH layer (H2), and cross-section of the dual-layer target were characterized by a QC-5000 tool microscope and a scanning electron microscope (SEM). H1 and H2 were about 40 μm and 15 μm, respectively, the cross-sectional photographs of the target showed that the CH layer and the Al foil adhered perfectly with each other.

  20. Fabrication of long-term stable superoleophobic surface based on copper oxide/cobalt oxide with micro-nanoscale hierarchical roughness

    Science.gov (United States)

    Barthwal, Sumit; Lim, Si-Hyung

    2015-02-01

    We have demonstrated a simple and cost-effective technique for the large-area fabrication of a superoleophobic surface using copper as a substrate. The whole process included three simple steps: First, the copper substrate was oxidized under hot alkaline conditions to fabricate flower-like copper oxide microspheres by heating at a particular temperature for an interval of time. Second, the copper-oxide-covered copper substrate was further heated in a solution of cobalt nitrate and ammonium nitrate in the presence of an ammonia solution to fabricate cobalt oxide nanostructures. We applied this second step to increase the surface roughness because it is an important criterion for improved superoleophobicity. Finally, to reduce the surface energy of the fabricated structures, the surfaces were chemically modified with perfluorooctyltrichlorosilane. Contact-angle measurements indicate that the micro-nano binary (MNB) hierarchical structures fabricated on the copper substrate became super-repellent toward a broad range of liquids with surface tension in the range of 21.5-72 mN/m. In an attempt to significantly improve the superoleophobic property of the surface, we also examined and compared the role of nanostructures in MNB hierarchical structures with only micro-fabricated surfaces. The fabricated MNB hierarchical structures also displays thermal stability and excellent long-term stability after exposure in air for more than 9 months. Our method might provide a general route toward the preparation of novel hierarchical films on metal substrates for various industrial applications.

  1. Problems related to design and construction of industrial radiography exposure room - an experience

    International Nuclear Information System (INIS)

    Siti Madiha Muhammad Amir; Mohd Khairi Mohd Said; Abdul Nassir Ibrahim; Ab Razak Hamzah

    2009-01-01

    In Non-Destructive Testing (NDT), especially in radiography method, inspections of components are executed either on-site or in-house. For in-house inspections, work must be performed in a specially constructed exposure room. The design of the exposure room must be according to specific requirements described in various documents related to radiation safety. Stringent requirements specified for the exposure room is for the purpose of ensuring the safety of public and radiation workers. These requirements are never compromised. One of the AELB requirements that need to be complied is that the permissible dose limit anywhere outside the room must be less than 0.25 mR/hr. In designing and constructing the exposure room, many factors must be taken into account such as shielding thickness, density of shielding, thickness of lead door, the roof design of the exposure room and many more. This paper highlights problems encountered and the considerations taken to design and construct the exposure room so that the exposure room will comply with the permissible dose limit set by the regulatory body. (Author)

  2. Tuning up and fabrication of U3Si2 nuclear material

    International Nuclear Information System (INIS)

    Pasqualini, Enrique E.; Echenique, Patricia N.; Rossi, Gustavo S.; Canil, Eduardo E.; Esteban, Adolfo; Lopez, Marisol; Adelfang, Pablo

    2000-01-01

    This work describes the tuning up and fabrication of uranium-silicide powder for its utilization as nuclear fuel in material testing reactors taking in account NUREG-1313 recommendations, the experience of several suppliers and the one acquired in this work.Several alloy compositions were melted with natural uranium at temperatures of about 1800 degree C for adjusting composition and ingot homogeneity. Alumina, magnesia and zirconia-5% stabilized yttria crucibles were tested to evaluate the degree of contamination introduced by chemical attack of molten uranium and silicon. The fabrication procedure of 20% enriched uranium-silicide powder was established for building up the P-06 fuel element that actually is being irradiated at the RA-3 reactor facility. The selected procedures of fabrication and the critical analysis for the interpretation of several specifications are discussed. Results are shown of the obtained ingots and powder produced with the enriched uranium-silicide. (author)

  3. Structure and yarn sensor for fabric

    Science.gov (United States)

    Mee, D.K.; Allgood, G.O.; Mooney, L.R.; Duncan, M.G.; Turner, J.C.; Treece, D.A.

    1998-10-20

    A structure and yarn sensor for fabric directly determines pick density in a fabric thereby allowing fabric length and velocity to be calculated from a count of the picks made by the sensor over known time intervals. The structure and yarn sensor is also capable of detecting full length woven defects and fabric. As a result, an inexpensive on-line pick (or course) density measurement can be performed which allows a loom or knitting machine to be adjusted by either manual or automatic means to maintain closer fiber density tolerances. Such a sensor apparatus dramatically reduces fabric production costs and significantly improves fabric consistency and quality for woven or knitted fabric. 13 figs.

  4. Defect reduction for fabric cutting process to produce polo shirts : a case study of garment factory

    Directory of Open Access Journals (Sweden)

    Panicha Suttanako

    2014-09-01

    Full Text Available This research aims to study the factors affecting the crooked fabric cutting and to present the new cutting procedure that complies with the factors affecting the crooked fabric cutting of a case study. The defect in fabric cutting process was crooked fabric making nonconforming product. The cause and effect diagram was utilized to analyze and suggest related factors leading to the problem. It was showed that the number of times of knife sharpening and the number of layers in fabric paving would affect the crooked fabric cutting the design of experiment was applied to determine appropriate the level of these factors. The main factor significantly affected the crooked fabric cutting (p < 0.05 was the number of times of knife sharpening, but the number of layers in fabric paving and interaction between both factors would not significantly affect the crooked fabric cutting. The number of times of knife sharpening in the level 4 had been sharpened twenty times in each cutting round. The least average defective proportion was 0.0173. Then the new cutting procedure would significantly reduce average defective proportion. It could reduce the average number of defective items as 5.74 pieces in each cutting round or 70.52 percents.

  5. Day-­to-­day speculation : designing and wearing dynamic fabric

    NARCIS (Netherlands)

    Mackey, A.M.; Wakkary, R.L.; Wensveen, S.A.G.; Tomico Plasencia, O.; Hengeveld, B.J.

    2017-01-01

    In this paper we describe Greenscreen Dress, a material speculation inquiry that investigates the wearing experience of dynamic fabric in everyday life. In this study the researcher has worn a "greenscreen garment" every day for seven months. Coupled with a chroma-key smartphone application, she has

  6. Fabrication and Prototyping Lab

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The Fabrication and Prototyping Lab for composite structures provides a wide variety of fabrication capabilities critical to enabling hands-on research and...

  7. Fe nanodot system fabricated by non-lithographic method and its structural properties

    International Nuclear Information System (INIS)

    Chu Van Chiem; Nguyen Thi Thu Ha; Ngo Thi Thanh Tam; Nguyen Van Chuc; Phan Ngoc Minh; Li Huying; Seo Jae Muyng

    2009-01-01

    In this work, we study the magnetic structure and morphology of the Fe nanodot system fabricated by the non-lithographic method, using anodic aluminum oxide (AAO) membrane as a template. By the two-steps aluminum anodization, the AAO patterns with the hexagonal pore arrangement have been achieved. Using AAO pattern as a template, under suitable conditions we successfully deposited the iron metal in the pores by the thermal vacuum evaporation. By the exposure of the deposited system from the bottom of the AAO membrane, the hexagonal ordered Fe nanodot system has been obtained. The morphologies of the nanodot system were imaged by the Atomic Force Microscopy (AFM) and Field Emission Scanning Microscopy (FESEM) methods. The magnetic structures were investigated by the Energy Dispersive X-Ray Fluorescence Spectroscopy (EDS) and Magnetic Force Microscopy (MFM) methods. Experimental results confirmed that the MFM image of the fabricated Fe nanodot system is similar to their AFM image.

  8. Fe nanodot system fabricated by non-lithographic method and its structural properties

    Energy Technology Data Exchange (ETDEWEB)

    Chiem, Chu Van; Thu Ha, Nguyen Thi; Thanh Tam, Ngo Thi; Chuc, Nguyen Van; Minh, Phan Ngoc [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay Distr., Hanoi (Viet Nam); Huying, Li; Seo Jae Muyng [Physics department, Chonbuk National University (Korea, Republic of)], E-mail: chucnv@ims.vast.ac.vn

    2009-09-01

    In this work, we study the magnetic structure and morphology of the Fe nanodot system fabricated by the non-lithographic method, using anodic aluminum oxide (AAO) membrane as a template. By the two-steps aluminum anodization, the AAO patterns with the hexagonal pore arrangement have been achieved. Using AAO pattern as a template, under suitable conditions we successfully deposited the iron metal in the pores by the thermal vacuum evaporation. By the exposure of the deposited system from the bottom of the AAO membrane, the hexagonal ordered Fe nanodot system has been obtained. The morphologies of the nanodot system were imaged by the Atomic Force Microscopy (AFM) and Field Emission Scanning Microscopy (FESEM) methods. The magnetic structures were investigated by the Energy Dispersive X-Ray Fluorescence Spectroscopy (EDS) and Magnetic Force Microscopy (MFM) methods. Experimental results confirmed that the MFM image of the fabricated Fe nanodot system is similar to their AFM image.

  9. A facile fabrication of multifunctional knit polyester fabric based on chitosan and polyaniline polymer nanocomposite

    Science.gov (United States)

    Tang, Xiaoning; Tian, Mingwei; Qu, Lijun; Zhu, Shifeng; Guo, Xiaoqing; Han, Guangting; Sun, Kaikai; Hu, Xili; Wang, Yujiao; Xu, Xiaoqi

    2014-10-01

    Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric.

  10. Occupational radiation exposures at NRC-licensed facilities

    International Nuclear Information System (INIS)

    Brooks, B.G.

    1980-01-01

    For the past ten years, the Nuclear Regulatory Commission and its predecessor, the Atomic Energy Commission, have required certain licensees to routinely submit two types of occupational radiation exposure reports: termination and annual reports. Each licensee engaged in any one of the activities: (1) operation of nuclear power reactors, (2) industrial radiography, (3) fuel fabrication, processing and reprocessing, and (4) large supply of byproduct material, is required to submit an annual statistical report and a termination report for each monitored employee who ends his employment or work assignment. A new regulation now requires all NRC licensees to submit annual reports for the years 1978 and 1979. These reports have been collected, computerized and maintained by the Commission at Oak Ridge, Tennessee. They are useful to the NRC in the evaluation of the risk of radiation exposure associated with the related activities. (author)

  11. Nature gives us strength: exposure to nature counteracts ego-depletion.

    Science.gov (United States)

    Chow, Jason T; Lau, Shun

    2015-01-01

    Previous research rarely investigated the role of physical environment in counteracting ego-depletion. In the present research, we hypothesized that exposure to natural environment counteracts ego-depletion. Three experiments were conducted to test this hypothesis. In Experiment 1, initially depleted participants who viewed pictures of nature scenes showed greater persistence on a subsequent anagram task than those who were given a rest period. Experiment 2 expanded upon this finding by showing that natural environment enhanced logical reasoning performance after ego-depleting task. Experiment 3 adopted a two- (depletion vs. no-depletion) -by-two (nature exposure vs. urban exposure) factorial design. We found that nature exposure moderated the effect of depletion on anagram task performance. Taken together, the present studies offer a viable and novel strategy to mitigate the negative impacts of ego-depletion.

  12. Facility safeguards at an LEU fuel fabrication facility in Japan

    International Nuclear Information System (INIS)

    Kuroi, H.; Osabe, T.

    1984-01-01

    A facility description of a Japanese LEU BWR-type fuel fabrication plant focusing on safeguards viewpoints is presented. Procedures and practices of MC and A plan, measurement program, inventory taking, and the report and record system are described. Procedures and practices of safeguards inspection are discussed and lessons learned from past experiences are reviewed

  13. IAEA physical inventory verification procedures implemented at US and Canadian fuel fabrication plants

    International Nuclear Information System (INIS)

    Gough, J.; Wredberg, L.; Zobor, E.; Zuccaro-Labellarte, G.

    1988-01-01

    IAEA has implemented safeguards at three Low Enriched Uranium (LEU) fuel fabrication plants in the USA during the period 1982 to 1987, and it is in the process of safeguarding a fourth plant from 01 January 1988. In Canada IAEA safeguards inspections were implemented at all Natural Uranium (NU) fuel fabrication plants form 1972 onwards, and there are, at present, three plants under safeguards. The direct responsibility for the implementation of safeguards inspections in the USA and Canada lies with the Division of Operations B (SGOB) within the IAEA Department of Safeguards. The senior staff that is at present directly engaged in the implementation activities has accumulated supervising inspection experience at about 50 Physical Inventory Verification (PIV) inspections at the Canadian and US fabrication plants during the period 1978 to 1987. This experience has been gained in close cooperation with the facility operators and with the support of the state authorities. The paper describes the latest PIV inspections at the Westinghouse Columbia plant and the Zircatec Precision Industries Inc. Port Hope plant. Furthermore, the paper describes the initial activities for the 1988 PIV inspection at the General Electric Wilmington plant including computerized book audit activities

  14. Trait and state anxiety reduce the mere exposure effect

    Directory of Open Access Journals (Sweden)

    Sandra L Ladd

    2015-05-01

    Full Text Available The mere exposure effect refers to an affective preference elicited by exposure to previously unfamiliar items. Although it is a well-established finding, its mechanism remains uncertain, with some positing that it reflects affective processes and others positing that it reflects perceptual or motor fluency with repeated items. Here we examined whether individual differences in trait and state anxiety, which have been associated with the experience of emotion, influence the mere exposure effect. Participants’ trait (Study 1 and state (Study 2 anxiety were characterized with the State-Trait Anxiety Inventory. Greater trait and state anxiety correlated with greater negative affect and lesser positive affect. In both experiments, greater anxiety was associated with a reduced mere exposure effect. Measures of fluency (response times at study and test were unrelated to the mere exposure effect. These findings support the role of affective processes in the mere exposure effect, and offer a new insight into the nature of anxiety such that anxiety is associated with a reduced experience of positive affect typically associated with familiarity.

  15. Trait and state anxiety reduce the mere exposure effect.

    Science.gov (United States)

    Ladd, Sandra L; Gabrieli, John D E

    2015-01-01

    The mere exposure effect refers to an affective preference elicited by exposure to previously unfamiliar items. Although it is a well-established finding, its mechanism remains uncertain, with some positing that it reflects affective processes and others positing that it reflects perceptual or motor fluency with repeated items. Here we examined whether individual differences in trait and state anxiety, which have been associated with the experience of emotion, influence the mere exposure effect. Participants' trait (Study 1) and state (Study 2) anxiety were characterized with the State-Trait Anxiety Inventory. Greater trait and state anxiety correlated with greater negative affect and lesser positive affect. In both experiments, greater anxiety was associated with a reduced mere exposure effect. Measures of fluency (response times at study and test) were unrelated to the mere exposure effect. These findings support the role of affective processes in the mere exposure effect, and offer a new insight into the nature of anxiety such that anxiety is associated with a reduced experience of positive affect typically associated with familiarity.

  16. MOX fuel fabrication at AECL

    International Nuclear Information System (INIS)

    Dimayuga, F.C.; Jeffs, A.T.

    1995-01-01

    Atomic Energy of Canada Limited's mixed-oxide (MOX) fuel fabrication activities are conducted in the Recycle Fuel Fabrication Laboratories (RFFL) at the Chalk River Laboratories. The RFFL facility is designed to produce experimental quantities of CANDU MOX fuel for reactor physics tests or demonstration irradiations. From 1979 to 1987, several MOX fuel fabrication campaigns were run in the RFFL, producing various quantities of fuel with different compositions. About 150 bundles, containing over three tonnes of MOX, were fabricated in the RFFL before operations in the facility were suspended. In late 1987, the RFFL was placed in a state of active standby, a condition where no fuel fabrication activities are conducted, but the monitoring and ventilation systems in the facility are maintained. Currently, a project to rehabilitate the RFFL and resume MOX fuel fabrication is nearing completion. This project is funded by the CANDU Owners' Group (COG). The initial fabrication campaign will consist of the production of thirty-eight 37-element (U,Pu)O 2 bundles containing 0.2 wt% Pu in Heavy Element (H.E.) destined for physics tests in the zero-power ZED-2 reactor. An overview of the Rehabilitation Project will be given. (author)

  17. 14 CFR 29.605 - Fabrication methods.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fabrication methods. 29.605 Section 29.605... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process...

  18. Exposure to conflict and disaster: A national survey on the prevalence of psychotic experiences in Sri Lanka.

    Science.gov (United States)

    Keraite, Arune; Sumathipala, Athula; Siriwardhana, Chesmal; Morgan, Craig; Reininghaus, Ulrich

    2016-03-01

    Recent research conducted in high-income countries suggests psychotic experiences are common in the general population, but evidence from low- and middle-income countries (LMIC) remains limited. Sri Lanka is a LMIC affected by three decades of civil conflict and, in 2004, a devastating tsunami. This study aimed to investigate the prevalence of psychotic experiences in a general population sample in Sri Lanka and associations with conflict- and tsunami-related trauma. This is a first National Mental Health Survey conducted in Sri Lanka. A cross-sectional, multi-stage, cluster sampling design was used to estimate the prevalence of psychotic symptoms. Data on socio-demographic characteristics, conflict- and tsunami-related trauma, and psychotic experiences were collected using culturally validated measures in a sample of 5927 participants. The weighted prevalence of psychotic symptoms was 9.7%. Exposure to one or more conflict-related events (adj. OR 1.79, 95% CI 1.40-2.31, pconflict (adj. OR, 1.83, 95% CI 1.42-2.37, pconflicts and natural disasters may be important socio-environmental factors in the development of psychotic experiences. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Flexible fabrication of biomimetic compound eye array via two-step thermal reflow of simply pre-modeled hierarchic microstructures

    Science.gov (United States)

    Huang, Shengzhou; Li, Mujun; Shen, Lianguan; Qiu, Jinfeng; Zhou, Youquan

    2017-06-01

    A flexible fabrication method for the biomimetic compound eye (BCE) array is proposed. In this method, a triple-layer sandwich-like coating configuration was introduced, and the required hierarchic microstructures are formed with a simple single-scan exposure in maskless digital lithography. Taking advantage of the difference of glass transition point (Tg) between photoresists of each layer, the pre-formed hierarchic microstructures are in turn reflowed to the curved substrate and the BCE ommatidia in a two-step thermal reflow process. To avoid affecting the spherical substrate formed in the first thermal reflow, a non-contact strategy was proposed in the second reflow process. The measurement results were in good agreement with the designed BCE profiles. Results also showed that the fabricated BCE had good performances in optical test. The presented method is flexible, convenient, low-cost and can easily adapt to the fabrications of other optical elements with hierarchic microstructures.

  20. Assessment of Natural Exposure From Some kinds of Egyptian Gypsum Using Low Background Spectrometer

    International Nuclear Information System (INIS)

    Sroor, A.

    2006-01-01

    Radioactivity of natural gypsum and gypsum derived products are examined investigated due to their importance as element of building materials and agricultural gypsum. the natural gypsum and its product may constitute an additional source of radiation exposure to workers and members of public from radiation produced by radioactive decaying. thirty natural gypsum samples from different quarries and 32 fabricated gypsum samples from commercial companies were analyzed using low background HPGe detector. the natural concentration of Ra-226, 232 Th and 40 K activities in all samples were determined in Bq/Kg dry weight. it was found that radioactivity of natural gypsum is less than the fabricated gypsum, so it can be used as agricultural gypsum. fabricated gypsum is suitable for use as an element of building material in egypt

  1. An accelerated exposure and testing apparatus for building joint sealants.

    Science.gov (United States)

    White, C C; Hunston, D L; Tan, K T; Hettenhouser, J; Garver, J D

    2013-09-01

    The design, fabrication, and implementation of a computer-controlled exposure and testing apparatus for building joint sealants are described in this paper. This apparatus is unique in its ability to independently control and monitor temperature, relative humidity, ultraviolet (UV) radiation, and mechanical deformation. Each of these environmental factors can be controlled precisely over a wide range of conditions during periods of a month or more. Moreover, as controlled mechanical deformations can be generated, in situ mechanical characterization tests can be performed without removing specimens from the chamber. Temperature and humidity were controlled during our experiments via a precision temperature regulator and proportional mixing of dry and moisture-saturated air; while highly uniform UV radiation was attained by attaching the chamber to an integrating sphere-based radiation source. A computer-controlled stepper motor and a transmission system were used to provide precise movement control. The reliability and effectiveness of the apparatus were demonstrated on a model sealant material. The results clearly show that this apparatus provides an excellent platform to study the long-term durability of building joint sealants.

  2. Fabrication of ridge waveguide structure from photosensitive TiO2/ormosil hybrid films by using an ultraviolet soft imprint technique

    International Nuclear Information System (INIS)

    Zhang, Xuehua; Que, Wenxiu; Chen, Jing; Gao, Tianxi; Hu, Jiaxing; Liu, Weiguo

    2013-01-01

    Photosensitive TiO 2 /organically modified silane hybrid films were prepared by combining a low-temperature sol–gel process with a spin-coating technique. Optical properties and photochemical activities of the as-prepared hybrid sol–gel films under different UV irradiation time were characterized and monitored by prism coupling technique, UV–visible spectroscopy, and Fourier transform infrared spectroscopy. Surface morphology of the hybrid films was also observed by an atomic force microscopy. Advantages for fabrication of ridge waveguide structure based on the photosensitive hybrid films were demonstrated by an ultraviolet soft imprint technique. Effects of imprint force, imprint time, and UV irradiation time on high replication fidelity of the ridge waveguide structure were also investigated. An altitude replication fidelity of 99.7% can be obtained when the imprint force of 2 MPa, imprint time of 30 min and UV irradiation time of 45 min were chosen. Scanning electron microscopy and surface profiler were used to characterize the morphological and surface profile properties of the as fabricated ridge waveguide structure. Results indicate that the as-prepared photosensitive hybrid materials have great applicability for the fabrication of micro-optical elements and advantage as the imprint layer under the ultraviolet soft imprint technique. - Highlights: ► Photosensitive TiO 2 /ormosil hybrid film is prepared by a sol–gel process. ► Optical properties of the films change a little with UV exposure time. ► Photo-chemical property of the film changes a lot with UV exposure time. ► The imprint force and time, and the UV exposure time affect the imprint fidelity. ► A fidelity value of 99.7% is obtained under an optimized condition

  3. 14 CFR 27.605 - Fabrication methods.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fabrication methods. 27.605 Section 27.605... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process (such as...

  4. 14 CFR 25.605 - Fabrication methods.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fabrication methods. 25.605 Section 25.605... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction General § 25.605 Fabrication methods. (a) The methods of fabrication used must produce a consistently sound structure. If a fabrication process...

  5. Fabrication of orderly nanostructured PLGA scaffolds using anodic aluminum oxide templates.

    Science.gov (United States)

    Wang, Gou-Jen; Lin, Yan-Cheng; Li, Ching-Wen; Hsueh, Cheng-Chih; Hsu, Shan-Hui; Hung, Huey-Shan

    2009-08-01

    In this research, two simple fabrication methods to fabricate orderly nanostructured PLGA scaffolds using anodic aluminum oxide (AAO) template were conducted. In the vacuum air-extraction approach, the PLGA solution was cast on an AAO template first. The vacuum air-extraction process was then applied to suck the semi-congealed PLGA into the nanopores of the AAO template to form a bamboo sprouts array of PLGA. The surface roughness of the nanostructured scaffolds, ranging from 20 nm to 76 nm, can be controlled by the sucking time of the vacuum air-extraction process. In the replica molding approach, the PLGA solution was cast on the orderly scraggy barrier-layer surface of an AAO membrane to fabricate a PLGA scaffold of concave nanostructure. Cell culture experiments using the bovine endothelial cells (BEC) demonstrated that the nanostructured PLGA membrane can increase the cell growing rate, especially for the bamboo sprouts array scaffolds with smaller surface roughness.

  6. High volume fabrication of laser targets using MEMS techniques

    International Nuclear Information System (INIS)

    Spindloe, C; Tomlinson, S; Green, J; Booth, N.; Tolley, M K; Arthur, G; Hall, F; Potter, R; Kar, S; Higginbotham, A

    2016-01-01

    The latest techniques for the fabrication of high power laser targets, using processes developed for the manufacture of Micro-Electro-Mechanical System (MEMS) devices are discussed. These laser targets are designed to meet the needs of the increased shot numbers that are available in the latest design of laser facilities. Traditionally laser targets have been fabricated using conventional machining or coarse etching processes and have been produced in quantities of 10s to low 100s. Such targets can be used for high complexity experiments such as Inertial Fusion Energy (IFE) studies and can have many complex components that need assembling and characterisation with high precision. Using the techniques that are common to MEMS devices and integrating these with an existing target fabrication capability we are able to manufacture and deliver targets to these systems. It also enables us to manufacture novel targets that have not been possible using other techniques. In addition, developments in the positioning systems that are required to deliver these targets to the laser focus are also required and a system to deliver the target to a focus of an F2 beam at 0.1Hz is discussed. (paper)

  7. Dose level of occupational exposure in China

    International Nuclear Information System (INIS)

    Tian, Y.; Zhang, L.; Ju, Y.

    2008-01-01

    This paper discusses the dose level of Chinese occupational exposures during 1986-2000. Data on occupational exposures from the main categories in nuclear fuel cycle (uranium enrichment and conversion, fuel fabrication, reactor operation, waste management and research activity, except for uranium mining and milling because of the lack of data), medical uses of radiation (diagnostic radiation, nuclear medicine and radiotherapy) and industrial uses of radiation (industrial radiography and radioisotope production) are presented and summarised in detail. These are the main components of occupational exposures in China. In general, the average annual effective doses show a steady decreasing trend over periods: from 2.16 to 1.16 mSv in medical uses of radiation during 1990-2000; from 1.92 to 1.18 mSv in industrial radiography during 1990-2000; from 8.79 to 2.05 mSv in radioisotope production during the period 1980-2000. Almost all the average annual effective doses in discussed occupations were lower than 5 mSv in recent years (except for well-logging: 6.86 mSv in 1999) and no monitored workers were found to have received the occupational exposure exceeding 50 mSv in a single year or 100 mSv in a five-year period. So the Chinese protection status of occupation exposure has been improved in recent years. However, the average annual effective doses in some occupations, such as diagnostic radiology and coal mining, were still much higher than that of the whole world. There are still needs for further improvement and careful monitoring of occupational exposure to protect every worker from excessive occupational exposure, especially for the workers who were neglected before. (authors)

  8. Design and Fabrication of DebriSat - A Representative LEO Satellite for Improvements to Standard Satellite Breakup Models

    Science.gov (United States)

    Clark, S.; Dietrich, A.; Fitz-Coy, N.; Weremeyer, M.; Liou, J.-C.

    2012-01-01

    This paper discusses the design and fabrication of DebriSat, a 50 kg satellite developed to be representative of a modern low Earth orbit satellite in terms of its components, materials used, and fabrication procedures. DebriSat will be the target of a future hypervelocity impact experiment to determine the physical characteristics of debris generated after an on-orbit collision of a modern LEO satellite. The major ground-based satellite impact experiment used by DoD and NASA in their development of satellite breakup models was SOCIT, conducted in 1992. The target used for that experiment was a Navy transit satellite (40 cm, 35 kg) fabricated in the 1960's. Modern satellites are very different in materials and construction techniques than those built 40 years ago. Therefore, there is a need to conduct a similar experiment using a modern target satellite to improve the fidelity of the satellite breakup models. To ensure that DebriSat is truly representative of typical LEO missions, a comprehensive study of historical LEO satellite designs and missions within the past 15 years for satellites ranging from 1 kg to 5000 kg was conducted. This study identified modern trends in hardware, material, and construction practices utilized in recent LEO missions. Although DebriSat is an engineering model, specific attention is placed on the quality, type, and quantity of the materials used in its fabrication to ensure the integrity of the outcome. With the exception of software, all other aspects of the satellite s design, fabrication, and assembly integration and testing will be as rigorous as that of an actual flight vehicle. For example, to simulate survivability of launch loads, DebriSat will be subjected to a vibration test. As well, the satellite will undergo thermal vacuum tests to verify that the components and overall systems meet typical environmental standards. Proper assembly and integration techniques will involve comprehensive joint analysis, including the precise

  9. Processing and characterization of multilayers for energy device fabrication (invited)

    DEFF Research Database (Denmark)

    Kaiser, Andreas; Kiebach, Wolff-Ragnar; Gurauskis, Jonas

    SOFC and tubular OTM, we present selected challenges in ceramic processing such asymmetric multilayer structures. By optimizing different steps in the ceramic processing, we improved the mechanical properties and gas permeability of porous supports and the (electrochemical) performance of electrodes......The performance of asymmetric multilayer structures in solid oxide fuel cells (SOFC)/solid oxide electrolysis cells (SOEC), tubular oxygen transport membranes (OTM) and similar high temperature energy devices is often determined by the ceramic fabrication (for given materials and design). A good...... understanding and control of different processing steps (from powder/materials selection, through shaping and sintering) is of crucial importance to achieve a defect-free multilayer microstructure with the desired properties and performance. Based on the experiences at DTU Energy with the fabrication of planar...

  10. Design, fabrication and performance of the 10-in TOM HPD

    CERN Document Server

    Braem, André; Joram, C; Séguinot, Jacques; Weilhammer, P; Giunta, M; Malakhov, N; Menzione, A; Pegna, R; Piccioli, A; Raffaelli, F; Sartori, G

    2004-01-01

    The first sealed TOM Hybrid Photon Detector (HPD) with 10-in. diameter has been fabricated and successfully tested at CERN. This HPD has a spherical entrance window and a bialkali photocathode. The fountain focusing optics produces a demagnified image (D = 4) on the round segmented silicon sensor. The signals of the 2048 cells are read out through analog front-end electronics encapsulated in the vacuum envelope. We report on the design, fabrication technique and the experimental results obtained with laboratory test benches. The large TOM HPD is a prototype tube developed for the CLUE cosmic ray experiment. The final tubes, now under development, will be equipped with a solar-blind Rb//2Te photocathode and self triggering front-end electronics.

  11. Design, fabrication and performance of the 10-in. TOM HPD

    International Nuclear Information System (INIS)

    Braem, A.; Chesi, E.; Joram, C.; Seguinot, J.; Weilhammer, P.; Giunta, M.; Malakhov, N.; Menzione, A.; Pegna, R.; Piccioli, A.; Raffaelli, F.; Sartori, G.

    2004-01-01

    The first sealed TOM Hybrid Photon Detector (HPD) with 10-in. diameter has been fabricated and successfully tested at CERN. This HPD has a spherical entrance window and a bialkali photocathode. The fountain focusing optics produces a demagnified image (D=4) on the round segmented silicon sensor. The signals of the 2048 cells are read out through analog front-end electronics encapsulated in the vacuum envelope. We report on the design, fabrication technique and the experimental results obtained with laboratory test benches. The large TOM HPD is a prototype tube developed for the CLUE cosmic ray experiment. The final tubes, now under development, will be equipped with a solar-blind Rb 2 Te photocathode and self triggering front-end electronics

  12. 14 CFR 23.605 - Fabrication methods.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fabrication methods. 23.605 Section 23.605... Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a... fabrication method must be substantiated by a test program. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964; 30 FR...

  13. Cylindrical fabric-confined soil structures

    Science.gov (United States)

    Harrison, Richard A.

    A cylindrical fabric-soil structural concept for implementation on the moon and Mars which provides many advantages is proposed. The most efficient use of fabric is to fashion it into cylindrical tubes, creating cylindrical fabric-confined soil structures. The length, diameter, and curvature of the tubes will depend on the intended application. The cylindrical hoop forces provide radial confinement while end caps provide axial confinement. One of the ends is designed to allow passage of the soil into the fabric tube before sealing. Transportation requirements are reduced due to the low mass and volume of the fabric. Construction requirements are reduced due to the self-erection capability via the pneumatic exoskeleton. Maintenance requirements are reduced due to the passive nature of the concept. The structure's natural ductility is well suited for any seismic activity.

  14. Radiation exposure management

    International Nuclear Information System (INIS)

    Snihs, J.O.

    1985-01-01

    Radiation exposure management includes administrative control, education and training, monitoring and dose assessments and planning of work and radiation protection. The information and discussion given in the paper are based on experiences in Sweden mainly from nuclear power installations. (Author)

  15. Multiple context mere exposure: Examining the limits of liking.

    Science.gov (United States)

    de Zilva, Daniel; Newell, Ben R; Mitchell, Chris J

    2016-01-01

    Recent evidence suggests that increased liking of exposed stimuli-a phenomenon known as the mere exposure effect-is dependent on experiencing the stimuli in the same context at exposure and test. Three experiments extended this work by examining the effect of presenting target stimuli in single and multiple exposure contexts. Target face stimuli were repeatedly paired with nonsense words, which took the role of contexts, across exposure. On test, the mere exposure effect was found only when the target face stimuli were presented with nonsense word cues (contexts) with which they had been repeatedly paired. The mere exposure effect was eliminated when exposure to target face stimuli with the nonsense word cues (contexts) was minimal, despite the overall number of exposures to the target face being equated across single- and multiple-context exposure conditions. The results suggest that familiarity of the relationship between stimuli and their context, not simply familiarity of the stimuli themselves, leads to liking. The finding supports a broader framework, which suggests that liking is partly a function of the consistency between past and present experiences with a target stimulus.

  16. Quality control in nuclear fuel fabrication

    International Nuclear Information System (INIS)

    Abdelhalim, A.S.; Elsayed, A.A.; Shaaban, H.I.

    1988-01-01

    The department of metallurgy, NRC Inchass is embarking on a programme of on a laboratory scale, fuel pins containing uranium dioxide pellets are going to be produced. The department is making use of the expertise and equipment at present available and is going to utilize the new fuel pin fabrication unit which would be shortly in operation. The fabrication and testing of uranium dioxide pellets then gradually adapt them and develop, a national know how in this field. This would also involve building up of indigenous experience through proper training of qualified personnel. That are applied to ensure quality of U o 2 pellets, the techniques implemented, the equipment used and the specifications of the equipment presently available. The following parameters are subject to quality control tests: density. O/U ration, hydrogen content, microstructure, each property will be discussed, measurements related to U o 2 powders, including flow ability, bulk density, O/U ratio, bet surface area and water content will be critically discussed. Relevant tests to ensure Q C of pellets are reviewed. These include surface integrity, density, dimensions, microstructure.4 fig., 1 tab

  17. Potassium-argon (argon-argon), structural fabrics

    Science.gov (United States)

    Cosca, Michael A.; Rink, W. Jack; Thompson, Jereon

    2014-01-01

    Definition: 40Ar/39Ar geochronology of structural fabrics: The application of 40Ar/39Ar methods to date development of structural fabrics in geologic samples. Introduction: Structural fabrics develop during rock deformation at variable pressures (P), temperatures (T), fluid compositions (X), and time (t). Structural fabrics are represented in rocks by features such as foliations and shear zones developed at the mm to km scale. In ideal cases, the P-T-X history of a given structural fabric can be constrained using stable isotope, cation exchange, and/or mineral equilibria thermobarometry (Essene 1989). The timing of structural fabric development can be assessed qualitatively using geologic field observations or quantitatively using isotope-based geochronology. High-precision geochronology of the thermal and fluid flow histories associated with structural fabric development can answer fundamental geologic questions including (1) when hydrothermal fluids transported and deposited ore minerals, ...

  18. Determining Exposure Factors of Anti-Fogging, Dye, Disinfectant, Repellent, and Preservative Products in Korea.

    Science.gov (United States)

    Lee, Daeyeop; Kim, Joo-Hyon; Kim, Taksoo; Yoon, Hyojung; Jo, Areum; Lee, Byeongwoo; Lim, Hyunwoo; Kim, Pilje; Seo, Jungkwan

    2018-01-30

    Reliable exposure factors are essential to determine health risks posed by chemicals in consumer products. We analyzed five risk-concerned product categories (anti-fogging, dye, disinfectant, repellent, and preservative products) for 13 products (three car anti-fogging products, a lens anti-fogging product, two car dye products, two drain disinfectants, an air conditioner disinfectant, a chlorine-based disinfectant, a fabric repellent, an insect repellent for food, and a wood preservative) considered to be of high risk in order to determine exposure factors via web surveys and estimation of amount of product. Among the 3000 participants (1482 (49%) men) aged ≥19 years, drain disinfectants were used most frequently (38.2%); the rate of usage of the other products ranged between 1.1-24.0%. The usage rates for the consumer products differed by sex, age, income, and education. Some consumer products such as car and lens anti-fogging products, chlorine-based disinfectants, fabric repellents, and drain disinfectants were regularly used more than once a month, while car dye products, air conditioner disinfectants, insect repellents for food, and wood preservatives were not regularly used owing to the specific product purposes and seasonal needs. Our results could be used for managing or controlling chemical substances in consumer products and conducting accurate exposure assessments.

  19. EIT-based fabric pressure sensing.

    Science.gov (United States)

    Yao, A; Yang, C L; Seo, J K; Soleimani, M

    2013-01-01

    This paper presents EIT-based fabric sensors that aim to provide a pressure mapping using the current carrying and voltage sensing electrodes attached to the boundary of the fabric patch. Pressure-induced shape change over the sensor area makes a change in the conductivity distribution which can be conveyed to the change of boundary current-voltage data. This boundary data is obtained through electrode measurements in EIT system. The corresponding inverse problem is to reconstruct the pressure and deformation map from the relationship between the applied current and the measured voltage on the fabric boundary. Taking advantage of EIT in providing dynamical images of conductivity changes due to pressure induced shape change, the pressure map can be estimated. In this paper, the EIT-based fabric sensor was presented for circular and rectangular sensor geometry. A stretch sensitive fabric was used in circular sensor with 16 electrodes and a pressure sensitive fabric was used in a rectangular sensor with 32 electrodes. A preliminary human test was carried out with the rectangular sensor for foot pressure mapping showing promising results.

  20. EIT-Based Fabric Pressure Sensing

    Directory of Open Access Journals (Sweden)

    A. Yao

    2013-01-01

    Full Text Available This paper presents EIT-based fabric sensors that aim to provide a pressure mapping using the current carrying and voltage sensing electrodes attached to the boundary of the fabric patch. Pressure-induced shape change over the sensor area makes a change in the conductivity distribution which can be conveyed to the change of boundary current-voltage data. This boundary data is obtained through electrode measurements in EIT system. The corresponding inverse problem is to reconstruct the pressure and deformation map from the relationship between the applied current and the measured voltage on the fabric boundary. Taking advantage of EIT in providing dynamical images of conductivity changes due to pressure induced shape change, the pressure map can be estimated. In this paper, the EIT-based fabric sensor was presented for circular and rectangular sensor geometry. A stretch sensitive fabric was used in circular sensor with 16 electrodes and a pressure sensitive fabric was used in a rectangular sensor with 32 electrodes. A preliminary human test was carried out with the rectangular sensor for foot pressure mapping showing promising results.

  1. Children and Caregivers’ Exposure to Adverse Childhood Experiences (ACES: Association with Children’s and Caregivers’ Psychological Outcomes in a Therapeutic Preschool Program

    Directory of Open Access Journals (Sweden)

    Yair Ziv

    2018-03-01

    Full Text Available Exposure to adverse childhood experiences (ACE has been found to have a profound negative impact on multiple child outcomes, including academic achievement, social cognition patterns, and behavioral adjustment. However, these links have yet to be examined in preschool children that are already experiencing behavior or social-emotional problems. Thus, the present study examined the links between the caregiver’s and the child’s exposure to ACE and multiple child and caregiver’s outcomes in a sample of 30 preschool children enrolled in a Therapeutic Nursery Program (TNP. Children are typically referred to this TNP due to significant delays in their social emotional development that often result in difficulty functioning in typical childcare, home, and community settings. Analyses revealed some contradictory patterns that may be specific to this clinical sample. Children with higher exposure to ACE showed more biased social information processing patterns and their caregivers reported lower child social skills than caregivers of children with less exposure, however their inhibitory control levels were higher (better control and staff reported that these children exhibited better social skills as well as better approaches to learning than children with less exposure. No such contradictions were found in relation to the caregiver’s exposure to ACE, as it was positively associated with a number of negative child and caregiver outcomes.

  2. The Mere Exposure Instruction Effect.

    Science.gov (United States)

    Van Dessel, Pieter; Mertens, Gaëtan; Smith, Colin Tucker; De Houwer, Jan

    2017-09-01

    The mere exposure effect refers to the well-established finding that people evaluate a stimulus more positively after repeated exposure to that stimulus. We investigated whether a change in stimulus evaluation can occur also when participants are not repeatedly exposed to a stimulus, but are merely instructed that one stimulus will occur frequently and another stimulus will occur infrequently. We report seven experiments showing that (1) mere exposure instructions influence implicit stimulus evaluations as measured with an Implicit Association Test (IAT), personalized Implicit Association Test (pIAT), or Affect Misattribution Procedure (AMP), but not with an Evaluative Priming Task (EPT), (2) mere exposure instructions influence explicit evaluations, and (3) the instruction effect depends on participants' memory of which stimulus will be presented more frequently. We discuss how these findings inform us about the boundary conditions of mere exposure instruction effects, as well as the mental processes that underlie mere exposure and mere exposure instruction effects.

  3. Qualitative Investigation of Some Locally Produced Printed Fabrics ...

    African Journals Online (AJOL)

    The results obtained showed that the locally produced fabrics exhibited comparably better end – use performance characteristics in terms of fabric weight per square meter, fabric flammability, and linear density. While the foreign fabrics are better in terms of Crease recovery, fabric handle, fabric sett, fabric shrinkage, and ...

  4. The Effects of "Mere Exposure" on Learning and Affect.

    Science.gov (United States)

    Stang, David J.

    The mediating role of learning in the relationship between repeated exposure and affect was explored and supported in three experiments involving a total of 229 undergraduate participants. It was found that both learning and affect measures behaved in essentially the same way as a function of exposure duration (experiments I and III), serial…

  5. Secondary limits of exposure in facilities handling uranium

    International Nuclear Information System (INIS)

    Raghavayya, M.

    1999-08-01

    Annual limits of exposure and intake for radiation workers in nuclear installations have been recommended by the International Commission on Radiological Protection and the same have been adopted by the Indian Atomic Energy Regulatory Board for all the radionuclides of interest. The prescribed limits cannot be directly used for day to day radiation protection work. Hence secondary limits have to be derived for routine applications. The modeling steps may be simple in some situations and more complicated in some others. The limits recommended are for individual radionuclides. But in facilities handling natural or enriched uranium the radionuclides (isotopes of uranium and its decay products) generally occur together in specific ratios. Derivation of secondary limits has to take this into consideration. The present document is an attempt at deriving the secondary limits required for routine application in facilities handling uranium (Mine, mill, refineries and fuel fabrication etc.). Secondary limits of exposure have been derived in this document for air borne activity, activity in water, surface contamination and internal exposures. (author)

  6. Fabricating nuclear components

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Activities of the Nuclear Engineering Division of Vickers Ltd., particularly fabrication of long slim tubular components for power reactors and the construction of irradiation loops and rigs, are outlined. The processes include hydraulic forming for fabrication of various types of tubes and outer cases of fuel transfer buckets, various specialised welding operations including some applications of the TIG process, and induction brazing of specialised assemblies. (U.K.)

  7. Influence of yarn folding on UV protection properties of hemp knitted fabrics

    Directory of Open Access Journals (Sweden)

    Kocić Ana A.

    2016-01-01

    Full Text Available In the last years the media have highlighted the damage of the ozone layer and the resulting increase of ultraviolet radiation (UVR reaching the earth’s surface. Prolonged and repeated, both occupational and recreational, sun exposure of the population causes some detrimental effects. Clothing is considered to be one of the most important tools for UV protection. It is generally accepted that synthetic fibres provide a high UV protection capability of textiles, while cellulose fibres (cotton, linen, hemp, viscose have a low UV absorption capacity. However, natural pigments, pectin and waxes in natural cellulose fibers, and lignin in hemp fibers, act as UV absorbers having a favorable effect on UPF of grey-state fabrics. Bearing in mind the trend of reintroduction of hemp fibers as a source of eco-friendly textiles, there is a serious lack of study about the potential of hemp materials in terms of UV protection. Folded yarn is a complex yarn composed of two or more component yarns arranged parallel and twisted together to make a “new quality” yarn. Folding of yarns is an operation undertaken in order to modify single-yarn properties to an appreciable degree. There are very few investigations concerning the relationship between the yarn properties and UV protection effectiveness of the fabric made there from. In addition, there is no any result in the scientific literature about the influence of yarn folding on UV protection properties of textile materials. Having this in mind, for our research the idea was to evaluate the effect of yarn folding in this regard. The plain knitted fabrics composed of single or two-folded hemp yarn were compared in terms of UV protection properties. The Ultraviolet Protection Factor (UPF, as the quantitative measurement of the material effectiveness to protect the human skin against UVR, was determined for the textile materials by in vitro test method according to the European standard EN 13758. The knitted

  8. The impact of instrumental feeding on children's responses to taste exposure.

    Science.gov (United States)

    Añez, E; Remington, A; Wardle, J; Cooke, L

    2013-10-01

    In a recent study, we showed that nonfood incentives combined with taste exposure increase children's acceptance of vegetables. However, the impact of children's previous experience of receiving food rewards is unknown. The present study investigated whether the experience of food rewards affects responses to an exposure-plus-reward intervention. One hundred and thirty-seven parents of 4-6-year-old children taking part in an exposure-based intervention study completed an instrumental feeding (IF) questionnaire aiming to assess their use of food rewards. Based on these scores, children were categorised as frequently or rarely instrumentally-fed. Intervention groups were given 12 daily tastes of a target vegetable combined with no reward, a tangible reward, (sticker) or a verbal reward (praise). A no-treatment control group received no tastings. Liking and intake of a target vegetable were measured at baseline and post-intervention. Irrespective of experience of IF, children in all intervention groups increased liking compared to controls (all P exposure group, only children with a limited experience with food rewards increased consumption (P mere exposure'. However, exposure with nonfood rewards can increase the acceptance of vegetables, regardless of previous experience. © 2012 The Authors Journal of Human Nutrition and Dietetics © 2012 The British Dietetic Association Ltd.

  9. Fabrication of ridge waveguide structure from photosensitive TiO{sub 2}/ormosil hybrid films by using an ultraviolet soft imprint technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuehua [Electronic Materials Research Laboratory, International Center for Dielectric Research, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China); Que, Wenxiu, E-mail: wxque@mail.xjtu.edu.cn [Electronic Materials Research Laboratory, International Center for Dielectric Research, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China); Chen, Jing; Gao, Tianxi; Hu, Jiaxing [Electronic Materials Research Laboratory, International Center for Dielectric Research, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China); Liu, Weiguo [Micro-optoelectronic Systems Laboratories, Xi' an Technological University, Xi' an 710032, Shaanxi (China)

    2013-03-01

    Photosensitive TiO{sub 2}/organically modified silane hybrid films were prepared by combining a low-temperature sol–gel process with a spin-coating technique. Optical properties and photochemical activities of the as-prepared hybrid sol–gel films under different UV irradiation time were characterized and monitored by prism coupling technique, UV–visible spectroscopy, and Fourier transform infrared spectroscopy. Surface morphology of the hybrid films was also observed by an atomic force microscopy. Advantages for fabrication of ridge waveguide structure based on the photosensitive hybrid films were demonstrated by an ultraviolet soft imprint technique. Effects of imprint force, imprint time, and UV irradiation time on high replication fidelity of the ridge waveguide structure were also investigated. An altitude replication fidelity of 99.7% can be obtained when the imprint force of 2 MPa, imprint time of 30 min and UV irradiation time of 45 min were chosen. Scanning electron microscopy and surface profiler were used to characterize the morphological and surface profile properties of the as fabricated ridge waveguide structure. Results indicate that the as-prepared photosensitive hybrid materials have great applicability for the fabrication of micro-optical elements and advantage as the imprint layer under the ultraviolet soft imprint technique. - Highlights: ► Photosensitive TiO{sub 2}/ormosil hybrid film is prepared by a sol–gel process. ► Optical properties of the films change a little with UV exposure time. ► Photo-chemical property of the film changes a lot with UV exposure time. ► The imprint force and time, and the UV exposure time affect the imprint fidelity. ► A fidelity value of 99.7% is obtained under an optimized condition.

  10. Design, fabrication, and testing of the PIACE-R1 machine

    International Nuclear Information System (INIS)

    Goto, S.; Uyama, T.; Yokota, T.; Takano, H.; Ohsaki, O.; Masuda, K.; Koyanagi, E.; Sanada, Y.

    1979-01-01

    The design, fabrication and testing of the coil and collector system for the PIACE-R1 (Plasma Injection and Compression Experiments-Race Track 1) are described in this paper. In particular, the eddy current analysis, collector insulation, and stress analysis for determining the coil configuration and arrangement are presented in detail. The purpose of the machine is to obtain thermonuclear plasmas. 5 refs

  11. Development of superconducting magnet systems for HIF Experiments

    International Nuclear Information System (INIS)

    Sabbi, Gian Luca; Faltens, A.; Leitzke, A.; Seidl, P.; Lund, S.; Martovetsky, N.; Chiesa, L.; Gung, C.; Minervini, J.; Schultz, J.; Goodzeit, C.; Hwang, P.; Hinson, W.; Meinke, R.

    2004-01-01

    The U.S. Heavy Ion Fusion program is developing superconducting focusing quadrupoles for near-term experiments and future driver accelerators. Following the fabrication and testing of several models, a baseline quadrupole design was selected and further optimized. The first prototype of the optimized design achieved a conductor-limited gradient of 132 T/m in a 70 mm bore, with measured field harmonics within 10 parts in 10 4 . In parallel, a compact focusing doublet was fabricated and tested using two of the first-generation quadrupoles. After assembly in the cryostat, both magnets reached their conductor-limited quench current. Further optimization steps are currently underway to improve the performance of the magnet system and reduce its cost. They include the fabrication and testing of a new prototype quadrupole with reduced field errors as well as improvements of the cryostat design for the focusing doublet. The prototype units will be installed in the HCX beamline at LBNL, to perform accelerator physics experiments and gain operational experience. Successful results in the present phase will make superconducting magnets a viable option for the next generation of integrated beam experiments

  12. Annex 5 - Fabrication of U-Al alloy

    International Nuclear Information System (INIS)

    Drobnjak, Dj.; Lazarevic, Dj.; Mihajlovic, A.

    1961-01-01

    Alloy U-Al with low content of aluminium is often used for fabrication of fuel elements because it is stable under moderate neutron flux density. Additionally this type of alloys show much better characteristics than pure uranium under reactor operating conditions (temperature, mechanical load, corrosion effect of water). This report contains the analysis of the phase diagram of U-Al alloy with low content of aluminium, applied procedure for alloying and casting with detailed description of equipment. Characteristics of the obtained alloy are described and conclusions about the experiment and procedure are presented [sr

  13. The subliminal mere exposure effect does not generalize to structurally related stimuli.

    Science.gov (United States)

    Newell, Ben R; Bright, James E H

    2003-03-01

    R.F. Bornstein (1994) questioned whether subliminal mere exposure effects might generalize to structurally related stimuli, thereby providing evidence for the existence of implicit learning. Two experiments examined this claim using letter string stimuli constructed according to the rules of an artificial grammar. Experiment 1 demonstrated that brief, masked exposure to grammatical strings impaired recognition but failed to produce a mere exposure effect on novel structurally related strings seen at test. Experiment 2 replicated this result but also demonstrated that a reliable mere exposure effect could be obtained, provided the same grammatical strings were presented at test. The results suggest that the structural relationship between training and test items prevents the mere exposure effect when participants are unaware of the exposure status of stimuli, and therefore provide no evidence for the existence of implicit learning.

  14. Design and fabrication of a micro parallel mechanism system using MEMS technologies

    Science.gov (United States)

    Chin, Chi-Te

    A parallel mechanism is seen as an attractive method of fabricating a multi-degree of freedom micro-stage on a chip. The research team at Arizona State University has experience with several potential parallel mechanisms that would be scaled down to micron dimensions and fabricated by using the silicon process. The researcher developed a micro parallel mechanism that allows for planar motion having two translational motions and one rotational motion (e.g., x, y, theta). The mask design shown in Appendix B is an example of a planar parallel mechanism, however, this design would only have a few discrete positions given the nature of the fully extended or fully retracted electrostatic motor. The researcher proposes using a rotary motor (comb-drive actuator with gear chain system) coupled to a rack and pinion for finer increments of linear motion. The rotary motor can behave as a stepper motor by counting drive pulses, which is the basis for a simple open loop control system. This system was manufactured at the Central Regional MEMS Research Center (CMEMS), National Tsing-Hua University, and supported by the National Science Council, Taiwan. After the microstructures had been generated, the proceeding devices were released and an experiment study was performed to demonstrate the feasibility of the proposed micro-stage devices. In this dissertation, the micro electromechanical system (MEMS) fabrication technologies were introduced. The development of this parallel mechanism system will initially focus on development of a planar micro-stage. The design of the micro-stage will build on the parallel mechanism technology, which has been developed for manufacturing, assembly, and flight simulator applications. Parallel mechanism will give the maximum operating envelope with a minimum number of silicon levels. The ideally proposed mechanism should comprise of a user interface, a micro-stage and a non-silicon tool, which is difficult to accomplish by current MEMS technology

  15. Fabrication of large diameter alumino-silicate K+ sources

    International Nuclear Information System (INIS)

    Baca, D.; Chacon-Golcher, E.; Kwan, J.W.; Wu, J.K.

    2003-01-01

    Alumino-silicate K + sources have been used in HIF experiments for many years. For example the Neutralized Transport Expt. (NTX) and the High Current Transport Expt. (HCX) are now using this type of ion source with diameters of 2.54 cm and 10 cm respectively. These sources have demonstrated ion currents of 80 mA and 700 mA, for typical HIF pulse lengths of 5-10 (micro)s. The corresponding current density is ∼ 10-15 mA/cm 2 , but much higher current density has been observed using smaller size sources. Recently we have improved our fabrication techniques and, therefore, are able to reliably produce large diameter ion sources with high quality emitter surface without defects. This note provides a detailed description of the procedures employed in the fabrication process. The variables in the processing steps affecting surface quality, such as substrate porosity, powder size distribution, coating technique on large area concave surfaces, drying, and heat firing temperature have been investigated

  16. Fabrication of Phased Array EMAT and Its Characteristics

    International Nuclear Information System (INIS)

    Ahn, Bong Young; Cho, Seung Hyun; Kim, Young Joo; Kim, Ki Bok

    2010-01-01

    EMAT has been applied in various fields for flaw detection and material characterization because it has noncontact property in wave generation and a good mode selectivity. Unfortunately, however, EMAT shows low signal to noise ratio relative to commercial contact transducer because of low energy conversion efficiency. If the phase matching through the control of time delay between each coil consisting of the array EMAT is accomplished, it is expected that it will be a solution for the improvement of low signal to noise ratio. In this experiment, the phased array EMATs which consists of 3 or 4 meander coils and one big magnet were fabricated for surface and vertical shear wave generation. Effect of phased delay control on signal directivity and amplitude enhancement was verified. A slit with the depth of 0.5 mm and a side-drill hole of 0.5 mm diameter were clearly detected by fabricated phased array EMATs, respectively

  17. Fabrication and characterization of microcavity lasers in rhodamine B doped SU8 using high energy proton beam

    Science.gov (United States)

    Venugopal Rao, S.; Bettiol, A. A.; Vishnubhatla, K. C.; Bhaktha, S. N. B.; Narayana Rao, D.; Watt, F.

    2007-03-01

    The authors present their results on the characterization of individual dye-doped microcavity polymer lasers fabricated using a high energy proton beam. The lasers were fabricated in rhodamine B doped SU8 resist with a single exposure step followed by chemical processing. The resulting trapezoidal shaped cavities had dimensions of ˜250×250μm2. Physical characterization of these structures was performed using a scanning electron microscope while the optical characterization was carried out by recording the emission subsequent to pumping the lasers with 532nm, 6 nanosecond pulses. The authors observed intense, narrow emission near 624nm with the best emission linewidth full width at half maximum of ˜9nm and a threshold ˜150μJ/mm2.

  18. Electron beam fabrication and characterization of high-resolution magnetic force microscopy tips

    Science.gov (United States)

    Rührig, M.; Porthun, S.; Lodder, J. C.; McVitie, S.; Heyderman, L. J.; Johnston, A. B.; Chapman, J. N.

    1996-03-01

    The stray field, magnetic microstructure, and switching behavior of high-resolution electron beam fabricated thin film tips for magnetic force microscopy (MFM) are investigated with different imaging modes in a transmission electron microscope (TEM). As the tiny smooth carbon needles covered with a thermally evaporated magnetic thin film are transparent to the electron energies used in these TEMs it is possible to observe both the external stray field emanating from the tips as well as their internal domain structure. The experiments confirm the basic features of electron beam fabricated thin film tips concluded from various MFM observations using these tips. Only a weak but highly concentrated stray field is observed emanating from the immediate apex region of the tip, consistent with their capability for high resolution. It also supports the negligible perturbation of the magnetization sample due to the tip stray field observed in MFM experiments. Investigation of the magnetization distributions within the tips, as well as preliminary magnetizing experiments, confirm a preferred single domain state of the high aspect ratio tips. To exclude artefacts of the observation techniques both nonmagnetic tips and those supporting different magnetization states are used for comparison.

  19. Thermo-Mechanical Behavior of Textile Heating Fabric Based on Silver Coated Polymeric Yarn

    Directory of Open Access Journals (Sweden)

    Anura Fernando

    2013-03-01

    Full Text Available This paper presents a study conducted on the thermo-mechanical properties of knitted structures, the methods of manufacture, effect of contact pressure at the structural binding points, on the degree of heating. The test results also present the level of heating produced as a function of the separation between the supply terminals. The study further investigates the rate of heating and cooling of the knitted structures. The work also presents the decay of heating properties of the yarn due to overheating. Thermal images were taken to study the heat distribution over the surface of the knitted fabric. A tensile tester having constant rate of extension was used to stretch the fabric. The behavior of temperature profile of stretched fabric was observed. A comparison of heat generation by plain, rib and interlock structures was studied. It was observed from the series of experiments that there is a minimum threshold force of contact at binding points of a knitted structure is required to pass the electricity. Once this force is achieved, stretching the fabric does not affect the amount of heat produced.

  20. Preparation of activated carbon fabrics from cotton fabric precursor

    Science.gov (United States)

    Salehi, R.; Dadashian, F.; Abedi, M.

    2017-10-01

    The preparation of activated carbon fabrics (ACFs) from cotton fabric was performed by chemical activation with phosphoric acid (H3PO4). The operation conditions for obtaining the ACFs with the highest the adsorption capacity and process yield, proposed. Optimized conditions were: impregnation ratio of 2, the rate of temperature rising of 7.5 °C min-1, the activation temperature of 500 °C and the activation time of 30 min. The ACFs produced under optimized conditions was characterized by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The surface area and pore volume of carbon nanostructures was characterized by BET nitrogen adsorption isotherm at 77 °K. The pore size distribution calculated from the desorption branch according to BJH method. The iodine number of the prepared ACFs was determined by titration at 30 °C based on the ASTM D4607-94. The results showed the improvement of porous structure, fabric shape, surface area (690 m2/g), total pore volume (0.3216 cm3/g), and well-preserved fibers integrity.

  1. Micro-fabricated all optical pressure sensors

    DEFF Research Database (Denmark)

    Havreland, Andreas Spandet; Petersen, Søren Dahl; Østergaard, Christian

    2017-01-01

    Optical pressure sensors can operate in certain harsh application areas where the electrical pressure sensors cannot. However, the sensitivity is often not as good for the optical sensors. This work presents an all optical pressure sensor, which is fabricated by micro fabrication techniques, where...... the sensitivity can be tuned in the fabrication process. The developed sensor design, simplifies the fabrication process leading to a lower fabrication cost, which can make the all optical pressure sensors more competitive towards their electrical counterpart. The sensor has shown promising results and a linear...... pressure response has been measured with a sensitivity of 0.6nm/bar....

  2. Pinhole diffraction holography for fabrication of high-resolution Fresnel zone plates.

    Science.gov (United States)

    Sarkar, Sankha S; Solak, Harun H; David, Christian; van der Veen, J Friso

    2014-01-27

    Fresnel zone plates (FZPs) play an essential role in high spatial resolution x-ray imaging and analysis of materials in many fields. These diffractive lenses are commonly made by serial writing techniques such as electron beam or focused ion beam lithography. Here we show that pinhole diffraction holography has potential to generate FZP patterns that are free from aberrations and imperfections that may be present in alternative fabrication techniques. In this presented method, FZPs are fabricated by recording interference pattern of a spherical wave generated by diffraction through a pinhole, illuminated with coherent plane wave at extreme ultraviolet (EUV) wavelength. Fundamental and practical issues involved in formation and recording of the interference pattern are considered. It is found that resolution of the produced FZP is directly related to the diameter of the pinhole used and the pinhole size cannot be made arbitrarily small as the transmission of EUV or x-ray light through small pinholes diminishes due to poor refractive index contrast found between materials in these spectral ranges. We also find that the practical restrictions on exposure time due to the light intensity available from current sources directly imposes a limit on the number of zones that can be printed with this method. Therefore a trade-off between the resolution and the FZP diameter exists. Overall, we find that this method can be used to fabricate aberration free FZPs down to a resolution of about 10 nm.

  3. The influence of print exposure on the body-object interaction effect in visual word recognition.

    Science.gov (United States)

    Hansen, Dana; Siakaluk, Paul D; Pexman, Penny M

    2012-01-01

    We examined the influence of print exposure on the body-object interaction (BOI) effect in visual word recognition. High print exposure readers and low print exposure readers either made semantic categorizations ("Is the word easily imageable?"; Experiment 1) or phonological lexical decisions ("Does the item sound like a real English word?"; Experiment 2). The results from Experiment 1 showed that there was a larger BOI effect for the low print exposure readers than for the high print exposure readers in semantic categorization, though an effect was observed for both print exposure groups. However, the results from Experiment 2 showed that the BOI effect was observed only for the high print exposure readers in phonological lexical decision. The results of the present study suggest that print exposure does influence the BOI effect, and that this influence varies as a function of task demands.

  4. ITER Central Solenoid Module Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Smith, John [General Atomics, San Diego, CA (United States)

    2016-09-23

    The fabrication of the modules for the ITER Central Solenoid (CS) has started in a dedicated production facility located in Poway, California, USA. The necessary tools have been designed, built, installed, and tested in the facility to enable the start of production. The current schedule has first module fabrication completed in 2017, followed by testing and subsequent shipment to ITER. The Central Solenoid is a key component of the ITER tokamak providing the inductive voltage to initiate and sustain the plasma current and to position and shape the plasma. The design of the CS has been a collaborative effort between the US ITER Project Office (US ITER), the international ITER Organization (IO) and General Atomics (GA). GA’s responsibility includes: completing the fabrication design, developing and qualifying the fabrication processes and tools, and then completing the fabrication of the seven 110 tonne CS modules. The modules will be shipped separately to the ITER site, and then stacked and aligned in the Assembly Hall prior to insertion in the core of the ITER tokamak. A dedicated facility in Poway, California, USA has been established by GA to complete the fabrication of the seven modules. Infrastructure improvements included thick reinforced concrete floors, a diesel generator for backup power, along with, cranes for moving the tooling within the facility. The fabrication process for a single module requires approximately 22 months followed by five months of testing, which includes preliminary electrical testing followed by high current (48.5 kA) tests at 4.7K. The production of the seven modules is completed in a parallel fashion through ten process stations. The process stations have been designed and built with most stations having completed testing and qualification for carrying out the required fabrication processes. The final qualification step for each process station is achieved by the successful production of a prototype coil. Fabrication of the first

  5. Natural fabric of Hildegardia populifolia composites

    CSIR Research Space (South Africa)

    Guduri, BBR

    2006-12-01

    Full Text Available The influence of Hildegardia populofolia fabric content, fabric orientation, sodium hydroxide (NaOH) and silane coupling agent treatment on the surface properties of the fabric, mechanical and fracture properties of Hildegardia populifolia...

  6. Robustness of tungsten single atom tips to thermal treatment and air exposure

    Energy Technology Data Exchange (ETDEWEB)

    Vesa, Cristian; Urban, Radovan [Department of Physics, University of Alberta, Edmonton, Alberta, Canada T6G 2G7 (Canada); National Institute for Nanotechnology, National Research Council of Canada, Edmonton, Alberta, Canada T6G 2M9 (Canada); Pitters, Jason L., E-mail: jason.pitters@nrc-cnrc.gc.ca [National Institute for Nanotechnology, National Research Council of Canada, Edmonton, Alberta, Canada T6G 2M9 (Canada); Wolkow, Robert A. [Department of Physics, University of Alberta, Edmonton, Alberta, Canada T6G 2G7 (Canada); National Institute for Nanotechnology, National Research Council of Canada, Edmonton, Alberta, Canada T6G 2M9 (Canada)

    2014-05-01

    Highlights: • W(1 1 1) single atom tips (SATs) were exposed to air. • SATs could be regenerated by field assisted chemical etching after exposure. • Warming procedures to minimize tip contamination were developed. • Degassing temperatures for air exposed tips were established. • Tip faceting occurred when SATs and unetched tips were annealed above 1200 °C. - Abstract: Experiments aimed at assessing the robustness of nitrogen-etched, single-atom tips (SATs) prepared using W(1 1 1) single crystal wire were performed. Our experiments showed that single-atoms tips sustain minimal damage when exposed to atmospheric conditions and can be readily and quickly nitrogen-etched to single-atom tips thereafter. The SATs can be annealed at temperatures up to 1100 °C with minimal shape changes. Moreover, annealing temperatures in excess of 1200 °C resulted in an apex faceting which may prove important in further single-atom tip creation. Procedures for warming of the SATs from operating temperatures of 80 K were also evaluated to determine conditions that limit tip contamination. These results show that SATS could be fabricated in a dedicated vacuum system and subsequently transferred to other instruments where they would undergo a brief conditioning procedure to recover the single-atom apex configuration prior to being subjected to operating conditions.

  7. Properties of natural fabric Polyalthia cerasoides

    CSIR Research Space (South Africa)

    Jayaramudu, J

    2009-06-01

    Full Text Available of this fabric were compared with those of two natural fabrics reported in the literature. This uniaxial fabric has sufficient tensile modulus and can be used as reinforcement in the development of green composites....

  8. Investigation of uniformity field generated from freeform lens with UV LED exposure system

    Science.gov (United States)

    Ciou, F. Y.; Chen, Y. C.; Pan, C. T.; Lin, P. H.; Lin, P. H.; Hsu, F. T.

    2015-03-01

    In the exposure process, the intensity and uniformity of light in the exposure area directly influenced the precision of products. UV-LED (Ultraviolet Light-Emitting Diode) exposure system was established to reduce the radiation leakage and increase the energy efficiency for energy saving. It is a trend that conventional mercury lamp could be replaced with UV-LED exposure system. This study was based on the law of conservation of energy and law of refraction of optical field distributing on the target plane. With these, a freeform lens with uniform light field of main exposure area could be designed. The light outside the exposure area could be concentrated into the area to improve the intensity of light. The refraction index and UV transmittance of Polydimethylsiloxane (PDMS) is 1.43 at 385 nm wavelength and 85-90%, respectively. The PDMS was used to fabricate the optics lens for UV-LEDs. The average illumination and the uniformity could be obtained by increasing the number of UV-LEDs and the spacing of different arrangement modes. After exposure process with PDMS lens, about 5% inaccuracy was obtained. Comparing to 10% inaccuracy of general exposure system, it shows that it is available to replace conventional exposure lamp with using UV-LEDs.

  9. Characterization of silicon isotropic etch by inductively coupled plasma etcher for microneedle array fabrication

    International Nuclear Information System (INIS)

    Ji, J; Tay, F E H; Miao Jianmin; Sun Jianbo

    2006-01-01

    This work investigates the isotropic etching properties in inductively coupled plasma (ICP) etcher for microneedle arrays fabrication. The effects of process variables including powers, gas and pressure on needle structure generation are characterized by factorial design of experiment (DOE). The experimental responses of vertical etching depth, lateral etching length, ratio of vertical etching depth to lateral etching length and photoresist etching rate are reported. The relevance of the etching variables is also presented. The obtained etching behaviours for microneedle structure generation will be applied to develop recipes to fabricate microneedles in designed dimensions

  10. Characterization of silicon isotropic etch by inductively coupled plasma etcher for microneedle array fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Ji, J [Mechanical Engineering National University of Singapore, 119260, Singapore (Singapore); Tay, F E H [Mechanical Engineering National University of Singapore, 119260, Singapore (Singapore); Miao Jianmin [MicroMachines Center, School of Mechanical and Aerospace Engineering, Nanyang Technologica l University, 50 Nanyang Avenue, 639798 (Singapore); Sun Jianbo [MicroMachines Center, School of Mechanical and Aerospace Engineering, Nanyang Technologica l University, 50 Nanyang Avenue, 639798 (Singapore)

    2006-04-01

    This work investigates the isotropic etching properties in inductively coupled plasma (ICP) etcher for microneedle arrays fabrication. The effects of process variables including powers, gas and pressure on needle structure generation are characterized by factorial design of experiment (DOE). The experimental responses of vertical etching depth, lateral etching length, ratio of vertical etching depth to lateral etching length and photoresist etching rate are reported. The relevance of the etching variables is also presented. The obtained etching behaviours for microneedle structure generation will be applied to develop recipes to fabricate microneedles in designed dimensions.

  11. One-step fabrication of submicrostructures by low one-photon absorption direct laser writing technique with local thermal effect

    Science.gov (United States)

    Nguyen, Dam Thuy Trang; Tong, Quang Cong; Ledoux-Rak, Isabelle; Lai, Ngoc Diep

    2016-01-01

    In this work, local thermal effect induced by a continuous-wave laser has been investigated and exploited to optimize the low one-photon absorption (LOPA) direct laser writing (DLW) technique for fabrication of polymer-based microstructures. It was demonstrated that the temperature of excited SU8 photoresist at the focusing area increases to above 100 °C due to high excitation intensity and becomes stable at that temperature thanks to the use of a continuous-wave laser at 532 nm-wavelength. This optically induced thermal effect immediately completes the crosslinking process at the photopolymerized region, allowing obtain desired structures without using the conventional post-exposure bake (PEB) step, which is usually realized after the exposure. Theoretical calculation of the temperature distribution induced by local optical excitation using finite element method confirmed the experimental results. LOPA-based DLW technique combined with optically induced thermal effect (local PEB) shows great advantages over the traditional PEB, such as simple, short fabrication time, high resolution. In particular, it allowed the overcoming of the accumulation effect inherently existed in optical lithography by one-photon absorption process, resulting in small and uniform structures with very short lattice constant.

  12. Processing summary report: Fabrication of cesium and strontium heat and radiation sources

    International Nuclear Information System (INIS)

    Holton, L.K. Jr.; Surma, J.E.; Allen, R.P.

    1989-02-01

    The Pacific Northwest Laboratory (PNL), has produced 30 isotopic heat sources (canisters) for the Federal Republic of Germany (FRG) to be used as part of a repository testing program in the Asse Salt Mine. PNL program work involved the filling, closure, and decontamination of the 30 canisters. The canisters were fabricated (filled) in three separate processing campaigns using the radioactive liquid-fed ceramic melter to produce a borosilicate glass. Within the borosilicate glass matrix radiochemical constituents ( 137 Cs and 90 Sr) were immobilized to yield a product with a predetermined decay heat and surface radiation exposure rate

  13. Iodine Beam Dump Design and Fabrication

    Science.gov (United States)

    Polzin, K. A.; Bradley, D. E.

    2017-01-01

    During the testing of electric thrusters, high-energy ions impacting the walls of a vacuum chamber can cause corrosion and/or sputtering of the wall materials, which can damage the chamber walls. The sputtering can also introduce the constituent materials of the chamber walls into an experiment, with those materials potentially migrating back to the test article and coating it with contaminants over time. The typical method employed in this situation is to install a beam dump fabricated from materials that have a lower sputter yield, thus reducing the amount of foreign material that could migrate towards the test article or deposit on anything else present in the vacuum facility.

  14. Junction and circuit fabrication

    International Nuclear Information System (INIS)

    Jackel, L.D.

    1980-01-01

    Great strides have been made in Josephson junction fabrication in the four years since the first IC SQUID meeting. Advances in lithography have allowed the production of devices with planar dimensions as small as a few hundred angstroms. Improved technology has provided ultra-high sensitivity SQUIDS, high-efficiency low-noise mixers, and complex integrated circuits. This review highlights some of the new fabrication procedures. The review consists of three parts. Part 1 is a short summary of the requirements on junctions for various applications. Part 2 reviews intergrated circuit fabrication, including tunnel junction logic circuits made at IBM and Bell Labs, and microbridge radiation sources made at SUNY at Stony Brook. Part 3 describes new junction fabrication techniques, the major emphasis of this review. This part includes a discussion of small oxide-barrier tunnel junctions, semiconductor barrier junctions, and microbridge junctions. Part 3 concludes by considering very fine lithography and limitations to miniaturization. (orig.)

  15. Childhood trauma exposure and toxic stress: what the PNP needs to know.

    Science.gov (United States)

    Hornor, Gail

    2015-01-01

    Trauma exposure in childhood is a major public health problem that can result in lifelong mental and physical health consequences. Pediatric nurse practitioners must improve their skills in the identification of trauma exposure in children and their interventions with these children. This continuing education article will describe childhood trauma exposure (adverse childhood experiences) and toxic stress and their effects on the developing brain and body. Adverse childhood experiences include a unique set of trauma exposures. The adverse childhood experiences or trauma discussed in this continuing education offering will include childhood exposure to emotional abuse, physical abuse, sexual abuse, emotional neglect, physical neglect, domestic violence, household substance abuse, household mental illness, parental separation or divorce, and a criminal household member. Thorough and efficient methods of screening for trauma exposure will be discussed. Appropriate intervention after identification of trauma exposure will be explored. Copyright © 2015 National Association of Pediatric Nurse Practitioners. Published by Elsevier Inc. All rights reserved.

  16. New Radiofrequency Exposure System with Real Telecommunication Signals

    Directory of Open Access Journals (Sweden)

    Jakub Misek

    2018-01-01

    Full Text Available In recent years, there has been an increase in the number of studies on biological effects of Electromagnetic (EM fields emitted from Base Transceiver Stations (BTSs. The biological effects of generated and real telecommunication signals produced by different types of exposure systems are discussed. However, the proper exposure methods for such experiments are very limited. We successfully developed a simple and cost-effective exposure unit with real GSM/DCS/UMTS signal from BTS containing proper modulations or intermittence (continuous, interrupted. Signal processing and conditioning unit is based on a Radiofrequency (RF repeater. The downlink signal is filtered by integrated high selectivity passband filters and amplified to a required level. The main part of exposure unit is a Faraday cage with the specimen (exposure area measuring 150 x 250 mm with E-field percent deviation less than 18%. This exposure system can be helpful in experiments with living organisms in in vivo studies and in vitro studies with normal or pathological cells and other micro scale structures being exposed to RF EM fields from BTS.

  17. APT target-blanket fabrication development

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.L.

    1997-06-13

    Concepts for producing tritium in an accelerator were translated into hardware for engineering studies of tritium generation, heat transfer, and effects of proton-neutron flux on materials. Small-scale target- blanket assemblies were fabricated and material samples prepared for these performance tests. Blanket assemblies utilize composite aluminum-lead modules, the two primary materials of the blanket. Several approaches are being investigated to produce large-scale assemblies, developing fabrication and assembly methods for their commercial manufacture. Small-scale target-blanket assemblies, designed and fabricated at the Savannah River Site, were place in Los Alamos Neutron Science Center (LANSCE) for irradiation. They were subjected to neutron flux for nine months during 1996-97. Coincident with this test was the development of production methods for large- scale modules. Increasing module size presented challenges that required new methods to be developed for fabrication and assembly. After development, these methods were demonstrated by fabricating and assembling two production-scale modules.

  18. The Influence of Print Exposure on the Body-Object Interaction Effect in Visual Word Recognition

    Directory of Open Access Journals (Sweden)

    Dana eHansen

    2012-05-01

    Full Text Available We examined the influence of print exposure on the body-object interaction (BOI effect in visual word recognition. High print exposure readers and low print exposure readers either made semantic categorizations (Is the word easily imageable?; Experiment 1 or phonological lexical decisions (Does the item sound like a real English word?; Experiment 2. The results from Experiment 1 showed that there was a larger facilitatory BOI effect for the low print exposure readers than for the high print exposure readers in semantic categorization, though an effect was observed for both print exposure groups. However, the results from Experiment 2 showed that a facilitatory BOI effect was observed only for the high print exposure readers in phonological lexical decision. The results of the present study suggest that print exposure does influence the BOI effect, and that this influence varies as a function of task demands.

  19. Population exposure from the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Alpen, E.L.; Chester, R.O.; Fisher, D.R.

    1988-01-01

    The papers in this volume reflect the latest research on the nature and degree of exposure to human populations from ionizing radiation that results from the production of commercial nuclear power. The conference comprised representatives from such notable organizations as Brookhaven National Laboratory, the Inhalation Toxicology Research Institute and Pacific Northwest Laboratories. Issues addressed include the effects on humans of the mining and extraction of uranium and the fabrication of fuel for nuclear reactors, the decommissioning and disposal of facilities that are no longer useful or efficient and the likelihood of major nuclear accidents. Each document will have to be cataloged separately

  20. [Multiple mere exposure effect: category evaluation measured in the Go/No-go association task (GNAT)].

    Science.gov (United States)

    Kawakami, Naoaki; Yoshida, Fujio

    2011-12-01

    The effect on likability of multiple subliminal exposures to the same person was investigated. Past studies on the mere exposure effect indicated a correlation between the frequency of repeated exposure to the same stimulus and likability. We proposed that exposure to various stimuli of the same person would have a stronger effect on likability. Participants were subliminally exposed to photographs of a person's face taken from seven angles (multi-angle-exposure) three times each (Experiment 1), or photographs of a person with seven facial expressions (multi-expression-exposure) three times each (Experiment 2). Then, the likability toward the exposed person was measured using the Go/No-go Association Task. The results indicated that the effect of the multiple exposures from various angles was equivalent to exposure to only one full-face photograph shown 21 times (Experiment 1). Moreover, likability was significantly higher in the case of exposure to various facial expressions than for exposure to only a single facial expression (Experiment 2). The results suggest that exposure to various stimuli in a category is more effective than repeated exposure to a single stimulus for increasing likability.