WorldWideScience

Sample records for fabric care compositions

  1. Composite fabrication via resin transfer molding technology

    Energy Technology Data Exchange (ETDEWEB)

    Jamison, G.M.; Domeier, L.A.

    1996-04-01

    The IMPReS (Integrated Modeling and Processing of Resin-based Structures) Program was funded in FY95 to consolidate, evaluate and enhance Sandia`s capabilities in the design and fabrication of composite structures. A key driver of this and related programs was the need for more agile product development processes and for model based design and fabrication tools across all of Sandia`s material technologies. A team of polymer, composite and modeling personnel was assembled to benchmark Sandia`s existing expertise in this area relative to industrial and academic programs and to initiate the tasks required to meet Sandia`s future needs. RTM (Resin Transfer Molding) was selected as the focus composite fabrication technology due to its versatility and growing use in industry. Modeling efforts focused on the prediction of composite mechanical properties and failure/damage mechanisms and also on the uncured resin flow processes typical of RTM. Appropriate molds and test composites were fabricated and model validation studies begun. This report summarizes and archives the modeling and fabrication studies carried out under IMPReS and evaluates the status of composite technology within Sandia. It should provide a complete and convenient baseline for future composite technology efforts within Sandia.

  2. Free form fabrication of thermoplastic composites

    Energy Technology Data Exchange (ETDEWEB)

    Kaufman, S.G.; Spletzer, B.L.; Guess, T.R.

    1998-02-01

    This report describes the results of composites fabrication research sponsored by the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories. They have developed, prototyped, and demonstrated the feasibility of a novel robotic technique for rapid fabrication of composite structures. Its chief innovation is that, unlike all other available fabrication methods, it does not require a mold. Instead, the structure is built patch by patch, using a rapidly reconfigurable forming surface, and a robot to position the evolving part. Both of these components are programmable, so only the control software needs to be changed to produce a new shape. Hence it should be possible to automatically program the system to produce a shape directly from an electronic model of it. It is therefore likely that the method will enable faster and less expensive fabrication of composites.

  3. glass fabric reinforced epoxy composite

    African Journals Online (AJOL)

    user

    and steam turbine blades, gears of locomotives, conveyer belts, pump impellers in mineral slurry processing, where the components .... Care was taken to avoid formation of air bubbles during pouring. Pressure .... Materials and Design, Vol.

  4. Fabrication and Characterization of SMA Hybrid Composites

    Science.gov (United States)

    Turner, Travis L.; Lach, Cynthia L.; Cano, Robert J.

    2001-01-01

    Results from an effort to fabrication shape memory alloy hybrid composite (SMAHC) test specimens and characterize the material system are presented in this study. The SMAHC specimens are conventional composite structures with an embedded SMA constituent. The fabrication and characterization work was undertaken to better understand the mechanics of the material system, address fabrication issues cited in the literature, and provide specimens for experimental validation of a recently developed thermomechanical model for SMAHC structures. Processes and hardware developed for fabrication of the SMAHC specimens are described. Fabrication of a SMA14C laminate with quasi-isotropic lamination and ribbon-type Nitinol actuators embedded in the 0' layers is presented. Beam specimens are machined from the laminate and are the focus of recent work, but the processes and hardware are readily extensible to more practical structures. Results of thermomechanical property testing on the composite matrix and Nitinol ribbon are presented. Test results from the Nitinol include stress-strain behavior, modulus versus temperature. and constrained recovery stress versus temperature and thermal cycle. Complex thermomechanical behaviors of the Nitinol and composite matrix are demonstrated, which have significant implications for modeling of SMAHC structures.

  5. Numerical Tools for Composite Woven Fabric Preforming

    Directory of Open Access Journals (Sweden)

    Abel Cherouat

    2013-01-01

    Full Text Available An important step in the manufacturing processes of thin composite components is the layingup of the reinforcement onto the mould surface. The prediction of the angular distortion of the reinforcement during draping and the changes in fibre orientation are essential for the understanding of the manufacture process and the evaluation of the mechanical properties of the composite structures. This paper presents an optimization-based method for the simulation of the forming processes of woven fabric reinforced composites. Two different approaches are proposed for the simulation of the draping of woven fabric onto complex geometries: geometrical and mechanical approaches. The geometrical approach is based on a fishnet model. It is well adapted to predimensioning fabrics and to give a suitable quantification of the resulting flat patterns. The mechanical approach is based on a mesostructural model. It allows us to take into account the mechanical properties of fibres and resin and the various dominating mode of deformation of woven fabrics during the forming process. Some numerical simulations of the forming process are proposed and compared with the experimental results in order to demonstrate the efficiency of our approaches.

  6. Quick and easy: Indirect fabrication of composite veneers.

    Science.gov (United States)

    King, Kenneth A; Powell, Llewellyn

    2010-01-01

    Composite veneers can be fabricated directly on a vinyl polysiloxane (VPS) die. Using the following technique, a dentist (or their trained auxiliary) can quickly fabricate an esthetic composite veneer with an acceptable marginal fit. This article describes such a technique.

  7. Fabrication, characterization, and modeling of microvascular composites

    Science.gov (United States)

    Ryan, Thomas J.

    Composite laminates of glass fiber and epoxy pre-preg were fabricated with microvascular channels. The channels were created using polylactic acid (PLA) filament that evaporates at a temperature of 392 °F (200 °C) above the resin cure temperature of 250 °F (121 °C). After the composite is cured, the panel was removed from the oven and allowed to cool to room temperature. The panel is then reheated to 392 °F to vaporize the filament, leaving a cylindrical channel. A microvascular channel can be used for withdrawing heat, damage detection and self-healing. However, increasing the temperatures of the laminate above the cure temperature of the resin causes excess cross linking, potentially decreasing the mechanical properties. Tensile and flexural mechanical tests were performed on composite specimens and tensile tests were performed on neat resin specimens. A three-dimensional finite element model (FEM) was developed to study the progressive deformation and damage mechanics under tensile loading. The load carrying capacity of the microvascular composite was shown to decrease by 40% from a standard composite material. This paper will present the details of the fabrication, characterization and modeling techniques that were used in this study.

  8. Composite material fabrication techniques. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Frame, B J; Paulauskas, F L [Oak Ridge National Lab., TN (United States); Miller, J; Parzych, W [Metters Industries, Inc. (United States)

    1996-09-30

    This report describes a low cost method of fabricating components for mockups and training simulators used in the transportation industry. This technology was developed jointly by the Oak Ridge National Laboratory (ORNL) and Metters Industries, Incorporated (MI) as part of a Cooperative Research and Development Agreement (CRADA) ORNL94-0288 sponsored by the Department of Energy (DOE) Office of Economic Impace and Diversity Minority Business Technology Transfer Consortium. The technology involves fabricating component replicas from fiberglass/epoxy composites using a resin transfer molding (RTM) process. The original components are used as masters to fabricate the molds. The molding process yields parts that duplicate the significant dimensional requirements of the original component while still parts that duplicate the significant dimensional requirements of the original component while still providing adequate strength and stiffness for use in training simulators. This technology permits MI to overcome an acute shortage in surplus military hardware available to them for use in manufacturing training simulators. In addition, the cost of the molded fiberglass components is expected to be less than that of procuring the original components from the military.

  9. Development of Partial Tubular Flat Knitting Fabric Composite Preform

    Directory of Open Access Journals (Sweden)

    Jiang Wei Qing

    2016-01-01

    Full Text Available After building some structures of partial tubular flat knitting fabric composite preform, the influencing factor on tubular section was analyzed and the fabric was knitted selectively. The partial tubular flat knitting fabric composite preform were Knitted by changing different yarn, row number and two-sided partial tubular flat knitting fabric. Multilayer sheet would be got after hot pressing and it has big market prospects and good application value.

  10. Flexural Properties of WeftKnitted Fabric Reinforced Composites

    Institute of Scientific and Technical Information of China (English)

    龙海如; 冯勋伟

    2001-01-01

    Several different kinds of weft knitted fabrics from glass fiber yarns were used as reinforcement to make fabric/polyester composite laminates. Flexural tests were carried out to examine stress- deflection process and compare the mechanical properties in course and wale directions of these composites. The experimental results indicate that the numbers of load-bearing yarn in course and wale direction and the fabric density are the main factors influencing the ultimate tensile strength and initial elastic modulus of specimens.

  11. Automated Fabrication Technologies for High Performance Polymer Composites

    Science.gov (United States)

    Shuart , M. J.; Johnston, N. J.; Dexter, H. B.; Marchello, J. M.; Grenoble, R. W.

    1998-01-01

    New fabrication technologies are being exploited for building high graphite-fiber-reinforced composite structure. Stitched fiber preforms and resin film infusion have been successfully demonstrated for large, composite wing structures. Other automatic processes being developed include automated placement of tacky, drapable epoxy towpreg, automated heated head placement of consolidated ribbon/tape, and vacuum-assisted resin transfer molding. These methods have the potential to yield low cost high performance structures by fabricating composite structures to net shape out-of-autoclave.

  12. Fabrication of toroidal composite pressure vessels. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dodge, W.G.; Escalona, A.

    1996-11-24

    A method for fabricating composite pressure vessels having toroidal geometry was evaluated. Eight units were fabricated using fibrous graphite material wrapped over a thin-walled aluminum liner. The material was wrapped using a machine designed for wrapping, the graphite material was impregnated with an epoxy resin that was subsequently thermally cured. The units were fabricated using various winding patterns. They were hydrostatically tested to determine their performance. The method of fabrication was demonstrated. However, the improvement in performance to weight ratio over that obtainable by an all metal vessel probably does not justify the extra cost of fabrication.

  13. Rapid Fabrication of Carbide Matrix/Carbon Fiber Composites

    Science.gov (United States)

    Williams, Brian E.; Bernander, Robert E.

    2007-01-01

    Composites of zirconium carbide matrix material reinforced with carbon fibers can be fabricated relatively rapidly in a process that includes a melt infiltration step. Heretofore, these and other ceramic matrix composites have been made in a chemical vapor infiltration (CVI) process that takes months. The finished products of the CVI process are highly porous and cannot withstand temperatures above 3,000 F (approx.1,600 C). In contrast, the melt-infiltration-based process takes only a few days, and the composite products are more nearly fully dense and have withstood temperatures as high as 4,350 F (approx.2,400 C) in a highly oxidizing thrust chamber environment. Moreover, because the melt- infiltration-based process takes much less time, the finished products are expected to cost much less. Fabrication begins with the preparation of a carbon fiber preform that, typically, is of the size and shape of a part to be fabricated. By use of low-temperature ultraviolet-enhanced chemical vapor deposition, the carbon fibers in the preform are coated with one or more interfacial material(s), which could include oxides. The interfacial material helps to protect the fibers against chemical attack during the remainder of the fabrication process and against oxidation during subsequent use; it also enables slippage between the fibers and the matrix material, thereby helping to deflect cracks and distribute loads. Once the fibers have been coated with the interfacial material, the fiber preform is further infiltrated with a controlled amount of additional carbon, which serves as a reactant for the formation of the carbide matrix material. The next step is melt infiltration. The preform is exposed to molten zirconium, which wicks into the preform, drawn by capillary action. The molten metal fills most of the interstices of the preform and reacts with the added carbon to form the zirconium carbide matrix material. The zirconium does not react with the underlying fibers because they

  14. Tensile Properties of Weft Knitted Fabric Reinforced Composites

    Institute of Scientific and Technical Information of China (English)

    龙海如

    2001-01-01

    Seven kinds of weft knitted fabrics from glass fiber yarns were used as reinforcement to make fabric/epoxy composite laminates. Tensile tests were carried out to examine and compare the mechanical properties in course and wale direction of these composites. On the basis of experimental results, attempts have been made to analyze some main factors influencing stress-strain curve, ultimate tensile strength and initial elastic modulus of specimens.

  15. Investigation on mechanical properties of basalt composite fabrics (experiment study

    Directory of Open Access Journals (Sweden)

    Talebi Mazraehshahi H.

    2010-06-01

    Full Text Available To fully appreciate the role and application of composite materials to structures, correct understanding of mechanical behaviors required for selection of optimum material. Fabric reinforced composites are composed of a matrix that is reinforced with pliable fabric, glass fabric is most popular reinforcement for different application specially in aircraft structure, although other fabric material are also used. At this study new fabric material called basalt with epoxy resin introduced and mechanical behaviors of this material investigated from view point of testing. For this study two type of fabric with different thickness used. Comparison between this composite reinforcement with popular reinforcement as carbon, glass, kevlar performed. To determine mechanical properties of epoxy based basalt fabric following test procedure performed : 1. Tensile testing according to ASTM D3039 in 0° and 90° direction to find ultimate strength in tension and shear, modulus of elasticity, elangation and ultimate strain. 2. Compression testing according to EN 2850 ultimate compression strength and maximum deformation under compression loading. 3. Shear testing according to ASTM D3518-94 to find in plane shear response of polymer matrix composites materials. 4. Predict flexural properties of sandwich construction which manufactured from basalt facing with PVC foam core according to ASTM C393-94. Material strength properties must be based on enough tests of material to meet the test procedure specifications [1]. For this reason six specimens were manufactured for testing and the tests were performed on them using an INSTRON machine model 5582. In the study, the effect of percent of resin in basalt reinforced composite was investigated. Also the weights of the ballast based composites with different percent of resin were measured with conventional composites. As the weight is an important parameter in aerospace industry when the designer wants to replace one

  16. Design, Static Analysis And Fabrication Of Composite Joints

    Science.gov (United States)

    Mathiselvan, G.; Gobinath, R.; Yuvaraja, S.; Raja, T.

    2017-05-01

    The Bonded joints will be having one of the important issues in the composite technology is the repairing of aging in aircraft applications. In these applications and also for joining various composite material parts together, the composite materials fastened together either using adhesives or mechanical fasteners. In this paper, we have carried out design, static analysis of 3-D models and fabrication of the composite joints (bonded, riveted and hybrid). The 3-D model of the composite structure will be fabricated by using the materials such as epoxy resin, glass fibre material and aluminium rivet for preparing the joints. The static analysis was carried out with different joint by using ANSYS software. After fabrication, parametric study was also conducted to compare the performance of the hybrid joint with varying adherent width, adhesive thickness and overlap length. Different joint and its materials tensile test result have compared.

  17. Influence of Fabric Geometrical Structure on Bonding of the Fabric Reinforced Cement Composites

    Institute of Scientific and Technical Information of China (English)

    YU Qiao-zhen

    2007-01-01

    Influence of fabric geometrical parameters,including the number of filling yams per 10 cm, yarntwist and fiber type, on bonding of the fabric reinforcedcement composites is studied by fabric pull-out test andSEM microstructure analysis. The results show that thebonding strength increase with the increase of the numberof filling yams per 10 cm in the range of this study. Butthe influence of fabric count on the interfacial bonding isdual and there is a critical value. The twist of yarns hasa little effect on the bending strength and interfacialbonding behaves of nylon fabric reinforced cementcomposites. There is an optimum twist range. Withinthis range, the bonding strength increase slowly with theincrease of yarn twist. Beyond this range, it is versus.The bonding strength is strongly affected by the fabriccharacter. The bonding between the nylon fiber fabricand cement is good; that of between glass fiber fabric andcement is moderate and that of between the carbon fiberfabric and cement is poor.

  18. Mechanical properties of homogeneous nanofiber composites fabricated by electrospinning

    Science.gov (United States)

    Watanabe, Kentaro; Hotta, Atsushi

    2013-03-01

    A new composite that possesses uniformly dispersed polymeric nanofibers in different polymeric matrix was introduced by using electrospinning. Recently, nanofibers have been actively investigated for fillers for polymeric nano-composites to enhance the mechanical properties of the composites or to get highly functionalize polymer materials. Polyvinyl alcohol (PVA) nanofibers were selected as polymeric fillers and polydimethylsiloxane (PDMS) was used for polymeric matrix. Internally well-dispersed composites were fabricated by this new method, whereas rather anisotropic composites were also made by the traditional sandwich method. The morphology of the composites was analyzed by field emission scanning electron microscopy (FE-SEM). It was found that, in the new internally well-dispersed composites, PVA nanofibers existed from the both surfaces of the polymer matrix, uniformly dispersed in the composite. Isotropic mechanical properties were observed for internally well-dispersed composites, whereas relatively anisotropic characteristics could be observed for the traditionally-made composites.

  19. Natural fabric of Hildegardia populifolia composites

    CSIR Research Space (South Africa)

    Guduri, BBR

    2006-12-01

    Full Text Available -polycarbonate toughened epoxy composites was investigated using Instron and scanning electron microscope (SEM). It was found that the presence of NaOH and silane coupling agent treatment has an effect on the mechanical properties of composites. In the presence of surface...

  20. Fabrication and characterization of three-dimensional biomimetic chiral composites.

    Science.gov (United States)

    Turner, Mark D; Schröder-Turk, Gerd E; Gu, Min

    2011-05-09

    Here we show the fabrication and characterization of a novel class of biomimetic photonic chiral composites inspired by a recent finding in butterfly wing-scales. These three-dimensional networks have cubic symmetry, are fully interconnected, have robust mechanical strength and possess chirality which can be controlled through the composition of multiple chiral networks, providing an excellent platform for developing novel chiral materials. Using direct laser writing we have fabricated different types of chiral composites that can be engineered to form novel photonic devices. We experimentally show strong circular dichroism and compare with numerical simulations to illustrate the high quality of these three-dimensional photonic structures.

  1. Fabrication of polytetrafluoroethylene/carbon fiber composites using radiation crosslinking

    Science.gov (United States)

    Oshima, Akihiro; Udagawa, Akira; Tanaka, Shigeru

    2001-07-01

    A fabrication method for fiber-reinforced plastic (FRP) composites based on carbon fibers and polytetrafluoroethylene (PTFE) which was crosslinked by electron beam (EB) irradiation under specific conditions was studied. Though the fabricated composite showed high mechanical properties compared with a ready-made PTFE composite (non-crosslinked PTFE with 5˜20 wt% filler), mechanical properties of laminated panels were a bit poor compared with those of usual FRP. It was found that the toughness of the PTFE matrix is poor in the composite. On the other hand, the one-ply sheet of carbon fibers and crosslinked PTFE composite showed good mechanical properties for sheet-shape materials. The wettability of the obtained crosslinked PTFE composite is hardly changed by crosslinking and reinforcement.

  2. Fabrication of polytetrafluoroethylene/carbon fiber composites using radiation crosslinking

    Energy Technology Data Exchange (ETDEWEB)

    Oshima, Akihiro E-mail: aks@taka.jaeri.go.jp; Udagawa, Akira; Tanaka, Shigeru

    2001-07-01

    A fabrication method for fiber-reinforced plastic (FRP) composites based on carbon fibers and polytetrafluoroethylene (PTFE) which was crosslinked by electron beam (EB) irradiation under specific conditions was studied. Though the fabricated composite showed high mechanical properties compared with a ready-made PTFE composite (non-crosslinked PTFE with 5{approx}20 wt% filler), mechanical properties of laminated panels were a bit poor compared with those of usual FRP. It was found that the toughness of the PTFE matrix is poor in the composite. On the other hand, the one-ply sheet of carbon fibers and crosslinked PTFE composite showed good mechanical properties for sheet-shape materials. The wettability of the obtained crosslinked PTFE composite is hardly changed by crosslinking and reinforcement.

  3. A Wear Geometry Model of Plain Woven Fabric Composites

    Directory of Open Access Journals (Sweden)

    Gu Dapeng

    2014-09-01

    Full Text Available The paper g describes a model meant for analysis of the wear geometry of plain woven fabric composites. The referred model consists of a mathematical description of plain woven fabric based on Peirce’s model coupled with a stratified method for the solution of the wear geometry. The evolutions of the wear area ratio of weft yarn, warp yarn and matrix resin on the worn surface are simulated by MatLab software in combination of warp and weft yarn diameters, warp and weft yarn-to-yarn distances, fabric structure phases (SPs. By comparing theoretical and experimental results from the PTFE/Kevlar fabric wear experiment, it can be concluded that the model can present a trend of the component area ratio variations along with the thickness of fabric, but has a inherently large error in quantitative analysis as an idealized model.

  4. Natural fabric sandwich laminate composites: development and investigation

    Indian Academy of Sciences (India)

    C K ARVINDA PANDIAN; H SIDDHI JAILANI; A RAJADURAI

    2017-02-01

    In this work, eco-friendly natural fabric sandwich laminate (NFSL) composites are formulated using jute and linen-fabric-reinforced epoxy with different layer ratios (5:0, 4:1, 3:2, 2:3, 1:4 and 0:5) by hand layup system. Different mechanical attributes (tensile, flexural and impact) of the NFSL composites are quantified. Thermal stability and water absorption behaviour of the NFSL composites are also assessed. A scanning electron microscope (SEM) and optical microscope are used for qualitative analysis of NFSL composites’ interfacial properties. Two layers of jute and three layers of linen sandwich laminate have registered peak values in tensile and impact properties. The five layers of linen laminate composite have exhibited high flexural strength, been proven to have good thermal stability and furthermore shown better water absorption behaviour than any other laminate composites.

  5. Fabrication of aluminum matrix composite reinforced with carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1.0 wt.% carbon nanotube (CNT) reinforced 2024A1 matrix composite was fabricated by cold isostatic press and subsequent hot extrusion techniques. The mechanical properties of the composite were measured by a tensile test. Meanwhile, the fracture surfaces were examined using field emission scanning electron microscopy. The experimental results show that CNTs are dispersed homogeneously in the composite and that the interfaces of the Al matrix and the CNT bond well. Although the tensile strength and the Young's modulus of the composite are enhanced markedly, the elongation does not decrease when compared with the matrix material fabricated under the same process. The reasons for the increments may be the extraordinary mechanical properties of CNTs, and the bridging and pulling-out role of CNTs in the Al matrix composite.

  6. Space fabrication: Graphite composite truss welding and cap forming subsystems

    Science.gov (United States)

    Jenkins, L. M.; Browning, D. L.

    1980-02-01

    An automated beam builder for the fabrication of space structures is described. The beam builder forms a triangular truss 1.3 meters on a side. Flat strips of preconsolidated graphite fiber fabric in a polysulfone matrix are coiled in a storage canister. Heaters raise the material to forming temperature then the structural cap section is formed by a series of rollers. After cooling, cross members and diagonal tension cords are ultrasonically welded in place to complete the truss. The stability of fabricated structures and composite materials is also examined.

  7. Fabricating porous materials using interpenetrating inorganic-organic composite gels

    Science.gov (United States)

    Seo, Dong-Kyun; Volosin, Alex

    2016-06-14

    Porous materials are fabricated using interpenetrating inorganic-organic composite gels. A mixture or precursor solution including an inorganic gel precursor, an organic polymer gel precursor, and a solvent is treated to form an inorganic wet gel including the organic polymer gel precursor and the solvent. The inorganic wet gel is then treated to form a composite wet gel including an organic polymer network in the body of the inorganic wet gel, producing an interpenetrating inorganic-organic composite gel. The composite wet gel is dried to form a composite material including the organic polymer network and an inorganic network component. The composite material can be treated further to form a porous composite material, a porous polymer or polymer composite, a porous metal oxide, and other porous materials.

  8. Method for fabricating composite carbon foam

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    2001-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.

  9. Fabrication of Carbon Nanotube - Chromium Carbide Composite Through Laser Sintering

    Science.gov (United States)

    Liu, Ze; Gao, Yibo; Liang, Fei; Wu, Benxin; Gou, Jihua; Detrois, Martin; Tin, Sammy; Yin, Ming; Nash, Philip; Tang, Xiaoduan; Wang, Xinwei

    2016-03-01

    Ceramics often have high hardness and strength, and good wear and corrosion resistance, and hence have many important applications, which, however, are often limited by their poor fracture toughness. Carbon nanotubes (CNTs) may enhance ceramic fracture toughness, but hot pressing (which is one typical approach of fabricating CNT-ceramic composites) is difficult to apply for applications that require localized heat input, such as fabricating composites as surface coatings. Laser beam may realize localized material sintering with little thermal effect on the surrounding regions. However, for the typical ceramics for hard coating applications (as listed in Ref.[1]), previous work on laser sintering of CNT-ceramic composites with mechanical property characterizations has been very limited. In this paper, research work has been reported on the fabrication and characterization of CNT-ceramic composites through laser sintering of mixtures of CNTs and chromium carbide powders. Under the studied conditions, it has been found that laser-sintered composites have a much higher hardness than that for plasma-sprayed composites reported in the literature. It has also been found that the composites obtained by laser sintering of CNTs and chromium carbide powder mixtures have a fracture toughness that is ~23 % higher than the material obtained by laser sintering of chromium carbide powders without CNTs.

  10. Chiral braided and woven composites: design, fabrication, and electromagnetic characterization

    Science.gov (United States)

    Wheeland, Sara; Bayatpur, Farhad; Amirkhizi, Alireza V.; Nemat-Nasser, Sia

    2011-04-01

    This work presents a new chiral composite composed of copper wires braided with Kevlar and nylon to form conductive coils integrated among structural fiber. To create a fabric, these braids were woven with plain Kevlar fiber. This yielded a composite with all coils possessing the same handedness, producing a chiral material. The electromagnetic response of this fabric was first simulated using a finite element full-wave simulation. For the electromagnetic measurement, the sample was placed between two lens-horn antennas connected to a Vector Network Analyzer. The frequency response of the sample was scanned between 5.5 and 8GHz. The measured scattering parameters were then compared to those of the simulated model. The measured parameters agreed well with the simulation results, showing a considerable chirality within the measured frequency band. The new composite combines the strength and durability of traditional composites with an electromagnetic design to create a multifunctional material.

  11. Primary care team composition in 34 countries.

    NARCIS (Netherlands)

    Groenewegen, P.; Heinemann, S.; Greß, S.; Schäfer, W.

    2015-01-01

    Health care needs in the population change through ageing and increasing multimorbidity. Primary health care might accommodate to this through the composition of practices in terms of the professionals working in them. The aim of this article is to describe the composition of primary care practices

  12. Primary care practice composition in 34 countries

    NARCIS (Netherlands)

    Groenewegen, P.P.; Heinemann, Stephanie; Greß, Stefan; Schäfer, Willemijn

    2015-01-01

    Health care needs in the population change through ageing and increasing multimorbidity. Primary health care might accommodate to this through the composition of practices in terms of the professionals working in them. The aim of this article is to describe the composition of primary care practices

  13. Freeform fabrication of polymer-matrix composite structures

    Energy Technology Data Exchange (ETDEWEB)

    Kaufman, S.G.; Spletzer, B.L.; Guess, T.L.

    1997-05-01

    The authors have developed, prototyped, and demonstrated the feasibility of a novel robotic technique for rapid fabrication of composite structures. Its chief innovation is that, unlike all other available fabrication methods, it does not require a mold. Instead, the structure is built patch by patch, using a rapidly reconfigurable forming surface, and a robot to position the evolving part. Both of these components are programmable, so only the control software needs to be changed to produce a new shape. Hence it should be possible to automatically program the system to produce a shape directly from an electronic model of it. It is therefore likely that the method will enable faster and less expensive fabrication of composites.

  14. Near net-shape fabrication of hydroxyapatite glass composites

    NARCIS (Netherlands)

    Zhu, Q.; With, G. de; Dortmans, L.J.M.G.; Feenstra, F.

    2004-01-01

    Near net-shape fabrication of hydroxyapatite (HA) glass composites has been attempted by infiltrating a glass into porous HA performs. Main efforts were put to develop glasses that are chemically compatible with HA at elevated temperatures. After extensive investigations in the phosphate and borosil

  15. Processes for fabricating composite reinforced material

    Energy Technology Data Exchange (ETDEWEB)

    Seals, Roland D.; Ripley, Edward B.; Ludtka, Gerard M.

    2015-11-24

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  16. Fabrication and Microstructure of BN Matrix Composites with Electrical Conductivity

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    BN ceramic is an advanced engineering ceramics with excellent thermal shock resistance, good workability and excellent dielectricity.TiB2 ceramic has excellent electric conductivity,high melting points, and corrosion resistance to molten metal.Therefore,the composite consisting of BN and TiB2 ceramics is expected to have a combination of above-mentioned properties,thereby can be used as self- heating crucible.In this paper,hot pressing technology was used to fabricate the high performance BN-TiB2 composite materials.microstructure and electric conducting mechanism were studied,and the relationship between the microstructure and physical property was discussed.The results show that the microstructure of composites has a great influence on the physical property of composites.The BN-TiB2 composites with excellent mechanical strength and stable resistivity can be obtained by optimizing the processing parameter and controlling the microstructure of composites.

  17. Nano-fabricated superconducting radio-frequency composites, method for producing nano-fabricated superconducting rf composites

    Science.gov (United States)

    Norem, James H.; Pellin, Michael J.

    2013-06-11

    Superconducting rf is limited by a wide range of failure mechanisms inherent in the typical manufacture methods. This invention provides a method for fabricating superconducting rf structures comprising coating the structures with single atomic-layer thick films of alternating chemical composition. Also provided is a cavity defining the invented laminate structure.

  18. Fabrication and testing of SMA composite beam with shape control

    Science.gov (United States)

    Noolvi, Basavaraj; S, Raja; Nagaraj, Shanmukha; Mudradi, Varada Raj

    2017-07-01

    Smart materials are the advanced materials that have characteristics of sensing and actuation in response to the external stimuli like pressure, heat or electric charge etc. These materials can be integrated in to any structure to make it smart. From the different types of smart materials available, Shape Memory Alloy (SMA) is found to be more useful in designing new applications, which can offer more actuating speed, reduce the overall weight of the structure. The unique property of SMA is the ability to remember and recover from large strains of upto 8% without permanent deformation. Embedding the SMA wire/sheet in fiber-epoxy/flexible resin systems has many potential applications in Aerospace, Automobile, Medical, Robotics and various other fields. In this work the design, fabrication, and testing of smart SMA composite beam has been carried out. Two types of epoxy based resin systems namely LY 5210 resin system and EPOLAM 2063 resin system are used in fabricating the SMA composite specimens. An appropriate mould is designed and fabricated to retain the pre-strain of SMA wire during high temperature post curing of composite specimens. The specimens are fabricated using vacuum bag technique.

  19. Toughened carbon fibre fabric-reinforced thermoplastic composites

    OpenAIRE

    Abt, Tobias Martin; Sánchez Soto, Miguel; Maspoch Rulduà, Mª Lluïsa; Velasco Perero, José Ignacio

    2014-01-01

    Toughened carbon fibre fabric-reinforced composites were obtained by compression moulding of powder prepregs, using a modified cyclic butylene terephthalate (pCBT) matrix and a bi-directional [0°/90°] carbon fibre fabric. Modification of the pCBT matrix was done by adding small amounts of epoxy resin or isocyanates, acting as toughening agents. Homogeneous CBT/epoxy and CBT/isocyanate blends were obtained by melt blending in a lab-scale batch mixer by applying low temperatures and short proce...

  20. Net-Shape Tailored Fabrics For Complex Composite Structures

    Science.gov (United States)

    Farley, Gary L.

    1995-01-01

    Proposed novel looms used to make fabric preforms for complex structural elements, both stiffening elements and skin, from continuous fiber-reinforced composite material. Components of looms include custom reed and differential fabric takeup system. Structural parts made best explained by reference to curved "I" cross-section frame. Technology not limited to these fiber orientations or geometry; fiber angles, frame radius of curvature, frame height, and flange width changed along length of structure. Weaving technology equally applicable to structural skins, such as wing of fuselage skins.

  1. Fabrication and adsorption properties of hybrid fly ash composites

    Science.gov (United States)

    Gao, Mengfan; Ma, Qingliang; Lin, Qingwen; Chang, Jiali; Ma, Hongzhu

    2017-02-01

    In order to realize the utilization of fly ash (FA) as industrial solid waste better, high-efficient inorganic/organic hybrid composite adsorbents derived from (Ca(OH)2/Na2FeO4) modified FA (MF) was fabricated. The hydrophilic cationic polymer (P(DMDAAC-co-AAM) or hydrophobic modifier (KH-570) were used. The prepared composites were characterized by X-ray fluorescence spectroscopy, energy dispersive spectroscopy, scanning electron microscopy, Brunauer-Emmett-Teller, Fourier transform infrared spectroscopy, thermogravimetry, and contact angle test. The adsorption of cationic composites MF/P(DMDAAC-co-AAM) towards Orange II in wastewater was investigated. The results show that: adsorption amount of 24.8 mg/g with 2000 mg/L of composites, 50 mg/L Orange II, original pH (6-8), at 40 min and room temperature, was obtained. Meanwhile, oil adsorption ratio Q(g/g) of hydrophobic composites MF/KH-570 was also evaluated. The maximum Q of 17.2 g/g to kerosene was obtained at 40 min. The isotherm and kinetics of these two adsorption processes were also studied. The results showed that the fabricated MF composites modified with hydrophilic or hydrophobic group can be used to adsorb dye in wastewater or oil effectively.

  2. Fabrication of Fe-Based Diamond Composites by Pressureless Infiltration

    Directory of Open Access Journals (Sweden)

    Meng Li

    2016-12-01

    Full Text Available A metal-based matrix is usually used for the fabrication of diamond bits in order to achieve favorable properties and easy processing. In the effort to reduce the cost and to attain the desired bit properties, researchers have brought more attention to diamond composites. In this paper, Fe-based impregnated diamond composites for drill bits were fabricated by using a pressureless infiltration sintering method at 970 °C for 5 min. In addition, boron was introduced into Fe-based diamond composites. The influence of boron on the density, hardness, bending strength, grinding ratio, and microstructure was investigated. An Fe-based diamond composite with 1 wt % B has an optimal overall performance, the grinding ratio especially improving by 80%. After comparing with tungsten carbide (WC-based diamond composites with and without 1 wt % B, results showed that the Fe-based diamond composite with 1 wt % B exhibits higher bending strength and wear resistance, being satisfactory to bit needs.

  3. Fabrication of Composite Material Using Gettou Fiber by Injection Molding

    Science.gov (United States)

    Setsuda, Roy; Fukumoto, Isao; Kanda, Yasuyuki

    This study investigated the mechanical properties of composite using gettou (shell ginger) fiber as reinforcement fabricated from injection molding. Gettou fiber is a natural fiber made from gettou, a subtropical plant that is largely abundant in Okinawa, Japan. We used the stem part of gettou plant and made the gettou fiber by crushing the stem. The composite using gettou fiber contributed to low shrinkage ratio, high bending strength and high flexural modulus. The mechanical strength of composite using long gettou fiber showed higher value than composite using short gettou fiber. Next, because gettou is particularly known for its anti-mold characteristic, we investigated the characteristic in gettou plastic composite. The composite was tested against two molds: aspergillius niger and penicillium funiculosum. The 60% gettou fiber plastic composite was found to satisfy the JISZ2801 criterion. Finally, in order to predict the flexural modulus of composite using gettou fiber by Halpin-Tsai equation, the tensile elastic modulus of single gettou fiber was measured. The tendency of the experimental results of composite using gettou fiber was in good agreement with Halpin-Tsai equation.

  4. Analysis of knitted fabric reinforced flexible composites and applications in thermoforming

    Science.gov (United States)

    Bekisli, Burak

    energy dissipation is found to be superior in the latter case, since yarns are not restricted by the elastomer. In addition, yarns used in this type of composite move to effectively align along the load direction, yielding a better utilization of the fibers' high axial stiffness. Fabrication methods, including novel techniques involving twin-sheet thermoforming, for both types of composites are discussed. Tensile test results for glassfiber reinforced, TPE/polyurea based specimens are also presented. Innovative concepts related to the thermoforming process are also investigated using the developed numerical model. It is shown that some of the most critical problems in this forming process, such as non-uniform thickness distribution in the final part and the sensitivity of part quality to minor thermal variations, can be beneficially addressed using carefully "tailored" knit fabrics. Common thermoformed part geometries, such as a 3D box corner and a long U-shaped channel, are studied in numerical simulations to illustrate the effects of knitted fabric reinforcements on the stabilization of the forming process.

  5. Nanosilica-Chitosan Composite Coating on Cotton Fabrics

    Science.gov (United States)

    Maharani, Dina Kartika; Kartini, Indriana; Aprilita, Nurul Hidayat

    2010-10-01

    Nanosilica-chitosan composite coating on cotton fabrics has been prepared by sol-gel method. The sol-gel procedure allows coating of material on nanometer scale, which several commonly used coating procedure cannot achieve. In addition, sol-gel coating technique can be applied to system without disruption of their structure functionaly. The coating were produced via hidrolysis and condensation of TEOS and GPTMS and then mixed with chitosan. The composite coating on cotton fabrics were characterized with X-Ray Diffraction and Scanning Electron microscopy (SEM) method. The result showed that the coating not changed or disrupted the cotton stucture. The coating result in a clear transparent thin layer on cotton surface. The nanocomposite coating has new applications in daily used materials, especially those with low heat resistance, such as textiles and plastics, and as an environmentally friendly water-repellent substitute for fluorine compounds.

  6. Ceramic matrix composite article and process of fabricating a ceramic matrix composite article

    Science.gov (United States)

    Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert

    2016-01-12

    A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.

  7. Coordinated organogel templated fabrication of silver/polypyrrole composite nanowires

    Institute of Scientific and Technical Information of China (English)

    Bo Tian Li; Li Ming Tang; Kai Chen; Yu Xia; Xin Jin

    2011-01-01

    A new method to fabricate metal/conducting polymer composite nanowires is presented by taking silver/polypyrrole composite nanowires as an example.A silver (Ⅰ)-coordinated organogel as template was prepared firstly,and redox-polymerization of pyrrole took place on the gel fiber,giving product of silver/polypyrrole nanowires.The silver/polypyrrole nanowires were characterized by multiple techniques.This strategy could be carried out in one-step procedure at room temperature,and it proves the utility of coordinated organogels in template synthesis of polymer nanostructures.

  8. Composite nuclear fuel fabrication methodology for gas fast reactors

    Science.gov (United States)

    Vasudevamurthy, Gokul

    An advanced fuel form for use in Gas Fast Reactors (GFR) was investigated. Criteria for the fuel includes operation at high temperature (˜1400°C) and high burnup (˜150 MWD/MTHM) with effective retention of fission products even during transient temperatures exceeding 1600°C. The GFR fuel is expected to contain up to 20% transuranics for a closed fuel cycle. Earlier evaluations of reference fuels for the GFR have included ceramic-ceramic (cercer) dispersion type composite fuels of mixed carbide or nitride microspheres coated with SiC in a SiC matrix. Studies have indicated that ZrC is a potential replacement for SiC on account of its higher melting point, increased fission product corrosion resistance and better chemical stability. The present work investigated natural uranium carbide microspheres in a ZrC matrix instead of SiC. Known issues of minor actinide volatility during traditional fabrication procedures necessitated the investigation of still high temperature but more rapid fabrication techniques to minimize these anticipated losses. In this regard, fabrication of ZrC matrix by combustion synthesis from zirconium and graphite powders was studied. Criteria were established to obtain sufficient matrix density with UC microsphere volume fractions up to 30%. Tests involving production of microspheres by spark erosion method (similar to electrodischarge machining) showed the inability of the method to produce UC microspheres in the desired range of 300 to 1200 mum. A rotating electrode device was developed using a minimum current of 80A and rotating at speeds up to 1500 rpm to fabricate microspheres between 355 and 1200 mum. Using the ZrC process knowledge, UC electrodes were fabricated and studied for use in the rotating electrode device to produce UC microspheres. Fabrication of the cercer composite form was studied using microsphere volume fractions of 10%, 20%, and 30%. The macrostructure of the composite and individual components at various stages were

  9. Early Damage Detection in Composites during Fabrication and Mechanical Testing

    Directory of Open Access Journals (Sweden)

    Neha Chandarana

    2017-06-01

    Full Text Available Fully integrated monitoring systems have shown promise in improving confidence in composite materials while reducing lifecycle costs. A distributed optical fibre sensor is embedded in a fibre reinforced composite laminate, to give three sensing regions at different levels through-the-thickness of the plate. This study follows the resin infusion process during fabrication of the composite, monitoring the development of strain in-situ and in real time, and to gain better understanding of the resin rheology during curing. Piezoelectric wafer active sensors and electrical strain gauges are bonded to the plate after fabrication. This is followed by progressive loading/unloading cycles of mechanical four point bending. The strain values obtained from the optical fibre are in good agreement with strain data collected by surface mounted strain gauges, while the sensing regions clearly indicate the development of compressive, neutral, and tensile strain. Acoustic emission event detection suggests the formation of matrix (resin cracks, with measured damage event amplitudes in agreement with values reported in published literature on the subject. The Felicity ratio for each subsequent loading cycle is calculated to track the progression of damage in the material. The methodology developed here can be used to follow the full life cycle of a composite structure, from manufacture to end-of-life.

  10. Fabrication and characterization of S. cilliare fibre reinforced polymer composites

    Indian Academy of Sciences (India)

    A S Singha; Vijay Kumar Thakur

    2009-02-01

    In the recent times, there has been an ever-increasing interest in green composite materials for its applications in the field of industries, aerospace, sports, household etc and in many other fields. In this paper, fabrication of Saccharum cilliare fibre reinforced green polymer composites using resorcinol formaldehyde (RF) as a novel matrix has been reported. A systematic approach for processing of polymer is presented. Effect of fibre loading on mechanical properties like flexural, tensile, compressive and wear resistances has also been determined. Reinforcing of the RF resin with Saccharum cilliare (SC) fibre was done in the form of particle size (200 micron). Present work reveals that mechanical properties of the RF resin have been found to increase up to 30% fibre loading and then decreases. Morphological and thermal studies of the resin, fibre and particle reinforced (P-Rnf) green composites have also been studied.

  11. Mirrors fabricated with slightly oxidized C/C composites

    Science.gov (United States)

    Wang, Yongjie; Xu, Liang; Ding, Jiaoteng; Xie, Yongjie; Ma, Zhen

    2016-10-01

    Up to now, traditional materials, such as glass, metal and SiC ceramic, gradually begin to be unsatisfied development of the future mirrors. Designable carbon fiber reinforced composites became optimized material for large aperture lightweight mirrors. Carbon/carbon composites exhibit low thermal expansion and no moisture-absorption expansion problem, therefore, they get particular attention in the space reflector field. Ni was always employed as optical layer in the mirror, however, the coating behaved poor bond with substrate and often peeled off during optical processing. In order to solve this problem, slight oxidation was carried on the C/C composites before Ni plated. The Ni coating exhibited stronger coherence and better finish performance. Finally, a 100mm diameter plane mirror was successful fabricated.

  12. Formability Analysis of Bamboo Fabric Reinforced Poly (Lactic Acid Composites

    Directory of Open Access Journals (Sweden)

    Nurul Fazita M. R.

    2016-07-01

    Full Text Available Poly (lactic acid (PLA composites have made their way into various applications that may require thermoforming to produce 3D shapes. Wrinkles are common in many forming processes and identification of the forming parameters to prevent them in the useful part of the mechanical component is a key consideration. Better prediction of such defects helps to significantly reduce the time required for a tooling design process. The purpose of the experiment discussed here is to investigate the effects of different test parameters on the occurrence of deformations during sheet forming of double curvature shapes with bamboo fabric reinforced-PLA composites. The results demonstrated that the domes formed using hot tooling conditions were better in quality than those formed using cold tooling conditions. Wrinkles were more profound in the warp direction of the composite domes compared to the weft direction. Grid Strain Analysis (GSA identifies the regions of severe deformation and provides useful information regarding the optimisation of processing parameters.

  13. Fabrication and characterization of magnetic nanoparticle composite membranes

    Science.gov (United States)

    Cruickshank, Akeem Armand

    To effectively and accurately deliver drugs within the human body, both new designs and components for implantable micropumps are being studied. Designs must ensure high biocompatibility, drug compatibility, accuracy and small power consumption. The focus of this thesis was to fabricate a prototype magnetic nanoparticle membrane for eventual incorporation into a biomedical pump and then determine the relationship between this membrane deflection and applied pneumatic or magnetic force. The magnetic nanoparticle polymer composite (MNPC) membranes in this study were composed of crosslinked polydimethylsiloxane (PDMS) and iron oxide nanoparticles (IONPs). An optimal iron oxide fabrication route was identified and particle size in each batch was approximately 24.6 nm. Once these nanoparticles were incorporated into a membrane (5 wt. %), the nanoparticle formed agglomerates with an average diameter of 2.26 +/-1.23 microm. Comparisons between the 0 and 5 wt. % loading of particles into the membranes indicated that the elastic modulus of the composite decreased with increasing particle concentration. The pressure- central deflection of the membranes could not be predicated by prior models and variation between magnetic and pneumatic pressure-deflection curves was quantified. Attempts to fabricate membranes with above 5 wt. % nanoparticles were not successful (no gelation). Fourier Transform Infrared (FTIR) spectroscopy results suggest that excess oleic acid on the nanoparticles prior to mixing might have prevented crosslinking.

  14. Fabrication of carbon nanotubes field emission cathode by composite plating.

    Science.gov (United States)

    Wang, Fang-Hsing; Lin, Tzu-Ching; Tzeng, Shien-Der

    2010-07-01

    Carbon nanotubes (CNTs) have high aspect ratio and have great potential to be applied as the field emission cathode because of its large field enhancement factor. In this work, a high performance carbon nanotube field emission cathode (CNTFC) was fabricated by using a composite plating method. The CNTs were purified by acid solutions and then dispersed in electrobath with nickel ions at temperatures of 60, 70, or 80 degrees C for the electroless plating process on glass substrate. The resulting CNT-Ni composite film has strong adhesion on the glass substrate. The degree of graphitization and the microstructure of the CNTFCs were studied by Raman spectroscopy and scanning electron microscopy. The field emission properties of the CNTFCs show a low turn-on electric field E(on) of about 1.2 V/microm, and a low threshold electric field E(th) of about 1.9 V/microm. Such a composite plating method could be applied to the fabrication of large area CNT field-emission displays.

  15. Surface composites fabricated by vacuum infiltration casting technique

    Institute of Scientific and Technical Information of China (English)

    Guirong Yang; Yuan Hao; Wenming Song; Jinjun Lü; Ying Ma

    2005-01-01

    Alumina (Al2O3) particles reinforced copper matrix surface composites were fabricated on the bronze substrate using the vacuum infiltration casting technique. Three cases were obtained in the vacuum infiltration casting technique: no infiltration, partial infiltration and full infiltration (the thickness of preforms do not exceed 3.5 mm). The reason of no infiltration is that the vacuum degree is not enough so that the force acting on the liquid metal is lower than the resistance due to the surface tension. Partial infiltration is because of somewhat lower vacuum degree and pouring temperature. Full desired infiltration is on account of suitable infiltration casting conditions, such as vacuum degree, pouring temperature, grain size and preheating temperature of the preform. The most important factor of affecting formation of surface composites is the vacuum degree, then pouring temperature and particle size.The infiltration mechanism was discussed on the bases of different processing conditions. The surface composite up to 3.5 mm in thickness with uniformly distributed Al2O3 particles could be fabricated via the vacuum infiltration casting technique.

  16. Dry friction characterisation of carbon fibre tow and satin weave fabric for composite applications

    NARCIS (Netherlands)

    Cornelissen, Bo; Sachs, Ulrich; Rietman, Bert; Akkerman, Remko

    2014-01-01

    Composites forming processes such as resin transfer moulding (RTM) typically involve a preforming step in which dry fabric material is deformed. Frictional forces in tool–fabric and fabric–fabric contacts determine the fabric deformation behaviour to a large extent. Previous investigations of the fr

  17. Composites of 3D-Printed Polymers and Textile Fabrics*

    Science.gov (United States)

    Martens, Yasmin; Ehrmann, Andrea

    2017-08-01

    3D printing belongs to the rapidly emerging technologies of our time. Due to its recent drawback – the technology is relatively slow compared with other primary shaping methods, such as injection molding –, 3D printing is often not used for creating complete large components but to add specific features to existing larger objects. One of the possibilities to create such composites with an additional value consists in combining 3D printed polymers with textile fabrics. Several attempts have been made to enhance the adhesion between both materials, a task which is still challenging for diverse material combinations. Our paper reports about new experiments combining 3D printed embossed designs, snap fasteners and zip fasteners with different textile base materials, showing the possibilities and technical limits of these novel composites.

  18. Fabrication

    Directory of Open Access Journals (Sweden)

    E.M.S. Azzam

    2013-12-01

    Full Text Available In the present work, the nanoclay composites were fabricated using the synthesized poly 6-(3-aminophenoxy hexane-1-thiol, poly 8-(3-aminophenoxy octane-1-thiol and poly 10-(3-aminophenoxy decane-1-thiol surfactants with gold nanoparticles. The polymeric thiol surfactants were first assembled on gold nanoparticles and then impregnated into the clay matrix. Different spectroscopic and microscopic techniques such as X-ray diffraction (XRD, Scanning electron microscope (SEM and Transmission microscope (TEM were used to characterize the fabricated nanoclay composites. The results showed that the polymeric thiol surfactants assembled on gold nanoparticles are located in the interlayer space of the clay mineral and affected the clay structure.

  19. Interpenetrating phase ceramic/polymer composite coatings: Fabrication and characterization

    Science.gov (United States)

    Craig, Bradley Dene

    The goals of this thesis research were to fabricate interpenetrating phase composite (IPC) ceramic/polymer coatings and to investigate the effect of the interconnected microstructure on the physical and wear properties of the coatings. IPC coatings with an interpenetrating phase microstructure were successfully fabricated by first forming a porous ceramic with an interconnected microstructure using a chemical bonding route (mainly reacting alpha-alumina (0.3 mum) with orthophosphoric acid to form a phosphate bond). Porosity within these ceramic coatings was easily controlled between 20 and 50 vol. % by phosphoric acid addition, and was measured by a new porosity measurement technique (thermogravimetric volatilization of liquids, or TVL) which was developed. The resulting ceramic preforms were infiltrated with a UV and thermally curable cycloaliphatic epoxide resin and cured. This fabrication route resulted in composite coatings with thicknesses ranging from ˜1mum to 100 mum with complete filling of open pore space. The physical properties of the composite coatings, including microhardness, flexural modulus and wear resistance, were evaluated as a function of processing variables, including orthophosphoric acid content and ceramic phase firing temperature, which affected the microstructure and interparticulate bonding between particles in the coatings. For example, microhardness increased from ˜30 on the Vicker's scale to well over 200 as interparticulate bonding was increased in the ceramic phase. Additionally, Taber wear resistance in the best TPC coatings was found to approach that of fully-densified alumina under certain conditions. Several factors were found to influence the wear mechanism in the IPC coating materials. Forming strong connections between ceramic particles led to up to an order of magnitude increase in the wear resistance. Additionally, coating microhardness and ceramic/polymer interfacial strength were studied and found to be important in

  20. Novel Elastomeric Closed Cell Foam - Nonwoven Fabric Composite Material (Phase III)

    Science.gov (United States)

    2008-10-01

    AFRL-RX-TY-TR-2009-4577 NOVEL ELASTOMERIC CLOSED CELL FOAM – NONWOVEN FABRIC COMPOSITE MATERIAL (PHASE III) Davis, Stephen C...07-OCT-2009 Novel Elastomeric Closed Cell Foam - Nonwoven Fabric Composite Material (Phase III) FA4819-07-D-0001 62102F 4347 D2 4347D23A Davis...develop novel closed cell foam- nonwoven fabric composites to commercial scale evaluation. Armacell tasks focused on foam optimization for commercial

  1. Economical Fabrication of Thick-Section Ceramic Matrix Composites

    Science.gov (United States)

    Babcock, Jason; Ramachandran, Gautham; Williams, Brian; Benander, Robert

    2010-01-01

    A method was developed for producing thick-section [>2 in. (approx.5 cm)], continuous fiber-reinforced ceramic matrix composites (CMCs). Ultramet-modified fiber interface coating and melt infiltration processing, developed previously for thin-section components, were used for the fabrication of CMCs that were an order of magnitude greater in thickness [up to 2.5 in. (approx.6.4 cm)]. Melt processing first involves infiltration of a fiber preform with the desired interface coating, and then with carbon to partially densify the preform. A molten refractory metal is then infiltrated and reacts with the excess carbon to form the carbide matrix without damaging the fiber reinforcement. Infiltration occurs from the inside out as the molten metal fills virtually all the available void space. Densification to 41 ksi (approx. 283 MPa) flexural strength.

  2. Rapid fabrication of ceramic composite tubes using chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Starr, T.L.; Chiang, D. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Engineering; Besmann, T.M.; Stinton, D.P.; McLaughlin, J.C.; Matlin, W.M. [Oak Ridge National Lab., TN (United States)

    1996-06-01

    Ceramic composite tubes can be fabricated with silicon carbide matrix and Nicalon fiber reinforcement using forced flow-thermal gradient chemical vapor infiltration (FCVI). The process model GTCVI is used to design the equipment configuration and to identify conditions for rapid, uniform densification. The initial injector and mandrel design produced radial and longitudinal temperature gradients too large for uniform densification. Improved designs have been evaluated with the model. The most favorable approach utilizes a free-standing preform and an insulated water-cooled gas injector. Selected process conditions are based on the temperature limit of the fiber, matrix stoichiometry and reagent utilization efficiency. Model runs for a tube 12 inches long, 4 inches OD and 1/4 inch wall thickness show uniform densification in approximately 15 hours.

  3. Scalable fabrication of immunosensors based on carbon nanotube polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, Ernest; Gonzalez-Guerrero, Ana B [Institut Catala de Nanotecnologia, Campus Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Orozco, Jahir; Jimenez-Jorquera, Cecilia; Fernandez-Sanchez, Cesar [Instituto de Microelectronica de Barcelona, CNM-IMB (CSIC), Campus Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Calle, Ana; Lechuga, Laura M [Instituto de Microelectronica de Madrid, CNM-IMM (CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid (Spain)], E-mail: Ernest.Mendoza.icn@uab.es

    2008-02-20

    In this work we present the fabrication and characterization of immunosensors based on polystyrene (PS)-multiwalled carbon nanotube (MWCNT) composites. The electrochemical properties of the sensors have been investigated and show that the surface area is increased upon addition of the MWCNT-PS layer. Furthermore, a plasma activation process is used to partially remove the PS and expose the MWCNTs. This results in a huge increase in the electrochemical area and opens up the possibility of binding biomolecules to the MWCNT wall. The MWCNTs have been functionalized covalently with a model antibody (rabbit IgG). The biosensors have been tested using amperometric techniques and show detection limits comparable to standard techniques such as ELISA.

  4. Recommendations on Composite Socket Fabrication Based Upon Experimental Results

    Science.gov (United States)

    2009-06-20

    Background 1 Socket Fabrication 1 Vacuum Assisted Resin Transfer Molding ( VARTM ) 3 Socket Manufacturing versus Traditional VARTM 4 Flat Panel Testing...Sockets are fabricated using techniques which are similar to Vacuum Assisted Resin Transfer Molding ( VARTM ). A discussion of socket fabrication...traditional VARTM processing, and the important differences between the two, will provide an important background. Socket Fabrication A positive mold is

  5. Natural and synthetic polymers in fabric and home care applications

    Science.gov (United States)

    Paderes, Monissa; Ahirwal, Deepak; Fernández Prieto, Susana

    2017-07-01

    Polymers can be tailored to provide different benefits in Fabric & Home Care formulations depending on the monomers and modifications used, such as avoiding dye transfer inhibition in the wash, modifying the surface of tiles or increasing the viscosity and providing suspension properties to consumer products. Specifically, the rheology modification properties of synthetic and natural polymers are discussed in this chapter. The choice of a polymeric rheology modifier will depend on the formulation ingredients (charges, functional groups), the type and the amount of surfactants, the pH and the desired rheology modification. Natural polymeric rheology modifiers have been traditionally used in the food industry, being xanthan gum one of the most well-known ones. On the contrary, synthetic rheology modifiers are preferably used in paints & coats, textile printing and cleaning products.

  6. Fabrication of Biosensor Based on Polyaniline/Gold Nanorod Composite

    Directory of Open Access Journals (Sweden)

    Uğur Tamer

    2011-01-01

    Full Text Available This present paper describes a new approach to fabricate a new amperometric sensor for the determination of glucose. Polyaniline (PANI film doped with colloidal gold nanorod particles has been used to immobilize glucose oxidase by glutaraldehyde. The polyaniline/gold nanorod composite structure gave an excellent matrix for enzyme immobilization due to the large specific surface area and higher electroactivity. The composite has been characterized by cyclic voltammetry (CV, scanning electron microscopy (SEM, and surface-enhanced Raman spectroscopy (SERS. The SERS spectrum of the surface-immobilized glucose oxidase and the spectrum of the native enzyme indicate that the main feature of the native structure of glucose oxidase was conserved after being immobilized on the polymer matrix. The amperometric response was measured as a function of concentration of glucose at a potential of 0.6 V versus Ag/AgCl in 0.1 M phosphate buffer at pH 6.4. Linear range of the calibration curve was from 17.6 μM to 1 mM with a sensitivity of 13.8 μA⋅mM−1⋅cm−2 and a limit of detection (LOD of 5.8 μM. The apparent Michaelis-Menten constant KM was calculated as 1.0 mM and the response time was less than 3 seconds.

  7. Fabrication and characterization of magnetic composite membrane pressure sensor

    KAUST Repository

    Khan, Mohammed Asadullah

    2016-04-20

    This paper describes a magnetic field powered pressure sensor, which comprises a coil array and a magnetic composite membrane. The composite membrane is made by embedding a ribbon of the amorphous soft magnetic alloy Vitrovac®, in a 17 mm x 25 mm x 1.5 mm Polydimethylsiloxane (PDMS) layer. PDMS is chosen for its low Young\\'s modulus and the amorphous alloy for its high permeability. The membrane is suspended 1.5 mm above a 17x19 array of microfabricated planar coils. The coils are fabricated by patterning a 620 nm thick gold layer. Each coil occupies an area of 36000 μm2 and consists of 14 turns. The sensor is tested by subjecting it to pressure and simultaneously exciting it by a 24 A/m, 100 kHz magnetic field. A pressure change from 0 kPa to 5.1 kPa, results in a 5400 ppm change in the voltage output.

  8. Controle de la fabrication des composites par injection sur renforts

    Science.gov (United States)

    Lebel, Francois

    Liquid Composite Molding (LCM) is an increasingly used class of processes to manufacture high performance composites. A multiscale study is presented in this thesis in order to better understand the fundamental physics of impregnation and air entrapment phenomena in dual scale fibrous reinforcements and thus propose practical solutions for process control engineers. First of all, an experimental setup is developed to study the saturation of fibrous reinforcements, at the macroscopic scale, during the Resin Transfer Molding (RTM). This setup is used to determine some key parameters of the part filling step and industrial post-filling strategies (mold bleeding and consolidation) that control the impregnation quality of fibrous reinforcements. These key parameters are identified using three series of experiments. These parameters are the flow front velocity, the inlet mold pressure and the bleeding flow rate. The analyses in these three series of experiments are based on an ASTM standard procedure for void content determination in the composite parts by carbonization (also called loss on ignition (LOI)). These three series of experiments have related a posteriori the key parameters of LCM processes to phenomena of void formation, migration and dissolution in composite parts made of E-glass non crimp fabric (NCF) and vinyl ester resin. The second part of this thesis aims to investigate, at the mesoscopic and microscopic scale, the impregnation mechanisms of fibrous reinforcements during LCM processes. This analysis focuses more specifically on wicking phenomenon in fiber tows and in fibrous laminates, namely here stacks of non crimp fabric plies. This experimental study is carried out to better understand the physics which explain that the impregnation velocity is one of the key parameters that control the quality of composite parts manufactured by LCM processes. This analysis also aims to identify the structural features of fiber tows and fibrous reinforcements that

  9. Fabrication of in situ composite layer on cast steel

    Directory of Open Access Journals (Sweden)

    E. Fraś

    2010-01-01

    Full Text Available The study describes the technology of fabrication of composite layers in cast steel reinforced with titanium carbides. In the process under discussion, the reinforcing TiC phase is formed in situ from the substrates deposited on mould cavity, where the said substrates under the effect of heat supplied by molten metal poured into mould (1823K undergo a synthesis in the SHS reaction. An outcome of this process is the formation, within the casting surface, of a layer from 550 to 1200μm thick. Carbides produced in this synthesis have the size from 0,5 to 20μm and a non-typical spheroidal shape. The hardness of the produced layer examined in function of the distance from the casting surface is from 700 to 1134 HV, and is determined by volume fraction of the reinforcing TiC phase. To better document the type of microstructure obtained in the produced material, metallographic and structural examinations were carried out using the method of scanning electron microscopy (SEM, X-ray microanalysis (EDS/EDX, and phase analysis (XRD. To check the mechanical properties of the examined material, hardness was measured by the Vickers test.

  10. The influence of stiffeners on axial crushing of glass-fabric-reinforced epoxy composite shells

    Directory of Open Access Journals (Sweden)

    A. Vasanthanathan

    2017-01-01

    Full Text Available A generic static and impact experimental procedure has been developed in this work aimed at improving the stability of glass fabric reinforced epoxy shell structures by bonding with axial stiffeners. Crashworthy structures fabricated from composite laminate with stiffeners would offer energy absorption superior to metallic structures under compressive loading situations. An experimental material characterisation of the glass fabric reinforced epoxy composite under uni-axial tension has been carried out in this study. This work provides a numerical simulation procedure to describe the static and dynamic response of unstiffened glass fabric reinforced epoxy composite shell (without stiffeners and stiffened glass fabric reinforced epoxy composite shell (with axial stiffeners under static and impact loading using the Finite Element Method. The finite element calculation for the present study was made with ANSYS®-LS-DYNA® software. Based upon the experimental and numerical investigations, it has been asserted that glass fabric reinforced epoxy shells stiffened with GFRP stiffeners are better than unstiffened glass fabric reinforced epoxy shell and glass fabric reinforced epoxy shell stiffened with aluminium stiffeners. The failure surfaces of the glass fabric reinforced epoxy composite shell structures tested under impact were examined by SEM.

  11. A Fully Contained Resin Infusion Process for Fiber-Reinforced Polymer Composite Fabrication and Repair

    Science.gov (United States)

    2013-01-01

    Assisted Resin Transfer Molding ( VARTM ) process is applicable for fiber-reinforced polymer (FRP) composite fabrication and repair. However, VARTM in...scenario is a fully enclosed VARTM system that limits the need for laboratory or manufacturing equipment. The Bladder-Bag VARTM (BBVARTM) technique...composite fabrication, VARTM , composite repair, in-field repair 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER

  12. Copper/bamboo fabric composite prepared via a silver catalytic electroless deposition process for electromagnetic shielding

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Qian; Lu, Yinxiang [Fudan Univ., Shanghai (China). Dept. of Materials Science

    2013-09-15

    Copper/bamboo fabric composite prepared via a silver catalytic electroless plating process is reported. The microstructure of the composite was analyzed by means of scanning electron microscopy, which illustrated that the copper coating was composed of spherical particles and clusters. The composition and chemical state of the metal layer were measured using X-ray diffraction and energy-dispersive X-ray analysis spectra; copper and a small amount of nickel were detected. Mechanical properties were measured based on a standard (ISO 13934-1:1999) for the fabrics with and without copper coating. The breaking force for the composite was improved by about 16.8% compared to uncoated bamboo fabric. The electromagnetic interference shielding effectiveness of the composite was more than 40 dB at frequencies ranging from 0.2 to 1000MHz. The copper coating on bamboo fabric passed the Scotch {sup registered} -tape test. (orig.)

  13. Tensile and Flexural Properties of Cement Composites Reinforced with Flax Nonwoven Fabrics

    Directory of Open Access Journals (Sweden)

    Josep Claramunt

    2017-02-01

    Full Text Available The aim of this study is to develop a process to produce high-performance cement-based composites reinforced with flax nonwoven fabrics, analyzing the influence of the fabric structure—thickness and entanglement—on mechanical behavior under flexural and tensile loadings. For this purpose, composite with flax nonwoven fabrics with different thicknesses were first prepared and their cement infiltration was evaluated with backscattered electron (BSE images. The nonwoven fabrics with the optimized thickness were then subjected to a water treatment to improve their stability to humid environments and the fiber-matrix adhesion. For a fixed thickness, the effect of the nonwoven entanglement on the mechanical behavior was evaluated under flexural and direct tension tests. The obtained results indicate that the flax nonwoven fabric reinforcement leads to cement composites with substantial enhancement of ductility.

  14. Tensile and Flexural Properties of Cement Composites Reinforced with Flax Nonwoven Fabrics

    Science.gov (United States)

    Claramunt, Josep; Ventura, Heura; Fernández-Carrasco, Lucía J; Ardanuy, Mònica

    2017-01-01

    The aim of this study is to develop a process to produce high-performance cement-based composites reinforced with flax nonwoven fabrics, analyzing the influence of the fabric structure—thickness and entanglement—on mechanical behavior under flexural and tensile loadings. For this purpose, composite with flax nonwoven fabrics with different thicknesses were first prepared and their cement infiltration was evaluated with backscattered electron (BSE) images. The nonwoven fabrics with the optimized thickness were then subjected to a water treatment to improve their stability to humid environments and the fiber-matrix adhesion. For a fixed thickness, the effect of the nonwoven entanglement on the mechanical behavior was evaluated under flexural and direct tension tests. The obtained results indicate that the flax nonwoven fabric reinforcement leads to cement composites with substantial enhancement of ductility. PMID:28772573

  15. Calculation of the relative uniformity coefficient on the green composites reinforced with cotton and hemp fabric

    Science.gov (United States)

    Baciu, Florin; Hadǎr, Anton; Sava, Mihaela; Marinel, Stǎnescu Marius; Bolcu, Dumitru

    2016-06-01

    In this paper it is studied the influence of discontinuities on elastic and mechanical properties of green composite materials (reinforced with fabric of cotton or hemp). In addition, it is studied the way variations of the volume f the reinforcement influences the elasticity modulus and the tensile strength for the studied composite materials. In order to appreciate the difference in properties between different areas of the composite material, and also the dimensions of the defective areas, we have introduced a relative uniformity coefficient with which the mechanical behavior of the studied composite is compared with a reference composite. To validate the theoretical results we have obtained we made some experiments, using green composites reinforced with fabric, with different imperfection introduced special by cutting the fabric.

  16. Flax fabric reinforced arylated soy protein composites: A brittle-matrix behaviour

    CSIR Research Space (South Africa)

    Kumar, R

    2012-05-01

    Full Text Available Biocomposites were successfully prepared by the reinforcement of soy protein isolate (SPI) with different weight fractions of woven flax fabric. The flax-fabric-reinforced SPI-based composites were then arylated with 2,2-diphenyl-2-hydroxyethanoic...

  17. Synthesis, processing and characterization of shear thickening fluid (STF) impregnated fabric composites

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Tarig A. [Center for Advanced Materials (T-CAM), Tuskegee University, Tuskegee, AL 36088 (United States); Rangari, Vijay K., E-mail: rangariv@tuskegee.edu [Center for Advanced Materials (T-CAM), Tuskegee University, Tuskegee, AL 36088 (United States); Jeelani, Shaik [Center for Advanced Materials (T-CAM), Tuskegee University, Tuskegee, AL 36088 (United States)

    2010-05-15

    Shear thickening is a non-Newtonian fluid behavior defined as the increase of viscosity with the increase in the applied shear rate. The shear thickening fluid (STF) is a combination of hard metal oxide particles suspended in a liquid polymer. This mixture of flowable and hard components at a particular composition, results in a material with remarkable properties. In this manuscript the shear thickening fluid (STF) was prepared by ultrasound irradiation of silica nanoparticles dispersed in liquid polyethylene glycol polymer. The as-prepared STFs have been tested for their rheological and thermal properties. Kevlar and Nylon fabrics were soaked in STF/ethanol solution to make STF/fabric composite. Knife threats and quasistatic penetration tests were performed on the neat fabrics and STF/fabric composite targets for both engineered spike and knife on areal density basis. The results showed that STF impregnated fabrics have better penetration resistance as compared to neat fabrics without affecting the fabric flexibility. This indicates that the addition of STF to the fabric have enhanced the fabric performance and can be used in liquid body armor applications.

  18. Polyimide Composites Properties of RTM370 Fabricated by Vacuum Assisted Resins Transfer Molding (VARTM)

    Science.gov (United States)

    Chuang, Kathy C.; Criss, Jim M.; Mintz, Eric A.

    2011-01-01

    RTM370 imide resin based on 2,3,3 ,4 -biphenyl dianhydride ( a-BPDA), 3,4 -oxydianinline (3,4 -ODA) with 4-phenylethynylphthalic (PEPA) endcap has shown to exhibit high Tg (370 C) and low melt viscosity (10-30 poise) at 280 C with a pot-life of 1-2 h. Previously, RTM370 resin has been fabricated into composites with T650-35 carbon fabrics by resin transfer molding (RTM) successfully. RTM370 composites exhibit excellent mechanical properties up to 327 C (620 F), and outstanding property retention after aging at 288 C (550 F) for 1000 hrs. In this presentation, RTM 370 composites will be fabricated by vacuum assisted resins transfer molding (VARTM), using vacuum bags without mold. The mechanical properties of RTM370 composites fabricated by VARTM will be compared to those of RTM370 made by RTM.

  19. Composite Properties of RTM370 Polyimide Fabricated by Vacuum Assisted Resin Transfer Molding (VARTM)

    Science.gov (United States)

    Chuang, Kathy C.; Criss, James M.; Mintz, Eric A.; Shonkwiler, Brian; McCorkle, Linda S.

    2011-01-01

    RTM370 imide resin based on 2,3,3?,4?-biphenyl dianhydride (a-BPDA), 3,4'-oxydianinline (3,4'-ODA) with the 4-phenylethynylphthalic (PEPA) endcap has been shown to exhibit a high cured T(sub g) (370 C) and low melt viscosity (10-30 poise) at 280 C with a pot-life of 1-2 h. Previously, RTM370 resin has been successfully fabricated into composites reinforced with T650-35 carbon fabrics by resin transfer molding (RTM). RTM370 composites exhibit excellent mechanical properties up to 327?C (620?F), and outstanding property retention after aging at 288?C (550?F) for 1000 h. In this work, RTM370 composites were fabricated by vacuum assisted resin transfer molding (VARTM), using vacuum bags on a steel plate. The mechanical properties of RTM370 composites fabricated by VARTM are compared to those prepared by RTM.

  20. Investigation into the fabrication of a composite top attack recoilless rifle

    Science.gov (United States)

    Miner, Kevin R.

    1990-01-01

    The fabrication of a lightweight, expendable recoilless rifle using composite materials was investigated. Filament winding and braiding were successfully employed in the construction of several of these shoulder-fired weapons.

  1. Mechanical characterization of basalt woven fabric composites: numerical and experimental investigation

    Directory of Open Access Journals (Sweden)

    Piergiorgio Valentino

    2014-04-01

    Full Text Available Basalt fabric composite, with different twill wave reinforcements, i.e. twill 2/2 and twill 1/3, have been studied in this work by means of experimental tests and numerical finite element (FE simulations. As fabric reinforcements show repeating undulations of warp and fill yarn, simple mixtures law cannot be applied. As a consequence, the mesoscopic scale, lying between the microscopic and the macroscopic one, has to be taken into account to mechanically characterize a fabric reinforced composite. The aim of this work is to evaluate the stiffness of a fabric reinforced composite in warp and fill direction. In particular a numerical FE model, assuming elliptical sections and sinusoidal shape of the yarns, has been implemented and experimental tests have been carried out in order to validate the proposed model. Finally, the strength and the failure modes of the composite material, for each analysed structure and textile orientation, have been experimentally investigated.

  2. Mechanical properties of uniaxial natural fabric Grewia tilifolia reinforced epoxy based composites: Effects of chemical treatment

    CSIR Research Space (South Africa)

    Jayaramudu, J

    2014-07-01

    Full Text Available The effects of chemical treatment on the mechanical, morphological, and chemical resistance properties of uniaxial natural fabrics, Grewia tilifolia/epoxy composites, were studied. In order to enhance the interfacial bonding between the epoxy matrix...

  3. Anisotropy in CNT composite fabricated by combining directional freezing and gamma irradiation of acrylic acid

    OpenAIRE

    Osička, Josef; Ilčíková, Marketa; Mrlík, Miroslav; Al-Maadeed, Mariam Ali S.A.; Šlouf, Miroslav; Tkac, Jan; Kasák, Peter

    2016-01-01

    A novel fabrication process for composite consisting of organized modified carbon nanotubes (CNT) in the polyacrylic acid (PAA) matrix has been developed. The CNT were organized along crystallite domains during a directional freezing process and subsequently fixed by the gamma irradiation induced polymerization and crosslinking in solid state. Different morphology and distribution of CNT in fabricated and conventionally prepared composites were investigated by scanning and transmission electr...

  4. Mechanical and wet tribological properties of carbon fabric/phenolic composites with different weave filaments counts

    Science.gov (United States)

    Wenbin, Li; Jianfeng, Huang; Jie, Fei; Liyun, Cao; Chunyan, Yao

    2015-10-01

    Carbon fabric/phenolic composites with different weave filaments counts were prepared by dip-coating and hot-press techniques, and then their mechanical and wet tribological properties were investigated based on the analysis of the three-dimensional surface profiles and the pore structures. Results show that the mechanical properties (elastic modulus, flexural modulus, tensile modulus, flexural strength and tensile strength) of the 3K carbon fabric/phenolic composites (Composite A) are better than that of the 12K carbon fabric/phenolic composites (Composite B). Fractured surfaces observation suggests that the dominant tensile failure mechanism is fiber breakage for Composite A and matrix fracture for Composite B. Compared with Composite B, Composite A possesses high friction coefficient in different loads and at different sliding speeds, and the friction coefficient of Composite A is more sensitive to load and sliding speed. The wear rate of Composite B is 39% greater than that of Composite A and the wear features of worn surfaces demonstrate the excellent wear resistance for Composite A. Based on the observation of worn surface, the wear mechanisms are presented.

  5. Present State of the Art of Composite Fabric Forming: Geometrical and Mechanical Approaches

    Directory of Open Access Journals (Sweden)

    Abel Cherouat

    2009-11-01

    Full Text Available Continuous fibre reinforced composites are now firmly established engineering materials for the manufacture of components in the automotive and aerospace industries. In this respect, composite fabrics provide flexibility in the design manufacture. The ability to define the ply shapes and material orientation has allowed engineers to optimize the composite properties of the parts. The formulation of new numerical models for the simulation of the composite forming processes must allow for reduction in the delay in manufacturing and an optimization of costs in an integrated design approach. We propose two approaches to simulate the deformation of woven fabrics: geometrical and mechanical approaches.

  6. STUDY AND FABRICATION OF SOYBEAN- KEVLAR HYBRID COMPOSITE MATERIAL

    OpenAIRE

    Dilip M R*, Dr. B R Narendra Babu

    2016-01-01

    The prerequisite for most outstanding and normal composite materials to be delivered or recognized, having eco-pleasing ascribes and have ability to acclimate to trademark changes happening on regular calendar, has passed on individuals to find new sources and variety of composite materials to be made. At the present age, trademark fiber composites having near properties, from renewable normal resources expect a vital part in course of action of composite material when diverged from man-made ...

  7. Fabrication of Aligned-Carbon-Nanotube-Composite Paper with High and Anisotropic Conductivity

    OpenAIRE

    Yuki Fujitsuka; Takahide Oya

    2012-01-01

    A functional carbon-nanotube (CNT)-composite paper is described in which the CNTs are aligned. This “aligned-CNT composite paper” is a flexible composite material that has CNT functionality (e.g., electrical conductivity) despite being a paper. An advanced fabrication method was developed to overcome the problem of previous CNT-composite papers, that is, reduced conductivity due to random CNT alignment. Aligning the CNTs by using an alternating current (AC) field was hypothesized to increase ...

  8. In-situ SEM and Stereomicroscope Study Delamination Evolution of Glass Fabric Reinforced Polycarbonate Composite

    Institute of Scientific and Technical Information of China (English)

    WANG Jun-bo; LI Ying-ming; XUE Ji-wen; SUN Yong-qi; ZHENG Shui-rong; SUN Man-lin

    2002-01-01

    The main objective of this study is to investigate the dynamic processes of the interlaminar fracture of the glass woven fabric reinforced polycarbonate composites through in- situ observation of specimen under mode I loading by SEM and stereomicroscope. The results show that the evolution processes of interlaminar damage consist of micro-crack initiation, growth and coalescence and advance forward of the main crack tip. The mode of crack propagation in fabric composite observed here seem to be the propagation along interface, interface change and fabric separation.

  9. Mechanical Properties Of 3D-Structure Composites Based On Warp-Knitted Spacer Fabrics

    Directory of Open Access Journals (Sweden)

    Chen Si

    2015-06-01

    Full Text Available In this paper, the mechanical properties (compression and impact behaviours of three-dimension structure (3D-structure composites based on warp-knitted spacer fabrics have been thoroughly investigated. In order to discuss the effect of fabric structural parameters on the mechanical performance of composites, six different types of warp-knitted spacer fabrics having different structural parameters (such as outer layer structure, diameter of spacer yarn, spacer yarn inclination angle and thickness were involved for comparison study. The 3D-structure composites were fabricated based on a flexible polyurethane foam. The produced composites were characterised for compression and impact properties. The findings obtained indicate that the fabric structural parameters have strong influence on the compression and impact responses of 3D-structure composites. Additionally, the impact test carried out on the 3D-structure composites shows that the impact loads do not affect the integrity of composite structure. All the results reveal that the product exhibits promising mechanical performance and its service life can be sustained.

  10. Structures and properties of the polyacrylonitrile fabric coated with ZnO-Ag composites

    Energy Technology Data Exchange (ETDEWEB)

    Shao Dongfeng [Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122 (China); Changzhou Key Laboratory of New Textile Material, Changzhou 213164 (China); Changzhou Textile Garment Institute, Changzhou 213164 (China); Gao Dawei [Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122 (China); Wei Qufu, E-mail: qfwei@jiangnan.edu.cn [Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122 (China); Zhu Hong; Tao Lizhen [Changzhou Key Laboratory of New Textile Material, Changzhou 213164 (China); Changzhou Textile Garment Institute, Changzhou 213164 (China); Ge Mingqiao [Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122 (China)

    2010-12-01

    The polyacrylonitrile (PAN) fabric coated with ZnO-Ag composite was achieved by hydrothermal synthesis techniques and photochemical method. The PAN fabrics coated with ZnO-Ag composite were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), UV-vis spectrophotometer and fabric induced static tester, respectively. The SEM images revealed the formation of the coating aggregates on the fiber surface. The FT-IR spectra and XRD patterns revealed the chemical structures of the coatings on the PAN fabrics. The results of UV-vis test showed that there was an obvious increase in ultraviolet resistant properties after coating. The antistatic properties results revealed the improvement in the antistatic performance of coated fabrics, attributed to the superior electrical and optical properties of ZnO and Ag.

  11. Comfort and Functional Properties of Far-Infrared/Anion-Releasing Warp-Knitted Elastic Composite Fabrics Using Bamboo Charcoal, Copper, and Phase Change Materials

    Directory of Open Access Journals (Sweden)

    Ting-Ting Li

    2016-02-01

    Full Text Available Elastic warp-knitted composite fabrics with far-infrared emissivity and an anion-releasing property were prepared using bamboo charcoal (BC, copper (Cu, and phase-change material (PCM. The functional composite fabric, which was composed of self-made complex yarns with various twisting degrees and material composition, were created using a rotor twister and ring-spinning technique. The fabric structure was diversified by the feeding modes of weft yarn into a crochet-knitting machine. The twist number of complex yarns was optimized by tensile tenacity, twist contraction, and hairiness, and analysis showed that twisting at 12 twists per inch produced the highest tensile tenacity and appropriate twist contraction and hairiness. Comfort evaluation showed that the elastic composite fabrics with BC weft yarns exhibited higher water–vapor transmission rate and air permeability, reaching 876 g/m2∙ day and 73.2 cm3/s/cm2, respectively. Three structures of composite fabric with various weft yarns had >0.85 ε far-infrared emissivity and 350–420 counts/cm3 anion amount. The prepared elastic warp-knitted fabrics can provide a comfortable, dry, and breathable environment to the wearer and can thus be applied as health-care textiles in the future.

  12. Review of titanate coupling agents and their application for dental composite fabrication.

    Science.gov (United States)

    Elshereksi, Nidal Wanis; Ghazali, Mariyam; Muchtar, Andanastuti; Azhari, Che Husna

    2017-09-26

    Silane is a dominant coupler that is widely used in dentistry to promote adhesion among the components of dental composites. Silica-based fillers can be easily silanized because of their similarly ordered structure. However, silane is hydrolytically degraded in the aqueous oral environment and inefficiently bonds to non-silica fillers. Thus, the development of hydrolytically stable dental composites is an important objective in the research on dental materials. Titanate coupling agents (TCAs) exhibit satisfactory interfacial bonding, enhanced homogeneous filler dispersion, and improved mechanical properties of the composites. Titanates also provide superior hydrolytic stability in wet environments, which should be considered in fabricating dental composites. The addition of a small amount of titanates can improve the resistance of the composites to moisture. This paper reviews the effects of the instability of silanes in moisture on the performance of dental composites and presents TCAs as alternative couplers to silanes for fabricating dental composites.

  13. Fabrication of nanocrystalline surface composite layer on Cu plate under ball collisions.

    Science.gov (United States)

    Romankov, S; Park, Y C; Yoon, J M

    2014-10-01

    It was demonstrated that the severe plastic deformation of a surface induced by repeated ball collisions can be effectively used for fabrication of the nanocrystalline surface composite layers. The Cu disk was fixed at the top of a vibration chamber and ball treated. Al, Zr, Ni, Co and Fe were introduced into a Cu plate as contaminants from the grinding media one after the other by 15-min ball treatment. The composite structure was formed as a result of mechanical intermixing of the components. The particle size in as-fabricated layer ranged from 2 nm to 20 nm, with average values of about 7 nm. As-fabricated layer contained non-equilibrium multicomponent solid solution based on FCC Cu crystal structure, Zr-based phase, nanosized steel debris and amorphous phase. The hardness of the as-fabricated composite was almost ten times that of the initial Cu plate.

  14. Design and Fabrication of E-Glass /carbon/graphite epoxy hybrid composite leaf spring

    Science.gov (United States)

    Gopalakrishnan, T.; Raja, M.; Jothi Prakash, V. M.; Gnanavel, C.

    2017-03-01

    The Automobile Industry has shown increase interest for replacement of steel leaf spring with that of composite leaf spring. Substituting composite materials for conventional metallic materials has many advantages because of higher specific stiffness, strength and fatigue resistance etc. This work deals with the replacement of conventional steel leaf spring with a hybrid Composite leaf spring using E -Glass/Carbon/Graphite/Epoxy. The hybrid composite is obtained by introducing more than one fiber in the reinforcement phase. The hybrid composite is fabricated by the vacuum bag technique. The result shows that introduction of carbon and graphite fiber in the reinforcement phase increases the stiffness of the composite.

  15. Chairside fabricated fiber-reinforced composite fixed partial denture

    OpenAIRE

    Garoushi, Sufyan; Vallittu, Pekka K

    2007-01-01

    The advances in the materials and techniques for adhesive dentistry have allowed the development of non-invasive or minimally invasive approaches for replacing a missing tooth in those clinical situations when conservation of adjacent teeth is needed. Good mechanical and cosmetic/aesthetic properties of fiber-reinforced composite (FRC), with good bonding properties with composite resin cement and veneering composite are needed in FRC devices. Some recent studies have shown that adhesives of c...

  16. Fabrication and properties of graphene reinforced silicon nitride composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yaping; Li, Bin, E-mail: libin@nudt.edu.cn; Zhang, Changrui; Wang, Siqing; Liu, Kun; Yang, Bei

    2015-09-17

    Silicon nitride (Si{sub 3}N{sub 4}) ceramic composites reinforced with graphene platelets (GPLs) were prepared by hot pressed sintering and pressureless sintering respectively. Adequate intermixing of the GPLs and the ceramic powders was achieved in nmethyl-pyrrolidone (NMP) under ultrasonic vibration followed by ball-milling. The microstructure and phases of the Si{sub 3}N{sub 4} ceramic composites were investigated by Field Emission Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). The effects of GPLs on the composites' mechanical properties were analyzed. The results showed that GPLs were well dispersed in the Si{sub 3}N{sub 4} ceramic matrix. β-Si{sub 3}N{sub 4,} O′-sialon and GPLs were present in the hot-pressed composites while pressureless sintered composites contain β-Si{sub 3}N{sub 4}, Si, SiC and GPLs. Graphene has the potential to improve the mechanical properties of both the hot pressed and pressureless sintered composites. Toughening effect of GPLs on the pressureless sintered composites appeared more effective than that on the hot pressed composites. Toughening mechanisms, such as pull-out, crack bridging and crack deflection induced by GPLs were observed in the composites prepared by the two methods.

  17. Mechanical properties of waste paper/jute fabric reinforced polyester resin matrix hybrid composites.

    Science.gov (United States)

    Das, Sekhar

    2017-09-15

    Hybrid composites were prepared with jute fabric and un-shredded newspaper in polyester resin matrix. The experiment was designed 1:2 weights ratio jute and unshredded newspaper to have 42 (w/w)% fibre content hybrid composites and two different sequences jute/paper/jute and paper/jute/paper of waste newspaper and jute fabric arrangement. Reinforcing material is characterized by chemically, X-ray diffraction methods, Fourier transform infrared spectroscopy and tensile testing. The tensile, flexural and interlaminar shear strength and fracture surface morphology of composites were evaluated and compared. It was found that tensile and flexural properties of the hybrid composite are higher than that of pure paper-based composite but less than pure woven jute composite. The hybridization effect of woven jute fabric and layering pattern effect on mechanical properties of newspaper/woven jute fabric hybrid composites were studied. The test results of composites were analyzed by one-way ANOVA (α=0.05), it showed significant differences among the groups. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Studies on the mechanical properties of woven jute fabric reinforced poly(l-lactic acid composites

    Directory of Open Access Journals (Sweden)

    G.M. Arifuzzaman Khan

    2016-01-01

    Full Text Available Development of ecofriendly biocomposites to replace non-biodegradable synthetic fiber composites is the main objective of this study. To highlight the biocomposites as a perfect replacement, the plain woven jute fabric (WJF reinforced poly(l-lactic acid (PLLA composites were prepared by the hot press molding method. The influence of woven structure and direction on the mechanical properties i.e. tensile, flexural and impact properties was investigated. The average tensile strength (TS, tensile modulus (TM, flexural strength (FS, flexural modulus (FM, and impact strength (IS of untreated woven jute composite (in warp direction were improved about 103%, 211%, 95.2%, 42.4% and 85.9%, respectively and strain at maximum tensile stress for composite samples was enhanced by 11.7%. It was also found that the strengths and modulus of composites in warp direction are higher than those in weft direction. WJF composites in warp and weft directions presented superior mechanical properties than non-woven jute fabric (NWJF composites. Chemical treatment of jute fabric through benzoylation showed a positive effect on the properties of composites. Morphological studies by SEM demonstrated that better adhesion between the treated fabric and PLLA was achieved.

  19. Fabrication process scale-up and optimization for a boron-aluminum composite radiator

    Science.gov (United States)

    Okelly, K. P.

    1973-01-01

    Design approaches to a practical utilization of a boron-aluminum radiator for the space shuttle orbiter are presented. The program includes studies of laboratory composite material processes to determine the feasibility of a structural and functional composite radiator panel, and to estimate the cost of its fabrication. The objective is the incorporation of boron-aluminum modulator radiator on the space shuttle.

  20. Fabrication of Ceramic Composites by Directed Metal Oxidation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xi-ya; TAN Yue-hua

    2004-01-01

    To explain the growth mechanism of Al2O3/Al Lanxide composites, the dynamics of the directedoxidation of Al-Mg-Si alloys are analyzed. The experimental methods to produce Lanxide composites by directedoxidation of metal melts at high temperatures are presented. The effect of the processing factors on the microstruc-tures and properties of Al2O3/Al composites and enforced Al2O3/Al composites is also analyzed. Compared withsintering ceramic composites, the advantages of Lanxide process and Lanxide materials are as following: it is a nearnet shaped process; the process is very simple; the microstructures and properties of Lanxide materials can be adjust-ed; and this process can be used to infiltrate ceramic fiber or particle preforms .

  1. Feasibility and Manufacturing Considerations of Hemp Textile Fabric Utilized in Pre-Impregnated Composites

    Science.gov (United States)

    Osusky, Gregory

    This study investigates the fabrication and mechanical properties of semicontinuous, hemp fiber reinforced thermoset composites. This research determines if off-the-shelf refined woven hemp fabric is suitable as composite reinforcement using resin pre-impregnated method. Industrial hemp was chosen for its low cost, low resource input as a crop, supply chain from raw product to refined textile and biodegradability potential. Detail is placed on specimen fabrication considerations. Lab testing of tension and compression is conducted and optimization considerations are examined. The resulting composite is limited in mechanical properties as tested. This research shows it is possible to use woven hemp reinforcement in pre-impregnated processed composites, but optimization in mechanical properties is required to make the process commercially practical outside niche markets.

  2. Fabrication aspects of PLA-CaP/PLGA-CaP composites for orthopedic applications: a review.

    Science.gov (United States)

    Zhou, Huan; Lawrence, Joseph G; Bhaduri, Sarit B

    2012-07-01

    For several decades, composites made of polylactic acid-calcium phosphates (PLA-CaP) and polylactic acid-co-glycolic acid-calcium phosphates (PLGA-CaP) have seen widespread uses in orthopedic applications. This paper reviews the fabrication aspects of these composites, following the ubiquitous materials science approach by studying "processing-structure-property" correlations. Various fabrication processes such as microencapsulation, phase separation, electrospinning, supercritical gas foaming, etc., are reviewed, with specific examples of their applications in fabricating these composites. The effect of the incorporation of CaP materials on the mechanical and biological performance of PLA/PLGA is addressed. In addition, this paper describes the state of the art on challenges and innovations concerning CaP dispersion, incorporation of biomolecules/stem cells and long-term degradation of the composites.

  3. Nondestructive Characterization of As-Fabricated Composite Ceramic Panels

    Science.gov (United States)

    Green, W. H.; Brennan, R. E.

    2011-06-01

    Decreasing the weight of protective systems, while minimizing the decrease in ballistic performance, is an ongoing goal of the Army. Ceramic materials are currently combined with other materials in these types of structures in order to decrease weight without losing ballistic performance. This includes structures in which the ceramic material is confined in some way and in which the ceramic material is completely encapsulated. Confinement or encapsulation of ceramic material within a structure generally adds complexity and cost. Relatively simple panel specimens fabricated with ceramic tiles on aluminum backings and side confinement using steel were evaluated using nondestructive methods, including x-ray computed tomography and ultrasonic testing. The nondestructive evaluation results will be discussed and compared, including the detectability and mapping of fabrication features.

  4. Fabrication of mesoporous silica/polymer composites through solvent evaporation process and investigation of their excellent low thermal expansion property.

    Science.gov (United States)

    Suzuki, Norihiro; Kiba, Shosuke; Yamauchi, Yusuke

    2011-03-21

    We fabricate mesoporous silica/epoxy polymer composites through a solvent evaporation process. The easy penetration of the epoxy polymers into mesopores is achieved by using a diluted polymer solution including a volatile organic solvent. After the complete solvent evaporation, around 90% of the mesopores are estimated to be filled with the epoxy polymer chains. Here we carefully investigate the thermal expansion behavior of the obtained mesoporous silica/polymer composites. Thermal mechanical analysis (TMA) charts revealed that coefficient of linear thermal expansion (CTE) gradually decreases, as the amount of the doped mesoporous silica increases. Compared with spherical silica particle without mesopores, mesoporous silica particles show a greater effect on lowering the CTE values. Interestingly, it is found that the CTE values are proportionally decreased with the decrease of the total amount of the polymers outside the mesopores. These data demonstrate that polymers embedded inside the mesopores become thermally stable, and do not greatly contribute to the thermal expansion behavior of the composites.

  5. The Effect of Pre-Tension on Deformation Behaviour of Natural Fabric Reinforced Composite

    Directory of Open Access Journals (Sweden)

    Paulė BEKAMPIENĖ

    2011-03-01

    Full Text Available In the fiber-reinforced composites industry together with the promotion of environmental friendly production, synthetic materials are attempted to be replaced by renewable, biodegradable and recyclable materials. The most important challenge is to improve strength and durability of these materials. Matrix that supports the fiber-reinforcement in composite generally is brittle and deformation causes fragmentation of the matrix. Pre-tension of reinforcement is a well-known method to increase tensile strength of woven material. The current study develops the idea to use pre-tension of woven fabric in order to improve quality and strength properties of the obtained composite. Natural (cotton fiber and synthetic (glass fiber woven fabrics were investigated. The pressure forming operation was carried out in order to study clamping imposed strain variation across the surface of woven fabric. The uniaxial tension test of single-layer composite specimens with and without pre-tension was performed to study the effect of pre-tension on strength properties of composite. The results have shown that pre-tension imposed by clamping is an effective method to improve the quality of shaped composite parts (more smoothed contour is obtained and to increase the strength properties of composite reinforced by woven natural fabric. After pre-tension the tensile strength at break increased in 12 % in warp direction, in 58 % in weft direction and in 39 % in bias direction.http://dx.doi.org/10.5755/j01.ms.17.1.250

  6. Influence of weave structures on the tribological properties of hybrid Kevlar/PTFE fabric composites

    Science.gov (United States)

    Gu, Dapeng; Yang, Yulin; Qi, Xiaowen; Deng, Wei; Shi, Lei

    2012-09-01

    The existing research of the woven fabric self-lubricating liner mainly focus on the tribological performance improvements and the service life raised by changing different fiber type combinations, adding additive modification, and performing fiber surface modification. As fabric composites, the weave structures play an important role in the mechanical and tribological performances of the liners. However, hardly any literature is available on the friction and wear behavior of such composites with different weave structures. In this paper, three weave structures (plain, twill 1/3 and satin 8/5) of hybrid Kevlar/PTFE fabric composites are selected and pin-on-flat linear reciprocating wear studies are done on a CETR tester under different pressures and different frequencies. The relationship between the tensile strength and the wear performance are studied. The morphologies of the worn surfaces under the typical test conditions are analyzed by means of scanning electron microscopy (SEM). The analysis results show that at 10 MPa, satin 8/5 performs the best in friction-reduction and antiwear performance, and plain is the worst. At 30 MPa, however, the antiwear performance is reversed and satin 8/5 does not even complete the 2 h wear test at 16 Hz. There is no clear evidence proving that the tensile strength has an influence on the wear performance. So the different tribological performance of the three weave structures of fabric composites may be attributed to the different PTFE proportions in the fabric surface and the different wear mechanisms. The fabric composites are divided into three regions: the lubrication region, the reinforced region and the bonding region. The major mechanisms are fatigue wear and the shear effects of the friction force in the lubrication region. In the reinforced region fiber-matrix de-bonding and fiber breakage are involved. The proposed research proposes a regional wear model and further indicates the wear process and the wear mechanism

  7. Fabrication and aging behaviour of in-situ aluminum composites

    Energy Technology Data Exchange (ETDEWEB)

    Erarslan, Yaman [Yildiz Technical Univ., Instanbul (Turkey). Metallurgical and Materials Engineering Dept.

    2011-07-01

    Commonly applied in situ procedures with the aim of producing alumina particles or whiskers include the reactions between a metal oxide and aluminum. The metal, reduced with the alumina formation reaction, afterwards generally reacts with Al and transforms into an intermetallic form which will act as a reinforcing member in the composition of the matrix. In this study, by adding CuO powder in ratios of 5, 10 and 15 wt.-% composite billets were produced by the in situ procedure of stir casting. XRD patterns and microstructures of the produced Al-Al{sub 2}O{sub 3} composites were examined by using optical and electron microscopy (SEM). Following the homogenization procedure on the composite material, hot deformation and thermal aging procedures were applied. The changes in the mechanical properties were compared with commercially pure Aluminum. (orig.)

  8. Chairside fabricated fiber-reinforced composite fixed partial denture

    Directory of Open Access Journals (Sweden)

    Sufyan Garoushi

    2007-01-01

    Full Text Available The advances in the materials and techniques for adhesive dentistry have allowed the development of non-invasive or minimally invasive approaches for replacing a missing tooth in those clinical situations when conservation of adjacent teeth is needed. Good mechanical and cosmetic/aesthetic properties of fiber-reinforced composite (FRC, with good bonding properties with composite resin cement and veneering composite are needed in FRC devices. Some recent studies have shown that adhesives of composite resins and luting cements allow diffusion of the adhesives to the FRC framework of the bridges. By this so-called interdiffusion bonding is formed [1]. FRC bridges can be made in dental laboratories or chairside. This article describes a clinical case of chairside (directly made FRC Bridge, which was used according to the principles of minimal invasive approach. Treatment was performed by Professor Vallittu from the University of Turku, Finland.

  9. Aspects of fabrication aluminium matrix heterophase composites by suspension method

    Science.gov (United States)

    Dolata, A. J.; Dyzia, M.

    2012-05-01

    Composites with an aluminium alloy matrix (AlMMC) exhibit several advantageous properties such as good strength, stiffness, low density, resistance and dimensional stability to elevated temperatures, good thermal expansion coefficient and particularly high resistance to friction wear. Therefore such composites are more and more used in modern engineering constructions. Composites reinforced with hard ceramic particles (Al2O3, SiC) are gradually being implemented into production in automotive or aircraft industries. Another application of AlMMC is in the electronics industry, where the dimensional stability and capacity to absorb and remove heat is used in radiators. However the main problems are still: a reduction of production costs, developing methods of composite material tests and final product quality assessment, standardisation, development of recycling and mechanical processing methods. AlMMC production technologies, based on liquid-phase methods, and the shaping of products by casting methods, belong to the cheapest production methods. Application of a suspension method for the production of composites with heterophase reinforcement may turn out to be a new material and technological solution. The article presents the material and technological aspects of the transfer procedures for the production of composite suspensions from laboratory scale to a semi-industrial scale.

  10. Fabrication and Structure Characterization of Alumina-Aluminum Interpenetrating Phase Composites

    Science.gov (United States)

    Dolata, Anna J.

    2016-08-01

    Alumina-Aluminum composites with interpenetrating networks structure belong to advanced materials with potentially better properties when compared with composites reinforced by particles or fibers. The paper presents the experimental results of fabrication and structure characterization of Al matrix composites locally reinforced via Al2O3 ceramic foam. The composites were obtained using centrifugal infiltration of porous ceramics by liquid aluminum alloy. Both scanning electron microscopy (SEM + EDS) and x-ray tomography were used to determine the structure of foams and composites especially in reinforced areas. The quality of castings, degree of pore filling in ceramic foams by Al alloy, and microstructure in area of interface were assessed.

  11. Surface protection of graphite fabric/PMR-15 composites subjected to thermal oxidation

    Science.gov (United States)

    Hanson, M. P.; Serafini, T. T.

    1985-01-01

    Graphite fabric/PMR-15 laminates develop matrix cracks during long-term exposure in air at temperatures in the range of 500 to 600 F. This study was performed to demonstrate the effectiveness of incorporating graphite mat surface plies as a means of reducing the developing of matrix cracks. Celion 3000 graphite fabric/PMR-15 laminates were fabricated with graphite or graphite mat/325-mesh boron powder surface plies. Laminates without mat surface plies were also fabricated for control purposes. Composite flexural strength, flexural modulus, and interlaminar shear strength were determined at 288 C before and after long-term exposure (up to 1500 hr) in air at 316 C. The results of this study showed that the incorporation of graphite mat surface plies reduces matrix cracking and improves the elevated temperature mechanical property retention characteristics of the composites.

  12. Polyester fabric coated with Ag/ZnO composite film by magnetron sputtering

    Science.gov (United States)

    Yuan, Xiaohong; Xu, Wenzheng; Huang, Fenglin; Chen, Dongsheng; Wei, Qufu

    2016-12-01

    Ag/ZnO composite film was successfully deposited on polyester fabric by using direct current (DC) magnetron sputtering and radio frequency (RF) magnetron reaction sputtering techniques with pure silver (Ag) and zinc (Zn) targets. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) were used to examine the deposited film on the fabric. It was found that the zinc film coated on Ag film before RF reactive sputtering could protect the silver film from oxidation. Anti-ultraviolet property and antistatic property of the coated samples using different magnetron sputtering methods were also investigated. The experimental results showed that Ag film was oxidized into in Ag2O film in high vacuum oxygen environment. The deposition of Zn film on the surface of the fabric coated with Ag film before RF reactive sputtering, could successfully obtained Ag/ZnO composite film, and also generated structural color on the polyester fabric.

  13. Fatigue damage propagation in unidirectional glass fibre reinforced composites made of a non-crimp fabric

    DEFF Research Database (Denmark)

    Hansen, Jens Zangenberg; Brøndsted, Povl; Gillespie Jr., John W.

    2014-01-01

    Damage progression in unidirectional glass fibre reinforced composites manufactured of a non-crimp fabric subjected to tension-tension fatigue is investigated, and a quantitative explanation is given for the experimentally observed stiffness degradation. The underlying damage-mechanisms are exami......Damage progression in unidirectional glass fibre reinforced composites manufactured of a non-crimp fabric subjected to tension-tension fatigue is investigated, and a quantitative explanation is given for the experimentally observed stiffness degradation. The underlying damage...... fatigue, gives rise to axial fibre fractures and a loss of stiffness, eventually leading to final failure. The uniqueness of the present work is identification of the mechanisms associated with tension fatigue failure of unidirectional non-crimp fabrics used for wind turbine blades. The observed damage...... mechanisms need further attention and understanding in order to improve the fatigue life-time of unidirectional glass fibre reinforced non-crimp fabrics....

  14. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; McLaughlin, J.C. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.; Probst, K.J.; Anderson, T.J. [Univ. of Florida, Gainesville, FL (United States). Dept. of Chemical Engineering; Starr, T.L. [Georgia Inst. of Tech., Atlanta, GA (United States). Dept. of Materials Science and Engineering

    1997-12-01

    Silicon carbide-based heat exchanger tubes are of interest to energy production and conversion systems due to their excellent high temperature properties. Fiber-reinforced SiC is of particular importance for these applications since it is substantially tougher than monolithic SiC, and therefore more damage and thermal shock tolerant. This paper reviews a program to develop a scaled-up system for the chemical vapor infiltration of tubular shapes of fiber-reinforced SiC. The efforts include producing a unique furnace design, extensive process and system modeling, and experimental efforts to demonstrate tube fabrication.

  15. Fabrication and measurement of a flexoelectric micro-pyramid composite

    Directory of Open Access Journals (Sweden)

    Wenbin Huang

    2014-12-01

    Full Text Available A fabrication method by combining precision mechanical dicing and wet etching was developed to prepare micro-pyramid structures based on (Ba0.67Sr0.33TiO3 ceramics. The effective piezoelectric properties of flexoelectric pyramid structures in ten micrometers scale were investigated and measured through converse flexoelectric effect. The scaling effect of the flexoelectric response was demonstrated as the structure size shrinks down. The results do suggest the great potential of flexoelectric micro pyramids as an alternative to lead-free piezoelectric material.

  16. Axiomatic Design and Fabrication of Composite Structures - Applications in Robots, Machine Tools, and Automobiles

    Science.gov (United States)

    Lee, Dai Gil; Suh, Nam Pyo

    2005-11-01

    The idea that materials can be designed to satisfy specific performance requirements is relatively new. With high-performance composites, however, the entire process of designing and fabricating a part can be worked out before manufacturing. The purpose of this book is to present an integrated approach to the design and manufacturing of products from advanced composites. It shows how the basic behavior of composites and their constitutive relationships can be used during the design stage, which minimizes the complexity of manufacturing composite parts and reduces the repetitive "design-build-test" cycle. Designing it right the first time is going to determine the competitiveness of a company, the reliability of the part, the robustness of fabrication processes, and ultimately, the cost and development time of composite parts. Most of all, it should expand the use of advanced composite parts in fields that use composites only to a limited extent at this time. To achieve these goals, this book presents the design and fabrication of novel composite parts made for machine tools and other applications like robots and automobiles. This book is suitable as a textbook for graduate courses in the design and fabrication of composites. It will also be of interest to practicing engineers learning about composites and axiomatic design. A CD-ROM is included in every copy of the book, containing Axiomatic CLPT software. This program, developed by the authors, will assist readers in calculating material properties from the microstructure of the composite. This book is part of the Oxford Series on Advanced Manufacturing.

  17. Fabrication of a nanostructured gold-polymer composite material.

    Science.gov (United States)

    Mallick, K; Witcomb, M; Scurrell, M

    2006-07-01

    A facile synthesis route is described for the preparation of a poly-(o-aminophenol)-gold nanoparticle composite material by polymerization of o-aminophenol (AP) monomer using HAuCl(4) as the oxidant. The synthesis was carried out in a methanol medium so that it could serve a dual solvent role, a solvent for both the AP and the water solution of HAuCl(4). It was found that oxidative polymerization of AP leads to the formation of poly-AP with a diameter of 50+/-10nm, while the reduction of AuCl(4) (-) results in the formation of gold nanoparticles ( approximately 2nm). The gold nanoparticles were uniformly dispersed and highly stabilized throughout the macromolecular chain that formed a uniform metal-polymer composite material. The resultant composite material was characterized by means of different techniques, such as UV-vis, IR and Raman spectroscopy, which offered the information about the chemical structure of polymer, whereas electron microscopy images provided information regarding the morphology of the composite material and the distribution of the metal particles in the composite material.

  18. Fabrication of CTP/HAp novel gradient composite bioceramics

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Calcium-titanium-phosphate(CaTi4(PO4)6, CTP)/hydroxyapatite(HAp) is a kind of novel gradient composite bioceramics,which has excellent biocompatibility and bioactivity. CTP ceramic film was synthesized one-step on the surface of titanium using micro-arc oxidation(MAO). The CTP/HAp composite bioceramics were prepared by soaking CTP film in HAp inducing solution for several days. XRD, SEM and EDX were used to characterize the bio-ceramic films phase and composition, morphology and component. The influence of electrolyte molar ratio of Ca to P and the current density to the synthesis of film was studied, and the optimized value of parameters above were 1/6 and 15A/dm2. The parameters of HAp inducing solution, such as component and pH value were also studied and the best pH value which is adjusted by NaOH is 6.4.

  19. Fabrication Of Carbon-Boron Reinforced Dry Polymer Matrix Composite Tape

    Science.gov (United States)

    Belvin, Harry L.; Cano, Roberto J.; Treasure, Monte; Shahood, Thomas W.

    1999-01-01

    Future generation aerospace vehicles will require specialized hybrid material forms for component structure fabrication. For this reason, high temperature composite prepregs in both dry and wet forms are being developed at NASA Langley Research Center (LaRC). In an attempt to improve compressive properties of carbon fiber reinforced composites, a hybrid carbon-boron tape was developed and used to fabricate composite laminates which were subsequently cut into flexural and compression specimens and tested. The hybrid material, given the designation HYCARB, was fabricated by modifying a previously developed process for the manufacture of dry polymer matrix composite (PMC) tape at LaRC. In this work, boron fibers were processed with IM7/LaRC(TradeMark)IAX poly(amide acid) solution-coated prepreg to form a dry hybrid tape for Automated Tow Placement (ATP). Boron fibers were encapsulated between two (2) layers of reduced volatile, low fiber areal weight poly(amide acid) solution-coated prepreg. The hybrid prepreg was then fully imidized and consolidated into a dry tape suitable for ATP. The fabrication of a hybrid boron material form for tow placement aids in the reduction of the overall manufacturing cost of boron reinforced composites, while realizing the improved compression strengths. Composite specimens were press-molded from the hybrid material and exhibited excellent mechanical properties.

  20. Facile Method to Fabricate Highly Thermally Conductive Graphite/PP Composite with Network Structures.

    Science.gov (United States)

    Feng, Changping; Ni, Haiying; Chen, Jun; Yang, Wei

    2016-08-03

    Thermally conductive polymer composites have aroused significant academic and industrial interest for several decades. Herein, we report a novel fabrication method of graphite/polypropylene (PP) composites with high thermal conductivity in which graphite flakes construct a continuous thermally conductive network. The thermal conductivity coefficient of the graphite/PP composites is markedly improved to be 5.4 W/mK at a graphite loading of 21.2 vol %. Such a great improvement of the thermal conductivity is ascribed to the occurrence of orientations of crystalline graphite flakes with large particles around PP resin particles and the formation of a perfect thermally conductive network. The model of Hashin-Shtrikman (HS) is adopted to interpret the outstanding thermally conductive property of the graphite/PP composites. This work provides a guideline for the easy fabrication of thermally conductive composites with network structures.

  1. Fabrication of a Polyamide/Polysulfone Hollow Fiber Composite Membrane

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-feng; LIANG Chang-liang; DU Qi-yun; XIAO Chang-fa; YU Hong-liang

    2005-01-01

    With microporous polysulfone hollow fiber as the substrate,a polypiperazine amide nanofiltration composite membrane was prepared by interfacial polymerization in trimesoyl hexane solution as oil phase and piperazine aqueous solution as water phase. The conditions of the preparation, such as concentrations of monomer solutions, reaction time and temperature, annealing treatment, etc., were investigated.The hollow fiber composite herewith obtained showed high performance with water fluxes over 40 L · m-2 · hr-1 and MgSO4 rejection of 93% under a pressure of 0. 40 MPa.

  2. Fabrication of ZrC–SiC composites using zirconium salt as raw materials

    Directory of Open Access Journals (Sweden)

    Yan Ma

    2014-12-01

    Full Text Available A ZrC–SiC matrix was fabricated by means of in situ reaction method, using zirconium salt, silicon powder and phenolic resin as raw materials. The performances of zirconium salt determined the possibility of ZrC–SiC matrix fabricated using them. The reactions were completed at a relatively low temperature (∼1500 °C. With this concept to produce a ZrC–SiC matrix costs can be reduced. Three-dimensional needle Cf/ZrC–SiC composites were successfully fabricated via the polymer infiltration and pyrolysis (PIP process using zirconium salt, silicon powder and phenolic resin as raw materials.

  3. Mechanical behaviour study on SBR/EVA composite for FDM feedstock fabrication

    Science.gov (United States)

    Raveverma, P.; Ibrahim, M.; Sa'ude, N.; Yarwindran, M.; Nasharuddin, M.

    2017-04-01

    This paper presents the research development of a new SBR/EVA composite flexible feedstock material by the injection moulding machine. The material consists of poly (ethylene-co-vinyl acetate) in styrene butadiene rubber cross-linked by Dicumyl Peroxide. In this study, the mechanical behaviour of injection moulded SBR/EVA composite with different blend ratio investigated experimentally. The formulations of blend ratio with several combinations of a new SBR/EVA flexible feedstock was done by volume percentage (vol. %). Based on the result obtained from the mechanical testing done which is tensile and hardness the composite of SBR/EVA has the high potency to be fabricated as the flexible filament feedstock. The ratio of 80:20 which as an average hardness and tensile strength proved to be the suitable choice to be fabricated as the flexible filament feedstock. The study has reached its goals on the fabricating and testing a new PMC which is flexible.

  4. Fabrication of bioactive composite scaffolds by electrospinning for bone regeneration

    NARCIS (Netherlands)

    Nandakumar, Anandkumar; Fernandes, Hugo; Boer, de Jan; Moroni, Lorenzo; Habibovic, Pamela; Blitterswijk, van Clemens A.

    2010-01-01

    Electrospun scaffolds are widely used for various biomedical applications. In this study, we prepared electrospun bioactive composite scaffolds combining hydroxyapatite, collagen (Col) and a synthetic polymer—PolyActive™—to mimic naturally occurring extracellular matrix for in situ bone regeneration

  5. Processing and Characterization of Peti Composites Fabricated by High Temperature Vartm (Section)

    Science.gov (United States)

    Ghose, Sayata; Cano, Roberto J.; Watson, Kent A.; Britton, Sean M.; Jensen, Brian J.; Connell, John W.; Smith, Joseph G., Jr.; Loos, Alfred C.; Heider, Dirk

    2011-01-01

    The use of composites as primary structures on aerospace vehicles has increased dramatically over the past decade, but so have the production costs associated with their fabrication. For certain composites, high temperature vacuum assisted resin transfer molding (HT-VARTM) can offer reduced fabrication costs compared to conventional autoclave techniques. The process has been successfully used with phenylethynyl terminated imide (PETI) resins developed by NASA Langley Research Center (LaRC). In the current study, three PETI resins have been used to make test specimens using HT-VARTM. Based on previous work at NASA LaRC, larger panels with a quasi-isotropic lay-up were fabricated. The resultant composite specimens exhibited void contents of 3% by volume depending on the type of carbon fabric preform used. Mechanical properties of the panels were determined at both room and elevated temperatures. Fabric permeability characterizations and limited process modeling efforts were carried out to determine infusion times and composite panel size limitations. In addition, new PETI based resins were synthesized specifically for HT-VARTM.

  6. Characterization of Three-Dimensional Printed Composite Scaffolds Prepared with Different Fabrication Methods

    Directory of Open Access Journals (Sweden)

    Szlązak K.

    2016-06-01

    Full Text Available An optimal method for composites preparation as an input to rapid prototyping fabrication of scaffolds with potential application in osteochondral tissue engineering is still needed. Scaffolds in tissue engineering applications play a role of constructs providing appropriate mechanical support with defined porosity to assist regeneration of tissue. The aim of the presented study was to analyze the influence of composite fabrication methods on scaffolds mechanical properties. The evaluation was performed on polycaprolactone (PCL with 5 wt% beta-tricalcium phosphate (TCP scaffolds fabricated using fused deposition modeling (FDM. Three different methods of PCL-TCP composite preparation: solution casting, particles milling, extrusion and injection were used to provide material for scaffold fabrication. The obtained scaffolds were investigated by means of scanning electron microscope, x-ray micro computed tomography, thermal gravimetric analysis and static material testing machine. All of the scaffolds had the same geometry (cylinder, 4×6 mm and fiber orientation (0/60/120°. There were some differences in the TCP distribution and formation of the ceramic agglomerates in the scaffolds. They depended on fabrication method. The use of composites prepared by solution casting method resulted in scaffolds with the best combination of compressive strength (5.7±0.2 MPa and porosity (48.5±2.7 %, both within the range of trabecular bone.

  7. Fabrication and characterization of nanoclay modified PMR type polyimide composites reinforced with 3D woven basalt fabric

    Science.gov (United States)

    Xie, Jianfei; Qiu, Yiping

    2009-07-01

    Nanoclay modified PMR type polyimide composites were prepared from 3D orthogonal woven basalt fiber performs and nanoclay modified polyimide matrix resin, which derived from methylene dianiline (MDA), dimethyl ester of 3,3',4,4'- oxydiphthalic acid (ODPE), monomethyl ester of cis-5-norbornene-endo-2,3-dicarboxylic acid (NE) and nanoclay. The Na+-montmorillonite was organically treated using a 1:1 molar ratio mixture of dodecylamine (C12) and MDA. The rheological properties of neat B-stage PMR polyimide and 2% clay modified B-stage PMR polyimide were investigated. Based on the results obtained from the rheological tests, a two step compression molding process can be established for the composites. In the first step, the 3D fabric preforms were impregnated with polyimide resin in a vacuum oven and heated up for degassing the volatiles and by-products. In the second step, composites were compressed. The internal structure of the composites was observed by a microscope. Incorporation of 2% clay showed an improvement in the Tg and stiffness of the PMR polyimide. The resulting composites exhibited high thermal stability and good mechanical properties.

  8. Flexible aerogel composite for mechanical stability and process of fabrication

    Science.gov (United States)

    Coronado, Paul R.; Poco, John F.

    1999-01-01

    A flexible aerogel and process of fabrication. An aerogel solution is mixed with fibers in a mold and allowed to gel. The gel is then processed by supercritical extraction, or by air drying, to produce a flexible aerogel formed to the shape of the mold. The flexible aerogel has excellent thermal and acoustic properties, and can be utilized in numerous applications, such as for energy absorption, insulation (temperature and acoustic), to meet the contours of aircraft shapes, and where space is limited since an inch of aerogel is a 4-5 times better insulator than an inch of fiberglass. The flexible aerogel may be of an inorganic (silica) type or an organic (carbon) type, but containing fibers, such as glass or carbon fibers.

  9. Ballistic impact behaviour of woven fabric composite: Finite element analysis and experiments

    Science.gov (United States)

    Phadnis, V. A.; Pandya, K. S.; Naik, N. K.; Roy, A.; Silberschmidt, V. V.

    2013-07-01

    A mechanical behaviour of plain-weave E-glass fabric/epoxy laminate composite plate exposed to ballistic impact is studied using a finite-element (FE) code Abaqus/Explicit. A ply-level FE model is developed, where a fabric-reinforced ply is modelled as a homogeneous orthotropic elastic material with potential to sustain progressive stiffness degradation due to fiber/matrix cracking, and plastic deformation under shear loading. The model is implemented as a VUMAT user subroutine. Ballistic experiments were carried out to validate the FE model. A parametric study for varying panel thickness is performed to compare impact resistance of the studied composite.

  10. Processing-structure-property relations in PEEK/carbon composites made from comingled fabric and prepreg

    Energy Technology Data Exchange (ETDEWEB)

    Vu-khanh, T.; Denault, J. (National Research Council of Canada, Industrial Materials Institute, Boucherville (Canada))

    1991-10-01

    The effects of the conditions of the processing of PEEK/carbon prepregs and comingled fabric on the microstructure and mechanical characteristics of the resulting composites were investigated. Results showed that, in the comingled fabric system, the fiber/matrix adhesion depends on the molding temperature, the residence time at the melt temperature, and the cooling rate. Too high molding temperature resulted in degradation of the PEEK matrix, which affected the crystallization behavior of the composites, the fiber/matrix adhesion, and the matrix properties. This effect was most important in the case of comingled systems containing sized carbon fibers. 17 refs.

  11. Fabrication of slag-glass composite with controlled porosity

    Directory of Open Access Journals (Sweden)

    Ranko Adziski

    2008-06-01

    Full Text Available The preparation and performance of porous ceramics made from waste materials were investigated. Slag from thermal electrical plant Kakanj (Bosnia and Herzegovina with defined granulations: (0.500÷0.250 mm; (0.250÷0.125 mm; (0.125÷0.063 mm; (0.063÷0.045 mm and 20/10 wt.% of the waste TV screen glass with a granulation <0.063 mm were used for obtaining slag-glass composites with controlled porosity. The one produced from the slag powder fraction (0.125÷0.063 mm and 20 wt.% TV screen glass, sintered at 950°C/2h, was considered as the optimal. This system possesses open porosity of 26.8±1.0%, and interconnected pores with the size of 250–400 μm. The values of E-modulus and bending strength of this composite were 10.6±0.6 GPa and 45.7±0.7 MPa, respectively. The coefficient of thermal expansion was 8.47·10-6/°C. The mass loss in 0.1M HCl solution after 30 days was 1.2 wt.%. The permeability and the form coefficient of the porous composite were K0=0.12 Da and C0=4.53·105 m-1, respectively. The porous composite shows great potential to be used as filters, diffusers for water aeration, dust collectors, acoustic absorbers, etc.

  12. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; Stinton, D.P. [Oak Ridge National Lab., TN (United States); Matlin, W.M.; Liaw, P.K. [Univ. of Tennessee, Knoxville, TN (United States)

    1996-08-01

    Processing equipment for the infiltration of fiber-reinforced composite tubes is being designed that incorporates improvements over the equipment used to infiltrate disks. A computer-controlled machine-man interface is being developed to allow for total control of all processing variables. Additionally, several improvements are being made to the furnace that will reduce the complexity and cost of the process. These improvements include the incorporation of free standing preforms, cast mandrels, and simpler graphite heating elements.

  13. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; Matlin, W.M.; Stinton, D.P.; Liaw, P.K.

    1996-06-01

    Processing equipment for the infiltration of fiber-reinforced composite tubes is being designed that incorporates improvements over the equipment used to infiltrate disks. A computer-controlled machine-man interface is being developed to allow for total control of all processing variables. Additionally, several improvements are being made to the furnace that will reduce the complexity and cost of the process. These improvements include the incorporation of free standing preforms, cast mandrels, and simpler graphite heating elements.

  14. TiB{sub 2} reinforced aluminum based in situ composites fabricated by stir casting

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Chen, Zongning [Laboratory of Special Processing of Raw Materials, Dalian University of Technology, Dalian 116024 (China); Mao, Feng [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Wang, Tongmin, E-mail: tmwang@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Cao, Zhiqiang, E-mail: caozq@dlut.edu.cn [Laboratory of Special Processing of Raw Materials, Dalian University of Technology, Dalian 116024 (China)

    2015-02-11

    In this study, a new technique involving mechanical stirring at the salts/aluminum interface was developed to fabricate TiB{sub 2} particulate reinforced aluminum based in situ composites with improved particle distribution. Processing parameters in terms of stirring intensity, stirring duration and stirring start time were optimized according to the microstructure and mechanical properties evaluation. The results show that, the first and last 15 min of the entire 60 min holding are of prime importance to the particle distribution of the final composites. When applying 180 rpm (revolutions per minute) stirring at the salts/aluminum interface in these two intervals, a more uniform microstructure can be achieved and the Al-4 wt% TiB{sub 2} composite thus produced exhibits superior mechanical performance. Synchrotron radiation X-ray computed tomography (SR-CT) was used to give a full-scale imaging of the particle distribution. From the SR-CT results, the in situ Al–xTiB{sub 2} composites (x=1, 4 and 7, all in wt%) fabricated by the present technique are characterized by fine and clean TiB{sub 2} particles distributed uniformly throughout the Al matrix. These composites not only have higher yield strength (σ{sub 0.2}) and ultimate tensile strength (UTS), but also exhibit superior ductility, with respect to the Al–TiB{sub 2} composites fabricated by the conventional process. The σ{sub 0.2} and UTS of the Al–7TiB{sub 2} composite in the present work, are 260% and 180% higher than those of the matrix. A combined mechanism was also presented to interpret the improvements in yield strength of the composites as influenced by their microstructures and processing history. The predicted values are in good agreement with the experimental results, strongly supporting the strengthening mechanism we proposed. Fractography reveals that the composites thus fabricated, follow ductile fracture mechanism in spite of the presence of stiff reinforcements.

  15. Fabrication and Performances of 1-3-2 Piezoelectric Ceramic/Polymer Composite

    Institute of Scientific and Technical Information of China (English)

    Likun Wang; Guang Li; Hongliang Du; Lei Qin; Shuxiang Li

    2006-01-01

    A novel 1-3-2 piezoelectric composite has been developed, which consists of piezoelectric ceramic plate and 1-3 piezoelectric composite. The composite was fabricated by dicing PZT ceramic along mutual perpendicular two directions and then filling epoxy into grooves. The piezoelectric and electromechanical properties of the novel composite were determined.The results show a coefficient d33 of 405 pC/N, a vibration displacement of 113.5 pm, an acoustic impendence of 13.3 Mraly,a bandwidth of 12 kHz and a thickness electromechanical coupling coefficient of 0.56.

  16. Evaluation of Impact Damage Tolerance in Carbon Fabric/epoxy-matrix Composites by Electrical Resistance Measurement

    Institute of Scientific and Technical Information of China (English)

    LI Zhipeng; XIE Xiaolin; HONG Zhen; LU Chao; WANG Gaochao

    2012-01-01

    Impact damage tolerance is provided in intensity design on composites.The compression intensity of impacted composites requires more than 60% of its original intensity.The influence of impact on compressive intensity and electrical resistance of carbon fabric/epoxy-matrix composites was studied in this paper.The experimental results shows that impact can cause damage in composites,degenerate compressive intensity,and increase resistance.The electrical resistance change rate was used as an evaluation indicator of impact damage tolerance of composites.Impact damage,which results from the applying process of composites,can be identified in time by electrical resistance measurement.So,the safety performance of composites can also be improved.

  17. Fabrication and Water Treatment Application of Carbon Nanotubes (CNTs)-Based Composite Membranes: A Review

    Science.gov (United States)

    Ma, Lining; Dong, Xinfa; Chen, Mingliang; Zhu, Li; Wang, Chaoxian; Yang, Fenglin; Dong, Yingchao

    2017-01-01

    Membrane separation technology is widely explored for various applications, such as water desalination and wastewater treatment, which can alleviate the global issue of fresh water scarcity. Specifically, carbon nanotubes (CNTs)-based composite membranes are increasingly of interest due to the combined merits of CNTs and membrane separation, offering enhanced membrane properties. This article first briefly discusses fabrication and growth mechanisms, characterization and functionalization techniques of CNTs, and then reviews the fabrication methods for CNTs-based composite membranes in detail. The applications of CNTs-based composite membranes in water treatment are comprehensively reviewed, including seawater or brine desalination, oil-water separation, removal of heavy metal ions and emerging pollutants as well as membrane separation coupled with assistant techniques. Furthermore, the future direction and perspective for CNTs-based composite membranes are also briefly outlined. PMID:28335452

  18. Fabrication of Gelatin-Based Electrospun Composite Fibers for Anti-Bacterial Properties and Protein Adsorption.

    Science.gov (United States)

    Gao, Ya; Wang, Yingbo; Wang, Yimin; Cui, Wenguo

    2016-10-21

    A major goal of biomimetics is the development of chemical compositions and structures that simulate the extracellular matrix. In this study, gelatin-based electrospun composite fibrous membranes were prepared by electrospinning to generate bone scaffold materials. The gelatin-based multicomponent composite fibers were fabricated using co-electrospinning, and the composite fibers of chitosan (CS), gelatin (Gel), hydroxyapatite (HA), and graphene oxide (GO) were successfully fabricated for multi-function characteristics of biomimetic scaffolds. The effect of component concentration on composite fiber morphology, antibacterial properties, and protein adsorption were investigated. Composite fibers exhibited effective antibacterial activity against Staphylococcus aureus and Escherichia coli. The study observed that the composite fibers have higher adsorption capacities of bovine serum albumin (BSA) at pH 5.32-6.00 than at pH 3.90-4.50 or 7.35. The protein adsorption on the surface of the composite fiber increased as the initial BSA concentration increased. The surface of the composite reached adsorption equilibrium at 20 min. These results have specific applications for the development of bone scaffold materials, and broad implications in the field of tissue engineering.

  19. Evaluation of electromagnetic shielding effectiveness of multi-axial fabrics and their reinforced PES composites

    Indian Academy of Sciences (India)

    RAMAZAN ERDEM

    2016-08-01

    The usage of electrical and electronic equipments has been increasing in daily life, which has a potential hazardous impact on humans and other living organisms. In this paper, multi-axial fabrics containing steel yarns and carbon filaments, and their polyester (PES) resin-reinforced composites have been prepared for electromagnetic shielding applications. The electromagnetic shielding effectiveness (EMSE) of these structures was determined by using coaxial transmission line measurement technique. There were eight different multi-axial fabrics constructed. It was observed that the amount and the orientation of carbon and stainless steel yarns influenced the EMSE performances of multi-axial fabrics and their reinforced PES composites. The structures containing both carbon filaments and stainless steel yarns exhibited better EMSE than the ones including only one type of conductive yarns or filaments. Also, the EMSE performance of multi-axial fabrics was found better than their reinforced composites. The best EMSE results were obtained for the fabric, including two layers of yarns (steel and carbon) on top of each otherin the centre with the angle of 45 and $−$45$^{\\circ}$.

  20. The Fabrication and Characterization of Piezoelectric PZT/PVDF Electrospun Nanofiber Composites

    OpenAIRE

    Ji Sun Yun; Chun Kil Park; Young Hun Jeong; Jeong Ho Cho; Jong-Hoo Paik; Sun Hong Yoon; Kyung-Ran Hwang

    2016-01-01

    Piezoelectric nanofiber composites of polyvinylidene fluoride (PVDF) polymer and PZT (Pb(Zr0.53Ti0.47)O3) ceramics were fabricated by electrospinning. The micro‐ structure of the PZT/PVDF electrospun nanofiber compo‐ sites was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The tensile properties (stress- strain curves) and electrical properties (P-E hysteresis loops) of the PZT/PVDF electrospun nanofiber composites w...

  1. Hydrofluoric acid-resistant composite window and method for its fabrication

    Science.gov (United States)

    Ostenak, C.A.; Mackay, H.A.

    1985-07-18

    A hydrofluoric acid-resistant composite window and method for its fabrication are disclosed. The composite window comprises a window having first and second sides. The first side is oriented towards an environment containing hydrofluoric acid. An adhesive is applied to the first side. A layer of transparent hydrofluoric acid-resistant material, such as Mylar, is applied to the adhesive and completely covers the first side. The adhesive is then cured.

  2. Fabrication and characterization of carbon nanotube reinforced magnesium matrix composites

    Science.gov (United States)

    Mindivan, Harun; Efe, Arife; Kosatepe, A. Hadi; Kayali, E. Sabri

    2014-11-01

    In the present investigation, Mg chips are recycled to produce Mg-6 wt.% Al reinforced with 0.5, 1, 2 and 4 wt.% nanosized CNTs by mechanical ball milling, cold pressing and subsequently hot extrusion process without sintering step. The microstructure, mechanical properties and corrosion behavior of Mg/Al without CNT (base alloy) and composites were evaluated. The distribution of CNTs was analyzed using a Scanning Electron Microscopy (SEM) equipped with Energy Dispersive Spectroscopy (EDS) analyzer and a Wavelength Dispersive X-Ray Fluorescence spectrometer (WDXRF). Microstructural analysis revealed that the CNTs on the Mg chips were present throughout the extrusion direction and the uniform distribution of CNTs at the chip surface decreased with increase in the CNT content. The results of the mechanical and corrosion test showed that small addition of CNTs (0.5 wt.%) evidently improved the hardness and corrosion resistance of the composite by comparing with the base alloy, while increase in the CNT weight fraction in the initial mixture resulted in a significant decrease of hardness, compression strength, wear rate and corrosion resistance.

  3. Fabrication and Properties of Ti3SiC2/SiC Composites

    Institute of Scientific and Technical Information of China (English)

    YIN Hongfeng; FAN Qiang; REN Yun; ZHANG Junzhan

    2008-01-01

    Ti3SiC2/SiC composites were fabricated by reactive hot pressing method. Effects of hot pressing temperature, the content and panicle size of SiC on phase composition, densification, mechanical properties and behavior of stress-strain of the composites were investigated. The results showed that:(1)Hot-pressing temperature influenced the phase composition of Ti3SiC2/SiC composites. The flexural strength and fracture toughness of composites increased with hot pressing temperature.(2)It became more difficult for the composites to densify when the content of SiC in composites increased. It need be sintered at higher temperature to get denser composite. The flexural strength and fracture toughness of composites increased when the content of SiC added in composites increased. However, when the content of SiC reached 50 wt%, the flexural strength and fracture toughness of composites decreased due to high content of pore in composites.(3)When the content of SiC was same, Ti3SiC2/SiC composites were denser while the particle size of SiC added in composites is 12.8μm compared with the composites that the particle size of SiC added is 3μm.The flexural strength and fracture toughness of composites increased with the increase of particle size of SiC added in composites.(4)Ti3SiC2/SiC composites were non-brittle fracture at room temperature.

  4. Mechanical Properties of Natural Jute Fabric/Jute Mat Fiber Reinforced Polymer Matrix Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Elsayed A. Elbadry

    2012-01-01

    Full Text Available Recycled needle punched jute fiber mats as a first natural fiber reinforcement system and these jute mats used as a core needle punched with recycled jute fabric cloths as skin layers as a second natural fiber reinforcement system were used for unsaturated polyester matrix composites via modifying the hand lay-up technique with resin preimpregnation into the jute fiber in vacuum. The effect of skin jute fabric on the tensile and bending properties of jute mat composites was investigated for different fiber weight contents. Moreover, the notch sensitivity of these composites was also compared by using the characteristic distance do calculated by Finite Element Method (FEM. The results showed that the tensile and flexural properties of jute mat composites increased by increasing the fiber weight content and by adding the jute fabric as skin layers. On the other hand, by adding the skins, the characteristic distance decreased and, therefore, the notch sensitivity of the composites increased. The fracture behavior investigated by SEM showed that extensive fiber pull-out mechanism was revealed at the tension side of jute mat composites under the bending load and by adding the jute cloth, the failure mode of jute mat was changed to fiber bridge mechanism.

  5. Finite element modeling and fabrication of an SMA-SMP shape memory composite actuator

    Science.gov (United States)

    Souri, Mohammad

    Shape memory alloys and polymers have been extensively researched recently because of their unique ability to recover large deformations. Shape memory polymers (SMPs) are able to recover large deformations compared to shape memory alloys (SMAs), although SMAs have higher strength and are able to generate more stress during recovery. This project focuses on procedure for fabrication and Finite Element Modeling (FEM) of a shape memory composite actuator. First, SMP was characterized to reveal its mechanical properties. Specifically, glass transition temperature, the effects of temperature and strain rate on compressive response and recovery properties of shape memory polymer were studied. Then, shape memory properties of a NiTi wire, including transformation temperatures and stress generation, were investigated. SMC actuator was fabricated by using epoxy based SMP and NiTi SMA wire. Experimental tests confirmed the reversible behavior of fabricated shape memory composites. (Abstract shortened by ProQuest.).

  6. A novel method for fabricating composite mosaic membrane with unique NF selectivity

    NARCIS (Netherlands)

    Liu, Jindun; Kemperman, A.J.B.; Koops, G.H.; Wessling, M.

    2006-01-01

    A novel method of fabricating composite mosaic membranes was studied on the basis of interfacial polymerization (IP) by coating a thin selective layer onto the surface of a micro-porous hollow-fiber membrane, in which, 2,5-diaminobenzene sulfonic acid was used as one monomer of the IP reaction, and

  7. Novel fabrication techniques for low-mass composite structures in silicon particle detectors

    Science.gov (United States)

    Hartman, Neal; Silber, Joseph; Anderssen, Eric; Garcia-Sciveres, Maurice; Gilchriese, Murdock; Johnson, Thomas; Cepeda, Mario

    2013-12-01

    The structural design of silicon-based particle detectors is governed by competing demands of reducing mass while maximizing stability and accuracy. These demands can only be met by fiber reinforced composite laminates (CFRP). As detecting sensors and electronics become lower mass, the motivation to reduce structure as a proportion of overall mass pushes modern detector structures to the lower limits of composite ply thickness, while demanding maximum stiffness. However, classical approaches to composite laminate design require symmetric laminates and flat structures, in order to minimize warping during fabrication. This constraint of symmetry in laminate design, and a “flat plate” approach to fabrication, results in more massive structures. This study presents an approach to fabricating stable and accurate, geometrically complex composite structures by bonding warped, asymmetric, but ultra-thin component laminates together in an accurate tool, achieving final overall precision normally associated with planar structures. This technique has been used to fabricate a prototype “I-beam” that supports two layers of detecting elements, while being up to 20 times stiffer and up to 30% lower mass than comparable, independent planar structures (typically known as “staves”).

  8. Shape distortions in fabric reinforced composite products due to processing induced fibre reorientation

    NARCIS (Netherlands)

    Lamers, Edwin Adriaan Derk

    2004-01-01

    Woven fabric reinforced composite materials are typically applied in plate or shell structures, such as ribs, stiffeners and skins. Products of these types can be produced with several production processes. A few examples are diaphragm forming, matched metal die forming and rubber press forming. Sha

  9. Shape distortions in fabric reinforced composite products due to processing induced fibre reorientation

    NARCIS (Netherlands)

    Lamers, E.A.D.

    2004-01-01

    Woven fabric reinforced composite materials are typically applied in plate or shell structures, such as ribs, stiffeners and skins. Products of these types can be produced with several production processes. A few examples are diaphragm forming, matched metal die forming and rubber press forming.

  10. Fabrication of WCp/NiBSi metal matrix composite by electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Hui, E-mail: penghui@buaa.edu.cn [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials & Performance (Ministry of Education), Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Liu, Chang [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Guo, Hongbo, E-mail: guo.hongbo@buaa.edu.cn [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials & Performance (Ministry of Education), Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Yuan, Yuan [Zhuzhou Seed Cemented Carbide Technology Co. Ltd, No. 1099 Xiangda Road, Zhuzhou, Hunan 412000 (China); Gong, Shengkai; Xu, Huibin [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials & Performance (Ministry of Education), Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China)

    2016-06-01

    A blend of NiBSi and WC powders was used as raw material for fabricating a metal matrix composite (MMC) by electron beam melting (EBM). Dense and crack-free microstructure was produced with evenly distributed WC reinforcements. Mechanical properties, including macro- and micro-hardness, flexural strength, impact toughness and compressive strength, were investigated.

  11. Fabrication and biocompatibility of an antimicrobial composite membrane with an asymmetric porous structure.

    NARCIS (Netherlands)

    Li, J.; Zuo, Y.; Man, Y.; Mo, A.; Huang, C.; Liu, M.; Jansen, J.A.; Li, Y.

    2012-01-01

    A composite slurry from silver ion-substituted nano-hydroxyapatite, titania nano-particles and polyamide 66 (Ag-nHA/TiO(2)/PA66) was prepared and used to fabricate a novel antimicrobial membrane with a gradient porous structure for guided bone regeneration (GBR). Subsequently, assays were performed

  12. Fabrication of Chitosan/Silk Fibroin Composite Nanofibers for Wound-dressing Applications

    OpenAIRE

    2010-01-01

    Chitosan, a naturally occurring polysaccharide with abundant resources, has been extensively exploited for various biomedical applications, typically as wound dressings owing to its unique biocompatibility, good biodegradability and excellent antibacterial properties. In this work, composite nanofibrous membranes of chitosan (CS) and silk fibroin (SF) were successfully fabricated by electrospinning. The morphology of electrospun blend nanofibers was observed by scanning electron microscopy (S...

  13. Analysis of in situ Reaction and Pressureless Infiltration Process in Fabricating TiC/Mg Composites

    Institute of Scientific and Technical Information of China (English)

    Qun DONG; Liqing CHEN; Mingjiu ZHAO; Jing BI

    2004-01-01

    An innovative processing route, in situ reaction combined with pressureless infiltration, was adopted to fabricate magnesium matrix composites, where the reinforcement TiC formed in situ from elemental Ti and C powders and molten Mg spontaneously infiltrated the preform of Ti and C. The influences of primarily elemental particle sizes,synthesizing temperature, holding time etc on in situ reactive infiltration for Mg-Ti-C system were systematically investigated in order to explore the mechanism of this process. In fabricating TiC/Mg composites, Mg can not only spontaneously infiltrate the preform of reinforcement and thus densify the as fabricated composites as matrix metal, but also it can accelerate the in situ reaction process and lower the synthesizing temperature of Ti and C as well. In situ reaction of Ti and C and Mg infiltration processes are essentially overlapping and interacting during fabrication of TiC/Mg composites. The mechanism proposed in this paper can be used to explain the formation and morphologies of the reinforcement phase TiC.

  14. Sound absorption properties of porous composites fabricated by a hydrogel templating technique

    NARCIS (Netherlands)

    Rutkevicius, M.; Mehl, G.H.; Paunov, V.N.; Qin, Q.; Rubini, P.A.; Stoyanov, S.D.; Petkov, J.

    2013-01-01

    We have used a hydrogel templating technique followed by the subsequent evaporation of water present to fabricate porous cement and porous PDMS composites, and we have analyzed their sound absorption properties. All experiments were carried out with hydrogel slurries of broad bead size distributions

  15. Review on Fabrication Methods of in situ Metal Matrix Composites

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper deals with a series of novel processing techniques based on the in situ production of metal matrix composites (MMCs). In situ techniques involve a chemical reaction resulting in the formation of a very fine and thermodynamically stable reinforcing ceramic phase within a metal matrix. As a result, this provides thermodynamic compatibility at the matrix-reinforcement interface. The reinforcement surfaces are also likely to be free of contamination and, therefore, a stronger matrix-dispersion bond can be achieved. Some of these technologies including DIMOXTM, XD, PRIMEXTM, reactive gas infiltration, high-temperature self-propagating synthesis (SHS), and liquid-solid, or solid-gas-liquid reactions as well as plasma in situ MMCs are expressed in this paper.

  16. FABRICATION AND MATERIAL ISSUES FOR THE APPLICATION OF SiC COMPOSITES TO LWR FUEL CLADDING

    Directory of Open Access Journals (Sweden)

    WEON-JU KIM

    2013-08-01

    Full Text Available The fabrication methods and requirements of the fiber, interphase, and matrix of nuclear grade SiCf/SiC composites are briefly reviewed. A CVI-processed SiCf/SiC composite with a PyC or (PyC-SiCn interphase utilizing Hi-Nicalon Type S or Tyranno SA3 fiber is currently the best combination in terms of the irradiation performance. We also describe important material issues for the application of SiC composites to LWR fuel cladding. The kinetics of the SiC corrosion under LWR conditions needs to be clarified to confirm the possibility of a burn-up extension and the cost-benefit effect of the SiC composite cladding. In addition, the development of end-plug joining technology and fission products retention capability of the ceramic composite tube would be key challenges for the successful application of SiC composite cladding.

  17. Microstructural evolution and strengthening behavior in in-situ magnesium matrix composites fabricated by solidification processing

    Energy Technology Data Exchange (ETDEWEB)

    Chelliah, Nagaraj M., E-mail: cmnraj.7@gmail.com [Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab (India); Singh, Harpreet, E-mail: harpreetsingh@iitrpr.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab (India); Surappa, M.K., E-mail: mirle@materials.iisc.ac.in [Department of Materials Engineering, Indian Institute of Science, Bengaluru 560012, Karnataka (India)

    2017-06-15

    In-situ magnesium matrix composites with three different matrix materials (including Mg, AZ91 and AE44 Mg-alloys) were fabricated by injecting cross-linked polymer directly into the molten Mg/Mg-alloys, and having it convert to the 2.5 vol% SiCNO ceramic phase using liquid stir-casting method. In-situ chemical reaction took place within the molten slurry tending to produce 42 and 18 vol% Mg{sub 2}Si crystals in Mg and AE44 matrix composites, respectively but not in AZ91 matrix composite. Microstructural evolution of Mg{sub 2}Si crystals was discussed on the basis of availability of heterogeneous nucleation sites and amount of Al-atoms in the molten slurry. The observed micro-hardness and yield strengths are enhanced by factor of four to three as compared to their unreinforced counterparts, and Taylor strengthening was found to be the predominant strengthening mechanism in magnesium and AE44 matrix composites. Summation model predicted the yield strengths of the fabricated composites more preciously when compared to Zhang and Chen, and modified Clyne models. - Highlights: • In-situ magnesium composites were fabricated using liquid stir-casting method. • In-situ pyrolysis of cross-linked polymer has been utilized to obtain ceramic phases. • Mg{sub 2}Si crystals were formed in magnesium and AE44 matrix composites but not in AZ91 matrix composites. • The variation in size and morphology of Mg{sub 2}Si crystals with matrix materials are discussed. • Strengthening mechanisms in in-situ composites are analyzed and discussed.

  18. Comparison of mechanical properties for polyamide 12 composite-based biomaterials fabricated by fused filament fabrication and injection molding

    Science.gov (United States)

    Rahim, Tuan Noraihan Azila Tuan; Abdullah, Abdul Manaf; Akil, Hazizan Md; Mohamad, Dasmawati

    2016-12-01

    The emergence of 3D printing technology known as fused filament fabrication (FFF) has offered the possibility of producing an anatomically accurate, patient specific implant with more affordable prices. The only weakness of this technology is related to incompatibility and lack of properties of current material to be applied in biomedical. Therefore, this study aims to develop a new, polymer composite-based biomaterial that exhibits a high processability using FFF technique, strong enough and shows acceptable biocompatibility, and safe for biomedical use. Polyamide 12 (PA12), which meets all these requirements was incorporated with two bioceramic fillers, zirconia and hydroxyapatite in order to improve the mechanical and bioactivity properties. The obtained mechanical properties were compared with injection-molded specimens and also a commercial biomedical product, HAPEXTM which is composed of hydroxyapatite and polyethylene. The yield strength and modulus of the PA12 composites increased steadily with increasing filler loading. Although the strength of printed PA12 composites were reduced compared with injection molded specimen, but still higher than HAPEXTM material. The higher surface roughness obtained by printed PA12 was expected to enhance the cell adhesion and provide better implant fixation.

  19. Optimisation of Fabric Reinforced Polymer Composites Using a Variant of Genetic Algorithm

    Science.gov (United States)

    Axinte, Andrei; Taranu, Nicolae; Bejan, Liliana; Hudisteanu, Iuliana

    2017-03-01

    Fabric reinforced polymeric composites are high performance materials with a rather complex fabric geometry. Therefore, modelling this type of material is a cumbersome task, especially when an efficient use is targeted. One of the most important issue of its design process is the optimisation of the individual laminae and of the laminated structure as a whole. In order to do that, a parametric model of the material has been defined, emphasising the many geometric variables needed to be correlated in the complex process of optimisation. The input parameters involved in this work, include: widths or heights of the tows and the laminate stacking sequence, which are discrete variables, while the gaps between adjacent tows and the height of the neat matrix are continuous variables. This work is one of the first attempts of using a Genetic Algorithm (GA) to optimise the geometrical parameters of satin reinforced multi-layer composites. Given the mixed type of the input parameters involved, an original software called SOMGA (Satin Optimisation with a Modified Genetic Algorithm) has been conceived and utilised in this work. The main goal is to find the best possible solution to the problem of designing a composite material which is able to withstand to a given set of external, in-plane, loads. The optimisation process has been performed using a fitness function which can analyse and compare mechanical behaviour of different fabric reinforced composites, the results being correlated with the ultimate strains, which demonstrate the efficiency of the composite structure.

  20. PCL/alginate composite scaffolds for hard tissue engineering: fabrication, characterization, and cellular activities.

    Science.gov (United States)

    Kim, Yong Bok; Kim, Geun Hyung

    2015-02-09

    Alginates have been used widely in biomedical applications because of good biocompatibility, low cost, and rapid gelation in the presence of calcium ions. However, poor mechanical properties and fabrication-ability for three-dimensional shapes have been obstacles in hard-tissue engineering applications. To overcome these shortcomings of alginates, we suggest a new composite system, consisting of a synthetic polymer, poly(ε-caprolactone), and various weight fractions (10-40 wt %) of alginate. The fabricated composite scaffolds displayed a multilayered 3D structure, consisting of microsized composite struts, and they provided a 100% offset for each layer. To show the feasibility of the scaffold for hard tissue regeneration, the composite scaffolds fabricated were assessed not only for physical properties, including surface roughness, tensile strength, and water absorption and wetting, but also in vitro osteoblastic cellular responses (cell-seeding efficiency, cell viability, fluorescence analyses, alkaline phosphatase (ALP) activity, and mineralization) by culturing with preosteoblasts (MC3T3-E1). Due to the alginate components in the composites, the scaffolds showed significantly enhanced wetting behavior, water-absorption (∼12-fold), and meaningful biological activities (∼2.1-fold for cell-seeding efficiency, ∼2.5-fold for cell-viability at 7 days, ∼3.4-fold for calcium deposition), compared with a pure PCL scaffold.

  1. Notched Strength of Woven Fabric Kenaf Composite Plates with Different Stacking Sequences and Hole Sizes

    Directory of Open Access Journals (Sweden)

    Hans Romayne Anders

    2016-01-01

    Full Text Available Advantages of using kenaf fibres over synthetic fibres in composites manufacturing are relatively cheap, less abrasive and hazardous during handling, and renewable materials. Current work investigates parametric effects on notched strength of woven fabric kenaf polymer composites plates with variation of lay-up types, notch sizes and plate thickness. Testing coupons are prepared using hand lay-up technique and circular notch were drilled prior to mechanical testing. Stress concentration at the notch edge promotes micro-damage event as tensile loading was applied leading to crack initiation and propagations across the plate width. It is suggested that woven fabric kenaf polymer composites are potentially used in low and medium load bearing applications.

  2. Fabrication of a smart air intake structure using shape memory alloy wire embedded composite

    Science.gov (United States)

    Jung, Beom-Seok; Kim, Min-Saeng; Kim, Ji-Soo; Kim, Yun-Mi; Lee, Woo-Yong; Ahn, Sung-Hoon

    2010-05-01

    Shape memory alloys (SMAs) have been actively studied in many fields utilizing their high energy density. Applying SMA wire-embedded composite to aerospace structures, such as air intake of jet engines and guided missiles, is attracting significant attention because it could generate a comparatively large actuating force. In this research, a scaled structure of SMA wire-embedded composite was fabricated for the air intake of aircraft. The structure was composed of several prestrained Nitinol (Ni-Ti) SMA wires embedded in ∩-shape glass fabric reinforced plastic (GFRP), and it was cured at room temperature for 72 h. The SMA wire-embedded GFRP could be actuated by applying electric current through the embedded SMA wires. The activation angle generated from the composite structure was large enough to make a smart air intake structure.

  3. Effect of water absorption on the mechanical properties of cotton fabric-reinforced geopolymer composites

    Directory of Open Access Journals (Sweden)

    T. Alomayri

    2014-09-01

    Full Text Available Cotton fabric (CF reinforced geopolymer composites are fabricated with fibre loadings of 4.5, 6.2 and 8.3 wt%. Results show that flexural strength, flexural modulus, impact strength, hardness and fracture toughness are increased as the fibre content increased. The ultimate mechanical properties were achieved with a fibre content of 8.3 wt%. The effect of water absorption on mechanical and physical properties of CF reinforced geopolymer composites is also investigated. The magnitude of maximum water uptake and diffusion coefficient is increased with an increase in fibre content. Flexural strength, modulus, impact strength, hardness and fracture toughness values are decreased as a result of water absorption. Scanning electron microscopy (SEM is used to characterise the microstructure and failure mechanisms of dry and wet cotton fibre reinforced geopolymer composites.

  4. Fabrication and microstructure of Fe-based amorphous composite coatings by laser cladding

    Institute of Scientific and Technical Information of China (English)

    Zhu Qingjun; Zou Zengda; Qu Shiyao; Wang Xinhong

    2008-01-01

    Fe-based amorphous composite coatings were fabricated on AISI 1045 steel by laser cladding. The results of the X-ray diffraction and transmission electron microscopy analyses show the coating is composed of an amorphous phase in majority and a nanocrystalline phase in minority. Phase composition of the coating changes along the depth of the coating. The reasonable scanning speed for fabricating an amorphous composite coating is 3 500mm/min when the laser power is 4 800W and the laser beam diameter is 2mm. If the scanning speed is lower than 3 500mm/min, the intensity of the two main diffraction peaks in X-ray diffraction patterns of the coatings decreases with the scanning speeds increasing. At the same time, a broad halo peak emerges and enlarges. High laser power and fast scanning speed are the essential conditions of amorphization. The coating exhibits high microhardness.

  5. Fabrication of a smart air intake structure using shape memory alloy wire embedded composite

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Beom-Seok; Kim, Min-Saeng; Kim, Ji-Soo; Kim, Yun-Mi [School of Mechanical and Aerospace Engineering, Seoul National University, Shinlim-Dong San 56-1, Kwanak-Gu, Seoul 151-742 (Korea, Republic of); Lee, Woo-Yong [Agency for Defense Development, Jochiwongil 462, Yuseong-Gu, Daejeon 305-600 (Korea, Republic of); Ahn, Sung-Hoon, E-mail: ahnsh@snu.ac.k [School of Mechanical and Aerospace Engineering and Institute of Advanced Machinery and Design, Seoul National University, Shinlim-Dong San 56-1, Kwanak-Gu, Seoul 151-742 (Korea, Republic of)

    2010-05-01

    Shape memory alloys (SMAs) have been actively studied in many fields utilizing their high energy density. Applying SMA wire-embedded composite to aerospace structures, such as air intake of jet engines and guided missiles, is attracting significant attention because it could generate a comparatively large actuating force. In this research, a scaled structure of SMA wire-embedded composite was fabricated for the air intake of aircraft. The structure was composed of several prestrained Nitinol (Ni-Ti) SMA wires embedded in intersection -shape glass fabric reinforced plastic (GFRP), and it was cured at room temperature for 72 h. The SMA wire-embedded GFRP could be actuated by applying electric current through the embedded SMA wires. The activation angle generated from the composite structure was large enough to make a smart air intake structure.

  6. Fabrication and biocompatibility of poly(L-lactic acid) and chitosan composite scaffolds with hierarchical microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Lou, Tao, E-mail: taolou72@aliyun.com [College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071 (China); Wang, Xuejun [College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071 (China); Yan, Xu [College of Physics & Collaborative Innovation Center for Low-Dimensional Nanomaterials and Optoelectronic Devices, Qingdao University, Qingdao 266071 (China); Miao, Yu [Department of Mechanical Engineering, Columbia University, New York, NY 10027 (United States); Long, Yun-Ze, E-mail: yunzelong@163.com [College of Physics & Collaborative Innovation Center for Low-Dimensional Nanomaterials and Optoelectronic Devices, Qingdao University, Qingdao 266071 (China); Yin, Hai-Lei [Department of Osteology, No. 401 Hospital of P. L. A., Qingdao 266071 (China); Sun, Bin [College of Physics & Collaborative Innovation Center for Low-Dimensional Nanomaterials and Optoelectronic Devices, Qingdao University, Qingdao 266071 (China); Song, Guojun [College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071 (China)

    2016-07-01

    The scaffold microstructure is crucial to reconstruct tissue normal functions. In this article, poly(L-lactic acid) and chitosan fiber (PLLA/CTSF) composite scaffolds with hierarchical microstructures both in fiber and pore sizes were successfully fabricated by combining thermal induced phase separation and salt leaching techniques. The composite scaffolds consisted of a nanofibrous PLLA matrix with diameter of 50–500 nm, and chitosan fibers with diameter of about 20 μm were homogenously distributed in the PLLA matrix as a microsized reinforcer. The composite scaffolds also had high porosity (> 94%) and hierarchical pore size, which were consisted of both micropores (50 nm–10 μm) and macropores (50–300 μm). By tailoring the microstructure and chemical composition, the mechanical property, pH buffer and protein adsorption capacity of the composite scaffold were improved significantly compared with those of PLLA scaffold. Cell culture results also revealed that the PLLA/CTSF composite scaffolds supported MG-63 osteoblast proliferation and penetration. - Highlights: • Composite scaffolds fabricated by combining thermal induced phase separation and salt leaching techniques • Hierarchical microstructure both in fiber and pore sizes • The scaffold microenvironment facilitates the protein adsorption, cell proliferation and penetration.

  7. Micromechanics Fatigue Damage Analysis Modeling for Fabric Reinforced Ceramic Matrix Composites

    Science.gov (United States)

    Min, J. B.; Xue, D.; Shi, Y.

    2013-01-01

    A micromechanics analysis modeling method was developed to analyze the damage progression and fatigue failure of fabric reinforced composite structures, especially for the brittle ceramic matrix material composites. A repeating unit cell concept of fabric reinforced composites was used to represent the global composite structure. The thermal and mechanical properties of the repeating unit cell were considered as the same as those of the global composite structure. The three-phase micromechanics, the shear-lag, and the continuum fracture mechanics models were integrated with a statistical model in the repeating unit cell to predict the progressive damages and fatigue life of the composite structures. The global structure failure was defined as the loss of loading capability of the repeating unit cell, which depends on the stiffness reduction due to material slice failures and nonlinear material properties in the repeating unit cell. The present methodology is demonstrated with the analysis results evaluated through the experimental test performed with carbon fiber reinforced silicon carbide matrix plain weave composite specimens.

  8. Bio-composites fabricated by sandwiching sisal fibers with polypropylene (PP)

    Science.gov (United States)

    Sosiati, H.; Nahyudin, A.; Fauzi, I.; Wijayanti, D. A.; Triyana, K.

    2016-04-01

    Sisal fibers reinforced polypropylene (PP) composites were successfully fabricated using sandwiching sisal fibers with PP sheets. The ratio of fiber and polymer matrix was 50:50 (wt. %). Untreated short and long sisal fibers, and alkali treated short sisal fibers in 6% NaOH at 100°C for 1 and 3 h were used as reinforcement or fillers. A small amount (3 wt. %) of maleic anhydride grafted polypropylene (MAPP) was added as a coupling agent. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy were used to characterize the surface morphology and chemical composition of the fibers, respectively. Flexural test of sisal/PP composites was done according to ASTM D 790-02. The results showed that flexural strength of untreated long fiber reinforced composite is much higher than that of the untreated and alkali treated short fibers reinforced composites with and without the addition of MAPP. Alkalization related to fiber surface modification, fiber length/fiber orientation and a composite fabrication technique are important factors in contributing to the fiber distribution within the matrix, the bonding between the fiber and the matrix and the enhancement of flexural strength of the bio-composite.

  9. Fabrication and Mechanical Characterization of Water-Soluble Resin-Coated Natural Fiber Green Composites

    Science.gov (United States)

    Manabe, Ken-Ichi; Hayakawa, Tomoyuki

    In this study, water-soluble biodegradable resin was introduced as a coating agent to improve the interfacial strength and then to fabricate a high-performance green composite with polylactic acid (PLA) and hemp yarn. Dip coating was carried out for hemp yarn and the green composites were fabricated by hot processing. The coated green composite achieves a high tensile strength of 117 MPa even though the fiber volume fraction is less than 30%. Interfacial shear strength (IFSS) was measured by a single fiber pull-out test, and the effect of water-soluble resin on the tensile properties of the composites was evaluated. As a result, when using coated natural bundles, the IFSS value is smaller than when using noncoated natural bundles. On the basis of observations of the fractured surface of composites and initial yarns using a scanning electron microscope (SEM), the effect of the impregnation of water-soluble resin into the natural bundles on the tensile strength is discussed in detail. It is found that water-soluble resin is effective in improving the mechanical properties of the composite, although the interfacial strength between PLA and water-soluble resin was decreased, and as a result, the tensile strength of green composites increases by almost 20%.

  10. Fs Laser Fabrication of Photonic Structures in Glass: the Role of Glass Composition

    Energy Technology Data Exchange (ETDEWEB)

    Krol, D M; Chan, J W; Huser, T R; Risbud, S H; Hayden, J S

    2004-06-16

    The use of fs lasers to directly write photonic structures inside a glass has great potential as a fabrication method for three-dimensional all-optical integrated components. The ability to use this technique with different glass compositions--specifically tailored for a specific photonics application--is critical to its successful exploitation. Consequently, it is important to understand how glass composition effects waveguide fabrication with fs laser pulses and how different glasses are structurally modified after exposure to fs laser pulses. We have used confocal laser spectroscopy to monitor the changes in glass structure that are associated with waveguide fabrication. Using a low power continuous wave (cw) Ar laser as excitation source we have measured both Raman and fluorescence spectra of the modified regions. Raman spectroscopy provides us with information on the network structure, whereas fluorescence measurements reveal the presence of optically active point defects in the glass. In this paper we review our work on fs-laser fabrication and characterization of photonic structures in glass and discuss the effect of glass composition on processing parameters and structural modification.

  11. Processing and Electromagnetic Shielding Properties of Multifunctional Metal Composite Knitted Fabric used as Socks

    Directory of Open Access Journals (Sweden)

    Yu Zhicai

    2016-01-01

    Full Text Available In this research, a type of bamboo charcoal polyester (BC-PET/antibacterial nylon(AN/stainless steel wire (SSW metal composite yarn was prepared with a hollow spindle spinning machine, which using the SSW as the core material, the BC-PET and AN as the outer and inner wrapped yarns, respectively. The wrapping numbers was set at 8.0turns/cm for the produced metal composite yarns. Furthermore, a type of plated knitted fabric was designed and produced by using the automatic jacquard knitting machine. The plated knitted fabric presents the BC-PET/AN/SSW metal composite yarn on the knitted fabric face and the crisscross-section polyester (CSP on the knit back. The effect of lamination numbers and angles on the electromagnetic shielding effectiveness (EMSE were discussed in this study. EMSE measurement showed that the lamination angles will influence the EMSE, but not affect the air permeability. Finally, a novel EM shielding socks was designed with the produced plated knitted fabric. Finally, the performance of thermal resistance and evaporation resistance was also test usingThe sweating guarded hot plate apparatus.

  12. Investigation on Impact Strength Properties of Kevlar Fabric using Different Shear Thickening Fluid Composition

    Directory of Open Access Journals (Sweden)

    R. Joselin

    2014-05-01

    Full Text Available Great interest has aroused in developing high impact resistant fabrics based on the incorporation of a shear thickening fluid (STF into high performance fabrics (Kevlar. This work developed a shear thickening fluid enhanced fabrics and the influence of the shear thickening fluid types against spike impact and the impact resistance performance were investigated. Silica nano-particle impregnated Kevlar fabrics exhibit significantly enhanced ballistic performance while retaining flexibility. It was found that fabrics impregnated with functionalized nanoparticles offer multiple resistance to the penetration of a sharp impactor. The improvement in protection is traced by the formation of siloxane bonds during functionalization. It exhibits significant improvement in shear stiffness and aslight increase in tensile stiffness. The impact strength properties of all samples were tested using impact testingand quasi-static testing apparatuses. Chemical compositions and microscopic structures were analyzed with Fouriertransform infrared spectroscopy and scanning electron microscopy. The current study clearly displays a significant enhancement in penetration resistance of Kevlar fabric impregnated with different combination of STF’s.Defence Science Journal, Vol. 64, No. 3, May 2014, pp. 236-243, DOI:http://dx.doi.org /10.14429/dsj.64.7322

  13. A cost-effective treatment for severe generalized erosion and loss of vertical dimension of occlusion: laboratory-fabricated composite resin restorations.

    Science.gov (United States)

    Metz, Michael J; Stapleton, Brandon M; Harris, Bryan T; Lin, Wei-Shao

    2015-01-01

    This case report describes preventive and restorative treatment planning for a 56-year-old female patient with severe, chronic, poorly controlled gastroesophageal reflux disease and resulting loss of vertical dimension of occlusion. First, the demineralization process was controlled through collaboration with the patient's physician, and measures were taken to restore adequate stimulated salivary flow. Then, for financial reasons, indirect laboratory-fabricated composite resin restorations were adhesively bonded to replace lost tooth structure and reestablish the patient's collapsed vertical dimension. Indirect-laboratory fabricated restorations can be a cost-effective alternative to direct composite resin or all-ceramic restorations for the treatment of chronic severe erosion, but there are no long-term clinical reports in the current literature to support or contraindicate the use of indirect composites for this type of clinical application. Therefore, careful, long-term follow-up evaluations are planned for this patient.

  14. An ultraviolet photodetector fabricated from WO₃ nanodiscs/reduced graphene oxide composite material.

    Science.gov (United States)

    Shao, Dali; Yu, Mingpeng; Lian, Jie; Sawyer, Shayla

    2013-07-26

    A high sensitivity, fast ultraviolet (UV) photodetector was fabricated from WO₃ nanodiscs (NDs)/reduced graphene oxide (RGO) composite material. The WO₃ NDs/reduced GO composite material was synthesized using a facile three-step synthesis procedure. First, the Na₂WO₄/GO precursor was synthesized by homogeneous precipitation. Second, the Na₂WO₄/GO precursor was transformed into Na₂WO₄/GO composites by acidification. Finally, the Na₂WO₄/GO composites were reduced to WO₃ NDs/RGO via a hydrothermal reduction process. The UV photodetector showed a fast transient response and high responsivity, which are attributed to the improved carrier transport and collection efficiency through graphene. The excellent material properties of the WO₃ NDs/RGO composite demonstrated in this work may open up new possibilities for using WO₃ NDs/RGO for future optoelectronic applications.

  15. Silica Treatments: A Fire Retardant Strategy for Hemp Fabric/Epoxy Composites

    Directory of Open Access Journals (Sweden)

    Francesco Branda

    2016-08-01

    Full Text Available In this paper, for the first time, inexpensive waterglass solutions are exploited as a new, simple and ecofriendly chemical approach for promoting the formation of a silica-based coating on hemp fabrics, able to act as a thermal shield and to protect the latter from heat sources. Fourier Transform Infrared (FTIR and solid-state Nuclear Magnetic Resonance (NMR analysis confirm the formation of –C–O–Si– covalent bonds between the coating and the cellulosic substrate. The proposed waterglass treatment, which is resistant to washing, seems to be very effective for improving the fire behavior of hemp fabric/epoxy composites, also in combination with ammonium polyphosphate. In particular, the exploitation of hemp surface treatment and Ammonium Polyphosphate (APP addition to epoxy favors a remarkable decrease of the Heat Release Rate (HRR, Total Heat Release (THR, Total Smoke Release (TSR and Specific Extinction Area (SEA (respectively by 83%, 35%, 45% and 44% as compared to untreated hemp/epoxy composites, favoring the formation of a very stable char, as also assessed by Thermogravimetric Analysis (TGA. Because of the low interfacial adhesion between the fabrics and the epoxy matrix, the obtained composites show low strength and stiffness; however, the energy absorbed by the material is higher when using treated hemp. The presence of APP in the epoxy matrix does not affect the mechanical behavior of the composites.

  16. Novel method of polymer/low-melting-point metal alloy/light metal fiber composite fabrication

    Directory of Open Access Journals (Sweden)

    J. Park

    2016-07-01

    Full Text Available A novel method of polymer/low-melting-point metal alloy (LMA/light metal fiber composite fabrication is proposed to solve problems of polymer/metal composites. The first step is mixing light metal particles with LMA at a temperature above the melting point of the LMA. The second step is cold extrusion of the LMA/light metal particles to fabricate LMA/light metal fibers. Thus, the LMA/light metal fibers with a density of ~4.5 g/cm3 were obtained. The last step is compounding a polymer with the LMA/light metal fibers at the processing temperature of the polymer above the melting points of the LMA. The effects of the length and the cross-sectional shape of light metal fiber on the morphology of the LMA/light metal fibers in the polymer matrix were studied, as were electrical conductivities and mechanical properties of the composites. As the length and/or the cross-sectional aspect ratio of the fibers was increased, the domains of LMA/light metal fibers formed more networks so that the electrical conductivity increased, and specific surface area of the domains increased so that notched Izod impact strength was improved. Thus, the polymer/LMA/light metal fiber composites were fabricated without degrading processability even at 60 vol% loading and the electrical conductivities over 103 S/cm were achieved.

  17. Adjusting Measured Weight Loss of Aged Graphite Fabric/PMR-15 Composites

    Science.gov (United States)

    Bowles, Kenneth J.

    1998-01-01

    The purposes of this study were to evaluate the growth of the surface damage layer in polymer matrix composites (PMC's) fabricated with graphite fabric reinforcement and to determine the effects of the cut-surface degradation on the overall thermo-oxidative (TOS) stability of these materials. Four important conclusions were made about the TOS behavior of T650-35/PNIR- 15 fabric-reinforced composites: (1) Three stages of composite weight loss were seen on the plot of weight loss versus aging time; (2) the depth of the cut-edge damage is related to the composite thickness; (3) the actual weight loss realized by a mechanical test specimen that has had all the aging-induced cut-edge damage removed during the preparation process is significantly less than the weight loss measured using specimens with a high percentage of cut edges exposed to the damaging environment; and (4) an extrapolation of a section of the weight loss curve can be used to obtain a more correct estimate of the actual weight loss after extended periods of aging at elevated temperatures.

  18. CRADA/NFE-15-05779 Report: Fabrication of Large Area Printable Composite Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Paranthaman, M. Parans [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-29

    The technical objective of this technical collaboration phase I proposal was to fabricate large area NdFeB composite magnets at the Oak Ridge National Laboratory Manufacturing Demonstration Facility (ORNL MDF). The goal was to distribute domestically produced isotropic and highly anisotropic high energy density magnetic particles throughout the composite structure in order to enable site specific placement of magnetic phases and minimize the generated waste associated with permanent magnet manufacturing. Big area additive manufacturing (BAAM) and magnet composite fabrication methods were used in this study. BAAM was used to fabricate 65 vol % isotropic MQP NdFeB magnets in nylon polymer matrix. BAAM magnet cylinder was sliced to two magnetic arc-shaped braces. The density of the small BAAM magnet pieces reached 4.1 g/cm3, and the room temperature magnetic properties are: Intrinsic coercivity Hci = 8.8 kOe, Remanence Br = 4.2 kG, and energy product (BH)max = 3.7 MGOe. Also, 1.5” x 1.5” composite magnets with anisotropic MQA NdFeB magnet in a resin were also fabricated under magnetic field. The unaligned sample had a density of 3.75 g/cm3. However, aligned sample possessed a density of 4.27 g/cm3. The magnetic properties didn’t degrade during this process. This study provides a pathway for preparing composite magnets for various magnetic applications.

  19. Fabrication, characterization, and mechanical properties of spark plasma sintered Al–BN nanoparticle composites

    Energy Technology Data Exchange (ETDEWEB)

    Firestein, Konstantin L., E-mail: kosty@firestein.ru [National University of Science and Technology “MISIS”, Leninsky prospect 4, Moscow 119049 (Russian Federation); Steinman, Alexander E.; Golovin, Igor S. [National University of Science and Technology “MISIS”, Leninsky prospect 4, Moscow 119049 (Russian Federation); Cifre, Joan [Universitat de les Illes Balears, Ctra. de Valldemossa, km. 7.5, E-07122 Palma de Mallorca (Spain); Obraztsova, Ekaterina A.; Matveev, Andrei T.; Kovalskii, Andrey M. [National University of Science and Technology “MISIS”, Leninsky prospect 4, Moscow 119049 (Russian Federation); Lebedev, Oleg I. [CRISMAT, UMR 6508, CNRS-ENSICAEN, 6Bd Marechal Juin, 14050 Caen (France); Shtansky, Dmitry V., E-mail: shtansky@shs.misis.ru [National University of Science and Technology “MISIS”, Leninsky prospect 4, Moscow 119049 (Russian Federation); Golberg, Dmitri, E-mail: golberg.dmitri@nims.go.jp [World Premier International Center for Materials Nanoarchitectonics (WPI-MANA) National Institute for Materials Science (NIMS), Namiki 1, Tsukuba, Ibaraki 3050044 (Japan)

    2015-08-26

    Fabrication of high strength yet light and low cost composite materials with good mechanical properties at room and elevated temperatures is a challenge that metallurgy and materials science communities are facing for many years, and no “dream material” has been developed so far. The primary goal of this study was to fabricate, characterize, and to carry out tensile tests on Al-based composite materials strengthened with commercially-available BN nanoparticles (BNNPs). The composites were fabricated by spark plasma sintering (SPS) technique. The structures of powder mixtures and composite materials, as well as their fracture surfaces, were studied by scanning and transmission electron microscopy. The influence of BNNPs content (0.5, 1.5, 3, 4.5, 6, and 7.5 wt%) and holding times (5, 60, and 300 min) at 600 °C during SPS on the tensile strength was investigated. A maximum increase in strength was observed for Al-based composites with 4.5 wt% of BNNPs. The sample demonstrated a 50% increase in tensile strength compared with pristine Al. Although the tensile tests performed at 300 °C revealed that the tensile strength became 20% lower than the strength at room temperature, it was, however, still 75% higher compared with that of the pure Al at 300 °C. In addition, at 300 °C the Al–BNNPs composites demonstrated a much higher value of yield stress, about 115 MPa, which is 190% higher than that of pure Al at the same temperature. The damping properties of Al–BNNPs composites were evaluated by temperature dependent internal friction (TDIF) measurements. The obtained results are discussed based on structural analysis and the TDIF data.

  20. Facile Fabrication of Composite Membranes with Dual Thermo- and pH-Responsive Characteristics.

    Science.gov (United States)

    Ma, Bing; Ju, Xiao-Jie; Luo, Feng; Liu, Yu-Qiong; Wang, Yuan; Liu, Zhuang; Wang, Wei; Xie, Rui; Chu, Liang-Yin

    2017-04-11

    Facile fabrication of novel functional membranes with excellent dual thermo- and pH-responsive characteristics has been achieved by simply designing dual-layer composite membranes. pH-Responsive poly(styrene)-block-poly(4-vinylpyridine) (PS-b-P4VP) block copolymers and polystyrene blended with thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) nanogels are respectively used to construct the top layer and bottom layer of composite membranes. The stretching/coiling conformation changes of the P4VP chains around the pKa (~3.5-4.5) provide the composite membranes with extraordinary pH-responsive characteristics, and the volume phase transitions of PNIPAM nanogels at the pore/matrix interfaces in the bottom layer around the volume phase transition temperature (VPTT, ~33 oC) provide the composite membranes with great thermo-responsive characteristics. The microstructures, permeability performances and dual stimuli-responsive characteristics can be well tuned by adjusting the content of PNIPAM nanogels and the thickness of the PS-b-P4VP top layer. The water fluxes of the composite membranes can be changed in order of magnitude by changing the environment temperature and pH, and the dual thermo- and pH-responsive permeation performances of the composite membranes are satisfactorily reversible and reproducible. The membrane fabrication strategy in this work provides valuable guidance for further development of dual stimuli-responsive membranes or even multi stimuli-responsive membranes.

  1. Low Cost Fabrication of Silicon Carbide Based Ceramics and Fiber Reinforced Composites

    Science.gov (United States)

    Singh, M.; Levine, S. R.

    1995-01-01

    A low cost processing technique called reaction forming for the fabrication of near-net and complex shaped components of silicon carbide based ceramics and composites is presented. This process consists of the production of a microporous carbon preform and subsequent infiltration with liquid silicon or silicon-refractory metal alloys. The microporous preforms are made by the pyrolysis of a polymerized resin mixture with very good control of pore volume and pore size thereby yielding materials with tailorable microstructure and composition. Mechanical properties (elastic modulus, flexural strength, and fracture toughness) of reaction-formed silicon carbide ceramics are presented. This processing approach is suitable for various kinds of reinforcements such as whiskers, particulates, fibers (tows, weaves, and filaments), and 3-D architectures. This approach has also been used to fabricate continuous silicon carbide fiber reinforced ceramic composites (CFCC's) with silicon carbide based matrices. Strong and tough composites with tailorable matrix microstructure and composition have been obtained. Microstructure and thermomechanical properties of a silicon carbide (SCS-6) fiber reinforced reaction-formed silicon carbide matrix composites are discussed.

  2. Rate Dependent Multicontinuum Progressive Failure Analysis of Woven Fabric Composite Structures under Dynamic Impact

    Directory of Open Access Journals (Sweden)

    James Lua

    2004-01-01

    Full Text Available Marine composite materials typically exhibit significant rate dependent response characteristics when subjected to extreme dynamic loading conditions. In this work, a strain-rate dependent continuum damage model is incorporated with multicontinuum technology (MCT to predict damage and failure progression for composite material structures. MCT treats the constituents of a woven fabric composite as separate but linked continua, thereby allowing a designer to extract constituent stress/strain information in a structural analysis. The MCT algorithm and material damage model are numerically implemented with the explicit finite element code LS-DYNA3D via a user-defined material model (umat. The effects of the strain-rate hardening model are demonstrated through both simple single element analyses for woven fabric composites and also structural level impact simulations of a composite panel subjected to various impact conditions. Progressive damage at the constituent level is monitored throughout the loading. The results qualitatively illustrate the value of rate dependent material models for marine composite materials under extreme dynamic loading conditions.

  3. Fabrication of Aligned-Carbon-Nanotube-Composite Paper with High and Anisotropic Conductivity

    Directory of Open Access Journals (Sweden)

    Yuki Fujitsuka

    2012-01-01

    Full Text Available A functional carbon-nanotube (CNT-composite paper is described in which the CNTs are aligned. This “aligned-CNT composite paper” is a flexible composite material that has CNT functionality (e.g., electrical conductivity despite being a paper. An advanced fabrication method was developed to overcome the problem of previous CNT-composite papers, that is, reduced conductivity due to random CNT alignment. Aligning the CNTs by using an alternating current (AC field was hypothesized to increase the electrical conductivity and give the paper an anisotropic characteristic. Experimental results showed that a nonionic surfactant was not suitable as a CNT dispersant for fabricating aligned-CNT composite paper and that catechin with its six-membered rings and hydrophilic groups was suitable. Observation by scanning electron microscopy of samples prepared using catechin showed that the CNTs were aligned in the direction of the AC field on the paper fibers. Measurement of the electric conductivity showed that the surface resistance was different between the direction of the aligned CNTs (high conductivity and that of verticality (low. The conductivity of the aligned-CNT-composite paper samples was higher than that of nonaligned samples. This unique and functional paper, which has high and anisotropic conductivity, is applicable to a conductive material to control the direction of current.

  4. Improved Fabrication of Ceramic Matrix Composite/Foam Core Integrated Structures

    Science.gov (United States)

    Hurwitz, Frances I.

    2009-01-01

    The use of hybridized carbon/silicon carbide (C/SiC) fabric to reinforce ceramic matrix composite face sheets and the integration of such face sheets with a foam core creates a sandwich structure capable of withstanding high-heatflux environments (150 W/cm2) in which the core provides a temperature drop of 1,000 C between the surface and the back face without cracking or delamination of the structure. The composite face sheet exhibits a bilinear response, which results from the SiC matrix not being cracked on fabrication. In addition, the structure exhibits damage tolerance under impact with projectiles, showing no penetration to the back face sheet. These attributes make the composite ideal for leading edge structures and control surfaces in aerospace vehicles, as well as for acreage thermal protection systems and in high-temperature, lightweight stiffened structures. By tailoring the coefficient of thermal expansion (CTE) of a carbon fiber containing ceramic matrix composite (CMC) face sheet to match that of a ceramic foam core, the face sheet and the core can be integrally fabricated without any delamination. Carbon and SiC are woven together in the reinforcing fabric. Integral densification of the CMC and the foam core is accomplished with chemical vapor deposition, eliminating the need for bond-line adhesive. This means there is no need to separately fabricate the core and the face sheet, or to bond the two elements together, risking edge delamination during use. Fibers of two or more types are woven together on a loom. The carbon and ceramic fibers are pulled into the same pick location during the weaving process. Tow spacing may be varied to accommodate the increased volume of the combined fiber tows while maintaining a target fiber volume fraction in the composite. Foam pore size, strut thickness, and ratio of face sheet to core thickness can be used to tailor thermal and mechanical properties. The anticipated CTE for the hybridized composite is managed by

  5. Fabrication of engineered heart tissue grafts from alginate/collagen barium composite microbeads

    Energy Technology Data Exchange (ETDEWEB)

    Bai, X P; Zheng, H X; Fang, R; Wang, T R; Li, Y; Tian, W M [Department of Life Science and Engineering, Harbin Institute of Technology, Harbin, 150080 (China); Hou, X L [The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001 (China); Chen, X B, E-mail: tianweiming@gmail.com [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon (Canada)

    2011-08-15

    Cardiac tissue engineering holds great promise for the treatment of myocardial infarction. However, insufficient cell migration into the scaffolds used and inflammatory reactions due to scaffold biodegradation remain as issues to be addressed. Engineered heart tissue (EHT) grafts fabricated by means of a cell encapsulation technique provide cells with a tissue-like environment, thereby potentially enhancing cellular processes such as migration, proliferation, and differentiation, and tissue regeneration. This paper presents a study on the fabrication and characterization of EHT grafts from novel alginate/collagen composite microbeads by means of cell encapsulation. Specifically, the microbeads were fabricated from alginate and collagen by barium ion cross-linking, with neonatal rat cardiomyocytes encapsulated in the composite microbeads during the fabrication of the EHT grafts. To evaluate the suitablity of these EHT grafts for heart muscle repair, the growth of cardiac cells in the microbeads was examined by means of confocal microscopy and staining with DAPI and F-actin. The EHT grafts were analyzed by scanning electron microscopy and transmission electron microscopy, and the contractile function of the EHT grafts monitored using a digital video camera at different time points. The results show the proliferation of cardiac cells in the microbeads and formation of interconnected multilayer heart-like tissues, the presence of well-organized and dense cell structures, the presence of intercalated discs and spaced Z lines, and the spontaneous synchronized contractility of EHT grafts (at a rate of 20-30 beats min{sup -1} after two weeks in culture). Taken together, these observations demonstrate that the novel alginate/collagen composite microbeads can provide a tissue-like microenvironment for cardiomyocytes that is suitable for fabricating native heart-like tissues.

  6. A novel method of fabricating carbon nanotubes-polydimethylsiloxane composite electrodes for electrocardiography.

    Science.gov (United States)

    Liu, Benyan; Chen, Yingmin; Luo, Zhangyuan; Zhang, Wenzan; Tu, Quan; Jin, Xun

    2015-01-01

    Polymer-based flexible electrodes are receiving much attention in medical applications due to their good wearing comfort. The current fabrication methods of such electrodes are not widely applied. In this study, polydimethylsiloxane (PDMS) and conductive additives of carbon nanotubes (CNTs) were employed to fabricate composite electrodes for electrocardiography (ECG). A three-step dispersion process consisting of ultrasonication, stirring, and in situ polymerization was developed to yield homogenous CNTs-PDMS mixtures. The CNTs-PDMS mixtures were used to fabricate CNTs-PDMS composite electrodes by replica technology. The influence of ultrasonication time and CNT concentration on polymer electrode performance was evaluated by impedance and ECG measurements. The signal amplitude of the electrodes prepared using an ultrasonication time of 12 h and CNT content of 5 wt% was comparable to that of commercial Ag/AgCl electrodes. The polymer electrodes were easily fabricated by conventional manufacturing techniques, indicating a potential advantage of reduced cost for mass production.

  7. Cotton fabric with plasma pretreatment and ZnO/Carboxymethyl chitosan composite finishing for durable UV resistance and antibacterial property.

    Science.gov (United States)

    Wang, Chunxia; Lv, Jingchun; Ren, Yu; Zhou, Qingqing; Chen, Jiayi; Zhi, Tian; Lu, Zhenqian; Gao, Dawei; Ma, Zhipeng; Jin, Limin

    2016-03-15

    ZnO/carboxymethyl chitosan (ZnO/CMCS) composite was prepared and confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Ultraviolet-visible (UV-vis) spectroscopy, Scanning electron microscope (SEM), Transmission electron microscope (TEM). The combination of plasma pretreatment and ZnO/CMCS composite finishing was applied to provide durable UV resistance and antibacterial activity for cotton fabric. Cotton fabric was pretreated by cold oxygen plasma and the ZnO/CMCS composite finishing was carried out by pad-dry-cure. Cotton fabric was characterized by SEM, FTIR, UV resistance, antibacterial activity and Thermogravimetry (TG). SEM and FTIR analysis demonstrated the presence of ZnO/CMCS composite on cotton fabric and the increasing loading efficiency of ZnO/CMCS composite owing to plasma treatment. UV resistance and antibacterial activity of the finished cotton fabric were greatly improved, which increased with the increasing concentration of ZnO/CMCS composite. TG analysis indicated that the combined finishing of cotton fabric with plasma pretreatment and ZnO/CMCS composite could improve its thermal property. The finished cotton fabric exhibited an excellent laundering durability in UV resistance and antibacterial activity.

  8. Fabrication and properties of Al matrix composites strengthened by in situ alumina particulates

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    New aluminum matrix composites strengthened by Al2O3 particulates through stirring cast by adding NH4Al(SO4)2 to the molten aluminum have been fabricated. TEM observation shows that in-situ Al2O3 particulates are generally spherical and they are uniformly distributed in the Al matrix. Dry sliding wear test results show that the volume loss of the unreinforced Al matrix is about three times that of the Al2O3 reinforced metal matrix composite (MMC) and the volume loss of the MMC fabricated by adding Al2O3 is larger than that of the MMC by adding NH4Al(SO4)2. Lubricating sliding wear test results show that the volume loss of the MMCs increases more slowly than that of the matrix with the increasing of the load.

  9. Preparation and properties of copper/polyaniline/polyester composite electromagnetic shielding fabric

    Directory of Open Access Journals (Sweden)

    Jing YU

    2016-04-01

    Full Text Available Conductive polyaniline and polyester composite fabric(PANI/PET is prepared by in-situ polymerization, and after it is activated by hyperbranched polyamidomine/Ag+, Cu is uniformly deposited on its surface by electroless copper plating, finally Cu/PANI/PET composite fabric is obtained. Scanning electron microscope, X-ray diffraction and electromagnetic shielding effectiveness are used to analyze the samples. The results show that using PANI as the middle layer can reduce the average grain size apparently and improve the thermal stability and the friction resistance, and the electromagnetic shielding effectiveness of Cu/PANI/PET can reach 130 dB in the frequency range of 300 kHz~3 GHz.

  10. Fabrication of Machined and Shrink Fitted Impactor; Composite Liners for the Los Alamos HEDP Program

    Energy Technology Data Exchange (ETDEWEB)

    Randolph, B.

    1999-10-19

    Composite liners have been fabricated for the Los Alamos liner driven HEDP experiments using impactors formed by physical vapor deposition (PVD), electroplating, machining and shrink fitting. Chemical vapor deposition (CVD) has been proposed for some ATLAS liner applications. This paper describes the processes used to fabricate machined and shrink fitted impactors which have been used for copper impactors in 1100 aluminum liners and 6061 T-6 aluminum impactors in 1100 aluminum liners. The most successful processes have been largely empirically developed and rely upon a combination of shrink fitted and light press fitting. The processes used to date will be described along with some considerations for future composite liners requirements in the HEDP Program.

  11. Electrokinetics of scalable, electric-field-assisted fabrication of vertically aligned carbon-nanotube/polymer composites

    Science.gov (United States)

    Castellano, Richard J.; Akin, Cevat; Giraldo, Gabriel; Kim, Sangil; Fornasiero, Francesco; Shan, Jerry W.

    2015-06-01

    Composite thin films incorporating vertically aligned carbon nanotubes (VACNTs) offer promise for a variety of applications where the vertical alignment of the CNTs is critical to meet performance requirements, e.g., highly permeable membranes, thermal interfaces, dry adhesives, and films with anisotropic electrical conductivity. However, current VACNT fabrication techniques are complex and difficult to scale up. Here, we describe a solution-based, electric-field-assisted approach as a cost-effective and scalable method to produce large-area VACNT composites. Multiwall-carbon nanotubes are dispersed in a polymeric matrix, aligned with an alternating-current (AC) electric field, and electrophoretically concentrated to one side of the thin film with a direct-current (DC) component to the electric field. This approach enables the fabrication of highly concentrated, individually aligned nanotube composites from suspensions of very dilute ( ϕ = 4 × 10 - 4 ) volume fraction. We experimentally investigate the basic electrokinetics of nanotube alignment under AC electric fields, and show that simple models can adequately predict the rate and degree of nanotube alignment using classical expressions for the induced dipole moment, hydrodynamic drag, and the effects of Brownian motion. The composite AC + DC field also introduces complex fluid motion associated with AC electro-osmosis and the electrochemistry of the fluid/electrode interface. We experimentally probe the electric-field parameters behind these electrokinetic phenomena, and demonstrate, with suitable choices of processing parameters, the ability to scalably produce large-area composites containing VACNTs at number densities up to 1010 nanotubes/cm2. This VACNT number density exceeds that of previous electric-field-fabricated composites by an order of magnitude, and the surface-area coverage of the 40 nm VACNTs is comparable to that of chemical-vapor-deposition-grown arrays of smaller-diameter nanotubes.

  12. Fabrication of Ti/HA composite and functionally graded implant by three-dimensional printing.

    Science.gov (United States)

    Qian, Chao; Zhang, Fuqiang; Sun, Jian

    2015-01-01

    The aim of this study is to evaluate the feasibility of fabricating titanium(Ti)/hydroxyapatite(HA) composite and functionally graded implant by three-dimensional printing (3DP) technology. Nano-scale Ti and HA powders were mixed at the ratio of 8:2 and prepared with water-soluble binder. The Ti/HA composite CAD model was designed to be in cylinder shape (25 mm in diameter, 20 mm in height) with the 100% bond area in each layer. The functionally graded implant was 25 mm in diameter and 10 mm in height with two segments. The upper segment was composed of 100% Ti in each layer, whereas the lower was composed of 80%Ti/20%HA. The composite and functionally graded implant were fabricated by 3DP and sintered at 1200°C under protective argon atmosphere. There occurred a chemical reaction between Ti and HA, in which new resultants of Ca3(PO4)2, CaTiO3, TiO2 and CaO were created. The sintered Ti/HA composite had the aperture size from 50 to 150 μm and the compressive strength of 184.3±27.1 MPa. The result of this study demonstrated that it was feasible to fabricate Ti/HA composite and functionally graded implant by 3DP technology. The microstructure and mechanical properties of Ti/HA composite and functionally graded implant were conductive to bone cell ingrowth, resulting in the wide application of this biocomposite.

  13. Size and composition-controlled fabrication of VO2 nanocrystals by terminated cluster growth

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre; Slack, Jonathan

    2013-05-14

    A physical vapor deposition-based route for the fabrication of VO2 nanoparticles is demonstrated, consisting of reactive sputtering and vapor condensation at elevated pressures. The oxidation of vanadium atoms is an efficient heterogeneous nucleation method, leading to high nanoparticle throughtput. Fine control of the nanoparticle size and composition is obtained. Post growth annealing leads to crystalline VO2 nanoparticles with optimum thermocromic and plasmonic properties.

  14. Facile fabrication of a lotus-effect composite coating via wrapping silica with polyurethane

    Energy Technology Data Exchange (ETDEWEB)

    Su Changhong, E-mail: suchhnju@yahoo.com.cn [Department of Material Science, School of Material Science and Engineering, Shandong University of Technology, Zhangzou Road 22, Zibo 255049 (China)

    2010-01-15

    A lotus-effect coating was fabricated by wrapping micro-silica and nano-silica with polyurethane (PU) and subsequent spraying. The coating shows the similar self-cleaning property as lotus leaves: the contact angle is as large as 168 deg. and the sliding angle is as low as 0.5 deg. Surface morphology of the coating was studied with scanning electron microscopy and atomic force microscopy. The composite coating shows the similar structure as lotus leaves.

  15. Fabrication of Porous Materials from Natural/Synthetic Biopolymers and Their Composites

    Directory of Open Access Journals (Sweden)

    Udeni Gunathilake T.M. Sampath

    2016-12-01

    Full Text Available Biopolymers and their applications have been widely studied in recent years. Replacing the oil based polymer materials with biopolymers in a sustainable manner might give not only a competitive advantage but, in addition, they possess unique properties which cannot be emulated by conventional polymers. This review covers the fabrication of porous materials from natural biopolymers (cellulose, chitosan, collagen, synthetic biopolymers (poly(lactic acid, poly(lactic-co-glycolic acid and their composite materials. Properties of biopolymers strongly depend on the polymer structure and are of great importance when fabricating the polymer into intended applications. Biopolymers find a large spectrum of application in the medical field. Other fields such as packaging, technical, environmental, agricultural and food are also gaining importance. The introduction of porosity into a biomaterial broadens the scope of applications. There are many techniques used to fabricate porous polymers. Fabrication methods, including the basic and conventional techniques to the more recent ones, are reviewed. Advantages and limitations of each method are discussed in detail. Special emphasis is placed on the pore characteristics of biomaterials used for various applications. This review can aid in furthering our understanding of the fabrication methods and about controlling the porosity and microarchitecture of porous biopolymer materials.

  16. Fabrication of Porous Materials from Natural/Synthetic Biopolymers and Their Composites.

    Science.gov (United States)

    Sampath, Udeni Gunathilake T M; Ching, Yern Chee; Chuah, Cheng Hock; Sabariah, Johari J; Lin, Pai-Chen

    2016-12-07

    Biopolymers and their applications have been widely studied in recent years. Replacing the oil based polymer materials with biopolymers in a sustainable manner might give not only a competitive advantage but, in addition, they possess unique properties which cannot be emulated by conventional polymers. This review covers the fabrication of porous materials from natural biopolymers (cellulose, chitosan, collagen), synthetic biopolymers (poly(lactic acid), poly(lactic-co-glycolic acid)) and their composite materials. Properties of biopolymers strongly depend on the polymer structure and are of great importance when fabricating the polymer into intended applications. Biopolymers find a large spectrum of application in the medical field. Other fields such as packaging, technical, environmental, agricultural and food are also gaining importance. The introduction of porosity into a biomaterial broadens the scope of applications. There are many techniques used to fabricate porous polymers. Fabrication methods, including the basic and conventional techniques to the more recent ones, are reviewed. Advantages and limitations of each method are discussed in detail. Special emphasis is placed on the pore characteristics of biomaterials used for various applications. This review can aid in furthering our understanding of the fabrication methods and about controlling the porosity and microarchitecture of porous biopolymer materials.

  17. The Fabrication and Characterization of Piezoelectric PZT/PVDF Electrospun Nanofiber Composites

    Directory of Open Access Journals (Sweden)

    Ji Sun Yun

    2016-03-01

    Full Text Available Piezoelectric nanofiber composites of polyvinylidene fluoride (PVDF polymer and PZT (Pb(Zr0.53Ti0.47O3 ceramics were fabricated by electrospinning. The micro‐ structure of the PZT/PVDF electrospun nanofiber compo‐ sites was characterized using X-ray diffraction (XRD, scanning electron microscopy (SEM and transmission electron microscopy (TEM. The tensile properties (stress- strain curves and electrical properties (P-E hysteresis loops of the PZT/PVDF electrospun nanofiber composites were investigated as a function of PZT content from 0 wt% to 30 wt%. The results demonstrated that a PZT content of 20 wt % had enhanced tensile and piezoelectric characteristics.

  18. Fabrication of high thermal conductivity arrays of carbon nanotubes and their composites

    Science.gov (United States)

    Geohegan, David B [Knoxville, TN; Ivanov, Ilya N [Knoxville, TN; Puretzky, Alexander A [Knoxville, TN

    2010-07-27

    Methods and apparatus are described for fabrication of high thermal conductivity arrays of carbon nanotubes and their composites. A composition includes a vertically aligned nanotube array including a plurality of nanotubes characterized by a property across substantially all of the vertically aligned nanotube array. A method includes depositing a vertically aligned nanotube array that includes a plurality of nanotubes; and controlling a deposition rate of the vertically aligned nanotubes array as a function of an in situ monitored property of the plurality of nanotubes.

  19. Thermal imaging of graphite/epoxy composite samples with fabricated defects

    Science.gov (United States)

    Zalameda, Joseph N.; Winfree, William P.

    1991-01-01

    Consideration is given to a thermal inspection system for quickly inspecting large area composites for increased reliability and maintainability of helicopters resulting from improved quality assurance manufacturing. The infrared camera/image processor-based inspection system was used to image defects in composites. Noncontacting and single-sided measurements were performed on graphite/epoxy samples with fiber volume fraction variations, fabricated porosity, impact damage, and inclusions in incurred lay ups. These defects were imaged by determining the variations in the cooling rates caused by differences in through ply thermal diffusivity. Attention is also given to the system's sensitivity to measuring the defects due to sample thickness.

  20. Processing and Electromagnetic Shielding Properties of Multifunctional Metal Composite Knitted Fabric used as Socks

    OpenAIRE

    Yu Zhicai; He Hualing; Han Yutong; Lin Fei; Yang Xiaori; Zhu Shun; Wang Nan; Lin Jia-Horng

    2016-01-01

    In this research, a type of bamboo charcoal polyester (BC-PET)/antibacterial nylon(AN)/stainless steel wire (SSW) metal composite yarn was prepared with a hollow spindle spinning machine, which using the SSW as the core material, the BC-PET and AN as the outer and inner wrapped yarns, respectively. The wrapping numbers was set at 8.0turns/cm for the produced metal composite yarns. Furthermore, a type of plated knitted fabric was designed and produced by using the automatic jacquard knitting m...

  1. Fabrication, testing and analysis of steel/composite DLS adhesive joints

    DEFF Research Database (Denmark)

    Hashim, S.; Berggreen, Christian; Tsouvalis, N.;

    2011-01-01

    This paper describes experimental and numerical techniques to study the structural design of double lap shear joints that are based on thick-adherend steel/steel and steel/composite, with epoxy adhesive. A standard practical fabrication method was used to produce specimens of various dimensions...... the importance of modelling the composite layers adjacent to the adhesive bondline in order to account for the critical local stresses. The FEA results also showed that overall shear stress distributions can be used to characterise joint failure. The paper presents the experimental and numerical details with key...

  2. Green Composites Made of Bamboo Fabric and Poly (Lactic Acid for Packaging Applications—A Review

    Directory of Open Access Journals (Sweden)

    M.R. Nurul Fazita

    2016-06-01

    Full Text Available Petroleum based thermoplastics are widely used in a range of applications, particularly in packaging. However, their usage has resulted in soaring pollutant emissions. Thus, researchers have been driven to seek environmentally friendly alternative packaging materials which are recyclable as well as biodegradable. Due to the excellent mechanical properties of natural fibres, they have been extensively used to reinforce biopolymers to produce biodegradable composites. A detailed understanding of the properties of such composite materials is vital for assessing their applicability to various products. The present review discusses several functional properties related to packaging applications in order to explore the potential of bamboo fibre fabric-poly (lactic acid composites for packaging applications. Physical properties, heat deflection temperature, impact resistance, recyclability and biodegradability are important functional properties of packaging materials. In this review, we will also comprehensively discuss the chronological events and applications of natural fibre biopolymer composites.

  3. PEDOT-CNT composite microelectrodes for recording and electrostimulation applications: fabrication, morphology and electrical properties

    Directory of Open Access Journals (Sweden)

    Ramona eGerwig

    2012-05-01

    Full Text Available Composites of carbon nanotubes and poly(3,4-ethylenedioxythiophene (PEDOT and layers of PEDOT are deposited onto microelectrodes by electropolymerization of ethylenedioxythiophene in the presence of a suspension of carbon nanotubes and polystyrenesulfonate. Analysis by FIB and SEM demonstrate that CNT-PEDOT composites exhibit a porous morphology whereas PEDOT layers are more compact. Accordingly, capacitance and charge injection capacity of the composite material exceed those of pure PEDOT layers. In vitro cell culture experiments reveal excellent biocompatibility and mechanical stability of both PEDOT and PEDOT-CNT electrodes. Signals recorded from heart muscle cells demonstrate the high S/N ratio achievable with these electrodes. Long-term pulsing experiments confirm stability of charge injection capacity. In conclusion, a robust fabrication procedure for composite PEDOT-CNT electrodes is demonstrated and results show that these electrodes are well suited for stimulation and recording in cardiac and neurophysiological research.

  4. Fabrication of single crystalline diamond reinforced aluminum matrix composite by powder metallurgy route

    Science.gov (United States)

    Kwon, Hansang; Leparoux, Marc; Heintz, Jean-Marc; Silvain, Jean-François; Kawasaki, Akira

    2011-10-01

    We have successfully fabricated highly densified aluminum (Al)-diamond composite materials by a simple hot press method. The thermal conductivity of the Al-diamond composite materials was measured. These materials had different types, sizes and fractions of diamond. These obtained values were discussed based on theoretically calculated values. The thermal conductivity of the composite materials, measured by Laser-Flash method, was found to have slightly increased compared to that of pure bulk Al. The obtained microstructures of the composite materials showed a lot of cleavage existing in the interface between the Al matrix and the diamond particles, which led to the low increment of the thermal conductivity. Moreover, Al-diamond bulk materials with different sintering temperatures in solid state, liquid phase, and transient region between solid and liquid of Al, have been synthesized.

  5. Tungsten Oxide and Polyaniline Composite Fabricated by Surfactant-Templated Electrodeposition and Its Use in Supercapacitors

    Directory of Open Access Journals (Sweden)

    Benxue Zou

    2014-01-01

    Full Text Available Composite nanostructures of tungsten oxide and polyaniline (PANI were fabricated on carbon electrode by electrocodeposition using sodium dodecylbenzene sulfonate (SDBS as the template. The morphology of the composite can be controlled by changing SDBS surfactant and aniline monomer concentrations in solution. With increasing concentration of aniline in surfactant solution, the morphological change from nanoparticles to nanofibers was observed. The nanostructured WO3/PANI composite exhibited enhanced capacitive charge storage with the specific capacitance of 201 F g−1 at 1.28 mA cm−2 in large potential window of -0.5~ 0.65 V versus SCE compared to the bulk composite film. The capacitance retained about 78% when the sweeping potential rate increased from 10 to 150 mV/s.

  6. Fabrication and mechanical evaluation of hydroxyapatite/oxide nano-composite materials.

    Science.gov (United States)

    Mohamed, Khaled R; Beherei, Hanan H; El Bassyouni, Gehan T; El Mahallawy, Nahed

    2013-10-01

    In the current study, the semiconducting metal oxides such as nano-ZnO and SiO2 powders were prepared via sol-gel technique and conducted on nano-hydroxyapatite (nHA) which was synthesized by chemical precipitation. The properties of fabricated nano-structured composites containing different ratios of HA, ZnO and SiO2 were examined using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscope (SEM) and transmission electron microscope (TEM) techniques. The effect of the variation of ratios between the three components on mechanical, microstructure and in-vitro properties was assessed to explore the possibility of enhancing these properties. The results proved that the mechanical properties exhibited an increment with increasing the ZnO content at the extent of HA. In-vitro study proved the formation and nucleation of apatite onto the surface of the fabricated composites after one week of immersion. It is concluded that HA composites containing SiO2 or SiO2/ZnO content had a suitable mechanical properties and ability to form apatite particles onto the composite surface. Based on bioactivity behavior, Si-HA is more bioactive than pure hydroxyapatite and nano-arrangements will provide an interface for better bone formation. Therefore, these nano-composites will be promising as bone substitutes especially in load bearing sites.

  7. Ultrasonic Transducer Fabricated Using Lead-Free BFO-BTO+Mn Piezoelectric 1-3 Composite

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2015-05-01

    Full Text Available Mn-doped 0.7BiFeO3-0.3BaTiO3 (BFO-0.3BTO+Mn 1% mol lead-free piezoelectric ceramic were fabricated by traditional solid state reaction. The phase structure, microstructure, and ferroelectric properties were investigated. Additionally, lead-free 1–3 composites with 60% volume fraction of BFO-BTO+Mn ceramic were fabricated for ultrasonic transducer applications by a conventional dice-and-fill method. The BFO-BTO+Mn 1-3 composite has a higher electromechanical coupling coefficient (kt = 46.4% and lower acoustic impedance (Za ~ 18 MRayls compared with that of the ceramic. Based on this, lead-free piezoelectric ceramic composite, single element ultrasonic transducer with a center frequency of 2.54 MHz has been fabricated and characterized. The single element transducer exhibits good performance with a broad bandwidth of 53%. The insertion loss of the transducer was about 33.5 dB.

  8. Modeling of CVI process in fabrication of carbon/carbon composites by an artificial neural network

    Institute of Scientific and Technical Information of China (English)

    李爱军; 李贺军; 李克智; 顾正彬

    2003-01-01

    The chemical vapor infiltration(CVI) process in fabrication of carbon-carbon composites is very complex and highly inefficient, which adds considerably to the cost of fabrication and limits the application of the material. This paper tries to use a supervised artificial neural network(ANN) to model the nonlinear relationship between parameters of isothermal CVI(ICVI) processes and physical properties of C/C composites. A model for preprocessing dataset and selecting its topology is developed using the Levenberg-Marquardt training algorithm and trained with comprehensive dataset of tubal C/C components collected from experimental data and abundant simulated data obtained by the finite element method. A basic repository on the domain knowledge of CVI processes is established via sufficient data mining by the network. With the help of the repository stored in the trained network, not only the time-dependent effects of parameters in CVI processes but also their coupling effects can be analyzed and predicted. The results show that the ANN system is effective and successful for optimizing CVI processes in fabrication of C/C composites.

  9. Static Strength of Adhesively-bonded Woven Fabric Kenaf Composite Plates

    Science.gov (United States)

    Hilton, Ahmad; Lee, Sim Yee; Supar, Khairi

    2017-06-01

    Natural fibers are potentially used as reinforcing materials and combined with epoxy resin as matrix system to form a superior specific strength (or stiffness) materials known as composite materials. The advantages of implementing natural fibers such as kenaf fibers are renewable, less hazardous during fabrication and handling process; and relatively cheap compared to synthetic fibers. The aim of current work is to conduct a parametric study on static strength of adhesively bonded woven fabric kenaf composite plates. Fabrication of composite panels were conducted using hand lay-up techniques, with variation of stacking sequence, over-lap length, joint types and lay-up types as identified in testing series. Quasi-static testing was carried out using mechanical testing following code of practice. Load-displacement profiles were analyzed to study its structural response prior to ultimate failures. It was found that cross-ply lay-up demonstrates better static strength compared to quasi-isotropic lay-up counterparts due to larger volume of 0° plies exhibited in cross-ply lay-up. Consequently, larger overlap length gives better joining strength, as expected, however this promotes to weight penalty in the joining structure. Most samples showed failures within adhesive region known as cohesive failure modes, however, few sample demonstrated interface failure. Good correlations of parametric study were found and discussed in the respective section.

  10. Influence of the Geometric Parameters on the Mechanical Behaviour of Fabric Reinforced Composite Laminates

    Science.gov (United States)

    Axinte, Andrei; Taranu, Nicolae; Bejan, Liliana

    2016-10-01

    A polymer fabric reinforced composite is a high performance material, which combines strength of the fibres with the flexibility and ductility of the matrix. For a better drapeability, the tows of fibres are interleaved, resulting the woven fabric, used as reinforcement. The complex geometric shape of the fabric is of paramount importance in establishing the deformability of the textile reinforced composite laminates. In this paper, an approach based on Classical Lamination Theory ( CLT), combined with Finite Element Methods ( FEM), using Failure Analysis and Internal Load Redistribution, is utilised, in order to compare the behaviour of the material under specific loads. The main goal is to analyse the deformability of certain types of textile reinforced composite laminates, using carbon fibre satin as reinforcement and epoxy resin as matrix. This is accomplished by studying the variation of the in-plane strains, given the fluctuation of several geometric parameters, namely the width of the reinforcing tow, the gap between two consecutive tows, the angle of laminae in a multi-layered configuration and the tows fibre volume fraction.

  11. Development of film- and- fabric composite materials durability assessing methodology under time-dependent influences of temperature and solar radiation

    Science.gov (United States)

    Kayumov, R. A.; Muhamedova, I. Z.; Suleymanov, A. M.; Tazyukov, B. F.

    2016-11-01

    In this paper, we present the design of stress-strain state calculation and film-and- fabric composite materials durability under stresses and solar radiation. We have constructed a two-dimensional finite-state-element computer model of the deforming process of the low- level cell of film-and-fabric-based composite material for the evaluation of its durability which takes into account non-linear viscoelasticity, temperature variations, ageing of the material, the process of upbuilding of microdamage and photodegradation. Qualitative research of operational factors influence (UV, temperature) on film-and-fabric composite materials durability was conducted.

  12. Natural fiber composites with EMI shielding function fabricated using VARTM and Cu film magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Changlei [Department of Mechanical and Energy Engineering, University of North Texas, Denton, TX 76203 (United States); Ren, Han [Department of Electrical Engineering, University of North Texas, Denton, TX 76203 (United States); Shi, Sheldon Q., E-mail: Sheldon.Shi@unt.edu [Department of Mechanical and Energy Engineering, University of North Texas, Denton, TX 76203 (United States); Zhang, Hualiang [Department of Electrical Engineering, University of North Texas, Denton, TX 76203 (United States); Cheng, Jiangtao [Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Cai, Liping [Department of Mechanical and Energy Engineering, University of North Texas, Denton, TX 76203 (United States); Chen, Kathleen; Tan, Hwa-Shen [Texas Academy of Mathematics and Science, University of North Texas, Denton, TX 76203 (United States)

    2016-01-30

    Graphical abstract: - Highlights: • Natural-fiber-reinforced composites with electromagnetic shielding were fabricated. • Copper magnetron sputtering was applied on the composite surfaces. • The highest electromagnetic interference shielding effective reached 48.3 dB. • The water contact angle changed from 49.6° to 129.5° after 0.5-h sputtering. - Abstract: To fabricate kenaf fiber composites with electromagnetic interference (EMI) shielding function, the technique of vacuum-assisted resin transfer molding (VARTM) and Cu film magnetron sputtering were employed. The EMI shielding effectiveness (SE) and composite surface characteristics were examined with PNA Network Analyzer, Quanta 200 environmental scanning electron microscope and OCA20 contact angle meter. After being Cu-sputter coated for 0.5 h, 1 h, 2 h, and 3 h, the EMI SE values were increased to be 23.8 dB, 32.5 dB, 43.3 dB, and 48.3 dB, which denoted 99.5799%, 99.9437%, 99.9953%, or 99.9985% incident signal was blocked, respectively. The SEM observations revealed that the smoother surface of the composites was obtained by longer time sputtering, resulting in the SE improvement. The contact angle increased from 49.6° to 129.5° after 0.5 h sputtering, which indicated that the coated Cu film dramatically improved the hydrophobic property of composite. When the coating time increased to 3 h, the contact angle decreased to 51.0° because the composite surface roughness decreased with the increase in coating time.

  13. Incorporation of ZnO and their composite nanostructured material into a cotton fabric platform for wearable device applications.

    Science.gov (United States)

    Veluswamy, Pandiyarasan; Sathiyamoorthy, Suhasini; Khan, Faizan; Ghosh, Aranya; Abhijit, Majumdar; Hayakawa, Yasuhiro; Ikeda, Hiroya

    2017-02-10

    The central idea of this paper is to innovate a new approach for the development of wearable device materials through the coating of cotton fabric with ZnO and Sb-/Ag-/ZnO composites. The study was designed in order to have a clear understanding of the role of ZnO as well as the modified composite thereof under investigation. Cotton fabric with uniform ZnO/ZnO-composite layers on the surface was successfully synthesized via a solvothermal method. The growth behaviors were investigated by comparing ZnO and ZnO-composites. The structural, morphological, chemical states, optical, electrical and thermopower properties of these fabrics were studied. Nanostructured ZnO-composite fabric had enhanced UV shielding with a value of 83.96. It is found that the ZnO-composite fabrics have increased electrical conductivity. The thermopower value of the ZnO-composite fabric could reach 471.9μVK(-1). Such materials are anticipated to be worthwhile as wearable electronic devices and as protective textiles.

  14. Study on fabrication of smart FRP-OFBG composite laminates and their sensing properties

    Science.gov (United States)

    Wang, Yanlei; Zhou, Zhi; Ou, Jinping

    2007-01-01

    Fiber reinforced polymer (FRP) has gained much attention in civil engineering due to its high strength-to-weight and stiffness-to-weight ratios, corrosion resistance and good fatigue resistance. Optical Fiber Bragg Grating (OFBG) is now widely accepted as smart sensor due to its advantages of electric-magnetic resistance, small size, distributed sensing, durability, and so on. Combined the FRP with OFBG, new kind of smart FRP-OFBG composite laminates was developed. Fabrication method of the smart composite laminates was introduced in this paper. The study presented the basic principle of OFBG sensors. Then the strain and temperature sensing properties of the proposed smart FRP-OFBG composite laminates were experimentally studied on material test system and under hot water, respectively. The experimental results indicate the strain sensing properties of the smart FRP-OFBG composite laminates are nearly the same as that of bare OFBG, however, the temperature sensing abilities of the smart FRP-OFBG composite laminates are improved and the sensitivity coefficient is nearly 3.2 times as much as that of bare OFBG. The strain and temperature sensing precisions of the smart FRP-OFBG composite laminates are 1 μ\\Vegr and 0.03 °C, respectively. The smart FRYOFBG composite laminates are very proper for application in civil engineering.

  15. Fabrication and Properties of Poly(vinylalcohol)-glycosaminoglycantype I Collagen Composite Membrane as Tissue Regeneration Scaffolds

    Institute of Scientific and Technical Information of China (English)

    LI Qin-hua; LIN Dong-qing

    2015-01-01

    The objective of this paper is to design a porous polyvinyl alcohol (PVA) based on composite membrane with certain mechanical strength and biocompatibilities serving as tissue regenerative scaffolds. PVA-glycosaminoglycan (GAG)-type I collagen (COL) composite membrane was fabricated by PVA with different molecular weight (Mw) and alcoholysis degree (AD) being blended with certain amounts of GAG and COL and dried at 38℃for 24 h. The water content of the composite membranes were from 61.9%to 95.1%and swelling ratio ranged from 123.6%to 621.7%. Scanning electron micro-scope (SEM) analysis proved that PVA-GAG-COL composite membrane has porous and homogenous structure. Biocompatibility test results showed that the composite membrane was nontoxic, which could promote adhesion and proliferation of fibroblasts on the com-posite membrane. In conclusion, PVA-GAG-COL composite membrane with high water content and swelling ratio, suitable mechanical strength and good biocompatibility, has potential in tissue engineering and regenerative medicine.

  16. An analysis of fabrication methods for embedding particles sensors into a composite structure

    Science.gov (United States)

    Spayde, Dustin L.; Myers, Oliver J.

    2013-04-01

    The properties of highly magnetostictive materials, such as Terfenol-D, have opened the door to a wide variety of application possibilities. One such developing application is embedding magnetostictive particles (MSP) as sensors for determining the structural integrity of composite materials over the course of the operating life. The process of embedding these particles during the fabrication of the composite structure presents many challenges. This paper will briefly discuss and show the relationship between particle density and the output of a uni-axial induction based sensor. This relationship is critical for defining the goal of embedding process in this paper, to create a uniform uni-axial distribution of particles within the composite structure. Multiple methods of embedding magnetostrictive particles into a composite structure are detailed and then compared to determine their relative effectiveness. Methods included are: a simple by-hand spread of particles onto uncured prepreg composite, using the controlled adhesiveness of the prepreg to separate particles, applying the particles using a unidirectional application tool, introducing the particles into the epoxy mix to create a slurry during a VARTM layup, and spraying the particles onto a tacky composite surface during layup. Each method is used to embed particles into a composite beam or analog beam. That beam is then scanned with the uniaxial induction sensor to determine the effectiveness of the method. Results show promise for the adhesive method while the remaining processes show critical flaws.

  17. Fabrication of Titanium/Fluorapatite Composites and In Vitro Behavior in Simulated Body Fluid

    Institute of Scientific and Technical Information of China (English)

    Hezhou Ye; Xing Yang Liu; Hanping Hong

    2013-01-01

    Titanium/fluorapatite (Ti/FA) composites with various FA additions were fabricated by powder metallurgy.The decomposition of FA during sintering was accelerated by the presence of Ti.The main reaction products of FA and Ti were identified as CaO,Ti phosphides,and CaTiO3.The addition of FA significantly inhibited the densification of Ti.The in vitro bioactivity of the composites was evaluated in a simulated body fluid (SBF).After immersion into the SBF,all the Ti/FA composites induced nucleation and growth of bone-like carbonated apatite on the surface.Co-precipitation of CaCO3 and Mg(OH)2 was also detected on the surface of the composite with high FA addition at an early stage of immersion.Furthermore,the release of fluorine ions from the composite was confirmed,which could promote bone regeneration and retard the formation of caries in the biological environment.The in vitro behavior was attributed to multiple factors,including the surface conditions and the constituents of the composite.The results demonstrated that the Ti/FA composites were bioactive in nature even with a low FA addition and they could introduce the benefit of fluorine ions in the service.

  18. High Thermal and Electrical Conductivity of Template Fabricated P3HT/MWCNT Composite Nanofibers.

    Science.gov (United States)

    Smith, Matthew K; Singh, Virendra; Kalaitzidou, Kyriaki; Cola, Baratunde A

    2016-06-15

    Nanoporous alumina membranes are filled with multiwalled carbon nanotubes (MWCNTs) and then poly(3-hexylthiophene-2,5-diyl) (P3HT) melt, resulting in nanofibers with nanoconfinement induced coalignment of both MWCNT and polymer chains. The simple sonication process proposed here can achieve vertically aligned arrays of P3HT/MWCNT composite nanofibers with 3 wt % to 55 wt % MWCNT content, measured using thermogravimetric methods. Electrical and thermal transport in the composite nanofibers improves drastically with increasing carbon nanotube content where nanofiber thermal conductivity peaks at 4.7 ± 1.1 Wm(-1)K(-1) for 24 wt % MWCNT and electrical percolation occurs once 20 wt % MWCNT content is surpassed. This is the first report of the thermal conductivity of template fabricated composite nanofibers and the first proposed processing technique to enable template fabrication of composite nanofibers with high filler content and long aspect ratio fillers, where enhanced properties can also be realized on the macroscale due to vertical alignment of the nanofibers. These materials are interesting for thermal management applications due to their high thermal conductivity and temperature stability.

  19. Processing and Characterization of PETI Composites Fabricated by High Temperature VARTM

    Science.gov (United States)

    Ghose, Sayata; Cano, Roberto J.; Watson, Kent A.; Britton, Sean M.; Jensen, Brian J.; Connell, John W.; Smith, Joseph G.; Loos, Alfred C.; Heider, Dirk

    2011-01-01

    The use of composites as primary structures on aerospace vehicles has increased dramatically over the past decade. As these advanced structures increase in size and complexity, their production costs have grown significantly. A major contributor to these manufacturing costs is the requirement of elevated processing pressures, during the thermal cure, to create fully consolidated composites. For certain composite parts, high temperature vacuum assisted resin transfer molding (HT-VARTM) can offer reduced fabrication costs compared to conventional autoclave techniques. The process has been successfully used with phenylethynyl terminated imide (PETI) resins developed by NASA LaRC. In the current study, two PETI resins, LARC(TradeMark) PETI-330 and LARC(TradeMark) PETI-8 have been used to make test specimens using HT-VARTM. Based on previous work at NASA LaRC, larger panels with a quasi-isotropic lay-up were fabricated. The resultant composite specimens exhibited void contents VARTM. The results of this work are presented herein.

  20. Controllable reduction of graphene oxide and its application during the fabrication of high dielectric constant composites

    Science.gov (United States)

    Liu, Hui; Xu, Peng; Yao, Haibo; Chen, Wenhui; Zhao, Jianying; Kang, Chuanqing; Bian, Zheng; Gao, Lianxun; Guo, Haiquan

    2017-10-01

    The synthesis of reduced graphene oxide (RGO) with various reduction extents was carried out in organic solvent using 1,4-diiodobutane as the reducing agent at moderate temperatures. Results showed that the C/O ratio of RGO nanosheet surface could be tailored by adjusting the ratio of graphene oxide (GO) and reducing agent. The controllable reduction strategy was applied to the fabrication of high dielectric constant graphene/polyimide composites via the in situ reduction of GO. The reduction extents of RGO in polymer matrix can be readily manipulated just through altering the addition of the reducing agent. The dielectric constants of gaphene/polyimide composites were significantly enhanced with the increasing of the reduction extent of RGO. Moreover, the mechanical properties of the composites were also affected by the reduction extent of RGO due to the decreases of the oxygen functional groups of RGO surface. Hence, the in situ controllable reduction of GO should be quite an ideal method for the fabrication of high dielectric constant composites with the tunable combination properties.

  1. Comparison of tensile strength of different carbon fabric reinforced epoxy composites

    Directory of Open Access Journals (Sweden)

    Jane Maria Faulstich de Paiva

    2006-03-01

    Full Text Available Carbon fabric/epoxy composites are materials used in aeronautical industry to manufacture several components as flaps, aileron, landing-gear doors and others. To evaluate these materials become important to know their mechanical properties, for example, the tensile strength. Tensile tests are usually performed in aeronautical industry to determinate tensile property data for material specifications, quality assurance and structural analysis. For this work, it was manufactured four different laminate families (F155/PW, F155/HS, F584/PW and F584/HS using pre-impregnated materials (prepregs based on F155TM and F584TM epoxy resins reinforced with carbon fiber fabric styles Plain Weave (PW and Eight Harness Satin (8HS. The matrix F155TM code is an epoxy resin type DGEBA (diglycidil ether of bisphenol A that contains a curing agent and the F584TM code is a modified epoxy resin type. The laminates were obtained by handing lay-up process following an appropriate curing cycle in autoclave. The samples were evaluated by tensile tests according to the ASTM D3039. The F584/PW laminates presented the highest values of tensile strength. However, the highest modulus results were determined for the 8HS composite laminates. The correlation of these results emphasizes the importance of the adequate combination of the polymeric matrix and the reinforcement arrangement in the structural composite manufacture. The microscopic analyses of the tested specimens show valid failure modes for composites used in aeronautical industry.

  2. Living nano-micro fibrous woven fabric/hydrogel composite scaffolds for heart valve engineering.

    Science.gov (United States)

    Wu, Shaohua; Duan, Bin; Qin, Xiaohong; Butcher, Jonathan T

    2017-01-18

    Regeneration and repair of injured or diseased heart valves remains a clinical challenge. Tissue engineering provides a promising treatment approach to facilitate living heart valve repair and regeneration. Three-dimensional (3D) biomimetic scaffolds that possess heterogeneous and anisotropic features that approximate those of native heart valve tissue are beneficial to the successful in vitro development of tissue engineered heart valves (TEHV). Here we report the development and characterization of a novel composite scaffold consisting of nano- and micro-scale fibrous woven fabrics and 3D hydrogels by using textile techniques combined with bioactive hydrogel formation. Embedded nano-micro fibrous scaffolds within hydrogel enhanced mechanical strength and physical structural anisotropy of the composite scaffold (similar to native aortic valve leaflets) and also reduced its compaction. We determined that the composite scaffolds supported the growth of human aortic valve interstitial cells (HAVIC), balanced the remodeling of heart valve ECM against shrinkage, and maintained better physiological fibroblastic phenotype in both normal and diseased HAVIC over single materials. These fabricated composite scaffolds enable the engineering of a living heart valve graft with improved anisotropic structure and tissue biomechanics important for maintaining valve cell phenotypes.

  3. Studies on the chemical resistance and mechanical properties of natural polyalthia cerasoides woven fabric/glass hybridized epoxy composites

    CSIR Research Space (South Africa)

    Jayaramudu, J

    2015-01-01

    Full Text Available In the present work, natural Polyalthiacerasoide woven fabrics were extracted from the bark of the tree and using these woven fabrics/glass fibre as reinforcements and epoxy as matrix the hybrid composites were prepared by the hand lay-up technique...

  4. Effects of the Addition of Sodium Alginate and the Concentration of Calcium Chloride on the Properties of Composite Nonwoven Fabrics

    Directory of Open Access Journals (Sweden)

    Lou Ching-Wen

    2016-01-01

    Full Text Available Nonwoven fabrics have merits, and for example, they can be simply and quickly processed with a variety of materials and an easily changeable manufacturing process. This study aims to examine the influences of the addition of sodium alginate (SA and the concentration of calcium chloride (CaCl2 on the properties of the composite nonwoven fabrics. Chitosan (CS micro-particles and SA solution are cross-linked with CaCl2 with various concentrations, combined with farir heat preservative staples (FT/cotton (C nonwoven fabrics, and then freeze-dried to form CS/SA/FT/C composite nonwoven fabrics. Afterwards, physical property tests are performed on the resulting composite nonwoven fabrics to determine their properties as related to various concentrations of CaCl2. The addition of SA decreases the water vapor permeability of FT/C nonwoven fabrics by 15 %, but the concentrations of CaCl2 do not influence the water vapor permeability. Compared to FT/C nonwoven fabrics, CS/SA/FT/C composite nonwoven fabrics have significantly lower water absorbency and water vapor permeability, but a greater stiffness.

  5. The Relation Between Structure-Performance of Thin Film Composite Membranes and the Tools Used for Their Fabrication Method

    DEFF Research Database (Denmark)

    Briceno, Kelly; Javakhishvili, Irakli; Guo, Haofei

    For more than 30 years polyimides (PA) have been one of the main polymers for the fabrication of thin film composite membranes. Several researchers have assessed the main fabrication variables that influence the final structure of the polyamide layers including monomer concentration, solvents...

  6. Investigation of Springback Associated with Composite Material Component Fabrication (MSFC Center Director's Discretionary Fund Final Report, Project 94-09)

    Science.gov (United States)

    Benzie, M. A.

    1998-01-01

    The objective of this research project was to examine processing and design parameters in the fabrication of composite components to obtain a better understanding and attempt to minimize springback associated with composite materials. To accomplish this, both processing and design parameters were included in a Taguchi-designed experiment. Composite angled panels were fabricated, by hand layup techniques, and the fabricated panels were inspected for springback effects. This experiment yielded several significant results. The confirmation experiment validated the reproducibility of the factorial effects, error recognized, and experiment as reliable. The material used in the design of tooling needs to be a major consideration when fabricating composite components, as expected. The factors dealing with resin flow, however, raise several potentially serious material and design questions. These questions must be dealt with up front in order to minimize springback: viscosity of the resin, vacuum bagging of the part for cure, and the curing method selected. These factors directly affect design, material selection, and processing methods.

  7. Effect of alkali treatment on the morphology and tensile properties of Cordia dichotoma fabric/polycarbonate composites

    CSIR Research Space (South Africa)

    Jayaramudu, J

    2013-05-01

    Full Text Available Advances in Polymer Technology, Vol. 32, No. 3, 2013 Effect of Alkali Treatment on the Morphology and Tensile Properties of Cordia Dichotoma Fabric/Polycarbonate Composites J. JAYARAMUDU, G. SIVAMOHAN REDDY, K. VARAPRASAD, E. R. SADIKU Department...

  8. Low cost fabrication of polymer composite (h-ZnO + PDMS) material for piezoelectric device application

    Science.gov (United States)

    Singh, Akanksha; Das, Sonatan; Bharathkumar, Mareddi; Revanth, D.; Karthik, ARB; Sudhakara Sastry, Bala; Ramgopal Rao, V.

    2016-07-01

    Flexible piezoelectric composites offer alternative and/or additional solutions to sensor, actuator and transducer applications. Here in this work, we have successfully fabricated highly flexible piezoelectric composites with poly dimethyl siloxane (PDMS) using herbal zinc oxide (h-ZnO) as filler having weight fractions up to 50 wt.% by solution casting of dispersions of h-ZnO in PDMS. Excellent piezo properties (Resonant frequency 935 Hz, d*33 29.76 pm V-1), physiochemical properties (Wurtzite structure ZnO, 380 nm absorbance) and mechanical properties (Young modulus 16.9 MPa) have been optimized with theoretical simulations and observed experimentally for h-ZnO + PDMS. As such, the demonstrated piezoelectric PDMS membranes combined with the excellent properties of these composites open new ways to ‘soft touch’ applications and could serve as a variety of soft and sensitive electromechanical transducers, which are desired for a variety of sensor and energy harvesting applications.

  9. Vapor-phase fabrication and properties of continuous-filament ceramic composites.

    Science.gov (United States)

    Besmann, T M; Sheldon, B W; Lowden, R A; Stinton, D P

    1991-09-06

    The continuous-filament ceramic composite is becoming recognized as necessary for new, high-temperature structural applications. Yet because of the susceptibility of the filaments to damage from traditional methods for the preparation of ceramics, vapor-phase infiltration has become the fabrication method of choice. The chemical vapor infiltration methods for producing these composites are now being studied in earnest, with the complexity of filament weaves and deposition chemistry being merged with standard heat and mass-transport relationships. Two of the most influential effects on the mechanical properties of these materials are the adhesion and frictional force between the fibers and the matrix, which can be controlled by a tailored interface coating. A variety of materials are available for producing these composites including carbide, nitride, boride, and oxide filaments and matrices. Silicon carbide-based materials are by far the most advanced and are already being used in aerospace applications.

  10. Nanocrystalline Ag-Re Composite as a Potential Material for Electric Contacts Fabrication

    Directory of Open Access Journals (Sweden)

    Kołacz D.

    2016-12-01

    Full Text Available A new silver-based composite material with an addition of 1 and 10 mass % of rhenium, for prospective application in the production of electric contacts, has been presented. The paper shows results of the research and experimental works aimed at developing technology for fabrication of semiproducts (wires and bimetallic contacts by classical powder metallurgy methods and by a method enabling production of nanocrystalline composite. At each stage of the processes involved, physical, mechanical and technological properties of the materials were investigated. Particular attention was given to final products and semiproducts prepared in a form of bimetallic contacts. It was found that the composite with nanocrystalline structure may be a good material for ecological electric contacts.

  11. Fabrication of bioinspired composite nanofiber membranes with robust superhydrophobicity for direct contact membrane distillation.

    Science.gov (United States)

    Liao, Yuan; Wang, Rong; Fane, Anthony G

    2014-06-03

    The practical application of membrane distillation (MD) for water purification is hindered by the absence of desirable membranes that can fulfill the special requirements of the MD process. Compared to the membranes fabricated by other methods, nanofiber membranes produced by electrospinning are of great interest due to their high porosity, low tortuosity, large surface pore size, and high surface hydrophobicity. However, the stable performance of the nanofiber membranes in the MD process is still unsatisfactory. Inspired by the unique structure of the lotus leaf, this study aimed to develop a strategy to construct superhydrophobic composite nanofiber membranes with robust superhydrophobicity and high porosity suitable for use in MD. The newly developed membrane consists of a superhydrophobic silica-PVDF composite selective skin formed on a polyvinylidene fluoride (PVDF) porous nanofiber scaffold via electrospinning. This fabrication method could be easily scaled up due to its simple preparation procedures. The effects of silica diameter and concentration on membrane contact angle, sliding angle, and MD performance were investigated thoroughly. For the first time, the direct contact membrane distillation (DCMD) tests demonstrate that the newly developed membranes are able to present stable high performance over 50 h of testing time, and the superhydrophobic selective layer exhibits excellent durability in ultrasonic treatment and a continuous DCMD test. It is believed that this novel design strategy has great potential for MD membrane fabrication.

  12. Improved Strength and Toughness of Carbon Woven Fabric Composites with Functionalized MWCNTs

    Directory of Open Access Journals (Sweden)

    Eslam Soliman

    2014-06-01

    Full Text Available This investigation examines the role of carboxyl functionalized multi-walled carbon nanotubes (COOH-MWCNTs in the on- and off-axis flexure and the shear responses of thin carbon woven fabric composite plates. The chemically functionalized COOH-MWCNTs were used to fabricate epoxy nanocomposites and, subsequently, carbon woven fabric plates to be tested on flexure and shear. In addition to the neat epoxy, three loadings of COOH-MWCNTs were examined: 0.5 wt%, 1.0 wt% and 1.5 wt% of epoxy. While no significant statistical difference in the flexure response of the on-axis specimens was observed, significant increases in the flexure strength, modulus and toughness of the off-axis specimens were observed. The average increase in flexure strength and flexure modulus with the addition of 1.5 wt% COOH-MWCNTs improved by 28% and 19%, respectively. Finite element modeling is used to demonstrate fiber domination in on-axis flexure behavior and matrix domination in off-axis flexure behavior. Furthermore, the 1.5 wt% COOH-MWCNTs increased the toughness of carbon woven composites tested on shear by 33%. Microstructural investigation using Fourier Transform Infrared Spectroscopy (FTIR proves the existence of chemical bonds between the COOH-MWCNTs and the epoxy matrix.

  13. The Fabrication and Characterization of PCL/Rice Husk Derived Bioactive Glass-Ceramic Composite Scaffolds

    Directory of Open Access Journals (Sweden)

    Farnaz Naghizadeh

    2014-01-01

    Full Text Available The present study was conducted to fabricate a 3D scaffold using polycaprolactone (PCL and silicate based bioactive glass-ceramic (R-SBgC. Different concentrations of R-SBgC prepared from rice husk ash (RHA were combined with PCL to fabricate a composite scaffold using thermally induced phase separation (TIPS method. The products were then characterized using SEM and EDX. The results demonstrated that R-SBgC in PCL matrix produced a bioactive material which has highly porous structure with interconnected porosities. There appears to be a relationship between the increase in R-SBgC concentration and increased material density and compressive modulus; however, increasing R-SBgC concentration result in reduced scaffold porosity. In conclusion, it is possible to fabricate a PCL/bioactive glass-ceramic composite from processed rice husk. Varying the R-SBgC concentrations can control the properties of this material, which is useful in the development of the ideal scaffold intended for use as a bone substitute in nonload bearing sites.

  14. Fabrication and reliable implementation of an ionic polymer-metal composite (IPMC) biaxial bending actuator

    Science.gov (United States)

    Lee, Gil-Yong; Choi, Jung-Oh; Kim, Myeungseon; Ahn, Sung-Hoon

    2011-10-01

    Ionic polymer-metal composites (IPMCs) are one of the most popular types of electro-active polymer actuator, due to their low electric driving potential, large deformation range, and light weight. IPMCs have been used as actuators or sensors in many areas of biomedical and robotic engineering. In this research, IPMCs were studied as a biaxial bending actuator capable of smart and flexible motion. We designed and fabricated this bending actuator and implemented it to have a reliable actuating motion using a systematic approach. The resulting device was bar shaped with a square cross section and had four insulated electrodes on its surface. By applying different voltages to these four electrodes, a biaxial bending motion can be induced. To construct this actuator, several fabrication processes were considered. We modified the Nafion stacking method, and established a complete sequence of actuator fabrication processes. Using these processes, we were able to fabricate an IPMC biaxial bending actuator with both high actuating force and high flexibility. Several experiments were conducted to investigate and verify the performance of the actuator. The IPMC actuator system was modeled from experimentally measured data, and using this actuator model, a closed-loop proportional integral (PI) controller was designed. Reference position tracking performances of open-loop and closed-loop systems were compared. Finally, circular motion tracking performances of the actuator tip were tested under different rotation frequencies and radii of a reference trajectory circle.

  15. Lamination of microfibrous PLGA fabric by electrospinning a layer of collagen-hydroxyapatite composite nanofibers for bone tissue engineering

    OpenAIRE

    Kwon, Gi-Wan; Gupta, Kailash Chandra; Jung, Kyung-Hye; Kang, Inn-Kyu

    2017-01-01

    Background To mimic the muscle inspired cells adhesion through proteins secretion, the lamination of collagen?hydroxyapatite nanorod (nHA) composite nanofibers has been carried out successfully on polydopamine (PDA)-coated microfibrous polylactide-co-glycolide (PLGA) fabrics. The lamination of collagen-hydroxyapatite composite nanofibers on polydopamine-coated microfibrous PLGA fabrics was carried through electrospinning the solution of collagen containing L-glutamic acid-grafted hydroxyapati...

  16. Continuously graded extruded polymer composites for energetic applications fabricated using twin-screw extrusion processing technology

    Science.gov (United States)

    Gallant, Frederick M.

    A novel method of fabricating functionally graded extruded composite materials is proposed for propellant applications using the technology of continuous processing with a Twin-Screw Extruder. The method is applied to the manufacturing of grains for solid rocket motors in an end-burning configuration with an axial gradient in ammonium perchlorate volume fraction and relative coarse/fine particle size distributions. The fabrication of functionally graded extruded polymer composites with either inert or energetic ingredients has yet to be investigated. The lack of knowledge concerning the processing of these novel materials has necessitated that a number of research issues be addressed. Of primary concern is characterizing and modeling the relationship between the extruder screw geometry, transient processing conditions, and the gradient architecture that evolves in the extruder. Recent interpretations of the Residence Time Distributions (RTDs) and Residence Volume Distributions (RVDs) for polymer composites in the TSE are used to develop new process models for predicting gradient architectures in the direction of extrusion. An approach is developed for characterizing the sections of the extrudate using optical, mechanical, and compositional analysis to determine the gradient architectures. The effects of processing on the burning rate properties of extruded energetic polymer composites are characterized for homogeneous formulations over a range of compositions to determine realistic gradient architectures for solid rocket motor applications. The new process models and burning rate properties that have been characterized in this research effort will be the basis for an inverse design procedure that is capable of determining gradient architectures for grains in solid rocket motors that possess tailored burning rate distributions that conform to user-defined performance specifications.

  17. Care taker blogs in caregiver fabricated illness in a child: a window on the caretaker's thinking?

    Science.gov (United States)

    Brown, Ana N; Gonzalez, Gioia R; Wiester, Rebecca T; Kelley, Maureen C; Feldman, Kenneth W

    2014-03-01

    Three recently diagnosed cases of caregiver-fabricated illness in a child at Seattle Children's Hospital shed light on a new manifestation of their caretakers' attention seeking. The patients' mothers were actively blogging about their children's reputed illnesses. Although it is not uncommon for parents of chronically ill children to blog about their child's medical course, specific themes in these blogs of parents suspected of medically abusing their children were noted. In particular, gross distortions of the information parents had received from medical providers were presented online, describing an escalation of the severity of their children's illnesses. The mothers reported contacting palliative care teams and Wish organizations, independently from their medical providers' recommendations. They sought on-line donations for their children's health needs. We believe these blogs provide additional direct evidence of the suspected caregivers' fabrications. Although we have not performed formal content analysis, blogs might also provide insight into the caretakers' motivations. Protective Services and/or police investigators could consider querying the internet for blogs related to children at risk for caregiver-fabricated illness in a child. These blogs, if viewed in parallel with the children's medical records, could assist medical diagnosis and legal documentation of medical fabrication and assist in protective planning for the affected children.

  18. Comparative Investigation of Tungsten Fibre Nets Reinforced Tungsten Composite Fabricated by Three Different Methods

    Directory of Open Access Journals (Sweden)

    Linhui Zhang

    2017-07-01

    Full Text Available Tungsten fibre nets reinforced tungsten composites (Wf/W containing four net layers were fabricated by spark plasma sintering (SPS, hot pressing (HP and cold rolling after HP (HPCR, with the weight fraction of fibres being 17.4%, 10.5% and 10.5%, respectively. The relative density of the HPCRed samples is the highest (99.8% while that of the HPed composites is the lowest (95.1%. Optical and scanning electron microscopy and electron back scattering diffraction were exploited to characterize the microstructure, while tensile and hardness tests were used to evaluate the mechanical properties of the samples. It was found that partial recrystallization of fibres occurred after the sintering at 1800 °C. The SPSed and HPed Wf/W composites begin to exhibit plastic deformation at 600 °C with tensile strength (TS of 536 and 425 MPa and total elongation at break (TE of 11.6% and 23.0%, respectively, while the HPCRed Wf/W composites exhibit plastic deformation at around 400 °C. The TS and TE of the HPCRed Wf/W composites at 400 °C are 784 MPa and 8.4%, respectively. The enhanced mechanical performance of the Wf/W composites over the pure tungsten can be attributed to the necking, cracking, and debonding of the tungsten fibres.

  19. Fabrication and thermal conductivity improvement of novel composite adsorbents adding with nanoparticles

    Science.gov (United States)

    Wu, Qibai; Yu, Xiaofen; Zhang, Haiyan; Chen, Yiming; Liu, Liying; Xie, Xialin; Tang, Ke; Lu, Yiji; Wang, Yaodong; Roskilly, Anthony Paul

    2016-10-01

    Thermal conductivity is one of key parameters of adsorbents, which will affect the overall system performance of adsorption chiller. To improve adsorbent's thermal conductivity is always one of research focuses in chemisorption field. A new chemical composite adsorbent is fabricated by adding carbon coated metal(Aluminum and Nickel) nanoparticles with three different addition amounts into the mixture of chloride salts and natural expanded graphite aiming to improve the thermal conductivity. The preparation processes and its thermal conductivity of this novel composite adsorbent are reported and summarized. Experimental results indicate that the nanoparticles are homogenously dispersed in the composite adsorbent by applying the reported preparation processes. The thermal conductivity of the composite adsorbent can averagely enlarge by 20% when the weight ratio of the added nanoparticles is 10 wt%. Moreover, carbon coated aluminum nanoparticles exhibit more effective enlargement in thermal conductivity than nickel nanoparticles. As for the composite adsorbent of CaCl2-NEG, there is a big reinforcement from 30% to 50% for Al@C nanoparticles, however only 10% in maximum caused by Ni@C nanoparticles. The proposed research provides a methodology to design and prepare thermal conductive chemical composite adsorbent.

  20. Design and fabrication of microfluidic/microelectronic devices from nano particle based composites

    Science.gov (United States)

    Liu, Liyu

    In this thesis, two kinds of nanoparticle functional composite Giant Electrorheological(GER) fluid and polydimethylsiloxane (PDMS) conductive composites and their applications in micro scales are studied. GER fluid is synthesized with ˜50 nm polarizable solid particles and non-polarizable oil, whose apparent viscosity is continuously variable through applications of an electric field. We have successfully applied ER fluid as actuations in microfluidic chips. With soft lithography techniques, we developed various micro functional chips based on PDMS, including micro flexible platform, micro active mixer and micro pump, all of which have desirable performances. The PDMS conducting composites are synthesized by mixing nano to sub micro-sized conductive particles (silver/carbon black) with PDMS gel. Such composite materials exhibit good electrical conductivity and mechanical reliability, as well as desirable thermal characteristics. By employing this type of composite, we have developed some realistic micro-structural devices and explored their potential applications, including flexible bio-electrodes, micro-heaters and flexible displays, micro temperature indicators, etc. With these two composites and corresponding results, we succeeded in realizing a highly integrated microfluidic chip with the function of DNA amplification. The system has the advantages of small size with a high degree of integration, high PCR efficiency, digital control and simple fabrication at low cost and shows promise for a broad range of applications in chemical synthesis and biological sensing/analysis.

  1. Influence of Interleaved Films on the Mechanical Properties of Carbon Fiber Fabric/Polypropylene Thermoplastic Composites

    Directory of Open Access Journals (Sweden)

    Jong Won Kim

    2016-05-01

    Full Text Available A laminated composite was produced using a thermoplastic prepreg by inserting an interleaved film with the same type of matrix as the prepreg during the lay-up process to improve the low interlaminar properties, which is a known weakness of laminated composites. Carbon fiber fabric (CFF and polypropylene (PP were used to manufacture the thermoplastic prepregs. Eight prepregs were used to produce the laminated composites. Interleaved films with different thicknesses were inserted into each prepreg. The physical properties of the composite, such as thickness, density, fiber volume fraction (Vf, and void content (Vc, were examined. The tensile strength, flexural strength, interlaminar shear strength (ILSS, impact property, and scanning electron microscopy (SEM were used to characterize the mechanical properties. Compared to the composite without any inserted interleaved film, as the thickness of the inserted interleaved resin film was increased, Vc decreased by 51.45%. At the same time, however, the tensile strength decreased by 8.75%. Flexural strength increased by 3.79% and flexural modulus decreased by 15.02%. Interlaminar shear strength increased by 11.05% and impact strength increased by 15.38%. Fracture toughness of the laminated composite was improved due to insertion of interleaved film.

  2. Fabrication of carbon nanotube-polyimide composite hollow microneedles for transdermal drug delivery.

    Science.gov (United States)

    Lyon, Bradley J; Aria, Adrianus I; Gharib, Morteza

    2014-12-01

    We introduce a novel method for fabricating hollow microneedles for transdermal drug delivery using a composite of vertically-aligned carbon nanotubes and polyimide. Patterned bundles of carbon nanotubes are used as a porous scaffold for defining the microneedle geometry. Polyimide resin is wicked through the carbon nanotube scaffold to reinforce the structure and provide the prerequisite strength for achieving skin penetration. The high aspect ratio and bottom-up assembly of carbon nanotubes allow the structure of the microneedles to be created in a single step of nanotube fabrication, providing a simple, scalable method for producing hollow microneedles. To demonstrate the utility of these microneedles, liquid delivery experiments are performed. Successful delivery of aqueous methylene blue dye into both hydrogel and swine skin in vitro is demonstrated. Electron microscopy images of the microneedles taken after delivery confirm that the microneedles do not sustain any structural damage during the delivery process.

  3. Determining the applicability of liquid alloy nitriding in fabrication of Al-AlN particle composites

    Directory of Open Access Journals (Sweden)

    J. Śleziona

    2008-08-01

    Full Text Available One of the possible techniques of the fabrication of dispersion-hardened composites is by in situ reaction between the liquid alloy and gas. The study presents the results of the research on nitriding of liquid aluminium alloy containing Mg and Ti as alloying elements under the conditions of high pressure comprised in the range of 150-1000hPa at the temperature of up to 1100oC. It has been stated that under the applied conditions of the synthesis it is possible to obtain the AlN nitride, but it is formed on the liquid alloy surface and as a deposit on the surface of the crucible. Some results of the analysis of the phase constitution obtained in the fabricated products were presented along with the structure of these products.

  4. Hybrid composite laminates reinforced with Kevlar/carbon/glass woven fabrics for ballistic impact testing.

    Science.gov (United States)

    Randjbaran, Elias; Zahari, Rizal; Jalil, Nawal Aswan Abdul; Majid, Dayang Laila Abang Abdul

    2014-01-01

    Current study reported a facile method to investigate the effects of stacking sequence layers of hybrid composite materials on ballistic energy absorption by running the ballistic test at the high velocity ballistic impact conditions. The velocity and absorbed energy were accordingly calculated as well. The specimens were fabricated from Kevlar, carbon, and glass woven fabrics and resin and were experimentally investigated under impact conditions. All the specimens possessed equal mass, shape, and density; nevertheless, the layers were ordered in different stacking sequence. After running the ballistic test at the same conditions, the final velocities of the cylindrical AISI 4340 Steel pellet showed how much energy was absorbed by the samples. The energy absorption of each sample through the ballistic impact was calculated; accordingly, the proper ballistic impact resistance materials could be found by conducting the test. This paper can be further studied in order to characterise the material properties for the different layers.

  5. Hybrid Composite Laminates Reinforced with Kevlar/Carbon/Glass Woven Fabrics for Ballistic Impact Testing

    Directory of Open Access Journals (Sweden)

    Elias Randjbaran

    2014-01-01

    Full Text Available Current study reported a facile method to investigate the effects of stacking sequence layers of hybrid composite materials on ballistic energy absorption by running the ballistic test at the high velocity ballistic impact conditions. The velocity and absorbed energy were accordingly calculated as well. The specimens were fabricated from Kevlar, carbon, and glass woven fabrics and resin and were experimentally investigated under impact conditions. All the specimens possessed equal mass, shape, and density; nevertheless, the layers were ordered in different stacking sequence. After running the ballistic test at the same conditions, the final velocities of the cylindrical AISI 4340 Steel pellet showed how much energy was absorbed by the samples. The energy absorption of each sample through the ballistic impact was calculated; accordingly, the proper ballistic impact resistance materials could be found by conducting the test. This paper can be further studied in order to characterise the material properties for the different layers.

  6. Shape memory performance of asymmetrically reinforced epoxy/carbon fibre fabric composites in flexure

    Directory of Open Access Journals (Sweden)

    M. Fejos

    2013-06-01

    Full Text Available In this study asymmetrically reinforced epoxy (EP/carbon fibre (CF fabric composites were prepared and their shape memory properties were quantified in both unconstrained and fully constrained flexural tests performed in a dynamic mechanical analyser (DMA. Asymmetric layering was achieved by incorporating two and four CF fabric layers whereby setting a resin- and reinforcement-rich layer ratio of 1/4 and 1/2, respectively. The recovery stress was markedly increased with increasing CF content. The related stress was always higher when the CF-rich layer experienced tension load locally. Specimens with CF-rich layers on the tension side yielded better shape fixity ratio, than those with reinforcement layering on the compression side. Cyclic unconstrained shape memory tests were also run up to five cycles on specimens having the CF-rich layer under local tension. This resulted in marginal changes in the shape fixity and recovery ratios.

  7. Composite Flowable Fabricated (CFF Sebagai Alternatif Bahan Pasak Gigi Paska Endodontik

    Directory of Open Access Journals (Sweden)

    Dwi Warna Aju Fatmawati

    2014-12-01

    for 20 seconds. Treatment of NiTi post group was same with CCF post group, the different NiTi post was inserted using glass ionomer luting type 1. Furthermore all of tooth sample, prefabricated and fabricated, was tested by threebending point with ISO10477. The result showed that mean of NiTi post (stiffness= 115,30 N/mm; modulus elastisitas = 9,31 Gpa; flexural= 812 Gpa was higher than CFF post (stiffness = 35 N/mm; modulus elastisitas = 3,45 Gpa; flexural= 475,8 GPa; and there was significant different between prefabricated (NiTi dengan fabricated(CFF post statistically. Although composite flowable can be used as alternative of post endodontic and needs further research that is suitable with standard of post materials.

  8. Screen-Printed Fabrication of PEDOT:PSS/Silver Nanowire Composite Films for Transparent Heaters

    Directory of Open Access Journals (Sweden)

    Xin He

    2017-02-01

    Full Text Available A transparent and flexible film heater was fabricated; based on a hybrid structure of poly(3,4-ethylenedioxythiophene poly(styrenesulfonate (PEDOT:PSS and silver nanowires (Ag NWs using a screen printing; which is a scalable production technology. The resulting film integrates the advantages of the two conductive materials; easy film-forming and strong adhesion to the substrate of the polymer PEDOT:PSS; and high conductivity of the Ag NWs. The fabricated composite films with different NW densities exhibited the transmittance within the range from 82.3% to 74.1% at 550 nm. By applying 40 V potential on the films; a stable temperature from 49 °C to 99 °C was generated within 30 s to 50 s. However; the surface temperature of the pristine PEDOT:PSS film did not increase compared to the room temperature. The composite film with the transmittance of 74.1% could be heated to the temperatures from 41 °C to 99 °C at the driven voltages from 15 V to 40 V; indicating that the film heater exhibited uniform heating and rapid thermal response. Therefore; the PEDOT:PSS/Ag NW composite film is a promising candidate for the application of the transparent and large-scale film heaters.

  9. AC/TiO2/Rubber Composite Sheet Catalysts; Fabrication, Characterization and Photocatalytic Activities

    Directory of Open Access Journals (Sweden)

    Sriwong Chaval

    2015-01-01

    Full Text Available The AC/TiO2/Rubber (ACTR composite sheets weresuccessfully fabricated by a simply mixing of fixed TiO2 suspension and natural rubber latex (60% HA contents withthe varyingamounts of activated carbon (AC suspension, followed by stirring, pouring into apetri dish mold, drying at room temperature (RT, after that taking out from a mold, reversing and drying again at RT. Then, the as-fabricated ACTR composite sheets were characterized by X-ray diffractometer (XRD, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR, energy dispersive X-ray spectroscopy (EDS and scanning electron microscopy (SEMtechniques. The photocatalytic efficiencies of all ACTR composite sheet samples were evaluated by photo degrading of methylene blue (MB dye solution under UV light irradiation. The results showed that the photocatalytic activity of ACTR sheet with10.0wt%AC loading has the highest efficiency for the photo degradation of MB dye than the other sheets. This is due to the fact that it is relatively with the synergistic effect of well-combined titanium dioxide catalyst and activated carbon adsorbent.

  10. Fabrication of Flexible Porous Calcium-Deficient Apatite-Alginate Composite and Its Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Tsukuda, Souichirou; Umeda, Tomohiro; Koda, Seiichiro; Itatani, Kiyoshi, E-mail: itatani@sophia.ac.jp [Sophia University, Tokyo (Japan)

    2011-10-29

    The calcium-deficient apatite (Ca{sub 9.36}(HPO{sub 4}){sub 0.74}(PO{sub 4}){sub 5.26}(OH){sub 1.26{center_dot}}nH{sub 2}O (Ca/P ratio=1.56): DAp) - alginate (AG) composite was fabricated by the ice crystal sublimation technique. The starting whisker-like calcium-deficient apatite (w-DAp) powder with long-axis length of 62.6 {mu}m and short-axis length of 2.85 {mu}m was prepared by the homogeneous precipitation technique. After mixing the w-DAp with AG paste (DAp/AG ratio: 10), the mixture was flash frozen at a temperature between -5 and -196 deg. C. The frozen materials were further lyophilized at -50 deg. C for 24 h under reduced pressure and put into 1 mol-dm{sup -3} CaCl{sub 2} solution at room temperature for 24 h The microscopic observation showed that the pore size of w-DAp-AG composite increased from {approx}20 to {approx}100 {mu}m with decreasing concentration of starting AG paste from 7.5 to 2.5 mass% and with decreasing freezing temperature from -196 deg. C down to -5 deg. C. The maximum porosity of w-DAp-AG composite, which was fabricated using 2.5 mass% AG at the freezing temperature of -5 deg. C, attained 92.3%.

  11. Composite polymer electrolyte membranes supported by non-woven fabrics for lithium-ion polymer batteries

    Institute of Scientific and Technical Information of China (English)

    TANG Dingguo; LIU Jianhong; QI Lu; CHEN Hui; CI Yunxiang

    2005-01-01

    Poly(vinylidene fluoride-co-hexafluoropropyle- ne) (PVDF-HFP) is one of the most popular polymers for polymer electrolyte membranes because of its excellent operating characteristics and superior electrochemical properties. The electrochemical performances of polymer electrolyte membrane can be enhanced by evenly dispersing nano-meter SiO2 particles in the polymer. In this paper, non-woven fabrics were immersed in the mixed solution of PVDF-HFP/ SiO2/butanone/butanol/plasticizer, and then dried in a vacuum oven to remove the solvents and the plasticizer and to make porous composite polymer electrolyte membranes. The prepared composite membranes supported by non-woven fabrics boast good mechanical strength and excellent electrochemical properties: the electrochemical stability window is 4.8 V vs. Li+/Li, and the ionic conductivity is 3.35×10-4 S/cm (around 60% of that of a common PE membrane) at room temperature. The lithium-ion polymer battery assembled by the composite membrane exhibits high rate capability and excellent cycling performance.

  12. Direct Forming of All-Polypropylene Composites Products from Fabrics made of Co-Extruded Tapes

    Science.gov (United States)

    Alcock, B.; Cabrera, N. O.; Barkoula, N. M.; Peijs, T.

    2009-04-01

    Many technologies presented in literature for the forming of self-reinforced or all-polymer composites are based on manufacturing processes involving thermoforming of pre-consolidated sheets. This paper describes novel direct forming routes to manufacture simple geometries of self-reinforced, all-polypropylene (all-PP) composites, by moulding fabrics of woven co-extruded polypropylene tapes directly into composite products, without the need for pre-consolidated sheet. High strength co-extruded PP tapes have potential processing advantages over mono-extruded fibres or tapes as they allow for a larger temperature processing window for consolidation. This enlarged temperature processing window makes direct forming routes feasible, without the need for an intermediate pre-consolidated sheet product. Thermoforming studies show that direct forming is an interesting alternative to stamping of pre-consolidated sheets, as it eliminates an expensive belt-pressing step which is normally needed for the manufacturing of semi-finished sheets products. Moreover, results from forming studies shows that only half the energy was required to directly form a simple dome geometry from a stack of fabrics compared to stamping the same shape from a pre-consolidated sheet.

  13. Linear Assembles of BN Nanosheets, Fabricated in Polymer/BN Nanosheet Composite Film

    Directory of Open Access Journals (Sweden)

    Hong-Baek Cho

    2011-01-01

    Full Text Available Linear assembles of BN nanosheets (LABNs were fabricated in polysiloxane/BN nanosheet composite film under a high DC electric field. The hexagonal BN nanosheets were dispersed by sonication in a prepolymer mixture of polysiloxane followed by a high-speed mixing. The homogeneous suspension was cast on a spacer of microscale thickness and applied to a high DC electric field before it became cross-linked. X-ray diffraction, scanning electron microscopy, and digital microscopy revealed that LABNs formed in the polysiloxane matrix and that the BN nanosheets in the LABNs were aligned perpendicular to the film plane with high anisotropy. This is the first time that linear assemblies of nanosheets have been fabricated in an organic-inorganic hybrid film by applying a DC electric field. The enhanced thermal conductivity of the composite film is attributed to the LABNs. The LABN formation and heat conduction mechanisms are discussed. The polysiloxane/BN nanosheet composite film has the potential to be used semiconductor applications that require both a high thermal conductivity and a high electric insulation.

  14. Nylon-Graphene Composite Nonwovens as Monolithic Conductive or Capacitive Fabrics.

    Science.gov (United States)

    Pan, Qin; Shim, Eunkyoung; Pourdeyhimi, Behnam; Gao, Wei

    2017-03-08

    Here we describe a nylon-graphene nonwoven (NGN) composite, prepared via melt-blowing of nylon-6 into nonwoven fabrics and infiltrate those with graphene oxide (GO) in aqueous dispersions, which were further chemically reduced into graphene to offer electrical conductivity. The correlation between the conductivity and the graphene loading is described by the percolation scaling law σ = (p - pc)(t), with an exponent t of 1.2 and a critical concentration pc of 0.005 wt %, the lowest among all the nylon composites reported. Monolithic supercapacitors have been further developed on the nylon-GO nonwoven composites (NGO), via a programed CO2-laser patterning process. The nylon nonwoven works as an efficient matrix, providing high capacity to GO and ensuring enough electrode materials generated via the subsequent laser patterning processes. Our best monolithic supercapacitors exhibited an areal capacitance of 10.37 mF cm(-2) in PVA-H2SO4 electrolyte, much higher than the 1-3 mF cm(-2) reported for typical microsupercapacitors. Moreover, our supercapacitors were able to retain a capacitance density of 5.07 mF cm(-2) at an ultrahigh scan rate (1 V s(-1)), probably due to the facilitated ion migration within the highly porous nonwoven framework. This is the first report of highly functional nylon-6 nonwovens, fabricated via industrially scalable pathways into low-cost conductive polymer matrices and disposable energy storage systems.

  15. The Preparation of Fragrance and Health-Care Microcapsule Agent and Its Application on Fabrics

    Institute of Scientific and Technical Information of China (English)

    WANG Jun-hua; CAI Zai-sheng

    2007-01-01

    The technology of microcapsule was employed in this paper to prepare fragrant microcapsule agent, in which the core material was lavender oil, and the wall materla polyurethane was formed from a reaction with 2, 4-tolylem diisocyanate (TDI) and poly (ethylene glycol) (PEG) by interfacial polymerization method. Through single factor and orthogonal experiments, the optimum technology conditions have been got as follows: the molecular weight of PEG 400, core/wall ration 1 : 2, disperser sodium alginate (SA) 0.15%, emulsifier Poly(vinyl alcohol) (PVA) 1%, emulsifying speed 9 500 r/min, emulsifying time 5 min and reaction time 2 h. The microcapsule fragrant agent, prepared under the optimum conditions, was applied on the fabrics and a kind of good control-released fragrant fabric with health-care function was obtained.

  16. Fabrication and evaluation of valsartan–polymer–surfactant composite nanoparticles by using the supercritical antisolvent process

    Directory of Open Access Journals (Sweden)

    Kim MS

    2014-11-01

    Full Text Available Min-Soo Kim,1 In-hwan Baek21College of Pharmacy, Pusan National University, Geumjeong-gu, Busan, Republic of Korea; 2College of Pharmacy, Kyungsung University, Daeyeon-dong, Nam-gu, Busan, Republic of KoreaAbstract: The aim of this study was to fabricate valsartan composite nanoparticles by using the supercritical antisolvent (SAS process, and to evaluate the correlation between in vitro dissolution and in vivo pharmacokinetic parameters for the poorly water-soluble drug valsartan. Spherical composite nanoparticles with a mean size smaller than 400 nm, which contained valsartan, were successfully fabricated by using the SAS process. X-ray diffraction and thermal analyses indicated that valsartan was present in an amorphous form within the composite nanoparticles. The in vitro dissolution and oral bioavailability of valsartan were dramatically enhanced by the composite nanoparticles. Valsartan–hydroxypropyl methylcellulose–poloxamer 407 nanoparticles exhibited faster drug release (up to 90% within 10 minutes under all dissolution conditions and higher oral bioavailability than the raw material, with an approximately 7.2-fold higher maximum plasma concentration. In addition, there was a positive linear correlation between the pharmacokinetic parameters and the in vitro dissolution efficiency. Therefore, the preparation of composite nanoparticles with valsartan–hydroxypropyl methylcellulose and poloxamer 407 by using the SAS process could be an effective formulation strategy for the development of a new dosage form of valsartan with high oral bioavailability.Keywords: supersaturation, bioavailability, solid dispersion, dissolution, supercritical fluid

  17. Fabrication and characterization of laminated SiC composites reinforced with graphene nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Pereira dos Santos Tonello, Karolina, E-mail: karolina.pereira@polito.it; Padovano, Elisa; Badini, Claudio; Biamino, Sara; Pavese, Matteo; Fino, Paolo

    2016-04-06

    Nanosized allotropes of carbon have been attracting a lot of attention recently, but despite the steady growth of the number of scientific works on materials based on graphene family, there is still much to be explored. These two-dimensional carbon materials, such as graphene nanoplatelets, multilayer graphene or few layer graphene have emerged as a possible second phase for reinforcing ceramics, resulting in remarkable properties of these composites. Typically, graphene ceramic matrix composites are prepared by a colloidal or a powder route followed by pressure assisted sintering. Recently other traditional ceramic processes, such as tape casting, were also successfully studied. The aim of this research is to fabricate α-SiC multi-layer composites containing 2, 4 and 8 vol% of graphene nanoplatelets (GNP) by tape casting and study the effect of these additions on the mechanical behavior of the composites. In order to achieve this purpose, samples were pressureless sintered and tested for density and mechanical properties. The elastic modulus was measured by the impulse excitation of vibration method, the hardness by Vickers indentation and fracture toughness using micro Vickers indentation and by three-point bending applying the pre-cracked beam approach. Results showed that up to 4 vol%, the density and mechanical properties were directly proportional to the amount of GNP added but showed a dramatic decrease for 8 vol% of GNP. Composites with 4 vol% of GNP had a 23% increment elastic modulus, while the fracture toughness had a 34% increment compared to SiC tapes fabricated under the same conditions. Higher amounts of GNP induces porosity in the samples, thus decreasing the mechanical properties. This study, therefore, indicates that 4% is an optimal amount of GNP and suggests that excessive amounts of GNP are rather detrimental to the mechanical properties of silicon carbide ceramic materials prepared by tape casting.

  18. Fabrication of channel waveguides from sol-gel-processed polyvinylpyrrolidone/ SiO(2) composite materials.

    Science.gov (United States)

    Yoshida, M; Prasad, P N

    1996-03-20

    Sol-gel-processed composite materials of polyvinylpyrrolidone (PVP) and SiO(2) were studied for optical waveguide applications. PVP is a polymer that can be crosslinked, so it is expected to have high thermal stability after crosslinking. However, thermal crosslinking and thermal decomposition of pure PVP take place around the same temperature, 200 °C, therefore pure PVP had a high optical propagation loss as a result of the absorption of the decomposed molecules after crosslinking. The incorporation of sol-gel-processed SiO(2) prevented the thermal decomposition of PVP and provided remarkably low optical propagation losses. The PVP/SiO(2)composite material also produced thick (>2-µm) crack-free films when the PVP concentration was 50% or higher. An optical propagation loss of 0.2 dB/cm was achieved at 633 nm in the 50% PVP/SiO(2) composite planar waveguide. Several aspects of the thermal stability of the waveguides were evaluated. The slab waveguide was then used for fabrication of channel waveguides with a selective laser-densification technique. This technique used metal lines fabricated with photolithography on the slab waveguide as a light absorbent, and these metal lines were heated by an Ar laser. The resultant channel waveguide had an optical propagation loss of 0.9 dB/ cm at 633 nm. This technique provides lower absorption loss and scattering loss compared with the direct laser-densification technique, which uses UV lasers, and produces narrow waveguides that are difficult to fabricate with a CO(2) laser.

  19. Fabrication of SiC Reinforced Zr0{sub 2} Composites via Polymeric Precursor Route

    Energy Technology Data Exchange (ETDEWEB)

    Mistarihi, Qusai M.; Hong, Soon Hyung; Ryu, Ho Jin [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    This indicates that as a result of the decomposition of the SMP-730 at temperatures less than or equal to 1500 .deg. C, amorphous SiC was formed. This study suggests that a higher compaction pressure followed by an intermediate decomposition temperature of the polymeric precursor and a higher sintering temperature are needed in order to fabricate interconnected SiC-ZrO{sub 2} composites. A. Ortona et al. fabricated ZrB2-SiC composites with SiC phase surrounding the grains of ZrB2 matrix through a polymeric precursor route by using Si and phenol. S. Li et al. measured the thermal conductivity of Al composites reinforced with a continuous phase SiC and SiC particles and found that the difference in the thermal conductivity measured at room temperature was about 70.2 W/m.K. To the best of authors' knowledge, no study has been performed about the fabrication of the connected SiC microstructure to improve the thermophysical properties of oxides. Zirconium dioxide (ZrO{sub 2}) is one of the potential candidates for use as a matrix for inert matrix fuels (IMF) due to its low neutron absorption cross section, chemical stability, and the compatibility with water. Irradiation and chemical stability testes performed on yttria stabilized zirconia (YSZ) and calcium stabilized zirconia (CSZ) have shown that they have a good irradiation and chemical stability. Despite the good irradiation and chemical stability, its low thermal conductivity is considered the main disadvantage of YSZ. Core loading with the YSZ IMF pellets experienced about a 100 K higher center line temperature than the limit specified for UO{sub 2}.

  20. Fabrication of metal matrix composite by semi-solid powder processing

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yufeng [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Various metal matrix composites (MMCs) are widely used in the automotive, aerospace and electrical industries due to their capability and flexibility in improving the mechanical, thermal and electrical properties of a component. However, current manufacturing technologies may suffer from insufficient process stability and reliability and inadequate economic efficiency and may not be able to satisfy the increasing demands placed on MMCs. Semi-solid powder processing (SPP), a technology that combines traditional powder metallurgy and semi-solid forming methods, has potential to produce MMCs with low cost and high efficiency. In this work, the analytical study and experimental investigation of SPP on the fabrication of MMCs were explored. An analytical model was developed to understand the deformation mechanism of the powder compact in the semi-solid state. The densification behavior of the Al6061 and SiC powder mixtures was investigated with different liquid fractions and SiC volume fractions. The limits of SPP were analyzed in terms of reinforcement phase loading and its impact on the composite microstructure. To explore adoption of new materials, carbon nanotube (CNT) was investigated as a reinforcing material in aluminum matrix using SPP. The process was successfully modeled for the mono-phase powder (Al6061) compaction and the density and density distribution were predicted. The deformation mechanism at low and high liquid fractions was discussed. In addition, the compaction behavior of the ceramic-metal powder mixture was understood, and the SiC loading limit was identified by parametric study. For the fabrication of CNT reinforced Al6061 composite, the mechanical alloying of Al6061-CNT powders was first investigated. A mathematical model was developed to predict the CNT length change during the mechanical alloying process. The effects of mechanical alloying time and processing temperature during SPP were studied on the mechanical, microstructural and

  1. Fabrication and characterization of laminated Ti-(TiB+La2O3/Ti composite

    Directory of Open Access Journals (Sweden)

    Yuanfei Han

    2015-10-01

    Full Text Available The incorporation of ceramic particulate reinforcements into titanium alloys can improve the specific strength and specific stiffness, while inevitably reduce the plasticity and ductility. In this study, in situ synthesized multilayer Ti-(TiB+La2O3/Ti composite was designed by learning from the microstructure of nature biological materials with excellent mechanical properties. The Ti-(TiB+La2O3/Ti composite with unique characteristic of laminated structure was prepared by combined powder metallurgy and hot rolling. The method has the synthesize advantages with in-situ reaction of Ti and LaB6 at high temperature and controllability of reinforcements size and constituent phases in composites. The result shows that the pores in the as sintered laminated structure composite completely disappeared after hot rolling at 1050 °C. The agglomerated reinforcement particles were well dispersed and distributed uniformly along the rolling direction. The thickness of pure Ti layer and (TiB+La2O3/Ti composite layer decreased from 1 mm to about 200 μm. Meanwhile, the grains size was refined obviously after rolling deformation. The room temperature tensile test indicates that the elongation of the laminated Ti-(TiB+La2O3/Ti composite improved from 13% to 17% in comparison with the uniform (TiB+La2O3/Ti composite, while the tensile strength had little change. It provides theoretical and experimental basis for fabricating the novel high performance laminated Ti-(TiB+La2O3/Ti composites.

  2. Innovative fabrication processing of advanced composite materials concepts for primary aircraft structures

    Science.gov (United States)

    Kassapoglou, Christos; Dinicola, Al J.; Chou, Jack C.

    1992-01-01

    The autoclave based THERM-X(sub R) process was evaluated by cocuring complex curved panels with frames and stiffeners. The process was shown to result in composite parts of high quality with good compaction at sharp radius regions and corners of intersecting parts. The structural properties of the postbuckled panels fabricated were found to be equivalent to those of conventionally tooled hand laid-up parts. Significant savings in bagging time over conventional tooling were documented. Structural details such as cocured shear ties and embedded stiffener flanges in the skin were found to suppress failure modes such as failure at corners of intersecting members and skin stiffeners separation.

  3. Some features of the fabrication of multilayer fiber composites by explosive welding

    Science.gov (United States)

    Kotov, V. A.; Mikhaylov, A. N.; Cabelka, D.

    1985-01-01

    The fabrication of multilayer fiber composites by explosive welding is characterized by intense plastic deformation of the matrix material as it fills the spaces between fibers and by high velocity of the collision between matrix layers due to acceleration in the channels between fibers. The plastic deformation of the matrix layers and fiber-matrix friction provide mechanical and thermal activation of the contact surfaces, which contributes to the formation of a bond. An important feature of the process is that the fiber-matrix adhesion strength can be varied over a wide range by varying the parameters of impulsive loading.

  4. Strength and fatigue limit of fabric base composites under combined static shear and cyclic compressive stresses

    Energy Technology Data Exchange (ETDEWEB)

    Limonov, V.A.; Razin, A.F.; Mikel`sons, M.Ya. [Central Research Institute of Special Engineering, Moscow (Russian Federation)

    1992-11-01

    Under real operating conditions, assemblies and products made of composites are subjected to combined static and cyclic loads. At the planning stage, an important problem is the selection of the materials to be used and an estimate of the load-bearing capacity by complex investigation of their physicomechanical properties. In the present work, the authors studied experimentally the characteristics of strength under static uniaxial and combined loading and the effect of static shear stresses on the compressive fatigue limit of glass-fabric reinforced plastic. 7 refs., 7 figs., 2 tabs.

  5. Green Route Fabrication of Graphene Oxide Reinforced Polymer Composites with Enhanced Mechanical Properties

    OpenAIRE

    Mahendran, R.; Sridharan, D.; Santhakumar, K.; G. Gnanasekaran

    2016-01-01

    A facile and “Green” route has been applied to fabricate graphene oxide (GO) reinforced polymer composites utilizing “deionized water” as solvent. The GO was reinforced into water soluble poly(vinyl alcohol) (PVA) and poly-2-acrylamido-2-methyl-1-propanesulfonic acid (PAMPS) matrix by ultrasonication followed by mechanical stirring. The incorporation and dispersion of the GO in the polymer matrix were analyzed by XRD, FE-SEM, AFM, FT-IR, and TGA. Further, the FE-SEM and AFM images revealed th...

  6. High strength bimetallic composite material fabricated by electroslag casting and characteristics of its composite interface

    Directory of Open Access Journals (Sweden)

    Tian-shun Dong

    2016-11-01

    Full Text Available Bimetallic composite material of bainitic steel and PD3 steel was produced with electroslag casting process, and element distribution of its composite interface was investigated by theoretical calculation and energy dispersive spectrometer (EDS. Results show that the tensile strength (1,450 MPa, hardness (HRC 41-47 and impact toughness (94.7J·cm-2 of bainitic steel were comparatively high, while its elongation was slightly low (4.0%. Tensile strength (1,100 MPa, hardness (>HRC 31 and elongation (7.72% of the interface were also relatively high, but its impact toughness was low at 20.4 J·cm-2. Results of theoretical calculation of the element distribution in the interface region were basically consistent with that of EDS. Therefore, electroslag casting is a practical process to produce bimetallic composite material of bainitic steel and PD3 steel, and theoretical calculation also is a feasible method to study element distribution of their interface.

  7. Numerical simulation of isothermal chemical vapor infiltration process in fabrication of carbon-carbon composites by finite element method

    Institute of Scientific and Technical Information of China (English)

    李克智; 李贺军; 姜开宇

    2000-01-01

    The chemical vapor infiltration process in fabrication of carbon-carbon composites is highly inefficient and requires long processing time. These limitations add considerably to the cost of fabrication and restrict the application of this material. Efforts have been made to study the CVI process in fabrication of carbon-carbon composites by computer simulation and predict the process parameters, density, porosity, etc. According to the characteristics of CVI process, the basic principle of FEM and mass transport, the finite element model has been established. Incremental finite element equations and the elemental stiffness matrices have been derived for the first time. The finite element program developed by the authors has been used to simulate the ICVI process in fabrication of carbon-carbon composites. Computer color display of simulated results can express the densification and distributions of density and porosity in preform clearly. The influence of process parameters on the densification of prefo

  8. Fabrication of nanocrystalline hydroxyapatite doped degradable composite hollow fiber for guided and biomimetic bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Ning [Department of Bioengineering, Clemson University, Clemson, SC, 29634 (United States); Nichols, Heather L. [Department of Bioengineering, Clemson University, Clemson, SC, 29634 (United States); Tylor, Shila [Department of Bioengineering, Clemson University, Clemson, SC, 29634 (United States); Wen Xuejun [Department of Bioengineering, Clemson University, Clemson, SC, 29634 (United States)]. E-mail: xjwen@clemson.edu

    2007-04-15

    Natural bone tissue possesses a nanocomposite structure interwoven in a three-dimensional (3-D) matrix, which plays critical roles in conferring appropriate physical and biological properties to the bone tissue. Single type of material may not be sufficient to mimic the composition, structure and properties of native bone, therefore, composite materials consisting of both polymers, bioceramics, and other inorganic materials have to be designed. Among a variety of candidate materials, polymer-nanoparticle composites appear most promising for bone tissue engineering applications because of superior mechanical properties, improved durability, and surface bioactivity when compared with conventional polymers or composites. The long term objective of this project is to use highly aligned, bioactive, biodegradable scaffold mimicking natural histological structure of human long bone, and to engineer and regenerate human long bone both in vitro and in vivo. In this study, bioactive, degradable, and highly permeable composite hollow fiber membranes (HFMs) were fabricated using a wet phase phase-inversion approach. The structure of the hollow fiber membranes was examined using scanning electron microscopy (SEM); degradation behavior was examined using weigh loss assay, gel permeation chromatography (GPC), and differential scanning calorimetry (DSC); and bioactivity was evaluated with the amount of calcium deposition from the culture media onto HFM surface. Doping PLGA HFMs with nanoHA results in a more bioactive and slower degrading HFM than pure PLGA HFMs.

  9. Fabrication and Electrochemical Characterization of Polyaniline/Titanium Oxide Nanoweb Composite Electrode for Supercapacitor Application.

    Science.gov (United States)

    Yu, Hyunuk; Jang, Kihun; Chung, Ildoo; Ahn, Heejoon

    2016-03-01

    In this study, polyaniline/titanium oxide (PANi-TiO2) nanoweb composite was fabricated through electrochemical deposition and electrospinning techniques, and the composite was further utilized as an electrode for a supercapacitor. The PANi-TiO2 composite film showed three-dimensional hierarchical micro/nano architecture. The film was deposited on the current collector without the use of any binders. The morphology of the PANi-TiO2 composite film was confirmed by the use of field emission scanning electron microscopy (FE-SEM) analysis that polyaniline was grown in the form of nanorods with a diameter of 100 nm-200 nm on a TiO2 nanoweb. The chemical composition and quantitative analysis were determined by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The electrochemical properties were analyzed by cyclic voltammetry (CV), chronopotentiometry, and electrochemical impedance spectroscopy (EIS). The result of electrochemical tests indicated that TiO2-PANi electrode displayed a high specific capacitance of 306.5 Fg(-1) at the scan rate of 20 mVs(-1), with the capacitance retention ratio being 103% after 500 cycles at the scan rate of 50 mVs(-1).

  10. Natural fiber composites with EMI shielding function fabricated using VARTM and Cu film magnetron sputtering

    Science.gov (United States)

    Xia, Changlei; Ren, Han; Shi, Sheldon Q.; Zhang, Hualiang; Cheng, Jiangtao; Cai, Liping; Chen, Kathleen; Tan, Hwa-Shen

    2016-01-01

    To fabricate kenaf fiber composites with electromagnetic interference (EMI) shielding function, the technique of vacuum-assisted resin transfer molding (VARTM) and Cu film magnetron sputtering were employed. The EMI shielding effectiveness (SE) and composite surface characteristics were examined with PNA Network Analyzer, Quanta 200 environmental scanning electron microscope and OCA20 contact angle meter. After being Cu-sputter coated for 0.5 h, 1 h, 2 h, and 3 h, the EMI SE values were increased to be 23.8 dB, 32.5 dB, 43.3 dB, and 48.3 dB, which denoted 99.5799%, 99.9437%, 99.9953%, or 99.9985% incident signal was blocked, respectively. The SEM observations revealed that the smoother surface of the composites was obtained by longer time sputtering, resulting in the SE improvement. The contact angle increased from 49.6° to 129.5° after 0.5 h sputtering, which indicated that the coated Cu film dramatically improved the hydrophobic property of composite. When the coating time increased to 3 h, the contact angle decreased to 51.0° because the composite surface roughness decreased with the increase in coating time.

  11. Fabrication and evaluation of mechanical properties of alkaline treated sisal/hemp fiber reinforced hybrid composite

    Science.gov (United States)

    Venkatesha Gupta, N. S.; Akash; Sreenivasa Rao, K. V.; kumar, D. S. Arun

    2016-09-01

    Fiber reinforced polymer composite have acquired a dominant place in variety of applications because of higher specific strength and modulus, the plant based natural fiber are partially replacing currently used synthetic fiber as reinforcement for polymer composites. In this research work going to develop a new material which posses a strength to weight ratio that for exceed any of the present material. The hybrid composite sisal/hemp reinforced with epoxy matrix has been developed by compression moulding technique according to ASTM standards. Sodium hydroxide (NAOH) was used as alkali for treating the fibers. The amount of reinforcement was varied from 10% to 50% in steps of 10%. Prepared specimens were examined for mechanical properties such as tensile strength, flexural strength, and hardness. Hybrid composite with 40wt% sisal/hemp fiber were found to posses higher strength (tensile strength = 53.13Mpa and flexural strength = 82.07Mpa) among the fabricated hybrid composite specimens. Hardness value increases with increasing the fiber volume. Morphological examinations are carried out to analyze the interfacial characteristics, internal structure and fractured surfaces by using scanning electron microscope.

  12. Poly(methyl methacrylate) Composites with Size-selected Silver Nanoparticles Fabricated Using Cluster Beam Technique

    DEFF Research Database (Denmark)

    Muhammad, Hanif; Juluri, Raghavendra R.; Chirumamilla, Manohar

    2016-01-01

    based on cluster beam technique allowing the formation of monocrystalline size-selected silver nanoparticles with a ±5–7% precision of diameter and controllable embedment into poly (methyl methacrylate). It is shown that the soft-landed silver clusters preserve almost spherical shape with a slight......An embedment of metal nanoparticles of well-defined sizes in thin polymer films is of significant interest for a number of practical applications, in particular, for preparing materials with tunable plasmonic properties. In this article, we present a fabrication route for metal–polymer composites...... tendency to flattening upon impact. By controlling the polymer hardness (from viscous to soft state) prior the cluster deposition and annealing conditions after the deposition the degree of immersion of the nanoparticles into polymer can be tuned, thus, making it possible to create composites with either...

  13. Fabrication for multilayered composite thin films by dual-channel vacuum arc deposition.

    Science.gov (United States)

    Dai, Hua; Shen, Yao; Wang, Jing; Xu, Ming; Li, Liuhe; Li, Xiaoling; Cai, Xun; Chu, Paul K

    2008-06-01

    A flexible dual-channel curvilinear electromagnetic filter has been designed and constructed to fabricate multilayered composite films in vacuum arc ion plating. The filter possesses two guiding channels and one mixing unit. Multilayered TiN/AlN and TiAlN composite films can be produced by controlling the frequency or interval of the two cathodes. The x-ray photoelectron spectroscopy and low-angle x-ray diffraction results reveal the periodic Ti and Al structures in the TiN/AlN films. The TiAlN films exhibit a smooth surface morphology confirming effective filtering of macroparticles by the filter. High temperature oxidation conducted at 700 degrees C for an hour indicates that the weight increment in the TiAlN films produced by the dual filter is only half of that of the TiAlN films produced without a filter, thereby showing better resistance against surface oxidation.

  14. Fabrication for multilayered composite thin films by dual-channel vacuum arc deposition

    Science.gov (United States)

    Dai, Hua; Shen, Yao; Wang, Jing; Xu, Ming; Li, Liuhe; Li, Xiaoling; Cai, Xun; Chu, Paul K.

    2008-06-01

    A flexible dual-channel curvilinear electromagnetic filter has been designed and constructed to fabricate multilayered composite films in vacuum arc ion plating. The filter possesses two guiding channels and one mixing unit. Multilayered TiN /AlN and TiAlN composite films can be produced by controlling the frequency or interval of the two cathodes. The x-ray photoelectron spectroscopy and low-angle x-ray diffraction results reveal the periodic Ti and Al structures in the TiN /AlN films. The TiAlN films exhibit a smooth surface morphology confirming effective filtering of macroparticles by the filter. High temperature oxidation conducted at 700°C for an hour indicates that the weight increment in the TiAlN films produced by the dual filter is only half of that of the TiAlN films produced without a filter, thereby showing better resistance against surface oxidation.

  15. Electroless fabrication and supercapacitor performance of CNT@NiO-nanosheet composite nanotubes.

    Science.gov (United States)

    Yu, W; Li, B Q; Ding, S J

    2016-02-19

    Composite nanostructures consisting of porous NiO nanosheets on carbon nanotubes (CNTs) are fabricated using a facile and low-cost electroless plating method. The CNTs, modified by a polymer, are adopted as the template upon which porous Ni nanosheets are grown using electroless plating. This is followed by removal of the polymer layer and oxidation of the Ni by controlled thermal annealing. The effect of reductant concentration on the morphology of the NiO nanosheets is studied. The electrochemical characteristics of the nanostructures are measured using chronopotentiometry. Experimental measurements show that the NiO nanosheet covered CNT composite nanostructures exhibit a relatively high specific capacitance of 1177 F g(-1) at a discharge current density of 2 A g(-1), while retaining 89.2% of its initial capacitance at a current density of 2 A g(-1) after 1000 cycles.

  16. Facile fabrication of Pickering emulsion polymerized polystyrene/laponite composite nanoparticles and their electrorheology.

    Science.gov (United States)

    Kim, Young Jae; Liu, Ying Dan; Choi, Hyoung Jin; Park, Soo-Jin

    2013-03-15

    Polystyrene (PS)/laponite composite nanoparticles were fabricated using a surfactant-free Pickering emulsion polymerization method, in which emulsions of styrene dispersed in water were stabilized by hydrophilic laponite modified with cetyltrimethylammonium bromide. The PS/laponite nanoparticles, of which their surface was covered compactly by laponite clay platelets, were observed by scanning electron microscopy. Fourier-transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analysis confirmed their chemical composition, crystallographic structure, and thermal properties and weight loss percentage of the laponite located on the surface of the PS particle, respectively. When an external electrical field was applied, the chain-like structure of the laponite coated nano-sized PS particle exhibiting electrorheological characteristics was observed by optical microscopy. The electrorheological performance of the bulk properties was also examined using a rotational rheometer equipped with a high voltage generator.

  17. Fabrication and properties of functionally graded NiAl/Al2O3 composites

    Science.gov (United States)

    Miller, D. P.; Lannutti, J. J.; Noebe, R. D.

    1993-01-01

    A modified sedimentation process was used in the production of a functionally gradient material (FGM), NiAl/Al2O3. A simple finite element model was used to guide our design and fabrication efforts by estimating residual stress states as a function of composite structure. This approach could lead to tailored designs that enhance or avoid specific residual stress states. Thermal cycling tests were factored into the model to predict time dependent or steady-state internal temperature and stress profiles. Four-point bend tests were conducted to establish the mechanical load-displacement behavior of a single interlayer FGM at room temperature, 800 and 1000 K. Room temperature bend strength of the FGM was 3-4 times that of the base NiAl. At elevated temperatures, composite fracture occurred in a gradual, noncatastrophic mode involving NiAl retardation of a succession of cracks originating in the alumina face.

  18. On defects at nanoscale formed in Al-Cu matrix composites fabricated by pressure infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Salgueiro, W. [Instituto de Fisica de Materiales Tandil, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399, B7000GHG Tandil (Argentina); Garbellini, O. [Instituto de Fisica de Materiales Tandil, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399, B7000GHG Tandil (Argentina); Comision de Investigaciones Cientificas de la Provincia de Buenos Aires, Calle 526 Entre 10 y 11, 1900 La Plata (Argentina); Morando, C. [Instituto de Fisica de Materiales Tandil, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399, B7000GHG Tandil (Argentina); Palacio, H. [Instituto de Fisica de Materiales Tandil, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399, B7000GHG Tandil (Argentina); Comision de Investigaciones Cientificas de la Provincia de Buenos Aires, Calle 526 Entre 10 y 11, 1900 La Plata (Argentina); Somoza, A. [Instituto de Fisica de Materiales Tandil, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399, B7000GHG Tandil (Argentina) and Comision de Investigaciones Cientificas de la Provincia de Buenos Aires, Calle 526 Entre 10 y 11, 1900 La Plata (Argentina)]. E-mail: asomoza@exa.unicen.edu.ar

    2006-11-05

    To study the defects structure at nanometric scale in the composites obtained, positron annihilation lifetime spectroscopy was used. Specifically, in the materials studied preforms of Saffil alumina short fibers with a fiber content of 12 vol.% were infiltrated by gas pressure with liquid alloys containing Al-5Cu, Al-15Cu and Al-33Cu (wt.%). From the experimental results, information on the nanoporosities remaining in the different samples after the fabrication process was obtained. Furthermore, the presence of an important amount of microvoid-like defects or small vacancy-clusters in the composites was also revealed. Specifically, it was found that these microvoids have almost the same size, within the experimental scatter, but their volume fraction depends on the solute content of the matrix.

  19. Numerically design the injection process parameters of parts fabricated with ramie fiber reinforced green composites

    Science.gov (United States)

    Chen, L. P.; He, L. P.; Chen, D. C.; Lu, G.; Li, W. J.; Yuan, J. M.

    2017-01-01

    The warpage deformation plays an important role on the performance of automobile interior components fabricated with natural fiber reinforced composites. The present work investigated the influence of process parameters on the warpage behavior of A pillar trim made of ramie fiber (RF) reinforced polypropylene (PP) composites (RF/PP) via numerical simulation with orthogonal experiment method and range analysis. The results indicated that fiber addition and packing pressure were the most important factors affecting warpage. The A pillar trim can achieved the minimum warpage value as of 2.124 mm under the optimum parameters. The optimal process parameters are: 70% percent of the default value of injection pressure for the packing pressure, 20 wt% for the fiber addition, 185 °C for the melt °C for the mold temperature, 7 s for the filling time and 17 s for the packing time.

  20. Fabrication and Mechanical Properties of TiC/TiAl Composites

    Institute of Scientific and Technical Information of China (English)

    YUE Yun-long; GONG Yan-sheng; WU Hai-tao; WANG Chuan-bin; ZHANG Lian-meng

    2004-01-01

    TiC/TiAl composites with different TiC content were fabricated by rapid heating technique ofspark plasma sintering (SPS). The effect of TiC particles on microstructure and mechanical properties of TiAl matrix was investigated. The results indicate that grain sizes of TiAl matrix decrease and mechanical properties are improved because of the addition of TiC particles. The composites display a 26.8% increase in bending strength when10wt% TiC is added and 43.8% improvement in fracture toughness when 5 wt % TiC is added compared to valuesof TiC-free materials. Grain-refinement and dispersion-strengthening were the main strengthening mechanism. Theimprovement of fracture toughness was due to the deflexion of TiC particles to the crack.

  1. Prediction of Final Velocity of Aramid Fabric-Resin Composite Laminates Subjected to Ballistic Impact

    Institute of Scientific and Technical Information of China (English)

    熊杰; 萧庆亮; 刘冠峰; 顾伯洪; 王善元

    2003-01-01

    The strain rate effects of aramid fiber material,quasi-static and ballistic impact perforation of composite laminates made of aramid fabric and phenolic resin/PVB are investigated respectively by means of MTS, split Hopkinson tension bars and ballistic impact apparatus. The tensile impact experiments on aramid fiber material are performed in strain rate range from 0.01/ s to 1 000/ s. Experinental results show that the mechanical properties of aramid fiber material are insensitive to strain rate in the range from 0. 01/s to 1 000/s. An energy model to predict final velocity of composite laminates subjected to ballistic impact is proposed on the basis of experimental data of quasi-static perforation through the targets. The predicted final velocities show good agreement with the experimental final velocity.

  2. Cellulose/inorganic-composite fibers for producing textile fabrics of high X-ray absorption properties

    Energy Technology Data Exchange (ETDEWEB)

    Günther, Karoline; Giebing, Christina; Askani, Antonia [FTB, Hochschule Niederrhein – University of Applied Science, Faculty of Textile and Clothing Technology, Webschulstr. 31, 41065 Mönchengladbach (Germany); Leisegang, Tilmann [Saxray GmbH, Maria-Reiche-Str. 1, 01109 Dresden (Germany); Krieg, Marcus [TITK, Thüringisches Institut für Textil- und Kunststoff-Forschung e.V., Breitscheidstraße 97, 07407 Rudolstadt (Germany); Kyosev, Yordan; Weide, Thomas [FTB, Hochschule Niederrhein – University of Applied Science, Faculty of Textile and Clothing Technology, Webschulstr. 31, 41065 Mönchengladbach (Germany); Mahltig, Boris, E-mail: Boris.Mahltig@hs-niederrhein.de [FTB, Hochschule Niederrhein – University of Applied Science, Faculty of Textile and Clothing Technology, Webschulstr. 31, 41065 Mönchengladbach (Germany)

    2015-11-01

    Common textile materials as cotton or polyester do not possess reliable X-ray absorption properties. This is due to their morphology and chemical composition in particular. Common fibers are built up from organic polymers containing mainly the elements carbon, hydrogen, oxygen and nitrogen. These “light” elements only have low X-ray absorption coefficients. In contrast, inorganic materials composed of “heavy” elements with high atomic numbers, e.g. barium or bismuth, exhibit X-ray absorption coefficients higher by up to two orders of magnitude. To obtain a flexible yarn with high X-ray absorption properties both these materials, the organic polymer and the inorganic X-ray absorber, are combined to an inorganic/organic composite fiber material. Hence, as the organic component cellulose from modified Lyocell-process is used as carrier fiber and blended with inorganic absorber particles of low toxicity and high absorption coefficients, as bariumsulphate, bariumtitanate or bismuthoxide. A content of inorganic absorber particles equally distributed in the whole fiber of up to 20% is achieved. The composite fibers are produced as staple or filament fibers and processed to multifilament or staple fiber yarns. The staple fiber yarns are rotor-spinned to increase the comfort of the subsequent textile material. Several woven fabrics, considering multilayer structure and different warp/weft density, are developed. The energy dependent X-ray shielding properties are determined in dependence on the different yarn compositions, yarn types and structural parameters of the woven fabrics. As a result, a production process of textile materials with comfortable and dedicated X-ray absorption properties is established. It offers a promising opportunity for manufacturing of specialized textiles, working clothes or uniforms applicable for medicine, air craft and security personal, mining as well as for innovative composite materials. - Highlights: • Preparation of cellulosic

  3. Batch fabrication of optical actuators using nanotube-elastomer composites towards refreshable Braille displays

    Science.gov (United States)

    Camargo, C. J.; Campanella, H.; Marshall, J. E.; Torras, N.; Zinoviev, K.; Terentjev, E. M.; Esteve, J.

    2012-07-01

    This paper reports an opto-actuable device fabricated using micro-machined silicon moulds. The actuating component of the device is made from a composite material containing carbon nanotubes (CNTs) embedded in a liquid crystal elastomer (LCE) matrix. We demonstrate the fabrication of a patterned LCE-CNT film by a combination of mechanical stretching and thermal cross-linking. The resulting poly-domain LCE-CNT film contains ‘blister-shaped’ mono-domain regions, which reversibly change their shape under light irradiation and hence can be used as dynamic Braille dots. We demonstrate that blisters with diameters of 1.0 and 1.5 mm, and wall thickness 300 µm, will mechanically contract under irradiation by a laser diode with optical power up to 60 mW. The magnitude of this contraction was up to 40 µm, which is more than 10% of their height in the ‘rest’ state. The stabilization time of the material is less than 6 s for both actuation and recovery. We also carried out preliminary tests on the repeatability of this photo-actuation process, observing no material or performance degradation. This manufacturing approach establishes a starting point for the design and fabrication of wide-area tactile actuators, which are promising candidates for the development of new Braille reading applications for the visually impaired.

  4. Fabrication and characterization of artificial hair cell sensor based on MWCNT-PDMS composite

    Science.gov (United States)

    Kim, Chi Yeon; Lee, Hyun Sup; Cho, Yo Han; Joh, Cheeyoung; Choi, Pyung; Park, Seong Jin

    2011-06-01

    The aim of this work is to design and fabricate a flow sensor using an artificial hair cell (AHC) inspired by biological hair cells of fish. The sensor consists of a single cilium structure with high aspect ratio and a mechanoreceptor using force sensitive resistor (FSR). The cilium structure is designed for capturing a drag force with direction due to flow field around the sensor and the mechanoreceptor is designed for sensing the drag force with direction from the cilium structure and converting it into an electric signal. The mechanoreceptor has a symmetric four electrodes to sense the drag force and its direction. To fabricate the single cilium structure with high aspect ratio, we have proposed a new design concept using a separated micro mold system (SMS) fabricated by the LIGA process. For a successful replication of the cilium structure, we used the hot embossing process with the help of a double-sided mold system. We used a composite of multiwall carbon nanotube and polydimethylsiloxane (MWCNT-PDMS). The performance of the mechanoreceptors was measured by a computer-controlled nanoindenter. We carried out several experiments with the sensor in the different flow rate and direction using the experimental test apparatus. To calibrate the sensor and calculate the velocity with direction based the signal from the sensor, we analyzed the coupled phenomena between flow field and the cilium structure to calculate the deflection of the cilium structure and the drag force applying to the cilium structure due to the flow field around sensor.

  5. Fabrication and Testing of Durable Redundant and Fluted-Core Joints for Composite Sandwich Structures

    Science.gov (United States)

    Lin, Shih-Yung; Splinter, Scott C.; Tarkenton, Chris; Paddock, David A.; Smeltzer, Stanley S.; Ghose, Sayata; Guzman, Juan C.; Stukus, Donald J.; McCarville, Douglas A.

    2013-01-01

    The development of durable bonded joint technology for assembling composite structures is an essential component of future space technologies. While NASA is working toward providing an entirely new capability for human space exploration beyond low Earth orbit, the objective of this project is to design, fabricate, analyze, and test a NASA patented durable redundant joint (DRJ) and a NASA/Boeing co-designed fluted-core joint (FCJ). The potential applications include a wide range of sandwich structures for NASA's future launch vehicles. Three types of joints were studied -- splice joint (SJ, as baseline), DRJ, and FCJ. Tests included tension, after-impact tension, and compression. Teflon strips were used at the joint area to increase failure strength by shifting stress concentration to a less sensitive area. Test results were compared to those of pristine coupons fabricated utilizing the same methods. Tensile test results indicated that the DRJ design was stiffer, stronger, and more impact resistant than other designs. The drawbacks of the DRJ design were extra mass and complex fabrication processes. The FCJ was lighter than the DRJ but less impact resistant. With barely visible but detectable impact damages, all three joints showed no sign of tensile strength reduction. No compression test was conducted on any impact-damaged sample due to limited scope and resource. Failure modes and damage propagation were also studied to support progressive damage modeling of the SJ and the DRJ.

  6. Transport behavior of n-alkane penetrants into castor oil based polyurethane-polyester nonwoven fabric composites

    Energy Technology Data Exchange (ETDEWEB)

    Satheesh Kumar, M.N. [Research and Innovation Center, Raman Boards Limited, Mysore 570012 (India); Manjula, K.S. [Department of Polymer Science and Technology, Sri Jayachamarajendra College of Engineering, Mysore 570006 (India); Siddaramaiah [Department of Polymer Science and Technology, Sri Jayachamarajendra College of Engineering, Mysore 570006 (India)]. E-mail: siddaramaiah@yahoo.com

    2007-06-25

    Castor oil based polyurethane (PU)-polyester nonwoven fabric composites were fabricated by impregnating the polyester nonwoven fabric in a composition containing castor oil and diisocyanate. Composites were fabricated with two different isocyanates such as toluene-2,4-diisocyanate (TDI) and hexamethylene diisocyanate (HMDI). Transport behavior of n-alkane penetrants (pentane, hexane and heptane) into both PUs and PU-polyester nonwoven fabric composites were studied. Sorption studies were carried out at different temperatures. From the sorption results, the diffusion (D) and permeation (P) coefficients of penetrants have been calculated. Significant increase in the diffusion and permeation coefficients was observed with increase in the temperature of sorption experiments. Drastical reduction in diffusion and permeation coefficients was noticed in the composites compared to neat PUs. Attempts were made to estimate the empirical parameters like n, which suggests the mode of transport and K is a constant depends on the structural characteristics of the composite in addition to its interaction with penetrants. The temperature dependence of the transport coefficients has been used to estimate the activation energy parameter for diffusion (E{sub D}) and permeation (E{sub P}) processes from Arrhenius plots. Furthermore, the sorption results have been interpreted in terms of the thermodynamic parameters such as enthalpy ({delta}H) and entropy ({delta}S)

  7. The elastic and inelastic behavior of woven graphite fabric reinforced polyimide composites

    Science.gov (United States)

    Searles, Kevin H.

    In many aerospace and conventional engineering applications, load-bearing composite structures are designed with the intent of being subjected to uniaxial stresses that are predominantly tensile or compressive. However, it is likely that biaxial and possibly triaxial states of stress will exist throughout the in-service life of the structure or component. The existing paradigm suggests that unidirectional tape materials are superior under uniaxial conditions since the vast majority of fibers lie in-plane and can be aligned to the loading axis. This may be true, but not without detriment to impact performance, interlaminar strength, strain to failure and complexity of part geometry. In circumstances where a sufficient balance of these properties is required, composites based on woven fabric reinforcements become attractive choices. In this thesis, the micro- and mesoscale elastic behavior of composites based on 8HS woven graphite fabric architectures and polyimide matrices is studied analytically and numerically. An analytical model is proposed to predict the composite elastic constants and is verified using numerical strain energy methods of equivalence. The model shows good agreement with the experiments and numerical strain energy equivalence. Lamina stresses generated numerically from in-plane shear loading show substantial shear and transverse normal stress concentrations in the transverse undulated tow which potentially leads to intralaminar damage. The macroscale inelastic behavior of the same composites is also studied experimentally and numerically. On an experimental basis, the biaxial and modified biaxial Iosipescu test methods are employed to study the weaker-mode shear and biaxial failure properties at room and elevated temperatures. On a numerical basis, the macroscale inelastic shear behavior of the composites is studied. Structural nonlinearities and material nonlinearities are identified and resolved. In terms of specimen-to-fixture interactions

  8. Room temperature fabrication of SiO{sub 2}/polyacrylic ester multilayer composites by spin-coating

    Energy Technology Data Exchange (ETDEWEB)

    Kakisawa, Hideki, E-mail: KAKISAWA.Hideki@nims.go.jp [National Institute for Materials Science, 1-2-1, Sengen, Tsukuba, 305-0047 (Japan); Diem, Nguyen Thuy Bich [Research Center for Advanced Science and Technology, University of Tokyo, 4-6-4, Komaba, Meguro-ku, 153-8904 Tokyo (Japan); Sumitomo, Taro [National Institute for Materials Science, 1-2-1, Sengen, Tsukuba, 305-0047 (Japan); Kagawa, Yutaka [Research Center for Advanced Science and Technology, University of Tokyo, 4-6-4, Komaba, Meguro-ku, 153-8904 Tokyo (Japan)

    2010-10-15

    Alternate spin-coating was done to fabricate an organic/inorganic multiplayer composite at room temperature. SiO{sub 2}/polyacrylic ester multilayer composites were obtained by coating an aqueous alkoxysilane-modified polyacrylic ester emulsion and an alkoxysilane liquid alternately on a substrate. We examined the layer thickness when the concentration of aqueous emulsion and disk rotating speed in spin-coating were changed, and found that the thickness decreased when the concentration was decreased and when the rotating speed was increased. Layers with a submicron thickness were obtained in optimum conditions for both polyacrylic ester and SiO{sub 2} layers. A multilayer composite with 31 layers in total was successfully fabricated without interface delamination or discontinuity of any layer; it showed good light transmittance through the visible light range. The potential of alternate spin-coating as a room temperature process for fabricating organic/inorganic multilayer composites was proven.

  9. Long-Term Isothermal Aging Effects on Carbon Fabric-Reinforced PMR-15 Composites: Compression Strength

    Science.gov (United States)

    Bowles, Kenneth J.; Roberts, Gary D.; Kamvouris, John E.

    1996-01-01

    A study was conducted to determine the effects of long-term isothermal thermo-oxidative aging on the compressive properties of T-650-35 fabric reinforced PMR-15 composites. The temperatures that were studied were 204, 260, 288, 316, and 343 C. Specimens of different geometries were evaluated. Cut edge-to-surface ratios of 0.03 to 0.89 were fabricated and aged. Aging times extended to a period in excess of 15,000 hours for the lower temperature runs. The unaged and aged specimens were tested in compression in accordance with ASTM D-695. Both thin and thick (plasma) specimens were tested. Three specimens were tested at each time/temperature/geometry condition. The failure modes appeared to be initiated by fiber kinking with longitudinal, interlaminar splitting. In general, it appears that the thermo-oxidative degradation of the compression strength of the composite material may occur by both thermal (time-dependent) and oxidative (weight-loss) mechanisms. Both mechanisms appear to be specimen-thickness dependent.

  10. Fabrication of graphene/polyaniline composite multilayer films by electrostatic layer-by-layer assembly

    Science.gov (United States)

    Cong, Jiaojiao; Chen, Yuze; Luo, Jing; Liu, Xiaoya

    2014-10-01

    A novel graphene/polyaniline composite multilayer film was fabricated by electrostatic interactions induced layer-by-layer self-assembly technique, using water dispersible and negatively charged chemically converted graphene (CCG) and positively charged polyaniline (PANI) as building blocks. CCG was achieved through partly reduced graphene oxide, which remained carboxyl group on its surface. The remaining carboxyl groups not only retain the dispersibility of CCG, but also allow the growth of the multilayer films via electrostatic interactions between graphene and PANI. The structure and morphology of the obtained CCG/PANI multilayer film are characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Ultraviolet-visible absorption spectrum (UV-vis), scanning electron microscopy (SEM), Raman spectroscopy and X-Ray Diffraction (XRD). The electrochemical properties of the resulting film are studied using cyclic voltammetry (CV), which showed that the resulting CCG/PANI multilayer film kept electroactivity in neutral solution and showed outstanding cyclic stability up to 100 cycles. Furthermore, the composite film exhibited good electrocatalytic ability toward ascorbic acid (AA) with a linear response from 1×10-4 to 1.2×10-3 M with the detect limit of 5×10-6 M. This study provides a facile and effective strategy to fabricate graphene/PANI nanocomposite film with good electrochemical property, which may find potential applications in electronic devices such as electrochemical sensor.

  11. Fabrication and Characterization of Electrospun PCL-MgO-Keratin-Based Composite Nanofibers for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Maame A. D. Boakye

    2015-07-01

    Full Text Available Polymeric nanofibers are of great interest in biomedical applications, such as tissue engineering, drug delivery and wound healing, due to their ability to mimic and restore the function of natural extracellular matrix (ECM found in tissues. Electrospinning has been heavily used to fabricate nanofibers because of its reliability and effectiveness. In our research, we fabricated poly(ε-caprolactone-(PCL, magnesium oxide-(MgO and keratin (K-based composite nanofibers by electrospinning a blend solution of PCL, MgO and/or K. The electrospun nanofibers were analyzed by scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR, mechanical tensile testing and inductively-coupled plasma optical emission spectroscopy (ICP-OES. Nanofibers with diameters in the range of 0.2–2.2 µm were produced by using different ratios of PCL/MgO and PCL-K/MgO. These fibers showed a uniform morphology with suitable mechanical properties; ultimate tensile strength up to 3 MPa and Young’s modulus 10 MPa. The structural integrity of nanofiber mats was retained in aqueous and phosphate buffer saline (PBS medium. This study provides a new composite material with structural and material properties suitable for potential application in tissue engineering.

  12. Tribology of Polymer Matrix Composites (PMCs) Fabricated by Additive Manufacturing (AM)

    Science.gov (United States)

    Gupta, S.; Dunnigan, R.; Salem, A.; Kuentz, L.; Halbig, M. C.; Singh, M.

    2016-01-01

    The integral process of depositing thin layers of material, one after another, until the designed component is created is collectively referred to as Additive Manufacturing (AM). Fused deposition process (FDP) is a type of AM where feedstock is extruded into filaments which then are deposited by 3D printing, and the solidification occurs during cooling of the melt. Currently, complex structures are being fabricated by commercial and open source desktop 3D printers. Recently, metal powder containing composite filaments based on polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) have emerged, which could be utilized for multifunctional applications. For further deployment in the field, especially for aerospace and ground-based applications, it is critical to understand the tribological behavior of 3D printed materials. In this presentation, we will report the tribological behavior of different polymer matrix composites fabricated by fused deposition process. These results will be compared with the base polymer systems. During this study, the tribological behavior of all the samples will be evaluated with tab-on-disc method and compared for different metallic powder reinforcements.

  13. Facile fabrication of magnetic carboxymethyl starch/poly(vinyl alcohol) composite gel for methylene blue removal.

    Science.gov (United States)

    Gong, Guisheng; Zhang, Faai; Cheng, Zehong; Zhou, Li

    2015-11-01

    This study presents a simple method to fabricate magnetic carboxymethyl starch/poly(vinyl alcohol) (mCMS/PVA) composite gel. The obtained mCMS/PVA was characterized by Fourier transform infrared (FTIR) spectra, vibrating-sample magnetometer (VSM) and scanning electron microscopy (SEM) measurements. The application of mCMS/PVA as an adsorbent for removal of cationic methylene blue (MB) dye from water was investigated. Benefiting from the combined merits of carboxymethyl starch and magnetic gel, the mCMS/PVA simultaneously exhibited excellent adsorption property toward MB and convenient magnetic separation capability. The effects of initial dye concentration, contact time, pH and ionic strength on the adsorption performance of mCMS/PVA adsorbent were investigated systematically. The adsorption process of mCMS/PVA for MB fitted pseudo-second-order model and Freundlich isotherm. Moreover, desorption experiments revealed that the mCMS/PVA adsorbent could be well regenerated in ethanol solution without obvious compromise of removal efficiency even after eight cycles of desorption/adsorption. Considering the facile fabrication process and robust adsorption performance, the mCMS/PVA composite gel has great potential as a low cost adsorbent for environmental decontamination.

  14. Fabric composite radiators for space nuclear power applications. Final report, March 1993

    Energy Technology Data Exchange (ETDEWEB)

    Klein, A.C.; Al-Baroudi, H.; Gulshan-Ara, Z.; Kiestler, W.C.; Snuggerud, R.D.; Abdul-Hamid, S.A.; Marks, T.S.

    1993-03-24

    Nuclear power systems will be required to provide much greater power levels for both civilian and defense space activities in the future than an currently needed. Limitations on the amount of usable power from radioisotope thermal generators and the limited availability of radioisotope heat source materials lead directly to the conclusion that nuclear power reactors will be needed to enhance the exploration of the solar system as well as to provide for an adequate defense. Lunar bases and travel to the Martian surface will be greatly enhanced by the use of high levels of nuclear power. Space based radar systems requiring many kilowatts of electrical power can provide intercontinental airline traffic control and defense early warning systems. Since the, figure of merit used in defining any space power system is the specific power, the decrease in die mass of any reactor system component will yield a tremendous benefit to the overall system performance. Also, since the heat rejection system of any power system can make up a large portion of the total system mass, any reduction in the mass of the heat rejection radiators will significantly affect the performance of the power system. Composite materials which combine the high strength, flexibility, and low mass characteristics of Si% based fibers with the attractive compatibility and heat transfer features of metallic foils, have been proposed for use m a number of space radiator applications. Thus, the weave of the fabric and the high strength capability of the individual fibers are combined with the high conductivity and chemical stability of a metallic liner to provide a light weight, flexible alternative to heavy, rigid, metallic radiator structural containers. The primary focus of this investigation revolves around two applications of the fabric composite materials, notably a fabric heat pipe radiator design and the Bubble Membrane Radiator concept.

  15. Mechanical properties and fabrication of small boat using woven glass/sugar palm fibres reinforced unsaturated polyester hybrid composite

    Science.gov (United States)

    Misri, S.; Leman, Z.; Sapuan, S. M.; Ishak, M. R.

    2010-05-01

    In recent years, sugar palm fibre has been found to have great potential to be used as fibre reinforcement in polymer matrix composites. This research investigates the mechanical properties of woven glass/sugar palm fibres reinforced unsaturated polyester hybrid composite. The composite specimens made of different layer of fibres such as strand mat, natural and hand woven of sugar palm fibres. The composites were fabricated using a compression moulding technique. The tensile and impact test was carried out in accordance to ASTM 5083 and ASTM D256 standard. The fibre glass boat is a familiar material used in boat industry. A lot of research on fabrication process such as lay-up, vacuum infusion mould and resin transfer mould has been conducted. Hybrid material of sugar palm fibre and fibre glass was used in fabricating the boat. This research investigates the method selection for fabrication of small boat application of natural fibre composites. The composite specimens made of different layer of fibres; woven glass fibre, strand mat, natural and hand woven of woven sugar palm fibres were prepared. The small boat were fabricated using a compression moulding and lay up technique. The results of the experiment showed that the tensile strength, tensile modulus, elongation at break value and impact strength were higher than the natural woven sugar palm fibre. The best method for fabricating the small boat was compression moulding technique. As a general conclusion, the usage of glass fibre had improved the tensile properties sugar palm fibre composites and compression moulding technique is suitable to be used in making a small boat application of natural fibre composites.

  16. Fabrication and electromagnetic interference shielding effectiveness of polymeric composites filled with silver-coated microorganism cells

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Mingming, E-mail: lan_mingming@163.com [College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002 (China); Zhang, Deyuan; Cai, Jun; Hu, Yanyan; Yuan, Liming [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China)

    2014-07-01

    In this paper, helical silver-coated Spirulina cells were used as conductive fillers for the fabrication of polymeric composites. The morphology and composition of the coated Spirulina cells were analyzed with scanning electron microscope and energy dispersive X-ray spectrometer. The densities of silver-coated Spirulina cells were measured using the standard Archimedes method with distilled water. The electrical resistivity was measured by four-probe technique using ammeter and voltmeter whereas electromagnetic interference shielding effectiveness was measured by four-port method using vector network analyzer and coaxial-airline sample holder. The results showed that the silver-coated Spirulina cells with different coating thickness were lightweight fillers compared to the other typical conductive particles. The polymeric composites could achieve good conductivity at the lower content of silver-coated Spirulina cells owing to their helical shape. The shielding effectiveness of polymeric composites had a strong dependence on their conductivity. At the coating thickness of 0.96 μm and the content of 40 vol%, the shielding effectiveness could reach above 74.3 dB in entire test wave band.

  17. Fabrication and characterization of polymer blends and composites derived from biopolymers

    Science.gov (United States)

    Sharma, Suraj

    This research focuses on fabricating blends and composites from natural polymers especially from proteins and natural epoxy, and describing the properties of plastics made from them. Specifically, plastic samples from partially denatured feathermeal and bloodmeal proteins, derived from the animal co-products (rendering) industry, were successfully produced through a compression molding process. The modulus (stiffness) of the material obtained was found to be comparable with that of commercial synthetic materials, such as polystyrene, but was found to have lower toughness characteristics, which is a common phenomenon among plastics produced from animal and plant proteins. Therefore, this study explored blending methods for improving the toughness. Plastic forming conditions for undenatured animal proteins such as chicken egg whites albumin and whey, used as a model, were established to prepare plastics from their blends with animal co-product proteins. The resultant plastic samples from these biomacromolecular blends demonstrated improved mechanical properties that were also compared with the established theoretical models known for polymer blends and composites. Moreover, plastics from albumin of chicken egg whites and human serum have demonstrated their potential in medical applications that require antibacterial properties. Another natural polymer vegetable oil-based epoxy, especially epoxidized linseed oil, showed significant potential to replace petroleum-derived resins for use as a matrix for composites in structural applications. Moreover, the research showed the benefits of ultrasonic curing, which can help in preparing the out-of-autoclave composites.

  18. Fabrication and characterization of Ni–Zr composite coatings using electrodepositing technique

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Fei [School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Jiang, Chuanhai, E-mail: chuanhaijiang1963@163.com [School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Zhang, Zhongquan [School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Muttini, Enzo [ICMMO/LEMHE, UMR 8182, Université Paris-Sud 11, Orsay Cedex 91405 (France); Fu, Peng; Zhao, Yuantao [School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Ji, Vincent [ICMMO/LEMHE, UMR 8182, Université Paris-Sud 11, Orsay Cedex 91405 (France)

    2015-06-25

    Highlights: • A novel Ni–Zr coatings with higher Zr content were fabricated. • Increasing Zr content resulted in the (1 1 1) preferred orientation. • The (1 1 1) preferred orientation increased the corrosion resistance. • Relationship between corrosion and Zr content, grain and texture was discussed. - Abstract: The main goal of this research is to prepare Ni–Zr composite coatings with different amounts of Zr micro-particles by using electrodeposition technology. Different characterization techniques including X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM) and Energy Dispersive X-ray Spectroscopy (EDX) were used to investigate the effects of Zr micro-particle contents on the surface morphology, texture, grain size, residual stress and hardness of the Ni–Zr composite coatings. The electrochemical impedance and potentiodynamic polarization measurements were also used to examine the corrosion resistance. As the Zr contents in the Ni–Zr composite coating increased, the (2 0 0) texture changed to the (1 1 1) texture, the grain size decreased, the residual stress and hardness increased. The anti-corrosion properties of the Ni–Zr composite coatings could be linked to several reasons such as the amount of Zr micro-particles in the deposits, a decrease in grain size, and a change in the texture of the deposits.

  19. Fractographic Analysis of High Performance Fabric Reinforced Composites after Ballistic Impact

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hua-peng; SHI Mei-wu; ZHANG Jian-chun; WANG Shan-yuan

    2002-01-01

    To improve the ballistic resistance of the ballistic resistant composites, this paper deals with the microscopically fractographic analysis of their failure caused by Fragments Simulated Projectiles (FSP) and bullet with the objective to clarify the failure modes of the compoosites, and to further improve the ballistic resistance of the ballistic systems by hybridizing based on the currently market available materials.After the analysis, it has been found that the penetration of the FSP into the panels causes shear failure in the impact side of the target but extensive tension failure in the distal side of the composite target. The failure modes also include matrix fragmentation, and delamination, and with resin content as high as 30%,more filaments are broken by cutting in the composite.Compared with the failure caused by bullet, there are more cutting or shearing for the failure caused by FSP,but more compressive failure caused by bullet. This paper also discusses the effects of hybridizing different types of fabrics on the ballistic resistance of the composite based on the observations and numerical simulation.

  20. Some Physicochemical Phenomena Observed During Fabrication of Mg-C Cast Composites

    Science.gov (United States)

    Olszówka-Myalska, Anita

    2016-08-01

    Some effects acquired in composites processed under industrial conditions were presented. Glassy carbon particles (GCp) and short carbon fibers were applied in magnesium matrix composites fabricated by suspension casting. As the matrix magnesium alloys with Al and without Al but with Zn, Zr and rare earth elements (RE) were used. The main interest was focused on the behavior of the reinforcing components, depending on the magnesium alloying elements. The observation of the stirred suspensions during their industrial processing detected an effect of carbon components' migration to the top of the crucible, suggesting segregation processes. Experiments with unmixed suspensions performed by way of remelting the composites with uniformly distributed reinforcement showed that the segregation effect depends on the magnesium matrix composition. In the case of the alloy with Al, two zones with (top) and without reinforcement can be formed. For the alloys with Zn, Zr, and RE, an additional zone of segregated carbon reinforcement can appear directly at the bottom of the crucible. The SEM/EDS examination also showed some differences in the influence of the magnesium matrix on the carbon reinforcement dependent on the applied alloying elements. The most destructive effect was detected for the Al-containing alloy and minor defects in GCp were formed when Gd with Nd were applied.

  1. Fabrication of Glass Fiber Reinforced Composites Based on Bio-Oil Phenol Formaldehyde Resin

    Directory of Open Access Journals (Sweden)

    Yong Cui

    2016-11-01

    Full Text Available In this study, bio-oil from fast pyrolysis of renewable biomass was added by the mass of phenol to synthesize bio-oil phenol formaldehyde (BPF resins, which were used to fabricate glass fiber (GF reinforced BPF resin (GF/BPF composites. The properties of the BPF resin and the GF/BPF composites prepared were tested. The functional groups and thermal property of BPF resin were thoroughly investigated by Fourier transform infrared (FTIR spectra and dynamic thermomechanical analysis (DMA. Results indicated that the addition of 20% bio-oil exhibited favorable adaptability for enhancing the stiffness and heat resistance of phenol formaldehyde (PF resin. Besides, high-performance GF/BPF composites could be successfully prepared with the BPF resin based on hand lay-up process. The interface characteristics of GF/BPF composites were determined by the analysis of dynamic wettability (DW and scanning electron microscopy (SEM. It exhibited that GF could be well wetted and embedded in the BPF resin with the bio-oil addition of 20%.

  2. Fabrication and characterization of bioactive and antibacterial composites for dental applications.

    Science.gov (United States)

    Chatzistavrou, Xanthippi; Fenno, J Christopher; Faulk, Denver; Badylak, Stephen; Kasuga, Toshihiro; Boccaccini, Aldo R; Papagerakis, Petros

    2014-08-01

    There is an increasing clinical need to design novel dental materials that combine regenerative and antibacterial properties. In this work the characterization of a recently developed sol-gel-derived bioactive glass ceramic containing silver ions (Ag-BG) is presented. The microstructural characteristics, ion release profile, zeta potential value and changes in weight loss and pH value as a function of the immersion time of Ag-BG in Tris buffer are evaluated. Ag-BG is also incorporated into natural extracellular matrix (ECM) hydrogel to further enhance its regenerative properties. Then, the micro and macro architectures of these new composites (ECM/Ag-BG) are characterized. In addition, the antibacterial properties of these new composites are tested against Escherichia coli and Enterococcus faecalis, a bacterium commonly implicated in the pathogenesis of dental pulp infections. Cell-material interaction is also monitored in a primary culture of dental pulp cells. Our study highlights the benefits of the successful incorporation of Ag in the bioactive glass, resulting in a stable antibacterial material with long-lasting bactericidal activity. Furthermore, this work presents for the first time the fabrication of new Ag-doped composite materials, with inductive pulp-cell proliferation and antibacterial properties (ECM/Ag-BG). This advanced composite made of Ag-BG incorporated into natural ECM possesses improved properties that may facilitate potential applications in tooth regeneration approaches.

  3. Effect Of Milling Time On Microstructure Of AA6061 Composites Fabricated Via Mechanical Alloying

    Directory of Open Access Journals (Sweden)

    Tomiczek B.

    2015-06-01

    Full Text Available The aim of this work is to determine the effect of manufacturing conditions, especially milling time, on the microstructure and crystallite size of a newly developed nanostructural composite material with the aluminium alloy matrix reinforced with halloysite nanotubes. Halloysite, being a clayey mineral of volcanic origin, is characterized by high porosity and large specific surface area. Thus it can be used as an alternative reinforcement in metal matrix composite materials. In order to obtain this goal, composite powders with fine microstructures were fabricated using high-energy mechanical alloying, cold compacting and hot extrusion techniques. The obtained composite powders of aluminium alloy reinforced with 5, 10 and 15 wt% of halloysite nanotubes were characterized with SEM, TEM and XRD analysis. It has been proven that the use of mechanical alloying leads to a high degree of deformation, which, coupled with a decreased grain size below 100 nm and the dispersion of the refined reinforcing particles–reinforces the material very well.

  4. Fabrication of low-cost Mod-OA wood composite wind turbine blades

    Science.gov (United States)

    Lark, R. F.; Gougeon, M.; Thomas, G.; Zuteck, M.

    1983-02-01

    The wood composite blades were fabricated by using epoxy resin-bonded laminates of Douglas fir veneers for the leading edge spar sections and honeycomb-cored birch plywood panels for the blade trailing edge or afterbody sections. The blade was joined to the wind turbine hub assembly by epoxy resin-bonded steel load take-off studs. The wood composite blades were installed in the Mod-OA wind turbine test facility at Kahuku, Hawaii. The wood composite blades have successfully completed high power (average of 150 kW) operations for an eighteen month period (nearly 8,000 hr) before replacement with another set of wood composite blades. The original set of blades was taken out of service because of the failure of the shank on one stud. An inspection of the blades at NASA-Lewis showed that the shank failure was caused by a high stress concentration at a corrosion pit on the shank fillet radius which resulted in fatigue stresses in excess of the endurance limit.

  5. Mg-Zn based composites reinforced with bioactive glass (45S5) fabricated via powder metallurgy

    Science.gov (United States)

    Ab llah, N.; Jamaludin, S. B.; Daud, Z. C.; Zaludin, M. A. F.

    2016-07-01

    Metallic implants are shifting from bio-inert to bioactive and biodegradable materials. These changes are made in order to improve the stress shielding effect and bio-compatibility and also avoid the second surgery procedure. Second surgery procedure is required if the patient experienced infection and implant loosening. An implant is predicted to be well for 15 to 20 years inside patient body. Currently, magnesium alloys are found to be the new biomaterials because of their properties close to the human bones and also able to degrade in the human body. In this work, magnesium-zinc based composites reinforced with different content (5, 15, 20 wt. %) of bioactive glass (45S5) were fabricated through powder metallurgy technique. The composites were sintered at 450˚C. Density and porosity of the composites were determined using the gas pycnometer. Microstructure of the composites was observed using an optical microscope. In-vitro bioactivity behavior was evaluated in the simulated body fluid (SBF) for 7 days. Fourier Transform Infrared (FTIR) was used to characterize the apatite forming on the samples surface. The microstructure of the composite showed that the pore segregated near the grain boundaries and bioglass clustering was observed with increasing content of bioglass. The true density of the composites increased with the increasing content of bioglass and the highest value of porosity was indicated by the Mg-Zn reinforced with 20 wt.% of bioglass. The addition of bio-glass to the Mg-Zn has also induced the formation of apatite layer after soaking in SBF solution.

  6. Fabrication and properties of polyimide composites filled with zirconium tungsten phosphate of negative thermal expansion

    Energy Technology Data Exchange (ETDEWEB)

    Shi, XinWei, E-mail: Shixw@zzu.edu.cn [School of Physical Science & Engineering, Zhengzhou University, 100th Science Road, Zhengzhou 450001 (China); Lian, Hong; Yan, XiaoSheng; Qi, Ruiqiong; Yao, Ning [School of Physical Science & Engineering, Zhengzhou University, 100th Science Road, Zhengzhou 450001 (China); Li, Tao [Department of Technology & Physics, Zhengzhou University of Lightindustry, 5th Dongfeng Road, Zhengzhou 450002 (China)

    2016-08-15

    Negative thermal expansion Zr{sub 2}WP{sub 2}O{sub 12} (ZWP) powder prepared by hydrothermal method was used as fillers to tailor the thermal expansion coefficient (TEC) of the polyimide (PI)-based composites. A series of PI-based composites containing different loading (0–40 wt% or 0–19.6 vol%) of ZWP powder were fabricated by the in-situ polymerization technique. Their structures and properties were characterized by Scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), Impedance meter, Thermal mechanical analysis (TMA) and Thermogravimetric analysis (TGA). The additions of ZWP steadily reduced the TEC of the PI matrix at all loadings studied. A 40 wt% (19.6 vol%) ZWP loading gives a 32.5% (about 15 × 10{sup −6}/K) reduction of TEC. The thermal stability of the ZWP/PI composites can be enhanced with the increment of ZWP powder. The independence of the dielectric constant on frequency is improved by introduction of ZWP particles to PIs. The dielectric loss displays good stability, which indicates that the ZWP/PI composites show potential applications in microelectronic and aerospace industries. - Graphical abstract: With increasing of ZWP in the composites, the CTEs of the ZWP/PI were reduced. A 40 wt% (19.6 vol%) ZWP loading gives a 32.5% (about 15 × 10{sup −6}/K) reduction of CTE of the composite. - Highlights: • Zr{sub 2}P{sub 2}WO{sub 12} was firstly used as filler to tune the TEC of polyimides. • The TECs of polyimides were reduced by introduction of Zr{sub 2}P{sub 2}WO{sub 12} powders. • Polyimides with reduced TECs have favorable thermal and dielectric properties.

  7. Lamination of microfibrous PLGA fabric by electrospinning a layer of collagen-hydroxyapatite composite nanofibers for bone tissue engineering.

    Science.gov (United States)

    Kwon, Gi-Wan; Gupta, Kailash Chandra; Jung, Kyung-Hye; Kang, Inn-Kyu

    2017-01-01

    To mimic the muscle inspired cells adhesion through proteins secretion, the lamination of collagen-hydroxyapatite nanorod (nHA) composite nanofibers has been carried out successfully on polydopamine (PDA)-coated microfibrous polylactide-co-glycolide (PLGA) fabrics. The lamination of collagen-hydroxyapatite composite nanofibers on polydopamine-coated microfibrous PLGA fabrics was carried through electrospinning the solution of collagen containing L-glutamic acid-grafted hydroxyapatite nanorods (nHA-GA) at a flow rate of 1.5 mL/h and an applied voltage of 15 kV. In comparison to pristine PLGA, dopamine-coated PLGA and collagen-hydroxyapatite composite nanofiber lamination has produced more wettable surfaces and surface wettability is found to higher with dopamine-coated PLGA fabrics then pristine PLGA. The SEM micrographs have clearly indicated that the lamination of polydopamine-coated PLGA fabric with collagen-hydroxyapatite composite nanofibers has shown increased adhesion of MC3T3E1 cells in comparison to pristine PLGA fabrics. The results of these studies have clearly demonstrated that collagen-nHA composites fibers may be used to create bioactive 3D scaffolds using PLGA as an architectural support agent.

  8. Fabrication of functionally gradient materials with internal channels in ceramics and ceramic composites

    Science.gov (United States)

    Shin, Hyea-Weon

    Functionally Gradient Materials (FGMs) are inhomogeneous materials whose compositions vary from one phase to another. By tailoring the inhomogeneous properties, FGMs can be used to reduce the stresses that are caused by severe thermal gradients. Thermal gradient loading can further be compensated by heat transfer into a cooling fluid circulating in a network of channels and manifolds. In an envisioned application, heat from a localized source is transferred to the cooling fluid, easing sharp thermal loads while minimizing the unwanted spread of heat energy to the ambient surroundings. This study reports on the fabrication of functionally gradient ceramics and the embedding of simple internal channels within these ceramics. Functional gradiency (variation of composition) is built in via the layering of different components across the thickness of a plate sample. Traditional powder processing techniques are applied to fabricate the test pieces, and recently developed methods of joining are used to build assemblies from individually sintered plate layers. For a well-formed FGM to be made, materials parameters need to be selected based on mechanical, thermal and chemical properties. As a class, ceramics are hard, wear-resistant, refractory, electrically and thermally insulative, nonmagnetic, chemically stable, and oxidation-resistant. However, because of their brittleness, ceramics with minute channels are difficult to machine. Instead, for this study, a graphite fugitive phase is used as a spacer to support channel volumes within a ceramic powder compact; during pre-sintering, the graphite burns out to expose a network of channels. Full sintering fixes the final shape. At the operating temperatures of the ovens used in our fabrication study, sintering of alumina, partially stabilized zirconia, fully stabilized zirconia and hydroxyapatite have been successful, and these ceramic powders form the basis of the present fabrication studies. Inhomogeneities inherent in the

  9. Fabrication, testing, and analysis of anisotropic carbon/glass hybrid composites: volume 1: technical report.

    Energy Technology Data Exchange (ETDEWEB)

    Wetzel, Kyle K. (Wetzel Engineering, Inc. Lawrence, Kansas); Hermann, Thomas M. (Wichita state University, Wichita, Kansas); Locke, James (Wichita state University, Wichita, Kansas)

    2005-11-01

    Anisotropic carbon/glass hybrid composite laminates have been fabricated, tested, and analyzed. The laminates have been fabricated using vacuum-assisted resin transfer molding (VARTM). Five fiber complexes and a two-part epoxy resin system have been used in the study to fabricate panels of twenty different laminate constructions. These panels have been subjected to physical testing to measure density, fiber volume fraction, and void fraction. Coupons machined from these panels have also been subjected to mechanical testing to measure elastic properties and strength of the laminates using tensile, compressive, transverse tensile, and in-plane shear tests. Interlaminar shear strength has also been measured. Out-of-plane displacement, axial strain, transverse strain, and inplane shear strain have also been measured using photogrammetry data obtained during edgewise compression tests. The test data have been reduced to characterize the elastic properties and strength of the laminates. Constraints imposed by test fixtures might be expected to affect measurements of the moduli of anisotropic materials; classical lamination theory has been used to assess the magnitude of such effects and correct the experimental data for the same. The tensile moduli generally correlate well with experiment without correction and indicate that factors other than end constraints dominate. The results suggest that shear moduli of the anisotropic materials are affected by end constraints. Classical lamination theory has also been used to characterize the level of extension-shear coupling in the anisotropic laminates. Three factors affecting the coupling have been examined: the volume fraction of unbalanced off-axis layers, the angle of the off-axis layers, and the composition of the fibers (i.e., carbon or glass) used as the axial reinforcement. The results indicate that extension/shear coupling is maximized with the least loss in axial tensile stiffness by using carbon fibers oriented 15{sup

  10. Fabrication and characterization of 2.5D and 3D SiC{sub f}/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Shuang, E-mail: zhsh6007@126.co [Key Laboratory of Advanced Ceramic Fibers and Composites, National University of Defense Technology, Changsha 410073 (China); School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); Zhou, Xingui; Yu, Jinshan [Key Laboratory of Advanced Ceramic Fibers and Composites, National University of Defense Technology, Changsha 410073 (China); Mummery, Paul [School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Manchester M13 9PL (United Kingdom)

    2013-10-15

    Highlights: • 2.5D and 3D KD-I SiC fiber fabrics were used as the reinforcement. • Closed porosity was investigated by X-ray tomographic techniques. • The properties of the composites were improved by the CVD process. -- Abstract: SiC{sub f}/SiC composites are considered promising candidate materials for fusion applications. 2.5D and 3D KD-I SiC fiber fabrics were used as the reinforcement and SiC{sub f}/SiC composites were fabricated via polymer impregnation and pyrolysis (PIP) process and coated with chemical vapor deposited (CVD) SiC. The porosity, thermal conductivity and mechanical property of the composites were characterized. The results indicated that 2.5D and 3D SiC{sub f}/SiC composites fabricated via PIP process exhibited high porosity, and hence low thermal conductivity. After the CVD process, the density, thermal conductivity and mechanical properties of the composites were increased.

  11. Modeling Forced Flow Chemical Vapor Infiltration Fabrication of SiC-SiC Composites for Advanced Nuclear Reactors

    Directory of Open Access Journals (Sweden)

    Christian P. Deck

    2013-01-01

    Full Text Available Silicon carbide fiber/silicon carbide matrix (SiC-SiC composites exhibit remarkable material properties, including high temperature strength and stability under irradiation. These qualities have made SiC-SiC composites extremely desirable for use in advanced nuclear reactor concepts, where higher operating temperatures and longer lives require performance improvements over conventional metal alloys. However, fabrication efficiency advances need to be achieved. SiC composites are typically produced using chemical vapor infiltration (CVI, where gas phase precursors flow into the fiber preform and react to form a solid SiC matrix. Forced flow CVI utilizes a pressure gradient to more effectively transport reactants into the composite, reducing fabrication time. The fabrication parameters must be well understood to ensure that the resulting composite has a high density and good performance. To help optimize this process, a computer model was developed. This model simulates the transport of the SiC precursors, the deposition of SiC matrix on the fiber surfaces, and the effects of byproducts on the process. Critical process parameters, such as the temperature and reactant concentration, were simulated to identify infiltration conditions which maximize composite density while minimizing the fabrication time.

  12. Structure and mechanical properties of a multilayer carbide-hardened niobium composite material fabricated by diffusion welding

    Science.gov (United States)

    Korzhov, V. P.; Ershov, A. E.; Stroganova, T. S.; Prokhorov, D. V.

    2016-04-01

    The structure, the bending strength, and the fracture mechanism of an artificial niobium-based composite material, which is fabricated by high-pressure diffusion welding of multilayer stacks assembled from niobium foils with a two-sided carbon coating, are studied. The microstructure of the composite material is found to consist of alternating relatively plastic layers of the solid solution of carbon in niobium and hardening niobium carbide layers. The room-temperature proportional limit of the developed composite material is threefold that of the composite material fabricated from coating-free niobium foils using the proposed technology. The proportional limit of the developed composite material and the stress corresponding to the maximum load at 1100°C are 500 and 560 MPa, respectively. The developed material is considered as an alternative to Ni-Al superalloys.

  13. Designing of epoxy composites reinforced with carbon nanotubes grown carbon fiber fabric for improved electromagnetic interference shielding

    Directory of Open Access Journals (Sweden)

    B. P. Singh

    2012-06-01

    Full Text Available In this letter, we report preparation of strongly anchored multiwall carbon nanotubes (MWCNTs carbon fiber (CF fabric preforms. These preforms were reinforced in epoxy resin to make multi scale composites for microwave absorption in the X-band (8.2-12.4GHz. The incorporation of MWCNTs on the carbon fabric produced a significant enhancement in the electromagnetic interference shielding effectiveness (EMI-SE from −29.4 dB for CF/epoxy-composite to −51.1 dB for CF-MWCNT/epoxy multiscale composites of 2 mm thickness. In addition to enhanced EMI-SE, interlaminar shear strength improved from 23 MPa for CF/epoxy-composites to 50 MPa for multiscale composites indicating their usefulness for making structurally strong microwave shields.

  14. A review on the fabrication method of bio-sourced hybrid composites for aerospace and automotive applications

    Science.gov (United States)

    Zin, M. H.; Razzi, M. F.; Othman, S.; Liew, K.; Abdan, K.; Mazlan, N.

    2016-10-01

    Development of bio-sourced materials over the recent years has shown growing interests due to their eco-friendly characteristics. The combination of bio-sourced material such as kenaf, jute, sisal and many more into current synthetic fibres such as glass and carbon fibre, which is also known as hybrid composites, offers several significant benefits including sustainability, cost reduction, product variety and high specific mechanical properties. There are many methods used to fabricate composite parts nowadays. However, each method has its own requirement and usability. This review paper intends to focus on suitable technique to be adopted in order to fabricate bio-sourced hybrid composites. Some of the fabrication methods are customized in order to suit with the application of natural fibres. The selected methods are also highlighted with the application in aerospace and automotive industry. The process and outcomes are presented comparatively.

  15. Design and Fabrication of a Composite Morphing Radiator Panel Using High Conductivity Fibers

    Science.gov (United States)

    Wescott, Matthew T.; McQuien, J. Scott; Bertagne, Christopher L.; Whitcomb, John D.; Hart, Darren J.; Erickson, Lisa R.

    2017-01-01

    Upcoming crewed space missions will involve large internal and external heat loads and require advanced thermal control systems to maintain a desired internal environment temperature. Radiators with at least 12:1 turndown ratios (the ratio between the maximum and minimum heat rejection rates) will be needed. However, current technologies are only able to achieve turndown ratios of approximately 3:1. A morphing radiator capable of altering shape could significantly increase turndown capabilities. Shape memory alloys offer qualities that may be well suited for this endeavor; their temperature-dependent phase changes could offer radiators the ability to passively control heat rejection. In 2015, a morphing radiator prototype was constructed and tested in a thermal vacuum environment, where it successfully demonstrated the morphing behavior and variable heat rejection. Newer composite prototypes have since been designed and manufactured using two distinct types of SMA materials. These models underwent temperature cycling tests in a thermal vacuum chamber and a series of fatigue tests to characterize the lifespan of these designs. The focus of this paper is to present the design approach and testing of the morphing composite facesheet. The discussion includes: an overall description of the project background, definition of performance requirements, composite materials selection, use of analytic and numerical design tools, facesheet fabrication, and finally fatigue testing with accompanying results.

  16. Fabrication and Dielectric Properties of AlN Filled Epoxy Nano-composites

    Energy Technology Data Exchange (ETDEWEB)

    Gao Naiui; Yu Xin; Jin Haiyun; He Bo; Dong Pu [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an, 710049 (China); Gao Chao, E-mail: hyjin@mail.xjtu.edu.cn

    2011-10-29

    Epoxy resins were materials with excellent mechanical, electrical properties and good chemical stability. Thus, they had been used in various fields, especially in electrical and electronic application. However, because they were brittle material, the fields of application were limited. Adding nano-Aluminum Nitride (AlN) into Epoxy resins could improve the toughness of the composites, the thermal behaviors of composites could also be improved, but the influence on dielectric properties was not very clear. In this research, epoxy resin based composites were fabricated. The relationships between the dielectric properties and the nano-AlN particle content were investigated. The results showed that, both relative permittivity ({epsilon}{sub r}) and dielectric loss tangent (tan{delta}) decreased to be less than that of monolithic epoxy when nano-AlN particle content was no more than certain amount, the DC volume resistivity ({rho}{sub v}) and low frequency resistivity decreased with increasing nano-AlN content (in certain range of content). AC breakdown strength (E{sub B}) did not have an obvious tendency with nano-AlN content.

  17. Fabrication and Crystal Structure of Sol-Gel Deposited BST Thin Films with Compositional Gradient

    Directory of Open Access Journals (Sweden)

    Czekaj D.

    2017-06-01

    Full Text Available In the present research technology of compositionally graded barium strontium titanate Ba1-xSrxTiO3 thin films deposited on stainless steel substrates by sol-gel spin coating followed with thermal annealing at T = 650°C is reported. Results of thermal behavior of the sol-gel derived powders with compositions used for fabrication of graded structure (i.e. with Sr mole fraction x = 0.5, 0.4 and 0.3 are described. X-ray diffraction studies of the phase composition and crystal structure of such complex thin film configuration are given. It was found that gel powders exhibited a large total weight loss of about Δm ≈ 44-47%. Three stages of weight loss took place at temperature ranges: below T ≈ 300°C, at ΔT ≈ 300-500°C and between T = 600°C and T = 800°C. Phase analysis has shown that the dominating phase is Ba0.67Sr0.33TiO3 compound while the second phase is Ba0.7Sr0.3TiO3 or Ba0.5Sr0.5TiO3 for “up-graded” and “down-graded” structure, respectively.

  18. Fabrication of superhydrophobic coating for preventing microleakage in a dental composite restoration.

    Science.gov (United States)

    Cao, Danfeng; Zhang, Yingchao; Li, Yao; Shi, Xiaoyu; Gong, Haihuan; Feng, Dan; Guo, Xiaowei; Shi, Zuosen; Zhu, Song; Cui, Zhanchen

    2017-09-01

    Superhydrophobic coatings were successfully fabricated by photo-crosslinked polyurethane (PU) and organic fluoro group-functionalized SiO2 nanoparticles (F-SiO2 NPs), and were introduced for preventing microleakage in a dental composite restoration. The F-SiO2 NPs possessed low surface energy and the PU can not only improve the mechanical stability but also promote F-SiO2 NPs to form multiscale structure, which could facilitate the properties of the as-prepared superhydrophobic coating by synergetic effect. The morphology and properties of the resulted superhydrophobic coatings with different PU/F-SiO2 ratios were studied using (1)H NMR spectrum, fourier transform infrared spectra, scanning electron microscopy, atomic force microscopy and UV-vis spectrophotometry. The results showed that the superhydrophobic coatings with low PU/F-SiO2 ratio (1:3) possessed excellent hierarchical papillae structure with trapped air pockets, high contact angle (160.1°), low sliding angle (superhydrophobic property, the as-prepared superhydrophobic coatings effectively prevented water permeation in resin composite restoration evaluation. This research may provide an effective method to solve the problem of microleakage and will efficiently increase the success rate of dental composite restorations. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A NOVEL METHOD FOR FABRICATING COMPOSITE MOSAIC MEMBRANE WITH UNIQUE NF SELECTIVITY

    Institute of Scientific and Technical Information of China (English)

    Jindun Liu; A. J. B. Kemperman; G. H. Koops; M. Wessling

    2006-01-01

    A novel method of fabricating composite mosaic membranes was studied on the basis of interfacial polymerization (IP) by coating a thin selective layer onto the surface of a micro-porous hollow-fiber membrane, in which,2,5-diaminobenzene sulfonic acid was used as one monomer of the IP reaction, and a mixture of trimesoyl chloride(TMCI) and 4-(chloromethyl) benzoyl chloride as the other monomer. Through the IP reaction a thin selective layer with negatively charged groups could be first formed on the polyethersulfone (PES) support membrane. Then trimethylamine solution was introduced to modify the IP layer through a quaternization reaction. Thus the selective layer of this composite membrane contained both negatively charged and positively charged groups to perform the mosaic functionality.Characterization of the composite mosaic membranes was carried out through permeation experiments using different inorganic salts and dyes. The experimental results showed that the membranes could permeate both mono- and bi-valent inorganic salts, but reject larger organic molecules. Such a mosaic membrane is potentially useful for the separation of salts from water-soluble organics, especially in dye and textile industries.

  20. Durability of self-healing woven glass fabric/epoxy composites

    Science.gov (United States)

    Yin, Tao; Rong, Min Zhi; Zhang, Ming Qiu; Zhao, Jian Qing

    2009-07-01

    In this work, the durability of the healing capability of self-healing woven glass fabric/epoxy laminates was investigated. The composites contained a two-component healing system with epoxy-loaded urea-formaldehyde microcapsules as the polymerizable binder and CuBr2(2-methylimidazole)4 (CuBr2(2-MeIm)4) as the latent hardener. It was found that the healing efficiency of the laminates firstly decreased with storage time at room temperature, and then leveled off for over two months. By means of a systematic investigation and particularly verification tests with dynamic mechanical analysis (DMA), diffusion of epoxy monomer from the microcapsules due to volumetric contraction of the composites during manufacturing was found to be the probable cause. The diffusing sites on the microcapsules were eventually blocked because the penetrated resin was gradually cured by the remnant amine curing agent in the composites' matrix, and eventually the healing ability was no longer reduced after a longer storage time. The results should help to develop approaches for improving the service stability of the laminates.

  1. Fabrication and Properties of Degradable PPC/ EVOH/ starch/ CaCO3 Composites

    Institute of Scientific and Technical Information of China (English)

    QIAO Junjuan; DU Fengguang; PANG Maizhi; XIAO Min; WANG Shuanjin; MENG Yuezhong

    2008-01-01

    Thermally stable and biodegradable composites from poly (propylene carbonate) (PPC), poly (ethylene-co-vinyl alcohol) (EVOH), starch and CaCO3, were fabricated by melt blending. Differential scanning calorimetry (DSC), differential thermal analysis/ thermal gravimetric analysis (DTA/TGA), tensile test and scanning electron microscope (SEM) were performed to investigate the miscibility, thermal behavior and tensile properties of the PPC/ EVOH/ Starch/ CaCO3 composites. DSC results indicate that the introduction of EVOH could improve the compatibility between PPC and starch to some extent because of the interfacial interaction between PPC and EVOH, leading to an increase in tensile strength. The tensile strength began to decrease when more starch was added due to the aggregation of starch particles. SEM examination showed the good interfacial bonding between the fillers and polymeric components. The incorporation of both EVOH and fillers can greatly increase the thermal stability of PPC matrix. The PPC/ EVOH/ Starch/ CaCO3 composites can be melt processed and can be used as a common biodegradable material for a wide application.

  2. Large-scale fabrication and utilization of novel hexagonal/turbostratic composite boron nitride nanosheets

    KAUST Repository

    Zhong, Bo

    2017-02-15

    In this report, we have developed a scalable approach to massive synthesis of hexagonal/turbostratic composite boron nitride nanosheets (h/t-BNNSs). The strikingly effective, reliable, and high-throughput (grams) synthesis is performed via a facile chemical foaming process at 1400°C utilizing ammonia borane (AB) as precursor. The characterization results demonstrate that high quality of h/t-BNNSs with lateral size of tens of micrometers and thickness of tens of nanometers are obtained. The growth mechanism of h/t-BNNSs is also discussed based on the thermogravimetric analysis of AB which clearly shows two step weight loss. The h/t-BNNSs are further used for making thermoconductive h/t-BNNSs/epoxy resin composites. The thermal conductivity of the composites is obviously improved due to the introduction of h/t-BNNSs. Consideration of the unique properties of boron nitride, these novel h/t-BNNSs are envisaged to be very valuable for future high performance polymer based material fabrication.

  3. Fabrication of W–1 wt.% TiC composites by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Xiao-Yu [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Luo, Lai-Ma, E-mail: luolaima@126.com [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Laboratories of Nonferrous Metal Material and Processing Engineering of Anhui Province, Hefei 230009 (China); Chen, Hong-Yu [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Luo, Guang-Nan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zhu, Xiao-Yong; Zan, Xiang; Cheng, Ji-Gui [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Laboratories of Nonferrous Metal Material and Processing Engineering of Anhui Province, Hefei 230009 (China); Wu, Yu-Cheng, E-mail: ycwu@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Laboratories of Nonferrous Metal Material and Processing Engineering of Anhui Province, Hefei 230009 (China)

    2015-03-15

    Graphical abstract: - Highlights: • TiC/W nanoparticles with core–shell structure were produced by chemical method. • TiC particles were dispersed in the tungsten grains and grain boundaries. • The grain size and relative density of W–TiC composite were 3 μm and 98.6%, respectively. - Abstract: TiC/W ultra-fine powders were produced by one-step activation and chemical reduction process. The powders were consolidated by spark plasma sintering (SPS) at 1800 °C to suppress grain growth during sintering. The grain size, relative density and the Vicker hardness HV{sub 0.2} of the bulk sample fabricated by SPS were 3 μm, 98.6% and 471, respectively. The reduced Young's elastic modulus of the sintered W–1 wt.% TiC composites was 382.7 GPa. As the temperature rises from room temperature (RT) to 1100 K, the thermal conductivity of pure W and W–1 wt.% TiC composites decreased with the same trend. However, the thermal conductivity of the samples was both above 120 W/m K at RT.

  4. Fabrication of Chitosan/Silk Fibroin Composite Nanofibers for Wound-dressing Applications

    Directory of Open Access Journals (Sweden)

    Hong-sheng Wang

    2010-09-01

    Full Text Available Chitosan, a naturally occurring polysaccharide with abundant resources, has been extensively exploited for various biomedical applications, typically as wound dressings owing to its unique biocompatibility, good biodegradability and excellent antibacterial properties. In this work, composite nanofibrous membranes of chitosan (CS and silk fibroin (SF were successfully fabricated by electrospinning. The morphology of electrospun blend nanofibers was observed by scanning electron microscopy (SEM and the fiber diameters decreased with the increasing percentage of chitosan. Further, the mechanical test illustrated that the addition of silk fibroin enhanced the mechanical properties of CS/SF nanofibers. The antibacterial activities against Escherichia coli (Gram negative and Staphylococcus aureus (Gram positive were evaluated by the turbidity measurement method; and results suggest that the antibacterial effect of composite nanofibers varied on the type of bacteria. Furthermore, the biocompatibility of murine fibroblast on as-prepared nanofibrous membranes was investigated by hematoxylin and eosin (H&E staining and MTT assays in vitro, and the membranes were found to promote the cell attachment and proliferation. These results suggest that as-prepared chitosan/silk fibroin (CS/SF composite nanofibrous membranes could be a promising candidate for wound healing applications.

  5. Fabrication of chitosan/silk fibroin composite nanofibers for wound-dressing applications.

    Science.gov (United States)

    Cai, Zeng-Xiao; Mo, Xiu-Mei; Zhang, Kui-Hua; Fan, Lin-Peng; Yin, An-Lin; He, Chuang-Long; Wang, Hong-Sheng

    2010-09-21

    Chitosan, a naturally occurring polysaccharide with abundant resources, has been extensively exploited for various biomedical applications, typically as wound dressings owing to its unique biocompatibility, good biodegradability and excellent antibacterial properties. In this work, composite nanofibrous membranes of chitosan (CS) and silk fibroin (SF) were successfully fabricated by electrospinning. The morphology of electrospun blend nanofibers was observed by scanning electron microscopy (SEM) and the fiber diameters decreased with the increasing percentage of chitosan. Further, the mechanical test illustrated that the addition of silk fibroin enhanced the mechanical properties of CS/SF nanofibers. The antibacterial activities against Escherichia coli (Gram negative) and Staphylococcus aureus (Gram positive) were evaluated by the turbidity measurement method; and results suggest that the antibacterial effect of composite nanofibers varied on the type of bacteria. Furthermore, the biocompatibility of murine fibroblast on as-prepared nanofibrous membranes was investigated by hematoxylin and eosin (H&E) staining and MTT assays in vitro, and the membranes were found to promote the cell attachment and proliferation. These results suggest that as-prepared chitosan/silk fibroin (CS/SF) composite nanofibrous membranes could be a promising candidate for wound healing applications.

  6. Fabrication and Testing of Active and Adaptive Cyanate Ester Composite Mirrors

    Science.gov (United States)

    Bennett, H. E.

    2004-01-01

    The objective of the NASA/Bennett Optical Research Inc. (BOR) NAS8-02008 Phase II Program, which also incorporated ideas developed under the earlier NASA NAS8-01035 Phase 1 Program, was to develop a large mirror fabrication and test facility with emphasis on producing large, light weight active and adaptive optics. A principle objective was to develop mandrels on which to make large composite graphite-filled cyanate ester mirrors, Deliverables were two of these superpolished lightweight active/adaptive optic composite mirrors, one 12" (approx.1/3 meter) in diameter and one 22" (approx.1/2 meter) in diameter. In addition optical superpolishers for mandrels up to 1.2 meters in diameter, test instruments for determining optical figure and scattered light, novel design actuators for making the composite mirrors both active and adaptive, and passive and active means for measuring actuator performance were developed at BOR. We are now installing a superpolisher capable of producing 3 meter diameter mirror/mandrels. All polishers utilize the principle of centrifugal elutriation and produce superpolished mandrels with surface microroughnesses under 1 nm rms.

  7. Fabrication of mesoporous titania-zirconia composite membranes based on nanoparticles improved hydrosol.

    Science.gov (United States)

    Yin, Yiling; Wang, Hui; Li, Dan; Jing, Wenheng; Fan, Yiqun; Xing, Weihong

    2016-09-15

    A novel method for the fabrication of mesoporous titania-zirconia (TiO2ZrO2) composite membranes was successfully developed based on nanoparticles (NPs) improved hydrosol. ZrO2 hydrosols were synthesized through a straightforward sol-gel route using zirconium oxychloride. Compared to the polymeric sol route, this method was found to be more environmentally friendly because organic solvent was not required. Further, highly hydrophilic TiO2 NPs of 10-20nm were well dispersed in the sol and effectively reduced the sol infiltrating into the channels of the support layer by a "bridging" effect. After a rapid evaporation process, a mixed matrix gel was formed on the surface of the support. The dynamic mechanical analysis results showed that the toughness and stiffness of the gel were significantly strengthened, which was beneficial to reduce the risk of membrane cracking. So, an integrated, crack-free mesoporous TiO2ZrO2 composite membrane was obtained by directly coating and sintering the mixture on a macroporous support. It showed that the composite membrane delivered better separation performance though the filtration test. The water flux, molecular weight cutoff, and average pore size of the synthesized membrane were 60Lm(-2)h(-1)bar(-1), 4704Da, and 3.5nm, respectively.

  8. Enzymatic hydrophobization of jute fabrics and its effect on the mechanical and interfacial properties of jute/PP composites

    Directory of Open Access Journals (Sweden)

    A. Dong

    2016-05-01

    Full Text Available In this work, a hydrophobic surface of lignocellulosic jute fabric was achieved via the laccase-mediated grafting of octadecylamine (OA on lignin moieties of jute aiming to improve the interfacial compatibility with the hydrophobic polypropylene (PP resins in the fiber-reinforced composites. Firstly, the surface and total elemental compositions of the modified jute fabrics were investigated by X-ray photoelectron spectroscopy (XPS and elemental analysis, respectively. The increases in the surface C/O ratio and total nitrogen content of jute fabrics after the laccase/OA treatment indicated that OA molecules were successfully grafted onto the jute surface mediated by laccase. The grafting percentage of OA on jute fabrics was 0.96%. The surface hydrophobicity of jute fabrics with static contact angle of 112.5°, advancing angle of 116.4° and receding angle of 42.7° supported the presence of nonpolar alkyl chains on the jute surface after the laccase-mediated OA-grafting. The tensile strength, tensile modulus as well as the elongation at break of the hydrophobized jute/PP composites were increased. The fracture surface of the composites became neat and the jute fibers on the section surface were surrounded by PP resins closely, which suggested better interfacial adhesion between the jute reinforcement and the PP resin.

  9. RC beams shear-strengthened with fabric-reinforced-cementitious-matrix (FRCM) composite

    Science.gov (United States)

    Loreto, Giovanni; Babaeidarabad, Saman; Leardini, Lorenzo; Nanni, Antonio

    2015-12-01

    The interest in retrofit/rehabilitation of existing concrete structures has increased due to degradation and/or introduction of more stringent design requirements. Among the externally-bonded strengthening systems fiber-reinforced polymers is the most widely known technology. Despite its effectiveness as a material system, the presence of an organic binder has some drawbacks that could be addressed by using in its place a cementitious binder as in fabric-reinforced cementitious matrix (FRCM) systems. The purpose of this paper is to evaluate the behavior of reinforced concrete (RC) beams strengthened in shear with U-wraps made of FRCM. An extensive experimental program was undertaken in order to understand and characterize this composite when used as a strengthening system. The laboratory results demonstrate the technical viability of FRCM for shear strengthening of RC beams. Based on the experimental and analytical results, FRCM increases shear strength but not proportionally to the number of fabric plies installed. On the other hand, FRCM failure modes are related with a high consistency to the amount of external reinforcement applied. Design considerations based on the algorithms proposed by ACI guidelines are also provided.

  10. Microstructure and microhardness of AA1050/TiC surface composite fabricated using friction stir processing

    Indian Academy of Sciences (India)

    A Thangarasu; N Murugan; I Dinaharan; S J Vijay

    2012-10-01

    Friction stir processing (FSP) has been developed by several researchersto produce an upper surface modification of metallic materials. The fabrication of TiC particulate $(\\sim 2 \\mu m)$ reinforced aluminum matrix composite (AMC) using FSP is studied in this paper. The measured content of TiC powders were compacted into a groove of 0.5 mm × 5.5 mm. A single pass FSP was carried out using a tool rotational speed of 1600 rpm, processing speed of 60 mm/min and axial force of 10 kN. A tool made of HCHCr steel, oil hardened to 62 HRC, having a cylindrical profile was used in this study. The microstructure and microhardness of the fabricated AMC were analysed. Scanning Electron Microscope (SEM) micrographs revealed a uniform distribution of TiC particles which were well-bonded to the matrix alloy. The hardness of the AMC increased by 45% higher than that of the matrix alloy.

  11. A Geometry Information Based Fishnet Algorithm for Woven Fabric Draping in Liquid Composite Molding

    Directory of Open Access Journals (Sweden)

    Bo YANG

    2014-12-01

    Full Text Available The draping of 2D textile fabrics is an important concern in the 3D composite parts manufacturing. The existing fitting algorithms for draping simulation are difficult to make a trade-off between flexibility, speed and accuracy. In the present work, a novel fishnet algorithm based on geometry information (GIB-fishnet algorithm is proposed. Firstly, the fabric deformation modes during the draping process are analyzed, then several fundamental assumptions for draping simulation are proposed. Based on these assumptions and the theory of kinematic draping simulation, the GIB-fishnet algorithm is introduced, in this algorithm, geometry information of the surface such as tangent vector and normal curvature are used to determine the position of the current node. The use of the geometry information simplifies the mapping calculation and improves the computational accuracy. Two geometric algorithms for computing surface/surface intersection and seeking the shortest path on the surface, which are needed in the GIB-fishnet algorithm, are also studied in this paper. Finally, the simulation results of draping on three types of surfaces generated by different algorithms are compared, and the accuracy, speed and stability of the GIB-fishnet algorithm are verified. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6075

  12. Mechanical properties of composites made of hybrid fabric impregnated with silica nanoparticles and epoxy resin

    Science.gov (United States)

    Kordani, N.; Alizadeh, M.; Lohrasby, F.; Khajavi, R.; Baharvandi, H. R.; Rezanejad, M.; Ahmadzadeh, M.

    2017-09-01

    In this study, the mechanical properties of composites will be examined which were made from Kenaf and hybrid fabric with a simple structure that was coated with epoxy resin and nano silica particles. This fabric cotton has a different situation in terms of yarn score and the type of fiber that is used in textiles. Nano silica particles of 200 nm, polyethylene glycol with 200 molecular weights and ethanol with mechanical weight molecular with ratio of 6:1 will be mixed. Suspension of 60% was chosen according to the silica particles. The D6264 standard test for concentrated force was carried out through the cone edge to determine the strength of each of the samples. Increasing of resistance against penetration in the Kenaf samples from the raw until impregnated with the shear thickening fluid is less than the hybrid samples. Slippage of the fibers with the change of round edge indenter to cone edge indenter has changed. Penetration by cone edge to the cloth is done with lower force and it shows the effect of slippage of fibers on the resistance of the penetration. Samples impregnated with the shear thickening fluid in comparison with epoxy resin have lower resistance. Slippage of natural fibers in comparison with synthetic fibers is lower and on the other hand the average of friction between fibers in the natural fibers is more than synthetic fibers.

  13. Fabrication and application of flexible graphene silk composite film electrodes decorated with spiky Pt nanospheres.

    Science.gov (United States)

    Liang, Bo; Fang, Lu; Hu, Yichuan; Yang, Guang; Zhu, Qin; Ye, Xuesong

    2014-04-21

    A free-standing graphene silk composite (G/S) film was fabricated via vacuum filtration of a mixed suspension of graphene oxide and silk fibres, followed by chemical reduction. Spiky structured Pt nanospheres were grown on the film substrate by cyclic voltammetry electrodeposition. The electrical and mechanical performance of a single graphene coated silk fibre was investigated. The conductivity of a single graphene coated silk fibre is 57.9 S m(-1). During 1000 bending measurements, the conductivity was stable and showed negligible variation. The G/S film has a sheet resistivity of 90 Ω □(-1) with a porous and hierarchical structure. The spiky Pt nanosphere decorated G/S film was directly used as a H₂O₂ electrode with a sensitivity of 0.56 mA mM(-1) cm(-2), a linear range of 0-2.5 mM and an ultralow detection limit of 0.2 μM (S/N = 3). A glucose biosensor electrode was further fabricated by enzyme immobilization. The results show a sensitivity of 150.8 μA mM(-1) cm(-2) and a low detection limit of 1 μM (S/N = 3) for glucose detection. The strategy of coating graphene sheets on a silk fibre surface provides a new approach for developing electrically conductive biomaterials, tissue engineering scaffolds, bendable electrodes, and wearable biomedical devices.

  14. Flexible Sensing Arrays Fabricated with Carbon Nanofiber Composite Thin Films for Posture Monitoring

    Science.gov (United States)

    Chang, Fuh-Yu; Wang, Ruoh-Huey; Lin, Yu-Hsien; Chen, Tse-Min; Lee, Yueh-Feng; Huang, Shu-Jiuan; Liu, Chia-Ming

    2011-06-01

    Faulty posture increases joint stress and causes postural pain syndrome. In this paper, we present a portable strain sensing system with flexible sensor arrays to warn patients to correct inappropriate posture. A 3×3 flexible strain sensing array system was fabricated using patterned surface treatment and the tilted-drop process with carbon nanofiber composite solutions on polyimide substrates. Atmospheric plasma was used to enhance or reduce the surface energy in specific areas for patterned surface treatment. A scanning circuit was also developed to capture the signal from the flexible sensing array. The developed system has been used to measure the bent angle of the human neck from 15 to 60°. The results indicate that human posture can be successfully captured by analyzing the measured strains from a flexible strain sensing array.

  15. Fabrication of Ag nanowire/polymer composite nanocables via direct electrospinning

    Science.gov (United States)

    Han, Ming-Chu; He, Hong-Wei; Zhang, Bin; Wang, Xiao-Xiong; Zhang, Jun; You, Ming-Hao; Yan, Shi-Ying; Long, Yun-Ze

    2017-07-01

    1D nanocables consisting of metal core with high conductivity and protective polymer shell are promising for electronic devices. In this paper, silver nanowire/polyvinylidene fluoride (AgNW/PVDF) composite nanocables with excellent thermal stability were successfully fabricated by facile direct electrospinning (e-spinning), in which a slurry of AgNWs were uniformly dispersed into N,N-dimethylformamide/acetone solution containing 20% PVDF to form the e-spinning precursor solution. The decomposed temperature of resultant AgNW/PVDF nanocables is up to 460 °C. Interestingly, the as-spun nanocables exhibit more β phase of PVDF than that of pure PVDF nanofibers. The as-spun AgNW/PVDF nanocables could be applied in fields of antibacterial, ultrathin cables and optoelectronic devices.

  16. Fabrication a composite electrode based on MWCNT/Zeolite for potentiometric determination of Cr3+

    Directory of Open Access Journals (Sweden)

    Zahra Heidari

    2016-03-01

    Full Text Available A nanocomposite based on carbon paste electrode fabricated, by using zeolite as ion carrier .Functional multi-wall carbon nanotube was used for improvement of electrode response. The optimal composition of CPE was built from 65% graphite powder, 20 wt% paraffin oil, 5% ion carrier (zeolite, 10% MWCNTs. Electrode showed Nernstian response 19.88 (±0.2mVdecade−1 in the measuring range 10−7–10−2 mol L−1 and showed detection limit of 6.3×10-7 M. The sensor was successfully used for potentiometric titration Cr3+ with EDTA. The carbon paste electrode showed fast response time, good selectivity and applicable in the wide pH range of 3 -10.

  17. Fabrication of AlN-TiC/Al composites by gas injection processing

    Institute of Scientific and Technical Information of China (English)

    YU Huashun; CHEN Hongmei; MA Rendian; MIN Guanghui

    2006-01-01

    The fabrication of AlN-TiC/Al composites by carbon-and nitrogen-containing gas injection into Al-Mg-Ti melts was studied. It was shown that AlN and TiC particles could be formed by the in situ reaction of mixture gas (N2+C2H2+NH3) with Al-Mg-Ti melts. The condition for the formation of AlN was that the treatment temperature must be higher than 1373 K, and the amounts of AlN and TiC increased with the increase of the treatment temperature and the gas injection time.It was considered that AlN was formed by the direct reaction of Al with nitrogen-containing gas at the interface of the gas bubble and the melt. However, the mechanism of TiC formation is a combination mechanism of solution-precipitation and solid-liquid reaction.

  18. Fabrication of low specific resistance ceramic carbon composites by slip casting

    Directory of Open Access Journals (Sweden)

    Rahul Kumar

    2015-09-01

    Full Text Available Ceramic carbon composites (CCCs utilize carbon as the conducting phase and can be used as resistors for high voltage electrical applications. To obtain superior mechanical properties it is desired to minimize the amount of carbon yet achieve desired electrical conductivity. Thus, electrically conducting nanosized carbon like carbon black (CB was used with the matrix materials. Uniform dispersion of CB in ceramic matrix leading to a percolating network at lowest possible volume fraction is a challenge. The present work reports colloidal processing approach to overcome these challenges. Fabrication of CCCs was done by slip casting. Two types of slurries, CB slurry and alumina–clay slurry, were made independently and mixed together at a later stage to make CCCs. Electrical, thermal and mechanical properties of the CCCs have been studied.

  19. Damage Simulation in Non-Crimp Fabric Composite Plates Subjected to Impact Loads

    Science.gov (United States)

    Satyanarayana, Arunkumar; Bogert, Philip B.; Aitharaju, Venkat; Aashat, Satvir; Kia, Hamid

    2014-01-01

    Progressive failure analysis (PFA) of non-crimp fabric (NCF) composite laminates subjected to low velocity impact loads was performed using the COmplete STress Reduction (COSTR) damage model implemented through VUMAT and UMAT41 user subroutines in the frame works of the commercial finite element programs ABAQUS/Explicit and LS-DYNA, respectively. To validate the model, low velocity experiments were conducted and detailed correlations between the predictions and measurements for both intra-laminar and inter-laminar failures were made. The developed material and damage model predicts the peak impact load and duration very close with the experimental results. Also, the simulation results of delamination damage between the ply interfaces, in-plane matrix damages and fiber damages were all in good agreement with the measurements from the non-destructive evaluation data.

  20. Design and fabrication of microfluidic mixer from carbonyl iron–PDMS composite membrane

    KAUST Repository

    Li, Jiaxing

    2010-10-12

    This paper introduces a carbonyl iron-PDMS (CI-PDMS) composite magnetic elastomer in which carbonyl iron (CI) particles are uniformly distributed in a PDMS matrix. The CI particles and the PDMS were mixed at different weight ratios and tested to determine the influence of CI concentration. The magnetic and mechanical properties of the magnetic elastomers were characterized, respectively, by vibrating-sample magnetometer and by tensile testing using a mechanical analyzer. The elastomer was found to exhibit high magnetization and good mechanical flexibility. The morphology and deformation of the CI-PDMS membrane also were observed. A magnetically actuated microfluidic mixer (that is, a micromixer) integrated with CI-PDMS elastomer membranes was successfully designed and fabricated. The high efficiency and quality of the mixing makes possible the impressive potential applications of this unique CI-PDMS material in microfluidic systems. © Springer-Verlag 2010.

  1. Formation and properties of 3D metamaterial composites fabricated using nanometer scale laser lithography (Presentation Recording)

    Science.gov (United States)

    Prokes, Sharka M.; Perkins, Frank K.; Glembocki, Orest J.

    2015-08-01

    Metamaterials designed for the visible or near IR wavelengths require patterning on the nanometer scale. To achieve this, e-beam lithography is used, but it is extremely difficult and can only produce 2D structures. A new alternative technique to produce 2D and 3D structures involves laser fabrication using the Nanoscribe 3D laser lithography system. This is a direct laser writing technique which can form arbitrary 3D nanostructures on the nanometer scale and is based on multi-photon polymerization. We are creating 2D and 3D metamaterials via this technique, and subsequently conformally coating them using Atomic Layer Deposition of oxides and Ag. We will discuss the optical properties of these novel composite structures and their potential for dual resonant metamaterials.

  2. Fabrication of graphene/polyaniline composite multilayer films by electrostatic layer-by-layer assembly

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Jiaojiao; Chen, Yuze; Luo, Jing, E-mail: jingluo19801007@126.com; Liu, Xiaoya

    2014-10-15

    A novel graphene/polyaniline composite multilayer film was fabricated by electrostatic interactions induced layer-by-layer self-assembly technique, using water dispersible and negatively charged chemically converted graphene (CCG) and positively charged polyaniline (PANI) as building blocks. CCG was achieved through partly reduced graphene oxide, which remained carboxyl group on its surface. The remaining carboxyl groups not only retain the dispersibility of CCG, but also allow the growth of the multilayer films via electrostatic interactions between graphene and PANI. The structure and morphology of the obtained CCG/PANI multilayer film are characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Ultraviolet–visible absorption spectrum (UV–vis), scanning electron microscopy (SEM), Raman spectroscopy and X-Ray Diffraction (XRD). The electrochemical properties of the resulting film are studied using cyclic voltammetry (CV), which showed that the resulting CCG/PANI multilayer film kept electroactivity in neutral solution and showed outstanding cyclic stability up to 100 cycles. Furthermore, the composite film exhibited good electrocatalytic ability toward ascorbic acid (AA) with a linear response from 1×10{sup −4} to 1.2×10{sup −3} M with the detect limit of 5×10{sup −6} M. This study provides a facile and effective strategy to fabricate graphene/PANI nanocomposite film with good electrochemical property, which may find potential applications in electronic devices such as electrochemical sensor. - Graphical abstract: A novel graphene/polyaniline (CCG/PANI) film was prepared by layer-by-layer assembly. - Highlights: • A novel graphene/polyaniline (CCG/PANI) film was prepared by layer-by-layer assembly. • The water dispersible and negatively charged graphene (CCG) was used as building block. • CCG was achieved through partly reduced graphene oxide with carboxyl group on its surface. • CCG/PANI film kept

  3. Fabrication and properties of irradiation-cross-linked poly(vinyl alcohol)/clay aerogel composites.

    Science.gov (United States)

    Chen, Hong-Bing; Liu, Bo; Huang, Wei; Wang, Jun-Sheng; Zeng, Guang; Wu, Wen-Hao; Schiraldi, David A

    2014-09-24

    Poly(vinyl alcohol) (PVOH)/clay aerogel composites were fabricated by an environmentally friendly freeze-drying of the aqueous precursor suspensions, followed by cross-linking induced by gamma irradiation without chemical additives. The influences of cross-linking conditions, i.e., absorbed dose and polymer loading as well as density on the aerogel structure and properties, were investigated. The absorbed dose of 30 kGy was found to be the optimum dose for fabricating strong PVOH composites; the compressive modulus of an aerogel prepared from an aqueous suspension containing 2 wt % PVOH/8 wt % clay increased 10-fold, and that containing 1 wt % PVOH/9 wt % clay increased 12 times upon cross-linking with a dose of 30 kGy. Increasing the solids concentration led to an increase in the mechanical strength, in accordance with the changes in microstructure from layered structure to network structure. The increase of absorbed dose also led to decreased porous size of the network structure. Cross-linking and the increase of the PVOH lead to decreased thermal stability. The strengthened PVOH/clay aerogels possess very low flammability, as measured by cone calorimetry, with heat, smoke, and volatile products release value decreasing as increasing clay content. The mechanism of flame retardation in these materials was investigated with weight loss, FTIR, WAXD, and SEM of the burned residues. The proposed mechanism is that with decreasing fuel content (increasing clay content), increased heat and mass transport barriers are developed; simultaneously low levels of thermal conductivity are maintained during the burning.

  4. Fabrication of borassus fruit lignocellulose fiber/PP composites and comparison with jute, sisal and coir fibers.

    Science.gov (United States)

    Sudhakara, P; Jagadeesh, Dani; Wang, YiQi; Prasad, C Venkata; Devi, A P Kamala; Balakrishnan, G; Kim, B S; Song, J I

    2013-10-15

    Novel composites based on borassus fruit fine fiber (BFF) and polypropylene (PP) were fabricated with variable fiber composition (5, 10, 15 and 20 wt%) by injection molding. Maleated PP (MAPP) was also used as compatibilizer at 5 wt% for effective fiber-matrix adhesion. FTIR analysis confirms the evidence of a chemical bonding between the fiber and polymeric matrix through esterification in presence of MAPP. The tensile and flexural properties were found to increase with 15 and 10 wt% fiber loadings respectively, and decreased thereafter. Coir, jute and sisal fiber composites were also fabricated with 15 wt% fiber loading under the same conditions as used for BFF/PP composites. It was found that the mechanical properties of BFF (15 wt%)/PP composites were equivalent to jute/PP, sisal/PP and superior to coir/PP composites. Jute/PP and sisal/PP composites showed higher water absorption than BFF/PP and coir/PP composites. These results have demonstrated that the BFF/PP composites can also be an alternative material for composites applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Disposal Options of Bamboo Fabric-Reinforced Poly(Lactic Acid Composites for Sustainable Packaging: Biodegradability and Recyclability

    Directory of Open Access Journals (Sweden)

    M.R. Nurul Fazita

    2015-08-01

    Full Text Available The present study was conducted to determine the recyclability and biodegradability of bamboo fabric-reinforced poly(lactic acid (BF-PLA composites for sustainable packaging. BF-PLA composite was recycled through the granulation, extrusion, pelletization and injection processes. Subsequently, mechanical properties (tensile, flexural and impact strength, thermal stability and the morphological appearance of recycled BF-PLA composites were determined and compared to BF-PLA composite (initial materials and virgin PLA. It was observed that the BF-PLA composites had the adequate mechanical rigidity and thermal stability to be recycled and reused. Moreover, the biodegradability of BF-PLA composite was evaluated in controlled and real composting conditions, and the rate of biodegradability of BF-PLA composites was compared to the virgin PLA. Morphological and thermal characteristics of the biodegradable BF-PLA and virgin PLA were obtained by using environment scanning electron microscopy (ESEM and differential scanning calorimetry (DSC, respectively. The first order decay rate was found to be 0.0278 and 0.0151 day−1 in a controlled composting condition and 0.0008 and 0.0009 day−1 in real composting conditions for virgin PLA and BF-PLA composite, respectively. Results indicate that the reinforcement of bamboo fabric in PLA matrix minimizes the degradation rate of BF-PLA composite. Thus, BF-PLA composite has the potential to be used in product packaging for providing sustainable packaging.

  6. Fabrication of High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner for Advanced Rocket Engines

    Science.gov (United States)

    Bhat, Biliyar N.; Greene, Sandra E.; Singh, Jogender

    2016-01-01

    This paper describes the process development for fabricating a high thermal conductivity NARloy-Z-Diamond composite (NARloy-Z-D) combustion chamber liner for application in advanced rocket engines. The fabrication process is challenging and this paper presents some details of these challenges and approaches used to address them. Prior research conducted at NASA-MSFC and Penn State had shown that NARloy-Z-40%D composite material has significantly higher thermal conductivity than the state of the art NARloy-Z alloy. Furthermore, NARloy-Z-40 %D is much lighter than NARloy-Z. These attributes help to improve the performance of the advanced rocket engines. Increased thermal conductivity will directly translate into increased turbopump power, increased chamber pressure for improved thrust and specific impulse. Early work on NARloy-Z-D composites used the Field Assisted Sintering Technology (FAST, Ref. 1, 2) for fabricating discs. NARloy-Z-D composites containing 10, 20 and 40vol% of high thermal conductivity diamond powder were investigated. Thermal conductivity (TC) data. TC increased with increasing diamond content and showed 50% improvement over pure copper at 40vol% diamond. This composition was selected for fabricating the combustion chamber liner using the FAST technique.

  7. Wash fastness improvement of malachite green-dyed cotton fabrics coated with nanosol composites of silica–titania

    Indian Academy of Sciences (India)

    I Kartini; I Ilmi; E S Kunarti; Kamariah

    2014-10-01

    Washing fastness of dyed cotton fabrics by malachite green (MG) blended with nanosols composite of SiO2–TiO2 has been significantly enhanced. The nanoparticulate inorganic sols were prepared by acidcatalyzed hydrolysis of titanium (IV) tetraisopropoxide (TTIP) and tetraethylortosilicate (TEOS) in ethanol at room temperature. The effect of silica on the characteristics of nanosols composite of TiO2–SiO2 was studied. Nanosols morphology was examined by transmission electron microscope (TEM). The nanosols silica–titania composite showed homogeneous morphology of interconnected spheres of about 20–25 nm. Enhanced dye absorption was observed at nanosols with silica content. The reflection spectra of the samples before and after leaching test using sodium dodecyl sulphate were recorded. The results showed that embedding TiO2–SiO2 and SiO2 sols into the MG dye can improve the wash fastness by 40–95%. The highest improvement was obtained by SiO2–MG-coated cotton fabrics as well as composites of SiO2–TiO2–MG-dyed cotton fabrics at highest silica content. The MG-nanosols composite silica–titania dyed cotton fabric has also shown remarkable antibacterial activity over Staphylococcus aureus and Escherichia coli.

  8. Subtask 12A3: Fabrication and properties of compositional variants of vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Grossbeck, M.L.; Alexander, D.J.; Gubbi, A.N. [Oak Ridge National Lab., TN (United States)

    1995-03-01

    Procurement of five 15 kg heats of V-Cr-Ti alloys with variations in Cr and Ti concentrations from the primary V-4Cr-4Ti composition. Fabrication into sheet product, determination of the tensile and Charpy impact properties, and preparation of specimens for reactor irradiation experiments. Data obtained from these alloys will be used to define the allowable ranges of Cr and Ti within which consistent properties may be obtained. Four 15 kg heats with variations in Cr and Ti concentration have been procured in various plate and sheet thicknesses. Measurements of recovery and recrystallization kinetics, precipitation behavior, and Charpy impact properties are in progress to compare properties with the behavior of the primary alloy composition V-4Cr-4Ti. In the fully recrystallized condition, the impact properties of the V-6Cr-3Ti alloy are inferior to those of the 500 kg heat of V-4Cr-4Ti. However, properties comparable to those of the V-4Cr-4Ti can be obtained of the V-6Cr-3Ti as tested in a partially-recrystallized condition. 5 figs., 4 tabs.

  9. Fabrication and Sensing Performance of Smart Composite Structures Using Optical Fibre Sensors

    Institute of Scientific and Technical Information of China (English)

    C Y Wei; S W James; C C Ye; R P Tatam; P E lrving

    2000-01-01

    This paper determines the performance of Fibre Bragg Grating (FBG) sensors for strain sensing applications in carbon fibre composite materials. Carbon fibre laminates in either cross-plied or quasiisotropic stacking sequences were fabricated using T300/Hexcel 914 prepregs. The FBG optical sensors were either surface attached, or embedded within laminates. The sensor orientation was aligned either parallel or transverse to the adjacent carbon fibre layers. The composite structures with integrated FBG sensors were subjected to static tensile loading. A scanning fibre Fabry-Perot filter was used to monitor the reflected Bragg wavelengths. The optical sensor embedded between two 90° carbon fibre plies shows a high sensitivity to multi-site cracking formed in the transverse plies. The embedding in 90° plies seems to change the local stress distributions and to become a source of crack initiation. Efficient stress transfer from the host materials to the sensors is dependent upon incorporation methods, the thickness of the adhesive layers, and the location of the sensors.

  10. ESTIMATION OF THE DYNAMIC PROPERTIES OF EPOXY GLASS FABRIC COMPOSITES WITH NATURAL RUBBER PARTICLE INCLUSIONS

    Directory of Open Access Journals (Sweden)

    H. Ravi Sankar

    2013-06-01

    Full Text Available Conventional materials are being replaced in the field of engineering by composite materials, due to their tailorable properties and high specific properties. These materials are extensively used in structural applications. Damping is one of the important properties of the materials used in structures, and needs to be enhanced in order to reduce structural vibrations. In the present work, the improvement of the material damping of glass fabric epoxy composites with particle rubber inclusions is studied. The effect of particle size on the damping and stiffness parameters at different frequencies and temperatures is studied experimentally. Considerable enhancement in damping without significant reduction in stiffness is observed at lower particle sizes. The damping property in both bending and shear modes is more with 0.254 mm rubber particle inclusions among the selected sizes. A lower reduction in stiffness is observed with the inclusion of lower particle sizes (0.254 mm and 0.09 mm when compared with higher particle sizes. An ANN-based prediction model is developed to predict these properties for a given frequency/temperature and particle size. The predicted values are very close to the experimental values with an maximum error of 5%.

  11. Melt-processed poly(vinyl alcohol) composites filled with microcrystalline cellulose from waste cotton fabrics.

    Science.gov (United States)

    Sun, Xunwen; Lu, Canhui; Liu, Yong; Zhang, Wei; Zhang, Xinxing

    2014-01-30

    Waste cotton fabrics (WCFs), which are generated in a large volume from the textile industry, have caused serious disposal problem. Recycling WCFs into value-added products is one of the vital measures for both environmental and economic benefits. In this study, microcrystalline cellulose (MCC) was prepared by acid hydrolysis of WCFs, and used as reinforcement for melt-processed poly(vinyl alcohol) (PVA) with water and formamide as plasticizer. The microstructure and mechanical properties of the melt-processed PVA/MCC composites were characterized by Fourier transform infrared spectra, Raman spectra, differential scanning calorimetry, thermal gravimetric analysis, X-ray diffraction, tensile tests and dynamic mechanical analysis. The results indicated that MCC could establish strong interfacial interaction with PVA through hydrogen bonding. As a result, the crystallization of PVA was confined and its melting temperature was decreased, which was beneficial for the melt-processing of PVA. Compared with the unfilled PVA, the PVA/MCC composites exhibited remarkable improvement in modulus and tensile strength.

  12. Design, fabrication, and testing of a SMA hybrid composite jet engine chevron

    Science.gov (United States)

    Turner, Travis L.; Cabell, Randolph H.; Cano, Roberto J.; Fleming, Gary A.

    2006-01-01

    Control of jet noise continues to be an important research topic. Exhaust nozzle chevrons have been shown to reduce jet noise, but parametric effects are not well understood. Additionally, thrust loss due to chevrons at cruise suggests significant benefit from deployable chevrons. The focus of this study is development of an active chevron concept for the primary purpose of parametric studies for jet noise reduction in the laboratory and technology development to leverage for full scale systems. The active chevron concept employed in this work consists of a laminated composite structure with embedded shape memory alloy (SMA) actuators, termed a SMA hybrid composite (SMAHC). The actuators are embedded on one side of the middle surface such that thermal excitation generates a moment and deflects the structure. A brief description of the chevron design is given followed by details of the fabrication approach. Results from bench top tests are presented and correlated with numerical predictions from a model for such structures that was recently implemented in MSC.Nastran and ABAQUS. Excellent performance and agreement with predictions is demonstrated. Results from tests in a representative flow environment are also presented. Excellent performance is again achieved for both open- and closed-loop tests, the latter demonstrating control to a specified immersion into the flow. The actuation authority and immersion performance is shown to be relatively insensitive to nozzle pressure ratio (NPR). Very repeatable immersion control with modest power requirements is demonstrated.

  13. The Fabrication and Properties Characterization of Wood-Based Flame Retardant Composites

    Directory of Open Access Journals (Sweden)

    Xia He

    2014-01-01

    Full Text Available Wood-based flame retardant composites were fabricated based on vacuum-pressure impregnating method after high intensive microwave pretreatment. The effects of ammonium polyphosphate (APP and modified nano-zinc borate (nZB addition on flame-retardation and smoke-suppression properties of wood were investigated by cone calorimeter method (CONE and thermogravimetric analysis (TGA. The results show that the heat release rate (HRR, peak heat release rate (pk-HRR, and total heat release (THR of APP-treated woods decreased greatly with increasing concentration of APP. However, mean yield of CO (Mean COY of APP-treated wood was much higher (3.5 times than that of untreated wood. Compared with wood treated with APP at a concentration of 15%, the total smoke product (TSP, Mean COY, and pk-HRR decreased by 78.4%, 71.43%, and 31.23%, when wood was treated with APP and nZB (both concentrations were at 15%. APP and nZB have synergistic effects of flame-retardation and smoke-suppression. Nano-zinc borate combined with APP would be used in wood-based composites to efficiently retard flame, reduce fire intensity, and decrease noxious (CO/smoke release.

  14. Processing and fabrication of YBa2Cu3O(x)/Ag composite wires and coils

    Science.gov (United States)

    Ferrando, W. A.; Divecha, A. P.; Mansour, A. N.; Karmarkar, S. D.; Balachandran, U.; Dorris, S. E.; Dusek, J. T.; Picciolo, J. J.; Singh, J. P.; Poeppel, R. B.

    1990-11-01

    Silver was added to YBa2Cu3O(x) (123) powder by a melt technique using AgNO3 and heated to approx. 600 C to decompose the nitrate. This process yields 123 powder that is uniformly coated with Ag, as indicated by optical and scanning electron microscopy (SEM). The composite power is formed into rods (approx. 4 mm diameter) via drawing and swaging through conical converging dies. Wires of finer diameter (approx. 1 mm) and substantially greater linear uniformity were produced by slurry extrusion of the composite powder in a polymeric vehicle. Transport critical current density, J sub c, of these wires at present is about 750 A/sq cm. This value may be expected to rise due to further reduction of second phase impurities localized at grain boundaries and better understanding of the Ag/superconductor interface. The wire fabrication is described in some detail and discusses the results of microscopic analyses by scanning electron microscopy (SEM), x ray photoemission spectroscopy (XPS), and x ray diffraction (XRD).

  15. Fabrication and characterization of PDLLA/pyrite composite bone scaffold for osteoblast culture

    Indian Academy of Sciences (India)

    Lifang Zhang; Yanyan Zheng; Chengdong Xiong

    2015-06-01

    A series of highly interconnected porous poly(D,L-lactide acid) (PDLLA)/pyrite (Zi-Ran-Tong, FeS2) scaffold containing 5–20% of pyrite was fabricated by particle leaching combined with the thermal-induced phase separation method. Pyrite (FeS2, named as Zi-Ran-Tong in Chinese medicine), as a traditional Chinesemedicine, has been used in the Chinese population to treat bone diseases and to promote bone healing. The mechanical properties of the PDLLA scaffold were significantly enhanced after the addition of pyrite. The osteoblastic ROS17/2.8 cell line was used and seeded on the PDLLA/pyrite scaffold to study its potential to support the growth of osteoblastic cells and to estimate the optimal dose of pyrite for bone tissue engineering. The effects of pyrite on cell proliferation and differentiation were evaluated by 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide and alkaline phosphatase activity assay. The cells on the porous composite scaffold formed a continuous layer on the outer and inner surface observed by scanning electron microscopy and fluorescence microscope. The results strongly suggested that the PDLLA/pyrite composite scaffold could stimulate the growth of ROS17/2.8 cells in vitro and it could be potentially used as a scaffold for bone tissue engineering.

  16. Fabrication of gelatin/calcium phosphate composite nanofibrous membranes by biomimetic mineralization.

    Science.gov (United States)

    Choi, Mi Ok; Kim, Young-Jin

    2012-06-01

    Based on the principles of biomimetic mineralization, biocomposite nanofibrous membranes were fabricated by the growth of CaP crystals on electrospun gelatin nanofibers to mimic both the physical architecture and chemical composition of natural bone ECM. Plenty more CaP crystals formed on the nanofibrous membrane containing Ca(2+) ion precursors, in which these crystals were also observed on the inner side of membrane. The release rate of Ca(2+) ion precursors from the nanofibrous membrane was slower than that of PO(4)(3-) ion precursors, suggesting the existence of more strong intermolecular interaction between gelatin and Ca(2+) ions. ATR-FTIR and XRD results clearly revealed the formation of CaP crystals mixed with apatite and CaCO(3), or apatite and TCP on the membranes. The Ca/P molar ratio of crystals obtained from the XPS data was 2.03 and 1.60, which depended on the mineralization conditions. Higher amount of CaP crystals significantly accelerated the deposit rate of bone-like apatite on the surface of composite membrane, meaning to the improved in vivo bone bioactivity.

  17. Composite Electrolyte for All-Solid-State Lithium Batteries: Low-Temperature Fabrication and Conductivity Enhancement.

    Science.gov (United States)

    Lee, Sang-Don; Jung, Kyu-Nam; Kim, Hyeongil; Shin, Hyun-Seop; Song, Seung-Wan; Park, Min-Sik; Lee, Jong-Won

    2017-05-22

    All-solid-state lithium batteries offer notable advantages over conventional Li-ion batteries with liquid electrolytes in terms of energy density, stability, and safety. To realize this technology, it is critical to develop highly reliable solid-state inorganic electrolytes with high ionic conductivities and adequate processability. Li1+x Alx Ti2-x (PO4 )3 (LATP) with a NASICON (Na superionic conductor)-like structure is regarded as a potential solid electrolyte, owing to its high "bulk" conductivity (ca. 10(-3)  S cm(-1) ) and excellent stability against air and moisture. However, the solid LATP electrolyte still suffers from a low "total" conductivity, mainly owing to the blocking effect of grain boundaries to Li(+) conduction. In this study, an LATP-Bi2 O3 composite solid electrolyte shows very high total conductivity (9.4×10(-4)  S cm(-1) ) at room temperature. Bi2 O3 acts as a microstructural modifier to effectively reduce the fabrication temperature of the electrolyte and to enhance its ionic conductivity. Bi2 O3 promotes the densification of the LATP electrolyte, thereby improving its structural integrity, and at the same time, it facilitates Li(+) conduction, leading to reduced grain-boundary resistance. The feasibility of the LATP-Bi2 O3 composite electrolyte in all-solid-state Li batteries is also examined in this study. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Fabrication of High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner for Advanced Rocket Engines

    Science.gov (United States)

    Bhat, Biliyar N.; Greene, Sandra E.; Singh, Jogender

    2016-01-01

    NARloy-Z alloy (Cu-3 percent, Ag-0.5 percent, Zr) is a state of the art alloy currently used for fabricating rocket engine combustion chamber liners. Research conducted at NASA-MSFC and Penn State – Applied Research Laboratory has shown that thermal conductivity of NARloy-Z can be increased significantly by adding diamonds to form a composite (NARloy-Z-D). NARloy-Z-D is also lighter than NARloy-Z. These attributes make this advanced composite material an ideal candidate for fabricating combustion chamber liner for an advanced rocket engine. Increased thermal conductivity will directly translate into increased turbopump power and increased chamber pressure for improved thrust and specific impulse. This paper describes the process development for fabricating a subscale high thermal conductivity NARloy-Z-D combustion chamber liner using Field Assisted Sintering Technology (FAST). The FAST process uses a mixture of NARloy-Z and diamond powders which is sintered under pressure at elevated temperatures. Several challenges were encountered, i.e., segregation of diamonds, machining the super hard NARloy-Z-D composite, net shape fabrication and nondestructive examination. The paper describes how these challenges were addressed. Diamonds coated with copper (CuD) appear to give the best results. A near net shape subscale combustion chamber liner is being fabricated by diffusion bonding cylindrical rings of NARloy-Z-CuD using the FAST process.

  19. Effect of fiber fabric orientation on the flexural monotonic and fatigue behavior of 2D woven ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Chawla, N., E-mail: nchawla@asu.edu [Materials Science and Engineering, Arizona State University Tempe, AZ 85287-6106 (United States); Liaw, P.K. [Department of Materials Science and Engineering, University of Tennessee-Knoxville, Knoxville, TN 37996 (United States); Lara-Curzio, E.; Ferber, M.K.; Lowden, R.A. [High Temperature Materials Laboratory, Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2012-11-15

    The effect of fiber fabric orientation, i.e., parallel to loading and perpendicular to the loading axis, on the monotonic and fatigue behavior of plain-weave fiber reinforced SiC matrix laminated composites was investigated. Two composite systems were studied: Nextel 312 (3M Corp.) reinforced SiC and Nicalon (Nippon Carbon Corp.) reinforced SiC, both fabricated by Forced Chemical Vapor Infiltration (FCVI). The behavior of both materials was investigated under monotonic and fatigue loading. Interlaminar and in-plane shear tests were conducted to further correlate shear properties with the effect of fabric orientation, with respect to the loading axis, on the orientation effects in bending. The underlying mechanisms, in monotonic and fatigue loading, were investigated through post-fracture examination using scanning electron microscopy (SEM).

  20. The suitability of XRF analysis for compositional classification of archaeological ceramic fabric: A comparison with a previous NAA study

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, R. [Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Laboratorio de Analisis Quimico, Calle 30 no. 502, Playa, Ciudad Habana (Cuba)]. E-mail: roman.padilla@infomed.sld.cu; Espen, P. van [University of Antwerp (Belgium); Torres, P.P. Godo [Centro de Antropologia, Havana (Cuba)

    2006-02-03

    The main drawbacks of EDXRF techniques, restricting its more frequent use for the specific purpose of compositional analysis of archaeological ceramic fabric, have been the insufficient sensitivity to determine some important elements (like Cr, REE, among others), a somewhat worse precision and the inability to perform standard-less quantitative procedures in the absence of suitable certified reference materials (CRM) for ceramic fabric. This paper presents the advantages of combining two energy dispersive X-ray fluorescence methods for fast and non-destructive analysis of ceramic fabric with increased sensitivity. Selective polarized excitation using secondary targets (EDPXRF) and radioisotope excitation (R-XRF) using a {sup 241}Am source. The analytical performance of the methods was evaluated by analyzing several CRM of sediment type, and the fitness for the purpose of compositional classification was compared with that obtained by using Instrumental Neutron Activation Analysis in a previous study of Cuban aborigine pottery.

  1. A fabrication method of unique Nafion® shapes by painting for ionic polymer-metal composites

    Science.gov (United States)

    Trabia, Sarah; Hwang, Taeseon; Kim, Kwang J.

    2016-08-01

    Ionic polymer-metal composites (IPMC) are useful actuators because of their ability to be fabricated in different shapes and move in various ways. However, producing unique or intricate shapes can be difficult based upon the current fabrication techniques. Presented here is a fabrication method of producing the Nafion® membrane or thin film through a painting method. Using an airbrush, a Nafion water dispersion is sprayed onto an acrylonitrile butadiene styrene surface with a stencil of the desired shape. To verify that this method of fabrication produces a Nafion membrane similar to that which is commercially available, a sample that was made using the painting method and Nafion 117 purchased from DuPont™ were tested for various characteristics and compared. The results show promising similarities. The painted Nafion sample was chemically plated with platinum and compared with a traditional IPMC for its displacement and blocking force capabilities. The painted IPMC sample showed comparable results.

  2. Fabrication of ZrO2-Ti Composites by Slip Casting Method

    Directory of Open Access Journals (Sweden)

    Łada P.

    2016-06-01

    Full Text Available Slip casting is one of the most popular shaping method in ceramic technology which allows producing a large number of elements in small period of time. This shaping technique gives a possibility to fabricate ceramic or composite materials such as ZrO2-Ti. Ti with its properties (low density, high melting point, high-temperature strength, good corrosion resistance and others combine with ZrO2 (high flexure strength, high compression resistance and very high KIC can be considered for different applications as constructional and functional materials. For the preparation of such composite nanometric zirconium oxide powder stabilized by 3 mol% Y2O3 and micrometric titanium powder were used. Water-based slurries with 35, 40, 45 and 50 vol.% solid phase content were prepared with 3, 10 and 15 vol.% addition of titanium powder. Zeta potential and pH of prepared slurries were considered. The pH changes were tested as a function of Ti content. The viscosity of the prepared slurries was measured. The sedimentation tests for selected slurries were performed. The casting rate for slurry of 35% solid phase with 10 vol.% Ti was examined. These measurements showed good stability of slurries. With the increasing of the solid phase concentration the density of the green bodies increased. However, the increase of the content of Ti powder reduced the density of green body samples. For selected samples the SEM observations was carried out. Composites produced by slip casting were characterized by a homogenous distribution of Ti particles in the ZrO2 matrix.

  3. Scalable fabrication of multifunctional freestanding carbon nanotube/polymer composite thin films for energy conversion.

    Science.gov (United States)

    Li, Xiaokai; Gittleson, Forrest; Carmo, Marcelo; Sekol, Ryan C; Taylor, André D

    2012-02-28

    Translating the unique properties of individual single-walled carbon nanotubes (SWNTs) to the macroscale while simultaneously incorporating additional functionalities into composites has been stymied by inadequate assembly methods. Here we describe a technique for developing multifunctional SWNT/polymer composite thin films that provides a fundamental engineering basis to bridge the gap between their nano- and macroscale properties. Selected polymers are infiltrated into a Mayer rod coated conductive SWNT network to fabricate solar cell transparent conductive electrodes (TCEs), fuel cell membrane electrode assemblies (MEAs), and lithium ion battery electrodes. Our TCEs have an outstanding optoelectronic figure of merit σ(dc)/σ(ac) of 19.4 and roughness of 3.8 nm yet are also mechanically robust enough to withstand delamination, a step toward scratch resistance necessary for flexible electronics. Our MEAs show platinum utilization as high as 1550 mW/mg(Pt), demonstrating our technique's ability to integrate ionic conductivity of the polymer with electrical conductivity of the SWNTs at the Pt surface. Our battery anodes, which show reversible capacity of ∼850 mAh/g after 15 cycles, demonstrate the integration of electrode and separator to simplify device architecture and decrease overall weight. Each of these applications demonstrates our technique's ability to maintain the conductivity of SWNT networks and their dispersion within a polymer matrix while concurrently optimizing key complementary properties of the composite. Here, we lay the foundation for the assembly of nanotubes and nanostructured components (rods, wires, particles, etc.) into macroscopic multifunctional materials using a low-cost and scalable solution-based processing technique.

  4. Fabrication and mechanical characterization of graphene oxide-reinforced poly (acrylic acid)/gelatin composite hydrogels

    Science.gov (United States)

    Faghihi, Shahab; Gheysour, Mahsa; Karimi, Alireza; Salarian, Reza

    2014-02-01

    Hydrogels have found many practical uses in drug release, wound dressing, and tissue engineering. However, their applications are restricted due to their weak mechanical properties. The role of graphene oxide nanosheets (GONS) as reinforcement agent in poly (acrylic acid) (PAA)/Gelatin (Gel) composite hydrogels is investigated. Composite hydrogels are synthesized by thermal initiated redox polymerization method. Samples are then prepared with 20 and 40 wt. % of PAA, an increasing amount of GONS (0.1, 0.2, and 0.3 wt. %), and a constant amount of Gel. Subsequently, cylindrical hydrogel samples are subjected to a series of compression tests in order to measure their elastic modulus, maximum stress and strain. The results exhibit that the addition of GONS increases the Young's modulus and maximum stress of hydrogels significantly as compared with control (0.0 wt. % GONS). The highest Young's modulus is observed for hydrogel with GO (0.2 wt. %)/PAA (20 wt. %), whereas the highest maximum stress is detected for GO (0.2 wt. %)/PAA (40 wt. %) specimen. The addition of higher amounts of GONS leads to a decrease in the maximum stress of the hydrogel GO (0.3 wt. %)/PAA (40 wt. %). No significant differences are detected for the maximum strain among the hydrogel samples, as the amount of GONS increased. These results suggest that the application of GONS could be used to improve mechanical properties of hydrogel materials. This study may provide an alternative for the fabrication of low-cost graphene/polymer composites with enhanced mechanical properties beneficial for tissue engineering applications.

  5. A new strategy to fabricate composite thin films with tunable micro- and nanostructures via self-assembly of block copolymers.

    Science.gov (United States)

    Zhao, Xingjuan; Wang, Qian; Lee, Yong-Ill; Hao, Jingcheng; Liu, Hong-Guo

    2015-12-04

    A new and facile strategy to fabricate composite thin films with tunable morphologies via self-assembly of block copolymer molecules at the air/liquid interface is first reported. The morphologies (parallel nanowires and foams) of these freestanding thin films can be tuned by varying the molecular structure or other experimental conditions.

  6. Influence of Fabric Parameters on Microstructure, Mechanical Properties and Failure Mechanisms in Carbon-Fibre Reinforced Composites

    Institute of Scientific and Technical Information of China (English)

    B.Wielage; D.Richter; H.Mucha; Th.Lampke

    2008-01-01

    The effects of fibre/matrix bonding,fabric density,fibre volume fraction and bundle size on microstructure,mechanical properties and failure mechanisms in carbon fibre reinforced composites (plastic and carbon matrix) have been investigated.The microstructure of unloaded and cracked samples was studied by optical microscopy and scanning electron microscopy (SEM),respectively whereas the mechanical behaviour was examined by 3-point bending experiments.Exclusively one type of experimental resole type phenolic resin was applied.A strong fibre/matrix bonding,which is needed for high strength of carbon fibre reinforced plastic (CFRP) materials leads to severe composite damages during the pyrolysis resulting in low strength,brittle failure and a very low utilisation of the fibres strain to failure in C/C composites.Inherent fabric parameters such as an increasing fabric density or bundle size or a reduced fibre volume fraction introduce inhomogenities to the CFRP's microstructure.Results are lower strength and stiffness whereas the strain to failure increases or remains unchanged.Toughness is almost not affected.In C/C composites inhomogenities due to a reduced bundle size reduce strain to failure,strength,stiffness and toughness.Vice versa a declining fibre volume fraction leads to exactly the opposite behaviour.Increasing the fabric density (weight per unit area) causes similar effects as in CFRPs.

  7. Fatigue damage assessment of uni-directional non-crimp fabric reinforced polyester composite using X-ray computed tomography

    DEFF Research Database (Denmark)

    Jespersen, Kristine Munk; Zangenberg Hansen, Jens; Lowe, Tristan

    2016-01-01

    In this study, the progression of tension-tension fatigue (R=0.1) damage in a unidirectional (UD) composite made from a non-crimp glass fibre fabric used for wind turbine blades is investigated using multi-scale 3D X-ray computed tomography (CT). Initially, a representative volume is examined...

  8. Facile fabrication of TiO2-graphene composite with enhanced photovoltaic and photocatalytic properties by electrospinning.

    Science.gov (United States)

    Zhu, Peining; Peining, Zhu; Nair, A Sreekumaran; Shengjie, Peng; Shengyuan, Yang; Ramakrishna, Seeram

    2012-02-01

    We report the fabrication of one-dimensional TiO(2)-graphene nanocomposite by a facile and one-step method of electrospinning. The unique nanostructured composite showed a significant enhancement in the photovoltaic and photocatalytic properties in comparison to TiO(2) as demonstrated in dye-sensitized solar cells and photodegradation of methyl orange.

  9. The effects of composition and sintering temperature on the silica foam fabricated by slurry method

    Science.gov (United States)

    Baharom, Syazwani; Ahmad, Sufizar; Taib, Hariati; Muda, Rizamarhaiza

    2016-07-01

    Reticulated ceramic or open pore ceramic foam is a well-known material which exhibits extremely high porosities, with a significant degree of interconnectivity that makes them desirable in a wide range of applications. There were broad types of ceramic foam fabrication method such as polymeric sponge method, direct foaming, and starch consolidation. In this study, the slurry method has been chosen to fabricate Silica (SiO2) foam. In this process, Polyurethane (PU) foam template was dipped into ceramic slurry and followed by drying and sintering to obtain foam which contains porosity in the range of 50% to 70%. The compositions of SiO2 were varied starting from 55 wt.%, 60 wt.%, 65 wt.% and 70 wt.%. The samples of SiO2 that have been dipped and dried were sintered at 900°C, 1000°C, 1100°C, and 1250°C. The sintered SiO2 ceramic foam samples were characterized to observe their morphology, and physical properties. Thus, the microstructure of the SiO2 ceramic foams samples was examined by Scanning Electron Microscopy (SEM), and Electron Dispersive Spectroscopy (EDS). Meanwhile, the physical properties of the SiO2 ceramic foam samples such as the total porosity (%) and bulk density were determined using Archimedes method. It was found that the density of ceramic foam produced was in the range of 0.25 g/cm3 up to 0.75 g/cm3, whereas the level of porosity percentage was in the range of 61.81% to 82.18% with the size of open pore or window cells were in between 141 µm up to 626 µm.

  10. The effects of composition and sintering temperature on the silica foam fabricated by slurry method

    Energy Technology Data Exchange (ETDEWEB)

    Baharom, Syazwani, E-mail: hd140001@siswa.uthm.edu.my; Ahmad, Sufizar, E-mail: sufizar@uthm.edu.my; Taib, Hariati, E-mail: hariati@uthm.edu.my; Muda, Rizamarhaiza, E-mail: hd130013@siswa.uthm.edu.my [Department of Material and Design Engineering, Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), 86400 Parit Raja, Batu Pahat, Johor (Malaysia)

    2016-07-19

    Reticulated ceramic or open pore ceramic foam is a well-known material which exhibits extremely high porosities, with a significant degree of interconnectivity that makes them desirable in a wide range of applications. There were broad types of ceramic foam fabrication method such as polymeric sponge method, direct foaming, and starch consolidation. In this study, the slurry method has been chosen to fabricate Silica (SiO{sub 2}) foam. In this process, Polyurethane (PU) foam template was dipped into ceramic slurry and followed by drying and sintering to obtain foam which contains porosity in the range of 50% to 70%. The compositions of SiO{sub 2} were varied starting from 55 wt.%, 60 wt.%, 65 wt.% and 70 wt.%. The samples of SiO{sub 2} that have been dipped and dried were sintered at 900°C, 1000°C, 1100°C, and 1250°C. The sintered SiO{sub 2} ceramic foam samples were characterized to observe their morphology, and physical properties. Thus, the microstructure of the SiO{sub 2} ceramic foams samples was examined by Scanning Electron Microscopy (SEM), and Electron Dispersive Spectroscopy (EDS). Meanwhile, the physical properties of the SiO{sub 2} ceramic foam samples such as the total porosity (%) and bulk density were determined using Archimedes method. It was found that the density of ceramic foam produced was in the range of 0.25 g/cm{sup 3} up to 0.75 g/cm{sup 3}, whereas the level of porosity percentage was in the range of 61.81% to 82.18% with the size of open pore or window cells were in between 141 µm up to 626 µm.

  11. INFLUENCE OF HEAT TREATMENT ON OXIDATION PROPERTIES OF C/C COMPOSITES FABRICATED BY HIGH PRESSURE IMPREGNATION CARBONIZATION

    Institute of Scientific and Technical Information of China (English)

    Q.Chen; H.J.Li; A.J.Li; H.M.Han; K.Z.Li

    2004-01-01

    Felt base carbon/carbon composites fabricated by super-high pressure impregnation carbonization process (SPIC) were heat treated at high temperature 2773K. The oxidation properties of felt base carbon/carbon composites were investigated at different temperatures (773-1173K), and the microstructures of carbon/carbon composites were studied by SEM and X-ray diffraction. The experimental results showed that the interlaminar distance of (002) plane (doo2) deceased while the microcrystalline stack height (Lc) increased. The oxidation rate of felt base carbon/carbon composites was invariable at certain temperatures. The oxidation mechanism of carbon/carbon composites changed remarkably at the oxidation temperature 973K. At the initial oxidation stage of carbon/carbon composites, carbon matrix was oxidized much more rapidly than carbon felt.

  12. Multi scale analysis by acoustic emission of damage mechanisms in natural fibre woven fabrics/epoxy composites.

    Directory of Open Access Journals (Sweden)

    Touchard F.

    2010-06-01

    Full Text Available This paper proposes to develop an experimental program to characterize the type and the development of damage in composite with complex microstructure. A multi-scale analysis by acoustic emission has been developed and applied to hemp fibre woven fabrics/epoxy composite. The experimental program consists of tensile tests performed on single yarn, neat epoxy resin and composite materials to identify their AE amplitude signatures. A statistical analysis of AE amplitude signals has been realised and correlated with microscopic observations. Results have enabled to identify three types of damage in composites and their associated AE amplitudes: matrix cracking, interfacial debonding and reinforcement damage and fracture. Tracking of these damage mechanisms in hemp/epoxy composites has been performed to show the process of damage development in natural fibre reinforced composites.

  13. Multi scale analysis by acoustic emission of damage mechanisms in natural fibre woven fabrics/epoxy composites.

    Science.gov (United States)

    Bonnafous, C.; Touchard, F.; Chocinski-Arnault, L.

    2010-06-01

    This paper proposes to develop an experimental program to characterize the type and the development of damage in composite with complex microstructure. A multi-scale analysis by acoustic emission has been developed and applied to hemp fibre woven fabrics/epoxy composite. The experimental program consists of tensile tests performed on single yarn, neat epoxy resin and composite materials to identify their AE amplitude signatures. A statistical analysis of AE amplitude signals has been realised and correlated with microscopic observations. Results have enabled to identify three types of damage in composites and their associated AE amplitudes: matrix cracking, interfacial debonding and reinforcement damage and fracture. Tracking of these damage mechanisms in hemp/epoxy composites has been performed to show the process of damage development in natural fibre reinforced composites.

  14. Characterizations of Polystyrene-Based Hybrid Particles Containing Hydrophobic Mg(OH2 Powder and Composites Fabricated by Employing Resultant Hybrid Particles

    Directory of Open Access Journals (Sweden)

    Shuichi Kimura

    2007-01-01

    unchanged, even when the ST-1 powder content increased from 10 to 50 phr. Furthermore, a composite fabricated by employing the hybrid particles achieved homogenous distribution of ST-1 powder and showed a higher oxygen index than that of a composite fabricated by directly mixing of PS pellets and ST-1 powder.

  15. Interfacial Microstructure and Mechanical Properties of Al Alloy/Mg Alloy Laminated Composite Plates Fabricated by Equal Channel Angular Processing

    Institute of Scientific and Technical Information of China (English)

    LI Guorui; ZHAO Dong; ZHAO Yaojiang; ZHOU Bin; WANG Hongxia

    2016-01-01

    KAl (7075) alloy /Mg (AZ31) alloy laminated composite plates were successfully fabricated by the equal channel angular processing (ECAP) by using route A for 1, 2, and 3 passes at 573 K, respectively. After fabrication, the 1-pass ECAPed laminated composite plates were annealed at different temperatures. The microstructure evolution, phase constituent, and bonding strength near the joining interface of Al (7075) alloy /Mg (AZ31) alloy laminated composites plates were evaluated with scanning electron microscopy, X-ray diffraction, and shear tests. The experimental results indicated that a 20 μm diffusion layer was observed at the joining interface of Al (7075) alloy /Mg (AZ31) alloy laminated composites plates fabricated by the 1-pass ECAP, which mainly included Al3Mg2 and Mg17Al12 phases. With the increase of passes, the increase of diffusion layer thickness was not obvious and the form of crack in these processes led to the decrease of bonding strength. For 1-pass ECAPed composites, the thickness of diffusion layer remained unchanged after annealed at 473 K, while the bonding strength reached its maximum value 29.12 MPa. However, after elevating heat treatment temperature to 573 K, the thickness of diffusion layer increased rapidly, and thus the bonding strength decreased.

  16. Experimental and Theoretical Investigations of the Impact Localization of a Passive Smart Composite Plate Fabricated Using Piezoelectric Materials

    Directory of Open Access Journals (Sweden)

    M. M. S. Dezfouli

    2013-01-01

    Full Text Available Two passive smart composite plates are fabricated using one and two PZT patches that are cheaper than the PZT wafer. The composite plate is fabricated in low temperature through the hand lay-up method to avoid PZT patch decoupling and wire spoiling. The locus of the impact point is identified using the output voltage to identify the impact location using one sensor. The output voltages of the sensors are analyzed to identify the impact location using two sensors. The locations of the impacts are determined based on the crossing points of two circles and the origin of an intended Cartesian coordinate system that is concentric with one of the sensors. This study proposes the impact location identification of the passive smart composite using the low-cost PZT patch PIC155 instead of common embedded materials (wafer and element piezoelectric.

  17. Design, fabrication, and properties of 2-2 connectivity cement/polymer based piezoelectric composites with varied piezoelectric phase distribution

    Energy Technology Data Exchange (ETDEWEB)

    Dongyu, Xu [Shandong Provincial Key Laboratory of Construction Materials Preparation and Measurement, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022 (China); Department of Mechanical Engineering, University of South Carolina, Columbia, South Carolina 29208 (United States); Xin, Cheng; Shifeng, Huang [Shandong Provincial Key Laboratory of Construction Materials Preparation and Measurement, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022 (China); Banerjee, Sourav [Department of Mechanical Engineering, University of South Carolina, Columbia, South Carolina 29208 (United States)

    2014-12-28

    The laminated 2-2 connectivity cement/polymer based piezoelectric composites with varied piezoelectric phase distribution were fabricated by employing Lead Zirconium Titanate ceramic as active phase, and mixture of cement powder, epoxy resin, and hardener as matrix phase with a mass proportion of 4:4:1. The dielectric, piezoelectric, and electromechanical coupling properties of the composites were studied. The composites with large total volume fraction of piezoelectric phase have large piezoelectric strain constant and relative permittivity, and the piezoelectric and dielectric properties of the composites are independent of the dimensional variations of the piezoelectric ceramic layer. The composites with small total volume fraction of piezoelectric phase have large piezoelectric voltage constant, but also large dielectric loss. The composite with gradually increased dimension of piezoelectric ceramic layer has the smallest dielectric loss, and that with the gradually increased dimension of matrix layer has the largest piezoelectric voltage constant. The novel piezoelectric composites show potential applications in fabricating ultrasonic transducers with varied surface vibration amplitude of the transducer.

  18. SiC/SiC composite fabricated with carbon nanotube interface layer and a novel precursor LPVCS

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Shuang, E-mail: zhsh6007@126.com [Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha 410073 (China); School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); Zhou, Xingui; Yu, Jinshan [Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha 410073 (China); Mummery, Paul [School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Manchester M13 9PL (United Kingdom)

    2014-02-15

    Highlights: • The CNTs were distributed uniformly on the SiC fibers in the fabric by CVD process. • The microstructural evolution of the CNTs interface coating was studied. • The closed porosity was investigated by X-ray tomography. • The liquid precursor LPVCS exhibited high densification efficiency. - Abstract: Continuous SiC fiber reinforced SiC matrix composites (SiC/SiC) have been studied as promising candidate materials for nuclear applications. Three-dimensional SiC/SiC composite was fabricated via polymer impregnation and pyrolysis (PIP) process using carbon nanotubes (CNTs) as the interface layer and LPVCS as the polymer precursor. The microstructural evolution of the fiber/matrix interface was studied. The porosity, mechanical properties, thermal and electrical conductivities of the SiC/SiC composite were investigated. The results indicated that the high densification efficiency of the liquid precursor LPVCS resulted in a low porosity of the SiC/SiC composite. The SiC/SiC composite exhibited non-brittle fracture behavior, however, bending strength and fracture toughness of the composite were relatively low because of the absence of CNTs as the interface layer. The thermal and electrical conductivities of the SiC/SiC composite were low enough to meet the requirements desired for flow channel insert (FCI) applications.

  19. Efficient composite fabrication using electron-beam rapidly cured polymers engineered for several manufacturing processes

    Energy Technology Data Exchange (ETDEWEB)

    Walton, T.C. [Aeroplas Corp. International, Nashua, NH (United States); Crivello, J.V. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Chemistry

    1995-10-01

    Low cost, efficiently processed ultra high specific strength and stiffness graphite fiber reinforced polymeric composite materials are of great interest to commercial transportation, construction and aerospace industries for use in various components with enhanced degrees of weight reduction, corrosion/erosion resistance and fatigue resistance. 10 MeV Electron Beam cure processing has been found to increase the cure rate by an order of magnitude over thermally cured systems yet provide less molded in stresses and high T{sub g}s. However, a limited range of resins are available which are easily processed with low shrinkage and with performance properties equal or exceeding those of state of the art toughened epoxies and BMI`s. The technology, introduced by an academia-industry partnership sparked by Langley Research Center utilizes a cost effective, rapid curing polymeric composite processing technique which effectively reduces the need for expensive tooling and energy inefficient autoclave processing and can cure the laminate in seconds (compared to hours for thermal curing) in ambient or sub-ambient conditions. The process is based on electron beam (E-Beam) curing of a new series of (65 to 1,000,000 cPs.) specially formulated resins that have been shown to exhibit excellent mechanical and physical properties once cured. Fabrication processes utilizing these specially formulated and newly commercialized resins, (e.g. including Vacuum Assist Resin Transfer molding (VARTM), vacuum bag prepreg layup, pultrusion and filament winding grades) are engineered to cure with low shrinkage, provide excellent mechanical properties, be processed solventless (environmentally friendly) and are inherently non toxic.

  20. Design, Fabrication, and Testing of a Composite Rack Prototype in Support of the Deep Space Habitat Program

    Science.gov (United States)

    Smith, Russ; Hagen, Richard

    2015-01-01

    In support of the Deep Space Habitat project a number of composite rack prototypes were developed, designed, fabricated and tested to various extents ( with the International Standard Payload Rack configuration, or crew quarters, as a baseline). This paper focuses specifically on a composite rack prototype with a direct tie in to Space Station hardware. The outlined prototype is an all composite construction, excluding metallic fasteners, washers, and their associated inserts. The rack utilizes braided carbon composite tubing for the frame with the sidewalls, backwall and flooring sections utilizing aircraft grade composite honeycomb sandwich panels. Novel additively manufactured thermoplastic joints and tube inserts were also developed in support of this effort. Joint and tube insert screening tests were conducted at a preliminary level. The screening tests allowed for modification, and enhancement, of the fabrication and design approaches, which will be outlined. The initial joint tests did not include mechanical fasteners. Adhesives were utilized at the joint to composite tube interfaces, along with mechanical fasteners during final fabrication (thus creating a stronger joint than the adhesive only variant). In general the prototype was focused on a potential in-space assembly approach, or kit-of-parts construction concept, which would not necessarily require the inclusion of an adhesive in the joint regions. However, given the tie in to legacy Station hardware (and potential flight loads with imbedded hardware mass loadings), the rack was built as stiff and strong as possible. Preliminary torque down tests were also conducted to determine the feasibility of mounting the composite honeycomb panels to the composite tubing sections via the additively manufactured tube inserts. Additional fastener torque down tests were also conducted with inserts (helicoils) imbedded within the joints. Lessons learned are also included and discussed.

  1. Design and fabrication of inner-selective thin-film composite (TFC) hollow fiber modules for pressure retarded osmosis (PRO)

    KAUST Repository

    Wan, Chun Feng

    2016-08-03

    Pressure retarded osmosis (PRO) is a promising technology to harvest the renewable osmotic energy from salinity gradients. There are great progresses in the fabrication of PRO membranes in the last decade. Thin-film composite (TFC) hollow fibers have been widely studied and demonstrated superior performance. However, the lack of effective TFC hollow fiber modules hinders the commercialization of the PRO technology. Knowledge and experiences to fabricate TFC hollow fiber modules remain limited in the open literature. In this study, we aim to reveal the engineering and science on how to fabricate TFC hollow fiber modules including the formation of inner-selective polyamide layers and the repair of leakages. TFC-PES hollow fiber modules with 30% and 50% packing densities have been successfully fabricated, showing peak power densities of 20.0 W/m2 and 19.4 W/m2, respectively, at 20 bar using 1 M NaCl solution and DI water as feeds. The modules may be damaged during handling and high pressure testing. The repaired modules have a power density of 18.2 W/m2, 91% of the power densities of the undamaged ones. This study would make up the gap between TFC membrane fabrication and TFC membrane module fabrication in the membrane industry. © 2016 Elsevier B.V.

  2. Thermoelasticity of a Fabric Membrane Composite for the Stratospheric Airship Envelope Based on Multiscale Models

    Science.gov (United States)

    Meng, Junhui; Cao, Shuai; Qu, Zhipeng; Li, Jun; Lv, Mingyun

    2017-02-01

    As a main structure of the stratosphere airship, the typical envelope material is flexible fabric membrane composite. The high-low alternated temperature of the stratosphere has a great influence on the mechanical property of the envelope material. Thermoelasticity of the envelope material is first investigated based on a micromechanical model. The modulus and coefficient of thermal expansion of the material are simulated respectively and compared with the measured results. It can be concluded that the material owns the similar nonlinearity character both in warp and weft directions and the modulus in both directions increase to a steady-state value gradually from a relatively small value. The coefficients of thermal expansion of the material in two directions in the plane are quite small compared with the out-plane direction because of the constraint effect between yarns and matrix. The thermal distribution and the deformation of the envelope material in different temperatures are carried out at last. It is expected that the results are significative for the engineering design.

  3. Fabrication and capacitive characteristics of conjugated polymer composite p-polyaniline/n-WO{sub 3} heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Amaechi, C.I.; Asogwa, P.U.; Ekwealor, A.B.C. [University of Nigeria, Department of Physics and Astronomy, Nsukka, Enugu State (Nigeria); Osuji, R.U.; Ezema, F.I. [University of Nigeria, Department of Physics and Astronomy, Nsukka, Enugu State (Nigeria); iThemba LABS-National Research Foundation, Nanosciences African Network (NANOAFNET), Somerset West, Western Cape Province (South Africa); University of South Africa (UNISA), UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, Pretoria (South Africa); Maaza, M. [iThemba LABS-National Research Foundation, Nanosciences African Network (NANOAFNET), Somerset West, Western Cape Province (South Africa); University of South Africa (UNISA), UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, Pretoria (South Africa)

    2014-11-15

    A nanocrystalline and porous p-polyaniline/n-WO{sub 3} dissimilar heterojunction at ambient temperature is reported. The high-quality and well-reproducible conjugated polymer composite films have been fabricated by oxidative polymerization of anilinium ion on predeposited WO{sub 3} thin film by chemical bath deposition followed by thermal annealing at 573 K for 1 h. Atomic force microscopy (AFM) analyses reveal a homogenous but irregular cluster of faceted spherically shaped grains with pores. The scanning electron microscopy confirms the porous network of grains, which is in good agreement with the AFM result. The optical absorption analysis of polyaniline/WO{sub 3} hybrid films showed that direct optical transition exist in the photon energy range 3.50-4.00 eV with bandgap of 3.70 eV. The refractive index developed peak at 445 nm in the dispersion region while the high-frequency dielectric constant, ε {sub ∞}, and the carrier concentration to effective mass ratio, N/m{sup *}, was found to be 1.58 and 1.10 x 10{sup 39} cm{sup -3}, respectively. The temperature dependence of electrical resistivity of the deposited films follows the semiconductor behavior while the C-V characteristics (Mott-Schottky plots) show that the flat band potential was -791 and 830 meV/SCE for WO{sub 3} and polyaniline. (orig.)

  4. Fabrication and biocompatibility in vitro of potassium titanate biological thin film/titanium alloy biological composite

    Institute of Scientific and Technical Information of China (English)

    QI Yumin; HE Yun; CUI Chunxiang; LIU Shuangjin; WANG Huifen

    2007-01-01

    A potassium titanate biological thin film/titanium alloy biological composite was fabricated by way of bionic chemistry.The biocompatibility fn vitro of Ti-15Mo-3Nb and the potassium titanate biological thin film/titanium alloy was studied using simulated body fluid cultivation,kinetic clotting of blood and osteoblast cell cultivation experiments in vitro.By comparing the biological properties of both materials,the following conclusions can be obtained:(1)The deposition of a calcium phosphate layer was not found on the surface of Ti-15Mo-3Nb,so it was bioinert.Because the network of potassium titanate biological thin film could induce the deposition of a calcium phosphate layer,this showed that it had excellent bioactivity.(2)According to the values of kinetic clotting,the blood coagulation time of the potassium titanate biological thin film was more than that of Ti-15Mo-3Nb.It was obvious that the potassium titanate biological thin film possessed good hemocompatibility.(3)The cell compatibility of both materials was very good.However,the growth trend and multiplication of osteoblast cells on the surface of potassium titanate biological thin film was better,which made for the concrescence of wounds during the earlier period.As a result,the potassium titanate biological thin film/titanium alloy showed better biocompatibility and bioactivity.

  5. Carbon Nanofibers (CNFs) Surface Modification to Fabricate Carbon Nanofibers_Nanopaper Integrated Polymer Composite Material.

    Science.gov (United States)

    Jiang, Jianjun; Zhao, Ziwei; Deng, Chao; Liu, Fa; Li, Dejia; Fang, Liangchao; Zhang, Dan; Castro Jose M; Chen, Feng; Lee, L James

    2016-06-01

    Carbon Nanofibers (CNFs) have shown great potential to improve the physical and mechanical properties of conventional Fiber Reinforced Polymer Composites (FRPCs) surface. Excellent dispersion CNFs into water or polymer matrix was very crucial to get good quality CNFs enhanced FRPCs. Because of the hydrophobic properties of CNFs, we apply the reversible switching principles to transfer the hydrophobic surface into hydrophilic surface by growing polyaniline nanograss on the surface of CNFs which was carried out in hydrochloric acid condition. Incorporating CNFs into FRPCs as a surface layer named CNFs Nanopaper to increase the erosion resistance and electrical conductivity in this research which was very important in the wind energy field. In order to get high quality dispersed CNFs suspension, a sonication unit was used to detangle and uniform disperse the functionalized CNFs. A filter with vacuum pressure used to filter the suspension of CNFs onto Carbon veil to make CNFs Nanopaper. Vacuum Aided Resin Transfer Modeling (VARTM) process was used to fabricate Nano-enhanced FRPCs samples. In order to characterize the mechanical properties, three point bending experiment was measured. The flexural strength capacity and deformation resistance and behavior were compared and analyzed. In this paper, we discussed the methods used and provided experimental parameter and experimental results.

  6. Fast-dissolving core-shell composite microparticles of quercetin fabricated using a coaxial electrospray process.

    Directory of Open Access Journals (Sweden)

    Chen Li

    Full Text Available This study reports on novel fast-dissolving core-shell composite microparticles of quercetin fabricated using coaxial electrospraying. A PVC-coated concentric spinneret was developed to conduct the electrospray process. A series of analyses were undertaken to characterize the resultant particles in terms of their morphology, the physical form of their components, and their functional performance. Scanning and transmission electron microscopies revealed that the microparticles had spherical morphologies with clear core-shell structure visible. Differential scanning calorimetry and X-ray diffraction verified that the quercetin active ingredient in the core and sucralose and sodium dodecyl sulfate (SDS excipients in the shell existed in the amorphous state. This is believed to be a result of second-order interactions between the components; these could be observed by Fourier transform infrared spectroscopy. In vitro dissolution and permeation studies showed that the microparticles rapidly released the incorporated quercetin within one minute, and had permeation rates across the sublingual mucosa around 10 times faster than raw quercetin.

  7. Fabrication of superhydrophobic polyurethane/organoclay nano-structured composites from cyclomethicone-in-water emulsions

    Science.gov (United States)

    Bayer, I. S.; Steele, A.; Martorana, P. J.; Loth, E.

    2010-11-01

    Nano-structured polyurethane/organoclay composite films were fabricated by dispersing moisture-curable polyurethanes and fatty amine/amino-silane surface modified montmorillonite clay (organoclay) in cyclomethicone-in-water emulsions. Cyclomethicone Pickering emulsions were made by emulsifying decamethylcyclopentasiloxane (D 5), dodecamethylcyclohexasiloxane (D 6) and aminofunctional siloxane polymers with water using montmorillonite particles as emulsion stabilizers. Polyurethane and organoclay dispersed emulsions were spray coated on aluminum surfaces. Upon thermosetting, water repellent self-cleaning coatings were obtained with measured static water contact angles exceeding 155° and low contact angle hysteresis (<8°). Electron microscopy images of the coating surfaces revealed formation of self-similar hierarchical micro- and nano-scale surface structures. The surface morphology and the coating adhesion strength to aluminum substrates were found to be sensitive to the relative amounts of dispersed polyurethane and organoclay in the emulsions. The degree of superhydrophobicity was analyzed using static water contact angles as well as contact angle hysteresis measurements. Due to biocompatibility of cyclomethicones and polyurethane, developed coatings can be considered for specific bio-medical applications.

  8. Fabrication and performances of microencapsulated paraffin composites with polymethylmethacrylate shell based on ultraviolet irradiation-initiated

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yi, E-mail: wangyi@lut.cn [State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050 (China); College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050 (China); Shi Huan [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050 (China); Xia Tiandong [State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050 (China); Zhang Ting; Feng Huixia [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050 (China)

    2012-07-16

    In order to identify the validity of fabricating microencapsulated phase change material by ultraviolet irradiation-initiated method, the paraffin wax/polymethyl methacrylate microcapsules were prepared. The structural characteristics and thermal properties of the microcapsules were also determined by various techniques. The results of differential scanning calorimetry analyses indicate that the melting and freezing temperatures and latent heats of the microcapsules are 55.8 Degree-Sign C, 50.1 Degree-Sign C and 106.9 J g{sup -1}, 112.3 J g{sup -1}, respectively. Morphology and chemical characteristic analysis indicate that the spherical microcapsules were formed with average diameter of 0.21 {mu}m and maximum microencapsulation ratio of 66 wt.% without leakage of core materials. The results of accelerated thermal cyclic test show that the microcapsules have good thermal reliability and chemical stability although they were subjected 3000 melting/freezing cycles. Based on all these results, it can be concluded that the microencapsulated paraffin composites have good potential for thermal energy storage purposes and ultraviolet irradiation-initiated method is a prominent candidate for preparing microencapsulated PCMs. - Highlights: Black-Right-Pointing-Pointer Microencapsulated paraffin with PMMA shell was synthesized via self-assembly. Black-Right-Pointing-Pointer Microcapsules with excellent properties can be prepared by UV initiated method. Black-Right-Pointing-Pointer The microencapsulation ratio is as high as 66 wt.%. Black-Right-Pointing-Pointer Thermal properties are as high as comparable with microcapsules in the literature.

  9. Fabrication of superhydrophobic polyurethane/organoclay nano-structured composites from cyclomethicone-in-water emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Bayer, I.S., E-mail: ibayer1@illinois.edu [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Steele, A.; Martorana, P.J. [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Loth, E. [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Department of Mechanical and Aerospace Engineering, University of Virginia, VA 22904 (United States)

    2010-11-15

    Nano-structured polyurethane/organoclay composite films were fabricated by dispersing moisture-curable polyurethanes and fatty amine/amino-silane surface modified montmorillonite clay (organoclay) in cyclomethicone-in-water emulsions. Cyclomethicone Pickering emulsions were made by emulsifying decamethylcyclopentasiloxane (D{sub 5}), dodecamethylcyclohexasiloxane (D{sub 6}) and aminofunctional siloxane polymers with water using montmorillonite particles as emulsion stabilizers. Polyurethane and organoclay dispersed emulsions were spray coated on aluminum surfaces. Upon thermosetting, water repellent self-cleaning coatings were obtained with measured static water contact angles exceeding 155{sup o} and low contact angle hysteresis (<8{sup o}). Electron microscopy images of the coating surfaces revealed formation of self-similar hierarchical micro- and nano-scale surface structures. The surface morphology and the coating adhesion strength to aluminum substrates were found to be sensitive to the relative amounts of dispersed polyurethane and organoclay in the emulsions. The degree of superhydrophobicity was analyzed using static water contact angles as well as contact angle hysteresis measurements. Due to biocompatibility of cyclomethicones and polyurethane, developed coatings can be considered for specific bio-medical applications.

  10. Parametric characterization of a mesomechanic kinematic caused by ondulation in fabric reinforced composites: analytical and numerical investigations

    Directory of Open Access Journals (Sweden)

    Marco Romano

    2017-01-01

    Full Text Available A parametric characterization of a mesomechanic kinematic caused by ondulation in fabric reinforced composites is investigated by analytical and numerical investigations. Due to the definition of plain representative sequences of balanced plain-weave fabric reinforced single layers based on sines the variable geometric parameters are the amplitude and the length of the ondulation. The mesomechanic kinematic can be observed in both the analytic model and the FE-analyses. The analytic model yields hyperbolic correlations due to the strongly simplifying presumptions that neglect elasticity. In contrast the FE-analyses yield linear correlations in much smaller amounts due to the consideration of elastic parts, yet distinctly.

  11. Centre seeded infiltration and growth process for fabrication of large grain bulk YBCO/Ag superconducting composites

    Science.gov (United States)

    Parthasarathy, R.; Seshubai, V.

    2012-06-01

    We report the fabrication of a large grain bulk YBCO/Ag superconductor using a novel technique which we call Centre Seeded Infiltration and Growth Process (CSIGP). Using this technique, it has been made possible to get bulk YBCO/Ag composite sample with uniform grain growth textured along the c-axis. The resulting large grain sample has been found to have high critical current densities up to large magnetic fields. We correlate the improved superconducting and magnetic properties to the modified grain growth conditions employed in this fabrication technique.

  12. Combination of thermal extrusion printing and ultrafast laser fabrication for the manufacturing of 3D composite scaffolds

    Science.gov (United States)

    Balčiūnas, Evaldas; Lukoševičius, Laurynas; Mackevičiūtė, Dovilė; Rekštytė, Sima; Rutkūnas, Vygandas; Paipulas, Domas; Stankevičiūtė, Karolina; Baltriukienė, Daiva; Bukelskienė, Virginija; Piskarskas, Algis P.; Malinauskas, Mangirdas

    2014-03-01

    We present a novel approach to manufacturing 3D microstructured composite scaffolds for tissue engineering applications. A thermal extrusion 3D printer - a simple, low-cost tabletop device enabling rapid materialization of CAD models in plastics - was used to produce cm-scale microporous scaffolds out of polylactic acid (PLA). The fabricated objects were subsequently immersed in a photosensitive monomer solution and direct laser writing technique (DLW) was used to refine its inner structure by fabricating a fine mesh inside the previously produced scaffold. In addition, a composite material structure out of four different materials fabricated via DLW is presented. This technique, empowered by ultrafast lasers allows 3D structuring with high spatial resolution in a great variety of photosensitive materials. A composite scaffold made of distinct materials and periodicities is acquired after the development process used to wash out non-linked monomers. Another way to modify the 3D printed PLA surfaces was also demonstrated - ablation with femtosecond laser beam. Structure geometry on macro- to micro- scales could be finely tuned by combining these fabrication techniques. Such artificial 3D substrates could be used for cell growth or as biocompatible-biodegradable implants. To our best knowledge, this is the first experimental demonstration showing the creation of composite 3D scaffolds using convenient 3D printing combined with DLW. This combination of distinct material processing techniques enables rapid fabrication of diverse functional micro-featured and integrated devices. Hopefully, the proposed approach will find numerous applications in the field of tissue engineering, as well as in microelectromechanical systems, microfluidics, microoptics and others.

  13. Effect of particle size on thermo-physical properties of SiCp/Cu composites fabricated by squeeze casting

    Institute of Scientific and Technical Information of China (English)

    WU Gao-hui; CHEN Guo-qin; ZHU De-zhi; ZHANG Qiang; JIANG Long-tao

    2005-01-01

    For the electronic packaging applications, copper matrix composites reinforced with different sized SiC particles (10 μm, 20 μm and 63 μm) were fabricated by squeeze casting technology. And the effect of particle size on their thermo-physical properties was discussed. The composites are free of porosity and the SiC particles are distributed uniformly in the composites. It is found that the mean linear thermal expansion coefficients(20 - 100 ℃ ) of SiCp/Cu composites are in the range of (8.4 - 9.2) × 10-6/℃, and smaller expansion coefficient can be obtained for the composites with finer SiC particles because of the larger restriction in expansion through interfaces. Their thermal conductivities are reduced with the decrease of SiC sizes. This is attributed to the fact that the negative effect of interfacial thermal resistance becomes increasingly dominant as the particles becomes smaller.

  14. Copper Nanoparticle/Multiwalled Carbon Nanotube Composite Films with High Electrical Conductivity and Fatigue Resistance Fabricated via Flash Light Sintering.

    Science.gov (United States)

    Hwang, Hyun-Jun; Joo, Sung-Jun; Kim, Hak-Sung

    2015-11-18

    In this work, multiwalled carbon nanotubes (MWNTs) were employed to improve the conductivity and fatigue resistance of flash light sintered copper nanoparticle (NP) ink films. The effect of CNT weight fraction on the flash light sintering and the fatigue characteristics of Cu NP/CNT composite films were investigated. The effect of carbon nanotube length was also studied with regard to enhancing the conductivity and fatigue resistance of flash light sintered Cu NP/CNT composite films. The flash light irradiation energy was optimized to obtain high conductivity Cu NP/CNT composite films. Cu NP/CNT composite films fabricated via optimized flash light irradiation had the lowest resistivity (7.86 μΩ·cm), which was only 4.6 times higher than that of bulk Cu films (1.68 μΩ·cm). It was also demonstrated that Cu NP/CNT composite films had better durability and environmental stability than those of Cu NPs only.

  15. Multi-Scaled Modeling the Mechanical Properties of Tubular Composites Reinforced with Innovated 3D Weft Knitted Spacer Fabrics

    Science.gov (United States)

    Omrani, Elahe; Hasani, Hossein; Dibajian, Sayed Houssain

    2017-06-01

    Textile composites of 3D integrated spacer configurations have been recently focused by several researchers all over the world. In the present study, newly-designed tubular composites reinforced with 3D spacer weft knitted fabrics were considered and the effects of their structural parameters on some applicable mechanical properties were investigated. For this purpose, two different samples of 3D spacer weft knitted textile types in tubular form were produced on an electronic flat knitting machine, using glass/nylon hybrid yarns. Thermoset tubular-shaped composite parts were manufactured via vacuum infusion molding process using epoxy resin. The mechanical properties of the produced knitted composites in term of external static and internal hydrostatic pressures were evaluated. Resistance of the produced composites against the external static and internal hydrostatic pressures was numerically simulated using multi-scale modeling method. The finding revealed that there is acceptable correlation between experimental and theoretical results.

  16. Fabrication and characterization of a biodegradable Mg-2Zn-0.5Ca/1β-TCP composite.

    Science.gov (United States)

    Huang, Yan; Liu, Debao; Anguilano, Lorna; You, Chen; Chen, Minfang

    2015-09-01

    A biodegradable magnesium matrix and beta-tricalcium phosphate (β-TCP) particles reinforced composite Mg-2Zn-0.5Ca/1beta-TCP (wt.%) was fabricated for biomedical applications by the novel route of combined high shear solidification (HSS) and equal channel angular extrusion (ECAE). The as-cast composite obtained by HSS showed a fine and equiaxed grain structure with globally uniformly distributed β-TCP particles in aggregates of 2-25 μm in size. The ECAE processing at 300 °C resulted in further microstructural refinement and the improvement of β-TCP particle distribution. During ECAE, the β-TCP aggregates were broken into smaller ones or individual particles, forming a dispersion in the matrix. Such fabricated composite exhibited enhanced hardness and in vitro corrosion resistance. The enhanced hardness was attributed to both the addition of β-TCP particles and grain refinement while the development of a Ca-P rich surface layer from β-TCP during corrosion was responsible for the improvement in corrosion resistance. The composite was characterized in terms of microstructural evolution during fabrication, mechanical properties and electrochemical performance during polarization and immersion tests in a simulated body fluid. Discussions are made on the benefits of both HSS and ECAE and the mechanisms responsible for the enhanced corrosion resistance.

  17. A Micromechanical Unit Cell Model of 2 × 2 Twill Woven Fabric Textile Composite for Multi Scale Analysis

    Science.gov (United States)

    Dixit, A.; Mali, H. S.; Misra, R. K.

    2014-04-01

    Woven fabric based composite materials are being considered for potential structural applications in automotive and aircraft industries due to their better out of plane strength, stiffness and toughness properties than ordinary composite laminates. This paper presents the micromechanical unit cell model of 2 × 2 twill woven fabric textile composite for the estimation of in-plane elastic properties. Modelling of unit cell and its analysis for this new model is developed by using open source coded tool TexGen and finite element software, ABAQUS® respectively. The predicted values are in good agreement with the experimental results reported in literature. To ascertain the effectiveness of the developed model parametric studies have also been conducted on the predicted elastic properties in order to investigate the effects of various geometric parameters such as yarn spacing, fabric thickness, yarn width and fibre volume fraction. The scope of altering weave pattern and yarn characteristics is facilitated in this developed model. Further this model can be implemented for the multi-scale micro/macro-mechanical analysis for the calculation of strength and stiffness of laminates structure made of 2 × 2 twill composite.

  18. Fabrication and Prototyping Lab

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The Fabrication and Prototyping Lab for composite structures provides a wide variety of fabrication capabilities critical to enabling hands-on research and...

  19. Microstructure and Properties of DCP-Derived W-ZrC Composite Using Nontoxic Sodium Alginate to Fabricate WC Preform

    Science.gov (United States)

    Najafzadeh Khoee, Ali Asghar; Habibolahzadeh, Ali; Qods, Fathallah; Baharvandi, Hamidreza

    2015-04-01

    In the present work, tungsten carbide (WC) preforms were fabricated by gel-casting process, using different nontoxic Na-alginate to tertiary calcium phosphate ratios and different loadings of WC powder in the initial slurries. The gel-cast green bodies were dried and pre-sintered at 1723 K for 4 h and then reactively infiltrated by molten Zr2Cu at 1623 K for 0.5 h, to produce W-ZrC composite via displacive compensation of porosity process. The phases, microstructures, and mechanical properties of the preforms and the W-ZrC composites were investigated by Fourier transform infrared spectroscope, x-ray diffractometer (XRD), scanning electron microscope (SEM), image analyzer, and universal mechanical testing machine. XRD results, SEM micrographs, and elemental maps indicated uniform distribution of phases (W and ZrC) and elements (W, Zr, and C). Flexural strengths and hardness of the fabricated composites were in the ranges of 429-460 MPa and 7.5-9.5 GPa, respectively. Fractography studies revealed two types of dimple rupture and cleavage fracture modes in different composite samples. The W-ZrC composite was ablated by an oxyacetylene flame for 60 s. The mean value of mass and linear ablation rates of the composite were 2.1 ± 0.1 mg/s and 3.6 ± 0.5 µm/s, respectively.

  20. Microstructure and Mechanical Properties of Al356/SiCp Cast Composites Fabricated by a Novel Technique

    Science.gov (United States)

    Amirkhanlou, Sajjad; Niroumand, Behzad

    2013-01-01

    In this study, SiCp containing composite powders were used as the reinforcement carrier media for manufacturing cast Al356/5 vol.% SiCp composites. Untreated SiCp, milled particulate Al-SiCp composite powder, and milled particulate Al-SiCp-Mg composite powder were injected into Al356 melt. The resultant composite slurries were then cast from either a fully liquid state (stir casting) or semisolid state (compocasting). The results revealed that by injection of composite powders, the uniformity of the SiCp in the Al356 matrix was greatly improved, the particle-free zones in the matrix were disappeared, the SiC particles became smaller, the porosity was decreased, and the matrix microstructure became finer. Compocasting changed the matrix dendritic microstructure to a finer non-dendritic one and also slightly improved the distribution of the SiCp. Simultaneous utilization of Al-SiCp-Mg composite powder and compocasting method increased the macro- and micro-hardness, impact energy, bending strength, and bending strain of Al356/SiCp composite by 35, 63, 20, 20, and 40%, respectively, as compared with those of the composite fabricated by injection of untreated SiCp and stir casting process.

  1. Contrast Enhancement of MicroCT Scans to Aid 3D Modelling of Carbon Fibre Fabric Composites

    Science.gov (United States)

    Djukic, Luke P.; Pearce, Garth M.; Herszberg, Israel; Bannister, Michael K.; Mollenhauer, David H.

    2013-12-01

    This paper presents a methodology for volume capture and rendering of plain weave and multi-layer fabric meso-architectures within a consolidated, cured laminate. Micro X-ray Computed Tomography (MicroCT) is an excellent tool for the non-destructive visualisation of material microstructures however the contrast between tows and resin is poor for carbon fibre composites. Firstly, this paper demonstrates techniques to improve the contrast of the microCT images by introducing higher density materials such as gold, iodine and glass into the fabric. Two approaches were demonstrated to be effective for enhancing the differentiation between the tows in the reconstructed microCT visualisations. Secondly, a method of generating three-dimensional volume models of woven composites using microCT scan data is discussed. The process of generating a model is explained from initial manufacture with the aid of an example plain weave fabric. These methods are to be used in the finite element modelling of three-dimensional fabric preforms in future work.

  2. Facile Fabrication of Multi-hierarchical Porous Polyaniline Composite as Pressure Sensor and Gas Sensor with Adjustable Sensitivity

    Science.gov (United States)

    He, Xiao-Xiao; Li, Jin-Tao; Jia, Xian-Sheng; Tong, Lu; Wang, Xiao-Xiong; Zhang, Jun; Zheng, Jie; Ning, Xin; Long, Yun-Ze

    2017-08-01

    A multi-hierarchical porous polyaniline (PANI) composite which could be used in good performance pressure sensor and adjustable sensitivity gas sensor has been fabricated by a facile in situ polymerization. Commercial grade sponge was utilized as a template scaffold to deposit PANI via in situ polymerization. With abundant interconnected pores throughout the whole structure, the sponge provided sufficient surface for the growth of PANI nanobranches. The flexible porous structure helped the composite to show high performance in pressure detection with fast response and favorable recoverability and gas detection with adjustable sensitivity. The sensing mechanism of the PANI/sponge-based flexible sensor has also been discussed. The results indicate that this work provides a feasible approach to fabricate efficient sensors with advantages of low cost, facile preparation, and easy signal collection.

  3. Responsive polymer/gold nanoparticle composite thin films fabricated by solvent-induced self-assembly and spin-coating.

    Science.gov (United States)

    Li, Dongxiang; Lee, Ji Yong; Kim, Dong Ha

    2011-02-15

    Self-assembled poly(4-vinylpyridine)-grafted gold (Au) nanoparticles (NPs) and polystyrene-b-poly(4-vinylpyridine) block copolymers were fabricated by the introduction of a selective solvent to a common solution. The assembled mixtures were spin-coated onto solid substrates to fabricate composite gold/polymer thin films composed of copolymer-hybridized Au NPs and independent copolymer micelles. The obtained composite Au thin films had variable localized surface plasmon resonance (LSPR) bands and microscopic morphologies upon vapor annealing with selective solvents because the adsorption and dissolving of solvent molecules into the films could rearrange the copolymer block. The hybrid nanostructured Au thin films may have potential in vapor sensing and organic assays. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Fabrication of lithium titanate/graphene composites with high rate capability as electrode materials for hybrid electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Rong, E-mail: xuerongsmile@qq.com; Yan, Jingwang, E-mail: yanjw@dicp.ac.cn; Jiang, Liang, E-mail: jiangliang@dicp.ac.cn; Yi, Baolian, E-mail: blyi@dicp.ac.cn

    2015-06-15

    A lithium titanate (Li{sub 4}Ti{sub 5}O{sub 12})/graphene composite (LTO/graphene) is fabricated with a one-pot sol–gel method. Graphite oxide is dispersed in an aqueous solution of lithium acetate and tetrabutyl titanate followed by heat treatment in H{sub 2}/Ar. The LTO/graphene composite with reduced aggregation and improved homogeneity is investigated as an anode material for electrochemical capacitors. Electron transport is improved by the conductive graphene network in the insulating Li{sub 4}Ti{sub 5}O{sub 12} particles. The charge transfer resistance at the particle/electrolyte interface is reduced from 83.1 Ω to 55.4 Ω. The specific capacity of LTO/graphene composite is 126 mAh g{sup −1} at 20C. The energy density and power density of a hybrid electrochemical supercapacitor with a LTO/graphene negative electrode and an activated carbon positive electrode are 120.8 Wh kg{sup −1} and 1.5 kW kg{sup −1}, respectively, which is comparable to that of conventional electrochemical double layer capacitors (EDLCs). The LTO/graphene composite fabricated by the one-pot sol–gel method is a promising anode material for hybrid electrochemical supercapacitors. - Highlights: • A Li{sub 4}Ti{sub 5}O{sub 12}/graphene composite was fabricated with a one-pot sol–gel method. • The Li{sub 4}Ti{sub 5}O{sub 12}/graphene composite showed a reduced aggregation and an improved homogeneity. • The Li{sub 4}Ti{sub 5}O{sub 12}/graphene based hybrid supercapacitor exhibited higher energy and power densities.

  5. Fabrication and characterization of nano-fibrous bilayer composite for skin regeneration application.

    Science.gov (United States)

    Arasteh, Shaghayegh; Kazemnejad, Somaieh; Khanjani, Sayeh; Heidari-Vala, Hamed; Akhondi, Mohammad Mehdi; Mobini, Sahba

    2016-04-15

    Full thickness wound healing with minimal scarring and complete restoration of normal skin properties still remains as a clinical challenge. In this study, a bilayer skin substitute has been fabricated to biomimic the microstructure of natural extracellular matrix of the skin. Human amniotic membrane (HAM) and silk fibroin nano-fibers were combined to produce bilayer construct, which was further treated and characterized. HAM was obtained from healthy mothers and de-epithelized by means of fine enzymatic method to preserve the extracellular structure. Fibroin protein was extracted from fresh Bombyx mori cocoons and transformed to uniform nano-fiberous structure, which was used as a coating layer on the de-epithelized membrane. Surface modification through oxygen plasma treatment was attempted to further induce hydrophilicity. Subsequently, scaffolds were fully characterized in terms of morphology, mechanical properties, hydrophilicity and cell culture response. Histological and immunohistological staining demonstrated localization of fibronectin, cell denudation and structural integrity of HAM after de-epithelization. Scanning electron microscopy images showed bead-free silk fibroin nano-fibers with the average diameter of 250nm. Water contact angle of bilayer scaffolds reduced dramatically to 26.34° after oxygen plasma treatment, which is correlated with more hydrophilic surface. Due to fibroin nano-fiber coating, mechanical properties of HAM improved significantly. Tensile Young's modulus and tensile strength increased from 16.14MPa and 68.46MPa to 25.69MPa and 108.03MPa, respectively. 14days in vitro cultivation of mouse embryonic fibroblasts on the scaffolds revealed that bilayer scaffolds are able to support cell attachment and proliferation. Plasma-etched scaffolds provided the best niche for cell-matrix crosstalk by allowing cells to penetrate beneath the pores and to integrate in fibers direction. The obtained results suggest that the presented nano

  6. Design, ancillary testing, analysis and fabrication data for the advanced composite stabilizer for Boeing 737 aircraft. Volume 1: Technical summary

    Science.gov (United States)

    Aniversario, R. B.; Harvey, S. T.; Mccarty, J. E.; Parsons, J. T.; Peterson, D. C.; Pritchett, L. D.; Wilson, D. R.; Wogulis, E. R.

    1983-01-01

    The horizontal stabilizer of the 737 transport was redesigned. Five shipsets were fabricated using composite materials. Weight reduction greater than the 20% goal was achieved. Parts and assemblies were readily produced on production-type tooling. Quality assurance methods were demonstrated. Repair methods were developed and demonstrated. Strength and stiffness analytical methods were substantiated by comparison with test results. Cost data was accumulated in a semiproduction environment. FAA certification was obtained.

  7. 钽复合板设备制造技术%Fabrication Technology About Tantalum Composite Board Vessels

    Institute of Scientific and Technical Information of China (English)

    朱广前

    2012-01-01

    Bring forward methods about settling welding problems about the tantalum composite board vessels and cautions during the tantalum vessels welding and fabrication.%对钽材复合板焊接中容易出现的问题进行了详细介绍,并提出了钽材复合板热交换设备中常用的几种焊接接头形式.

  8. Fabrication and characterization of PVA, PVA/chitosan, and PVA/cyanobacterial exopolysaccharide nanofibrous composite nanofiltration membranes prepared by electrospinning

    OpenAIRE

    2013-01-01

    Apresentação efetuada no "245th ACS National Meeting and Exposition", em New Orleans, Louisiana, 2013 A series of poly(vinyl alcohol) (PVA), PVA/chitosan (CS) and PVA/cyanobacterial exopolysaccharide (EPS) blend nanofibrous membranes were fabricated by electrospinning using a microfiltration poly(vinylidene fluoride) (PVDF) as a basal membrane, in order to obtain thin-layer composite (TFC) nanofiltration membranes. The morphology, diameter, structure, mechanical and thermal characteristics...

  9. The fabrication and photoelectrocatalytic study of composite ZnSe/Au/TiO2 nanotube films

    Science.gov (United States)

    Zhang, Guowei; Miao, Hui; Wang, Yongbo; Zhang, Dekai; Fan, Jun; Han, Tongxin; Mu, Jianglong; Hu, Xiaoyun

    2017-05-01

    In this paper, anatase TiO2 nanotube (NT) film photoelectrodes are successfully fabricated by a simple and effective hydrothermal method. Subsequently, an aqueous-phase processing technique is adopted to construct highly dispersed ZnSe quantum dots (QDs) on Au/TiO2 NT films prepared by microwave-assisted chemical reduction, which formed composite ZnSe/Au/TiO2 NT film systems (ZATs) with excellent performance in photoelectrocatalytic (PEC) applications. The morphology and performance of as-obtained ZATs were investigated based on various characterizations. The investigation revealed that as-obtained ZATs not only greatly extend spatial separation of charges and restrain the recombination rate of photogenerated electron-hole pairs, but also improve the efficiency to use visible light and display a wide and strong absorption in the visible light region ranging from 400 nm to 800 nm. Moreover, we observe a larger fluorescence quenching of ZATs compared with that of pure TiO2 NT films and binary composites. Experimental results indicate that the photocurrent densities of pure TiO2, 0.8 Au/TiO2, 60 min ZnSe/TiO2, and ZATs are 0.020 mA cm-2, 0.032 mA cm-2, 0.037 mA cm-2 and 0.070 mA cm-2, respectively, which is approximately 2-3.5 times higher than that of pure TiO2 NT films and binary compound photoelectrodes. Additionally, experimental results suggest that the as-prepared ZATs photoelectrode has exhibited considerable stability and significantly increased PEC activity for the degradation of methylene blue (MB) in distilled water under 100 mW cm-2 xenon lamp irradiation. The degradation efficiency on MB of 45 min ZnSe/0.8 Au/TiO2 NT films approaches 91%; however, the counterpart of TiO2 NT films is less than 10%. Eventually, the mechanism for the improvement of the PEC performance of ZATs is discussed to point out that ZATs display prominent charges transport performance, and a stepwise band alignment structure is built up in its photoelectrode, which indicates

  10. Fabrication of a 2014Al-SiC/2014Al Sandwich Structure Composite with Good Tensile Strength and Ductility

    Science.gov (United States)

    Zhu, Xian; Zhao, Yu-Guang; Wang, Hui-Yuan; Wang, Zhi-Guo; Wu, Min; Pei, Chang-hao; Chen, Chao; Jiang, Qi-Chuan

    2016-11-01

    A sandwich structure laminate composed of a ductile 2014Al inter-layer and two nanoscale SiC reinforced 2014Al (SiC/2014Al) composite outer layers was successfully fabricated through the combination of powder metallurgy and hot rolling. The ductile 2014Al inter-layer effectively improved the processability of the sandwiched laminates. Tensile test revealed that the yield strength and ultimate tensile strength of the sandwiched laminate were 287 and 470 MPa, respectively, compared with 235 and 425 MPa for monolithic 2014Al. The good performance of the sandwiched laminate results from the strong bonding between the SiC/2014Al composites layer and the ductile 2014Al layer. Thus, the sandwich structure with a composite surface and ductile core is effective for increasing the strength and toughness of composite laminates.

  11. Study to investigate design, fabrication and test of low cost concepts for large hybrid composite helicopter fuselage, phase 2

    Science.gov (United States)

    Adams, K. M.; Lucas, J. J.

    1977-01-01

    The development of a frame/stringer/skin fabrication technique for composite airframe construction was studied as a low cost approach to the manufacturer of larger helicopter airframe components. A center cabin aluminum airframe section of the Sikorsky CH-53D, was selected for evaluation as a composite structure. The design, as developed, is composed of a woven KEVLAR R-49/epoxy skin and graphite/epoxy frames and stringers. The single cure concept is made possible by the utilization of pre-molded foam cores, over which the graphite/epoxy pre-impregnated frame and stringer reinforcements are positioned. Bolted composite channel sections were selected as the optimum joint construction. The applicability of the single cure concept to larger realistic curved airframe sections, and the durability of the composite structure in a realistic spectrum fatigue environment, was described.

  12. Laser fabrication of Ti6Al4V/TiC composites using simultaneous powder and wire feed

    Energy Technology Data Exchange (ETDEWEB)

    Wang, F. [IRC in Materials, University of Birmingham, Edgbaston B15 2TT (United Kingdom)]. E-mail: F.wang@bham.ac.uk; Mei, J. [IRC in Materials, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Jiang, H. [IRC in Materials, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Wu, X. [IRC in Materials, University of Birmingham, Edgbaston B15 2TT (United Kingdom)

    2007-02-15

    Composites of Ti-6Al-4V containing different volume fractions of TiC were manufactured using direct laser fabrication. Ti-6Al-4V wire and TiC powder were fed into the laser with the rate of powder feed being changed so that samples containing different volume fractions of TiC could be manufactured. Optical microscopy, scanning electron and transmission electron microscopy were used to characterise the microstructure of these samples. The room temperature tensile properties were measured also on some selected compositions together with their Young's moduli. In addition the change in wear resistance was studied as a function of TiC volume fraction using a standard wear test. These observations are discussed in terms of the advantages and difficulties of using simultaneous wire and powder feed systems and in terms of the value of this approach in obtaining data over a wide range of compositions for such a composite.

  13. Fabrication of a 2014Al-SiC/2014Al Sandwich Structure Composite with Good Tensile Strength and Ductility

    Science.gov (United States)

    Zhu, Xian; Zhao, Yu-Guang; Wang, Hui-Yuan; Wang, Zhi-Guo; Wu, Min; Pei, Chang-hao; Chen, Chao; Jiang, Qi-Chuan

    2016-09-01

    A sandwich structure laminate composed of a ductile 2014Al inter-layer and two nanoscale SiC reinforced 2014Al (SiC/2014Al) composite outer layers was successfully fabricated through the combination of powder metallurgy and hot rolling. The ductile 2014Al inter-layer effectively improved the processability of the sandwiched laminates. Tensile test revealed that the yield strength and ultimate tensile strength of the sandwiched laminate were 287 and 470 MPa, respectively, compared with 235 and 425 MPa for monolithic 2014Al. The good performance of the sandwiched laminate results from the strong bonding between the SiC/2014Al composites layer and the ductile 2014Al layer. Thus, the sandwich structure with a composite surface and ductile core is effective for increasing the strength and toughness of composite laminates.

  14. Fabrication of high performance 3D SiO2/Si3N4 composite via perhydropolysilazane infiltration and pyrolysis

    Institute of Scientific and Technical Information of China (English)

    QI; Gongjin; ZHANG; Changrui; HU; Haifeng; CAO; Feng; WANG

    2005-01-01

    Perhydropolysilazane, a low viscosity preceramic polymer with good wettability and high char yield, was used to fabricate three-dimensional silica fiber reinforced silicon nitride matrix composites through the repeated infiltration-curing- pyrolysis cycles. With the increase of the pyrolysis temperature from T1, T2 to T3, the density of the composites increased all through, but the flexural strength showed a maximum value at T2 followed by a sharp decrease. The composite prepared at T2 exhibited a good ceramization of the preceramic polymer, a high flexural strength of 144.9 MPa and excellent dielectric property. The high performance of the composite resulted from the good state of the silica fibers, controlled fiber/matrix interfacial microstructures and high-purity dense silicon nitride matrix.

  15. Property Characteristics of a TiB2P/AI Composite Fabricated by Squeeze Casting Technology

    Institute of Scientific and Technical Information of China (English)

    Min ZHAO; Gaohui WU; Zuoyong DOU; Longtao JIANG

    2006-01-01

    TiB2P/Al composite was successfully fabricated by squeeze casting technology. Its mechanical and tribological properties were evaluated. The elimination of Ti-Al intermetallic compound was confirmed by X-ray diffraction (XRD) studies. At 45% volume fraction, the bending strength at ambient temperature was 934 MPa. And the fracture modes included ductile failure of Al matrix and brittle fracture of TiB2 particles. In dry sliding wear mode, severe plastic deformation and adhesive wear were found on the worn surfaces of the SiCP/Alcomposite. But no obvious characteristics of adhesion or abrasion wear were observed on that of the TiB2P/Al composites. At the steady stage, the friction coefficient of the SiCP/Al composite was about 0.6. While that of TiB2P/Al composite was only about 0.16~0.17.

  16. Fabrication and mechanical properties of AlCoNiCrFe high-entropy alloy particle reinforced Cu matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jian, E-mail: chenjian@xatu.edu.cn [School of Materials Science and Chemical Engineering, Xi' an Technological University, Xi' an, Shaanxi 710021 (China); Niu, Pengyun; Wei, Ting [School of Materials Science and Chemical Engineering, Xi' an Technological University, Xi' an, Shaanxi 710021 (China); Hao, Liang [College of Architecture and Civil Engineering, Xi' an University of Science and Technology, Xi' an 710054 (China); Liu, Yunzi [School of Materials Science and Chemical Engineering, Xi' an Technological University, Xi' an, Shaanxi 710021 (China); Wang, Xianhui, E-mail: xhwang693@xaut.edu.cn [School of Materials Science and Engineering, Xi' an University of Technology, Xi' an, Shaanxi 710048 (China); Peng, Yuli [School of Materials Science and Chemical Engineering, Xi' an Technological University, Xi' an, Shaanxi 710021 (China)

    2015-11-15

    The AlCoNiCrFe high-entropy alloy was prepared by mechanical alloying and the AlCoNiCrFe high-entropy alloy reinforced Cu matrix composites were subsequently fabricated by powder metallurgy. The phase constituents and morphology of the alloying powders were characterized by X-ray diffractometer and scanning electron microscope, the microstructures of the Cu base composites were characterized by scanning electron microscope and transmission electron microscope, and the compression tests were made as well. The results show that the AlCoNiCrFe high-entropy alloy can form after milling for 24 h. During sintering process, no grain growth occurs and no intermetallic phases present in the AlCoNiCrFe high-entropy alloy in the Cu base composite. Compression tests show that the AlCoNiCrFe high-entropy alloy has a better strengthening effect than metallic glasses and the yield strength of the Cu matrix composite reinforced with the AlCoNiCrFe high-entropy alloy is close to the value predicted by the Voigt model based on the equal strain assumption. - Graphical abstract: AlCoNiCrFe HEA has a better strengthening effect than metallic glasses for particulate reinforced metal matrix composites. The yield strength of the Cu base composite reinforced with the AlCoNiCrFe HEA is close to the upper bound calculated by Voigt model. - Highlights: • AlCoNiCrFe high-entropy alloy was prepared by mechanical alloying. • A novel Cu base composite reinforced with AlCoNiCrFe was fabricated. • No grain growth and no intermetallic phase present in AlCoNiCrFe during sintering. • AlCoNiCrFe has a better strengthening effect than metallic glassy in composites.

  17. Magnetic composite nanofibers fabricated by electrospinning of Fe{sub 3}O{sub 4}/gelatin aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuhong, E-mail: openair@163.com [Key Laboratory of Functional Inorganic Material Chemistry (School of Chemical Engineering and Material, Heilongjiang University), Ministry of Education, Harbin 150080 (China); Sun, Zhiyao [Key Laboratory of Functional Inorganic Material Chemistry (School of Chemical Engineering and Material, Heilongjiang University), Ministry of Education, Harbin 150080 (China); Yan, Eryun [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Yuan, Jihong; Gao, Yang; Bai, Yuhao; Chen, Yu [Key Laboratory of Functional Inorganic Material Chemistry (School of Chemical Engineering and Material, Heilongjiang University), Ministry of Education, Harbin 150080 (China); Wang, Cheng, E-mail: wangc_93@163.com [Key Laboratory of Functional Inorganic Material Chemistry (School of Chemical Engineering and Material, Heilongjiang University), Ministry of Education, Harbin 150080 (China); Zheng, Yongjie; Jing, Tao [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China)

    2014-12-15

    Graphical abstract: Superparamagnetic Fe{sub 3}O{sub 4}/GE composite nanofibers with saturation magnetization of 12.87 emμ g{sup −1} were prepared from gelatin aqueous solution at an elevated temperature by electrospinning. - Highlights: • Electrospinning GE aqueous solution at higher temperature. • Presenting a simple and effective technique, combining wet blending with high temperature electrospinning to prepare magnetic composite nanofibers. • Developing composite nanofibers with higher superparamagnetic properties is expected to be useful in application for the biomedical field. - Abstract: We have fabricated magnetic composite nanofibers containing superparamagnetic Fe{sub 3}O{sub 4} nanoparticles by the electrospinning method. Highly dispersed Fe{sub 3}O{sub 4} magnetic nanoparticles were synthesized by one-step co-precipitation of Fe{sup 2+}/Fe{sup 3+} under an alkaline condition with 4 wt% poly(vinyl alcohol) (PVA) aqueous solution as the stabilizer. Gelatin (GE) was used as a polymeric matrix for fabricating the nanocomposites. The prepared Fe{sub 3}O{sub 4}/GE composite nanofibers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD), respectively. These composite nanofibers show uniform and continuous morphology with the Fe{sub 3}O{sub 4} nanoparticles embedded in the nanofibers. By studying the magnetic properties of the Fe{sub 3}O{sub 4}/GE composite nanofibers, we confirm that the composite nanofibers possess superparamagnetic properties with a high saturated magnetization (M{sub s} = 12.87 emμ g{sup −1}) at room temperature. The features of this approach for getting one-dimensional magnetic nanostructure are its simplicity, effectiveness and safety. The Fe{sub 3}O{sub 4}/GE nanofibers with superparamagnetic properties would be potentially applied in biomedical field.

  18. Fabrication of polylactic acid/hydroxyapatite/graphene oxide composite and their thermal stability, hydrophobic and mechanical properties

    Directory of Open Access Journals (Sweden)

    Ming Gong

    2017-06-01

    Full Text Available A series of polylactic acid/hydroxyapatite/graphene oxide composite (PLA/HA/GO were fabricated via solution blending and casting method using N,N-dimethyl-formamide (DMF and CH2Cl2 as mutual solvents. The physicochemical properties of the resulting composites were characterized by means of FT-IR, SEM, TEM, Raman spectra, XRD and N2-physisorption. Particularly, the thermal stabilities, hydrophobic and mechanical properties of PLA/HA/GO composites were systematically investigated. The influences of GO content on thermal stabilities, hydrophobic and mechanical properties of the composites were also evaluated. The results showed that the addition of GO and HA not only improved the thermal stability of PLA, but also improved the hydrophobic property of PLA-based composites. By compared with the PLA/HA/GO composite, the tensile strength of pristine PLA is slight high. The tensile strength and hardness of PLA/HA/GO composites increased with the increase of GO content. The obtained PLA/HA/GO composite may be a promising material for load-bearing orthopedic implants.

  19. Structural Evaluation and Mechanical Properties of Aluminum/Tungsten Carbide Composites Fabricated by Continual Annealing and Press Bonding (CAPB) Process

    Science.gov (United States)

    Amirkhanlou, Sajjad; Ketabchi, Mostafa; Parvin, Nader; Drummen, G. P. C.

    2014-12-01

    In the present work, a novel technique is introduced called continual annealing and press bonding (CAPB) for the manufacturing of a bulk aluminum matrix composite dispersed with 10 vol pct tungsten carbide particles (Al/WCp composite). The microstructural evolution and mechanical properties of the Al/WCp composite during various CAPB cycles were examined by scanning electron microscopy (SEM), wavelength dispersive X-ray spectroscopy (WDX), and tensile testing. The microstructure of the fabricated composite after fourteen cycles of CAPB showed homogenous distribution of the WC particles in the aluminum matrix and strong bonding between the various layers. According to WDX analysis, the manufactured Al/WCp composite did not evidence the presence of additional elements. The results indicated that the tensile strength of the composites increased with the number of CAPB cycles, and reached a maximum value of 140 MPa at the end of the fourteenth cycle, which was 1.6 times higher than the obtained value for annealed aluminum (raw material, 88 MPa). Even though the elongation of the Al/WCp composite was reduced during the initial cycles of CAPB process, it increased significantly during the final cycles. SEM observation of fracture surfaces showed that the rupture mode in the CAPB-processed Al/WCp composite was of the shear ductile rupture type.

  20. Composition and Properties of Thermo-regulated Non-woven Fabrics

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A series of non-woven fabrics were fabricated by blending 50 - 80wt% of thermoregulated fibres containing n-eicosane,n-nonadecane or n-octadecane with 0 - 40wt% PET fibres and 0- 20wt% PP fibres. The phase change properties,thermal conductivity, thermal resistance, heat flux and inner temperature difference between wool felt and thethermoregulated non-woven fabrics of the non-woven fabrics were measreed respectively. The thermo-regulated non-woven fabrics absorb heat at 25- 34℃ and release heat at 1025℃. The measured highest enthalpy of the non-woven is approximately 18J/g. During a heating process, heat flux of the non-woven fabrics is composed of three parts: heat absorbed by the cold textile touching the hot plate, heat transmitted from the hot plate to the cold plate, and the heat absorbed by PCM from the hot plate during the phase change process. The measured maximum inner temperature difference in a temperature rising process between the wool felt and the thermo-regulated non-woven fabric is approximately 8℃. The inner temperature difference (Tr-Ts>0) lasts 16 - 45 min. By contrary, the measured maximum inner temperature difference in the temperature decreasing process is approximately - 6. 5℃. The inner temperature difference (Tr-Ts<0) lasts 16 - 50 min. The temperatureregulation properties are obviously observed.

  1. Fabrication of low cost composite tooling for filament winding large structures

    Science.gov (United States)

    Miller, Timothy S.; Fortin, Christopher J.

    A TQM/concurrent engineering approach has been used to create a low cost filament-winding mandrel for large launch-vehicle structure fabrication. The process involves the fabrication of a low cost/low temperature master model, followed by the building of the mandrel and its backup structure within the master. Mandrels fabricated by these means are able to maintain full vacuum integrity and dimensional stability throughout high-temperature cure cycles; the reduced thermal mass of the mandrel results in part-cure cycles that are shorter than those associated with conventional mandrel materials.

  2. Fabrication and in vitro evaluation of a sponge-like bioactive-glass/gelatin composite scaffold for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Nadeem, Danish [Biomaterials Engineering Group, School of Oral and Dental Sciences, University of Bristol, BS1 2LY (United Kingdom); Kiamehr, Mostafa [Biomaterials and Tissue Engineering Group, Leeds Dental Institute, University of Leeds, LS2 9LU (United Kingdom); Yang, Xuebin [Biomaterials and Tissue Engineering Group, Leeds Dental Institute, University of Leeds, LS2 9LU (United Kingdom); NIHR Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton Hospital, Leeds LS7 4SA (United Kingdom); Su, Bo, E-mail: b.su@bristol.ac.uk [Biomaterials Engineering Group, School of Oral and Dental Sciences, University of Bristol, BS1 2LY (United Kingdom)

    2013-07-01

    In this work a bioactive composite scaffold, comprised of bioactive-glass and gelatin, is introduced. Through direct foaming a sponge-like composite of a sol–gel derived bioactive-glass (70S30C; 70% SiO{sub 2}, 30% CaO) and porcine gelatin was developed for use as a biodegradable scaffold for bone tissue engineering. The composite was developed to provide a suitable alternative to synthetic polymer based scaffolds, allowing directed regeneration of bone tissue. The fabricated scaffold was characterised through X-ray microtomography, scanning electron and light microscopy demonstrating a three dimensionally porous and interconnected structure, with an average pore size (170 μm) suitable for successful cell proliferation and tissue ingrowth. Acellular bioactivity was assessed through apatite formation during submersion in simulated body fluid (SBF) whereby the rate and onset of apatite nucleation was found to be comparable to that of bioactive-glass. Modification of dehydrothermal treatment parameters induced varying degrees of crosslinking, allowing the degradation of the composite to be tailored to suit specific applications and establishing its potential for a wide range of applications. Use of genipin to supplement crosslinking by dehydrothermal treatment provided further means of modifying degradability. Biocompatibility of the composite was qualified through successful cultures of human dental pulp stem cells (HDPSCs) on samples of the composite scaffold. Osteogenic differentiation of HDPSCs and extracellular matrix deposition were confirmed through positive alkaline phosphatase staining and immunohistochemistry. - Highlights: ► Optimised composition and fabrication produced sponge-like porosity (pore size ∼ 170 μm). ► Maximum aqueous stability via dehydrothermal treatment at 145 °C, for 48 h ► Biocompatibility and osteogenic potential confirmed via successful HDPSC cultures. ► Minimal toxicity exhibited in optimally crosslinked samples (10 m

  3. Fabrication and Characterization of SnO2/Graphene Composites as High Capacity Anodes for Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Abirami Dhanabalan

    2013-11-01

    Full Text Available Tin-oxide and graphene (TG composites were fabricated using the Electrostatic Spray Deposition (ESD technique, and tested as anode materials for Li-ion batteries. The electrochemical performance of the as-deposited TG composites were compared to heat-treated TG composites along with pure tin-oxide films. The heat-treated composites exhibited superior specific capacity and energy density than both the as-deposited TG composites and tin oxide samples. At the 70th cycle, the specific capacities of the as-deposited and post heat-treated samples were 534 and 737 mA·h/g, respectively, and the corresponding energy densities of the as-deposited and heat-treated composites were 1240 and 1760 W·h/kg, respectively. This improvement in the electrochemical performance of the TG composite anodes as compared to the pure tin oxide samples is attributed to the synergy between tin oxide and graphene, which increases the electrical conductivity of tin oxide and helps alleviate volumetric changes in tin-oxide during cycling.

  4. Fabrication of novel magnesium-matrix composites and their mechanical properties prior to and during in vitro degradation.

    Science.gov (United States)

    Dezfuli, Sina Naddaf; Leeflang, Sander; Huan, Zhiguang; Chang, Jiang; Zhou, Jie

    2017-03-01

    In our previous study, we developed Mg-matrix composites with bredigite as the reinforcing phase and achieved improved degradation resistance in comparison with Mg. However, the effects of materials processing method and process parameters on the mechanical behavior of the composites before and during degradation were still unknown. This research was aimed at determining the mechanical properties of Mg-bredigite composites prior to and during degradation. It was found that by optimizing the process parameters of Pressure Assisted Sintering (PAS), low-porosity Mg-bredigite composites with strong interfaces between homogeneously distributed bredigite particles and the Mg matrix could be fabricated. By reinforcing Mg with 20vol% bredigite particles, the ultimate compressive strength and ductility of Mg increased by 67% and 111%, respectively. The in vitro degradation rate of the Mg-20% bredigite composite in a cell culture medium was 24 times lower than that of monolithic Mg. As a result of retarded degradation, the mechanical properties of the composite after 12 days of immersion in the cell culture medium were comparable to those of cortical bone. The encouraging results of this research warrant further investigations on the in vivo degradation behavior and mechanical properties of the composites.

  5. Fabrication and characterization of poly(vinyl alcohol)/carbon nanotube melt-spinning composites fiber

    OpenAIRE

    Zhiqian Yang; Degen Xu; Jianzhong Liu; Jiaping Liu; Lin Li; Lihui Zhang; Jin Lv

    2015-01-01

    A composite fiber based on carbon nanotube (CNT) and poly(vinyl alcohol) (PVA) was prepared by melt-spinning. Structural features and the mechanical performances of the PVA/CNT composite fiber were investigated as a function of draw condition. Initial moduli and tensile strengths of the drawn composite fibers are much higher than those of undrawn composite fiber. It is identified from XRD and 2D XRD that the composite fiber exhibits enhanced crystallinity and orientation degree with increasin...

  6. Sonochemical fabrication of petal array-like copper/nickel oxide composite foam as a pseudocapacitive material for energy storage

    Science.gov (United States)

    Karthik, Namachivayam; Edison, Thomas Nesakumar Jebakumar Immanuel; Sethuraman, Mathur Gopalakrishnan; Lee, Yong Rok

    2017-02-01

    Copper/nickel oxide composite foam (Cu/Ni) with petal array-like textures were successfully fabricated via a facile sonochemical approach, and its applications as a pseudocapacitive material for energy storage were examined. The nickel foam was immersed into a mixture of copper chloride (CuCl2) and hydrochloric acid (HCl) and subsequently sonicated for 30 min at 60 °C. As a result of galvanic replacement, nickel was oxidized while copper was reduced, and the walls of the nickel foam were coated with copper particles. Studies using field emission scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopic analyses confirmed the morphology and chemical structure of the as-obtained Cu/Ni oxide composite foam. The supercapacitive performance of the as-fabricated Cu/Ni oxide composite foam was evaluated in 2 M KOH by employing cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy analyses. Cyclic voltammograms revealed that the Cu/Ni oxide composite foam exhibited pseudocapacitive behavior and delivered a high specific capacitance of 1773 F g-1 at a scan rate of 5 mV s-1. This improvement may be attributed to the morphology, surface functionalization with heteroatoms, hydrogen evolution, and high conductivity, along with the low resistance due to short path lengths for electron transportation.

  7. E-beam-Cure Fabrication of Polymer Fiber/Matrix Composites for Multifunctional Radiation Shielding

    Science.gov (United States)

    Wilson, John W.; Jensen, Brian J.; Thibeault, Sheila A.; Hou, Tan-Hung; Saether, Erik; Glaessgen, Edward H.; Humes, Donald H.; Chang, Chie K.; Badavi, Francis F.; Kiefer, Rrichard L.; Adams, Dan O.

    2004-01-01

    Aliphatic polymers were identified as optimum radiation polymeric shielding materials for building multifunctional structural elements. Conceptual damage-tolerant configurations of polyolefins have been proposed but many issues on the manufacture remain. In the present paper, we will investigate fabrication technologies with e-beam curing for inclusion of high-strength aliphatic polymer fibers into a highly cross-linked polyolefin matrix. A second stage of development is the fabrication methods for applying face sheets to aliphatic polymer closed-cell foams.

  8. Evidence for a composite organic-inorganic fabric of belemnite rostra: implication for palaeoceanography

    Science.gov (United States)

    Hoffmann, Rene; Richter, Detlev K.; Neuser, Rolf D.; Jöns, Niels; Linzmeier, Benjamin J.; Lemanis, Robert E.; Fusseis, Florian; Xiao, Xianghui; Immenhauser, Adrian

    2017-04-01

    with modern cephalopods. Intra-rostral porosity was occluded post mortem by earliest diagenetic isopachous calcite cements of a non-biogenic origin. These may have been precipitated due to increased alkalinity related to the decay of organic matter. If this holds true, then the resulting fabric represents a composite biogenic/abiogenic structure precipitated at different times and depths in the water column. We suggest that these findings have significance for those using belemnite rostra as archives of their palaeoenvironment, for the reconstruction of belemnite palaeoecology, and for the functional interpretation of belemnite rostra.

  9. Fabrication of high conductivity dual multi-porous poly (L-lactic acid)/polypyrrole composite micro/nanofiber film

    Energy Technology Data Exchange (ETDEWEB)

    Yu Qiaozhen, E-mail: w2003yqz@126.com [Faculty of Materials and Textiles, Jiaxing Key Lab of Modern Textile and Garment, Jiaxing University, Jiaxing, Zhejiang 314001 (China); Dai Zhengwei; Lan Ping [Faculty of Materials and Textiles, Jiaxing Key Lab of Modern Textile and Garment, Jiaxing University, Jiaxing, Zhejiang 314001 (China)

    2011-07-25

    Highlights: > PLLA/H{sub 2}SO{sub 4}-doped PPy composite micro/nano fibers dual multi-pore membranes with high conductivity were fabricated by combining electrospinning with in situ polymerization.These composite fibers have a core-shell structure, the PPy is the core and the PLLA/PPy is the shell. > The size and shape of the pores in this PPy composite fiber membrane can be tuned by polymerization parameters. The largest size of the pores is about 250 {mu}m. > The conductivity of this composite fiber membrane can be adjusted by polymerization parameters. The highest conductivity is 179.0 S cm{sup -1}. The PLLA fibers act as the template in the pyrrole polymerization process and contributed to the increase of the conductivity. - Abstract: Dual multi-porous PLLA (poly(L-lactic acid))/H{sub 2}SO{sub 4}-doped PPy (polypyrrole) composite micro/nano fiber films were fabricated by combining electrospinning with in situ polymerization. The morphologies and structures of the resulting samples were analyzed by scanning electron microscopy (SEM). It was found that the composite micro/nano fibers exhibited a core-shell structure and the composite fiber film had a dual multi-pore structure composed of pores both in the fibers and among the fibers. Semiconductor parameter analyzer was used to characterize the electrical properties of the samples. It was interesting to find that all the PLLA/H{sub 2}SO{sub 4}-doped PPy composite micro/nano fiber films had higher conductivity than H{sub 2}SO{sub 4}-doped PPy particles when the polymerization time up to 180 min. Effects of the pyrrole synthesis conditions on the pore size and the conductivity of PLLA/PPy composite fiber film were assessed. By optimizing the polymerization conditions, the max conductivity of this composite fiber film was about 179.0 S cm{sup -1} with a pore size of about 250 {mu}m. The possible mechanism of PLLA/H{sub 2}SO{sub 4}-doped PPy composite micro/nano fiber films had much higher conductivity than H{sub 2

  10. Microstructure and Corrosion Resistance of Cr7C3/γ-Fe Ceramal Composite Coating Fabricated by Plasma Cladding

    Institute of Scientific and Technical Information of China (English)

    LIU Junbo

    2007-01-01

    A new type in situ Cr7C3/γ-Fe ceramal composite coating was fabricated on substrate of hardened and tempered grade C steel by plasma cladding with Fe-Cr-C alloy powders. The ceramal composite coating has a rapidly solidified microstructure consisting of primary Cr7C3 and the Cr7C3/γ-Fe eutectics, and is metallurgically bonded to the degree C steel substrate. The corrosion resistances of the coating in water solutions of 0.5 mol/L H2SO4 and 3.5% NaCl were evaluated utilizing the electrochemical polarization corrosion-test method. Because of the inherent excellent corrosion-resisting properties of the constituting phase and the rapidly solidified homogeneous microstructure, the plasma clad ceramal composite coating exhibits excellent corrosion resistance in the water solutions of 0.5 mol/L H2SO4 and 3.5% NaCl.

  11. Evaluation of Centrifugal Casting Process Parameters for In Situ Fabricated Functionally Gradient Fe-TiC Composite

    Science.gov (United States)

    Rahimipour, Mohammad Reza; Sobhani, Manoochehr

    2013-10-01

    A gradient Fe-TiC composite was successfully produced via combination of in situ reaction with centrifugal casting techniques. Additionally, some of the effective parameters of the centrifugal casting process have been studied. Cast iron and ferrotitanium, which were used as raw materials, were melted using a high-frequency induction furnace coupled with centrifugal equipment. The microstructure and phase characterization of the fabricated composite was studied by scanning electron microscopy, optical microscopy, and X-ray diffraction. The results show that the production of a pearlite matrix composite reinforced by TiC particles is feasible. The distribution of TiC in the pearlitic matrix is completely uneven as a result of density difference between molten medium and TiC in the centrifugal casting process.

  12. Fabrication of COF-MOF Composite Membranes and Their Highly Selective Separation of H2/CO2.

    Science.gov (United States)

    Fu, Jingru; Das, Saikat; Xing, Guolong; Ben, Teng; Valtchev, Valentin; Qiu, Shilun

    2016-06-22

    The search for new types of membrane materials has been of continuous interest in both academia and industry, given their importance in a plethora of applications, particularly for energy-efficient separation technology. In this contribution, we demonstrate for the first time that a metal-organic framework (MOF) can be grown on the covalent-organic framework (COF) membrane to fabricate COF-MOF composite membranes. The resultant COF-MOF composite membranes demonstrate higher separation selectivity of H2/CO2 gas mixtures than the individual COF and MOF membranes. A sound proof for the synergy between two porous materials is the fact that the COF-MOF composite membranes surpass the Robeson upper bound of polymer membranes for mixture separation of a H2/CO2 gas pair and are among the best gas separation MOF membranes reported thus far.

  13. Fabrication of Ni-decorated helical ribbon composite microstructure from self-assembled lipid tubule by electroless metallization

    Institute of Scientific and Technical Information of China (English)

    FU Yubin; ZHANG Lide; ZHENG Jiyong

    2006-01-01

    Lipid molecules can self-assemble into a tubular structure, which is formed by tightly wound helical ribbons. Lipid tubules are utilized as a precursor to fabricate a novel Ni-decorated helical ribbon composite microstructure in a high yield by electroless deposition. The microstructure carries Ni nanoparticles on the flat face and wires at the edge of helical ribbon, in which the average size of nanoparticles is about 40-60 nm, and the wires are of a layered structure strongly correlated with a multi-bilayer structure in the lipid membrane. Compared with the tubular precursor, the Ni-decorated composite microstructure becomes short and irregular shapes due to the breakage in the deposition, and its formation is largely bound up with the tubular helical structure and the different catalytic process. Finally, the helical composite microstructure would have a potential application in the development of electric active materials.

  14. Coupling dynamic equations of motor-driven elastic linkage mechanism with links fabricated from three-dimensional braided composite materials

    Institute of Scientific and Technical Information of China (English)

    CAI Gan-wei; WANG Xiang; WANG Ru-gui; LI Zhao-jun; ZHANG Xiao-bin; CANG Ping-ping

    2005-01-01

    A motor-driven linkage system with links fabricated from 3-dimensional braided composite materials was studied. A group of coupling dynamic equations of the system, including composite materials parameters, electromagnetism parameters of the motor and structural parameters of the link mechanism, were established by finite element method. Based on the air-gap field of non-uniform airspace of three-phase alternating current motor caused by the vibration eccentricity of rotor, the relation of electromechanical coupling at the actual running state was analyzed. And the motor element, which defines the transverse vibration and torsional vibration of the motor as its nodal displacement, was established. Then, based on the damping element model and the expression of energy dissipation of the 3-dimentional braided composite materials, the damping matrix of the system was established by calculating each order modal damping of the mechanism.

  15. Tailoring ultrafine grained and dispersion-strengthened Ti$_2$AlC/TiAl composite via a new fabrication route

    Indian Academy of Sciences (India)

    TAOTAO AI; QI YU; WENHU LI; XIANGYU ZOU; ZHIFENG DENG; XINQIANG YUAN

    2016-09-01

    In situ Ti$_2$AlC/TiAl composite was fabricated by hot-pressing method via the reaction system of Ti$_3$AlC$_2$ and Ti-Al pre-alloyed powders at low temperature of 1150$^{\\circ}$C. The composite mainly consisted of TiAl, Ti$_3$Al and Ti$_2$AlC phases. Fine Ti$_2$AlC particles were homogeneously distributed and dispersed in the matrix. Ti$_2$AlC played the significant role of deflecting and blunting the cracks and contributed to improve the mechanical properties of the composite. The Vickers hardness, flexural strength and fracture toughness were 6.2 GPa, $993.9\\pm 50.8$ MPa and $6.7\\pm 0.3$ MPa m$^{1/2}$, respectively.

  16. Fabricating fast triggered electro-active shape memory graphite/silver nanowires/epoxy resin composite from polymer template.

    Science.gov (United States)

    Zhou, Jie; Li, Hua; Tian, Ran; Dugnani, Roberto; Lu, Huiyuan; Chen, Yujie; Guo, Yiping; Duan, Huanan; Liu, Hezhou

    2017-07-17

    In recent years shape-memory polymers have been under intense investigation due to their unique mechanical, thermal, and electrical properties that could potentially make them extremely valuable in numerous engineering applications. In this manuscript, we report a polymer-template-assisted assembly manufacturing strategy used to fabricate graphite/silver nanowires/epoxy resin (PGSE) composite. In the proposed method, the porous polymer foams work as the skeleton by forming three-dimensional graphite structure, whereas the silver nanowires act as the continuous conductive network. Preliminary testing on hybrid foams after vacuum infusion showed high electrical conductivity and excellent thermal stability. Furthermore, the composites were found to recover their original shape within 60 seconds from the application of a 0.8 V mm(-1) electric field. Notably, the reported shape-memory polymer composites are manufactured with readily-available raw materials, they are fast to manufacture, and are shape-controlled.

  17. Fabrication of ZnO Nanoneedle/nanocolumn Composite Films and Annealing Induced Improvement in Their Microstructural and Photoluminescence Characteristics

    Institute of Scientific and Technical Information of China (English)

    Dongjiang QIU; Ping YU; Yintu JIANG; Huizhen WU

    2006-01-01

    ZnO nanoneedle/nanocolumn (NN/NC) composite films were grown via reactive electron beam evaporation(REBE) in the NH3/H2 gaseous mixture by using polycrystalline ZnO ceramic targets as source materials. The growth was performed at low substrate temperatures (450~500℃) without employing any metallic catalysts.As-prepared samples were then rapidly annealed in O2 ambient at a higher temperature (600℃). Electron microscopic observations revealed the typical composite-structured morphologies of NN/NC/substrate of ZnO nanomaterials grown at 500℃. Such unique morphologies should render potential applications, for instance,as an efficient microwave absorption material utilized in the fabrication of concealed aerostat. In addition,X-ray diffraction and photoluminescence measurements showed remarkable improvement in crystal and optical qualities of ZnO NN/NC composite films after annealing.

  18. Fabrication and densification enhancement of SiC-particulate-reinforced copper matrix composites prepared via the sinter-forging process

    Institute of Scientific and Technical Information of China (English)

    Mohammadmehdi Shabani; Mohammad Hossein Paydar; Mohammad Mohsen Moshksar

    2014-01-01

    The fabrication of copper (Cu) and copper matrix silicon carbide (Cu/SiCp) particulate composites via the sinter-forging process was investigated. Sintering and sinter-forging processes were performed under an inert Ar atmosphere. The influence of sinter-forging time, tempera-ture, and compressive stress on the relative density and hardness of the prepared samples was systematically investigated and subsequently com-pared with that of the samples prepared by the conventional sintering process. The relative density and hardness of the composites were enhanced when they were prepared by the sinter-forging process. The relative density values of all Cu/SiCp composite samples were observed to decrease with the increase in SiC content.

  19. Fabrication of high-aspect-ratio polymer microstructures and hierarchical textures using carbon nanotube composite master molds.

    Science.gov (United States)

    Copic, Davor; Park, Sei Jin; Tawfick, Sameh; De Volder, Michael F L; Hart, A John

    2011-05-21

    Scalable and cost effective patterning of polymer structures and their surface textures is essential to engineer material properties such as liquid wetting and dry adhesion, and to design artificial biological interfaces. Further, fabrication of high-aspect-ratio microstructures often requires controlled deep-etching methods or high-intensity exposure. We demonstrate that carbon nanotube (CNT) composites can be used as master molds for fabrication of high-aspect-ratio polymer microstructures having anisotropic nanoscale textures. The master molds are made by growth of vertically aligned CNT patterns, capillary densification of the CNTs using organic solvents, and capillary-driven infiltration of the CNT structures with SU-8. The composite master structures are then replicated in SU-8 using standard PDMS transfer molding methods. By this process, we fabricated a library of replicas including vertical micro-pillars, honeycomb lattices with sub-micron wall thickness and aspect ratios exceeding 50:1, and microwells with sloped sidewalls. This process enables batch manufacturing of polymer features that capture complex nanoscale shapes and textures, while requiring only optical lithography and conventional thermal processing.

  20. Effect of fabrication-dependent shape and composition of solid-state nanopores on single nanoparticle detection.

    Science.gov (United States)

    Liu, Shuo; Yuzvinsky, Thomas D; Schmidt, Holger

    2013-06-25

    Solid-state nanopores can be fabricated in a variety of ways and form the basis for label-free sensing of single nanoparticles: as individual nanoparticles traverse the nanopore, they alter the ionic current across it in a characteristic way. Typically, nanopores are described by the diameter of their limiting aperture, and less attention has been paid to other, fabrication-dependent parameters. Here, we report a comprehensive analysis of the properties and sensing performance of three types of nanopore with identical 50 nm aperture, but fabricated using three different techniques: direct ion beam milling, ion beam sculpting, and electron beam sculpting. The nanopores differ substantially in physical shape and chemical composition as identified by ion-beam assisted cross-sectioning and energy dispersive X-ray spectroscopy. Concomitant differences in electrical sensing of single 30 nm beads, such as variations in blockade depth, duration, and electric field dependence, are observed and modeled using hydrodynamic simulations. The excellent agreement between experiment and physical modeling shows that the physical properties (shape) and not the chemical surface composition determine the sensing performance of a solid-state nanopore in the absence of deliberate surface modification. Consequently, nanoparticle sensing performance can be accurately predicted once the full three-dimensional structure of the nanopore is known.

  1. Fabrication and microstructural analysis of UN-U{sub 3}Si{sub 2} composites for accident tolerant fuel applications

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Kyle D., E-mail: kylej@kth.se; Raftery, Alicia M.; Lopes, Denise Adorno; Wallenius, Janne

    2016-08-15

    In this study, U{sub 3}Si{sub 2} was synthesized via the use of arc-melting and mixed with UN powders, which together were sintered using the SPS method. The study revealed a number of interesting conclusions regarding the stability of the system – namely the formation of a probable but as yet unidentified ternary phase coupled with the reduction of the stoichiometry in the nitride phase – as well as some insights into the mechanics of the sintering process itself. By milling the silicide powders and reducing its particle size ratio compared to UN, it was possible to form a high density UN-U{sub 3}Si{sub 2} composite, with desirable microstructural characteristics for accident tolerant fuel applications. - Highlights: • U{sub 3}Si{sub 2} fabricated from elemental uranium and silicon through arc melting. • Homogeneity of the silicides assessed through densitometry, XRD, SEM and EDS, chemical etching and optical microscopy. • UN powder fabricated using hydriding-nitriding method. • No phase transformations detected when sintering using silicide particle sizes less than UN particle size. • High density composite (98%TD) fabricated with silicide grain coating using spark plasma sintering at 1450 °C.

  2. Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Xu Mingen; Li Yanlei; Suo Hairui; Wang Qiujun; Ge Yakun; Xu Ying [Center Laboratory of Biomanufacture and Tissue Engineering, Hang Zhou Dianzi University, Hangzhou 310018 (China); Yan Yongnian; Liu Li, E-mail: xumingen@tsinghua.edu.c, E-mail: xumingen@hdu.edu.c [Key Laboratory for Advanced Materials Processing Technology, Ministry of Education and Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)

    2010-06-15

    Here we developed a composite scaffold of pearl/poly(lactic-co-glycolic acid) (pearl/PLGA) utilizing the low-temperature deposition manufacturing (LDM). LDM makes it possible to fabricate scaffolds with designed microstructure and macrostructure, while keeping the bioactivity of biomaterials by working at a low temperature. Process optimization was carried out to fabricate a mixture of pearl powder, PLGA and 1,4-dioxane with the designed hierarchical structures, and freeze-dried at a temperature of -40 deg. C. Scaffolds with square and designated bone shape were fabricated by following the 3D model. Marrow stem cells (MSCs) were seeded on the pearl/PLGA scaffold and then cultured in a rotating cell culture system. The adhesion, proliferation and differentiation of MSCs into osteoblasts were determined using scanning electronic microscopy, WST-1 assay, alkaline phosphatase activity assay, immunofluorescence staining and real-time reverse transcription polymerase chain reaction. The results showed that the composite scaffold had high porosity (81.98 +- 3.75%), proper pore size (micropores: <10 mum; macropore: 495 +- 54 mum) and mechanical property (compressive strength: 0.81 +- 0.04 MPa; elastic modulus: 23.14 +- 0.75 MPa). The pearl/PLGA scaffolds exhibited better biocompatibility and osteoconductivity compared with the tricalcium phosphate/PLGA scaffold. All these results indicate that the pearl/PLGA scaffolds fulfill the basic requirements of bone tissue engineering scaffold.

  3. Fabrication of porous 3D flower-like Ag/ZnO heterostructure composites with enhanced photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yimai; Guo, Na; Li, Linlin; Li, Ruiqing; Ji, Guijuan, E-mail: juanziji@126.com; Gan, Shucai, E-mail: gansc@jlu.edu.cn

    2015-03-30

    Graphical abstract: Porous 3D flower-like Ag/ZnO heterostructural composites were fabricated by hydrothermal and photochemical deposition methods. Such the unique porous 3D structure of Ag/ZnO composites displays excellent photocatalytic activity on Rhodamine B. And the composite of Ag/ZnO is a promising candidate material for future treatment of contaminated water. - Highlights: • Unique porous 3D flower-like Ag/ZnO composites were successfully synthesized. • No pore-directing reagents or surfactants are used in the synthesis of the Ag/ZnO. • Compared with Degussa P25, the Ag/ZnO exhibited superior photocatalytic activity. - Abstract: Porous 3D flower-like Ag/ZnO heterostructural composites were fabricated by hydrothermal and photochemical deposition methods, without using any pore-directing reagents and surfactants. The obtained samples were characterized by XRD, SEM, TEM, XPS, BJH, DRS, and PL spectrum. The experiment results show that the silver nanoparticles successfully load on the surface of assembled ZnO flowers. The TEM and SEM morphologies demonstrated unique porous 3D flower-like structure of Ag/ZnO. Such special structure makes larger surface area and more active sites exposed during the reaction, facilitating the transportation of reactants and products and increasing the reaction rate. The photocatalytic degradation experiments under UV irradiation using Rhodamine B (RhB) as a model dye were executed. The relative results demonstrate that the photocatalytic activity of Ag/ZnO is obviously improved compared with the pure ZnO and the commercial TiO{sub 2} (Degussa P25), the AZ-15 sample has the highest photocatalytic activity. The Ag/ZnO heterostructure composites promoted the separation of photo-induced electrons and holes, which was proved by photoluminescence spectra (PL)

  4. A facile strategy for fabrication of nano-ZnO/yeast composites and their adsorption mechanism towards lead (II) ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei; Meng, Lingyin [College of Science, Sichuan Agricultural University, Yaan 625014 (China); Mu, Guiqin [Maize Research Institute of Sichuan Agricultural University, Wenjiang 611130 (China); Zhao, Maojun; Zou, Ping [College of Science, Sichuan Agricultural University, Yaan 625014 (China); Zhang, Yunsong, E-mail: yaanyunsong@126.com [College of Science, Sichuan Agricultural University, Yaan 625014 (China)

    2016-08-15

    Highlights: • Nano-ZnO/yeast composites were fabricated by alkali hydrothermal method. • Nano-ZnO was in-situ achieved and anchored on the yeast surface. • Alkali and hydrothermal process cause more exposed funcitional groups on yeast. • Nano-ZnO/yeast composites show higher Pb{sup 2+} adsorption ability than pristine yeast. • Nano-ZnO and exposed functional groups synergistically participate in adsorption. - Abstract: Nano-ZnO/yeast composites were successfully fabricated by one-step alkali hydrothermal method, and their adsorption properties for Pb{sup 2+} ions were also evaluated. Various influencing parameters of nano-ZnO/yeast composites, such as initial pH, contact time and initial Pb{sup 2+} concentration were investigated, respectively. The maximum adsorption capacity of nano-ZnO/yeast composites for Pb{sup 2+} (31.72 mg g{sup −1}) is 2.03 times higher than that of pristine yeast (15.63 mg g{sup −1}). The adsorption mechanism of nano-ZnO/yeast composites was studied by a series of techniques. Scanning electron microscopy (SEM) showed that nano-ZnO is evenly deposited on yeast surface. Atomic force microscopy (AFM) analysis exhibited that the yeast surface is rougher than that of pristine yeast. Energy dispersive X-ray detector (EDX) and X-ray diffraction (XRD) indicated the existence of nano-ZnO on yeast surface. Additionally, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) measurements further illustrated that alkali hydrothermal method causes not only the generation and anchorage of nano-ZnO on yeast surface but also the exposure of more functional groups (such as amino, carboxyl groups etc.) on yeast surface, both of which could adsorb Pb{sup 2+} via synergistic effect.

  5. Fabrication and characterisation of low density polyethylene (LDPE/multi walled carbon nanotubes (MWCNTs nano-composites

    Directory of Open Access Journals (Sweden)

    Meenakshi Goyal

    2016-09-01

    Full Text Available Carbon nanotubes (CNT have shown extraordinary electrical, mechanical properties as well as many other physical properties. The aim of this study is to explore the scope of CNT/LDPE nano-composites for engineering applications. Nano-composites of LDPE and MWCNT are generally prepared by using the melt blending method but in the present investigation these have been prepared by using solvent mixing method. Xylene has been used as a solvent which can dissolve low density polyethylene (LDPE at about 125 °C. The solution of LDPE in xylene has been ultrasonicated with various percentages of MWCNT (0, 1, 2, 5, 10 wt% of MWCNT composite to form thin film after drying. MWCNT used in this study have been synthesised by electric arc discharge method. Characteristics of these composites have been determined by Raman spectroscopy and scanning electron microscopy (SEM. Raman spectroscopy revealed variation in intensity of CNT's peak with variation in concentration of CNT. The results indicated that intensity of CNT's peak was found to increase with the increase in concentration of CNT which indicated the type of interaction between polymer and CNT. SEM analysis reveals CNT-polymer interfacial adhesion and shows agglomeration of CNT's at some locations and presence of individual tubes at other locations. These investigations show that LDPE/MWCNT composites can be fabricated using simple solvent mixing method. Further investigation on the effect of MWCNT on mechanical, electrical and thermal properties of LDPE based composites are in progress.

  6. Fabrication of Al5083/B4C surface composite by friction stir processing and its tribological characterization

    Directory of Open Access Journals (Sweden)

    Narayana Yuvaraj

    2015-10-01

    Full Text Available Improved surface properties with the retainment of bulk properties are necessary for a component for enhanced wear characteristics. Friction stir processing (FSP is used to produce such surface composites. Fabrication of 5083 aluminum alloy with reinforced layers of boron carbide (B4C through FSP was carried out. Micro and nano sized B4C particles were used as reinforcements. The friction processed surface composite layer was analyzed through optical and scanning electron microscopical studies. The number of passes and the size of reinforcement play a vital role in the development of surface composites by FSP. Mechanical properties of the friction stir processed surface composites were evaluated through micro hardness and universal tensile tests. The results were compared with the properties of the base metal. The role of reinforcement and number of passes on properties were also evaluated. Tribological performance of the surface composites is tested through pin on disk test. The surface composite layer resulted in three passes with nano particle reinforcement exhibited better properties in hardness, tensile behavior and wear resistance compared to the behavior of the base metal.

  7. The influence of the forced movement of components on the structure in fabricated AlSi/CrxCy composite castings

    Directory of Open Access Journals (Sweden)

    A. Dulęba

    2012-01-01

    Full Text Available Fabrication and microstructure of the AlSi11 matrix composite containing 10 % volume fraction of CrFe30C8 particles were presented in this paper. Composite suspension was manufactured by using mechanical stirring. During stirring process the temperature of liquid metal, time of mixing and rotational speed of mixer were fixed. After stirring process composite suspension was gravity cast into shell mould. The composites were cast, applying simultaneously an electromagnetic field. The aim of the present study was to determine the effect of changes in the frequency of the current power inductor on the morphology of the reinforcing phase in the aluminum matrix. The concept is based on the assumption that a chromium-iron matrix of CrFe30C8 particles dissolves and residual carbide phases will substantially strengthen the composite. The microstructure and interface structure of the AlSi11/CrFe30C8 composite has been studied by optical microscopy, scanning microscopy and X-ray diffraction.

  8. A Novel Method for Fabricating Wearable, Piezoresistive, and Pressure Sensors Based on Modified-Graphite/Polyurethane Composite Films

    Science.gov (United States)

    He, Yin; Li, Wei; Yang, Guilin; Liu, Hao; Lu, Junyu; Zheng, Tongtong; Li, Xiaojiu

    2017-01-01

    A wearable, low-cost, highly repeatable piezoresistive sensor was fabricated by the synthesis of modified-graphite and polyurethane (PU) composites and polydimethylsiloxane (PDMS). Graphite sheets functionalized by using a silane coupling agent (KH550) were distributed in PU/N,N-dimethylformamide (DMF) solution, which were then molded to modified-graphite/PU (MG/PU) composite films. Experimental results show that with increasing modified-graphite content, the tensile strength of the MG/PU films first increased and then decreased, and the elongation at break of the composite films showed a decreasing trend. The electrical conductivity of the composite films can be influenced by filler modification and concentration, and the percolation threshold of MG/PU was 28.03 wt %. Under liner uniaxial compression, the 30 wt % MG/PU composite films exhibited 0.274 kPa−1 piezoresistive sensitivity within the range of low pressure, and possessed better stability and hysteresis. The flexible MG/PU composite piezoresistive sensors have great potential for body motion, wearable devices for human healthcare, and garment pressure testing. PMID:28773047

  9. Fabrication of Inorganic–Organic Composites for Dental Restorative Materials—A Review

    Institute of Scientific and Technical Information of China (English)

    CUI; Bencang; YANG; Qing; LI; Jing; WANG; Huining; LIN; Yuanhua; SHEN; Yang; LI; Ming; DENG; Xuliang; NAN; Cewen

    2015-01-01

    The paper is to review recent developments on composite dental restorative materials in terms of filler dimensions. The mechanical properties, biocompatibility and aesthetic performance are determined by fillers morphology, contents and chemical composition. We mainly summarized the 0-, 1-, and 2-dimensional fillers of composites used in dental restoration and their effects on the performance, especially the mechanical properties, which imply desirable applications for dental composites designed with these fillers.

  10. Optimisation and fabrication of a composite pyrolytic graphite monochromator for the Pelican instrument at the ANSTO OPAL reactor

    Science.gov (United States)

    Freund, A. K.; Yu, D. H.

    2011-04-01

    The triple monochromator for the TOF neutron spectrometer Pelican at ANSTO has been fully optimised in terms of overall performance, including the determination of the thickness of the pyrolytic graphite crystals. A total of 24 composite crystals were designed and fabricated. The calculated optimum thickness of 1.3 mm and the length of 15 cm of the monochromator crystals, that are not available commercially, were obtained by cleaving and soldering with indium. An extensive characterisation of the crystals using X-ray and neutron diffraction was conducted before and after the cleaving and bonding processes. The results proved that no damage was introduced during fabrication and showed that the design goals were fully met. The measured peak reflectivity and rocking curve widths were indeed in an excellent agreement with theory. In addition to the superior efficiency of the triple monochromator achieved by this novel approach, the amount of the crystal material required could be reduced by 1/3.

  11. Tailoring the morphology of raspberry-like carbon black/polystyrene composite microspheres for fabricating superhydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Yubin [Polymer Alloy Lab., School of Material Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Li, Qiuying, E-mail: liqy@ecust.edu.cn [Polymer Alloy Lab., School of Material Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Shanghai Key Laboratory Polymeric Materials (China); Key Laboratory of Ultrafine Materials of Ministry of Education (China); Xue, Pengfei; Huang, Jianfeng; Wang, Jibin; Guo, Weihong; Wu, Chifei [Polymer Alloy Lab., School of Material Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China)

    2011-05-15

    In our previous report, raspberry-like carbon black/polystyrene (CB/PS) composite microsphere was prepared through heterocoagulation process. Based on the previous study, in the present work, the morphology of raspberry-like CB/PS particle is tailored through adjusting the polarity and the concentration ratio of CB/PS colloidal suspension with the purpose to prepare particulate film for the fabrication of superhydrophobic surface. Scanning electron microscope (SEM) confirms the morphology of raspberry-like particle and the coverage of CB. Rough surfaces fabricated by raspberry-like particles with proper morphology are observed by SEM and clear evidence of superhydrophobic surface is shown. The structure of raspberry-like particle is analyzed by atom force microscope. The proposed relationship between the hydrophobicity and the structure of CB aggregates on the surface of PS microsphere is discussed in details.

  12. Compositionally graded Ti6Al4V + TiC made by direct laser fabrication using powder and wire

    Energy Technology Data Exchange (ETDEWEB)

    Wang, F. [IRC in Materials, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Mei, J. [IRC in Materials, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Wu Xinhua [IRC in Materials, University of Birmingham, Edgbaston B15 2TT (United Kingdom)]. E-mail: X.Wu.1@bham.ac.uk

    2007-07-01

    Ti6Al4V reinforced with TiC has been fabricated as compositionally graded material by direct laser fabrication using TiC powder and Ti6Al4V wire which were fed simultaneously into the laser focal point. The microstructure along the length of the sample has been characterised using X-ray diffraction and scanning electron microscopy. The results show that the composition along the length changes as expected from the imposed changes in feed rate when allowance is made for the different capture efficiency for the powder and the wire. Some unmelted TiC has been observed in regions where the TiC fraction was high, but along most of the length of the samples TiC was completely melted and formed primary TiC, eutectic TiC and secondary TiC. Some preliminary tribological properties of the compositionally graded material were obtained using a sliding wear test which showed that the tribological properties of Ti6Al4V are improved by the reinforced TiC particles with the optimum frictional behaviour being found with approximately 24 vol% of TiC.

  13. Design and Fabrication of Air-Based 1-3 Piezoelectric Composite Transducer for Air-Coupled Ultrasonic Applications

    Directory of Open Access Journals (Sweden)

    Cunfu He

    2016-01-01

    Full Text Available The air-based 1-3 piezoelectric composite transducers are designed and fabricated in order to solve the acoustic impedance matching problem. Firstly, a finite element model using honeycomb structure as the piezoelectric composite matrix is built to reduce the acoustic impedance of the sensitive element. Three important factors, volume fraction of piezoelectric materials φ, the thickness h, and the size s of the square cross section of piezoelectric column, are examined and verified in simulation. Then, according to the result of simulation, the piezoelectric composites and the air-coupled transducers are fabricated. The honeycomb structures of resin are produced by the method of 3D printing technology, with the volume fraction of air being 30%. The impedance characteristics and the excitation/reception performance of the air-coupled transducers are measured and optimized. Meanwhile, a scanning experiment is carried out to demonstrate the crack detection process in monocrystalline silicon. A0 mode of Lamb waves is excited and collected. The location and size of the defect will be determined by calculating the correlation coefficients of the received signals and reference signals. Finally, a 15 mm × 0.5 mm × 0.5 mm scratch is clearly distinguished.

  14. Fabrication and characterization of a multidirectional-sensitive contact-enhanced inertial microswitch with a electrophoretic flexible composite fixed electrode

    Science.gov (United States)

    Yang, Zhuoqing; Zhu, Bin; Chen, Wenguo; Ding, Guifu; Wang, Hong; Zhao, Xiaolin

    2012-04-01

    A multidirectional-sensitive inertial microswitch with a polymer-metal composite fixed electrode has been designed and fabricated based on surface micromachining in this work. The microswitch mainly consists of a suspended proof mass as a movable electrode and a T-shaped structure on the substrate with maple leaf-like top and cantilevers around the central cylinder as vertical and lateral fixed electrodes. It can sense the applied shock accelerations from any radial direction in the xoy plane and z-axis. The new vertical composite fixed electrode of the switch is completed by electroplating and electrophoretic deposition, which can realize a flexible contact between the electrodes and reduce the bounces and prolong the contact time. As a result, the stability and reliability of the inertial switch could be greatly improved. The fabricated microswitches have been tested and characterized by a standard dropping hammer system. It is shown that the threshold acceleration of the prototype is generally uniform in different sensitive directions in the xoy plane and z-axis, which is about 70 g. The contact time of the microswitch with the composite fixed electrode is ˜110 µs in the vertical direction, which is longer than that (˜65 µs) without a polymer. The test data are in agreement with dynamic finite-element simulation results.

  15. Optimal Composite Materials using NASA Resins or POSS Nanoparticle Modifications for Low Cost Fabrication of Large Composite Aerospace Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Reduced mass composite materials are crucial to the success of aerospace systems, but their adoption is inhibited because they require autoclave consolidation, a...

  16. Direct composite resin layering techniques for creating lifelike CAD/CAM-fabricated composite resin veneers and crowns.

    Science.gov (United States)

    LeSage, Brian

    2014-07-01

    Direct composite resin layering techniques preserve sound tooth structure and improve function and esthetics. However, intraoral placement techniques present challenges involving isolation, contamination, individual patient characteristics, and the predictability of restorative outcomes. Computer-aided design and computer-aided manufacturing (CAD/CAM) restorations enable dentists to better handle these variables and provide durable restorations in an efficient and timely manner; however, milled restorations may appear monochromatic and lack proper esthetic characteristics. For these reasons, an uncomplicated composite resin layering restoration technique can be used to combine the benefits of minimally invasive direct restorations and the ease and precision of indirect CAD/CAM restorations. Because most dentists are familiar with and skilled at composite resin layering, the use of such a technique can provide predictable and highly esthetic results. This article describes the layered composite resin restoration technique.

  17. Microstructure, microhardness and wear resistance of VC{sub p}/Fe surface composites fabricated in situ

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Fangxia [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China); Institute of Wear Resistant Materials, Xi’an University of Architecture and Technology, Xi’an 710055 (China); Hojamberdiev, Mirabbos [Institute of Wear Resistant Materials, Xi’an University of Architecture and Technology, Xi’an 710055 (China); Xu, Yunhua, E-mail: yunhuaxu@yahoo.com.cn [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China); Institute of Wear Resistant Materials, Xi’an University of Architecture and Technology, Xi’an 710055 (China); Zhong, Lisheng [Institute of Wear Resistant Materials, Xi’an University of Architecture and Technology, Xi’an 710055 (China); Zhao, Nana [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China); Li, Yaping [Institute of Wear Resistant Materials, Xi’an University of Architecture and Technology, Xi’an 710055 (China); Huang, Xing [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China)

    2013-09-01

    Graphical The vanadium carbide particles (VC{sub p})/Fe surface composites were in situ fabricated by a technique combining infiltration casting with subsequent heat treatment. The effects of different heat treatment times on the phase evolution, microstructure, microhardness and wear resistance of the composite were studied by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), Vickers hardness tester and wear resistance testing instrument, respectively. The results show that only graphite, α-Fe and V{sub 8}C{sub 7} phases dominate in the composite after being heat treated at 1164 °C for 3 h. The amount of V{sub 8}C{sub 7} decreases gradually from the top surface of the composite to the matrix mainly composed of gray cast iron. The average microhardness of the VC{sub p}/Fe surface composites varies according to the different reaction zones as follows: 505 HV{sub 0.1} (vanadium plate), 1096 HV{sub 0.1} (composite region), and 235 HV{sub 0.1} (iron matrix). The microhardness of the composite region is four times higher than that of the iron matrix and two times higher than that of the vanadium plate. This is attributed to the formation of vanadium carbide (V{sub 2}C and V{sub 8}C{sub 7}) crystallites as reinforcement phases within the iron matrix. The VC{sub p}/Fe surface composites exhibit a good wear resistance under two-body abrasive wear test.

  18. Impacts of pore- and petro-fabrics, mineral composition and diagenetic history on the bulk thermal conductivity of sandstones

    Science.gov (United States)

    Nabawy, Bassem S.; Géraud, Yves

    2016-03-01

    The present study aims to model the bulk thermal fabric of the highly porous (26.5 ≤ øHe ≤ 39.0%) siliceous Nubia sandstones in south Egypt, as well as their pore- and petro-anisotropy. The thermal fabric concept is used in the present study to describe the magnitude and direction of the thermal foliation 'F', lineation 'L' and anisotropy 'λ'. Cementation, pressure solution, compaction and the authigenic clay content are the main pore volume-controlling factors, whereas the cement dissolution and fracturing are the most important porosity-enhancing factors. The bulk thermal fabric of the Nubia sandstone is raised mostly from the contribution of the mineral composition and the pore volume. The kaolinite content and pore volume are the main reducing factors for the measured bulk thermal conductivity 'k', whereas the quartz content is the most important enhancing factors. The optical scanning technique, which is one of the most accurate and precise techniques, was applied for measuring the bulk thermal conductivity 'k' of the studied samples. For the dry state, the average thermal condutivity 'kav' in the NE-SW, NW-SE and vertical directions, varies from 1.53 to 2.40, 1.54 to 2.36 and from 1.31 to 2.20 W/(mK), respectively. On other hand, 'kav' for the saline water-saturated state for the NE-SW, NW-SE and vertical directions varies between 2.94 & 4.42, 2.90 & 4.31 and between 2.39 & 3.65 W/(mK), respectively. The present thermal pore fabric is slightly anisotropic, 'λ' varies from 1.10 to 1.41, refers mostly to the NW-SE direction (kmax direction, elongation direction), whereas the petro-fabric refers to NE-SW direction (kmax direction, elongation direction). This gives rise to a conclusion that the pore- and petro-fabrics have two different origins. Therefore, studying the thermal conductivity of the Nubia sandstone in 3-D indicates a pore fabric elongation fluctuating around the N-S direction.

  19. Prototype of low thermal expansion materials: fabrication of mesoporous silica/polymer composites with densely filled polymer inside mesopore space.

    Science.gov (United States)

    Kiba, Shosuke; Suzuki, Norihiro; Okawauchi, Yoshinori; Yamauchi, Yusuke

    2010-09-03

    A prototype of novel low thermal expansion materials using mesoporous silica particles is demonstrated. Mesoporous silica/polymer composites with densely filled polymer inside the mesopore space are fabricated by mechanically mixing both organically modified mesoporous silica and epoxy polymer. The mesopores are easily penetrated by polymers as a result of the capillary force during the mechanical composite processing. Furthermore, we propose a new model of polymer mobility restriction using mesoporous silica with a large pore space. The robust inorganic frameworks covering the polymer effectively restrict the polymer mobility against thermal energy. As a result, the degree of total thermal expansion of the composites is drastically decreased. From the mass-normalized thermal mechanical analysis (TMA) charts of various composites with different amounts of mesoporous silica particles, it is observed that the coefficient of thermal expansion (CTE) values gradually increase with an increase of the polymer amount outside the mesopores. It is proven that the CTE values in the range over the glass-transition temperatures (T(g)) are perfectly proportional to the outside polymer amounts. Importantly, the Y-intercept of the relation equation obtained by a least-square method is the CTE value and is almost zero. This means that thermal expansion does not occur if no polymers are outside the mesopores. Through such a quantative discussion, we clarify that only the outside polymer affects the thermal expansion of the composites, that is, the embedded polymers inside the mesopores do not expand at all during the thermal treatment.

  20. Fabrication, property characterization and toushening mechanism of HA-ZrO2(CaO)/316L fibre composite biomaterials

    Institute of Scientific and Technical Information of China (English)

    ZOU JianPeng; HE ZeQiang; ZHOU ZhongCheng; HUANG BaiYun; CHEN QiYuan; RUAN JianMing

    2008-01-01

    HA-ZrO2(CaO)/316L fibre composites were successfully fabricated with vacuum sintering method and their properties and toughening mechanism were studied.The results showed that HA-ZrO2(CaO)/316L fibre biocomposite having 20 vol% fibres had optimal comprehensive properties with bending strength,Young's modulus,fracture toughness and relative density equal to 140.1 MPa,117.8 GPa,5.81 MPa.m1/2and 87.1%,respectively.The research also addressed that different volume ratios of the composites led to different metallographic microstructures,and that metallographic morphologies change regularly with volume ratios of the composites.316L fibres were distributed randomly and evenly in the composites and the integration circumstance of the two phases was very well since there were no obvious flaws or pores in the composites.Two toughening mechanisms in-cluding ZrO2 phase transformation toughening mechanism and fibre pulling-out toughening mechanism existed in the compsites with the latter being the main toughening mechanism.

  1. Ti_3AlC_2-Al_2O_3-TiAl_3 composite fabricated by reactive melt infiltration

    Institute of Scientific and Technical Information of China (English)

    HE Shan-shan; YIN Xiao-wei; ZHANG Li-tong; LI Xiang-ming; CHENG Lai-fei

    2009-01-01

    Porous preforms were fabricated by cold-pressing process using powder mixture of TiC, TiO_2 and dextrin. After pyrolysis and sintering, Al melt was infiltrated into the porous preforms, leading to the formation of Ti_3AlC_2-Al_2O_3-TiAl_3 composite. Effects of cold-pressing pressure of preforms on microstructures and mechanical properties of the composites were studied. Synthesis mechanism and toughening mechanism of composite were also analyzed. The results shows that TiO_2 is reduced into Ti_2O_3 by carbon, the decomposition product of dextrin, which causes the spontaneous infiltration of Al melt into TiC/Ti_2O_3 preform. Then, Ti_3AlC_2-Al_2O_3-TiAl_3 composite is in-situ formed from the simultaneous reaction of Al melt with TiC and Ti_2O_3. With the increase of cold-pressing pressure from 10 MPa to 40 MPa, the pore size distribution of the preforms becomes increasingly uniform after pre-sintering, which results in the reduction of defects, and the decrease of property discrepancy of composites. Nano-laminated Ti_3AlC_2 grains and Al_2O_3 particles make the fracture toughness of TiAl_3 increase remarkably by various toughening mechanisms including stress-induced microcrack, crack deflection and crack bridging.

  2. In situ chemical fabrication of polyaniline/multi-walled carbon nanotubes composites as supports of Pt for methanol electrooxidation

    Institute of Scientific and Technical Information of China (English)

    GAL; Jean-Yves

    2010-01-01

    In this study,platinum(Pt)-polyaniline(PANI)/MWNTs catalysts were synthesized by two sequential reactions.First,coreshell structural PANI/MWNTs composites were fabricated by in-situ chemical oxidation polymerization,in which MWNTs act as the core and PANI as the shell.Then,Pt particles were deposited on the PANI/MWNTs composites by a chemical reduction method.The morphology and constitution of the products were characterized by FT IR,scanning electron microscopy,transmission electron microscopy and XRD.It was observed that the Pt particles were smaller in size and more uniformly distributed on these composite supports than those on the reference,pure MWNT supports.XRD results showed higher Pt(111) content in the catalyst deposited on PANI/MWNTs supports than that on MWNTs.The cyclic voltammeter(CV) tests demonstrated that the electrode modified by Pt-PANI/MWNTs ternary composite catalyst showed a higher catalytic stability than Pt-MWNT binary catalyst did,due to the synergic interaction between Pt and the composite support.

  3. Fabrication of ordered lamellar polyacrylamide/P123 composite membranes via solvent-evaporation-induced self-assembly.

    Science.gov (United States)

    Tang, Jing; Fan, Yubing; Hu, Jun; Liu, Honglai

    2009-03-01

    A series of composite membranes of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (P123) and polyacrylamide (PAM) have been successfully prepared by solvent-evaporation-induced self-assembly. Micellar self-assembly of P123 in aqueous solution plays an important role as a model for the formation of composite membranes. XRD patterns show that the synthesized compositions are in a lamellar mesostructure. The lattice spacing changes with P123 concentration: the higher the concentration of P123, the smaller the lattice spacing of the composite membranes. The data on sizes and zeta potentials of pure p-PAM aggregates, P123 micelles, p-PAM/P123 mixtures, and c-PAM/P123 composite aggregates suggest that interactions take place between PAM and P123 aggregations. The fabrication of the lamellar membranes via water-evaporation-induced self-assembly is recorded by fluorescent emission spectroscopy and dynamic light-scattering methods. Based on analysis of the results, a tentative mechanism for the formation of the lamellar membranes has been proposed.

  4. Assessing the Applicability of Digital Image Correlation (DIC) Technique in Tensile Testing of Fabric Composites

    Science.gov (United States)

    2013-02-01

    used for vacuum assisted resin transfer molding process ( VARTM )/Scrimp processing. The fibers were oriented in a plain woven fabric (orthogonally...infused with matrix using a VARTM . After infusion, the sample was cured in an oven. After curing, specimens were extracted from the panel from the flow

  5. Hybrid composites, state-of-the-art review: Analysis, design, application and fabrication

    Science.gov (United States)

    Chamis, C. C.; Lark, R. F.

    1977-01-01

    The areas of constituents and types of hybrids, analytical methods, design methods, applications, and fabrication procedures are discussed. The review summarizes significant contributions in each area and points out areas for further research. The description of each significant contribution is supplemented with pertinent illustrations and references.

  6. Fabrication, testing and analysis of steel/composite DLS adhesive joints

    DEFF Research Database (Denmark)

    Nashim, S.; Nisar, J.; Tsouvalis, N.;

    2009-01-01

    This paper aims to provide a guide on the design and fabrication of thick adherend double lap shear joints (DLS), often referred to as butt connections/joints in ship structures including patch repair. The specimens consist of 10mm steel inner adherend and various outer adherend materials includi...

  7. Template-free fabrication and morphology regulation of Ag@carbon composite structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenyan, E-mail: zhangwenyan8531@gmail.com [College of Material Engineering, Jinling Institute of Technology, Nanjing (China); Hao, Lingyun; Lin, Qin [College of Material Engineering, Jinling Institute of Technology, Nanjing (China); Lu, Chunhua; Xu, Zhongzi [College of Materials Science and Engineering, Nanjing Technology University, Nanjing (China); Chen, Xiaoyu [College of Material Engineering, Jinling Institute of Technology, Nanjing (China)

    2014-12-15

    Graphical abstract: - Highlights: • A simple and low-cost method to prepare Ag@C composite material. • AgNO{sub 3} plays an important role in tuning size and functional groups of products. • HTC reaction time is also a key factor for regulating the Ag@C structure. - Abstract: Ag–carbon composite materials were prepared without any template by hydrothermal carbonization of solvable starch. The composite materials are composed of Ag cores and carbonaceous shell to form a core–shell (Ag@carbon) structure. During the hydrothermal carbonization process, the aromatization and carbonization of solvable starch endowed the Ag@carbon composite structure with abundant aromatic, hydroxyl and carbonyl groups. The AgNO{sub 3} concentration and HTC reaction time are two important factors for regulating the size, morphology and functional groups of the composite material. With the increasing of AgNO{sub 3} concentration, morphologies of the composite material turned from spheres to wires.

  8. Three-Dimensional Material Properties of Composites with S2-Glass Fibers or Ductile Hybrid Fabric

    Science.gov (United States)

    2013-01-13

    has shown to have low viscosity and high toughness relative to other epoxy systems. SC-15 is the most widely data based Vartm /Scrimp matrix resin... VARTM ) process was used to manufacture the composite plates for each specimen. For panels infused with API SC-15 resin, the panel dimensions were 76.2...epoxy composite laminates”. Composite Science and Technology. (69) (1) (2009): 725-735. 3. VARTM Infusion Epoxy. 6 June. 2012. Applied Poleramic Inc

  9. Development of a beam builder for automatic fabrication of large composite space structures

    Science.gov (United States)

    Bodle, J. G.

    1979-01-01

    The composite material beam builder which will produce triangular beams from pre-consolidated graphite/glass/thermoplastic composite material through automated mechanical processes is presented, side member storage, feed and positioning, ultrasonic welding, and beam cutoff are formed. Each process lends itself to modular subsystem development. Initial development is concentrated on the key processes for roll forming and ultrasonic welding composite thermoplastic materials. The construction and test of an experimental roll forming machine and ultrasonic welding process control techniques are described.

  10. Mechanical Testing of 3D Fabric Composites and Their Matrix Material SC-15

    Science.gov (United States)

    2012-11-01

    Anthony M. Compressive Response of Z-pinned Woven Glass Fiber Textile Composite Laminates . Composites Science and Technology 2009, 69, 2331–2337...3. Huang, Hsengji; Waas,, Anthony M. Compressive Response of Z-pinned Woven Glass Fiber Textile Composite Laminates : Modeling and Computations...materials on military vehicles allows increased agility while maintaining a light- weight primary structure. Traditional laminated structures suffer from

  11. DEVELOPMENT OF A FABRICATION PROCESS FOR SOL-GEL/METAL HYDRIDE COMPOSITE GRANULES

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E; Eric Frickey, E; Leung Heung, L

    2004-02-23

    An external gelation process was developed to produce spherical granules that contain metal hydride particles in a sol-gel matrix. Dimensionally stable granules containing metal hydrides are needed for applications such as hydrogen separation and hydrogen purification that require columns containing metal hydrides. Gases must readily flow through the metal hydride beds in the columns. Metal hydrides reversibly absorb and desorb hydrogen and hydrogen isotopes. This is accompanied by significant volume changes that cause the metal hydride to break apart or decrepitate. Repeated cycling results in very fine metal hydride particles that are difficult to handle and contain. Fine particles tend to settle and pack making it more difficult to flow gases through a metal hydride bed. Furthermore, the metal hydrides can exert a significant force on the containment vessel as they expand. These problems associated with metal hydrides can be eliminated with the granulation process described in this report. Small agglomerates of metal hydride particles and abietic acid (a pore former) were produced and dispersed in a colloidal silica/water suspension to form the feed slurry. Fumed silica was added to increase the viscosity of the feed slurry which helped to keep the agglomerates in suspension. Drops of the feed slurry were injected into a 27-foot tall column of hot ({approx}70 C), medium viscosity ({approx}3000 centistokes) silicone oil. Water was slowly evaporated from the drops as they settled. The drops gelled and eventually solidified to form spherical granules. This process is referred to as external gelation. Testing was completed to optimize the design of the column, the feed system, the feed slurry composition, and the operating parameters of the column. The critical process parameters can be controlled resulting in a reproducible fabrication technique. The residual silicone oil on the surface of the granules was removed by washing in mineral spirits. The granules were

  12. Design, fabrication, and characterization of lightweight and broadband microwave absorbing structure reinforced by two dimensional composite lattice

    Science.gov (United States)

    Chen, Mingji; Pei, Yongmao; Fang, Daining

    2012-07-01

    Microwave absorbing structures (MASs) reinforced by two dimensional (2D) composite lattice elements have been designed and fabricated. The density of these MASs is lower than 0.5 g/cm3. Experimental measurements show that the sandwich structure with glass fiber reinforced composite (GFRC) lattice core can serve as a broadband MAS with its reflectivity below -10 dB over the frequency range of 4-18 GHz. The low permittivity GFRC is indicated to be the proper material for both the structural element of the core and the transparent face sheet. Calculations by the periodic moment method (PMM) demonstrate that the 2D Kagome lattice performs better for microwave absorbing than the square one at relatively low frequencies. The volume fraction and cell size of the structural element are also revealed to be key factors for microwave absorbing performance.

  13. Diamond-Dispersed Fiber-Reinforced Composite for Superior Friction and Wear Properties in Extreme Environments and Method for Fabricating the Same

    Science.gov (United States)

    Street, Kenneth (Inventor); Voronov, Oleg A (Inventor); Kear, Bernard H (Inventor)

    2017-01-01

    Systems, methods, and articles of manufacture related to composite materials are discussed herein. These materials can be based on a mixture of diamond particles with a matrix and fibers or fabrics. The matrix can be formed into the composite material through optional pressurization and via heat treatment. These materials display exceptionally low friction coefficient and superior wear resistance in extreme environments.

  14. Effect of fabric structure and polymer matrix on flexural strength, interlaminar shear stress, and energy dissipation of glass fiber-reinforced polymer composites

    Science.gov (United States)

    We report the effect of glass fiber structure and the epoxy polymer system on the flexural strength, interlaminar shear stress (ILSS), and energy absorption properties of glass fiber-reinforced polymer (GFRP) composites. Four different GFRP composites were fabricated from two glass fiber textiles of...

  15. Fabrication and characterization of a micromachined swirl-shaped ionic polymer metal composite actuator with electrodes exhibiting asymmetric resistance.

    Science.gov (United States)

    Feng, Guo-Hua; Liu, Kim-Min

    2014-05-12

    This paper presents a swirl-shaped microfeatured ionic polymer-metal composite (IPMC) actuator. A novel micromachining process was developed to fabricate an array of IPMC actuators on a glass substrate and to ensure that no shortcircuits occur between the electrodes of the actuator. We demonstrated a microfluidic scheme in which surface tension was used to construct swirl-shaped planar IPMC devices of microfeature size and investigated the flow velocity of Nafion solutions, which formed the backbone polymer of the actuator, within the microchannel. The unique fabrication process yielded top and bottom electrodes that exhibited asymmetric surface resistance. A tool for measuring surface resistance was developed and used to characterize the resistances of the electrodes for the fabricated IPMC device. The actuator, which featured asymmetric electrode resistance, caused a nonzero-bias current when the device was driven using a zero-bias square wave, and we propose a circuit model to describe this phenomenon. Moreover, we discovered and characterized a bending and rotating motion when the IPMC actuator was driven using a square wave. We observed a strain rate of 14.6% and a displacement of 700 μm in the direction perpendicular to the electrode surfaces during 4.5-V actuation.

  16. Fabrication of calcite blocks from gypsum blocks by compositional transformation based on dissolution-precipitation reactions in sodium carbonate solution.

    Science.gov (United States)

    Ishikawa, Kunio; Kawachi, Giichiro; Tsuru, Kanji; Yoshimoto, Ayami

    2017-03-01

    Calcium carbonate (CaCO3) has been used as a bone substitute, and is a precursor for carbonate apatite, which is also a promising bone substitute. However, limited studies have been reported on the fabrication of artificial calcite blocks. In the present study, cylindrical calcite blocks (ϕ6×3mm) were fabricated by compositional transformation based on dissolution-precipitation reactions using different calcium sulfate blocks as a precursor. In the dissolution-precipitation reactions, both CaSO4·2H2O and CaSO4 transformed into calcite, a polymorph of CaCO3, while maintaining their macroscopic structure when immersed in 1mol/L Na2CO3 solution at 80°C for 1week. The diametral tensile strengths of the calcite blocks formed using CaSO4·2H2O and CaSO4 were 1.0±0.3 and 2.3±0.7MPa, respectively. The fabrication of calcite blocks using CaSO4·2H2O and CaSO4 proposed in this investigation may be a useful method to produce calcite blocks because of the self-setting ability and high temperature stability of gypsum precursors.

  17. CNT Enabled Co-braided Smart Fabrics: A New Route for Non-invasive, Highly Sensitive & Large-area Monitoring of Composites

    Science.gov (United States)

    Luo, Sida; Wang, Yong; Wang, Guantao; Wang, Kan; Wang, Zhibin; Zhang, Chuck; Wang, Ben; Luo, Yun; Li, Liuhe; Liu, Tao

    2017-03-01

    The next-generation of hierarchical composites needs to have built-in functionality to continually monitor and diagnose their own health states. This paper includes a novel strategy for in-situ monitoring the processing stages of composites by co-braiding CNT-enabled fiber sensors into the reinforcing fiber fabrics. This would present a tremendous improvement over the present methods that excessively focus on detecting mechanical deformations and cracks. The CNT enabled smart fabrics, fabricated by a cost-effective and scalable method, are highly sensitive to monitor and quantify various events of composite processing including resin infusion, onset of crosslinking, gel time, degree and rate of curing. By varying curing temperature and resin formulation, the clear trends derived from the systematic study confirm the reliability and accuracy of the method, which is further verified by rheological and DSC tests. More importantly, upon wisely configuring the smart fabrics with a scalable sensor network, localized processing information of composites can be achieved in real time. In addition, the smart fabrics that are readily and non-invasively integrated into composites can provide life-long structural health monitoring of the composites, including detection of deformations and cracks.

  18. CNT Enabled Co-braided Smart Fabrics: A New Route for Non-invasive, Highly Sensitive & Large-area Monitoring of Composites

    Science.gov (United States)

    Luo, Sida; Wang, Yong; Wang, Guantao; Wang, Kan; Wang, Zhibin; Zhang, Chuck; Wang, Ben; Luo, Yun; Li, Liuhe; Liu, Tao

    2017-01-01

    The next-generation of hierarchical composites needs to have built-in functionality to continually monitor and diagnose their own health states. This paper includes a novel strategy for in-situ monitoring the processing stages of composites by co-braiding CNT-enabled fiber sensors into the reinforcing fiber fabrics. This would present a tremendous improvement over the present methods that excessively focus on detecting mechanical deformations and cracks. The CNT enabled smart fabrics, fabricated by a cost-effective and scalable method, are highly sensitive to monitor and quantify various events of composite processing including resin infusion, onset of crosslinking, gel time, degree and rate of curing. By varying curing temperature and resin formulation, the clear trends derived from the systematic study confirm the reliability and accuracy of the method, which is further verified by rheological and DSC tests. More importantly, upon wisely configuring the smart fabrics with a scalable sensor network, localized processing information of composites can be achieved in real time. In addition, the smart fabrics that are readily and non-invasively integrated into composites can provide life-long structural health monitoring of the composites, including detection of deformations and cracks. PMID:28272436

  19. Wood-based Tri-Axial Sandwich Composite Materials: Design, Fabrication, Testing, Modeling and Application

    Science.gov (United States)

    Jinghao Li; John F. Hunt; Shaoqin Gong; Zhiyong Cai

    2014-01-01

    As the demand for sustainable materials increases, there are unique challenges and opportunities to develop light-weight green composites materials for a wide range of applications. Thus wood-based composite materials from renewable forests may provide options for some niche applications while helping to protect our environment. In this paper, the wood-based tri-axial...

  20. Thermal analysis on Al7075/Al2O3 metal matrix composites fabricated by stir casting process

    Science.gov (United States)

    Jacob, S.; Shajin, S.; Gnanavel, C.

    2017-03-01

    Metal matrix Composites (MMC’s) have evoked a keen interest in recent times for various applications in aerospace, renewable energy and automotive industries due to their superior strength, low cost, easy availability and high temperature resistance [1]. The crack and propagation occurs in conventional materials without any appreciable indication in a short span. Hence composite materials are preferred nowadays to overcome this problem [2]. The process of metal matrix composites (MMC’s) is to unite the enviable attributes of metals and ceramics. The Stir casting method is used for producing aluminium metal matrix composites (AMC’s). A key challenge of the process is to spread the ceramic particles to achieve a defect free microstructure [2]. By carefully selecting stir casting processing specification, such as stirring time, temperature of the melt and blade angle, the desired microstructure can be obtained. The focus of this work is to develop a high strength particulate strengthen aluminium metal matrix composites, and Al7075 was selected which can offer high strength without much disturbing ductility of metal matrix [4]. The composites will be examined using standard metallurgical and mechanical tests. The cast composites are analysed to Laser flash analysis (LFA) to determine Thermal conductivity [5]. Also changes in microstructure are determined by using SEM analysis.

  1. Fabrication of sisal fibers/epoxy composites with liquid crystals polymer grafted on sisal fibers

    Science.gov (United States)

    Luo, Q. Y.; Lu, S. R.; Song, L. F.; Li, Y. Q.

    2016-07-01

    In this word, microcrystalline cellulose fibers (MCFs), extracted from sisal fibers, were treated with function end-group hyperbranched liquid crystals (HLP). This work brought some insights into the successful surface modification in epoxy composite with HLP. The HLP-MCFs/epoxy composites are studied systematically. The HLP - MCFs/epoxy composites were studied by Fourier transform infrared spectroscopy (FT-IR), polarizing microscope (POM), X-ray photoelectron spectroscopy (XPS) and mechanical properties analysis. The results reveal that the reinforcement of EP composites was carried out by adding HLP-MCFs. In particular, with 1.0 wt% filler loading, the flexural strength, tensile strength, impact strength and flexural modulus of the HLP-MCFs/EP composites were increased by 60%, 69%, 130%, and 192%, respectively. It anticipates that our current work exploits more efficient methods to overcome the few nature fiber/polymer (NPC) adhesion in the interface region and provides implications for the engineering applications of the development of NPC.

  2. Transparent Conductive Films Fabricated from Polythiophene Nanofibers Composited with Conventional Polymers

    Directory of Open Access Journals (Sweden)

    Borjigin Aronggaowa

    2013-11-01

    Full Text Available Transparent, conductive films were prepared by compositing poly(3-hexylthiophene (P3HT nanofibers with poly(methyl methacrylate (PMMA. The transparency, conductivity, atmospheric stability, and mechanical strength of the resulting nanofiber composite films when doped with AuCl3 were evaluated and compared with those of P3HT nanofiber mats. The conductivity of the nanofiber composite films was 4.1 S∙cm−1, which is about seven times less than that which was previously reported for a nanofiber mat with the same optical transmittance (~80% reported by Aronggaowa et al. The time dependence of the transmittance, however, showed that the doping state of the nanofiber composite films in air was more stable than that of the nanofiber mats. The fracture stress of the nanofiber composite film was determined to be 12.3 MPa at 3.8% strain.

  3. Fabrication and characterization of SiO2(f)/Si3N4 composites

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A silicon dioxide fiber-reinforced silicon nitride matrix (SiO2/Si3N4) composite used for radomes was prepared by chemical vapor infiltration (CVI) process using the SiCl4-NH3-H2 system. The effects of the process conditions, including infiltration temperature, infiltration time, and gas flux were investigated. The energy dispersion spectra (EDS) result showed that the main elements of this composite contained Si, N, and O. The X-ray diffraction (XRD) results indicated that phases of the composite before and after treatment at 1350℃ were all amorphous. A little fiber pull-out was observed on the cross section of the composite by scan electron microscope (SEM). As a result, the composite exhibited good thermal stability, but an appropriate interface was necessary between the fiber and the matrix.

  4. Fabrication of 2D C_f/SiC Composites by Liquid Silicon Infiltration

    Institute of Scientific and Technical Information of China (English)

    LING; Yihui; JIANG; Pinyi; HUANG; Xiangdong

    2015-01-01

    The carbon/carbon(C/C) composite was prepared by repeatedly overlapping the layers of 2D carbon cloths, and the 2D C_f/SiC composites were subsequently prepared in vacuum by a liquid silicon infiltration process. The flexural strength of samples obtained under different preparation conditions was investigated. The results show that the composite has a better performance when the mass of silicon powder is 1.5 times greater than that of C/C composite, the temperature of silicon infiltration is 1550 ℃ and the holding time of silicon infiltration is 3 h. The density and flexural strength of the composite are 2.15 g/cm~3 and 128 MPa, respectively, and the thickness of the SiC layer is 12 μm.

  5. One-Pot Hydrothermal Synthesis of Magnetite Prussian Blue Nano-Composites and Their Application to Fabricate Glucose Biosensor

    Directory of Open Access Journals (Sweden)

    Ezzaldeen Younes Jomma

    2016-02-01

    Full Text Available In this work, we presented a simple method to synthesize magnetite Prussian blue nano-composites (Fe3O4-PB through one-pot hydrothermal process. Subsequently, the obtained nano-composites were used to fabricate a facile and effective glucose biosensor. The obtained nanoparticles were characterized using transmission electron microscopy, scanning electron microscopy, Fourier-transform infrared spectroscopy, UV-vis absorbance spectroscopy, cyclic voltammetry and chronoamperometry. The resultant Fe3O4-PB nanocomposites have magnetic properties which could easily controlled by an external magnetic field and the electro-catalysis of hydrogen peroxide. Thus, a glucose biosensor based on Fe3O4-PB was successfully fabricated. The biosensor showed super-electrochemical properties toward glucose detection exhibiting fast response time within 3 to 4 s, low detection limit of 0.5 µM and wide linear range from 5 µM to 1.2 mM with sensitivity of 32 µA∙mM−1∙cm−2 and good long-term stability.

  6. A review of composite and metallic bipolar plates in proton exchange membrane fuel cell: Materials, fabrication, and material selection

    Science.gov (United States)

    Taherian, Reza

    2014-11-01

    Proton exchange membrane (PEM) fuel cells offer exceptional potential for a clean, efficient, and reliable power source. The bipolar plate (BP) is a key component in this device, as it connects each cell electrically, supplies reactant gases to both anode and cathode, and removes reaction products from the cell. BPs have primarily been fabricated from high-density graphite, but in recent years, much attention has been paid to develop the cost-effective and feasible alternative materials. Recently, two different classes of materials have been attracted attention: metals and composite materials. This paper offers a comprehensive review of the current researches being carried out on the metallic and composite BPs, covering materials and fabrication methods. In this research, the phenomenon of ionic contamination due to the release of the corrosion products of metallic BP and relative impact on the durability as well as performance of PEM fuel cells is extensively investigated. Furthermore, in this paper, upon several effective parameters on commercialization of PEM fuel cells, such as stack cost, weight, volume, durability, strength, ohmic resistance, and ionic contamination, a material selection is performed among the most common BPs currently being used. This material selection is conducted by using Simple Additive Weighting Method (SAWM).

  7. Fabrication of Porous Materials from Natural/Synthetic Biopolymers and Their Composites

    OpenAIRE

    Udeni Gunathilake T.M. Sampath; Yern Chee Ching; Cheng Hock Chuah; Johari J. Sabariah; Pai-Chen Lin

    2016-01-01

    Biopolymers and their applications have been widely studied in recent years. Replacing the oil based polymer materials with biopolymers in a sustainable manner might give not only a competitive advantage but, in addition, they possess unique properties which cannot be emulated by conventional polymers. This review covers the fabrication of porous materials from natural biopolymers (cellulose, chitosan, collagen), synthetic biopolymers (poly(lactic acid), poly(lactic-co-glycolic acid)) and the...

  8. Degradable Magnetic Composites for Minimally Invasive Interventions: Device Fabrication, Targeted Drug Delivery, and Cytotoxicity Tests.

    Science.gov (United States)

    Peters, Christian; Hoop, Marcus; Pané, Salvador; Nelson, Bradley J; Hierold, Christofer

    2016-01-20

    Superparamagnetic nanoparticles and a functional, degradable polymer matrix based on poly(ethylene glycol) are combined to enable fully degradable magnetic microdevices for minimally invasive biomedical applications. A bioinspired helical microrobot platform mimicking Escherichia coli bacteria is fabricated and actuated using weak rotating magnetic fields. Locomotion based on corkscrew propulsion, targeted drug delivery, and low-degradation-product cytotoxicity are demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Composition-graded nanowire solar cells fabricated in a single process for spectrum-splitting photovoltaic systems.

    Science.gov (United States)

    Caselli, Derek; Liu, Zhicheng; Shelhammer, David; Ning, Cun-Zheng

    2014-10-08

    Nanomaterials such as semiconductor nanowires have unique features that could enable novel optoelectronic applications such as novel solar cells. This paper aims to demonstrate one such recently proposed concept: Monolithically Integrated Laterally Arrayed Multiple Band gap (MILAMB) solar cells for spectrum-splitting photovoltaic systems. Two cells with different band gaps were fabricated simultaneously in the same process on a single substrate using spatially composition-graded CdSSe alloy nanowires grown by the Dual-Gradient Method in a chemical vapor deposition system. CdSSe nanowire ensemble devices tested under 1 sun AM1.5G illumination achieved open-circuit voltages up to 307 and 173 mV and short-circuit current densities as high as 0.091 and 0.974 mA/cm(2) for the CdS- and CdSe-rich cells, respectively. The open-circuit voltages were roughly three times those of similar CdSSe film cells fabricated for comparison due to the superior optical quality of the nanowires. I-V measurements were also performed using optical filters to simulate spectrum-splitting. The open-circuit voltages and fill factors of the CdS-rich subcells were uniformly larger than the corresponding CdSe-rich cells for similar photon flux, as expected. This suggests that if all wires can be contacted, the wide-gap cell is expected to have greater output power than the narrow-gap cell, which is the key to achieving high efficiencies with spectrum-splitting. This paper thus provides the first proof-of-concept demonstration of simultaneous fabrication of MILAMB solar cells. This approach to solar cell fabrication using single-crystal nanowires for spectrum-splitting photovoltaics could provide a future low-cost high-efficiency alternative to the conventional high-cost high-efficiency tandem cells.

  10. Enhancement of flame retardancy and water repellency properties of cotton fabrics using silanol based nano composites.

    Science.gov (United States)

    Mohamed, Amina L; El-Sheikh, Manal A; Waly, Ahmed I

    2014-02-15

    Environmental concerns related to fluorinated and organophosphorus compounds led to a consideration of the methods for imparting flame retardancy and water/oil repellency to textiles. A simple and facile method for fabricating the cotton fabric with superhydrophobicity and flame retardancy is described in the present work. Complex coating with amino-functionalized silica nano-particles on epoxy-functionalized cotton accompanied with ZnO nano-particles coating are carried out. In This context, new preparation techniques were used to prepare both aminated silica and ZnO nano-particles. The particle size was investigated using Transition Electron Microscope (TEM) and the chemical structure was investigated using FT-IR analysis and other analytical techniques. Cotton was functionalized with epoxy and carboxyl via grafting cotton with nano-emulsion consisted of mixture of glycidyl methacrylate (GMA) and acrylic acid (AA), and then treated for functional finishing through conventional pad-dry-cure method. The treated fabrics showed good water repellency and excellent flame retardant properties as determined by the standard test methods. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Novel powder/solid composites possessing low Young’s modulus and tunable energy absorption capacity, fabricated by electron beam melting, for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Ikeo, Naoko; Ishimoto, Takuya; Nakano, Takayoshi, E-mail: nakano@mat.eng.osaka-u.ac.jp

    2015-08-05

    Highlights: • We fabricated novel porous composites by electron beam melting. • The composites consist of necked powder and melted solid framework. • Unmelted powder that is usually discarded was mechanically functionalized by necking. • The composites possess controllably low Young’s modulus and excellent toughness. • The composites would be promising for utilization in biomedical applications. - Abstract: A novel, hierarchical, porous composite from a single material composed of necked powder and melted solid, with tunable mechanical properties, is fabricated by electron beam melting and subsequent heat treatment. The composite demonstrates low Young’s modulus (⩽31 GPa) and excellent energy absorption capacity, both of which are necessary for use in orthopedic applications. To the best of our knowledge, this is the first report on the synthesis of a material combining controllably low Young’s modulus and excellent toughness.

  12. Casting fabrication of in situ Al3Ti-Al composites and their wear behaviors

    Institute of Scientific and Technical Information of China (English)

    Chen Tijun; Li Jian; Hao Yuan

    2009-01-01

    The Al3li intermetallic reinforced pure Al, Al-13Si and Al-17Cu matrix composites were prepared by casting method. Their microstructures and dry sliding wear behaviors at room temperature and 100℃ were particularly investigated. The results indicated that the Al3Ti phases in these composites were all in flaky form. But the aspect ratio of the Al3Ti platelets decreased with the increase of Ti content in the pure AI, Al-Cu and Al-Si matrix composites, in order of effectiveness. The effect of Si on the Al3Ti morphology seemed to be greater than that of Cu. The distributions of the Al3Ti platelets were different in the different matrix composites, leading to different grain refining effects. Except for the sub-wear regime of adhesive wear, the plastic deformation induced wear was a dominant wear mechanism for all of the composites at room temperature and 100℃. Increasing the testing temperature, decreasing the Al3Ti content or the hardness of materials could enhance these two wear mechanisms, and thus increase the wear rate. The Al-Cu matrix composite had the best wear resistance, while the pure Al matrix composite showed the worst for the same Ti content. These differences or changes were attributed to the differences in materials' hardness or the strengthening effects of the Al3Ti platelets.

  13. A facile strategy for fabrication of nano-ZnO/yeast composites and their adsorption mechanism towards lead (II) ions

    Science.gov (United States)

    Zhang, Wei; Meng, Lingyin; Mu, Guiqin; Zhao, Maojun; Zou, Ping; Zhang, Yunsong

    2016-08-01

    Nano-ZnO/yeast composites were successfully fabricated by one-step alkali hydrothermal method, and their adsorption properties for Pb2+ ions were also evaluated. Various influencing parameters of nano-ZnO/yeast composites, such as initial pH, contact time and initial Pb2+ concentration were investigated, respectively. The maximum adsorption capacity of nano-ZnO/yeast composites for Pb2+ (31.72 mg g-1) is 2.03 times higher than that of pristine yeast (15.63 mg g-1). The adsorption mechanism of nano-ZnO/yeast composites was studied by a series of techniques. Scanning electron microscopy (SEM) showed that nano-ZnO is evenly deposited on yeast surface. Atomic force microscopy (AFM) analysis exhibited that the yeast surface is rougher than that of pristine yeast. Energy dispersive X-ray detector (EDX) and X-ray diffraction (XRD) indicated the existence of nano-ZnO on yeast surface. Additionally, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) measurements further illustrated that alkali hydrothermal method causes not only the generation and anchorage of nano-ZnO on yeast surface but also the exposure of more functional groups (such as amino, carboxyl groups etc.) on yeast surface, both of which could adsorb Pb2+ via synergistic effect.

  14. Fabrication of flower-like tin/carbon composite microspheres as long-lasting anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Tae-Woo [Department of Chemical Engineering, College of Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of); Lim, Hyung-Seok [Department of WCU Engineering, College of Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of); Park, Seong-Jin [Department of Chemical Engineering, College of Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of); Sun, Yang-Kook [Department of WCU Engineering, College of Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of); Suh, Kyung-Do, E-mail: kdsuh@hanyang.ac.kr [Department of Chemical Engineering, College of Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of)

    2017-01-01

    In this work, we report the fabrication of the flower-like tin/carbon (Sn/C) composite microspheres using sulfonated semi-interpenetrating polystyrene (SPS) microspheres as a carbon precursor. The sulfonation degree of SPS has great effects on the resulting particle size, morphology, amount of introduced Sn, and the carbonization yield of the microspheres after heat treatment. The obtained Sn/C composite microspheres were characterized by scanning electron microscopy (SEM), focused-ion beam SEM, and X-ray diffraction. The flower-like Sn/C composite electrodes exhibited higher charge-discharge capacities than those of graphite as an anode material for a lithium ion battery. In addition, they show a long lasting cyclability, even through 400 cycles. - Highlights: • Tin nanocrystals are introduced in flower-like carbon spheres with many ripples. • Long lasting cyclability is exhibited at 1 C rate up to 400 cycles. • Tin content of composite spheres depends on chemical treatment of polymer microspheres.

  15. Microstructure and hot deformation behavior of A356/Al2O3 composite fabricated by infiltration method

    Science.gov (United States)

    Yu, Seung-Baek; Jeon, Kyung-Soo; Kim, Mok-Soon; Lee, Jeung-Keun; Ryu, Kwan-Ho

    2017-07-01

    The hot deformation behavior of an A356/Al2O3 composite fabricated by the infiltration method was characterized in the temperature range of 300-500 °C and strain rate range of 0.001-1/s using compressive tests. The composite consists of an Al-Si based matrix and nano-sized Al2O3 particulates. A constitutive model was established based on the hyperbolic sine Arrhenius type equation and its hot workability was evaluated by means of processing maps based on Dynamic Material Modeling. The activation energy for hot deformation was calculated to be 223 kJ/mol, which is higher than the activation energy for self-diffusion of pure aluminum (142 kJ/mol). The optimum processing condition for the hot working of the composite was found to exist at 500 °C with a strain rate of 1/s, where a dynamic recrystallized microstructure was observed and the maximum efficiency was exhibited in the processing map. Voids were frequently detected at 500 °C with lower strain rates, deteriorating the workability of the composite.

  16. Fabrication of Pamidronic Acid-Immobilized TiO2/Hydroxyapatite Composite Nanofiber Mats for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Yong-Suk Shin

    2013-01-01

    Full Text Available TiO2/hydroxyapatite (TiO2/HA composite nanofiber mats were fabricated using an electrospinning technique. Subsequently, pamidronic acid (PDA was immobilized on the surface of the TiO2/HA nanofiber mat to improve osseointegration. X-ray photoelectron microscopy and scanning electron microscopy (SEM were used to characterize the structure and morphology of the PDA-immobilized TiO2/HA composite nanofiber mat (TiO2/HA-P. The potential of TiO2/HA-P as a bone scaffold was assessed by examining the cell adhesion and proliferation of osteoblasts and osteoclasts. The adhesion and proliferation of osteoblasts on the TiO2/HA-P composite nanofiber mat were slightly higher than those on the TiO2/HA composite nanofiber mat, whereas the viability of osteoclasts on the TiO2/HA-P nanofiber mat was significantly suppressed. These results suggest that the TiO2/HA-P nanofiber mat has the potential for use as a therapeutic bone implant.

  17. Fabrication and bioactivity behavior of HA/bioactive glass composites in the presence of calcium hexaboride

    Energy Technology Data Exchange (ETDEWEB)

    El-Bassyouni, Gehan T.; Beherei, Hanan H. [Biomaterials Dept., National Research Centre (NRC), Dokki, Cairo (Egypt); Mohamed, Khaled R., E-mail: kh_rezk1966@yahoo.com [Biomaterials Dept., National Research Centre (NRC), Dokki, Cairo (Egypt); Kenawy, Sayed H. [Ceramics Dept., National Research Centre (NRC), Dokki, Cairo (Egypt)

    2016-06-01

    In the current study, composites were prepared using both the synthesized nano-sized hydroxyapatite (HA), bioactive glass (BG) powders (obtained by the traditional melt-quenching route) together with the purchased nano-sized calcium hexaboride (CB) with different ratios and were fired at 1250 °C. The structure and composition of the solid reaction products were analyzed using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy; scanning electron microscope (SEM) coupled with energy dispersive spectroscopy (EDS), transmission electron microscope (TEM) techniques and compressive strength. The mechanical testing was to designate the role of the CB in improving the mechanical property of the prepared composites. In vitro bioactivity of the prepared composites was assessed by soaking in the simulated body fluid (SBF) at 37 ± 0.5 °°C for 10 days. The effect of different ratios of the three components (CB, HA & BG) on the bioactivity properties was assessed to explore the possibility of enhancing such property to perform in vitro imitations of in vivo conditions in the future. It can be pointed out that the Si-HA content in the composition showed outstanding in vitro bioactivity than pure hydroxyapatite which could be attributed to the excellent bioactivity of the synthesized composites. - Highlights: • The prepared of nano-composites containing CB, HA and BG powders were achieved. • The addition of CB powder enhanced the compressive strength for all the composites. • The composites containing high BG and CB contents improved formation of bone-like apatite layer.

  18. Fabrication and properties of HDPE/CF/CaCO3/PE-g-MAH quaternary composites

    Science.gov (United States)

    Wang, X.-L.; Ming, H.; Yin, H.

    2015-07-01

    In this research, carbon fiber (CF) was taken as reinforcing filler, nano calcium carbonate (CaCO3) was taken as toughener, maleic anhydride grafted polyethylene (PE-g-MAH) was taken as compatibilizer for high density polyethylene (HDPE) modification. Through orthogonal test, the influence of different amount of ingredient CF, CaCO3 and PE-g-MAH on the mechanical properties of the HDPE composites was researched. The optimal composition of the quaternary composites with the good toughness and high strength was obtained.

  19. BACTERIAL CELLULOSE REINFORCED THERMOPLASTIC COMPOSITES: PRELIMINARY EVALUATION OF FABRICATION AND PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Ruijun Gu

    2010-08-01

    Full Text Available Mechanical properties of polyethylene (PE composites were evaluated as a function of the addition of bacterial cellulose (BC. It was found that BC could improve the mechanical properties of the composites with or without the combination of traditional wood fiber. The improvements were affected by post-treatment. It was confirmed that BC had a significant influence on impact strength. The pellicle form of BC was able to achieve superior impact strength compared to the fluffy form of BC, but had similar effects on the tensile strength in comparison to the composites with fluffy BC.

  20. Fatigue behavior of carbon/epoxy composites reinforced with 3-Dimensional woven fabric

    Directory of Open Access Journals (Sweden)

    Mehmet Karahan

    2013-07-01

    Full Text Available This paper reports results of study of fatigue behavior of a non-crimp 3-dimensional woven carbon/epoxy composite in tension-tension fatigue. Infinite fatigue life limit corresponds to the load of 27.5 kN for fill direction. The damage under fatigue loading starts and develops from intersection of z-yarns and fill yarns. Since the z-yarns bonded the yarn layers, it is not seen the delaminastion damages. This indicate that for load carrying capacity and stiffness of 3-dimensional composites better than classic 2-dimensional textile composites.