WorldWideScience

Sample records for f98 rat glioma

  1. OKN-007 decreases free radical levels in a preclinical F98 rat glioma model.

    Science.gov (United States)

    Coutinho de Souza, Patricia; Smith, Nataliya; Atolagbe, Oluwatomisin; Ziegler, Jadith; Njoku, Charity; Lerner, Megan; Ehrenshaft, Marilyn; Mason, Ronald P; Meek, Bill; Plafker, Scott M; Saunders, Debra; Mamedova, Nadezda; Towner, Rheal A

    2015-10-01

    Free radicals are associated with glioma tumors. Here, we report on the ability of an anticancer nitrone compound, OKN-007 [Oklahoma Nitrone 007; a disulfonyl derivative of α-phenyl-tert-butyl nitrone (PBN)] to decrease free radical levels in F98 rat gliomas using combined molecular magnetic resonance imaging (mMRI) and immunospin-trapping (IST) methodologies. Free radicals are trapped with the spin-trapping agent, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), to form DMPO macromolecule radical adducts, and then further tagged by immunospin trapping by an antibody against DMPO adducts. In this study, we combined mMRI with a biotin-Gd-DTPA-albumin-based contrast agent for signal detection with the specificity of an antibody for DMPO nitrone adducts (anti-DMPO probe), to detect in vivo free radicals in OKN-007-treated rat F98 gliomas. OKN-007 was found to significantly decrease (P free radical levels detected with an anti-DMPO probe in treated animals compared to untreated rats. Immunoelectron microscopy was used with gold-labeled antibiotin to detect the anti-DMPO probe within the plasma membrane of F98 tumor cells from rats administered anti-DMPO in vivo. OKN-007 was also found to decrease nuclear factor erythroid 2-related factor 2, inducible nitric oxide synthase, 3-nitrotyrosine, and malondialdehyde in ex vivo F98 glioma tissues via immunohistochemistry, as well as decrease 3-nitrotyrosine and malondialdehyde adducts in vitro in F98 cells via ELISA. The results indicate that OKN-007 effectively decreases free radicals associated with glioma tumor growth. Furthermore, this method can potentially be applied toward other types of cancers for the in vivo detection of macromolecular free radicals and the assessment of antioxidants. Copyright © 2015. Published by Elsevier Inc.

  2. Survival Analysis of F98 Glioma Rat Cells Following Minibeam or Broad-Beam Synchrotron Radiation Therapy

    International Nuclear Information System (INIS)

    Gil, Silvia; Sarun, Sukhéna; Biete, Albert; Prezado, Yolanda; Sabés, Manel

    2011-01-01

    In the quest of a curative radiotherapy treatment for gliomas new delivery modes are being explored. At the Biomedical Beamline of the European Synchrotron Radiation Facility (ESRF), a new spatially-fractionated technique, called Minibeam Radiation Therapy (MBRT) is under development. The aim of this work is to compare the effectiveness of MBRT and broad-beam (BB) synchrotron radiation to treat F98 glioma rat cells. A dose escalation study was performed in order to delimit the range of doses where a therapeutic effect could be expected. These results will help in the design and optimization of the forthcoming in vivo studies at the ESRF. Two hundred thousand F98 cells were seeded per well in 24-well plates, and incubated for 48 hours before being irradiated with spatially fractionated and seamless synchrotron x-rays at several doses. The percentage of each cell population (alive, early apoptotic and dead cells, where either late apoptotic as necrotic cells are included) was assessed by flow cytometry 48 hours after irradiation, whereas the metabolic activity of surviving cells was analyzed on days 3, 4, and 9 post-irradiation by using QBlue test. The endpoint (or threshold dose from which an important enhancement in the effectiveness of both radiation treatments is achieved) obtained by flow cytometry could be established just before 12 Gy in the two irradiation schemes, whilst the endpoints assessed by the QBlue reagent, taking into account the cell recovery, were set around 18 Gy in both cases. In addition, flow cytometric analysis pointed at a larger effectiveness for minibeams, due to the higher proportion of early apoptotic cells. When the valley doses in MBRT equal the dose deposited in the BB scheme, similar cell survival ratio and cell recovery were observed. However, a significant increase in the number of early apoptotic cells were found 48 hours after the minibeam radiation in comparison with the seamless mode

  3. Convection enhanced delivery of panobinostat (LBH589-loaded pluronic nano-micelles prolongs survival in the F98 rat glioma model

    Directory of Open Access Journals (Sweden)

    Singleton WG

    2017-02-01

    Full Text Available WG Singleton,1,2 AM Collins,3 AS Bienemann,1 CL Killick-Cole,1 HR Haynes,4 DJ Asby,1 CP Butts,5 MJ Wyatt,1 NU Barua,1,2 SS Gill1,2 1Functional Neurosurgery Research Group, School of Clinical Sciences, University of Bristol, 2Department of Neurosurgery, North Bristol NHS Trust, 3Bristol Centre for Functional Nanomaterials, School of Physics, HH Wills Physics Laboratory, 4Brain Tumour Research Group, School of Clinical Sciences, 5School of Chemistry, University of Bristol, Bristol, UKBackground: The pan-histone deacetylase inhibitor panobinostat is a potential therapy for malignant glioma, but it is water insoluble and does not cross the blood–brain barrier when administered systemically. In this article, we describe the in vitro and in vivo efficacy of a novel water-soluble nano-micellar formulation of panobinostat designed for administration by convection enhanced delivery (CED.Materials and methods: The in vitro efficacy of panobinostat-loaded nano-micelles against rat F98, human U87-MG and M059K glioma cells and against patient-derived glioma stem cells was measured using a cell viability assay. Nano-micelle distribution in rat brain was analyzed following acute CED using rhodamine-labeled nano-micelles, and toxicity was assayed using immunofluorescent microscopy and synaptophysin enzyme-linked immunosorbent assay. We compared the survival of the bioluminescent syngenic F98/Fischer344 rat glioblastoma model treated by acute CED of panobinostat-loaded nano-micelles with that of untreated and vehicle-only-treated controls.Results: Nano-micellar panobinostat is cytotoxic to rat and human glioma cells in vitro in a dose-dependent manner following short-time exposure to drug. Fluorescent rhodamine-labelled nano-micelles distribute with a volume of infusion/volume of distribution (Vi/Vd ratio of four and five respectively after administration by CED. Administration was not associated with any toxicity when compared to controls. CED of

  4. Estradiol Receptors Regulate Differential Connexin 43 Expression in F98 and C6 Glioma Cell Lines.

    Directory of Open Access Journals (Sweden)

    Zahra Moinfar

    Full Text Available Glioma is the most common malignant primary brain tumour with male preponderance and poor prognosis. Glioma cells express variable amounts of connexin 43 (Cx43 and estrogen receptors (ERs. Both, Cx43 and ERs, play important roles in cell proliferation and migration. Therefore, we investigated the effects of 17-ß estradiol (E2 on Cx43 expression in two glioma cell lines with variable native expression of Cx43.F98 and C6 rat glioma cells were cultured for 24 h in the presence of 10 nM or 100 nM E2, and the E2-antagonist, Fulvestrant. An MTT assay was performed to evaluate cell viability. ERα, ERβ and Cx43 protein expressions were analysed by western blotting and Cx43 mRNA expression was analysed by real-time polymerase chain reaction. To quantify cell migration, an exclusive zone migration assay was used. Functional coupling of cells via gap junctions was examined using whole-cell patch-clamp technique.E2 reduced Cx43 expression in C6 cells, but increased Cx43 expression in F98 cultures. These effects were mediated via ERs. Moreover, E2 promoted C6 cell migration, but it did not affect F98 cell migration. The expression level of ERα was found to be high in C6, but low in F98 cells. ERβ was exclusively expressed in C6 cells. In addition, E2 treatment induced a significant decrease of ERβ in C6 cultures, while it decreased ERα expression in F98 glioma cells.These findings show that E2 differentially modulates Cx43 expression in F98 and C6 glioma cells, likely due to the differential expression of ERs in each of these cell lines. Our findings point to the molecular mechanisms that might contribute to the gender-specific differences in the malignancy of glioma and could have implications for therapeutic strategies against glioma.

  5. Synergistic effect of cisplatin and synchrotron irradiation on F98 gliomas growing in nude mice

    Energy Technology Data Exchange (ETDEWEB)

    Ricard, Clement; Fernandez, Manuel [Grenoble Institut des Neurosciences, Grenoble (France); Université Joseph Fourier, Grenoble (France); Requardt, Herwig [European Synchrotron Radiation Facility, Grenoble (France); Wion, Didier [Grenoble Institut des Neurosciences, Grenoble (France); Université Joseph Fourier, Grenoble (France); Vial, Jean-Claude [Université Joseph Fourier, Grenoble (France); Laboratoire Interdisciplinaire de Physique, St Martin d’Hères (France); Segebarth, Christoph; Sanden, Boudewijn van der, E-mail: boudewijn.vandersanden@ujf-grenoble.fr [Grenoble Institut des Neurosciences, Grenoble (France); Université Joseph Fourier, Grenoble (France)

    2013-09-01

    Synchrotron photoactivation therapy of cisplatin relies on a synergistic effect of synchrotron X-rays and platinum and leads to tumor-cell-killing effects and reduction of the tumor blood perfusion. Among brain tumors, glioblastoma multiforme appears as one of the most aggressive forms of cancer with poor prognosis and no curative treatment available. Recently, a new kind of radio-chemotherapy has been developed using synchrotron irradiation for the photoactivation of molecules with high-Z elements such as cisplatin (PAT-Plat). This protocol showed a cure of 33% of rats bearing the F98 glioma but the efficiency of the treatment was only measured in terms of overall survival. Here, characterization of the effects of the PAT-Plat on tumor volume and tumor blood perfusion are proposed. Changes in these parameters may predict the overall survival. Firstly, changes in tumor growth of the F98 glioma implanted in the hindlimb of nude mice after the PAT-Plat treatment and its different modalities have been characterized. Secondly, the effects of the treatment on tumor blood perfusion have been observed by intravital two-photon microscopy. Cisplatin alone had no detectable effect on the tumor volume. A reduction of tumor growth was measured after a 15 Gy synchrotron irradiation, but the whole therapy (15 Gy irradiation + cisplatin) showed the largest decrease in tumor growth, indicating a synergistic effect of both synchrotron irradiation and cisplatin treatment. A high number of unperfused vessels (52%) were observed in the peritumoral area in comparison with untreated controls. In the PAT-Plat protocol the transient tumor growth reduction may be due to synergistic interactions of tumor-cell-killing effects and reduction of the tumor blood perfusion.

  6. Effect of Hyperoxygenation on Tissue pO2 and Its Effect on Radiotherapeutic Efficacy of Orthotopic F98 Gliomas

    International Nuclear Information System (INIS)

    Khan, Nadeem; Mupparaju, Sriram M.S.; Hekmatyar, Shahryar K.; Hou Huagang; Lariviere, Jean P.; Demidenko, Eugene; Gladstone, David J.; Kauppinen, Risto A.; Swartz, Harold M.

    2010-01-01

    Purpose: Lack of methods for repeated assessment of tumor pO 2 limits the ability to test and optimize hypoxia-modifying procedures being developed for clinical applications. We report repeated measurements of orthotopic F98 tumor pO 2 and relate this to the effect of carbogen inhalation on tumor growth when combined with hypofractionated radiotherapy. Methods and Materials: Electron paramagnetic resonance (EPR) oximetry was used for repeated measurements of tumor and contralateral brain pO 2 in rats during 30% O 2 and carbogen inhalation for 5 consecutive days. The T 1 -enhanced volumes and diffusion coefficients of the tumors were assessed by magnetic resonance imaging (MRI). The tumors were irradiated with 9.3 Gy x 4 fractions in rats breathing 30% O 2 or carbogen to determine the effect on tumor growth. Results: The pretreatment F98 tumor pO 2 varied between 8 and 16 mmHg, while the contralateral brain had 41 to 45 mmHg pO 2 during repeated measurements. Carbogen breathing led to a significant increase in tumor and contralateral brain pO 2 ; however, this effect declined over days. Irradiation of the tumors in rats breathing carbogen resulted in a significant decrease in tumor growth and an increase in the diffusion coefficient measured by MRI. Conclusions: The results provide quantitative measurements of the effect of carbogen inhalation on intracerebral tumor pO 2 and its effect on therapeutic outcome. Such direct repeated pO 2 measurements by EPR oximetry can provide temporal information that could be used to improve therapeutic outcome by scheduling doses at times of improved tumor oxygenation. EPR oximetry is currently being tested for clinical applications.

  7. Characterization of biological features of a rat F98 GBM model: A PET-MRI study with [18F]FAZA and [18F]FDG

    International Nuclear Information System (INIS)

    Belloli, Sara; Brioschi, Andrea; Politi, Letterio Salvatore; Ronchetti, Francesca; Calderoni, Sara; Raccagni, Isabella; Pagani, Antonella; Monterisi, Cristina; Zenga, Francesco; Zara, Gianpaolo; Fazio, Ferruccio; Mauro, Alessandro

    2013-01-01

    Introduction: The prognosis of malignant gliomas remains largely unsatisfactory for the intrinsic characteristics of the pathology and for the delayed diagnosis. Multimodal imaging based on PET and MRI may assess the dynamics of disease onset and progression allowing the validation of preclinical models of glioblastoma multiforme (GBM). The aim of this study was the characterization of a syngeneic rat model of GBM using combined in vivo imaging and immunohistochemistry. Methods: Four groups of Fischer rats were implanted in a subcortical region with increasing concentration of rat glioma F98 cells and weekly monitored with Gd-MR, [ 18 F]FDG- and [ 18 F]FAZA-PET starting one week after surgery. Different targets were evaluated on post mortem brain specimens using immunohistochemistry: VEGF, GFAP, HIF-1α, Ki-67 and nestin. Results: Imaging results indicated that tumor onset but not progression was related to the number of F98 cells. Hypoxic regions identified with [ 18 F]FAZA and high-glucose metabolism regions recognized with [ 18 F]FDG were located respectively in the core and in external areas of the tumor, with partial overlap and remodeling during disease progression. Histological and immunohistochemical analysis confirmed PET/MRI results and revealed that our model resumes biological characteristics of human GBM. IHC and PET studies showed that necrotic regions, defined on the basis of [ 18 F]FDG uptake reduction, may include hypoxic clusters of vital tumor tissue identified with [ 18 F]FAZA. This last information is particularly relevant for the identification of the target volume during image-guided radiotherapy. Conclusions: In conclusion, the combined use of PET and MRI allows in vivo monitoring of the biological modification of F98 lesions during tumor progression

  8. A micro-PET/CT approach using O-(2-[{sup 18}F]fluoroethyl)-L-tyrosine in an experimental animal model of F98 glioma for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Menichetti, L., E-mail: luca.menichetti@ifc.cnr.it [CNR Institute of Clinical Physiology, Pisa (Italy); Petroni, D.; Panetta, D. [CNR Institute of Clinical Physiology, Pisa (Italy); Burchielli, S. [Fondazione CNR/Regione Toscana G. Monasterio, Pisa (Italy); Bortolussi, Silva [Dept. Theoretical and Nuclear Physics, University of Pavia, Pavia (Italy); Matteucci, M. [Scuola Superiore Sant' Anna, Pisa (Italy); Pascali, G.; Del Turco, S. [CNR Institute of Clinical Physiology, Pisa (Italy); Del Guerra, A. [Department of Physics, University of Pisa, Pisa (Italy); Altieri, S. [Dept. Theoretical and Nuclear Physics, University of Pavia, Pavia (Italy); Salvadori, P.A. [CNR Institute of Clinical Physiology, Pisa (Italy)

    2011-12-15

    The present study focuses on a micro-PET/CT application to be used for experimental Boron Neutron Capture Therapy (BNCT), which integrates, in the same frame, micro-CT derived anatomy and PET radiotracer distribution. Preliminary results have demonstrated that {sup 18}F-fluoroethyl-tyrosine (FET)/PET allows the identification of the extent of cerebral lesions in F98 tumor bearing rat. Neutron autoradiography and {alpha}-spectrometry on axial tissues slices confirmed the tumor localization and extraction, after the administration of fructose-boronophenylalanine (BPA). Therefore, FET-PET approach can be used to assess the transport, the net influx, and the accumulation of FET, as an aromatic amino acid analog of BPA, in experimental animal model. Coregistered micro-CT images allowed the accurate morphological localization of the radiotracer distribution and its potential use for experimental BNCT.

  9. Radiosensitization of high-Z compounds by medium-energy 160 kV vs. high-energy 6 MV X-rays for radiation therapy: Theoretical, in vitro and in vivo studies of platinum compounds activating glioma F98 cancer cells

    Science.gov (United States)

    Lim, S.; Pradhan, A.; Nahar, S.; Montenegro, M.; Barth, R.; Nakkula, R.; Turro, C.

    2013-03-01

    Energy dependence of X-ray irradiation of high-Z compounds for enhanced radiosensitization is explored thoeretically and via in vitro and in vivo experiments. The cell killing ability of medium-energy X-rays from 160 kV source are found to be more effective than 6 MV X-rays in activating high-Z contrast agents. Results are presented for a newly synthesized Pt compound, Pyridine Terpyridine Pt(II) Nitrate ([Pt(typ)(py)]) and carboplatin in treating F98 rat glioma. In-vitro results show considerable reduction in cell viability for radiosensitized cells irradiated with a 160 kV irradiator. Cells treated with 6 MV LINAC radiation find little variation with radiation dose. Maximum dose enhancement factors (DEFs) and minimum cancer cell survival fractions correspond to 50-200 keV range, and fall rapidly at higher energies. Theoretical calculations of photoelectric absorption vis-a-vis total scattering demonstrates this energy dependence. However, in vivo studies of rats treated with [Pt(tpy)(py)] had a severe negative neurotoxic response, confirmed by histopathological analysis. But subsequent in vivo studies using carboplatin showed very positive results in the treatment of F98 glioma bearing rats and potential clinical radiation therapy.

  10. Survival of rats bearing advanced intracerebral F 98 tumors after glutathione depletion and microbeam radiation therapy: conclusions from a pilot project.

    Science.gov (United States)

    Schültke, E; Bräuer-Krisch, E; Blattmann, H; Requardt, H; Laissue, J A; Hildebrandt, G

    2018-05-10

    Resistance to radiotherapy is frequently encountered in patients with glioblastoma multiforme. It is caused at least partially by the high glutathione content in the tumour tissue. Therefore, the administration of the glutathione synthesis inhibitor Buthionine-SR-Sulfoximine (BSO) should increase survival time. BSO was tested in combination with an experimental synchrotron-based treatment, microbeam radiation therapy (MRT), characterized by spatially and periodically alternating microscopic dose distribution. One hundred thousand F98 glioma cells were injected into the right cerebral hemisphere of adult male Fischer rats to generate an orthotopic small animal model of a highly malignant brain tumour in a very advanced stage. Therapy was scheduled for day 13 after tumour cell implantation. At this time, 12.5% of the animals had already died from their disease. The surviving 24 tumour-bearing animals were randomly distributed in three experimental groups: subjected to MRT alone (Group A), to MRT plus BSO (Group B) and tumour-bearing untreated controls (Group C). Thus, half of the irradiated animals received an injection of 100 μM BSO into the tumour two hours before radiotherapy. Additional tumour-free animals, mirroring the treatment of the tumour-bearing animals, were included in the experiment. MRT was administered in bi-directional mode with arrays of quasi-parallel beams crossing at the tumour location. The width of the microbeams was ≈28 μm with a center-to-center distance of ≈400 μm, a peak dose of 350 Gy, and a valley dose of 9 Gy in the normal tissue and 18 Gy at the tumour location; thus, the peak to valley dose ratio (PVDR) was 31. After tumour-cell implantation, otherwise untreated rats had a mean survival time of 15 days. Twenty days after implantation, 62.5% of the animals receiving MRT alone (group A) and 75% of the rats given MRT + BSO (group B) were still alive. Thirty days after implantation, survival was 12.5% in Group A and 62

  11. Comparison of Allogeneic and Syngeneic Rat Glioma Models by Using MRI and Histopathologic Evaluation.

    Science.gov (United States)

    Biasibetti, Elena; Valazza, Alberto; Capucchio, Maria T; Annovazzi, Laura; Battaglia, Luigi; Chirio, Daniela; Gallarate, Marina; Mellai, Marta; Muntoni, Elisabetta; Peira, Elena; Riganti, Chiara; Schiffer, Davide; Panciani, Pierpaolo; Lanotte, Michele

    2017-03-01

    Research in neurooncology traditionally requires appropriate in vivo animal models, on which therapeutic strategies are tested before human trials are designed and proceed. Several reproducible animal experimental models, in which human physiologic conditions can be mimicked, are available for studying glioblastoma multiforme. In an ideal rat model, the tumor is of glial origin, grows in predictable and reproducible patterns, closely resembles human gliomas histopathologically, and is weakly or nonimmunogenic. In the current study, we used MRI and histopathologic evaluation to compare the most widely used allogeneic rat glioma model, C6-Wistar, with the F98-Fischer syngeneic rat glioma model in terms of percentage tumor growth or regression and growth rate. In vivo MRI demonstrated considerable variation in tumor volume and frequency between the 2 rat models despite the same stereotactic implantation technique. Faster and more reproducible glioma growth occurred in the immunoresponsive environment of the F98-Fischer model, because the immune response is minimized toward syngeneic cells. The marked inability of the C6-Wistar allogeneic system to generate a reproducible model and the episodes of spontaneous tumor regression with this system may have been due to the increased humoral and cellular immune responses after tumor implantation.

  12. Limiting glioma development by photodynamic therapy-generated macrophage vaccine and allo-stimulation: an in vivo histological study in rats

    Science.gov (United States)

    Madsen, Steen J.; Christie, Catherine; Huynh, Khoi; Peng, Qian; Uzal, Francisco A.; Krasieva, Tatiana B.; Hirschberg, Henry

    2018-02-01

    Immunotherapy of brain tumors involves the stimulation of an antitumor immune response. This type of therapy can be targeted specifically to tumor cells thus sparing surrounding normal brain. Due to the presence of the blood-brain barrier, the brain is relatively isolated from the systemic circulation and, as such, the initiation of significant immune responses is more limited than other types of cancers. The purpose of this study was to show that the efficacy of tumor primed antigen presenting macrophage (MaF98) vaccines can be increased by: (1) photodynamic therapy (PDT) of the priming tumor cells and (2) intracranial injection of allogeneic glioma cells directly into the tumor site. Experiments were conducted in an in vivo brain tumor development model using Fischer rats and F98 (syngeneic) and BT4C (allogeneic) glioma cells. The results showed that immunization with Ma (acting as antigen-presenting cells), primed with PDT-treated tumor cells (MaF98), significantly slowed but did not prevent the growth of F98-induced tumors in the brain. Complete suppression of tumor development was obtained via MaF98 inoculation combined with direct intracranial injection of allogeneic glioma cells. No deleterious effects were noted in any of the animals during the 14-day observation period.

  13. Influence of blood-brain barrier permeability on O-(2-{sup 18}F-fluoroethyl)-L-tyrosine uptake in rat gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Stegmayr, Carina; Bandelow, Ulrike; Oliveira, Dennis; Lohmann, Philipp; Willuweit, Antje; Galldiks, Norbert; Luebke, Joachim H.R. [Institute of Neuroscience and Medicine, Forschungszentrum Juelich, Juelich (Germany); Filss, Christian; Ermert, Johannes; Langen, Karl-Josef [Institute of Neuroscience and Medicine, Forschungszentrum Juelich, Juelich (Germany); RWTH/University Hospital Aachen, Department of Nuclear Medicine and Neurology, Aachen (Germany); Shah, N. Jon [Institute of Neuroscience and Medicine, Forschungszentrum Juelich, Juelich (Germany); RWTH/University Hospital Aachen, Department of Nuclear Medicine and Neurology, Aachen (Germany); Juelich-Aachen Research Alliance (JARA) - Section JARA-Brain, Aachen (Germany)

    2017-03-15

    O-(2-{sup 18}F-fluoroethyl)-L-tyrosine ({sup 18}F-FET) is an established tracer for the diagnosis of brain tumors with PET. This study investigates the influence of blood-brain barrier (BBB) permeability on {sup 18}F-FET uptake in two rat glioma models and one human xenograft model. F98 glioma, 9L gliosarcoma or human U87 glioblastoma cells were implanted into the striatum of 56 Fischer or RNU rats. Thereafter, animals were divided into a control group and a group receiving injections of the glucocorticoid dexamethasone (Dex). After 12-13 days of tumor growth animals received injection of Evans blue dye (EBD) to visualize BBB disturbance and underwent {sup 18}F-FET PET followed by autoradiography. Time activity curves, standardized uptake values (SUV) and Tumor-to-brain ratios (TBR) of {sup 18}F-FET uptake [18-61 min post injection (p.i.)] were evaluated using a volume-of-Interest (VOI) analysis. BBB disturbance was quantitatively evaluated by EBD fluorescence. The membrane gaps of blood vessel endothelial tight junctions were measured using electron microscopy to visualize ultrastructural BBB alterations in one untreated and one Dex treated F98 glioma. Data were analyzed by two-way ANOVAs. In Dex treated animals EBD extravasation was significantly reduced in 9L (P < 0.001) and U87 (P = 0.008) models and showed a trend in F98 models (P = 0.053). In contrast, no significant differences of {sup 18}F-FET uptake were observed between Dex treated animals and control group except a decrease of the TBR in the 9L tumor model in PET (P < 0.01). Ultrastructural evaluation of tumor blood vessel endothelia revealed significant reduction of the cleft diameter between endothelial cells after Dex treatment in F98 model (P = 0.010). Despite a considerable reduction of BBB permeability in rat gliomas after Dex treatment, no relevant changes of {sup 18}F-FET uptake were noted in this experimental study. Thus, {sup 18}F-FET uptake in gliomas appears to be widely independent of the

  14. Evaluation of 188Re-labeled PEGylated nanoliposome as a radionuclide therapeutic agent in an orthotopic glioma-bearing rat model

    Directory of Open Access Journals (Sweden)

    Huang FYJ

    2015-01-01

    Full Text Available Feng-Yun J Huang,1 Te-Wei Lee,2 Chih-Hsien Chang,2 Liang-Cheng Chen,2 Wei-Hsin Hsu,2 Chien-Wen Chang,1 Jem-Mau Lo1 1Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan; 2Institute of Nuclear Energy Research, Longtan, Taiwan Purpose: In this study, the 188Re-labeled PEGylated nanoliposome (188Re-liposome was prepared and evaluated as a therapeutic agent for glioma.Materials and methods: The reporter cell line, F98luc was prepared via Lentivector expression kit system and used to set up the orthotopic glioma-bearing rat model for non-invasive bioluminescent imaging. The maximum tolerated dose applicable in Fischer344 rats was explored via body weight monitoring of the rats after single intravenous injection of 188Re-liposome with varying dosages before the treatment study. The OLINDA/EXM 1.1 software was utilized for estimating the radiation dosimetry. To assess the therapeutic efficacy, tumor-bearing rats were intravenously administered 188Re-liposome or normal saline followed by monitoring of the tumor growth and animal survival time. In addition, the histopathological examinations of tumors were conducted on the 188Re-liposome-treated rats.Results: By using bioluminescent imaging, the well-established reporter cell line (F98luc showed a high relationship between cell number and its bioluminescent intensity (R2=0.99 in vitro; furthermore, it could also provide clear tumor imaging for monitoring tumor growth in vivo. The maximum tolerated dose of 188Re-liposome in Fischer344 rats was estimated to be 333 MBq. According to the dosimetry results, higher equivalent doses were observed in spleen and kidneys while very less were in normal brain, red marrow, and thyroid. For therapeutic efficacy study, the progression of tumor growth in terms of tumor volume and/or tumor weight was significantly slower for the 188Re-liposome-treated group than the control group (P<0.05. As a result, the

  15. Monochromatic Minibeams Radiotherapy: From Healthy Tissue-Sparing Effect Studies Toward First Experimental Glioma Bearing Rats Therapy

    International Nuclear Information System (INIS)

    Deman, Pierre; Vautrin, Mathias; Edouard, Magali; Stupar, Vasile; Bobyk, Laure; Farion, Régine; Elleaume, Hélène; Rémy, Chantal; Barbier, Emmanuel L.; Estève, François; Adam, Jean-François

    2012-01-01

    Purpose: The purpose of this study was to evaluate high-dose single fraction delivered with monochromatic X-rays minibeams for the radiotherapy of primary brain tumors in rats. Methods and Materials: Two groups of healthy rats were irradiated with one anteroposterior minibeam incidence (four minibeams, 123 Gy prescribed dose at 1 cm depth in the brain) or two interleaved incidences (54 Gy prescribed dose in a 5 × 5 × 4.8 mm 3 volume centered in the right hemisphere), respectively. Magnetic resonance imaging (MRI) follow-up was performed over 1 year. T2-weighted (T2w) images, apparent diffusion coefficient (ADC), and blood vessel permeability maps were acquired. F98 tumor bearing rats were also irradiated with interleaved minibeams to achieve a homogeneous dose of 54 Gy delivered to an 8 × 8 × 7.8 mm 3 volume centered on the tumor. Anatomic and functional MRI follow-up was performed every 10 days after irradiation. T2w images, ADC, and perfusion maps were acquired. Results: All healthy rats were euthanized 1 year after irradiation without any clinical alteration visible by simple examination. T2w and ADC measurements remain stable for the single incidence irradiation group. Localized Gd-DOTA permeability, however, was observed 9 months after irradiation for the interleaved incidences group. The survival time of irradiated glioma bearing rats was significantly longer than that of untreated animals (49 ± 12.5 days versus 23.3 ± 2 days, p < 0.001). The tumoral cerebral blood flow and blood volume tend to decrease after irradiation. Conclusions: This study demonstrates the sparing effect of minibeams on healthy tissue. The increased life span achieved for irradiated glioma bearing rats was similar to the one obtained with other radiotherapy techniques. This experimental tumor therapy study shows the feasibility of using X-ray minibeams with high doses in brain tumor radiotherapy.

  16. Monochromatic Minibeams Radiotherapy: From Healthy Tissue-Sparing Effect Studies Toward First Experimental Glioma Bearing Rats Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Deman, Pierre [INSERM, Grenoble (France); Universite Joseph Fourier, Institut des Neurosciences, Grenoble (France); European Synchrotron Radiation Facility, Grenoble (France); Vautrin, Mathias [INSERM, Grenoble (France); Universite Joseph Fourier, Institut des Neurosciences, Grenoble (France); European Synchrotron Radiation Facility, Grenoble (France); DOSIsoft, Cachan (France); Edouard, Magali [INSERM, Grenoble (France); Universite Joseph Fourier, Institut des Neurosciences, Grenoble (France); European Synchrotron Radiation Facility, Grenoble (France); Stupar, Vasile [INSERM, Grenoble (France); Universite Joseph Fourier, Institut des Neurosciences, Grenoble (France); Bobyk, Laure; Farion, Regine [INSERM, Grenoble (France); Universite Joseph Fourier, Institut des Neurosciences, Grenoble (France); European Synchrotron Radiation Facility, Grenoble (France); Elleaume, Helene [INSERM, Grenoble (France); Universite Joseph Fourier, Institut des Neurosciences, Grenoble (France); European Synchrotron Radiation Facility, Grenoble (France); Grenoble University Hospital, Grenoble (France); Remy, Chantal; Barbier, Emmanuel L. [INSERM, Grenoble (France); Universite Joseph Fourier, Institut des Neurosciences, Grenoble (France); Esteve, Francois [INSERM, Grenoble (France); Universite Joseph Fourier, Institut des Neurosciences, Grenoble (France); European Synchrotron Radiation Facility, Grenoble (France); Grenoble University Hospital, Grenoble (France); Adam, Jean-Francois, E-mail: adam@esrf.fr [INSERM, Grenoble (France); Universite Joseph Fourier, Institut des Neurosciences, Grenoble (France); European Synchrotron Radiation Facility, Grenoble (France); Grenoble University Hospital, Grenoble (France)

    2012-03-15

    Purpose: The purpose of this study was to evaluate high-dose single fraction delivered with monochromatic X-rays minibeams for the radiotherapy of primary brain tumors in rats. Methods and Materials: Two groups of healthy rats were irradiated with one anteroposterior minibeam incidence (four minibeams, 123 Gy prescribed dose at 1 cm depth in the brain) or two interleaved incidences (54 Gy prescribed dose in a 5 Multiplication-Sign 5 Multiplication-Sign 4.8 mm{sup 3} volume centered in the right hemisphere), respectively. Magnetic resonance imaging (MRI) follow-up was performed over 1 year. T2-weighted (T2w) images, apparent diffusion coefficient (ADC), and blood vessel permeability maps were acquired. F98 tumor bearing rats were also irradiated with interleaved minibeams to achieve a homogeneous dose of 54 Gy delivered to an 8 Multiplication-Sign 8 Multiplication-Sign 7.8 mm{sup 3} volume centered on the tumor. Anatomic and functional MRI follow-up was performed every 10 days after irradiation. T2w images, ADC, and perfusion maps were acquired. Results: All healthy rats were euthanized 1 year after irradiation without any clinical alteration visible by simple examination. T2w and ADC measurements remain stable for the single incidence irradiation group. Localized Gd-DOTA permeability, however, was observed 9 months after irradiation for the interleaved incidences group. The survival time of irradiated glioma bearing rats was significantly longer than that of untreated animals (49 {+-} 12.5 days versus 23.3 {+-} 2 days, p < 0.001). The tumoral cerebral blood flow and blood volume tend to decrease after irradiation. Conclusions: This study demonstrates the sparing effect of minibeams on healthy tissue. The increased life span achieved for irradiated glioma bearing rats was similar to the one obtained with other radiotherapy techniques. This experimental tumor therapy study shows the feasibility of using X-ray minibeams with high doses in brain tumor radiotherapy.

  17. Quinacrine enhances carmustine therapy of experimental rat glioma.

    Science.gov (United States)

    Reyes, S; Herrera, L A; Ostrosky, P; Sotelo, J

    2001-10-01

    The high rate of mutagenesis in malignant cells has been considered to be a primary factor in the appearance of chemotherapy-resistant cell clones in glioblastomas. Quinacrine binds strongly to deoxyribonucleic acid, preventing mutagenesis. We investigated whether quinacrine could improve carmustine therapy in C6 cell cultures and in C6 malignant gliomas implanted subcutaneously into Wistar rats. A potential chemopreventive effect of quinacrine on acquired resistance to carmustine therapy was studied in vitro and in vivo. Deoxyribonucleic acid damage was measured in cultured C6 cells by using the micronucleus test. Wistar rats with subcutaneously implanted C6 gliomas were treated with carmustine, quinacrine, or carmustine plus quinacrine, using pharmacological schemes similar to those used for human patients. The addition of quinacrine to cultured C6 cells did not modify carmustine-induced cytotoxicity; however, the deoxyribonucleic acid damage in surviving cells was minor, as indicated by the frequency of micronucleated cells. The surviving cells continued to be susceptible to a second exposure to carmustine, in contrast to non-quinacrine-treated control cells, which developed resistance to carmustine in a subsequent exposure (P < 0.05). The rate of tumor remission was higher for glioma-bearing rats treated with quinacrine plus carmustine, compared with rats treated with carmustine alone (P < 0.01). The addition of quinacrine to carmustine therapy increases the antineoplastic effect of the carmustine therapy. Our results suggest that chemical inhibition of mutagenesis in malignant glial cells during chemotherapy prevents the appearance of resistant clones.

  18. Extracellular diffusion quantified by magnetic resonance imaging during rat C6 glioma cell progression

    Directory of Open Access Journals (Sweden)

    G. Song

    Full Text Available Solution reflux and edema hamper the convection-enhanced delivery of the standard treatment for glioma. Therefore, a real-time magnetic resonance imaging (MRI method was developed to monitor the dosing process, but a quantitative analysis of local diffusion and clearance parameters has not been assessed. The objective of this study was to compare diffusion into the extracellular space (ECS at different stages of rat C6 gliomas, and analyze the effects of the extracellular matrix (ECM on the diffusion process. At 10 and 20 days, after successful glioma modeling, gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA was introduced into the ECS of rat C6 gliomas. Diffusion parameters and half-life of the reagent were then detected using MRI, and quantified according to the mathematical model of diffusion. The main ECM components [chondroitin sulfate proteoglycans (CSPGs, collagen IV, and tenascin C] were detected by immunohistochemical and immunoblot analyses. In 20-day gliomas, Gd-DTPA diffused more slowly and derived higher tortuosity, with lower clearance rate and longer half-life compared to 10-day gliomas. The increased glioma ECM was associated with different diffusion and clearance parameters in 20-day rat gliomas compared to 10-day gliomas. ECS parameters were altered with C6 glioma progression from increased ECM content. Our study might help better understand the glioma microenvironment and provide benefits for interstitial drug delivery to treat brain gliomas.

  19. Solid lipid nanoparticles by coacervation loaded with a methotrexate prodrug: preliminary study for glioma treatment.

    Science.gov (United States)

    Battaglia, Luigi; Muntoni, Elisabetta; Chirio, Daniela; Peira, Elena; Annovazzi, Laura; Schiffer, Davide; Mellai, Marta; Riganti, Chiara; Salaroglio, Iris Chiara; Lanotte, Michele; Panciani, Pierpaolo; Capucchio, Maria Teresa; Valazza, Alberto; Biasibetti, Elena; Gallarate, Marina

    2017-03-01

    Methotrexate-loaded biocompatible nanoparticles were tested for preliminary efficacy in glioma treatment. Behenic acid nanoparticles, prepared by the coacervation method, were loaded with the ester prodrug didodecylmethotrexate, which was previously tested in vitro against glioblastoma human primary cultures. Nanoparticle conjugation with an ApoE mimicking chimera peptide was performed to obtain active targeting to the brain. Biodistribution studies in healthy rats assessed the superiority of ApoE-conjugated formulation, which was tested on an F98/Fischer glioma model. Differences were observed in tumor growth rate (measured by MRI) between control and treated rats. In vitro tests on F98 cultured cells assessed their susceptibility to treatment, with consequent apoptosis, and allowed us to explain the apoptosis observed in glioma models.

  20. Radiation and drug response of the rat glioma RG2

    International Nuclear Information System (INIS)

    Weizsaecker, M.; Nagamune, A.; Winkelstroeter, R.; Vieten, H.; Wechsler, W.

    1982-01-01

    A clonogenic cell assay was developed for the chemically induced rat glioma RG2 that allows in vivo, in vitro, and in vivo to in vitro studies of cell survival after experimental therapy. RG2 monolayer cells were resistant to BCNU up to high concentrations. The x-radiation survival curves were characterized by a D 0 of 2.4 gray and n = 2.2 for monolayer cells, a D 0 of 3.5 gray and n = 1.3 for cells irradiated as brain tumors in air-breathing rats, and a D 0 of 5.9 gray and n = 1.2 for cells irradiated as brain tumors in nitrogen-asphyxiated rats. There was no evidence of a radiobiologically hypoxic fraction of cells in the brain tumors, but their radiosensitivity was definitely smaller than that of monolayer cells. (author)

  1. Establishment of SHG-44 human glioma model in brain of wistar rat with stereotactic technique

    International Nuclear Information System (INIS)

    Hong Xinyu; Luo Yi'nan; Fu Shuanglin; Wang Zhanfeng; Bie Li; Cui Jiale

    2004-01-01

    Objective: To establish solid intracerebral human glioma model in Wistar rat with xenograft methods. Methods: The SHG-44 cells were injected into brain right caudate nucleus of previous immuno-inhibitory Wistar rats with stereotactic technique. The MRI scans were performed at 1 week and 2 weeks later after implantation. After 2 weeks the rats were killed and pathological examination and immunohistologic stain for human GFAP were used. Results: The MRI scan after 1 week of implantation showed the glioma was growing, pathological histochemical examination demonstrated the tumor was glioma. Human GFAP stain was positive. The growth rate of glioma model was about 60%. Conclusion: Solid intracerebral human glioma model in previous immuno-inhibitory Wistar rat is successfully established

  2. Neutron capture therapy of an Egf receptor positive glioma using boronated cetuximab alone or in combination with boronophenylalanine

    International Nuclear Information System (INIS)

    Wu, Gong; Yang, Weilian; Barth, Rolf F.

    2006-01-01

    The purpose of the present study was to evaluate the monoclonal antibody cetuximab (IMC-C225), which is directed against EGFR, as a boron delivery agent for NCT of a human EGFR gene transfected rat glioma, designated F98 EGFR . A heavily boronated polyamidoamine (PAMAM) dendrimer (BD) was chemically linked to cetuximab by means of heterobifunctional reagents. In vitro, the bioconjugate (BD-C225) was specifically taken up by F98 EGFR glioma cells (41.8 μg/g) compared to receptor (-) F98 WT cells (9.1 μg/g). Glioma cells were stereotactically implanted into the brains of Fischer rats and biodistribution studies were initiated 14 d later. The amount of boron retained by F98 EGFR gliomas 24 h following either convection enhanced delivery (CED) or intratumoral (i.t.) injection were 77.2 and 50.8 μg/g, respectively, and normal brain and blood values were 180 d) compared to 40 d for i.v. BPA alone and 31 d and 26 d for irradiated and untreated controls, respectively. Our data convincingly demonstrate the therapeutic efficacy of molecular targeting of EGFR using either boronated cetuximab alone or in combination with BPA and should provide a platform for the future development of combinations of high and low molecular weight delivery agents for BNCT of brain tumors. (author)

  3. MRI and morphological observation in C6 glioma model rats and significance

    International Nuclear Information System (INIS)

    Zhou Ying; Yuan Bo; Wang Hao; Lu Jin; Yuan Changji; Ma Yue; Tong Dan; Zhang Kun; Gao Feng; Wu Xiaogang

    2013-01-01

    Objective: To establish stable and reliable rat C6 glioma model, and to perform MRI dynamic observation and pathomorphological observation in model animal brain, and to provide experimental basis for pharmaceutical research on anti-glioma drugs. Methods: The C6 glioma cells were cultured and 20 μL cultural fluid containing 1×10 6 C6 cells was sterotactically implanted into the left caudate nuclei in 10 male Wistar rats, respectively. The changes in the behavior of the rats after implantation were observed and recorded. MRI dynamic scanning was performed in 10 rats 2, 3 and 4 weeks after implantation and the brain tissues were taken for general and pathological examination when the 10 rats were naturally dead. The survival period of tumor-bearing rats was calculated. Results: 2 weeks after implantation the rats showed decreased activities and food intake, fur lackluster, and conjunctival congestion and so on; 3 weeks later, some rats appeared nerve symptoms such as body twitch, body hemiplegy, body distortion, rotation and so on. All the 10 rats died in 8-30 d. The median survival period of the tumor-bearing rats was 18 d, the average survival period was (18.3±7.3) d. The pathological examination showed that the tumor cells were arranged irregularly closely and karyokinesis was easy to see; tumor vascular tissue proliferation and tumor invasive growth into surrounding normal tissues were found. The expression of glial fibrillary acidic protein (GFAP) was positive in the tumors. Conclusion: A stable animal model of intracranial glioma is successfully established by stereotactic implantation of C6 cells into the rat caudate nucleus. The results of MRI dynamic observation and pathohistological observation on the model animal brain tissue. Can provide experimental basis for selecting the appropriate time window to perform the pharmaceutical research on anti-glioma drugs. (authors)

  4. In vivo detection of c-Met expression in a rat C6 glioma model.

    Science.gov (United States)

    Towner, R A; Smith, N; Doblas, S; Tesiram, Y; Garteiser, P; Saunders, D; Cranford, R; Silasi-Mansat, R; Herlea, O; Ivanciu, L; Wu, D; Lupu, F

    2008-01-01

    The tyrosine kinase receptor, c-Met, and its substrate, the hepatocyte growth factor (HGF), are implicated in the malignant progression of glioblastomas. In vivo detection of c-Met expression may be helpful in the diagnosis of malignant tumours. The C6 rat glioma model is a widely used intracranial brain tumour model used to study gliomas experimentally. We used a magnetic resonance imaging (MRI) molecular targeting agent to specifically tag the cell surface receptor, c-Met, with an anti-c-Met antibody (Ab) linked to biotinylated Gd (gadolinium)-DTPA (diethylene triamine penta acetic acid)-albumin in rat gliomas to detect overexpression of this antigen in vivo. The anti-c-Met probe (anti-c-Met-Gd-DTPA-albumin) was administered intravenously, and as determined by an increase in MRI signal intensity and a corresponding decrease in regional T(1) relaxation values, this probe was found to detect increased expression of c-Met protein levels in C6 gliomas. In addition, specificity for the binding of the anti-c-Met contrast agent was determined by using fluorescence microscopic imaging of the biotinylated portion of the targeting agent within neoplastic and 'normal'brain tissues following in vivo administration of the anti-c-Met probe. Controls with no Ab or with a normal rat IgG attached to the contrast agent component indicated no non-specific binding to glioma tissue. This is the first successful visualization of in vivo overexpression of c-Met in gliomas.

  5. Induction of selective blood-tumor barrier permeability and macromolecular transport by a biostable kinin B1 receptor agonist in a glioma rat model.

    Science.gov (United States)

    Côté, Jérôme; Bovenzi, Veronica; Savard, Martin; Dubuc, Céléna; Fortier, Audrey; Neugebauer, Witold; Tremblay, Luc; Müller-Esterl, Werner; Tsanaclis, Ana-Maria; Lepage, Martin; Fortin, David; Gobeil, Fernand

    2012-01-01

    Treatment of malignant glioma with chemotherapy is limited mostly because of delivery impediment related to the blood-brain tumor barrier (BTB). B1 receptors (B1R), inducible prototypical G-protein coupled receptors (GPCR) can regulate permeability of vessels including possibly that of brain tumors. Here, we determine the extent of BTB permeability induced by the natural and synthetic peptide B1R agonists, LysdesArg(9)BK (LDBK) and SarLys[dPhe(8)]desArg(9)BK (NG29), in syngeneic F98 glioma-implanted Fischer rats. Ten days after tumor inoculation, we detected the presence of B1R on tumor cells and associated vasculature. NG29 infusion increased brain distribution volume and uptake profiles of paramagnetic probes (Magnevist and Gadomer) at tumoral sites (T(1)-weighted imaging). These effects were blocked by B1R antagonist and non-selective cyclooxygenase inhibitors, but not by B2R antagonist and non-selective nitric oxide synthase inhibitors. Consistent with MRI data, systemic co-administration of NG29 improved brain tumor delivery of Carboplatin chemotherapy (ICP-Mass spectrometry). We also detected elevated B1R expression in clinical samples of high-grade glioma. Our results documented a novel GPCR-signaling mechanism for promoting transient BTB disruption, involving activation of B1R and ensuing production of COX metabolites. They also underlined the potential value of synthetic biostable B1R agonists as selective BTB modulators for local delivery of different sized-therapeutics at (peri)tumoral sites.

  6. Induction of selective blood-tumor barrier permeability and macromolecular transport by a biostable kinin B1 receptor agonist in a glioma rat model.

    Directory of Open Access Journals (Sweden)

    Jérôme Côté

    Full Text Available Treatment of malignant glioma with chemotherapy is limited mostly because of delivery impediment related to the blood-brain tumor barrier (BTB. B1 receptors (B1R, inducible prototypical G-protein coupled receptors (GPCR can regulate permeability of vessels including possibly that of brain tumors. Here, we determine the extent of BTB permeability induced by the natural and synthetic peptide B1R agonists, LysdesArg(9BK (LDBK and SarLys[dPhe(8]desArg(9BK (NG29, in syngeneic F98 glioma-implanted Fischer rats. Ten days after tumor inoculation, we detected the presence of B1R on tumor cells and associated vasculature. NG29 infusion increased brain distribution volume and uptake profiles of paramagnetic probes (Magnevist and Gadomer at tumoral sites (T(1-weighted imaging. These effects were blocked by B1R antagonist and non-selective cyclooxygenase inhibitors, but not by B2R antagonist and non-selective nitric oxide synthase inhibitors. Consistent with MRI data, systemic co-administration of NG29 improved brain tumor delivery of Carboplatin chemotherapy (ICP-Mass spectrometry. We also detected elevated B1R expression in clinical samples of high-grade glioma. Our results documented a novel GPCR-signaling mechanism for promoting transient BTB disruption, involving activation of B1R and ensuing production of COX metabolites. They also underlined the potential value of synthetic biostable B1R agonists as selective BTB modulators for local delivery of different sized-therapeutics at (peritumoral sites.

  7. Aberrant rhythmic expression of cryptochrome2 regulates the radiosensitivity of rat gliomas.

    Science.gov (United States)

    Fan, Wang; Caiyan, Li; Ling, Zhu; Jiayun, Zhao

    2017-09-29

    In this study, we investigated the role of the clock regulatory protein cryptochrome 2 (Cry2) in determining the radiosensitivity of C6 glioma cells in a rat model. We observed that Cry2 mRNA and protein levels showed aberrant rhythmic periodicity of 8 h in glioma tissues, compared to 24 h in normal brain tissue. Cry2 mRNA and protein levels did not respond to irradiation in normal tissues, but both were increased at the ZT4 (low Cry2) and ZT8 (high Cry2) time points in gliomas. Immunohistochemical staining of PCNA and TUNEL assays demonstrated that high Cry2 expression in glioma tissues was associated with increased cell proliferation and decreased apoptosis. Western blot analysis showed that glioma cell fate was independent of p53, but was probably dependent on p73, which was more highly expressed at ZT4 (low Cry2) than at ZT8 (high Cry2). Levels of both p53 and p73 were unaffected by irradiation in normal brain tissues. These findings suggest aberrant rhythmic expression of Cry2 influence on radiosensitivity in rat gliomas.

  8. DNA lability induced by nimustine and ramustine in rat glioma cells.

    Science.gov (United States)

    Mineura, K; Fushimi, S; Itoh, Y; Kowada, M

    1988-01-01

    The DNA labile sites induced by two nitrosoureas, nimustine (ACNU) and ramustine (MCNU) synthesised in Japan, have been examined in highly reiterated DNA sequences of rat glioma cells. Reiterated fragments of 167 and 203 base pairs (bp), obtained after Hind III and Hae III restriction endonuclease digestion of rat glioma cells DNA, were used as target DNA sequences to determine the labile sites. In vitro reaction with ACNU and MCNU resulted in scission products corresponding to the locations of guanine. Subsequent piperidine hydrolysis produced more frequent breaks of the phosphodiester bonds at guanine positions, thus forming alkali-labile sites. Images PMID:3236017

  9. Treatment of rat gliomas with recombinant retrovirus harboring Herpes simplex virus thymidine kinase suicide gene

    International Nuclear Information System (INIS)

    Hlavaty, J.; Hlubinova, K.; Altanerova, V.; Liska, J.; Altaner, C.

    1997-01-01

    The retrovirus vector containing Herpes simplex virus type 1 thymidine kinase (HSVtk) gene was constructed. The vector was transfected into the packaging cell line PG13. It was shown that individual transfected cells differ in the production of recombinant retrovirus and in their susceptibility to be killed by ganciclovir. Recombinant retrovirus with a gibbon envelope was able to transduced the HSVtk gene into rat glioma cells. In vivo studies confirmed the ability of intraperitoneal ganciclovir administration to influence subcutaneous and intracerebral tumors developed after injection of C 6 rat glioma cells with subsequent injection of HSVtk retrovirus producing cells. (author)

  10. Antitumor Activity of Rat Mesenchymal Stem Cells during Direct or Indirect Co-Culturing with C6 Glioma Cells.

    Science.gov (United States)

    Gabashvili, A N; Baklaushev, V P; Grinenko, N F; Mel'nikov, P A; Cherepanov, S A; Levinsky, A B; Chehonin, V P

    2016-02-01

    The tumor-suppressive effect of rat mesenchymal stem cells against low-differentiated rat C6 glioma cells during their direct and indirect co-culturing and during culturing of C6 glioma cells in the medium conditioned by mesenchymal stem cells was studied in an in vitro experiment. The most pronounced antitumor activity of mesenchymal stem cells was observed during direct co-culturing with C6 glioma cells. The number of live C6 glioma cells during indirect co-culturing and during culturing in conditioned medium was slightly higher than during direct co-culturing, but significantly differed from the control (C6 glioma cells cultured in medium conditioned by C6 glioma cells). The cytotoxic effect of medium conditioned by mesenchymal stem cells was not related to medium depletion by glioma cells during their growth. The medium conditioned by other "non-stem" cells (rat astrocytes and fibroblasts) produced no tumor-suppressive effect. Rat mesenchymal stem cells, similar to rat C6 glioma cells express connexin 43, the main astroglial gap junction protein. During co-culturing, mesenchymal stem cells and glioma C6 cells formed functionally active gap junctions. Gap junction blockade with connexon inhibitor carbenoxolone attenuated the antitumor effect observed during direct co-culturing of C6 glioma cells and mesenchymal stem cells to the level produced by conditioned medium. Cell-cell signaling mediated by gap junctions can be a mechanism of the tumor-suppressive effect of mesenchymal stem cells against C6 glioma cells. This phenomenon can be used for the development of new methods of cell therapy for high-grade malignant gliomas.

  11. Study of apoptosis and Caspase-3, Fas expression in rat glioma after treatment with gamma knife

    International Nuclear Information System (INIS)

    Zhao Qingqiu; Zhao Wenqing; Yue Xiangyong; Du Yali; Dong Liying; Zhou Lixia

    2003-01-01

    Objective: To investigate the apoptosis and Caspase-3, Fas expression in rat glioma after treatment with gamma knife. Methods: Setting up C6 glioma model with 60 rats, which were divided into a treatment group ( n= 30) and a control group (n=30). On the 14 th day after planting glioma cells, rats of the treatment group were subjected to gamma knife irradiation. At the 12 th hr, 24 th hr, 48 th hr, 7 th day, 14 th day, 21 st day, flow cytometry was performed to estimate the glioma cells' apoptosis and the expression of Caspase-3 and Fas. The relation between apoptosis and the two kinds of proteins was analysed. Results: Compared with the control group, the apoptosis rate of the glioma cells in the treatment group increased obviously (P th hr reached its peak, then decreased gradually. The expression of Caspase-3 and Fas was positively correlated with apoptosis (r 1 =0.928, r 2 =0.916). Conclusion: The apoptosis of the tumor cells is a kind of effect of gamma knife treatment. Caspase-3 and Fas gene may take part in the regulation of apoptosis

  12. Reproducibility of O-(2-{sup 18}F-fluoroethyl)-L-tyrosine uptake kinetics in brain tumors and influence of corticoid therapy: an experimental study in rat gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Stegmayr, Carina; Schoeneck, Michael; Oliveira, Dennis; Willuweit, Antje [Institute of Neuroscience and Medicine, Research Center Juelich, Juelich (Germany); Filss, Christian; Coenen, Heinz H.; Langen, Karl-Josef [Institute of Neuroscience and Medicine, Research Center Juelich, Juelich (Germany); University of Aachen, Department of Nuclear Medicine and Neurology, Aachen (Germany); Galldiks, Norbert [Institute of Neuroscience and Medicine, Research Center Juelich, Juelich (Germany); University of Cologne, Department of Neurology, Cologne (Germany); Shah, N. Jon [Institute of Neuroscience and Medicine, Research Center Juelich, Juelich (Germany); University of Aachen, Department of Nuclear Medicine and Neurology, Aachen (Germany); Juelich-Aachen Research Alliance (JARA) - Section JARA-Brain, Juelich (Germany)

    2016-06-15

    Positron emission tomography (PET) using O-(2-{sup 18}F-fluoroethyl)-L-tyrosine ({sup 18}F-FET) is a well-established method for the diagnostics of brain tumors. This study investigates reproducibility of {sup 18}F-FET uptake kinetics in rat gliomas and the influence of the frequently used dexamethasone (Dex) therapy. F98 glioma or 9L gliosarcoma cells were implanted into the striatum of 31 Fischer rats. After 10-11 days of tumor growth, the animals underwent dynamic PET after injection of {sup 18}F-FET (baseline). Thereafter, animals were divided into a control group and a group receiving Dex injections, and all animals were reinvestigated 2 days later. Tumor-to-brain ratios (TBR) of {sup 18}F-FET uptake (18-61 min p.i.) and the slope of the time-activity-curves (TAC) (18-61 min p.i.) were evaluated using a Volume-of-Interest (VOI) analysis. Data were analyzed by two-way repeated measures ANOVA and reproducibility by the intraclass correlation coefficient (ICC). The slope of the tumor TACs showed high reproducibility with an ICC of 0.93. A systematic increase of the TBR in the repeated scans was noted (3.7 ± 2.8 %; p < 0.01), and appeared to be related to tumor growth as indicated by a significant correlation of TBR and tumor volume (r = 0.77; p < 0.0001). After correction for tumor growth TBR showed high longitudinal stability with an ICC of 0.84. Dex treatment induced a significant decrease of the TBR (-8.2 ± 6.1 %; p < 0.03), but did not influence the slope of the tumor TAC. TBR of {sup 18}F-FET uptake and tracer kinetics in brain tumors showed high longitudinal stability. Dex therapy may induce a minor decrease of the TBR; this needs further investigation. (orig.)

  13. Radiation immunomodulatory gene tumor therapy of rats with intracerebral glioma tumors

    DEFF Research Database (Denmark)

    Persson, Bertil R R; Koch, Catrin Bauréus; Grafström, Gustav

    2010-01-01

    Single-fraction radiation therapy with 5 or 15 Gy (60)Co gamma radiation was combined with intraperitoneal injections of syngeneic interferon gamma (IFN-gamma)-transfected cells in rats with intracerebral N29 or N32 glioma tumors at days 7, 21 and 35 after inoculation. For intracerebral N29 tumor...

  14. Establishment of 9L/F344 rat intracerebral glioma model of brain tumor stem cells

    Directory of Open Access Journals (Sweden)

    Zong-yu XIAO

    2015-04-01

    Full Text Available Objective To establish the 9L/F344 rat intracerebral glioma model of brain tumor stem cells.  Methods Rat 9L gliosarcoma stem-like cells were cultured in serum-free suspension. The expression of CD133 and nestin were tested by immunohistochemistry. A total of 48 inbredline male F344 rats were randomly divided into 2 groups, and 9L tumor sphere cells and 9L monolayer cells were respectively implanted into the right caudate nucleus of F344 rats in 2 groups. Survival time was observed and determined using the method of Kaplan-Meier survival analysis. Fourteen days after implantation or when the rats were dying, their brains were perfused and sectioned for HE staining, and CD133 and nestin were detected by immunohistochemistry.  Results Rat 9L tumor spheres were formed with suspension culture in serum-free medium. The gliomas formed in both groups were invasive without obvious capsule. More new vessels, bleeding and necrosis could be detected in 9L tumor spheres group. The tumor cells in both groups were positive for CD133 and nestin. There was no significant difference in the expression of CD133 and nestin between 2 groups (P > 0.05, for all. According to the expression of nestin, the tumors formed by 9L tumor sphere cells were more invasive. The median survival time of the rats bearing 9L tumor sphere cells was 15 d (95%CI: 15.219-15.781, and the median survival time of the rats bearing 9L monolayer cells was 21 d (95%CI: 20.395-21.605. There was significant difference between 2 groups (χ2 = 12.800, P = 0.000.  Conclusions 9L/F344 rat intracerebral glioma model of brain tumor stem cells is successfully established, which provides a glioma model for the future research. DOI: 10.3969/j.issn.1672-6731.2015.04.012

  15. Repeated assessment of orthotopic glioma pO2 by multi-site EPR oximetry: A technique with the potential to guide therapeutic optimization by repeated measurements of oxygen

    Science.gov (United States)

    Khan, Nadeem; Mupparaju, Sriram; Hou, Huagang; Williams, Benjamin B.; Swartz, Harold

    2011-01-01

    Tumor hypoxia plays a vital role in therapeutic resistance. Consequently, measurements of tumor pO2 could be used to optimize the outcome of oxygen-dependent therapies, such as, chemoradiation. However, the potential optimizations are restricted by the lack of methods to repeatedly and quantitatively assess tumor pO2 during therapies, particularly in gliomas. We describe the procedures for repeated measurements of orthotopic glioma pO2 by multi-site electron paramagnetic resonance (EPR) oximetry. This oximetry approach provides simultaneous measurements of pO2 at more than one site in the glioma and contralateral cerebral tissue. The pO2 of intracerebral 9L, C6, F98 and U251 tumors, as well as contralateral brain, were measured repeatedly for five consecutive days. The 9L glioma was well oxygenated with pO2 of 27 - 36 mm Hg, while C6, F98 and U251 glioma were hypoxic with pO2 of 7 - 12 mm Hg. The potential of multi-site EPR oximetry to assess temporal changes in tissue pO2 was investigated in rats breathing 100% O2. A significant increase in F98 tumor and contralateral brain pO2 was observed on day 1 and day 2, however, glioma oxygenation declined on subsequent days. In conclusion, EPR oximetry provides the capability to repeatedly assess temporal changes in orthotopic glioma pO2. This information could be used to test and optimize the methods being developed to modulate tumor hypoxia. Furthermore, EPR oximetry could be potentially used to enhance the outcome of chemoradiation by scheduling treatments at times of increase in glioma pO2. PMID:22079559

  16. 5-Aminolevulinic acid-mediated sonosensitization of rat RG2 glioma cells in vitro

    Directory of Open Access Journals (Sweden)

    Krzysztof Bilmin

    2016-10-01

    Full Text Available Sonodynamic therapy (SDT is a promising technique based on the ability of certain substances, called sonosensitizers, to sensitize cancer cells to non-thermal effects of low-energy ultrasound waves, allowing their destruction. Sonosensitization is thought to induce cell death by direct physical effects such as cavitation and acoustical streaming as well as by complementary chemical reactions generating oxygen free radicals. One of the promising sonosensitizers is 5-aminolevulinic acid (ALA which upon selective uptake by cancer cells is metabolized and accumulated as protoporphyrin IX. The objective of the study was to describe ALA-mediated sonodynamic effects in vitro on a rat RG2 glioma cell line. Glioma cells, seeded at the bottom of 96-well plates and incubated with ALA (10 µg/ml for 6 h, were exposed to the sinusoidal US pulses with a resonance frequency of 1 MHz, 1000 µs duration, 0.4 duty-cycle, and average acoustic power varying from 2 W to 6 W. Ultrasound waves were generated by a flat circular piezoelectric transducer with a diameter of 25 mm. Cell viability was determined by MTT assay. Structural cellular changes were visualized with a fluorescence microscope. Signs of cytotoxicity such as a decrease in cell viability, chromatin condensation and apoptosis were found. ALA-mediated SDT evokes cytotoxic effects of low intensity US on rat RG2 glioma cells in vitro . This cell line is indicated for further preclinical assessment of SDT in in vivo conditions.

  17. Functional response of tumor vasculature in rats' glioma to hypercarbia evaluated by MR perfusion weighted imaging

    International Nuclear Information System (INIS)

    Zhang Qingbo; Feng Xiaoyuan; Liang Zonghui; Chen Shuan

    2008-01-01

    Objective: To evaluate the feasibility of MR PWI in judging maturity and variability of tumor vasculature in gliomas in rats. Methods: Twenty male SD rats were randomly assigned to tumor group and control group. Four weeks after implantation of C6 glioma cells in the brains of tumor group and injection of saline in the brains of control group, all rats were examined using MR PWI before and after inhalation of a mixture of 10% CO2 and 90% air. PaCO 2 and blood pH values of rats were monitored. Relative cerebral blood volume (rCBV) and relative cerebral blood flow(rCBF) values of tumors and normal brain tissue were measured. Brain sample were examined histologically using HE and immunohistochemical staining for smooth muscle actin(SMA). The histological features of gliomas were observed and SMA positively stained vessels of each tumor were counted manually using a light microscope. Perfusion data and pathological findings were analyzed statistically with SPSS for Windows. Results: PaCO 2 increased significantly [from(4.69±0.62)kPa to (7.62±0.81) kPa in tumor group and from (4.67±0.51) kPa to (7.63±0.78) kPa in control group, P 0.05), while changing rate of rCBV, rCBF in normal brain tissue correlated well with number of positive SMA labeled vessels (r=0.721 and 0.525, P 2 increase in the normal brain and in the tumor. It may be a useful technique to measure maturity of tumor vessels. (authors)

  18. Capillary electrophoresis - Mass spectrometry metabolomics analysis revealed enrichment of hypotaurine in rat glioma tissues.

    Science.gov (United States)

    Gao, Peng; Ji, Min; Fang, Xueyan; Liu, Yingyang; Yu, Zhigang; Cao, Yunfeng; Sun, Aijun; Zhao, Liang; Zhang, Yong

    2017-11-15

    Glioma is one of the most lethal brain malignancies with unknown etiologies. Many metabolomics analysis aiming at diverse kinds of samples had been performed. Due to the varied adopted analytical platforms, the reported disease-related metabolites were not consistent across different studies. Comparable metabolomics results are more likely to be acquired by analyzing the same sample types with identical analytical platform. For tumor researches, tissue samples metabolomics analysis own the unique advantage that it can gain more direct insight into disease-specific pathological molecules. In this light, a previous reported capillary electrophoresis - mass spectrometry human tissues metabolomics analysis method was employed to profile the metabolome of rat C6 cell implantation gliomas and the corresponding precancerous tissues. It was found that 9 metabolites increased in the glioma tissues. Of them, hypotaurine was the only metabolite that enriched in the malignant tissues as what had been reported in the relevant human tissues metabolomics analysis. Furthermore, hypotaurine was also proved to inhibit α-ketoglutarate-dependent dioxygenases (2-KDDs) through immunocytochemistry staining and in vitro enzymatic activity assays by using C6 cell cultures. This study reinforced the previous conclusion that hypotaurine acted as a competitive inhibitor of 2-KDDs and proved the value of metabolomics in oncology studies. Copyright © 2017. Published by Elsevier Inc.

  19. Interaction of hematoporphyrin derivative, light, and ionizing radiation in a rat glioma model

    International Nuclear Information System (INIS)

    Kostron, H.; Swartz, M.R.; Miller, D.C.; Martuza, R.L.

    1986-01-01

    The effects of hematoporphyrin derivative, light, and cobalt 60 ( 60 Co) irradiation were studied in a rat glioma model using an in vivo and an in vitro clonogenic assay. There was no effect on tumor growth by visible light or by a single dose of 60 Co irradiation at 4 Gy or 8 Gy, whereas 16 Gy inhibited tumor growth to 40% versus the control. Hematoporphyrin derivative alone slightly stimulated growth (P less than 0.1). Light in the presence of 10 mg hematoporphyrin derivative/kg inhibited tumor growth to 32%. 60 Co irradiation in the presence of hematoporphyrin derivative produced a significant tumor growth inhibition (P less than 0.02). This growth inhibition was directly related to the concentration of hematoporphyrin derivative. The addition of 60 Co to light in the presence of hematoporphyrin derivative produced a greater growth inhibition than light or 60 Co irradiation alone. This effect was most pronounced when light was applied 30 minutes before 60 Co irradiation. Our experiments in a subcutaneous rat glioma model suggest a radiosensitizing effect of hematoporphyrin derivative. Furthermore, the photodynamic inactivation is enhanced by the addition of 60 Co irradiation. These findings may be of importance in planning new treatment modalities in malignant brain tumors

  20. Effect of hyperthermia in combination with radiation therapy in a rat glioma model

    International Nuclear Information System (INIS)

    Tamura, Masaru; Zama, Akira; Kunimine, Hideo; Tamaki, Yoshio; Niibe, Hideo

    1988-01-01

    Rat glioma model was used to evaluate the effect of hyperthermia with and without radiation therapy. The animal model was induced by left frontal burr hole opening and inoculation of a small piece of G-XII glioma tissue to 6- to 8-week-old rats. The therapeutical experiments were given 10 - 14 days after inoculation of the tumor. Interstitial heating at 44 and 45 deg C at the surface of the inserting probe using 2450 MHz microwave was delivered for 30 minutes. Deep X-ray whole head irradiation of 800 R using Stabilipan 2 (Siemens) was given just after the hyperthermia therapy. The survival of treated animals of hyperthermia, radiation, and combination of hyperthermia and radiation was significantly superior to that of non-treated control group. There was no significant difference of survival among the treated groups, though median survival was longest in the group of combination therapy of hyperthermia and radiation. Large tumors developed at the time of death in all the control and the treated animals. Histological examination showed some tendencies of macrophage infiltration in tumor tissue of hyperthermia therapy. (author)

  1. Early effects of boron neutron capture therapy on rat glioma models

    International Nuclear Information System (INIS)

    Nakagawa, N.; Akai, F.; Fukawa, N.; Taneda, M.; Ono, K.; Suzuki, M.

    2006-01-01

    Early effects of boron neutron capture therapy on malignant gliomas are characterized by reduction of the enhanced area regression of the peritumoral edema radiologically. The aim of this study is to investigate the early histological changes of tumors and inflammatory cells after BNCT in the rat brain. The rats were treated with BNCT using boronophenyialanine (BPA) 7 days after implantation of C6 glioma cells. The tumors were assessed their sizes and configurations with magnetic resonance imaging, then killed 4 days after BNCT. The mean tumor volumes were 39mm 3 in BNCT-treated group, and 138 mm 3 in the control group. In the histological examination, tumors of the BNCT group showed less pleomorphic appearance with atypical nuclei and mitotic figures, compared with the control group. Necrosis and edematous changes in the neuropile were negligible. There existed remnant tumors adjacent to the lateral ventricle. The reactions of the inflammatory cells were examined with ED-1 of macrophage marker. ED-1 positive cells and their processes were reduced in the marginal area of tumor in the BNCT group. BNCT reduce the tumor progression by suppression of the proliferation. Inhibition of the activated macrophages may reduce peritumoral edema in early phase. (author)

  2. Resistance to DNA Damaging Agents Produced Invasive Phenotype of Rat Glioma Cells—Characterization of a New in Vivo Model

    Directory of Open Access Journals (Sweden)

    Sonja Stojković

    2016-06-01

    Full Text Available Chemoresistance and invasion properties are severe limitations to efficient glioma therapy. Therefore, development of glioma in vivo models that more accurately resemble the situation observed in patients emerges. Previously, we established RC6 rat glioma cell line resistant to DNA damaging agents including antiglioma approved therapies such as 3-bis(2-chloroethyl-1-nitrosourea (BCNU and temozolomide (TMZ. Herein, we evaluated the invasiveness of RC6 cells in vitro and in a new orthotopic animal model. For comparison, we used C6 cells from which RC6 cells originated. Differences in cell growth properties were assessed by real-time cell analyzer. Cells’ invasive potential in vitro was studied in fluorescently labeled gelatin and by formation of multicellular spheroids in hydrogel. For animal studies, fluorescently labeled cells were inoculated into adult male Wistar rat brains. Consecutive coronal and sagittal brain sections were analyzed 10 and 25 days post-inoculation, while rats’ behavior was recorded during three days in the open field test starting from 25th day post-inoculation. We demonstrated that development of chemoresistance induced invasive phenotype of RC6 cells with significant behavioral impediments implying usefulness of orthotopic RC6 glioma allograft in preclinical studies for the examination of new approaches to counteract both chemoresistance and invasion of glioma cells.

  3. Neutron capture therapy of epidermal growth factor (+) gliomas using boronated cetuximab (IMC-C225) as a delivery agent

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Rolf F. E-mail: barth.1@osu.edu; Wu Gong; Yang Weilian; Binns, Peter J.; Riley, Kent J.; Patel, Hemant; Coderre, Jeffrey A.; Tjarks, Werner; Bandyopadhyaya, A.K.; Thirumamagal, B.T.S.; Ciesielski, Michael J.; Fenstermaker, Robert A

    2004-11-01

    Cetuximab (IMC-C225) is a monoclonal antibody directed against both the wild-type and mutant vIII isoform of the epidermal growth factor receptor (EGFR). The purpose of the present study was to evaluate the monoclonal antibody (MoAb), cetuximab, as a boron delivery agent for neutron capture therapy (NCT) of brain tumors. Twenty-four hours following intratumoral (i.t.) administration of boronated cetuximab (C225-G5-B{sub 1100}), the mean boron concentration in rats bearing either F98{sub EGFR} or F98{sub WT} gliomas were 92.3{+-}23.3 {mu}g/g and 36.5{+-}18.8 {mu}g/g, respectively. In contrast, the uptake of boronated dendrimer (G5-B{sub 1000}) was 6.7{+-}3.6 {mu}g/g. Based on its favorable in vivo uptake, C225-G5-B{sub 1100} was evaluated as a delivery agent for BNCT in F98{sub EGFR} glioma bearing rats. The mean survival time (MST) of rats that received C225-G5-B{sub 1100}, administered by convection enhanced delivery (CED), was 45{+-}3 d compared to 25{+-}3 d for untreated control animals. A further enhancement in MST to >59 d was obtained by administering C225-G5-B{sub 1100} in combination with i.v. boronophenylalanine (BPA). These data are the first to demonstrate the efficacy of a boronated MoAb for BNCT of an intracerebral (i.c.) glioma and are paradigmatic for future studies using a combination of boronated MoAbs and low molecular weight delivery agents.

  4. The Effect of Gabapentin and Tramadol in Cancer Pain Induced by Glioma Cell in Rat Femur.

    Science.gov (United States)

    Corona-Ramos, Janette Nallely; Déciga-Campos, Myrna; Romero-Piña, Mario; Medina, Luis A; Martínez-Racine, Issac; Jaramillo-Morales, Osmar A; García-López, Patricia; López-Muñoz, Francisco Javier

    2017-08-01

    Preclinical Research The presence of pain as part of the cancer process is variable. Glioblastoma multiform (GBM) can produce bone metastasis, a condition that involves other pathological phenotypes including neuropathic and inflammatory pain. Tramadol and gabapentin are drugs used in the treatment of neuropathic pain. However, there are no studies evaluating their analgesic effects in bone metastasis. We produced a pain model induced by the inoculation of glioma cells (10 5 ) into the rat femur, by perforating the intercodiloid fossa. Painful behavior was evaluated by measuring mechanical allodynia using the Von Frey test while thermal hyperalgesia was assessed in the plantar test. Histopathological features were evaluated and antinociceptive responses were compared using tramadol and gabapentin. The inoculation of cells inside the right femur produced nociceptive behaviors. Tramadol and gabapentin produced an anti-allodynic effect in this condition, but tramadol did not produce an anti-hyperalgesic response. The development of this model will allow us to perform tests to elucidate the pathology of bone metastasis, cancer pain, and in particular the pain produced by glioma. Drug Dev Res 78 : 173-183, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. MRI mediated, non-invasive tracking of intratumoral distribution of nanocarriers in rat glioma

    Energy Technology Data Exchange (ETDEWEB)

    Karathanasis, Efstathios; Park, Jaekeun; Agarwal, Abhiruchi; Patel, Vijal; Zhao Fuqiang; Hu Xiaoping; Bellamkonda, Ravi V [Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332 (United States); Annapragada, Ananth V [School of Health Information Sciences, University of Texas Health Science Center, 7000 Fannin Street, Houston, TX 77030 (United States)], E-mail: ravi@gatech.edu

    2008-08-06

    Nanocarrier mediated therapy of gliomas has shown promise. The success of systemic nanocarrier-based chemotherapy is critically dependent on the so-called leaky vasculature to permit drug extravasation across the blood-brain barrier. Yet, the extent of vascular permeability in individual tumors varies widely, resulting in a correspondingly wide range of responses to the therapy. However, there exist no tools currently for rationally determining whether tumor blood vessels are amenable to nanocarrier mediated therapy in an individualized, patient specific manner today. To address this need for brain tumor therapy, we have developed a multifunctional 100 nm scale liposomal agent encapsulating a gadolinium-based contrast agent for contrast-enhanced magnetic resonance imaging with prolonged blood circulation. Using a 9.4 T MRI system, we were able to track the intratumoral distribution of the gadolinium-loaded nanocarrier in a rat glioma model for a period of three days due to improved magnetic properties of the contrast agent being packaged in a nanocarrier. Such a nanocarrier provides a tool for non-invasively assessing the suitability of tumors for nanocarrier mediated therapy and then optimizing the treatment protocol for each individual tumor. Additionally, the ability to image the tumor in high resolution can potentially constitute a surgical planning tool for tumor resection.

  6. Impact of Focused Ultrasound-enhanced Drug Delivery on Survival in Rats with Glioma

    Science.gov (United States)

    Treat, Lisa Hsu; Zhang, Yongzhi; McDannold, Nathan; Hynynen, Kullervo

    2009-04-01

    Malignancies of the brain remain difficult to treat with chemotherapy because the selective permeability of the blood-brain barrier (BBB) blocks many potent agents from reaching their target. Previous studies have illustrated the feasibility of drug and antibody delivery across the BBB using MRI-guided focused ultrasound. In this study, we investigated the impact of focused ultrasound-enhanced delivery of doxorubicin on survival in rats with aggressive glioma. Sprague-Dawley rats were implanted with 9 L gliosarcoma cells in the brain. Eight days after implantation, each rat received one of the following: (1) no treatment (control), (2) a single treatment with microbubble-enhanced MRI-guided focused ultrasound (FUS only), (3) a single treatment with i.v. liposomal doxorubicin (DOX only), or (4) a single treatment with microbubble-enhanced MRI-guided focused ultrasound and concurrent i.v. injections of liposomal doxorubicin (FUS+DOX). The survival time from implantation to death or euthanasia was recorded. We observed a modest but significant increase in median survival time in rats treated with combined MRI-guided focused ultrasound chemotherapy, compared to chemotherapy alone (p0.10). Our study demonstrates for the first time a therapeutic benefit achieved with ultrasound-enhanced drug delivery across the blood-brain barrier. This confirmation of efficacy in an in vivo tumor model indicates that targeted drug delivery using MRI-guided focused ultrasound has the potential to have a major impact on the treatment of patients with brain tumors and other neurological disorders.

  7. Dopamine induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages in rat C6 glioma

    International Nuclear Information System (INIS)

    Qin, Tian; Wang, Chenlong; Chen, Xuewei; Duan, Chenfan; Zhang, Xiaoyan; Zhang, Jing; Chai, Hongyan; Tang, Tian; Chen, Honglei; Yue, Jiang; Li, Ying; Yang, Jing

    2015-01-01

    Dopamine (DA), a monoamine catecholamine neurotransmitter with antiangiogenic activity, stabilizes tumor vessels in colon, prostate and ovarian cancers, thus increases chemotherapeutic efficacy. Here, in the rat C6 glioma models, we investigated the vascular normalization effects of DA and its mechanisms of action. DA (25, 50 mg/kg) inhibited tumor growth, while a precursor of DA (levodopa) prolonged the survival time of rats bearing orthotopic C6 glioma. DA improved tumor perfusion, with significant effects from day 3, and a higher level at days 5 to 7. In addition, DA decreased microvessel density and hypoxia-inducible factor-1α expression in tumor tissues, while increasing the coverage of pericyte. Conversely, an antagonist of dopamine receptor 2 (DR2) (eticlopride) but not DR1 (butaclamol) abrogated DA-induced tumor regression and vascular normalization. Furthermore, DA improved the delivery and efficacy of temozolomide therapy. Importantly, DA increased representative M1 markers (iNOS, CXCL9, etc.), while decreasing M2 markers (CD206, arginase-1, etc.). Depletion of macrophages by clodronate or zoledronic acid attenuated the effects of DA. Notably, DA treatment induced M2-to-M1 polarization in RAW264.7 cells and mouse peritoneal macrophages, and enhanced the migration of pericyte-like cells (10T1/2), which was reversed by eticlopride or DR2-siRNA. Such changes were accompanied by the downregulation of VEGF/VEGFR2 signaling. In summary, DA induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages. Thus, targeting the tumor microvasculature by DA represents a promising strategy for human glioma therapy. - Highlights: • Dopamine induces tumor growth inhibition and vascular normalization in rat C6 glioma. • Dopamine switches macrophage phenotype from M2 to M1. • Dopamine-induced vascular normalization is mediated by macrophage polarization. • Dopamine is a promising agent targeting the microvasculature in tumor

  8. Dopamine induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages in rat C6 glioma

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Tian; Wang, Chenlong; Chen, Xuewei; Duan, Chenfan; Zhang, Xiaoyan [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Zhang, Jing [Animal Experimental Center of Wuhan University, Wuhan 430071 (China); Chai, Hongyan [Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Tang, Tian [Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060 (China); Chen, Honglei [Department of Pathology and Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Yue, Jiang [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Li, Ying, E-mail: lyying0@163.com [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Yang, Jing, E-mail: yangjingliu2013@163.com [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China)

    2015-07-15

    Dopamine (DA), a monoamine catecholamine neurotransmitter with antiangiogenic activity, stabilizes tumor vessels in colon, prostate and ovarian cancers, thus increases chemotherapeutic efficacy. Here, in the rat C6 glioma models, we investigated the vascular normalization effects of DA and its mechanisms of action. DA (25, 50 mg/kg) inhibited tumor growth, while a precursor of DA (levodopa) prolonged the survival time of rats bearing orthotopic C6 glioma. DA improved tumor perfusion, with significant effects from day 3, and a higher level at days 5 to 7. In addition, DA decreased microvessel density and hypoxia-inducible factor-1α expression in tumor tissues, while increasing the coverage of pericyte. Conversely, an antagonist of dopamine receptor 2 (DR2) (eticlopride) but not DR1 (butaclamol) abrogated DA-induced tumor regression and vascular normalization. Furthermore, DA improved the delivery and efficacy of temozolomide therapy. Importantly, DA increased representative M1 markers (iNOS, CXCL9, etc.), while decreasing M2 markers (CD206, arginase-1, etc.). Depletion of macrophages by clodronate or zoledronic acid attenuated the effects of DA. Notably, DA treatment induced M2-to-M1 polarization in RAW264.7 cells and mouse peritoneal macrophages, and enhanced the migration of pericyte-like cells (10T1/2), which was reversed by eticlopride or DR2-siRNA. Such changes were accompanied by the downregulation of VEGF/VEGFR2 signaling. In summary, DA induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages. Thus, targeting the tumor microvasculature by DA represents a promising strategy for human glioma therapy. - Highlights: • Dopamine induces tumor growth inhibition and vascular normalization in rat C6 glioma. • Dopamine switches macrophage phenotype from M2 to M1. • Dopamine-induced vascular normalization is mediated by macrophage polarization. • Dopamine is a promising agent targeting the microvasculature in tumor

  9. Effects of curcumin-loaded PLGA nanoparticles on the RG2 rat glioma model.

    Science.gov (United States)

    Orunoğlu, Merdan; Kaffashi, Abbas; Pehlivan, Sibel Bozdağ; Şahin, Selma; Söylemezoğlu, Figen; Oğuz, Kader Karli; Mut, Melike

    2017-09-01

    Curcumin, the active ingredient of turmeric, has a remarkable antitumor activity against various cancers, including glioblastoma. However, it has poor absorption and low bioavailability; thus, to cross the blood-brain barrier and reach tumor tissue, it needs to be transferred to tumor site by special drug delivery systems, such as nanoparticles. We aimed to evaluate the antitumor activity of curcumin on glioblastoma tissue in the rat glioma-2 (RG2) tumor model when it is loaded on poly(lactic-co-glycolic acid)-1,2-distearoyl-glycerol-3-phospho-ethanolamine-N-[methoxy (polyethylene glycol)-2000] ammonium salt (PLGA-DSPE-PEG) hybrid nanoparticles. Glioblastoma was induced in 42 adult female Wistar rats (250-300g) by RG2 tumor model. The curcumin-loaded nanoparticles were injected by intravenous (n=6) or intratumoral route (n=6). There were five control groups, each containing six rats. First control group was not applied any treatment. The remaining four control groups were given empty nanoparticles or curcumin alone by intravenous or intratumoral route, respectively. The change in tumor volume was assessed by magnetic resonance imaging and histopathology before and 5days after drug injections. Tumor size decreased significantly after 5days of intratumoral injection of curcumin-loaded nanoparticle (from 66.6±44.6 to 34.9±21.7mm 3 , p=0.028), whereas it significantly increased in nontreated control group (from 33.9±21.3 to 123.7±41.1mm 3 , p=0.036) and did not significantly change in other groups (p>0.05 for all). In this in vivo experimental model, intratumoral administration of curcumin-loaded PLGA-DSPE-PEG hybrid nanoparticles was effective against glioblastoma. Curcumine-loaded nanoparticles may have potential application in chemotherapy of glioblastoma. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effect of X-rays combined with ACNU and O sup 6 -ethylguanine on rat subcutaneous gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Kou; Katakura, Rhuichi; Mashiyama, Shoji; Yoshimoto, Takashi; Suzuki, Jiro (Tohoku Univ., Sendai (Japan). School of Medicine); Sasaki, Takehito

    1991-06-01

    Rat gliomas of subcutaneously transplanted RGc-6 cells were irradiated with X-ray either alone, or combined with ACNU, and the cell-survival was assayed in vitro. Cell-survival curve composed of two components by X-irradiation alone indicated the presence of a hypoxic cell fraction. We have previously shown that combined treatment with ACNU apparently made the effect of X-ray on spheroids in vitro of the same cell line of RGc-6 more powerful. Although treatment of rat gliomas with ACNU administered at 2 hrs prior to X-irradiation was most effective, it resulted in only the additive effect of the independent action of the two agents. Further treatment by O{sup 6}-ethylguanine prior to ACNU administration and X-irradiation apparently increased the strength of the effect of ACNU combined with X-ray to the dose-modifying factor for X-ray of 1.8. The result indicated that the combination of O{sup 6}-ethylguanine prior to ACNU administration and X-irradiation may clinically enhance the effect of X-ray against apparent ACNU-resistant glioma cells such as RGc-6 cells. (author).

  11. Local delivery of cancer-cell glycolytic inhibitors in high-grade glioma

    Science.gov (United States)

    Wicks, Robert T.; Azadi, Javad; Mangraviti, Antonella; Zhang, Irma; Hwang, Lee; Joshi, Avadhut; Bow, Hansen; Hutt-Cabezas, Marianne; Martin, Kristin L.; Rudek, Michelle A.; Zhao, Ming; Brem, Henry; Tyler, Betty M.

    2015-01-01

    Background 3-bromopyruvate (3-BrPA) and dichloroacetate (DCA) are inhibitors of cancer-cell specific aerobic glycolysis. Their application in glioma is limited by 3-BrPA's inability to cross the blood-brain-barrier and DCA's dose-limiting toxicity. The safety and efficacy of intracranial delivery of these compounds were assessed. Methods Cytotoxicity of 3-BrPA and DCA were analyzed in U87, 9L, and F98 glioma cell lines. 3-BrPA and DCA were incorporated into biodegradable pCPP:SA wafers, and the maximally tolerated dose was determined in F344 rats. Efficacies of the intracranial 3-BrPA wafer and DCA wafer were assessed in a rodent allograft model of high-grade glioma, both as a monotherapy and in combination with temozolomide (TMZ) and radiation therapy (XRT). Results 3-BrPA and DCA were found to have similar IC50 values across the 3 glioma cell lines. 5% 3-BrPA wafer-treated animals had significantly increased survival compared with controls (P = .0027). The median survival of rats with the 50% DCA wafer increased significantly compared with both the oral DCA group (P = .050) and the controls (P = .02). Rats implanted on day 0 with a 5% 3-BrPA wafer in combination with TMZ had significantly increased survival over either therapy alone. No statistical difference in survival was noted when the wafers were added to the combination therapy of TMZ and XRT, but the 5% 3-BrPA wafer given on day 0 in combination with TMZ and XRT resulted in long-term survivorship of 30%. Conclusion Intracranial delivery of 3-BrPA and DCA polymer was safe and significantly increased survival in an animal model of glioma, a potential novel therapeutic approach. The combination of intracranial 3-BrPA and TMZ provided a synergistic effect. PMID:25053853

  12. Nitric oxide donors attenuate clongenic potential in rat C6 glioma cells treated with alkylating chemotherapeutic agents.

    Science.gov (United States)

    Yang, Jir-Jei; Yin, Jiu-Haw; Yang, Ding-I

    2007-05-11

    1,3-Bis(2-chloroethyl)-1-nitrosourea (BCNU) kills tumor cells via multiple actions including alkylation and carbamoylation. Previously, we have reported that formation of S-nitrosoglutathione (GSNO) in glioma cells overexpressing inducible nitric oxide synthase (iNOS) contributed to nitric oxide (NO)-dependent carbamoylating chemoresistance against BCNU. To further characterize the effects of NO on alkylating cytotoxicity, colony formation assay was applied to evaluate the effects of various NO donors on rat C6 glioma cells challenged with alkylating agents. We demonstrate that NO donors including GSNO, diethylamine NONOate (DEA/NO), and sodium nitroprusside (SNP) substantially reduced the extent of colony formation in glioma cells treated with alkylating agents, namely methyl methanesulfonate (MMS), N-methyl-N-nitrosourea (MNU), and N-ethyl-N-nitrosourea (ENU). Without alkylating agents these NO-releasing agents alone had no effects on clongenic potential of rat C6 glioma cells. Among these three NO donors used, the effectiveness in potentiating alkylating cytotoxicity is in the order of "GSNO>DEA/NO>SNP" when applied at the same dosages. GSNO also exerted similar synergistic actions reducing the extents of colony formation when co-administrated with 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)-hydrazine (compound #1), another alkylating agent that mimics the chloroethylating action of BCNU. Together with our previous findings, we propose that NO donors may be used as adjunct chemotherapy with alkylating agents for such malignant brain tumors as glioblastoma multiforme (GBM). In contrast, production of NO as a result of iNOS induction, such as that occurring after surgical resection of brain tumors, may compromise the efficacy of carbamoylating chemotherapy.

  13. Comparative effects on rat primary astrocytes and C6 rat glioma cells cultures after 24-h exposure to silver nanoparticles (AgNPs)

    Energy Technology Data Exchange (ETDEWEB)

    Salazar-García, Samuel; Silva-Ramírez, Ana Sonia; Ramirez-Lee, Manuel A.; Rosas-Hernandez, Hector [Universidad Autonoma de San Luis Potosi, Facultad de Ciencias Quimicas (Mexico); Rangel-López, Edgar [Instituto Nacional de Neurologia y Neurocirugia Manuel Velasco Suárez, Laboratorio de Aminoacidos Excitadores (Mexico); Castillo, Claudia G. [Facultad de Medicina, Universidad Autonoma de San Luis Potosi (Mexico); Santamaría, Abel [Instituto Nacional de Neurologia y Neurocirugia Manuel Velasco Suárez, Laboratorio de Aminoacidos Excitadores (Mexico); Martinez-Castañon, Gabriel A. [Universidad Autonoma de San Luis Potosi, Facultad de Estomatologia (Mexico); Gonzalez, Carmen, E-mail: cgonzalez.uaslp@gmail.com, E-mail: gonzalez.castillocarmen@fcq.uaslp.mx [Universidad Autonoma de San Luis Potosi, Facultad de Ciencias Quimicas (Mexico)

    2015-11-15

    The aim of this work was to compare the effects of 24-h exposure of rat primary astrocytes and C6 rat glioma cells to 7.8 nm AgNPs. Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor and current treatments lead to diverse side-effects; for this reason, it is imperative to investigate new approaches, including those alternatives provided by nanotechnology, like nanomaterials (NMs) such as silver nanoparticles. Herein, we found that C6 rat glioma cells, but no primary astrocytes, decreased cell viability after AgNPs treatment; however, both cell types diminished their proliferation. The decrease of glioma C6 cells proliferation was related with necrosis, while in primary astrocytes, the decreased proliferation was associated with the induction of apoptosis. The ionic control (AgNO{sub 3}) exerted a different profile than AgNPs; the bulk form did not modify the basal effect in each determination, whereas cisplatin, a well-known antitumoral drug used as a comparative control, promoted cytotoxicity in both cell types at specific concentrations. Our findings prompt the need to determine the fine molecular and cellular mechanisms involved in the differential biological responses to AgNPs in order to develop new tools or alternatives based on nanotechnology that may contribute to the understanding, impact and use of NMs in specific targets, like glioblastoma cells.

  14. Comparative effects on rat primary astrocytes and C6 rat glioma cells cultures after 24-h exposure to silver nanoparticles (AgNPs)

    Science.gov (United States)

    Salazar-García, Samuel; Silva-Ramírez, Ana Sonia; Ramirez-Lee, Manuel A.; Rosas-Hernandez, Hector; Rangel-López, Edgar; Castillo, Claudia G.; Santamaría, Abel; Martinez-Castañon, Gabriel A.; Gonzalez, Carmen

    2015-11-01

    The aim of this work was to compare the effects of 24-h exposure of rat primary astrocytes and C6 rat glioma cells to 7.8 nm AgNPs. Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor and current treatments lead to diverse side-effects; for this reason, it is imperative to investigate new approaches, including those alternatives provided by nanotechnology, like nanomaterials (NMs) such as silver nanoparticles. Herein, we found that C6 rat glioma cells, but no primary astrocytes, decreased cell viability after AgNPs treatment; however, both cell types diminished their proliferation. The decrease of glioma C6 cells proliferation was related with necrosis, while in primary astrocytes, the decreased proliferation was associated with the induction of apoptosis. The ionic control (AgNO3) exerted a different profile than AgNPs; the bulk form did not modify the basal effect in each determination, whereas cisplatin, a well-known antitumoral drug used as a comparative control, promoted cytotoxicity in both cell types at specific concentrations. Our findings prompt the need to determine the fine molecular and cellular mechanisms involved in the differential biological responses to AgNPs in order to develop new tools or alternatives based on nanotechnology that may contribute to the understanding, impact and use of NMs in specific targets, like glioblastoma cells.

  15. Comparative effects on rat primary astrocytes and C6 rat glioma cells cultures after 24-h exposure to silver nanoparticles (AgNPs)

    International Nuclear Information System (INIS)

    Salazar-García, Samuel; Silva-Ramírez, Ana Sonia; Ramirez-Lee, Manuel A.; Rosas-Hernandez, Hector; Rangel-López, Edgar; Castillo, Claudia G.; Santamaría, Abel; Martinez-Castañon, Gabriel A.; Gonzalez, Carmen

    2015-01-01

    The aim of this work was to compare the effects of 24-h exposure of rat primary astrocytes and C6 rat glioma cells to 7.8 nm AgNPs. Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor and current treatments lead to diverse side-effects; for this reason, it is imperative to investigate new approaches, including those alternatives provided by nanotechnology, like nanomaterials (NMs) such as silver nanoparticles. Herein, we found that C6 rat glioma cells, but no primary astrocytes, decreased cell viability after AgNPs treatment; however, both cell types diminished their proliferation. The decrease of glioma C6 cells proliferation was related with necrosis, while in primary astrocytes, the decreased proliferation was associated with the induction of apoptosis. The ionic control (AgNO 3 ) exerted a different profile than AgNPs; the bulk form did not modify the basal effect in each determination, whereas cisplatin, a well-known antitumoral drug used as a comparative control, promoted cytotoxicity in both cell types at specific concentrations. Our findings prompt the need to determine the fine molecular and cellular mechanisms involved in the differential biological responses to AgNPs in order to develop new tools or alternatives based on nanotechnology that may contribute to the understanding, impact and use of NMs in specific targets, like glioblastoma cells

  16. Evaluation of anti-podoplanin rat monoclonal antibody NZ-1 for targeting malignant gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Yukinari, E-mail: yukinari-k@bea.hi-ho.ne.j [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Oncology Research Center, Advanced Molecular Epidemiology Research Institute, Yamagata University Faculty of Medicine, Yamagata 990-9585 (Japan); Vaidyanathan, Ganesan [Department of Radiology, Duke University Medical Center, Durham, NC 27710 (United States); Kaneko, Mika Kato [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Oncology Research Center, Advanced Molecular Epidemiology Research Institute, Yamagata University Faculty of Medicine, Yamagata 990-9585 (Japan); Mishima, Kazuhiko [Saitama Medical University International Medical Center 1397-1 Yamane Hidaka-shi, Saitama 350-1298 (Japan); Srivastava, Nidhi; Chandramohan, Vidyalakshmi; Pegram, Charles [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Keir, Stephen T. [Department of Surgery, Duke University Medical Center, Durham, NC 27710 (United States); Kuan, C.-T.; Bigner, Darell D. [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Zalutsky, Michael R. [Department of Radiology, Duke University Medical Center, Durham, NC 27710 (United States)

    2010-10-15

    Introduction: Podoplanin/aggrus is a mucin-like sialoglycoprotein that is highly expressed in malignant gliomas. Podoplanin has been reported to be a novel marker to enrich tumor-initiating cells, which are thought to resist conventional therapies and to be responsible for cancer relapse. The purpose of this study was to determine whether an anti-podoplanin antibody is suitable to target radionuclides to malignant gliomas. Methods: The binding affinity of an anti-podoplanin antibody, NZ-1 (rat IgG{sub 2a}), was determined by surface plasmon resonance and Scatchard analysis. NZ-1 was radioiodinated with {sup 125}I using Iodogen [{sup 125}I-NZ-1(Iodogen)] or N-succinimidyl 4-guanidinomethyl 3-[{sup 131}I]iodobenzoate ([{sup 131}I]SGMIB-NZ-1), and paired-label internalization assays of NZ-1 were performed. The tissue distribution of {sup 125}I-NZ-1(Iodogen) and that of [{sup 131}I]SGMIB-NZ-1 were then compared in athymic mice bearing glioblastoma xenografts. Results: The dissociation constant (K{sub D}) of NZ-1 was determined to be 1.2x10{sup -10} M by surface plasmon resonance and 9.8x10{sup -10} M for D397MG glioblastoma cells by Scatchard analysis. Paired-label internalization assays in LN319 glioblastoma cells indicated that [{sup 131}I]SGMIB-NZ-1 resulted in higher intracellular retention of radioactivity (26.3{+-}0.8% of initially bound radioactivity at 8 h) compared to that from the {sup 125}I-NZ-1(Iodogen) (10.0{+-}0.1% of initially bound radioactivity at 8 h). Likewise, tumor uptake of [{sup 131}I]SGMIB-NZ-1 (39.9{+-}8.8 %ID/g at 24 h) in athymic mice bearing D2159MG xenografts in vivo was significantly higher than that of {sup 125}I-NZ-1(Iodogen) (29.7{+-}6.1 %ID/g at 24 h). Conclusions: The overall results suggest that an anti-podoplanin antibody NZ-1 warrants further evaluation for antibody-based therapy against glioblastoma.

  17. Evaluation of anti-podoplanin rat monoclonal antibody NZ-1 for targeting malignant gliomas

    International Nuclear Information System (INIS)

    Kato, Yukinari; Vaidyanathan, Ganesan; Kaneko, Mika Kato; Mishima, Kazuhiko; Srivastava, Nidhi; Chandramohan, Vidyalakshmi; Pegram, Charles; Keir, Stephen T.; Kuan, C.-T.; Bigner, Darell D.; Zalutsky, Michael R.

    2010-01-01

    Introduction: Podoplanin/aggrus is a mucin-like sialoglycoprotein that is highly expressed in malignant gliomas. Podoplanin has been reported to be a novel marker to enrich tumor-initiating cells, which are thought to resist conventional therapies and to be responsible for cancer relapse. The purpose of this study was to determine whether an anti-podoplanin antibody is suitable to target radionuclides to malignant gliomas. Methods: The binding affinity of an anti-podoplanin antibody, NZ-1 (rat IgG 2a ), was determined by surface plasmon resonance and Scatchard analysis. NZ-1 was radioiodinated with 125 I using Iodogen [ 125 I-NZ-1(Iodogen)] or N-succinimidyl 4-guanidinomethyl 3-[ 131 I]iodobenzoate ([ 131 I]SGMIB-NZ-1), and paired-label internalization assays of NZ-1 were performed. The tissue distribution of 125 I-NZ-1(Iodogen) and that of [ 131 I]SGMIB-NZ-1 were then compared in athymic mice bearing glioblastoma xenografts. Results: The dissociation constant (K D ) of NZ-1 was determined to be 1.2x10 -10 M by surface plasmon resonance and 9.8x10 -10 M for D397MG glioblastoma cells by Scatchard analysis. Paired-label internalization assays in LN319 glioblastoma cells indicated that [ 131 I]SGMIB-NZ-1 resulted in higher intracellular retention of radioactivity (26.3±0.8% of initially bound radioactivity at 8 h) compared to that from the 125 I-NZ-1(Iodogen) (10.0±0.1% of initially bound radioactivity at 8 h). Likewise, tumor uptake of [ 131 I]SGMIB-NZ-1 (39.9±8.8 %ID/g at 24 h) in athymic mice bearing D2159MG xenografts in vivo was significantly higher than that of 125 I-NZ-1(Iodogen) (29.7±6.1 %ID/g at 24 h). Conclusions: The overall results suggest that an anti-podoplanin antibody NZ-1 warrants further evaluation for antibody-based therapy against glioblastoma.

  18. Increased catalase activity by all-trans retinoic acid and its effect on radiosensitivity in rat glioma cells

    International Nuclear Information System (INIS)

    Jin, Hua; Jeon, Ha Yeun; Park, Woo Yoon; Kim, Won Dong; Ahn, Hee Yul; Yu, Jae Ran

    2005-01-01

    It has been reported that all-trans retinoic acid (ATRA) can inhibit glioma growing in vitro. However, clinical trials with ATRA alone in gliomas revealed modest results. ATRA has been shown to increase radiosensitivity in other tumor types, so combining radiation and ATRA would be one of alternatives to increase therapeutic efficacy in malignant gliomas. Thus, we intended to know the role of catalase, which is induced by ATRA, for radiosensitivity. If radiation-reduced reactive oxygen species (ROS) is removed by catalase, the effect of radiation will be reduced. A rat glioma cell line (36B10) was used for this study. The change of catalase activity and radiosensitivity by ATRA, with or without 3-amino-1, 2, 4-triazole (ATZ), a chemical inhibitor of catalase were measured. Catalase activity was measured by the decomposition of H 2 O 2 spectrophotometrically. Radiosensitivity was measured with clonogenic assay. Also ROS was measured using a 2, 7-dichlorofluores-cein diacetate spectrophotometrically. When 36B10 cells were exposed to 10, 25 and 50 μ M of ATRA for 48 h, the expression of catalase activity were increased with increasing concentration and incubation time of ATRA. Catalase activity was decreased with increasing the concentration of AT (1, 10 mM) dose-dependently. ROS was increased with ATRA and it was augmented with the combination of ATRA and radiation. ATZ decreased ROS production and increased cell survival in combination of ATRA and radiation despite the reduction of catalase. The increase of ROS is one of the reasons for the increased radiosensitivity in combination with ATRA. The catalase that is induced by ATRA doesn't decrease ROS production and radiosensitivity

  19. Volumetric spiral chemical shift imaging of hyperpolarized [2-(13) c]pyruvate in a rat c6 glioma model.

    Science.gov (United States)

    Park, Jae Mo; Josan, Sonal; Jang, Taichang; Merchant, Milton; Watkins, Ron; Hurd, Ralph E; Recht, Lawrence D; Mayer, Dirk; Spielman, Daniel M

    2016-03-01

    MRS of hyperpolarized [2-(13)C]pyruvate can be used to assess multiple metabolic pathways within mitochondria as the (13)C label is not lost with the conversion of pyruvate to acetyl-CoA. This study presents the first MR spectroscopic imaging of hyperpolarized [2-(13)C]pyruvate in glioma-bearing brain. Spiral chemical shift imaging with spectrally undersampling scheme (1042 Hz) and a hard-pulse excitation was exploited to simultaneously image [2-(13)C]pyruvate, [2-(13)C]lactate, and [5-(13)C]glutamate, the metabolites known to be produced in brain after an injection of hyperpolarized [2-(13)C]pyruvate, without chemical shift displacement artifacts. A separate undersampling scheme (890 Hz) was also used to image [1-(13)C]acetyl-carnitine. Healthy and C6 glioma-implanted rat brains were imaged at baseline and after dichloroacetate administration, a drug that modulates pyruvate dehydrogenase kinase activity. The baseline metabolite maps showed higher lactate and lower glutamate in tumor as compared to normal-appearing brain. Dichloroacetate led to an increase in glutamate in both tumor and normal-appearing brain. Dichloroacetate-induced %-decrease of lactate/glutamate was comparable to the lactate/bicarbonate decrease from hyperpolarized [1-(13)C]pyruvate studies. Acetyl-carnitine was observed in the muscle/fat tissue surrounding the brain. Robust volumetric imaging with hyperpolarized [2-(13)C]pyruvate and downstream products was performed in glioma-bearing rat brains, demonstrating changes in mitochondrial metabolism with dichloroacetate. © 2015 Wiley Periodicals, Inc.

  20. Local Delivery of a Synthetic Endostatin Fragment for the Treatment of Experimental Gliomas

    Science.gov (United States)

    Pradilla, Gustavo; Legnani, Federico G.; Petrangolini, Giovanna; Francescato, Pierangelo; Chillemi, Francesco; Tyler, Betty M.; Gaini, Sergio M.; Brem, Henry; Olivi, Alessandro; DiMeco, Francesco

    2006-01-01

    OBJECTIVE: Endostatin is an anti-angiogenic agent that blocks matrix-metalloproteinase-2 and inhibits endothelial cell proliferation. Currently, endostatin is available through recombinant technology, which limits its broader use. In this study, a synthetic endostatin fragment (EF) was analyzed to determine its anti-angiogenic properties when locally delivered by controlled-release polymers and to establish its effect as a treatment for experimental gliomas. METHODS: Cytotoxicity of EF against 9L gliosarcoma and F98 glioma was determined in vitro. EF was loaded into polyanhydride-poly-(bis-[carboxyphenoxy-propane]-sebacic-acid) (pCPP:SA) polymers at increasing concentrations. Pharmacokinetics of the EF/polymer formulations were defined in vitro. Anti-angiogenic properties of the EF/polymer formulations were evaluated in the rat-cornea micropocket assay. Toxicity and efficacy of locally delivered EF polymers either alone or combined with systemic bischloroethylnitrosourea (carmustine) were determined in rats intracranially challenged with 9L gliosarcoma. RESULTS: EF showed scarce cytotoxicity against 9L and F98 in vitro. EF/pCPP:SA formulations showed sustained release by day 19. Mean corneal angiogenesis index 20 days after tumor implantation was 4.5 ± 0.7 for corneas implanted with 40% EF/pCPP:SA compared with controls (8.5 ± 1.3, P = 0.02). Intracranial efficacy studies showed that EF polymers alone did not prolong animal survival. Combination of 40% EF/pCPP:SA polymers with systemic bischloroethylnitrosourea (carmustine) prolonged survival (median survival of 44 d, P = 0.001) and generated 33% long-term survivors. CONCLUSION: Controlled-release polymers can effectively deliver a biologically active EF in a sustained fashion. EF inhibits angiogenesis in vitro and in vivo, and even though EF does not prolong survival as a single agent, it exhibits a synergistic effect when combined with systemic bischloroethylnitrosourea (carmustine) in the intracranial 9L

  1. Effects of the photoactivation by synchrotron irradiation on the micro vascularization and on the cerebral tissues of the sane or glioma bearer mouse. Development in bi photonic microscopy and preclinical tests

    International Nuclear Information System (INIS)

    Ricard, C.

    2008-06-01

    Brain tumors are the third most frequent pathology encountered in neurology following stroke and dementia. Approximately 10 new cases are encountered each year in a population of 100.000. Glioblastoma are the most aggressive among brain tumors and despite medical progress they suffer of a poor prognosis (median survival time is 12 months; five years survival rate is 2%). One of the challenges in neuro-oncology is the development of new curative treatments against glioblastoma. One of them, the photoactivation therapy of platinum with synchrotron X-rays (PAT-Plat) was developed during the last years and has shown curative effects in rats bearing the F98 glioma. In the present study, we have attempted to characterize the effects of the PAT-Plat and its different modalities (chemotherapy with cisplatin and synchrotron radiotherapy) on healthy brain tissue and microvasculature as well as on the F98 glioma. Intra-vital multiphoton microscopy was used as the main imaging tool to investigate the effects of the PAT-Plat and many methodologies were developed (assessment of blood-brain-barrier (BBB) disruption, imaging of tumor microvasculature, staining of astrocytes and elastic fibers). We have shown that a 15 Gy/79 keV synchrotron irradiation does not induce short term side effects (BBB disruption, diminution of the perfusion, gliosis) in the parietal cortex of nude mice. We have also demonstrated that a synergistic effect between cisplatin and irradiation is at the origin of the effects of the PAT-Plat. Finally, we have shown that the action of the PAT-Plat is not restricted to tumor cells; a decrease in the angiogenic vessels perfusion was also observed in the peritumoral area of the F98 glioma. (author)

  2. L-DOPA Preloading Increases the Uptake of Borophenylalanine in C6 Glioma Rat Model: A New Strategy to Improve BNCT Efficacy

    International Nuclear Information System (INIS)

    Capuani, Silvia; Gili, Tommaso; Bozzali, Marco; Russo, Salvatore; Porcari, Paola; Cametti, Cesare; D'Amore, Emanuela; Colasanti, Marco; Venturini, Giorgio; Maraviglia, Bruno; Lazzarino, Giuseppe; Pastore, Francesco S.

    2008-01-01

    Purpose: Boron neutron capture therapy (BNCT) is a radiotherapeutic modality based on 10 B(n,α) 7 Li reaction, for the treatment of malignant gliomas. One of the main limitations for BNCT effectiveness is the insufficient intake of 10 B nuclei in the tumor cells. This work was aimed at investigating the use of L-DOPA as a putative enhancer for 10 B-drug 4-dihydroxy-borylphenylalanine (BPA) uptake in the C6-glioma model. The investigation was first performed in vitro and then extended to the animal model. Methods and Materials: BPA accumulation in C6-glioma cells was assessed using radiowave dielectric spectroscopy, with and without L-DOPA preloading. Two L-DOPA incubation times (2 and 4 hours) were investigated, and the corresponding effects on BPA accumulation were quantified. C6-glioma cells were also implanted in the brain of 32 rats, and tumor growth was monitored by magnetic resonance imaging. Rats were assigned to two experimental branches: (1) BPA administration; (2) BPA administration after pretreatment with L-DOPA. All animals were sacrificed, and assessments of BPA concentrations in tumor tissue, normal brain, and blood samples were performed using high-performance liquid chromatography. Results: L-DOPA preloading induced a massive increase of BPA concentration in C6-glioma cells only after a 4-hour incubation. In the animal model, L-DOPA pretreatment produced a significantly higher accumulation of BPA in tumor tissue but not in normal brain and blood samples. Conclusions: This study suggests the potential use of L-DOPA as enhancer for BPA accumulation in malignant gliomas eligible for BNCT. L-DOPA preloading effect is discussed in terms of membrane transport mechanisms

  3. Pharmacokinetic changes induced by focused ultrasound in glioma-bearing rats as measured by dynamic contrast-enhanced MRI.

    Directory of Open Access Journals (Sweden)

    Feng-Yi Yang

    Full Text Available Focused ultrasound (FUS combined with microbubbles has been shown to be a noninvasive and targeted drug delivery technique for brain tumor treatment. The purpose of this study was to measure the kinetics of Gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA in glioma-bearing rats in the presence of FUS-induced blood-brain barrier disruption (BBB-D by magnetic resonance imaging (MRI. A total of ten glioma-bearing rats (9-12 weeks, 290-340 g were used in this study. Using dynamic contrast-enhanced (DCE-MRI, the spatial permeability of FUS-induced BBB-D was evaluated and the kinetic parameters were calculated by a general kinetic model (GKM. The results demonstrate that the mean Ktrans of the sonicated tumor (0.128±0.019 at 20 min and 0.103±0.023 at 24 h after sonication, respectively was significantly higher than (2.46-fold at 20 min and 1.78-fold at 24 h that of the contralateral (non-sonicated tumor (0.052±0.019 at 20 min and 0.058±0.012 at 24 h after sonication, respectively. In addition, the transfer constant Ktrans in the sonicated tumor correlated strongly with tissue EB extravasation (R = 0.95, which suggests that DCE-MRI may reflect drug accumulation in the brain. Histological observations showed no macroscopic damage except for a few small erythrocyte extravasations. The current study demonstrates that DCE-MRI can monitor the dynamics of the FUS-induced BBB-D process and constitutes a useful tool for quantifying BBB permeability in tumors.

  4. The translocator protein radioligand 18F-DPA-714 monitors antitumor effect of erufosine in a rat 9L intracranial glioma model

    International Nuclear Information System (INIS)

    Awde, Ali R.; Boisgard, Raphael; Theze, Benoit; Dubois, Albertine; Zheng, Jinzi; Winkeler, Alexandra; Dolle, Frederic; Jacobs, Andreas H.; Tavitian, Bertrand

    2013-01-01

    On the one hand, the translocator protein (TSPO) radioligand N,N-diethyl-2-(2-(4-(2- 18 F-fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5-a] pyrimidin-3-yl)acetamide ( 18 F-DPA-714) has been suggested to serve as an alternative radiotracer to image human glioma, and on the other hand the alkyl-phosphocholine erufosine (ErPC3) has been reported to induce apoptosis in otherwise highly apoptosis resistant glioma cell lines. The induction of apoptosis by ErPC3 requires TSPO, a mitochondrial membrane protein highly expressed in malignant gliomas. In this preclinical study, we monitored the effect of ErPC3 treatment in vivo using 18 F-DPA-714 PET. Methods: In vitro studies investigated the antitumor effect of ErPC3 in 9L rat gliosarcoma cells. In vivo, glioma-bearing rats were imaged with 18 F-DPA-714 for the time of treatment. Results: A significant decrease in 9L cell proliferation and viability and a significant increase in apoptosis and caspase-3 activation were demonstrated on ErPC3 treatment in cell culture. In the rat model, ErPC3 administration resulted in significant changes in 18 F-DPA-714 tumor uptake over the course of the treatment. Immunohistochemistry revealed reduced tumor volume and increased cell death in ErPC3-treated animals accompanied by infiltration of the tumor core by CD11b-positive micro-glia/macrophages and glial fibrillary acidic protein-positive astrocytes. Conclusion: Our findings demonstrate a potent antitumor effect of ErPC3 in vitro, in vivo, and ex vivo. PET imaging of TSPO expression using 18 F-DPA-714 allows effective monitoring and quantification of disease progression and response to ErPC3 therapy in intracranial 9L gliomas. (authors)

  5. Functional Changes of Dendritic Cells in C6 Glioma-Bearing Rats That Underwent Combined Argon-Helium Cryotherapy and IL-12 Treatment.

    Science.gov (United States)

    Li, Ming; Cui, Yao; Li, Xiqing; Guo, Yanwu; Wang, Bin; Zhang, Jiadong; Xu, Jian; Han, Shuangyin; Shi, Xiwen

    2016-08-01

    The aim of this study was to explore changes in tumor tissues of glioma-bearing rats that underwent argon-helium cryoablation as well as changes in antitumor immunity before and after combined interleukin 12 treatment. Two hundred sixty Wistar rats were randomly divided into a blank control group, intravenous injection interleukin-12 group, cryotherapy group, and cryotherapy + intravenous injection group. C6 glioma cells proliferated in vitro were implanted subcutaneously on the backs of rats to establish C6 glioma-bearing animal models. Each group underwent the corresponding treatments, and morphological changes in tumor tissues were examined using hematoxylin-eosin staining. CD11c staining was examined using immunohistochemistry, and differences in dendritic cells and T-cell subsets before and after treatment were analyzed using flow cytometry. The control group showed no statistical changes in terms of tumor tissue morphology and cellular immunity, cryotherapy group, and cryotherapy + intravenous injection group, among which the count for the cryotherapy + intravenous injection group was significantly higher than those of all other groups. In the argon-helium cryotherapy group, tumor cells were damaged and dendritic cell markers were positive. The number of CD11c+ and CD86+ cells increased significantly after the operation as did the cytokine interferon-γ level (P < .01), suggesting a shift toward Th1-type immunity. Combined treatment of argon-helium cryoablation and interleukin 12 for gliomas not only effectively injured tumor tissues but also boosted immune function and increased antitumor ability. Therefore, this approach is a promising treatment measure for brain gliomas. © The Author(s) 2015.

  6. Genetically engineered rat gliomas: PDGF-driven tumor initiation and progression in tv-a transgenic rats recreate key features of human brain cancer.

    Directory of Open Access Journals (Sweden)

    Nina P Connolly

    Full Text Available Previously rodent preclinical research in gliomas frequently involved implantation of cell lines such as C6 and 9L into the rat brain. More recently, mouse models have taken over, the genetic manipulability of the mouse allowing the creation of genetically accurate models outweighed the disadvantage of its smaller brain size that limited time allowed for tumor progression. Here we illustrate a method that allows glioma formation in the rat using the replication competent avian-like sarcoma (RCAS virus / tumor virus receptor-A (tv-a transgenic system of post-natal cell type-specific gene transfer. The RCAS/tv-a model has emerged as a particularly versatile and accurate modeling technology by enabling spatial, temporal, and cell type-specific control of individual gene transformations and providing de novo formed glial tumors with distinct molecular subtypes mirroring human GBM. Nestin promoter-driven tv-a (Ntv-a transgenic Sprague-Dawley rat founder lines were created and RCAS PDGFA and p53 shRNA constructs were used to initiate intracranial brain tumor formation. Tumor formation and progression were confirmed and visualized by magnetic resonance imaging (MRI and spectroscopy. The tumors were analyzed using histopathological and immunofluorescent techniques. All experimental animals developed large, heterogeneous brain tumors that closely resembled human GBM. Median survival was 92 days from tumor initiation and 62 days from the first point of tumor visualization on MRI. Each tumor-bearing animal showed time dependent evidence of malignant progression to high-grade glioma by MRI and neurological examination. Post-mortem tumor analysis demonstrated the presence of several key characteristics of human GBM, including high levels of tumor cell proliferation, pseudopalisading necrosis, microvascular proliferation, invasion of tumor cells into surrounding tissues, peri-tumoral reactive astrogliosis, lymphocyte infiltration, presence of numerous tumor

  7. Radioimmunotherapy targeting the extra domain B of fibronectin in C6 rat gliomas: a preliminary study about the therapeutic efficacy of iodine-131-labeled SIP(L19)

    International Nuclear Information System (INIS)

    Spaeth, Nicolas; Wyss, Matthias T.; Pahnke, Jens; Biollaz, Gregoire; Trachsel, Eveline; Drandarov, Konstantin; Treyer, Valerie; Weber, Bruno; Neri, Dario; Buck, Alfred

    2006-01-01

    Despite aggressive treatment protocols, patients suffering from glioblastoma multiforme still experience poor outcome. Therefore, new adjuvant therapeutic options such as radioimmunotherapy (RIT) have been studied and have resulted in significant survival benefit. In this study, we assessed the efficacy of a novel radioimmunotherapeutic approach targeting the extra domain B (EDB) of fibronectin, a marker of angiogenesis, in glioma-bearing rats. Methods: C6 gliomas were induced intracerebrally in Wistar rats. Ten to 11 days later, 220-360 MBq of iodine-131-labeled anti-EDB SIP(L19) ('small immunoprotein') was administered intravenously into nine animals, yielding a radiation dose of 13-21 Gy. Another nine rats served as controls. Then the following parameters were compared: median survival time, tumor size and histology. Results: Histological examination of the tumors revealed typical glioblastoma characteristics. Eleven of 18 rats developed a tumor size bigger than 150 mm 3 . When these animals were used for survival analysis, median survival did significantly differ between groups [22 days (therapy; n=7) vs. 16 days (control; n=4); P 131 I-SIP(L19)-RIT showed promising potential in treating C6 gliomas, warranting further studies. However, larger trials with preferentially higher doses are needed to confirm this finding and, potentially, to further increase the efficacy of this treatment

  8. Quantitative correlational study of microbubble-enhanced ultrasound imaging and magnetic resonance imaging of glioma and early response to radiotherapy in a rat model

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chen [Department of Ultrasound, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022 (China); Lee, Dong-Hoon; Zhang, Kai; Li, Wenxiao; Zhou, Jinyuan [Division of MR Research, Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21287 (United States); Mangraviti, Antonella; Tyler, Betty [Department of Neurosurgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21287 (United States); Su, Lin; Zhang, Yin; Zhang, Bin; Wong, John; Wang, Ken Kang-Hsin; Velarde, Esteban; Ding, Kai, E-mail: kding1@jhmi.edu [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21231 (United States)

    2015-08-15

    Purpose: Radiotherapy remains a major treatment method for malignant tumors. Magnetic resonance imaging (MRI) is the standard modality for assessing glioma treatment response in the clinic. Compared to MRI, ultrasound imaging is low-cost and portable and can be used during intraoperative procedures. The purpose of this study was to quantitatively compare contrast-enhanced ultrasound (CEUS) imaging and MRI of irradiated gliomas in rats and to determine which quantitative ultrasound imaging parameters can be used for the assessment of early response to radiation in glioma. Methods: Thirteen nude rats with U87 glioma were used. A small thinned skull window preparation was performed to facilitate ultrasound imaging and mimic intraoperative procedures. Both CEUS and MRI with structural, functional, and molecular imaging parameters were performed at preradiation and at 1 day and 4 days postradiation. Statistical analysis was performed to determine the correlations between MRI and CEUS parameters and the changes between pre- and postradiation imaging. Results: Area under the curve (AUC) in CEUS showed significant difference between preradiation and 4 days postradiation, along with four MRI parameters, T{sub 2}, apparent diffusion coefficient, cerebral blood flow, and amide proton transfer-weighted (APTw) (all p < 0.05). The APTw signal was correlated with three CEUS parameters, rise time (r = − 0.527, p < 0.05), time to peak (r = − 0.501, p < 0.05), and perfusion index (r = 458, p < 0.05). Cerebral blood flow was correlated with rise time (r = − 0.589, p < 0.01) and time to peak (r = − 0.543, p < 0.05). Conclusions: MRI can be used for the assessment of radiotherapy treatment response and CEUS with AUC as a new technique and can also be one of the assessment methods for early response to radiation in glioma.

  9. Putative anticancer potential of novel 4-thiazolidinone derivatives: cytotoxicity toward rat C6 glioma in vitro and correlation of general toxicity with the balance of free radical oxidation in rats.

    Science.gov (United States)

    Коbylinska, Lesya I; Boiko, Nataliya M; Panchuk, Rostyslav R; Grytsyna, Iryna I; Klyuchivska, Olga Yu; Biletska, Liliya P; Lesyk, Roman B; Zіmenkovsky, Borys S; Stoika, Rostyslav S

    2016-04-23

    To evaluate the cytotoxic action of 4-thiazolidinone derivatives (ID 3288, ID 3882, and ID 3833) toward rat glioma C6 cells and to compare the effects of these compounds and doxorubicin on the balance of free radical oxidation (FRO) and antioxidant activity (AOA) in the serum of rats. Glioma cells were treated with ID 3882, ID 3288, ID 3833, and doxorubicin, and their cytotoxicity was studied using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and Trypan blue exclusion test, light and fluorescent microscopy, and flow cytometric study of cell cycling and apoptosis, including measuring of Annexin V-positive cells. The contents of superoxide radical, hydrogen peroxide, hydroxyl radical, malonic dialdehyde, and hydrogen sulfide were measured in the serum of rats. Enzymatic activity of superoxide dismutase (SOD), catalase (Cat), and glutathione peroxydase (GPO) was determined. Among novel 4-thiazolidinone derivatives, ID 3288 was most toxic toward rat glioma C6 cells, even compared with doxorubicin. All applied derivatives were less active than doxorubicin in inducing reactive oxygen species-related indicators in the serum of rats. A similar effect was observed when enzymatic indicators of AOA processes were measured. While doxorubicin inhibited the activity of SOD, GPO, and Cat, the effects of 4-thiazolidinone derivatives were less prominent. Novel 4-thiazolidinone derivatives differ in their antineoplastic action toward rat glioma C6 cells, and ID 3288 possesses the highest activity compared to doxorubicin. Measurement of indicators of FRO and AOA in the serum of rats treated with these compounds showed their lower general toxicity compared with doxorubicin's toxicity.

  10. Antitumor effect of intra-arterial tumor necrosis factor-{alpha} in rats with transplanted intracerebral glioma and its evaluation by MRI

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Kunyu; Yoshida, Jun; Wakabayashi, Toshihiko; Sugita, Kenichiro [Nagoya Univ. (Japan). School of Medicine; Kurisu, Kaoru; Uozumi, Tohru; Zieroth, B.F.; Takahashi, Masaya; Yamanaka, Tsuyoshi

    1995-12-01

    Recombinant human TNF-{alpha} was administrated intra-arterially to rats with transplanted intracerebral glioma. 1 x 10{sup 6} of T9 rat glioma cells were transplanted into Fisher 344 rat brain stereotaxically and 1000 units of TNF-{alpha} was administrated at a rate of 100{mu}l/min via an internal carotid artery 1 or 3 weeks after the transplantation. The effects of TNF-{alpha} were evaluated by MRI and histopathological examinations. Neurological symptoms, i.e. hemiparesis, appeared after 9.0{+-}0.63 days and all rats died of tumor overloading 14.5{+-}0.84 days after the transplantation. Single injection of TNF-{alpha} on 7th day after the transplantation induced regression of the tumor size in one of six rats. The tumors were detected 3 days after transplantation by MRI and they were revealed as low/iso intensity mass in T1WI, iso/high intensity in T2WI, and were enhanced by Gd-DTPA heterogenously. On 7/14 days after the transplantation, the tumor grew approximately 7/10 mm in diameter. The single 1000 units of TNF-{alpha} were administrated via an internal carotid artery. Three days after the administration or TNF-{alpha}, regression of the tumor size was seen in one of six rats and decrease of peritumoral edema was seen in three. These effects of TNF-{alpha} were, however, transient and they were not demonstrated on day 7. Single injection of TNF-{alpha} was not effective for large tumors more than 10 mm in diameter seen 14 days after the transplantation. These data suggest that intra-arterial TNF-{alpha} should be administrated at an early stage of the tumor growth and several injections are needed to cause regression in the size of the gliomas. (author).

  11. Neutron capture therapy of epidermal growth factor receptor (EGFR)vIII positive gliomas using boronated monoclonal antibody L8A4

    International Nuclear Information System (INIS)

    Yang, Weilian; Barth, Rolf F.; Wu, Gong

    2006-01-01

    The purpose of the present study was to evaluate the EGFRvIII specific monoclonal antibody, L8A4 as a boron delivery agent for NCT of the receptor (+) rat glioma, F98 npEGFRvIII . A heavily boronated polyamidoamine (PAMAM) dendrimer (BD) was linked to L8A4 by means of heterobifunctional reagents. Wild type (F98 WT ) receptor(-) or EGFRvIII human gene transfected receptor(+) F98 npEGFRvIII glioma cells were implanted into the brains of Fischer rats. Biodistribution studies were initiated 14 d later. Animals received 125 I-labeled BD-L8A4 by either convection enhanced delivery (CED) or intratumoral(i.t.) injection and were euthanized 6, 12, 24 or 48 h later. At 6 h following CED, equivalent amounts of the bioconjugate were detected in receptor(+) and (-) tumors, but by 24 h the amounts retained by receptor(+) gliomas were 60.1% following CED and 43.7% following i.t. injection, compared to 14.6% ID/g by receptor(-) tumors. Tumor boron concentrations were 32.7 and 44.5 μg/g, respectively, for BD-L8A4 alone or in combination with i.v. BPA. BNCT was carried out at the MITR-II Reactor 24 h after CED of BD-L8A4 (∼40 μg 10 B/∼750 μg protein) and 2.5 h after i.v. injection of BPA (500 mg/kg). Rats that received BD-L8A4 alone or in combination with BPA had mean survival times of 70.4 and 85d, respectively, with 20% and 10% long term survivors, respectively, compared to 40.1 d for i.v. BPA and 30.3 and 26.3 d for irradiated and untreated controls, respectively. These data convincingly demonstrate the therapeutic efficacy of molecular targeting of EGFRvIII and should provide a platform for the future development of combinations of high and low molecular weight delivery agents for BNCT of brain tumors. (author)

  12. Photon activation therapy of RG2 glioma carrying Fischer rats using stable thallium and monochromatic synchrotron radiation.

    Science.gov (United States)

    Ceberg, Crister; Jönsson, Bo-Anders; Prezado, Yolanda; Pommer, Tobias; Nittby, Henrietta; Englund, Elisabet; Grafström, Gustav; Edvardsson, Anneli; Stenvall, Anna; Strömblad, Susanne; Wingårdh, Karin; Persson, Bertil; Elleaume, Hélène; Baldetorp, Bo; Salford, Leif G; Strand, Sven-Erik

    2012-12-21

    75 RG2 glioma-carrying Fischer rats were treated by photon activation therapy (PAT) with monochromatic synchrotron radiation and stable thallium. Three groups were treated with thallium in combination with radiation at different energy; immediately below and above the thallium K-edge, and at 50 keV. Three control groups were given irradiation only, thallium only, or no treatment at all. For animals receiving thallium in combination with radiation to 15 Gy at 50 keV, the median survival time was 30 days, which was 67% longer than for the untreated controls (p = 0.0020) and 36% longer than for the group treated with radiation alone (not significant). Treatment with thallium and radiation at the higher energy levels were not effective at the given absorbed dose and thallium concentration. In the groups treated at 50 keV and above the K-edge, several animals exhibited extensive and sometimes contra-lateral edema, neuronal death and frank tissue necrosis. No such marked changes were seen in the other groups. The results were discussed with reference to Monte Carlo calculated electron energy spectra and dose enhancement factors.

  13. Effect of combined treatment of x-rays and ACNU on rat glioma cells in monolayer and multicellular spheroids

    International Nuclear Information System (INIS)

    Sugiyama, Satoru; Mori, Teruaki; Suzuki, Jiro; Sasaki, Takehito

    1985-01-01

    Spheroids of rat glioma clone-6 cells having a central necrosis were used to determine the effect of combined treatment of x-rays and 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosourea hydrochloride (ACNU), where the optimum time intervals and doses in the combination were analyzed. The treatment with ACNU 2 to 6 hours prior to x-ray irradiation was most effective for cells in both monolayers and in spheroids. The dose survival curves with x-ray irradiation indicated that the hypoxic cell fraction in spheroids disappeared with a prior treatment by ACNU. The enhancement ratio in spheroids was thus larger for larger x-ray doses, and was always larger than that in monolayer cells. The survival curves versus concentration of ACNU indicated that the enhancement ratio in spheroids was more than 1.2 in all concentrations with the combined x-ray irradiation, and exceeded that in monolayer cells with a surviving fraction of less than 0.4. (author)

  14. Investigating effect of fusion gene therapy by MR diffusion-weighted imaging in a rat C6 glioma model

    International Nuclear Information System (INIS)

    Shen Huicong; Dai Jianping; Wei Xinhua; Wang Jianjiao; Li Shaowu; Ma Jun; Ai Lin; Liu Fengsheng; Chai Qi; Zhao Weijiang; Gao Peiyi

    2008-01-01

    Objective: To evaluate the use of diffusion-weighted imaging (DWI) for early detection of tumor response to Angiostatin-Endostatin (Statin-AE) fusion gene therapy in a rat C6 glioma model. Methods: Fifty male wistar rats with C6 tumor cells implanted into the striatum were examined by a 3.0T MR scanner, then the rats bearing tumors were divided into two groups, treatment group and control group. Rats in the treatment group received 107 plaque forming unit (pfu) recombinant herps simplex viral (R-HSV) mediated Statin-AE fusion gene therapy on day 7, and then the tumors were conformed on MRI. Conventional MR and DWI examination were acquired on 1, 2, 3 weeks after implantation with a 5-inch surface coil. Two (1 w), eight (2 w) and all the residual rats (3 w) of each group were sacrificed to perform the histopathological examination after each MRI examination. Pretreatment and post treatment tumor volumes and apparent diffusion coefficient (ADC) values were calculated. Bank sum test and t test were employed for statistical analysis. Results: On MRI, 43 rats demonstrated tumors on day 7 with a successful rate of 86%. On week 2, the tumor volumes of the controls and treatment group were 90. 6 and 91.64 mm 3 , with no significant difference (Z=-0.14, P>0.05). On week 3, the tumor volumes of the controls and treatment group were 156.64 and 29.64 mm 3 , and a significant difference was observed (Z=-3.45, P -3 and (0.99 ± 0.08) x 10 -3 mm 2 /s, and the values of the tumor peripheral parts of the two groups were (1.00 ± 0.25) x 10 -3 and (0.83 ± 0.12) x 10 -3 mm 2 /s, the ADC values of both tumor centers and peripheral parts of the treatment group were significantly higher than those of the control group (t=-0.82 and -0.46, P -3 and (0.99 ± 0.09) x 10 -3 mm 2 /s, and the values of the tumor peripheral parts of the two groups were (0.81±0.19) x 10 -3 and (0.78±0.11) x 10 -3 mm 2 /s, there were no statistical difference between the two groups (t=0.82, and -0.46, P<0

  15. Comparison of vitamins K1, K2 and K3 effects on growth of rat glioma and human glioblastoma multiforme cells in vitro.

    Science.gov (United States)

    Oztopçu, Pinar; Kabadere, Selda; Mercangoz, Ayşe; Uyar, Ruhi

    2004-09-01

    Glioblastoma multiforme is characterized as highly invasive and rapidly growing astrocytomas, and scientists have sought for efficient treatment against malignant gliomas for a long time. Therefore, we compared the respond of rat glioma (C6) and glioblastoma multiforme cells derived from two patients to vitamins K1, K2 and K3. The cells were exposed to 100, 250, 500, 750 and 1000 microM of vitamins K1 and K2, and 1, 10, 25, 50, 75 and 100 microM of vitamin K3 for 24 hours in an incubator atmosphere of 5% CO2, 37 degrees C and 100% humidity. Cell viability was estimated by MTT assay. Vitamin K1 showed no growth effect on all the glioma cells examined. Vitamin K2 did not cause any change in number of C6, however induced growth inhibition in a dose-dependent manner on glioblastoma multiforme. The IC50 values of vitamin K2 were 960 microM and 970 microM for glioblastoma multiforme, respectively. Vitamin K3 had also growth inhibitory effect in a dose-dependent manner on both C6 and glioblastoma multiforme. The IC50 values were 41 microM, 24 microM and 23 microM for vitamin K3, respectively. We concluded that vitamin K3 is more effective than vitamin K2 for inhibition of cancer cell growth, and might have an alternative value as an anticancer drug against glioblastoma multiforme.

  16. Phospho-eNOS Ser-1176 is associated with the nucleoli and the Golgi complex in C6 rat glioma cells.

    Science.gov (United States)

    Klinz, Franz-Josef; Herberg, Natalie; Arnhold, Stefan; Addicks, Klaus; Bloch, Wilhelm

    2007-06-29

    Enzymatic activity of endothelial nitric oxide synthase (eNOS) is controlled by posttranslational modifications, protein-protein interactions, and subcellular localization. For example, N-terminal fatty acid modifications target eNOS to the Golgi complex where it becomes phosphorylated. We show here by immunofluorescence analysis that phospho-eNOS Ser-1176 is enriched in the perinuclear region of interphase C6 rat glioma cells. Confocal double immunofluorescence microscopy with the Golgi marker protein 58K revealed that phospho-eNOS Ser-1176 is associated with the Golgi complex. Surprisingly, we observed several spots in the nucleus of C6 cells that were positive for phospho-eNOS Ser-1176. Confocal double immunofluorescence analysis with the nucleolus marker protein fibrillarin revealed that within the nucleus phospho-eNOS Ser-1176 is exclusively associated with the nucleoli. It is known that in mitotic cells nucleoli are lost during prophase and rebuild during telophase. In agreement with this, we find no nucleoli-like distribution of phospho-eNOS Ser-1176 in metaphase and anaphase C6 glioma cells. Our finding that phospho-eNOS Ser-1176 is selectively associated with the nucleoli points to a so far unknown role for eNOS in interphase glioma cells.

  17. Zero-valent Fe confined mesoporous silica nanocarriers (Fe(0) @ MCM-41) for targeting experimental orthotopic glioma in rats

    Science.gov (United States)

    Shevtsov, M. A.; Parr, M. A.; Ryzhov, V. A.; Zemtsova, E. G.; Arbenin, A. Yu; Ponomareva, A. N.; Smirnov, V. M.; Multhoff, G.

    2016-01-01

    Mesoporous silica nanoparticles (MSNs) impregnated with zero-valent Fe (Fe(0) @ MCM-41) represent an attractive nanocarrier system for drug delivery into tumor cells. The major goal of this work was to assess whether MSNs can penetrate the blood-brain barrier in a glioblastoma rat model. Synthesized MSNs nanomaterials were characterized by energy dispersive X-ray spectroscopy, measurements of X-ray diffraction, scanning electron microscopy and Mössbauer spectroscopy. For the detection of the MSNs by MR and for biodistribution studies MSNs were labeled with zero-valent Fe. Subsequent magnetometry and nonlinear-longitudinal-response-M2 (NLR-M2) measurements confirmed the MR negative contrast enhancement properties of the nanoparticles. After incubation of different tumor (C6 glioma, U87 glioma, K562 erythroleukemia, HeLa cervix carcinoma) and normal cells such as fibroblasts and peripheral blood mononuclear cells (PBMCs) MSNs rapidly get internalized into the cytosol. Intracellular residing MSNs result in an enhanced cytotoxicity as Fe(0) @ MCM-41 promote the reactive oxygen species production. MRI and histological studies indicated an accumulation of intravenously injected Fe(0) @ MCM-41 MSNs in orthotopic C6 glioma model. Biodistribution studies with measurements of second harmonic of magnetization demonstrated an increased and dose-dependent retention of MSNs in tumor tissues. Taken together, this study demonstrates that MSNs can enter the blood-brain barrier and accumulate in tumorous tissues. PMID:27386761

  18. Angiopep-2-conjugated poly(ethylene glycol-co-poly(ε-caprolactone polymersomes for dual-targeting drug delivery to glioma in rats

    Directory of Open Access Journals (Sweden)

    Lu F

    2017-03-01

    Full Text Available Fei Lu,1,2 Zhiyong Pang,2,3 Jingjing Zhao,2 Kai Jin,4 Haichun Li,2 Qiang Pang,2 Long Zhang,2 Zhiqing Pang2 1Department of Pharmacy, Xianju People’s Hospital, Xianju, Zhejiang, 2Department of Pharmaceutics, Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, School of Pharmacy, Fudan University, Shanghai, 3Chongyang Center for Disease Control and Prevention, Xianning, Hubei, 4School of Life Science, Fudan University, Shanghai, People’s Republic of China Abstract: The blood–brain barrier is a formidable obstacle for glioma chemotherapy due to its compact structure and drug efflux ability. In this study, a dual-targeting drug delivery system involving Angiopep-2-conjugated biodegradable polymersomes loaded with doxorubicin (Ang-PS-DOX was developed to exploit transport by the low-density lipoprotein receptor-related protein 1 (LRP1, which is overexpressed in both blood–brain barrier and glioma cells. The polymersomes (PS were prepared using a thin-film hydration method. The PS were loaded with doxorubicin using the pH gradient method (Ang-PS-DOX. The resulting PS were uniformly spherical, with diameters of ~135 nm and with ~159.9 Angiopep-2 molecules on the surface of each PS. The drug-loading capacity and the encapsulation efficiency for doxorubicin were 7.94%±0.17% and 95.0%±1.6%, respectively. Permeability tests demonstrated that the proton diffusion coefficient across the PS membrane was far slower than that across the liposome membrane, and the common logarithm value was linearly dependent on the dioxane content in the external phase. Compared with PS-DOX, Ang-PS-DOX demonstrated significantly higher cellular uptake and stronger cytotoxicity in C6 cells. In vivo pharmacokinetics and brain distribution experiments revealed that Ang-PS-DOX achieved a more extensive distribution and more abundant accumulation in glioma cells than PS-DOX. Moreover, the survival time of glioma-bearing rats treated with Ang-PS-DOX was

  19. Synthesis of dihydropyrimidin-2-one/thione library and cytotoxic activity against the human U138-MG and Rat C6 glioma cell lines

    International Nuclear Information System (INIS)

    Canto, Romulo F.S.; Eifler-Lima, Vera Lucia; Bernardi, Andressa; Battastini, Ana Maria O.; Russowsky, Dennis

    2011-01-01

    Two series of 4-aryl-3,4-dihydropyrimidin-2(1H)-(thio)ones including monastrol (1a), have been synthesized by an environment-friendly methodology based on the combined use of citric acid or oxalic acid and TEOF (triethylorthoformate). The library was evaluated as inhibitor of cell proliferation on two glioma cell lines (human-U138-MG and Rat-C6). The compounds derived from thiourea 1f and 1d were more cytotoxic than monastrol. The compound derived from urea 2d showed the highest cytotoxic activity among the analyzed compounds. (author)

  20. Paradoxical effect of aspirin on the growth of C6 rat glioma and on time of development of ENU-induced tumors of the nervous system.

    Science.gov (United States)

    Arrieta, O; Guevara, P; Reyes, S; Palencia, G; Rivera, E; Sotelo, J

    2001-11-01

    Administration of acetylsalicylic acid (ASA), an inhibitor of the synthesis of prostaglandins and thrombzoxanes, decreases the incidence of colorectal cancer and other neoplasms and inhibits in vitro some tumor growth. We studied the effect of various doses of ASA on the growth of C6 glioma implanted in rats as well as the effect of chronic administration of ASA on time of development and incidence of tumors of the central nervous system (CNS) induced by prenatal exposure to ethylnitrosourea (ENU). In a controlled study, various doses of ASA, 12.5, 25, 50, 100, 200, 300, and 400 mg/kg per day, were administered to Wistar rats in whom a subcutaneous C6 glioma had been transplanted. Changes in tumor size, histologic characteristics, mitotic index, cell proliferation, and vascular density were studied. In a parallel experiment, we administered ASA (70 mg/kg per day) to rats who were prenatally exposed to ENU; treatment started on day 50 of age, and continued until the end of the experiment at day 400. The time of tumor development as well as incidence, localization, and histological diagnosis were compared with matched controls. A paradoxical effect of ASA administration was observed on the dynamics of cell proliferation of C6 glioma. When high ASA doses were administered (200 or 400 mg/kg per day), tumor volume, cell proliferation, vascular density, and mitotic index increased. In contrast, when low doses were administered (12.5 or 25 mg/kg per day) the tumor size diminished. In the second experiment, localization and incidence of CNS tumors induced by ENU were similar in animals treated with ASA and in controls; however, in rats treated with ASA the time of tumor development was shortened. The growth-promoting effects of high doses of ASA found in the present study in both transplanted and chemically-induced brain tumors, might be due to the blockage of autocrine inhibitory factors dependent on the cyclooxygenase pathway or by increased vascular permeability and

  1. Inhibition of tumor growth in a glioma model treated with boron neutron capture therapy

    International Nuclear Information System (INIS)

    Goodman, J.H.; McGregor, J.M.; Clendenon, N.R.; Gahbauer, R.A.; Barth, R.F.; Soloway, A.H.; Fairchild, R.G.

    1990-01-01

    This investigation attempts to determine whether increased survival time seen when the F98 glioma model is treated with boron neutron capture therapy (BNCT) is a result of inhibition of tumor growth caused by radiation-induced alterations in endothelial cells and normal tissue components. This indirect effect of radiation has been called the tumor bed effect. A series of tumor-bearing rats was studied, using a standardized investigational BNCT protocol consisting of 50 mg/kg of Na2B12H11SH injected intravenously 14 to 17 hours before neutron irradiation at 4 x 10(12) n/cm2. Ten rats, serving as controls, received no treatment either before or after tumor implantation. A second group of 10 rats was treated with BNCT 4 days before tumor implantation; these animals received no further treatment. The remaining group of 10 rats received no pretreatment but was treated with BNCT 10 days after implantation. Histological and ultrastructural analyses were performed in 2 animals from each group 17 days after implantation. Survival times of the untreated control animals (mean, 25.8 days) did not differ statistically from the survival times of the rats in the pretreated group (mean, 25.5 days). The rats treated with BNCT after implantation survived significantly longer (P less than 0.02; mean, 33.2 days) than the controls and the preirradiated animals. Tumor size indices calculated from measurements taken at the time of death were similar in all groups. These results indicate that, with this tumor model, BNCT does not cause a tumor bed effect in cerebral tissue. The therapeutic gains observed with BNCT result from direct effects on tumor cells or on the peritumoral neovascularity

  2. Comparative evaluation of gadoteridol versus gadopentetate dimeglumine for contrast-enhanced MRI in a rat brain glioma model at 1.5 and 3.0 T

    International Nuclear Information System (INIS)

    Ai Fei; Qi Jianpin; Li Xiaoming; Runge, Val M.; Morelli, John N.; Vu, Lan.; Cannel, Jeremy; Loynachan, Alan T.

    2010-01-01

    Objective: To compare gadoteridol and gadopentetate dimeglumine (Gd-DTPA) with respect to lesion enhancement in a rat brain glioma model at 1. 5 and 3.0 T. Methods: Glioma cells were injected into the brains of 42 male CDF (Fisher 344) rats through implanted cannula to create Glioma animal model. One week after implantation, all rats were randomly divided in to four groups which included 12, 10, 10, 10 rats. The comparisons included the contrast effect of gadoteridol versus gadopentetate dimeglumine at both 1.5 and 3.0 T. In addition, gadoteridol alone was evaluated by comparing the standard dose at both two field strengths and half dose at 3.0 T to a standard full dose at 1.5 T. Two MRI scans for different contrast agent injections were performed in each animal model with an interval of 24 hours. T 1 -weighted images were analyzed pre-contrast and at five time points (1, 3, 5, 7 and 9 min) post-contrast with respect to lesion signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and contrast enhancement (CE). Student t test was used for statistics. Results: The mean SNR, CNR, and CE were respectively 54.4±3.2, 17.0±3.3 and 20.8±3.4 with gadopentetate dimeglumine versus 53.2±3.2, 17.2±3.1 and 20.8±3.2 with gadoteridol at 1.5 T at every postconuast time point (t=2.247, 0.403, 0.076, P>0.05). The mean SNR, CNR, and CE were respectively 94.8±7.1, 38.0±6.0 and 45.0±6.3 with gadopentetate dimeglumine versus 95.5±2.9, 37.2±2.7 and 45.6±2.8 with gadoteridol at 3.0 T (t= 0.303, 0.573, 0.357, P>0.05). No statistically significant differences were found in these parameters between the two agents at any time point at either field strength. Standard dose gadoteridol demonstrated significant improvements in SNR (51.9±3.0 at 1.5 T vs 86.1±4.9 at 3.0 T), CNR (15.6±3.0 at 1.5 T vs 27.4±5.0 at 3.0 T) and CE (18.6±3.0 at 1.5 T vs 37.3±5.3 at 3.0 T) at 3.0 T as compared to 1.5 T at every time post-contrast (t=36.227, 11.977, 17.106, P 0.05). Conclusions

  3. Evaluation of trans-1-amino-3-18F-fluorocyclobutanecarboxylic acid accumulation in low-grade glioma in chemically induced rat models: PET and autoradiography compared with morphological images and histopathological findings

    International Nuclear Information System (INIS)

    Doi, Yoshihiro; Kanagawa, Masaru; Maya, Yoshifumi; Tanaka, Akihiro; Oka, Shuntaro; Nakata, Norihito; Toyama, Masahito; Matsumoto, Hiroki; Shirakami, Yoshifumi

    2015-01-01

    Introduction: Magnetic resonance imaging (MRI) can have a problem to delineate diffuse gliomas with an intact blood–brain barrier (BBB) especially when a marked peritumoral edema is present. We evaluated the potential of trans-1-amino-3- 18 F-fluorocyclobutanecarboxylic acid (anti- 18 F-FACBC) positron emission tomography (PET) to delineate the extent of diffuse gliomas by comparing PET findings with autoradiography, in vivo and ex vivo MRI, and histopathology findings. Methods: Dynamic PET was performed in rats with N-ethyl-N-nitrosourea-induced glioma for 60 min after anti- 18 F-FACBC injection. Contrast-enhanced MRI was performed before or after PET. The PET images were fused with in vivo and ex vivo MR images, and histopathological images for direct comparisons. Autoradiograms were compared with the results of Evans Blue (EB) extravasation (to assess BBB integrity) and hematoxylin-eosin staining. Results: Histopathological examination, including EB extravasation assessment, and enhanced T1-weighted MRI identified several diffuse gliomas with slight BBB disruption, similar to low-grade human gliomas. Anti- 18 F-FACBC uptake was specific and high in the gliomas, irrespective of BBB integrity. Higher anti- 18 F-FACBC uptake corresponded to areas of T2 hyperintensity, independent of gadolinium enhancement. Ex vivo autoradiography also showed high anti- 18 F-FACBC accumulation in tumors lacking EB extravasation and a correlation between anti- 18 F-FACBC accumulation and tumor cell density, but not EB extravasation. Conclusions: Anti- 18 F-FACBC-PET allowed visualization of gliomas irrespective of BBB integrity. The tumor-to-normal uptake ratio of anti- 18 F-FACBC generally correlated with the relative cell density. Anti- 18 F-FACBC PET combined with MRI shows promise for preoperative glioma delineation. Advances in knowledge: Radiopharmaceuticals that cross the BBB, such as anti- 18 F-FACBC, are taken up by low-grade gliomas with equivocal MRI findings due to an

  4. Improvement of survival in C6 rat glioma model by a sustained drug release from localized PLGA microspheres in a thermoreversible hydrogel.

    Science.gov (United States)

    Ozeki, Tetsuya; Kaneko, Daiki; Hashizawa, Kosuke; Imai, Yoshihiro; Tagami, Tatsuaki; Okada, Hiroaki

    2012-05-10

    A local drug delivery system based on sustained drug release is an attractive approach to treat brain tumors. We have developed a novel device using drug-incorporated poly(lactic-co-glycolic acid) (PLGA) microspheres embedded in thermoreversible gelation polymer (TGP) formulation (drug/PLGA/TGP formulation). TGP forms a gel at body temperature but sol at room temperature. Therefore, when this formulation is injected into the brain tumor, the PLGA microspheres in TGP gel are localized at the injection site and do not diffuse throughout the brain tissue; eventually, sustained drug release from PLGA microspheres is achieved at the target site. In this study, two chemotherapeutic drugs (camptothecin (CPT) or vincristine (VCR)) were incorporated into PLGA microspheres to prepare drug/PLGA/TGP formulations. VCR/PLGA microspheres exhibited the higher encapsulation efficiency than CPT/PLGA microspheres (70.1% versus 30.1%). In addition, VCR/PLGA microspheres showed a higher sustained release profile than CPT/PLGA microspheres (54.5% versus 72.5% release, at 28 days). Therapeutic effect (mean survival) was evaluated in the C6 rat glioma model (control group, 18 days; CPT/PLGA/TGP treatment group, 24 days; VCR/PLGA/TGP treatment group, 33 days). In particular, the VCR/PLGA/TGP formulation produced long-term survivors (>60 days). Therefore, this formulation can be therapeutically effective formulation for the glioma therapy. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Low intensity ultrasound promotes the sensitivity of rat brain glioma to Doxorubicin by down-regulating the expressions of p-glucoprotein and multidrug resistance protein 1 in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    Full Text Available The overall prognosis for malignant glioma is extremely poor, and treatment options are limited in part because of multidrug resistant proteins. Our previous findings suggest low intensity ultrasound (LIUS can induce apoptosis of glioma cells. Given this finding, we were interested in determining if LIUS could help treat glioma by inhibiting multidrug resistant proteins, and if so, which pathways are involved. In this study, the toxicity sensitivity and multidrug resistance proteins of glioma induced by LIUS were investigated using CCK-8, immunohistochemistry, immunofluorency, and RT-PCR in tissue samples and cultured cells. LIUS inhibited increase of C6 cells in an intensity- and time-dependent manner. The toxicity sensitivity of C6 cells increased significantly after LIUS sonication (intensity of 142.0 mW/cm(2 or Doxorubicin (DOX at different concentration, particularly by the combination of LIUS sonication and DOX. The expressions of P-gp and MRP1 decreased significantly post-sonication at intensity of 142.0 mW/cm(2 both in vitro and in vivo. The expressions of p110 delta (PI3K, NF-κB-p65, Akt/PKB, and p-Akt/PKB were downregulated by LIUS sonication and DOX treatment separately or in combination at the same parameters in rat glioma. These results indicate that LIUS could increase the toxicity sensitivity of glioma by down-regulating the expressions of P-gp and MRP1, which might be mediated by the PI3K/Akt/NF-κB pathway.

  6. Alterations of the Blood-Brain Barrier and Regional Perfusion in Tumor Development: MRI Insights from a Rat C6 Glioma Model.

    Science.gov (United States)

    Huhndorf, Monika; Moussavi, Amir; Kramann, Nadine; Will, Olga; Hattermann, Kirsten; Stadelmann, Christine; Jansen, Olav; Boretius, Susann

    2016-01-01

    Angiogenesis and anti-angiogenetic medications play an important role in progression and therapy of glioblastoma. In this context, in vivo characterization of the blood-brain-barrier and tumor vascularization may be important for individual prognosis and therapy optimization. We analyzed perfusion and capillary permeability of C6-gliomas in rats at different stages of tumor-growth by contrast enhanced MRI and dynamic susceptibility contrast (DSC) MRI at 7 Tesla. The analyses included maps of relative cerebral blood volume (CBV) and signal recovery derived from DSC data over a time period of up to 35 days after tumor cell injections. In all rats tumor progression was accompanied by temporal and spatial changes in CBV and capillary permeability. A leakage of the blood-brain barrier (slow contrast enhancement) was observed as soon as the tumor became detectable on T2-weighted images. Interestingly, areas of strong capillary permeability (fast signal enhancement) were predominantly localized in the center of the tumor. In contrast, the tumor rim was dominated by an increased CBV and showed the highest vessel density compared to the tumor center and the contralateral hemisphere as confirmed by histology. Substantial regional differences in the tumor highlight the importance of parameter maps in contrast or in addition to region-of-interest analyses. The data vividly illustrate how MRI including contrast-enhanced and DSC-MRI may contribute to a better understanding of tumor development.

  7. Enhancement in blood-tumor barrier permeability and delivery of liposomal doxorubicin using focused ultrasound and microbubbles: evaluation during tumor progression in a rat glioma model

    Science.gov (United States)

    Aryal, Muna; Park, Juyoung; Vykhodtseva, Natalia; Zhang, Yong-Zhi; McDannold, Nathan

    2015-03-01

    Effective drug delivery to brain tumors is often challenging because of the heterogeneous permeability of the ‘blood tumor barrier’ (BTB) along with other factors such as increased interstitial pressure and drug efflux pumps. Focused ultrasound (FUS) combined with microbubbles can enhance the permeability of the BTB in brain tumors, as well as the blood-brain barrier in the surrounding tissue. In this study, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was used to characterize the FUS-induced permeability changes of the BTB in a rat glioma model at different times after implantation. 9L gliosarcoma cells were implanted in both hemispheres in male rats. At day 9, 14, or 17 days after implantation, FUS-induced BTB disruption using 690 kHz ultrasound and definity microbubbles was performed in one tumor in each animal. Before FUS, liposomal doxorubicin was administered at a dose of 5.67 mg kg-1. This chemotherapy agent was previously shown to improve survival in animal glioma models. The transfer coefficient Ktrans describing extravasation of the MRI contrast agent Gd-DTPA was measured via DCE-MRI before and after sonication. We found that tumor doxorubicin concentrations increased monotonically (823  ±  600, 1817  ±  732 and 2432  ±  448 ng g-1) in the control tumors at 9, 14 and 17 d. With FUS-induced BTB disruption, the doxorubicin concentrations were enhanced significantly (P benefit from FUS-induced drug enhancement. Corresponding enhancements in Ktrans were found to be variable in large/late-stage tumors and not significantly different than controls, perhaps reflecting the size mismatch between the liposomal drug (~100 nm) and Gd-DTPA (molecular weight: 938 Da; hydrodynamic diameter: ≃2 nm). It may be necessary to use a larger MRI contrast agent to effectively evaluate the sonication-induced enhanced permeabilization in large/late-stage tumors when a large drug carrier such as a liposome is used.

  8. Improved survival in rats with glioma using MRI-guided focused ultrasound and microbubbles to disrupt the blood-brain barrier and deliver Doxil

    Science.gov (United States)

    Aryal, Muna; Zhi Zhang, Yong; Vykhodtseva, Natalia; Park, Juyoung; Power, Chanikarn; McDannold, Nathan

    2012-02-01

    Blood-brain-barrier (BBB) limits the transportation of most neuropeptides, proteins (enzymes, antibodies), chemotherapeutic agents, and genes that have therapeutic potential for the treatment of brain diseases. Different methods have been used to overcome this limitation, but they are invasive, non-targeted, or require the development of new drugs. We have developed a method that uses MRI-guided focused ultrasound (FUS) combined with circulating microbubbles to temporarily open BBB in and around brain tumors to deliver chemotherapy agents. Here, we tested whether this noninvasive technique could enhance the effectiveness of a chemotherapy agent (Doxil). Using 690 kHz FUS transducer and microbubble (Definity), we induced BBB disruption in intracranially-implanted 9L glioma tumors in rat's brain in three weekly sessions. Animals who received BBB disruption and Doxil had a median survival time of 34.5 days, which was significantly longer than that found in control animals which is 16, 18.5, 21 days who received no treatment, BBB disruption only and Doxil only respectively This work demonstrates that FUS technique has promise in overcoming barriers to drug delivery, which are particularly stark in the brain due to the BBB.

  9. Epidemiology of glioma

    DEFF Research Database (Denmark)

    Rasmussen, Birthe Krogh; Hansen, Steinbjorn; Laursen, Rene J.

    2017-01-01

    in 15%. The overall male:female ratio was 3:2 and the mean age at onset was 60 years. Data for WHO grade I, II, III and IV glioma showed several important differences regarding age and sex distribution and symptomatology at presentation. The mean age increased with the grade of glioma and males...... duration, and headache rates for glioma grade I-IV showed decreasing survival with increasing grade. Glioma grade I-IV showed...

  10. Combination therapy of surgical tumor resection with implantation of a hydrogel containing camptothecin-loaded poly(lactic-co-glycolic acid) microspheres in a C6 rat glioma model.

    Science.gov (United States)

    Ozeki, Tetsuya; Kaneko, Daiki; Hashizawa, Kosuke; Imai, Yoshihiro; Tagami, Tatsuaki; Okada, Hiroaki

    2012-01-01

    We have developed a drug-loaded poly(lactic-co-glycolic acid) (PLGA) microsphere-containing thermoreversible gelation polymer (TGP) (drug/PLGA/TGP) formulation as a novel device for implantation after surgical glioma resection. TGP is a thermosensitive polymer that is a gel at body temperature and a sol at room temperature. When a drug/PLGA/TGP formulation is injected into a target site, PLGA microspheres in TGP gel localize at the injection site and do not diffuse across the entire brain tissue, and thus, sustained drug release from the PLGA microspheres at the target site is expected. Using in vivo imaging, we confirmed that the implantation of indocyanine green (ICG)/PLGA/TGP formulation exhibited a stronger localization of ICG at the injection site 28 d after injection compared with that of ICG/PLGA formulation. The therapeutic effect (mean survival) was evaluated in a C6 rat glioma model. Surgical tumor resection alone showed almost no effect on survival (controls, 18 d; surgical resection; 18.5 d). Survival was prolonged after the treatment with a camptothecin (CPT; 10 µg)/PLGA/TGP formulation (24 d). The combination treatment of surgical tumor resection and CPT/PLGA/TGP showed almost the same therapeutic effect (24 d) compared with CPT/PLGA/TGP alone, while the combination treatment produced long term survivors (>60 d). Therefore, the CPT/PLGA/TGP formulation can be an effective candidate for localized and sustained long-term glioma therapy.

  11. Cilengitide-induced temporal variations in transvascular transfer parameters of tumor vasculature in a rat glioma model: identifying potential MRI biomarkers of acute effects.

    Directory of Open Access Journals (Sweden)

    Tavarekere N Nagaraja

    Full Text Available Increased efficacy of radiotherapy (RT 4-8 h after Cilengitide treatment has been reported. We hypothesized that the effects of Cilengitide on tumor transvascular transfer parameters might underlie, and thus predict, this potentiation. Athymic rats with orthotopic U251 glioma were studied at ~21 days after implantation using dynamic contrast-enhanced (DCE-MRI. Vascular parameters, viz: plasma volume fraction (v(p, forward volume transfer constant (K(trans and interstitial volume fraction (v(e of a contrast agent, were determined in tumor vasculature once before, and again in cohorts 2, 4, 8, 12 and 24 h after Cilengitide administration (4 mg/kg; N = 31; 6-7 per cohort. Perfusion-fixed brain sections were stained for von Willebrand factor to visualize vascular segments. A comparison of pre- and post-treatment parameters showed that the differences between MR indices before and after Cilengitide treatment pivoted around the 8 h time point, with 2 and 4 h groups showing increases, 12 and 24 h groups showing decreases, and values at the 8 h time point close to the baseline. The vascular parameter differences between group of 2 and 4 h and group of 12 and 24 h were significant for K(trans (p = 0.0001 and v(e (p = 0,0271. Vascular staining showed little variation with time after Cilengitide. The vascular normalization occurring 8 h after Cilengitide treatment coincided with similar previous reports of increased treatment efficacy when RT followed Cilengitide by 8 h. Pharmacological normalization of vasculature has the potential to increase sensitivity to RT. Evaluating acute temporal responses of tumor vasculature to putative anti-angiogenic drugs may help in optimizing their combination with other treatment modalities.

  12. Toxicity, biodistribution, and convection-enhanced delivery of the boronated porphyrin BOPP in the 9L intracerebral rat glioma model

    International Nuclear Information System (INIS)

    Ozawa, Tomoko; Afzal, Javed; Lamborn, Kathleen R.; Bollen, Andrew W.; Bauer, William F.; Koo, Myoung-Seo; Kahl, Stephen B.; Deen, Dennis F.

    2005-01-01

    Purpose: To investigate the toxicity, biodistribution, and convection-enhanced delivery (CED) of a boronated porphyrin (BOPP) that was designed for boron neutron capture therapy and photodynamic therapy. Methods and Materials: For the toxicity study, Fischer 344 rats were injected with graded concentrations of BOPP (35-100 mg/kg) into the tail vein. For boron biodistribution studies, 9L tumor-bearing rats received BOPP either systematically (intravenously) or locally. Results: All rats that received 70 mg/kg BOPP and 70% of rats that received ≤60 mg/kg BOPP i.v. either had to be euthanized or died within 4 days of injection. In the biodistribution study, boron levels were relatively high in liver, kidney, spleen, and adrenal gland tissue, and moderate levels were found in all other organs. The maximum tumor boron concentration was 21.4 μg/g at 48 h after i.v. injection; this concentration of boron in brain tumors is at the low end of the range considered optimal for therapy. In addition, the tumor/blood ratio (approximately 1.2) was not optimal. When BOPP was delivered directly into intracerebral 9L tumors with CED, we obtained tumor boron concentrations much greater than those obtained by i.v. injection. Convection-enhanced delivery of 1.5 mg BOPP produced an average tumor boron level of 519 μg/g and a tumor/blood ratio of approximately 1850:1. Conclusions: Our study demonstrates that changing the method of BOPP delivery from i.v. to CED significantly enhances the boron concentration in tumors and produces very favorable tumor/brain and tumor/blood ratios

  13. Baicalein inhibition of oxidative-stress-induced apoptosis via modulation of ERKs activation and induction of HO-1 gene expression in rat glioma cells C6

    International Nuclear Information System (INIS)

    Chen, Y.-C.; Chow, J.-M.; Lin, C.-W.; Wu, C.-Y.; Shen, S.-C.

    2006-01-01

    In the present study, we examined the protective mechanism of baicalein (BE) and its glycoside, baicalin (BI), on hydrogen-peroxide (H 2 O 2 )-induced cell death in rat glioma C6 cells. Results of the MTT assay, LDH release assay, and morphological observation showed that H 2 O 2 addition reduced the viability of C6 cells, and this was prevented by the addition of BE but not BI. Incubation of C6 cells with BE significantly decreased the intracellular peroxide level induced by H 2 O 2 according to flow cytometric analysis using DCHF-DA as a fluorescent substrate. Suppression of H 2 O 2 -induced apoptotic events including DNA ladders, hypodiploid cells, and activation of caspases 3, 8, and, 9 by BE but not BI was identified in C6 cells. The cytotoxicity and phosphorylation of ERK proteins induced by H 2 O 2 were blocked by the ERK inhibitor PD98059. Catalase addition prevented H 2 O 2 -induced ROS production, ERKs protein phosphorylation, and cell death, and BE dose-dependently inhibited H 2 O 2 -induced ERK protein phosphorylation in C6 cells. These data suggest that ROS-scavenging activity is involved in BE prevention of H 2 O 2 -induced cell death via blocking ERKs activation. Additionally, BE but not BI induced heat shock protein 32 (HSP32; HO-1) protein expression in both time- and dose-dependent manners, but not heme oxygenase 2 (HO-2), heat shock protein 70 (HSP70), or heat shock protein 90 (HSP90) protein expression. In the absence of H 2 O 2 , BE induces ERKs protein phosphorylation, and HO-1 protein expression induced by BE was blocked by the addition of cycloheximide, actinomycin D, and the ERK inhibitor PD98059. The addition of the HO inhibitor ZnPP inhibited the protective effect of BE against H 2 O 2 -induced cytotoxicity in C6 cells according to the MTT assay and apoptotic morphology under microscopic observation, accompanied by blocking the ROS-scavenging activity of BE in C6 cells. However, BE treatment was unable to protect C6 cells from C2-ceramide

  14. [Experimental tumors of the central nervous system: standardisation of a model in rats using the 9L glioma cells].

    Science.gov (United States)

    Michailowsky, Custódio; Niura, Flavio Key; do Valle, Angela C; Sonohara, Shigueko; Meneguin, Thales D'Alessandro; Tsanaclis, Ana Maria C

    2003-06-01

    A number of experimental models have been established during the last decades in order to study tumor biology and the effects of treatment or manipulation of the microenvironment of malignant glial tumors. Even though those models have been well characterised and are, to a certain extent, easily reproducible, there are limitations as to their use and to the interpretation of the results. The aim of this study is to standardize a model of a malignant glial tumor and detect possible events able to modify its development. 9L cells were inoculated intracerebrally in 48 Sprague-Dawley rats; from these, 25 animals were also implanted with a device containing electrodes for the registration of the electroencephalogramm. Animals were daily evaluated by neurologic examination. Twenty four animals developed tumor - 10 animals died either in the immediate pos-operatory period or during evolution; 14 animals did not develop tumor. Macroscopically the tumor was well demarcated from the adjacent brain; by light microscopy the tumor exhibited malignant characteristics as well as extensive infiltration of the brain parenchyma. Diagnosis was that of a malignant astrocytoma. The use of the stereotaxic frame and care to infuse a small volume of liquid containing cells during a period of 120 seconds were the most important procedures to obtain sucess in the model. Additional care should be taken in counting cells in the Neubauer camera and in maintaining cells in constant agitation before injecting the tumor-containing solution. The model here developed was efficient besides being of low cost and of relatively easy execution.

  15. Intracellular labeling and quantification process by magnetic resonance imaging using iron oxide magnetic nanoparticles in rat C6 glioma cell line; Marcacao intracelular e processo de quantificacao por imagem por ressonancia magnetica utilizando nanoparticulas magneticas de oxido de ferro em celulas da linhagem C6 de glioma de rato

    Energy Technology Data Exchange (ETDEWEB)

    Mamani, Javier Bustamante; Pavon, Lorena Favaro; Sibov, Tatiana Tais; Rossan, Fabiana; Silveira, Paulo Henrique; Cardenas, Walter Humberto; Gamarra, Lionel Fernel, E-mail: javierbm@einstein.br [Instituto do Cerebro - InCe, Hospital Israelita Albert Einstein - HIAE, Sao Paulo, SP (Brazil); Miyaki, Liza Aya Mabuchi [Faculdade de Enfermagem, Hospital Israelita Albert Einstein - HIAE, Sao Paulo, SP (Brazil); Amaro Junior, Edson [Departamento de Diagnostico por Imagem e Instituto do Cerebro - InCe, Hospital Israelita Albert Einstein - HIAE, Sao Paulo, SP (Brazil)

    2012-04-15

    Objective: To assess intracellular labeling and quantification by magnetic resonance imaging using iron oxide magnetic nanoparticles coated with biocompatible materials in rat C6 glioma cells in vitro. These methods will provide direction for future trials of tumor induction in vivo as well as possible magnetic hyperthermia applications. Methods: Aminosilane, dextran, polyvinyl alcohol, and starch-coated magnetic nanoparticles were used in the qualitative assessment of C6 cell labeling via light microscopy. The influence of the transfection agent poly-L-lysine on cellular uptake was examined. The quantification process was performed by relaxometry analysis in T{sub 1} and T{sub 2} weighted phantom images. Results: Light microscopy revealed that the aminosilane-coated magnetic nanoparticles alone or complexed with poly-L-lysine showed higher cellular uptake than did the uncoated magnetic particles. The relaxactivities of the aminosilane-coated magnetic nanoparticles with a hydrodynamic diameter of 50nm to a 3-T field were r{sub 1}=(6.1 +- 0.3) x10{sup -5} ms{sup -1}mL/{mu}g, r{sub 2}=(5.3 +- 0.1) x 10{sup -4} ms{sup -1}mL/{mu}g, with a ratio of r{sub 2} / r{sub 1}{approx_equal} 9. The iron uptake in the cells was calculated by analyzing the relaxation rates (R{sub 1}and R{sub 2}) using a mathematical relationship. Conclusions: C6 glioma cells have a high uptake efficiency for aminosilane-coated magnetic nanoparticles complexed with the transfection agent poly-L-lysine. The large ratio r{sub 2} / r{sub 1}{approx_equal} 9 indicates that these magnetic nanoparticles are ideal for quantification by magnetic resonance imaging with T{sub 2}-weighted imaging techniques. (author)

  16. Effects of the nitric oxide donor JS-K on the blood-tumor barrier and on orthotopic U87 rat gliomas assessed by MRI.

    Science.gov (United States)

    Weidensteiner, Claudia; Reichardt, Wilfried; Shami, Paul J; Saavedra, Joseph E; Keefer, Larry K; Baumer, Brunhilde; Werres, Anna; Jasinski, Robert; Osterberg, Nadja; Weyerbrock, Astrid

    2013-04-01

    Nitric oxide (NO) released from NO donors can be cytotoxic in tumor cells and can enhance the transport of drugs into brain tumors by altering blood-tumor barrier permeability. The NO donor JS-K [O(2)-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate] releases NO upon enzymatic activation selectively in cells overexpressing glutathione-S-transferases (GSTs) such as gliomas. Thus, JS-K-dependent NO effects - especially on cell viability and vascular permeability - were investigated in U87 glioma cells in vitro and in an orthotopic U87 xenograft model in vivo by magnetic resonance imaging (MRI). In vitro experiments showed dose-dependent antiproliferative and cytotoxic effects in U87 cells. In addition, treatment of U87 cells with JS-K resulted in a dose-dependent activation of soluble guanylate cyclase and intracellular accumulation of cyclic guanosine monophosphate (cGMP) which was irreversibly inhibited by the selective inhibitor of soluble guanylate cyclase ODQ (1H-[1,2,4]oxadiazolo(4,3a)quinoxaline-1-one). Using dynamic contrast enhanced MRI (DCE-MRI) as a minimally invasive technique, we demonstrated for the first time a significant increase in the DCE-MRI read-out initial area under the concentration curve (iAUC60) indicating an acute increase in blood-tumor barrier permeability after i.v. treatment with JS-K. Repeated MR imaging of animals with intracranial U87 gliomas under treatment with JS-K (3.5 μmol/kg JS-K 3×/week) and of untreated controls on day 12 and 19 after tumor inoculation revealed no significant changes in tumor growth, edema formation or tumor perfusion. Immunohistochemical workup of the brains showed a significant antiproliferative effect of JS-K in the gliomas. Taken together, in vitro and in vivo data suggest that JS-K has antiproliferative effects in U87 gliomas and opens the blood-tumor barrier by activation of the NO/cGMP signaling pathway. This might be a novel approach to facilitate entry of therapeutic

  17. Genetic Alterations in Glioma

    International Nuclear Information System (INIS)

    Bralten, Linda B. C.; French, Pim J.

    2011-01-01

    Gliomas are the most common type of primary brain tumor and have a dismal prognosis. Understanding the genetic alterations that drive glioma formation and progression may help improve patient prognosis by identification of novel treatment targets. Recently, two major studies have performed in-depth mutation analysis of glioblastomas (the most common and aggressive subtype of glioma). This systematic approach revealed three major pathways that are affected in glioblastomas: The receptor tyrosine kinase signaling pathway, the TP53 pathway and the pRB pathway. Apart from frequent mutations in the IDH1/2 gene, much less is known about the causal genetic changes of grade II and III (anaplastic) gliomas. Exceptions include TP53 mutations and fusion genes involving the BRAF gene in astrocytic and pilocytic glioma subtypes, respectively. In this review, we provide an update on all common events involved in the initiation and/or progression across the different subtypes of glioma and provide future directions for research into the genetic changes

  18. Molecular markers in glioma.

    Science.gov (United States)

    Ludwig, Kirsten; Kornblum, Harley I

    2017-09-01

    Gliomas are the most malignant and aggressive form of brain tumors, and account for the majority of brain cancer related deaths. Malignant gliomas, including glioblastoma are treated with radiation and temozolomide, with only a minor benefit in survival time. A number of advances have been made in understanding glioma biology, including the discovery of cancer stem cells, termed glioma stem cells (GSC). Some of these advances include the delineation of molecular heterogeneity both between tumors from different patients as well as within tumors from the same patient. Such research highlights the importance of identifying and validating molecular markers in glioma. This review, intended as a practical resource for both clinical and basic investigators, summarizes some of the more well-known molecular markers (MGMT, 1p/19q, IDH, EGFR, p53, PI3K, Rb, and RAF), discusses how they are identified, and what, if any, clinical relevance they may have, in addition to discussing some of the specific biology for these markers. Additionally, we discuss identification methods for studying putative GSC's (CD133, CD15, A2B5, nestin, ALDH1, proteasome activity, ABC transporters, and label-retention). While much research has been done on these markers, there is still a significant amount that we do not yet understand, which may account for some conflicting reports in the literature. Furthermore, it is unlikely that the investigator will be able to utilize one single marker to prospectively identify and isolate GSC from all, or possibly, any gliomas.

  19. TCGA_LowerGradeGliomas

    Science.gov (United States)

    TCGA researchers analyzed nearly 300 cases of diffuse low- and intermediate-grade gliomas, which together comprise lower-grade gliomas. LGGs occur mainly in adults and include astrocytomas, oligodendrogliomas and oligoastrocytomas.

  20. Evaluation of D-isomers of 4-borono-2-18F-fluoro-phenylalanine and O-11C-methyl-tyrosine as brain tumor imaging agents: a comparative PET study with their L-isomers in rat brain glioma.

    Science.gov (United States)

    Kanazawa, Masakatsu; Nishiyama, Shingo; Hashimoto, Fumio; Kakiuchi, Takeharu; Tsukada, Hideo

    2018-06-13

    The potential of the D-isomerization of 4-borono-2- 18 F-fluoro-phenylalanine ( 18 F-FBPA) to improve its target tumor to non-target normal brain tissue ratio (TBR) was evaluated in rat brain glioma and compared with those of L- and D- 11 C-methyl-tyrosine ( 11 C-CMT). The L- or D-isomer of 18 F-FBPA was injected into rats through the tail vein, and their whole body kinetics and distributions were assessed using the tissue dissection method up to 90 min after the injection. The kinetics of L- and D- 18 F-FBPA or L- and D- 11 C-CMT in the C-6 glioma-inoculated rat brain were measured for 90 or 60 min, respectively, using high-resolution animal PET, and their TBRs were assessed. Tissue dissection analyses showed that D- 18 F-FBPA uptake was significantly lower than that of L- 18 F-FBPA in the brain and abdominal organs, except for the kidney and bladder, reflecting the faster elimination rate of D- 18 F-FBPA than L- 18 F-FBPA from the blood to the urinary tract. PET imaging using 18 F-FBPA revealed that although the brain uptake of D- 18 F-FBPA was significantly lower than that of L- 18 F-FBPA, the TBR of the D-isomer improved to 6.93 from 1.45 for the L-isomer. Similar results were obtained with PET imaging using 11 C-CMT with a smaller improvement in TBR to 1.75 for D- 11 C-CMT from 1.33 for L- 11 C-CMT. The present results indicate that D- 18 F-FBPA is a better brain tumor imaging agent with higher TBR than its original L-isomer and previously reported tyrosine-based PET imaging agents. This improved TBR of D- 18 F-FBPA without any pre-treatments, such as tentative blood-brain barrier disruption using hyperosmotic agents or sonication, suggests that the D-isomerization of BPA results in the more selective accumulation of 10 B in tumor cells that is more effective and less toxic than conventional L-BPA.

  1. Nasal Glioma: Case report

    Directory of Open Access Journals (Sweden)

    Ozgur Surmelioglu

    2011-02-01

    Full Text Available Nasal gliomas are rare, benign, congenital tumors that are thought to be result of abnormality in embryonic development. Three types of clinical presentations have been recognized; extranasal, intranasal and combined. Clinically, these masses are non-pulsatile, gray or purple lesions that obstruct the nasal cavity and cause deformity extranasaly. Histologically, they are made up of astrocytic cells, fibrous and vascular connective tissue that is covered with nasal respiratory mucosa. Treatment of the nasal glioma requires a multidisciplinary approach including an radiologist, neurosurgeon and otorhinolaryngologist. Radiological investigation should be performed to describe intracranial extension. In this case, a 2 years old boy with nasal mass that was diagnosed as nasal glioma is reported. . [Cukurova Med J 2011; 36(1.000: 34-36

  2. Nasal Glioma: Case report

    Directory of Open Access Journals (Sweden)

    Ozgur Surmelioglu

    2011-03-01

    Full Text Available Nasal gliomas are rare, benign, congenital tumors that are thought to be result of abnormality in embryonic development. Three types of clinical presentations have been recognized; extranasal, intranasal and combined. Clinically, these masses are non-pulsatile, gray or purple lesions that obstruct the nasal cavity and cause deformity extranasaly. Histologically, they are made up of astrocytic cells, fibrous and vascular connective tissue that is covered with nasal respiratory mucosa. Treatment of the nasal glioma requires a multidisciplinary approach including an radiologist, neurosurgeon and otorhinolaryngologist. Radiological investigation should be performed to describe intracranial extension. In this case, a 2 years old boy with nasal mass that was diagnosed as nasal glioma is reported. . [Cukurova Med J 2011; 36(1: 34-36

  3. Human gliomas contain morphine

    DEFF Research Database (Denmark)

    Olsen, Peter; Rasmussen, Mads; Zhu, Wei

    2005-01-01

    BACKGROUND: Morphine has been found in cancer cell lines originating from human and animal cells. Thus, it became important to demonstrate whether or not actual tumours contain this opiate alkaloid. MATERIAL/METHODS: Human glioma tissues were biochemically treated to isolate and separate endogeno...... of the solutions used in the study nor was it present as a residual material in blank HPLC runs. CONCLUSIONS: Morphine is present in human gliomas, suggesting that it may exert an action that effects tumour physiology/pathology.......BACKGROUND: Morphine has been found in cancer cell lines originating from human and animal cells. Thus, it became important to demonstrate whether or not actual tumours contain this opiate alkaloid. MATERIAL/METHODS: Human glioma tissues were biochemically treated to isolate and separate endogenous...

  4. Angiogenesis in gliomas.

    Directory of Open Access Journals (Sweden)

    Elzbieta Czykier

    2008-02-01

    Full Text Available Brain gliomas are characterized by invasive growth and neovascularisation potential. Angiogenesis plays a major role in the progression of gliomas and its determination has a great prognostic value. The aim of the study was to assess the vascularisation of chosen brain gliomas and to estimate how it is correlated with tumour histological type, malignancy grade, location and size, and with age and sex of patients. Tumour vascularisation analysis was based on the determination of microvascular proliferation (MVP and microvessel density (MVD. Microvascular proliferation was measured with immunohistochemical methods using mouse monoclonal antibodies to detect cell proliferation antigens. The following antibodies were used Ki-67 and PCNA (DAKO. Identification of vessels was performed by CD31 antibody and anti-human von Willebrand factor (DAKO. The highest microvascular proliferation and microvascular density were observed in multiform glioblastomas and the lowest in oligodendrogliomas. Significant correlation was observed between the vascularisation and malignancy grade.

  5. WE-E-BRE-08: Impact of IUdR in Rat 9L Glioma Cell Survival for 25–35 KeV Photo-Activated Auger Electron Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, D; Hogstrom, K [Louisiana State University, Baton Rouge, LA (United States); Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States); Brown, T; Dugas, J; Varnes, M [Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States); Matthews, K [Louisiana State University, Baton Rouge, LA (United States)

    2014-06-15

    Purpose: To determine the biological effect from Auger electrons with 9% and 18% iododeoxyuridine (IUdR) incorporated into the DNA of rat 9L glioma cells at photon energies above and below the K-edge of iodine (33.2 keV). Methods: Rat 9L glioma cell survival versus dose curves with 0%, 9%, and 18% thymidine replacement with IUdR were measured using four irradiation energies (4 MV x-rays; monochromatic 35, 30, and 25 keV synchrotron photons). For each of 11 conditions (Energy, %IUdR) survival curves were fit to the data (826 cell cultures) using the linear-quadratic model. The ratio of doses resulting in 10% survival gave sensitization enhancement ratios (SER10) from which contributions due to linear-energy transfer (LET), radiosensitization (RS), and Auger effect (AE) were extracted. Results: At 35, 30, and 25 keV, SER10,LET values were 1.08±0.03, 1.22±0.02, and 1.37±0.02, respectively. At 4 MV SER10,RS values for 9% and 18% IUdR were 1.28±0.02 and 1.40±0.02, respectively. Assuming LET effects are independent of %IUdR and radiosensitization effects are independent of energy, SER10,AE values for 18% IUdR at 35, 30, and 25 keV were 1.35±0.05, 1.06±0.03, and 0.98±0.03, respectively; values for 9% IUdR at 35 and 25 keV were 1.01±0.04 and 0.82±0.02, respectively. Conclusion: For 18% IUdR the radiosensitization effect of 1.40 and the Auger effect of 1.35 at 35 keV are equally important to the combined effect of 1.90. No measureable Auger effect was observed for energies below the K-edge at 20 and 25 keV, as expected. The insignificant Auger effect at 9% IUdR was not expected. Additional data (40–70 keV) and radiobiological modeling are being acquired to better understand the energy dependence of Auger electron therapy with IUdR. Funding support in part by the National Science Foundation Graduate Research Fellowship Program and in part by Contract No. W81XWH-10-1-0005 awarded by the U.S. Army Research Acquisition Activity. This paper does not necessarily

  6. Human gliomas contain morphine

    DEFF Research Database (Denmark)

    Olsen, Peter; Rasmussen, Mads; Zhu, Wei

    2005-01-01

    BACKGROUND: Morphine has been found in cancer cell lines originating from human and animal cells. Thus, it became important to demonstrate whether or not actual tumours contain this opiate alkaloid. MATERIAL/METHODS: Human glioma tissues were biochemically treated to isolate and separate endogenous...

  7. Mitochondrial Dysfunction in Gliomas

    Czech Academy of Sciences Publication Activity Database

    Katsetos, C.D.; Anni, H.; Dráber, Pavel

    2013-01-01

    Roč. 20, č. 3 (2013), s. 216-227 ISSN 1071-9091 R&D Projects: GA MŠk LH12050 Institutional support: RVO:68378050 Keywords : gliomas * mitochondrial dysfunction * microtubule proteins Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.883, year: 2013

  8. Microglia immunophenotyping in gliomas

    Science.gov (United States)

    Annovazzi, Laura; Mellai, Marta; Bovio, Enrica; Mazzetti, Samanta; Pollo, Bianca; Schiffer, Davide

    2018-01-01

    Microglia, once assimilated to peripheral macrophages, in gliomas has long been discussed and currently it is hypothesized to play a pro-tumor role in tumor progression. Uncertain between M1 and M2 polarization, it exchanges signals with glioma cells to create an immunosuppressive microenvironment and stimulates cell proliferation and migration. Four antibodies are currently used for microglia/macrophage identification in tissues that exhibit different cell forms and cell localization. The aim of the present work was to describe the distribution of the different cell forms and to deduce their significance on the basis of what is known on their function from the literature. Normal resting microglia, reactive microglia, intermediate and bumpy forms and macrophage-like cells can be distinguished by Iba1, CD68, CD16 and CD163 and further categorized by CD11b, CD45, c-MAF and CD98. The number of microglia/macrophages strongly increased from normal cortex and white matter to infiltrating and solid tumors. The ramified microglia accumulated in infiltration areas of both high- and low-grade gliomas, when hypertrophy and hyperplasia occur. In solid tumors, intermediate and bumpy forms prevailed and there is a large increase of macrophage-like cells in glioblastoma. The total number of microglia cells did not vary among the three grades of malignancy, but macrophage-like cells definitely prevailed in high-grade gliomas and frequently expressed CD45 and c-MAF. CD98+ cells were present. Microglia favors tumor progression, but many aspects suggest that the phagocytosing function is maintained. CD98+ cells can be the product of fusion, but also of phagocytosis. Microglia correlated with poorer survival in glioblastoma, when considering CD163+ cells, whereas it did not change prognosis in isocitrate dehydrogenase-mutant low grade gliomas. PMID:29399160

  9. Dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) for the assessment of Pc 4-sensitized photodynamic therapy of a U87-derived glioma model in the athymic nude rat

    Science.gov (United States)

    Anka, Ali; Thompson, Paul; Mott, Eric; Sharma, Rahul; Zhang, Ruozhen; Cross, Nathan; Sun, Jiayang; Flask, Chris A.; Oleinick, Nancy L.; Dean, David

    2010-02-01

    Introduction: Dynamic Contrast-Enhanced-Magnetic Resonance Imaging (DCE-MRI) may provide a means of tracking the outcome of Pc 4-sensitized photodynamic therapy (PDT) in deeply placed lesions (e.g., brain tumors). We previously determined that 150 μL of gadolinium (Gd-DTPA) produces optimal enhancement of U87-derived intracerebral tumors in an athymic nude rat glioma model. We wish to determine how consistently DCE-MRI enhancement will detect an increase in Gd-enhancement of these tumors following Pc 4-PDT. Methods: We injected 2.5 x 105 U87 cells into the brains of 6 athymic nude rats. After 7-8 days pre-Pc 4 PDT peri-tumor DCE-MRI images were acquired on a 7.0T microMRI scanner before and after administration of 150 μL Gd. DCE-MRI scans were repeated on Days 11, 12, and 13 following Pc 4-PDT (Day 8 or 9). Results: Useful DCE-MRI data were obtained for these animals before and after Pc 4- PDT. In the pre-Pc 4-PDT DCE-MRI scans an average normalized peak Gd enhancement was observed in tumor tissue that was 1.297 times greater than baseline (0.035 Standard Error [SE]). The average normalized peak Gd enhancement in the tumor tissue in the scan following PDT (Day 11) was 1.537 times greater than baseline (0.036 SE), a statistically significant increase in enhancement (p = 0.00584) over the pre-PDT level. Discussion: A 150 μL Gd dose appears to provide an unambiguous increase in signal indicating Pc 4-PDT-induced necrosis of the U87-derived tumor. Our DCEMRI protocol may allow the development of a clinically robust, unambiguous, non-invasive technique for the assessment of PDT outcome.

  10. In vivo detection of inducible nitric oxide synthase in rodent gliomas.

    Science.gov (United States)

    Towner, Rheal A; Smith, Nataliya; Doblas, Sabrina; Garteiser, Philippe; Watanabe, Yasuko; He, Ting; Saunders, Debra; Herlea, Oana; Silasi-Mansat, Robert; Lupu, Florea

    2010-03-01

    Increased iNOS expression is often found in brain tumors, such as gliomas. The goal of this study was to develop and assess a novel molecular MRI (mMRI) probe for in vivo detection of iNOS in rodent models for gliomas (intracerebral implantation of rat C6 or RG2 cells or ethyl nitrosourea-induced glioma). The probe we used incorporated a Gd-DTPA (gadolinium(III) complex of diethylenetriamine-N,N,N',N'',N''-pentaacetate) backbone with albumin and biotin moieties and covalent binding of an anti-iNOS antibody (Ab) to albumin (anti-iNOS probe). We used mMRI with the anti-iNOS probe to detect in vivo iNOS levels in gliomas. Nonimmune normal rat IgG coupled to albumin-Gd-DTPA-biotin was used as a control nonspecific contrast agent. By targeting the biotin component of the anti-iNOS probe with streptavidin Cy3, fluorescence imaging confirmed the specificity of the probe for iNOS in glioma tissue. iNOS levels in glioma tumors were also confirmed via Western blots and immunohistochemistry. The presence of plasma membrane-associated iNOS in glioma cells was established by transmission electron microscopy and gold-labeled anti-iNOS Ab. The more aggressive RG2 glioma was not found to have higher levels of iNOS compared to C6. Differences in glioma vascularization and blood-brain barrier permeability between the C6 and the RG2 gliomas are discussed. In vivo assessment of iNOS levels associated with tumor development is quite feasible in heterogeneous tissues with mMRI. (c) 2009 Elsevier Inc. All rights reserved.

  11. Sensitivity of C6 Glioma Cells Carrying the Human Poliovirus Receptor to Oncolytic Polioviruses.

    Science.gov (United States)

    Sosnovtseva, A O; Lipatova, A V; Grinenko, N F; Baklaushev, V P; Chumakov, P M; Chekhonin, V P

    2016-10-01

    A humanized line of rat C6 glioma cells expressing human poliovirus receptor was obtained and tested for the sensitivity to oncolytic effects of vaccine strains of type 1, 2, and 3 polioviruses. Presentation of the poliovirus receptor on the surface of C6 glioma cells was shown to be a necessary condition for the interaction of cells with polioviruses, but insufficient for complete poliovirus oncolysis.

  12. Specific Inhibition of SRC Kinase Impairs Malignant Glioma Growth In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Hanna Stedt

    2012-01-01

    Full Text Available Malignant glioma is a severe cancer with a poor prognosis. Local occurrence and rare metastases of malignant glioma make it a suitable target for gene therapy. Several studies have demonstrated the importance of Src kinase in different cancers. However, these studies have focused mainly on Src-deficient mice or pharmacological inhibitors of Src. In this study we have used Src small hairpin RNAs (shRNAs in a lentiviral backbone to mimic a long-term stable treatment and determined the role of Src in tumor tissues. Efficacy of Src shRNAs was confirmed in vitro demonstrating up to 90% target gene inhibition. In a mouse malignant glioma model, Src shRNA tumors were almost 50-fold smaller in comparison to control tumors and had significantly reduced vascularity. In a syngenic rat intracranial glioma model, Src shRNA-transduced tumors were smaller and these rats had a survival benefit over the control rats. In vivo treatment was enhanced by chemotherapy and histone deacetylase inhibition. Our results emphasise the importance of Src in tumorigenesis and demonstrate that it can be efficiently inhibited in vitro and in vivo in two independent malignant glioma models. In conclusion, Src is a potential target for RNA interference-mediated treatment of malignant glioma.

  13. BOPP revisited. A study on the toxicity, biodistribution and convection enhanced delivery of BOPP in the 9L intracerebral rat glioma model

    International Nuclear Information System (INIS)

    Kahl, S.B.; Koo, M.-S.; Ozawa, T.; Afzal, J.; Lamborn, K.R.; Deen, D.F.; Bollen, A.W.; Bauer, W.F.

    2006-01-01

    To evaluate and compare the toxicity and boron biodistribution of the boronated porphyrin BOPP when administered by either intravenous or convection enhanced delivery (CED). For the toxicity study, Fischer 344 rats were injected with graded concentrations of BOPP into the tail vein. For boron biodistribution studies, 9L tumor-bearing rats received BOPP either systematically or by CED. When given i.v. BOPP showed unacceptable toxicity in normal rats receiving doses of ≥60 mg/kg. In contrast, tumor bearing rats receiving BOPP by CED showed no evidence of toxic effects whatsoever. In the biodistribution study, the maximum tumor boron concentration was ∼21 μ/g at 48 h after i.v. injection, at which time the tumor/blood ratio was ∼1.2. Neither of these values is optimal. However, when BOPP was delivered directly into intracerebral tumors with CED, we obtained tumor boron concentrations much greater than those obtained by i.v. injection. For example, convection enhanced delivery of 1.5 mg BOPP produced an average tumor boron level of 519 μg/g and a tumor/blood ratio of ∼1850:1. Tumor/brain ratios of ∼9:1 (ipsilateral) and ∼41:1 (contralateral) were also found at this dose. We conclude that changing the method of BOPP delivery from i.v. to CED significantly enhances the boron concentration in tumors and produces very favorable tumor/blood and tumor/brain ratios with no concomittant systemic toxicity. (author)

  14. Glioma-derived mutations in isocitrate dehydrogenase 2 beneficial to traditional chemotherapy

    International Nuclear Information System (INIS)

    Fu, Yuejun; Huang, Rui; Zheng, Yali; Zhang, Zhiyun; Liang, Aihua

    2011-01-01

    Highlights: → IDH1 and IDH2 mutations are not detected in the rat C6 glioma cell line model. → IDH2 mutations are not required for the tumorigenesis of glioma. → IDH2 R172G can sensitize glioma sensitivity to chemotherapy through NADPH levels. → IDH2 R172G can give a benefit to traditional chemotherapy of glioma. → This finding serves as an important complement to existing research on this topic. -- Abstract: Heterozygous mutations in either the R132 residue of isocitrate dehydrogenase I (IDH1) or the R172 residue of IDH2 in human gliomas were recently highlighted. In the present study, we report that mutations of IDH1 and IDH2 are not detected in the rat C6 glioma cell line model, which suggests that these mutations are not required for the development of glioblastoma induced by N,N'-nitroso-methylurea. The effects of IDH2 and IDH2 R172G on C6 cells proliferation and sensitivity to chemotherapy and the possible mechanism are analyzed at the cellular level. IDH1 and IDH2 mutations lead to simultaneous loss and gain of activities in the production of α-ketoglutarate (α-KG) and 2-hydroxyglutarate (2HG), respectively, and result in lowering NADPH levels even further. The low NADPH levels can sensitize tumors to chemotherapy, and account for the prolonged survival of patients harboring the mutations. Our data extrapolate potential importance of the in vitro rat C6 glioma cell model, show that the IDH2 R172G mutation in gliomas may give a benefit to traditional chemotherapy of this cancer and serve as an important complement to existing research on this topic.

  15. Glioma in a goat

    International Nuclear Information System (INIS)

    Marshall, C.L.; Weinstock, D.; Kramer, R.W.; Bagley, R.S.

    1995-01-01

    An adult goat was examined because of behavioral changes and circling. Results of neurologic examination, CSF analysis, hematologic evaluation, and computed tomography of the brain were suggestive of an intra-axial mass. The goat was euthanatized because of worsening neurologic condition and poor prognosis. Necropsy revealed a large mass in the right cerebral hemisphere and caudal brain herniation through the foramen magnum. The mass was diagnosed as a glioma, with oligodendrocyte differentiation. Results of immunohistochemical evaluation were compatible with a malignant, poorly differentiated tumor

  16. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy.

    Science.gov (United States)

    Maurer, Gabriele D; Brucker, Daniel P; Bähr, Oliver; Harter, Patrick N; Hattingen, Elke; Walenta, Stefan; Mueller-Klieser, Wolfgang; Steinbach, Joachim P; Rieger, Johannes

    2011-07-26

    Even in the presence of oxygen, malignant cells often highly depend on glycolysis for energy generation, a phenomenon known as the Warburg effect. One strategy targeting this metabolic phenotype is glucose restriction by administration of a high-fat, low-carbohydrate (ketogenic) diet. Under these conditions, ketone bodies are generated serving as an important energy source at least for non-transformed cells. To investigate whether a ketogenic diet might selectively impair energy metabolism in tumor cells, we characterized in vitro effects of the principle ketone body 3-hydroxybutyrate in rat hippocampal neurons and five glioma cell lines. In vivo, a non-calorie-restricted ketogenic diet was examined in an orthotopic xenograft glioma mouse model. The ketone body metabolizing enzymes 3-hydroxybutyrate dehydrogenase 1 and 2 (BDH1 and 2), 3-oxoacid-CoA transferase 1 (OXCT1) and acetyl-CoA acetyltransferase 1 (ACAT1) were expressed at the mRNA and protein level in all glioma cell lines. However, no activation of the hypoxia-inducible factor-1α (HIF-1α) pathway was observed in glioma cells, consistent with the absence of substantial 3-hydroxybutyrate metabolism and subsequent accumulation of succinate. Further, 3-hydroxybutyrate rescued hippocampal neurons from glucose withdrawal-induced cell death but did not protect glioma cell lines. In hypoxia, mRNA expression of OXCT1, ACAT1, BDH1 and 2 was downregulated. In vivo, the ketogenic diet led to a robust increase of blood 3-hydroxybutyrate, but did not alter blood glucose levels or improve survival. In summary, glioma cells are incapable of compensating for glucose restriction by metabolizing ketone bodies in vitro, suggesting a potential disadvantage of tumor cells compared to normal cells under a carbohydrate-restricted ketogenic diet. Further investigations are necessary to identify co-treatment modalities, e.g. glycolysis inhibitors or antiangiogenic agents that efficiently target non-oxidative pathways.

  17. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy

    International Nuclear Information System (INIS)

    Maurer, Gabriele D; Brucker, Daniel P; Bähr, Oliver; Harter, Patrick N; Hattingen, Elke; Walenta, Stefan; Mueller-Klieser, Wolfgang; Steinbach, Joachim P; Rieger, Johannes

    2011-01-01

    Even in the presence of oxygen, malignant cells often highly depend on glycolysis for energy generation, a phenomenon known as the Warburg effect. One strategy targeting this metabolic phenotype is glucose restriction by administration of a high-fat, low-carbohydrate (ketogenic) diet. Under these conditions, ketone bodies are generated serving as an important energy source at least for non-transformed cells. To investigate whether a ketogenic diet might selectively impair energy metabolism in tumor cells, we characterized in vitro effects of the principle ketone body 3-hydroxybutyrate in rat hippocampal neurons and five glioma cell lines. In vivo, a non-calorie-restricted ketogenic diet was examined in an orthotopic xenograft glioma mouse model. The ketone body metabolizing enzymes 3-hydroxybutyrate dehydrogenase 1 and 2 (BDH1 and 2), 3-oxoacid-CoA transferase 1 (OXCT1) and acetyl-CoA acetyltransferase 1 (ACAT1) were expressed at the mRNA and protein level in all glioma cell lines. However, no activation of the hypoxia-inducible factor-1α (HIF-1α) pathway was observed in glioma cells, consistent with the absence of substantial 3-hydroxybutyrate metabolism and subsequent accumulation of succinate. Further, 3-hydroxybutyrate rescued hippocampal neurons from glucose withdrawal-induced cell death but did not protect glioma cell lines. In hypoxia, mRNA expression of OXCT1, ACAT1, BDH1 and 2 was downregulated. In vivo, the ketogenic diet led to a robust increase of blood 3-hydroxybutyrate, but did not alter blood glucose levels or improve survival. In summary, glioma cells are incapable of compensating for glucose restriction by metabolizing ketone bodies in vitro, suggesting a potential disadvantage of tumor cells compared to normal cells under a carbohydrate-restricted ketogenic diet. Further investigations are necessary to identify co-treatment modalities, e.g. glycolysis inhibitors or antiangiogenic agents that efficiently target non-oxidative pathways

  18. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy

    Directory of Open Access Journals (Sweden)

    Mueller-Klieser Wolfgang

    2011-07-01

    Full Text Available Abstract Background Even in the presence of oxygen, malignant cells often highly depend on glycolysis for energy generation, a phenomenon known as the Warburg effect. One strategy targeting this metabolic phenotype is glucose restriction by administration of a high-fat, low-carbohydrate (ketogenic diet. Under these conditions, ketone bodies are generated serving as an important energy source at least for non-transformed cells. Methods To investigate whether a ketogenic diet might selectively impair energy metabolism in tumor cells, we characterized in vitro effects of the principle ketone body 3-hydroxybutyrate in rat hippocampal neurons and five glioma cell lines. In vivo, a non-calorie-restricted ketogenic diet was examined in an orthotopic xenograft glioma mouse model. Results The ketone body metabolizing enzymes 3-hydroxybutyrate dehydrogenase 1 and 2 (BDH1 and 2, 3-oxoacid-CoA transferase 1 (OXCT1 and acetyl-CoA acetyltransferase 1 (ACAT1 were expressed at the mRNA and protein level in all glioma cell lines. However, no activation of the hypoxia-inducible factor-1α (HIF-1α pathway was observed in glioma cells, consistent with the absence of substantial 3-hydroxybutyrate metabolism and subsequent accumulation of succinate. Further, 3-hydroxybutyrate rescued hippocampal neurons from glucose withdrawal-induced cell death but did not protect glioma cell lines. In hypoxia, mRNA expression of OXCT1, ACAT1, BDH1 and 2 was downregulated. In vivo, the ketogenic diet led to a robust increase of blood 3-hydroxybutyrate, but did not alter blood glucose levels or improve survival. Conclusion In summary, glioma cells are incapable of compensating for glucose restriction by metabolizing ketone bodies in vitro, suggesting a potential disadvantage of tumor cells compared to normal cells under a carbohydrate-restricted ketogenic diet. Further investigations are necessary to identify co-treatment modalities, e.g. glycolysis inhibitors or antiangiogenic

  19. Hypothalamic glioma masquerading as craniopharyngioma

    Directory of Open Access Journals (Sweden)

    Sameer Vyas

    2013-01-01

    Full Text Available Hypothalamic glioma account for 10-15% of supratentorial tumors in children. They usually present earlier (first 5 years of age than craniopharyngioma. Hypothalamic glioma poses a diagnostic dilemma with craniopharyngioma and other hypothalamic region tumors, when they present with atypical clinical or imaging patterns. Neuroimaging modalities especially MRI plays a very important role in scrutinizing the lesions in the hypothalamic region. We report a case of a hypothalamic glioma masquerading as a craniopharyngioma on imaging along with brief review of both the tumors.

  20. Intra-cerebral ventricular infusion of 5-iodo-2-deoxyuridine (IUDR) as a radiosensitizer in the treatment of a rat glioma

    International Nuclear Information System (INIS)

    Deutsch, M.; Rewers, A.B.; Redgate, S.; Fisher, E.R.; Boggs, S.S.

    1990-01-01

    The efficacy of 5-iodo-2-deoxyuridine (IUDR) as a radiosensitizer when administered by continuous infusion into the cerebral spinal fluid (CSF) of the lateral cerebral ventricle was evaluated in a 9L gliosarcoma rat brain tumor model. Stereotactic implantation of a 5 x 10(4) tumor cell suspension into the left caudate nucleus was carried out in four groups of 10 rats each. Control animals had a median survival of 16.9 days (range 16-21 days). IUDR, 8.4 mg over 7 days administered by continuous infusion into the left lateral ventricle produced a slight survival advantage (median survival 21.5 days, range 12-56). Irradiation of the entire brain, 8 Gy on days 4, 6 and 7 after tumor cell implantation also produced a slight improvement in survival (median 19.5 days, range 17-34). The combination of radiation and IUDR infusion into the CSF produced a marked survival advantage (median 30.5, range 22-54) compared to the control and single modality treatment groups. This is the first demonstration of the effectiveness of IUDR as a radiosensitizer when administered into the lateral cerebral ventricle in the treatment of an intraparenchymal brain tumor

  1. Tricyclic Neovibsanin Scaffold Inhibits Glioma by Targeting Glioma ...

    African Journals Online (AJOL)

    Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria. ... median survival time of mice bearing glioma to 34 days compared to 22 days in untreated mice. .... CX22 microscope (Olympus Corp, Inc, Tokyo,.

  2. Spinal metastases of malignant gliomas

    International Nuclear Information System (INIS)

    Materlik, B.; Steidle-Katic, U.; Feyerabend, T.; Richter, E.; Wauschkuhn, B.

    1998-01-01

    Purpose: Extracranial metastases of malignant gliomas are rare. We report 2 cases with spinal metastases in patients suffering from glioma. Patients and Method: Two patients (33 and 57 years old) developed spinal canal metastases of a glioblastoma multiforme and anaplastic astrocytoma Grade III respectively 25 and 9 months after surgical resection and radiotherapy. Both metastases were confirmed pathohistologically. Results: Intraspinal metastases were irradiated with a total dose of 12.6 Gy and 50 Gy. Treatment withdrawal was necessary in one patient due to reduced clinical condition. Regression of neurological symptoms was observed in the second patient. Conclusions: Spinal spread of malignant glioma should be considered during care and follow-up in glioma patients with spinal symptoms. (orig.) [de

  3. Differential activation of catalase expression and activity by PPAR agonists: Implications for astrocyte protection in anti-glioma therapy☆

    Science.gov (United States)

    Khoo, Nicholas K.H.; Hebbar, Sachin; Zhao, Weiling; Moore, Steven A.; Domann, Frederick E.; Robbins, Mike E.

    2013-01-01

    Glioma survival is dismal, in part, due to an imbalance in antioxidant expression and activity. Peroxisome proliferator-activated receptor (PPAR) agonists have antineoplastic properties which present new redox-dependent targets for glioma anticancer therapies. Herein, we demonstrate that treatment of primary cultures of normal rat astrocytes with PPAR agonists increased the expression of catalase mRNA protein, and enzymatic activity. In contrast, these same agonists had no effect on catalase expression and activity in malignant rat glioma cells. The increase in steady-state catalase mRNA observed in normal rat astrocytes was due, in part, to de novo mRNA synthesis as opposed to increased catalase mRNA stability. Moreover, pioglitazone-mediated induction of catalase activity in normal rat astrocytes was completely blocked by transfection with a PPARγ-dominant negative plasmid. These data suggest that defects in PPAR-mediated signaling and gene expression may represent a block to normal catalase expression and induction in malignant glioma. The ability of PPAR agonists to differentially increase catalase expression and activity in normal astrocytes but not glioma cells suggests that these compounds might represent novel adjuvant therapeutic agents for the treatment of gliomas. PMID:24024139

  4. Novel drugs in pediatric gliomas

    OpenAIRE

    Zhang, Dongli; Liu, Xiaoming; Fan, Conghai; Chen, Jiao

    2017-01-01

    Astrocytomas (gliomas) are the most common primary brain tumors among adults and second most frequent neoplasm among children. New ideas and novel approaches are being explored world over with aim to devise better management strategeies for this deadly pathological state. We searched the electronic database PubMed for pre-clinical as well as clinical controlled trials reporting importance of various therapeutic drugs against gliomas. It was observed clearly that this approach of using therape...

  5. Use of statins and risk of glioma

    DEFF Research Database (Denmark)

    Gaist, David; Andersen, L; Hallas, Jesper

    2013-01-01

    Laboratory studies and a single case-control study have suggested a protective effect of statins on the risk of glioma. We wished to investigate the influence of statin use on the risk of glioma in a population-based setting.......Laboratory studies and a single case-control study have suggested a protective effect of statins on the risk of glioma. We wished to investigate the influence of statin use on the risk of glioma in a population-based setting....

  6. Imaging of adult brainstem gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, Bela, E-mail: purohitbela@yahoo.co.in; Kamli, Ali A.; Kollias, Spyros S.

    2015-04-15

    Highlights: •BSG are classified on MRI into diffuse low-grade, malignant, focal tectal and exophytic subtypes. •Their prognosis and treatment is variable and is almost similar to adult supratentorial gliomas. •This article illustrates the imaging of adult BSGs on MRI and FET-PET. •We also describe prognostic factors and the treatment options of these tumours. -- Abstract: Brainstem gliomas (BSGs) are uncommon in adults accounting for about 2% of all intracranial neoplasms. They are often phenotypically low-grade as compared to their more common paediatric counterparts. Since brainstem biopsies are rarely performed, these tumours are commonly classified according to their MR imaging characteristics into 4 subgroups: (a) diffuse intrinsic low-grade gliomas, (b) enhancing malignant gliomas, (c) focal tectal gliomas and (d) exophytic gliomas/other subtypes. The prognosis and treatment is variable for the different types and is almost similar to adult supratentorial gliomas. Radiotherapy (RT) with adjuvant chemotherapy is the standard treatment of diffuse low-grade and malignant BSGs, whereas, surgical resection is limited to the exophytic subtypes. Review of previous literature shows that the detailed imaging of adult BSGs has not received significant attention. This review illustrates in detail the imaging features of adult BSGs using conventional and advanced MR techniques like diffusion weighted imaging (DWI), diffusion tensor imaging (DTI), MR perfusion weighted imaging (PWI), MR spectroscopy (MRS), as well as {sup 18}F-fluoro-ethyl-tyrosine positron emission tomography ({sup 18}F-FET/PET). We have discussed the pertinent differences between childhood and adult BSGs, imaging mimics, prognostic factors and briefly reviewed the treatment options of these tumours.

  7. Glutamate/glutamine metabolism coupling between astrocytes and glioma cells: neuroprotection and inhibition of glioma growth.

    Science.gov (United States)

    Yao, Pei-Sen; Kang, De-Zhi; Lin, Ru-Ying; Ye, Bing; Wang, Wei; Ye, Zu-Cheng

    2014-07-18

    Glioma glutamate release has been shown to promote the growth of glioma cells and induce neuronal injuries from epilepsy to neuronal death. However, potential counteractions from normal astrocytes against glioma glutamate release have not been fully evaluated. In this study, we investigated the glutamate/glutamine cycling between glioma cells and astrocytes and their impact on neuronal function. Co-cultures of glioma cells with astrocytes (CGA) in direct contact were established under different mix ratio of astrocyte/glioma. Culture medium conditioned in these CGAs were sampled for HPLC measurement, for neuronal ratiometric calcium imaging, and for neuronal survival assay. We found: (1) High levels of glutaminase expression in glioma cells, but not in astrocytes, glutaminase enables glioma cells to release large amount of glutamate in the presence of glutamine. (2) Glutamate levels in CGAs were directly determined by the astrocyte/glioma ratios, indicating a balance between glioma glutamate release and astrocyte glutamate uptake. (3) Culture media from CGAs of higher glioma/astrocyte ratios induced stronger neuronal Ca(2+) response and more severe neuronal death. (4) Co-culturing with astrocytes significantly reduced the growth rate of glioma cells. These results indicate that normal astrocytes in the brain play pivotal roles in glioma growth inhibition and in reducing neuronal injuries from glioma glutamate release. However, as tumor growth, the protective role of astrocytes gradually succumb to glioma cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. NUMB does not impair growth and differentiation status of experimental gliomas

    International Nuclear Information System (INIS)

    Euskirchen, Philipp; Skaftnesmo, Kai-Ove; Huszthy, Peter C.; Brekkå, Narve; Bjerkvig, Rolf; Jacobs, Andreas H.; Miletic, Hrvoje

    2011-01-01

    The cell fate determinant NUMB orchestrates asymmetric cell division in flies and mammals and has lately been suggested to have a tumor suppressor function in breast and lung cancer. Here, we studied NUMB in the context of malignant gliomas. We used ectopic expression of NUMB in order to inhibit proliferation and induce differentiation in glioma cells by alteration of Notch, Hedgehog and p53 signaling. We found that NUMB is consistently expressed in glioma biopsies with predominance of NUMB2/4 isoforms as determined by isoform-specific real-time PCR and Western blotting. Upon lentiviral overexpression, in vitro proliferation rate and the grade of differentiation as assessed by morphology and expression of neural and glial markers remained unchanged. Orthotopic xenografts of NUMB-transduced human U87 glioma cells could be established in nude rats without impairing engraftment or causing significant changes in morphology based on magnetic resonance imaging (MRI). The previously reported alteration of Hedgehog and p53 signaling by NUMB could not be recapitulated in glioma cells. We thus show that in experimental gliomas, NUMB overexpression most likely does not exert a tumor suppressor function such as seen in epithelial cancers.

  9. The translocator protein ligand [{sup 18}F]DPA-714 images glioma and activated microglia in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Winkeler, Alexandra; Boisgard, Raphael; Awde, Ali R.; Dubois, Albertine; Theze, Benoit; Zheng, Jinzi [Universite Paris Sud, Inserm, U1023, Laboratoire d' Imagerie Moleculaire Experimentale, Orsay (France); CEA, I2BM, SHFJ, Orsay (France); Ciobanu, Luisa [CEA, DSV, I2BM, NeuroSpin, LRMN, Gif sur Yvette (France); Dolle, Frederic [CEA, I2BM, SHFJ, Orsay (France); Viel, Thomas; Jacobs, Andreas H. [Westfaelische Wilhelm-Universitaet Muenster (WWU), European Institute for Molecular Imaging (EIMI), Muenster (Germany); Tavitian, Bertrand [Universite Paris Sud, Inserm, U1023, Laboratoire d' Imagerie Moleculaire Experimentale, Orsay (France)

    2012-05-15

    In recent years there has been an increase in the development of radioligands targeting the 18-kDa translocator protein (TSPO). TSPO expression is well documented in activated microglia and serves as a biomarker for imaging neuroinflammation. In addition, TSPO has also been reported to be overexpressed in a number of cancer cell lines and human tumours including glioma. Here we investigated the use of [{sup 18}F]DPA-714, a new TSPO positron emission tomography (PET) radioligand to image glioma in vivo. We studied the uptake of [{sup 18}F]DPA-714 in three different rat strains implanted with 9L rat glioma cells: Fischer (F), Wistar (W) and Sprague Dawley (SD) rats. Dynamic [{sup 18}F]DPA-714 PET imaging, kinetic modelling of PET data and in vivo displacement studies using unlabelled DPA-714 and PK11195 were performed. Validation of TSPO expression in 9L glioma cell lines and intracranial 9L gliomas were investigated using Western blotting and immunohistochemistry of brain tissue sections. All rats showed significant [{sup 18}F]DPA-714 PET accumulation at the site of 9L tumour implantation compared to the contralateral brain hemisphere with a difference in uptake among the three strains (F > W > SD). The radiotracer showed high specificity for TSPO as demonstrated by the significant reduction of [{sup 18}F]DPA-714 binding in the tumour after administration of unlabelled DPA-714 or PK11195. TSPO expression was confirmed by Western blotting in 9L cells in vitro and by immunohistochemistry ex vivo. The TSPO radioligand [{sup 18}F]DPA-714 can be used for PET imaging of intracranial 9L glioma in different rat strains. This preclinical study demonstrates the feasibility of employing [{sup 18}F]DPA-714 as an alternative radiotracer to image human glioma. (orig.)

  10. Paediatric and adult malignant glioma

    DEFF Research Database (Denmark)

    Jones, Chris; Perryman, Lara; Hargrave, Darren

    2012-01-01

    Gliomas in children differ from their adult counterparts by their distribution of histological grade, site of presentation and rate of malignant transformation. Although rare in the paediatric population, patients with high-grade gliomas have, for the most part, a comparably dismal clinical outcome...... to older patients with morphologically similar lesions. Molecular profiling data have begun to reveal the major genetic alterations underpinning these malignant tumours in children. Indeed, the accumulation of large datasets on adult high-grade glioma has revealed key biological differences between...... the adult and paediatric disease. Furthermore, subclassifications within the childhood age group can be made depending on age at diagnosis and tumour site. However, challenges remain on how to reconcile clinical data from adult patients to tailor novel treatment strategies specifically for paediatric...

  11. Epidermal growth factor (EGF) as a potential targeting agent for delivery of boron to malignant gliomas

    International Nuclear Information System (INIS)

    Capala, J.; Barth, R.F.; Adams, D.M.; Bailey, M.Q.; Soloway, A.H.; Carlsson, J.

    1994-01-01

    The majority of high grade gliomas express an amplified epidermal growth factor receptor (EGFR) gene, and this often is associated with an increase in cell surface receptor expression. The rapid internalization and degradation of EGF-EGFR complexes, as well as their high affinity make EGF a potential targeting agent for delivery of 10 B to tumor cells with an amplified number of EGFR. Human glioma cells can expresses as many as 10 5 -10 6 EGF receptors per cell, and if these could be saturated with boronated EGF, then > 10 8 boron atoms would be delivered per cell. Since EGF has a comparatively low molecular weight (∼ 6 kD), this has allowed us to construct relatively small bioconjugates containing ∼ 900 boron atoms per EGF molecule 3 , which also had high affinity for EGFR on tumor cells. In the present study, the feasibility of using EGF receptors as a potential target for therapy of gliomas was investigated by in vivo scintigraphic studies using 131 I- or 99m T c -labeled EGF in a rat brain tumor model. Our results indicate that intratumorally delivered boron- EGF conjugates might be useful for targeting EGFR on glioma cells if the boron containing moiety of the conjugates persisted intracellularly. Further studies are required, however, to determine if this approach can be used for BNCT of the rat glioma

  12. Frequent Nek1 overexpression in human gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jun [School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai (China); Neurosurgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Cai, Yu, E-mail: aihaozuqiu22@163.com [School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai (China); Neurosurgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Liu, Pin [Med-X Research Institute, Shanghai Jiao Tong University, Shanghai (China); Zhao, Weiguo [Neurosurgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China)

    2016-08-05

    Never in mitosis A (NIMA)-related kinase 1 (Nek1) regulates cell cycle progression to mitosis. Its expression and potential functions in human gliomas have not been studied. Here, our immunohistochemistry (IHC) assay and Western blot assay results showed that Nek1 expression was significantly upregulated in fresh and paraffin-embedded human glioma tissues. Its level in normal brain tissues was low. Nek1 overexpression in human gliomas was correlated with the proliferation marker (Ki-67), tumor grade, Karnofsky performance scale (KPS) and more importantly, patients’ poor survival. Further studies showed that Nek1 expression level was also increased in multiple human glioma cell lines (U251-MG, U87-MG, U118, H4 and U373). Significantly, siRNA-mediated knockdown of Nek1 inhibited glioma cell (U87-MG/U251-MG) growth. Nek1 siRNA also sensitized U87-MG/U251-MG cells to temozolomide (TMZ), causing a profound apoptosis induction and growth inhibition. The current study indicates Nek1 might be a novel and valuable oncotarget of glioma, it is important for glioma cell growth and TMZ-resistance. - Highlights: • Nek1 is upregulated in multiple human glioma tissues and cell lines. • Nek1 overexpression correlates with glioma grades and patients’ KPS score. • Nek1 overexpression correlates with patients’ poor overall survival. • siRNA knockdown of Nek1 inhibits glioma cell growth. • siRNA knockdown of Nek1 sensitizes human glioma cells to temozolomide.

  13. Frequent Nek1 overexpression in human gliomas

    International Nuclear Information System (INIS)

    Zhu, Jun; Cai, Yu; Liu, Pin; Zhao, Weiguo

    2016-01-01

    Never in mitosis A (NIMA)-related kinase 1 (Nek1) regulates cell cycle progression to mitosis. Its expression and potential functions in human gliomas have not been studied. Here, our immunohistochemistry (IHC) assay and Western blot assay results showed that Nek1 expression was significantly upregulated in fresh and paraffin-embedded human glioma tissues. Its level in normal brain tissues was low. Nek1 overexpression in human gliomas was correlated with the proliferation marker (Ki-67), tumor grade, Karnofsky performance scale (KPS) and more importantly, patients’ poor survival. Further studies showed that Nek1 expression level was also increased in multiple human glioma cell lines (U251-MG, U87-MG, U118, H4 and U373). Significantly, siRNA-mediated knockdown of Nek1 inhibited glioma cell (U87-MG/U251-MG) growth. Nek1 siRNA also sensitized U87-MG/U251-MG cells to temozolomide (TMZ), causing a profound apoptosis induction and growth inhibition. The current study indicates Nek1 might be a novel and valuable oncotarget of glioma, it is important for glioma cell growth and TMZ-resistance. - Highlights: • Nek1 is upregulated in multiple human glioma tissues and cell lines. • Nek1 overexpression correlates with glioma grades and patients’ KPS score. • Nek1 overexpression correlates with patients’ poor overall survival. • siRNA knockdown of Nek1 inhibits glioma cell growth. • siRNA knockdown of Nek1 sensitizes human glioma cells to temozolomide.

  14. Neuronavigator-guided glioma surgery.

    Science.gov (United States)

    Du, Guhong; Zhou, Liangfu; Mao, Ying

    2003-10-01

    To evaluate the effectiveness of neuronavigator-guided surgery for the resection of gliomas. A total of 80 patients with gliomas underwent surgical treatment under the StealthStation neuronavigator to estimate the extent of the tumors. In 27 cases, the measurements of brain shifts at the dura, cortical surface and lesion margin were recorded during the operations. A technique termed "micro-catheter fence post" was used in superficial gliomas to compensate for brain shift. Mean fiducial error and predicted accuracy in the 80 cases were 2.03 mm +/- 0.89 mm and 2.43 mm +/- 0.99 mm, respectively. The shifts at the dura, cortical surface and lesion margin were 3.44 mm +/- 2.39 mm, 7.58 mm +/- 3.75 mm, and 6.55 mm +/- 3.19 mm, respectively. Although neuronavigation revealed residual tumors, operations were discontinued in 5 cases of deep-seated gliomas. In the other 75 cases, total tumor removals were achieved in 62 (82.7%), and subtotal removals were achieved in 13 (17.3%). Post-operation, neurological symptoms were improved or unchanged in 68 cases (85.0%), and worsened in 12 (15.0%). No deaths occurred during the operations and post-operations. Intraoperative brain shifts mainly contribute to the fail of spatial accuracy during neuronavigator-guided glioma surgery. The "micro-catheter fence post" technique used for glioma surgery is shown to be useful for compensating for intraoperative brain shifts. This technique, thus, contributes to an increase in total tumor removal and a decrease in surgical complications.

  15. D-amino acid oxidase gene therapy sensitizes glioma cells to the antiglycolytic effect of 3-bromopyruvate.

    Science.gov (United States)

    El Sayed, S M; Abou El-Magd, R M; Shishido, Y; Chung, S P; Sakai, T; Watanabe, H; Kagami, S; Fukui, K

    2012-01-01

    Glioma tumors are refractory to conventional treatment. Glioblastoma multiforme is the most aggressive type of primary brain tumors in humans. In this study, we introduce oxidative stress-energy depletion (OSED) therapy as a new suggested treatment for glioblastoma. OSED utilizes D-amino acid oxidase (DAO), which is a promising therapeutic protein that induces oxidative stress and apoptosis through generating hydrogen peroxide (H2O2). OSED combines DAO with 3-bromopyruvate (3BP), a hexokinase II (HK II) inhibitor that interferes with Warburg effect, a metabolic alteration of most tumor cells that is characterized by enhanced aerobic glycolysis. Our data revealed that 3BP induced depletion of energetic capabilities of glioma cells. 3BP induced H2O2 production as a novel mechanism of its action. C6 glioma transfected with DAO and treated with D-serine together with 3BP-sensitized glioma cells to 3BP and decreased markedly proliferation, clonogenic power and viability in a three-dimensional tumor model with lesser effect on normal astrocytes. DAO gene therapy using atelocollagen as an in vivo transfection agent proved effective in a glioma tumor model in Sprague-Dawley (SD) rats, especially after combination with 3BP. OSED treatment was safe and tolerable in SD rats. OSED therapy may be a promising therapeutic modality for glioma.

  16. MicroRNA in Human Glioma

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mengfeng, E-mail: limf@mail.sysu.edu.cn [Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080 (China); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Li, Jun [Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080 (China); Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Liu, Lei; Li, Wei [Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080 (China); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Yang, Yi [Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080 (China); Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Yuan, Jie [Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080 (China); Key Laboratory of Functional Molecules from Oceanic Microorganisms (Sun Yat-sen University), Department of Education of Guangdong Province, Guangzhou 510080 (China)

    2013-10-23

    Glioma represents a serious health problem worldwide. Despite advances in surgery, radiotherapy, chemotherapy, and targeting therapy, the disease remains one of the most lethal malignancies in humans, and new approaches to improvement of the efficacy of anti-glioma treatments are urgently needed. Thus, new therapeutic targets and tools should be developed based on a better understanding of the molecular pathogenesis of glioma. In this context, microRNAs (miRNAs), a class of small, non-coding RNAs, play a pivotal role in the development of the malignant phenotype of glioma cells, including cell survival, proliferation, differentiation, tumor angiogenesis, and stem cell generation. This review will discuss the biological functions of miRNAs in human glioma and their implications in improving clinical diagnosis, prediction of prognosis, and anti-glioma therapy.

  17. MicroRNA in Human Glioma

    International Nuclear Information System (INIS)

    Li, Mengfeng; Li, Jun; Liu, Lei; Li, Wei; Yang, Yi; Yuan, Jie

    2013-01-01

    Glioma represents a serious health problem worldwide. Despite advances in surgery, radiotherapy, chemotherapy, and targeting therapy, the disease remains one of the most lethal malignancies in humans, and new approaches to improvement of the efficacy of anti-glioma treatments are urgently needed. Thus, new therapeutic targets and tools should be developed based on a better understanding of the molecular pathogenesis of glioma. In this context, microRNAs (miRNAs), a class of small, non-coding RNAs, play a pivotal role in the development of the malignant phenotype of glioma cells, including cell survival, proliferation, differentiation, tumor angiogenesis, and stem cell generation. This review will discuss the biological functions of miRNAs in human glioma and their implications in improving clinical diagnosis, prediction of prognosis, and anti-glioma therapy

  18. The Glioma International Case-Control Study

    DEFF Research Database (Denmark)

    Amirian, E. Susan; Armstrong, Georgina N; Zhou, Renke

    2016-01-01

    Decades of research have established only a few etiological factors for glioma, which is a rare and highly fatal brain cancer. Common methodological challenges among glioma studies include small sample sizes, heterogeneity of tumor subtypes, and retrospective exposure assessment. Here, we briefly...... describe the Glioma International Case-Control (GICC) Study (recruitment, 2010-2013), a study being conducted by the Genetic Epidemiology of Glioma International Consortium that integrates data from multiple data collection sites, uses a common protocol and questionnaire, and includes biospecimen...

  19. TLR9 expression in glioma tissues correlated to glioma progression and the prognosis of GBM patients

    International Nuclear Information System (INIS)

    Wang, Chao; Cao, Shouqiang; Yan, Ying; Ying, Qiao; Jiang, Tao; Xu, Ke; Wu, Anhua

    2010-01-01

    Our study aims to evaluate the expression of TLR9 in glioma tissues, examine the association between TLR9 expression, clinicopathological variables, and glioma patient outcome, we further characterized the direct effects of TLR9 agonist CpG ODN upon the proliferation and invasion of glioma cells in vitro. RT-PCR and immunofluorescence were used to determine the expression of TLR9 in glioma cell lines and clinical glioma samples. Tissue microarry and immunohistochemistry were applied to evaluated TLR9 expression in 292 newly diagnosed glioma and 13 non-neoplastic brain tissues. We further investigated the effect of CpG ODN on the proliferation and invasion of glioma cells in vitro with MTT assays and matrigel transwell assay respectively. RT-PCR showed that TLR9 expressed in all the glioma samples and glioma cell lines we examined. The tissue array analysis indicated that TLR9 expression is correlated with malignancy of glioma (p < 0.01). Multivariate Cox regression analysis revealed that TLR9 expression is an independent prognostic factor for PFS of GBM patients(P = 0.026). TLR9 agonist CpG ODN has no significant effect on glioma proliferation, but matrigel transwell analysis showed that TLR9 agonist CpG ODN can significantly enhance glioma invasion in vitro. Our data indicated that TLR9 expression increases according to the histopathological grade of glioma, and the TLR9 expression level is related to the PFS of GBM patients. In addition, our findings warrant caution in the directly injection of TLR9 agonist CpG ODN into glioma tissues for the glioma immunotherapy

  20. Boronophenylalanine uptake in C6 glioma model is dramatically increased by L-DOPA preloading

    Energy Technology Data Exchange (ETDEWEB)

    Capuani, S. [CNR-INFM SOFT, Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, Rome (Italy); Enrico Fermi Center, Compendio Viminale, Rome (Italy)], E-mail: silvia.capuani@roma1.infn.it; Gili, T. [CNR-INFM SOFT, Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, Rome (Italy); Enrico Fermi Center, Compendio Viminale, Rome (Italy); Bozzali, M. [Neuroimaging Laboratory, Santa Lucia Foundation, Via Ardeatina 306, Rome (Italy); Russo, S. [Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London (United Kingdom); Porcari, P. [CNR-INFM SOFT, Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, Rome (Italy); Cametti, C. [CNR-INFM SOFT, Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, Rome (Italy); Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, Rome (Italy); Muolo, M. [Department of Biological Science, University ' Rome III' , Viale G. Marconi 446, Rome (Italy); D' Amore, E. [Serv. Qual./Sicurezza Sperim. Anim., Istituto Superiore di Sanita, Rome (Italy); Maraviglia, B. [Enrico Fermi Center, Compendio Viminale, Rome (Italy); Neuroimaging Laboratory, Santa Lucia Foundation, Via Ardeatina 306, Rome (Italy); Lazzarino, G. [Laboratory of Biochemistry, Department of Chemical Sciences, University of Catania, Viale A. Doria 6, Catania (Italy); Pastore, F.S. [Department of Neuroscience, Institute of Neurosurgery, University ' Tor Vergata' , Via Montpellier 1, Rome (Italy)

    2009-07-15

    One of the main limitations for BNCT effectiveness is the insufficient intake of {sup 10}B nuclei within tumour cells. This work was aimed at investigating the use of L-DOPA as enhancer for boronophenylalanine (BPA) uptake in the C6 glioma model. The investigation was first performed in vitro, and then extended in vivo to the animal model. BPA accumulation in C6 glioma cells was assessed, using radiowave dielectric spectroscopy (RDS), with and without L-DOPA preloading. C6 glioma cells were also implanted in the brain of 25 rats, randomly assigned to two experimental branches: (1) intra-carotid BPA infusion; (2) intra-carotid BPA infusion after pre-treatment with L-DOPA, administrated 24 h before BPA infusion. All animals were sacrificed, and assessment of BPA concentrations in tumour tissue, normal brain, and blood samples was performed using high performance liquid chromatography (HPLC). L-DOPA preloading induced a massive increase of BPA concentration either in vitro on C6 glioma cells or in vivo in the animal model tumour. Moreover, no significant difference was found in the normal brain and blood samples between the two animal groups. This study suggests the potential use of L-DOPA as enhancer for BPA accumulation in malignant gliomas eligible for BNCT.

  1. Boronophenylalanine uptake in C6 glioma model is dramatically increased by L-DOPA preloading

    International Nuclear Information System (INIS)

    Capuani, S.; Gili, T.; Bozzali, M.; Russo, S.; Porcari, P.; Cametti, C.; Muolo, M.; D'Amore, E.; Maraviglia, B.; Lazzarino, G.; Pastore, F.S.

    2009-01-01

    One of the main limitations for BNCT effectiveness is the insufficient intake of 10 B nuclei within tumour cells. This work was aimed at investigating the use of L-DOPA as enhancer for boronophenylalanine (BPA) uptake in the C6 glioma model. The investigation was first performed in vitro, and then extended in vivo to the animal model. BPA accumulation in C6 glioma cells was assessed, using radiowave dielectric spectroscopy (RDS), with and without L-DOPA preloading. C6 glioma cells were also implanted in the brain of 25 rats, randomly assigned to two experimental branches: (1) intra-carotid BPA infusion; (2) intra-carotid BPA infusion after pre-treatment with L-DOPA, administrated 24 h before BPA infusion. All animals were sacrificed, and assessment of BPA concentrations in tumour tissue, normal brain, and blood samples was performed using high performance liquid chromatography (HPLC). L-DOPA preloading induced a massive increase of BPA concentration either in vitro on C6 glioma cells or in vivo in the animal model tumour. Moreover, no significant difference was found in the normal brain and blood samples between the two animal groups. This study suggests the potential use of L-DOPA as enhancer for BPA accumulation in malignant gliomas eligible for BNCT.

  2. Transmigration of neural stem cells across the blood brain barrier induced by glioma cells.

    Directory of Open Access Journals (Sweden)

    Mónica Díaz-Coránguez

    Full Text Available Transit of human neural stem cells, ReNcell CX, through the blood brain barrier (BBB was evaluated in an in vitro model of BBB and in nude mice. The BBB model was based on rat brain microvascular endothelial cells (RBMECs cultured on Millicell inserts bathed from the basolateral side with conditioned media (CM from astrocytes or glioma C6 cells. Glioma C6 CM induced a significant transendothelial migration of ReNcells CX in comparison to astrocyte CM. The presence in glioma C6 CM of high amounts of HGF, VEGF, zonulin and PGE2, together with the low abundance of EGF, promoted ReNcells CX transmigration. In contrast cytokines IFN-α, TNF-α, IL-12p70, IL-1β, IL-6, IL-8 and IL-10, as well as metalloproteinases -2 and -9 were present in equal amounts in glioma C6 and astrocyte CMs. ReNcells expressed the tight junction proteins occludin and claudins 1, 3 and 4, and the cell adhesion molecule CRTAM, while RBMECs expressed occludin, claudins 1 and 5 and CRTAM. Competing CRTAM mediated adhesion with soluble CRTAM, inhibited ReNcells CX transmigration, and at the sites of transmigration, the expression of occludin and claudin-5 diminished in RBMECs. In nude mice we found that ReNcells CX injected into systemic circulation passed the BBB and reached intracranial gliomas, which overexpressed HGF, VEGF and zonulin/prehaptoglobin 2.

  3. Transmigration of neural stem cells across the blood brain barrier induced by glioma cells.

    Science.gov (United States)

    Díaz-Coránguez, Mónica; Segovia, José; López-Ornelas, Adolfo; Puerta-Guardo, Henry; Ludert, Juan; Chávez, Bibiana; Meraz-Cruz, Noemi; González-Mariscal, Lorenza

    2013-01-01

    Transit of human neural stem cells, ReNcell CX, through the blood brain barrier (BBB) was evaluated in an in vitro model of BBB and in nude mice. The BBB model was based on rat brain microvascular endothelial cells (RBMECs) cultured on Millicell inserts bathed from the basolateral side with conditioned media (CM) from astrocytes or glioma C6 cells. Glioma C6 CM induced a significant transendothelial migration of ReNcells CX in comparison to astrocyte CM. The presence in glioma C6 CM of high amounts of HGF, VEGF, zonulin and PGE2, together with the low abundance of EGF, promoted ReNcells CX transmigration. In contrast cytokines IFN-α, TNF-α, IL-12p70, IL-1β, IL-6, IL-8 and IL-10, as well as metalloproteinases -2 and -9 were present in equal amounts in glioma C6 and astrocyte CMs. ReNcells expressed the tight junction proteins occludin and claudins 1, 3 and 4, and the cell adhesion molecule CRTAM, while RBMECs expressed occludin, claudins 1 and 5 and CRTAM. Competing CRTAM mediated adhesion with soluble CRTAM, inhibited ReNcells CX transmigration, and at the sites of transmigration, the expression of occludin and claudin-5 diminished in RBMECs. In nude mice we found that ReNcells CX injected into systemic circulation passed the BBB and reached intracranial gliomas, which overexpressed HGF, VEGF and zonulin/prehaptoglobin 2.

  4. Tumor Metabolism of Malignant Gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Ru, Peng; Williams, Terence M.; Chakravarti, Arnab; Guo, Deliang, E-mail: deliang.guo@osumc.edu [Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center & Arthur G James Cancer Hospital, Columbus, OH 43012 (United States)

    2013-11-08

    Constitutively activated oncogenic signaling via genetic mutations such as in the EGFR/PI3K/Akt and Ras/RAF/MEK pathways has been recognized as a major driver for tumorigenesis in most cancers. Recent insights into tumor metabolism have further revealed that oncogenic signaling pathways directly promote metabolic reprogramming to upregulate biosynthesis of lipids, carbohydrates, protein, DNA and RNA, leading to enhanced growth of human tumors. Therefore, targeting cell metabolism has become a novel direction for drug development in oncology. In malignant gliomas, metabolism pathways of glucose, glutamine and lipid are significantly reprogrammed. Moreover, molecular mechanisms causing these metabolic changes are just starting to be unraveled. In this review, we will summarize recent studies revealing critical gene alterations that lead to metabolic changes in malignant gliomas, and also discuss promising therapeutic strategies via targeting the key players in metabolic regulation.

  5. Tumor Metabolism of Malignant Gliomas

    International Nuclear Information System (INIS)

    Ru, Peng; Williams, Terence M.; Chakravarti, Arnab; Guo, Deliang

    2013-01-01

    Constitutively activated oncogenic signaling via genetic mutations such as in the EGFR/PI3K/Akt and Ras/RAF/MEK pathways has been recognized as a major driver for tumorigenesis in most cancers. Recent insights into tumor metabolism have further revealed that oncogenic signaling pathways directly promote metabolic reprogramming to upregulate biosynthesis of lipids, carbohydrates, protein, DNA and RNA, leading to enhanced growth of human tumors. Therefore, targeting cell metabolism has become a novel direction for drug development in oncology. In malignant gliomas, metabolism pathways of glucose, glutamine and lipid are significantly reprogrammed. Moreover, molecular mechanisms causing these metabolic changes are just starting to be unraveled. In this review, we will summarize recent studies revealing critical gene alterations that lead to metabolic changes in malignant gliomas, and also discuss promising therapeutic strategies via targeting the key players in metabolic regulation

  6. Tissue pO2 of Orthotopic 9L and C6 Gliomas and Tumor-Specific Response to Radiotherapy and Hyperoxygenation

    International Nuclear Information System (INIS)

    Khan, Nadeem; Li Hongbin; Hou, Huagang; Lariviere, Jean P.; Gladstone, David J.; Demidenko, Eugene; Swartz, Harold M.

    2009-01-01

    Purpose: Tumor hypoxia is a well-known therapeutic problem; however, a lack of methods for repeated measurements of glioma partial pressure of oxygen (pO 2 ) limits the ability to optimize the therapeutic approaches. We report the effects of 9.3 Gy of radiation and carbogen inhalation on orthotopic 9L and C6 gliomas and on the contralateral brain pO 2 in rats using a new and potentially widely useful method, multisite in vivo electron paramagnetic resonance oximetry. Methods and Materials: Intracerebral 9L and C6 tumors were established in the left hemisphere of syngeneic rats, and electron paramagnetic resonance oximetry was successfully used for repeated tissue pO 2 measurements after 9.3 Gy of radiation and during carbogen breathing for 5 consecutive days. Results: Intracerebral 9L gliomas had a pO 2 of 30-32 mm Hg and C6 gliomas were relatively hypoxic, with a pO 2 of 12-14 mm Hg (p 2 of the contralateral brain was 40-45 mm Hg in rats with either 9L or C6 gliomas. Irradiation resulted in a significant increase in pO 2 of the 9L gliomas only. A significant increase in the pO 2 of the 9L and C6 gliomas was observed in rats breathing carbogen, but this effect decreased during 5 days of repeated experiments in the 9L gliomas. Conclusion: These results highlight the tumor-specific effect of radiation (9.3.Gy) on tissue pO 2 and the different responses to carbogen inhalation. The ability of electron paramagnetic resonance oximetry to provide direct repeated measurements of tissue pO 2 could have a vital role in understanding the dynamics of hypoxia during therapy that could then be optimized by scheduling doses at times of improved tumor oxygenation

  7. Berberine enhances inhibition of glioma tumor cell migration and invasiveness mediated by arsenic trioxide

    International Nuclear Information System (INIS)

    Lin, Tseng-Hsi; Kuo, Hsing-Chun; Chou, Fen-Pi; Lu, Fung-Jou

    2008-01-01

    Arsenic trioxide (As 2 O 3 ) exhibits promising anticarcinogenic activity in acute promyelocytic leukemic patients and induces apoptosis in various tumor cells in vitro. Here, we investigated the effect of the natural alkaloid berberine on As 2 O 3 -mediated inhibition of cancer cell migration using rat and human glioma cell lines. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to determine the viability of rat C6 and human U-87 glioma cells after treatment with As 2 O 3 or berberine, and after co-treatment with As 2 O 3 and berberine. The wound scratch and Boyden chamber assays were applied to determine the effect of As 2 O 3 and berberine on the migration capacity and invasiveness of glioma cancer cells. Zymography and Western blot analyses provided information on the effect of As 2 O 3 and berberine on the intracellular translocation and activation of protein kinase C (PKC), and some PKC-related downstream factors. Most assays were performed three times, independently, and data were analyzed using ANOVA. The cell viability studies demonstrated that berberine enhances As 2 O 3 -mediated inhibition of glioma cell growth after 24 h incubation. Untreated control cells formed a confluent layer, the formation of which was inhibited upon incubation with 5 μM As 2 O 3 . The latter effect was even more pronounced in the presence of 10 μM berberine. The As 2 O 3 -mediated reduction in motility and invasion of glioma cells was enhanced upon co-treatment with berberine. Furthermore, it has been reported that PKC isoforms influence the morphology of the actin cytoskeleton, as well as the activation of metalloproteases MT1-MMP and MMP-2, reported to be involved in cancer cell migration. Treatment of glioma cells with As 2 O 3 and berberine significantly decreased the activation of PKC α and ε and led to actin cytoskeleton rearrangements. The levels of two downstream transcription factors, myc and jun, and MT1-MMP and MMP-2 were also

  8. Small gliomas; Metabolism and blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Masaru; Shibasaki, Takashi; Horikoshi, Satoru; Ono, Nobuo; Zama, Akira; Kakegawa, Tohru; Ishiuchi, Shogo [Gunma Univ., Maebashi (Japan). School of Medicine

    1994-02-01

    Eight patients with small gliomas (6 low-grade and 2 high-grade) localized in a single gyrus or less than 2 cm diameter were investigated using positron tomography and single photon emission computed tomography. All three tumors examined demonstrated hypermetabolism of amino acids. High-grade gliomas demonstrated hypermetabolism of glucose and high blood flow, but normal or low oxygen metabolism. High-grade gliomas also showed accumulation of [sup 201]Tl chloride and high or low accumulation of [sup 123]I-isopropyl iodoamphetamine. These indications allow preoperative diagnosis of the malignancy of small gliomas, which is important because small gliomas with high-grade malignancy need more extensive removal and adjuvant therapy. (author).

  9. Known glioma risk loci are associated with glioma with a family history of brain tumours

    DEFF Research Database (Denmark)

    Melin, Beatrice; Dahlin, Anna M; Andersson, Ulrika

    2013-01-01

    significantly associated with glioma risk, rs6010620 (ORtrend for the minor (A) allele, 0.39; 95% CI: 0.25-0.61; Bonferroni adjusted ptrend , 1.7 × 10(-4) ). In conclusion, as previously shown for glioma regardless of family history of brain tumours, rs6010620 (RTEL1) was associated with an increased risk...... family history of brain tumours, defined as having at least one first- or second-degree relative with a history of brain tumour, are associated with known glioma risk loci. One thousand four hundred and thirty-one glioma cases and 2,868 cancer-free controls were identified from four case-control studies...... and two prospective cohorts from USA, Sweden and Denmark and genotyped for seven SNPs previously reported to be associated with glioma risk in case-control designed studies. Odds ratios were calculated by unconditional logistic regression. In analyses including glioma cases with a family history of brain...

  10. A report on radiation-induced gliomas

    International Nuclear Information System (INIS)

    Salvati, M.; Artico, M.; Caruso, R.; Rocchi, G.; Orlando, E.R.; Nucci, F.

    1991-01-01

    Radiation-induced gliomas are uncommon, with only 73 cases on record to date. The disease that most frequently occasioned radiation therapy has been acute lymphoblastic leukemia (ALL). Three more cases are added here, two after irradiation for ALL and one after irradiation for tinea capitis. In a review of the relevant literature, the authors stress the possibility that the ALL-glioma and the retinoblastoma-glioma links point to syndromes in their own right that may occur without radiation therapy.56 references

  11. Imaging mass spectrometry identifies prognostic ganglioside species in rodent intracranial transplants of glioma and medulloblastoma.

    Directory of Open Access Journals (Sweden)

    Leonardo Ermini

    Full Text Available Matrix-assisted laser desorption ionization (MALDI imaging mass spectrometry (MALDI-MSI allows us to investigate the distribution of lipid molecules within tissues. We used MALDI-MSI to identify prognostic gangliosides in tissue sections of rat intracranial allografts of rat glioma and mouse intracranial xenografts of human medulloblastoma. In the healthy adult rodent brain, GM1 and GD1 were the main types of glycolipids. Both gangliosides were absent in both intracranial transplants. The ganglioside GM3 was not present in the healthy adult brain but was highly expressed in rat glioma allografts. In combination with tandem mass spectrometry GM3 (d18:1/C24:0 was identified as the most abundant ganglioside species in the glioma allotransplant. By contrast, mouse xenografts of human medulloblastoma were characterized by prominent expression of the ganglioside GM2 (d18:0/C18:0. Together, these data demonstrate that tissue-based MALDI-MSI of gangliosides is able to discriminate between different brain tumors and may be a useful clinical tool for their classification and grading.

  12. Ring enhancement in recurrent gliomas

    International Nuclear Information System (INIS)

    Ogashiwa, Motohide; Takeuchi, Kazuo; Akai, Keiichiro

    1981-01-01

    The clinical courses,CT scans, and postmortem reports for 6 glioma patients treated by surgery, radiation, and chemotherapy were reviewed. They underwent reoperation and/or retreatment with radiation or chemotherapy for recurrent tumors. CT scans taken at the time of recurrence or about one month prior to death showed ring enhancement of varied size and form after intensive treatment. The cases were examined histologically in correlation with the CT features and divided into two groups based on the pathological findings in the centers surrounded by areas of ring enhancement. The 1st group demonstrated a large necrotic area in the center, and the 2nd group, a cystic tumor. Tumor cells were found to have spread throughout the high-density areas around the necrotic area or cyst. However, gross differentiation between tumor and necrosis was difficult. In addition to an increase in cellularity, all cases demonstrated vascular proliferation, and dilatation of vessels in the sulci or sulci adjacent to gyri invaded by the tumor. The contrast enhancement corresponded well with the vascular proliferation in these areas. It is concluded that vascular proliferation or dilatation of vessels in and around the tumor is an important factor in demonstrating high-density areas in ring enhancement, while a cyst or necrosis in the tumor center is revealed as a low-density area in the CT scan of recurrent gliomas. (author)

  13. Ring enhancement in recurrent gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Ogashiwa, M; Takeuchi, K; Akai, K [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine

    1981-08-01

    The clinical courses,CT scans, and postmortem reports for 6 glioma patients treated by surgery, radiation, and chemotherapy were reviewed. They underwent reoperation and/or retreatment with radiation or chemotherapy for recurrent tumors. CT scans taken at the time of recurrence or about one month prior to death showed ring enhancement of varied size and form after intensive treatment. The cases were examined histologically in correlation with the CT features and divided into two groups based on the pathological findings in the centers surrounded by areas of ring enhancement. The 1st group demonstrated a large necrotic area in the center, and the 2nd group, a cystic tumor. Tumor cells were found to have spread throughout the high-density areas around the necrotic area or cyst. However, gross differentiation between tumor and necrosis was difficult. In addition to an increase in cellularity, all cases demonstrated vascular proliferation, and dilatation of vessels in the sulci or sulci adjacent to gyri invaded by the tumor. The contrast enhancement corresponded well with the vascular proliferation in these areas. It is concluded that vascular proliferation or dilatation of vessels in and around the tumor is an important factor in demonstrating high-density areas in ring enhancement, while a cyst or necrosis in the tumor center is revealed as a low-density area in the CT scan of recurrent gliomas.

  14. Macrophages loaded with gold nanoshells for photothermal ablation of glioma: An in vitro model

    Science.gov (United States)

    Makkouk, Amani Riad

    The current median survival of patients with glioblastoma multiforme (GBM), the most common type of glioma, remains at 14.6 months despite multimodal treatments (surgery, radiotherapy and chemotherapy). This research aims to study the feasibility of photothermal ablation of glioma using gold nanoshells that are heated upon laser irradiation at their resonance wavelength. The novelty of our approach lies in improving nanoshell tumor delivery by loading them in macrophages, which are known to be recruited to gliomas via tumor-released chemoattractive agents. Ferumoxides, superparamagnetic iron oxide (SPIO) nanoparticles, are needed as an additional macrophage load in order to visualize macrophage accumulation in the tumor with magnetic resonance imaging (MRI) prior to laser irradiation. The feasibility of this approach was studied in an in vitro model of glioma spheroids with the use of continuous wave (CW) laser light for ablation. The optimal loading of both murine and rat macrophages with Ferumoxides was determined using inductively coupled plasma atomic emission spectroscopy (ICP-AES). Higher concentrations of SPIO were observed in rat macrophages, and the optimal concentration was chosen at 100 microg Fe/ml. Macrophages were found to be very sensitive to near infra-red (NIR) laser irradiation, and their use as vehicles was thus not expected to hinder the function of loaded nanoshells as tumor-ablating tools. The intracellular presence of gold nanoshells in macrophages was confirmed with TEM imaging. Next, the loading of both murine and rat macrophages with gold nanoshells was studied using UV/Vis spectrophotometry, where higher nanoshell uptake was found in rat macrophages. Incubation of loaded murine and rat macrophages with rat C-6 and human ACBT spheroids, respectively, resulted in their infiltration of the spheroids. Subsequent laser irradiation at 55 W/cm2 for 10 min and follow-up of spheroid average diameter size over 14 days post-irradiation showed that

  15. Effect of inhibition of the ROCK isoform on RT2 malignant glioma cells.

    Science.gov (United States)

    Inaba, Nobuharu; Ishizawa, Sho; Kimura, Masaki; Fujioka, Kouki; Watanabe, Michiko; Shibasaki, Toshiaki; Manome, Yoshinobu

    2010-09-01

    Malignant glioma is one of the most intractable diseases in the human body. Rho-kinase (ROCK) is overexpressed and has been proposed as the main cause for the refractoriness of the disease. Since efficacious treatment is required, this study investigated the effect of inhibition of ROCK isoforms. The short hairpin RNA transcription vector was transfected into the RT2 rat glioma cell line and the characteristics of the cells were investigated. The effect of nimustine hydrochloride (ACNU) anti-neoplastic agent on cells was also measured. Inhibition of ROCK isoforms did not alter cell growth. Cell cycle analysis revealed that ROCK1 down-regulation reduced the G(0) phase population and ROCK2 down-regulation reduced the G(2)/M phase population. When ROCK1-down-regulated cells were exposed to ACNU, they demonstrated susceptibility to the agent. The roles of ROCK1 and ROCK2 may be different in glioma cells. Furthermore, the combination of ROCK1 down-regulation and an anti-neoplastic agent may be useful for the therapy of malignant glioma.

  16. The Art of Intraoperative Glioma Identification

    Directory of Open Access Journals (Sweden)

    Zoe Z Zhang

    2015-07-01

    Full Text Available A major dilemma in brain tumor surgery is the identification of tumor boundaries to maximize tumor excision and minimize postoperative neurological damage. Gliomas, especially low-grade tumors, and normal brain have a similar color and texture which poses a challenge to the neurosurgeon. Advances in glioma resection techniques combine the experience of the neurosurgeon and various advanced technologies. Intraoperative methods to delineate gliomas from normal tissue consist of 1 image-based navigation, 2 intraoperative sampling, 3 electrophysiological monitoring, and 4 enhanced visual tumor demarcation. The advantages and disadvantages of each technique are discussed. A combination of these methods is becoming widely accepted in routine glioma surgery. Gross total resection in conjunction with radiation, chemotherapy, or immune/gene therapy may increase the rates of cure in this devastating disease.

  17. Adult high-grade malignant gliomas

    Directory of Open Access Journals (Sweden)

    Fable Zustovich

    2011-12-01

    Full Text Available Central nervous system (CNS malignant gliomas are relatively rare diseases. Prognosis is poor but has improved over recent years due to the improvement in the multi-disciplinary treatment: surgery, radiotherapy and chemotherapy...

  18. Improving Seroreactivity-Based Detection of Glioma

    Directory of Open Access Journals (Sweden)

    Nicole Ludwig

    2009-12-01

    Full Text Available Seroreactivity profiling emerges as valuable technique for minimal invasive cancer detection. Recently, we provided first evidence for the applicability of serum profiling of glioma using a limited number of immunogenic antigens. Here, we screened 57 glioma and 60 healthy sera for autoantibodies against 1827 Escherichia coli expressed clones, including 509 in-frame peptide sequences. By a linear support vector machine approach, we calculated mean specificity, sensitivity, and accuracy of 100 repetitive classifications. We were able to differentiate glioma sera from sera of the healthy controls with a specificity of 90.28%, a sensitivity of 87.31% and an accuracy of 88.84%. We were also able to differentiate World Health Organization grade IV glioma sera from healthy sera with a specificity of 98.45%, a sensitivity of 80.93%, and an accuracy of 92.88%. To rank the antigens according to their information content, we computed the area under the receiver operator characteristic curve value for each clone. Altogether, we found 46 immunogenic clones including 16 in-frame clones that were informative for the classification of glioma sera versus healthy sera. For the separation of glioblastoma versus healthy sera, we found 91 informative clones including 26 in-frame clones. The best-suited in-frame clone for the classification glioma sera versus healthy sera corresponded to the vimentin gene (VIM that was previously associated with glioma. In the future, autoantibody signatures in glioma not only may prove useful for diagnosis but also offer the prospect for a personalized immune-based therapy.

  19. Transfection of glioma cells with the neural-cell adhesion molecule NCAM

    DEFF Research Database (Denmark)

    Edvardsen, K; Pedersen, P H; Bjerkvig, R

    1994-01-01

    The tumor growth and the invasive capacity of a rat glioma cell line (BT4Cn) were studied after transfection with the human transmembrane 140-kDa isoform of the neural-cell adhesion molecule, NCAM. After s.c. injection, the NCAM-transfected cells showed a slower growth rate than the parent cell...... of the injection site, with a sharply demarcated border between the tumor and brain tissue. In contrast, the parental cell line showed single-cell infiltration and more pronounced destruction of normal brain tissue. Using a 51Cr-release assay, spleen cells from rats transplanted with BT4Cn tumor cells generally...

  20. Long-term culture of organotypic multicellular glioma spheroids: a good culture model for studying gliomas

    NARCIS (Netherlands)

    Kaaijk, P.; Troost, D.; Das, P. K.; Leenstra, S.; Bosch, D. A.

    1995-01-01

    Gliomas, as well as other solid tumours, contain tumour stroma composed of connective tissue, macrophages, capillaries and other non-cellular constituents. Therefore, a homogeneous culture of tumour cells alone, as is often used as a culture model for gliomas, is not ideal to study all aspects of

  1. Salvage immunotherapy of malignant glioma.

    Science.gov (United States)

    Ingram, M; Jacques, S; Freshwater, D B; Techy, G B; Shelden, C H; Helsper, J T

    1987-12-01

    We present the preliminary results of a phase I trial of adoptive immunotherapy for recurrent or residual malignant glioma. The protocol is based on surgical debulking followed by implantation into the tumor bed of autologous lymphocytes that have been stimulated with phytohemagglutinin-P and then cultured in vitro in the presence of interleukin 2. Fifty-five patients with a mean Karnofsky rating of 64 were treated between February 1985 and March 1987. No significant toxicity was associated with the immunotherapy. Fifty patients had a positive initial response to therapy, nine patients had early recurrence (two to four months after treatment), and 22 patients died. We comment on major differences between the protocol described and other immunotherapy protocols.

  2. Aberrant Signaling Pathways in Glioma

    International Nuclear Information System (INIS)

    Nakada, Mitsutoshi; Kita, Daisuke; Watanabe, Takuya; Hayashi, Yutaka; Teng, Lei; Pyko, Ilya V.; Hamada, Jun-Ichiro

    2011-01-01

    Glioblastoma multiforme (GBM), a WHO grade IV malignant glioma, is the most common and lethal primary brain tumor in adults; few treatments are available. Median survival rates range from 12–15 months. The biological characteristics of this tumor are exemplified by prominent proliferation, active invasiveness, and rich angiogenesis. This is mainly due to highly deregulated signaling pathways in the tumor. Studies of these signaling pathways have greatly increased our understanding of the biology and clinical behavior of GBM. An integrated view of signal transduction will provide a more useful approach in designing novel therapies for this devastating disease. In this review, we summarize the current understanding of GBM signaling pathways with a focus on potential molecular targets for anti-signaling molecular therapies

  3. Molecular Diagnostics of Gliomas Using Next Generation Sequencing of a Glioma-Tailored Gene Panel.

    Science.gov (United States)

    Zacher, Angela; Kaulich, Kerstin; Stepanow, Stefanie; Wolter, Marietta; Köhrer, Karl; Felsberg, Jörg; Malzkorn, Bastian; Reifenberger, Guido

    2017-03-01

    Current classification of gliomas is based on histological criteria according to the World Health Organization (WHO) classification of tumors of the central nervous system. Over the past years, characteristic genetic profiles have been identified in various glioma types. These can refine tumor diagnostics and provide important prognostic and predictive information. We report on the establishment and validation of gene panel next generation sequencing (NGS) for the molecular diagnostics of gliomas. We designed a glioma-tailored gene panel covering 660 amplicons derived from 20 genes frequently aberrant in different glioma types. Sensitivity and specificity of glioma gene panel NGS for detection of DNA sequence variants and copy number changes were validated by single gene analyses. NGS-based mutation detection was optimized for application on formalin-fixed paraffin-embedded tissue specimens including small stereotactic biopsy samples. NGS data obtained in a retrospective analysis of 121 gliomas allowed for their molecular classification into distinct biological groups, including (i) isocitrate dehydrogenase gene (IDH) 1 or 2 mutant astrocytic gliomas with frequent α-thalassemia/mental retardation syndrome X-linked (ATRX) and tumor protein p53 (TP53) gene mutations, (ii) IDH mutant oligodendroglial tumors with 1p/19q codeletion, telomerase reverse transcriptase (TERT) promoter mutation and frequent Drosophila homolog of capicua (CIC) gene mutation, as well as (iii) IDH wildtype glioblastomas with frequent TERT promoter mutation, phosphatase and tensin homolog (PTEN) mutation and/or epidermal growth factor receptor (EGFR) amplification. Oligoastrocytic gliomas were genetically assigned to either of these groups. Our findings implicate gene panel NGS as a promising diagnostic technique that may facilitate integrated histological and molecular glioma classification. © 2016 International Society of Neuropathology.

  4. Cognitive functioning early after surgery of gliomas in eloquent areas

    NARCIS (Netherlands)

    Satoer, Djaina; Vork, Judith; Visch-Brink, Evy; Smits, Marion; Dirven, Clemens; Vincent, Arnaud

    2012-01-01

    OBJECT: Patients with gliomas frequently have cognitive deficits, and surgery can exacerbate these deficits. Preoperative assessment is therefore crucial in patients undergoing surgery for glioma in eloquent areas, because the proximity of functional areas increases the risk of permanent

  5. Epileptic seizures in patients with glioma: A single centre- based ...

    African Journals Online (AJOL)

    were used for analysis of seizure incidence differences as per WHO Grades, histology, location ... Keywords: Brain tumour, Epilepsy, Glioma, Seizures, Levetiracetam, .... glioma patients. Characteristics. N (%). Gender. Male. Female. Histology.

  6. Imaging of a glioma using peripheral benzodiazepine receptor ligands

    Energy Technology Data Exchange (ETDEWEB)

    Starosta-Rubinstein, S.; Ciliax, B.J.; Penney, J.B.; McKeever, P.; Young, A.B.

    1987-02-01

    Two types of benzodiazepine receptors have been demonstrated in mammalian tissues, one which is localized on neuronal elements in brain and the other, on glial cells and in peripheral tissues such as kidney. In vivo administration of /sup 3/H-labeled PK 11195 (1-(2-chlorophenyl-N-methyl-N-(1-methylpropyl)-3-isoquinoline carboxamide) or (/sup 3/H)flunitrazepam with 5 mg of clonazepam per kg to rats with intracranial C6 gliomas resulted in high levels of tritiated-drug binding to the tumor as shown by quantitative autoradiography. Pharmacological studies indicated that the bound drugs labeled the peripheral benzodiazepine binding site. Binding to the peripheral benzodiazepine site was confirmed primarily to malignant cells with little binding to adjacent normal brain tissue or to necrotic tissue. Tumor cell binding was completely inhibited by preadministration of the peripheral benzodiazepine blocking agent PK 11195 at 5 mg/kg. The centrally selective benzodiazepine ligand clonazepam had no effect on PK 11195 binding to the tumor cells. When binding to other tumor cell lines grown in nude mice and nude athymic rats was evaluated, little or no peripheral benzodiazepine binding was detected on human pheochromocytoma (RN1) and neuroblastoma (SK-N-MC, SK-N-SH) tumor cells, respectively. However, high densities of peripheral benzodiazepine binding sites were observed on tumors derived from a human glioma cell line (ATCC HTB 14, U-87 MG). The presence of high concentrations of specific peripheral benzodiazepine receptors on glial tumors suggests that human primary central nervous system tumors could be imaged and diagnosed using peripheral benzodiazepine ligands labeled with positron- or gamma-emitting isotopes.

  7. The progress of radiosensitive genes of human brain glioma

    International Nuclear Information System (INIS)

    Wang Xi; Liu Qiang

    2008-01-01

    Human gliomas are one of the most aggressive tumors in brain which grow infiltrativly. Surgery is the mainstay of treatment. But as the tumor could not be entirely cut off, it is easy to relapse. Radiotherapy plays an important role for patients with gliomas after surgery. The efficacy of radiotherapy is associated with radio sensitivity of human gliomas. This paper makes a summary of current situation and progress for radiosensitive genes of human brain gliomas. (authors)

  8. Pembrolizumab in Treating Younger Patients With Recurrent, Progressive, or Refractory High-Grade Gliomas, Diffuse Intrinsic Pontine Gliomas, Hypermutated Brain Tumors, Ependymoma or Medulloblastoma

    Science.gov (United States)

    2018-06-18

    Constitutional Mismatch Repair Deficiency Syndrome; Lynch Syndrome; Malignant Glioma; Progressive Ependymoma; Progressive Medulloblastoma; Recurrent Brain Neoplasm; Recurrent Childhood Ependymoma; Recurrent Diffuse Intrinsic Pontine Glioma; Recurrent Medulloblastoma; Refractory Brain Neoplasm; Refractory Diffuse Intrinsic Pontine Glioma; Refractory Ependymoma; Refractory Medulloblastoma

  9. Cyclic hexapeptide-conjugated nanoparticles enhance curcumin delivery to glioma tumor cells and tissue

    Directory of Open Access Journals (Sweden)

    Zhang X

    2017-08-01

    Full Text Available Xuemei Zhang,1–3 Xuejuan Li,1,4 Hongchen Hua,1 Aiping Wang,1 Wanhui Liu,1–3 Youxin Li,1–3 Fenghua Fu,1–3 Yanan Shi,5 Kaoxiang Sun1 1School of Pharmacy, Yantai University, Yantai, Shandong Province, People’s Republic of China; 2State Key Laboratory of Long-acting and Targeting Drug Delivery System, Yantai, Shandong Province, People’s Republic of China; 3Luye Pharmaceutical Co., Ltd., Shandong Province, People’s Republic of China; 4National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Shandong Province, People’s Republic of China; 5School of Pharmacy, Binzhou Medical University, Shandong Province, People’s Republic of China Abstract: Glioma has one of the highest mortality rates among primary brain tumors. The clinical treatment for glioma is very difficult due to its infiltration and specific growth locations. To achieve improved drug delivery to a brain tumor, we report the preparation and in vitro and in vivo evaluation of curcumin nanoparticles (Cur-NPs. The cyclic hexapeptide c(RGDf(N-meVK-C (cHP has increased affinity for cells that overexpress integrins and was designed to target Cur-NPs to tumors. Functional polyethyleneglycol-modified poly(D,L-lactide-co-glycolide (PEG-PLGA conjugated to cHP was synthesized, and targeted Cur-NPs were prepared using a self-assembly nanoprecipitation process. The physicochemical properties and the in vitro cytotoxicity, accuracy, and penetration capabilities of Cur-NPs targeting cells with high levels of integrin expression were investigated. The in vivo targeting and penetration capabilities of the NPs were also evaluated against glioma in rats using in vivo imaging equipment. The results showed that the in vitro cytotoxicity of the targeted cHP-modified curcumin nanoparticles (cHP/Cur-NPs was higher than that of either free curcumin or non-targeted Cur-NPs due to the superior ability of the cHP/Cur-NPs to target tumor cells

  10. Beyond Alkylating Agents for Gliomas: Quo Vadimus?

    Science.gov (United States)

    Puduvalli, Vinay K; Chaudhary, Rekha; McClugage, Samuel G; Markert, James

    2017-01-01

    Recent advances in therapies have yielded notable success in terms of improved survival in several cancers. However, such treatments have failed to improve outcome in patients with gliomas for whom surgery followed by radiation therapy and chemotherapy with alkylating agents remain the standard of care. Genetic and epigenetic studies have helped identify several alterations specific to gliomas. Attempts to target these altered pathways have been unsuccessful due to various factors, including tumor heterogeneity, adaptive resistance of tumor cells, and limitations of access across the blood-brain barrier. Novel therapies that circumvent such limitations have been the focus of intense study and include approaches such as immunotherapy, targeting of signaling hubs and metabolic pathways, and use of biologic agents. Immunotherapeutic approaches including tumor-targeted vaccines, immune checkpoint blockade, antibody-drug conjugates, and chimeric antigen receptor-expressing cell therapies are in various stages of clinical trials. Similarly, identification of key metabolic pathways or converging hubs of signaling pathways that are tumor specific have yielded novel targets for therapy of gliomas. In addition, the failure of conventional therapies against gliomas has led to a growing interest among patients in the use of alternative therapies, which in turn has necessitated developing evidence-based approaches to the application of such therapies in clinical studies. The development of these novel approaches bears potential for providing breakthroughs in treatment of more meaningful and improved outcomes for patients with gliomas.

  11. Molecular Therapeutic Targets for Glioma Angiogenesis

    Directory of Open Access Journals (Sweden)

    Shingo Takano

    2010-01-01

    Full Text Available Due to the prominent angiogenesis that occurs in malignant glioma, antiangiogenic therapy has been attempted. There have been several molecular targets that are specific to malignant gliomas, as well as more broadly in systemic cancers. In this review, I will focus on some topics related to molecular therapeutic targets for glioma angiogenesis. First, important angiogenic factors that could be considered molecular targets are VEGF, VEGF-induced proteins on endothelial cells, tissue factor, osteopontin, v3 integrin, and thymidine phosphorylase as well as endogenous inhibitors, soluble Flt1, and thrombospondin 1. Second, hypoxic areas are also decreased by metronomic CPT11 treatment as well as temozolomide. Third, glioma-derived endothelial cells that are genetically and functionally distinct from normal endothelial cells should be targeted, for example, with SDF-1 and CXCR7 chemokine. Fourth, endothelial progenitor cells (EPCs likely contribute towards glioma angiogenesis in the brain and could be useful as a drug delivery tool. Finally, blockade of delta-like 4 (Dll4 results in a nonfunctioning vasculature and could be another important target distinct from VEGF.

  12. New insights into susceptibility to glioma.

    Science.gov (United States)

    Liu, Yanhong; Shete, Sanjay; Hosking, Fay J; Robertson, Lindsay B; Bondy, Melissa L; Houlston, Richard S

    2010-03-01

    The study of inherited susceptibility to cancer has been one of the most informative areas of research in the past decade. Most of the cancer genetics studies have been focused on the common tumors such as breast and colorectal cancers. As the allelic architecture of these tumors is unraveled, research attention is turning to other rare cancers such as glioma, which are also likely to have a major genetic component as the basis of their development. In this brief review we discuss emerging data on glioma whole genome-association searches to identify risk loci. Two glioma genome-wide association studies have so far been reported. Our group identified 5 risk loci for glioma susceptibility (TERT rs2736100, CCDC26 rs4295627, CDKN2A/CDKN2B rs4977756, RTEL1 rs6010620, and PHLDB1 rs498872). Wrensch and colleagues provided further evidence to 2 risk loci (CDKN2B rs1412829 and RTEL1 rs6010620) for GBM and anaplastic astrocytoma. Although these data provide the strongest evidence to date for the role of common low-risk variants in the etiology of glioma, the single-nucleotide polymorphisms identified alone are unlikely to be candidates for causality. Identifying the causal variant at each specific locus and its biological impact now poses a significant challenge, contingent on a combination of fine mapping and functional analyses. Finally, we hope that a greater understanding of the biological basis of the disease will lead to the development of novel therapeutic interventions.

  13. Glioma cells on the run – the migratory transcriptome of 10 human glioma cell lines

    Directory of Open Access Journals (Sweden)

    Holz David

    2008-01-01

    Full Text Available Abstract Background Glioblastoma multiforme (GBM is the most common primary intracranial tumor and despite recent advances in treatment regimens, prognosis for affected patients remains poor. Active cell migration and invasion of GBM cells ultimately lead to ubiquitous tumor recurrence and patient death. To further understand the genetic mechanisms underlying the ability of glioma cells to migrate, we compared the matched transcriptional profiles of migratory and stationary populations of human glioma cells. Using a monolayer radial migration assay, motile and stationary cell populations from seven human long term glioma cell lines and three primary GBM cultures were isolated and prepared for expression analysis. Results Gene expression signatures of stationary and migratory populations across all cell lines were identified using a pattern recognition approach that integrates a priori knowledge with expression data. Principal component analysis (PCA revealed two discriminating patterns between migrating and stationary glioma cells: i global down-regulation and ii global up-regulation profiles that were used in a proband-based rule function implemented in GABRIEL to find subsets of genes having similar expression patterns. Genes with up-regulation pattern in migrating glioma cells were found to be overexpressed in 75% of human GBM biopsy specimens compared to normal brain. A 22 gene signature capable of classifying glioma cultures based on their migration rate was developed. Fidelity of this discovery algorithm was assessed by validation of the invasion candidate gene, connective tissue growth factor (CTGF. siRNA mediated knockdown yielded reduced in vitro migration and ex vivo invasion; immunohistochemistry on glioma invasion tissue microarray confirmed up-regulation of CTGF in invasive glioma cells. Conclusion Gene expression profiling of migratory glioma cells induced to disperse in vitro affords discovery of genomic signatures; selected

  14. The experimental investigation of glioma-trophic capacity of human umbilical cord-derived mesenchymal stem cells after intraventricular administration

    Directory of Open Access Journals (Sweden)

    FAN Cun-gang

    2013-07-01

    Full Text Available Objective To explore the glioma-trophic migration capacity of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs by intraventricular administration. Methods The umbilical cord tissue were obtained during full-term pregnancy cesarean section under sterile conditions. This study was approved by Ethics Committee and got the informed consent of patient. The hUC-MSCs were isolated by trypsin and collagenase digestion, followed by adherent culture methods. The characteristics of isolated hUC-MSCs were demonstrated by cell morphylogy, phenotype analysis and multi-differentiation potentials into adipocytes, osteoblasts and neural cells. Then the hUC-MSCs were labeled with CM-DiI and injected into contralateral ventricle of glioma of the C6 glioma-bearing Sprague-Dawley (SD rats. Two weeks later, the rats were sacrificed and the brains were taken out to examine the migration and distribution of hUC-MSCs in the tumor bed, at the interface of tumor and cerebral parenchyma as well as the tumor satelites infiltrating into the normal brain. Results The hUC-MSCs demonstrated plastic-adherent characterization and homogeneous fibroblastic-like morphylogy in culture, expression of specific surface phenotypes of MSCs (CD13, CD29, CD44, CD90 but not endothelial or hematopoietic markers (CD14, CD31, CD34, CD38, CD45, CD133, and muti-differentiatiation potentials into Oil red O stained adipocytes, Alizarin red S stained osteoblasts, neuron-specific enolase (NSE-positive neurons and glial fibrillary acidic protein (GFAP-positive astrocytes in permissive inducive conditions. Importantly, after labeled hUC-MSCs injection into contralateral ventricle of glioma, the hUC-MSCs migrated from initial injection site to the glioma mass and along the interface of tumor and brain, and some of them "chasing" the glioma satellites infiltrated into the normal parenchyma. Conclusion The hUC-MSCs possess prominent tumor-specific targeting capacity and extensive intratumoral

  15. Molecular Alterations of KIT Oncogene in Gliomas

    Directory of Open Access Journals (Sweden)

    Ana L. Gomes

    2007-01-01

    Full Text Available Gliomas are the most common and devastating primary brain tumours. Despite therapeutic advances, the majority of gliomas do not respond either to chemo or radiotherapy. KIT, a class III receptor tyrosine kinase (RTK, is frequently involved in tumourigenic processes. Currently, KIT constitutes an attractive therapeutic target. In the present study we assessed the frequency of KIT overexpression in gliomas and investigated the genetic mechanisms underlying KIT overexpression. KIT (CD117 immunohistochemistry was performed in a series of 179 gliomas of various grades. KIT activating gene mutations (exons 9, 11, 13 and 17 and gene amplification analysis, as defined by chromogenic in situ hybridization (CISH and quantitative real-time PCR (qRT-PCR were performed in CD117 positive cases. Tumour cell immunopositivity was detected in 15.6% (28/179 of cases, namely in 25% (1/4 of pilocytic astrocytomas, 25% (5/20 of diffuse astrocytomas, 20% (1/5 of anaplastic astrocytomas, 19.5% (15/77 of glioblastomas and one third (3/9 of anaplastic oligoastrocytomas. Only 5.7% (2/35 of anaplastic oligodendrogliomas showed CD117 immunoreactivity. No association was found between tumour CD117 overexpression and patient survival. In addition, we also observed CD117 overexpression in endothelial cells, which varied from 0–22.2% of cases, being more frequent in high-grade lesions. No KIT activating mutations were identified. Interestingly, CISH and/or qRT-PCR analysis revealed the presence of KIT gene amplification in 6 glioblastomas and 2 anaplastic oligoastrocytomas, corresponding to 33% (8/24 of CD117 positive cases. In conclusion, our results demonstrate that KIT gene amplification rather than gene mutation is a common genetic mechanism underlying KIT expression in subset of malignant gliomas. Further studies are warranted to determine whether glioma patients exhibiting KIT overexpression and KIT gene amplification may benefit from therapy with anti-KIT RTK

  16. [Multidisciplinar approach to the management of gliomas].

    Science.gov (United States)

    Moura, Bianca; Migliorini, Denis; Bourhis, Jean; Daniel, Roy; Levivier, Marc; Hottinger, Andreas F

    2016-04-27

    Gliomas represent two thirds of all primary brain tumors. Their prognosis depends directly upon their level of differentiation. On MRI, tumoral aggressivity is highlighted by contrast uptake and the infiltrative nature of the lesion. Clinical suspicion must however be confirmed by histology and molecular markers become essential to refine the diagnosis and tailor the treatment. Isocytrate dehydrogenase (IDH) mutations, codeletion of 1p and 19q and the presence of methylation of the MGMT promoter identify a subgroup of gliomas with better prognosis and may help predict response to treatment. Management of patients with primary brain tumors should always be defined in multidisciplinar tumor boards involving neurosurgeons, oncologists, radiation oncologists, neuropathologists and neuroradiologists.

  17. [Guidelines for the radiotherapy of gliomas].

    Science.gov (United States)

    Feuvret, L; Antoni, D; Biau, J; Truc, G; Noël, G; Mazeron, J-J

    2016-09-01

    Gliomas are the most frequent primary brain tumours. Treating these tumours is difficult because of the proximity of organs at risk, infiltrating nature, and radioresistance. Clinical prognostic factors such as age, Karnofsky performance status, tumour location, and treatments such as surgery, radiation therapy, and chemotherapy have long been recognized in the management of patients with gliomas. Molecular biomarkers are increasingly evolving as additional factors that facilitate diagnosis and therapeutic decision-making. These practice guidelines aim at helping in choosing the best treatment, in particular radiation therapy. Copyright © 2016 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  18. Nitrosoureas in the Management of Malignant Gliomas.

    Science.gov (United States)

    Brandes, Alba A; Bartolotti, Marco; Tosoni, Alicia; Franceschi, Enrico

    2016-02-01

    Nitrosoureas represent one of the most active classes of agents in the treatment of high-grade gliomas and glioblastoma. In clinical practice, the most commonly used compounds are lomustine (either alone or in combination with procarbazine and vincristine), carmustine, and fotemustine. Given their toxicity profile and subsequent to the introduction of temozolomide in clinical practice, most of these agents were moved to the recurrent setting. This review focuses on the role of the nitrosoureas currently used in clinical practice for the treatment of malignant gliomas.

  19. Contemporary management of high-grade gliomas.

    Science.gov (United States)

    Sim, Hao-Wen; Morgan, Erin R; Mason, Warren P

    2018-01-01

    High-grade gliomas, including glioblastoma, are the most common malignant brain tumors in adults. Despite intensive efforts to develop new therapies for these diseases, treatment options remain limited and prognosis is poor. Recently, there have been important advances in our understanding of the molecular basis of glioma, leading to refinements in our diagnostic and management approach. There is new evidence to guide the treatment of elderly patients. A multitude of new agents have been investigated, including targeted therapies, immunotherapeutics and tumor-treating fields. This review summarizes the key findings from this research, and presents a perspective on future opportunities to advance the field.

  20. Products of cells from gliomas: VIII. Multiple-well immunoperoxidase assay of immunoreactivity of primary hybridoma supernatants with human glioma and brain tissue and cultured glioma cells.

    Science.gov (United States)

    McKeever, P E; Wahl, R L; Shakui, P; Jackson, G A; Letica, L H; Liebert, M; Taren, J A; Beierwaltes, W H; Hoff, J T

    1990-06-01

    To test the feasibility of primary screening of hybridoma supernatants against human glioma tissue, over 5000 combinations of hybridoma supernatants with glioma tissue, cultured glioma cells, and normal central neural tissue were screened with a new multiple-well (M-well) screening system. This is an immunoperoxidase assay system with visual endpoints for screening 20-30 hybridoma supernatants per single microscope slide. There were extensive differences between specificities to tissue and to cultured glioma cells when both were screened with M-wells and when cultured cells were screened with standard semi-automated fluorescence. Primary M-well screening with glioma tissue detected seven hybridoma supernatants that specifically identified parenchymal cells of glioma tissue and that were not detected with cultured cells. Immunoreactivities of individual supernatants for vascular components (nine supernatants), necrosis (five supernatants), and nuclei (three supernatants) were detected. Other supernatants bound multiple sites on glioma tissue and/or subpopulations of neurons and glia of normal tissue. The results show that primary screening with glioma tissue detects a number of different specificities of hybridoma supernatants to gliomas not detected by conventional screening with cultured cells. These are potentially applicable to diagnosis and therapy.

  1. Rats

    Directory of Open Access Journals (Sweden)

    Alexey Kondrashov

    2012-01-01

    Full Text Available We aimed to perform a chemical analysis of both Alibernet red wine and an alcohol-free Alibernet red wine extract (AWE and to investigate the effects of AWE on nitric oxide and reactive oxygen species production as well as blood pressure development in normotensive Wistar Kyoto (WKY and spontaneously hypertensive rats (SHRs. Total antioxidant capacity together with total phenolic and selected mineral content was measured in wine and AWE. Young 6-week-old male WKY and SHR were treated with AWE (24,2 mg/kg/day for 3 weeks. Total NOS and SOD activities, eNOS and SOD1 protein expressions, and superoxide production were determined in the tissues. Both antioxidant capacity and phenolic content were significantly higher in AWE compared to wine. The AWE increased NOS activity in the left ventricle, aorta, and kidney of SHR, while it did not change NOS activity in WKY rats. Similarly, increased SOD activity in the plasma and left ventricle was observed in SHR only. There were no changes in eNOS and SOD1 expressions. In conclusion, phenolics and minerals included in AWE may contribute directly to increased NOS and SOD activities of SHR. Nevertheless, 3 weeks of AWE treatment failed to affect blood pressure of SHR.

  2. Protein tyrosine phosphatases in glioma biology.

    NARCIS (Netherlands)

    Navis, A.C.; Eijnden, M. van den; Schepens, J.T.G.; Hooft van Huijsduijnen, R.; Wesseling, P.; Hendriks, W.J.A.J.

    2010-01-01

    Gliomas are a diverse group of brain tumors of glial origin. Most are characterized by diffuse infiltrative growth in the surrounding brain. In combination with their refractive nature to chemotherapy this makes it almost impossible to cure patients using combinations of conventional therapeutic

  3. Radiosurgery in gliomas (middle-line tumors)

    International Nuclear Information System (INIS)

    Betti, O.O.; Rosler, R.

    1989-01-01

    The clinical experience is presented obtained from treatment with high-energy linac radiosurgery of 22 patients with stereotactically biopsed gliomas located in middle-line, from thalamus to brain stem and from infundibulum to pineo-tectal regions, during the period 1982-1987. (H.W.). 10 refs

  4. Glia to glioma: A wrathful journey

    Directory of Open Access Journals (Sweden)

    Krishnendu Ghosh

    2017-05-01

    Full Text Available Glial cells, unlike neurons in the brain, can undergo cellular division to maintain their functional continuity. However, sometimes this divisional attribute gets uncontrolled, which breaches tissue organization and transforms tissues into neoplasm. The proliferative abnormality of neuroglia results in one of the most dreaded neoplasm amounting to 30% of all brain tumors—the glioma. The abnormal proliferation, high level of progression and invasive potential makes glioma one of the most lethal killers in its class. The pathological scenario becomes more moribund owing to poor prognosis and high mortality rate of the menace. Conventional onco-therapies yield dismal results compared to other soft tissue tumors. In time, with the advent of newer trends of prognosis and treatment modalities in the field of oncology, a hope for betterment is expected, but not yet achieved. These advancements would fetch some better results with proper and minute understanding of the biology of glioma, both at physiological as well as molecular level. In the present context, we have tried to document an insight to glioma biology that can serve as a primer to understand this lethal killer and its killing spree, with some approaches to combat its carnage.

  5. Genetics and pharmacogenomics of diffuse gliomas

    NARCIS (Netherlands)

    van Thuijl, H. F.; Ylstra, B.; Würdinger, T.; van Nieuwenhuizen, D.; Heimans, J. J.; Wesseling, P.; Reijneveld, J. C.

    2013-01-01

    Rapidly evolving techniques for analysis of the genome provide new opportunities for cancer therapy. For diffuse gliomas this has resulted in molecular markers with potential for personalized therapy. Some drugs that utilize pharmacogenomics are currently being tested in clinical trials. In

  6. Neuromyelitis Optica Lesion Mimicking Brainstem Glioma

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2007-12-01

    Full Text Available A 12-year-old girl who presented with weakness of the left extremities and right sided sixth cranial nerve palsy had neuromyelitis optica (NMO mistaken for brainstem glioma on MRI, in a report from Brain Research Institute, Yonsei University College of Medicine,Seoul, Republic of KoreaNeuromyelitis Optica, Optic-Spinal Syndrome, Spectroscopy.

  7. Kynurenic acid synthesis by human glioma

    DEFF Research Database (Denmark)

    Vezzani, A; Gramsbergen, J B; Versari, P

    1990-01-01

    Biopsy material from human gliomas obtained during neurosurgery was used to investigate whether pathological human brain tissue is capable of producing kynurenic acid (KYNA), a natural brain metabolite which can act as an antagonist at excitatory amino acid receptors. Upon in vitro exposure to 40...

  8. Hormone replacement therapy and risk of glioma

    DEFF Research Database (Denmark)

    Andersen, Lene; Friis, Søren; Hallas, Jesper

    2013-01-01

    Aim: Several studies indicate that use of hormone replacement therapy (HRT) is associated with an increased risk of intracranial meningioma, while associations between HRT use and risk of other brain tumors have been less explored. We investigated the influence of HRT use on the risk of glioma...

  9. Pankiller effect of prolonged exposure to menadione on glioma cells: potentiation by vitamin C.

    Science.gov (United States)

    Vita, Marina F; Nagachar, Nivedita; Avramidis, Dimitrios; Delwar, Zahid M; Cruz, Mabel H; Siden, Åke; Paulsson, Kajsa M; Yakisich, Juan Sebastian

    2011-12-01

    Menadione (Vitamin K3) has anti-tumoral effects against a wide range of cancer cells. Its potential toxicity to normal cells and narrow therapeutic range limit its use as single agent but in combination with radiation or other anti-neoplastic agents can be of therapeutic use. In this paper, we first evaluated the early (within 3 h) effect of menadione on ongoing DNA replication. In normal rat cerebral cortex mini-units menadione showed an age dependent anti-proliferative effect. In tissue mini-units prepared from newborn rats, menadione inhibited ongoing DNA replication with an IC (50) of approximately 10 μM but 50 μM had no effect on mini-units from prepared adult rat tissue. The effect of short (72 h) and prolonged exposure (1-2 weeks) to menadione alone in the DBTRG.05MG human glioma cells line and in combination with vitamin C was studied. After short period of exposure data show that menadione alone or in combination with vitamin C provided similar concentration-response curves (and IC(50) values). Prolonged exposure to these drugs was evaluated by their ability to kill 100% of glioma cells and prevent regrowth when cells are re-incubated in drug-free media. In this long-term assay, menadione:vitamin C at a ratio 1:100 showed higher anti-proliferative activity when compared to each drug alone and allowed to reduce each drug concentration between 2.5 to 5-fold. Similar anti-proliferative effect was demonstrated in 8 patient derived glioblastoma cell cultures. Our data should be able to encourage further advanced studies on animal models to evaluate the potential use of this combination therapy for glioma treatment.

  10. Economics of Malignant Gliomas: A Critical Review.

    Science.gov (United States)

    Raizer, Jeffrey J; Fitzner, Karen A; Jacobs, Daniel I; Bennett, Charles L; Liebling, Dustin B; Luu, Thanh Ha; Trifilio, Steven M; Grimm, Sean A; Fisher, Matthew J; Haleem, Meraaj S; Ray, Paul S; McKoy, Judith M; DeBoer, Rebecca; Tulas, Katrina-Marie E; Deeb, Mohammed; McKoy, June M

    2015-01-01

    Approximately 18,500 persons are diagnosed with malignant glioma in the United States annually. Few studies have investigated the comprehensive economic costs. We reviewed the literature to examine costs to patients with malignant glioma and their families, payers, and society. A total of 18 fully extracted studies were included. Data were collected on direct and indirect costs, and cost estimates were converted to US dollars using the conversion rate calculated from the study's publication date, and updated to 2011 values after adjustment for inflation. A standardized data abstraction form was used. Data were extracted by one reviewer and checked by another. Before approval of effective chemotherapeutic agents for malignant gliomas, estimated total direct medical costs in the United States for surgery and radiation therapy per patient ranged from $50,600 to $92,700. The addition of temozolomide (TMZ) and bevacizumab to glioblastoma treatment regimens has resulted in increased overall costs for glioma care. Although health care costs are now less front-loaded, they have increased over the course of illness. Analysis using a willingness-to-pay threshold of $50,000 per quality-adjusted life-year suggests that the benefits of TMZ fall on the edge of acceptable therapies. Furthermore, indirect medical costs, such as productivity losses, are not trivial. With increased chemotherapy use for malignant glioma, the paradigm for treatment and associated out-of-pocket and total medical costs continue to evolve. Larger out-of-pocket costs may influence the choice of chemotherapeutic agents, the economic implications of which should be evaluated prospectively. Copyright © 2015 by American Society of Clinical Oncology.

  11. Overexpressed KDM5B is associated with the progression of glioma and promotes glioma cell growth via downregulating p21

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Bin [Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038 (China); Hu, Zhiqiang, E-mail: zhiqhutg@126.com [Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038 (China); Huang, Hui; Zhu, Guangtong; Xiao, Zhiyong [Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038 (China); Wan, Weiqing; Zhang, Peng; Jia, Wang; Zhang, Liwei [Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050 (China)

    2014-11-07

    Highlights: • KDM5B is overexpressed in glioma samples. • KDM5B stimulated proliferation of glioma cells. • Inhibition of p21contributes to KDM5B-induced proliferation. - Abstract: Epigenetic alterations such as aberrant expression of histone-modifying enzymes have been implicated in tumorigenesis. Upregulation of lysine (K)-specific demethylase 5B (KDM5B) has been reported in a variety of malignant tumors. However, the impact of KDM5B in glioma remains unclear. The objective of this study was to investigate the expression and prognostic value of KDM5B in glioma. In clinical glioma samples, we found that KDM5B expression was significantly upregulated in cancer lesions compared with normal brain tissues. Kaplan–Meier analysis showed that patients with glioma and higher KDM5B expression tend to have shorter overall survival time. By silencing or overexpressing KDM5B in glioma cells, we found that KDM5B could promote cell growth both in vitro and in vivo. Moreover, we demonstrated that KDM5B promoted glioma proliferation partly via regulation of the expression of p21. Our study provided evidence that KDM5B functions as a novel tumor oncogene in glioma and may be a potential therapeutic target for glioma management.

  12. The relationship between Cho/NAA and glioma metabolism: implementation for margin delineation of cerebral gliomas.

    Science.gov (United States)

    Guo, Jun; Yao, Chengjun; Chen, Hong; Zhuang, Dongxiao; Tang, Weijun; Ren, Guang; Wang, Yin; Wu, Jinsong; Huang, Fengping; Zhou, Liangfu

    2012-08-01

    The marginal delineation of gliomas cannot be defined by conventional imaging due to their infiltrative growth pattern. Here we investigate the relationship between changes in glioma metabolism by proton magnetic resonance spectroscopic imaging ((1)H-MRSI) and histopathological findings in order to determine an optimal threshold value of choline/N-acetyl-aspartate (Cho/NAA) that can be used to define the extent of glioma spread. Eighteen patients with different grades of glioma were examined using (1)H-MRSI. Needle biopsies were performed under the guidance of neuronavigation prior to craniotomy. Intraoperative magnetic resonance imaging (MRI) was performed to evaluate the accuracy of sampling. Haematoxylin and eosin, and immunohistochemical staining with IDH1, MIB-1, p53, CD34 and glial fibrillary acidic protein (GFAP) antibodies were performed on all samples. Logistic regression analysis was used to determine the relationship between Cho/NAA and MIB-1, p53, CD34, and the degree of tumour infiltration. The clinical threshold ratio distinguishing tumour tissue in high-grade (grades III and IV) glioma (HGG) and low-grade (grade II) glioma (LGG) was calculated. In HGG, higher Cho/NAA ratios were associated with a greater probability of higher MIB-1 counts, stronger CD34 expression, and tumour infiltration. Ratio threshold values of 0.5, 1.0, 1.5 and 2.0 appeared to predict the specimens containing the tumour with respective probabilities of 0.38, 0.60, 0.79, 0.90 in HGG and 0.16, 0.39, 0.67, 0.87 in LGG. HGG and LGG exhibit different spectroscopic patterns. Using (1)H-MRSI to guide the extent of resection has the potential to improve the clinical outcome of glioma surgery.

  13. LuIII parvovirus selectively and efficiently targets, replicates in, and kills human glioma cells.

    Science.gov (United States)

    Paglino, Justin C; Ozduman, Koray; van den Pol, Anthony N

    2012-07-01

    Because productive infection by parvoviruses requires cell division and is enhanced by oncogenic transformation, some parvoviruses may have potential utility in killing cancer cells. To identify the parvovirus(es) with the optimal oncolytic effect against human glioblastomas, we screened 12 parvoviruses at a high multiplicity of infection (MOI). MVMi, MVMc, MVM-G17, tumor virus X (TVX), canine parvovirus (CPV), porcine parvovirus (PPV), rat parvovirus 1A (RPV1A), and H-3 were relatively ineffective. The four viruses with the greatest oncolytic activity, LuIII, H-1, MVMp, and MVM-G52, were tested for the ability, at a low MOI, to progressively infect the culture over time, causing cell death at a rate higher than that of cell proliferation. LuIII alone was effective in all five human glioblastomas tested. H-1 progressively infected only two of five; MVMp and MVM-G52 were ineffective in all five. To investigate the underlying mechanism of LuIII's phenotype, we used recombinant parvoviruses with the LuIII capsid replacing the MVMp capsid or with molecular alteration of the P4 promoter. The LuIII capsid enhanced efficient replication and oncolysis in MO59J gliomas cells; other gliomas tested required the entire LuIII genome to exhibit enhanced infection. LuIII selectively infected glioma cells over normal glial cells in vitro. In mouse models, human glioblastoma xenografts were selectively infected by LuIII when administered intratumorally; LuIII reduced tumor growth by 75%. LuIII also had the capacity to selectively infect subcutaneous or intracranial gliomas after intravenous inoculation. Intravenous or intracranial LuIII caused no adverse effects. Intracranial LuIII caused no infection of mature mouse neurons or glia in vivo but showed a modest infection of developing neurons.

  14. Chitosan-alginate 3D scaffolds as a mimic of the glioma tumor microenvironment.

    Science.gov (United States)

    Kievit, Forrest M; Florczyk, Stephen J; Leung, Matthew C; Veiseh, Omid; Park, James O; Disis, Mary L; Zhang, Miqin

    2010-08-01

    Despite recent advances in the understanding of its cell biology, glioma remains highly lethal. Development of effective therapies requires a cost-effective in vitro tumor model that more accurately resembles the in vivo tumor microenvironment as standard two-dimensional (2D) tissue culture conditions do so poorly. Here we report on the use of a three-dimensional (3D) chitosan-alginate (CA) scaffold to serve as an extracellular matrix that promotes the conversion of cultured cancer cells to a more malignant in vivo-like phenotype. Human U-87 MG and U-118 MG glioma cells and rat C6 glioma cells were chosen for the study. In vitro tumor cell proliferation and secretion of factors that promote tumor malignancy, including VEGF, MMP-2, fibronectin, and laminin, were assessed. The scaffolds pre-cultured with U-87 MG and C6 cells were then implanted into nude mice to evaluate tumor growth and blood vessel recruitment compared to the standard 2D cell culture and 3D Matrigel matrix xenograft controls. Our results indicate that while the behavior of C6 cells showed minimal differences due to their highly malignant and invasive nature, U-87 MG and U-118 MG cells exhibited notably higher malignancy when cultured in CA scaffolds. CA scaffolds provide a 3D microenvironment for glioma cells that is more representative of the in vivo tumor, thus can serve as a more effective platform for development and study of anticancer therapeutics. This unique CA scaffold platform may offer a valuable alternative strategy to the time-consuming and costly animal studies for a wide variety of experimental designs. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Selective uptake of boronophenylalanine by glioma stem/progenitor cells

    International Nuclear Information System (INIS)

    Sun, Ting; Zhou, Youxin; Xie, Xueshun; Chen, Guilin; Li, Bin; Wei, Yongxin; Chen, Jinming; Huang, Qiang; Du, Ziwei

    2012-01-01

    The success of boron neutron capture therapy (BNCT) depends on the amount of boron in cells and the tumor/blood and tumor/(normal tissue) boron concentration ratios. For the first time, measurements of boron uptake in both stem/progenitor and differentiated glioma cells were performed along with measurements of boron biodistribution in suitable animal models. In glioma stem/progenitor cells, the selective accumulation of boronophenylalanine (BPA) was lower, and retention of boron after BPA removal was longer than in differentiated glioma cells in vitro. However, boron biodistribution was not statistically significantly different in mice with xenografts. - Highlights: ► Uptake of BPA was analyzed in stem/progenitor and differentiated glioma cells. ► Selective accumulation of BPA was lower in glioma stem/progenitor cells. ► Retention of boron after BPA removal was longer in glioma stem/progenitor cells. ► Boron biodistribution was not statistically different in mice with xenografts.

  16. Terahertz reflectometry imaging for low and high grade gliomas

    Science.gov (United States)

    Ji, Young Bin; Oh, Seung Jae; Kang, Seok-Gu; Heo, Jung; Kim, Sang-Hoon; Choi, Yuna; Song, Seungri; Son, Hye Young; Kim, Se Hoon; Lee, Ji Hyun; Haam, Seung Joo; Huh, Yong Min; Chang, Jong Hee; Joo, Chulmin; Suh, Jin-Suck

    2016-01-01

    Gross total resection (GTR) of glioma is critical for improving the survival rate of glioma patients. One of the greatest challenges for achieving GTR is the difficulty in discriminating low grade tumor or peritumor regions that have an intact blood brain barrier (BBB) from normal brain tissues and delineating glioma margins during surgery. Here we present a highly sensitive, label-free terahertz reflectometry imaging (TRI) that overcomes current key limitations for intraoperative detection of World Health Organization (WHO) grade II (low grade), and grade III and IV (high grade) gliomas. We demonstrate that TRI provides tumor discrimination and delineation of tumor margins in brain tissues with high sensitivity on the basis of Hematoxylin and eosin (H&E) stained image. TRI may help neurosurgeons to remove gliomas completely by providing visualization of tumor margins in WHO grade II, III, and IV gliomas without contrast agents, and hence, improve patient outcomes. PMID:27782153

  17. The effects of gene polymorphisms on glioma prognosis.

    Science.gov (United States)

    Cui, Ying; Li, Guolin; Yan, Mengdan; Li, Jing; Jin, Tianbo; Li, Shanqu; Mu, Shijie

    2017-11-01

    Malignant gliomas are the most common primary brain tumors. Various genetic factors play important roles in the development and prognosis of glioma. The present study focuses on the impact of MPHOSPH6, TNIP1 and several other genes (ACYP2, NAF1, TERC, TERT, OBFC1, ZNF208 and RTEL1) on telomere length and how this affects the prognosis of glioma. Forty-three polymorphisms in nine genes from 605 glioma patients were selected. The association between genotype and survival outcome was analyzed using the Kaplan-Meier method, Cox regression analysis and the log-rank test. The 1-year overall survival (OS) rates of patients younger than 40 years of age was higher compared to those in patients older than 40 years of age. The 1-year OS rate of patients who underwent total resection was higher than that of patients whose gliomas were not completely resected. The 1-year OS rates of patients undergoing chemotherapy and of patients who did not undergo chemotherapy were 39.90% and 26.80%, respectively. Univariate analyses showed that ACYP2 rs12615793 and TERT rs2853676 loci affected progression-free survival in glioma patients; both ZNF208 rs8105767 and ACYP2 rs843720 affected the OS of patients with low-grade gliomas. Multivariate analyses suggested that MPHOSPH6 rs1056629 and rs1056654, and TERT rs2853676 loci were associated with good prognoses of patients with glioma or high-grade gliomas, whereas ZNF208 rs8105767 was associated with good prognosis of patients with low-grade glioma. Age, surgical resection and chemotherapy influenced the survival rates of glioma patients. TERT, MPHOSPH6, ACYP2 and ZNF208 genes were found to affect glioma prognosis. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Current status of cerebral glioma surgery in China.

    Science.gov (United States)

    Wu, Jin-song; Zhang, Jie; Zhuang, Dong-xiao; Yao, Cheng-jun; Qiu, Tian-ming; Lu, Jun-feng; Zhu, Feng-ping; Mao, Ying; Zhou, Liang-fu

    2011-09-01

    The treatment of gliomas is highly individualized. Surgery for gliomas is essentially for histological diagnosis, to alleviate mass effect, and most importantly, to favor longer survival expectancy. During the past two decades, many surgical techniques and adjuvants have been applied to glioma surgery in China, which lead to a rapid development in the field of cerebral glioma surgery. This article broadly and critically reviewed the existing studies on cerebral glioma surgery and to portrait the current status of glioma surgery in China. A literature search was conducted covering major innovative surgical techniques and adjuvants for glioma surgery in China. The following databases were searched: the Pubmed (January 1995 to date); China Knowledge Resource Integrated Database (January 1995 to date) and VIP Database for Chinese Technical Periodicals (January 1995 to date). A selection criterion was established to exclude duplicates and irrelevant studies. The outcome measures were extracted from included studies. A total of 3307 articles were initially searched. After excluded by abstracts and full texts, 69 studies conducted in the mainland of China were included and went through further analysis. The philosophy of surgical strategies for cerebral gliomas in China is undergoing tremendous change. Nowadays Chinese neurosurgeons pay more attention to the postoperative neurofunctional status of the patients. The aim of the glioma surgery is not only the more extensive tumor resection but also the maximal safety of intervention. The well balance of longer overall survival and higher quality of life should be judged with respect to each individual patient.

  19. A ketogenic diet increases transport and oxidation of ketone bodies in RG2 and 9L gliomas without affecting tumor growth.

    Science.gov (United States)

    De Feyter, Henk M; Behar, Kevin L; Rao, Jyotsna U; Madden-Hennessey, Kirby; Ip, Kevan L; Hyder, Fahmeed; Drewes, Lester R; Geschwind, Jean-François; de Graaf, Robin A; Rothman, Douglas L

    2016-08-01

    The dependence of tumor cells, particularly those originating in the brain, on glucose is the target of the ketogenic diet, which creates a plasma nutrient profile similar to fasting: increased levels of ketone bodies and reduced plasma glucose concentrations. The use of ketogenic diets has been of particular interest for therapy in brain tumors, which reportedly lack the ability to oxidize ketone bodies and therefore would be starved during ketosis. Because studies assessing the tumors' ability to oxidize ketone bodies are lacking, we investigated in vivo the extent of ketone body oxidation in 2 rodent glioma models. Ketone body oxidation was studied using (13)C MR spectroscopy in combination with infusion of a (13)C-labeled ketone body (beta-hydroxybutyrate) in RG2 and 9L glioma models. The level of ketone body oxidation was compared with nontumorous cortical brain tissue. The level of (13)C-beta-hydroxybutyrate oxidation in 2 rat glioma models was similar to that of contralateral brain. In addition, when glioma-bearing animals were fed a ketogenic diet, the ketone body monocarboxylate transporter was upregulated, facilitating uptake and oxidation of ketone bodies in the gliomas. These results demonstrate that rat gliomas can oxidize ketone bodies and indicate upregulation of ketone body transport when fed a ketogenic diet. Our findings contradict the hypothesis that brain tumors are metabolically inflexible and show the need for additional research on the use of ketogenic diets as therapy targeting brain tumor metabolism. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Evaluation of Mobile Phone and Cordless Phone Use and Glioma Risk Using the Bradford Hill Viewpoints from 1965 on Association or Causation

    Directory of Open Access Journals (Sweden)

    Michael Carlberg

    2017-01-01

    Full Text Available Objective. Bradford Hill’s viewpoints from 1965 on association or causation were used on glioma risk and use of mobile or cordless phones. Methods. All nine viewpoints were evaluated based on epidemiology and laboratory studies. Results. Strength: meta-analysis of case-control studies gave odds ratio (OR = 1.90, 95% confidence interval (CI = 1.31–2.76 with highest cumulative exposure. Consistency: the risk increased with latency, meta-analysis gave in the 10+ years’ latency group OR = 1.62, 95% CI = 1.20–2.19. Specificity: increased risk for glioma was in the temporal lobe. Using meningioma cases as comparison group still increased the risk. Temporality: highest risk was in the 20+ years’ latency group, OR = 2.01, 95% CI =1.41–2.88, for wireless phones. Biological gradient: cumulative use of wireless phones increased the risk. Plausibility: animal studies showed an increased incidence of glioma and malignant schwannoma in rats exposed to radiofrequency (RF radiation. There is increased production of reactive oxygen species (ROS from RF radiation. Coherence: there is a change in the natural history of glioma and increasing incidence. Experiment: antioxidants reduced ROS production from RF radiation. Analogy: there is an increased risk in subjects exposed to extremely low-frequency electromagnetic fields. Conclusion. RF radiation should be regarded as a human carcinogen causing glioma.

  1. Glioma-related seizures in relation to histopathological subtypes: a report from the glioma international case-control study.

    Science.gov (United States)

    Berntsson, Shala G; Merrell, Ryan T; Amirian, E Susan; Armstrong, Georgina N; Lachance, Daniel; Smits, Anja; Zhou, Renke; Jacobs, Daniel I; Wrensch, Margaret R; Olson, Sara H; Il'yasova, Dora; Claus, Elizabeth B; Barnholtz-Sloan, Jill S; Schildkraut, Joellen; Sadetzki, Siegal; Johansen, Christoffer; Houlston, Richard S; Jenkins, Robert B; Bernstein, Jonine L; Lai, Rose; Shete, Sanjay; Amos, Christopher I; Bondy, Melissa L; Melin, Beatrice S

    2018-04-23

    The purpose of this study was to evaluate the distribution of glioma-related seizures and seizure control at the time of tumor diagnosis with respect to tumor histologic subtypes, tumor treatment and patient characteristics, and to compare seizure history preceding tumor diagnosis (or study enrollment) between glioma patients and healthy controls. The Glioma International Case Control study (GICC) risk factor questionnaire collected information on demographics, past medical/medication history, and occupational history. Cases from eight centers were also asked detailed questions on seizures in relation to glioma diagnosis; cases (n = 4533) and controls (n = 4171) were also asked about seizures less than 2 years from diagnosis and previous seizure history more than 2 years prior to tumor diagnosis, including childhood seizures. Low-grade gliomas (LGGs), particularly oligodendrogliomas/oligoastrocytomas, had the highest proportion of glioma-related seizures. Patients with low-grade astrocytoma demonstrated the most medically refractory seizures. A total of 83% of patients were using only one antiepileptic drug (AED), which was levetiracetam in 71% of cases. Gross total resection was strongly associated with reduced seizure frequency (p related seizures were most common in low-grade gliomas. Gross total resection was associated with lower seizure frequency. Additionally, having a history of childhood seizures is not a risk factor ***for developing glioma-related seizures or glioma.

  2. Bevacizumab and Irinotecan in Treating Young Patients With Recurrent, Progressive, or Refractory Glioma, Medulloblastoma, Ependymoma, or Low Grade Glioma

    Science.gov (United States)

    2017-10-23

    Childhood Cerebral Anaplastic Astrocytoma; Childhood Oligodendroglioma; Childhood Spinal Cord Neoplasm; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma

  3. Nanotechnology Applications for Diffuse Intrinsic Pontine Glioma.

    Science.gov (United States)

    Bredlau, Amy Lee; Dixit, Suraj; Chen, Chao; Broome, Ann-Marie

    2017-01-01

    Diffuse intrinsic pontine gliomas (DIPGs) are invariably fatal tumors found in the pons of elementary school aged children. These tumors are grade II-IV gliomas, with a median survival of less than 1 year from diagnosis when treated with standard of care (SOC) therapy. Nanotechnology may offer therapeutic options for the treatment of DIPGs. Multiple nanoparticle formulations are currently being investigated for the treatment of DIPGs. Nanoparticles based upon stable elements, polymer nanoparticles, and organic nanoparticles are under development for the treatment of brain tumors, including DIPGs. Targeting of nanoparticles is now possible as delivery techniques that address the difficulty in crossing the blood brain barrier (BBB) are developed. Theranostic nanoparticles, a combination of therapeutics and diagnostic nanoparticles, improve imaging of the cancerous tissue while delivering therapy to the local region. However, additional time and attention should be directed to developing a nanoparticle delivery system for treatment of the uniformly fatal pediatric disease of DIPG.

  4. Meningiomas, dicentric chromosomes, gliomas, and telomerase activity.

    Science.gov (United States)

    Carroll, T; Maltby, E; Brock, I; Royds, J; Timperley, W; Jellinek, D

    1999-08-01

    Lack of telomere maintenance during cell replication leads to telomere erosion and loss of function. This can result in telomere associations which probably cause the dicentric chromosomes seen in some tumour cells. One mechanism of telomere maintenance in dividing cells is the action of telomerase, a ribonucleoprotein enzyme that adds TTAGGG repeats onto telomeres and compensates for their shortening during cell division. Over 90 per cent of extracranial malignant neoplasms have been found to have telomerase activity. This study sought to determine if there was a relationship between absence of telomerase activity and presence of dicentric chromosomes in meningiomas and to what extent the other main group of central nervous system tumours, the gliomas, expressed telomerase activity. Telomerase activity was measured on 25 meningiomas and 29 gliomas. Four of the meningiomas were atypical variants and 11 were positive for dicentric chromosomes. Twenty-five of 29 gliomas were glioblastoma multiforme tumours. Measures were taken to ensure absence of false positives due to primer-dimer interaction and false negatives due to protein degradation or the presence of Taq polymerase inhibitors. All 25 meningiomas and the four low-grade gliomas (WHO grade II) were telomerase activity-negative. Seven (28 per cent) of the 25 glioblastoma multiforme tumours showed telomerase activity. The absence of telomerase activity in meningiomas and the high frequency of telomere associations support the hypothesis that these tumours are benign, transformed but pre-crisis. The relatively low frequency of telomerase activity in the malignant glioblastoma multiforme suggests that most of these tumours may have other mechanisms of telomere maintenance and that the potentially therapeutic telomerase inhibitors will not be of great value in the future management of the majority of patients suffering from these tumours. Copyright 1999 John Wiley & Sons, Ltd.

  5. Perspectives in Intraoperative Diagnostics of Human Gliomas

    Directory of Open Access Journals (Sweden)

    O. Tyurikova

    2015-01-01

    Full Text Available Amongst large a variety of oncological diseases, malignant gliomas represent one of the most severe types of tumors. They are also the most common type of the brain tumors and account for over half of the astrocytic tumors. According to different sources, the average life expectancy of patients with various glioblastomas varies between 10 and 12 months and that of patients with anaplastic astrocytic tumors between 20 and 24 months. Therefore, studies of the physiology of transformed glial cells are critical for the development of treatment methods. Modern medical approaches offer complex procedures, including the microsurgical tumor removal, radiotherapy, and chemotherapy, supplemented with photodynamic therapy and immunotherapy. The most radical of them is surgical resection, which allows removing the largest part of the tumor, reduces the intracranial hypertension, and minimizes the degree of neurological deficit. However, complete removal of the tumor remains impossible. The main limitations are insufficient visualization of glioma boundaries, due to its infiltrative growth, and the necessity to preserve healthy tissue. This review is devoted to the description of advantages and disadvantages of modern intraoperative diagnostics of human gliomas and highlights potential perspectives for development of their treatment.

  6. CURRENT APPROACHES TO CHEMORADIOTHERAPY FOR MALIGNANT GLIOMAS

    Directory of Open Access Journals (Sweden)

    Ye. L. Choinzonov

    2014-01-01

    Full Text Available High-grade malignant gliomas (WHO grade G III–IV account for more than 50% of all primary brain tumors. Despite aggressive treatment, survival rates are still very low with a median reported survival of no more than 1.5 years.Radiation therapy is an integral part of the combined treatment, but often does not influence lethally on resistant tumor cells. Thereby, in recent decades there has been an active search for novel approaches to the treatment of malignant gliomas (chemotherapeutic drugs, biological modifiers, local hyperthermia. Experimental data showed that the effect of high temperatures has both a direct damaging effect on tumor cells and a sensitizing effect. Significant advantages are achieved when the complex treatment of different malignant tumorsincludes local hyperthermia. However data on the treatment of patients with primary and recurrent gliomas G III–IV using local hyperthermia are scarce.The literature review is given in the article provides an overview of the existing treatment methods for brain tumors.

  7. Metabolic Targeting of Lactate Efflux by Malignant Glioma Inhibits Invasiveness and Induces Necrosis: An In Vivo Study1

    Science.gov (United States)

    Colen, Chaim B; Shen, Yimin; Ghoddoussi, Farhad; Yu, Pingyang; Francis, Todd B; Koch, Brandon J; Monterey, Michael D; Galloway, Matthew P; Sloan, Andrew E; Mathupala, Saroj P

    2011-01-01

    Glioblastoma multiforme (GBM) are the most malignant among brain tumors. They are frequently refractory to chemotherapy and radiotherapy with mean patient survival of approximately 6 months, despite surgical intervention. The highly glycolytic nature of glioblastomas describes their propensity to metabolize glucose to lactic acid at an elevated rate. To survive, GBMs efflux lactic acid to the tumor microenvironment through transmembrane transporters denoted monocarboxylate transporters (MCTs). We hypothesized that inhibition of MCT function would impair the glycolytic metabolism and affect both glioma invasiveness and survival. We examined the effect on invasiveness with α-cyano-4-hydroxy-cinnamic acid (ACCA, 4CIN, CHCA), a small-molecule inhibitor of lactate transport, through Matrigel-based and organotypic (brain) slice culture invasive assays using U87-MG and U251-MG glioma cells. We then conducted studies in immunodeficient rats by stereotaxic intracranial implantation of the glioma cells followed by programmed orthotopic application of ACCA through osmotic pumps. Effect on the implanted tumor was monitored by small-animal magnetic resonance imaging. Our assays indicated that glioma invasion was markedly impaired when lactate efflux was inhibited. Convection-enhanced delivery of inhibitor to the tumor bed caused tumor necrosis, with 50% of the animals surviving beyond the experimental end points (3 months after inhibitor exhaustion). Most importantly, control animals did not display any adverse neurologic effects during orthotopic administration of ACCA to brain through programmed delivery. These results indicate the clinical potential of targeting lactate efflux in glioma through delivery of small-molecule inhibitors of MCTs either to the tumor bed or to the postsurgical resection cavity. PMID:21750656

  8. Metabolic targeting of lactate efflux by malignant glioma inhibits invasiveness and induces necrosis: an in vivo study.

    Science.gov (United States)

    Colen, Chaim B; Shen, Yimin; Ghoddoussi, Farhad; Yu, Pingyang; Francis, Todd B; Koch, Brandon J; Monterey, Michael D; Galloway, Matthew P; Sloan, Andrew E; Mathupala, Saroj P

    2011-07-01

    Glioblastoma multiforme (GBM) are the most malignant among brain tumors. They are frequently refractory to chemotherapy and radiotherapy with mean patient survival of approximately 6 months, despite surgical intervention. The highly glycolytic nature of glioblastomas describes their propensity to metabolize glucose to lactic acid at an elevated rate. To survive, GBMs efflux lactic acid to the tumor microenvironment through transmembrane transporters denoted monocarboxylate transporters (MCTs). We hypothesized that inhibition of MCT function would impair the glycolytic metabolism and affect both glioma invasiveness and survival. We examined the effect on invasiveness with α-cyano-4-hydroxy-cinnamic acid (ACCA, 4CIN, CHCA), a small-molecule inhibitor of lactate transport, through Matrigel-based and organotypic (brain) slice culture invasive assays using U87-MG and U251-MG glioma cells. We then conducted studies in immunodeficient rats by stereotaxic intracranial implantation of the glioma cells followed by programmed orthotopic application of ACCA through osmotic pumps. Effect on the implanted tumor was monitored by small-animal magnetic resonance imaging. Our assays indicated that glioma invasion was markedly impaired when lactate efflux was inhibited. Convection-enhanced delivery of inhibitor to the tumor bed caused tumor necrosis, with 50% of the animals surviving beyond the experimental end points (3 months after inhibitor exhaustion). Most importantly, control animals did not display any adverse neurologic effects during orthotopic administration of ACCA to brain through programmed delivery. These results indicate the clinical potential of targeting lactate efflux in glioma through delivery of small-molecule inhibitors of MCTs either to the tumor bed or to the postsurgical resection cavity.

  9. Metabolic Targeting of Lactate Efflux by Malignant Glioma Inhibits Invasiveness and Induces Necrosis: An In Vivo Study

    Directory of Open Access Journals (Sweden)

    Chaim B Colen

    2011-07-01

    Full Text Available Glioblastoma multiforme (GBM are the most malignant among brain tumors. They are frequently refractory to chemotherapy and radiotherapy with mean patient survival of approximately 6 months, despite surgical intervention. The highly glycolytic nature of glioblastomas describes their propensity to metabolize glucose to lactic acid at an elevated rate. To survive, GBMs efflux lactic acid to the tumor microenvironment through transmembrane transporters denoted monocarboxylate transporters (MCTs. We hypothesized that inhibition of MCT function would impair the glycolytic metabolism and affect both glioma invasiveness and survival. We examined the effect on invasiveness with α-cyano-4-hydroxy-cinnamic acid (ACCA, 4CIN, CHCA, a small-molecule inhibitor of lactate transport, through Matrigel-based and organotypic (brain slice culture invasive assays using U87-MG and U251-MG glioma cells. We then conducted studies in immunodeficient rats by stereotaxic intracranial implantation of the glioma cells followed by programmed orthotopic application of ACCA through osmotic pumps. Effect on the implanted tumor was monitored by small-animal magnetic resonance imaging. Our assays indicated that glioma invasion was markedly impaired when lactate efflux was inhibited. Convection-enhanced delivery of inhibitor to the tumor bed caused tumor necrosis, with 50% of the animals surviving beyond the experimental end points (3 months after inhibitor exhaustion. Most importantly, control animals did not display any adverse neurologic effects during orthotopic administration of ACCA to brain through programmed delivery. These results indicate the clinical potential of targeting lactate efflux in glioma through delivery of small-molecule inhibitors of MCTs either to the tumor bed or to the postsurgical resection cavity.

  10. Repeating hemorrhage after radiotherapy for glioma. Radiological and histological observations

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Hirokazu [Miyakonojo Medical Association Hospital, Miyazaki (Japan); Wakisaka, Shinichiro; Kubota, Toshihiko; Hosotani, Kazuo

    1998-02-01

    A case of radiation necrosis which was observed six years after radiotherapy for a glioma in the right parietal lobe is reported. This patient developed hemiparesis, and radiological examinations showed similar findings consisted with recurrent glioma. Histological examination disclosed that the lesion is correspond to the radiation necrosis. (author)

  11. Childhood Brain Stem Glioma Treatment (PDQ®)—Patient Version

    Science.gov (United States)

    Childhood brain stem glioma can be a benign (not cancer) or malignant (cancer) condition where abnormal cells form in the tissues of the brain stem. Get information about the symptoms, diagnosis, prognosis, and treatment of newly diagnosed and recurrent childhood brain stem glioma in this expert-reviewed summary.

  12. Epileptic seizures in patients with glioma: A single centrebased ...

    African Journals Online (AJOL)

    Purpose: To elucidate the outcomes of treatment and epidemiology of epilepsy related to glioma in a single center in Chinese patients. Methods: Prescription medicines usage and clinical data were collected from medical records of 119 patients with gliomas between August 2009 and September 2015. Fisher's exact and ...

  13. Interaction between 5 genetic variants and allergy in glioma risk

    DEFF Research Database (Denmark)

    Schoemaker, Minouk J; Robertson, Lindsay; Wigertz, Annette

    2010-01-01

    , CDKN2A-CDKN2B), 11q23.3 (rs498872, PHLDB1), and 20q13.33 (rs6010620, RTEL1) as determinants of glioma risk. The authors investigated whether there is interaction between the effects of allergy and these 5 variants on glioma risk. Data from 5 case-control studies carried out in Denmark, Finland, Sweden...

  14. Tumor-infiltrating lymphocytes (TILs) from patients with glioma

    DEFF Research Database (Denmark)

    Liu, Zhenjiang; Meng, Qingda; Bartek, Jiri

    2017-01-01

    Tumor-infiltrating lymphocytes (TILs) may represent a viable source of T cells for the biological treatment of patients with gliomas. Glioma tissue was obtained from 16 patients, tumor cell lines were established, and TILs were expanded in 16/16 cases using a combination of IL-2/IL-15/IL-21...

  15. Molecular and Genetic Determinants of Glioma Cell Invasion

    Directory of Open Access Journals (Sweden)

    Kenta Masui

    2017-12-01

    Full Text Available A diffusely invasive nature is a major obstacle in treating a malignant brain tumor, “diffuse glioma”, which prevents neurooncologists from surgically removing the tumor cells even in combination with chemotherapy and radiation. Recently updated classification of diffuse gliomas based on distinct genetic and epigenetic features has culminated in a multilayered diagnostic approach to combine histologic phenotypes and molecular genotypes in an integrated diagnosis. However, it is still a work in progress to decipher how the genetic aberrations contribute to the aggressive nature of gliomas including their highly invasive capacity. Here we depict a set of recent discoveries involving molecular genetic determinants of the infiltrating nature of glioma cells, especially focusing on genetic mutations in receptor tyrosine kinase pathways and metabolic reprogramming downstream of common cancer mutations. The specific biology of glioma cell invasion provides an opportunity to explore the genotype-phenotype correlation in cancer and develop novel glioma-specific therapeutic strategies for this devastating disease.

  16. Use of tricyclic antidepressants and risk of glioma

    DEFF Research Database (Denmark)

    Pottegård, Anton; García Rodríguez, Luis Alberto; Rasmussen, Lotte

    2016-01-01

    glioma (cases) in Denmark between 2000 and 2012 and matched these 1 : 20 to population controls. Conditional logistic regression was used to estimate adjusted odds ratios (ORs) for glioma associated with long-term (⩾3 years) use of TCAs. Similar analyses were performed for selective serotonin reuptake...... inhibitors (SSRIs). RESULTS: We identified 3767 glioma cases and 75 340 population controls. Long-term use of TCAs was inversely associated with risk of glioma (OR 0.72, 95% CI: 0.41-1.25). Long-term SSRI use was not associated with glioma risk (OR 0.93, 95% CI: 0.75-1.16). CONCLUSIONS: Our study indicated...

  17. Cognitive impairments in patients with low grade gliomas and high grade gliomas

    Directory of Open Access Journals (Sweden)

    Eliane C. Miotto

    2011-08-01

    Full Text Available OBJECTIVE: The relationship between brain tumors and cognitive deficits is well established in the literature. However, studies investigating the cognitive status in low and high-grade gliomas patients are scarce, particularly in patients with average or lower educational level. This study aimed at investigating the cognitive functioning in a sample of patients with low and high-grade gliomas before surgical intervention. METHOD: The low-grade (G1, n=19 and high-grade glioma (G2, n=8 patients underwent a detailed neuropsychological assessment of memory, executive functions, visuo-perceptive and visuo-spatial abilities, intellectual level and language. RESULTS: There was a significant impairment on verbal and visual episodic memory, executive functions including mental flexibility, nominal and categorical verbal fluency and speed of information processing in G2. G1 showed only specific deficits on verbal and visual memory recall, mental flexibility and processing speed. CONCLUSION: These findings demonstrated different levels of impairments in the executive and memory domains in patients with low and high grade gliomas.

  18. Autophagy involved in resveratrol increased radiosensitivity in glioma stem cells

    International Nuclear Information System (INIS)

    Long Linmei; Zhang Qingqing; Yang Neng; Ji Wenjun; Song Yunzhen; Zhao Jianghu; Liang Zhongqin

    2012-01-01

    Objective: To investigate the effect of Resveratrol combined with X-ray on radiosensitivity in glioma stem cells. Methods: The proliferation inhibition of glioma stem cells induced by X-rays and Resveratrol was assessed with MTT assay. The activation of proapoptotic effect was characterized by Hoechst 33258 stain. MDC stain and Western blot analysis were used to analyze the autophagy mechanism in X-rays-induced death of glioma stem cells. Results: MTT assay indicated that X-rays and Resveratrol decreased the viability of glioma stem cells (P<0.05); we found the proliferative inhibition of glioma stem cells was declined when we used 3-MA to inhibit autophagy(P<0.05). When the cells were treated by the Resveratrol and x-rays, their spherical shape were changed. Apoptosis was induced in glioma stem cells by combined X-rays and Resveratrol as detected by Hoechst 33258 staining. In addition, autophagy was induced in glioma stem cells in the combined treatment group as detected by MDC staining. Western blotting showed that Bcl-2 expression was decreased. in the combined treatment group (P<0.01), and the LC3-Ⅱ expression was increased in the combined treatment group (P<0.01). Conclusion: Resveratrol can increased the radiation sensitivity of glioma stem cells, the apoptosis and autophagy was induced in the glioma stem cells in the combined treatment X-rays and Resveratrol. Our results suggest that autophagy plays an essential role in the regulation of radiosensitization of glioma stem cells. (authors)

  19. Glioma Association and Balancing Selection of ZFPM2.

    Directory of Open Access Journals (Sweden)

    Shui-Ying Tsang

    Full Text Available ZFPM2, encoding a zinc finger protein and abundantly expressed in the brain, uterus and smooth muscles, plays important roles in cardiac and gonadal development. Abnormal expression of ZFPM2 in ovarian tumors and neuroblastoma has been reported but hitherto its genetic association with cancer and effects on gliomas have not been studied. In the present study, the hexamer insertion-deletion polymorphism rs71305152, located within a large haplotype block spanning intron 1 to intron 3 of ZFPM2, was genotyped in Chinese cohorts of glioma (n = 350, non-glioma cancer (n = 354 and healthy control (n = 463 by direct sequencing and length polymorphism in gel electrophoresis, and ZFPM2 expression in glioma tissues (n = 69 of different grades was quantified by real-time RT-PCR. Moreover, potential natural selection pressure acting on the gene was investigated. Disease-association analysis showed that the overall genotype of rs71305152 was significantly associated with gliomas (P = 0.016, and the heterozygous genotype compared to the combined homozygous genotypes was less frequent in gliomas than in controls (P = 0.005 or non-glioma cancers (P = 0.020. ZFPM2 mRNA expression was negatively correlated with the grades of gliomas (P = 0.002, with higher expression levels in the low-grade gliomas. In the astrocytoma subtype, higher ZFPM2 expression was also correlated with the rs71305152 heterozygous genotype (P = 0.028. In addition, summary statistics tests gave highly positive values, demonstrating that the gene is under the influence of balancing selection. These findings suggest that ZFPM2 is a glioma susceptibility gene, its genotype and expression showing associations with incidence and severity, respectively. Moreover, the balancing selection acting on ZFPM2 may be related to the important roles it has to play in multiple organ development or associated disease etiology.

  20. Plasmid pORF-hTRAIL targeting to glioma using transferrin-modified polyamidoamine dendrimer

    Directory of Open Access Journals (Sweden)

    Gao S

    2015-12-01

    Full Text Available Song Gao,1,* Jianfeng Li,2 Chen Jiang,2 Bo Hong,3 Bing Hao4,* 1Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 2Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 3Department of Pathology, The Second Affiliated Hospital, 4Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China *These authors contributed equally to this work Abstract: A gene drug delivery system for glioma therapy based on transferrin (Tf-modified polyamidoamine dendrimer (PAMAM was prepared. Gene drug, tumor necrosis factor-related apoptosis-inducing ligand (hTRAIL-encoding plasmid open reading frame (pORF-hTRAIL, Trail, was condensed by Tf-modified PAMAM to form nanoparticles (NPs. PAMAM-PEG-Tf/DNA NPs showed higher cellular uptake, in vitro gene expression, and cytotoxicity than PAMAM-PEG/DNA NPs in C6 cells. The in vivo targeting efficacy of NPs was visualized by ex vivo fluorescence imaging. Tf-modified NPs showed obvious glioma-targeting trend. Plasmid encoding green fluorescence protein (GFP was also condensed by modified or unmodified PAMAM to evaluate the in vivo gene expression level. The PAMAM-PEG-Tf/plasmid encoding enhanced green fluorescence protein (pEGFP NPs exhibited higher GFP expression level than PAMAM-PEG/pEGFP NPs. TUNEL assay revealed that Tf-modified NPs could induce much more tumor apoptosis. The median survival time of PAMAM-PEG-Tf/Trail-treated rats (28.5 days was longer than that of rats treated with PAMAM-PEG/Trail (25.5 days, temozolomide (24.5 days, PAMAM-PEG-Tf/pEGFP (19 days, or saline (17 days. The therapeutic effect was further confirmed by magnetic resonance imaging. This study demonstrated that targeting gene delivery system had potential application for the

  1. Emerging microtubule targets in glioma therapy

    Czech Academy of Sciences Publication Activity Database

    Katsetos, C.D.; Reginato, M.J.; Baas, P.W.; D'Agostino, L.; Legido, A.; Tuszynski, J. A.; Dráberová, Eduarda; Dráber, Pavel

    2015-01-01

    Roč. 22, č. 1 (2015), s. 49-72 ISSN 1071-9091 R&D Projects: GA MŠk LH12050; GA MZd NT14467 Grant - others:GA AV ČR M200521203PIPP; NIH(US) R01 NS028785; Philadelphia Health Education Corporation (PHEC)–St. Christopher’s Hospital for Children Reunified Endowment (C.D.K.)(US) 323256 Institutional support: RVO:68378050 Keywords : glioma tumorigenesis * glioblastoma * tubulin * microtubules Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.303, year: 2015

  2. A Pilot Feasibility Study of Oral 5-Fluorocytosine and Genetically-Modified Neural Stem Cells Expressing E.Coli Cytosine Deaminase for Treatment of Recurrent High Grade Gliomas

    Science.gov (United States)

    2017-11-07

    Adult Anaplastic Astrocytoma; Recurrent Grade III Glioma; Recurrent Grade IV Glioma; Adult Anaplastic Oligodendroglioma; Adult Brain Tumor; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Recurrent Adult Brain Tumor; Adult Anaplastic Oligoastrocytoma; Recurrent High Grade Glioma

  3. Tipifarnib in Treating Young Patients With Recurrent or Progressive High-Grade Glioma, Medulloblastoma, Primitive Neuroectodermal Tumor, or Brain Stem Glioma

    Science.gov (United States)

    2013-10-07

    Childhood High-grade Cerebral Astrocytoma; Childhood Oligodendroglioma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma

  4. Identification of molecular pathways facilitating glioma cell invasion in situ.

    Directory of Open Access Journals (Sweden)

    Ido Nevo

    Full Text Available Gliomas are mostly incurable secondary to their diffuse infiltrative nature. Thus, specific therapeutic targeting of invasive glioma cells is an attractive concept. As cells exit the tumor mass and infiltrate brain parenchyma, they closely interact with a changing micro-environmental landscape that sustains tumor cell invasion. In this study, we used a unique microarray profiling approach on a human glioma stem cell (GSC xenograft model to explore gene expression changes in situ in Invading Glioma Cells (IGCs compared to tumor core, as well as changes in host cells residing within the infiltrated microenvironment relative to the unaffected cortex. IGCs were found to have reduced expression of genes within the extracellular matrix compartment, and genes involved in cell adhesion, cell polarity and epithelial to mesenchymal transition (EMT processes. The infiltrated microenvironment showed activation of wound repair and tissue remodeling networks. We confirmed by protein analysis the downregulation of EMT and polarity related genes such as CD44 and PARD3 in IGCs, and EFNB3, a tissue-remodeling agent enriched at the infiltrated microenvironment. OLIG2, a proliferation regulator and glioma progenitor cell marker upregulated in IGCs was found to function in enhancing migration and stemness of GSCs. Overall, our results unveiled a more comprehensive picture of the complex and dynamic cell autonomous and tumor-host interactive pathways of glioma invasion than has been previously demonstrated. This suggests targeting of multiple pathways at the junction of invading tumor and microenvironment as a viable option for glioma therapy.

  5. The value of intraoperative sonography in low grade glioma surgery.

    Science.gov (United States)

    Petridis, Athanasios K; Anokhin, Maxim; Vavruska, Jan; Mahvash, Mehran; Scholz, Martin

    2015-04-01

    There is a number of different methods to localize a glioma intraoperatively. Neuronavigation, intraoperative MRI, 5-aminolevulinic acid, as well as intraoperative sonography. Every method has its advantages and disadvantages. Low grade gliomas do not show a specific signal with 5-aminolevulinic acid and are difficult to distinguish macroscopically from normal tissue. In the present study we stress out the importance of intraoperative diagnostic ultrasound for localization of low grade gliomas. We retrospectively evaluated the charts and MRIs of 34 patients with low grade gliomas operated in our department from 2011 until December 2014. The efficacy of ultrasound as an intraoperative navigational tool was assessed. In 15 patients ultrasound was used and in 19 not. Only histologically proven low grades gliomas (astrocytomas grade II) were evaluated. In none of the patients where ultrasound (combined with neuronavigation) was used (N=15) to find the tumors, the target was missed, whereas the exclusive use of neuronavigation missed the target in 5 of 19 cases of small subcortical low grade gliomas. Intraoperative ultrasound is an excellent tool in localizing low grade gliomas intraoperatively. It is an inexpensive, real time neuronavigational tool, which overcomes brain shift. Even when identifying the tumors with ultrasound is very reliable, the extend of resection and the decision to remove any residual tumor with the help of ultrasound is at the moment unreliable. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Glioma epidemiology in the central Tunisian population: 1993-2012.

    Science.gov (United States)

    Trabelsi, Saoussen; Brahim, Dorra H'mida-Ben; Ladib, Mohamed; Mama, Nadia; Harrabi, Imed; Tlili, Kalthoum; Yacoubi, Mohamed Tahar; Krifa, Hedi; Hmissa, Sihem; Saad, Ali; Mokni, Moncef

    2014-01-01

    Glioma is a heterogeneous central nervous system (CNS) tumor group that encompasses different histological subtypes with high variability in prognosis. The lesions account for almost 80% of primary malignant brain tumors. The aim of this study is to extend our understanding of the glioma epidemiology in the central Tunisian region. We analyzed 393 gliomas recorded in cancer registry of central Tunisia from 1993 to 2012. Crude incidence rates (CR) and world age-standardized rates (ASR) were estimated using annual population data size and age structure. Statistic correlations were established using Chi-square and Kaplan-Meier test. Tunisian glioma patients were identified with a mean age at diagnosis of 48 years and 1.5 sex ratio (male/female). During the 19 years period of study the highest incidence value was observed in male group between 1998 and 2002 (CR: 0.28, ASR: 0.3). Incidence results underline increasing high grade glioma occurring in the adulthood in the last period (2007-2012). Median survival was 27 months, with 1-, 2- and 5-year survival rates of 42%, 30% and 26%, respectively. Survival was greater in patients with younger age, lower tumor grade, infratentrial tumor location and undergoing a palliative treatment. This central Tunisia gliomas registry study provides important information that could improve glioma management and healthcare practice.

  7. Antiangiogenic Therapy and Mechanisms of Tumor Resistance in Malignant Glioma

    Directory of Open Access Journals (Sweden)

    Ruman Rahman

    2010-01-01

    Full Text Available Despite advances in surgery, radiation therapy, and chemotherapeutics, patients with malignant glioma have a dismal prognosis. The formations of aberrant tumour vasculature and glioma cell invasion are major obstacles for effective treatment. Angiogenesis is a key event in the progression of malignant gliomas, a process involving endothelial cell proliferation, migration, reorganization of extracellular matrix and tube formation. Such processes are regulated by the homeostatic balance between proangiogenic and antiangiogenic factors, most notably vascular endothelial growth factors (VEGFs produced by glioma cells. Current strategies targeting VEGF-VEGF receptor signal transduction pathways, though effective in normalizing abnormal tumor vasculature, eventually result in tumor resistance whereby a highly infiltrative and invasive phenotype may be adopted. Here we review recent anti-angiogenic therapy for malignant glioma and highlight implantable devices and nano/microparticles as next-generation methods for chemotherapeutic delivery. Intrinsic and adaptive modes of glioma resistance to anti-angiogenic therapy will be discussed with particular focus on the glioma stem cell paradigm.

  8. Loss of heterozygosity of TRIM3 in malignant gliomas

    International Nuclear Information System (INIS)

    Boulay, Jean-Louis; Stiefel, Urs; Taylor, Elisabeth; Dolder, Béatrice; Merlo, Adrian; Hirth, Frank

    2009-01-01

    Malignant gliomas are frequent primary brain tumors associated with poor prognosis and very limited response to conventional chemo- and radio-therapies. Besides sharing common growth features with other types of solid tumors, gliomas are highly invasive into adjacent brain tissue, which renders them particularly aggressive and their surgical resection inefficient. Therefore, insights into glioma formation are of fundamental interest in order to provide novel molecular targets for diagnostic purposes and potential anti-cancer drugs. Human Tripartite motif protein 3 (TRIM3) encodes a structural homolog of Drosophila brain tumor (brat) implicated in progenitor cell proliferation control and cancer stem cell suppression. TRIM3 is located within the loss of allelic heterozygosity (LOH) hotspot of chromosome segment 11p15.5, indicating a potential role in tumor suppression. ... Here we analyze 70 primary human gliomas of all types and grades and report somatic deletion mapping as well as single nucleotide polymorphism analysis together with quantitative real-time PCR of chromosome segment 11p15.5. Our analysis identifies LOH in 17 cases (24%) of primary human glioma which defines a common 130 kb-wide interval within the TRIM3 locus as a minimal area of loss. We further detect altered genomic dosage of TRIM3 in two glioma cases with LOH at 11p15.5, indicating homozygous deletions of TRIM3. Loss of heterozygosity of chromosome segment 11p15.5 in malignant gliomas suggests TRIM3 as a candidate brain tumor suppressor gene

  9. Activation of glioma cells generates immune tolerant NKT cells.

    Science.gov (United States)

    Tang, Bo; Wu, Wei; Wei, Xiaowei; Li, Yang; Ren, Gang; Fan, Wenhai

    2014-12-12

    Therapeutic outcomes of glioma are currently not encouraging. Tumor tolerance plays an important role in the pathogenesis of glioma. It is reported that micro RNAs (miR) are associated with tumor development. This study aims to investigate the role of miR-92a in the development of tolerant natural killer T (NKT) cells. In this study, U87 cells (a human glioma cell line) and primary glioma cells were prepared. The assessment of miR-92a was performed by real time RT-PCR. The expression of interleukin (IL)-10 and IL-6 in NKT cells was evaluated by flow cytometry. Results showed that abundant IL-6(+) IL-10(+) NKT cells were detected in glioma tissue. Cultures of glioma cells and NKT cells induced the expression of IL-6 and IL-10 in NKT cells. Glioma cells expressed miR-92a; the latter played a critical role in the induction of IL-6 and IL-10 expression in NKT cells. The expression of the antitumor molecules, including perforin, Fas ligand, and interferon-γ, was significantly attenuated compared with control NKT cells. The IL-6(+) IL-10(+) NKT cells showed less capability in the induction of apoptosis in glioma cells, but showed the immune suppressor functions on CD8(+) T cell activities. We conclude that glioma-derived miR-92a induces IL-6(+) IL-10(+) NKT cells; this fraction of NKT cells can suppress cytotoxic CD8(+) T cells. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Epstein–Barr Virus in Gliomas: Cause, Association, or Artifact?

    Directory of Open Access Journals (Sweden)

    Saghir Akhtar

    2018-04-01

    Full Text Available Gliomas are the most common malignant brain tumors and account for around 60% of all primary central nervous system cancers. Glioblastoma multiforme (GBM is a grade IV glioma associated with a poor outcome despite recent advances in chemotherapy. The etiology of gliomas is unknown, but neurotropic viruses including the Epstein–Barr virus (EBV that is transmitted via salivary and genital fluids have been implicated recently. EBV is a member of the gamma herpes simplex family of DNA viruses that is known to cause infectious mononucleosis (glandular fever and is strongly linked with the oncogenesis of several cancers, including B-cell lymphomas, nasopharyngeal, and gastric carcinomas. The fact that EBV is thought to be the causative agent for primary central nervous system (CNS lymphomas in immune-deficient patients has led to its investigations in other brain tumors including gliomas. Here, we provide a review of the clinical literature pertaining to EBV in gliomas and discuss the possibilities of this virus being simply associative, causative, or even an experimental artifact. We searched the PubMed/MEDLINE databases using the following key words such as: glioma(s, glioblastoma multiforme, brain tumors/cancers, EBV, and neurotropic viruses. Our literature analysis indicates conflicting results on the presence and role of EBV in gliomas. Further comprehensive studies are needed to fully implicate EBV in gliomagenesis and oncomodulation. Understanding the role of EBV and other oncoviruses in the etiology of gliomas, would likely open up new avenues for the treatment and management of these, often fatal, CNS tumors.

  11. A Novel Candidate Molecule in Pathological Grading Of Gliomas: ELABELA.

    Science.gov (United States)

    Artas, Gokhan; Ozturk, Sait; Kuloglu, Tuncay; Dagli, Adile Ferda; Gonen, Murat; Artas, Hakan; Aydin, Suleyman; Erol, Fatih Serhat

    2018-04-06

    This study aimed to investigate the possible role of ELABELA (ELA) in the histopathological grading of gliomas. We retrospectively assessed pathological specimens of patients who underwent surgery for intracranial space-occupying lesions. Only primary glioma specimens were included in this study. We enrolled 11 patients histologically diagnosed with low-grade glioma and 22 patients with high-grade glioma. The ELA antibody was applied to 4-6-µm-thick sections obtained from paraffin blocks. Histoscores were calculated using the distribution and intensity of staining immunoreactivity. An independent sample t-test was used for two-point inter-group assessments, whereas one-way analysis of variance was used for the other assessments. P 0.05 was considered statistically significant. The histoscores of the control brain, low-grade glioma, and high-grade glioma tissues were found to be 0.08, 0.37, and 0.92, respectively. The difference in ELA immunoreactivity between the control brain tissue and glioma tissue was statistically significant (p 0.05). In addition, a statistically significant increase was observed in ELA immunoreactivity in high-grade glioma tissues compared with that in low-grade glioma tissues (p 0.05). ELA has an angiogenetic role in the progression of glial tumors. ELA, which is an endogenous ligand of the apelin receptor, activates the apelinergic system and causes the progression of glial tumors. Further studies with a large number of patients are necessary to investigate the angiogenetic role of ELA in glial tumors.

  12. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas.

    Science.gov (United States)

    Brat, Daniel J; Verhaak, Roel G W; Aldape, Kenneth D; Yung, W K Alfred; Salama, Sofie R; Cooper, Lee A D; Rheinbay, Esther; Miller, C Ryan; Vitucci, Mark; Morozova, Olena; Robertson, A Gordon; Noushmehr, Houtan; Laird, Peter W; Cherniack, Andrew D; Akbani, Rehan; Huse, Jason T; Ciriello, Giovanni; Poisson, Laila M; Barnholtz-Sloan, Jill S; Berger, Mitchel S; Brennan, Cameron; Colen, Rivka R; Colman, Howard; Flanders, Adam E; Giannini, Caterina; Grifford, Mia; Iavarone, Antonio; Jain, Rajan; Joseph, Isaac; Kim, Jaegil; Kasaian, Katayoon; Mikkelsen, Tom; Murray, Bradley A; O'Neill, Brian Patrick; Pachter, Lior; Parsons, Donald W; Sougnez, Carrie; Sulman, Erik P; Vandenberg, Scott R; Van Meir, Erwin G; von Deimling, Andreas; Zhang, Hailei; Crain, Daniel; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph; Penny, Robert; Shelton, Troy; Sherman, Mark; Yena, Peggy; Black, Aaron; Bowen, Jay; Dicostanzo, Katie; Gastier-Foster, Julie; Leraas, Kristen M; Lichtenberg, Tara M; Pierson, Christopher R; Ramirez, Nilsa C; Taylor, Cynthia; Weaver, Stephanie; Wise, Lisa; Zmuda, Erik; Davidsen, Tanja; Demchok, John A; Eley, Greg; Ferguson, Martin L; Hutter, Carolyn M; Mills Shaw, Kenna R; Ozenberger, Bradley A; Sheth, Margi; Sofia, Heidi J; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean Claude; Ayala, Brenda; Baboud, Julien; Chudamani, Sudha; Jensen, Mark A; Liu, Jia; Pihl, Todd; Raman, Rohini; Wan, Yunhu; Wu, Ye; Ally, Adrian; Auman, J Todd; Balasundaram, Miruna; Balu, Saianand; Baylin, Stephen B; Beroukhim, Rameen; Bootwalla, Moiz S; Bowlby, Reanne; Bristow, Christopher A; Brooks, Denise; Butterfield, Yaron; Carlsen, Rebecca; Carter, Scott; Chin, Lynda; Chu, Andy; Chuah, Eric; Cibulskis, Kristian; Clarke, Amanda; Coetzee, Simon G; Dhalla, Noreen; Fennell, Tim; Fisher, Sheila; Gabriel, Stacey; Getz, Gad; Gibbs, Richard; Guin, Ranabir; Hadjipanayis, Angela; Hayes, D Neil; Hinoue, Toshinori; Hoadley, Katherine; Holt, Robert A; Hoyle, Alan P; Jefferys, Stuart R; Jones, Steven; Jones, Corbin D; Kucherlapati, Raju; Lai, Phillip H; Lander, Eric; Lee, Semin; Lichtenstein, Lee; Ma, Yussanne; Maglinte, Dennis T; Mahadeshwar, Harshad S; Marra, Marco A; Mayo, Michael; Meng, Shaowu; Meyerson, Matthew L; Mieczkowski, Piotr A; Moore, Richard A; Mose, Lisle E; Mungall, Andrew J; Pantazi, Angeliki; Parfenov, Michael; Park, Peter J; Parker, Joel S; Perou, Charles M; Protopopov, Alexei; Ren, Xiaojia; Roach, Jeffrey; Sabedot, Thaís S; Schein, Jacqueline; Schumacher, Steven E; Seidman, Jonathan G; Seth, Sahil; Shen, Hui; Simons, Janae V; Sipahimalani, Payal; Soloway, Matthew G; Song, Xingzhi; Sun, Huandong; Tabak, Barbara; Tam, Angela; Tan, Donghui; Tang, Jiabin; Thiessen, Nina; Triche, Timothy; Van Den Berg, David J; Veluvolu, Umadevi; Waring, Scot; Weisenberger, Daniel J; Wilkerson, Matthew D; Wong, Tina; Wu, Junyuan; Xi, Liu; Xu, Andrew W; Yang, Lixing; Zack, Travis I; Zhang, Jianhua; Aksoy, B Arman; Arachchi, Harindra; Benz, Chris; Bernard, Brady; Carlin, Daniel; Cho, Juok; DiCara, Daniel; Frazer, Scott; Fuller, Gregory N; Gao, JianJiong; Gehlenborg, Nils; Haussler, David; Heiman, David I; Iype, Lisa; Jacobsen, Anders; Ju, Zhenlin; Katzman, Sol; Kim, Hoon; Knijnenburg, Theo; Kreisberg, Richard Bailey; Lawrence, Michael S; Lee, William; Leinonen, Kalle; Lin, Pei; Ling, Shiyun; Liu, Wenbin; Liu, Yingchun; Liu, Yuexin; Lu, Yiling; Mills, Gordon; Ng, Sam; Noble, Michael S; Paull, Evan; Rao, Arvind; Reynolds, Sheila; Saksena, Gordon; Sanborn, Zack; Sander, Chris; Schultz, Nikolaus; Senbabaoglu, Yasin; Shen, Ronglai; Shmulevich, Ilya; Sinha, Rileen; Stuart, Josh; Sumer, S Onur; Sun, Yichao; Tasman, Natalie; Taylor, Barry S; Voet, Doug; Weinhold, Nils; Weinstein, John N; Yang, Da; Yoshihara, Kosuke; Zheng, Siyuan; Zhang, Wei; Zou, Lihua; Abel, Ty; Sadeghi, Sara; Cohen, Mark L; Eschbacher, Jenny; Hattab, Eyas M; Raghunathan, Aditya; Schniederjan, Matthew J; Aziz, Dina; Barnett, Gene; Barrett, Wendi; Bigner, Darell D; Boice, Lori; Brewer, Cathy; Calatozzolo, Chiara; Campos, Benito; Carlotti, Carlos Gilberto; Chan, Timothy A; Cuppini, Lucia; Curley, Erin; Cuzzubbo, Stefania; Devine, Karen; DiMeco, Francesco; Duell, Rebecca; Elder, J Bradley; Fehrenbach, Ashley; Finocchiaro, Gaetano; Friedman, William; Fulop, Jordonna; Gardner, Johanna; Hermes, Beth; Herold-Mende, Christel; Jungk, Christine; Kendler, Ady; Lehman, Norman L; Lipp, Eric; Liu, Ouida; Mandt, Randy; McGraw, Mary; Mclendon, Roger; McPherson, Christopher; Neder, Luciano; Nguyen, Phuong; Noss, Ardene; Nunziata, Raffaele; Ostrom, Quinn T; Palmer, Cheryl; Perin, Alessandro; Pollo, Bianca; Potapov, Alexander; Potapova, Olga; Rathmell, W Kimryn; Rotin, Daniil; Scarpace, Lisa; Schilero, Cathy; Senecal, Kelly; Shimmel, Kristen; Shurkhay, Vsevolod; Sifri, Suzanne; Singh, Rosy; Sloan, Andrew E; Smolenski, Kathy; Staugaitis, Susan M; Steele, Ruth; Thorne, Leigh; Tirapelli, Daniela P C; Unterberg, Andreas; Vallurupalli, Mahitha; Wang, Yun; Warnick, Ronald; Williams, Felicia; Wolinsky, Yingli; Bell, Sue; Rosenberg, Mara; Stewart, Chip; Huang, Franklin; Grimsby, Jonna L; Radenbaugh, Amie J; Zhang, Jianan

    2015-06-25

    Diffuse low-grade and intermediate-grade gliomas (which together make up the lower-grade gliomas, World Health Organization grades II and III) have highly variable clinical behavior that is not adequately predicted on the basis of histologic class. Some are indolent; others quickly progress to glioblastoma. The uncertainty is compounded by interobserver variability in histologic diagnosis. Mutations in IDH, TP53, and ATRX and codeletion of chromosome arms 1p and 19q (1p/19q codeletion) have been implicated as clinically relevant markers of lower-grade gliomas. We performed genomewide analyses of 293 lower-grade gliomas from adults, incorporating exome sequence, DNA copy number, DNA methylation, messenger RNA expression, microRNA expression, and targeted protein expression. These data were integrated and tested for correlation with clinical outcomes. Unsupervised clustering of mutations and data from RNA, DNA-copy-number, and DNA-methylation platforms uncovered concordant classification of three robust, nonoverlapping, prognostically significant subtypes of lower-grade glioma that were captured more accurately by IDH, 1p/19q, and TP53 status than by histologic class. Patients who had lower-grade gliomas with an IDH mutation and 1p/19q codeletion had the most favorable clinical outcomes. Their gliomas harbored mutations in CIC, FUBP1, NOTCH1, and the TERT promoter. Nearly all lower-grade gliomas with IDH mutations and no 1p/19q codeletion had mutations in TP53 (94%) and ATRX inactivation (86%). The large majority of lower-grade gliomas without an IDH mutation had genomic aberrations and clinical behavior strikingly similar to those found in primary glioblastoma. The integration of genomewide data from multiple platforms delineated three molecular classes of lower-grade gliomas that were more concordant with IDH, 1p/19q, and TP53 status than with histologic class. Lower-grade gliomas with an IDH mutation either had 1p/19q codeletion or carried a TP53 mutation. Most

  13. Season of Birth and Risk for Adult Onset Glioma

    Directory of Open Access Journals (Sweden)

    Jimmy T. Efird

    2010-04-01

    Full Text Available Adult onset glioma is a rare cancer which occurs more frequently in Caucasians than African Americans, and in men than women. The etiology of this disease is largely unknown. Exposure to ionizing radiation is the only well established environmental risk factor, and this factor explains only a small percentage of cases. Several recent studies have reported an association between season of birth and glioma risk. This paper reviews the plausibility of evidence focusing on the seasonal interrelation of farming, allergies, viruses, vitamin D, diet, birth weight, and handedness. To date, a convincing explanation for the occurrence of adult gliomas decades after a seasonal exposure at birth remains elusive.

  14. Survival after stereotactic biopsy of malignant gliomas

    International Nuclear Information System (INIS)

    Coffey, R.J.; Lunsford, L.D.; Taylor, F.H.

    1988-01-01

    For many patients with malignant gliomas in inaccessible or functionally important locations, stereotactic biopsy followed by radiation therapy (RT) may be a more appropriate initial treatment than craniotomy and tumor resection. We studied the long term survival in 91 consecutive patients with malignant gliomas diagnosed by stereotactic biopsy: 64 had glioblastoma multiforme (GBM) and 27 had anaplastic astrocytoma (AA). Sixty-four per cent of the GBMs and 33% of the AAs involved deep or midline cerebral structures. The treatment prescribed after biopsy, the tumor location, the histological findings, and the patient's age at presentation (for AAs) were statistically important factors determining patient survival. If adequate RT (tumor dose of 5000 to 6000 cGy) was not prescribed, the median survival was less than or equal to 11 weeks regardless of tumor histology or location. The median survival for patients with deep or midline tumors who completed RT was similar in AA (19.4 weeks) and GBM (27 weeks) cases. Histology was an important predictor of survival only for patients with adequately treated lobar tumors. The median survival in lobar GBM patients who completed RT was 46.9 weeks, and that in lobar AA patients who completed RT was 129 weeks. Cytoreductive surgery had no statistically significant effect on survival. Among the clinical factors examined, age of less than 40 years at presentation was associated with prolonged survival only in AA patients. Constellations of clinical features, tumor location, histological diagnosis, and treatment prescribed were related to survival time

  15. Intraoperative radiation therapy for malignant glioma

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Noboru; Yamada, Hiromu; Andoh, Takashi; Hirata, Toshifumi; Nishimura, Yasuaki; Miwa, Yoshiaki; Shimizu, Kotoyuki; Yanagawa, Shigeo [Gifu Univ. (Japan). Faculty of Medicine

    1991-11-01

    Intraoperative radiation therapy (IORT) was used as part of the initial therapy for malignant glioma in 32 of 73 patients with histologically verified anaplastic astrocytoma (grade III astrocytoma) and glioblastoma multiforme. The initial treatment for all cases was subtotal or total tumor resection combined with external irradiation and chemotherapy. IORT was performed 1 week after tumor resection, with doses of 10-50 Gy (mean 26.7 Gy) in one session. Fourteen of 32 cases had IORT two times because of tumor recurrence. The IORT patients had survival rates at 24 and 36 months after initial treatment of 57.1 and 33.5% (median survival 26.2 months). The other 41 patients had 23.6 and 13.1% survivals (median survival 20.7 months), which were significantly lower (p<0.01). Tumor recurrence within the original lesion site was suspected because of clinical condition, computed tomography, and magnetic resonance imaging studies in 65.6% of the IORT group (21 cases) 12 months after initial treatment. Twenty cases of death in the IORT group, including five autopsy cases, demonstrated regional tumor recurrence with a high incidence of intraventricular tumor invasion. The authors consider IORT is beneficial for selected malignant glioma patients, including tumor recurrence, because of prolonged survival. (author).

  16. Diffuse intrinsic pontine glioma: poised for progress

    International Nuclear Information System (INIS)

    Warren, Katherine E.

    2012-01-01

    Diffuse intrinsic pontine gliomas (DIPGs) are amongst the most challenging tumors to treat. Surgery is not an option, the effects of radiation therapy are temporary, and no chemotherapeutic agent has demonstrated significant efficacy. Numerous clinical trials of new agents and novel therapeutic approaches have been performed over the course of several decades in efforts to improve the outcome of children with DIPG, yet without success. The diagnosis of DIPG is based on radiographic findings in the setting of a typical clinical presentation, and tissue is not routinely obtained as the standard of care. The paradigm for treating children with these tumors has been based on that for supratentorial high-grade gliomas in adults as the biology of these lesions were presumed to be similar. However, recent pivotal studies demonstrate that DIPGs appear to be their own entity. Simply identifying this fact releases a number of constraints and opens opportunities for biologic investigation of these lesions, setting the stage to move forward in identifying DIPG-specific treatments. This review will summarize the current state of knowledge of DIPG, discuss obstacles to therapy, and summarize results of recent biologic studies.

  17. Exploring the regulatory role of isocitrate dehydrogenase mutant protein on glioma stem cell proliferation.

    Science.gov (United States)

    Lu, H-C; Ma, J; Zhuang, Z; Qiu, F; Cheng, H-L; Shi, J-X

    2016-08-01

    Glioma is the most lethal form of cancer that originates mostly from the brain and less frequently from the spine. Glioma is characterized by abnormal regulation of glial cell differentiation. The severity of the glioma was found to be relaxed in isocitrate dehydrogenase 1 (IDH1) mutant. The present study focused on histological discrimination and regulation of cancer stem cell between IDH1 mutant and in non-IDH1 mutant glioma tissue. Histology, immunohistochemistry and Western blotting techniques are used to analyze the glioma nature and variation in glioma stem cells that differ between IDH1 mutant and in non-IDH1 mutant glioma tissue. The aggressive form of non-IDH1 mutant glioma shows abnormal cellular histological variation with prominent larger nucleus along with abnormal clustering of cells. The longer survival form of IDH1 mutant glioma has a control over glioma stem cell proliferation. Immunohistochemistry with stem cell markers, CD133 and EGFRvIII are used to demonstrate that the IDH1 mutant glioma shows limited dependence on cancer stem cells and it shows marked apoptotic signals in TUNEL assay to regulate abnormal cells. The non-IDH1 mutant glioma failed to regulate misbehaving cells and it promotes cancer stem cell proliferation. Our finding supports that the IDH1 mutant glioma has a regulatory role in glioma stem cells and their survival.

  18. Combination of Heavy-ion radiotherapy and p53-gene therapy by radio-sensitizing promoter for glioma

    International Nuclear Information System (INIS)

    Oga, Masaru; Koshikawa, Nobuko; Takenaga, Keizo; Iwadate, Yasuo; Nojima, Kumie

    2005-01-01

    In this study we have investigated the anti-tumor effect of the combination of heavy-ion radiotherapy, inducing p53-independent apoptosis, and p53-gene therapy, inducing p53-dependent apoptosis for glioma. To enhance the p53-dependent apoptosis, we chose the strategy to utilize the heavy-ion irradiation itself as a ''trigger'' by using radio-sensitizing promoter-E9ns-2/CMV chimeric promoter (Scott et al:2003) in p53-gene therapy. First, EGFP reporter gene with E9ns-2/CMV chimeric promoter was transfected in C6 rat glioma cell-line and the transfected-cell bulk was irradiated at dose of 3, 5, 10 Gy respectively with charged carbon particle (290 MeV/nucleon). The light upregulation of EGFP was observed in 24 hours after 5 Gy irradiation. On the basis of this result, p53 gene with E9ns-2/CMV chimeric promoter was transfected in p53-mutant U373MG human glioma cell-line and the transfected-cell bulk was irradiated at dose of 5 Gy. There was, however, no obvious p53-upregulation at any time-point, so far. Further investigation is needed to clarify the appropriate experimental system. (author)

  19. Preclinical evaluation of spatial frequency domain-enabled wide-field quantitative imaging for enhanced glioma resection

    Science.gov (United States)

    Sibai, Mira; Fisher, Carl; Veilleux, Israel; Elliott, Jonathan T.; Leblond, Frederic; Roberts, David W.; Wilson, Brian C.

    2017-07-01

    5-Aminolevelunic acid-induced protoporphyrin IX (PpIX) fluorescence-guided resection (FGR) enables maximum safe resection of glioma by providing real-time tumor contrast. However, the subjective visual assessment and the variable intrinsic optical attenuation of tissue limit this technique to reliably delineating only high-grade tumors that display strong fluorescence. We have previously shown, using a fiber-optic probe, that quantitative assessment using noninvasive point spectroscopic measurements of the absolute PpIX concentration in tissue further improves the accuracy of FGR, extending it to surgically curable low-grade glioma. More recently, we have shown that implementing spatial frequency domain imaging with a fluorescent-light transport model enables recovery of two-dimensional images of [PpIX], alleviating the need for time-consuming point sampling of the brain surface. We present first results of this technique modified for in vivo imaging on an RG2 rat brain tumor model. Despite the moderate errors in retrieving the absorption and reduced scattering coefficients in the subdiffusive regime of 14% and 19%, respectively, the recovered [PpIX] maps agree within 10% of the point [PpIX] values measured by the fiber-optic probe, validating its potential as an extension or an alternative to point sampling during glioma resection.

  20. Overexpression of high molecular weight FGF-2 forms inhibits glioma growth by acting on cell-cycle progression and protein translation

    International Nuclear Information System (INIS)

    Lemiere, Sylvie; Azar, Rania; Belloc, Francis; Guersel, Demir; Pyronnet, Stephane; Bikfalvi, Andreas; Auguste, Patrick

    2008-01-01

    In order to clarify the role of HMW FGF-2 in glioma development and angiogenesis, we over-expressed different human FGF-2 isoforms in C6 rat glioma cell line using a tetracycline-regulated expression system. Phenotypic modifications were analyzed in vitro and compared to untransfected cells or to cells over-expressing 18 kDa FGF-2 or all FGF-2 isoforms. In particular, we demonstrate that HMW FGF-2 has unique features in inhibiting glioma cell proliferation. HMW FGF-2 expressing cells showed a cell-cycle arrest at the G2M, demonstrating a role of HMW FGF-2 in controlling the entry in mitosis. Moreover, hydroxyurea was ineffective in blocking cells at the G1S boundary when HMW FGF-2 was expressed. We also show that the HMW FGF-2 isoforms inhibit 4E-BP1 phosphorylation at critical sites restoring the translation inhibitory activity of 4E-BP1. In vivo, inhibition of tumor growth was observed when cells expressed HMW FGF-2. This indicates that HMW FGF-2 inhibits tumor growth in glioma cells by acting on cell-cycle progression and protein translation

  1. Effects of anticancer drugs on glia-glioma brain tumor model characterized by acoustic impedance microscopy

    Science.gov (United States)

    Soon, Thomas Tiong Kwong; Chean, Tan Wei; Yamada, Hikari; Takahashi, Kenta; Hozumi, Naohiro; Kobayashi, Kazuto; Yoshida, Sachiko

    2017-07-01

    An ultrasonic microscope is a useful tool for observing living tissue without chemical fixation or histochemical processing. Two-dimensional (2D) acoustic impedance microscopy developed in our previous study for living cell observation was employed to visualize intracellular changes. We proposed a brain tumor model by cocultivating rat glial cells and C6 gliomas to quantitatively analyze the effects of two types of anticancer drugs, cytochalasin B (CyB) and temozolomide (TMZ), when they were applied. We reported that CyB treatment (25 µg/ml, T = 90 min) significantly reduced the acoustic impedance of gliomas and has little effect on glial cells. Meanwhile, TMZ treatment (2 mg/ml, T = 90 min) impacted both cells equally, in which both cells’ acoustic impedances were decreased. As CyB targets the actin filament polymerization of the cells, we have concluded that the decrease in acoustic impedance was in fact due to actin filament depolymerization and the data can be quantitatively assessed for future studies in novel drug development.

  2. Thermoresponsive nanocomposite gel for local drug delivery to suppress the growth of glioma by inducing autophagy.

    Science.gov (United States)

    Ding, Li; Wang, Qi; Shen, Ming; Sun, Ying; Zhang, Xiangyu; Huang, Can; Chen, Jianhua; Li, Rongxin; Duan, Yourong

    2017-07-03

    Although the treatments of malignant glioma include surgery, radiotherapy and chemotherapy by oral drug administration, the prognosis of patients with glioma remains very poor. We developed a polyethylene glycol-dipalmitoylphosphatidyle- thanoiamine (mPEG-DPPE) calcium phosphate nanoparticles (NPs) injectable thermoresponsive hydrogel (nanocomposite gel) that could provide a sustained and local delivery of paclitaxel (PTX) and temozolomide (TMZ). In addition, the proportion of PTX and TMZ for the optimal synergistic antiglioma effect on C6 cells was determined to be 1:100 (w/w) by the Chou and Talalay method. Our results clearly indicated that the autophagy induced by PTX:TMZ NPs plays an important role in regulating tumor cell death, while autophagy inhibition dramatically reverses the antitumor effect of PTX:TMZ NPs, suggesting that antiproliferative autophagy occurs in response to PTX:TMZ NPs treatment. The antitumor efficacy of the PTX:TMZ NP-loaded gel was evaluated in situ using C6 tumor-bearing rats, and the PTX:TMZ NP-loaded gel exhibited superior antitumor performance. The antitumor effects of the nanocomposite gel in vivo were shown to correlate with autophagic cell death in this study. The in vivo results further confirmed the advantages of such a strategy. The present study may provide evidence supporting the development of nanomedicine for potential clinical application.

  3. Dose enhancement by synchrotron radiation and heavy atoms for the treatment of gliomas

    International Nuclear Information System (INIS)

    Bobyk, L.

    2010-11-01

    High grade gliomas are brain tumors of bad prognosis. The standard therapeutic treatment combines surgery, radiotherapy and sometimes use of temozolomide (chemotherapy agent). Healthy tissues radio-sensitivity is a major limitation for radiotherapy treatment. The stereotactic radiotherapy by synchrotron radiation is an innovative technique which combines a low energy radiation (lower 100 keV) with the presence of heavy atoms in the tumoral zone. Such an approach is used to increase the differential of dose deposited in the tumor compared to surrounding healthy tissues. In this study, several compounds containing heavy atoms such as chemotherapy agents: cisplatin/carbo-platin, a DNA base analog: 5-iodo-2'-deoxyuridine (IUdR) and gold nano-particles were considered. The dose enhancement factor induced by the presence of these compounds located for some of them in the extracellular medium or inside the cells for others, was determined using in vitro studies. Thereafter, in vivo studies on rats bearing gliomas, were performed to study the toxicity, the kinetic of distribution and the localization of these compounds together with their potential efficacy of treatment combining intracerebral injection with low energy radiation. (author)

  4. MTSS1 is epigenetically regulated in glioma cells and inhibits glioma cell motility

    Directory of Open Access Journals (Sweden)

    Daniel Luxen

    2017-02-01

    Full Text Available Epigenetic silencing by DNA methylation in brain tumors has been reported for many genes, however, their function on pathogenesis needs to be evaluated. We investigated the MTSS1 gene, identified as hypermethylated by differential methylation hybridization (DMH. Fifty-nine glioma tissue samples and seven glioma cell lines were examined for hypermethylation of the MTSS1 promotor, MTSS1 expression levels and gene dosage. GBM cell lines were treated with demethylating agents and interrogated for functional consequences of MTSS1 expression after transient transfection. Hypermethylation was significantly associated with IDH1/2 mutation. Comparative SNP analysis indicates higher incidence of loss of heterozygosity of MTSS1 in anaplastic astrocytomas and secondary glioblastomas as well as hypermethylation of the remaining allele. Reversal of promoter hypermethylation results in an increased MTSS1 expression. Cell motility was significantly inhibited by MTSS1 overexpression without influencing cell growth or apoptosis. Immunofluorescence analysis of MTSS1 in human astrocytes indicates co-localization with actin filaments. MTSS1 is down-regulated by DNA methylation in glioblastoma cell lines and is part of the G-CIMP phenotype in primary glioma tissues. Our data on normal astrocytes suggest a function of MTSS1 at focal contact structures with an impact on migratory capacity but no influence on apoptosis or cellular proliferation.

  5. MRI in Glioma Immunotherapy: Evidence, Pitfalls, and Perspectives

    Directory of Open Access Journals (Sweden)

    Domenico Aquino

    2017-01-01

    Full Text Available Pseudophenomena, that is, imaging alterations due to therapy rather than tumor evolution, have an important impact on the management of glioma patients and the results of clinical trials. RANO (response assessment in neurooncology criteria, including conventional MRI (cMRI, addressed the issues of pseudoprogression after radiotherapy and concomitant chemotherapy and pseudoresponse during antiangiogenic therapy of glioblastomas (GBM and other gliomas. The development of cancer immunotherapy forced the identification of further relevant response criteria, summarized by the iRANO working group in 2015. In spite of this, the unequivocal definition of glioma progression by cMRI remains difficult particularly in the setting of immunotherapy approaches provided by checkpoint inhibitors and dendritic cells. Advanced MRI (aMRI may in principle address this unmet clinical need. Here, we discuss the potential contribution of different aMRI techniques and their indications and pitfalls in relation to biological and imaging features of glioma and immune system interactions.

  6. Immunotherapy Approaches for Malignant Glioma From 2007 to 2009

    Science.gov (United States)

    Sampson, John H.

    2012-01-01

    Malignant glioma is a deadly disease for which there have been few therapeutic advances over the past century. Although previous treatments were largely unsuccessful, glioma may be an ideal target for immune-based therapy. Recently, translational research led to several clinical trials based on tumor immunotherapy to treat patients with malignant glioma. Here we review 17 recent glioma immunotherapy clinical trials, published over the past 3 years. Various approaches were used, including passive transfer of naked and radiolabeled antibodies, tumor antigen-specific peptide immunization, and the use of patient tumor cells with or without dendritic cells as vaccines. We compare and discuss the current state of the art of clinical immunotherapy treatment, as well as its limited successes, pitfalls, and future potential. PMID:20424975

  7. Isthmin inhibits glioma growth through antiangiogenesis in vivo.

    Science.gov (United States)

    Yuan, Bangqing; Xian, Ronghua; Ma, Jianfang; Chen, Yujian; Lin, Chuangan; Song, Yaoming

    2012-09-01

    Among glioma treatment strategies, antiangiogenesis emerges as a meaningful and feasible treatment approach for inducing long-term survival. Isthmin is a gene highly expressed in the isthmus of the midbrain-hindbrain organizer in Xenopus, and has recently been identified as a novel angiogenesis inhibitor. However, the potential of isthmin on the glioma angiogenesis has not been well studied. In the present study, we demonstrated that the recombinant adenovirus isthmin (Ad-isthmin) could inhibit VEGF-stimulated endothelial cell proliferation and induce apoptosis through a caspase-dependent pathway. In addition, Ad-isthmin significantly suppressed glioma growth through antiangiogenesis without apparent side effects. Taken together, our results demonstrated that isthmin could act as a novel angiogenesis inhibitor and might be utilized in the glioma antiangiogenesis therapy.

  8. Predicting in vivo glioma growth with the reaction diffusion equation constrained by quantitative magnetic resonance imaging data

    International Nuclear Information System (INIS)

    Hormuth II, David A; Weis, Jared A; Barnes, Stephanie L; Miga, Michael I; Yankeelov, Thomas E; Rericha, Erin C; Quaranta, Vito

    2015-01-01

    Reaction–diffusion models have been widely used to model glioma growth. However, it has not been shown how accurately this model can predict future tumor status using model parameters (i.e., tumor cell diffusion and proliferation) estimated from quantitative in vivo imaging data. To this end, we used in silico studies to develop the methods needed to accurately estimate tumor specific reaction–diffusion model parameters, and then tested the accuracy with which these parameters can predict future growth. The analogous study was then performed in a murine model of glioma growth. The parameter estimation approach was tested using an in silico tumor ‘grown’ for ten days as dictated by the reaction–diffusion equation. Parameters were estimated from early time points and used to predict subsequent growth. Prediction accuracy was assessed at global (total volume and Dice value) and local (concordance correlation coefficient, CCC) levels. Guided by the in silico study, rats (n = 9) with C6 gliomas, imaged with diffusion weighted magnetic resonance imaging, were used to evaluate the model’s accuracy for predicting in vivo tumor growth. The in silico study resulted in low global (tumor volume error 0.92) and local (CCC values >0.80) level errors for predictions up to six days into the future. The in vivo study showed higher global (tumor volume error >11.7%, Dice <0.81) and higher local (CCC <0.33) level errors over the same time period. The in silico study shows that model parameters can be accurately estimated and used to accurately predict future tumor growth at both the global and local scale. However, the poor predictive accuracy in the experimental study suggests the reaction–diffusion equation is an incomplete description of in vivo C6 glioma biology and may require further modeling of intra-tumor interactions including segmentation of (for example) proliferative and necrotic regions. (paper)

  9. Podoplanin increases migration and angiogenesis in malignant glioma

    OpenAIRE

    Grau, Stefan J; Trillsch, Fabian; Tonn, Joerg-Christian; Goldbrunner, Roland H; Noessner, Elfriede; Nelson, Peter J; von Luettichau, Irene

    2015-01-01

    Expression of podoplanin in glial brain tumors is grade dependent. While serving as a marker for tumor progression and modulating invasion in various neoplasms, little is known about podoplanin function in gliomas. Therefore we stably transfected two human glioma cell lines (U373MG and U87MG) with expression plasmids encoding podoplanin. The efficacy of transfection was confirmed by FACS analysis, PCR and immunocytochemistry. Cells were then sorted for highly podoplanin expressing cells (U373...

  10. Molecular Subtyping of Tumors from Patients with Familial Glioma.

    Science.gov (United States)

    Ruiz, Vanessa Y; Praska, Corinne E; Armstrong, Georgina; Kollmeyer, Thomas M; Yamada, Seiji; Decker, Paul A; Kosel, Matthew L; Eckel-Passow, Jeanette E; Consortium, The Gliogene; Lachance, Daniel H; Bainbridge, Matthew N; Melin, Beatrice S; Bondy, Melissa L; Jenkins, Robert B

    2017-10-10

    Single-gene mutation syndromes account for some familial glioma (FG); however, they make up only a small fraction of glioma families. Gliomas can be classified into 3 major molecular subtypes based on IDH mutation and 1p/19q co-deletion. We hypothesized that the prevalence of molecular subtypes might differ in familial versus sporadic gliomas, and that tumors in the same family should have the same molecular subtype. Participants in the FG study (Gliogene) provided samples for germline DNA analysis. Formalin-fixed, paraffin-embedded (FFPE) tumor was obtained for a subset of FG cases, and DNA was extracted. We analyzed tissue from 75 families, including 10 families containing a second affected family member. Copy number variation (CNV) data was obtained using a first-generation Affymetrix molecular inversion probe (MIP) array. Samples from 62 of 75 (83%) FG cases could be classified into the 3 subtypes. The prevalence of the molecular subtypes was: 30 (48%) IDH-wild type, 21 (34%) IDH-mutant non-codeleted, and 11 (19%) IDH-mutant and 1p/19q-codeleted. This distribution of molecular subtypes was not statistically different from that of sporadic gliomas (p=0.54). Of 10 paired FG samples, molecular subtypes were concordant for 7 (κ=0.59): 3 IDH-mutant non-codeleted, 2 IDH-wild type, and 2 IDH-mutant and 1p/19q-codeleted gliomas. Our data suggest that within individual families, patients develop gliomas of the same molecular subtype. However, we did not observe differences in the prevalence of the molecular subtypes in FG compared with sporadic gliomas. These observations provide further insight about the distribution of molecular subtypes in FG. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  11. C-MET overexpression and amplification in gliomas.

    Science.gov (United States)

    Kwak, Yoonjin; Kim, Seong-Ik; Park, Chul-Kee; Paek, Sun Ha; Lee, Soon-Tae; Park, Sung-Hye

    2015-01-01

    We investigated c-Met overexpression and MET gene amplification in gliomas to determine their incidence and prognostic significance. c-Met immunohistochemistry and MET gene fluorescence in situ hybridization were carried out on tissue microarrays from 250 patients with gliomas (137 grade IV GBMs and 113 grade II and III diffuse gliomas). Clinicopathological features of these cases were reviewed. c-Met overexpression and MET gene amplification were detected in 13.1% and 5.1% of the GBMs, respectively. All the MET-amplified cases showed c-Met overexpression, but MET amplification was not always concordant with c-Met overexpression. None of grade II and III gliomas demonstrated c-Met overexpression or MET gene amplification. Mean survival of the GBM patients with MET amplification was not significantly different from patients without MET amplification (P=0.155). However, GBM patients with c-Met overexpression survived longer than patients without c-Met overexpression (P=0.035). Although MET amplification was not related to poor GBM prognosis, it is partially associated with the aggressiveness of gliomas, as MET amplification was found only in grade IV, not in grade II and III gliomas. We suggest that MET inhibitor therapy may be beneficial in about 5% GBMs, which was the incidence of MET gene amplification found in the patients included in this study.

  12. Intraoperative Cerebral Glioma Characterization with Contrast Enhanced Ultrasound

    Directory of Open Access Journals (Sweden)

    Francesco Prada

    2014-01-01

    Full Text Available Background. Contrast enhanced ultrasound (CEUS is a dynamic and continuous modality providing real-time view of vascularization and flow distribution patterns of different organs and tumors. Nevertheless its intraoperative use for brain tumors visualization has been performed few times, and a thorough characterization of cerebral glioma had never been performed before. Aim. To perform the first characterization of cerebral glioma using CEUS and to possibly achieve an intraoperative differentiation of different gliomas. Methods. We performed CEUS in an off-label setting in 69 patients undergoing surgery for cerebral glioma. An intraoperative qualitative analysis was performed comparing iCEUS with B-mode imaging. A postprocedural semiquantitative analysis was then performed for each case, according to EFSUMB criteria. Results were related to histopathology. Results. We observed different CE patterns: LGG show a mild, dotted CE with diffuse appearance and slower, delayed arterial and venous phase. HGG have a high CE with a more nodular, nonhomogeneous appearance and fast perfusion patterns. Conclusion. Our study characterizes for the first time human brain glioma with CEUS, providing further insight regarding these tumors’ biology. CEUS is a fast, safe, dynamic, real-time, and economic tool that might be helpful during surgery in differentiating malignant and benign gliomas and refining surgical strategy.

  13. CD147 and glioma: a meta-analysis.

    Science.gov (United States)

    Li, Hui; Xi, Zhouhuan; Dai, Xuejiao; Wu, Wenyue; Li, Yanwen; Liu, Yanting; Zhang, Hanwen

    2017-08-01

    Gliomas are the most common primary brain tumors. This meta-analysis aimed to systematically evaluate the relationship between CD147 expression in tissues and the clinicopathological features of patients with glioma. We searched PubMed (1966-2016), EMBASE (1980-2016), Cochrane Library (1996-2016), Web of Science (1945-2016), China National Knowledge Infrastructure (1982-2016), and Wan Fang databases (1988-2016). Quality assessment of the literature was performed using the Newcastle-Ottawa Scale, with Revman 5.3 and Stata 14.0 for analysis. In total, 1806 glioma patients from 19 studies were included, and patients with CD147 overexpression had poorer overall survival [hazard ratio (HR) = 2.211, P CD147 expression when comparing glioma tissues versus non-cancerous brain tissues (OR 20.42; 95% CI 13.94-29.91; P CD147 expression did not differ based on patient's age (young vs. old, P = 0.89) or gender (female vs. male, P = 0.57). CD147 expression may be a potential prognostic biomarker for poorer overall and relapse-free survival, and may affect the 5-year survival rate in glioma patients. CD147 expression is also closely correlated with poor clinical characteristics in glioma patients.

  14. Extra-Neural Metastases of Malignant Gliomas: Myth or Reality?

    Energy Technology Data Exchange (ETDEWEB)

    Beauchesne, Patrick [Neuro-Oncology, CHU de NANCY, Hôpital Central, CO n°34, 54035 Nancy Cedex (France)

    2011-01-27

    Malignant gliomas account for approximately 60% of all primary brain tumors in adults. Prognosis for these patients has not significantly changed in recent years— despite debulking surgery, radiotherapy and cytotoxic chemotherapy—with a median survival of 9–12 months. Virtually no patients are cured of their illness. Malignant gliomas are usually locally invasive tumors, though extra-neural metastases can sometimes occur late in the course of the disease (median of two years). They generally appear after craniotomy although spontaneous metastases have also been reported. The incidence of these metastases from primary intra-cranial malignant gliomas is low; it is estimated at less than 2% of all cases. Extra-neural metastases from gliomas frequently occur late in the course of the disease (median of two years), and generally appear after craniotomy, but spontaneous metastases have also been reported. Malignant glioma metastases usually involve the regional lymph nodes, lungs and pleural cavity, and occasionally the bone and liver. In this review, we present three cases of extra-neural metastasis of malignant gliomas from our department, summarize the main reported cases in literature, and try to understand the mechanisms underlying these systemic metastases.

  15. Extra-Neural Metastases of Malignant Gliomas: Myth or Reality?

    International Nuclear Information System (INIS)

    Beauchesne, Patrick

    2011-01-01

    Malignant gliomas account for approximately 60% of all primary brain tumors in adults. Prognosis for these patients has not significantly changed in recent years— despite debulking surgery, radiotherapy and cytotoxic chemotherapy—with a median survival of 9–12 months. Virtually no patients are cured of their illness. Malignant gliomas are usually locally invasive tumors, though extra-neural metastases can sometimes occur late in the course of the disease (median of two years). They generally appear after craniotomy although spontaneous metastases have also been reported. The incidence of these metastases from primary intra-cranial malignant gliomas is low; it is estimated at less than 2% of all cases. Extra-neural metastases from gliomas frequently occur late in the course of the disease (median of two years), and generally appear after craniotomy, but spontaneous metastases have also been reported. Malignant glioma metastases usually involve the regional lymph nodes, lungs and pleural cavity, and occasionally the bone and liver. In this review, we present three cases of extra-neural metastasis of malignant gliomas from our department, summarize the main reported cases in literature, and try to understand the mechanisms underlying these systemic metastases

  16. Clinical characteristics associated with the intracranial dissemination of gliomas.

    Science.gov (United States)

    Cai, Xu; Qin, Jun-Jie; Hao, Shu-Yu; Li, Huan; Zeng, Chun; Sun, Sheng-Jun; Yu, Lan-Bing; Gao, Zhi-Xian; Xie, Jian

    2018-03-01

    Glioma is the most common malignant tumor of the brain and the intracranial dissemination of gliomas is the late stage of the development of the tumor. However, there is little research in literature on the occurrence of intracranial dissemination of gliomas. In order to provide a reference for clinical work, we carried out this study on intracranial dissemination of glioma. A total of 629 patients with gliomas received tumor resection by the same surgeon from August 2010 to September 2015 were included in this study. The authors performed a retrospective review of the patients and the information regarding clinical features, histopathological results, molecular pathologic results and clinical outcomes was collected and analyzed. In this retrospective study, we found that the intracranial dissemination phenomenon occurred in 53 patients (8.43%). We analyzed the clinical characteristics of patients and found that the age at diagnosis (P = 0.011), WHO grade of the tumor (P dissemination. The higher grade of the tumor, the more prone to disseminate. Deletion of 1p/19q had no significant correlation with the intracranial dissemination. MMP9, Ki-67, and EGFR were highly expressed in tumor cells that caused dissemination, and the level of Ki-67 expression had significance in statistics (P 40 years), high pathological grade, invasion of the corpus callosum and high levels of Ki-67 expression were risk factors associated with the intracranial dissemination of gliomas. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Utility of multiparametric 3-T MRI for glioma characterization

    International Nuclear Information System (INIS)

    Roy, Bhaswati; Gupta, Rakesh K.; Maudsley, Andrew A.; Sheriff, Sulaiman; Awasthi, Rishi; Mohakud, Sudipta; Gu, Meng; Spielman, Daniel M.; Husain, Nuzhat; Behari, Sanjay; Pandey, Chandra M.; Rathore, Ram K.S.; Alger, Jeffry R.

    2013-01-01

    Accurate grading of cerebral glioma using conventional structural imaging techniques remains challenging due to the relatively poor sensitivity and specificity of these methods. The purpose of this study was to evaluate the relative sensitivity and specificity of structural magnetic resonance imaging and MR measurements of perfusion, diffusion, and whole-brain spectroscopic parameters for glioma grading. Fifty-six patients with radiologically suspected untreated glioma were studied with T1- and T2-weighted MR imaging, dynamic contrast-enhanced MR imaging, diffusion tensor imaging, and volumetric whole-brain MR spectroscopic imaging. Receiver-operating characteristic analysis was performed using the relative cerebral blood volume (rCBV), apparent diffusion coefficient, fractional anisotropy, and multiple spectroscopic parameters to determine optimum thresholds for tumor grading and to obtain the sensitivity, specificity, and positive and negative predictive values for identifying high-grade gliomas. Logistic regression was performed to analyze all the parameters together. The rCBV individually classified glioma as low and high grade with a sensitivity and specificity of 100 and 88 %, respectively, based on a threshold value of 3.34. On combining all parameters under consideration, the classification was achieved with 2 % error and sensitivity and specificity of 100 and 96 %, respectively. Individually, CBV measurement provides the greatest diagnostic performance for predicting glioma grade; however, the most accurate classification can be achieved by combining all of the imaging parameters. (orig.)

  18. Gene expression of manganese superoxide dismutase in human glioma cells

    Directory of Open Access Journals (Sweden)

    Novi S. Hardiany

    2010-02-01

    Full Text Available Aim This study analyze the MnSOD gene expression as endogenous antioxidant in human glioma cells compared with leucocyte cells as control.Methods MnSOD gene expression of 20 glioma patients was analyzed by measuring the relative expression of mRNA and enzyme activity of MnSOD in brain and leucocyte cells. The relative expression of mRNA MnSOD was determined by using quantitative Real Time RT-PCR and the enzyme activity of MnSOD using biochemical kit assay (xantine oxidase inhibition. Statistic analysis for mRNA and enzyme activity of MnSOD was performed using Kruskal Wallis test.Results mRNA of MnSOD in glioma cells of 70% sample was 0.015–0.627 lower, 10% was 1.002-1.059 and 20% was 1.409-6.915 higher than in leucocyte cells. Also the specific activity of MnSOD enzyme in glioma cells of 80% sample showed 0,064-0,506 lower and 20% sample was 1.249-2.718 higher than in leucocyte cells.Conclusion MnSOD gene expression in human glioma cells are significantly lower than its expression in leucocytes cells. (Med J Indones 2010; 19:21-5Keywords : MnSOD, glioma, gene expression

  19. Gamma-glutamylcyclotransferase promotes the growth of human glioma cells by activating Notch-Akt signaling

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Shang-Hang; Yu, Ning; Liu, Xi-Yao; Tan, Guo-Wei; Wang, Zhan-Xiang, E-mail: md_wzx7189@163.com

    2016-03-18

    Glioma as an aggressive type tumor is rapidly growing and has become one of the leading cause of cancer-related death worldwide. γ-Glutamylcyclotransferase (GGCT) has been shown as a diagnostic marker in various cancers. To reveal whether there is a correlation between GGCT and human glioma, GGCT expression in human glioma tissues and cell lines was first determined. We found that GGCT expression was up-regulated in human glioma tissues and cell lines. Further, we demonstrate that GGCT knockdown inhibits glioma cell T98G and U251 proliferation and colony formation, whereas GGCT overexpression leads to oppose effects. GGCT overexpression promotes the expression of Notch receptors and activates Akt signaling in glioma cells, and Notch-Akt signaling is activated in glioma tissues with high expression of GGCT. Finally, we show that inhibition of Notch-Akt signaling with Notch inhibitor MK-0752 blocks the effects of GGCT on glioma proliferation and colony formation. In conclusion, GGCT plays a critical role in glioma cell proliferation and may be a potential cancer therapeutic target. - Highlights: • GGCT expression is up-regulated in human glioma tissues and cell lines. • GGCT promotes glioma cell growth and colony formation. • GGCT promotes the activation of Notch-Akt signaling in glioma cells and tissues. • Notch inhibition blocks the role of GGCT in human glioma cells.

  20. Intraoperative radiation therapy for malignant glioma

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Noboru; Yamada, Hiromu; Andoh, Takashi; Takada, Mitsuaki; Hirata, Toshifumi; Funakoshi, Takashi; Doi, Hidetaka; Yanagawa, Shigeo [Gifu Univ. (Japan). Faculty of Medicine

    1989-04-01

    Intraoperative radiation therapy (IOR) is an ideal means of exterminating residual tumor after surgical resection. In this study, the clinical results of IOR using a Scanditronix Microtron MM-22 were evaluated in 14 patients with malignant glioma, five of whom had recurrent tumors. Between July, 1985 and October, 1986, 11 patients with glioblastoma multiforme (GB) were irradiated 18 times (mean, 1.6 times/case), and three with astrocytoma (Kernohan grade III) underwent IOR once each. The target-absorbed dose at 1 to 2 cm deeper than the tumor resection surface was 15 to 50 Gy. During irradiation, a cotton bolus was placed in the dead space after over 91% of the tumor had been resected. As a rule, external irradiation therapy was also given postoperatively at a dose of 30 to 52 Gy. One patient died of pneumonia and disseminated intravascular coagulation syndrome 1 month postoperatively. The 1- and 2-year survival rates of the ramaining 13 patients were 84.6% and 61.5%, respectively; among the 10 with GB, they were 80% and 50%. Generally, the smaller the tumor size, the better the results. There were no adverse effects, despite the dose 15 to 50 Gy applied temporally to the tumor bed. IOR was especially effective against small, localized tumors, but was not always beneficial in cases of large tumors, particularly those with a contralateral focus. The improved survival rate in this series demonstrates that IOR is significantly effective in the 'induction of remission' following surgical excision of malignant gliomas. (author).

  1. Accelerated hyperfractionated radiotherapy for malignant gliomas

    International Nuclear Information System (INIS)

    Buatti, John M.; Marcus, Robert B.; Mendenhall, William M.; Friedman, William A.; Bova, Francis J.

    1996-01-01

    Purpose: To evaluate accelerated hyperfractionated radiotherapy for the treatment of malignant gliomas. Methods and Materials: Between April 1985 and June 1994, 70 adult patients with pathologically confirmed malignant glioma (75% glioblastoma multiforme, 25% anaplastic astrocytoma) suitable for high-dose therapy were selected for treatment with accelerated hyperfractionated radiotherapy, 1.5 Gy twice daily to a total target dose of 60 Gy. Two patients were excluded from analysis (one patient had a fatal pulmonary embolism after 18 Gy; one patient discontinued therapy after 28.5 Gy against medical advice and without sequelae or progression). The 68 patients in the study group had a median age of 52 years and a median Karnofsky performance status of 90. Stereotactic implant ( 125 I) or stereotactic radiosurgery boosts were delivered to 16 patients (24%) in the study group. Minimum follow-up was 6 months. Results: Median survival was 13.8 months and median progression-free survival was 7.4 months. The absolute Kaplan-Meier survival rate was 16% at 2 years and 4% at 5 years. Multivariate analysis for the prognostic impact of age, gender, histology, Karnofsky performance status, symptomatology, surgical resection vs. biopsy, and boost vs nonboost therapy revealed that Karnofsky performance status ≥ 90, boost therapy, and surgical excision predicted significantly improved outcome. No severe toxicity occurred in patients treated with accelerated hyperfractionated radiotherapy alone, although 5% required steroids temporarily for edema. Progression occurred during treatment in one patient (1.5%). Conclusion: This regimen of accelerated hyperfractionated radiotherapy is well tolerated and leads to results comparable with those of standard therapy. The rate of disease progression during treatment is significantly better (p = 0.001) than is reported for patients treated with standard fractionation, with or without chemotherapy. This regimen is a reasonable starting point

  2. DELETION AND 5'CPG ISLAND METHYLATION OF p15 GENE IN BRAIN GLIOMA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To investigate the abnormality of p15 gene in brain glioma and the correlation of it with occurrence or malignant progression of brain glioma. Methods: Deletion and 5'CPG island methylation of p15 gene were detected by the methods of PCR and PCR-based methylation in 56 cases of brain glioma. Results: Out of 43 cases of high grade glioma, 14 cases were found to have homozygous deletion of p15E1, while none of the 13 cases of low grade glioma was found to have deletion of p15E1 (P<0.05). Methylation of 5'CPG Island of p15 gene was found only in four cases of glioma. Conclusion: Abnormality of p15 gene may involved in the occurrence and malignant progression of brain glioma. Homozygous deletion of gene is the major mechanism of inactivation for p15 gene in brain glioma.

  3. Quantitative magnetization transfer imaging of rodent glioma using selective inversion recovery.

    Science.gov (United States)

    Xu, Junzhong; Li, Ke; Zu, Zhongliang; Li, Xia; Gochberg, Daniel F; Gore, John C

    2014-03-01

    Magnetization transfer (MT) provides an indirect means to detect noninvasively variations in macromolecular contents in biological tissues, but, so far, there have been only a few quantitative MT (qMT) studies reported in cancer, all of which used off-resonance pulsed saturation methods. This article describes the first implementation of a different qMT approach, selective inversion recovery (SIR), for the characterization of tumor in vivo using a rodent glioma model. The SIR method is an on-resonance method capable of fitting qMT parameters and T1 relaxation time simultaneously without mapping B0 and B1 , which is very suitable for high-field qMT measurements because of the lower saturation absorption rate. The results show that the average pool size ratio (PSR, the macromolecular pool versus the free water pool) in rat 9 L glioma (5.7%) is significantly lower than that in normal rat gray matter (9.2%) and white matter (17.4%), which suggests that PSR is potentially a sensitive imaging biomarker for the assessment of brain tumor. Despite being less robust, the estimated MT exchange rates also show clear differences from normal tissues (19.7 Hz for tumors versus 14.8 and 10.2 Hz for gray and white mater, respectively). In addition, the influence of confounding effects, e.g. B1 inhomogeneity, on qMT parameter estimates is investigated with numerical simulations. These findings not only help to better understand the changes in the macromolecular contents of tumors, but are also important for the interpretation of other imaging contrasts, such as chemical exchange saturation transfer of tumors. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Daily intake of antioxidants in relation to survival among adult patients diagnosed with malignant glioma

    OpenAIRE

    DeLorenze, Gerald N; McCoy, Lucie; Tsai, Ai-Lin; Quesenberry, Charles P; Rice, Terri; Il'yasova, Dora; Wrensch, Margaret

    2010-01-01

    Abstract Background Malignant glioma is a rare cancer with poor survival. The influence of diet and antioxidant intake on glioma survival is not well understood. The current study examines the association between antioxidant intake and survival after glioma diagnosis. Methods Adult patients diagnosed with malignant glioma during 1991-1994 and 1997-2001 were enrolled in a population-based study. Diagnosis was confirmed by review of pathology specimens. A modified food-frequency questionnaire i...

  5. Childhood Brain Stem Glioma Treatment (PDQ®)—Health Professional Version

    Science.gov (United States)

    Childhood brain stem glioma presents as a diffuse intrinsic pontine glioma (DIPG; a fast-growing tumor that is difficult to treat and has a poor prognosis) or a focal glioma (grows more slowly, is easier to treat, and has a better prognosis). Learn about the diagnosis, cellular classification, staging, treatment, and clinical trials for pediatric brain stem glioma in this expert-reviewed summary.

  6. Mutant IDH1 Promotes Glioma Formation In Vivo

    Directory of Open Access Journals (Sweden)

    Beatrice Philip

    2018-05-01

    Full Text Available Summary: Isocitrate dehydrogenase 1 (IDH1 is the most commonly mutated gene in grade II–III glioma and secondary glioblastoma (GBM. A causal role for IDH1R132H in gliomagenesis has been proposed, but functional validation in vivo has not been demonstrated. In this study, we assessed the role of IDH1R132H in glioma development in the context of clinically relevant cooperating genetic alterations in vitro and in vivo. Immortal astrocytes expressing IDH1R132H exhibited elevated (R-2-hydroxyglutarate levels, reduced NADPH, increased proliferation, and anchorage-independent growth. Although not sufficient on its own, IDH1R132H cooperated with PDGFA and loss of Cdkn2a, Atrx, and Pten to promote glioma development in vivo. These tumors resembled proneural human mutant IDH1 GBM genetically, histologically, and functionally. Our findings support the hypothesis that IDH1R132H promotes glioma development. This model enhances our understanding of the biology of IDH1R132H-driven gliomas and facilitates testing of therapeutic strategies designed to combat this deadly disease. : Philip et al. show that mutant IDH1 cooperates with PDGFA and loss of Cdkn2a, Atrx, and Pten to promote gliomagenesis in vivo in a mouse model of glioma. These tumors resemble proneural human mutant IDH1 glioblastoma and exhibit enhanced sensitivity to PARP inhibition in combination with chemotherapy. Keywords: IDH1, Cdkn2a, Atrx, Pten, glioma, mouse model, RCAS/TVA

  7. Treating malignant glioma in Chinese patients: update on temozolomide

    Directory of Open Access Journals (Sweden)

    Chang L

    2014-02-01

    Full Text Available Liang Chang,1 Jun Su,1 Xiuzhi Jia,2,3 Huan Ren2,3 1Department of Neurosurgery, The Tumor Hospital of Harbin Medical University, 2Department of Immunology, Harbin Medical University, 3Key Lab Infection and Immunity, Heilongjiang Province, Harbin, People's Republic of China Abstract: Malignant glioma, ie, anaplastic astrocytoma and glioblastoma, is the most common type of primary malignant brain tumor in the People's Republic of China, and is particularly aggressive. The median survival of patients with newly diagnosed glioblastoma is only 12–14 months despite advanced therapeutic strategies. Treatment of malignant glioma consists mainly of surgical resection followed by adjuvant radiation and chemotherapy. Temozolomide (TMZ, a second-generation oral alkylating agent, is playing an increasingly important role in the treatment of malignant glioma in Chinese patients. Since the publication of a study by Stupp et al in 2005, which used a protocol of conventional fractionated irradiation with concomitant TMZ followed by standard TMZ for six cycles, many clinical studies in the People's Republic of China have demonstrated that such a treatment strategy has significantly improved efficacy with limited side effects for newly diagnosed glioblastoma after surgery as compared with strategies that do not contain TMZ. However, as a relatively new agent, the history and development of TMZ for malignant glioma is not well documented in Chinese patients. Multicenter, randomized controlled trials including appropriately sized patient populations investigating multiple aspects of TMZ therapy and related combination therapies are warranted in patients with malignant glioma. This review provides an update on the efficacy, mechanism of action, adverse reactions, and clinical role of TMZ in the treatment of malignant glioma in Chinese patients. Keywords: malignant glioma, chemotherapy, temozolomide, efficacy, side effect, People's Republic of China

  8. Regrowth patterns of supratentorial gliomas: estimation from computed tomographic scans

    Energy Technology Data Exchange (ETDEWEB)

    Tsuboi, K.; Yoshii, Y.; Nakagawa, K.; Maki, Y.

    1986-12-01

    To clarify the regrowth patterns of benign and malignant gliomas, we chose 27 intervals (between two operations or between an operation and autopsy) from 21 patients with pathologically verified recurrent supratentorial gliomas. Serial computed tomographic (CT) scans of these cases were analyzed to determine the doubling time (Td) calculated from the change in volume of enhanced and low density areas, the enhancement effect graded from 0 to 4 according to the Hounsfield number, and the presence of dissemination and contralateral extension. We studied 5 benign gliomas (including 1 case of radiation necrosis), 8 malignant astrocytomas, and 8 glioblastomas. The Td's of enhanced areas on CT scans of benign gliomas, malignant astrocytomas, and glioblastomas were 937 +/- 66.5 days, 65.1 +/- 29.4 days, and 48.1 +/- 20.9 days, respectively. The Td's of low density areas were 895 +/- 130.6 days, 70.8 +/- 22.2 days, and 50.5 +/- 14.7 days. There was a significant correlation between the Td's of the enhanced and low density areas (0.97). The enhancement effect increased at recurrence in 55% of the cases, with an average increase of 1.1 grades. The increase in enhancement effect at recurrence showed a tendency to become smaller as the tumor's degree of anaplasia increased. Radiotherapy was effective in significantly retarding the growth rate of malignant gliomas, whose Td's were doubled. Although the Td's of both enhanced and low density areas of benign gliomas were significantly longer than those of malignant gliomas, there was no significant difference in the Td's of enhanced areas between malignant astrocytomas and glioblastomas.

  9. Regrowth patterns of supratentorial gliomas: estimation from computed tomographic scans

    International Nuclear Information System (INIS)

    Tsuboi, K.; Yoshii, Y.; Nakagawa, K.; Maki, Y.

    1986-01-01

    To clarify the regrowth patterns of benign and malignant gliomas, we chose 27 intervals (between two operations or between an operation and autopsy) from 21 patients with pathologically verified recurrent supratentorial gliomas. Serial computed tomographic (CT) scans of these cases were analyzed to determine the doubling time (Td) calculated from the change in volume of enhanced and low density areas, the enhancement effect graded from 0 to 4 according to the Hounsfield number, and the presence of dissemination and contralateral extension. We studied 5 benign gliomas (including 1 case of radiation necrosis), 8 malignant astrocytomas, and 8 glioblastomas. The Td's of enhanced areas on CT scans of benign gliomas, malignant astrocytomas, and glioblastomas were 937 +/- 66.5 days, 65.1 +/- 29.4 days, and 48.1 +/- 20.9 days, respectively. The Td's of low density areas were 895 +/- 130.6 days, 70.8 +/- 22.2 days, and 50.5 +/- 14.7 days. There was a significant correlation between the Td's of the enhanced and low density areas (0.97). The enhancement effect increased at recurrence in 55% of the cases, with an average increase of 1.1 grades. The increase in enhancement effect at recurrence showed a tendency to become smaller as the tumor's degree of anaplasia increased. Radiotherapy was effective in significantly retarding the growth rate of malignant gliomas, whose Td's were doubled. Although the Td's of both enhanced and low density areas of benign gliomas were significantly longer than those of malignant gliomas, there was no significant difference in the Td's of enhanced areas between malignant astrocytomas and glioblastomas

  10. Early life exposures and the risk of adult glioma.

    Science.gov (United States)

    Anic, Gabriella M; Madden, Melissa H; Sincich, Kelly; Thompson, Reid C; Nabors, L Burton; Olson, Jeffrey J; LaRocca, Renato V; Browning, James E; Pan, Edward; Egan, Kathleen M

    2013-09-01

    Exposure to common infections in early life may stimulate immune development and reduce the risk for developing cancer. Birth order and family size are proxies for the timing of exposure to childhood infections with several studies showing a reduced risk of glioma associated with a higher order of birth (and presumed younger age at infection). The aim of this study was to examine whether birth order, family size, and other early life exposures are associated with the risk of glioma in adults using data collected in a large clinic-based US case-control study including 889 glioma cases and 903 community controls. A structured interviewer-administered questionnaire was used to collect information on family structure, childhood exposures and other potential risk factors. Logistic regression was used to calculate odds ratios (OR) and corresponding 95% confidence intervals (CI) for the association between early life factors and glioma risk. Persons having any siblings were at significantly lower risk for glioma when compared to those reporting no siblings (OR=0.64; 95% CI 0.44-0.93; p=0.020). Compared to first-borns, individuals with older siblings had a significantly lower risk (OR=0.75; 95% CI 0.61-0.91; p=0.004). Birth weight, having been breast fed in infancy, and season of birth were not associated with glioma risk. The current findings lend further support to a growing body of evidence that early exposure to childhood infections reduces the risk of glioma onset in children and adults.

  11. The role of drebrin in glioma migration and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Terakawa, Yuzo [The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario (Canada); Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka (Japan); Agnihotri, Sameer; Golbourn, Brian; Nadi, Mustafa; Sabha, Nesrin; Smith, Christian A. [The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario (Canada); Croul, Sidney E. [The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario (Canada); Division of Neuropathology, University Health Network, Department of Laboratory Medicine and Pathobiology (Canada); Rutka, James T., E-mail: james.rutka@sickkids.ca [The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario (Canada); Department of Surgery, University of Toronto, Toronto, Ontario (Canada)

    2013-02-15

    Glioblastoma (GBM) is the most common primary brain tumor in adults. Despite current advances in therapy consisting of surgery followed by chemotherapy and radiation, the overall survival rate still remains poor. Therapeutic failures are partly attributable to the highly infiltrative nature of tumor adjacent to normal brain parenchyma. Recently, evidence is mounting to suggest that actin cytoskeleton dynamics are critical components of the cell invasion process. Drebrin is an actin-binding protein involved in the regulation of actin filament organization, and plays a significant role in cell motility; however, the role of drebrin in glioma cell invasiveness has not yet been fully elucidated. Therefore, this study was aimed to clarify the role of drebrin in glioma cell morphology and cell motility. Here we show that drebrin is expressed in glioma cell lines and in operative specimens of GBM. We demonstrate that stable overexpression of drebrin in U87 cells leads to alterations in cell morphology, and induces increased invasiveness in vitro while knockdown of drebrin in U87 cells by small interfering RNA (siRNA) decreases invasion and migration. In addition, we show that depletion of drebrin by siRNA alters glioma cell morphology in A172 GBM cell line. Our results suggest that drebrin contributes to the maintenance of cell shape, and may play an important role in glioma cell motility. - Highlights: ► Drebrin is an actin-binding protein aberrantly expressed in several cancers. ► Role of drebrin in glioma cell morphology and motility is previously unknown. ► We demonstrate that drebrin is expressed in 40% of glioblastoma specimens. ► Drebrin plays a significant role in modulating glioma cell migration and invasion.

  12. Loss of heterozygosity of TRIM3 in malignant gliomas

    Directory of Open Access Journals (Sweden)

    Dolder Béatrice

    2009-02-01

    Full Text Available Abstract Background Malignant gliomas are frequent primary brain tumors associated with poor prognosis and very limited response to conventional chemo- and radio-therapies. Besides sharing common growth features with other types of solid tumors, gliomas are highly invasive into adjacent brain tissue, which renders them particularly aggressive and their surgical resection inefficient. Therefore, insights into glioma formation are of fundamental interest in order to provide novel molecular targets for diagnostic purposes and potential anti-cancer drugs. Human Tripartite motif protein 3 (TRIM3 encodes a structural homolog of Drosophila brain tumor (brat implicated in progenitor cell proliferation control and cancer stem cell suppression. TRIM3 is located within the loss of allelic heterozygosity (LOH hotspot of chromosome segment 11p15.5, indicating a potential role in tumor suppression. ... Methods Here we analyze 70 primary human gliomas of all types and grades and report somatic deletion mapping as well as single nucleotide polymorphism analysis together with quantitative real-time PCR of chromosome segment 11p15.5. Results Our analysis identifies LOH in 17 cases (24% of primary human glioma which defines a common 130 kb-wide interval within the TRIM3 locus as a minimal area of loss. We further detect altered genomic dosage of TRIM3 in two glioma cases with LOH at 11p15.5, indicating homozygous deletions of TRIM3. Conclusion Loss of heterozygosity of chromosome segment 11p15.5 in malignant gliomas suggests TRIM3 as a candidate brain tumor suppressor gene.

  13. Conditioned Medium from Adipose-Derived Stem Cells (ADSCs) Promotes Epithelial-to-Mesenchymal-Like Transition (EMT-Like) in Glioma Cells In vitro.

    Science.gov (United States)

    Iser, Isabele C; Ceschini, Stefanie M; Onzi, Giovana R; Bertoni, Ana Paula S; Lenz, Guido; Wink, Márcia R

    2016-12-01

    Mesenchymal stem cells (MSCs) have recently been described to home to brain tumors and to integrate into the tumor-associated stroma. Understanding the communication between cancer cells and MSCs has become fundamental to determine whether MSC-tumor interactions should be exploited as a vehicle for therapeutic agents or considered a target for intervention. Therefore, we investigated whether conditioned medium from adipose-derived stem cells (ADSCs-CM) modulate glioma tumor cells by analyzing several cell biology processes in vitro. C6 rat glioma cells were treated with ADSCs-CM, and cell proliferation, cell cycle, cell viability, cell morphology, adhesion, migration, and expression of epithelial-mesenchymal transition (EMT)-related surface markers were analyzed. ADSCs-CM did not alter cell viability, cell cycle, and growth rate of C6 glioma cells but increased their migratory capacity. Moreover, C6 cells treated with ADSC-CM showed reduced adhesion and underwent changes in cell morphology. Up-regulation of EMT-associated markers (vimentin, MMP2, and NRAS) was also observed following treatment with ADSC-CM. Our findings demonstrate that the paracrine factors released by ADSCs are able to modulate glioma cell biology. Therefore, ADSC-tumor cell interactions in a tumor microenvironment must be considered in the design of clinical application of stem cell therapy. Graphical Abstract Factors released by adipose-derived stem cells (ADSCs) may modulate the biology of C6 glioma cells. When C6 cells are exposed to a conditioned medium from adipose-derived stem cells (ADSCs-CM), some of these cells can undergo an EMT-like process and trans-differentiate into cells with a more mesenchymal phenotype, characterized by enhanced expression of EMT-related surface markers, reduced cell adhesion capacity, increased migratory capacity, as well as changes in cell and nuclei morphology.

  14. Description of selected characteristics of familial glioma patients – Results from the Gliogene Consortium

    DEFF Research Database (Denmark)

    Sadetzki, Siegal; Bruchim, Revital; Oberman, Bernice

    2013-01-01

    While certain inherited syndromes (e.g. Neurofibromatosis or Li-Fraumeni) are associated with an increased risk of glioma, most familial gliomas are non-syndromic. This study describes the demographic and clinical characteristics of the largest series of non-syndromic glioma families ascertained ...

  15. [18F]-fluoro-l-thymidine PET and advanced MRI for preoperative grading of gliomas

    Directory of Open Access Journals (Sweden)

    S. Collet

    2015-01-01

    Conclusion: Whereas advanced MRI parameters give indications for the grading of gliomas, the addition of [18F]-FLT-PET could be of interest for the accurate preoperative classification of diffuse gliomas, particularly for identification of doubtful grade III and IV gliomas.

  16. Facing Contrast-Enhancing Gliomas: Perfusion MRI in Grade III and Grade IV Gliomas according to Tumor Area

    Directory of Open Access Journals (Sweden)

    Anna Luisa Di Stefano

    2014-01-01

    Full Text Available Tumoral neoangiogenesis characterizes high grade gliomas. Relative Cerebral Blood Volume (rCBV, calculated with Dynamic Susceptibility Contrast (DSC Perfusion-Weighted Imaging (PWI, allows for the estimation of vascular density over the tumor bed. The aim of the study was to characterize putative tumoral neoangiogenesis via the study of maximal rCBV with a Region of Interest (ROI approach in three tumor areas—the contrast-enhancing area, the nonenhancing tumor, and the high perfusion area on CBV map—in patients affected by contrast-enhancing glioma (grades III and IV. Twenty-one patients were included: 15 were affected by grade IV and 6 by grade III glioma. Maximal rCBV values for each patient were averaged according to glioma grade. Although rCBV from contrast-enhancement and from nonenhancing tumor areas was higher in grade IV glioma than in grade III (5.58 and 2.68; 3.01 and 2.2, resp., the differences were not significant. Instead, rCBV recorded in the high perfusion area on CBV map, independently of tumor compartment, was significantly higher in grade IV glioma than in grade III (7.51 versus 3.78, P=0.036. In conclusion, neoangiogenesis encompasses different tumor compartments and CBV maps appear capable of best characterizing the degree of neovascularization. Facing contrast-enhancing brain tumors, areas of high perfusion on CBV maps should be considered as the reference areas to be targeted for glioma grading.

  17. Radiotherapy in supratentorial gliomas. A study of 821 cases

    International Nuclear Information System (INIS)

    Heesters, M.; Molenaar, W.; Go, G.K.

    2003-01-01

    Purpose: Analysis of the results of radiotherapy in a large group of cerebral gliomas with identification of prognostic factors and the outcome with respect to different decades of treatment. Patients and Methods: Two decades (1979-1999) of radiotherapy in supratentorial astrocytic and oligodendroglial tumors (n = 821) at the University Hospital Groningen were retrospectively evaluated. Prognostic factors for survival were analyzed. Two decades of radiotherapy treatment were compared with respect to radiotherapy dose and treatment-field design. Results: Glioblastoma multiforme, including gliosarcoma, was the most frequent supratentorial glioma (n = 442) with a poor survival, i.e., median survival time (MST) 7 months, especially in patients > 50 years of age and with poor performance. Patients with good performance were selected for radiotherapy with an optimum dose of 60 Gy local-field irradiation. However, in patients with poor prognosis, no radiotherapy was applied or a shorter treatment scheme was given. Anaplastic astrocytomas (n = 131) were treated in the same way as glioblastoma multiforme. Over time, a decrease in radiation dose (from 60 to 45 Gy) and from whole brain irradiation to local-field treatment was observed, following the literature. In low-grade gliomas, prognostic factors for survival were age, performance, and extent of resection. Gemistocytic astrocytoma (n = 15) had an inferior survival compared to astrocytoma (MST 46 vs. 54 months), but a superior survival compared to anaplastic astrocytoma (MST 10 months). The presence of an oligodendroglial component in a glioma implied a superior survival compared to the astrocytic gliomas. The inherent biology of the glioma is reflected by the study of recurrent tumors with progression to higher grades of malignancy in 32-40% and by the histology of recurrent oligodendroglial tumors. In comparing two decades of radiotherapy in gliomas, no differences in survival were observed despite the technological

  18. Radiotherapy in supratentorial gliomas. A study of 821 cases

    Energy Technology Data Exchange (ETDEWEB)

    Heesters, M. [Dept. of Radiotherapy, Groningen Univ. Hospital (Netherlands); Molenaar, W. [Dept. of Pathology, Groningen Univ. Hospital (Netherlands); Go, G.K. [Dept. of Neurosurgery, Groningen Univ. Hospital (Netherlands)

    2003-09-01

    Purpose: Analysis of the results of radiotherapy in a large group of cerebral gliomas with identification of prognostic factors and the outcome with respect to different decades of treatment. Patients and Methods: Two decades (1979-1999) of radiotherapy in supratentorial astrocytic and oligodendroglial tumors (n = 821) at the University Hospital Groningen were retrospectively evaluated. Prognostic factors for survival were analyzed. Two decades of radiotherapy treatment were compared with respect to radiotherapy dose and treatment-field design. Results: Glioblastoma multiforme, including gliosarcoma, was the most frequent supratentorial glioma (n = 442) with a poor survival, i.e., median survival time (MST) 7 months, especially in patients > 50 years of age and with poor performance. Patients with good performance were selected for radiotherapy with an optimum dose of 60 Gy local-field irradiation. However, in patients with poor prognosis, no radiotherapy was applied or a shorter treatment scheme was given. Anaplastic astrocytomas (n = 131) were treated in the same way as glioblastoma multiforme. Over time, a decrease in radiation dose (from 60 to 45 Gy) and from whole brain irradiation to local-field treatment was observed, following the literature. In low-grade gliomas, prognostic factors for survival were age, performance, and extent of resection. Gemistocytic astrocytoma (n = 15) had an inferior survival compared to astrocytoma (MST 46 vs. 54 months), but a superior survival compared to anaplastic astrocytoma (MST 10 months). The presence of an oligodendroglial component in a glioma implied a superior survival compared to the astrocytic gliomas. The inherent biology of the glioma is reflected by the study of recurrent tumors with progression to higher grades of malignancy in 32-40% and by the histology of recurrent oligodendroglial tumors. In comparing two decades of radiotherapy in gliomas, no differences in survival were observed despite the technological

  19. Clinical Relevance of Prognostic and Predictive Molecular Markers in Gliomas.

    Science.gov (United States)

    Siegal, Tali

    2016-01-01

    Sorting and grading of glial tumors by the WHO classification provide clinicians with guidance as to the predicted course of the disease and choice of treatment. Nonetheless, histologically identical tumors may have very different outcome and response to treatment. Molecular markers that carry both diagnostic and prognostic information add useful tools to traditional classification by redefining tumor subtypes within each WHO category. Therefore, molecular markers have become an integral part of tumor assessment in modern neuro-oncology and biomarker status now guides clinical decisions in some subtypes of gliomas. The routine assessment of IDH status improves histological diagnostic accuracy by differentiating diffuse glioma from reactive gliosis. It carries a favorable prognostic implication for all glial tumors and it is predictive for chemotherapeutic response in anaplastic oligodendrogliomas with codeletion of 1p/19q chromosomes. Glial tumors that contain chromosomal codeletion of 1p/19q are defined as tumors of oligodendroglial lineage and have favorable prognosis. MGMT promoter methylation is a favorable prognostic marker in astrocytic high-grade gliomas and it is predictive for chemotherapeutic response in anaplastic gliomas with wild-type IDH1/2 and in glioblastoma of the elderly. The clinical implication of other molecular markers of gliomas like mutations of EGFR and ATRX genes and BRAF fusion or point mutation is highlighted. The potential of molecular biomarker-based classification to guide future therapeutic approach is discussed and accentuated.

  20. Glioma Indian scenario: Is there a human leucocyte antigen association?

    Science.gov (United States)

    Shankarkumar, U; Sridharan, B

    2011-07-01

    The central nervous system tumors are a rare neoplasm with little knowledge with Human Leukocyte Antigen (HLA) involvement. Primary brain tumors are cancers that originate in brain classified according to their appearance under a microscope as low grade (grade I and II) with diffuse astrocytomas, pliocytic astrocytomas, oligodendrogliomas, gangliogliomas, and mixed gliomas as common subtypes and high grade (grade III and IV). HLA associations in common glioma are reported from other parts of the world. The normal cancer treatment is surgery, followed by radiotherapy, and chemotherapy; nowadays immunotherapy is advised. HLA distribution in a Glioma patient was done based on serology and molecular techniques. The immune response gene studies have implicated the HLA allele association in most of the common diseases from India. Considerable variations are noted in HLA association with cancers; hence, we have summarized the HLA involvement in Glioma with respect to the literature. HLA A*030101, A*310102, B*350101, B*4406, Cw*040101, Cw*070101, DRB1*070101, and DRB1*1001. Ethnic diversity and HLA polymorphism precipitate differential immune response genes involved in variable disease manifestations. Therefore, caste-specific HLA allelic specificity needs to be identified, which may help in early identification of the associated HLA allele and establishing clinical practices among glioma patients.

  1. Possible novel therapy for malignant gliomas with secretable trimeric TRAIL.

    Directory of Open Access Journals (Sweden)

    Moonsup Jeong

    Full Text Available Malignant gliomas are the most common primary brain tumors. Despite intensive clinical investigation and many novel therapeutic approaches, average survival for the patients with malignant gliomas is only about 1 year. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL has shown potent and cancer-selective killing activity and drawn considerable attention as a promising therapy for cancers, but concerns over delivery and toxicity have limited progress. We have developed a secretable trimeric TRAIL (stTRAIL and here evaluated the therapeutic potential of this stTRAIL-based gene therapy in brain tumors. An adenovirus (Ad-stTRAIL delivering stTRAIL was injected into intra-cranial human glioma tumors established in nude mice and tumor growth monitored using the magnetic resonance imaging (MRI. Ad-stTRAIL gene therapy showed potent tumor suppressor activity with no toxic side effects at therapeutically effective doses. When compared with 1, 3-bis(2-chloroethyl-1-nitrosourea (BCNU, a conventional therapy for malignant gliomas, Ad-stTRAIL suppressed tumor growth more potently. The combination of Ad-stTRAIL and BCNU significantly increased survival compared to the control mice or mice receiving Ad-stTRAIL alone. Our data indicate that Ad-stTRAIL, either alone or combined with BCNU, has promise as a novel therapy for malignant gliomas.

  2. Concurrent thermochemoradiotherapy for brain high-grade glioma

    Energy Technology Data Exchange (ETDEWEB)

    Ryabova, A. I., E-mail: ranigor@mail.ru; Novikov, V. A.; Startseva, Zh. A.; Bober, E. E.; Frolova, I. G. [Tomsk Cancer Research Institute, Tomsk, 634050 (Russian Federation); Choinzonov, E. L. [Tomsk Cancer Research Institute, Tomsk, 634050 (Russian Federation); Siberian State Medical University, Tomsk, 634050 (Russian Federation); Gribova, O. V. [Tomsk Cancer Research Institute, Tomsk, 634050 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Baranova, A. V. [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2016-08-02

    Despite the achievements in the current strategies for treatment, the prognosis in malignant glioma patients remains unsatisfactory. Hyperthermia is currently considered to be the most effective and universal modifier of radiotherapy and chemotherapy. Preliminary treatment outcomes for 28 patients with newly diagnosed (23) and recurrent (5) high-grade gliomas were presented. All the patients received multimodality treatment including surgery, thermoche-moradiotherapy followed by 4 cycles of adjuvant chemotherapy. All the patients endured thermochemoradiotherapy well. A complication, limited skin burn (II stage), was diagnosed in two cases and treated conservatively without treatment interruption. A month after thermochemoradiotherapy the results were as follows: complete regression was achieved in 4 cases, partial regression in 4 cases, stable disease in 14 cases and disease progression in 6 cases (one of them is pseudo-progression). After completing the adjuvant chemotherapy 2 more patients demonstrated complete response and 1 patient had disease progression. Introduction of local hyperthermia in multimodal therapy of malignant glioma does not impair the combined modality treatment tolerability of patients with malignant gliomas. A small number of studied patients and short follow-up time do not allow making reliable conclusions about the impact of local hyperthermia on the treatment outcomes; however, there is a tendency towards the increase in disease-free survival in the patients with newly diagnosed malignant gliomas.

  3. Targeting the erythropoietin receptor on glioma cells reduces tumour growth

    International Nuclear Information System (INIS)

    Peres, Elodie A.; Valable, Samuel; Guillamo, Jean-Sebastien; Marteau, Lena; Bernaudin, Jean-Francois; Roussel, Simon; Lechapt-Zalcman, Emmanuele; Bernaudin, Myriam; Petit, Edwige

    2011-01-01

    Hypoxia has been shown to be one of the major events involved in EPO expression. Accordingly, EPO might be expressed by cerebral neoplastic cells, especially in glioblastoma, known to be highly hypoxic tumours. The expression of EPOR has been described in glioma cells. However, data from the literature remain descriptive and controversial. On the basis of an endogenous source of EPO in the brain, we have focused on a potential role of EPOR in brain tumour growth. In the present study, with complementary approaches to target EPO/EPOR signalling, we demonstrate the presence of a functional EPO/EPOR system on glioma cells leading to the activation of the ERK pathway. This EPO/EPOR system is involved in glioma cell proliferation in vitro. In vivo, we show that the down-regulation of EPOR expression on glioma cells reduces tumour growth and enhances animal survival. Our results support the hypothesis that EPOR signalling in tumour cells is involved in the control of glioma growth.

  4. miR-21 Is Linked to Glioma Angiogenesis

    DEFF Research Database (Denmark)

    Hermansen, Simon Kjær; Nielsen, Boye Schnack; Aaberg-Jessen, Charlotte

    2016-01-01

    MicroRNA-21 (miR-21) is the most consistently over-expressed microRNA (miRNA) in malignant gliomas. We have previously reported that miR-21 is upregulated in glioma vessels and subsets of glioma cells. To better understand the role of miR-21 in glioma angiogenesis and to characterize miR-21......-localized with the hypoxia- and angiogenesis-associated markers HIF-1α (p=0.0020) and VEGF (p=0.0096), whereas the putative miR-21 target, PTEN, was expressed independently of miR-21. Expression of stem cell markers Oct4, Sox2 and CD133 was not associated with miR-21. In six glioblastoma cultures, miR-21 did not correlate...... with the six markers. These findings suggest that miR-21 is linked to glioma angiogenesis, that miR-21 is unlikely to regulate PTEN, and that miR-21-positive tumor cells do not possess stem cell characteristics....

  5. Cortical GABAergic excitation contributes to epileptic activities around human glioma

    Science.gov (United States)

    Pallud, Johan; Varlet, Pascale; Cresto, Noemie; Baulac, Michel; Duyckaerts, Charles; Kourdougli, Nazim; Chazal, Geneviève; Devaux, Bertrand; Rivera, Claudio; Miles, Richard; Capelle, Laurent; Huberfeld, Gilles

    2015-01-01

    Rationale Diffuse brain gliomas induce seizures in a majority of patients. As in most epileptic disorders, excitatory glutamatergic mechanisms are involved in the generation of epileptic activities in the neocortex surrounding gliomas. However, chloride homeostasis is known to be perturbed in glial tumor cells. Thus the contribution of GABAergic mechanisms which depend on intracellular chloride and which are defective or pro-epileptic in other structural epilepsies merits closer study. Objective We studied in neocortical slices from the peritumoral security margin resected around human brain gliomas, the occurrence, networks, cells and signaling basis of epileptic activities. Results Postoperative glioma tissue from 69% of patients spontaneously generated interictal-like discharges. These events were synchronized, with a high frequency oscillation signature, in superficial layers of neocortex around glioma areas with tumor infiltration. Interictal-like events depended on both glutamatergic transmission and on depolarizing GABAergic signaling. About 65% of pyramidal cells were depolarized by GABA released by interneurons. This effect was related to perturbations in Chloride homeostasis, due to changes in expression of chloride co-transporters: KCC2 was reduced and expression of NKCC1 increased. Ictal-like activities were initiated by convulsant stimuli exclusively in these epileptogenic areas. Conclusions Epileptic activities are sustained by excitatory effects of GABA in the peritumoral human neocortex, as in temporal lobe epilepsies. Glutamate and GABA signaling are involved in oncogenesis and chloride homeostasis is perturbed. These same factors, induce an imbalance between synaptic excitatory and inhibition underly epileptic discharges in tumor patients. PMID:25009229

  6. The rise and fall of "biopsy and radiate": a history of surgical nihilism in glioma treatment.

    Science.gov (United States)

    Han, Seunggu J; Sughrue, Michael E

    2012-04-01

    Many neurosurgeons take a nihilistic approach to surgical treatment of gliomas, stating the inability to achieve a cure. Where this idea comes from is somewhat nebulous to most neurosurgeons. A review of the scientific studies supporting the commonly held beliefs about gliomas shows that these ideas regarding the surgical treatment of gliomas are based on overgeneralizations of data from older studies. One should avoid the temptation to apply them to the greater concept of what gliomas are, how they behave, and what should be done, but rather we should continue to scientifically evaluate the role of surgical resection in glioma treatment. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. A new anti-glioma therapy, AG119: pre-clinical assessment in a mouse GL261 glioma model.

    Science.gov (United States)

    Towner, Rheal A; Ihnat, Michael; Saunders, Debra; Bastian, Anja; Smith, Nataliya; Pavana, Roheeth Kumar; Gangjee, Aleem

    2015-07-17

    High grade gliomas (HGGs; grades III and IV) are the most common primary brain tumors in adults, and their malignant nature ranks them fourth in incidence of cancer death. Standard treatment for glioblastomas (GBM), involving surgical resection followed by radiation and chemotherapy with temozolomide (TMZ) and the anti-angiogenic therapy bevacizumab, have not substantially improved overall survival. New therapeutic agents are desperately needed for this devastating disease. Here we study the potential therapeutic agent AG119 in a pre-clinical model for gliomas. AG119 possesses both anti-angiogenic (RTK inhibition) and antimicrotubule cytotoxic activity in a single molecule. GL261 glioma-bearing mice were either treated with AG119, anti-VEGF (vascular endothelial growth factor) antibody, anti c-Met antibody or TMZ, and compared to untreated tumor-bearing mice. Animal survival was assessed, and tumor volumes and vascular alterations were monitored with morphological magnetic resonance imaging (MRI) and perfusion-weighted imaging, respectively. Percent survival of GL261 HGG-bearing mice treated with AG119 was significantly higher (p mouse GL261 glioma model, and that AG119 is also not subject to methyl guanine transferase (MGMT) mediated resistance, as is the case with TMZ, indicating that AG119 may be potentially useful in treating resistant gliomas.

  8. The Microenvironment in Gliomas: Phenotypic Expressions

    Directory of Open Access Journals (Sweden)

    Davide Schiffer

    2015-12-01

    Full Text Available The microenvironment of malignant gliomas is described according to its definition in the literature. Beside tumor cells, a series of stromal cells (microglia/macrophages, pericytes, fibroblasts, endothelial cells, normal and reactive astrocytes represents the cell component, whereas a complex network of molecular signaling represents the functional component. Its most evident expressions are perivascular and perinecrotic niches that are believed to be the site of tumor stem cells or progenitors in the tumor. Phenotypically, both niches are not easily recognizable; here, they are described together with a critical revision of their concept. As for perinecrotic niches, an alternative interpretation is given about their origin that regards the tumor stem cells as the residue of those that populated hyperproliferating areas in which necroses develop. This is based on the concept that the stem-like is a status and not a cell type, depending on the microenvironment that regulates a conversion of tumor non-stem cells and tumor stem cells through a cell reprogramming.

  9. Postoperative radiation therapy for malignant glioma

    International Nuclear Information System (INIS)

    Teshima, Teruki; Inoue, Toshihiko; Chatani, Masashi; Hata, Kiyoshi; Taki, Takuyu; Nii, Yasuo; Nakagawa, Hidemitsu

    1987-01-01

    From December 1977 through September 1984, a total of 39 cases of malignant glioma were treated with radiation therapy (RT) postoperatively. Twenty-nine cases were classified into glioblastoma (GM) and 10 astrocytoma (AS) (low grade : 6 and anaplastic : 4) histologically. One third of cases received 50 Gy/25 FRX/5 WKS of whole brain RT. Another two thirds of cases underwent 60 Gy/30 FRX/6 WKS of whole brain or 50 Gy/25 FRX/5 WKS of whole brain + additional 20 Gy/10 FRX/2 WKS of localized field RT. Chemotherapy (BLM, MeCCNU and ACNU) was given for 34 cases. Survivals at 3 years for GM and AS were 12 % and 68 %, respectively (p < 0.01). Prognostic factors for GM were age (p < 0.02), neurologic function (RTOG) (p < 0.01), AJC-staging T-factor (p < 0.05), pre-RT LDH level (p < 0.05) and volume of residual tumor (p < 0.05). Corresponding factors for AS were histological subclassification (p < 0.05) and neurologic function (RTOG) (p < 0.05). However, RT dose and field did not impact on survival significantly. Acute adverse effects of RT were otitis media or externa (70 %) and conjunctivitis (8 %). Retinal bleeding was noted in three long-term survivors at 2 years after RT. (author)

  10. Current standard treatment for pediatric glioma patients

    International Nuclear Information System (INIS)

    Sonoda, Yukihiko; Kumabe, Toshihiro; Saito, Ryuta; Kanamori, Masayuki; Yamashita, Yoji; Tominaga, Teiji

    2012-01-01

    In this paper, we selected three representative disorders among pediatric gliomas and reviewed standard treatments for these diseases. The formation of this rare disease is involved with BRAF mutation as well as cerebellar pilocytic astrocytoma. Radical resection is not recommended as initial therapy due to high morbidity. Despite its good tumor control, radiotherapy is not a standard therapy due to neuroendocrine and neurocognitive dysfunction. Several papers have reported the effectiveness of platinum-based chemotherapy, which is a useful for induction therapy. Recent progress in molecular analyses has suggested that some markers might be used for staging ependymoma. While total resection is considered to be strongly correlated with patients' survival, the majority of recurrence occurs in the primary site. Despite many clinical trials, chemotherapeutic agents were not found to be effective for this disease. Since whole brain radiation cannot prevent dissemination, local radiation is recommended for adjuvant therapy. The prognosis of this disease is still dismal, and median survival time is within 1 year. Although clinical trials have been conducted to assess the efficacy of chemotherapy prior to, concomitantly with, or after radiotherapy, an effective regimen has not yet been established. Therefore, only conventional local radiotherapy is the standard regimen for this disease. A new therapeutic approach, such as convection-enhanced drug delivery, would be required for improved outcomes in patients with this disease. (author)

  11. Postoperative radiotherapy of supratentorial anaplastic gliomas

    International Nuclear Information System (INIS)

    Wendt, T.G.; Bacherler, B.; Baumer, K.; Rohloff, R.; Willich, N.

    1986-01-01

    Between 1970 and 1983, 149 patients with high grade anaplastic supratentorial gliomas received a postoperative irradiation during primary treatment. 118 out of these patients had an anaplastic astrocytoma, 18 an anaplastic oligodendroglioma, and 13 an anaplastic ependymoma. Most of these patients were treated by irradiation of a great volume with 50 Gy within five weeks, the others by irradiation of the total brain with 50 Gy within five weeks and saturation with 10 Gy within one week. The one-year survival of the total group was 35.5% and the two-year survival 10.6%. Patients at an age of less than 40 years show a significantly longer survival than older patients (one-year survival rates 40% and 30.7%, respectively). Patients suffering from anaplastic tumors with astrocytic and oligodendrocytic differentiation have a comparable prognosis. Patients suffering from anaplastic tumors with ependymal differentiation, however, have prolonged survival times. The therapy results of different treatment methods are discussed using the communications of literature. (orig.) [de

  12. Known glioma risk loci are associated with glioma with a family history of brain tumours -- a case-control gene association study.

    Science.gov (United States)

    Melin, Beatrice; Dahlin, Anna M; Andersson, Ulrika; Wang, Zhaoming; Henriksson, Roger; Hallmans, Göran; Bondy, Melissa L; Johansen, Christoffer; Feychting, Maria; Ahlbom, Anders; Kitahara, Cari M; Wang, Sophia S; Ruder, Avima M; Carreón, Tania; Butler, Mary Ann; Inskip, Peter D; Purdue, Mark; Hsing, Ann W; Mechanic, Leah; Gillanders, Elizabeth; Yeager, Meredith; Linet, Martha; Chanock, Stephen J; Hartge, Patricia; Rajaraman, Preetha

    2013-05-15

    Familial cancer can be used to leverage genetic association studies. Recent genome-wide association studies have reported independent associations between seven single nucleotide polymorphisms (SNPs) and risk of glioma. The aim of this study was to investigate whether glioma cases with a positive family history of brain tumours, defined as having at least one first- or second-degree relative with a history of brain tumour, are associated with known glioma risk loci. One thousand four hundred and thirty-one glioma cases and 2,868 cancer-free controls were identified from four case-control studies and two prospective cohorts from USA, Sweden and Denmark and genotyped for seven SNPs previously reported to be associated with glioma risk in case-control designed studies. Odds ratios were calculated by unconditional logistic regression. In analyses including glioma cases with a family history of brain tumours (n = 104) and control subjects free of glioma at baseline, three of seven SNPs were associated with glioma risk: rs2736100 (5p15.33, TERT), rs4977756 (9p21.3, CDKN2A-CDKN2B) and rs6010620 (20q13.33, RTEL1). After Bonferroni correction for multiple comparisons, only one marker was statistically significantly associated with glioma risk, rs6010620 (ORtrend for the minor (A) allele, 0.39; 95% CI: 0.25-0.61; Bonferroni adjusted ptrend , 1.7 × 10(-4) ). In conclusion, as previously shown for glioma regardless of family history of brain tumours, rs6010620 (RTEL1) was associated with an increased risk of glioma when restricting to cases with family history of brain tumours. These findings require confirmation in further studies with a larger number of glioma cases with a family history of brain tumours. Copyright © 2012 UICC.

  13. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Cheng-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Graduate Institute of Pharmaceutical Science and Technology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan (China); Kuan, Yu-Hsiang [Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Ou, Yen-Chuan; Li, Jian-Ri [Division of Urology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Wu, Chih-Cheng [Department of Anesthesiology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Department of Financial and Computational Mathematics, Providence University, Taichung 433, Taiwan (China); Pan, Pin-Ho [Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan (China); Chen, Wen-Ying [Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Huang, Hsuan-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Chen, Chun-Jung, E-mail: cjchen@vghtc.gov.tw [Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Center for General Education, Tunghai University, Taichung 407, Taiwan (China); Department of Nursing, HungKuang University, Taichung 433, Taiwan (China)

    2014-09-10

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK.

  14. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    International Nuclear Information System (INIS)

    Chang, Cheng-Yi; Kuan, Yu-Hsiang; Ou, Yen-Chuan; Li, Jian-Ri; Wu, Chih-Cheng; Pan, Pin-Ho; Chen, Wen-Ying; Huang, Hsuan-Yi; Chen, Chun-Jung

    2014-01-01

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK

  15. Molecular subtypes of glioblastoma are relevant to lower grade glioma.

    Directory of Open Access Journals (Sweden)

    Xiaowei Guan

    Full Text Available Gliomas are the most common primary malignant brain tumors in adults with great heterogeneity in histopathology and clinical course. The intent was to evaluate the relevance of known glioblastoma (GBM expression and methylation based subtypes to grade II and III gliomas (ie. lower grade gliomas.Gene expression array, single nucleotide polymorphism (SNP array and clinical data were obtained for 228 GBMs and 176 grade II/II gliomas (GII/III from the publically available Rembrandt dataset. Two additional datasets with IDH1 mutation status were utilized as validation datasets (one publicly available dataset and one newly generated dataset from MD Anderson. Unsupervised clustering was performed and compared to gene expression subtypes assigned using the Verhaak et al 840-gene classifier. The glioma-CpG Island Methylator Phenotype (G-CIMP was assigned using prediction models by Fine et al.Unsupervised clustering by gene expression aligned with the Verhaak 840-gene subtype group assignments. GII/IIIs were preferentially assigned to the proneural subtype with IDH1 mutation and G-CIMP. GBMs were evenly distributed among the four subtypes. Proneural, IDH1 mutant, G-CIMP GII/III s had significantly better survival than other molecular subtypes. Only 6% of GBMs were proneural and had either IDH1 mutation or G-CIMP but these tumors had significantly better survival than other GBMs. Copy number changes in chromosomes 1p and 19q were associated with GII/IIIs, while these changes in CDKN2A, PTEN and EGFR were more commonly associated with GBMs.GBM gene-expression and methylation based subtypes are relevant for GII/III s and associate with overall survival differences. A better understanding of the association between these subtypes and GII/IIIs could further knowledge regarding prognosis and mechanisms of glioma progression.

  16. Radiation effects on human glia and glioma cells in vitro

    International Nuclear Information System (INIS)

    Nilsson, S.

    1983-01-01

    The radiosensitivity of human glia and glioma cells has been studied in vitro, and a new cloning method has been developed to overcome the difficulties due to the very low cloning efficiency of these cells. The cells were confined to small palladium areas surrounded by agarose, which increased the cell density, but kept the clones separated. Using this method, the glia cells were found to be very sensitive to gamma irradiation (D 0 =1.0-1.5 Gy and n=1) in comparision with the glioma cells (D 0 =1.5-2.5 Gy and n=3.5). The induction and repair of DNA strand breaks were studied with two DNA unwinding techniques. No differences between the two cell-lines were detected when induction and fast repair were studied with the single-labelling method, while the glioma cells showed less unrepaired DNA strand breaks than the glia cells after 1, 2 and 3 hours, when the double-labelling method was used. Detachment, attachment and growth kinetics were studied using the palladium-agarose cloning method. All of the glioma cell-lines studied, detached and attached themselves at rates higher than the normal diploid glia cell-lines. All of the cell-lines contained clones with different properties. Some clones were rapidly growing, others maintained a nearly constant number of cells or even decreased. The effects of chronic hypoxia were tested in a few experiments. Low oxygen tension in the culture medium reduced the rate of growth and the DNA synthesis of the glioma cells. The present study indicates that cultured human glioma cells are less radiosensitive than cultured glia cells. The palladium-agarose technique, enable studying growth kinetics detachment, attachment and radiosensitivity in a quantitative manner for cells with low cloning efficiency. (author)

  17. Anatomic mapping of molecular subtypes in diffuse glioma.

    Science.gov (United States)

    Tang, Qisheng; Lian, Yuxi; Yu, Jinhua; Wang, Yuanyuan; Shi, Zhifeng; Chen, Liang

    2017-09-15

    Tumor location served as an important prognostic factor in glioma patients was considered to postulate molecular features according to cell origin theory. However, anatomic distribution of unique molecular subtypes was not widely investigated. The relationship between molecular phenotype and histological subgroup were also vague based on tumor location. Our group focuses on the study of glioma anatomic location of distinctive molecular subgroups and histology subtypes, and explores the possibility of their consistency based on clinical background. We retrospectively reviewed 143 cases with both molecular information (IDH1/TERT/1p19q) and MRI images diagnosed as cerebral diffuse gliomas. The anatomic distribution was analyzed between distinctive molecular subgroups and its relationship with histological subtypes. The influence of tumor location, molecular stratification and histology diagnosis on survival outcome was investigated as well. Anatomic locations of cerebral diffuse glioma indicate varied clinical outcome. Based on that, it can be stratified into five principal molecular subgroups according to IDH1/TERT/1p19q status. Triple-positive (IDH1 and TERT mutation with 1p19q codeletion) glioma tended to be oligodendroglioma present with much better clinical outcome compared to TERT mutation only group who is glioblastoma inclined (median overall survival 39 months VS 18 months). Five molecular subgroups were demonstrated with distinctive locational distribution. This kind of anatomic feature is consistent with its corresponding histological subtypes. Each molecular subgroup in glioma has unique anatomic location which indicates distinctive clinical outcome. Molecular diagnosis can be served as perfect complementary tool for the precise diagnosis. Integration of histomolecular diagnosis will be much more helpful in routine clinical practice in the future.

  18. Potential New Therapies for Pediatric Diffuse Intrinsic Pontine Glioma

    Directory of Open Access Journals (Sweden)

    Wenyong Long

    2017-07-01

    Full Text Available Diffuse intrinsic pontine glioma (DIPG is an extensively invasive malignancy with infiltration into other regions of the brainstem. Although large numbers of specific targeted therapies have been tested, no significant progress has been made in treating these high-grade gliomas. Therefore, the identification of new therapeutic approaches is of great importance for the development of more effective treatments. This article reviews the conventional therapies and new potential therapeutic approaches for DIPG, including epigenetic therapy, immunotherapy, and the combination of stem cells with nanoparticle delivery systems.

  19. The functional role of Notch signaling in human gliomas

    DEFF Research Database (Denmark)

    Stockhausen, Marie-Thérése; Kristoffersen, Karina; Poulsen, Hans Skovgaard

    2010-01-01

    have been referred to as brain cancer stem cells (bCSC), as they share similarities to normal neural stem cells in the brain. The Notch signaling pathway is involved in cell fate decisions throughout normal development and in stem cell proliferation and maintenance. The role of Notch in cancer is now...... firmly established, and recent data implicate a role for Notch signaling also in gliomas and bCSC. In this review, we explore the role of the Notch signaling pathway in gliomas with emphasis on its role in normal brain development and its interplay with pathways and processes that are characteristic...

  20. 188Re-loaded lipid nanocapsules as a promising radiopharmaceutical carrier for internal radiotherapy of malignant gliomas

    International Nuclear Information System (INIS)

    Allard, E.; Hindre, F.; Passirani, C.; Lemaire, L.; Benoit, J.P.; Lepareur, N.; Noiret, N.; Menei, P.

    2008-01-01

    Lipid nanocapsules (LNC) entrapping lipophilic complexes of 188 Re( 188 Re(S 3 CPh) 2 (S 2 CPh) [ 188 Re-SSS]) were investigated as a novel radiopharmaceutical carrier for internal radiation therapy of malignant gliomas. The present study was designed to evaluate the efficacy of intra-cerebral administration of 188 Re-SSS LNC by means of convection-enhanced delivery (CED) on a 9L rat brain tumour model. Female Fischer rats with 9L glioma were treated with a single injection of 188 Re-SSS LNC by CED 6days after cell implantation. Rats were put into random groups according to the dose infused: 12, 10, 8 and 3Gy in comparison with blank LNC, perrhenate solution (4Gy) and non-treated animals. The radionuclide brain retention level was evaluated by measuring 188 Re elimination in faeces and urine over 72h after the CED injection. The therapeutic effect of 188 Re-SSS LNC was assessed based on animal survival. CED of 188 Re perrhenate solution resulted in rapid drug clearance with a brain T 1/2 of 7h. In contrast, when administered in LNC, 188 Re tissue retention was greatly prolonged, with only 10% of the injected dose being eliminated at 72h. Rat median survival was significantly improved for the group treated with 8Gy 188 Re-SSS LNC compared to the control group and blank LNC-treated animals. The increase in the median survival time was about 80% compared to the control group; 33% of the animals were long-term survivors. The dose of 8Gy proved to be a very effective dose, between toxic (10-12Gy) and ineffective (3-4Gy) doses. These findings show that CED of 188 Re-loaded LNC is a safe and potent anti-tumour system for treating malignant gliomas. Our data are the first to show the in vivo efficacy of 188 Re internal radiotherapy for the treatment of brain malignancy. (orig.)

  1. Fluorescent Affibody Molecule Administered In Vivo at a Microdose Level Labels EGFR Expressing Glioma Tumor Regions.

    Science.gov (United States)

    de Souza, Ana Luiza Ribeiro; Marra, Kayla; Gunn, Jason; Samkoe, Kimberley S; Hoopes, P Jack; Feldwisch, Joachim; Paulsen, Keith D; Pogue, Brian W

    2017-02-01

    Fluorescence guidance in surgical oncology provides the potential to realize enhanced molecular tumor contrast with dedicated targeted tracers, potentially with a microdose injection level. For most glioma tumors, the blood brain barrier is compromised allowing some exogenous drug/molecule delivery and accumulation for imaging. The aberrant overexpression and/or activation of epidermal growth factor receptor (EGFR) is associated with many types of cancers, including glioblastoma, and so the use of a near-infrared (NIR) fluorescent molecule targeted to the EGFR receptor provides the potential for improving tumor contrast during surgery. Fluorescently labeled affibody molecule (ABY-029) has high EGFR affinity and high potential specificity with reasonably fast plasma clearance. In this study, ABY-29 was evaluated in glioma versus normal brain uptake from intravenous injection at a range of doses, down to a microdose injection level. Nude rats were inoculated with the U251 human glioma cell line in the brain. Tumors were allowed to grow for 3-4 weeks. ABY-029 fluorescence ex vivo imaging of brain slices was acquired at different time points (1-48 h) and varying injection doses from 25 to 122 μg/kg (from human protein microdose equivalent to five times microdose levels). The tumor was most clearly visualized at 1-h post-injection with 8- to 16-fold average contrast relative to normal brain. However, the tumor still could be identified after 48 h. In all cases, the ABY-029 fluorescence appeared to localize preferentially in EGFR-positive regions. Increasing the injected dose from a microdose level to five times, a microdose level increased the signal by 10-fold, and the contrast was from 8 to 16, showing that there was value in doses slightly higher than the microdose restriction. Normal tissue uptake was found to be affected by the tumor size, indicating that edema was a likely factor affecting the expected tumor to normal tissue contrast. These results suggest

  2. Approaching a Scientific Consensus on the Association between Allergies and Glioma Risk: A Report from the Glioma International Case-Control Study.

    Science.gov (United States)

    Amirian, E Susan; Zhou, Renke; Wrensch, Margaret R; Olson, Sara H; Scheurer, Michael E; Il'yasova, Dora; Lachance, Daniel; Armstrong, Georgina N; McCoy, Lucie S; Lau, Ching C; Claus, Elizabeth B; Barnholtz-Sloan, Jill S; Schildkraut, Joellen; Ali-Osman, Francis; Sadetzki, Siegal; Johansen, Christoffer; Houlston, Richard S; Jenkins, Robert B; Bernstein, Jonine L; Merrell, Ryan T; Davis, Faith G; Lai, Rose; Shete, Sanjay; Amos, Christopher I; Melin, Beatrice S; Bondy, Melissa L

    2016-02-01

    Several previous studies have found inverse associations between glioma susceptibility and a history of allergies or other atopic conditions. Some evidence indicates that respiratory allergies are likely to be particularly relevant with regard to glioma risk. Using data from the Glioma International Case-Control Study (GICC), we examined the effects of respiratory allergies and other atopic conditions on glioma risk. The GICC contains detailed information on history of atopic conditions for 4,533 cases and 4,171 controls, recruited from 14 study sites across five countries. Using two-stage random-effects restricted maximum likelihood modeling to calculate meta-analysis ORs, we examined the associations between glioma and allergy status, respiratory allergy status, asthma, and eczema. Having a history of respiratory allergies was associated with an approximately 30% lower glioma risk, compared with not having respiratory allergies (mOR, 0.72; 95% confidence interval, 0.58-0.90). This association was similar when restricting to high-grade glioma cases. Asthma and eczema were also significantly protective against glioma. A substantial amount of data on the inverse association between atopic conditions and glioma has accumulated, and findings from the GICC study further strengthen the existing evidence that the relationship between atopy and glioma is unlikely to be coincidental. As the literature approaches a consensus on the impact of allergies in glioma risk, future research can begin to shift focus to what the underlying biologic mechanism behind this association may be, which could, in turn, yield new opportunities for immunotherapy or cancer prevention. ©2016 American Association for Cancer Research.

  3. Benefits of adjuvant chemotherapy in high-grade gliomas.

    Science.gov (United States)

    DeAngelis, Lisa M

    2003-12-01

    The current standard of care for patients with high-grade glioma is resection followed by radiotherapy. Adjuvant chemotherapy is not widely accepted because of the low sensitivity of gliomas to traditional antineoplastic agents, the poor penetration of most drugs across the blood-brain barrier, and the significant systemic toxicity associated with current agents. However, nitrosoureas and, subsequently, temozolomide (Temodar [US], Temodal [international]; Schering-Plough Corporation, Kenilworth, NJ), a novel alkylating agent, cross the blood-brain barrier and have activity against gliomas. Nitrosoureas have been studied in phase III trials in the adjuvant setting. In individual trials, chemotherapy did not increase median survival but did increase the proportion of patients surviving >/=18 months by 15%. Only with large meta-analyses did the addition of chemotherapy achieve a statistically significant improvement in median survival. Currently there is no means of identifying which patients will benefit from adjuvant chemotherapy, but nitrosoureas and temozolomide are well tolerated in most patients, justifying the administration of adjuvant chemotherapy to all newly diagnosed patients with malignant glioma.

  4. Dynamic stroma reorganization drives blood vessel dysmorphia during glioma growth.

    Science.gov (United States)

    Mathivet, Thomas; Bouleti, Claire; Van Woensel, Matthias; Stanchi, Fabio; Verschuere, Tina; Phng, Li-Kun; Dejaegher, Joost; Balcer, Marly; Matsumoto, Ken; Georgieva, Petya B; Belmans, Jochen; Sciot, Raf; Stockmann, Christian; Mazzone, Massimiliano; De Vleeschouwer, Steven; Gerhardt, Holger

    2017-12-01

    Glioma growth and progression are characterized by abundant development of blood vessels that are highly aberrant and poorly functional, with detrimental consequences for drug delivery efficacy. The mechanisms driving this vessel dysmorphia during tumor progression are poorly understood. Using longitudinal intravital imaging in a mouse glioma model, we identify that dynamic sprouting and functional morphogenesis of a highly branched vessel network characterize the initial tumor growth, dramatically changing to vessel expansion, leakage, and loss of branching complexity in the later stages. This vascular phenotype transition was accompanied by recruitment of predominantly pro-inflammatory M1-like macrophages in the early stages, followed by in situ repolarization to M2-like macrophages, which produced VEGF-A and relocate to perivascular areas. A similar enrichment and perivascular accumulation of M2 versus M1 macrophages correlated with vessel dilation and malignancy in human glioma samples of different WHO malignancy grade. Targeting macrophages using anti-CSF1 treatment restored normal blood vessel patterning and function. Combination treatment with chemotherapy showed survival benefit, suggesting that targeting macrophages as the key driver of blood vessel dysmorphia in glioma progression presents opportunities to improve efficacy of chemotherapeutic agents. We propose that vessel dysfunction is not simply a general feature of tumor vessel formation, but rather an emergent property resulting from a dynamic and functional reorganization of the tumor stroma and its angiogenic influences. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  5. Gliomas and the vascular fragility of the blood brain barrier

    Directory of Open Access Journals (Sweden)

    Luiz Gustavo eDubois

    2014-12-01

    Full Text Available Astrocytes, members of the glial family, interact through the exchange of soluble factors or by directly contacting neurons and other brain cells, such as microglia and endothelial cells. Astrocytic projections interact with vessels and act as additional elements of the Blood Brain Barrier (BBB. By mechanisms not fully understood, astrocytes can undergo oncogenic transformation and give rise to gliomas. The tumors take advantage of the BBB to ensure survival and continuous growth. A glioma can develop into a very aggressive tumor, the glioblastoma (GBM, characterized by a highly heterogeneous cell population (including tumor stem cells, extensive proliferation and migration. Nevertheless, gliomas can also give rise to slow growing tumors and in both cases, the afflux of blood, via BBB is crucial. Glioma cells migrate to different regions of the brain guided by the extension of blood vessels, colonizing the healthy adjacent tissue. In the clinical context, GBM can lead to tumor-derived seizures, which represent a challenge to patients and clinicians, since drugs used for its treatment must be able to cross the BBB. Uncontrolled and fast growth also leads to the disruption of the chimeric and fragile vessels in the tumor mass resulting in peritumoral edema. Although hormonal therapy is currently used to control the edema, it is not always efficient. In this review we comment the points cited above, considering the importance of the blood brain barrier and the concerns that arise when this barrier is affected.

  6. Monoamine oxidase A (MAO A) inhibitors decrease glioma progression

    Science.gov (United States)

    Vaikari, Vijaya Pooja; Kota, Rajesh; Chen, Kevin; Yeh, Tzu-Shao; Jhaveri, Niyati; Groshen, Susan L.; Olenyuk, Bogdan Z.; Chen, Thomas C.; Hofman, Florence M.; Shih, Jean C.

    2016-01-01

    Glioblastoma (GBM) is an aggressive brain tumor which is currently treated with temozolomide (TMZ). Tumors usually become resistant to TMZ and recur; no effective therapy is then available. Monoamine Oxidase A (MAO A) oxidizes monoamine neurotransmitters resulting in reactive oxygen species which cause cancer. This study shows that MAO A expression is increased in human glioma tissues and cell lines. MAO A inhibitors, clorgyline or the near-infrared-dye MHI-148 conjugated to clorgyline (NMI), were cytotoxic for glioma and decreased invasion in vitro. Using the intracranial TMZ-resistant glioma model, clorgyline or NMI alone or in combination with low-dose TMZ reduced tumor growth and increased animal survival. NMI was localized specifically to the tumor. Immunocytochemistry studies showed that the MAO A inhibitor reduced proliferation, microvessel density and invasion, and increased macrophage infiltration. In conclusion, we have identified MAO A inhibitors as potential novel stand-alone drugs or as combination therapy with low dose TMZ for drug-resistant gliomas. NMI can also be used as a non-invasive imaging tool. Thus has a dual function for both therapy and diagnosis. PMID:26871599

  7. Senescence from glioma stem cell differentiation promotes tumor growth

    International Nuclear Information System (INIS)

    Ouchi, Rie; Okabe, Sachiko; Migita, Toshiro; Nakano, Ichiro; Seimiya, Hiroyuki

    2016-01-01

    Glioblastoma (GBM) is a lethal brain tumor composed of heterogeneous cellular populations including glioma stem cells (GSCs) and differentiated non-stem glioma cells (NSGCs). While GSCs are involved in tumor initiation and propagation, NSGCs' role remains elusive. Here, we demonstrate that NSGCs undergo senescence and secrete pro-angiogenic proteins, boosting the GSC-derived tumor formation in vivo. We used a GSC model that maintains stemness in neurospheres, but loses the stemness and differentiates into NSGCs upon serum stimulation. These NSGCs downregulated telomerase, shortened telomeres, and eventually became senescent. The senescent NSGCs released pro-angiogenic proteins, including vascular endothelial growth factors and senescence-associated interleukins, such as IL-6 and IL-8. Conditioned medium from senescent NSGCs promoted proliferation of brain microvascular endothelial cells, and mixed implantation of GSCs and senescent NSGCs into mice enhanced the tumorigenic potential of GSCs. The senescent NSGCs seem to be clinically relevant, because both clinical samples and xenografts of GBM contained tumor cells that expressed the senescence markers. Our data suggest that senescent NSGCs promote malignant progression of GBM in part via paracrine effects of the secreted proteins. - Highlights: • Non-stem glioma cells (NSGCs) lose telomerase and eventually become senescent. • Senescent NSGCs secrete pro-angiogenic proteins, such as VEGFs, IL-6, and IL-8. • Senescent NSGCs enhance the growth of brain microvascular endothelial cells. • Senescent NSGCs enhance the tumorigenic potential of glioma stem cells in vivo.

  8. Pediatric glioma stem cells: biologic strategies for oncolytic HSV virotherapy

    Directory of Open Access Journals (Sweden)

    Gregory K Friedman

    2013-02-01

    Full Text Available While glioblastoma multiforme (GBM is the most common adult malignant brain tumor, GBMs in childhood represent less than 10% of pediatric malignant brain tumors and are phenotypically and molecularly distinct from adult GBMs. Similar to adult patients, outcomes for children with high-grade gliomas (HGGs remain poor. Furthermore, the significant morbidity and mortality yielded by pediatric GBM is compounded by neurotoxicity for the developing brain caused by current therapies. Poor outcomes have been attributed to a subpopulation of chemotherapy and radiotherapy resistant cells, termed ‘glioma stem cells’ (GSCs, ‘glioma progenitor cells’, or ‘glioma-initiating cells', which have the ability to initiate and maintain the tumor and to repopulate the recurring tumor after conventional therapy. Future innovative therapies for pediatric HGGs must be able to eradicate these therapy-resistant GSCs. Oncolytic herpes simplex viruses, genetically engineered to be safe for normal cells and to express diverse foreign anti-tumor therapeutic genes, have been demonstrated in preclinical studies to infect and kill GSCs and tumor cells equally while sparing normal brain cells. In this review, we discuss the unique aspects of pediatric GSCs, including markers to identify them, the microenvironment they reside in, signaling pathways that regulate them, mechanisms of cellular resistance, and approaches to target GSCs, with a focus on the promising therapeutic, genetically engineered oncolytic herpes simplex virus (HSV.

  9. Preliminary clinical trial of immunotherapy for malignant glioma.

    Science.gov (United States)

    Ingram, M; Shelden, C H; Jacques, S; Skillen, R G; Bradley, W G; Techy, G B; Freshwater, D B; Abts, R M; Rand, R W

    1987-10-01

    An immunotherapy protocol based on intracranial implantation of stimulated, autologous lymphocytes into the tumor bed following surgical debulking of malignant glioma is described. Phase I clinical trials in human patients are now in progress. Preliminary data representing the first 39 patients treated are presented briefly.

  10. A 12-week interdisciplinary rehabilitation trial in patients with gliomas

    DEFF Research Database (Denmark)

    Hansen, Anders; Søgaard, Karen; Minet, Lisbeth Rosenbek

    2018-01-01

    rehabilitation intervention of physical therapy and occupational therapy in the initial treatment phase of patients with gliomas whose Karnofsky performance status is ≥70 is safe and feasible, if relevant inclusion criteria and precautionary screening are made. With the revised protocol, we are confident...

  11. Levetiracetam improves verbal memory in high-grade glioma patients

    NARCIS (Netherlands)

    de Groot, Marjolein; Douw, Linda; Sizoo, Eefje M; Bosma, Ingeborg; Froklage, Femke E; Heimans, Jan J; Postma, Tjeerd J; Klein, Martin; Reijneveld, Jaap C

    BACKGROUND: Treatment of high-grade glioma (HGG) patients with anti-epileptic drugs (AEDs) has met with various side effects, such as cognitive deterioration. The cognitive effects of both older and newer AEDs in HGG patients are largely unknown. The aim of this study was to determine the effect of

  12. Bereaved Caregivers to Patients With High-Grade Glioma

    DEFF Research Database (Denmark)

    Piil, Karin; Jarden, Mary

    2018-01-01

    PURPOSE: The disease and treatment trajectory of patients with high-grade glioma is a burdensome period for the patients' closest relatives who become informal caregivers. Caregivers experiencing this demanding shift in role are at risk of developing symptoms such as depression. Few studies have...... care planning within neuro-oncology caregiving to establish evidence-based practice guidelines and recommendations....

  13. Clinical utility and impact of functional neuronavigation for glioma surgery

    International Nuclear Information System (INIS)

    Kamada, Kyousuke; Anei, Ryogo; Ota, Takahiro; Kawai, Kensuke; Saito, Nobuhito

    2010-01-01

    After co-registration of functional MRI with finger tapping tasks for corticospinal tract tractography, the results were imported to a neuronavigation system (functional neuronavigation). Cortical and subcortical stimulation with 5-train electric pulses was then used to identify the motor system. Functional neuronavigation was a reliable and practical technique for preservation of the motor function in glioma surgery. (author)

  14. Glioma surgery in eloquent areas : can we preserve cognition?

    NARCIS (Netherlands)

    Satoer, Djaina; Visch-Brink, Evy; Dirven, Clemens; Vincent, Arnaud

    2015-01-01

    BACKGROUND: Cognitive preservation is crucial in glioma surgery, as it is an important aspect of daily life functioning. Several studies claimed that surgery in eloquent areas is possible without causing severe cognitive damage. However, this conclusion was relatively ungrounded due to the lack of

  15. Cryopreservation of organotypic multicellular spheroids from human gliomas

    NARCIS (Netherlands)

    Kaaijk, P.; van den Berg, F.; van Amstel, P.; Troost, D.

    1996-01-01

    Fresh human glioma tissue can be cultured on agarose to form organotypic multicellular spheroids (OMS). The major advantage of OMS is the preservation of the cellular heterogeneity and the tumour architecture, which is lost in conventional monolayer cultures. The present study was undertaken to

  16. Prognostic Marker before Treatment of Patients with Malignant Glioma

    Directory of Open Access Journals (Sweden)

    Norbert Galldiks

    2012-11-01

    Full Text Available The purpose of this positron emission tomography (PET study was to compare the prognostic value of pretreatment volume of [11C] methionine (MET uptake and semiquantitative MET uptake ratio in patients with malignant glioma. The study population comprised 40 patients with malignant glioma. Pretreatment magnetic resonance imaging (MRI and MET-PET imaging were performed before the initiation of glioma treatment in all patients. The pretreatment MET uptake ratios and volumes were assessed. To create prognostically homogeneous subgroups, patients′ pretreatment prognostic factors were stratified according to the six classes of Radiation Therapy Oncology Group recursive partitioning analysis (RTOG RPA. Univariate and multivariate analyses were performed to determine significant prognostic factors. Survival analyses identified the pretreatment volume of MET uptake and a higher RTOG RPA class as significant predictors. In contrast, pretreatment maximum areas of contrast enhancement on MRI and semiquantitative MET uptake ratios could not be identified as significant prognostic factors. The patients′ outcomes and Karnofsky Performance Scale scores were significantly correlated with pretreatment volume of MET uptake but not with semiquantitative MET uptake ratio. The data suggest that pretreatment volumetry of MET uptake but not the semiquantitative MET uptake ratio is a useful biologic prognostic marker in patients with malignant glioma.

  17. SNAI2/Slug promotes growth and invasion in human gliomas

    International Nuclear Information System (INIS)

    Yang, Hong Wei; Menon, Lata G; Black, Peter M; Carroll, Rona S; Johnson, Mark D

    2010-01-01

    Numerous factors that contribute to malignant glioma invasion have been identified, but the upstream genes coordinating this process are poorly known. To identify genes controlling glioma invasion, we used genome-wide mRNA expression profiles of primary human glioblastomas to develop an expression-based rank ordering of 30 transcription factors that have previously been implicated in the regulation of invasion and metastasis in cancer. Using this approach, we identified the oncogenic transcriptional repressor, SNAI2/Slug, among the upper tenth percentile of invasion-related transcription factors overexpressed in glioblastomas. SNAI2 mRNA expression correlated with histologic grade and invasive phenotype in primary human glioma specimens, and was induced by EGF receptor activation in human glioblastoma cells. Overexpression of SNAI2/Slug increased glioblastoma cell proliferation and invasion in vitro and promoted angiogenesis and glioblastoma growth in vivo. Importantly, knockdown of endogenous SNAI2/Slug in glioblastoma cells decreased invasion and increased survival in a mouse intracranial human glioblastoma transplantation model. This genome-scale approach has thus identified SNAI2/Slug as a regulator of growth and invasion in human gliomas

  18. Senescence from glioma stem cell differentiation promotes tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Ouchi, Rie [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Okabe, Sachiko; Migita, Toshiro [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Nakano, Ichiro [Department of Neurosurgery, Comprehensive Cancer Center, University of Alabama at Birmingham, 1824 6th Avenue South, Birmingham, AL 35233 (United States); Seimiya, Hiroyuki, E-mail: hseimiya@jfcr.or.jp [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan)

    2016-02-05

    Glioblastoma (GBM) is a lethal brain tumor composed of heterogeneous cellular populations including glioma stem cells (GSCs) and differentiated non-stem glioma cells (NSGCs). While GSCs are involved in tumor initiation and propagation, NSGCs' role remains elusive. Here, we demonstrate that NSGCs undergo senescence and secrete pro-angiogenic proteins, boosting the GSC-derived tumor formation in vivo. We used a GSC model that maintains stemness in neurospheres, but loses the stemness and differentiates into NSGCs upon serum stimulation. These NSGCs downregulated telomerase, shortened telomeres, and eventually became senescent. The senescent NSGCs released pro-angiogenic proteins, including vascular endothelial growth factors and senescence-associated interleukins, such as IL-6 and IL-8. Conditioned medium from senescent NSGCs promoted proliferation of brain microvascular endothelial cells, and mixed implantation of GSCs and senescent NSGCs into mice enhanced the tumorigenic potential of GSCs. The senescent NSGCs seem to be clinically relevant, because both clinical samples and xenografts of GBM contained tumor cells that expressed the senescence markers. Our data suggest that senescent NSGCs promote malignant progression of GBM in part via paracrine effects of the secreted proteins. - Highlights: • Non-stem glioma cells (NSGCs) lose telomerase and eventually become senescent. • Senescent NSGCs secrete pro-angiogenic proteins, such as VEGFs, IL-6, and IL-8. • Senescent NSGCs enhance the growth of brain microvascular endothelial cells. • Senescent NSGCs enhance the tumorigenic potential of glioma stem cells in vivo.

  19. Developing chemotherapy for diffuse pontine intrinsic gliomas (DIPG).

    Science.gov (United States)

    Gwak, Ho-Shin; Park, Hyeon Jin

    2017-12-01

    Prognosis of diffuse intrinsic pontine glioma (DIPG) is poor, with a median survival of 10 months after radiation. At present, chemotherapy has failed to show benefits over radiation. Advances in biotechnology have enabled the use of autopsy specimens for genomic analyses and molecular profiling of DIPG, which are quite different from those of supratentorial high grade glioma. Recently, combined treatments of cytotoxic agents with target inhibitors, based on biopsied tissue, are being examined in on-going trials. Spontaneous DIPG mice models have been recently developed that is useful for preclinical studies. Finally, the convection-enhanced delivery could be used to infuse drugs directly into the brainstem parenchyma, to which conventional systemic administration fails to achieve effective concentration. The WHO glioma classification defines a diffuse midline glioma with a H3-K27M-mutation, and we expect increase of tissue confirmation of DIPG, which will give us the biological information helping the development of a targeted therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. An unusual cystic appearance of disseminated low-grade gliomas

    International Nuclear Information System (INIS)

    Huang, T.; Zimmerman, R.A.; Perilongo, G.; Kaufman, B.A.; Holden, K.R.; Carollo, C.; Kling Chong, W.K.

    2001-01-01

    We report five cases of pediatric disseminated low-grade gliomas of the brainstem or spinal cord that exhibited an unusual, cystic pattern. Leptomeningeal disease was present in three of these at diagnosis, and was detected shortly afterwards in the other two. Four patients are alive up to 5 years later, following minimal to no intervention, while one is dead. (orig.)

  1. UPA-sensitive ACPP-conjugated nanoparticles for multi-targeting therapy of brain glioma.

    Science.gov (United States)

    Zhang, Bo; Zhang, Yujie; Liao, Ziwei; Jiang, Ting; Zhao, Jingjing; Tuo, Yanyan; She, Xiaojian; Shen, Shun; Chen, Jun; Zhang, Qizhi; Jiang, Xinguo; Hu, Yu; Pang, Zhiqing

    2015-01-01

    Now it is well evidenced that tumor growth is a comprehensive result of multiple pathways, and glioma parenchyma cells and stroma cells are closely associated and mutually compensatory. Therefore, drug delivery strategies targeting both of them simultaneously might obtain more promising therapeutic benefits. In the present study, we developed a multi-targeting drug delivery system modified with uPA-activated cell-penetrating peptide (ACPP) for the treatment of brain glioma (ANP). In vitro experiments demonstrated nanoparticles (NP) decorated with cell-penetrating peptide (CPP) or ACPP could significantly improve nanoparticles uptake by C6 glioma cells and nanoparticles penetration into glioma spheroids as compared with traditional NP and thus enhanced the therapeutic effects of its payload when paclitaxel (PTX) was loaded. In vivo imaging experiment revealed that ANP accumulated more specifically in brain glioma site than NP decorated with or without CPP. Brain slides further showed that ACPP contributed to more nanoparticles accumulation in glioma site, and ANP could co-localize not only with glioma parenchyma cells, but also with stroma cells including neo-vascular cells and tumor associated macrophages. The pharmacodynamics results demonstrated ACPP could significantly improve the therapeutic benefits of nanoparticles by significantly prolonging the survival time of glioma bearing mice. In conclusion, the results suggested that nanoparticles modified with uPA-sensitive ACPP could reach multiple types of cells in glioma tissues and provide a novel strategy for glioma targeted therapy.

  2. Astrocytes protect glioma cells from chemotherapy and upregulate survival genes via gap junctional communication.

    Science.gov (United States)

    Lin, Qingtang; Liu, Zhao; Ling, Feng; Xu, Geng

    2016-02-01

    Gliomas are the most common type of primary brain tumor. Using current standard treatment regimens, the prognosis of patients with gliomas remains poor, which is predominantly due to the resistance of glioma cells to chemotherapy. The organ microenvironment has been implicated in the pathogenesis and survival of tumor cells. Thus, the aim of the present study was to test the hypothesis that astrocytes (the housekeeping cells of the brain microenvironment) may protect glioma cells from chemotherapy and to investigate the underlying mechanism. Immunofluorescent and scanning electron microscopy demonstrated that glioma cells were surrounded and infiltrated by activated astrocytes. In vitro co-culture of glioma cells with astrocytes significantly reduced the cytotoxic effects on glioma cells caused by various chemotherapeutic agents, as demonstrated by fluorescein isothiocyanate-propidium iodide flow cytometry. Transwell experiments indicated that this protective effect was dependent on physical contact and the gap junctional communication (GJC) between astrocytes and glioma cells. Microarray expression profiling further revealed that astrocytes upregulated the expression levels of various critical survival genes in the glioma cells via GJC. The results of the present study indicated that the organ microenvironment may affect the biological behavior of tumor cells and suggest a novel mechanism of resistance in glioma cells, which may be of therapeutic relevance clinically.

  3. The prospective application of a hypoxic radiosensitizer, doranidazole to rat intracranial glioblastoma with blood brain barrier disruption

    International Nuclear Information System (INIS)

    Yasui, Hironobu; Asanuma, Taketoshi; Kino, Junichi; Yamamori, Tohru; Meike, Shunsuke; Nagane, Masaki; Kubota, Nobuo; Kuwabara, Mikinori; Inanami, Osamu

    2013-01-01

    Glioblastoma is one of the intractable cancers and is highly resistant to ionizing radiation. This radioresistance is partly due to the presence of a hypoxic region which is widely found in advanced malignant gliomas. In the present study, we evaluated the effectiveness of the hypoxic cell sensitizer doranidazole (PR-350) using the C6 rat glioblastoma model, focusing on the status of blood brain barrier (BBB). Reproductive cell death in the rat C6 glioma cell line was determined by means of clonogenic assay. An intracranial C6 glioma model was established for the in vivo experiments. To investigate the status of the BBB in C6 glioma bearing brain, we performed the Evans blue extravasation test. Autoradiography with [ 14 C]-doranidazole was performed to examine the distribution of doranidazole in the glioma tumor. T2-weighted MRI was employed to examine the effects of X-irradiation and/or doranidazole on tumor growth. Doranidazole significantly enhanced radiation-induced reproductive cell death in vitro under hypoxia, but not under normoxia. The BBB in C6-bearing brain was completely disrupted and [ 14 C]-doranidazole specifically penetrated the tumor regions. Combined treatment with X-irradiation and doranidazole significantly inhibited the growth of C6 gliomas. Our results revealed that BBB disruption in glioma enables BBB-impermeable radiosensitizers to penetrate and distribute in the target region. This study is the first to propose that in malignant glioma the administration of hydrophilic hypoxic radiosensitizers could be a potent strategy for improving the clinical outcome of radiotherapy without side effects

  4. Upregulation of B23 promotes tumor cell proliferation and predicts poor prognosis in glioma

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jianguo [Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu Province (China); Department of Neurosurgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province (China); Sun, Jie; Yang, Liu; Yan, Yaohua; Shi, Wei; Shi, Jinlong; Huang, Qingfeng; Chen, Jian [Department of Neurosurgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province (China); Lan, Qing, E-mail: lanqingsj@163.com [Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu Province (China)

    2015-10-09

    B23 (also known as Nucleophosmin, NPM, numatrin or NO38) is a ubiquitously expressed phosphoprotein belonging to the nucleoplasmin family of chaperones. In this study we intended to investigate the clinical significance of B23 expression in human glioma and its biological function in glioma cells. Western blot and immunohistochemistry analysis showed that B23 was overexpressed in glioma tissues and glioma cell lines. In addition, the expression level of B23 was positively correlated with glioma pathological grade and Ki-67 expression. Kaplan–Meier analysis revealed that a higher B23 expression in patients with glioma was associated with a poorer prognosis. In vitro, after the release of glioma cell lines from serum starvation, the expression of B23 was upregulated, as well as PCNA (Proliferating Cell Nuclear Antigen) and cyclin A. In addition, knockdown of B23 by small interfering RNA transfection diminished the expression of PCNA, cyclin D1 and arrested cell growth at G1 phase. Taken together, our results implied that B23 could be a candidate prognostic biomarker as well as a potential therapeutical target of glioma. - Highlights: • B23 expression increased as the malignant degree of glioma increased, which was consistent with Ki-67 expression. • High expression of B23 could be a strong determinant of poor prognosis in glioma. • B23 may be involved in the proliferation of glioma in a cell-cycle-dependent pathway. • Knockdown of B23 expression by siRNA could affect the progression of glioma. • B23 may be a potential prognosis biomarker and a possible therapeutic target for glioma.

  5. Diffuse Gliomas for Nonneuropathologists: The New Integrated Molecular Diagnostics.

    Science.gov (United States)

    Lee, Sunhee C

    2018-05-18

    Diffuse gliomas comprise the bulk of "brain cancer" in adults. The recent update to the 4th edition of the World Health Organization's classification of tumors of the central nervous system reflects an unprecedented change in the landscape of the diagnosis and management of diffuse gliomas that will affect all those involved in the management and care of patients. Of the recently discovered gene alterations, mutations in the Krebs cycle enzymes isocitrate dehydrogenases (IDHs) 1 and 2 have fundamentally changed the way the gliomas are understood and classified. Incorporating information on a few genetic parameters (IDH, ATRX and/or p53, and chromosome 1p19q codeletion), a relatively straightforward diagnostic algorithm has been generated with robust and reproducible results that correlate with patients' survival far better than relying on conventional histology alone. Evidence also supports the conclusion that the vast majority of diffuse gliomas without IDH mutations (IDH-wild-type astrocytomas) behave like IDH-wild-type glioblastomas ("molecular GBM"). Together, these changes reflect a big shift in the practice of diagnostic neuropathology in which tumor risk stratification aligns better with molecular information than histology/grading. The purpose of this review is to provide the readers with a brief synopsis of the changes in the 2016 World Health Organization update with an emphasis on diffuse gliomas and to summarize key gene abnormalities on which these classifications are based. Practical points involved in day-to-day diagnostic workup are also discussed, along with a comparison of the various diagnostic tests, including immunohistochemistry, with an emphasis on targeted next-generation sequencing panel technology as a future universal approach.

  6. Retinoids in the treatment of glioma: a new perspective.

    Science.gov (United States)

    Mawson, Anthony R

    2012-01-01

    Primary brain tumors are among the top ten causes of cancer-related deaths in the US. Malignant gliomas account for approximately 70% of the 22,500 new cases of malignant primary brain tumors diagnosed in adults each year and are associated with high morbidity and mortality. Despite optimal treatment, the prognosis for patients with gliomas remains poor. The use of retinoids (vitamin A and its congeners) in the treatment of certain tumors was originally based on the assumption that these conditions were associated with an underlying deficiency of vitamin A and that supplementation with pharmacological doses would correct the deficiency. Yet the results of retinoid treatment have been only modestly beneficial and usually short-lived. Studies also indicate that vitamin A excess and supplementation have pro-oxidant effects and are associated with increased risks of mortality from cancer and other diseases. The therapeutic role of vitamin A in cancer thus remains uncertain and a new perspective on the facts is needed. The modest and temporary benefits of retinoid treatment could result from a process of feedback inhibition, whereby exogenous retinoid temporarily inhibits the endogenous synthesis of these compounds. In fact, repeated and/or excessive exposure of the tissues to endogenous retinoic acid may contribute to carcinogenesis. Gliomas, in particular, may result from an imbalance in retinoid receptor expression initiated by environmental factors that increase the endogenous production of retinoic acid in glia. At the receptor level, it is proposed that this imbalance is characterized by excessive expression of retinoic acid receptor-α (RARα) and reduced expression of retinoic acid receptor-β (RARβ). This suggests a potential new treatment strategy for gliomas, possibly even at a late stage of the disease, ie, to combine the use of a RARα antagonist and a RARβ agonist. According to this hypothesis, the RARα antagonist would be expected to inhibit RAR

  7. Glioma surgery in eloquent areas: can we preserve cognition?

    Science.gov (United States)

    Satoer, Djaina; Visch-Brink, Evy; Dirven, Clemens; Vincent, Arnaud

    2016-01-01

    Cognitive preservation is crucial in glioma surgery, as it is an important aspect of daily life functioning. Several studies claimed that surgery in eloquent areas is possible without causing severe cognitive damage. However, this conclusion was relatively ungrounded due to the lack of extensive neuropsychological testing in homogenous patient groups. In this study, we aimed to elucidate the short-term and long-term effects of glioma surgery on cognition by identifying all studies who conducted neuropsychological tests preoperatively and postoperatively in glioma patients. We systematically searched the electronical databases Embase, Medline OvidSP, Web of Science, PsychINFO OvidSP, PubMed, Cochrane, Google Scholar, Scirius and Proquest aimed at cognitive performance in glioma patients preoperatively and postoperatively. We included 17 studies with tests assessing the cognitive domains: language, memory, attention, executive functions and/or visuospatial abilities. Language was the domain most frequently examined. Immediately postoperatively, all studies except one, found deterioration in one or more cognitive domains. In the longer term (3-6/6-12 months postoperatively), the following tests showed both recovery and deterioration compared with the preoperative level: naming and verbal fluency (language), verbal word learning (memory) and Trailmaking B (executive functions). Cognitive recovery to the preoperative level after surgery is possible to a certain extent; however, the results are too arbitrary to draw definite conclusions and not all studies investigated all cognitive domains. More studies with longer postoperative follow-up with tests for cognitive change are necessary for a better understanding of the conclusive effects of glioma surgery on cognition.

  8. Targeting of human glioma xenografts in vivo utilizing radiolabeled antibodies

    International Nuclear Information System (INIS)

    Williams, J.A.; Wessels, B.W.; Wharam, M.D.; Order, S.E.; Wanek, P.M.; Poggenburg, J.K.; Klein, J.L.

    1990-01-01

    Radiolabeled antibodies provide a potential basis for selective radiotherapy of human gliomas. We have measured tumor targeting by radiolabeled monoclonal and polyclonal antibodies directed against neuroectodermal and tumor-associated antigens in nude mice bearing human glioma xenografts. Monoclonal P96.5, a mouse IgG2a immunoglobulin, defines an epitope of a human melanoma cell surface protein, and specifically binds the U-251 human glioma as measured by immunoperoxidase histochemistry. 111In-radiolabeled P96.5 specifically targets the U-251 human glioma xenograft and yields 87.0 microCuries (microCi) of tumor activity per gram per 100 microCi injected activity compared to 4.5 microCi following administration of radiolabeled irrelevant monoclonal antibody. Calculations of targeting ratios demonstrate deposited dose to be 11.6 times greater with radiolabeled P96.5 administration compared to irrelevant monoclonal antibody. The proportion of tumor dose found in normal organs is less than 10%, further supporting specific targeting of the human glioma xenograft by this antibody. Monoclonal antibody ZME018, which defines a second melanoma-associated antigen, and polyclonal rabbit antiferritin, which defines a tumor-associated antigen, demonstrate positive immunoperoxidase staining of the tumor, but comparatively decreased targeting. When compared to the 111In-radiolabeled antibody, 90Y-radiolabeled P96.5 demonstrates comparable tumor targeting and percentages of tumor dose found in normal organs. To test the therapeutic potential of 90Y-radiolabeled P96.5, tumors and normal sites were implanted with miniature thermoluminescent dosimeters (TLD). Seven days following administration of 100 microCi 90Y-radiolabeled P96.5, average absorbed doses of 3770, 980, 353, and 274 cGy were observed in tumor, liver, contralateral control site, and total body, respectively

  9. SCCRO Promotes Glioma Formation and Malignant Progression in Mice

    Directory of Open Access Journals (Sweden)

    Stephen R. Broderick

    2010-06-01

    Full Text Available Originally identified as an oncogene activated by amplification in squamous cell carcinomas, several lines of evidence now suggest that squamous cell carcinoma-related oncogene (SCCRO; aka DCUN1D1 may play a role in the pathogenesis of a wide range of human cancers including gliomas. SCCRO's oncogenic function is substantiated by its ectopic expression, resulting in transformation of cells in culture and xenograft formation in nude mice. The aim of this study was to assess the in vivo oncogenicity of SCCRO in a murine model. Ubiquitous expression of SCCRO resulted in early embryonic lethality. Because SCCRO overexpression was detected in human gliomas, its in vivo oncogenic activity was assessed in an established murine glioma model. Conditional expression of SCCRO using a replication-competent ASLV long terminal repeat with splice acceptor/nestin-(tumor virus-A tv-a model system was not sufficient to induce tumor formation in a wild-type genetic background, but tumors formed with increasing frequency and decreasing latency in facilitated background containing Ink4a deletion alone or in combination with PTEN loss. Ectopic expression of SCCRO in glial progenitor cells resulted in lower-grade gliomas in Ink4a-/- mice, whereas its expression in Ink4a-/-/PTEN-/- background produced high-grade glioblastoma-like lesions that were indistinguishable from human tumors. Expression of SCCRO with platelet-derived growth factor-beta (PDGF-β resulted in an increased proportion of mice forming glioblastoma-like tumors compared with those induced by PDGF-β alone. This work substantiates SCCRO's function as an oncogene by showing its ability to facilitate malignant transformation and carcinogenic progression in vivo and supports a role for SCCRO in the pathogenesis of gliomas and other human cancers.

  10. Retinoids in the treatment of glioma: a new perspective

    International Nuclear Information System (INIS)

    Mawson, Anthony R

    2012-01-01

    Primary brain tumors are among the top ten causes of cancer-related deaths in the US. Malignant gliomas account for approximately 70% of the 22,500 new cases of malignant primary brain tumors diagnosed in adults each year and are associated with high morbidity and mortality. Despite optimal treatment, the prognosis for patients with gliomas remains poor. The use of retinoids (vitamin A and its congeners) in the treatment of certain tumors was originally based on the assumption that these conditions were associated with an underlying deficiency of vitamin A and that supplementation with pharmacological doses would correct the deficiency. Yet the results of retinoid treatment have been only modestly beneficial and usually short-lived. Studies also indicate that vitamin A excess and supplementation have pro-oxidant effects and are associated with increased risks of mortality from cancer and other diseases. The therapeutic role of vitamin A in cancer thus remains uncertain and a new perspective on the facts is needed. The modest and temporary benefits of retinoid treatment could result from a process of feedback inhibition, whereby exogenous retinoid temporarily inhibits the endogenous synthesis of these compounds. In fact, repeated and/or excessive exposure of the tissues to endogenous retinoic acid may contribute to carcinogenesis. Gliomas, in particular, may result from an imbalance in retinoid receptor expression initiated by environmental factors that increase the endogenous production of retinoic acid in glia. At the receptor level, it is proposed that this imbalance is characterized by excessive expression of retinoic acid receptor-α (RARα) and reduced expression of retinoic acid receptor-β (RARβ). This suggests a potential new treatment strategy for gliomas, possibly even at a late stage of the disease, ie, to combine the use of a RARα antagonist and a RARβ agonist. According to this hypothesis, the RARα antagonist would be expected to inhibit RAR

  11. Innate immune functions of microglia isolated from human glioma patients

    Directory of Open Access Journals (Sweden)

    Grimm Elizabeth

    2006-03-01

    Full Text Available Abstract Background Innate immunity is considered the first line of host defense and microglia presumably play a critical role in mediating potent innate immune responses to traumatic and infectious challenges in the human brain. Fundamental impairments of the adaptive immune system in glioma patients have been investigated; however, it is unknown whether microglia are capable of innate immunity and subsequent adaptive anti-tumor immune responses within the immunosuppressive tumor micro-environment of human glioma patients. We therefore undertook a novel characterization of the innate immune phenotype and function of freshly isolated human glioma-infiltrating microglia (GIM. Methods GIM were isolated by sequential Percoll purification from patient tumors immediately after surgical resection. Flow cytometry, phagocytosis and tumor cytotoxicity assays were used to analyze the phenotype and function of these cells. Results GIM expressed significant levels of Toll-like receptors (TLRs, however they do not secrete any of the cytokines (IL-1β, IL-6, TNF-α critical in developing effective innate immune responses. Similar to innate macrophage functions, GIM can mediate phagocytosis and non-MHC restricted cytotoxicity. However, they were statistically less able to mediate tumor cytotoxicity compared to microglia isolated from normal brain. In addition, the expression of Fas ligand (FasL was low to absent, indicating that apoptosis of the incoming lymphocyte population may not be a predominant mode of immunosuppression by microglia. Conclusion We show for the first time that despite the immunosuppressive environment of human gliomas, GIM are capable of innate immune responses such as phagocytosis, cytotoxicity and TLR expression but yet are not competent in secreting key cytokines. Further understanding of these innate immune functions could play a critical role in understanding and developing effective immunotherapies to malignant human gliomas.

  12. Efficacy of the HSP90 inhibitor 17-AAG in human glioma cell lines and tumorigenic glioma stem cells.

    Science.gov (United States)

    Sauvageot, Claire Marie-Elisabeth; Weatherbee, Jessica Leigh; Kesari, Santosh; Winters, Susan Elizabeth; Barnes, Jessica; Dellagatta, Jamie; Ramakrishna, Naren Raj; Stiles, Charles Dean; Kung, Andrew Li-Jen; Kieran, Mark W; Wen, Patrick Yung Chih

    2009-04-01

    Glioblastoma multiforme (GBM) arises from genetic and signaling abnormalities in components of signal transduction pathways involved in proliferation, survival, and the cell cycle axis. Studies to date with single-agent targeted molecular therapy have revealed only modest effects in attenuating the growth of these tumors, suggesting that targeting multiple aberrant pathways may be more beneficial. Heat-shock protein 90 (HSP90) is a molecular chaperone that is involved in the conformational maturation of a defined group of client proteins, many of which are deregulated in GBM. 17-allylamino-17-demethoxygeldanamycin (17-AAG) is a well-characterized HSP90 inhibitor that should be able to target many of the aberrant signal transduction pathways in GBM. We assessed the ability of 17-AAG to inhibit the growth of glioma cell lines and glioma stem cells both in vitro and in vivo and assessed its ability to synergize with radiation and/or temozolomide, the standard therapies for GBM. Our results reveal that 17-AAG is able to inhibit the growth of both human glioma cell lines and glioma stem cells in vitro and is able to target the appropriate proteins within these cells. In addition, 17-AAG can inhibit the growth of intracranial tumors and can synergize with radiation both in tissue culture and in intracranial tumors. This compound was not found to synergize with temozolomide in any of our models of gliomas. Our results suggest that HSP90 inhibitors like 17-AAG may have therapeutic potential in GBM, either as a single agent or in combination with radiation.

  13. Evaluation de l'IRM multiparamétrique comme indicateur de l'effet de thérapies anti-angiogéniques sur des modèles de gliomes implantés chez le rat

    OpenAIRE

    Lemasson, Benjamin

    2010-01-01

    In the context of glioma, MRI plays an extremely important role in the evaluation of new anti-tumor therapies in preclinical research for their development and in clinical routine to monitor patients under therapy. The aim of this thesis was to determine if one or several MRI parameters can be used as biomarker of therapy effects on glioma models in rats. We evaluated different MRI parameters (ADC: apparent diffusion coefficient of water, BVf: blood volume fraction and VSI: vessel size index)...

  14. GCN5 Potentiates Glioma Proliferation and Invasion via STAT3 and AKT Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Kun Liu

    2015-09-01

    Full Text Available The general control of nucleotide synthesis 5 (GCN5, which is one kind of lysine acetyltransferases, regulates a number of cellular processes, such as cell proliferation, differentiation, cell cycle and DNA damage repair. However, its biological role in human glioma development remains elusive. In the present study, we firstly reported that GCN5 was frequently overexpressed in human glioma tissues and GCN5 was positively correlated with proliferation of cell nuclear antigen PCNA and matrix metallopeptidase MMP9. Meanwhile, down-regulation of GCN5 by siRNA interfering inhibited glioma cell proliferation and invasion. In addition, GCN5 knockdown reduced expression of p-STAT3, p-AKT, PCNA and MMP9 and increased the expression of p21 in glioma cells. In conclusion, GCN5 exhibited critical roles in glioma development by regulating cell proliferation and invasion, which suggested that GCN5 might be a potential molecular target for glioma treatment.

  15. Light-controlled inhibition of malignant glioma by opsin gene transfer

    Science.gov (United States)

    Yang, F; Tu, J; Pan, J-Q; Luo, H-L; Liu, Y-H; Wan, J; Zhang, J; Wei, P-F; Jiang, T; Chen, Y-H; Wang, L-P

    2013-01-01

    Glioblastomas are aggressive cancers with low survival rates and poor prognosis because of their highly proliferative and invasive capacity. In the current study, we describe a new optogenetic strategy that selectively inhibits glioma cells through light-controlled membrane depolarization and cell death. Transfer of the engineered opsin ChETA (engineered Channelrhodopsin-2 variant) gene into primary human glioma cells or cell lines, but not normal astrocytes, unexpectedly decreased cell proliferation and increased mitochondria-dependent apoptosis, upon light stimulation. These optogenetic effects were mediated by membrane depolarization-induced reductions in cyclin expression and mitochondrial transmembrane potential. Importantly, the ChETA gene transfer and light illumination in mice significantly inhibited subcutaneous and intracranial glioma growth and increased the survival of the animals bearing the glioma. These results uncover an unexpected effect of opsin ion channels on glioma cells and offer the opportunity for the first time to treat glioma using a light-controllable optogenetic approach. PMID:24176851

  16. Tumor-specific binding of radiolabeled G-22 monoclonal antibody in glioma patients

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Jun; Wakabayashi, Toshihiko; Mizuno, Masaaki; Sugita, Kenichiro; Oshima, Motoo; Tadokoro, Masanori; Sakuma, Sadayuki [Nagoya Univ. (Japan). Faculty of Medicine; Seo, Hisao

    1992-03-01

    Iodine-131-labeled G-22 monoclonal antibody F(ab'){sub 2} fragment reacting specifically with a glioma-associated surface glycoprotein was administered to 12 glioma patients to investigate its use in radioimaging of intracranial gliomas. No immediate or delayed side effects were attributable to antibody injection. Nine patients received the radiolabeled complex intravenously. The images of low-grade gliomas were generally poor and disappeared within 4 days. High-contrast images were obtained beyond the 7th day in high-grade gliomas except one case in the pineal region. Three patients received intraventricular or intratumoral administration. Clear images of all tumors were demonstrated from the 2nd until later than the 7th day. One patient with cerebrospinal fluid (CSF) dissemination of brainstem glioma demonstrated negative CSF cytology after intraventricular administration. (author).

  17. Saw Palmetto Extract Inhibits Metastasis and Antiangiogenesis through STAT3 Signal Pathway in Glioma Cell

    OpenAIRE

    Ding, Hong; Shen, Jinglian; Yang, Yang; Che, Yuqin

    2015-01-01

    Signal transducer and activator of transcription factor 3 (STAT3) plays an important role in the proliferation and angiogenesis in human glioma. Previous research indicated that saw palmetto extract markedly inhibited the proliferation of human glioma cells through STAT3 signal pathway. But its effect on tumor metastasis and antiangiogenesis is not clear. This study is to further clear the impact of saw palmetto extract on glioma cell metastasis, antiangiogenesis, and its mechanism. TUNEL ass...

  18. Uptake of iodine-123-α-methyl tyrosine by gliomas and non-neoplastic brain lesions

    International Nuclear Information System (INIS)

    Kuwert, T.; Morgenroth, C.; Woesler, B.; Matheja, P.; Palkovic, S.; Vollet, B.; Samnick, S.; Maasjosthusmann, U.; Lerch, H.; Gildehaus, F.J.; Wassmann, H.; Schober, O.

    1996-01-01

    Using single-photon emission tomography (SPET), the radiopharmaceutical L-3-iodine-123-α-methyl tyrosine (IMT) has been applied to the imaging of amino acid transport into brain tumours. It was the aim of this study to investigate whether IMT SPET is capable of differentiating between high-grade gliomas, low-grade gliomas and non-neoplastic brain lesions. To this end, IMT uptake was determined in 53 patients using the triple-headed SPET camera MULTISPECT 3. Twenty-eight of these subjects suffered from high-grade gliomas (WHO grade III or IV), 12 from low-grade gliomas (WHO grade II), and 13 from non-neoplastic brain lesions, including lesions after effective therapy of a glioma (five cases), infarctions (four cases), inflammatory lesions (three cases), infarctions (four cases), inflammatory lesions (three cases) and traumatic haematoma (one case). IMT uptake was significantly higher in high-grade gliomas than in low-grade gliomas and non-neoplastic lesions. IMT uptake by low-grade gliomas was not significantly different from that by non-neoplastic lesions. Diagnostic sensitivity and specificity were 71% and 83% for differentiating high-grade from low-grade gliomas, 82% and 100% for distinguishing high-grade gliomas from non-neoplastic lesions, and 50% and 100% for discriminating low-grade gliomas from non-neoplastic lesions. Analogously to positron emission tomography with radioactively labelled amino acids and fluorine-18 deoxyglucose, IMT SPET may aid in differentiating higc-grade gliomas from histologically benign brain tumours and non-neoplastic brain lesions; it is of only limited value in differentiating between non-neoplastic lesions and histologically benign brain tumours. (orig.)

  19. The 18-kDa mitochondrial translocator protein in gliomas: from the bench to bedside.

    OpenAIRE

    Janczar, Karolina; Su, Zhangjie; Raccagni, Isabella; Anfosso, Andrea; Kelly, Charlotte; Durrenberger, Pascal F; Gerhard, Alexander; Roncaroli, Federic

    2015-01-01

    The 18-kDa mitochondrial translocator protein (TSPO) is known to be highly expressed in several types of cancer, including gliomas, whereas expression in normal brain is low. TSPO functions in glioma are still incompletely understood. The TSPO can be quantified pre-operatively with molecular imaging making it an ideal candidate for personalized treatment of patient with glioma. Studies have proposed to exploit the TSPO as a transporter of chemotherapics to selectively target tumour cells in t...

  20. Retinoids in the treatment of glioma: a new perspective

    Directory of Open Access Journals (Sweden)

    Mawson AR

    2012-08-01

    Full Text Available Anthony R MawsonDepartment of Health Policy and Management, School of Health Sciences, College of Public Service, Jackson State University, Jackson, MS, USAAbstract: Primary brain tumors are among the top ten causes of cancer-related deaths in the US. Malignant gliomas account for approximately 70% of the 22,500 new cases of malignant primary brain tumors diagnosed in adults each year and are associated with high morbidity and mortality. Despite optimal treatment, the prognosis for patients with gliomas remains poor. The use of retinoids (vitamin A and its congeners in the treatment of certain tumors was originally based on the assumption that these conditions were associated with an underlying deficiency of vitamin A and that supplementation with pharmacological doses would correct the deficiency. Yet the results of retinoid treatment have been only modestly beneficial and usually short-lived. Studies also indicate that vitamin A excess and supplementation have pro-oxidant effects and are associated with increased risks of mortality from cancer and other diseases. The therapeutic role of vitamin A in cancer thus remains uncertain and a new perspective on the facts is needed. The modest and temporary benefits of retinoid treatment could result from a process of feedback inhibition, whereby exogenous retinoid temporarily inhibits the endogenous synthesis of these compounds. In fact, repeated and/or excessive exposure of the tissues to endogenous retinoic acid may contribute to carcinogenesis. Gliomas, in particular, may result from an imbalance in retinoid receptor expression initiated by environmental factors that increase the endogenous production of retinoic acid in glia. At the receptor level, it is proposed that this imbalance is characterized by excessive expression of retinoic acid receptor-α(RARα and reduced expression of retinoic acid receptor-β (RARβ. This suggests a potential new treatment strategy for gliomas, possibly even at a

  1. Overexpression of NIMA-related kinase 2 is associated with poor prognoses in malignant glioma.

    Science.gov (United States)

    Liu, Huajie; Liu, Bin; Hou, Xianzeng; Pang, Bo; Guo, Pengbo; Jiang, Wanli; Ding, Qian; Zhang, Rui; Xin, Tao; Guo, Hua; Xu, Shangchen; Pang, Qi

    2017-05-01

    Eleated expression of NIMA-related kinase 2 (NEK2) was frequently observed in a variety of malignant cancers, and it appears to be involved in the initiation, maintenance, progression, metastasis of cancer and is positively associated with poor prognosis. We sought to investigate NEK2 expression and its predictive roles in malignant gliomas, and study the correlation of NEK2 protein expression with proliferation, clinical parameters, overall survival and some other parameters. We investigate NEK2 protein expression in 99 samples of malignant gliomas, including 35 WHO grade II, 22 grade III, and 42 grade IV gliomas, by immunohistochemistry and western blot (n = 50). We then made correlative analysis of protein overexpression using the Kaplan-Meier method, Log rank test, and Cox proportional-hazards model analysis. NEK2 protein was overexpressed in malignant gliomas, but not in normal brain tissues. Overexpression of NEK2 correlated with malignancy, proliferation and adverse overall survival in gliomas. Moreover, chemotherapy, resection extent and WHO grade also correlate with overall survival in gliomas. However, within WHO grade II glioma subgroup, NEK2 overexpression showed no impact on overall survival. The present study firstly reveals that NEK2 protein is widely overexpressed in gliomas. NEK2 overexpression correlates significantly with malignancy (WHO grades), proliferation (Ki-67) and prognosis in malignant gliomas. NEK2 is a potential gene therapy target and prognostic indicator.

  2. The effects of CD147 on the cell proliferation, apoptosis, invasion, and angiogenesis in glioma.

    Science.gov (United States)

    Yin, Haoyuan; Shao, Ying; Chen, Xuan

    2017-01-01

    To analyze the effects of extracellular matrix metalloproteinase inducer (CD147) on glioma proliferation, apoptosis, invasion, and angiogenesis. Tissue samples were obtained from 101 glioma cases while normal brain tissues were obtained from 30 brain injury cases. Immunohistochemical assay was performed to detect the expressions of CD147, CD34, and VEGF in tissue samples. QRT-PCR was performed to detect the relative expression of CD147 mRNA in human glioma cell lines. CD147 siRNA was transfected into glioma cell line U251. Cell proliferation, apoptosis, invasion, and angiogenesis were tested by MTT, flow cytometry, Transwell assay, and vasculogenic mimicry assay, respectively. Expressions of relative proteins were analyzed with western blot. CD147 was positively expressed with the percentage of 0, 37.5, 44.8, 67.9, and 85.7 % in normal tissues and glioma tissues with WHO grades I-IV, respectively, and the scores of MVDand VEGF were associated with the expression of CD147. CD147 was significantly upregulated in the human glioma cell lines (P CD147 suppressed cell proliferation, blocked cell cycle, induced apoptosis, inhibited cell invasion and angiogenesis in glioma cells in vitro. The expression of CD147 was significantly associated with WHO tumor grade and angiogenesis; silencing of CD147 contributed to inhibition of glioma proliferation, invasion, and angiogenesis. Our study provided firm evidence that CD 147 is a potential glioma target for anti-angiogenic therapies.

  3. Tumor localization of boronated porphyrins in an intracerebral model of glioma

    International Nuclear Information System (INIS)

    Hill, J.S.; Kaye, A.H.; Gonzales, M.F.; Stylli, S.S.; Nakamura, Y.; Kahl, S.B.; Vardaxis, N.J.; Johnson, C.I.

    1992-01-01

    Treatment of the most common cerebral tumor, cerebral glioma, is unsatisfactory as the tumor recurs due to inadequate local control. Photodynamic therapy (PDT) and Boron Neutron Capture Therapy (BNCT) offer some promise as adjuvant treatments for cerebral glioma. Several clinical trials have been reported utilizing PDT and BNCT to treat the high grade glioma, glioblastoma multiforme. The authors have investigated the pharmacokinetic tissue distribution of the photosensitizer Haematoporphyrin derivative (HpD), the nido carboranyl porphyrin, boron tetraphenyl porphine (BTPP) and the closo carboranyl monomeric protoporphyrin (BOPP) in CBA mice bearing the intracerebral C6 glioma xenograft

  4. Increased Expression of microRNA-17 Predicts Poor Prognosis in Human Glioma

    Directory of Open Access Journals (Sweden)

    Shengkui Lu

    2012-01-01

    Full Text Available Aim. To investigate the clinical significance of microRNA-17 (miR-17 expression in human gliomas. Methods. Quantitative real-time polymerase chain reaction (qRT-PCR analysis was used to characterize the expression patterns of miR-17 in 108 glioma and 20 normal brain tissues. The associations of miR-17 expression with clinicopathological factors and prognosis of glioma patients were also statistically analyzed. Results. Compared with normal brain tissues, miR-17 expression was significantly higher in glioma tissues (P<0.001. In addition, the increased expression of miR-17 in glioma was significantly associated with advanced pathological grade (P=0.006 and low Karnofsky performance score (KPS, P=0.01. Moreover, Kaplan-Meier survival and Cox regression analyses showed that miR-17 overexpression (P=0.008 and advanced pathological grade (P=0.02 were independent factors predicting poor prognosis for gliomas. Furthermore, subgroup analyses showed that miR-17 expression was significantly associated with poor overall survival in glioma patients with high pathological grades (for grade III~IV: P<0.001. Conclusions. Our data offer the convinced evidence that the increased expression of miR-17 may have potential value for predicting poor prognosis in glioma patients with high pathological grades, indicating that miR-17 may contribute to glioma progression and be a candidate therapeutic target for this disease.

  5. Resection of deep-seated brain glioma by microsurgery assisted with neuronavigation

    International Nuclear Information System (INIS)

    Feng Ming; Zhou Youxin; Sun Chunming; Zhang Shiming

    2009-01-01

    Objective: To investigate the clinical value of neuronavigator assisted microsurgery for deep-seated brain glioma. Methods: The electromagnetic neuronavigation system had been applied for microsurgery of deep-seated brain glioma in fifteen cases. Results: Ten from 15 patients were totally removed, 2 were subtotally removed and 3 were partial removed.All patients had no new neurological deficit. Conclusion: The neuronavigator assisted microsurgery for deep-seated brain glioma is of characters including accurate location, minimal invasiveness, and can enhance the rate of total resection and decrease the operative complications in the patients with deep-seated brain glioma. (authors)

  6. Evaluation of radiation effects against C6 glioma in combination with vaccinia virus-p53 gene therapy

    Science.gov (United States)

    Gridley, D. S.; Andres, M. L.; Li, J.; Timiryasova, T.; Chen, B.; Fodor, I.; Nelson, G. A. (Principal Investigator)

    1998-01-01

    The primary objective of this study was to evaluate the antitumor effects of recombinant vaccinia virus-p53 (rVV-p53) in combination with radiation therapy against the C6 rat glioma, a p53 deficient tumor that is relatively radioresistant. VV-LIVP, the parental virus (Lister strain), was used as a control. Localized treatment of subcutaneous C6 tumors in athymic mice with either rVV-p53 or VV-LIVP together with tumor irradiation resulted in low tumor incidence and significantly slower tumor progression compared to the agents given as single modalities. Assays of blood and spleen indicated that immune system activation may account, at least partly, for the enhance tumor inhibition seen with combined treatment. No overt signs of treatment-related toxicity were noted.

  7. Fenofibrate dose not protect glioma cells from irradiation

    International Nuclear Information System (INIS)

    Ro, Jae Lim; Kim, Won Dong; Park, Woo Yoon

    2012-01-01

    Fenofibrate(FF) is a ligand for peroxisome proliferator-activated receptor (PPAR) α and used clinically as a hypolipidemic drug. FF has been reported to have a radioprotective effect of newborn cells in the dentate gyrus 1) and inhibit radiation-induced microglial pro-inflammatory response 2). However, if FF also protect tumor cells, it can not be used clinically during radiotherapy. Thus, we're interested in whether FF has an radioprotective effect of brain tumor cells or not Although the radiosensitive G0/G1 phase cells were increased, radiosensitization by FF was not observed in three human glioma cells. This may be due to counterbalance of radiosensitizing and radioprotecting proteins increased by FF. Taken together, FF neither radiosensitize nor radioprotect glioma cells, so it can be used to protect normal neural cells from radiation damage

  8. The Effect of Molecular Diagnostics on the Treatment of Glioma.

    Science.gov (United States)

    Bush, Nancy Ann Oberheim; Butowski, Nicholas

    2017-04-01

    This review summarizes the use of molecular diagnostics in glioma and its effect on the development of novel therapeutics and management decisions. Genomic and proteomic profiling of brain tumors has provided significant expansion of our understanding of oncogenesis, characterization, and prognostication of brain tumors. Molecular markers such as MGMT, EGFR, IDH, 1p19q, ATRX, TERT, FGFR-TACC, and BRAF are now being used to classify brain tumors as well as influence management decisions. Several of these markers are also being used as therapeutic targets. We review the use of several molecular diagnostics in gliomas and discuss their impact on drug development and clinical trial design. In the future, molecular characterization based on a specific genomic, proteomic as well as transcriptomes for bioformatics analysis will provide clinicians the ability to rationally select drugs with actionable targets for each patient.

  9. Ultrasonography-guided cobalt-60 brachytherapy for malignant glioma

    International Nuclear Information System (INIS)

    Sakai, Noboru; Takenaka, Katsunobu; Ueda, Tatsuya

    1989-01-01

    Brachytherapy with cobalt-60 source is reported. In this method it is characterized that the source is inserted interstitially with remote control system by after-loading method via outer catheter (using tandem tube), which was established in the center of residual tumor, using ultrasonography guide with trepanation, or intraoperatively put within the dead space after tumor resection. Six cases of deep-seated and recurrent malignant glioma, were treated with this method. A total dose of 20 to 45 Gy (10 to 15 Gy/day for 2 to 3 days) was delivered to the target. Additionally conventional external irradiation was followed. The effect of cobalt-60 brachytherapy on such tumors were favorable especially for well-circumscribed glioma less than 3 cm on CT scan. (author)

  10. SVM-based glioma grading. Optimization by feature reduction analysis

    International Nuclear Information System (INIS)

    Zoellner, Frank G.; Schad, Lothar R.; Emblem, Kyrre E.; Harvard Medical School, Boston, MA; Oslo Univ. Hospital

    2012-01-01

    We investigated the predictive power of feature reduction analysis approaches in support vector machine (SVM)-based classification of glioma grade. In 101 untreated glioma patients, three analytic approaches were evaluated to derive an optimal reduction in features; (i) Pearson's correlation coefficients (PCC), (ii) principal component analysis (PCA) and (iii) independent component analysis (ICA). Tumor grading was performed using a previously reported SVM approach including whole-tumor cerebral blood volume (CBV) histograms and patient age. Best classification accuracy was found using PCA at 85% (sensitivity = 89%, specificity = 84%) when reducing the feature vector from 101 (100-bins rCBV histogram + age) to 3 principal components. In comparison, classification accuracy by PCC was 82% (89%, 77%, 2 dimensions) and 79% by ICA (87%, 75%, 9 dimensions). For improved speed (up to 30%) and simplicity, feature reduction by all three methods provided similar classification accuracy to literature values (∝87%) while reducing the number of features by up to 98%. (orig.)

  11. Malignant gliomas of the brain managed by radiotherapy after surgery

    Energy Technology Data Exchange (ETDEWEB)

    Fichardt, T.; Sandison, A.G. (Pretoria Univ. (South Africa). Dept. of Radiotherapy)

    The article reviews the literature and gives an account of the authors' experience during a 20-year period (1960-1980) of the value of radiotherapy after surgery in the management of 76 patients suffering from brain gliomas classified into 3 grades according to the degree of anaplasia present in the histological sections, viz. grades II, III and IV. Radiotherapy was not given to grade I malignant gliomas as they are treated by surgery only. The period is divided into 2 subperiods. The first is from 1960-1972 when part-brain, high-dose irradiation following surgery was used on 33 patients in various age groups. The second period covers whole-brain, low-dose irradiation following surgery and was used on 43 patients in various age groups.

  12. Intraoperative Functional Mapping and Monitoring during Glioma Surgery

    Science.gov (United States)

    SAITO, Taiichi; MURAGAKI, Yoshihiro; MARUYAMA, Takashi; TAMURA, Manabu; NITTA, Masayuki; OKADA, Yoshikazu

    2015-01-01

    Glioma surgery represents a significant advance with respect to improving resection rates using new surgical techniques, including intraoperative functional mapping, monitoring, and imaging. Functional mapping under awake craniotomy can be used to detect individual eloquent tissues of speech and/or motor functions in order to prevent unexpected deficits and promote extensive resection. In addition, monitoring the patient’s neurological findings during resection is also very useful for maximizing the removal rate and minimizing deficits by alarming that the touched area is close to eloquent regions and fibers. Assessing several types of evoked potentials, including motor evoked potentials (MEPs), sensory evoked potentials (SEPs) and visual evoked potentials (VEPs), is also helpful for performing surgical monitoring in patients under general anesthesia (GA). We herein review the utility of intraoperative mapping and monitoring the assessment of neurological findings, with a particular focus on speech and the motor function, in patients undergoing glioma surgery. PMID:25744346

  13. Mathematical modeling of efficient protocols to control glioma growth.

    Science.gov (United States)

    Branco, J R; Ferreira, J A; de Oliveira, Paula

    2014-09-01

    In this paper we propose a mathematical model to describe the evolution of glioma cells taking into account the viscoelastic properties of brain tissue. The mathematical model is established considering that the glioma cells are of two phenotypes: migratory and proliferative. The evolution of the migratory cells is described by a diffusion-reaction equation of non Fickian type deduced considering a mass conservation law with a non Fickian migratory mass flux. The evolution of the proliferative cells is described by a reaction equation. A stability analysis that leads to the design of efficient protocols is presented. Numerical simulations that illustrate the behavior of the mathematical model are included. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Molecular pathology in adult gliomas: diagnostic, prognostic, and predictive markers.

    LENUS (Irish Health Repository)

    Jansen, Michael

    2010-07-01

    Over the past 10 years, there has been an increasing use of molecular markers in the assessment and management of adult malignant gliomas. Some molecular signatures are used diagnostically to help pathologists classify tumours, whereas others are used to estimate prognosis for patients. Most crucial, however, are those markers that are used to predict response to certain therapies, thereby directing clinicians to a particular treatment while avoiding other potentially deleterious therapies. Recently, large-scale genome-wide surveys have been used to identify new biomarkers that have been rapidly developed as diagnostic and prognostic tools. Given these developments, the pace of discovery of new molecular assays will quicken to facilitate personalised medicine in the setting of malignant glioma.

  15. Radioimmunoimaging of experimental gliomas using radiolabelled monoclonal antibodies

    International Nuclear Information System (INIS)

    Glaessner, H.

    1986-01-01

    The biodistribution and tumour uptake of radiolabelled (131 I) glioma-seeking monoclonal antibodies (14 AC1) and their F(ab') 2 fragments were investigated in nude mice having received glioma transplants. Radioimmunoimaging by external scintigraphy at 48 and 96 hours pointed to a superior tumour localisation by the fragments that was clearly related to the dose. Wholebody determinations of the biokinetic behaviour led to the following results: Faster clearance anc more ready elimination from the blood pool for the fragments, preferential uptake in the tumour; intact antibodies; binding in the liver, spleen and lungs. The study confirmed the value of fragments of monoclonal antibodies in the diagnosis of tumours and pointed to the possibility of using intact monoclonal antibodies as carriers of radioisotopes and cytotoxic drugs within the scope of therapeutic programmes. (TRV) [de

  16. Mechanisms of Glioma Formation: Iterative Perivascular Glioma Growth and Invasion Leads to Tumor Progression, VEGF-Independent Vascularization, and Resistance to Antiangiogenic Therapy

    Directory of Open Access Journals (Sweden)

    Gregory J. Baker

    2014-07-01

    Full Text Available As glioma cells infiltrate the brain they become associated with various microanatomic brain structures such as blood vessels, white matter tracts, and brain parenchyma. How these distinct invasion patterns coordinate tumor growth and influence clinical outcomes remain poorly understood. We have investigated how perivascular growth affects glioma growth patterning and response to antiangiogenic therapy within the highly vascularized brain. Orthotopically implanted rodent and human glioma cells are shown to commonly invade and proliferate within brain perivascular space. This form of brain tumor growth and invasion is also shown to characterize de novo generated endogenous mouse brain tumors, biopsies of primary human glioblastoma (GBM, and peripheral cancer metastasis to the human brain. Perivascularly invading brain tumors become vascularized by normal brain microvessels as individual glioma cells use perivascular space as a conduit for tumor invasion. Agent-based computational modeling recapitulated biological perivascular glioma growth without the need for neoangiogenesis. We tested the requirement for neoangiogenesis in perivascular glioma by treating animals with angiogenesis inhibitors bevacizumab and DC101. These inhibitors induced the expected vessel normalization, yet failed to reduce tumor growth or improve survival of mice bearing orthotopic or endogenous gliomas while exacerbating brain tumor invasion. Our results provide compelling experimental evidence in support of the recently described failure of clinically used antiangiogenics to extend the overall survival of human GBM patients.

  17. In vitro drug response and efflux transporters associated with drug resistance in pediatric high grade glioma and diffuse intrinsic pontine glioma.

    Directory of Open Access Journals (Sweden)

    Susanna J E Veringa

    Full Text Available Pediatric high-grade gliomas (pHGG, including diffuse intrinsic pontine gliomas (DIPG, are the leading cause of cancer-related death in children. While it is clear that surgery (if possible, and radiotherapy are beneficial for treatment, the role of chemotherapy for these tumors is still unclear. Therefore, we performed an in vitro drug screen on primary glioma cells, including three DIPG cultures, to determine drug sensitivity of these tumours, without the possible confounding effect of insufficient drug delivery. This screen revealed a high in vitro cytotoxicity for melphalan, doxorubicine, mitoxantrone, and BCNU, and for the novel, targeted agents vandetanib and bortezomib in pHGG and DIPG cells. We subsequently determined the expression of the drug efflux transporters P-gp, BCRP1, and MRP1 in glioma cultures and their corresponding tumor tissues. Results indicate the presence of P-gp, MRP1 and BCRP1 in the tumor vasculature, and expression of MRP1 in the glioma cells themselves. Our results show that pediatric glioma and DIPG tumors per se are not resistant to chemotherapy. Treatment failure observed in clinical trials, may rather be contributed to the presence of drug efflux transporters that constitute a first line of drug resistance located at the blood-brain barrier or other resistance mechanism. As such, we suggest that alternative ways of drug delivery may offer new possibilities for the treatment of pediatric high-grade glioma patients, and DIPG in particular.

  18. 12 years' experience with intraoperative radiotherapy (IORT) of malignant gliomas

    International Nuclear Information System (INIS)

    Schueller, P.; Micke, O.; Moustakis, C.; Bruns, F.; Schuck, A.; Willich, N.; Palkovic, S.; Schroeder, J.; Wassmann, H.

    2005-01-01

    Background: Even after surgery and radiotherapy, malignant gliomas still have a poor prognosis. The authors report on their experience with IORT in 71 patients. Patients and methods: From May 1992 to February 2004, 71 patients with malignant gliomas were treated with IORT. 26 patients suffered from grade III gliomas, 45 patients from glioblastomas (GBM). IORT was carried out using a standard electron tube and 9- to 18-MeV electrons. 52/71 patients who were primarily treated received 20 Gy IORT + 60 Gy postoperative radiotherapy, 19/71 patients with recurrences only received IORT (20-25 Gy). Results: The complication rates were 1.4% for wound infections and 5.6% for hemorrhage. Median disease-specific survival amounted to 14.9 months (gliomass III) and 14.2 months (GBM). The 2-year survival rates amounted to 26.9% (gliomas III) and 6.8% (GBM; p=0.0296). Total versus subtotal resection had no significant influence on survival (p=0.0741), nor had age, sex, tumor site, performance status, size, primary versus recurrence, and radiation dose. A comparison to a conventionally treated patient group did not show a significant survival improvement. 3 months after treatment, initial symptoms had improved in 59% (hemiparesis), 50% (aphasia), 50% (hemianopsia), and 60% (convulsions). Conclusion: IORT has been shown to be feasible; perioperative complication rates were not increased. Survival was generally not improved compared to a historical control group. Recurrences achieved the same survival as primary tumors, and GBM also had a slightly increased survival, thus being possible indications for IORT. (orig.)

  19. Efficacy and toxicity of postoperative temozolomide radiochemotherapy in malignant glioma

    Energy Technology Data Exchange (ETDEWEB)

    Kocher, M.; Kunze, S.; Eich, H.T.; Semrau, R.; Mueller, R.P. [Dept. of Radiation Oncology, Univ. of Cologne (Germany)

    2005-03-01

    Purpose: to evaluate the feasibility, safety and efficacy of daily temozolomide concurrent with postoperative radiotherapy in malignant glioma. Patients and methods: from 11/1999 to 03/2003, n = 81 patients aged 15-72 years (median 52 years, karnofsky score 80-100% in 83%) suffering from primary glioblastoma (n = 47), anaplastic astrocytoma (n = 6), anaplastic oligodendroglioma (n = 16), and recurrent glioma (n = 12) were treated. Patients with primary gliomas received a combination of postoperative radiotherapy (60 Gy/1.8- to 2.0-Gy fractions) and daily oral temozolomide (75 mg/m{sup 2}) at all irradiation days (30-33 doses), while recurrent tumors were treated with 45-60 Gy and temozolomide. Initially, 6/81 patients had daily temozolomide doses of 50 mg/m{sup 2}. Results: in total, 70/81 patients (86%) completed both radio- and chemotherapy. Grade 1 nausea/vomiting was seen in 28%, grade 2 in 11%, grade 3 in 1%. Antiemetics were applied in 41%. Hematologic toxicities were observed as follows: leukopenia grade 3/4 1%, lymphopenia grade 3/4 46%, thrombopenia grade 3/4 1%. Two patients under dexamethasone suffered herpes encephalitis after one and 16 doses of temozolomide (75 mg/m{sup 2}). Median survival was 15 months for glioblastoma. In oligodendroglioma patients, a 4-year survival rate of 78% was observed. Conclusion: postoperative radiochemotherapy with 30-33 daily doses of temozolomide (75 mg/m{sup 2}) is safe in patients with malignant glioma. The combined schedule is effective in oligodendroglioma patients and may prolong survival in glioblastoma. Effort should be taken to minimize corticosteroid doses, since both steroids and temozolomide lead to immunosuppression. (orig.)

  20. Isolated optic nerve gliomas: a multicenter historical cohort study.

    Science.gov (United States)

    Shofty, Ben; Ben-Sira, Liat; Kesler, Anat; Jallo, George; Groves, Mari L; Iyer, Rajiv R; Lassaletta, Alvaro; Tabori, Uri; Bouffet, Eric; Thomale, Ulrich-Wilhelm; Hernáiz Driever, Pablo; Constantini, Shlomi

    2017-12-01

    OBJECTIVE Isolated optic nerve gliomas (IONGs) constitute a rare subgroup of optic pathway gliomas (OPGs). Due to the rarity of this condition and the difficulty in differentiating IONGs from other types of OPGs in most clinical series, little is known about these tumors. Currently, due to lack of evidence, they are managed the same as any other OPG. METHODS The authors conducted a multicenter retrospective cohort study aimed at determining the natural history of IONGs. Included were patients with clear-cut glioma of the optic nerve without posterior (chiasmatic/hypothalamic) involvement. At least 1 year of follow-up, 2 MRI studies, and 2 neuro-ophthalmological examinations were required for inclusion. RESULTS Thirty-six patients with 39 tumors were included in this study. Age at diagnosis ranged between 6 months and 16 years (average 6 years). The mean follow-up time was 5.6 years. Twenty-five patients had neurofibromatosis Type 1. During the follow-up period, 59% of the tumors progressed, 23% remained stable, and 18% (all with neurofibromatosis Type 1) displayed some degree of spontaneous regression. Fifty-one percent of the patients presented with visual decline, of whom 90% experienced further deterioration. Nine patients were treated with chemotherapy, 5 of whom improved visually. Ten patients underwent operation, and no local or distal recurrence was noted. CONCLUSIONS Isolated optic nerve gliomas are highly dynamic tumors. Radiological progression and visual deterioration occur in greater percentages than in the general population of patients with OPGs. Response to chemotherapy may be better in this group, and its use should be considered early in the course of the disease.

  1. Multimodal imaging in cerebral gliomas and its neuropathological correlation

    Energy Technology Data Exchange (ETDEWEB)

    Gempt, Jens, E-mail: jens.gempt@lrz.tum.de [Neurochirurgische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); Soehngen, Eric [Abteilung für Neuroradiologie, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); Abteilung für Neuropathologie des Instituts für Allgemeine Pathologie und Pathologische Anatomie, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); Förster, Stefan [Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); Ryang, Yu-Mi [Neurochirurgische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); Schlegel, Jürgen [Abteilung für Neuropathologie des Instituts für Allgemeine Pathologie und Pathologische Anatomie, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); and others

    2014-05-15

    Introduction: Concerning the preoperative clinical diagnostic work-up of glioma patients, tumor heterogeneity challenges the oncological therapy. The current study assesses the performance of a multimodal imaging approach to differentiate between areas in malignant gliomas and to investigate the extent to which such a combinatorial imaging approach might predict the underlying histology. Methods: Prior to surgical resection, patients harboring intracranial gliomas underwent MRIs (MR-S, PWI) and {sup 18}F-FET-PETs. Intratumoral and peritumoral biopsy targets were defined, by MRI only, by FET-PET only, and by MRI and FET-PET combined, and biopsied prior to surgical resection and which then received separate histopathological examinations. Results: In total, 38 tissue samples were acquired (seven glioblastomas, one anaplastic astrocytoma, one anaplastic oligoastrocytoma, one diffuse astrocytoma, and one oligoastrocytoma) and underwent histopathological analysis. The highest mean values of Mib1 and CD31 were found in the target point “T’ defined by MRI and FET-PET combined. A significant correlation between NAA/Cr and PET tracer uptake (−0.845, p < 0.05) as well as Cho/Cr ratio and cell density (0.742, p < 0.05) and NAA/Cr ratio and MIB-1 (−0761, p < 0.05) was disclosed for this target point, though not for target points defined by MRI and FET-PET alone. Conclusion: Multimodal-imaging-guided stereotactic biopsy correlated more with histological malignancy indices, such as cell density and MIB-1 labeling, than targets that were based solely on the highest amino acid uptake or contrast enhancement on MRI. The results of our study indicate that a combined PET-MR multimodal imaging approach bears potential benefits in detecting glioma heterogeneity.

  2. Patterns of diagnostic marker assessment in adult diffuse glioma

    DEFF Research Database (Denmark)

    Woehrer, Adelheid; Kristensen, Bjarne W.; Vital, Anne

    2017-01-01

    The 2016 update of the WHO classification has introduced an integrated diagnostic approach that incorporates both tumor morphology and molecular information. This conceptual change has far-reaching implications, especially for neuropathologists who are in the forefront of translating molecular...... markers to routine diagnostic use. Adult diffuse glioma is a prototypic example for a group of tumors that underwent substantial regrouping, and it represents a major workload for surgical neuropathologists. Hence, we conducted a survey among members of the European Confederation of Neuropathological...

  3. Treatment Resistance Mechanisms of Malignant Glioma Tumor Stem Cells

    International Nuclear Information System (INIS)

    Schmalz, Philip G.R.; Shen, Michael J.; Park, John K.

    2011-01-01

    Malignant gliomas are highly lethal because of their resistance to conventional treatments. Recent evidence suggests that a minor subpopulation of cells with stem cell properties reside within these tumors. These tumor stem cells are more resistant to radiation and chemotherapies than their counterpart differentiated tumor cells and may underlie the persistence and recurrence of tumors following treatment. The various mechanisms by which tumor stem cells avoid or repair the damaging effects of cancer therapies are discussed

  4. Differential Signature of the Centrosomal MARK4 Isoforms in Glioma

    Directory of Open Access Journals (Sweden)

    Ivana Magnani

    2011-01-01

    Full Text Available Background: MAP/microtubule affinity-regulating kinase 4 (MARK4 is a serine-threonine kinase expressed in two spliced isoforms, MARK4L and MARK4S, of which MARK4L is a candidate for a role in neoplastic transformation. Methods: We performed mutation analysis to identify sequence alterations possibly affecting MARK4 expression. We then investigated the MARK4L and MARK4S expression profile in 21 glioma cell lines and 36 tissues of different malignancy grades, glioblastoma-derived cancer stem cells (GBM CSCs and mouse neural stem cells (NSCs by real-time PCR, immunoblotting and immunohistochemistry. We also analyzed the sub-cellular localisation of MARK4 isoforms in glioma and normal cell lines by immunofluorescence. Results: Mutation analysis rules out sequence variations as the cause of the altered MARK4 expression in glioma. Expression profiling confirms that MARK4L is the predominant isoform, whereas MARK4S levels are significantly decreased in comparison and show an inverse correlation with tumour grade. A high MARK4L/MARK4S ratio also characterizes undifferentiated cells, such as GBM CSCs and NSCs. Accordingly, only MARK4L is expressed in brain neurogenic regions. Moreover, while both MARK4 isoforms are localised to the centrosome and midbody in glioma and normal cells, the L isoform exhibits an additional nucleolar localisation in tumour cells. Conclusions: The observed switch towards MARK4L suggests that the balance between the MARK4 isoforms is carefully guarded during neural differentiation but may be subverted in gliomagenesis. Moreover, the MARK4L nucleolar localisation in tumour cells features this MARK4 isoform as a nucleolus-associated tumour marker.

  5. Involvement of the kynurenine pathway in human glioma pathophysiology.

    Directory of Open Access Journals (Sweden)

    Seray Adams

    Full Text Available The kynurenine pathway (KP is the principal route of L-tryptophan (TRP catabolism leading to the production of kynurenine (KYN, the neuroprotectants, kynurenic acid (KYNA and picolinic acid (PIC, the excitotoxin, quinolinic acid (QUIN and the essential pyridine nucleotide, nicotinamide adenine dinucleotide (NAD(+. The enzymes indoleamine 2,3-dioxygenase-1 (IDO-1, indoleamine 2,3-dioxygenase-2 (IDO-2 and tryptophan 2,3-dioxygenase (TDO-2 initiate the first step of the KP. IDO-1 and TDO-2 induction in tumors are crucial mechanisms implicated to play pivotal roles in suppressing anti-tumor immunity. Here, we report the first comprehensive characterisation of the KP in 1 cultured human glioma cells and 2 plasma from patients with glioblastoma (GBM. Our data revealed that interferon-gamma (IFN-γ stimulation significantly potentiated the expression of the KP enzymes, IDO-1 IDO-2, kynureninase (KYNU, kynurenine hydroxylase (KMO and significantly down-regulated 2-amino-3-carboxymuconate semialdehyde decarboxylase (ACMSD and kynurenine aminotransferase-I (KAT-I expression in cultured human glioma cells. This significantly increased KP activity but significantly lowered the KYNA/KYN neuroprotective ratio in human cultured glioma cells. KP activation (KYN/TRP was significantly higher, whereas the concentrations of the neuroreactive KP metabolites TRP, KYNA, QUIN and PIC and the KYNA/KYN ratio were significantly lower in GBM patient plasma (n = 18 compared to controls. These results provide further evidence for the involvement of the KP in glioma pathophysiology and highlight a potential role of KP products as novel and highly attractive therapeutic targets to evaluate for the treatment of brain tumors, aimed at restoring anti-tumor immunity and reducing the capacity for malignant cells to produce NAD(+, which is necessary for energy production and DNA repair.

  6. Malignant glioma: Should chemotherapy be overthrown by experimental treatments?

    OpenAIRE

    Hösli, P.; Sappino, A. P.; de Tribolet, N.; Dietrich, P. Y.

    2017-01-01

    Despite more than two decades of clinical research with chemotherapy, the outcome of malignant gliomas remains poor. Recent years have seen major advances in elucidation of the biology of these tumors, which in turn have led to the current development of innovative therapeutic strategies. The question confronting us at the end of the 1990s is whether we should continue to use and investigate chemotherapy or whether the time has come for experimental treatments. As a contribution to this debat...

  7. Levetiracetam-induced interstitial nephritis in a patient with glioma.

    Science.gov (United States)

    Mahta, Ali; Kim, Ryan Y; Kesari, Santosh

    2012-01-01

    A 45-year-old man with a new diagnosis of low grade glioma was started on an escalating dose of levetiracetam (Lev) for seizure management. He gradually developed intractable nausea/vomiting and a high creatinine concentration due to acute renal failure which was attributed to Lev-induced interstitial nephritis. The medication was changed and his renal function rapidly improved to his baseline. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Evaluation glioma for C-11-methyl-L-methionine PET

    International Nuclear Information System (INIS)

    Kenji Torii; Joji Kawabe; Takehiro hayashi; Jin Kotani; Ai Oe; Etsushi Kawamura; Hirotaka Ishizu; Hiroyuki Tsushima; Mitsuhiro Hara; Susumu Shiomi; Naohiro Tsuyuguchi

    2004-01-01

    Positron emission tomography (PET) using a positron tracer allows noninvasive measurement of regional brain metabolism and has been utilized for pathophysiological evaluation of brain tumors and as a highly specific means for diagnosis of brain tumors. Like the images yielded from anatomical imaging techniques such as computer tomography (CT) and magnetic resonance imaging (MRI), PET images play an important role as functional images. In cases of glioma, the manner by which the tumor cells spread to surrounding cells varies from case to case, and the extent of their spread also varies among different cases. It is reported that glioma is difficult to detect on anatomical images. C-11-methyl-L-methionine (Met) is taken up into glioma more markedly than into intact tissue and is thus considered to provide a useful means of tumor localization. It is possible to precisely determine the scope of glioma invasion by CT, MRI or F-18 fluoro-2-deoxy-D-glucose (FDG)-PET. This information is useful in determining an optimal operative procedure, the scope of postoperative radiotherapy and an optimal chemotherapy individual cases. It is also known that the evaluation of the malignancy level of glioma is closely related to the prognosis of patients with this tumor. Although FDG-PET allows evaluation of the malignancy level of glioma, PET using methionine (Met-PET) provides the best means of localization of tumors (including determination of the extent of tumor invasion). Therefore, if a technique of evaluating the malignancy level of glioma using Met-PET is established, it will be highly useful in clinical practice. At our facility, attempts have been made to use FDG-PET and Met-PET for evaluation of the malignancy level and scope of invasion of tumors in patients suspected of having brain tumors. The present study was undertaken to evaluate the degree of accumulation of Met in glioma using Met-PET (a technique expected to allow more accurate evaluation of the extent of tumor

  9. Targeting Pediatric Glioma with Apoptosis and Autophagy Manipulation

    Science.gov (United States)

    2014-10-01

    that chloroquine treatments give the most reliable inhibition of autophagy without being directly cytotoxic. Bafilomycin can continue to be used for...in pediatric glioma and its interaction with RTK inhibition and apoptotic pathway activation will enable us to develop efficacious clinical trials...of autophagy, Rab7 and Lamp 2. We are now introducing siRNA against Rab7 and Lamp2 to reiterate the effects of Chloroquine inhibition of autophagy

  10. Studies on the Roles of PDGFRA and EGFR in the Classification and Identification of Therapeutic Targets for Human Gliomas

    OpenAIRE

    Chen, Dongfeng

    2013-01-01

    Glioma is the most common type of primary tumor in the adult central nervous system (CNS). However, the current classification of gliomas is highly subjective and even inaccurate in some cases, which leads to clinical confusion and hinders the development of targeted therapies. EGFR and PDGFRA play crucial roles in glia development and glioma pathogenesis. In this thesis we aim to establish a glial genesis-guided molecular classification scheme for gliomas based on the genes co-expressed with...

  11. Cortical and Subcortical Structural Plasticity Associated with the Glioma Volumes in Patients with Cerebral Gliomas Revealed by Surface-Based Morphometry

    Directory of Open Access Journals (Sweden)

    Jinping Xu

    2017-06-01

    Full Text Available Postlesional plasticity has been identified in patients with cerebral gliomas by inducing a large functional reshaping of brain networks. Although numerous non-invasive functional neuroimaging methods have extensively investigated the mechanisms of this functional redistribution in patients with cerebral gliomas, little effort has been made to investigate the structural plasticity of cortical and subcortical structures associated with the glioma volume. In this study, we aimed to investigate whether the contralateral cortical and subcortical structures are able to actively reorganize by themselves in these patients. The compensation mechanism following contralateral cortical and subcortical structural plasticity is considered. We adopted the surface-based morphometry to investigate the difference of cortical and subcortical gray matter (GM volumes in a cohort of 14 healthy controls and 13 patients with left-hemisphere cerebral gliomas [including 1 patients with World Health Organization (WHO I, 8 WHO II, and 4 WHO III]. The glioma volume ranges from 5.1633 to 208.165 cm2. Compared to healthy controls, we found significantly increased GM volume of the right cuneus and the left thalamus, as well as a trend toward enlargement in the right globus pallidus in patients with cerebral gliomas. Moreover, the GM volumes of these regions were positively correlated with the glioma volumes of the patients. These results provide evidence of cortical and subcortical enlargement, suggesting the usefulness of surface-based morphometry to investigate the structural plasticity. Moreover, the structural plasticity might be acted as the compensation mechanism to better fulfill its functions in patients with cerebral gliomas as the gliomas get larger.

  12. Targeted therapy in the treatment of malignant gliomas

    Directory of Open Access Journals (Sweden)

    Rimas V Lukas

    2009-05-01

    Full Text Available Rimas V Lukas1, Adrienne Boire2, M Kelly Nicholas1,2 1Department of Neurology; 2Department of Medicine, University of Chicago, Chicago, IL, USAAbstract: Malignant gliomas are invasive tumors with the potential to progress through current available therapies. These tumors are characterized by a number of abnormalities in molecular signaling that play roles in tumorigenesis, spread, and survival. These pathways are being actively investigated in both the pre-clinical and clinical settings as potential targets in the treatment of malignant gliomas. We will review many of the therapies that target the cancer cell, including the epidermal growth factor receptor, mammalian target of rapamycin, histone deacetylase, and farnesyl transferase. In addition, we will discuss strategies that target the extracellular matrix in which these cells reside as well as angiogenesis, a process emerging as central to tumor development and growth. Finally, we will briefly touch on the role of neural stem cells as both potential targets as well as delivery vectors for other therapies. Interdependence between these varied pathways, both in maintaining health and in causing disease, is clear. Thus, attempts to easily classify some targeted therapies are problematic.Keywords: glioma, EGFR, mTOR, HDAC, Ras, angiogenesis

  13. Hypo fractionated conformal irradiation of patients with malignant glioma

    International Nuclear Information System (INIS)

    Aboziada, M.A.; Abo-Kresha, A.E.

    2012-01-01

    Purpose: The aim of the study is to evaluate the effect of a conformal irradiation in short fractionation scheme of 49.5 Gy in 15 fractions in an overall time of 3 weeks, in terms of overall survival (OAS) and progression free survival (PFS) rates in brain glioma patients. Patients and methods: A prospective study was conducted on 54 brain glioma patients and was carried out in the Radiation Oncology Department, South Egypt Cancer Institute, Assiut University during the period from April 2006 till June 2009. Patients were treated by hypo fractionated conformal irradiation (49.5 Gy/15 fractions/3 weeks). Results: The median follow up was 23 months (range: 9-39 months). Two-year OAS and PFS rates were 68% and 60%, respectively. In univariate analysis, age > 50 years, poor performance status [Karnofasky score of >40- 50 years and glioblastoma pathology were the only independent prognostic factors that were associated with poor OAS (p = 0.003 and p = 0.004, respectively), and PFS (p = 0.027 and p = 0.011, respectively). Conclusion: Hypo fractionated conformal radiotherapy was as effective as the conventional radiotherapy, with time sparing for patients, and for radiation oncology centers. Hypo fractionated radiotherapy may be considered the radiotherapy regimen of choice in clinical practice for patients with gliomas

  14. EEG controls for detecting the recurrence of supratentorial gliomas

    International Nuclear Information System (INIS)

    Leblhuber, F.; Olschowski, A.; Deisenhammer, E.; Hammer, B.; Knauer, W.

    1984-01-01

    The purpose of this study was to find out the value of postoperative EEG controls in the early detection of recurrence of supratentorial gliomas (the majority being astrocytomas, stage II to IV). 29 cases with verified tumour recurrence were examined and in all but one the EEG showed a reactivation of the focus in accordance with the development of the glioma. At least one of the following parameters had to be established: 1. a further spreading of the focal changes, 2. a reduction in frequency, 3. an increase in amplitudes and 4. focal depression and amplitudes. At least 3 postoperative EEG controls were made in each case. The duration of tumour treatment was 3 to 59 months. In 3 cases temporary focus activation was found without evidence of tumour recurrence; in one of these cases the activation was preceded by an epileptic seizure. Epileptic seizures, thus, seem to have a focus activating effect. Focus activation as a result of radiotherapy or cytostatic treatment was not observed. On the basis of our findings it appears that regularly conducted postoperative EEG controls seem to be highly suited as a non-invasive and economical method for the early detection of recurrence of this type of tumour. In the case of malignant types of gliomas involving rapid growth EEG controls should be made monthly. (Author)

  15. Clinical Presentation and Outcome of Patients With Optic Pathway Glioma.

    Science.gov (United States)

    Robert-Boire, Viviane; Rosca, Lorena; Samson, Yvan; Ospina, Luis H; Perreault, Sébastien

    2017-10-01

    Optic pathway gliomas (OPGs) occur sporadically or in patients with neurofibromatosis type 1 (NF1). The purpose of this study was to evaluate the clinical presentation at diagnosis and at progression of patients with OPGs. We conducted a chart review of patients with OPGs diagnosed in a single center over a period of 15 years. Demographic data including age, sex, NF1 status, clinical presentation, and outcome were collected. Of the 40 patients who were identified, 23 had sporadic tumors (57.5%) and 17 had NF1-related tumors (42.5%). Among the children with NF1, there was a significant overrepresentation of girls (82.3%) (P = 0.02), while among the children without NF1, there were slightly more boys (56.5%) than girls (43.5%). The presence of nystagmus was strongly associated with sporadic optic pathway gliomas. Poor visual outcome was related to tumor affecting both optic pathways, hydrocephalus at diagnosis, and optic nerve atrophy. Of the 40 patients, five died of OPG complications (12.5%) and all had sporadic tumors. Our cohort is one of the largest with OPGs and a detailed description of the clinical presentation both at diagnosis and at progression. We observed a significant difference between sporadic and NF1 optic pathway gliomas in terms of demographics, clinical presentation, and outcome. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Predicting patterns of glioma recurrence using diffusion tensor imaging

    International Nuclear Information System (INIS)

    Price, Stephen J.; Pickard, John D.; Jena, Rajesh; Burnet, Neil G.; Carpenter, T.A.; Gillard, Jonathan H.

    2007-01-01

    Although multimodality therapy for high-grade gliomas is making some improvement in outcome, most patients will still die from their disease within a short time. We need tools that allow treatments to be tailored to an individual. In this study we used diffusion tensor imaging (DTI), a technique sensitive to subtle disruption of white-matter tracts due to tumour infiltration, to see if it can be used to predict patterns of glioma recurrence. In this study we imaged 26 patients with gliomas using DTI. Patients were imaged after 2 years or on symptomatic tumour recurrence. The diffusion tensor was split into its isotropic (p) and anisotropic (q) components, and these were plotted on T 2 -weighted images to show the pattern of DTI abnormality. This was compared to the pattern of recurrence. Three DTI patterns could be identified: (a) a diffuse pattern of abnormality where p exceeded q in all directions and was associated with diffuse increase in tumour size; (b) a localised pattern of abnormality where the tumour recurred in one particular direction; and (c) a pattern of minimal abnormality seen in some patients with or without evidence of recurrence. Diffusion tensor imaging is able to predict patterns of tumour recurrence and may allow better individualisation of tumour management and stratification for randomised controlled trials. (orig.)

  17. Predicting patterns of glioma recurrence using diffusion tensor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Price, Stephen J.; Pickard, John D. [University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Addenbrooke' s Hospital, Academic Neurosurgery Unit (United Kingdom); University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Addenbrooke' s Hospital, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences (United Kingdom); Jena, Rajesh; Burnet, Neil G. [University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Addenbrooke' s Hospital, University Department of Oncology (United Kingdom); Carpenter, T.A. [University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Addenbrooke' s Hospital, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences (United Kingdom); Gillard, Jonathan H. [University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Addenbrooke' s Hospital, University Department of Radiology (United Kingdom)

    2007-07-15

    Although multimodality therapy for high-grade gliomas is making some improvement in outcome, most patients will still die from their disease within a short time. We need tools that allow treatments to be tailored to an individual. In this study we used diffusion tensor imaging (DTI), a technique sensitive to subtle disruption of white-matter tracts due to tumour infiltration, to see if it can be used to predict patterns of glioma recurrence. In this study we imaged 26 patients with gliomas using DTI. Patients were imaged after 2 years or on symptomatic tumour recurrence. The diffusion tensor was split into its isotropic (p) and anisotropic (q) components, and these were plotted on T{sub 2}-weighted images to show the pattern of DTI abnormality. This was compared to the pattern of recurrence. Three DTI patterns could be identified: (a) a diffuse pattern of abnormality where p exceeded q in all directions and was associated with diffuse increase in tumour size; (b) a localised pattern of abnormality where the tumour recurred in one particular direction; and (c) a pattern of minimal abnormality seen in some patients with or without evidence of recurrence. Diffusion tensor imaging is able to predict patterns of tumour recurrence and may allow better individualisation of tumour management and stratification for randomised controlled trials. (orig.)

  18. Symptom clusters in patients with high-grade glioma.

    Science.gov (United States)

    Fox, Sherry W; Lyon, Debra; Farace, Elana

    2007-01-01

    To describe the co-occurring symptoms (depression, fatigue, pain, sleep disturbance, and cognitive impairment), quality of life (QoL), and functional status in patients with high-grade glioma. Correlational, descriptive study of 73 participants with high-grade glioma in the U.S. Nine brief measures were obtained with a mailed survey. Participants were recruited from the online message board of The Healing Exchange BRAIN TRUST, a nonprofit organization dedicated to improving quality of life for people with brain tumors. Two symptom cluster models were examined. Four co-occurring symptoms were significantly correlated with each other and explained 29% of the variance in QoL: depression, fatigue, sleep disturbance, and cognitive impairment. Depression, fatigue, sleep disturbance, cognitive impairment, and pain were significantly correlated with each other and explained 62% of the variance in functional status. The interrelationships of the symptoms examined in this study and their relationships with QoL and functional status meet the criteria for defining a symptom cluster. The differences in the models of QoL and functional status indicates that symptom clusters may have unique characteristics in patients with gliomas.

  19. Dipeptidyl peptidase IV in two human glioma cell lines

    Directory of Open Access Journals (Sweden)

    A Sedo

    2009-12-01

    Full Text Available There is growing evidence that dipeptidyl peptidase IV [DPP-IV, EC 3.4.14.5] takes part in the metabolism of biologically active peptides participating in the regulation of growth and transformation of glial cells. However, the knowledge on the DPP-IV expression in human glial and glioma cells is still very limited. In this study, using histochemical and biochemical techniques, the DPP-IV activity was demonstrated in two commercially available human glioma cell lines of different transformation degree, as represented by U373 astrocytoma (Grade III and U87 glioblastoma multiforme (Grade IV lines. Higher total activity of the enzyme, as well as its preferential localisation in the plasma membrane, was observed in U87 cells. Compared to U373 population, U87 cells were morphologically more pleiomorphic, they were cycling at lower rate and expressing less Glial Fibrillary Acidic Protein. The data revealed positive correlation between the degree of transformation of cells and activity of DPP-IV. Great difference in expression of this enzyme, together with the phenotypic differences of cells, makes these lines a suitable standard model for further 57 studies of function of this enzyme in human glioma cells.

  20. Second Surgery in Insular Low-Grade Gliomas

    Directory of Open Access Journals (Sweden)

    Tamara Ius

    2015-01-01

    Full Text Available Background. Given the technical difficulties, a limited number of works have been published on insular gliomas surgery and risk factors for tumor recurrence (TR are poorly documented. Objective. The aim of the study was to determine TR in adult patients with initial diagnosis of insular Low-Grade Gliomas (LGGs that subsequently underwent second surgery. Methods. A consecutive series of 53 patients with insular LGGs was retrospectively reviewed; 23 patients had two operations for TR. Results. At the time of second surgery, almost half of the patients had experienced progression into high-grade gliomas (HGGs. Univariate analysis showed that TR is influenced by the following: extent of resection (EOR (P<0.002, ΔVT2T1 value (P<0.001, histological diagnosis of oligodendroglioma (P=0.017, and mutation of IDH1 (P=0.022. The multivariate analysis showed that EOR at first surgery was the independent predictor for TR (P<0.001. Conclusions. In patients with insular LGG the EOR at first surgery represents the major predictive factor for TR. At time of TR, more than 50% of cases had progressed in HGG, raising the question of the oncological management after the first surgery.

  1. Role of Inflammation and Oxidative Stress Mediators in Gliomas

    Directory of Open Access Journals (Sweden)

    Alfredo Conti

    2010-04-01

    Full Text Available Gliomas are the most common primary brain tumors of the central nervous system. Despite relevant progress in conventional treatments, the prognosis of such tumors remains almost invariably dismal. The genesis of gliomas is a complex, multistep process that includes cellular neoplastic transformation, resistance to apoptosis, loss of control of the cell cycle, angiogenesis, and the acquisition of invasive properties. Among a number of different biomolecular events, the existence of molecular connections between inflammation and oxidative stress pathways and the development of this cancer has been demonstrated. In particular, the tumor microenvironment, which is largely orchestrated by inflammatory molecules, is an indispensable participant in the neoplastic process, promoting proliferation, survival and migration of such tumors. Proinflammatory cytokines, such as tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma, as well as chemokines and prostaglandins, are synthesized by resident brain cells and lymphocytes invading the affected brain tissue. Key mediators of cancer progression include nuclear factor-kappaB, reactive oxygen and nitrogen species, and specific microRNAs. The collective activity of these mediators is largely responsible for a pro-tumorigenic response through changes in cell proliferation, cell death, cellular senescence, DNA mutation rates, DNA methylation and angiogenesis. We provide a general overview of the connection between specific inflammation and oxidative stress pathway molecules and gliomas. The elucidation of specific effects and interactions of these factors may provide the opportunity for the identification of new target molecules leading to improved diagnosis and treatment.

  2. Role of Inflammation and Oxidative Stress Mediators in Gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Conti, Alfredo, E-mail: alfredo.conti@unime.it; Gulì, Carlo; La Torre, Domenico; Tomasello, Chiara; Angileri, Filippo F.; Aguennouz, M’Hammed [Department of Neuroscience and Department of Oncology, University of Messina, Policlinico Universitario, Via Consolare Valeria 1, 98125, Messina (Italy)

    2010-04-26

    Gliomas are the most common primary brain tumors of the central nervous system. Despite relevant progress in conventional treatments, the prognosis of such tumors remains almost invariably dismal. The genesis of gliomas is a complex, multistep process that includes cellular neoplastic transformation, resistance to apoptosis, loss of control of the cell cycle, angiogenesis, and the acquisition of invasive properties. Among a number of different biomolecular events, the existence of molecular connections between inflammation and oxidative stress pathways and the development of this cancer has been demonstrated. In particular, the tumor microenvironment, which is largely orchestrated by inflammatory molecules, is an indispensable participant in the neoplastic process, promoting proliferation, survival and migration of such tumors. Proinflammatory cytokines, such as tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma, as well as chemokines and prostaglandins, are synthesized by resident brain cells and lymphocytes invading the affected brain tissue. Key mediators of cancer progression include nuclear factor-kappaB, reactive oxygen and nitrogen species, and specific microRNAs. The collective activity of these mediators is largely responsible for a pro-tumorigenic response through changes in cell proliferation, cell death, cellular senescence, DNA mutation rates, DNA methylation and angiogenesis. We provide a general overview of the connection between specific inflammation and oxidative stress pathway molecules and gliomas. The elucidation of specific effects and interactions of these factors may provide the opportunity for the identification of new target molecules leading to improved diagnosis and treatment.

  3. Radiochemotherapy of malignant glioma in adults. Clinical experiences

    Energy Technology Data Exchange (ETDEWEB)

    Kortmann, R.D.; Jeremic, B.; Plasswilm, L.; Bamberg, M. [Dept. for Radiation Oncology, Univ. of Tuebingen (Germany); Weller, M. [Dept. of Neurology, Univ. of Tuebingen (Germany)

    2003-04-01

    Background: Standard treatment in patients with malignant glioma consists of surgery and postoperative radiotherapy. A high early recurrence rate, particularly in glioblastoma, has led to the investigation of additional chemotherapy. Material and Methods: Recent results of radiochemotherapy published in the literature were reviewed with respect to outcome in phase II and III trials. Based on these experiences, aspects of future strategies were discussed. Results: 3 decades of intensive research had, unfortunately, little impact on the overall results. While early prospective studies established adjuvant nitrosoureas, particularly BCNU, as suitable adjuvant to surgery and postoperative radiotherapy, further studies largely concentrated on combined chemotherapeutic protocols, mostly procarbazine, CCNU and vincristine (PCV), which was shown to prolong survival in anaplastic astrocytoma. The recent MRC study, however, showed no effect for adjuvant PCV in grade III and IV malignant glioma. Only in high-grade glioma with an oligodendroglial component, additional chemotherapy may be of a decisive benefit. The introduction of newer drugs such as paclitaxel, temozolomide, or gemcitabine demonstrated no decisive advantage. Different modes of application and sequencing of radiotherapy and chemotherapy are presently actively investigated, but failed to substantially improve outcome. Conclusions: Therefore, search for newer and more effective drugs continues, as well as for ''optimal'' administration and sequencing, especially from the standpoint of accompanying acute and late toxicity. Finally, recent endeavors focused on basic research such as angiogenesis, migration and invasion, or induction of cell differentiation, but these strategies are still away from broader clinical investigation. (orig.)

  4. Radiochemotherapy of malignant glioma in adults. Clinical experiences

    International Nuclear Information System (INIS)

    Kortmann, R.D.; Jeremic, B.; Plasswilm, L.; Bamberg, M.; Weller, M.

    2003-01-01

    Background: Standard treatment in patients with malignant glioma consists of surgery and postoperative radiotherapy. A high early recurrence rate, particularly in glioblastoma, has led to the investigation of additional chemotherapy. Material and Methods: Recent results of radiochemotherapy published in the literature were reviewed with respect to outcome in phase II and III trials. Based on these experiences, aspects of future strategies were discussed. Results: 3 decades of intensive research had, unfortunately, little impact on the overall results. While early prospective studies established adjuvant nitrosoureas, particularly BCNU, as suitable adjuvant to surgery and postoperative radiotherapy, further studies largely concentrated on combined chemotherapeutic protocols, mostly procarbazine, CCNU and vincristine (PCV), which was shown to prolong survival in anaplastic astrocytoma. The recent MRC study, however, showed no effect for adjuvant PCV in grade III and IV malignant glioma. Only in high-grade glioma with an oligodendroglial component, additional chemotherapy may be of a decisive benefit. The introduction of newer drugs such as paclitaxel, temozolomide, or gemcitabine demonstrated no decisive advantage. Different modes of application and sequencing of radiotherapy and chemotherapy are presently actively investigated, but failed to substantially improve outcome. Conclusions: Therefore, search for newer and more effective drugs continues, as well as for ''optimal'' administration and sequencing, especially from the standpoint of accompanying acute and late toxicity. Finally, recent endeavors focused on basic research such as angiogenesis, migration and invasion, or induction of cell differentiation, but these strategies are still away from broader clinical investigation. (orig.)

  5. Role of Inflammation and Oxidative Stress Mediators in Gliomas

    International Nuclear Information System (INIS)

    Conti, Alfredo; Gulì, Carlo; La Torre, Domenico; Tomasello, Chiara; Angileri, Filippo F.; Aguennouz, M’Hammed

    2010-01-01

    Gliomas are the most common primary brain tumors of the central nervous system. Despite relevant progress in conventional treatments, the prognosis of such tumors remains almost invariably dismal. The genesis of gliomas is a complex, multistep process that includes cellular neoplastic transformation, resistance to apoptosis, loss of control of the cell cycle, angiogenesis, and the acquisition of invasive properties. Among a number of different biomolecular events, the existence of molecular connections between inflammation and oxidative stress pathways and the development of this cancer has been demonstrated. In particular, the tumor microenvironment, which is largely orchestrated by inflammatory molecules, is an indispensable participant in the neoplastic process, promoting proliferation, survival and migration of such tumors. Proinflammatory cytokines, such as tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma, as well as chemokines and prostaglandins, are synthesized by resident brain cells and lymphocytes invading the affected brain tissue. Key mediators of cancer progression include nuclear factor-kappaB, reactive oxygen and nitrogen species, and specific microRNAs. The collective activity of these mediators is largely responsible for a pro-tumorigenic response through changes in cell proliferation, cell death, cellular senescence, DNA mutation rates, DNA methylation and angiogenesis. We provide a general overview of the connection between specific inflammation and oxidative stress pathway molecules and gliomas. The elucidation of specific effects and interactions of these factors may provide the opportunity for the identification of new target molecules leading to improved diagnosis and treatment

  6. NMR characteristics of low-grade glioma. Comparison with CT

    Energy Technology Data Exchange (ETDEWEB)

    Asato, Reinin; Tokuriki, Yasuhiko; Nakano, Yoshihisa; Itoh, Harumi; Torizuka, Kanji; Ueda, Tohru; Yamashita, Junkoh; Handa, Hajime

    1985-08-01

    Sixteen low-grade gliomas were evaluated both with nuclear magnetic resonance (NMR) imaging and with computed tomography (CT). In 13 cases (81%), the NMR images were much better in tissue contrast than the contrast-enhanced CT images. The tumors were shown as well-circumscribed oval lesions in the NMR, though they appeared as ill-defined, irregular, low-attenuation areas in the CT. The extent of the lesion, which was supposed to represent the active tumor tissue, was greater in the NMR than in the CT, because NMR tissue parameters (T/sub 1/, T/sub 2/) are more sensitive to pathological changes in brain tissue than is the X-ray attenuation coefficient. Though, in an optic glioma and a brain-stem astrocytoma, the CT with contrast enhancement displayed the contour of the mass as well as did NMR, it was inferior to the NMR in showing the cephalocaudal extension of the tumors. Calcification does not give a proton NMR signal under the present measuring conditions; thus the calcified cystic wall of a hypothalamic astrocytoma was displayed only in the CT images. In conclusion, the NMR imaging was apparently superior to contrast-enhanced CT in demonstrating the lesions due to low-grade glioma.

  7. Radiotherapeutic management of optic nerve gliomas in children

    International Nuclear Information System (INIS)

    Danoff, B.F.; Kramer, S.; Thompson, N.

    1980-01-01

    Optic nerve gliomas represent one to five percent of all intracranial tumors in children. The management of these tumors remains controversial. From 1956 to 1977, 18 children with optic nerve gliomas were treated at Thomas Jefferson University Hospital using external beam radiotherapy. All children presented with decreased visual acuity and five of eighteen were blind in one eye. No patient was found to have involvement of a single optic nerve. in eight patients, the chiasm was involved, in ten patients, tumor had extended to the frontal lobes and/or hypothalamus. Initial surgical management included biopsy only in seven patients, inspection of tumor in two patients and partial excision in seven patients. Two patients were treated with radiotherapy based on radiological findings. A tumor dose of 5000 to 6000 rad was given in 5.5 to 6.5 weeks. Stabilization of visual impairment or improvement in vision was noted in 78 percent of patients who were evaluable. The ten year survival was 73 percent. Radiological evidence of tumor regression will be presented. It is our impression that radiotherapy is indicated in the treatment of children with optic nerve gliomas who have poor prognostic signs

  8. Differential expression of centrosomal proteins at different stages of human glioma

    International Nuclear Information System (INIS)

    Loh, Joon-Khim; Lieu, Ann-Shung; Chou, Chia-Hua; Lin, Fang-Yi; Wu, Chia-Hung; Howng, Sheng-Long; Chio, Chung-Ching; Hong, Yi-Ren

    2010-01-01

    High-grade gliomas have poor prognosis, requiring aggressive treatment. The aim of this study is to explore mitotic and centrosomal dysregulation in gliomas, which may provide novel targets for treatment. A case-control study was performed using 34 resected gliomas, which were separated into low- and high-grade groups. Normal human brain tissue was used as a control. Using immunohistochemical analysis, immunofluorescent microscopy, and RT-PCR, detection of centrins 1 and 2, γ-tubulin, hNinein, Aurora A, and Aurora B, expression was performed. Analysis of the GBM8401 glioma cell line was also undertaken to complement the in vivo studies. In high-grade gliomas, the cells had greater than two very brightly staining centrioles within large, atypical nuclei, and moderate-to-strong Aurora A staining. Comparing with normal human brain tissue, most of the mRNAs expression in gliomas for centrosomal structural proteins, including centrin 3, γ-tubulin, and hNinein isoforms 1, 2, 5 and 6, Aurora A and Aurora B were elevated. The significant different expression was observed between high- and low-grade glioma in both γ-tubulin and Aurora A mRNA s. In the high-grade glioma group, 78.6% of the samples had higher than normal expression of γ-tubulin mRNA, which was significantly higher than in the low-grade glioma group (18.2%, p < 0.05). Markers for mitotic dysregulation, such as supernumerary centrosomes and altered expression of centrosome-related mRNA and proteins were more frequently detected in higher grade gliomas. Therefore, these results are clinically useful for glioma staging as well as the development of novel treatments strategies

  9. Differential expression of centrosomal proteins at different stages of human glioma

    Directory of Open Access Journals (Sweden)

    Lin Fang-Yi

    2010-06-01

    Full Text Available Abstract Background High-grade gliomas have poor prognosis, requiring aggressive treatment. The aim of this study is to explore mitotic and centrosomal dysregulation in gliomas, which may provide novel targets for treatment. Methods A case-control study was performed using 34 resected gliomas, which were separated into low- and high-grade groups. Normal human brain tissue was used as a control. Using immunohistochemical analysis, immunofluorescent microscopy, and RT-PCR, detection of centrins 1 and 2, γ-tubulin, hNinein, Aurora A, and Aurora B, expression was performed. Analysis of the GBM8401 glioma cell line was also undertaken to complement the in vivo studies. Results In high-grade gliomas, the cells had greater than two very brightly staining centrioles within large, atypical nuclei, and moderate-to-strong Aurora A staining. Comparing with normal human brain tissue, most of the mRNAs expression in gliomas for centrosomal structural proteins, including centrin 3, γ-tubulin, and hNinein isoforms 1, 2, 5 and 6, Aurora A and Aurora B were elevated. The significant different expression was observed between high- and low-grade glioma in both γ-tubulin and Aurora A mRNA s. In the high-grade glioma group, 78.6% of the samples had higher than normal expression of γ-tubulin mRNA, which was significantly higher than in the low-grade glioma group (18.2%, p Conclusions Markers for mitotic dysregulation, such as supernumerary centrosomes and altered expression of centrosome-related mRNA and proteins were more frequently detected in higher grade gliomas. Therefore, these results are clinically useful for glioma staging as well as the development of novel treatments strategies.

  10. Glioma cell fate decisions mediated by Dll1-Jag1-Fringe in Notch1 signaling pathway.

    Science.gov (United States)

    Shi, Xiaofei; Wang, Ruiqi

    2017-09-21

    The Notch family of proteins plays a vital role in determining cell fates, such as proliferation, differentiation, and apoptosis. It has been shown that Notch1 and its ligands, Dll1 and Jag1, are overexpressed in many glioma cell lines and primary human gliomas. The roles of Notch1 in some cancers have been firmly established, and recent data implicate that it plays important roles in glioma cell fate decisions. This paper focuses on devising a specific theoretical framework that incorporates Dll1, Jag1, and Fringe in Notch1 signaling pathway to explore their functional roles of these proteins in glioma cells in the tumorigenesis and progression of human gliomas, and to study how glioma cell fate decisions are modulated by both trans-activation and cis-inhibition. This paper presents a computational model for Notch1 signaling pathway in glioma cells. Based on the bifurcation analysis of the model, we show that how the glioma cell fate decisions are modulated by both trans-activation and cis-inhibition mediated by the Fringe protein, providing insight into the design and control principles of the Notch signaling system and the gliomas. This paper presents a computational model for Notch1 signaling pathway in glioma cells based on intertwined dynamics with cis-inhibition and trans-activation involving the proteins Notch1, Dll1, Jag1, and Fringe. The results show that how the glioma cell fate transitions are performed by the Notch1 signaling. Transition from grade III ∼ IV with significantly high Notch1 to grade I ∼ II with high Notch1, and then to normal cells by repressing the Fringe levels or decreasing the strength of enhancement induced by Fringe.

  11. Germline rearrangements in families with strong family history of glioma and malignant melanoma, colon, and breast cancer

    DEFF Research Database (Denmark)

    Andersson, Ulrika; Wibom, Carl; Cederquist, Kristina

    2014-01-01

    -dependent probe amplification. These families all had at least 2 verified glioma cases and a third reported or verified glioma case in the same family or 2 glioma cases in the family with at least one family member affected with melanoma, colon, or breast cancer.The genomic areas covering TP53, CDKN2A, MLH1...

  12. Decreased circulation time offsets increased efficacy of PEGylated nanocarriers targeting folate receptors of glioma

    International Nuclear Information System (INIS)

    McNeeley, Kathleen M; Annapragada, Ananth; Bellamkonda, Ravi V

    2007-01-01

    Liposomal and other nanocarrier based drug delivery vehicles can localize to tumours through passive and/or active targeting. Passively targeted liposomal nanocarriers accumulate in tumours via 'leaky' vasculature through the enhanced permeability and retention (EPR) effect. Passive accumulation depends upon the circulation time and the degree of tumour vessel 'leakiness'. After extravasation, actively targeted liposomal nanocarriers efficiently deliver their payload by receptor-mediated uptake. However, incorporation of targeting moieties can compromise circulation time in the blood due to recognition and clearance by the reticuloendothelial system, decreasing passive accumulation. Here, we compare the efficacy of passively targeted doxorubicin-loaded PEGylated liposomal nanocarriers to that of actively targeted liposomal nanocarriers in a rat 9L brain tumour model. Although folate receptor (FR)-targeted liposomal nanocarriers had significantly reduced blood circulation time compared to PEGylated liposomal nanocarriers; intratumoural drug concentrations both at 20 and 50 h after administration were equal for both treatments. Both treatments significantly increased tumour inoculated animal survival by 60-80% compared to non-treated controls, but no difference in survival was observed between FR-targeted and passively targeted nanocarriers. Therefore, alternate approaches allowing for active targeting without compromising circulation time may be important for fully realizing the benefits of receptor-mediated active targeting of gliomas

  13. Serum-dependent effects of tamoxifen and cannabinoids upon C6 glioma cell viability.

    Science.gov (United States)

    Jacobsson, S O; Rongård, E; Stridh, M; Tiger, G; Fowler, C J

    2000-12-15

    In the present study, the effects of the combination of tamoxifen ((Z)-2[p-(1,2-diphenyl-1-butenyl)phenoxy]-N,N-dimethylamine citrate) and three cannabinoids (Delta(9)-tetrahydrocannabinol [Delta(9)-THC], cannabidiol, and anandamide [AEA]) upon the viability of C6 rat glioma cells was assessed at different incubation times and using different culturing concentrations of foetal bovine serum (FBS). Consistent with previous data for human glioblastoma cells, the tamoxifen sensitivity of the cells was increased as the FBS content of the culture medium was reduced from 10 to 0.4 and 0%. The cells expressed protein kinase C alpha and calmodulin (the concentration of which did not change significantly as the FBS concentration was reduced), but did not express estrogen receptors. Delta(9)-THC and cannabidiol, but not AEA, produced a modest reduction in cell viability after 6 days of incubation in serum-free medium, whereas no effects were seen in 10% FBS-containing medium. There was no observed synergy between the effects of tamoxifen and the cannabinoids upon cell viability.

  14. Increasing feasibility and utility of 18F-FDOPA PET for the management of glioma

    International Nuclear Information System (INIS)

    Bell, Christopher; Dowson, Nicholas; Puttick, Simon; Gal, Yaniv; Thomas, Paul; Fay, Mike; Smith, Jye; Rose, Stephen

    2015-01-01

    Introduction: Despite radical treatment therapies, glioma continues to carry with it a uniformly poor prognosis. Patients diagnosed with WHO Grade IV glioma (glioblastomas; GBM) generally succumb within two years, even those with WHO Grade III anaplastic gliomas and WHO Grade II gliomas carry prognoses of 2–5 and 2 years, respectively. PET imaging with 18 F-FDOPA allows in vivo assessment of the metabolism of glioma relative to surrounding tissues. The high sensitivity of 18 F-DOPA imaging grants utility for a number of clinical applications. Methods: A collection of published work about 18 F-FDOPA PET was made and a critical review was discussed and written. Results: A number of research papers have been published demonstrating that in conjunction with MRI, 18 F-FDOPA PET provides greater sensitivity and specificity than these modalities in detection, grading, prognosis and validation of treatment success in both primary and recurrent gliomas. In further comparisons with 11 C-MET, 18 F-FLT, 18 F-FET and MRI, 18 F-FDOPA has shown similar or better efficacy. Recently synthesis cassettes have become available, making 18 F-FDOPA more accessible. Conclusions: According to the available data, 18 F-FDOPA PET is a viable radiotracer for imaging and treatment planning of gliomas. Advances in knowledge and implication for patient care: 18 F-FDOPA PET appears to be a viable radiopharmaceutical for the diagnosis and treatment planning of gliomas cases, improving on that of MRI and 18 F-FDG PET

  15. Characterization of infectivity of knob-modified adenoviral vectors in glioma

    NARCIS (Netherlands)

    C.P.L. Paul (C. P L); M. Everts (M.); J.N. Glasgow (J.); P. Dent (P.); P.B. Fisher (P.); I.V. Ulasov (I.); M.S. Lesniak (M.); M.A. Stoff-Khalili (M.); J.C. Roth (J.); M. Preuss (Michael); C.M.F. Dirven (Clemens); M.L.M. Lamfers (Martine); T. Siegal (Tali); Z.B. Zhu (Z.); R.E. Curiel (Rafael E.)

    2008-01-01

    textabstractMalignant glioma continues to be a major target for gene therapy and virotherapy due to its aggressive growth and the current lack of effective treatment. However, these approaches have been hampered by inefficient infection of glioma cells by viral vectors, particularly vectors derived

  16. The immunohistochemical expression of calcitonin receptor-like receptor (CRLR) in human gliomas.

    Science.gov (United States)

    Benes, L; Kappus, C; McGregor, G P; Bertalanffy, H; Mennel, H D; Hagner, S

    2004-02-01

    Gliomas are the most common primary tumours of the central nervous system and exhibit rapid growth that is associated with neovascularisation. Adrenomedullin is an important tumour survival factor in human carcinogenesis. It has growth promoting effects on gliomas, and blockade of its actions has been experimentally shown to reduce the growth of glioma tissues and cell lines. There is some evidence that the calcitonin receptor-like receptor (CRLR) mediates the tumorigenic actions of adrenomedullin. To determine whether CRLR is expressed in human gliomas and the probable cellular targets of adrenomedullin. Biopsies from 95 human gliomas of varying grade were processed for immunohistochemical analysis using a previously developed and characterised antibody to CRLR. All tumour specimens were positive for CRLR. As previously found in normal peripheral tissues, CRLR immunostaining was particularly intense in the endothelial cells. This was evident in all the various vascular conformations that were observed, and which are typical of gliomas. In addition, clear immunostaining of tumour cells with astrocyte morphology was observed. These were preferentially localised around vessels. This study has shown for the first time that the CRLR protein is present in human glioma tissue. The expression of the receptor in endothelial cells and in astrocytic tumour cells is consistent with the evidence that its endogenous ligand, adrenomedullin, may influence glioma growth by means of both direct mitogenic and indirect angiogenic effects. CRLR may be a valuable target for effective therapeutic intervention in these malignant tumours.

  17. Glucose consumption and rate constants for sup 18 F-fluorodeoxyglucose in human gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Masatsune; Kikuchi, Haruhiko; Nagata, Izumi; Yamagata, Sen; Taki, Waro; Yonekura, Yoshiharu; Nishizawa, Sadahiko; Iwasaki, Yasushi; Mukai, Takao [Kyoto Univ. (Japan). Faculty of Medicine

    1990-06-01

    To investigate the value of direct measurement of the rate constants by performing {sup 18}F-labeled fluorodeoxyglucose (FDG) studies of glucose consumption in human gliomas in vivo, a kinetic method with 3- and 4-parameter rate constant models for FDG uptake was used to analyze data from dynamic scans obtained by positron emission tomography after injection of FDG into 14 patients with glioma. The results were compared with those obtained by the autoradiographic method using 3- and 4-parameter rate constant models. There were no significant differences in the glucose consumption calculated by the four different methods both in the gliomas and in the contralateral intact cortex. It was found that the rate constant k4 could be neglected in calculation of glucose consumption in gliomas as well as in the contralateral intact cortex. The rate constant k3, an index of hexokinase function, was higher in malignant gliomas than in benign gliomas and was close to that in the contralateral cortex. This study indicates that the 3-parameter autoradiographic method, which is the most common one used in clinical practice, is reliable for the calculation of glucose consumption in human gliomas. Furthermore, direct measurement of the regional rate constants for FDG by the kinetic method was found to be useful for evaluation of the biochemical and physiological characteristics of human gliomas in vivo. (author).

  18. Glucose consumption and rate constants for 18F-fluorodeoxyglucose in human gliomas

    International Nuclear Information System (INIS)

    Ishikawa, Masatsune; Kikuchi, Haruhiko; Nagata, Izumi; Yamagata, Sen; Taki, Waro; Yonekura, Yoshiharu; Nishizawa, Sadahiko; Iwasaki, Yasushi; Mukai, Takao

    1990-01-01

    To investigate the value of direct measurement of the rate constants by performing 18 F-labeled fluorodeoxyglucose (FDG) studies of glucose consumption in human gliomas in vivo, a kinetic method with 3- and 4-parameter rate constant models for FDG uptake was used to analyze data from dynamic scans obtained by positron emission tomography after injection of FDG into 14 patients with glioma. The results were compared with those obtained by the autoradiographic method using 3- and 4-parameter rate constant models. There were no significant differences in the glucose consumption calculated by the four different methods both in the gliomas and in the contralateral intact cortex. It was found that the rate constant k4 could be neglected in calculation of glucose consumption in gliomas as well as in the contralateral intact cortex. The rate constant k3, an index of hexokinase function, was higher in malignant gliomas than in benign gliomas and was close to that in the contralateral cortex. This study indicates that the 3-parameter autoradiographic method, which is the most common one used in clinical practice, is reliable for the calculation of glucose consumption in human gliomas. Furthermore, direct measurement of the regional rate constants for FDG by the kinetic method was found to be useful for evaluation of the biochemical and physiological characteristics of human gliomas in vivo. (author)

  19. Radiosensitivity and TP 53, EGFR amplification and LOH10 analysis of primary glioma cell cultures

    NARCIS (Netherlands)

    Gerlach, Bärbel; Harder, Anna H.; Hulsebos, Theo J. M.; Leenstra, Sieger; Slotman, Berend J.; Vandertop, W. Peter; Hartmann, Karl-Axel; Sminia, Peter

    2002-01-01

    Aim: Determination of in-vitro radiosensitivity and genetic alterations of cell cultures derived from human glioma biopsy tissue and established glioma cell lines. Material and Methods: Fresh brain tumor specimens of six patients were processed to early passage cell cultures. In addition the cell

  20. Influence of obesity-related risk factors in the aetiology of glioma

    DEFF Research Database (Denmark)

    Disney-Hogg, Linden; Sud, Amit; Law, Philip J

    2018-01-01

    BACKGROUND: Obesity and related factors have been implicated as possible aetiological factors for the development of glioma in epidemiological observation studies. We used genetic markers in a Mendelian randomisation framework to examine whether obesity-related traits influence glioma risk. This ...

  1. Plant thymidine kinase 1: a novel efficient suicide gene for malignant glioma therapy

    DEFF Research Database (Denmark)

    Khan, Z.; Knecht, Wolfgang; Willer, Mette

    2010-01-01

    The prognosis for malignant gliomas remains poor, and new treatments are urgently needed. Targeted suicide gene therapy exploits the enzymatic conversion of a prodrug, such as a nucleoside analog, into a cytotoxic compound. Although this therapeutic strategy has been considered a promising regimen...... suicide gene therapy system in combination with stem cell mediated gene delivery promises new treatment of malignant gliomas....

  2. Variants near TERT and TERC influencing telomere length are associated with high-grade glioma risk

    NARCIS (Netherlands)

    Walsh, Kyle M.; Codd, Veryan; Smirnov, Ivan V.; Rice, Terri; Decker, Paul A.; Hansen, Helen M.; Kollmeyer, Thomas; Kosel, Matthew L.; Molinaro, Annette M.; McCoy, Lucie S.; Bracci, Paige M.; Cabriga, Belinda S.; Pekmezci, Melike; Zheng, Shichun; Wiemels, Joseph L.; Pico, Alexander R.; Tihan, Tarik; Berger, Mitchell S.; Chang, Susan M.; Prados, Michael D.; Lachance, Daniel H.; O'Neill, Brain Patrick; Sicotte, Hugues; Eckel-Passow, Jeanette E.; van der Harst, Pim; Wiencke, John K.; Samani, Nilesh J.; Jenkins, Robert B.; Wrensch, Margaret R.

    Glioma, the most common central nervous system cancer in adults, has poor prognosis. Here we identify a new SNP associated with glioma risk, rs1920116 (near TERC), that reached genome-wide significance (P-combined = 8.3 x 10(-9)) in a meta-analysis of genome-wide association studies (GWAS) of

  3. Identification of Predictive Response Markers and Novel Treatment Targets for Gliomas

    NARCIS (Netherlands)

    L. Erdem-Eraslan (Lale)

    2016-01-01

    markdownabstractGliomas are the most frequent primary brain tumors in adults. Despite multimodality treatment strategies, the survival of patients with a diffuse glioma remains poor. There has been an increasing use of molecular markers to assist diagnosis and predict prognosis and response to

  4. The indolinone MAZ51 induces cell rounding and G2/M cell cycle arrest in glioma cells without the inhibition of VEGFR-3 phosphorylation: involvement of the RhoA and Akt/GSK3β signaling pathways.

    Directory of Open Access Journals (Sweden)

    Joo-Hee Park

    Full Text Available MAZ51 is an indolinone-based molecule originally synthesized as a selective inhibitor of vascular endothelial growth factor receptor (VEGFR-3 tyrosine kinase. This study shows that exposure of two glioma cell lines, rat C6 and human U251MG, to MAZ51 caused dramatic shape changes, including the retraction of cellular protrusions and cell rounding. These changes were caused by the clustering and aggregation of actin filaments and microtubules. MAZ51 also induced G2/M phase cell cycle arrest. This led to an inhibition of cellular proliferation, without triggering significant cell death. These alterations induced by MAZ51 occurred with similar dose- and time-dependent patterns. Treatment of glioma cells with MAZ51 resulted in increased levels of phosphorylated GSK3β through the activation of Akt, as well as increased levels of active RhoA. Interestingly, MAZ51 did not affect the morphology and cell cycle patterns of rat primary cortical astrocytes, suggesting it selectively targeted transformed cells. Immunoprecipitation-western blot analyses indicated that MAZ51 did not decrease, but rather increased, tyrosine phosphorylation of VEGFR-3. To confirm this unanticipated result, several additional experiments were conducted. Enhancing VEGFR-3 phosphorylation by treatment of glioma cells with VEGF-C affected neither cytoskeleton arrangements nor cell cycle patterns. In addition, the knockdown of VEGFR-3 in glioma cells did not cause morphological or cytoskeletal alterations. Furthermore, treatment of VEGFR-3-silenced cells with MAZ51 caused the same alterations of cell shape and cytoskeletal arrangements as that observed in control cells. These data indicate that MAZ51 causes cytoskeletal alterations and G2/M cell cycle arrest in glioma cells. These effects are mediated through phosphorylation of Akt/GSK3β and activation of RhoA. The anti-proliferative activity of MAZ51 does not require the inhibition of VEGFR-3 phosphorylation, suggesting that it is

  5. Neuroradiology of the normal and pathological anatomy of the rat brain. Pt. 2

    International Nuclear Information System (INIS)

    Schumacher, M.; Weisser, G.; Voigt, K.; Mennel, H.D.

    1980-01-01

    70 BD-IX rats, in which chemically induced mixed gliomas have been transplanted intracerebrally, were investigated by microangiography. The pattern and the degree of tumor vascularisation of all animals was correlated with the histological findings. Dependent on the type of the tumor different localisations of tumor growth could be found: G XII-gliomas preferred the juxta-ventricular region and subarachnoid space whereas GL 2.2-gliomas mainly grew as solid intracerebral space occupying lesions. Microangiograms of all tumor stages from the 14th to 42nd day after transplantation revealed a typical vascular pattern consisting of lacunar glomerulose and netlike vessels. Further, necrosis, bleedings into the tumor, and irregularities of the capillary network could be demonstrated. The volume, age and vascularisation of the tumors are correlated and the results are discussed with regard to the principles of tumor growth and malignancy. (orig.) [de

  6. Approaching a scientific consensus on the association between allergies and glioma risk

    DEFF Research Database (Denmark)

    Amirian, E. Susan; Zhou, Renke; Wrensch, Margaret R.

    2016-01-01

    Background: Several previous studies have found inverse associations between glioma susceptibility and a history of allergies or other atopic conditions. Some evidence indicates that respiratory allergies are likely to be particularly relevant with regard to glioma risk. Using data from the Glioma...... International Case-Control Study (GICC), we examined the effects of respiratory allergies and other atopic conditions on glioma risk.  Methods: The GICC contains detailed information on history of atopic conditions for 4,533 cases and 4,171 controls, recruited from 14 study sites across five countries. Using...... two-stage randomeffects restricted maximum likelihood modeling to calculate meta-analysis ORs, we examined the associations between glioma and allergy status, respiratory allergy status, asthma, and eczema.  Results: Having a history of respiratory allergies was associated with an approximately 30...

  7. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    Energy Technology Data Exchange (ETDEWEB)

    Massi, Paola [Department of Pharmacology, Chemotherapy and Toxicology, University of Milan, Via Vanvitelli 32, 20129 Milan (Italy); Valenti, Marta; Solinas, Marta; Parolaro, Daniela [Department of Structural and Functional Biology, Section of Pharmacology, Center of Neuroscience, University of Insubria, Via A. da Giussano 10, 20152 Busto Arsizio, Varese (Italy)

    2010-05-26

    Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells.

  8. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    International Nuclear Information System (INIS)

    Massi, Paola; Valenti, Marta; Solinas, Marta; Parolaro, Daniela

    2010-01-01

    Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells

  9. Differentiation of malignant glioma and metastatic brain tumor by thallium-201 single photon emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Yasuhiro; Kuwana, Nobumasa; Noji, Masato; Tosa, Junichi [Yokohama Minami Kyosai Hospital (Japan)

    1994-09-01

    The use of superdelayed thallium-201 single photon emission computed tomography ([sup 201]Tl SPECT) for differentiating malignant gliomas from cerebral metastases was investigated in 23 patients (7 with meningioma, 6 with glioma, 7 with cerebral metastasis, 1 with each of neurinoma, abscess, and necrosis). 4 mCi of [sup 201]Tl was injected intravenously, and gamma camera scans were performed after 10 minutes and 4, 24, 72, and 96 hours (superdelayed scan). The mean thallium index of meningiomas was significantly higher than those of gliomas and cerebral metastases after 10 minutes, while the mean thallium indices of meningiomas and gliomas were significantly higher than those of cerebral metastases after 96 hours. The combination of early and superdelayed [sup 201]Tl SPECT may be useful in differentiating malignant gliomas from cerebral metastases. (author).

  10. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Paola Massi

    2010-05-01

    Full Text Available Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells.

  11. “...those left behind.” Biology and Oncology of Invasive Glioma Cells

    Directory of Open Access Journals (Sweden)

    Michael E Berens

    1999-08-01

    Full Text Available Although significant technical advances in surgical and radiation treatment for brain tumors have emerged in recent years, their impact on clinical outcome for patients has been disappointing. A fundamental source of the management challenge presented by glioma patients is the insidious propensity of the malignant cells to invade into adjacent normal brain. Invasive tumor cells escape surgical removal and geographically dodge lethal radiation exposure. Recent improved understanding of the biochemistry and molecular determinants of glioma cell invasion provide valuable insight to the underlying biological features of the disease, as well as illuminating possible new therapeutic targets. Heightened commitment to migrate and invade is accompanied by a glioma cell's reduced proliferative activity. The microenvironmental manipulations coincident to invasion and migration may also impact the glioma cell's response to cytotoxic treatments. These collateral aspects of the glioma cell invasive phenotype should be further explored and exploited as novel antiglioma therapies.

  12. Minimally invasive neuronavigator-guided microsurgery and photodynamic therapy for gliomas.

    Science.gov (United States)

    Wang, Yezhong; Lei, Ting; Wang, Zhi

    2009-06-01

    In order to evaluate the effectiveness of neuronavigator-guided microsurgery and keyhole technique for the resection of gliomas, a total of 60 patients with gliomas were exactly located by using neuronavigator during microsurgery. Forty deep-seated gliomas were resected through a keyhole operative approach. Thirty out of the 60 cases were subjected to photodynamic therapy (PDT) after tumor resection. The therapeutic effectiveness of all the cases was recorded and analyzed. The results showed that glioma was totally resected in 52 cases (86.7%), subtotally in 5 (8.3%), and most partially in 3 (5%). Neurological deficits occurred postoperatively in 4 cases. One patient died of multiple system organ failure 4 days after operation. It was concluded that the application of minimally invasive technique could dramatically decrease surgical complications following resection of glioma, and its combination with PDT could obviously improve the quality of life of patients and prolong the survival time.

  13. Autologous glioma cell vaccine admixed with interleukin-4 gene transfected fibroblasts in the treatment of patients with malignant gliomas

    Directory of Open Access Journals (Sweden)

    Torres-Trejo Alejandro

    2007-12-01

    Full Text Available Abstract Background The prognosis for malignant gliomas remains dismal. We addressed the safety, feasibility and preliminary clinical activity of the vaccinations using autologous glioma cells and interleukin (IL-4 gene transfected fibroblasts. Methods In University of Pittsburgh Cancer Institute (UPCI protocol 95-033, adult participants with recurrent glioblastoma multiforme (GBM or anaplastic astrocytoma (AA received gross total resection (GTR of the recurrent tumors, followed by two vaccinations with autologous fibroblasts retrovirally transfected with TFG-IL4-Neo-TK vector admixed with irradiated autologous glioma cells. In UPCI 99-111, adult participants with newly diagnosed GBM or AA, following GTR and radiation therapy, received two intradermal vaccinations with the TFG-IL4-Neo-TK-transfected fibroblasts admixed with type-1 dendritic cells (DC loaded with autologous tumor lysate. The participants were evaluated for occurrence of adverse events, immune response, and clinical response by radiological imaging. Results and Discussion In UPCI 95-033, only 2 of 6 participants received the vaccinations. Four other participants were withdrawn from the trial because of tumor progression prior to production of the cellular vaccine. However, both participants who received two vaccinations demonstrated encouraging immunological and clinical responses. Biopsies from the local vaccine sites from one participant displayed IL-4 dose-dependent infiltration of CD4+ as well as CD8+ T cells. Interferon (IFN-γ Enzyme-Linked Immuno-SPOT (ELISPOT assay in another human leukocyte antigen (HLA-A2+ participant demonstrated systemic T-cell responses against an HLA-A2-restricted glioma-associated antigen (GAA epitope EphA2883–891. Moreover, both participants demonstrated clinical and radiological improvement with no evidence of allergic encephalitis, although both participants eventually succumbed with the tumor recurrence. In 99-111, 5 of 6 enrolled participants

  14. A new anti-glioma therapy, AG119: pre-clinical assessment in a mouse GL261 glioma model

    International Nuclear Information System (INIS)

    Towner, Rheal A.; Ihnat, Michael; Saunders, Debra; Bastian, Anja; Smith, Nataliya; Pavana, Roheeth Kumar; Gangjee, Aleem

    2015-01-01

    High grade gliomas (HGGs; grades III and IV) are the most common primary brain tumors in adults, and their malignant nature ranks them fourth in incidence of cancer death. Standard treatment for glioblastomas (GBM), involving surgical resection followed by radiation and chemotherapy with temozolomide (TMZ) and the anti-angiogenic therapy bevacizumab, have not substantially improved overall survival. New therapeutic agents are desperately needed for this devastating disease. Here we study the potential therapeutic agent AG119 in a pre-clinical model for gliomas. AG119 possesses both anti-angiogenic (RTK inhibition) and antimicrotubule cytotoxic activity in a single molecule. GL261 glioma-bearing mice were either treated with AG119, anti-VEGF (vascular endothelial growth factor) antibody, anti c-Met antibody or TMZ, and compared to untreated tumor-bearing mice. Animal survival was assessed, and tumor volumes and vascular alterations were monitored with morphological magnetic resonance imaging (MRI) and perfusion-weighted imaging, respectively. Percent survival of GL261 HGG-bearing mice treated with AG119 was significantly higher (p < 0.001) compared to untreated tumors. Tumor volumes (21–31 days following intracerebral implantation of GL261 cells) were found to be significantly lower for AG119 (p < 0.001), anti-VEGF (p < 0.05) and anti-c-Met (p < 0.001) antibody treatments, and TMZ-treated (p < 0.05) mice, compared to untreated controls. Perfusion data indicated that both AG119 and TMZ were able to reduce the effect of decreasing perfusion rates significantly (p < 0.05 for both), when compared to untreated tumors. It was also found that IC 50 values for AG119 were much lower than those for TMZ in T98G and U251 cells. These data support further exploration of the anticancer activity AG119 in HGG, as this compound was able to increase animal survival and decrease tumor volumes in a mouse GL261 glioma model, and that AG119 is also not subject to methyl guanine

  15. Capacity of ultraviolet-induced DNA repair in human glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Hiroji

    1987-04-01

    A DNA repair abnormality is likely related to an increased incidence of neoplasms in several autosomal recessive diseases such as xeroderma pigmentosum, Fanconi's anemia, Bloom's syndrome and ataxia telangiectasia. In human glioma cells, however, there are only a few reports on DNA repair. In this study, an ultraviolet (UV)-induced DNA repair was examined systematically in many human glioma cells. Two human malignant glioma cell lines (MMG-851, U-251-MG) and 7 human glioma cell strains (4, benign; 3, malignant) of short term culture, in which glial fibrillary acidic protein (GFAP) staining were positive, were used. To investigate the capacity of DNA repair, UV sensitivity was determined by colony formation; excision repair by autoradiography and Cytosine Arabinoside (Ara-C) assay; and post-replication repair by the joining rate of newly synthesized DNA. As a result, the colony-forming abilities of malignant glioma cell lines were lower than those of normal human fibroblasts, but no difference was found between two malignant glioma cell lines. The excision repair of the malignant group (2 cell lines and 3 cell strains) was apparently lower than that of the benign group (4 cell strains). In two malignant glioma cell lines, the excision repair of MMG-851 was lower than that of U-251-MG, and the post-replication repair of MMG-851 was higher than that of U-251-MG. These results were considered to correspond well with colony-forming ability. The results indicate that there are some differences in each human malignant glioma cell in its UV-induced DNA repair mechanism, and that the excision repair of the malignant glioma cells is apparently lower than that of the benign glioma cells. These findings may be useful for diagnosis and treatment.

  16. Therapeutic Strategy for Targeting Aggressive Malignant Gliomas by Disrupting Their Energy Balance.

    Science.gov (United States)

    Hegazy, Ahmed M; Yamada, Daisuke; Kobayashi, Masahiko; Kohno, Susumu; Ueno, Masaya; Ali, Mohamed A E; Ohta, Kumiko; Tadokoro, Yuko; Ino, Yasushi; Todo, Tomoki; Soga, Tomoyoshi; Takahashi, Chiaki; Hirao, Atsushi

    2016-10-07

    Although abnormal metabolic regulation is a critical determinant of cancer cell behavior, it is still unclear how an altered balance between ATP production and consumption contributes to malignancy. Here we show that disruption of this energy balance efficiently suppresses aggressive malignant gliomas driven by mammalian target of rapamycin complex 1 (mTORC1) hyperactivation. In a mouse glioma model, mTORC1 hyperactivation induced by conditional Tsc1 deletion increased numbers of glioma-initiating cells (GICs) in vitro and in vivo Metabolic analysis revealed that mTORC1 hyperactivation enhanced mitochondrial biogenesis, as evidenced by elevations in oxygen consumption rate and ATP production. Inhibition of mitochondrial ATP synthetase was more effective in repressing sphere formation by Tsc1-deficient glioma cells than that by Tsc1-competent glioma cells, indicating a crucial function for mitochondrial bioenergetic capacity in GIC expansion. To translate this observation into the development of novel therapeutics targeting malignant gliomas, we screened drug libraries for small molecule compounds showing greater efficacy in inhibiting the proliferation/survival of Tsc1-deficient cells compared with controls. We identified several compounds able to preferentially inhibit mitochondrial activity, dramatically reducing ATP levels and blocking glioma sphere formation. In human patient-derived glioma cells, nigericin, which reportedly suppresses cancer stem cell properties, induced AMPK phosphorylation that was associated with mTORC1 inactivation and induction of autophagy and led to a marked decrease in sphere formation with loss of GIC marker expression. Furthermore, malignant characteristics of human glioma cells were markedly suppressed by nigericin treatment in vivo Thus, targeting mTORC1-driven processes, particularly those involved in maintaining a cancer cell's energy balance, may be an effective therapeutic strategy for glioma patients. © 2016 by The American

  17. KDM2B overexpression correlates with poor prognosis and regulates glioma cell growth

    Directory of Open Access Journals (Sweden)

    Wang Y

    2018-01-01

    Full Text Available Yiwei Wang,1 Jin Zang,1 Dongyong Zhang,2 Zhenxiang Sun,1 Bo Qiu,2 Xiaojie Wang1 1Department of Human Anatomy, Shenyang Medical College, Huanggu District, Shenyang City, 2Department of Neurosurgery, First Affiliated Hospital of China Medical University, Heping District, Shenyang City, Liaoning Province, ChinaBackground: Gliomas are one of the most lethal cancers in the human central nervous system. Despite clinical treatment advancements, the prognosis of patients with glioma remains poor. KDM2B is a histone lysine demethylase, which has been observed in multiple tumors. But the concrete role of KDM2B in gliomas remains to be further illustrated.Methods: The KDM2B expression in gliomas was detected with immunohistochemistry and Western blot assay. Furthermore, knockdown of KDM2B in U87 and U251 glioma cell lines, the proliferation capacity was evaluated by cell viability assay, colon formation assay and flow cytometry in vitro. Western blot assay was used to analyze the p21, EZH2 and cyclinD1 changes followed by knockdown of KDM2B.Results: KDM2B was upregulated in tissues of glioma patients, and the expression was correlated to cancer progression. Downregulation of KDM2B in U87 and U251 glioma cell lines inhibited cell proliferation and arrested cell cycle in G0/G1 phase. In addition, silencing KDM2B promoted the upregulation of p21 while reduced the expression of EZH2 and cyclinD1.Conclusion: Taken together, our results revealed that KDM2B might influence gliomas growth and act as a novel therapeutic target for glioma patients.Keywords: EZH2, glioma, KDM2B, P21

  18. Eckol suppresses maintenance of stemness and malignancies in glioma stem-like cells

    International Nuclear Information System (INIS)

    Hyun, Kyung-Hwan; Yoon, Chang-Hwan; Kim, Rae-Kwon; Lim, Eun-Jung; An, Sungkwan; Park, Myung-Jin; Hyun, Jin-Won; Suh, Yongjoon; Kim, Min-Jung; Lee, Su-Jae

    2011-01-01

    A subpopulation of cancer cells with stem cell properties is responsible for tumor maintenance and progression, and may contribute to resistance to anticancer treatments. Thus, compounds that target cancer stem-like cells could be usefully applied to destroy cancer. In this study, we investigated the effect of Eckol, a phlorotannin compound, on stemness and malignancies in glioma stem-like cells. To determine whether Eckol targets glioma stem-like cells, we examined whether Eckol treatment could change the expression levels of glioma stem-like cell markers and self-renewal-related proteins as well as the sphere forming ability, and the sensitivity to anticancer treatments. Alterations in the malignant properties of sphere-derived cells by Eckol were also investigated by soft-agar colony forming assay, by xenograft assay in nude mice, and by cell invasion assay. Treatment of sphere-forming glioma cells with Eckol effectively decreased the sphere formation as well as the CD133 + cell population. Eckol treatment suppressed expression of the glioma stem-like cell markers and the self-renewal-related proteins without cell death. Moreover, treatment of glioma stem-like cells with Eckol significantly attenuated anchorage-independent growth on soft agar and tumor formation in xenograft mice. Importantly, Eckol treatment effectively reduced the resistance of glioma stem-like cells to ionizing radiation and temozolomide. Treatment of glioma stem-like cells with Eckol markedly blocked both phosphoinositide 3-kinase-Akt and Ras-Raf-1-Erk signaling pathways. These results indicate that the natural phlorotannin Eckol suppresses stemness and malignancies in glioma stem-like cells, and thereby makes glioma stem-like cells more sensitive to anticancer treatments, providing novel therapeutic strategies targeting specifically cancer stem-like cells.

  19. Boronated protoporphyrin (BOPP): localization in lysosomes of the human glioma cell line SF-767 with uptake modulated by lipoprotein levels

    International Nuclear Information System (INIS)

    Callahan, Daniel E.; Forte, Trudy M.; Javed Afzal, S.M.; Deen, Dennis F.; Kahl, Stephen B.; Bjornstad, Kathleen A.; Bauer, William F.; Blakely, Eleanor A.

    1999-01-01

    Purpose: Boronated protoporphyrin (BOPP) is a candidate for use in both boron neutron capture therapy (BNCT) and photodynamic therapy (PDT) of glioblastoma multiforme (GBM). Our objectives are to identify factors that influence the uptake and retention of BOPP in vitro and to determine BOPP distribution in a human glioma cell line in vitro. This information will aid the development of compounds and treatment strategies that increase the effectiveness of BNCT therapy for GBM. Methods and Materials: The amount, distribution pattern, and site of internalization of BOPP were assessed using fluorescence microscopy. Living human glioma (SF-767) cells were imaged after a 24-h exposure to BOPP (20-135.6 μg/ml, normal serum). Dose-dependent uptake of BOPP was determined using both fluorescence microscopy of individual living cells and inductively-coupled plasma-atomic emission spectroscopy (ICP-AES) analysis of cell pellets. Lysosome- or mitochondria-specific fluorescent probes were used to identify the cellular compartment containing BOPP. Two human fibroblast cell lines, AG-1522 (LDL receptor-positive) and GM019-15C (LDL receptor-deficient), were used to investigate LDL receptor-dependent BOPP uptake. The dependence of BOPP uptake on lipoproteins in the media was determined by exposing each of the three cell types to BOPP in medium containing either normal (NS) or lipoprotein deficient serum (LPDS). Results: BOPP accumulated in the lysosomes of human glioma cells in vitro, and not in the mitochondria, as reported for C6 rat glioma cells in vitro. BOPP uptake was concentration-dependent and was also dependent on the amount of lipoproteins in the medium. Over the range of incubation concentrations studied and at the single exposure duration time point investigated (24 h), all cells retained a similar amount of BOPP. At the lowest incubation concentration (20 μg/ml, NS), the amount of boron retained was near 10 9 atoms per cell (15 μg B/g cells). Lysosomes containing high

  20. Germline rearrangements in families with strong family history of glioma and malignant melanoma, colon, and breast cancer

    Science.gov (United States)

    Andersson, Ulrika; Wibom, Carl; Cederquist, Kristina; Aradottir, Steina; Borg, Åke; Armstrong, Georgina N.; Shete, Sanjay; Lau, Ching C.; Bainbridge, Matthew N.; Claus, Elizabeth B.; Barnholtz-Sloan, Jill; Lai, Rose; Il'yasova, Dora; Houlston, Richard S.; Schildkraut, Joellen; Bernstein, Jonine L.; Olson, Sara H.; Jenkins, Robert B.; Lachance, Daniel H.; Wrensch, Margaret; Davis, Faith G.; Merrell, Ryan; Johansen, Christoffer; Sadetzki, Siegal; Bondy, Melissa L.; Melin, Beatrice S.; Adatto, Phyllis; Morice, Fabian; Payen, Sam; McQuinn, Lacey; McGaha, Rebecca; Guerra, Sandra; Paith, Leslie; Roth, Katherine; Zeng, Dong; Zhang, Hui; Yung, Alfred; Aldape, Kenneth; Gilbert, Mark; Weinberger, Jeffrey; Colman, Howard; Conrad, Charles; de Groot, John; Forman, Arthur; Groves, Morris; Levin, Victor; Loghin, Monica; Puduvalli, Vinay; Sawaya, Raymond; Heimberger, Amy; Lang, Frederick; Levine, Nicholas; Tolentino, Lori; Saunders, Kate; Thach, Thu-Trang; Iacono, Donna Dello; Sloan, Andrew; Gerson, Stanton; Selman, Warren; Bambakidis, Nicholas; Hart, David; Miller, Jonathan; Hoffer, Alan; Cohen, Mark; Rogers, Lisa; Nock, Charles J; Wolinsky, Yingli; Devine, Karen; Fulop, Jordonna; Barrett, Wendi; Shimmel, Kristen; Ostrom, Quinn; Barnett, Gene; Rosenfeld, Steven; Vogelbaum, Michael; Weil, Robert; Ahluwalia, Manmeet; Peereboom, David; Staugaitis, Susan; Schilero, Cathy; Brewer, Cathy; Smolenski, Kathy; McGraw, Mary; Naska, Theresa; Rosenfeld, Steven; Ram, Zvi; Blumenthal, Deborah T.; Bokstein, Felix; Umansky, Felix; Zaaroor, Menashe; Cohen, Avi; Tzuk-Shina, Tzeela; Voldby, Bo; Laursen, René; Andersen, Claus; Brennum, Jannick; Henriksen, Matilde Bille; Marzouk, Maya; Davis, Mary Elizabeth; Boland, Eamon; Smith, Marcel; Eze, Ogechukwu; Way, Mahalia; Lada, Pat; Miedzianowski, Nancy; Frechette, Michelle; Paleologos, Nina; Byström, Gudrun; Svedberg, Eva; Huggert, Sara; Kimdal, Mikael; Sandström, Monica; Brännström, Nikolina; Hayat, Amina; Tihan, Tarik; Zheng, Shichun; Berger, Mitchel; Butowski, Nicholas; Chang, Susan; Clarke, Jennifer; Prados, Michael; Rice, Terri; Sison, Jeannette; Kivett, Valerie; Duo, Xiaoqin; Hansen, Helen; Hsuang, George; Lamela, Rosito; Ramos, Christian; Patoka, Joe; Wagenman, Katherine; Zhou, Mi; Klein, Adam; McGee, Nora; Pfefferle, Jon; Wilson, Callie; Morris, Pagan; Hughes, Mary; Britt-Williams, Marlin; Foft, Jessica; Madsen, Julia; Polony, Csaba; McCarthy, Bridget; Zahora, Candice; Villano, John; Engelhard, Herbert; Borg, Ake; Chanock, Stephen K; Collins, Peter; Elston, Robert; Kleihues, Paul; Kruchko, Carol; Petersen, Gloria; Plon, Sharon; Thompson, Patricia; Johansen, C.; Sadetzki, S.; Melin, B.; Bondy, Melissa L.; Lau, Ching C.; Scheurer, Michael E.; Armstrong, Georgina N.; Liu, Yanhong; Shete, Sanjay; Yu, Robert K.; Aldape, Kenneth D.; Gilbert, Mark R.; Weinberg, Jeffrey; Houlston, Richard S.; Hosking, Fay J.; Robertson, Lindsay; Papaemmanuil, Elli; Claus, Elizabeth B.; Claus, Elizabeth B.; Barnholtz-Sloan, Jill; Sloan, Andrew E.; Barnett, Gene; Devine, Karen; Wolinsky, Yingli; Lai, Rose; McKean-Cowdin, Roberta; Il'yasova, Dora; Schildkraut, Joellen; Sadetzki, Siegal; Yechezkel, Galit Hirsh; Bruchim, Revital Bar-Sade; Aslanov, Lili; Sadetzki, Siegal; Johansen, Christoffer; Kosteljanetz, Michael; Broholm, Helle; Bernstein, Jonine L.; Olson, Sara H.; Schubert, Erica; DeAngelis, Lisa; Jenkins, Robert B.; Yang, Ping; Rynearson, Amanda; Andersson, Ulrika; Wibom, Carl; Henriksson, Roger; Melin, Beatrice S.; Cederquist, Kristina; Aradottir, Steina; Borg, Åke; Merrell, Ryan; Lada, Patricia; Wrensch, Margaret; Wiencke, John; Wiemels, Joe; McCoy, Lucie; McCarthy, Bridget J.; Davis, Faith G.

    2014-01-01

    Background Although familial susceptibility to glioma is known, the genetic basis for this susceptibility remains unidentified in the majority of glioma-specific families. An alternative approach to identifying such genes is to examine cancer pedigrees, which include glioma as one of several cancer phenotypes, to determine whether common chromosomal modifications might account for the familial aggregation of glioma and other cancers. Methods Germline rearrangements in 146 glioma families (from the Gliogene Consortium; http://www.gliogene.org/) were examined using multiplex ligation-dependent probe amplification. These families all had at least 2 verified glioma cases and a third reported or verified glioma case in the same family or 2 glioma cases in the family with at least one family member affected with melanoma, colon, or breast cancer.The genomic areas covering TP53, CDKN2A, MLH1, and MSH2 were selected because these genes have been previously reported to be associated with cancer pedigrees known to include glioma. Results We detected a single structural rearrangement, a deletion of exons 1-6 in MSH2, in the proband of one family with 3 cases with glioma and one relative with colon cancer. Conclusions Large deletions and duplications are rare events in familial glioma cases, even in families with a strong family history of cancers that may be involved in known cancer syndromes. PMID:24723567

  1. CD44 Interacts with HIF-2α to Modulate the Hypoxic Phenotype of Perinecrotic and Perivascular Glioma Cells

    DEFF Research Database (Denmark)

    Johansson, Elinn; Grassi, Elisa S.; Pantazopoulou, Vasiliki

    2017-01-01

    Hypoxia-inducible factors enhance glioma stemness, and glioma stem cells have an amplified hypoxic response despite residing within a perivascular niche. Still, little is known about differential HIF regulation in stem versus bulk glioma cells. We show that the intracellular domain of stem cell...... marker CD44 (CD44ICD) is released at hypoxia, binds HIF-2α (but not HIF-1α), enhances HIF target gene activation, and is required for hypoxia-induced stemness in glioma. In a glioma mouse model, CD44 was restricted to hypoxic and perivascular tumor regions, and in human glioma, a hypoxia signature...... correlated with CD44. The CD44ICD was sufficient to induce hypoxic signaling at perivascular oxygen tensions, and blocking CD44 cleavage decreased HIF-2α stabilization in CD44-expressing cells. Our data indicate that the stem cell marker CD44 modulates the hypoxic response of glioma cells and that the pseudo-hypoxic...

  2. Voxel-based clustered imaging by multiparameter diffusion tensor images for glioma grading.

    Science.gov (United States)

    Inano, Rika; Oishi, Naoya; Kunieda, Takeharu; Arakawa, Yoshiki; Yamao, Yukihiro; Shibata, Sumiya; Kikuchi, Takayuki; Fukuyama, Hidenao; Miyamoto, Susumu

    2014-01-01

    Gliomas are the most common intra-axial primary brain tumour; therefore, predicting glioma grade would influence therapeutic strategies. Although several methods based on single or multiple parameters from diagnostic images exist, a definitive method for pre-operatively determining glioma grade remains unknown. We aimed to develop an unsupervised method using multiple parameters from pre-operative diffusion tensor images for obtaining a clustered image that could enable visual grading of gliomas. Fourteen patients with low-grade gliomas and 19 with high-grade gliomas underwent diffusion tensor imaging and three-dimensional T1-weighted magnetic resonance imaging before tumour resection. Seven features including diffusion-weighted imaging, fractional anisotropy, first eigenvalue, second eigenvalue, third eigenvalue, mean diffusivity and raw T2 signal with no diffusion weighting, were extracted as multiple parameters from diffusion tensor imaging. We developed a two-level clustering approach for a self-organizing map followed by the K-means algorithm to enable unsupervised clustering of a large number of input vectors with the seven features for the whole brain. The vectors were grouped by the self-organizing map as protoclusters, which were classified into the smaller number of clusters by K-means to make a voxel-based diffusion tensor-based clustered image. Furthermore, we also determined if the diffusion tensor-based clustered image was really helpful for predicting pre-operative glioma grade in a supervised manner. The ratio of each class in the diffusion tensor-based clustered images was calculated from the regions of interest manually traced on the diffusion tensor imaging space, and the common logarithmic ratio scales were calculated. We then applied support vector machine as a classifier for distinguishing between low- and high-grade gliomas. Consequently, the sensitivity, specificity, accuracy and area under the curve of receiver operating characteristic

  3. Integrated analysis of dynamic FET PET/CT parameters, histology, and methylation profiling of 44 gliomas.

    Science.gov (United States)

    Röhrich, Manuel; Huang, Kristin; Schrimpf, Daniel; Albert, Nathalie L; Hielscher, Thomas; von Deimling, Andreas; Schüller, Ulrich; Dimitrakopoulou-Strauss, Antonia; Haberkorn, Uwe

    2018-05-07

    Dynamic 18 F-FET PET/CT is a powerful tool for the diagnosis of gliomas. 18 F-FET PET time-activity curves (TAC) allow differentiation between histological low-grade gliomas (LGG) and high-grade gliomas (HGG). Molecular methods such as epigenetic profiling are of rising importance for glioma grading and subclassification. Here, we analysed dynamic 18 F-FET PET data, and the histological and epigenetic features of 44 gliomas. Dynamic 18 F-FET PET was performed in 44 patients with newly diagnosed, untreated glioma: 10 WHO grade II glioma, 13 WHO grade III glioma and 21 glioblastoma (GBM). All patients underwent stereotactic biopsy or tumour resection after 18 F-FET PET imaging. As well as histological analysis of tissue samples, DNA was subjected to epigenetic analysis using the Illumina 850 K methylation array. TACs, standardized uptake values corrected for background uptake in healthy tissue (SUVmax/BG), time to peak (TTP) and kinetic modelling parameters were correlated with histological diagnoses and with epigenetic signatures. Multivariate analyses were performed to evaluate the diagnostic accuracy of 18 F-FET PET in relation to the tumour groups identified by histological and methylation-based analysis. Epigenetic profiling led to substantial tumour reclassification, with six grade II/III gliomas reclassified as GBM. Overlap of HGG-typical TACs and LGG-typical TACs was dramatically reduced when tumours were clustered on the basis of their methylation profile. SUVmax/BG values of GBM were higher than those of LGGs following both histological diagnosis and methylation-based diagnosis. The differences in TTP between GBMs and grade II/III gliomas were greater following methylation-based diagnosis than following histological diagnosis. Kinetic modeling showed that relative K1 and fractal dimension (FD) values significantly differed in histology- and methylation-based GBM and grade II/III glioma between those diagnosed histologically and those diagnosed by

  4. Tumor grading of adult astrocytic glioma on MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kee Hyun; Choi, Choong Gon; Han, Moon Hee; Lee, Seon Kyu [Seoul National University College of Medicine, Seoul (Korea, Republic of); Suh, Jung Ho [Yonsei University College of Medicine, Seoul (Korea, Republic of); Lee, Ho Kyu; Suh, Dae Chul [Ulsan University College of Medicine, Seoul (Korea, Republic of); Choi, Kyu Ho [Catholic University College of Medicine, Seoul (Korea, Republic of); Byun, Hong Sik [Korea Cancer Center Hospital, Seoul (Korea, Republic of); Choi, Woo Suk [Kyung Hee University College of Medicine, Seoul (Korea, Republic of)

    1994-09-15

    The purpose of this study is to determine predictive MR features for grading of astrocytic gliomas and to evaluate the accuracy of MR grading in these tumors. We retrospectively reviewed 135 cases of supratentorial astrocytic gliomas in adult (age > 15 years), all of which were proved by open biopsy. Two observers analysed MR images independently with criteria of margin, edema, mass effect, signal heterogeneity, necrosis, cyst formation, hemorrhage, tumor vascularity, enhancement degree, and enhancement size. The patterns of enhancement were categorized into no, homogeneous, heterogeneous, thin smooth rim, thin irregular rim, and thick irregular rim enhancement patterns. Observers finally diagnosed each case as one of low-grade astrocytoma, anaplastic astrocytoma or glioblastoma multiforme. Statistically significant MR features for grading of these tumors were revealed as necrosis (p < 0.001), edema (0.008), and signal heterogeneity (p < 0.025). When compared with histopathologic grading, MR graded correctly 76%- 77% of cases in two tired system(low-grade astrocytoma versus high-grade astrocytoma), but only 67%-69% of cases in three tiered system(low-grade astrocytoma, anaplastic astrocytoma, glioblastoma multiforme). No contrast enhancement was seen in 45% and 23% of low-grade astrocytoma and anaplastic astrocytoma respectively. Glioblastoma multiforme frequently showed thick irregular rim enhancement (57%), but no enhancement at all in 8%. We have concluded that necrosis and edema are significant predictive MR features for grading of supratentorial astrocytic gliomas in adult, and MR was correct in 76%-77% of cases for predicting pathologic grading astrocytomas in two tiered system.

  5. Tumor grading of adult astrocytic glioma on MR imaging

    International Nuclear Information System (INIS)

    Chang, Kee Hyun; Choi, Choong Gon; Han, Moon Hee; Lee, Seon Kyu; Suh, Jung Ho; Lee, Ho Kyu; Suh, Dae Chul; Choi, Kyu Ho; Byun, Hong Sik; Choi, Woo Suk

    1994-01-01

    The purpose of this study is to determine predictive MR features for grading of astrocytic gliomas and to evaluate the accuracy of MR grading in these tumors. We retrospectively reviewed 135 cases of supratentorial astrocytic gliomas in adult (age > 15 years), all of which were proved by open biopsy. Two observers analysed MR images independently with criteria of margin, edema, mass effect, signal heterogeneity, necrosis, cyst formation, hemorrhage, tumor vascularity, enhancement degree, and enhancement size. The patterns of enhancement were categorized into no, homogeneous, heterogeneous, thin smooth rim, thin irregular rim, and thick irregular rim enhancement patterns. Observers finally diagnosed each case as one of low-grade astrocytoma, anaplastic astrocytoma or glioblastoma multiforme. Statistically significant MR features for grading of these tumors were revealed as necrosis (p < 0.001), edema (0.008), and signal heterogeneity (p < 0.025). When compared with histopathologic grading, MR graded correctly 76%- 77% of cases in two tired system(low-grade astrocytoma versus high-grade astrocytoma), but only 67%-69% of cases in three tiered system(low-grade astrocytoma, anaplastic astrocytoma, glioblastoma multiforme). No contrast enhancement was seen in 45% and 23% of low-grade astrocytoma and anaplastic astrocytoma respectively. Glioblastoma multiforme frequently showed thick irregular rim enhancement (57%), but no enhancement at all in 8%. We have concluded that necrosis and edema are significant predictive MR features for grading of supratentorial astrocytic gliomas in adult, and MR was correct in 76%-77% of cases for predicting pathologic grading astrocytomas in two tiered system

  6. Glioma surgery using intraoperative tractography and MEP monitoring

    International Nuclear Information System (INIS)

    Maesawa, Satoshi; Nakahara, Norimoto; Watanabe, Tadashi; Fujii, Masazumi; Yoshida, Jun

    2009-01-01

    In surgery of gliomas in motor-eloquent locations, it is essential to maximize resection while minimizing motor deficits. We attempted to identify the cortico-spinal tract (CST) by intraoperative-diffusion tensor imaging (DTI) tractography, combined with electrophysiological mapping using direct subcortical stimulation during tumor resection. Our techniques and preliminary results are reported. Tumors were removed from twelve patients with gliomas in and around the CST using high-field intraoperative MRI and neuronavigation system (BrainSUITE). DTI-based tractography was implemented for navigation of CST pre-and intraoperatively. When the CST was close to the manipulating area, direct subcortical stimulation was performed, and motor evoked potential (MEP)-responses were examined. Locations of CST indicated by pre- and intraoperative tractography (pre- or intra-CST-tractography), and locations identified by subcortical stimulation were recorded, and those correlations were examined. Imaging and functional outcomes were reviewed. Total resections were achieved in 10 patients (83.4%). Two patients developed transient deterioration of motor function (16.6%), and permanent paresis was seen in one (8.3%). The distance from intra-CST-tractography to corresponding sites by subcortical stimulation was 4.5 mm in average (standard deviation (SD)=4.2), and significantly shorter than from pre-CST-tractography. That distance correlated significantly with the intensity of subcortical stimulation. We observed that intraoperative DTI-tractography demonstrated the location of the pyramidal tract more accurately than preoperative one. The combination of intraoperative tractgraphy and MEP monitoring enhanced the quality of surgery for gliomas in motor-eloquent area. (author)

  7. Hypofractionated stereotactic radiotherapy combined with topotecan in recurrent malignant glioma

    International Nuclear Information System (INIS)

    Wurm, Reinhard E.; Kuczer, David A.; Schlenger, Lorenz; Matnjani, Gesa; Scheffler, Dirk; Cosgrove, Vivian P.; Ahlswede, Julia; Woiciechowsky, Christian; Budach, Volker

    2006-01-01

    Purpose: To assess hypofractionated stereotactic radiotherapy (H-SRT) with concurrent topotecan in patients with recurrent malignant glioma. Methods and Materials: Between February 1998 and December 2001, 25 patients with recurrent malignant glioma were treated in a phase I-II study (8 females and 17 males; median age, 45 years; range, 11-66 years; median Karnofsky performance status, 80%, range, 50-100%; median Mini Mental Standard Examination score, 25 points; range, 10-30 points). Of the 25 patients, 20% had World Health Organization Grade III and 80% World Health Organization Grade IV glioma. All patients had been treated previously by external beam radiotherapy with 54.4 Gy in 34 fractions twice daily, at least 6 h apart, within 3.5 weeks or 60 Gy in 30 fractions within 6 weeks. In addition, 84% had already received at least one chemotherapy regimen for recurrence. The median H-SRT dose at the 80% isodose was 25 Gy, and the maximal dose was 30 Gy delivered in five to six fractions on consecutive days. Topotecan (1.1 mg/m 2 /d) was given as a continuous i.v. infusion during H-SRT. Depending on the toxicity and compliance, patients received an additional 48 topotecan courses. Results: For all patients, the actuarial median progression-free survival was 10.5 months (range, 1.4-47.8 months), the median functional survival was 12.6 months (range, 1.6-49.5 months), and the median overall survival was 14.5 months (range, 3-56.4 months). Twelve percent of patients developed presumed adverse radiation effects (Radiation Therapy Oncology Group Grade 2). According to the Common Toxicity Criteria, version 2.0, no topotecan-related Grade 4 toxicity was noted. Grade 3 neutropenia was documented after 14 and Grade 3 thrombopenia after 12 courses. Conclusion: H-SRT with topotecan is feasible and well-tolerated in patients with recurrent high-grade glioma and results in similar survival compared with other repeat treatment modalities

  8. Deep RF-hyperthermia: an effective treatment of advanced gliomas

    International Nuclear Information System (INIS)

    Sahinbas, H.; Groenemeyer, D.H.W.

    2005-01-01

    Full text: Contrary to the enormous efforts, results of conventional treatments of high-grade malignant gliomas are unsatisfactory. The prognosis of that tumor type is poor, its overall median survival time (MST) less than a year. Most of the cases are inoperable or only partially resectable, and their response to the various chemotherapies and/or radiotherapy is poor. The chemo-therapies which are successful for other locations often fail due to the effective brain-blood barrier (BBB). Probably the modification of the BBB by electromagnetic fields together with the direct electromagnetic-field heating are the main factors for the success of electro-hyperthermia. Primary aim of this study was to present the therapy tolerance for patients of electro-hyperthermia (EHY) for advanced malignant gliomas and as main intention to show the increase of the median survival time (MST). Our study was performed between 2000 - 2004; for patients with inoperable, partially resected or recurrent gliomas (WHO grade III and IV) with progression after radio- and/or chemotherapy and a Karnofsky Performance Score ≤30-40 %. 105 pts were involved in this study: 38 astrocytoma pts, 56 glioblastoma pts and 12 pts with other brain malignancies. All patients were heavily and unsatisfactory pretreated. EHY was applied over 4 weeks, 3 times a week over 1 hour in average by 100 Watt, as mono- or combined therapy (chemotherapy, irradiation therapy). The set of patients as well as the frequency of EHY was well documented for future evaluations. The historic reference of the MST from the first diagnosis for gliomas grade III and IV in our institute is 11.42 months (range 1-62), which is in good agreement with the relevant literature. The median survival time (MST) in our institute with EHY increases to 44.2 m, 23.2 m and 61.0 m for astrocytoma, glioblastoma and other brain malignancies, respectively. The therapy results were controlled by MRI images. EHY is a feasible treatment for advanced

  9. Postoperative radiotherapy for low grade glioma of the brain

    International Nuclear Information System (INIS)

    Chun, Ha Chung; Lee, Myung Za

    2000-01-01

    To evaluate the effectiveness and tolerance of postoperative external beam radiotherapy for patients with low grade glioma of the brain and define the optimal radiotherapeutic regimen. Between June, 1985 and May, 1998, 72 patients with low grade gliomas were treated with postoperative radiotherapy immediately following surgery. Median age was 37 years with range of 11 to 76 years. Forty one patients were male and 31 patients were female with male to female ratio of 1.3:1. Of those patients, 15 underwent biopsy alone and remaining 57 did subtotal resection. The distribution of the patients according to histologic type was as follows: astrocytomas-42 patients (58%), mixed oligodendrogliomas-19 patients (27%), oligodendrogliomas-11 patients (15%). Two patients were treated with whole brain irradiation followed by cone down boost and remaining 70 patients were treated with localized field with appropriate margin. All of the patients were treated with conventional once a day fractionation. Most of patients received total tumor dose of 5000-5500 cGy. The overall 5 and 7 year survival rates for entire group of 72 patients were 61% and 50%. Corresponding disease free survival rates for entire patients were 53% and 45%, respectively. The 5 and 7 year overall survival rates for astrocytomas, mixed oligodendrogliomas, and oligodendrogliomas were 48% and 45%, 76% and 56%, and 80% and 52%, respectively. Patients who underwent subtotal resection showed better survival rates than those who did biopsy alone. The overall 5 year survival rates for subtotal resection patients and biopsy alone patients were 67% and 43%, respectively. Forty six patients who were 40 years or younger survived better than 26 patients who were 41 years or older (overall survival rate at 5 years, 69% vs 45%). Although one patient was not able to complete the treatment because of neurological deterioration, there was no significant treatment related acute toxicities. Postoperative radiotherapy was safe and

  10. Long noncoding RNA CASC2 predicts the prognosis of glioma patients and functions as a suppressor for gliomas by suppressing Wnt/β-catenin signaling pathway

    Directory of Open Access Journals (Sweden)

    Wang R

    2017-07-01

    Full Text Available Ronglin Wang,1,* Yuqian Li,1,* Gang Zhu,1,* Bo Tian,1 Wen Zeng,1 Yang Yang,2 Zhihong Li1 1Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, 2Department of Neurosurgery, The 451th hospital of PLA, Xi’an, Shaanxi, People’s Republic of China *These authors contributed equally to this work Background: Previous studies have demonstrated that long noncoding RNA cancer susceptibility candidate 2 (lncRNA CASC2 is frequently downregulated in several types of tumors and functions as a tumor-suppressive factor. However, the clinical significance and function of CASC2 in human glioma remain largely unknown. The purpose of this study was to identify the clinical values of CASC2, as well as investigate the potential molecular mechanisms in glioma. Methods: This retrospective study first analyzed the expression levels of CASC2 using quantitative real-time polymerase chain reaction. Then, CASC2 expression levels were associated with various clinicopathologic characteristics and the survival rate of patients with glioma. Finally, the function and underlying molecular mechanisms of CASC2 in human glioma were investigated in U251 cell line. Results: By quantitative real-time polymerase chain reaction analysis, our data showed that CASC2 expression was significantly downregulated in glioma tissues and cell lines (U87 and U251 compared to adjacent normal brain tissues or normal human astrocytes. Moreover, its expression negatively correlated with tumor grade in glioma patients. Furthermore, Kaplan–Meier curves with log-rank analysis revealed a close correlation between downregulated CASC2 and shorter survival time in glioma patients. In addition, Cox regression analysis indicated that CASC2 could be considered as an independent risk factor for poor prognosis. Finally, in vitro experiment demonstrated that CASC2 overexpression remarkably suppressed glioma cell proliferation, migration, and invasion through suppressing Wnt

  11. Saw Palmetto Extract Inhibits Metastasis and Antiangiogenesis through STAT3 Signal Pathway in Glioma Cell

    Directory of Open Access Journals (Sweden)

    Hong Ding

    2015-01-01

    Full Text Available Signal transducer and activator of transcription factor 3 (STAT3 plays an important role in the proliferation and angiogenesis in human glioma. Previous research indicated that saw palmetto extract markedly inhibited the proliferation of human glioma cells through STAT3 signal pathway. But its effect on tumor metastasis and antiangiogenesis is not clear. This study is to further clear the impact of saw palmetto extract on glioma cell metastasis, antiangiogenesis, and its mechanism. TUNEL assay indicated that the apoptotic cells in the saw palmetto treated group are higher than that in the control group (p<0.05. The apoptosis related protein is detected and the results revealed that saw palmetto extract inhibits the proliferation of human glioma. Meanwhile pSTAT3 is lower in the experimental group and CD34 is also inhibited in the saw palmetto treated group. This means that saw palmetto extract could inhibit the angiogenesis in glioma. We found that saw palmetto extract was an important phytotherapeutic drug against the human glioma through STAT3 signal pathway. Saw palmetto extract may be useful as an adjunctive therapeutic agent for treatment of individuals with glioma and other types of cancer in which STAT3 signaling is activated.

  12. Saw Palmetto Extract Inhibits Metastasis and Antiangiogenesis through STAT3 Signal Pathway in Glioma Cell.

    Science.gov (United States)

    Ding, Hong; Shen, Jinglian; Yang, Yang; Che, Yuqin

    2015-01-01

    Signal transducer and activator of transcription factor 3 (STAT3) plays an important role in the proliferation and angiogenesis in human glioma. Previous research indicated that saw palmetto extract markedly inhibited the proliferation of human glioma cells through STAT3 signal pathway. But its effect on tumor metastasis and antiangiogenesis is not clear. This study is to further clear the impact of saw palmetto extract on glioma cell metastasis, antiangiogenesis, and its mechanism. TUNEL assay indicated that the apoptotic cells in the saw palmetto treated group are higher than that in the control group (p saw palmetto extract inhibits the proliferation of human glioma. Meanwhile pSTAT3 is lower in the experimental group and CD34 is also inhibited in the saw palmetto treated group. This means that saw palmetto extract could inhibit the angiogenesis in glioma. We found that saw palmetto extract was an important phytotherapeutic drug against the human glioma through STAT3 signal pathway. Saw palmetto extract may be useful as an adjunctive therapeutic agent for treatment of individuals with glioma and other types of cancer in which STAT3 signaling is activated.

  13. Atypical nuclear localization of VIP receptors in glioma cell lines and patients

    Energy Technology Data Exchange (ETDEWEB)

    Barbarin, Alice; Séité, Paule [Equipe Récepteurs, Régulations et Cellules Tumorales, Université de Poitiers, PBS bât 36, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9 (France); Godet, Julie [Laboratoire d’anatomie et de cytologie pathologiques, CHU de Poitiers, 2 rue de la Milétrie, 86000 Poitiers (France); Bensalma, Souheyla; Muller, Jean-Marc [Equipe Récepteurs, Régulations et Cellules Tumorales, Université de Poitiers, PBS bât 36, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9 (France); Chadéneau, Corinne, E-mail: corinne.chadeneau@univ-poitiers.fr [Equipe Récepteurs, Régulations et Cellules Tumorales, Université de Poitiers, PBS bât 36, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9 (France)

    2014-11-28

    Highlights: • The VIP receptor VPAC1 contains a putative NLS signal. • VPAC1 is predominantly nuclear in GBM cell lines but not VPAC2. • Non-nuclear VPAC1/2 protein expression is correlated with glioma grade. • Nuclear VPAC1 is observed in 50% of stage IV glioma (GBM). - Abstract: An increasing number of G protein-coupled receptors, like receptors for vasoactive intestinal peptide (VIP), are found in cell nucleus. As VIP receptors are involved in the regulation of glioma cell proliferation and migration, we investigated the expression and the nuclear localization of the VIP receptors VPAC1 and VPAC2 in this cancer. First, by applying Western blot and immunofluorescence detection in three human glioblastoma (GBM) cell lines, we observed a strong nuclear staining for the VPAC1 receptor and a weak nuclear VPAC2 receptor staining. Second, immunohistochemical staining of VPAC1 and VPAC2 on tissue microarrays (TMA) showed that the two receptors were expressed in normal brain and glioma tissues. Expression in the non-nuclear compartment of the two receptors significantly increased with the grade of the tumors. Analysis of nuclear staining revealed a significant increase of VPAC1 staining with glioma grade, with up to 50% of GBM displaying strong VPAC1 nuclear staining, whereas nuclear VPAC2 staining remained marginal. The increase in VPAC receptor expression with glioma grades and the enhanced nuclear localization of the VPAC1 receptors in GBM might be of importance for glioma progression.

  14. Single-wall carbon nanohorns (SWNHs) inhibited proliferation of human glioma cells and promoted its apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yunjun [The Military General Hospital of Beijing PLA, Affiliated Bayi Brain Hospital (China); Zhang, Jinqian, E-mail: jingwanghou@yahoo.com.cn [Capital Medical University, Institute of Infectious Diseases, Beijing Ditan Hospital (China); Zhao, Ming [Peking University, Department of Chemical Biology, School of Pharmaceutical Sciences (China); Shi, Zujin [Peking University, Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering (China); Chen, Xin; He, Xihui; Han, Nanyin, E-mail: jingwanghou@sina.com [Peking University, Department of Chemical Biology, School of Pharmaceutical Sciences (China); Xu, Ruxiang, E-mail: everbright999@163.com [The Military General Hospital of Beijing PLA, Affiliated Bayi Brain Hospital (China)

    2013-08-15

    Although single-wall carbon nanohorns (SWNHs) have been demonstrated to accumulate to cytotoxic levels within organs of various animal models and cell types, they have been exploited for cancer therapies. The role of SWNHs in human glioma cell lines was unclear. To address this question, the research about direct role of SWNHs on the growth, proliferation, and apoptosis of human glioma cell lines (U87, U251, and U373) had been performed. Our results indicate that particle size of SWNHs in water is between 342 and 712 nm, the films of SEM show that SWNHs on PS surface are individual particles. SWNHs significantly delayed mitotic entry of human glioma cell lines cells, and inhibited its proliferation in a time- and dose-dependent manner. SWNHs induced a significant increase in G1 phase and inhibition of S phase followed the gradually increasing concentrations. SWNHs in human glioma cell lines cells significantly induced apoptosis followed by their gradually increasing concentrations. The TEM images showed that individual spherical SWNHs particles smaller than 100 nm in diameters were localized inside lysosomes of human glioma cell lines. SWNHs inhibited mitotic entry, growth, and proliferation of human glioma cell lines, and promoted its apoptosis. SWNHs may be a novel opportunity or method for the research on treatment of human glioma.

  15. Comparative magnetic resonance imaging findings between gliomas and presumed cerebrovascular accidents in dogs.

    Science.gov (United States)

    Cervera, Vicente; Mai, Wilfried; Vite, Charles H; Johnson, Victoria; Dayrell-Hart, Betsy; Seiler, Gabriela S

    2011-01-01

    Cerebrovascular accidents, or strokes, and gliomas are common intraaxial brain lesions in dogs. An accurate differentiation of these two lesions is necessary for prognosis and treatment decisions. The magnetic resonance (MR) imaging characteristics of 21 dogs with a presumed cerebrovascular accident and 17 with a glioma were compared. MR imaging findings were reviewed retrospectively by three observers unaware of the final diagnosis. Statistically significant differences between the appearance of gliomas and cerebrovascular accidents were identified based on lesion location, size, mass effect, perilesional edema, and appearance of the apparent diffusion coefficient map. Gliomas were predominantly located in the cerebrum (76%) compared with presumed cerebrovascular accidents that were located mainly in the cerebellum, thalamus, caudate nucleus, midbrain, and brainstem (76%). Gliomas were significantly larger compared with presumed cerebrovascular accidents and more commonly associated with mass effect and perilesional edema. Wedge-shaped lesions were seen only in 19% of presumed cerebrovascular accidents. Between the three observers, 10-47% of the presumed cerebrovascular accidents were misdiagnosed as gliomas, and 0-12% of the gliomas were misdiagnosed as cerebrovascular accidents. Diffusion weighted imaging increased the accuracy of the diagnosis for both lesions. Agreement between observers was moderate (kappa = 0.48, P < 0.01).

  16. Histogram analysis of T2*-based pharmacokinetic imaging in cerebral glioma grading.

    Science.gov (United States)

    Liu, Hua-Shan; Chiang, Shih-Wei; Chung, Hsiao-Wen; Tsai, Ping-Huei; Hsu, Fei-Ting; Cho, Nai-Yu; Wang, Chao-Ying; Chou, Ming-Chung; Chen, Cheng-Yu

    2018-03-01

    To investigate the feasibility of histogram analysis of the T2*-based permeability parameter volume transfer constant (K trans ) for glioma grading and to explore the diagnostic performance of the histogram analysis of K trans and blood plasma volume (v p ). We recruited 31 and 11 patients with high- and low-grade gliomas, respectively. The histogram parameters of K trans and v p , derived from the first-pass pharmacokinetic modeling based on the T2* dynamic susceptibility-weighted contrast-enhanced perfusion-weighted magnetic resonance imaging (T2* DSC-PW-MRI) from the entire tumor volume, were evaluated for differentiating glioma grades. Histogram parameters of K trans and v p showed significant differences between high- and low-grade gliomas and exhibited significant correlations with tumor grades. The mean K trans derived from the T2* DSC-PW-MRI had the highest sensitivity and specificity for differentiating high-grade gliomas from low-grade gliomas compared with other histogram parameters of K trans and v p . Histogram analysis of T2*-based pharmacokinetic imaging is useful for cerebral glioma grading. The histogram parameters of the entire tumor K trans measurement can provide increased accuracy with additional information regarding microvascular permeability changes for identifying high-grade brain tumors. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. EMMPRIN is an independent negative prognostic factor for patients with astrocytic glioma.

    Directory of Open Access Journals (Sweden)

    Li Tian

    Full Text Available Extracellular matrix metalloproteinase inducer (EMMPRIN, also known as CD147, is a member of the immunoglobulin superfamily that is present on the surface of tumor cells and stimulates adjacent fibroblasts to produce matrix metalloproteinases (MMPs. It has been proved to be associated with tumor invasion and metastasis in various human malignancies. In our study, the protein expression level of EMMPRIN in 306 cases of astrocytic glioma is investigated by immunohistochemistry assay. Statistical analysis was utilized to evaluate the association of EMMPRIN with clinicopathological characteristics and prognosis of patients. It was proved that EMMPRIN protein expression was increased in glioma compared with that in normal brain tissue. Moreover, EMMPRIN immunohistochemical staining was correlated with WHO grade and Karnofsky performance score for strong positive EMMPRIN staining is more frequently detected in glioma of advanced grade or low KPS score. It is also demonstrated that EMMPRIN could be an independent negative prognostic factor in glioma for patients with glioma of strong EMMPRIN staining tend to have high risk of death. These results proved that EMMPRIN is associated with prognosis of glioma, which may also suggest the potential role of EMMPRIN in glioma management.

  18. EMMPRIN is an independent negative prognostic factor for patients with astrocytic glioma.

    Science.gov (United States)

    Tian, Li; Zhang, Yang; Chen, Yu; Cai, Min; Dong, Hailong; Xiong, Lize

    2013-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN), also known as CD147, is a member of the immunoglobulin superfamily that is present on the surface of tumor cells and stimulates adjacent fibroblasts to produce matrix metalloproteinases (MMPs). It has been proved to be associated with tumor invasion and metastasis in various human malignancies. In our study, the protein expression level of EMMPRIN in 306 cases of astrocytic glioma is investigated by immunohistochemistry assay. Statistical analysis was utilized to evaluate the association of EMMPRIN with clinicopathological characteristics and prognosis of patients. It was proved that EMMPRIN protein expression was increased in glioma compared with that in normal brain tissue. Moreover, EMMPRIN immunohistochemical staining was correlated with WHO grade and Karnofsky performance score for strong positive EMMPRIN staining is more frequently detected in glioma of advanced grade or low KPS score. It is also demonstrated that EMMPRIN could be an independent negative prognostic factor in glioma for patients with glioma of strong EMMPRIN staining tend to have high risk of death. These results proved that EMMPRIN is associated with prognosis of glioma, which may also suggest the potential role of EMMPRIN in glioma management.

  19. Computer-Aided Grading of Gliomas Combining Automatic Segmentation and Radiomics

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2018-01-01

    Full Text Available Gliomas are the most common primary brain tumors, and the objective grading is of great importance for treatment. This paper presents an automatic computer-aided diagnosis of gliomas that combines automatic segmentation and radiomics, which can improve the diagnostic ability. The MRI data containing 220 high-grade gliomas and 54 low-grade gliomas are used to evaluate our system. A multiscale 3D convolutional neural network is trained to segment whole tumor regions. A wide range of radiomic features including first-order features, shape features, and texture features is extracted. By using support vector machines with recursive feature elimination for feature selection, a CAD system that has an extreme gradient boosting classifier with a 5-fold cross-validation is constructed for the grading of gliomas. Our CAD system is highly effective for the grading of gliomas with an accuracy of 91.27%, a weighted macroprecision of 91.27%, a weighted macrorecall of 91.27%, and a weighted macro-F1 score of 90.64%. This demonstrates that the proposed CAD system can assist radiologists for high accurate grading of gliomas and has the potential for clinical applications.

  20. Single-wall carbon nanohorns (SWNHs) inhibited proliferation of human glioma cells and promoted its apoptosis

    Science.gov (United States)

    Li, Yunjun; Zhang, Jinqian; Zhao, Ming; Shi, Zujin; Chen, Xin; He, Xihui; Han, Nanyin; Xu, Ruxiang

    2013-08-01

    Although single-wall carbon nanohorns (SWNHs) have been demonstrated to accumulate to cytotoxic levels within organs of various animal models and cell types, they have been exploited for cancer therapies. The role of SWNHs in human glioma cell lines was unclear. To address this question, the research about direct role of SWNHs on the growth, proliferation, and apoptosis of human glioma cell lines (U87, U251, and U373) had been performed. Our results indicate that particle size of SWNHs in water is between 342 and 712 nm, the films of SEM show that SWNHs on PS surface are individual particles. SWNHs significantly delayed mitotic entry of human glioma cell lines cells, and inhibited its proliferation in a time- and dose-dependent manner. SWNHs induced a significant increase in G1 phase and inhibition of S phase followed the gradually increasing concentrations. SWNHs in human glioma cell lines cells significantly induced apoptosis followed by their gradually increasing concentrations. The TEM images showed that individual spherical SWNHs particles smaller than 100 nm in diameters were localized inside lysosomes of human glioma cell lines. SWNHs inhibited mitotic entry, growth, and proliferation of human glioma cell lines, and promoted its apoptosis. SWNHs may be a novel opportunity or method for the research on treatment of human glioma.

  1. The melatonin-MT1 receptor axis modulates tumor growth in PTEN-mutated gliomas.

    Science.gov (United States)

    Ma, Huihui; Wang, Zhen; Hu, Lei; Zhang, Shangrong; Zhao, Chenggang; Yang, Haoran; Wang, Hongzhi; Fang, Zhiyou; Wu, Lijun; Chen, Xueran

    2018-02-19

    More than 40% of glioma patients have tumors that harbor PTEN (phosphatase and tensin homologue deleted on chromosome ten) mutations; this disease is associated with poor therapeutic resistance and outcome. Such mutations are linked to increased cell survival and growth, decreased apoptosis, and drug resistance; thus, new therapeutic strategies focusing on inhibiting glioma tumorigenesis and progression are urgently needed. Melatonin, an indolamine produced and secreted predominantly by the pineal gland, mediates a variety of physiological functions and possesses antioxidant and antitumor properties. Here, we analyzed the relationship between PTEN and the inhibitory effect of melatonin in primary human glioma cells and cultured glioma cell lines. The results showed that melatonin can inhibit glioma cell growth both in culture and in vivo. This inhibition was associated with PTEN levels, which significantly correlated with the expression level of MT1 in patients. In fact, c-fos-mediated MT1 was shown to be a key modulator of the effect of melatonin on gliomas that harbor wild type PTEN. Taken together, these data suggest that melatonin-MT1 receptor complexes represent a potential target for the treatment of glioma. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Sequential Administration of Carbon Nanotubes and Near Infrared Radiation for the Treatment of Gliomas

    Directory of Open Access Journals (Sweden)

    Tiago eSantos

    2014-07-01

    Full Text Available The objective was to use carbon nanotubes (CNT coupled with near infrared radiation (NIR to induce hyperthermia, as a novel non-ionizing radiation treatment for primary brain tumors, glioblastoma multiforme (GBM. In this study we report the therapeutic potential of hyperthermia-induced thermal ablation using the sequential administration of carbon nanotubes and NIR. In vitro studies were performed using glioma tumor cell lines (U251, U87, LN229, T98G. Glioma cells were incubated with CNTs for 24 hours followed by exposure to NIR for 10 minutes. Glioma cells preferentially internalized CNTs, which upon NIR exposure, generated heat, causing necrotic cell death. There were minimal effects to normal cells, which correlate to their minimal uptake of CNTs. Furthermore, this protocol caused cell death to glioma cancer stem cells, and drug-resistant as well as drug-sensitive glioma cells. This sequential hyperthermia therapy was effective in vivo, in the rodent tumor model resulting in tumor shrinkage and no recurrence after only one treatment. In conclusion, this sequence of selective CNT administration followed by NIR activation provides a new approach to the treatment of glioma, particularly drug-resistant gliomas.

  3. Glioma CpG island methylator phenotype (G-CIMP): biological and clinical implications.

    Science.gov (United States)

    Malta, Tathiane M; de Souza, Camila F; Sabedot, Thais S; Silva, Tiago C; Mosella, Maritza S; Kalkanis, Steven N; Snyder, James; Castro, Ana Valeria B; Noushmehr, Houtan

    2018-04-09

    Gliomas are a heterogeneous group of brain tumors with distinct biological and clinical properties. Despite advances in surgical techniques and clinical regimens, treatment of high-grade glioma remains challenging and carries dismal rates of therapeutic success and overall survival. Challenges include the molecular complexity of gliomas, as well as inconsistencies in histopathological grading, resulting in an inaccurate prediction of disease progression and failure in the use of standard therapy. The updated 2016 World Health Organization (WHO) classification of tumors of the central nervous system reflects a refinement of tumor diagnostics by integrating the genotypic and phenotypic features, thereby narrowing the defined subgroups. The new classification recommends molecular diagnosis of isocitrate dehydrogenase (IDH) mutational status in gliomas. IDH-mutant gliomas manifest the cytosine-phosphate-guanine (CpG) island methylator phenotype (G-CIMP). Notably, the recent identification of clinically relevant subsets of G-CIMP tumors (G-CIMP-high and G-CIMP-low) provides a further refinement in glioma classification that is independent of grade and histology. This scheme may be useful for predicting patient outcome and may be translated into effective therapeutic strategies tailored to each patient. In this review, we highlight the evolution of our understanding of the G-CIMP subsets and how recent advances in characterizing the genome and epigenome of gliomas may influence future basic and translational research.

  4. Insulin-like Growth Factor Binding Protein 7 Mediates Glioma Cell Growth and Migration

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    2008-12-01

    Full Text Available Insulin-like growth factor binding protein 7 (IGFBP-7 is the only member of the IGFBP superfamily that binds strongly to insulin, suggesting that IGFBP-7 may have different functions from other IGFBPs. Unlike other IGFBPs, the expression and functions of IGFBP-7 in glioma tumors have not been reported. Using cDNA microarray analysis, we found that expression of IGFBP-7 correlated with the grade of glioma tumors and the overall patient survival. This finding was further validated by real-time reverse transcription-polymerase chain reaction and Western blot analysis. We used RNAi to examine the role of IGFBP-7 in glioma cells, inhibiting IGFBP-7 expression by short interfering RNA transfection. Cell proliferation was suppressed after IGFBP-7 expression was inhibited for 5 days, and glioma cell growth was stimulated consistently by the addition of recombinant IGFBP-7 protein. Moreover, glioma cell migration was attenuated by IGFBP-7 depletion but enhanced by IGFBP-7 overexpression and addition. Overexpression of AKT1 in IGFBP-7-overxpressed cells attenuated the IGFBP-7-promoted migration and further enhanced inhibition of IGFBP-7 depletion on the migration. Phosphorylation of AKT and Erk1/2 was also inversely regulated by IGFBP-7 expression. These two factors together suggest that IGFBP-7 can regulate glioma cell migration through the AKT-ERK pathway, thereby playing an important role in glioma growth and migration.

  5. [A correlation between diffusion kurtosis imaging and the proliferative activity of brain glioma].

    Science.gov (United States)

    Tonoyan, A S; Pronin, I N; Pitshelauri, D I; Shishkina, L V; Fadeeva, L M; Pogosbekyan, E L; Zakharova, N E; Shults, E I; Khachanova, N V; Kornienko, V N; Potapov, A A

    2015-01-01

    The aim of the study was to assess the capabilities of diffusion kurtosis imaging (DKI) in diagnosis of the glioma proliferative activity and to evaluate a relationship between the glioma proliferative activity index and diffusion parameters of the contralateral normal appearing white matter (CNAWM). The study included 47 patients with newly diagnosed brain gliomas (23 low grade, 13 grade III, and 11 grade IV gliomas). We determined a relationship between absolute and normalized parameters of the diffusion tensor (mean (MD), axial (AD), and radial (RD) diffusivities; fractional (FA) and relative (RA) anisotropies) and diffusion kurtosis (mean (MK), axial (AK), and radial (RK) kurtosis; kurtosis anisotropy (KA)) and the proliferative activity index in the most malignant glioma parts (pAK, and RK) and anisotropy (KA, FA, RA) values increased, and diffusivity (MD, AD, RD) values decreased as the glioma proliferative activity index increased. A strong correlation between the proliferative activity index and absolute RK (r=0,71; p=0.000001) and normalized values of MK (r=0.8; p=0.000001), AK (r=0.71; p=0.000001), RK (r=0.81; p=0.000001), and RD (r=-0.71; p=0.000001) was found. A weak, but statistically significant correlation between the glioma proliferative activity index and diffusion values RK (r=-0.36; p=0.014), KA (r=-0.39; p=0.007), RD (r=0.35; p=0.017), FA (r=-0.42; p=0.003), and RA (r=-0.41; p=0.004) of CNAWM was found. DKI has good capabilities to detect immunohistochemical changes in gliomas. DKI demonstrated a high sensitivity in detection of microstructural changes in the contralateral normal appearing white matter in patients with brain gliomas.

  6. Interactions between glioma and pregnancy: insight from a 52-case multicenter series.

    Science.gov (United States)

    Peeters, Sophie; Pagès, Mélanie; Gauchotte, Guillaume; Miquel, Catherine; Cartalat-Carel, Stéphanie; Guillamo, Jean-Sébastien; Capelle, Laurent; Delattre, Jean-Yves; Beauchesne, Patrick; Debouverie, Marc; Fontaine, Denys; Jouanneau, Emmanuel; Stecken, Jean; Menei, Philippe; De Witte, Olivier; Colin, Philippe; Frappaz, Didier; Lesimple, Thierry; Bauchet, Luc; Lopes, Manuel; Bozec, Laurence; Moyal, Elisabeth; Deroulers, Christophe; Varlet, Pascale; Zanello, Marc; Chretien, Fabrice; Oppenheim, Catherine; Duffau, Hugues; Taillandier, Luc; Pallud, Johan

    2018-01-01

    OBJECTIVE The goal of this study was to provide insight into the influence of gliomas on gestational outcomes, the impact of pregnancy on gliomas, and the identification of patients at risk. METHODS In this multiinstitutional retrospective study, the authors identified 52 pregnancies in 50 women diagnosed with a glioma. RESULTS For gliomas known prior to pregnancy (n = 24), we found the following: 1) An increase in the quantified imaging growth rates occurred during pregnancy in 87% of cases. 2) Clinical deterioration occurred in 38% of cases, with seizures alone resolving after delivery in 57.2% of cases. 3) Oncological treatments were immediately performed after delivery in 25% of cases. For gliomas diagnosed during pregnancy (n = 28), we demonstrated the following: 1) The tumor was discovered during the second and third trimesters in 29% and 54% of cases, respectively, with seizures being the presenting symptom in 68% of cases. 2) The quantified imaging growth rates did not significantly decrease after delivery and before oncological treatment. 3) Clinical deterioration resolved after delivery in 21.4% of cases. 4) Oncological treatments were immediately performed after delivery in 70% of cases. Gliomas with a high grade of malignancy, negative immunoexpression of alpha-internexin, or positive immunoexpression for p53 were more likely to be associated with tumor progression during pregnancy. Deliveries were all uneventful (cesarean section in 54.5% of cases and vaginal delivery in 45.5%), and the infants were developmentally normal. CONCLUSIONS When a woman harboring a glioma envisions a pregnancy, or when a glioma is discovered in a pregnant patient, the authors suggest informing her and her partner that pregnancy may impact the evolution of the glioma clinically and radiologically. They strongly advise a multidisciplinary approach to management. ■ CLASSIFICATION OF EVIDENCE Type of question: association; study design: case series; evidence: Class IV.

  7. Body mass index, physical activity, and risk of adult meningioma and glioma: A meta-analysis.

    Science.gov (United States)

    Niedermaier, Tobias; Behrens, Gundula; Schmid, Daniela; Schlecht, Inga; Fischer, Beate; Leitzmann, Michael F

    2015-10-13

    Whether adiposity and lack of physical activity affect the risk for developing meningioma and glioma is poorly understood. Our objective was to characterize these associations in detail. We conducted a systematic review and meta-analysis of adiposity and physical activity in relation to meningioma and glioma using cohort and case-control studies published through February 2015. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We identified 12 eligible studies of body mass index (BMI) and 6 studies of physical activity, comprising up to 2,982 meningioma cases and 3,057 glioma cases. Using normal weight as the reference group, overweight (summary rel