WorldWideScience

Sample records for f1 mice fed

  1. Toxicokinetics of chloral hydrate in ad libitum-fed, dietary-controlled, and calorically restricted male B6C3F1 mice following short-term exposure

    International Nuclear Information System (INIS)

    Seng, John E.; Agrawal, Nalini; Horsley, Elizabeth T.M.; Leakey, Tatiana I.; Scherer, Erin M.; Xia, Shijun; Allaben, William T.; Leakey, Julian E.A.

    2003-01-01

    Chloral hydrate is widely used as a sedative in pediatric medicine and is a by-product of water chlorination and a metabolic intermediate in the biotransformation of trichloroethylene. Chloral hydrate and its major metabolite, trichloroacetic acid, induce liver tumors in B6C3F 1 mice, a strain that can exhibit high rates of background liver tumor incidence, which is associated with increased body weight. This report describes the influence of diet and body weight on the acute toxicity, hepatic enzyme response, and toxickinetics of chloral hydrate as part of a larger study investigating the carcinogenicity of chloral hydrate in ad libitum-fed and dietary controlled mice. Dietary control involves moderate food restriction to maintain the test animals at an idealized body weight. Mice were dosed with chloral hydrate at 0, 50, 100, 250, 500, and 1000 mg/kg daily, 5 days/week, by aqueous gavage for 2 weekly dosing cycles. Three diet groups were used: ad libitum, dietary control, and 40% caloric restriction. Both dietary control and caloric restriction slightly reduced acute toxicity of high doses of chloral hydrate and potentiated the induction of hepatic enzymes associated with peroxisome proliferation. Chloral hydrate toxicokinetics were investigated using blood samples obtained by sequential tail clipping and a microscale gas chromatography technique. It was rapidly cleared from serum within 3 h of dosing. Trichloroacetate was the major metabolite in serum in all three diet groups. Although the area under the curve values for serum trichloroacetate were slightly greater in the dietary controlled and calorically restricted groups than in the ad libitum-fed groups, this increase did not appear to completely account for the potentiation of hepatic enzyme induction by dietary restriction

  2. The effect of study type on body weight and tumor incidence in B6C3F1 mice fed the NTP-2000 diet.

    Science.gov (United States)

    Marino, Dale J

    2012-07-01

    The B6C3F1 mouse is the standard mouse strain used in National Toxicology Program (NTP) carcinogenesis studies. Over time, increased liver tumorigenesis that was correlated with elevated body weights was noted in males and females. NTP therefore replaced the NIH-07 diet with the NTP-2000 diet and returned to group housing of females as lower body weights were noted in group housed mice. However, recent studies reported study-type differences in body weights at 3 months using the NTP-2000 diet with higher weights evident in drinking water and inhalation studies compared to feed studies. Therefore, body weight and tumor incidence data were collected for untreated control mice from all 2-year NTP feed (12), drinking water (8), water gavage (6) and inhalation (10) studies that used the NTP-2000 diet in order to assess the impact of study type on body weights and tumor incidences. Results show statistically significant elevated body weights and liver tumor incidences in males and females from drinking water, water gavage and inhalation studies compared to results from feed studies. Thus, the elevated body weights and liver tumorigenesis noted in mice using the NIH-07 diet were also evident using the NTP-2000 diet, which was introduced to address body weight elevations. Given the study-type dependent effects noted, these results emphasize the importance of carefully selecting historical control data for B6C3F1 mice. Moreover, because of the association between body weight and liver tumorigenesis, these results may have implications regarding dose-level selection for carcinogenicity studies involving B6C3F1 mice based on the maximum tolerated dose.

  3. Effect of epidermal growth factor (EGF) on [3H]TdR incorporation into DNA in ad lib fed and fasted CD2F1 mice

    International Nuclear Information System (INIS)

    Scheving, L.A.; Tsai, T.H.; Scheving, L.E.; Hoke, W.S.

    1987-01-01

    The effect of EGF on the incorporation of [ 3 H]TdR into DNA (DNA synthesis) was determined in the esophagus, liver, pancreas, and kidney in mice standardized to 12 hours (hr) of light alternating with 12 hr of darkness. A question asked was whether intraperitoneally administered EGF could alter the circadian patterns of DNA synthesis in these organs. The most marked effects of EGF were: an increase in DNA synthesis but only after a specific duration of time after treatment, ranging from 8 to 23 hr, which differed for each tissue, a similarity in the response of the esophagus in both ad lib fed and fasted mice, but not in the response of the liver, where the stimulatory effect of EGF observed in fed mice was dramatically reduced in fasted ones, and an advance in the phasing of the circadian rhythm in DNA synthesis of the esophagus by about 12 hr. In addition, no sex differences in fasted animals were found under the conditions of this study

  4. Dietary controlled carcinogenicity study of chloral hydrate in male B6C3F1 mice

    International Nuclear Information System (INIS)

    Leakey, Julian E.A.; Seng, John E.; Latendresse, John R.; Hussain, Nursreen; Allen, Laura J.; Allaben, William T.

    2003-01-01

    Chloral hydrate, which is used as a sedative in pediatric medicine and is a by-product of water chlorination, is hepatocarcinogenic in B6C3F 1 mice, a strain that can exhibit high rates of background liver tumor incidence, which are associated with increased body weight. In this study, dietary control was used to manipulate body growth in male B6C3F 1 mice in a 2-year bioassay of chloral hydrate. Male B6C3F 1 mice were treated with water or 25, 50, or 100 mg/kg chloral hydrate by gavage. The study compared ad libitum-fed mice with dietary controlled mice. The latter received variably restricted feed allocations to maintain their body weights on a predetermined 'idealized' weight curve predictive of a terminal background liver tumor incidence of 15-20%. These mice exhibited less individual body weight variation than did their ad libitum-fed counterparts. This was associated with a decreased variation in liver to body weight ratios, which allowed the demonstration of a statistically significant dose response to chloral hydrate in the dietary controlled, but not the ad libitum-fed, test groups. Chloral hydrate increased terminally adjusted liver tumor incidence in both dietary controlled (23.4, 23.9, 29.7, and 38.6% for the four dose groups, respectively) and ad libitum-fed mice (33.4, 52.6, 50.6, and 46.2%), but a statistically significant dose response was observed only in the dietary controlled mice. This dose response positively correlated with markers of peroxisomal proliferation in the dietary controlled mice only. The study suggests that dietary control not only improves terminal survival and decreases interassay variation, but also can increase assay sensitivity by decreasing intra-assay variation

  5. Gastrointestinal absorption of plutonium in mice, rats, and dogs: application to establishing values of f1 for soluble plutonium

    International Nuclear Information System (INIS)

    Bhattacharyya, M.H.; Larsen, R.P.; Oldham, R.D.; Moretti, E.S.; Spaletto, M.I.

    1985-04-01

    The gastrointestinal (GI) absorption of plutonium was measured in mice, rats, and dogs under conditions relevant to setting drinking water standards. The fractional GI absorption of Pu(VI) in adult mice was 2 x 10 -4 (0.02%) in fed mice and 2 x 10 -3 (0.2%) in fasted mice. The GI absorption of plutonium was independent of plutonium oxidation state, administration medium, and plutonium concentration; absorption was dependent upon animal species, state of animal fasting, state of Pu(IV) hydrolysis, and age of the animal. Fractional GI absorption values ranged from 3 x 10 -5 (0.003%) for hydrolyzed Pu(IV) administered to fed adult mice to 7 x 10 -3 (0.7%) for Pu(VI) administered to fed neonatal rats. From analysis of our data, we suggested values of f 1 (the fraction transferred from gut to blood in humans) for use in establishment of oral limits of exposure to plutonium. For an acute exposure in the occupational setting, we proposed one value of f 1 for fed (2 x 10 -4 ) and one for fasted (2 x 10 -3 ) individuals. For the environmental setting, we developed two approaches to obtaining values of f 1 ; suggested values were 6 x 10 -4 and 4 x 10 -3 , respectively. Both approaches took into account effects of animal age and fasting. We discussed uncertainties in proposed values of f 1 and made recommendations for further research. 41 refs., 8 figs., 24 tabs

  6. Islet-specific T cell clones transfer diabetes to nonobese diabetic (NOD) F1 mice.

    Science.gov (United States)

    Peterson, J D; Pike, B; McDuffie, M; Haskins, K

    1994-09-15

    To investigate diabetes resistance to T cell-mediated disease transfer, we administered islet-specific T cell clones to the F1 progeny of nonobese diabetic (NOD) mice that were crossed with various nondiabetes-prone inbred mouse strains. We investigated four diabetogenic CD4+ T cell clones and all induced insulitis and full development of diabetes in (SWR x NOD)F1, (SJL x NOD)F1, and (C57BL/6 x NOD)F1 mice. In contrast, (BALB/c x NOD)F1 and (CBA x NOD)F1 mice were susceptible to disease transfer by some T cell clones but not others, and (C57/L x NOD)F1 mice seemed to be resistant to both insulitis and disease transfer by all of the clones tested. Disease induced by the T cell clones in susceptible F1 strains was age dependent and could only be observed in recipients younger than 13 days old. Full or partial disease resistance did not correlate with the presence or absence of I-E, different levels of Ag expression in islet cells, or differences in APC function. The results from this study suggest that there may be multiple factors contributing to susceptibility of F1 mice to T cell clone-mediated induction of diabetes, including non-MHC-related genetic background, the immunologic maturity of the recipient, and individual characteristics of the T cell clones.

  7. E2F-1-Induced p53-independent apoptosis in transgenic mice

    DEFF Research Database (Denmark)

    Holmberg, Christian Henrik; Helin, K.; Sehested, M.

    1998-01-01

    The E2F transcription factors are key targets for the retinoblastoma protein, pRB. By inactivation of E2Fs, pRB prevents progression to the S phase. To test proliferative functions of E2F, we generated transgenic mice expressing human E2F-1 and/or human DP-1. When the hydroxymethyl glutaryl...... involving increased apoptosis in the germinal epithelium. This effect was potentiated by simultaneous overexpression of DP-1. Testicular atrophy as a result of overexpression of E2F-1 and DP-1 is independent of functional p53, since p53-nullizygous transgenic mice overexpressing E2F-1 and DP-1 also suffered...

  8. Genistein modulation of streptozotocin diabetes in male B6C3F1 mice can be induced by diet

    International Nuclear Information System (INIS)

    Guo, Tai L.; Wang, Yunbiao; Xiong, Tao; Ling, Xiao; Zheng, Jianfeng

    2014-01-01

    Diet and phytoestrogens affect the development and progression of diabetes. The objective of the present study was to determine if oral exposure to phytoestrogen genistein (GE) by gavage changed blood glucose levels (BGL) through immunomodulation in streptozotocin (STZ)-induced diabetic male B6C3F1 mice fed with three different diets. These three diets were: NTP-2000 diet (NTP), soy- and alfalfa-free 5K96 diet (SOF) and high fat diet (HFD) with 60% of kcal from fat, primarily rendered fat of swine. The dosing regimen for STZ consisted of three 100 mg/kg doses (i.p.): the first dose was administered at approximately 2 weeks following the initiation of daily GE (20 mg/kg) gavage, and the second dose was on day 19 following the first dose, and the third dose was on day 57 following the first dose. In mice on the NTP diet, GE treatment decreased BGL with statistical significances observed on days 33 and 82 following the first STZ injection. In mice fed the HFD diet, GE treatment produced a significant decrease and a significant increase in BGL on days 15 and 89 following the first STZ injection, respectively. In mice fed the SOF diet, GE treatment had no significant effects on BGL. Although GE treatment affected phenotypic distributions of both splenocytes (T cells, B cells, natural killer cells and neutrophils) and thymocytes (CD4/CD8 and CD44/CD25), and their mitochondrial transmembrane potential and generation of reactive oxygen species, indicators of cell death (possibly apoptosis), GE modulation of neutrophils was more consistent with its diabetogenic or anti-diabetic potentials. The differential effects of GE on BGL in male B6C3F1 mice fed with three different diets with varied phytoestrogen contents suggest that the estrogenic properties of this compound may contribute to its modulation of diabetes. - Highlights: • Diets affected streptozotocin-induced diabetes in male B6C3F1 mice. • Genistein modulation of streptozotocin diabetes can be induced by diet.

  9. Genistein modulation of streptozotocin diabetes in male B6C3F1 mice can be induced by diet

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Tai L., E-mail: tlguo1@uga.edu [Department of Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-7382 (United States); Wang, Yunbiao [Department of Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-7382 (United States); Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102 (China); Xiong, Tao [College of Animal Science, Yangtze University, Jingzhou City, Hubei Province 434025 (China); Ling, Xiao [Institute for Food and Drug Control of Shandong Province, Jinan City, Shandong 250012 (China); Zheng, Jianfeng [Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298-0613 (United States)

    2014-11-01

    Diet and phytoestrogens affect the development and progression of diabetes. The objective of the present study was to determine if oral exposure to phytoestrogen genistein (GE) by gavage changed blood glucose levels (BGL) through immunomodulation in streptozotocin (STZ)-induced diabetic male B6C3F1 mice fed with three different diets. These three diets were: NTP-2000 diet (NTP), soy- and alfalfa-free 5K96 diet (SOF) and high fat diet (HFD) with 60% of kcal from fat, primarily rendered fat of swine. The dosing regimen for STZ consisted of three 100 mg/kg doses (i.p.): the first dose was administered at approximately 2 weeks following the initiation of daily GE (20 mg/kg) gavage, and the second dose was on day 19 following the first dose, and the third dose was on day 57 following the first dose. In mice on the NTP diet, GE treatment decreased BGL with statistical significances observed on days 33 and 82 following the first STZ injection. In mice fed the HFD diet, GE treatment produced a significant decrease and a significant increase in BGL on days 15 and 89 following the first STZ injection, respectively. In mice fed the SOF diet, GE treatment had no significant effects on BGL. Although GE treatment affected phenotypic distributions of both splenocytes (T cells, B cells, natural killer cells and neutrophils) and thymocytes (CD4/CD8 and CD44/CD25), and their mitochondrial transmembrane potential and generation of reactive oxygen species, indicators of cell death (possibly apoptosis), GE modulation of neutrophils was more consistent with its diabetogenic or anti-diabetic potentials. The differential effects of GE on BGL in male B6C3F1 mice fed with three different diets with varied phytoestrogen contents suggest that the estrogenic properties of this compound may contribute to its modulation of diabetes. - Highlights: • Diets affected streptozotocin-induced diabetes in male B6C3F1 mice. • Genistein modulation of streptozotocin diabetes can be induced by diet.

  10. Chromosome aberrations in F1 from irradiated male mice studied by their synaptonemal complexes

    International Nuclear Information System (INIS)

    Kalikinskaya, E.I.; Kolomiets, O.L.; Shevchenko, V.A.; Bogdanov, Yu.F.

    1986-01-01

    Possible implications of surface-spread synaptonemal complex (SC) karyotyping in analysing the causes of sterility of F 1 from irradiated male mice are demonstrated in this work. After irradiation by 137 Cs γ-rays at a dose of 5 Gy the males were mated to unirradiated females and genetic analysis of fertility in the F 1 progeny was carried out. Males with abnormal fertility were examined for the presence of chromosome aberrations in diakinesis-metaphase I and in pachytene by the method of surface-spread SC karyotyping. In most cases, SC karyotyping provides additional information and permits the detection and analysis of aberrations that are not revealed in diakinesis. Two reciprocal translocations, one X autosomal and one nonreciprocal translocation were discovered in five F 1 males studied. It is concluded that the method is efficient in detecting translocations in pachytene in partially fertile F 1 hybrids of irradiated and normal mice. (orig.)

  11. Cyclophilin D Promotes Brain Mitochondrial F1FO ATP Synthase Dysfunction in Aging Mice.

    Science.gov (United States)

    Gauba, Esha; Guo, Lan; Du, Heng

    2017-01-01

    Brain aging is the known strongest risk factor for Alzheimer's disease (AD). In recent years, mitochondrial deficits have been proposed to be a common mechanism linking brain aging to AD. Therefore, to elucidate the causative mechanisms of mitochondrial dysfunction in aging brains is of paramount importance for our understanding of the pathogenesis of AD, in particular its sporadic form. Cyclophilin D (CypD) is a specific mitochondrial protein. Recent studies have shown that F1FO ATP synthase oligomycin sensitivity conferring protein (OSCP) is a binding partner of CypD. The interaction of CypD with OSCP modulates F1FO ATP synthase function and mediates mitochondrial permeability transition pore (mPTP) opening. Here, we have found that increased CypD expression, enhanced CypD/OSCP interaction, and selective loss of OSCP are prominent brain mitochondrial changes in aging mice. Along with these changes, brain mitochondria from the aging mice demonstrated decreased F1FO ATP synthase activity and defective F1FO complex coupling. In contrast, CypD deficient mice exhibited substantially mitigated brain mitochondrial F1FO ATP synthase dysfunction with relatively preserved mitochondrial function during aging. Interestingly, the aging-related OSCP loss was also dramatically attenuated by CypD depletion. Therefore, the simplest interpretation of this study is that CypD promotes F1FO ATP synthase dysfunction and the resultant mitochondrial deficits in aging brains. In addition, in view of CypD and F1FO ATP synthase alterations seen in AD brains, the results further suggest that CypD-mediated F1FO ATP synthase deregulation is a shared mechanism linking mitochondrial deficits in brain aging and AD.

  12. Effects of the thymic microenvironment on autoantibody production in (NZB X NZW)F1 mice

    International Nuclear Information System (INIS)

    Huston, D.P.; Smathers, P.A.; Reeves, J.P.; Steinberg, A.D.

    1983-01-01

    The effects of the thymic microenvironment on autoantibody production in (NZB X NZW)F1 mice were studied. Neonatally thymectomized male and female F1 mice reconstituted with a parental or F1-irradiated thymic lobe were compared to nonreconstituted and sham-thymectomized controls. While maleness retarded the spontaneous production of ss- and ds-DNA antibodies, thymic grafts did not suppress antibodies to ss-DNA in either sex, but did suppress the production of antibodies to ds-DNA in female mice. A unique property of NZB thymic grafts was the inability to suppress anti-RBC antibodies in male mice. Thus, (i) the gender of the F1 recipient was the most important determinant of production of antibodies to ss-DNA, (ii) either maleness or the thymic microenvironment could retard production of anti-ds-DNA antibodies, and (iii) both gender and the thymic microenvironment were important in the regulation of anti-RBC antibody production. Since the administration of thymosin did not suppress autoantibody production, the effects of the thymic grafts was not solely via thymic hormone production. These studies suggest that sex hormones and/or the thymic microenvironment can exert a suppressive effect on autoantibody production and that autoantibodies differ in their susceptibility to such suppression

  13. Conditional E2F1 activation in transgenic mice causes testicular atrophy and dysplasia mimicking human CIS

    DEFF Research Database (Denmark)

    Agger, Karl; Santoni-Rugiu, Eric; Holmberg, Christian

    2005-01-01

    E2F1 is a crucial downstream effector of the retinoblastoma protein (pRB) pathway. To address the consequences of short-term increase in E2F1 activity in adult tissues, we generated transgenic mice expressing the human E2F1 protein fused to the oestrogen receptor (ER) ligand-binding domain...

  14. Lack of carcinogenicity of tragacanth gum in B6C3F1 mice.

    Science.gov (United States)

    Hagiwara, A; Boonyaphiphat, P; Kawabe, M; Naito, H; Shirai, T; Ito, N

    1992-08-01

    Tragacanth gum was administered at dietary levels of 0 (control), 1.25 and 5.0% to groups of 50 male and 50 female B6C3F1 mice for 96 wk after which all animals were maintained on a basal diet without tragacanth gum for a further 10 wk. Mean body weights of females in the 5.0% and 1.25% groups were lower than those of the controls after 11 and 16 wk, respectively. However, there were no treatment-related clinical signs or adverse effects on survival rate, urinalysis, haematology, blood biochemistry and organ weight. While detailed histopathology revealed the development of squamous cell hyperplasias, papillomas and one carcinoma in the forestomach, there was no significant treatment-related increase in the incidence of any preneoplastic or neoplastic lesion. Thus, under the experimental conditions used, tragacanth gum was not carcinogenic in B6C3F1 mice of either sex.

  15. Prenatal exposure to an environmentally relevant phthalate mixture disrupts reproduction in F1 female mice

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Changqing; Gao, Liying; Flaws, Jodi A., E-mail: jflaws@illinois.edu

    2017-03-01

    Phthalates are used in a large variety of products, such as building materials, medical devices, and personal care products. Most previous studies on the toxicity of phthalates have focused on single phthalates, but it is also important to study the effects of phthalate mixtures because humans are exposed to phthalate mixtures. Thus, we tested the hypothesis that prenatal exposure to an environmentally relevant phthalate mixture adversely affects female reproduction in mice. To test this hypothesis, pregnant CD-1 dams were orally dosed with vehicle (tocopherol-stripped corn oil) or a phthalate mixture (20 and 200 μg/kg/day, 200 and 500 mg/kg/day) daily from gestational day 10 to birth. The mixture was based on the composition of phthalates detected in urine samples from pregnant women in Illinois. The mixture included 35% diethyl phthalate, 21% di(2-ethylhexyl) phthalate, 15% dibutyl phthalate, 15% diisononyl phthalate, 8% diisobutyl phthalate, and 5% benzylbutyl phthalate. Female mice born to the exposed dams were subjected to tissue collections and fertility tests at different ages. Our results indicate that prenatal exposure to the phthalate mixture significantly increased uterine weight and decreased anogenital distance on postnatal days 8 and 60, induced cystic ovaries at 13 months, disrupted estrous cyclicity, reduced fertility-related indices, and caused some breeding complications at 3, 6, and 9 months of age. Collectively, our data suggest that prenatal exposure to an environmentally relevant phthalate mixture disrupts aspects of female reproduction in mice. - Highlights: • Prenatal exposure to a phthalate mixture disrupts F1 estrous cyclicity. • Prenatal exposure to a phthalate mixture induces F1 ovarian cysts. • Prenatal exposure to a phthalate mixture decreases F1 female fertility-related indices. • Prenatal exposure to a phthalate mixture induces F1 breeding complications.

  16. Pattern of tissue deposition, gain and body composition of Nellore, F1 Simmental × Nellore and F1 Angus × Nellore steers fed at maintenance or ad libitum with two levels of concentrate in the diet

    Directory of Open Access Journals (Sweden)

    Ivanna Moraes de Oliveira

    2011-12-01

    Full Text Available Sixty 18-month-old steers (20 Nellore, 20 F1 Simmental × Nellore and 20 F1 Angus × Nellore with average body weight of 265.6±6.4 kg; 325.3±4.7 kg and 324.6±6.0 kg, respectively were used. The effects of feeding regime and genetic group on physical carcass composition, empty body composition, composition of the gain, as well as the pattern of tissue deposition were evaluated in this trial. The interaction between genetic group and feeding regime was not significant for any variable evaluated. Animals fed at the maintenance level produced carcass with larger proportions of bones and muscle than the animals fed ad libitum and Nellore animals had larger muscle portion and smaller adipose tissue portion on the carcass than the crossbred animals. Nellore animals and those fed at maintenance had smaller amount of total fat in the carcass than the crossbred animals and those fed ad libitum, respectively. Fat was deposited more pronouncedly in the intermuscular depot, followed by the visceral depot. The rate of deposition of the carcass tissues was smaller in the Nellore animals and in the animals fed the diet with concentrate allowance equivalent to 1% body weight (except for subcutaneous fat tissue, when compared with the crossbred animals and those fed the diet with 2% BW on concentrate, respectively. The rate of fat deposition on the visceral depot was larger in the F1 Angus × Nellore animals and on those fed the 2% of BW of concentrate diet when compared with F1 Simmental × Nellore animals and those fed the diet with the lowest concentrate allowance (1% BW.

  17. Widespread Over-Expression of the X Chromosome in Sterile F1 Hybrid Mice

    Science.gov (United States)

    Good, Jeffrey M.; Giger, Thomas; Dean, Matthew D.; Nachman, Michael W.

    2010-01-01

    The X chromosome often plays a central role in hybrid male sterility between species, but it is unclear if this reflects underlying regulatory incompatibilities. Here we combine phenotypic data with genome-wide expression data to directly associate aberrant expression patterns with hybrid male sterility between two species of mice. We used a reciprocal cross in which F1 males are sterile in one direction and fertile in the other direction, allowing us to associate expression differences with sterility rather than with other hybrid phenotypes. We found evidence of extensive over-expression of the X chromosome during spermatogenesis in sterile but not in fertile F1 hybrid males. Over-expression was most pronounced in genes that are normally expressed after meiosis, consistent with an X chromosome-wide disruption of expression during the later stages of spermatogenesis. This pattern was not a simple consequence of faster evolutionary divergence on the X chromosome, because X-linked expression was highly conserved between the two species. Thus, transcriptional regulation of the X chromosome during spermatogenesis appears particularly sensitive to evolutionary divergence between species. Overall, these data provide evidence for an underlying regulatory basis to reproductive isolation in house mice and underscore the importance of transcriptional regulation of the X chromosome to the evolution of hybrid male sterility. PMID:20941395

  18. Synergistic tumorigenic effect of procarbazine and ionizing radiation in (BALB/c x DBA/2)F1 mice

    International Nuclear Information System (INIS)

    Arseneau, J.C.; Fowler, E.; Bakemeier, R.F.

    1977-01-01

    Female (BALB/c x DBA/2)F, (CD2F 1 ) mice were treated with procarbazine (PCB) and ionizing radiation at different times to determine whether any synergistic carcinogenic effect could be demonstrated with the combined treatment. The incidence of pulmonary adenomas in groups of mice receiving both PCB and radiation increased significantly, when compared with mice given PCB alone. The incidence of thymomas also increased significantly in groups of mice given PCB 3 days before or after radiation treatment. Two cases of adenocarcinoma apparently arising from the lacrimal gland were also observed in mice from the groups receiving the combined treatment. This tumor had not previously been associated with PCB administration in mice. The results of this experiment indicated a potentiation of the tumorigenic action of PCB by ionizing radiation in CD2F 1 mice

  19. Human Parvovirus B19 NS1 Protein Aggravates Liver Injury in NZB/W F1 Mice

    Science.gov (United States)

    Tsai, Chun-Chou; Chiu, Chun-Ching; Hsu, Jeng-Dong; Hsu, Huai-Sheng; Tzang, Bor-Show; Hsu, Tsai-Ching

    2013-01-01

    Human parvovirus B19 (B19) has been associated with a variety of diseases. However, the influence of B19 viral proteins on hepatic injury in SLE is still obscure. To elucidate the effects of B19 viral proteins on livers in SLE, recombinant B19 NS1, VP1u or VP2 proteins were injected subcutaneously into NZB/W F1 mice, respectively. Significant expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were detected in NZB/W F1 mice receiving B19 NS1 as compared to those mice receiving PBS. Markedly hepatocyte disarray and lymphocyte infiltration were observed in livers from NZB/WF 1 mice receiving B19 NS1 as compared to those mice receiving PBS. Additionally, significant increases of Tumor Necrosis Factor –α (TNF-α), TNF-α receptor, IκB kinase –α (IKK-α), nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor (IκB) and nuclear factor-kappa B (NF-κB) were detected in livers from NZB/W F1 mice receiving B19 NS1 as compared to those mice receiving PBS. Accordingly, significant increases of matrix metalloproteinase-9 (MMP9) and U-plasminogen activator (uPA) were also detected in livers from NZB/W F1 mice receiving B19 NS1 as compared to those mice receiving PBS. Contrarily, no significant variation on livers from NZB/W F1 mice receiving B19 VP1u or VP2 was observed as compared to those mice receiving PBS. These findings firstly demonstrated the aggravated effects of B19 NS1 but not VP1u or VP2 protein on hepatic injury and provide a clue in understanding the role of B19 NS1 on hepatic injury in SLE. PMID:23555760

  20. Beef quality traits of Nellore, F1 Simmental × Nellore and F1 Angus × Nellore steers fed at the maintenance level or ad libitum with two concentrate levels in the diet

    Directory of Open Access Journals (Sweden)

    Ivanna Moraes de Oliveira

    2011-12-01

    Full Text Available This trial was conducted to evaluate some beef quality attributes of Nellore, F1 Simmental × Nellore and F1 Angus × Nellore steers finished on feedlot. The effects of feeding regime and genetic group on shear force, thawing losses, cooking (leak + evaporation losses, total losses and muscle fiber type, as well as carcass pH and temperature during 24 h of chilling were evaluated. There was a genetic group effect on shear force, where the beef from F1 Simmental × Nellore and F1 Angus × Nellore animals had lower values than Nellore animals. Beef of the animals fed the diets with 1% and 2% of body weight on concentrated lost more liquid than the meat of the animals fed at maintenance during thawing and when considering total losses. During cooking there was a difference among the feeding regimes for drip losses which were greater on the animals fed the diet of 1% of body weight on concentrate, followed by the 2% diet and, finally, by the animals fed at maintenance. The muscle of the Nellore steers had larger proportion of intermediate fibers and lower proportion of oxidative fibers than the crossbred animals. The proportion of glycolytic fibers was not influenced by genetic group. The Nellore animals had larger proportion of fibers of fast contraction and smaller proportion of fibers of slow contraction when compared with the crossbred animals. Feeding regime did not influence the proportion of muscular fibers or shear force. Nellore cattle produce tougher beef than crossbred Simmental × Nellore or Angus × Nellore, although all of them have the potential to produce an acceptable beef when slaughtered at young age. Feed restriction up to 90 days is not enough to cause modification on muscle fiber frequencies, then not affecting beef quality.

  1. Exacerbating effects of human parvovirus B19 NS1 on liver fibrosis in NZB/W F1 mice.

    Directory of Open Access Journals (Sweden)

    Tsai-Ching Hsu

    Full Text Available Systemic lupus erythematosus (SLE is an autoimmune disorder with unknown etiology that impacts various organs including liver. Recently, human parvovirus B19 (B19 is recognized to exacerbate SLE. However, the effects of B19 on liver in SLE are still unclear. Herein we aimed to investigate the effects of B19 on liver in NZB/W F1 mice by injecting subcutaneously with PBS, recombinant B19 NS1, VP1u or VP2, respectively. Our experimental results revealed that B19 NS1 protein significantly enhanced the TGF-β/Smad fibrotic signaling by increasing the expressions of TGF-β, Smad2/3, phosphorylated Smad2/3, Smad4 and Sp1. The consequent fibrosis-related proteins, PAI-1 and α-SMA, were also significantly induced in livers of NZB/W F1 mice receiving B19 NS1 protein. Accordingly, markedly increased collagen deposition was also observed in livers of NZB/W F1 mice receiving B19 NS1 protein. However, no significant difference was observed in livers of NZB/W F1 mice receiving B19 VP1u or VP2 as compared to the controls. These findings indicate that B19 NS1 plays a crucial role in exacerbating liver fibrosis in NZB/W F1 mice through enhancing the TGF-â/Smad fibrotic signaling.

  2. Exacerbating Effects of Human Parvovirus B19 NS1 on Liver Fibrosis in NZB/W F1 Mice

    Science.gov (United States)

    Hsu, Tsai-Ching; Tsai, Chun-Chou; Chiu, Chun-Ching; Hsu, Jeng-Dong; Tzang, Bor-Show

    2013-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disorder with unknown etiology that impacts various organs including liver. Recently, human parvovirus B19 (B19) is recognized to exacerbate SLE. However, the effects of B19 on liver in SLE are still unclear. Herein we aimed to investigate the effects of B19 on liver in NZB/W F1 mice by injecting subcutaneously with PBS, recombinant B19 NS1, VP1u or VP2, respectively. Our experimental results revealed that B19 NS1 protein significantly enhanced the TGF-β/Smad fibrotic signaling by increasing the expressions of TGF-β, Smad2/3, phosphorylated Smad2/3, Smad4 and Sp1. The consequent fibrosis-related proteins, PAI-1 and α-SMA, were also significantly induced in livers of NZB/W F1 mice receiving B19 NS1 protein. Accordingly, markedly increased collagen deposition was also observed in livers of NZB/W F1 mice receiving B19 NS1 protein. However, no significant difference was observed in livers of NZB/W F1 mice receiving B19 VP1u or VP2 as compared to the controls. These findings indicate that B19 NS1 plays a crucial role in exacerbating liver fibrosis in NZB/W F1 mice through enhancing the TGF-â/Smad fibrotic signaling. PMID:23840852

  3. The radiosensitivity of spermatogonial stem cells in C3H/101 F1 hybrid mice

    International Nuclear Information System (INIS)

    Van der Meer, Yvonne; De Rooij, Dirk G.; Cattanach, Bruce M.

    1993-01-01

    The radiosensitivity of spermatogonial stem cells of C3H/HeHx101/H F 1 hybrid mice was determined by counting undifferentiated spermatogonia at 10 days after X-irradiation. During the spermatogenic cycle, differences in radiosensitivity were found, which were correlated with the proliferative activity of the spermatogonial stem cells. In stage VIII irr , during quiescence, the spermatogonial stem cells were most radiosensitive with a D 0 of 1.4 Gy. In stages XI irr -V irr , when the cells were proliferatively active, the D 0 was about 2.6 Gy. Based on the D 0 values for sensitive and resistant spermatogonia and on the D 0 for the total population, a ratio of 45:55% of sensitive to resistant spermatogonial stem cells was estimated for cell killing. When the present data were compared with data on translocation induction obtained in mice of the same genotype, a close fit was obtained when the translocation yield (Y; in % abnormal cells) after a radiation dose D was described by Y=e τD , with τ=1 for the sensitive and τ=0.1 for the resistant spermatogonial stem cells, with a maximal e τD of 100

  4. Pattern of leukemia induction in BC3F1 mice transplanted with irradiated lymphohemopoietic tissues

    International Nuclear Information System (INIS)

    Covelli, V.; Di Majo, V.; Bassani, B.; Metalli, P.; Silini, G.

    1982-01-01

    (C57BL/Cne X C3H/Cne)F 1 male mice spontaneously develop reticulum cell sarcoma (RCS) with an average final incidence of 56%; neither myeloid leukemia (ML) nor thymic lymphoma (TL) has been observed in intact animals. X rays (4Gy, 250 kV) induce a few cases of ML but no TL. In increasing the dose to 6 Gy, we observed a few cases of TL, no ML, and a drastic reduction (8%) of RCS. The same dose of 6 Gy fractionated into four weekly doses of 1.5 Gy induced 24% of TL. By transplanting cells into appropriately preirradiated (4 Gy) syngeneic recipients we found evidence that four weekly doses of 1.5 Gy to donor animals caused an excess of ML and drastic changes of both TL and RCS incidences and rates in recipients as a function of time postirradiation at which the lymphohemopoietic tissues are transplanted. Furthermore, the same transplanted animals showed an evident acceleration of time of appearance of RCS and an enhanced incidence of NL; the latter effect is significant 10 days after the last X-ray fraction, but not thereafter. These data are in line with the hypothesis that committed cells for these two types of systemic tumors may be present among the irradiated transplanted tissues

  5. Regulation of immune responses in SJL and F1 hybrid mice by gamma-irradiated syngeneic lymphoma cells

    International Nuclear Information System (INIS)

    Katz, I.R.; Nagase, F.; Bell, M.K.; Ponzio, N.M.; Thorbecke, G.J.

    1984-01-01

    Syngeneic mixed lymphocyte-stimulating la+ lymphomas of SJL mice [reticulum cell sarcoma(s) (RCS)] were found to modulate immune responses in vivo. Simultaneous injection of 2 X 10(7) gamma-irradiated or glutaraldehyde-fixed RCS cells with the antigen sheep red blood cells (SRBC) or 2,4,6-trinitrophenol (TNP)-Ficoll markedly suppressed the subsequent plaque-forming cell response in the spleen. The suppression of the anti-SRBC response was prevented by pretreatment of the mice with cyclophosphamide, whereas the suppression of the anti-TNP-Ficoll response was not affected. RCS injection induced high interferon serum titers within 24 hours after injection, which were not prevented by pretreatment with cyclophosphamide. Injection of gamma-irradiated RCS cells (gamma-RCS) or RCS cell extract 2 days prior to antigen enhanced the anti-SRBC but markedly suppressed the anti- TNP-Ficoll response. Injection of RCS both on day -2 and day 0 enhanced the anti-SRBC response. SJL mice 8-9 months of age showed much less or no suppression when gamma-RCS cells were injected on day 0. Certain F1 hybrids of SJL also showed the gamma-RCS-induced suppression of the anti-SRBC response. Suppression was seen in SJL X BALB.B but not in SJL X BALB/c mice and in SJL X A.TH but not in SJL X A.TL mice, suggesting an I-region effect. F1 hybrids of SJL by B10 background mice showed no significant suppression. Enhancement of the anti-SRBC response by prior injection of gamma-RCS was seen in all F1 hybrid mice examined

  6. Diabetes and exocrine pancreatic insufficiency in E2F1/E2F2 double-mutant mice.

    Science.gov (United States)

    Iglesias, Ainhoa; Murga, Matilde; Laresgoiti, Usua; Skoudy, Anouchka; Bernales, Irantzu; Fullaondo, Asier; Moreno, Bernardino; Lloreta, José; Field, Seth J; Real, Francisco X; Zubiaga, Ana M

    2004-05-01

    E2F transcription factors are thought to be key regulators of cell growth control. Here we use mutant mouse strains to investigate the function of E2F1 and E2F2 in vivo. E2F1/E2F2 compound-mutant mice develop nonautoimmune insulin-deficient diabetes and exocrine pancreatic dysfunction characterized by endocrine and exocrine cell dysplasia, a reduction in the number and size of acini and islets, and their replacement by ductal structures and adipose tissue. Mutant pancreatic cells exhibit increased rates of DNA replication but also of apoptosis, resulting in severe pancreatic atrophy. The expression of genes involved in DNA replication and cell cycle control was upregulated in the E2F1/E2F2 compound-mutant pancreas, suggesting that their expression is repressed by E2F1/E2F2 activities and that the inappropriate cell cycle found in the mutant pancreas is likely the result of the deregulated expression of these genes. Interestingly, the expression of ductal cell and adipocyte differentiation marker genes was also upregulated, whereas expression of pancreatic cell marker genes were downregulated. These results suggest that E2F1/E2F2 activity negatively controls growth of mature pancreatic cells and is necessary for the maintenance of differentiated pancreatic phenotypes in the adult.

  7. Long-term feeding studies in mice fed a diet containing irradiated fish. I

    International Nuclear Information System (INIS)

    Petten, L.E. van; Calkins, J.E.; McConnell, R.F.; Gottschalk, H.M.; Elias, P.S.

    1980-01-01

    A wholesomeness feeding study was carried out in mice fed equal amounts of cod or redfish, comprising 45% of the diet. Three groups of animals received either irradiated [1.75 kGy (175 krad)] fish, non-irradiated fish or stock ration. A 90-day subchronic study, a multigeneration reproduction, a dominant lethality and a teratology study were carried out together with an 80-week oncogenic study on the F 1 generation. No adverse effects were noted on growth, reproduction and litter behaviour, in relation to dominant lethality, teratogenicity or oncogenicity. (Auth.)

  8. Oral toxicity study of tragacanth gum in B6C3F1 mice: development of squamous-cell hyperplasia in the forestomach and its reversibility.

    Science.gov (United States)

    Hagiwara, A; Tanaka, H; Tiwawech, D; Shirai, T; Ito, N

    1991-10-01

    Tragacanth gum was administered at dietary levels of 0 (control), 0.625, 1.25, 2.5, and 5.0% to groups of 10 male and 10 female B6C3F1 mice for 13 wk. There were no treatment-associated effects regarding clinical signs, body or organ weights, and urinalysis or hematology data. Significant dose-related, but slight, elevations of plasma gamma-glutamyl transpeptidase (GGT) level were observed in all treated animals except the 0.625% females. Single or small numbers of tiny nodules were observed on the luminal surface of the forestomach in 4 males of the 5.0% group, 2 males of the 2.5% group, and 1 male each from the 1.25 and 0.625% groups. Histopathologically, they were diagnosed as squamous-cell hyperplasia. To investigate the nature of these gross lesions, tragacanth gum was fed to groups of 30 male mice at the dietary level of 5.0% for periods of up to 48 wk; 20 males served as controls. There were no treatment-related increases of plasma GGT levels at wk 24 and 48. Although squamous-cell hyperplasias were seen in 2 out of 10 mice at wk 24, none of these proliferative lesions were apparent at wk 48, after either chronic exposure or 24 wk on basal diet. Furthermore, the levels of DNA synthesis in forestomach epithelium as measured by 5-bromo-2-deoxyuridine (BrdU) immunohistochemistry were comparable to control values at wk 24 and 48. Thus, the oral toxicity of tragacanth gum to B6C3F1 mice was concluded to be negligible.

  9. Gestational Exposure to Bisphenol A Affects the Function and Proteome Profile of F1 Spermatozoa in Adult Mice.

    Science.gov (United States)

    Rahman, Md Saidur; Kwon, Woo-Sung; Karmakar, Polash Chandra; Yoon, Sung-Jae; Ryu, Buom-Yong; Pang, Myung-Geol

    2017-02-01

    Maternal exposure to the endocrine disruptor bisphenol A (BPA) has been linked to offspring reproductive abnormalities. However, exactly how BPA affects offspring fertility remains poorly understood. The aim of the present study was to evaluate the effects of gestational BPA exposure on sperm function, fertility, and proteome profile of F1 spermatozoa in adult mice. Pregnant CD-1 mice (F0) were gavaged with BPA at three different doses (50 μg/kg bw/day, 5 mg/kg bw/day, and 50 mg/kg bw/day) on embryonic days 7 to 14. We investigated the function, fertility, and related processes of F1 spermatozoa at postnatal day 120. We also evaluated protein profiles of F1 spermatozoa to monitor their functional affiliation to disease. BPA inhibited sperm count, motility parameters, and intracellular ATP levels in a dose-dependent manner. These effects appeared to be caused by reduced numbers of stage VIII seminiferous epithelial cells in testis and decreased protein kinase A (PKA) activity and tyrosine phosphorylation in spermatozoa. We also found that BPA compromised average litter size. Proteins differentially expressed in spermatozoa from BPA treatment groups are known to play a critical role in ATP generation, oxidative stress response, fertility, and in the pathogenesis of several diseases. Our study provides mechanistic support for the hypothesis that gestational exposure to BPA alters sperm function and fertility via down-regulation of tyrosine phosphorylation through a PKA-dependent mechanism. In addition, we anticipate that the BPA-induced changes in the sperm proteome might be partly responsible for the observed effects in spermatozoa. Citation: Rahman MS, Kwon WS, Karmakar PC, Yoon SJ, Ryu BY, Pang MG. 2017. Gestational exposure to bisphenol-A affects the function and proteome profile of F1 spermatozoa in adult mice. Environ Health Perspect 125:238-245; http://dx.doi.org/10.1289/EHP378.

  10. Promotion of hepatic preneoplastic lesions in male B6C3F1 mice by unleaded gasoline.

    Science.gov (United States)

    Standeven, A M; Wolf, D C; Goldsworthy, T L

    1995-01-01

    In previous studies, unleaded gasoline (UG) vapor was found to be a liver tumor promoter and hepatocarcinogen in female mice, but UG was not a hepatocarcinogen in male mice. However, UG vapor had similar transient mitogenic effects in nonlesioned liver of both male and female mice under the conditions of the cancer bioassay. We used an initiation-promotion protocol to determine whether UG vapor acts as a liver tumor promoter in male mice and to examine proliferative effects that may be critical to tumor development. Twelve-day-old male B6C3F1 mice were injected with N-nitrosodiethylamine (DEN; 5 mg/kg, intraperitoneally) or vehicle. Starting at 5-7 weeks of age, mice were exposed by inhalation 6 hr/day, 5 days/week for 16 weeks to 0 or 2046 ppm of PS-6 blend UG. UG treatment caused a significant 2.3-fold increase in the number of macroscopic hepatic masses in DEN-initiated mice, whereas no macroscopic masses were observed in non-initiated mice. Altered hepatic foci (AHF), which were predominantly basophilic in phenotype, were found almost exclusively in DEN-initiated mice. UG treatment significantly increased both the mean volume (threefold) and the volume fraction (twofold) of the AHF without increasing the number of AHF per unit area. UG also induced hepatic pentoxyresorufin-O-dealkylase (PROD) activity, a marker of CYP2B, by more than 12-fold over control with or without DEN cotreatment. To study hepatocyte proliferative effects of UG, we treated mice with 5-bromo-2'-deoxyuridine (BrdU) via osmotic pump for 3 days before necropsy and measured hepatocyte BrdU labeling index (LI) in AHF and nonlesioned liver.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1. PMID:7588481

  11. Dissecting the genetic architecture of F1 hybrid sterility in house mice.

    Science.gov (United States)

    Dzur-Gejdosova, Maria; Simecek, Petr; Gregorova, Sona; Bhattacharyya, Tanmoy; Forejt, Jiri

    2012-11-01

    Hybrid sterility as a postzygotic reproductive isolation mechanism has been studied for over 80 years, yet the first identifications of hybrid sterility genes in Drosophila and mouse are quite recent. To study the genetic architecture of F(1) hybrid sterility between young subspecies of house mouse Mus m. domesticus and M. m. musculus, we conducted QTL analysis of a backcross between inbred strains representing these two subspecies and probed the role of individual chromosomes in hybrid sterility using the intersubspecific chromosome substitution strains. We provide direct evidence that the asymmetry in male infertility between reciprocal crosses is conferred by the middle region of M. m. musculus Chr X, thus excluding other potential candidates such as Y, imprinted genes, and mitochondrial DNA. QTL analysis identified strong hybrid sterility loci on Chr 17 and Chr X and predicted a set of interchangeable autosomal loci, a subset of which is sufficient to activate the Dobzhansky-Muller incompatibility of the strong loci. Overall, our results indicate the oligogenic nature of F(1) hybrid sterility, which should be amenable to reconstruction by proper combination of chromosome substitution strains. Such a prefabricated model system should help to uncover the gene networks and molecular mechanisms underlying hybrid sterility. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  12. Toxicology and carcinogenesis studies of nitrofurantoin (CAS No. 67-20-9) in F344/n rats and B6C3F1 mice (feed studies). Technical report

    Energy Technology Data Exchange (ETDEWEB)

    French, J.E.

    1989-09-01

    Two-year toxicology and carcinogenesis studies were conducted by administering diets containing 0, 600, or 1,300 ppm nitrofurantoin to groups of 50 female rats for 103 weeks. Groups of 50 male rats and 50 mice of each sex were fed diets containing 0, 1,300 or 2,500 ppm for 103 weeks. Under the conditions of these 2-year feed studies, there was some evidence of carcinogenic activity of nitrofurantoin for male F344/N rats as shown by increased incidences of uncommon kidney tubular cell neoplasms. Uncommon osteosarcomas of the bone and neoplasms of the subcutaneous tissue were observed in dosed male rats. Incidences of interstitial cell adenomas of the testis and neoplasms of the preputial gland were decreased in the 2,500-ppm group of male rats. There was no evidence of carcinogenic activity of nitrofurantoin for female F344/N rats fed diets containing 600 ppm or 1,300 ppm for 2 years. Female rats may have been able to tolerate higher doses. There was no evidence of carcinogenic activity of nitrofurantoin for male B6C3F(1) mice fed diets containing 1,300 ppm or 2,500 ppm for 2 years. There was clear evidence of carcinogenic activity of nitrofurantoin for female B6C3F(1) mice as shown by increased incidences of tubular adenomas, benign mixed tumors, and granulosa cell tumors of the ovary.

  13. Antigenic specificity of serum antibodies in mice fed soy protein

    DEFF Research Database (Denmark)

    Christensen, Hanne Risager; Bruun, S.W.; Frøkiær, Hanne

    2003-01-01

    Background: Soybean protein is used in a number of food products but unfortunately is also a common cause of food allergy. Upon ingestion of soy protein, healthy mice like other animals and humans generate a soy-specific antibody response in the absence of signs of illness. Not much is known about...... the relationship between the immunogenic proteins involved in this nondeleterious antibody response and the pathological response associated with food allergy. The objective of the present study was to characterize the antigenic specificity of the soy protein-specific antibody response generated in healthy mice...... ingesting soy protein. Methods: Blood from mice fed a soy-containing diet was analyzed using ELISA and immunoblot for antibody reactivity towards various soy protein fractions and pure soy proteins/subunits. Mice bred on a soy-free diet were used as controls. Results: The detectable antigenic specificity...

  14. Tolerance induction between two different strains of parental mice prevents graft-versus-host disease in haploidentical hematopoietic stem cell transplantation to F1 mice

    International Nuclear Information System (INIS)

    Guo, Yixian; Zhang, Lanfang; Wan, Suigui; Sun, Xuejing; Wu, Yongxia; Yu, Xue-Zhong; Xia, Chang-Qing

    2014-01-01

    Highlights: • Injection of UVB-irradiated iDCs induces alloantigen tolerance. • This alloantigen tolerance may be associated regulatory T cell induction. • Tolerant mice serve as bone marrow donors reduces GVHD to their F1 recipients in allo-HSCT. • Tolerance is maintained in F1 recipients for long time post HSCT. - Abstract: Haploidentical hematopoietic stem cell transplantation (Haplo-HSCT) has been employed worldwide in recent years and led to favorable outcome in a group of patients who do not have human leukocyte antigen (HLA)-matched donors. However, the high incidence of severe graft-versus-host disease (GVHD) is a major problem for Haplo-HSCT. In the current study, we performed a proof of concept mouse study to test whether induction of allogeneic tolerance between two different parental strains was able to attenuate GVHD in Haplo-HSCT to the F1 mice. We induced alloantigen tolerance in C3H mice (H-2k) using ultraviolet B (UVB) irradiated immature dendritic cells (iDCs) derived from the cultures of Balb/c bone marrow cells. Then, we performed Haplo-HSCT using tolerant C3H mice as donors to F1 mice (C3H × Balb/c). The results demonstrated that this approach markedly reduced GVHD-associated death and significantly prolonged the survival of recipient mice in contrast to the groups with donors (C3H mice) that received infusion of non-UVB-irradiated DCs. Further studies showed that there were enhanced Tregs in the tolerant mice and alloantigen-specific T cell response was skewed to more IL-10-producing T cells, suggesting that these regulatory T cells might have contributed to the attenuation of GVHD. This study suggests that it is a feasible approach to preventing GVHD in Haplo-HSCT in children by pre-induction of alloantigen tolerance between the two parents. This concept may also lead to more opportunities in cell-based immunotherapy for GVHD post Haplo-HSCT

  15. Tolerance induction between two different strains of parental mice prevents graft-versus-host disease in haploidentical hematopoietic stem cell transplantation to F1 mice

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yixian; Zhang, Lanfang; Wan, Suigui; Sun, Xuejing; Wu, Yongxia [Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Yu, Xue-Zhong [Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425 (United States); Xia, Chang-Qing, E-mail: cqx65@yahoo.com [Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China)

    2014-04-18

    Highlights: • Injection of UVB-irradiated iDCs induces alloantigen tolerance. • This alloantigen tolerance may be associated regulatory T cell induction. • Tolerant mice serve as bone marrow donors reduces GVHD to their F1 recipients in allo-HSCT. • Tolerance is maintained in F1 recipients for long time post HSCT. - Abstract: Haploidentical hematopoietic stem cell transplantation (Haplo-HSCT) has been employed worldwide in recent years and led to favorable outcome in a group of patients who do not have human leukocyte antigen (HLA)-matched donors. However, the high incidence of severe graft-versus-host disease (GVHD) is a major problem for Haplo-HSCT. In the current study, we performed a proof of concept mouse study to test whether induction of allogeneic tolerance between two different parental strains was able to attenuate GVHD in Haplo-HSCT to the F1 mice. We induced alloantigen tolerance in C3H mice (H-2k) using ultraviolet B (UVB) irradiated immature dendritic cells (iDCs) derived from the cultures of Balb/c bone marrow cells. Then, we performed Haplo-HSCT using tolerant C3H mice as donors to F1 mice (C3H × Balb/c). The results demonstrated that this approach markedly reduced GVHD-associated death and significantly prolonged the survival of recipient mice in contrast to the groups with donors (C3H mice) that received infusion of non-UVB-irradiated DCs. Further studies showed that there were enhanced Tregs in the tolerant mice and alloantigen-specific T cell response was skewed to more IL-10-producing T cells, suggesting that these regulatory T cells might have contributed to the attenuation of GVHD. This study suggests that it is a feasible approach to preventing GVHD in Haplo-HSCT in children by pre-induction of alloantigen tolerance between the two parents. This concept may also lead to more opportunities in cell-based immunotherapy for GVHD post Haplo-HSCT.

  16. Sex-related differential susceptibility to doxorubicin-induced cardiotoxicity in B6C3F1 mice

    International Nuclear Information System (INIS)

    Jenkins, G. Ronald; Lee, Taewon; Moland, Carrie L.; Vijay, Vikrant; Herman, Eugene H.; Lewis, Sherry M.; Davis, Kelly J.; Muskhelishvili, Levan; Kerr, Susan; Fuscoe, James C.; Desai, Varsha G.

    2016-01-01

    Sex is a risk factor for development of cardiotoxicity, induced by the anti-cancer drug, doxorubicin (DOX), in humans. To explore potential mechanisms underlying differential susceptibility to DOX between sexes, 8-week old male and female B6C3F 1 mice were dosed with 3 mg/kg body weight DOX or an equivalent volume of saline via tail vein once a week for 6, 7, 8, and 9 consecutive weeks, resulting in 18, 21, 24, and 27 mg/kg cumulative DOX doses, respectively. At necropsy, one week after each consecutive final dose, the extent of myocardial injury was greater in male mice compared to females as indicated by higher plasma concentrations of cardiac troponin T at all cumulative DOX doses with statistically significant differences between sexes at the 21 and 24 mg/kg cumulative doses. A greater susceptibility to DOX in male mice was further confirmed by the presence of cytoplasmic vacuolization in cardiomyocytes, with left atrium being more vulnerable to DOX cardiotoxicity. The number of TUNEL-positive cardiomyocytes was mostly higher in DOX-treated male mice compared to female counterparts, showing a statistically significant sex-related difference only in left atrium at 21 mg/kg cumulative dose. DOX-treated male mice also had an increased number of γ-H2A.X-positive (measure of DNA double-strand breaks) cardiomyocytes compared to female counterparts with a significant sex effect in the ventricle at 27 mg/kg cumulative dose and right atrium at 21 and 27 mg/kg cumulative doses. This newly established mouse model provides a means to identify biomarkers and access potential mechanisms underlying sex-related differences in DOX-induced cardiotoxicity. - Highlights: • Doxorubicin caused greater heart injury in male mice than females. • Doxorubicin caused vacuolization in cardiomyocytes only in male mice. • TUNEL-positive cardiomyocytes was higher in DOX-treated male mice. • γ-H2A.X-positive cardiomyocytes was greater in DOX-treated male mice.

  17. An Lck-cre transgene accelerates autoantibody production and lupus development in (NZB × NZW)F1 mice.

    Science.gov (United States)

    Nelson, R K; Gould, K A

    2016-02-01

    Lupus is an autoimmune disease characterized by the development of antinuclear autoantibodies and immune complex-mediated tissue damage. T cells in lupus patients appear to undergo apoptosis at an increased rate, and this enhanced T cell apoptosis has been postulated to contribute to lupus pathogenesis by increasing autoantigen load. However, there is no direct evidence to support this hypothesis. In this study, we show that an Lck-cre transgene, which increases T cell apoptosis as a result of T cell-specific expression of cre recombinase, accelerates the development of autoantibodies and nephritis in lupus-prone (NZB × NZW)F1 mice. Although the enhanced T cell apoptosis in Lck-cre transgenic mice resulted in an overall decrease in the relative abundance of splenic CD4(+) and CD8(+) T cells, the proportion of activated CD4(+) T cells was increased and no significant change was observed in the relative abundance of suppressive T cells. We postulate that the Lck-cre transgene promoted lupus by enhancing T cell apoptosis, which, in conjunction with the impaired clearance of apoptotic cells in lupus-prone mice, increased the nuclear antigen load and accelerated the development of anti-nuclear autoantibodies. Furthermore, our results also underscore the importance of including cre-only controls in studies using the cre-lox system. © The Author(s) 2015.

  18. An Lck-cre transgene accelerates autoantibody production and lupus development in (NZB × NZW)F1 mice

    Science.gov (United States)

    Nelson, Richard K.; Gould, Karen A.

    2015-01-01

    Lupus is an autoimmune disease characterized by the development of antinuclear autoantibodies and immune complex-mediated tissue damage. T cells in lupus patients appear to undergo apoptosis at an increased rate, and this enhanced T cell apoptosis has been postulated to contribute to lupus pathogenesis by increasing autoantigen load. However, there is no direct evidence to support this hypothesis. In this study, we show that an Lck-cre transgene, which increases T cell apoptosis as a result of T cell specific expression of cre recombinase, accelerates the development of autoantibodies and nephritis in lupus-prone (NZB×NZW)F1 mice. Although the enhanced T cell apoptosis in Lck-cre transgenic mice resulted in an overall decrease in the relative abundance of splenic CD4+ and CD8+ T cells, the proportion of activated CD4+ T cells was increased and no significant change was observed in the relative abundance of suppressive T cells. We postulate that the Lck-cre transgene promoted lupus by enhancing T cells apoptosis, which, in conjunction with the impaired clearance of apoptotic cells in lupus-prone mice, increased the nuclear antigen load and accelerated the development of anti-nuclear autoantibodies. Furthermore, our results also underscore the importance of including cre-only controls in studies using the cre-lox system. PMID:26385218

  19. Immunomodulatory effects of black cohosh (Actaea racemosa) extract in female B6C3F1/N mice

    International Nuclear Information System (INIS)

    Smith, Matthew J.; Germolec, Dori R.; Frawley, Rachel P.; White, Kimber L.

    2013-01-01

    Black cohosh extracts (BCE; Actaea racemosa) are being used worldwide as an alternative to hormone replacement therapy for the management of menstrual and menopausal symptoms, yet the effects of BCE on the immune system are largely unknown. Female B 6 C 3 F 1 /N mice were treated daily with BCE (0, 62.5, 125, 250, 500, or 1000 mg/kg) for 28 days by oral gavage. Liver weights were significantly increased (26–32%) at the 1000 mg/kg dose. Dose-related increases in mean corpuscular volume and mean corpuscular hemoglobin were observed. Decreasing trends were observed in all thymic T cell populations, with the most notable dose-responsive effects on immature thymocytes. In the spleen, dose-related decreases were observed in all cell phenotypes evaluated, reaching the level of statistical significance at the 1000 mg/kg BCE dose. Splenic natural killer (NK) cell numbers were significantly decreased at all BCE doses, with the exception of absolute NK numbers at the 125 mg/kg dose. No effects were observed on T-dependent antibody responses of the humoral immune system, including the antibody-forming cell response to sheep erythrocytes (sRBC) and IgM antibody levels to both sRBC and keyhole limpet hemocyanin. Cytotoxic T cell (T CTL ) activity was increased, as was the mixed leukocyte response in one of two studies. Anti-CD3 mediated proliferation and the delayed-type hypersensitivity response were unaffected. No effects were observed on innate immunity or on bone marrow cellularity and colony-forming units. Overall, BCE exposure in B 6 C 3 F 1 /N mice for 28 days at doses up to 1000 mg/kg had minimal immune effects, with the exception of an increased T CTL response

  20. The levels of plasma low density lipoprotein are independent of cholesterol ester transfer protein in fish-oil fed F1B hamsters

    Directory of Open Access Journals (Sweden)

    Davis Phillip J

    2005-03-01

    Full Text Available Abstract Background Cholesterol ester transfer protein (CETP plays a major role in regulating the levels of LDL- and HDL-cholesterol. We previously observed a fish-oil-induced elevation of low-density lipoprotein (LDL-and very-low-density lipoprotein (VLDL-cholesterol concentrations and a decrease in high-density lipoprotein (HDL-cholesterol concentration in F1B hamsters. The molecular mechanism/s by which fish oil induces hyperlipidaemic effect was investigated in this study. We examined whether the effects of dietary fish oil on plasma lipoprotein concentrations are due to fish-oil-induced alterations in plasma CETP activity. MIX diet, a diet supplemented with a mixture of lard and safflower oil, was used as the control diet. Results We found that fish oil feeding in hamsters reduced CETP mass as well as CETP activity. Increasing the dietary fat level of fish-oil from 5% to 20% (w/w led to a further decrease in CETP mass. Supplementation with dietary cholesterol increased both CETP mass and CETP activity in fish-oil and MIX-diet fed hamsters. However, there was no correlation between CETP mass as well as CETP activity and LDL-cholesterol concentrations. Conclusion These findings suggest that cholesterol ester transfer between HDL and LDL is not likely to play a major role in determining fish-oil-induced changes in LDL- and HDL-cholesterol concentrations in F1B hamsters. A possible role of reduced clearance of LDL-particles as well as dietary fat level and dietary cholesterol dependent changes in LDL-lipid composition have been discussed.

  1. Effect of inulin supplementation in male mice fed with high fat diet on ...

    African Journals Online (AJOL)

    Purpose: To evaluate the preventive and therapeutic effects of inulin supplementation in Naval Medical Research Institute (NMRI) male mice fed with high fat diet. Methods: NMRI male mice (n = 36) were divided into three groups. Control (C1), obese (O1) and experimental mice (E1) were fed during 8 weeks as follows: C1 ...

  2. Decreased arachidonic acid content and metabolism in tissues of NZB/W F1 females fed a diet containing 0.45% dehydroisoandrosterone (DHA)

    International Nuclear Information System (INIS)

    Matsunaga, A.; Cottam, G.L.

    1987-01-01

    A diet containing 0.45% DHA fed to NZB/W mice, a model of systemic lupus erythematosus, delays the time of onset, improves survival and decreases the formation of antibodies to ds-DNA. Essential fatty acid-deficient diets or inclusion of eicosapentaenoic acid have similar beneficial effects and led them to investigate arachidonic acid metabolism in response to feeding DHA. The arachidonic acid content of plasma cholesteryl ester decreased from 37.4 +/- 2.2 to 28.2 +/- 1.3 mg%. In total liver phospholipid the value decreased from 18.1 +/- 0.52 to 13.7 +/- 1.3 mg%, in total kidney phospholipid the value decreased from 24.10 +/- 0.87 to 20.7 +/- 0.32 mg% and in resident peritoneal macrophages the value decreased from 15.4 +/- 4.6 to 3.6 +/- 1.4 mg%. The metabolism of exogenous [1- 14 C]arachidonic acid by resident peritoneal macrophages in response to Zymosan stimulation for 2 hr was examined by extraction of metabolites and separation by HPLC. Cells isolated from DHA-fed animals produced less PGE2 than controls, yet similar amounts of 6-keto PGF1α were produced. Arachidonic acid metabolites have significant effects on the immune system and may be a mechanism involved in the benefits obtained by inclusion of DHA in the diet

  3. Genetic studies on the effect of gamma-irradiation on the spermatocytes of both mice and their F1 progeny

    International Nuclear Information System (INIS)

    Hassan, N.H.A.; Khattab, F.I.; Roushdy, H.M.; El-Dawy, H.A.

    1997-01-01

    Meiotic chromosome rearrangement of spermatocytes at diakinesismetaphase I were analysed in young adult male mice irradiated by gamma-rays at 0.5, 1.5, 3 and 6 Gy and killed 3 and 6 weeks post exposure. The types of aberrations recorded were: ring four CIV, chain three plus one univalent CIII+I, chain hexavalent CVI, autosomal univalent, X-Y univalent and polyploidy. The frequencies of these aberrations showed a dose-response relationship. Chromosomal aberrations were traced in spermatocytes of F 1 generation of males irradiated at different dose levels and crossed after the 3 rd and 6th weeks of exposure with normal control females. The data showed no dose-response relationship in offsprings delivered by irradiated animals and mated after three weeks of exposure. However, in offsprings of males mated after six weeks of exposure, the number of abnormal spermatocytes increased by increasing the dose. The dose of 6.0 Gy gamma-rays caused complete sterility of the exposed males

  4. BROMOETHANE, CHLOROETHANE AND ETHYLENE OXIDE INDUCED UTERINE NEOPLASMS IN B6C3F1 MICE FROM 2-YEAR NTP INHALATION BIOASSAYS: PATHOLOGY AND INCIDENCE DATA REVISITED

    Science.gov (United States)

    SUMMARY: Chloroethane, bromoethane and etjulene oxide represent a unique set of three chemicals that induce endometrial neoplasms in the uterus of B6C3F1 mice following an inhalation route of exposure. The results of the NTP's chronic bioassays with these three compounds resu...

  5. Tg.rasH2 Mice and not CByB6F1 Mice Should Be Used for 28-Day Dose Range Finding Studies Prior to 26-Week Tg.rasH2 Carcinogenicity Studies.

    Science.gov (United States)

    Paranjpe, Madhav G; Belich, Jessica; Vidmar, Tom J; Elbekai, Reem H; McKeon, Marie; Brown, Caren

    Our recent retrospective analysis of data, collected from 29 Tg.rasH2 mouse carcinogenicity studies, determined how successful the strategy of choosing the high dose for the 26-week studies was based on the estimated maximum tolerated dose (EMTD) derived from earlier 28-day dose range finding (DRF) studies conducted in CByB6F1 mice. Our analysis demonstrated that the high doses applied at EMTD in the 26-week Tg.rasH2 studies failed to detect carcinogenic effects. To investigate why the dose selection process failed in the 26-week carcinogenicity studies, the initial body weights, terminal body weights, body weight gains, food consumption, and mortality from the first 4 weeks of 26-week studies with Tg.rasH2 mice were compared with 28-day DRF studies conducted with CByB6F1 mice. Both the 26-week and the earlier respective 28-day studies were conducted with the exact same vehicle, test article, and similar dose levels. The analysis of our results further emphasizes that the EMTD and subsequent lower doses, determined on the basis of the 28-day studies in CByB6F1 mice, may not be an accurate strategy for selecting appropriate dose levels for the 26-week carcinogenicity studies in Tg.rasH2 mice. Based on the analysis presented in this article, we propose that the Tg.rasH2 mice and not the CByB6F1 mice should be used in future DRF studies. The Tg.rasH2 mice demonstrate more toxicity than the CByB6F1 mice, possibly because of their smaller size compared to CByB6F1 mice. Also, the Tg.rasH2 males appear to be more sensitive than the female Tg.rasH2 mice.

  6. Upregulation of estrogen receptor expression in the uterus of ovariectomized B6C3F1 mice and Ishikawa cells treated with bromoethane

    International Nuclear Information System (INIS)

    Aoyama, Hiroaki; Couse, John F.; Hewitt, Sylvia C.; Haseman, Joseph K.; He, Hong; Zheng, Xiaolin; Majstoravich, Sonja; Korach, Kenneth S.; Dixon, D.

    2005-01-01

    In a 2-year NTP bioassay, Bromoethane (BE) was found to induce endometrial neoplasms in the uterus of B6C3F1 mice [; ]. In women, hormonal influences, such as 'unopposed' estrogenic stimulus, have been implicated as important etiologic factors in uterine cancer. BE, however, does not affect the serum concentrations of sex hormones in female B6C3F1 mice [] and the mechanism of BE-induced uterine carcinogenesis still remains unclear. In the present study, we examined the estrogenic effects of BE on the uterus of ovariectomized B6C3F1 mice and on Ishikawa cells. Groups of 6 mice were given daily s.c. injections of 0, 100, 500 or 1000 mg BE/kg for 3 consecutive days. Mice treated with 17β-estradiol served as positive controls. Mice were necropsied 24 h after the final injection, and uteri were weighed and examined histologically and immunohistochemically along with the vagina. Changes observed in the estrogen-treated mice included increased uterine weights, edema and inflammation of the endometrium, increased epithelial layers of the uterine and vaginal lumens and keratinization of the vaginal epithelium. In the BE-treated mice, no such changes occurred; however, immunohistochemical staining of the uterus revealed a significant increase in immunoexpression of the estrogen receptor alpha (ERα) in the two higher dose groups. Analysis of mRNA also showed slightly increased uterine ERα expression in these groups. Upregulated expression of ERα was confirmed in BE-treated Ishikawa cells, in which Western blotting analyses identified an intense signal at approximately 66 kDa, which is consistent with ERα. These data suggest that upregulated expression of ERα may be important in the induction of endometrial neoplasms in BE-treated mice

  7. Gastrointestinal absorption and retention of neptunium by fasted and fed mice

    International Nuclear Information System (INIS)

    Larsen, R.P.; Bhattacharyya, M.H.; Oldham, R.D.; Moretti, E.S.

    1982-01-01

    The retention of neptunium in liver and bone subsequent to its gastrointestinal absorption has been determined in both fasted and fed mice. The values obtained for fractional retention were 3 x 10 - 3 and 1 x 10 - 4 , respectively, and are within a factor of two the same as those for plutonium in fasted and fed mice

  8. Micronucleus test in mice fed on irradiated whole diet

    International Nuclear Information System (INIS)

    Reddy, P.P.; Reddi, O.S.; Pentiah, P.R.; Rani, M.V.U.; Devi, K.R.; Goud, S.N.

    1981-01-01

    Eight week old Swiss albino male mice were fed on freshly irradiated or unirradiated whole diet for one week. (Exposure was to 75 or 200 kR γ rays from a 1000 Ci 60 Co γ source at a dose rate of 584 R/min.) On the seventh day, six hours after feeding, the mice were killed and bone marrow preparations were made by the Schmid technique. From each group three animals were taken and from each animal 2000 polychromatic and normochromatic erythrocytes were scored. It was evident from the data obtained that the irradiated whole diet failed to induce any significant increase in the incidence of micronuclei in polychromatic erythrocytes. Similarly, there was no significant increase in the frequency of micronuclei in normochromatic erythrocytes when compared with control data. The polychromatic to normochromatic ratio was also unaffected. The diet consisted of wheat flour (60%). groundnut cake (20%), fish meal (8%), Bengal gram flour (8%), dried yeast (3%), salt/mineral mixture (1%) and traces of vitamins. (U.K.)

  9. Differences in the metabolism and disposition of inhaled [3H]benzene by F344/N rats and B6C3F1 mice

    International Nuclear Information System (INIS)

    Sabourin, P.J.; Bechtold, W.E.; Birnbaum, L.S.; Lucier, G.; Henderson, R.F.

    1988-01-01

    Benzene is a potent hematotoxin and has been shown to cause leukemia in man. Chronic toxicity studies indicate that B6C3F1 mice are more susceptible than F334/N rats to benzene toxicity. The purpose of the studies presented in this paper was to determine if there were metabolic differences between F344/N rats and B6C3F1 mice which might be responsible for this increased susceptibility. Metabolites of benzene in blood, liver, lung, and bone marrow were measured during and following a 6-hr 50 ppm exposure to benzene vapor. Hydroquinone glucuronide, hydroquinone, and muconic acid, which reflect pathways leading to potential toxic metabolites of benzene, were present in much greater concentrations in the mouse than in rat tissues. Phenylsulfate, a detoxified metabolite, and an unknown water-soluble metabolite were present in approximately equal concentrations in these two species. These results indicate that the proportion of benzene metabolized via pathways leading to the formation of potentially toxic metabolites as opposed to detoxification pathways was much higher in B6C3F1 mice than in F344 rats, which may explain the higher susceptibility of mice to benzene-induced hematotoxicity and carcinogenicity

  10. Toxicology and carcinogenesis studies of acrylamide (CASRN 79-06-1) in F344/N rats and B6C3F1 mice (feed and drinking water studies).

    Science.gov (United States)

    2012-07-01

    Acrylamide, a water-soluble α,β-unsaturated amide, is a contaminant in baked and fried starchy foods, including french fries, potato chips, and bread, as a result of Maillard reactions involving asparagine and reducing sugars. Additional sources of acrylamide exposure include cigarettes, laboratory procedures involving polyacrylamide gels, and various occupations (e.g, monomer production and polymerization processes). Acrylamide is carcinogenic in experimental animals. To obtain data for developing quantitative risk assessments for dietary exposures to acrylamide, the Food and Drug Administration nominated acrylamide for an in-depth toxicological evaluation by the National Toxicology Program. As part of this evaluation, male and female B6C3F1/Nctr (C57BL/6N x C3H/HeN MTV-) mice and male and female F344/N Nctr rats were exposed to acrylamide (at least 99.4% pure) in drinking water for 2 years. 2-WEEK STUDY IN RATS: Groups of four male and four female F344/N rats were administered 0, 0.14, 0.35, 0.70, 1.41, 3.52, or 7.03 mM acrylamide in the drinking water (0, 10, 25, 50, 100, 250, or 500 ppm acrylamide) or 0.0, 7.4, 18.5, 37, 74, 185, or 370 mg acrylamide per kg diet for 14 days. One male rat administered 7.03 mM acrylamide in the drinking water died on day 14. Male and female rats receiving 7.03 mM acrylamide weighed 56% and 64% of controls, respectively. Male and female rats fed 370 mg acrylamide per kg diet weighed 74% and 83% of controls, respectively. Female rats receiving 3.52 mM acrylamide in drinking water and male rats fed 185 mg acrylamide per kg diet weighed 85% and 89% of controls, respectively. Rats receiving 7.03 mM acrylamide in drinking water or 370 mg acrylamide per kg diet exhibited hind-leg paralysis on day 14. Mild to moderate dilatation of the urinary bladder was observed in all rats given 370 mg acrylamide per kg diet, and in three of four male rats and all four female rats given 7.03 mM acrylamide in drinking water, and in one of four male

  11. Pathology of Serially Sacrificed Female B6C3F1 Mice Continuously Exposed to Very Low-Dose-Rate Gamma Rays.

    Science.gov (United States)

    Tanaka, I B; Komura, J; Tanaka, S

    2017-03-01

    We have previously reported on life span shortening as well as increased incidence rates in several neoplasms in B6C3F1 mice that were continuously exposed to 21 mGy/day of gamma rays for 400 days. To clarify whether the life shortening was due to early appearance of neoplasms (shortened latency) or increased promotion/progression, 8-week-old female specific-pathogen-free B6C3F1 mice were gamma-ray irradiated at a low dose rate of 20 mGy/day for 400 days. At 100 days postirradiation, 60-90 mice were sacrificed, and thereafter every 100 days alongside the age-matched nonirradiated controls, for 700 days. Additional groups were allowed to live out their natural life span. Pathological examination was performed on all mice to identify lesions, non-neoplastic and neoplastic, as well as to determine the cause of death. Body weights were significantly increased in irradiated mice from sacrifice days 200-500. Incidence rates for spontaneously occurring non-neoplastic lesions, such as adrenal subcapsular cell hyperplasia, fatty degeneration of the liver, atrophy and tubulostromal hyperplasia of the ovaries, were significantly increased in irradiated mice. Significantly increased incidence rates with no shortening of latency periods were observed in irradiated mice for malignant lymphomas, hepatocellular adenomas/carcinomas, bronchioloalveolar adenomas, harderian gland adenoma/adenocarcinoma. Shortened latencies with significantly increased incidence rates were observed for adrenal subcapsular cell adenomas and ovarian neoplasms (tubulostromal adenoma, granulosa cell tumors) in irradiated mice. Life span shortening in mice exposed to 20 mGy/day was mostly due to malignant lymphomas. Multiple primary neoplasms were significantly increased in mice exposed to 20 mGy/day from sacrifice days 400-700 and in the life span group. Our results confirm that continuous low-dose-rate gamma-ray irradiation of female B6C3F1 mice causes both cancer induction (shortened latency) and

  12. Mutagenicity assayed by dominant lethality testing in mice fed a combined gamma-irradiated diet

    International Nuclear Information System (INIS)

    Rupova, I.; Katsarova, Ts.; Bajrakova, A.; Baev, I.; Tencheva, S.

    1980-01-01

    Mice fed a combined gamma-irradiated diet were examined for a mutagenic effect using the dominant lethality test. Their feed contained the following irradiated ingredients: 20% maize, 10% dried plums, and 5% walnut kernels. Taking into account cycle duration in spermatogenesis and oogenesis, males were fed this special diet throughout 56 days, and females throughout 21 days. The experiments involved three animal groups: (1) fed the special diet containing irradiated ingredients; (2) fed the special diet but with the ingredients nonirradiated; and (3) fed standard vivarium diet. Matings to provide the first generation were between one parent fed the special diet and a partner fed standard diet. With an adequate number of implants examined on day 16 of gestation, embryonic death rate was not found to be increased; hence, induction of dominant lethality from consumption of irradiated diet failed to be demonstrated

  13. Immunotoxicological profile of chloramine in female B6C3F1 mice when administered in the drinking water for 28 days.

    Science.gov (United States)

    Guo, Tai L; Germolec, Dori R; Collins, Bradley J; Luebke, Robert W; Auttachoat, Wimolnut; Smith, Matthew J; White, Kimber L

    2011-01-01

    Monochloramine has been used to provide a disinfecting residual in water distribution systems where it is difficult to maintain an adequate free-chlorine residual or where disinfection by-product formation is of concern. The goal of this study was to characterize the immunotoxic effects of chloramine in female B(6)C(3)F(1) mice when administered via the drinking water. Mice were exposed to chloramine-containing deionized tap water at 2, 10, 20, 100, or 200 ppm for 28 days. No statistically significant differences in drinking water consumption, body weight, body weight gain, organ weights, or hematological parameters between the exposed and control animals were noted during the experimental period. There were no changes in the percentages and numbers of total B-lymphocytes, T-lymphocytes, CD4(+) and CD8(+) T-lymphocytes, natural killer (NK) cells, and macrophages in the spleen. Exposure to chloramine did not affect the IgM antibody-forming cell response to sheep red blood cells (SRBC) or anti-SRBC IgM antibody production. Minimal effects, judged to be biologically insignificant, were observed in the mixed-leukocyte response and NK activity. In conclusion, chloramine produced no toxicological and immunotoxic effects in female B(6)C(3)F(1) mice when administered for 28 days in the drinking water at concentrations ranging from 2-200 ppm.

  14. Basal and induced granulopoiesis in outbred, F1 hybrid and inbred mice: can inbreeding depression influence the experimental practice?

    Czech Academy of Sciences Publication Activity Database

    Hofer, Michal; Pospíšil, Milan; Dušek, L.; Holá, Jiřina; Hoferová, Zuzana; Weiterová, Lenka

    2010-01-01

    Roč. 235, č. 8 (2010), s. 928-931 ISSN 1535-3702 R&D Projects: GA ČR(CZ) GA305/08/0158 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : hematopoiesis * outbred mice * inbreeding depression Subject RIV: BO - Biophysics Impact factor: 2.954, year: 2010

  15. Migration Of Ancylostoma caninum Larvae Into Lungs Of Mice Fed ...

    African Journals Online (AJOL)

    Two randomly selected groups of Swiss Albino Wistar mice were therefore infected with 1000 infective larvae of Ancylostoma caninum/mouse. Test mice received 250mg Allium sativum/kg body weight daily ... KEY WORDS: Allium sativum, lungs, Ancylostoma caninum. Global Journal of Pure and Applied Sciences Vol.11(2) ...

  16. Reversibility of hepatocyte nuclear modifications in mice fed on genetically modified soybean

    Directory of Open Access Journals (Sweden)

    M Malatesta

    2009-06-01

    Full Text Available In the literature, the reports on the effects of a genetically modified (GM diet are scanty and heterogeneous; in particular, no direct evidence has so far been reported that GM food may affect human or animal health. Hepatocytes represent a suitable model for monitoring the effects of a GM diet, the liver potentially being a primary target. In a previous study, we demonstrated that some modifications occur in hepatocyte nuclei of mice fed on GM soybean. In order to elucidate whether such modifications can be reversed, in the present study, 3 months old mice fed on GM soybean since their weaning were submitted to a diet containing wild type soybean only, for one month. In parallel, to investigate the influence of GM soybean on adult individuals, mice fed on wild type soybean were changed to a GM diet, for the same time. Using immunoelectron microscopy, we demonstrated that a one-month diet reversion can influence some nuclear features in adult mice, restoring typical characteristics of controls in GM-fed animals, and inducing in control mice modifications similar to those observed in animals fed on GM soybean from weaning. This suggests that the modifications related to GM soybean are potentially reversible, but also that some modifications are inducible in adult organisms in a short time.

  17. The nature of tolerance in adult recipient mice made tolerant of alloantigens with supralethal irradiation followed by syngeneic bone marrow cell transplantation plus injection of F1 spleen cells

    International Nuclear Information System (INIS)

    Tomita, Y.; Himeno, K.; Mayumi, H.; Tokuda, N.; Nomoto, K.

    1989-01-01

    The length of time after syngeneic bone marrow reconstitution when tolerance to alloantigens can be induced in adult mice during T cell differentiation from bone marrow cells was studied by exposing those T cells to (recipient x donor)F1 spleen cells. Supralethally irradiated C3H/He Slc(C3H; H-2k) mice were reconstituted with 1 x 10(7) syngeneic T cell-depleted bone marrow cells and then injected intravenously with 5 x 10(7) (C3H x C57BL/6[B6])F1 (B6C3F1; H-2bxk) or (C3H x AKR/J[AKR])F1 (AKC3F1; H-2kxk) spleen cells at various intervals. In the fully allogeneic combination of B6C3F1----C3H, EL-4 tumor originating from B6 was accepted, and survival of grafted B6 skin was significantly prolonged in the tolerant C3H mice treated with irradiation on day -1 followed by injection of syngeneic bone marrow cells on day 0 plus B6C3F1 spleen cells on days 0, 5, or 10, in a tolerogen-specific manner. In the multiminor histocompatibility antigen-disparate combination of AKC3F1----C3H, AKR skin grafts were permanently accepted in the tolerant C3H mice treated with AKC3F1 spleen cells on days 0, 5, 10, or 15. Immunological parameters, including cytotoxic T lymphocyte activity and delayed foot-pad reaction (DFR), were almost completely suppressed in C3H mice made tolerant of B6 or AKR antigens. A chimeric assay using a direct immunofluorescence method revealed that the tolerant C3H mice given B6C3F1 spleen cells on day 0 were mixed-chimeric for at least 8 weeks after syngeneic bone marrow reconstitution, but not definitely chimeric thereafter. The C3H mice given AKC3F1 spleen cells on day 0 were chimeric even 43 weeks after syngeneic bone marrow reconstitution, but the C3H mice given AKC3F1 spleen cells on day 15 showed temporal chimerism that disappeared within 43 weeks. The untolerant mice were never detectably chimeric

  18. Multiple Roles of Myd88 in the Immune Response to the Plague F1-V Vaccine and in Protection against an Aerosol Challenge of Yersinia pestis CO92 in Mice

    Directory of Open Access Journals (Sweden)

    Jennifer L. Dankmeyer

    2014-01-01

    Full Text Available The current candidate vaccine against Yersinia pestis infection consists of two subunit proteins: the capsule protein or F1 protein and the low calcium response V protein or V-antigen. Little is known of the recognition of the vaccine by the host’s innate immune system and how it affects the acquired immune response to the vaccine. Thus, we vaccinated Toll-like receptor (Tlr 2, 4, and 2/4-double deficient, as well as signal adaptor protein Myd88-deficient mice. We found that Tlr4 and Myd88 appeared to be required for an optimal immune response to the F1-V vaccine but not Tlr2 when compared to wild-type mice. However, there was a difference between the requirement for Tlr4 and MyD88 in vaccinated animals. When F1-V vaccinated Tlr4 mutant (lipopolysaccharide tolerant and Myd88-deficient mice were challenged by aerosol with Y. pestis CO92, all but one Tlr4 mutant mice survived the challenge, but no vaccinated Myd88-deficient mice survived the challenge. Spleens from these latter nonsurviving mice showed that Y. pestis was not cleared from the infected mice. Our results suggest that MyD88 appears to be important for both an optimal immune response to F1-V and in protection against a lethal challenge of Y. pestis CO92 in F1-V vaccinated mice.

  19. Dominant lethal mutations in male mice fed γ-irradiated diet

    International Nuclear Information System (INIS)

    Chauhan, P.S.; Aravindakshan, M.; Aiyer, A.S.; Sundaram, K.

    1975-01-01

    Three groups of Swiss male mice were fed a stock ration of an unirradiated or irradiated (2.5 Mrad) test diet for 8 wk. After the feeding period, the males were mated with groups of untreated female mice for 4 consecutive weeks. The females were autopsied at mid-term pregnancy for evaluation of dominant lethal mutations. Numbers of dead implantations, including deciduomas and dead embryos, showed no significant differences among the different groups, thus producing no evidence of any induced post-implantation lethality in mice fed on irradiated diet. Similarly, there was no indication of preimplantation lethality, since implantation rates remained comparable among different groups. Consumption of irradiated diet did not affect the fertility of mice. Total pre- and post-implantation loss, as indicated by the numbers of live implantations remained comparable among all the groups of mice. (author)

  20. Detrimental Effects of Helium Ion Irradiation on Cognitive Performance and Cortical Levels of MAP-2 in B6D2F1 Mice.

    Science.gov (United States)

    Raber, Jacob; Torres, Eileen Ruth S; Akinyeke, Tunde; Lee, Joanne; Weber Boutros, Sydney J; Turker, Mitchell S; Kronenberg, Amy

    2018-04-20

    The space radiation environment includes helium (⁴He) ions that may impact brain function. As little is known about the effects of exposures to ⁴He ions on the brain, we assessed the behavioral and cognitive performance of C57BL/6J × DBA2/J F1 (B6D2F1) mice three months following irradiation with ⁴He ions (250 MeV/n; linear energy transfer (LET) = 1.6 keV/μm; 0, 21, 42 or 168 cGy). Sham-irradiated mice and mice irradiated with 21 or 168 cGy showed novel object recognition, but mice irradiated with 42 cGy did not. In the passive avoidance test, mice received a slight foot shock in a dark compartment, and latency to re-enter that compartment was assessed 24 h later. Sham-irradiated mice and mice irradiated with 21 or 42 cGy showed a higher latency on Day 2 than Day 1, but the latency to enter the dark compartment in mice irradiated with 168 cGy was comparable on both days. ⁴He ion irradiation, at 42 and 168 cGy, reduced the levels of the dendritic marker microtubule-associated protein-2 (MAP-2) in the cortex. There was an effect of radiation on apolipoprotein E (apoE) levels in the hippocampus and cortex, with higher apoE levels in mice irradiated at 42 cGy than 168 cGy and a trend towards higher apoE levels in mice irradiated at 21 than 168 cGy. In addition, in the hippocampus, there was a trend towards a negative correlation between MAP-2 and apoE levels. While reduced levels of MAP-2 in the cortex might have contributed to the altered performance in the passive avoidance test, it does not seem sufficient to do so. The higher hippocampal and cortical apoE levels in mice irradiated at 42 than 168 cGy might have served as a compensatory protective response preserving their passive avoidance memory. Thus, there were no alterations in behavioral performance in the open filed or depressive-like behavior in the forced swim test, while cognitive impairments were seen in the object recognition and passive avoidance tests, but not in the contextual or cued fear

  1. Detrimental Effects of Helium Ion Irradiation on Cognitive Performance and Cortical Levels of MAP-2 in B6D2F1 Mice

    Directory of Open Access Journals (Sweden)

    Jacob Raber

    2018-04-01

    Full Text Available The space radiation environment includes helium (4He ions that may impact brain function. As little is known about the effects of exposures to 4He ions on the brain, we assessed the behavioral and cognitive performance of C57BL/6J × DBA2/J F1 (B6D2F1 mice three months following irradiation with 4He ions (250 MeV/n; linear energy transfer (LET = 1.6 keV/μm; 0, 21, 42 or 168 cGy. Sham-irradiated mice and mice irradiated with 21 or 168 cGy showed novel object recognition, but mice irradiated with 42 cGy did not. In the passive avoidance test, mice received a slight foot shock in a dark compartment, and latency to re-enter that compartment was assessed 24 h later. Sham-irradiated mice and mice irradiated with 21 or 42 cGy showed a higher latency on Day 2 than Day 1, but the latency to enter the dark compartment in mice irradiated with 168 cGy was comparable on both days. 4He ion irradiation, at 42 and 168 cGy, reduced the levels of the dendritic marker microtubule-associated protein-2 (MAP-2 in the cortex. There was an effect of radiation on apolipoprotein E (apoE levels in the hippocampus and cortex, with higher apoE levels in mice irradiated at 42 cGy than 168 cGy and a trend towards higher apoE levels in mice irradiated at 21 than 168 cGy. In addition, in the hippocampus, there was a trend towards a negative correlation between MAP-2 and apoE levels. While reduced levels of MAP-2 in the cortex might have contributed to the altered performance in the passive avoidance test, it does not seem sufficient to do so. The higher hippocampal and cortical apoE levels in mice irradiated at 42 than 168 cGy might have served as a compensatory protective response preserving their passive avoidance memory. Thus, there were no alterations in behavioral performance in the open filed or depressive-like behavior in the forced swim test, while cognitive impairments were seen in the object recognition and passive avoidance tests, but not in the contextual or cued

  2. Twenty-six-week oral carcinogenicity study of 3-monochloropropane-1,2-diol in CB6F1-rasH2 transgenic mice.

    Science.gov (United States)

    Lee, Byoung-Seok; Park, Sang-Jin; Kim, Yong-Bum; Han, Ji-Seok; Jeong, Eun Ju; Son, Hwa-Young; Moon, Kyoung-Sik

    2017-01-01

    The carcinogenic potential of 3-monochloro-1,2-propanediol (3-MCPD) was evaluated in a short-term carcinogenicity testing study using CB6F1 rasH2-Tg (rasH2-Tg) mice. 3-MCPD is found in many foods and food ingredients as a result of storage or processing and is regarded as a carcinogen since it is known to induce Leydig cell and kidney tumors in rats. Male and female rasH2-Tg mice were administered 3-MCPD once daily by oral gavage at doses of 0, 10, 20, and 40 mg/kg body weight (bw) per day for 26 weeks. As a positive control, N-methyl-N-nitrosourea (MNU) was administered as a single intraperitoneal injection (75 mg/kg). In 3-MCPD-treated mice, there was no increase in the incidence of neoplastic lesions compared to the incidence in vehicle control mice. However, 3-MCPD treatment resulted in an increased incidence of tubular basophilia in the kidneys and germ cell degeneration in the testes, with degenerative germ cell debris in the epididymides of males at 20 and 40 mg/kg bw per day. In 3-MCPD-treated females, vacuolation of the brain and spinal cord was observed at 40 mg/kg bw per day; however, only one incidence of vacuolation was observed in males. Forestomach and cutaneous papilloma and/or carcinoma and lymphoma were observed in most rasH2 mice receiving MNU treatment. We concluded that 3-MCPD did not show carcinogenic potential in the present study using rasH2-Tg mice. The findings of this study suggest that the carcinogenic potential of 3-MCPD is species specific.

  3. Toxicology and carcinogenesis studies of p,p'-dichlorophenyl sulfone (CAS No. 80-07-9) in F344/N rats and B6C3F1 mice (feed studies).

    Science.gov (United States)

    2001-09-01

    p,pN-Dichlorodiphenyl sulfone is used as a starting material in the production of polysulfones and polyethersulfones and as a component in reactive dyes in the textile industry; it is also a by-product of pesticide production. p,pN-Dichlorodiphenyl sulfone was nominated for study by the National Cancer Institute because of its history of high production and use, the prospect of increased production and use, and the absence of adequate toxicity testing. Male and female F344/N rats and B6C3F1 mice were exposed top,pN-dichlorodiphenyl sulfone (greater than 99% pure)in feed for 14 weeks or 2 years. Genetic toxicology studies were conducted in Salmonella typhimurium,cultured Chinese hamster ovary cells, and mouse bone marrow. 14-WEEK STUDY IN RATS: Groups of 10 male and 10 female F344/N rats were fed diets containing 0, 30, 100, 300, 1,000, or 3,000 ppm p,pN-dichlorodiphenyl sulfone (equivalent to average daily doses of approximately 2, 6, 19, 65, or 200 mgp,pN-dichlorodiphenyl sulfone/kg body weight) for 14 weeks. All rats survived until the end of the study. Mean body weights of groups exposed to 300 ppm or greater were significantly less than those of the controls. Liver weights of groups exposed to 100 ppm or greater and kidney weights of 1,000 and 3,000 ppm male rats were significantly greater than those of the controls. Centrilobular hepatocyte hypertrophy of the liver was observed in most male rats exposed to 100 ppm or greater and in all female rats exposed to 300 ppm or greater, and the severities were increased in 300 ppm males and 1,000 and 3,000 ppm males and females. The incidences of nephropathy in 1,000 and 3,000 ppm female rats were significantly increased. Dose-related increases in severity of nephropathy were observed in male rats. 14-WEEK STUDY IN MICE: Groups of 10 male and 10 female B6C3F1 mice were fed diets containing 0, 30, 100, 300, 1,000, or 3,000 ppm p,pN-dichlorodiphenyl sulfone (equivalent to average daily doses of approximately 3.5, 15, 50

  4. Whey protein reduces early life weight gain in mice fed a high-fat diet

    DEFF Research Database (Denmark)

    Tranberg, Britt; Hellgren, Lars; Lykkesfeldt, Jens

    2013-01-01

    An increasing number of studies indicate that dairy products, including whey protein, alleviate several disorders of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey) in mice fed a high-fat diet hypothesising that the metabolic effects of whey would...... be associated with changes in the gut microbiota composition. Five-week-old male C57BL/6 mice were fed a high-fat diet ad libitum for 14 weeks with the protein source being either whey or casein. Faeces were collected at week 0, 7, and 13 and the fecal microbiota was analysed by denaturing gradient gel...... reduced weight gain in young C57BL/6 mice fed a high-fat diet compared to casein. Although the effect on weight gain ceased, whey alleviated glucose intolerance, improved insulin sensitivity and reduced plasma cholesterol. These findings could not be explained by changes in food intake or gut microbiota...

  5. Body composition and energetic efficiency in two lines of mice selected for rapid growth rate and their F1 crosses.

    Science.gov (United States)

    Eisen, E J; Bakker, H; Nagai, J

    1977-01-01

    Correlated responses to selection for increased growth rate were compared in two mouse populations (M16 and H6) of distinct genetic origin. Traits studied were body composition, feed intake, constituent gains and energetic efficiency. When compared with their respective controls (ICR and C2) at 6 and 9 weeks of age, body weight increased more in M16 (57%and 69 % of the control mean) than in H6 (40 % and 34%). The M16 showed correlated responses in fat percent of 2.6% (P .05). The correlated responses in fat percent were 2.7 and 4.7 times higher in M16 than H6 at 6 and 9 weeks. The regression of ln fat weight on ln empty body weight was larger in M16 (P calories and ash; fat and caloric gain and efficiency exhibited higher correlated responses in M16 than H6. During the 6- to 9-week interval, the M16 population continued to evince positive correlated responses in gains and efficiencies of fat, protein and calories, whereas H6 did not. Several possible explanations are presented to account for the differences in correlated responses between the selected populations. Partitioning of correlated response differences between M16 and H6 into average direct and average maternal genetic effects indicated that average direct genetic effects, favoring M16, were responsible for the major difference between the selected populations. Direct heterosis in F1 crosses of the selected populations were generally not significant, although there was a tendency for fat percent and fat weight to show heterosis.

  6. NTP Toxicology and Carcinogenesis Studies of Molybdenum Trioxide (CAS No. 1313-27-5) in F344 Rats and B6C3F1 Mice (Inhalation Studies).

    Science.gov (United States)

    1997-04-01

    Molybdenum is an essential element for the function of nitrogenase in plants and as a cofactor for enzymes including xanthine oxidoreductase, aldehyde oxidase, and sulfide oxidase in animals. Molybdenum trioxide is used primarily as an additive to steel and corrosion-resistant alloys. It is also used as a chemical intermediate for molybdenum products; an industrial catalyst; a pigment; a crop nutrient; components of glass, ceramics, and enamels; a flame retardant for polyester and polyvinyl chloride resins; and a reagent in chemical analyses. Molybdenum trioxide was nominated by the NCI for toxicity and carcinogenicity studies as a representative inorganic molybdenum compound. The production of molybdenum trioxide is the largest of all the molybdenum compounds examined. Male and female F344/N rats and B6C3F1 mice were exposed to molybdenum trioxide (approximately 99% pure) by inhalation for 14 days, 13 weeks, or 2 years. Genetic toxicology studies were conducted in Salmonella typhimurium and cultured Chinese hamster ovary cells. 14-DAY STUDY IN RATS: Groups of five male and five female F344/N rats were exposed to 0, 3, 10, 30, 100, or 300 mg molybdenum trioxide/m(3). Rats were exposed for 6 hours per day, 5 days per week, for a total of 10 exposure days during a 14-day period. All rats survived to the end of the study. The final mean body weights of male rats exposed to 100 mg/m(3) and male and female rats exposed to 300 mg/m(3) were significantly lower than those of the control groups. Male rats exposed to 300 mg/m(3) lost weight during the study. There were no clinical findings related to exposure to molybdenum trioxide. No chemical-related lesions were observed. 14-DAY STUDY IN MICE: Groups of five male and five female B6C3F1 mice were exposed to 0, 3, 10, 30, 100, or 300 mg molybdenum trioxide/m(3). Mice were exposed 6 hours per day, 5 days per week, for a total of 10 exposure days during a 14-day period. All mice survived to the end of the study. Final mean

  7. FEDS

    DEFF Research Database (Denmark)

    Venable, John; Pries-Heje, Jan; Baskerville, Richard

    2016-01-01

    Evaluation of design artefacts and design theories is a key activity in Design Science Research (DSR), as it provides feedback for further development and (if done correctly) assures the rigour of the research. However, the extant DSR literature provides insufficient guidance on evaluation...... to enable Design Science Researchers to effectively design and incorporate evaluation activities into a DSR project that can achieve DSR goals and objectives. To address this research gap, this research paper develops, explicates, and provides evidence for the utility of a Framework for Evaluation in Design...... Science (FEDS) together with a process to guide design science researchers in developing a strategy for evaluating the artefacts they develop within a DSR project. A FEDS strategy considers why, when, how, and what to evaluate. FEDS includes a two-dimensional characterisation of DSR evaluation episodes...

  8. Diet-induced obesity alters protein synthesis: Tissue-specific effects in fasted vs. fed mice

    OpenAIRE

    Anderson, Stephanie R.; Gilge, Danielle A.; Steiber, Alison L.; Previs, Stephen F.

    2008-01-01

    The influence of obesity on protein dynamics is not clearly understood. We have designed experiments to test the hypothesis that obesity impairs the stimulation of tissue-specific protein synthesis following nutrient ingestion. C57BL/6J mice were randomized into two groups: group 1 (control, n = 16) were fed a low-fat, high-carbohydrate diet and group 2 (experimental, n = 16) were fed a high-fat, low-carbohydrate diet ad libitum for 9 weeks. On the experiment day, all mice were fasted for 6 h...

  9. Amiloride Improves Endothelial Function and Reduces Vascular Stiffness in Female Mice Fed a Western Diet

    Directory of Open Access Journals (Sweden)

    Luis A. Martinez-Lemus

    2017-06-01

    Full Text Available Obese premenopausal women lose their sex related cardiovascular disease protection and develop greater arterial stiffening than age matched men. In female mice, we have shown that consumption of a Western diet (WD, high in fat and refined sugars, is associated with endothelial dysfunction and vascular stiffening, which occur via activation of mineralocorticoid receptors and associated increases in epithelial Na+ channel (ENaC activity on endothelial cells (EnNaC. Herein our aim was to determine the effect that reducing EnNaC activity with a very-low-dose of amiloride would have on decreasing endothelial and arterial stiffness in young female mice consuming a WD. To this end, we fed female mice either a WD or control diet and treated them with or without a very-low-dose of the ENaC-inhibitor amiloride (1 mg/kg/day in the drinking water for 20 weeks beginning at 4 weeks of age. Mice consuming a WD were heavier and had greater percent body fat, proteinuria, and aortic stiffness as assessed by pulse-wave velocity than those fed control diet. Treatment with amiloride did not affect body weight, body composition, blood pressure, urinary sodium excretion, or insulin sensitivity, but significantly reduced the development of endothelial and aortic stiffness, aortic fibrosis, aortic oxidative stress, and mesenteric resistance artery EnNaC abundance and proteinuria in WD-fed mice. Amiloride also improved endothelial-dependent vasodilatory responses in the resistance arteries of WD-fed mice. These results indicate that a very-low-dose of amiloride, not affecting blood pressure, is sufficient to improve endothelial function and reduce aortic stiffness in female mice fed a WD, and suggest that EnNaC-inhibition may be sufficient to ameliorate the pathological vascular stiffening effects of WD-induced obesity in females.

  10. Niacin increases adiponectin and decreases adipose tissue inflammation in high fat diet-fed mice.

    Directory of Open Access Journals (Sweden)

    Desiree Wanders

    Full Text Available To determine the effects of niacin on adiponectin and markers of adipose tissue inflammation in a mouse model of obesity.Male C57BL/6 mice were placed on a control or high-fat diet (HFD and were maintained on such diets for the duration of the study. After 6 weeks on the control or high fat diets, vehicle or niacin treatments were initiated and maintained for 5 weeks. Identical studies were conducted concurrently in HCA2 (-/- (niacin receptor(-/- mice.Niacin increased serum concentrations of the anti-inflammatory adipokine, adiponectin by 21% in HFD-fed wild-type mice, but had no effect on lean wild-type or lean or HFD-fed HCA2 (-/- mice. Niacin increased adiponectin gene and protein expression in the HFD-fed wild-type mice only. The increases in adiponectin serum concentrations, gene and protein expression occurred independently of changes in expression of PPARγ C/EBPα or SREBP-1c (key transcription factors known to positively regulate adiponectin gene transcription in the adipose tissue. Further, niacin had no effect on adipose tissue expression of ERp44, Ero1-Lα, or DsbA-L (key ER chaperones involved in adiponectin production and secretion. However, niacin treatment attenuated HFD-induced increases in adipose tissue gene expression of MCP-1 and IL-1β in the wild-type HFD-fed mice. Niacin also reduced the expression of the pro-inflammatory M1 macrophage marker CD11c in HFD-fed wild-type mice.Niacin treatment attenuates obesity-induced adipose tissue inflammation through increased adiponectin and anti-inflammatory cytokine expression and reduced pro-inflammatory cytokine expression in a niacin receptor-dependent manner.

  11. Association of immunity and tolerance of host H-2 determinants in irradiated F1 hybrid mice reconstituted with bone marrow cells from one parental strain

    International Nuclear Information System (INIS)

    Sprent, J.; von Boehmer, H.; Nabholz, M.

    1975-01-01

    Semiallogeneic radiation chimeras were prepared by injecting heavily irradiated F 1 hybrid mice with bone marrow cells from one parental strain; the bone marrow cells were treated with anti-theta serum and complement to remove T cells and injected in large numbers (2 x 10 7 cells). The mice survived in excellent health until sacrifice 6 mo later. Thoracic duct cannulation at this stage showed that the mice possessed normal numbers of recirculating lymphocytes. Close to 100 percent of thoracic duct lymphocytes and lymph node cells were shown to be of donor strain origin. The capacity of lymphocytes from the chimeras to respond to host-type determinants was tested in mixed leukocyte culture and in an assay for cell-mediated lympholysis (CML). Mixed leukocyte reactions (MLR) were measured both in vitro and in vivo; tumor cells and phytohemagglutinin-stimulated blast cells were used as target cells for measuring CML. While responding normally to third party determinants, cells from the chimeras gave a definite, though reduced MLR when exposed to host-type determinants. However, this proliferative response to host-type determinants, unlike that to third party determinants, was not associated with differentiation into cytotoxic lymphocytes

  12. NTP Toxicology and Carcinogenesis Studies of Benzene (CAS No. 71-43-2) in F344/N Rats and B6C3F1 Mice (Gavage Studies).

    Science.gov (United States)

    1986-04-01

    Benzene ranks 16th in production volume for chemicals produced in the United States, with approximately 9.9 billion pounds being produced in 1984, 9.1 billion pounds in 1983, and 7.8 billion pounds in 1982. This simplest aromatic chemical in used in the synthesis of styrene (polystyrene plastics and synthetic rubber), phenol (phenolic resins), cyclohexane (nylon), aniline, maleic anhydride (polyester resins), alkylbenzenes (detergents), chlorobenzenes, and other products used in the production of drugs, dyes, insecticides, and plastics. Benzene, along with other light, high-octane aromatic hydrocarbons, such as toluene and xylenes, is a component of motor gasoline. Benzene is also used as a solvent, but for most applications, it has been replaced by less hazardous solvents. During the 17-week studies, groups of 10 or 15 male and female F344/N rats and B6C3F1 mice were gavaged 5 days per week with benzene in corn oil (5 ml/kg) at doses of 0 to 600 mg/kg. No benzene-related deaths occurred; in rats that received benzene, final mean body weights were 14%-22% lower compared with vehicle controls and in mice, slight dose-related reductions were observed (less than 10% differences). Doses for the 2-year studies were selected based on clinical observations (tremors in higher dosed mice), on clinical pathologic findings (lymphoid depletion in rats and leukopenia in mice), and on body weight effects. Two-year toxicology and carcinogenesis studies of benzene (greater than 99.7% pure) were conducted in groups of 50 F344/N rats and 50 B6C3F1 mice of each sex and for each dose. Doses of 0, 50, 100, or 200 mg/kg body weight benzene in corn oil (5 ml/kg) were administered by gavage to male rats, 5 days per week, for 103 weeks. Doses of 0, 25, 50, or 100 mg/kg benzene in corn oil were administered by gavage to female rats and to male and female mice for 103 weeks. Ten additional animals in each of the 16 groups were killed at 12 months and necropsies were performed. Hematologic

  13. Sex- and dose-dependent effects of calcium ion irradiation on behavioral performance of B6D2F1 mice during contextual fear conditioning training

    Science.gov (United States)

    Raber, Jacob; Weber, Sydney J.; Kronenberg, Amy; Turker, Mitchell S.

    2016-06-01

    The space radiation environment includes energetic charged particles that may impact behavioral and cognitive performance. The relationship between the dose and the ionization density of the various types of charged particles (expressed as linear energy transfer or LET), and cognitive performance is complex. In our earlier work, whole body exposure to 28Si ions (263 MeV/n, LET = 78keV / μ m ; 1.6 Gy) affected contextual fear memory in C57BL/6J × DBA2/J F1 (B6D2F1) mice three months following irradiation but this was not the case following exposure to 48Ti ions (1 GeV/n, LET = 107keV / μ m ; 0.2 or 0.4 Gy). As an increased understanding of the impact of charged particle exposures is critical for assessment of risk to the CNS of astronauts during and following missions, in this study we used 40Ca ion beams (942 MeV/n, LET = 90keV / μm) to determine the behavioral and cognitive effects for the LET region between that of Si ions and Ti ions. 40Ca ion exposure reduced baseline activity in a novel environment in a dose-dependent manner, which suggests reduced motivation to explore and/or a diminished level of curiosity in a novel environment. In addition, exposure to 40Ca ions had sex-dependent effects on response to shock. 40Ca ion irradiation reduced the response to shock in female, but not male, mice. In contrast, 40Ca ion irradiation did not affect fear learning, memory, or extinction of fear memory for either gender at the doses employed in this study. Thus 40Ca ion irradiation affected behavioral, but not cognitive, performance. The effects of 40Ca ion irradiation on behavioral performance are relevant, as a combination of novelty and aversive environmental stimuli is pertinent to conditions experienced by astronauts during and following space missions.

  14. Enhanced depletion of glutathione and increased liver oxidative damage in aflatoxin-fed mice infected with Plasmodium berghei

    DEFF Research Database (Denmark)

    Ankrah, N A; Sittie, A; Addo, P G

    1995-01-01

    levels accompanied by a significant increase in serum cholinesterase and liver malonic dialdehyde levels in the mice fed aflatoxin compared with those in the control group. The results suggested that malaria parasites can enhance depletion of host glutathione and oxidative damage of the liver in mice fed...

  15. Dominant lethal mutations research in mice fed with irradiated black beams

    International Nuclear Information System (INIS)

    Andrade, Z.P.

    1982-01-01

    To evaluate the potential mutagenic effects of irradiated black beans (Phaseolus vulgaris) with conservation purpose, in germ cells of mice, dominant lethal assay were employed. Three groups of albino swiss male mice (S W-55) were fed with a normal ration, or unirradiated or irradiated (0,2; 0,5; 1; 5; 10; 15 e 20 KGy) test diets for eight weeks. After the feeding period the males were mated with groups of untreated females mice for four consecutive weeks. Numbers of pregnancy rates females were observed. The females were autopsied at mid-term pregnancy for evaluation of dominant lethal mutations. (author)

  16. NTP Toxicology and Carcinogenesis Studies of Dimethyl Methylphosphonate (CAS No. 756-79-6) in F344/N Rats and B6C3F1 Mice (Gavage Studies).

    Science.gov (United States)

    1987-11-01

    Dimethyl methylphosphonate (98% pure) is one of four chemicals nominated by the U.S. Army for toxicology and carcinogenesis studies because it was being considered for use to simulate the physical and spectroscopic (but not the biologic) properties of anticholinesterase (nerve) agents. Dimethyl methylphosphonate is also used as a flame retardant, a preignition additive for gasoline, an antifoam agent, a plasticizer and stabilizer, a textile conditioner and antistatic agent, and an additive for solvents and low-temperature hydraulic fluids. The United States produces 0.2-2 million pounds (91,000-910,000 kg) of per year. Gavage was chosen as the route of administration for all four candidate "simulants" to mimic potential exposure. Experimental Design: Dimethyl methylphosphonate was administered in corn oil by gavage to male and female F344/N rats and B6C3F1 mice in single-administration, 15-day, and 13-week studies to obtain toxicity data, to establish dose levels for the 2-year studies, and to identify target tissues. Additional studies were also performed to determine toxicity to the reproductive system of male F344/N rats and B6C3F1 mice and to study the potential for genetic damage in bacteria, mammalian cells, and Drosophila. Single-Administration Studies: In the single-administration studies, dimethyl methylphosphonate was given to rats and mice at doses up to 6,810 mg/kg body weight. No compound-related deaths were seen in male or female rats or male mice; two high dose female mice died. Rats exhibited inactivity, unsteady gait, and prostration after dosing; mice were inactive after dosing. Fifteen-Day Studies: Rats and mice received doses of 0, 1,250, 2,500, 5,000, 10,000, or 15,000 mg/kg dimethyl methylphosphonate per day. Compound-related deaths occurred in the three highest dose groups of rats and the two highest dose groups of mice. Rats receiving doses of 2,500 mg/kg or higher were inactive and at 5,000 or 10,000 mg/kg had an unsteady gait after dosing

  17. Carcinogenicity study of 3-monochloropropane-1, 2-diol (3-MCPD) administered by drinking water to B6C3F1 mice showed no carcinogenic potential.

    Science.gov (United States)

    Jeong, Jayoung; Han, Beom Seok; Cho, Wan-Seob; Choi, Mina; Ha, Chang-Su; Lee, Byoung-Seok; Kim, Yong-Bum; Son, Woo-Chan; Kim, Choong-Yong

    2010-09-01

    3-Monochloropropane-1, 2-diol (or 3-chloro-1,2-propanediol, 3-MCPD) is a well-known food processing contaminant found in a wide range of foods and ingredients. It has been classified as non-genotoxic carcinogen but its carcinogenic potential in the rodents has been controversial. The carcinogenicity to B6C3F1 mice by drinking water administration was assessed over a period of 104 weeks. Three groups, each comprising 50 male and 50 female mice received 3-MCPD at dosages of 30, 100 or 300 ppm up to Day 100 and 200 ppm onward (4.2, 14.3 and 33.0 mg/kg for males; 3.7, 12.2, and 31.0 mg/kg for females), were allocated. Survival was good, with at least 80% of males and 72% of females in each group surviving 104 weeks. Body weights and body weight gain were decreased in males and females receiving 200 ppm. Water and food consumptions of both sexes at 300/200 ppm were lowered. Emaciated or crouching position was observed for animals of both sexes exposed to 200 ppm. There were some differences in hematology and serum biochemistry compared with controls, although there was no histopathological evidence to support those changes. Histopathological examination did not reveal any neoplastic or non-neoplastic findings attributable to treatment with 3-MCPD. It is concluded that drinking water administration of 3-MCPD for 104 weeks revealed no evidence of carcinogenic potential.

  18. A novel mice model of metabolic syndrome: the high-fat-high-fructose diet-fed ICR mice

    Science.gov (United States)

    Zhuhua, Zhang; Zhiquan, Wang; Zhen, Yang; Yixin, Niu; Weiwei, Zhang; Xiaoyong, Li; Yueming, Liu; Hongmei, Zhang; Li, Qin; Qing, Su

    2015-01-01

    Currently, the metabolic syndrome (MS) is occurring at growing rates worldwide, raising extensive concerns on the mechanisms and therapeutic interventions for this disorder. Herein, we described a novel method of establishing MS model in rodents. Male Institute of Cancer Research (ICR) mice were fed with high-fat-high-fructose (HFHF) diet or normal chow (NC) respectively for 12 weeks. Metabolic phenotypes were assessed by glucose tolerance test, insulin tolerance test and hyperinsulinemic-euglycemic clamp. Blood pressure was measured by a tail-cuff system. At the end of the experiment, mice were sacrificed, and blood and tissues were harvested for subsequent analysis. Serum insulin levels were measured by ELISA, and lipid profiles were determined biochemically. The HFHF diet-fed ICR mice exhibited obvious characteristics of the components of MS, including obvious obesity, severe insulin resistance, hyperinsulinemia, dislipidemia, significant hypertension and hyperuricemia. Our data suggest that HFHF diet-fed ICR mice may be a robust and efficient animal model that could well mimic the basic pathogenesis of human MS. PMID:26134356

  19. A novel mice model of metabolic syndrome: the high-fat-high-fructose diet-fed ICR mice.

    Science.gov (United States)

    Zhuhua, Zhang; Zhiquan, Wang; Zhen, Yang; Yixin, Niu; Weiwei, Zhang; Xiaoyong, Li; Yueming, Liu; Hongmei, Zhang; Li, Qin; Qing, Su

    2015-01-01

    Currently, the metabolic syndrome (MS) is occurring at growing rates worldwide, raising extensive concerns on the mechanisms and therapeutic interventions for this disorder. Herein, we described a novel method of establishing MS model in rodents. Male Institute of Cancer Research (ICR) mice were fed with high-fat-high-fructose (HFHF) diet or normal chow (NC) respectively for 12 weeks. Metabolic phenotypes were assessed by glucose tolerance test, insulin tolerance test and hyperinsulinemic-euglycemic clamp. Blood pressure was measured by a tail-cuff system. At the end of the experiment, mice were sacrificed, and blood and tissues were harvested for subsequent analysis. Serum insulin levels were measured by ELISA, and lipid profiles were determined biochemically. The HFHF diet-fed ICR mice exhibited obvious characteristics of the components of MS, including obvious obesity, severe insulin resistance, hyperinsulinemia, dislipidemia, significant hypertension and hyperuricemia. Our data suggest that HFHF diet-fed ICR mice may be a robust and efficient animal model that could well mimic the basic pathogenesis of human MS.

  20. Sex differences in obesity development in pair-fed neuronal lipoprotein lipase deficient mice

    Directory of Open Access Journals (Sweden)

    Hong Wang

    2016-10-01

    Full Text Available Objective: Compared to men, postmenopausal women suffer from a disproportionate burden of many co-morbidities associated with obesity, e.g. cardiovascular disease, cancer, and dementia. The underlying mechanism for this sex difference is not well understood but is believed to relate to absence of the protective effect of estrogen through the action of estrogen receptor alpha (ERα in the central nervous system. With the recently developed neuron-specific lipoprotein lipase deficient mice (NEXLPL−/− (Wang et al., Cell Metabolism, 2011 [15], we set to explore the possible role of lipid sensing in sex differences in obesity development. Methods: Both male and female NEXLPL−/− mice and littermate WT controls were subjected to pair feeding (pf where daily food amount given was adjusted according to body weight to match the food intake of ad libitum (ad fed control WT mice. Food intake and body weight were measured daily, and pair feeding was maintained to 42 wk in male mice and to 38 wk in female mice. Various brain regions of the mice were harvested, and ERα gene expression was examined in both male and female NEXLPL−/− and WT control mice under both ad- and pf-fed conditions. Results: Although both male and female NEXLPL−/− mice developed obesity similarly on standard chow, male NEXLPL−/− mice still developed obesity under with pair feeding, but on a much delayed time course, while female NEXLPL−/− mice were protected from extra body weight and fat mass gain compared to pair-fed WT control mice. Pair feeding alone induced extra fat mass gain in both male and female WT mice, and this was mostly driven by the reduction in physical activity. LPL deficiency resulted in an increase in ERα mRNA in the hypothalamus of ad-fed female mice, while pair feeding alone also resulted in an increase of ERα in both female WT control and NEXLPL−/− mice. The effect on increasing ERα by pair feeding and LPL deficiency was additive in

  1. Plaque formation reduction with glutathione monoester in mice fed on atherogenic diet

    International Nuclear Information System (INIS)

    Iqbal, M.; Mehboobali, N.; Pervez, S.

    2006-01-01

    To determine the role of glutathione monoester on reducing the development of plaque formation in an animal model. Twenty-four Balb/c mice were divided into 3 equal groups. First group was fed on atherogenic diet alone, while the second group received atherogenic diet plus twice weekly injections of glutathione monoester. The third group was fed on normal diet for mice. After one year, the animals were sacrificed. Blood was analyzed for lipid levels, while liver, kidney, spleen, heart and aorta were removed to study morphological changes. Results: In the groups of mice receiving atherogenic diet (with and without glutathione monoesters), there was significant increase in levels of total cholesterol (p=0.011) and LDL cholesterol (p=0.001) compared to levels of these lipids in mice on normal diet. However, a significant decrease in levels of triglycerides (p=0.01) was observed in the group receiving atherogenic diet along with glutathione monoester. Supplementation with glutathione monoester had the most pronounced effect only on triglyceride levels. Atherosclerotic plaques were seen in heart and/or aorta of mice receiving atherogenic diet. However, such plaques were either totally absent or if seen in an animal, were extremely small and diffuse in the group receiving glutathione monoester along with atherogenic diet. Mice on normal diet had no evidence of any plaque formation. Cholesterol granuloma was seen in liver of mice on atherogenic diet alone. In mice receiving atherogenic diet plus glutathione monoester, no cholesterol granuloma was found in liver. There were no remarkable morphological changes in spleen and kidney in the three groups of mice. Glutathione monoester appears to inhibit or reduce the development of plaque formation in mice. (author)

  2. Dietary supplementation of chinese ginseng prevents obesity and metabolic syndrome in high-fat diet-fed mice.

    Science.gov (United States)

    Li, Xiaoxiao; Luo, Jing; Anandh Babu, Pon Velayutham; Zhang, Wei; Gilbert, Elizabeth; Cline, Mark; McMillan, Ryan; Hulver, Matthew; Alkhalidy, Hana; Zhen, Wei; Zhang, Haiyan; Liu, Dongmin

    2014-12-01

    Obesity and diabetes are growing health problems worldwide. In this study, dietary provision of Chinese ginseng (0.5 g/kg diet) prevented body weight gain in high-fat (HF) diet-fed mice. Dietary ginseng supplementation reduced body fat mass gain, improved glucose tolerance and whole body insulin sensitivity, and prevented hypertension in HF diet-induced obese mice. Ginseng consumption led to reduced concentrations of plasma insulin and leptin, but had no effect on plasma adiponectin levels in HF diet-fed mice. Body temperature was higher in mice fed the ginseng-supplemented diet but energy expenditure, respiration rate, and locomotive activity were not significantly altered. Dietary intake of ginseng increased fatty acid oxidation in the liver but not in skeletal muscle. Expression of several transcription factors associated with adipogenesis (C/EBPα and PPARγ) were decreased in the adipose tissue of HF diet-fed mice, effects that were mitigated in mice that consumed the HF diet supplemented with ginseng. Abundance of fatty acid synthase (FASN) mRNA was greater in the adipose tissue of mice that consumed the ginseng-supplemented HF diet as compared with control or un-supplemented HF diet-fed mice. Ginseng treatment had no effect on the expression of genes involved in the regulation of food intake in the hypothalamus. These data suggest that Chinese ginseng can potently prevent the development of obesity and insulin resistance in HF diet-fed mice.

  3. Long-term feeding studies in mice fed a diet containing irradiated fish. II

    International Nuclear Information System (INIS)

    Benson, H.G.; Miller, T.J.; Gottschalk, H.M.; Elias, P.S.

    1980-01-01

    Three groups of mice (Fsub(2b) generation of Part I study) were fed for 90 days, either stock ration or diets containing 45% fish, either non-irradiated or irradiated with 1.75 kGy. Equal amounts of cod and redfish (ocean perch) constituted the fish portion of the diet. Haematological and clinical chemical examinations revealed no treatment-related effects. There were no untoward terminal gross or histopathological changes. An initial lag in weight gain of males fed fish diets was attibuted to reduced food consumption, due to the difference in texture of the fish diets compared with the stock ration. (Auth.)

  4. Toxicology and Carcinogenesis Studies of Furfuryl Alcohol (CAS No. 98-00-0) in F344/N Rats and B6C3F1 Mice (Inhalation Studies).

    Science.gov (United States)

    1999-02-01

    Furfuryl alcohol-based resins are used as binding agents in foundry sand and as corrosion inhibitors in mortar, grout, and cement. Because of their heat resistance, furan resins are used in the manufacture of fiberglass-reinforced plastic equipment. Furfuryl alcohol was selected for evaluation because of the absence of data on its carcinogenic potential and its large production volume, widespread use in manufacturing, and ubiquitous presence in consumer goods. Male and female F344/N rats and B6C3F1 mice were exposed to furfuryl alcohol (greater than 98% pure) by inhalation for 16 days, 14 weeks, or 2 years. Genetic toxicology studies were conducted in Salmonella typhimurium, cultured Chinese hamster ovary cells, and mouse bone marrow cells. 16-DAY STUDY IN RATS: Groups of five male and five female rats were exposed to concentrations of 0, 16, 31, 63, 125, or 250 ppm furfuryl alcohol by inhalation, 6 hours per day, 5 days per week for 16 days. All male and female rats exposed to 250 ppm died by day 2 of the study, and one male rat exposed to 125 ppm died on day 5. Final mean body weights of male and female rats exposed to 125 ppm were significantly less than those of the chamber control groups. Male rats exposed to 31, 63, or 125 ppm and female rats exposed to 125 ppm gained less weight than the chamber control groups. Clinical findings included dyspnea, hypoactivity, and nasal and ocular discharge in males and females exposed to 63, 125, or 250 ppm. All exposed animals developed lesions in the nasal respiratory epithelium and olfactory epithelium, and the severities of these lesions generally increased with increasing exposure concentration. 16-DAY STUDY IN MICE: Groups of five male and five female mice were exposed to concentrations of 0, 16, 31, 63, 125, or 250 ppm furfuryl alcohol by inhalation, 6 hours per day, 5 days per week for 16 days. All male and female mice exposed to 250 ppm died by day 4 of the study, and one female mouse exposed to 125 ppm died on day

  5. Effects of puerarin on lipid accumulation and metabolism in high-fat diet-fed mice.

    Directory of Open Access Journals (Sweden)

    Guodong Zheng

    Full Text Available In order to investigate the mechanisms by which puerarin from kudzu root extract regulates lipid metabolism, fifty mice were randomly assigned to five groups: normal diet, high-fat diet (HFD, and HFD containing 0.2%, 0.4% or 0.8% puerarin for 12 weeks. Body weight, intraperitioneal adipose tissue (IPAT weight, serum biochemical parameters, and hepatic and feces lipids were measured. Activity and mRNA and protein expressions of hepatic lipid metabolism-related enzymes were analyzed. Compared with HFD, 0.4% and 0.8% puerarin significantly decreased body and IPAT weight. There was a significant decrease in the serum and hepatic concentrations of total cholesterol, triglycerides and leptin in mice fed the 0.4% and 0.8% puerarin diets compared with HFD. Fatty acid synthase activity was suppressed in mice fed the 0.4% and 0.8% puerarin diets, while the activities of AMP-activated protein kinase (AMPK, carnitine acyltransferase (CAT and hormone-sensitive lipase (HSL were increased. mRNA expression of peroxisome proliferator-activated receptor γ 2 (PPARγ 2 was down-regulated in liver of mice fed the 0.8% diet compared with HFD, while mRNA expression of CAT and HSL was considerably up-regulated by 0.4% and 0.8% puerarin diets. The protein expression of PPARγ2 in liver was decreased and those of p-AMPK, HSL and p-HSL were increased in mice fed 0.4% and 0.8% puerarin diets. These results suggest that > 0.4% puerarin influenced the activity, mRNA and protein levels of hepatic lipid metabolism-related enzymes, decreasing serum and liver lipids, body weight gain and fat accumulation. Puerarin might be beneficial to prevent lifestyle-related diseases.

  6. Studies in mice fed a diet containing irradiated fish

    International Nuclear Information System (INIS)

    1979-01-01

    Three groups of mice were observed in utero and for eighty (80) weeks thereafter to study growth, food consumption, hematology, blood chemistry and survival with particular interest in carcinogenic potential. Group I received only Purina Mouse Chow, Group II received a diet composed of 45% non-irradiated fish and 55% Purina Mouse Chow, and Group III received a diet composed of 45% gamma irradiated fish and 55% Purina Mouse Chow. Differences observed in body weights between control and fish treated diets were due to the incorporation of fish into the diet and not the results of fish being treated with gamma irradiation. Differences observed in food consumption between control and fish treated diets were due to the incorporation of fish into the diet and not the result of fish being treated with gamma irradiation. No daily observations were made which could be attributed to the treatment of fish with gamma irradiation. No observations were made at any time interval for hematology which could be attributed to the treatment of fish with gamma irradiation. No observations were made at any time interval for clinical chemistry which could be attributed to the treatment of fish with gamma irradiation. Palpable mass data did not reveal any trends which could be related to the treatment of fish with gamma irradiation. Gross observations at necropsy were limited to spontaneously occurring lesions or artifacts of necropsy technique commonly associated with animals of this species and age. Organ weight data did not reveal any trends which could be related to the treatment of fish with gamma irradiation. Pathological findings were limited to spontaneously occurring lesions or artifacts of necropsy technique commonly associated with animals of this species and age. (orig.)

  7. Colitic scid mice fed Lactobacillus spp. show an ameliorated gut histopathology and an altered cytokine profile by local T cells

    DEFF Research Database (Denmark)

    Møller, Peter Lange; Paerregaard, Anders; Gad, Monika

    2005-01-01

    BACKGROUND: Scid mice transplanted with CD4 T blast cells develop colitis. We investigated if the disease was influenced in colitic mice treated with antibiotic and fed Lactobacillus spp. METHODS: Colitic scid mice were treated for 1 week with antibiotics (vancomycin/meropenem) followed or not fo......-gamma production than mice not fed probiotics. CONCLUSIONS: Our data suggest that probiotics added to the drinking water may ameliorate local histopathological changes and influence local cytokine levels in colitic mice but not alter the colitis-associated weight loss....

  8. Dimethylarsinic acid: Results of chronic toxicity/oncogenicity studies in F344 rats and in B6C3F1 mice

    International Nuclear Information System (INIS)

    Arnold, Lora L.; Eldan, Michal; Nyska, Abraham; Gemert, Marcia van; Cohen, Samuel M.

    2006-01-01

    Dimethylarsinic acid (DMA V , cacodylic acid), a foliar herbicide, was administered in the diet to B6C3F1 mice (at dose levels of 0, 8, 40, 200, and 500 ppm) and to F344 rats (at dose levels of 0, 2, 10, 40, and 100 ppm) for 2 years, according to US EPA guidelines. In mice, there were no treatment-related tumors observed at any site. Treatment-related progressive glomerulonephropathy and nephrocalcinosis were observed in the kidneys in both sexes. The incidence of vacuolation of the epithelium in the urinary bladder was increased in both sexes, but was not associated with cytotoxicity, necrosis or hyperplasia. Based on non-neoplastic lesions found in the urinary bladder, the NOEL for mice was assessed to be 40 ppm in males and 8 ppm in females. In rats, treatment-related mortality occurred early in the study in five males in the 100 ppm group and in one male in the 40 ppm group. Papillomas and carcinomas with degeneration of the urothelium, necrosis and urothelial cell hyperplasia, were found in the urinary bladders of both sexes. In male rats, one papilloma was found in each of the 10 and 40 ppm groups; one urothelial cell carcinoma was found in the 2 ppm group and two in the 100 ppm group. Four papillomas and six urothelial cell carcinomas were found in the female 100 ppm group. Non-neoplastic treatment-related kidney lesions were confined to the 40 and 100 ppm levels and included necrosis, pyelonephritis, medullary nephrocalcinosis and tubular cystic dilation, hyperplasia of the epithelial lining of the papilla, and pelvic urothelial cell hyperplasia. All of these kidney changes appear to be related to an increase in the aging nephropathy of the rat. Dose-related increases in the height of the thyroid follicular epithelium were also noted in males and females, however, such changes reflect an adaptive response of the thyroid to decreased levels of circulating thyroid hormone, rather than an adverse effect. Based on the kidney and bladder lesions, the NOEL for

  9. Disposition and metabolism of aniline in Fischer 344 rats and C57BL/6 X C3H F1 mice

    International Nuclear Information System (INIS)

    McCarthy, D.J.; Waud, W.R.; Struck, R.F.; Hill, D.L.

    1985-01-01

    We examined the metabolism and disposition of aniline, which induces spleen hemangiosarcomas in rats but no tumors in mice, in normal and predosed Fischer 344 rats, and C57BL/6 X C3H F1 mice administered low (50 and 100 mg/kg, respectively) or high (250 and 500 mg/kg, respectively) doses. Of 11 tissues examined, the highest levels of binding of [ 14 C]aniline to DNA were in the kidney, large intestine, and spleen of high-dose rats that had received prior dosing; these tissues had covalent binding indices of 14.2, 4.3, and 3.7 mumol/mol nucleotides/dose, respectively. Protein and RNA were the major macromolecular targets for binding of radioactivity from [ 14 C]aniline. Relative to controls, most tissues from predosed mice (low dose and high dose) showed less binding to protein and RNA; but for most tissues from predosed rats administered 50-mg/kg doses of [ 14 C]aniline, there was more extensive binding. Also relative to controls, binding of radioactivity in the spleen of predosed rats given [ 14 C]aniline (50 mg/kg) was 148% greater for protein and 302% greater for RNA. For rats administered 250 mg of [ 14 C]aniline per kg, however, there were no outstanding differences in binding to RNA and protein between normal and predosed animals. The profiles of urinary metabolites produced by rats and mice were not appreciably different in animals predosed with aniline. For rats, however, the profiles were different for the low and high doses, suggesting that the main metabolic pathway was saturated at the higher dose. p-Acetamidophenyl sulfate represented over 70% of the total radioactivity recovered from the urine of rats dosed with 50 mg of aniline per kg but only 30% in the urine of those dosed with 250 mg/kg. The urine of the high-dose rats contained greater percentages of p-aminophenyl sulfate, p-acetamidophenyl glucuronide, and unconjugated metabolites

  10. Alteration of the spontaneous systemic autoimmune disease in (NZB x NZW)F1 mice by treatment with thimerosal (ethyl mercury)

    International Nuclear Information System (INIS)

    Havarinasab, S.; Hultman, P.

    2006-01-01

    Inorganic mercury may aggravate murine systemic autoimmune diseases which are either spontaneous (genetically determined) or induced by non-genetic mechanisms. Organic mercury species, the dominating form of mercury exposure in the human population, have not been examined in this respect. Therefore, ethyl mercury in the form of thimerosal, a preservative recently debated as a possible health hazard when present in vaccines, was administered in a dose of 0.156-5 mg/L drinking water to female (NZB x NZW)F1 (ZBWF1) mice. These mice develop an age-dependent spontaneous systemic autoimmune disease with high mortality primarily due to immune-complex (IC) glomerulonephritis. Five mg thimerosal/L drinking water (295 μg Hg/kg body weight (bw)/day) for 7 weeks induced glomerular, mesangial and systemic vessel wall IC deposits and antinuclear antibodies (ANA) which were not present in the untreated controls. After 22-25 weeks, the higher doses of thimerosal had shifted the localization of the spontaneously developing renal glomerular IC deposits from the capillary wall position seen in controls to the mesangium. The altered localization was associated with less severe histological kidney damage, less proteinuria, and reduced mortality. The effect was dose-dependent, lower doses having no effect compared with the untreated controls. A different effect of thimerosal treatment was induction of renal and splenic vessel walls IC deposits. Renal vessel wall deposits occurred at a dose of 0.313-5 mg thimerosal/L (18-295 μg Hg/kg bw/day), while splenic vessel wall deposits developed also in mice given the lowest dose of thimerosal, 0.156 mg/L (9 μg Hg/kg bw/day). The latter dose is 3- and 15-fold lower than the dose of Hg required to induce vessel wall IC deposits in genetically susceptible H-2 s mice by HgCl 2 and thimerosal, respectively. Further studies on the exact conditions needed for induction of systemic IC deposits by low-dose organic mercurials in autoimmune

  11. Toxicity and carcinogenicity of methyl isobutyl ketone in F344N rats and B6C3F1 mice following 2-year inhalation exposure

    International Nuclear Information System (INIS)

    Stout, Matthew D.; Herbert, Ronald A.; Kissling, Grace E.; Suarez, Fernando; Roycroft, Joseph H.; Chhabra, Rajendra S.; Bucher, John R.

    2008-01-01

    Methyl isobutyl ketone (MIBK) is primarily used as a denaturant for rubbing alcohol, as a solvent and in the manufacture of methyl amyl alcohol. Inhalation of vapors is the most likely route of exposure in the work place. In order to evaluate the potential of MIBK to induce toxic and carcinogenic effects following chronic exposure, groups of 50 male and 50 female F344/N rats and B6C3F1 mice were exposed to MIBK at concentrations of 0, 450, 900, or 1800 ppm by inhalation, 6 h/day, 5 days per week for 2 years. Survival was decreased in male rats at 1800 ppm. Body weight gains were decreased in male rats at 900 and 1800 ppm and in female mice at 1800 ppm. The primary targets of MIBK toxicity and carcinogenicity were the kidney in rats and the liver in mice. In male rats, there was increased mineralization of the renal papilla at all exposure concentrations. The incidence of chronic progressive nephropathy (CPN) was increased at 1800 ppm and the severity was increased in all exposed groups. There were also increases in renal tubule hyperplasia at all exposure concentrations, and in adenoma and adenoma or carcinoma (combined) at 1800 ppm; these lesions are thought to represent a continuum in the progression of proliferative lesions in renal tubule epithelium. These increases may have resulted from the increased severity of CPN, either through α2μ-globulin-dependent or -independent mechanisms. An increase in mononuclear cell leukemia at 1800 ppm was an uncertain finding. Adrenal medulla hyperplasia was increased at 1800 ppm, and there was a positive trend for increases in benign or malignant pheochromocytomas (combined). In female rats, there were increases in the incidence of CPN in all exposure concentrations and in the severity at 1800 ppm, indicating that CPN was increased by mechanisms in addition to those related to α2μ-globulin. There were renal mesenchymal tumors, which have not been observed in historical control animals, in two female rats at 1800 ppm. The

  12. Increased expression of Matrix Metalloproteinase 9 in liver from NZB/W F1 mice received antibody against human parvovirus B19 VP1 unique region protein

    Directory of Open Access Journals (Sweden)

    Hsu Gwo-Jong

    2009-01-01

    Full Text Available Abstract Background Human parvovirus B19 infection has been postulated to the anti-phospholipid syndrome (APS in autoimmunity. However, the influence of anti-B19-VP1u antibody in autoimmune diseases is still obscure. Methods To elucidate the effect of anti-B19-VP1u antibodies in systemic lupus erythematosus (SLE, passive transfer of rabbit anti-B19-VP1u IgG was injected intravenously into NZB/W F1 mice. Results Significant reduction of platelet count and prolonged thrombocytopenia time were detected in anti-B19-VP1u IgG group as compared to other groups, whereas significant increases of anti-B19-VP1u, anti-phospholipid (APhL, and anti-double strand DNA (dsDNA antibody binding activity were detected in anti-B19-VP1u group. Additionally, significant increases of matrix metalloproteinase-9 (MMP9 activity and protein expression were detected in B19-VP1u IgG group. Notably, phosphatidylinositol 3-phosphate kinase (PI3K and phosphorylated extracellular signal-regulated kinase (ERK proteins were involved in the induction of MMP9. Conclusion These experimental results firstly demonstrated the aggravated effects of anti-B19-VP1u antibody in disease activity of SLE.

  13. Whey protein reduces early life weight gain in mice fed a high-fat diet

    DEFF Research Database (Denmark)

    Tranberg, Britt; Hellgren, Lars; Lykkesfeldt, Jens

    2013-01-01

    An increasing number of studies indicate that dairy products, including whey protein, alleviate several disorders of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey) in mice fed a high-fat diet hypothesising that the metabolic effects of whey would...... be associated with changes in the gut microbiota composition. Five-week-old male C57BL/6 mice were fed a high-fat diet ad libitum for 14 weeks with the protein source being either whey or casein. Faeces were collected at week 0, 7, and 13 and the fecal microbiota was analysed by denaturing gradient gel...... electrophoresis analyses of PCR-derived 16S rRNA gene (V3-region) amplicons. At the end of the study, plasma samples were collected and assayed for glucose, insulin and lipids. Whey significantly reduced body weight gain during the first four weeks of the study compared with casein (P

  14. Antigenotoxic effect of Saccharomyces cerevisiae on the damage produced in mice fed with aflatoxin B(1) contaminated corn.

    Science.gov (United States)

    Madrigal-Santillán, E; Madrigal-Bujaidar, E; Márquez-Márquez, R; Reyes, A

    2006-12-01

    The potential of Saccharomyces cerevisiae (Sc) was evaluated for reducing the micronucleated normochromatic erythrocytes (MNNE) rate in mice fed AFB(1) contaminated corn. The study included two groups fed AFB(1) contaminated corn (0.4 and 0.8 mg/kg), a control fed uncontaminated corn, another group fed uncontaminated corn and 0.3% of Sc (1 x 10(8) live cells/g), and two groups fed AFB(1) contaminated corn (0.4 and 0.8 mg/kg) plus 0.3% Sc. Weight and MNNE were determined weekly for six weeks. Subsequently, the same determinations were made for another three-week period, but in mice receiving only a normal diet, without AFB(1) and Sc. Results in the first period revealed the following: control and Sc fed mice had similar constant weight increase, and low MNNE rate; mice fed only AFB(1) showed weight decrease and significant MNNE increase; finally, Sc improved weight gain and reduced MNNE produced by AFB(1). In the second period, results exhibited a tendency similar to that of the previous phase in the control and Sc fed mice; the weight and MNNE values improved in the other groups. We also determined the capacity of Sc for adsorbing and modifying the mycotoxin structure. The mixture was filtered to obtain two phases, and AFB(1) content was measured. Sc revealed a potent adsorbent capacity; however, chromatographic determination suggested no structural modification.

  15. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    International Nuclear Information System (INIS)

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D.

    2012-01-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in liver.

  16. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D., E-mail: cklaasse@kumc.edu

    2012-11-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in liver.

  17. Effects of oral Lactobacillus administration on antioxidant activities and CD4+CD25+forkhead box P3 (FoxP3)+ T cells in NZB/W F1 mice.

    Science.gov (United States)

    Tzang, Bor-Show; Liu, Chung-Hsien; Hsu, Kuo-Ching; Chen, Yi-Hsing; Huang, Chih-Yang; Hsu, Tsai-Ching

    2017-09-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease that is characterised by a dysregulation of the immune system, which causes inflammation responses, excessive oxidative stress and a reduction in the number of cluster of differentiation (CD)4+CD25+forkhead box P3 (FoxP3)+ T cells. Supplementation with certain Lactobacillus strains has been suggested to be beneficial in the comprehensive treatment of SLE. However, little is known about the effect and mechanism of certain Lactobacillus strains on SLE. To investigate the effects of Lactobacillus on SLE, NZB/W F1 mice were orally gavaged with Lactobacillus paracasei GMNL-32 (GMNL-32), Lactobacillus reuteri GMNL-89 (GMNL-89) and L. reuteri GMNL-263 (GMNL-263). Supplementation with GMNL-32, GMNL-89 and GMNL-263 significantly increased antioxidant activity, reduced IL-6 and TNF-α levels and significantly decreased the toll-like receptors/myeloid differentiation primary response gene 88 signalling in NZB/W F1 mice. Notably, supplementation with GMNL-263, but not GMNL-32 and GMNL-89, in NZB/W F1 mice significantly increased the differentiation of CD4+CD25+FoxP3+ T cells. These findings reveal beneficial effects of GMNL-32, GMNL-89 and GMNL-263 on NZB/W F1 mice and suggest that these specific Lactobacillus strains can be used as part of a comprehensive treatment of SLE patients.

  18. Utility and reliability of non-invasive muscle function tests in high-fat-fed mice.

    Science.gov (United States)

    Martinez-Huenchullan, Sergio F; McLennan, Susan V; Ban, Linda A; Morsch, Marco; Twigg, Stephen M; Tam, Charmaine S

    2017-07-01

    What is the central question of this study? Non-invasive muscle function tests have not been validated for use in the study of muscle performance in high-fat-fed mice. What is the main finding and its importance? This study shows that grip strength, hang wire and four-limb hanging tests are able to discriminate the muscle performance between chow-fed and high-fat-fed mice at different time points, with grip strength being reliable after 5, 10 and 20 weeks of dietary intervention. Non-invasive tests are commonly used for assessing muscle function in animal models. The value of these tests in obesity, a condition where muscle strength is reduced, is unclear. We investigated the utility of three non-invasive muscle function tests, namely grip strength (GS), hang wire (HW) and four-limb hanging (FLH), in C57BL/6 mice fed chow (chow group, n = 48) or a high-fat diet (HFD group, n = 48) for 20 weeks. Muscle function tests were performed at 5, 10 and 20 weeks. After 10 and 20 weeks, HFD mice had significantly reduced GS (in newtons; mean ± SD: 10 weeks chow, 1.89 ± 0.1 and HFD, 1.79 ± 0.1; 20 weeks chow, 1.99 ± 0.1 and HFD, 1.75 ± 0.1), FLH [in seconds per gram body weight; median (interquartile range): 10 weeks chow, 2552 (1337-4964) and HFD, 1230 (749-1994); 20 weeks chow, 2048 (765-3864) and HFD, 1036 (717-1855)] and HW reaches [n; median (interquartile range): 10 weeks chow, 4 (2-5) and HFD, 2 (1-3); 20 weeks chow, 3 (1-5) and HFD, 1 (0-2)] and higher falls [n; median (interquartile range): 10 weeks chow, 0 (0-2) and HFD, 3 (1-7); 20 weeks chow, 1 (0-4) and HFD, 8 (5-10)]. Grip strength was reliable in both dietary groups [intraclass correlation coefficient (ICC) = 0.5-0.8; P tests are valuable and reliable tools for assessment of muscle strength and function in high-fat-fed mice. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  19. Diet-induced obesity, energy metabolism and gut microbiota in C57BL/6J mice fed Western diets based on lean seafood or lean meat mixtures.

    Science.gov (United States)

    Holm, Jacob Bak; Rønnevik, Alexander; Tastesen, Hanne Sørup; Fjære, Even; Fauske, Kristin Røen; Liisberg, Ulrike; Madsen, Lise; Kristiansen, Karsten; Liaset, Bjørn

    2016-05-01

    High protein diets may protect against diet-induced obesity, but little is known regarding the effects of different protein sources consumed at standard levels. We investigated how a mixture of lean seafood or lean meat in a Western background diet modulated diet-induced obesity, energy metabolism and gut microbiota. Male C57BL/6J mice fed a Western diet (WD) containing a mixture of lean seafood (seafood WD) for 12weeks accumulated less fat mass than mice fed a WD containing a mixture of lean meat (meat WD). Meat WD-fed mice exhibited increased fasting blood glucose, impaired glucose clearance, elevated fasting plasma insulin and increased plasma and liver lipid levels. We observed no first choice preference for either of the WDs, but over time, mice fed the seafood WD consumed less energy than mice fed the meat WD. Mice fed the seafood WD exhibited higher spontaneous locomotor activity and a lower respiratory exchange ratio (RER) than mice fed the meat WD. Thus, higher activity together with the decreased energy intake contributed to the different phenotypes observed in mice fed the seafood WD compared to mice fed the meat WD. Comparison of the gut microbiomes of mice fed the two WDs revealed significant differences in the relative abundance of operational taxonomic units (OTUs) belonging to the orders Bacteroidales and Clostridiales, with genes involved in metabolism of aromatic amino acids exhibiting higher relative abundance in the microbiomes of mice fed the seafood WD. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Changes in IL12A methylation pattern in livers from mice fed DDC.

    Science.gov (United States)

    Oliva, J; French, S W

    2012-04-01

    Mallory-Denk body (MDB) formation is a component of alcoholic and non alcoholic hepatitis. Proteins of the TLR pathway were shown to be involved in the formation of MDBs, in mice fed DDC. TLR genes are upregulated and SAMe supplementation prevents this up regulation and prevented the formation of MDBs. DNA of livers from control mice, from mice fed DDC 10weeks, refed 1week with DDC and with DDC+SAMe were extracted and used to study the methylation pattern of genes involves in the TLR pathway. A PCR array was used to analyze it. Using PCR arrays for the mouse TLR pathway,24 genes were found whose expression of IL12A was regulated by the methylation of its gene. DDC fed for 10weeks reduced the methylation of the IL12A gene expression. This expression was also reduced when DDC was refed. However, when SAMe was fed, the intermediate level methylation of IL12A was up regulated to the intermediate level and the methylation of the promoter decreased compared to DDC refeeding or DDC 10weeks. IL12A is known to induce the production of IFNg by NK and L(T). We showed in a previous publication that IFNg is one of the major cytokines involved in the induction of MDB formation. The low expression of IL12A associated with the intermediate methylation of its promoter could explain one step in the mechanism which leads to the formation of MDBs. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Toxicology and Carcinogenesis Study of Senna in the C3B6.129F1-Trp53tm1Brd N12 haploinsufficient mice

    Science.gov (United States)

    Surh, Inok; Brix, Amy; French, John E.; Collins, Bradley J.; Sanders, J. Michael; Vallant, Molly; Dunnick, June K.

    2013-01-01

    Senna is a pod or leaf of Senna alexandrina P. Mill and is used as a stimulant laxative. In the large intestine, bacterial enzymes break sennosides and release rhein-9-anthrone, the active form for the laxative effect. To determine potential toxic effects of senna, a 5-week dose range finding study in the C57BL/6N mouse and a 40-week toxicology and carcinogenesis study in the C3B6.129F1-Trp53tm1Brd N12 haploinsufficient (p53+/−) mouse were conducted. In the 5-week study, C57BL/6N mice were exposed up to 10,000 ppm senna in feed. Increased incidences of epithelial hyperplasia of the cecum and colon were observed in males and females exposed to 5,000 or 10,000 ppm senna. These intestinal lesions were not considered to be of sufficient severity to cause mortality and, thus, in the p53+/− mouse 40-week study, the high dose of 10,000 ppm was selected. Significant increases in the incidences of epithelial hyperplasia of the colon and cecum were observed at 10,000 ppm in p53(+/−) males and females, and the incidence of hyperplasia of the colon was significantly increased at 3,000 ppm in females. In conclusion, the large intestine was the major target of senna-induced toxicity in both wild-type and the p53+/− mouse model. There was no neoplastic change, when senna was administered to p53 +/− mouse. PMID:23125117

  2. Toxicology and carcinogenesis study of senna in C3B6.129F1-Trp53 tm1Brd N12 haploinsufficient mice.

    Science.gov (United States)

    Surh, Inok; Brix, Amy; French, John E; Collins, Bradley J; Sanders, J Michael; Vallant, Molly; Dunnick, June K

    2013-07-01

    Senna is a pod or leaf of Senna alexandrina P. Mill and is used as a stimulant laxative. In the large intestine, bacterial enzymes reduce sennosides to rhein-9-anthrone, the active form for the laxative effect. To determine the potential toxic effects of senna, a 5-week dose range finding study in the C57BL/6N mouse and a 40-week toxicology and carcinogenesis study in the C3B6.129F1-Trp53 (tm1Brd) N12 haploinsufficient (p53(+/-)) mouse were conducted. In the 5-week study, C57BL/6N mice were exposed to up to 10,000 ppm senna in feed. Increased incidences of epithelial hyperplasia of the cecum and colon were observed in males and females exposed to 5,000 or 10,000 ppm senna. These intestinal lesions were not considered to be of sufficient severity to cause mortality and, thus, in the p53(+/-) mouse 40-week study, the high dose of 10,000 ppm was selected. Significant increases in the incidences of epithelial hyperplasia of the colon and cecum were observed at 10,000 ppm in p53(+/-) males and females, and the incidence of hyperplasia of the colon was significantly increased at 3,000 ppm in females. In conclusion, the large intestine was the major target of senna-induced toxicity in both wild-type and the p53(+/-) mouse model. There was no neoplastic change when senna was administered to p53(+/-) mouse.

  3. Phenobarbital mediates an epigenetic switch at the constitutive androstane receptor (CAR target gene Cyp2b10 in the liver of B6C3F1 mice.

    Directory of Open Access Journals (Sweden)

    Harri Lempiäinen

    2011-03-01

    Full Text Available Evidence suggests that epigenetic perturbations are involved in the adverse effects associated with some drugs and toxicants, including certain classes of non-genotoxic carcinogens. Such epigenetic changes (altered DNA methylation and covalent histone modifications may take place at the earliest stages of carcinogenesis and their identification holds great promise for biomedical research. Here, we evaluate the sensitivity and specificity of genome-wide epigenomic and transcriptomic profiling in phenobarbital (PB-treated B6C3F1 mice, a well-characterized rodent model of non-genotoxic liver carcinogenesis. Methylated DNA Immunoprecipitation (MeDIP-coupled microarray profiling of 17,967 promoter regions and 4,566 intergenic CpG islands was combined with genome-wide mRNA expression profiling to identify liver tissue-specific PB-mediated DNA methylation and transcriptional alterations. Only a limited number of significant anti-correlations were observed between PB-induced transcriptional and promoter-based DNA methylation perturbations. However, the constitutive androstane receptor (CAR target gene Cyp2b10 was found to be concomitantly hypomethylated and transcriptionally activated in a liver tissue-specific manner following PB treatment. Furthermore, analysis of active and repressive histone modifications using chromatin immunoprecipitation revealed a strong PB-mediated epigenetic switch at the Cyp2b10 promoter. Our data reveal that PB-induced transcriptional perturbations are not generally associated with broad changes in the DNA methylation status at proximal promoters and suggest that the drug-inducible CAR pathway regulates an epigenetic switch from repressive to active chromatin at the target gene Cyp2b10. This study demonstrates the utility of integrated epigenomic and transcriptomic profiling for elucidating early mechanisms and biomarkers of non-genotoxic carcinogenesis.

  4. Phenobarbital mediates an epigenetic switch at the constitutive androstane receptor (CAR) target gene Cyp2b10 in the liver of B6C3F1 mice.

    Science.gov (United States)

    Lempiäinen, Harri; Müller, Arne; Brasa, Sarah; Teo, Soon-Siong; Roloff, Tim-Christoph; Morawiec, Laurent; Zamurovic, Natasa; Vicart, Axel; Funhoff, Enrico; Couttet, Philippe; Schübeler, Dirk; Grenet, Olivier; Marlowe, Jennifer; Moggs, Jonathan; Terranova, Rémi

    2011-03-24

    Evidence suggests that epigenetic perturbations are involved in the adverse effects associated with some drugs and toxicants, including certain classes of non-genotoxic carcinogens. Such epigenetic changes (altered DNA methylation and covalent histone modifications) may take place at the earliest stages of carcinogenesis and their identification holds great promise for biomedical research. Here, we evaluate the sensitivity and specificity of genome-wide epigenomic and transcriptomic profiling in phenobarbital (PB)-treated B6C3F1 mice, a well-characterized rodent model of non-genotoxic liver carcinogenesis. Methylated DNA Immunoprecipitation (MeDIP)-coupled microarray profiling of 17,967 promoter regions and 4,566 intergenic CpG islands was combined with genome-wide mRNA expression profiling to identify liver tissue-specific PB-mediated DNA methylation and transcriptional alterations. Only a limited number of significant anti-correlations were observed between PB-induced transcriptional and promoter-based DNA methylation perturbations. However, the constitutive androstane receptor (CAR) target gene Cyp2b10 was found to be concomitantly hypomethylated and transcriptionally activated in a liver tissue-specific manner following PB treatment. Furthermore, analysis of active and repressive histone modifications using chromatin immunoprecipitation revealed a strong PB-mediated epigenetic switch at the Cyp2b10 promoter. Our data reveal that PB-induced transcriptional perturbations are not generally associated with broad changes in the DNA methylation status at proximal promoters and suggest that the drug-inducible CAR pathway regulates an epigenetic switch from repressive to active chromatin at the target gene Cyp2b10. This study demonstrates the utility of integrated epigenomic and transcriptomic profiling for elucidating early mechanisms and biomarkers of non-genotoxic carcinogenesis.

  5. Phenobarbital Mediates an Epigenetic Switch at the Constitutive Androstane Receptor (CAR) Target Gene Cyp2b10 in the Liver of B6C3F1 Mice

    Science.gov (United States)

    Brasa, Sarah; Teo, Soon-Siong; Roloff, Tim-Christoph; Morawiec, Laurent; Zamurovic, Natasa; Vicart, Axel; Funhoff, Enrico; Couttet, Philippe; Schübeler, Dirk; Grenet, Olivier; Marlowe, Jennifer; Moggs, Jonathan; Terranova, Rémi

    2011-01-01

    Evidence suggests that epigenetic perturbations are involved in the adverse effects associated with some drugs and toxicants, including certain classes of non-genotoxic carcinogens. Such epigenetic changes (altered DNA methylation and covalent histone modifications) may take place at the earliest stages of carcinogenesis and their identification holds great promise for biomedical research. Here, we evaluate the sensitivity and specificity of genome-wide epigenomic and transcriptomic profiling in phenobarbital (PB)-treated B6C3F1 mice, a well-characterized rodent model of non-genotoxic liver carcinogenesis. Methylated DNA Immunoprecipitation (MeDIP)-coupled microarray profiling of 17,967 promoter regions and 4,566 intergenic CpG islands was combined with genome-wide mRNA expression profiling to identify liver tissue-specific PB-mediated DNA methylation and transcriptional alterations. Only a limited number of significant anti-correlations were observed between PB-induced transcriptional and promoter-based DNA methylation perturbations. However, the constitutive androstane receptor (CAR) target gene Cyp2b10 was found to be concomitantly hypomethylated and transcriptionally activated in a liver tissue-specific manner following PB treatment. Furthermore, analysis of active and repressive histone modifications using chromatin immunoprecipitation revealed a strong PB-mediated epigenetic switch at the Cyp2b10 promoter. Our data reveal that PB-induced transcriptional perturbations are not generally associated with broad changes in the DNA methylation status at proximal promoters and suggest that the drug-inducible CAR pathway regulates an epigenetic switch from repressive to active chromatin at the target gene Cyp2b10. This study demonstrates the utility of integrated epigenomic and transcriptomic profiling for elucidating early mechanisms and biomarkers of non-genotoxic carcinogenesis. PMID:21455306

  6. Troxerutin abrogates mitochondrial oxidative stress and myocardial apoptosis in mice fed calorie-rich diet.

    Science.gov (United States)

    Geetha, Rajagopalan; Sathiya Priya, Chandrasekaran; Anuradha, Carani Venkatraman

    2017-12-25

    Mitochondrial oxidative stress plays a major role in the pathogenesis of myocardial apoptosis in metabolic syndrome (MS) patients. In this study, we investigated the effect of troxerutin (TX), an antioxidant on mitochondrial oxidative stress and apoptotic markers in heart of mice fed fat and fructose-rich diet. Adult male Mus musculus mice were fed either control diet or high fat, high fructose diet (HFFD) for 60 days to induce MS. Mice from each dietary group were divided into two on the 16th day and were either treated or untreated with TX (150 mg/kg bw, p.o) for the next 45 days. At the end of the study, mitochondrial reactive oxygen species (ROS) generation, oxidative stress markers, levels of intracellular calcium, cardiolipin content, cytochrome c release and apoptotic markers were examined in the myocardium. HFFD-feeding resulted in diminution of antioxidants and increased ROS production, lipid peroxidation and oxidatively modified adducts of 8-OHG, 4-HNE and 3-NT. Further increase in Ca 2+ levels, low levels of calcium transporters and decrease in cardiolipin content were noted. Changes in the mitochondrial structure were observed by electron microscopy. Furthermore, cytochrome c release, increase in proapoptotic proteins (APAF-1, BAX, caspases-9 and-3) and decrease in antiapoptotic protein (BCL-2) in HFFD-fed mice suggest myocardial apoptosis. These changes were significantly restored by TX supplementation. TX administration effectively attenuated cardiac apoptosis and exerted a protective role by increasing antioxidant potential and by improving mitochondrial function. Thus, TX could be a promising therapeutic candidate for treating cardiac disease in MS patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. NTP Toxicology and Carcinogenesis Studies of Chloroprene (CAS No. 126-99-8) in F344/N Rats and B6C3F1 Mice (Inhalation Studies).

    Science.gov (United States)

    1998-09-01

    Chloroprene is used almost exclusively in the manufacture of neoprene (polychloroprene). Chloroprene was chosen for study because it is a high-volume production chemical with limited information on its carcinogenic potential and because it is the 2-chloro analogue of 1,3-butadiene, a potent, multi-species, multi-organ carcinogen. Male and female F344/N rats and B6C3F1 mice were exposed to chloroprene (greater than 96% pure) by inhalation for 16 days, 13 weeks, or 2 years. Genetic toxicology studies were conducted in Salmonella typhimurium, Drosophila melanogaster, and B6C3F1 mice (bone marrow cells and peripheral blood erythrocytes). 16-Day Study in Rats: Groups of 10 male and 10 female F344/N rats were exposed to 0, 32, 80, 200, or 500 ppm chloroprene by inhalation, 6 hours per day, 5 days per week, for 16 days. Three 500 ppm males died on day 2 or 3 of the study. Mean body weight gains of 200 ppm males and females and 500 ppm females were significantly less than those of the chamber control groups. On the first day of exposure, rats exposed to 500 ppm were hypoactive and unsteady and had rapid shallow breathing. These effects were also observed to some degree in animals exposed to 200 ppm. After the second day of exposure, the effects in these groups worsened, and hemorrhage from the nose was observed. A normocytic, normochromic, responsive anemia; thrombocytopenia; and increases in serum activities of alanine aminotransferase, glutamate dehydrogenase, and sorbitol dehydrogenase occurred on day 4 in 200 ppm females and 500 ppm males. Kidney weights of 80 and 500 ppm females were significantly greater than those of the chamber control group, as were the liver weights of 200 and 500 ppm females. The incidences of minimal to mild olfactory epithelial degeneration of the nose in all exposed groups of males and females were significantly greater than those in the chamber control groups. The incidence of squamous metaplasia of the respiratory epithelium was

  8. Toxicology and carcinogenesis studies of tetralin (CAS No. 119-64-2) in F344/N rats and B6C3F1 mice (inhalation studies).

    Science.gov (United States)

    2011-04-01

    Tetralin is used as an industrial solvent primarily for naphthalene, fats, resins, oils, and waxes; as a solvent and stabilizer for shoe polishes and floor waxes; as a solvent for pesticides, rubber, asphalt, and aromatic hydrocarbons (e.g., anthracene); as a dye solvent carrier in the textile industry; as a substitute for turpentine in lacquers, paints, and varnishes; in paint thinners and as a paint remover; in alkali-resistant lacquers for cleaning printing ink from rollers and type; as a constituent of motor fuels and lubricants; for the removal of naphthalene in gas distribution systems; and as an insecticide for clothes moths. Tetralin was nominated by the National Cancer Institute for carcinogenicity and disposition studies because of its structure, high production volume, and high potential for worker and consumer exposure. Male and female F344/N rats and B6C3F1 mice were exposed to tetralin (at least 97% pure) by inhalation for 2 weeks, 3 months, or 2 years; male NCI Black Reiter (NBR) rats were exposed to tetralin by inhalation for 2 weeks. Male NBR rats do not produce 2u-globulin; the NBR rats were included to study the relationship of 2u-globulin and renal lesion induction. Genetic toxicology studies were conducted in Salmonella typhimurium, Escherichia coli, and mouse peripheral blood erythrocytes. 2-WEEK STUDY IN RATS: Groups of five male (F344/N and NBR) and five female (F344/N) rats were exposed to tetralin at air concentrations of 0, 7.5, 15, 30, 60, or 120 ppm, 6 hours plus T90 (12 minutes) per day, 5 days per week for 12 exposures. All rats survived to the end of the studies. The final mean body weight of female rats exposed to 120 ppm and mean body weight gains of female rats exposed to 30 ppm or greater were significantly less than those of the chamber controls. Final mean body weights of exposed groups of male NBR rats and mean body weight gains of all exposed groups of male rats were significantly less than those of the chamber controls. Dark

  9. Dietary pomegranate extract and inulin affect gut microbiome differentially in mice fed an obesogenic diet.

    Science.gov (United States)

    Zhang, Song; Yang, Jieping; Henning, Susanne M; Lee, Rupo; Hsu, Mark; Grojean, Emma; Pisegna, Rita; Ly, Austin; Heber, David; Li, Zhaoping

    2017-12-01

    Growing evidence suggests that dysbiosis of gut microbiota is associated with pathogenesis of a variety of human diseases. Using dietary intervention to shape the composition and metabolism of the gut microbiota is increasingly recognized. In the present study, we investigated the effects of polysaccharide inulin and polyphenol-rich pomegranate extract (PomX) alone or in combination on the cecal microbiota composition and function in a diet induced obesity mouse model. Male C57BL/6 mice were randomly divided into four experimental groups and consumed either high-fat/high-sucrose [HF/HS (32% energy from fat, 25% energy from sucrose, 17% energy from protein)] diet, HF/HS diet supplemented with PomX (0.25%), or inulin (9%) or PomX and inulin in combination for 4 weeks. In mice fed the PomX-diet the proportion of Turicibacteraceae and Ruminococcaceae was significantly increased compared to the control HF/HS diet. Supplementation with inulin alone and inulin + PomX combination significantly increased the proportion of Verrucomicrobiaceae (A. muciniphila) and decreased Clostridiaceae. Only mice fed the inulin diet experienced an increase in serum lipopolysaccharide (LPS) and monocyte chemoattractant protein 1 (MCP-1), which was reversed when feeding the inulin + PomX diet. Feeding the inulin + PomX diet was associated with a significant increase in Bifidobacteriaceae and Rikenellaceae, which may have contributed to the reduction of endotoxemia markers. Inulin supplementation showed lower species richness of gut microbiota compared to mice fed with HF/HS or HF/HS/PomX, and the reduction was reversed by the addition of PomX. Inulin alone and in combination with PomX had distinct microbial clusters determined by both weighted and unweighted UniFrac Beta-Diversity principle coordinate analysis. A total of 19 KEGG biological pathways were significantly regulated in the gut microbiota with PomX and inulin alone or combined treatment. Inulin significantly enhanced KEGG

  10. Modulation of ovomucoid-specific oral tolerance in mice fed plant extracts containing lectins

    DEFF Research Database (Denmark)

    Kjær, Tanja; Frøkiær, Hanne

    2002-01-01

    We investigated the effect of feeding extracts of four different legumes (red kidney bean (Phaseolus vulgaris), peanut (Arachis hypogaea), soyabean (Glycine max) and pea (Pisum sativum) on the specific immune response against a food protein. Mice were fed ovomucoid and the specific immune response...... influenced the immune response against ovomucoid; however, this was not as pronounced as for kidney bean and was only significant (Ppea extract was fed and peanut extract had a non-significant effect on induction of oral tolerance...... and on the general immune response. Plasma antibodies against kidney-bean lectin, but not against the three other legume lectins, were detected. Our current findings show that other dietary components can influence the specific immune response against food proteins. Various dietary components may thus contribute...

  11. Curcumin suppresses intestinal polyps in APC Min mice fed a high fat diet

    Directory of Open Access Journals (Sweden)

    Christina Pettan-Brewer

    2011-06-01

    Full Text Available Colorectal cancer (CRC is a leading cause of cancer deaths in the United States. Various risk factors have been associated with CRC including increasing age and diet. Epidemiological and experimental studies have implicated a diet high in fat as an important risk factor for colon cancer. High fat diets can promote obesity resulting in insulin resistance and inflammation and the development of oxidative stress, increased cell proliferation, and suppression of apoptosis. Because of the high consumption of dietary fats, especially saturated fats, by Western countries, it is of interest to see if non-nutrient food factors might be effective in preventing or delaying CRC in the presence of high saturated fat intake. Curcumin (Curcuma longa, the main yellow pigment in turmeric, was selected to test because of its reported anti-tumor activity. APC Min mice, which develop intestinal polyps and have many molecular features of CRC, were fed a diet containing 35% pork fat, 33% sucrose, and a protein and vitamin mineral mixture (HFD with or without 0.5% curcumin. These cohorts were compared to APC Min mice receiving standard rodent chow (RC with 8% fat. APC Min mice fed the HFD for 3 months had a 23% increase in total number of polyps compared to APC Min mice on RC. Curcumin was able to significantly reverse the accelerated polyp development associated with the HFD suggesting it may be effective clinically in helping prevent colon cancer even when ingesting high amounts of fatty foods. The anti-tumor effect of curcumin was shown to be associated with enhanced apoptosis and increased efficiency of DNA repair. Since curcumin prevented the gain in body weight seen in APC Min mice ingesting the HFD, modulation of energy metabolism may also be a factor.

  12. Role of 5-HT3 Receptor on Food Intake in Fed and Fasted Mice

    Science.gov (United States)

    Li, Bingjin; Shao, Dongyuan; Luo, Yungang; Wang, Pu; Liu, Changhong; Zhang, Xingyi; Cui, Ranji

    2015-01-01

    Background Many studies have shown that 5-hydroxytryptamine (5-HT) receptor subtypes are involved in the regulation of feeding behavior. However, the relative contribution of 5-HT3 receptor remains unclear. The present study was aimed to investigate the role of 5-HT3 receptor in control of feeding behavior in fed and fasted mice. Methodology/Principal Findings Food intake and expression of c-Fos, tyrosine hydroxylase (TH), proopiomelanocortin (POMC) and 5-HT in the brain were examined after acute treatment with 5-HT3 receptor agonist SR-57227 alone or in combination with 5-HT3 receptor antagonist ondansetron. Food intake was significantly inhibited within 3 h after acute treatment with SR 57227 in fasted mice but not fed mice, and this inhibition was blocked by ondansetron. Immunohistochemical study revealed that fasting-induced c-Fos expression was further enhanced by SR 57227 in the brainstem and the hypothalamus, and this enhancement was also blocked by ondansetron. Furthermore, the fasting-induced downregulation of POMC expression in the hypothalamus and the TH expression in the brain stem was blocked by SR 57227 in the fasted mice, and this effect of SR 57227 was also antagonized by ondansetron. Conclusion/Significance Taken together, our findings suggest that the effect of SR 57227 on the control of feeding behavior in fasted mice may be, at least partially, related to the c-Fos expression in hypothalamus and brain stem, as well as POMC system in the hypothalamus and the TH system in the brain stem. PMID:25789930

  13. SOCS2 deletion protects against hepatic steatosis but worsens insulin resistance in high-fat-diet-fed mice

    DEFF Research Database (Denmark)

    Zadjali, Fahad; Santana-Farre, Ruyman; Vesterlund, Mattias

    2012-01-01

    in the development of diet-induced hepatic steatosis and insulin resistance. SOCS2-knockout (SOCS2(-/-)) mice and wild-type littermates were fed for 4 mo with control or high-fat diet, followed by assessment of insulin sensitivity, hepatic lipid content, and expression of inflammatory cytokines. SOCS2(-/-) mice...

  14. Effect of anti-gut inflammatory agent on insulin resistance and lipid profile of mice fed different diets

    NARCIS (Netherlands)

    Wang, Zheng; Bao, Zhijun

    Purpose: To further explore the effect of 5-aminosalicylic acid (5-ASA) treatment on lipid levels in mice fed different diets. Methods: Groups of 9 - 10 mice each were randomly assigned to 6 different diets, low-fat diet (LFD) with or without 5-ASA, high-fat diet (HFD) with or without 5-ASA, and

  15. Whey Protein Reduces Early Life Weight Gain in Mice Fed a High-Fat Diet

    Science.gov (United States)

    Tranberg, Britt; Hellgren, Lars I.; Lykkesfeldt, Jens; Sejrsen, Kristen; Jeamet, Aymeric; Rune, Ida; Ellekilde, Merete; Nielsen, Dennis S.; Hansen, Axel Kornerup

    2013-01-01

    An increasing number of studies indicate that dairy products, including whey protein, alleviate several disorders of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey) in mice fed a high-fat diet hypothesising that the metabolic effects of whey would be associated with changes in the gut microbiota composition. Five-week-old male C57BL/6 mice were fed a high-fat diet ad libitum for 14 weeks with the protein source being either whey or casein. Faeces were collected at week 0, 7, and 13 and the fecal microbiota was analysed by denaturing gradient gel electrophoresis analyses of PCR-derived 16S rRNA gene (V3-region) amplicons. At the end of the study, plasma samples were collected and assayed for glucose, insulin and lipids. Whey significantly reduced body weight gain during the first four weeks of the study compared with casein (Pwhey group relative to casein (34.0±1.0 g vs. 40.2±1.3 g, Pwhey group (Pwhey compared to casein (Pwhey and casein. In conclusion, whey initially reduced weight gain in young C57BL/6 mice fed a high-fat diet compared to casein. Although the effect on weight gain ceased, whey alleviated glucose intolerance, improved insulin sensitivity and reduced plasma cholesterol. These findings could not be explained by changes in food intake or gut microbiota composition. Further studies are needed to clarify the mechanisms behind the metabolic effects of whey. PMID:23940754

  16. Probucol selectively increases oxidation of atherogenic lipoproteins in cholesterol-fed mice and in Watanabe heritable hyperlipidemic rabbits

    DEFF Research Database (Denmark)

    Lauridsen, S.T.; Mortensen, Alicja

    1999-01-01

    The anti-atherogenic and cholesterol-lowering drug probucol (0.5-1%) or quercetin (1%), a natural antioxidant, was given to cholesterol-fed (1.5%) mice for a period of 6 weeks and to Watanabe heritable hyperlipidemic (WHHL) rabbits for a period of 8 weeks to investigate the oxidative changes.......001) and cholesterol-fed mice (579.7 +/- 47.3 nmol/g vs. 408.1 +/- 85.8 nmol/g, P mice: P ... and thereby leads to a decrease in cholesterol levels....

  17. NTP technical report on the toxicity studies of Cupric Sulfate (CAS No. 7758-99-8) Administered in Drinking Water and Feed to F344/N Rats and B6C3F1 Mice.

    Science.gov (United States)

    Hebert, Charles

    1993-07-01

    Cupric sulfate is an inorganic salt which is widely used in industry, agriculture, and veterinary medicine. Its applications include use as an algicide in potable waters and as a feed additive and therapeutic agent in swine, sheep, and cattle. Because copper salts are found in human water supplies, toxicity studies of cupric sulfate pentahydrate were conducted in male and female F344/N rats and B6C3F1 mice by the drinking water (2-week studies only) and dosed feed routes (2-week and 13-week studies). Animals were evaluated for hematology, clinical chemistry, urinalysis, reproductive toxicity, tissue metal accumulation, and histopathology. In the 2-week drinking water studies, groups of five rats and five mice per sex received cupric sulfate at concentrations of 300 to 30,000 ppm for 15 days. One female rat, one male mouse, and three female mice in the 3000 ppm groups and all rats and mice in the 10,000 and 30,000 ppm groups died before the end of the studies. The remaining mice and rats in the 3000 ppm groups gained little or lost weight. Water consumption in the three highest dose groups of both species was reduced by more than 65%. Clinical signs observed in these groups were typical of those seen in moribund animals and were attributed to dehydration. The only gross or microscopic change specifically related to cupric sulfate toxicity was an increase in the size and number of cytoplasmic protein droplets in the epithelium of the renal proximal convoluted tubule in male rats from the 300 and 1000-ppm groups. In the 2-week feed studies, groups of five rats and five mice per sex were fed diets containing 1000 to 16,000 ppm cupric sulfate. No chemical-related deaths occurred in any dose group. Compared to the controls, rats and mice in the two highest dose groups had reduced body weight gains which were attributed to decreased feed consumption. Hyperplasia with hyperkeratosis of the squamous epithelium on the limiting ridge of the forestomach was seen in rats and

  18. DNA adduct formation in B6C3F1 mice and Fischer-344 rats exposed to 1,2,3-trichloropropane.

    Science.gov (United States)

    La, D K; Lilly, P D; Anderegg, R J; Swenberg, J A

    1995-06-01

    1,2,3-Trichloropropane (TCP) is a multispecies, multisite carcinogen which has been found to be an environmental contaminant. In this study, we have characterized and measured DNA adducts formed in vivo following exposure to TCP. [14C]TCP was administered to male B6C3F1 mice and Fischer-344 rats by gavage at doses used in the NTP carcinogenesis bioassay. Both target and nontarget organs were examined for the formation of DNA adducts. Adducts were hydrolyzed from DNA by neutral thermal or mild acid hydrolysis, isolated by HPLC, and detected and quantitated by measurement of radioactivity. The HPLC elution profile of radioactivity suggested that one major DNA adduct was formed. To characterize this adduct, larger yields were induced in rats by intraperitoneal administration of TCP (300 mg/kg). The DNA adduct was isolated by HPLC based on coelution with the radiolabeled adduct, and compared to previously identified adducts. The isolated adduct coeluted with S-[1-(hydroxymethyl)-2-(N7-guanyl)-ethyl]glutathione, an adduct derived from the structurally related carcinogen 1,2-dibromo-3-chloropropane (DBCP). Analysis by electrospray mass spectrometry suggested that the TCP-induced adduct and the DBCP-derived adduct were identical. The 14C-labeled DNA adduct was distributed widely among the organs examined. Adduct levels varied depending on species, organ, and dose. In rat organs, adduct concentrations for the low dose ranged from 0.8 to 6.6 mumol per mol guanine and from 7.1 to 47.6 mumol per mol guanine for the high dose. In the mouse, adduct yields ranged from 0.32 to 28.1 mumol per mol guanine for the low dose and from 12.2 to 208.1 mumol per mol guanine for the high dose. The relationship between DNA adduct formation and organ-specific tumorigenesis was unclear. Although relatively high concentrations of DNA adducts were detected in target organs, several nontarget sites also contained high adduct levels. Our data suggest that factors in addition to adduct formation

  19. Geraniol improves endothelial function by inhibiting NOX-2 derived oxidative stress in high fat diet fed mice

    International Nuclear Information System (INIS)

    Wang, Xiaoyu; Zhao, Shiqi; Su, Mengqi; Sun, Li; Zhang, Song; Wang, Dingyu; Liu, Zhaorui; Yuan, Yue; Liu, Yang; Li, Yue

    2016-01-01

    Endothelial dysfunction occurs in obese patients and high-fat diet (HFD) fed experimental animals. While geraniol has been reported to ameliorate inflammation and oxidative stress, inhibit tumor cell proliferation, and improve atherosclerosis, its direct effect on endothelial function remains uncharacterized. The present study therefore investigated the effect of geraniol on endothelial function in HFD mice and its underlying mechanisms. C57 BL/6 mice were fed an HFD (n = 40) or a normal diet (n = 20) for 8 weeks. HFD fed mice then were randomized to intraperitoneal treatment with geraniol (n = 20) or vehicle (n = 20) for another 6 weeks. Acetylcholine (Ach)-induced endothelial dependent vasorelaxation was measured on wire myography; reactive oxygen species (ROS) generation was assessed by fluorescence imaging, and NADPH oxidases (NOXs) and adhesive molecules VCAM-1 and ICAM-1 protein expression by western blotting. Geraniol improved endothelial function in HFD fed mice, as evidenced by its: 1. restoring endothelial dependent vasorelaxation induced by Ach, and reversing increased VCAM-1 and ICAM-1 expression; 2. attenuating HFD induced increased serum TBARS and aortic ROS generation; and 3. downregulating aortic NOX-2 expression in both HFD fed mice and in palmitic acid treated endothelial cells. Geraniol therefore protects against endothelial dysfunction induced by HFD through reducing NOX-2 associated ROS generation. -- Highlights: •Geraniol improved endothelial dependent relaxation in high fat diet fed mice. •Geraniol alleviated vascular injury in high fat diet fed mice. •Geraniol inhibited ROS generation through downregulating NOX-2 expression.

  20. Geraniol improves endothelial function by inhibiting NOX-2 derived oxidative stress in high fat diet fed mice

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoyu; Zhao, Shiqi; Su, Mengqi; Sun, Li; Zhang, Song; Wang, Dingyu; Liu, Zhaorui; Yuan, Yue; Liu, Yang [Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province (China); Li, Yue, E-mail: ly99ly@vip.163.com [Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province (China); Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University, Harbin, 150001, Heilongjiang Province (China)

    2016-05-20

    Endothelial dysfunction occurs in obese patients and high-fat diet (HFD) fed experimental animals. While geraniol has been reported to ameliorate inflammation and oxidative stress, inhibit tumor cell proliferation, and improve atherosclerosis, its direct effect on endothelial function remains uncharacterized. The present study therefore investigated the effect of geraniol on endothelial function in HFD mice and its underlying mechanisms. C57 BL/6 mice were fed an HFD (n = 40) or a normal diet (n = 20) for 8 weeks. HFD fed mice then were randomized to intraperitoneal treatment with geraniol (n = 20) or vehicle (n = 20) for another 6 weeks. Acetylcholine (Ach)-induced endothelial dependent vasorelaxation was measured on wire myography; reactive oxygen species (ROS) generation was assessed by fluorescence imaging, and NADPH oxidases (NOXs) and adhesive molecules VCAM-1 and ICAM-1 protein expression by western blotting. Geraniol improved endothelial function in HFD fed mice, as evidenced by its: 1. restoring endothelial dependent vasorelaxation induced by Ach, and reversing increased VCAM-1 and ICAM-1 expression; 2. attenuating HFD induced increased serum TBARS and aortic ROS generation; and 3. downregulating aortic NOX-2 expression in both HFD fed mice and in palmitic acid treated endothelial cells. Geraniol therefore protects against endothelial dysfunction induced by HFD through reducing NOX-2 associated ROS generation. -- Highlights: •Geraniol improved endothelial dependent relaxation in high fat diet fed mice. •Geraniol alleviated vascular injury in high fat diet fed mice. •Geraniol inhibited ROS generation through downregulating NOX-2 expression.

  1. Soy protein isolate inhibits hepatic tumor promotion in mice fed a high-fat liquid diet.

    Science.gov (United States)

    Mercer, Kelly E; Pulliam, Casey F; Pedersen, Kim B; Hennings, Leah; Ronis, Martin Jj

    2017-03-01

    Alcoholic and nonalcoholic fatty liver diseases are risk factors for development of hepatocellular carcinoma, but the underlying mechanisms are poorly understood. On the other hand, ingestion of soy-containing diets may oppose the development of certain cancers. We previously reported that replacing casein with a soy protein isolate reduced tumor promotion in the livers of mice with alcoholic liver disease after feeding a high fat ethanol liquid diet following initiation with diethylnitrosamine. Feeding soy protein isolate inhibited processes that may contribute to tumor promotion including inflammation, sphingolipid signaling, and Wnt/β-catenin signaling. We have extended these studies to characterize liver tumor promotion in a model of nonalcoholic fatty liver disease produced by chronic feeding of high-fat liquid diets in the absence of ethanol. Mice treated with diethylnitrosamine on postnatal day 14 were fed a high-fat liquid diet made with casein or SPI as the sole protein source for 16 weeks in adulthood. Relative to mice fed normal chow, a high fat/casein diet led to increased tumor promotion, hepatocyte proliferation, steatosis, and inflammation. Replacing casein with soy protein isolate counteracted these effects. The high fat diets also resulted in a general increase in transcripts for Wnt/β-catenin pathway components, which may be an important mechanism, whereby hepatic tumorigenesis is promoted. However, soy protein isolate did not block Wnt signaling in this nonalcoholic fatty liver disease model. We conclude that replacing casein with soy protein isolate blocks development of steatosis, inflammation, and tumor promotion in diethylnitrosamine-treated mice fed high fat diets. Impact statement The impact of dietary components on cancer is a topic of great interest for both the general public and the scientific community. Liver cancer is currently the second leading form of cancer deaths worldwide. Our study has addressed the effect of the protein

  2. Cancer-Predicting Gene Expression Changes in Colonic Mucosa of Western Diet Fed Mlh1 +/- Mice

    Science.gov (United States)

    Dermadi Bebek, Denis; Valo, Satu; Reyhani, Nima; Ollila, Saara; Päivärinta, Essi; Peltomäki, Päivi; Mutanen, Marja; Nyström, Minna

    2013-01-01

    Colorectal cancer (CRC) is the second most common cause of cancer-related deaths in the Western world and interactions between genetic and environmental factors, including diet, are suggested to play a critical role in its etiology. We conducted a long-term feeding experiment in the mouse to address gene expression and methylation changes arising in histologically normal colonic mucosa as putative cancer-predisposing events available for early detection. The expression of 94 growth-regulatory genes previously linked to human CRC was studied at two time points (5 weeks and 12 months of age) in the heterozygote Mlh1 +/- mice, an animal model for human Lynch syndrome (LS), and wild type Mlh1 +/+ littermates, fed by either Western-style (WD) or AIN-93G control diet. In mice fed with WD, proximal colon mucosa, the predominant site of cancer formation in LS, exhibited a significant expression decrease in tumor suppressor genes, Dkk1, Hoxd1, Slc5a8, and Socs1, the latter two only in the Mlh1 +/- mice. Reduced mRNA expression was accompanied by increased promoter methylation of the respective genes. The strongest expression decrease (7.3 fold) together with a significant increase in its promoter methylation was seen in Dkk1, an antagonist of the canonical Wnt signaling pathway. Furthermore, the inactivation of Dkk1 seems to predispose to neoplasias in the proximal colon. This and the fact that Mlh1 which showed only modest methylation was still expressed in both Mlh1 +/- and Mlh1 +/+ mice indicate that the expression decreases and the inactivation of Dkk1 in particular is a prominent early marker for colon oncogenesis. PMID:24204690

  3. Cancer-predicting gene expression changes in colonic mucosa of Western diet fed Mlh1+/- mice.

    Directory of Open Access Journals (Sweden)

    Marjaana Pussila

    Full Text Available Colorectal cancer (CRC is the second most common cause of cancer-related deaths in the Western world and interactions between genetic and environmental factors, including diet, are suggested to play a critical role in its etiology. We conducted a long-term feeding experiment in the mouse to address gene expression and methylation changes arising in histologically normal colonic mucosa as putative cancer-predisposing events available for early detection. The expression of 94 growth-regulatory genes previously linked to human CRC was studied at two time points (5 weeks and 12 months of age in the heterozygote Mlh1(+/- mice, an animal model for human Lynch syndrome (LS, and wild type Mlh1(+/+ littermates, fed by either Western-style (WD or AIN-93G control diet. In mice fed with WD, proximal colon mucosa, the predominant site of cancer formation in LS, exhibited a significant expression decrease in tumor suppressor genes, Dkk1, Hoxd1, Slc5a8, and Socs1, the latter two only in the Mlh1(+/- mice. Reduced mRNA expression was accompanied by increased promoter methylation of the respective genes. The strongest expression decrease (7.3 fold together with a significant increase in its promoter methylation was seen in Dkk1, an antagonist of the canonical Wnt signaling pathway. Furthermore, the inactivation of Dkk1 seems to predispose to neoplasias in the proximal colon. This and the fact that Mlh1 which showed only modest methylation was still expressed in both Mlh1(+/- and Mlh1(+/+ mice indicate that the expression decreases and the inactivation of Dkk1 in particular is a prominent early marker for colon oncogenesis.

  4. Gastrointestinal absorption of plutonium and uranium in fed and fasted adult baboons and mice: application to humans

    International Nuclear Information System (INIS)

    Bhattacharyya, M.H.; Larsen, R.P.; Oldham, R.D.; Cohen, N.; Ralston, L.G.; Moretti, E.S.; Ayres, L.

    1989-01-01

    Gastrointestinal (GI) absorption values of plutonium and uranium were determined in fed and fasted adult baboons and mice. For both baboons and mice, the GI absorptions of plutonium and uranium were 10 to 20 times higher in 24 h fasted animals than in fed ones. For plutonium, GI absorption values in baboons were almost identical to those in mice for both fed and fasted conditions, and values for fed animals agreed with estimates for humans. For uranium, GI absorption values in fed and fasted baboons were 6 to 7 times higher than those in mice, and agreed well with those fed and fasted humans. For one baboon that was not given its morning meal, plutonium absorption 2 h after the start of the active phase was the same as that in the 24 h fasted animals. In contrast, for baboons that received a morning meal, plutonium absorption did not rise to the value of 24 h fasted baboons even 8 h after the meal. We conclude that GI absorption values for plutonium and uranium in adult baboons are good estimates of the values in humans and that the values for the fasted condition should be used to set standards for oral exposure of persons in the workplace. (author)

  5. Purified blueberry anthocyanins and blueberry juice alter development of obesity in mice fed an obesogenic high-fat diet.

    Science.gov (United States)

    Prior, Ronald L; E Wilkes, Samuel; R Rogers, Theodore; Khanal, Ramesh C; Wu, Xianli; Howard, Luke R

    2010-04-14

    Male C57BL/6J mice (25 days of age) were fed either a low-fat diet (10% kcal from fat) (LF) or a high-fat diet (45% kcal from fat) (HF45) for a period of 72 days. Blueberry juice or purified blueberry anthocyanins (0.2 or 1.0 mg/mL) in the drinking water were included in LF or HF45 treatments. Sucrose was added to the drinking water of one treatment to test if the sugars in blueberry juice would affect development of obesity. Total body weights (g) and body fat (%) were higher and body lean tissue (%) was lower in the HF45 fed mice compared to the LF fed mice after 72 days, but in mice fed HF45 diet plus blueberry juice or blueberry anthocyanins (0.2 mg/mL), body fat (%) was not different from those mice fed the LF diet. Anthocyanins (ACNs) decreased retroperitoneal and epididymal adipose tissue weights. Fasting serum glucose concentrations were higher in mice fed the HF45 diet. However, it was reduced to LF levels in mice fed the HF45 diet plus 0.2 mg of ACNs/mL in the drinking water, but not with blueberry juice. beta cell function (HOMA-BCF) score was lowered with HF45 feeding but returned to normal levels in mice fed the HF45 diet plus purified ACNs (0.2 mg/mL). Serum leptin was elevated in mice fed HF45 diet, and feeding either blueberry juice or purified ACNs (0.2 mg/mL) decreased serum leptin levels relative to HF45 control. Sucrose in drinking water, when consumption was restricted to the volume of juice consumed, produced lower serum leptin and insulin levels, leptin/fat, and retroperitoneal and total fat (% BW). Blueberry juice was not as effective as the low dose of anthocyanins in the drinking water in preventing obesity. Additional studies are needed to determine factors responsible for the differing responses of blueberry juice and whole blueberry in preventing the development of obesity.

  6. Glucocorticoid Antagonism Reduces Insulin Resistance and Associated Lipid Abnormalities in High-Fructose-Fed Mice.

    Science.gov (United States)

    Priyadarshini, Emayavaramban; Anuradha, Carani Venkatraman

    2017-02-01

    High intake of dietary fructose causes perturbation in lipid metabolism and provokes lipid-induced insulin resistance. A rise in glucocorticoids (GCs) has recently been suggested to be involved in fructose-induced insulin resistance. The objective of the study was to investigate the effect of GC blockade on lipid abnormalities in insulin-resistant mice. Insulin resistance was induced in mice by administering a high-fructose diet (HFrD) for 60 days. Mifepristone (RU486), a GC antagonist, was administered to HFrD-fed mice for the last 18 days, and the intracellular and extracellular GC levels, the glucocorticoid receptor (GR) activation and the expression of GC-regulated genes involved in lipid metabolism were examined. HFrD elevated the intracellular GC content in both liver and adipose tissue and enhanced the GR nuclear translocation. The plasma GC level remained unchanged. The levels of free fatty acids and triglycerides in plasma were elevated, accompanied by increased plasma insulin and glucose levels and decreased hepatic glycogen content. Treatment with RU486 reduced plasma lipid levels, tissue GC levels and the expression of GC-targeted genes involved in lipid accumulation, and it improved insulin sensitivity. This study demonstrated that HFrD-induced lipid accumulation and insulin resistance are mediated by enhanced GC in liver and adipose tissue and that GC antagonism might reduce fructose-induced lipid abnormalities and insulin resistance. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  7. Whey protein reduces early life weight gain in mice fed a high-fat diet.

    Directory of Open Access Journals (Sweden)

    Britt Tranberg

    Full Text Available An increasing number of studies indicate that dairy products, including whey protein, alleviate several disorders of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey in mice fed a high-fat diet hypothesising that the metabolic effects of whey would be associated with changes in the gut microbiota composition. Five-week-old male C57BL/6 mice were fed a high-fat diet ad libitum for 14 weeks with the protein source being either whey or casein. Faeces were collected at week 0, 7, and 13 and the fecal microbiota was analysed by denaturing gradient gel electrophoresis analyses of PCR-derived 16S rRNA gene (V3-region amplicons. At the end of the study, plasma samples were collected and assayed for glucose, insulin and lipids. Whey significantly reduced body weight gain during the first four weeks of the study compared with casein (P<0.001-0.05. Hereafter weight gain was similar resulting in a 15% lower final body weight in the whey group relative to casein (34.0±1.0 g vs. 40.2±1.3 g, P<0.001. Food intake was unaffected by protein source throughout the study period. Fasting insulin was lower in the whey group (P<0.01 and glucose clearance was improved after an oral glucose challenge (P<0.05. Plasma cholesterol was lowered by whey compared to casein (P<0.001. The composition of the fecal microbiota differed between high- and low-fat groups at 13 weeks (P<0.05 whereas no difference was seen between whey and casein. In conclusion, whey initially reduced weight gain in young C57BL/6 mice fed a high-fat diet compared to casein. Although the effect on weight gain ceased, whey alleviated glucose intolerance, improved insulin sensitivity and reduced plasma cholesterol. These findings could not be explained by changes in food intake or gut microbiota composition. Further studies are needed to clarify the mechanisms behind the metabolic effects of whey.

  8. Hypothalamic Leptin Gene Therapy Reduces Bone Marrow Adiposity in ob/ob Mice Fed Regular and High Fat Diets

    Directory of Open Access Journals (Sweden)

    Laurence B Lindenmaier

    2016-08-01

    Full Text Available Low bone mass is often associated with increased bone marrow adiposity. Since osteoblasts and adipocytes are derived from the same mesenchymal stem cell progenitor, adipocyte formation may increase at the expense of osteoblast formation. Leptin is an adipocyte-derived hormone known to regulate energy and bone metabolism. Genetic (e.g., leptin deficiency and high fat diet-induced (e.g., leptin resistance obesity are associated with increased marrow adipose tissue (MAT and reduced bone formation. Short-duration studies suggest that leptin treatment reduces MAT and increases bone formation in leptin-deficient ob/ob mice fed a regular diet. Here, we determined the long-duration impact of increased hypothalamic leptin on marrow adipocytes and osteoblasts in ob/ob mice using recombinant adeno-associated virus (rAAV gene therapy. In a first study, eight- to ten-week-old male ob/ob mice were randomized into 4 groups: (1 untreated, (2 rAAV-Lep, (3 rAAV-green fluorescent protein (rAAV-GFP, or (4 pair-fed to rAAV-Lep. For vector administration, mice were placed in a Kopf stereotaxic apparatus, and injected intracerebroventricularly with either rAAV-Lep or rAAV-GFP (9 × 107 particles in 1.5 µl. The mice were maintained for 30 weeks following vector administration. In a second study, the impact of increased hypothalamic leptin levels on MAT was determined in mice fed high fat diets. Eight- to ten-week-old male ob/ob mice were randomized into 2 groups and treated with either rAAV-Lep or rAAV-GFP. At 7 weeks post-vector administration, half the mice in each group were switched to a high fat diet for 8 weeks. Wild type (WT controls included age-matched mice fed regular or high fat diet. Hypothalamic leptin gene therapy increased osteoblast perimeter and osteoclast perimeter with minor change in cancellous bone architecture. The gene therapy decreased MAT levels in ob/ob mice fed regular or high fat diet to values similar to WT mice fed regular diet. These

  9. Transplantation of Normal Adipose Tissue Improves Blood Flow and Reduces Inflammation in High Fat Fed Mice With Hindlimb Ischemia

    Directory of Open Access Journals (Sweden)

    Liyuan Chen

    2018-03-01

    Full Text Available Background: Fat deposition is associated with peripheral arterial disease. Adipose tissue has recently been implicated in vascular remodeling and angiogenic activity. We hypothesized that the transplantation of adipose tissues from normal mice improves blood flow perfusion and neovascularization in high-fat diet fed mice.Methods: After 14 weeks of high-fat diet (HFD-fed mice, unilateral hind limb ischemia was performed. Subcutaneous white adipose tissue (WAT and brown adipose tissue (BAT fat pads were harvested from normal EGFP mice, and subcutaneously transplanted over the region of the adductor muscles of HFD mice. Blood flow was measured using Laser Doppler Scanner. Vascular density, macrophages infiltration, and macrophage polarization were examined by RT-qPCR, and immunohistochemistry.Results: We found that the transplantation of WAT derived from normal mice improved functional blood flow in HFD-fed mice compared to mice transplanted with BAT and sham-treated mice. WAT transplantation increased the recruitment of pericytes associated with nascent blood vessels, but did not affect capillary formation. Furthermore, transplantation of WAT ameliorated HFD-induced insulin resistance, M2 macrophage predominance and the release of arteriogenic factors in ischemic muscles. Mice receiving WAT also displayed a marked reduction in several proinflammatory cytokines. In contrast, mice transplanted with BAT were glucose intolerant and demonstrated increased IL-6 levels in ischemic muscles.Conclusion: These results indicate that transplantation of adipose tissue elicits improvements in blood perfusion and beneficial effects on systemic glucose homeostasis and could be a promising therapeutic option for the treatment of diabetic peripheral arterial disease.

  10. House dust mite allergen causes certain features of steroid resistant asthma in high fat fed obese mice.

    Science.gov (United States)

    Singh, Vijay Pal; Mabalirajan, Ulaganathan; Pratap, Kunal; Bahal, Devika; Maheswari, Deepanshu; Gheware, Atish; Bajaj, Aabha; Panda, Lipsa; Jaiswal, Ashish; Ram, Arjun; Agrawal, Anurag

    2018-02-01

    Obesity is a high risk factor for diseases such as cardiovascular, metabolic syndrome and asthma. Obese-asthma is another emerging phenotype in asthma which is typically refractive to steroid treatment due to its non-classical features such as non-eosinophilic cellular inflammation. The overall increased morbidity, mortality and economical burden in asthma is mainly due to steroid resistant asthma. In the present study, we used high fat diet induced obese mice which when sensitized with house dust mite (HDM) showed steroid resistant features. While the steroid, dexamethasone (DEX), treatment to high fat fed naïve mice could not reduce the airway hyperresponsiveness (AHR) induced by high fat, DEX treatment to high fat fed allergic mice could not reduce the HDM allergen induced airway remodeling features though it reduced airway inflammation. Further, these HDM induced high fat fed mice with or without DEX treatment had shown the increased activity and expression of arginase as well as the inducible nitric oxide synthase (iNOS) expression. However, DEX treatment had reduced the expressions of high iNOS and arginase I in control chow diet fed mice. Thus, we speculate that the steroid resistance seen in human obese asthmatics could be stemming from altered NO metabolism and its induced airway remodeling and with further investigations, it would encourage new treatments specific to obese-asthma phenotype. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Morphometric and functional abnormalities of kidneys in the progeny of mice fed chocolate during pregnancy and lactation.

    Directory of Open Access Journals (Sweden)

    Ewa Skopińska-Rózewska

    2006-09-01

    Full Text Available Even most commonly consumed beverages like tea, coffee, chocolate and cocoa contain methylxanthines, biogenic amines and polyphenols, among them catechins, that exhibit significant biological activity and might profoundly affect the organism homeostasis. We have previously shown that 400 mg of bitter chocolate or 6 mg of theobromine added to the daily diet of pregnant and afterwards lactating mice affected embryonic angiogenesis and caused bone mineralization disturbances as well as limb shortening in 4-weeks old offspring. The aim of the present study was the morphometric and functional evaluation of kidneys in the 4-weeks old progeny mice fed according to the protocol mentioned above. Progeny from the mice fed chocolate presented considerable morphometric abnormalities in the kidney structure, with the lower number of glomeruli per mm2 and their increased diameter. Moreover, higher serum creatinine concentration was observed in that group of offspring. No morphometric or functional irregularities were found in the progeny of mice fed theobromine. Abnormalities demonstrated in the offspring of mice fed chocolate are not related to its theobromine content. Consequently, identification of active compound(s responsible for the observed effects is of vital importance.

  12. Prevention of pneumonic plague in mice, rats, guinea pigs and non-human primates with clinical grade rV10, rV10-2 or F1-V vaccines

    Science.gov (United States)

    Quenee, Lauriane E.; Ciletti, Nancy A.; Elli, Derek; Hermanas, Timothy M.; Schneewind, Olaf

    2012-01-01

    Yersinia pestis causes plague, a disease with high mortality in humans that can be transmitted by fleabite or aerosol. A US Food and Drug Administration (FDA)-licensed plague vaccine is currently not available. Vaccine developers have focused on two subunits of Y. pestis: LcrV, a protein at the tip of type III secretion needles, and F1, the fraction 1 pilus antigen. F1-V, a hybrid generated via translational fusion of both antigens, is being developed for licensure as a plague vaccine. The rV10 vaccine is a non-toxigenic variant of LcrV lacking residues 271–300. Here we developed Current Good Manufacturing Practice (cGMP) protocols for rV10. Comparison of clinical grade rV10 with F1-V did not reveal significant differences in plague protection in mice, guinea pigs or cynomolgus macaques. We also developed cGMP protocols for rV10-2, a variant of rV10 with an altered affinity tag. Immunization with rV10-2 adsorbed to aluminum hydroxide elicited antibodies against LcrV and conferred pneumonic plague protection in mice, rats, guinea pigs, cynomolgus macaques and African Green monkeys. The data support further development of rV10-2 for FDA Investigational New Drug (IND) authorization review and clinical testing. PMID:21763383

  13. Analysis of the intestinal microbiota of oligo-saccharide fed mice exhibiting reduced resistance to Salmonella infection

    DEFF Research Database (Denmark)

    Petersen, Anne; Bergström, Anders; Andersen, Jens Bo

    2010-01-01

    recently demonstrated a reduced resistance to Salmonella infection in mice fed diets containing fructo-oligosaccharides (FOS) or xylo-oligosaccharides (XOS). In the present study, faecal and caecal samples from the same mice were analysed in order to study microbial changes potentially explaining...... the observed effects on the pathogenesis of Salmonella. Denaturing gradient gel electrophoresis revealed that the microbiota in faecal samples from mice fed FOS or XOS were different from faecal samples collected before the feeding trial as well as from faecal profiles generated from control animals...... of short-chain fatty acids was recorded. In conclusion, diets supplemented with FOS or XOS induced a number of microbial changes in the faecal microbiota of mice. The observed effects of XOS were qualitatively similar to those of FOS, but the most prominent bifidogenic effect was seen for XOS. An increased...

  14. Hepatic toxicity assessment of cationic liposome exposure in healthy and chronic alcohol fed mice

    DEFF Research Database (Denmark)

    Kermanizadeh, Ali; Jacobsen, Nicklas R.; Roursgaard, Martin

    2017-01-01

    or chronically alcohol fed mice. Additionally, the in vitro material-induced adverse effects (cytotoxicity, inflammation or albumin secretion) were all also minimal. The data from this study demonstrated that the intravenous injection of cationic liposomes does not cause hepatic toxicity. This investigation......, the question of potential toxicological effects needs to be addressed. In the present investigation, a cationic liposome with prospective for medical applications was constructed and thoroughly assessed for any material-induced hepatic adverse effects in vivo − in healthy and alcoholic hepatic disease models...... is important as it investigates the toxicity of a nano-sized material in a model of alcoholic hepatic disease in vitro and in vivo. This is an area of research in the field of nanotoxicology that is currently almost entirely overlooked....

  15. Atherosclerosis in low density lipoprotein receptor knockout mice fed cholesterol and soybean oil

    DEFF Research Database (Denmark)

    Mortensen, Alicja; Olsen, P.; Frandsen, H.

    1999-01-01

    In order to study aortic atherosclerosis and atherosclerotic response to dietary cholesterol and soybean oil in homozygous LDLR-/- mice, the 16 weeks old animals were randomized in 4 groups either fed standard diet (no cholesterol added, group I, 12 male and 12 female), standard diet added 0.......5% cholesterol (group II, 12 male and 12 female), standard diet added 10% soybean oil (group Iii, 7 male) or standard diet added 0.5% cholesterol and 10% soybean oil (group IV, 7 male) for 14 weeks. At termination, the plasma cholesterol of males was: 9.4 mmol/I +/- 0.3 (SD) (group I), 34.4 +/- 6.2 (group II), 9...

  16. Total lymphoid irradiation reduces IgG autoantibody production and enhances specific antibody responses in NZB/NZW F1 mice

    Energy Technology Data Exchange (ETDEWEB)

    Farinas, M.C.; Strober, S.

    1989-07-01

    Thymus-independent primary antibody responses were studied in young and old (9 months) untreated and TLI-treated NZB/NZW and BALB/c mice. Untreated old NZB/NZW mice had a low primary response to Brucella abortus (BA) as compared to that of young NZB/NZW and BALB/c mice. However, TLI treatment resulted in a 130-fold increase in the IgG anti-BA primary antibody response at day 21 postimmunization, achieving similar levels to those of young NZB/NZW or nonautoimmune BALB/c mice. Anti-TNP responses to trinitrophenylated BA or Ficoll were masked by high background levels of anti-TNP antibodies. Despite the increase in the anti-BA response, spontaneous immunoglobulin secretion and autoantibody levels were markedly decreased after TLI in old NZB/NZW mice.

  17. Total lymphoid irradiation reduces IgG autoantibody production and enhances specific antibody responses in NZB/NZW F1 mice

    International Nuclear Information System (INIS)

    Farinas, M.C.; Strober, S.

    1989-01-01

    Thymus-independent primary antibody responses were studied in young and old (9 months) untreated and TLI-treated NZB/NZW and BALB/c mice. Untreated old NZB/NZW mice had a low primary response to Brucella abortus (BA) as compared to that of young NZB/NZW and BALB/c mice. However, TLI treatment resulted in a 130-fold increase in the IgG anti-BA primary antibody response at day 21 postimmunization, achieving similar levels to those of young NZB/NZW or nonautoimmune BALB/c mice. Anti-TNP responses to trinitrophenylated BA or Ficoll were masked by high background levels of anti-TNP antibodies. Despite the increase in the anti-BA response, spontaneous immunoglobulin secretion and autoantibody levels were markedly decreased after TLI in old NZB/NZW mice

  18. Severe NAFLD with hepatic necroinflammatory changes in mice fed trans fats and a high-fructose corn syrup equivalent

    OpenAIRE

    Tetri, Laura H.; Basaranoglu, Metin; Brunt, Elizabeth M.; Yerian, Lisa M.; Neuschwander-Tetri, Brent A.

    2008-01-01

    The aims of this study were to determine whether combining features of a western lifestyle in mice with trans fats in a high-fat diet, high-fructose corn syrup in the water, and interventions designed to promote sedentary behavior would cause the hepatic histopathological and metabolic abnormalities that characterize nonalcoholic steatohepatitis (NASH). Male C57BL/6 mice fed ad libitum high-fat chow containing trans fats (partially hydrogenated vegetable oil) and relevant amounts of a high-fr...

  19. Silymarin alleviates hepatic oxidative stress and protects against metabolic disorders in high-fat diet-fed mice.

    Science.gov (United States)

    Feng, Bin; Meng, Ran; Huang, Bin; Shen, Shanmei; Bi, Yan; Zhu, Dalong

    2016-01-01

    Silymarin is a potent antioxidant medicine and has been widely used for the treatment of liver diseases over 30 years. Recent studies suggest that silymarin may benefit patients with glucose intolerance. However, the mechanism underlying the action of silymarin is not clarified. The aim of this work was to assess the impact of silymarin on glucose intolerance in high-fat diet (HFD)-fed mice, and explore the potential therapeutic mechanisms. C57BL/6 mice were fed with HFD for 12 weeks, randomized, and treated orally with vehicle saline or silymarin (30 mg/kg) daily for 30 days. We found that silymarin significantly improved HFD-induced body weight gain, glucose intolerance, and insulin resistance in mice. Silymarin treatment reduced HFD-increased oxidative stress indicators (reactive oxygen species, lipid peroxidation, protein oxidation) and restored HFD-down-regulated activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase) in the plasma and/or liver of the HFD-fed mice. Furthermore, silymarin decreased HFD-up-regulated hepatic NADPH oxidase expression and NF-κB activation in mice. Additionally, silymarin treatment mitigated HFD-increased plasma IL-1β, TNF-α levels, and HFD-enhanced hepatic NO, TLR4, and iNOS expression in mice. These novel data indicate that silymarin has potent anti-diabetic actions through alleviating oxidative stress and inflammatory response, partially by inhibiting hepatic NADPH oxidase expression and the NF-κB signaling.

  20. Andrographis paniculata extract attenuates pathological cardiac hypertrophy and apoptosis in high-fat diet fed mice.

    Science.gov (United States)

    Hsieh, You-Liang; Shibu, Marthandam Asokan; Lii, Chong-Kuei; Viswanadha, Vijaya Padma; Lin, Yi-Lin; Lai, Chao-Hung; Chen, Yu-Feng; Lin, Kuan-Ho; Kuo, Wei-Wen; Huang, Chih-Yang

    2016-11-04

    Andrographis paniculata (Burm. f.) Nees (Acanthaceae) has a considerable medicinal reputation in most parts of Asia as a potent medicine in the treatment of Endocrine disorders, inflammation and hypertension. Water extract of A. paniculata and its active constituent andrographolide are known to possess anti-inflammatory and anti-apoptotic effects. Our aim is to identify whether A. paniculata extract could protect myocardial damage in high-fat diet induced obese mice. The test mice were divided into three groups fed either with normal chow or with high fat diet (obese) or with high fat diet treated with A. paniculata extract (2g/kg/day, through gavage, for a week). We found that the myocardial inflammation pathway related proteins were increased in the obese mouse which potentially contributes to cardiac hypertrophy and myocardial apoptosis. But feeding with A. paniculata extract showed significant inhibition on the effects of high fat diet. Our study strongly suggests that supplementation of A. paniculata extract can be used for prevention and treatment of cardiovascular disease in obese patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Regressive Effect of Myricetin on Hepatic Steatosis in Mice Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Shu-Fang Xia

    2016-12-01

    Full Text Available Myricetin is an effective antioxidant in the treatment of obesity and obesity-related metabolic disorders. The objective of this study was to explore the regressive effect of myricetin on pre-existing hepatic steatosis induced by high-fat diet (HFD. C57BL/6 mice were fed either a standard diet or a HFD for 12 weeks and then half of the mice were treated with myricetin (0.12% in the diet, w/w while on their respective diets for further 12 weeks. Myricetin treatment significantly alleviated HFD-induced steatosis, decreased hepatic lipid accumulation and thiobarbituric acid reactive substance (TBARS levels, and increased antioxidative enzyme activities, including catalase (CAT, superoxide dismutase (SOD, and glutathione peroxidase (GPx activities. Microarray analysis of hepatic gene expression profiles showed that myricetin significantly altered the expression profiles of 177 genes which were involved in 12 biological pathways, including the peroxisome proliferator activated receptor (PPAR signaling pathway and peroxisome. Further research indicated that myricetin elevated hepatic nuclear Nrf2 translocation, increased the protein expression of heme oxygenase-1 (HO-1 and NAD(PH quinone dehydrogenase 1 (NQO1, reduced the protein expression of PPARγ, and normalized the expressions of genes that were involved in peroxisome and the PPAR signaling pathway. Our data indicated that myricetin might represent an effective therapeutic agent to treat HFD-induced hepatic steatosis via activating the Nrf2 pathway and the PPAR signaling pathway.

  2. Guarana (Paullinia cupana Stimulates Mitochondrial Biogenesis in Mice Fed High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Natália da Silva Lima

    2018-01-01

    Full Text Available The aim of this study was to evaluate the effects of guarana on mitochondrial biogenesis in a high-fat diet (HFD-fed mice. C57BL6J mice were divided in two groups: high-fat diet HFD and high-fat diet + guarana (HFD-GUA. Both groups received HFD and water ad libitum and the HFD-GUA group also received a daily gavage of guarana (1 g/kg weight. Body weight and food intake was measured weekly. Glycemic, triglyceride, and cholesterol levels were determined. VO2 and energy expenditure (EE were determined by indirect calorimetry. Gene expression was evaluated by real-time PCR and protein content by western blotting. The HFD-GUA group presented lower body weight, subcutaneous, retroperitoneal, visceral, and epididyimal adipose tissue depots, and glycemic and triglyceride levels, with no change in food intake and cholesterol levels. Furthermore, the HFD-GUA group presented an increase in VO2 and basal energy expenditure (EE, as well as Pgc1α, Creb1, Ampka1, Nrf1, Nrf2, and Sirt1 expression in the muscle and brown adipose tissue. In addition, the HFD-GUA group presented an increase in mtDNA (mitochondrial deoxyribonucleic acid content in the muscle when compared to the HFD group. Thus, our data showed that guarana leads to an increase in energetic metabolism and stimulates mitochondrial biogenesis, contributing to control of weight gain, even when associated with high-fat diet.

  3. Effect of praziquantel administration on hepatic stereology of mice infected with Schistosoma mansoni and fed a low-protein diet

    Directory of Open Access Journals (Sweden)

    L.A. Barros

    2009-09-01

    Full Text Available A study was undertaken to investigate the effect of administering praziquantel (PZQ, focusing on the liver stereological findings of malnourished mice infected with Schistosoma mansoni. Thirty female Swiss Webster mice (age: 21 days; weight: 8-14 g were fed either a low-protein diet (8% or standard chow (22% protein for 15 days. Five mice in each group were infected with 50 cercariae each of the BH strain (Brazil. PZQ therapy (80 mg/kg body weight, per day was started on the 50th day of infection and consisted of daily administration for 5 days. Volume density (hepatocytes, sinusoids and hepatic fibrosis was determined by stereology using a light microscope. Body weight gain and total serum albumin levels were always lower in undernourished mice. Our stereological study demonstrated that treatment increased both volume density of hepatocytes in mice fed standard chow (47.56%, treated group and 12.06%, control and low-protein chow (30.98%, treated group and 21.44%, control, and hepatic sinusoids [standard chow (12.52%, treated group and 9.06%, control, low-protein chow (14.42%, treated group and 8.46%, control], while hepatic fibrosis was reduced [standard chow (39.92%, treated group and 78.88%, control and low-protein chow (54.60%, treated group and 70.10%, control]. On the other hand, mice fed low-protein chow decreased density volume of hepatocytes and hepatic fibrosis. In conclusion, our findings indicate that treatment with PZQ ameliorates hepatic schistosomiasis pathology even in mice fed a low-protein diet.

  4. [Development of Rhodnius pictipes Stal, 1872 fed on mice and through a silicone membrane (Hemiptera, Reduviidae, Triatominae)].

    Science.gov (United States)

    Rocha, D da S; da Fonseca, A H; Costa, F A; Jurberg, J; Galvão, C

    1997-01-01

    Rhodnius pictipes (Hemiptera, Reduviidae) from Serra Norte, State of Pará, Brazil, acclimatized in an insectary at the Laboratório Nacional e Internacional de Referência em Taxonomia de Triatomíneos, Departamento de Entomologia, Instituto Oswaldo Cruz, were fed through a silicone membrane. In order to know the viability and the efficiency of this membrane compared with insects fed on mice, the number of bloodmeals taken, period of development of the five nymphal instars, longevity of adults, average amount of blood intake in each meal and percent of mortality were observed. A total of 310 insects, were used, comprising 50 nymphs of each instar, as well as 30 male and 30 female adults. Insects fed artificially had reduced minimal and maximal periods of development than the group fed on mice. The largest relative increase of body weight was observed in the 2nd instar followed by the 1st, and the amount of blood ingested increased during the development, to the 5th instar for both groups. There were no significant differences between the groups fed artificially and in vivo according to Tukey's test for p > 0.05. The percent of mortality in the 1st instar was 18% for artificially fed and 16% for the group fed on mice; these percentages decreased as insects developed until the 4th instar, without mortality, returning to increase in the 5th instar. R. pictipes was shown to be easily adaptable to artificial feeding, and could be considered as an important and viable experimental model.

  5. Sexually dimorphic brain fatty acid composition in low and high fat diet-fed mice.

    Science.gov (United States)

    Rodriguez-Navas, Carlos; Morselli, Eugenia; Clegg, Deborah J

    2016-08-01

    In this study, we analyzed the fatty acid profile of brains and plasma from male and female mice fed chow or a western-style high fat diet (WD) for 16 weeks to determine if males and females process fatty acids differently. Based on the differences in fatty acids observed in vivo, we performed in vitro experiments on N43 hypothalamic neuronal cells to begin to elucidate how the fatty acid milieu may impact brain inflammation. Using a comprehensive mass spectrometry fatty acid analysis, which includes a profile for 52 different fatty acid isomers, we assayed the plasma and brain fatty acid composition of age-matched male and female mice maintained on chow or a WD. Additionally, using the same techniques, we determined the fatty acid composition of N43 hypothalamic cells following exposure to palmitic and linoleic acid, alone or in combination. Our data demonstrate there is a sexual dimorphism in brain fatty acid content both following the consumption of the chow diet, as well as the WD, with males having an increased percentage of saturated fatty acids and reductions in ω6-polyunsaturated fatty acids when compared to females. Interestingly, we did not observe a sexual dimorphism in fatty acid content in the plasma of the same mice. Furthermore, exposure of N43 cells to the ω6-PUFA linoleic acid, which is higher in female brains when compared to males, reduces palmitic acid-induced inflammation. Our data suggest male and female brains, and not plasma, differ in their fatty acid profile. This is the first time, to our knowledge, lipidomic analyses has been used to directly test the hypothesis there is a sexual dimorphism in brain and plasma fatty acid composition following consumption of the chow diet, as well as following exposure to the WD.

  6. Sexually dimorphic brain fatty acid composition in low and high fat diet-fed mice

    Directory of Open Access Journals (Sweden)

    Carlos Rodriguez-Navas

    2016-08-01

    Full Text Available Objective: In this study, we analyzed the fatty acid profile of brains and plasma from male and female mice fed chow or a western-style high fat diet (WD for 16 weeks to determine if males and females process fatty acids differently. Based on the differences in fatty acids observed in vivo, we performed in vitro experiments on N43 hypothalamic neuronal cells to begin to elucidate how the fatty acid milieu may impact brain inflammation. Methods: Using a comprehensive mass spectrometry fatty acid analysis, which includes a profile for 52 different fatty acid isomers, we assayed the plasma and brain fatty acid composition of age-matched male and female mice maintained on chow or a WD. Additionally, using the same techniques, we determined the fatty acid composition of N43 hypothalamic cells following exposure to palmitic and linoleic acid, alone or in combination. Results: Our data demonstrate there is a sexual dimorphism in brain fatty acid content both following the consumption of the chow diet, as well as the WD, with males having an increased percentage of saturated fatty acids and reductions in ω6-polyunsaturated fatty acids when compared to females. Interestingly, we did not observe a sexual dimorphism in fatty acid content in the plasma of the same mice. Furthermore, exposure of N43 cells to the ω6-PUFA linoleic acid, which is higher in female brains when compared to males, reduces palmitic acid-induced inflammation. Conclusions: Our data suggest male and female brains, and not plasma, differ in their fatty acid profile. This is the first time, to our knowledge, lipidomic analyses has been used to directly test the hypothesis there is a sexual dimorphism in brain and plasma fatty acid composition following consumption of the chow diet, as well as following exposure to the WD. Keywords: Obesity, N43, Palmitic acid, Linoleic acid, Central nervous system, Western diet, ω6-fatty acids

  7. Allomyrina dichotoma (Arthropoda: Insecta Larvae Confer Resistance to Obesity in Mice Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Young-Il Yoon

    2015-03-01

    Full Text Available To clarify the anti-obesity effect of Allomyrina dichotoma larvae (ADL, we previously reported that ADL block adipocyte differentiation on 3T3-L1 cell lines through downregulation of transcription factors, such as peroxisome proliferator-activated receptor-γ (PPARG and CCAAT/enhancer binding protein-α (CEBPA. In this study, we tested whether ADL prevent obesity in mice fed a high-fat diet (HFD and further investigated the mechanism underlying the effects of ADL. All mice were maintained on a normal-fat diet (NFD for 1 week and then assigned to one of five treatment groups: (1 NFD; (2 HFD; (3 HFD and 100 mg·kg−1·day−1 ADL; (4 HFD and 3000 mg·kg−1·day−1ADL; or (5 HFD and 3000 mg·kg−1·day−1 yerba mate (Ilex paraguariensis, positive control. ADL and yerba mate were administered orally daily. Mice were fed experimental diets and body weight was monitored weekly for 6 weeks. Our results indicated that ADL reduced body weight gain, organ weight and adipose tissue volume in a dose-dependent manner. Body weight gain was approximately 22.4% lower compared to mice fed only HFD, but the difference did not reach the level of statistical significance. Real-time polymerase chain reaction (PCR analysis revealed that gene expression levels of PPARG, CEBPA and lipoprotein lipase (LPL in the epididymal fat tissue of HFD-fed mice receiving 3000 mg·kg−1·day−1 ADL were reduced by 12.4-, 25.7-, and 12.3-fold, respectively, compared to mice fed HFD only. Moreover, mice administered ADL had lower serum levels of triglycerides and leptin than HFD-fed mice that did not receive ADL. Taken together our results suggest that ADL and its constituent bioactive compounds hold potential for the treatment and prevention of obesity.

  8. Influence of paternal 252Cf neutron exposure on abnormal sperm, embryonal lethality, and liver tumorigenesis in the F1 offspring of mice

    International Nuclear Information System (INIS)

    Watanabe, Hiromitsu; Takahashi, Tadateru; Lee, Juing-Yi

    1996-01-01

    Experiments were conducted to determine whether neutron-induced genetic damage in parental germline cells can lead to the development of cancer in the offspring. Seven-week-old C3H male mice were irradiated with 252 Cf neutrons at a dose of 0, 50, 100, or 200 cGy. Two weeks or 3 months after irradiation, the male mice were mated with virgin 9-week-old C57BL females. Two weeks after irradiation, the irradiated male mice showed an increased incidence of sperm abnormalities, which led to embryo lethalities in a dose-dependent manner when they were mated with unirradiated female mice. Furthermore, liver tumors in male offspring of male mice in the 50 cGy group were significantly increased in 19 of 44 (43.2%) animals, in clear contrast to the unirradiated group (1 of 31; 3.2%) (P 1 generation may be caused by genetic transmission of hepatoma-associated trait (s) induced by 252 Cf neutron irradiation. (author)

  9. Induction of Cyp1a1 and Cyp1b1 and formation of DNA adducts in C57BL/6, Balb/c, and F1 mice following in utero exposure to 3-methylcholanthrene

    International Nuclear Information System (INIS)

    Xu Mian; Nelson, Garret B.; Moore, Joseph E.; McCoy, Thomas P.; Dai, Jian; Manderville, Richard A.; Ross, Jeffrey A.; Miller, Mark Steven

    2005-01-01

    Fetal mice are more sensitive to chemical carcinogens than are adults. Previous studies from our laboratory demonstrated differences in the mutational spectrum induced in the Ki-ras gene from lung tumors isolated from [D2 x B6D2F1]F2 mice and Balb/c mice treated in utero with 3-methylcholanthrene (MC). We thus determined if differences in metabolism, adduct formation, or adduct repair influence strain-specific responses to transplacental MC exposure in C57BL/6 (B6), Balb/c (BC), and reciprocal F1 crosses between these two strains of mice. The induction of Cyp1a1 and Cyp1b1 in fetal lung and liver tissue was determined by quantitative fluorescent real-time PCR. MC treatment caused maximal induction of Cyp1a1 and Cyp1b1 RNA 2-8 h after injection in both organs. RNA levels for both genes then declined in both fetal organs, but a small biphasic, secondary increase in Cyp1a1 was observed specifically in the fetal lung 24-48 h after MC exposure in all four strains. Cyp1a1 induction by MC at 4 h was 2-5 times greater in fetal liver (7000- to 16,000-fold) than fetal lung (2000- to 6000-fold). Cyp1b1 induction in both fetal lung and liver was similar and much lower than that observed for Cyp1a1, with induction ratios of 8- to 18-fold in fetal lung and 10- to 20-fold in fetal liver. The overall kinetics and patterns of induction were thus very similar across the four strains of mice. The only significant strain-specific effect appeared to be the relatively poor induction of Cyp1b1 in the parental strain of B6 mice, especially in fetal lung tissue. We also measured the levels of MC adducts and their disappearance from lung tissue by the P 32 post-labeling assay on gestation days 18 and 19 and postnatal days 1, 4, 11, and 18. Few differences were seen between the different strains of mice; the parental strain of B6 mice had nominally higher levels of DNA adducts 2 (gestation day 19) and 4 (postnatal day 1) days after injection, although this was not statistically significant

  10. A CHRONIC INHALATION STUDY OF METHYL BROMIDE TOXICITY IN B6C3F1 MICE. (FINAL REPORT TO THE NATIONAL TOXICOLOGY PROGRAM)

    Energy Technology Data Exchange (ETDEWEB)

    HABER, S.B.

    1987-06-26

    This report provides a detailed account of a two year chronic inhalation study of methyl bromide toxicity in B6C3Fl mice conducted for the National Toxicology Program. Mice were randomized into three dose groups (10, 33 and 100 ppm methyl bromide) and one control group (0 ppm) per sex and exposed 5 days/week, 6 hours/day, for a total of 103 weeks. Endpoints included body weight; clinical signs and mortality, and at 6, 15 and 24 months of exposure, animals were sacrificed for organ weights, hematology and histopathology. In addition, a subgroup of animals in each dosage group was monitored for neurobehavioral and neuropathological changes. After only 20 weeks of exposure, 48% of the males and 12% of the females in the 100 ppm group had died. Exposures were terminated in that group and the surviving mice were observed for the duration of the study. Exposure of B6C3Fl mice to methyl bromide, even for only 20 weeks, produced significant changes in growth rate, mortality, organ weights and neurobehavioral functioning. These changes occurred in both males and females, but were more pronounced in males.

  11. The effects of Momordica charantia on obesity and lipid profiles of mice fed a high-fat diet.

    Science.gov (United States)

    Wang, Jun; Ryu, Ho Kyung

    2015-10-01

    The present study was conducted to investigate the effects of dried Momordica charantia aqueous extracts (MCA) and ethanol extracts (MCE) on obesity and lipid profiles in mice fed a high-fat diet. Forty two ICR mice were randomly divided into six groups. The normal group was fed a basal diet, and other groups were fed a 45% high-fat diet (HFD) for 7 weeks. The normal and HFD groups were also orally administered distilled water each day for 7 weeks. The remaining groups received Momordica charantia extract (0.5 or 1.0 g/kg/day MCA, and 0.5 or 1.0 g/kg/day MCE). In order to measure the anti-obesity and lipid profile improvement effects, body and visceral tissue weight, lipid profiles, plasma insulin levels, hepatic malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity were measured. Both MCA and MCE significantly decreased body and visceral tissue weight relative to those of the HFD group (P Momordica charantia extracts have anti-obesity effects and the ability to modulate lipid prolife of mice fed a HFD by suppressing body weight gain, visceral tissue weight, plasma and hepatic lipid concentrations, and lipid peroxidation along with increasing lipid metabolism.

  12. Severe NAFLD with hepatic necroinflammatory changes in mice fed trans fats and a high-fructose corn syrup equivalent.

    Science.gov (United States)

    Tetri, Laura H; Basaranoglu, Metin; Brunt, Elizabeth M; Yerian, Lisa M; Neuschwander-Tetri, Brent A

    2008-11-01

    The aims of this study were to determine whether combining features of a western lifestyle in mice with trans fats in a high-fat diet, high-fructose corn syrup in the water, and interventions designed to promote sedentary behavior would cause the hepatic histopathological and metabolic abnormalities that characterize nonalcoholic steatohepatitis (NASH). Male C57BL/6 mice fed ad libitum high-fat chow containing trans fats (partially hydrogenated vegetable oil) and relevant amounts of a high-fructose corn syrup (HFCS) equivalent for 1-16 wk were compared with mice fed standard chow or mice with trans fats or HFCS omitted. Cage racks were removed from western diet mice to promote sedentary behavior. By 16 wk, trans fat-fed mice became obese and developed severe hepatic steatosis with associated necroinflammatory changes. Plasma alanine aminotransferase levels increased, as did liver TNF-alpha and procollagen mRNA, indicating an inflammatory and profibrogenic response to injury. Glucose intolerance and impaired fasting glucose developed within 2 and 4 wk, respectively. Plasma insulin, resistin, and leptin levels increased in a profile similar to that seen in patients with NASH. The individual components of this diet contributed to the phenotype independently; isocaloric replacement of trans fats with lard established that trans fats played a major role in promoting hepatic steatosis and injury, whereas inclusion of HFCS promoted food consumption, obesity, and impaired insulin sensitivity. Combining risk factors for the metabolic syndrome by feeding mice trans fats and HFCS induced histological features of NASH in the context of a metabolic profile similar to patients with this disease. Because dietary trans fats promoted liver steatosis and injury, their role in the epidemic of NASH needs further evaluation.

  13. Loss of PDZK1 causes coronary artery occlusion and myocardial infarction in Paigen diet-fed apolipoprotein E deficient mice.

    Directory of Open Access Journals (Sweden)

    Ayce Yesilaltay

    2009-12-01

    Full Text Available PDZK1 is a four PDZ-domain containing protein that binds to the carboxy terminus of the HDL receptor, scavenger receptor class B type I (SR-BI, and regulates its expression, localization and function in a tissue-specific manner. PDZK1 knockout (KO mice are characterized by a marked reduction of SR-BI protein expression ( approximately 95% in the liver (lesser or no reduction in other organs with a concomitant 1.7 fold increase in plasma cholesterol. PDZK1 has been shown to be atheroprotective using the high fat/high cholesterol ('Western' diet-fed murine apolipoprotein E (apoE KO model of atherosclerosis, presumably because of its role in promoting reverse cholesterol transport via SR-BI.Here, we have examined the effects of PDZK1 deficiency in apoE KO mice fed with the atherogenic 'Paigen' diet for three months. Relative to apoE KO, PDZK1/apoE double KO (dKO mice showed increased plasma lipids (33% increase in total cholesterol; 49 % increase in unesterified cholesterol; and 36% increase in phospholipids and a 26% increase in aortic root lesions. Compared to apoE KO, dKO mice exhibited substantial occlusive coronary artery disease: 375% increase in severe occlusions. Myocardial infarctions, not observed in apoE KO mice (although occasional minimal fibrosis was noted, were seen in 7 of 8 dKO mice, resulting in 12 times greater area of fibrosis in dKO cardiac muscle.These results show that Paigen-diet fed PDZK1/apoE dKO mice represent a new animal model useful for studying coronary heart disease and suggest that PDZK1 may represent a valuable target for therapeutic intervention.

  14. Effect of Saffron on Metabolic Profile and Retina in Apolipoprotein E-Knockout Mice Fed a High-Fat Diet.

    Science.gov (United States)

    Doumouchtsis, Evangelos K; Tzani, Aspasia; Doulamis, Ilias P; Konstantopoulos, Panagiotis; Laskarina-Maria, Korou; Agrogiannis, Georgios; Agapitos, Emmanouil; Moschos, Marilita M; Kostakis, Alkiviadis; Perrea, Despina N

    2017-09-22

    Saffron is a spice that has been traditionally used as a regimen for a variety of diseases due to its potent antioxidant attributes. It is well documented that impaired systemic oxidative status is firmly associated with diverse adverse effects including retinal damage. The aim of this study was to investigate the role of saffron administration against the retinal damage in apoE -/- mice fed a high-fat diet, since they constitute a designated experimental model susceptible to oxidative stress. Twenty-one mice were allocated into three groups: Group A (control, n = 7 c57bl/6 mice) received standard chow diet; Group B (high-fat, n = 7 apoE -/- mice) received a high-fat diet; and Group C (high-fat and saffron, n = 7 apoE -/- mice) received a high-fat diet and saffron (25 mg/kg/d) through their drinking water. The duration of the study was 20 weeks. Lipidemic profile, glucose, C-reactive protein (CRP), and total oxidative capacity (PerOX) were measured in blood serum. Histological analysis of retina was also conducted. Administration of saffron resulted in enhanced glycemic control and preservation of retinal thickness when compared with apoE -/- mice fed a high-fat diet. The outcomes of the study suggest the potential protective role of saffron against retinal damage induced by oxidative stress. Nevertheless, verification of these results in humans is required before any definite conclusions can be drawn.

  15. Cholesterol-lowering effects of dietary pomegranate extract and inulin in mice fed an obesogenic diet.

    Science.gov (United States)

    Yang, Jieping; Zhang, Song; Henning, Susanne M; Lee, Rupo; Hsu, Mark; Grojean, Emma; Pisegna, Rita; Ly, Austin; Heber, David; Li, Zhaoping

    2018-02-01

    It has been demonstrated in animal studies that both polyphenol-rich pomegranate extract (PomX) and the polysaccharide inulin, ameliorate metabolic changes induced by a high-fat diet, but little is known about the specific mechanisms. This study evaluated the effect of PomX (0.25%) and inulin (9%) alone or in combination on cholesterol and lipid metabolism in mice. Male C57BL/6 J mice were fed high-fat/high-sucrose [HF/HS (32% energy from fat, 25% energy from sucrose)] diets supplemented with PomX (0.25%) and inulin (9%) alone or in combination for 4 weeks. At the end of intervention, serum and hepatic cholesterol, triglyceride levels, hepatic gene expression of key regulators of cholesterol and lipid metabolism as well as fecal cholesterol and bile acid excretion were determined. Dietary supplementation of the HF/HS diet with PomX and inulin decreased hepatic and serum total cholesterol. Supplementation with PomX and inulin together resulted in lower hepatic and serum total cholesterol compared to individual treatments. Compared to HF/HS control, PomX increased gene expression of Cyp7a1 and Cyp7b1, key regulators of bile acid synthesis pathways. Inulin decreased gene expression of key regulators of cholesterol de novo synthesis Srebf2 and Hmgcr and significantly increased fecal elimination of total bile acids and neutral sterols. Only PomX in combination with inulin reduced liver and lipid weight significantly compared to the HF/HS control group. PomX showed a trend to decrease liver triglyceride (TG) levels, while inulin or PomX-inulin combination had no effect on either serum or liver TG levels. Dietary PomX and inulin supplementation decreased hepatic and serum total cholesterol by different mechanisms and the combination leading to a significant enhancement of the cholesterol-lowering effect. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Metabolic risk factors in mice divergently selected for BMR fed high fat and high carb diets.

    Science.gov (United States)

    Sadowska, Julita; Gębczyński, Andrzej K; Konarzewski, Marek

    2017-01-01

    Factors affecting contribution of spontaneous physical activity (SPA; activity associated with everyday tasks) to energy balance of humans are not well understood, as it is not clear whether low activity is related to dietary habits, precedes obesity or is a result of thereof. In particular, human studies on SPA and basal metabolic rates (BMR, accounting for >50% of human energy budget) and their associations with diet composition, metabolic thrift and obesity are equivocal. To clarify these ambiguities we used a unique animal model-mice selected for divergent BMR rates (the H-BMR and L-BMR line type) presenting a 50% between-line type difference in the primary selected trait. Males of each line type were divided into three groups and fed either a high fat, high carb or a control diet. They then spent 4 months in individual cages under conditions emulating human "sedentary lifestyle", with SPA followed every month and measurements of metabolic risk indicators (body fat mass %, blood lipid profile, fasting blood glucose levels and oxidative damage in the livers, kidneys and hearts) taken at the end of study. Mice with genetically determined high BMR assimilated more energy and had higher SPA irrespective of type of diet. H-BMR individuals were characterized by lower dry body fat mass %, better lipid profile and lower fasting blood glucose levels, but higher oxidative damage in the livers and hearts. Genetically determined high BMR may be a protective factor against diet-induced obesity and most of the metabolic syndrome indicators. Elevated spontaneous activity is correlated with high BMR, and constitutes an important factor affecting individual capability to sustain energy balance even under energy dense diets.

  17. Changes of Tight Junction Protein Claudins in Small Intestine and Kidney Tissues of Mice Fed a DDC Diet.

    Science.gov (United States)

    Abiko, Yukie; Kojima, Takashi; Murata, Masaki; Tsujiwaki, Mitsuhiro; Takeuchi, Masaya; Sawada, Norimasa; Mori, Michio

    2013-12-01

    DDC (3,5-diethoxycarbonyl-1,4-dihydrocollidine)-fed mice are widely used as a model for cholestatic liver disease. We examined the expression of tight junction protein claudin subspecies by immunofluorescent histochemistry in small intestine and kidney tissues of mice fed a DDC diet for 12 weeks. In the small intestine, decreases in claudin-3, claudin-7 and claudin-15 were observed in villous epithelial cells corresponding to the severity of histological changes while leaving the abundance of these claudin subspecies unchanged in crypt cells. Nevertheless, the proliferative activity of intestinal crypt cells measured by immunohistochemistry for Ki-67 decreased in the mice fed the DDC diet compared with that of control mice. These results suggest the possibility that DDC feeding affects the barrier function of villous epithelial cells and thus inhibits the proliferative activity of crypt epithelial cells. On the other hand, in the kidney, remarkable changes were found in the subcellular localization of claudin subspecies in a segment-specific manner, although histological changes of renal epithelial cells were quite minimal. These results indicate that immunohistochemistry for claudin subspecies can serve as a useful tool for detecting minute functional alterations of intestinal and renal epithelial cells.

  18. Protective effects of the fermented milk Kefir on X-ray irradiation-induced intestinal damage in B6C3F1 mice

    International Nuclear Information System (INIS)

    Teruya, Kiichiro; Nakamichi, Noboru; Shirahata, Sanetaka; Myojin-Maekawa, Yuki; Shimamoto, Fumio; Watanabe, Hiromitsu; Tokumaru, Koichiro; Tokumaru, Sennosuke

    2013-01-01

    Gastrointestinal damage associated with radiation therapy is currently an inevitable outcome. The protective effect of Kefir was assessed for its usefulness against radiation-induced gastrointestinal damage. A Kefir supernatant was diluted by 2- or 10-fold and administered for 1 week prior to 8 Gray (Gy) X-ray irradiation at a dose rate of 2 Gy/min, with an additional 15d of administration post-irradiation. The survival rate of control mice with normal drinking water dropped to 70% on days 4 through 9 post-irradiation. On the other hand, 100% of mice in the 10- and 2-fold-diluted Kefir groups survived up to day 9 post-irradiation (p<0.05 and p<0.01, respectively). Examinations for crypt regeneration against 8, 10 and 12 Gy irradiation at a dose rate of 4 Gy/min revealed that the crypt number was significantly increased in the mice administered both diluted Kefir solutions (p<0.01 for each). Histological and immunohistochemical examinations revealed that the diluted Kefir solutions protected the crypts from radiation, and promoted crypt regeneration. In addition, lyophilized Kefir powder was found to significantly recover the testis weights (p<0.05), but had no effects on the body and spleen weights, after 8 Gy irradiation. These findings suggest that Kefir could be a promising candidate as a radiation-protective agent. (author)

  19. Fatty acid profiles in tissues of mice fed conjugated linoleic acid

    DEFF Research Database (Denmark)

    Gøttsche, Jesper; Straarup, Ellen Marie

    2006-01-01

    The incorporation of vaccenic acid (VA, 0.5 and 1.2%), conjugated linoleic acid (CLA, mixture of primarily c9,t11- and t10,c12-CLA, 1.2%), linoleic acid (LA, 1.2%) and oleic acid (OA, 1.2%) into different tissues of mice was examined. The effects on the fatty acid composition of triacylglycerols...... (TAG) and phospholipids (PL) in kidney, spleen, liver and adipose tissue were investigated. VA and CLA (c9,t11- and t10,c12-CLA) were primarily found in TAG, especially in kidney and adipose tissue, respectively. Conversion of VA to c9,t11-CLA was indicated by our results, as both fatty acids were...... incorporated into all the analyzed tissues when a diet containing VA but not c9,t11-CLA was fed. Most of the observed effects on the fatty acid profiles were seen in the CLA group, whereas only minor effects were observed in the VA groups compared with the CA group. Thus, CLA increased n-3 polyunsaturated...

  20. Investigation of the Mode of Action Underlying the Tumorigenic Response Induced in B6C3F1 Mice Exposed Orally to Hexavalent Chromium

    Science.gov (United States)

    Thompson, Chad M.; Proctor, Deborah M.; Haws, Laurie C.; Hébert, Charles D.; Grimes, Sheila D.; Shertzer, Howard G.; Kopec, Anna K.; Hixon, J.Gregory; Zacharewski, Timothy R.; Harris, Mark A.

    2011-01-01

    Chronic ingestion of high concentrations of hexavalent chromium [Cr(VI)] in drinking water induces intestinal tumors in mice. To investigate the mode of action (MOA) underlying these tumors, a 90-day drinking water study was conducted using similar exposure conditions as in a previous cancer bioassay, as well as lower (heretofore unexamined) drinking water concentrations. Tissue samples were collected in mice exposed for 7 or 90 days and subjected to histopathological, biochemical, toxicogenomic, and toxicokinetic analyses. Described herein are the results of toxicokinetic, biochemical, and pathological findings. Following 90 days of exposure to 0.3–520 mg/l of sodium dichromate dihydrate (SDD), total chromium concentrations in the duodenum were significantly elevated at ≥ 14 mg/l. At these concentrations, significant decreases in the reduced-to-oxidized glutathione ratio (GSH/GSSG) were observed. Beginning at 60 mg/l, intestinal lesions were observed including villous cytoplasmic vacuolization. Atrophy, apoptosis, and crypt hyperplasia were evident at ≥ 170 mg/l. Protein carbonyls were elevated at concentrations ≥ 4 mg/l SDD, whereas oxidative DNA damage, as assessed by 8-hydroxydeoxyguanosine, was not increased in any treatment group. Significant decreases in the GSH/GSSG ratio and similar histopathological lesions as observed in the duodenum were also observed in the jejunum following 90 days of exposure. Cytokine levels (e.g., interleukin-1β) were generally depressed or unaltered at the termination of the study. Overall, the data suggest that Cr(VI) in drinking water can induce oxidative stress, villous cytotoxicity, and crypt hyperplasia in the mouse intestine and may underlie the MOA of intestinal carcinogenesis in mice. PMID:21712504

  1. NTP technical report on the toxicity studies of Castor Oil (CAS No. 8001-79-4) in F344/N Rats and B6C3F1 Mice (Dosed Feed Studies).

    Science.gov (United States)

    Irwin, R

    1992-03-01

    Castor oil is a natural oil derived from the seeds of the castor bean, Ricinus communis. It is comprised largely of triglycerides with a high ricinolin content. Toxicity studies with castor oil were performed by incorporating the material at concentrations as high as 10% in diets given to F344/N rats and B6C3F1 mice of both sexes for 13 weeks. Genetic toxicity studies also were performed and were negative for mutation induction in Salmonella typhimurium, for induction of sister chromatid exchanges or chromosomal aberrations in Chinese hamster ovary cells, and for induction of micronuclei in the peripheral blood erythrocytes of mice evaluated at the end of the 13-week studies. Exposure to castor oil at dietary concentrations as high as 10% in 13-week studies did not affect survival or body weight gains of rats or mice (10 per sex and dose). There were no biologically significant effects noted in hematologic analyses in rats. Mild increases in total bile acids and in serum alkaline phosphatase were noted at various times during the studies in rats receiving the higher dietary concentrations of castor oil. Liver weights were increased in male rats receiving the 10% dietary concentration and in male and female mice receiving diets containing 5% or 10% castor oil. However, there were no histopathologic lesions associated with these liver changes, nor were there any compound-related morphologic changes in any organ in rats or mice. No significant changes were noted in a screening for male reproductive endpoints, including sperm count and motility, and no changes were observed in the length of estrous cycles of rats or mice given diets containing castor oil. Thus, no significant adverse effects of castor oil administration were noted in these studies. Synonyms: Ricinus Oil, oil of Palma Christi, tangantangan oil, phorboyl, Neoloid.

  2. Polyphenol-Rich Fraction of Ecklonia cava Improves Nonalcoholic Fatty Liver Disease in High Fat Diet-Fed Mice

    Directory of Open Access Journals (Sweden)

    Eun-Young Park

    2015-11-01

    Full Text Available Ecklonia cava (E. cava; CA is an edible brown alga with beneficial effects in diabetes via regulation of various metabolic processes such as lipogenesis, lipolysis, inflammation, and the antioxidant defense system in liver and adipose tissue. We investigated the effect of the polyphenol-rich fraction of E. cava produced from Gijang (G-CA on nonalcoholic fatty liver disease (NAFLD in high-fat diet (HFD-fed mice. C57BL6 mice were fed a HFD for six weeks and then the HFD group was administered 300 mg/kg of G-CA extracts by oral intubation for 10 weeks. Body weight, fat mass, and serum biochemical parameters were reduced by G-CA extract treatment. MRI/MRS analysis showed that liver fat and liver volume in HFD-induced obese mice were reduced by G-CA extract treatment. Further, we analyzed hepatic gene expression related to inflammation and lipid metabolism. The mRNA expression levels of inflammatory cytokines and hepatic lipogenesis-related genes were decreased in G-CA-treated HFD mice. The mRNA expression levels of cholesterol 7 alpha-hydroxylase 1 (CYP7A1, the key enzyme in bile acid synthesis, were dramatically increased by G-CA treatment in HFD mice. We suggest that G-CA treatment ameliorated hepatic steatosis by inhibiting inflammation and improving lipid metabolism.

  3. Toxicokinetics of α-thujone following intravenous and gavage administration of α-thujone or α- and β-thujone mixture in male and female F344/N rats and B6C3F1 mice

    International Nuclear Information System (INIS)

    Waidyanatha, Suramya; Johnson, Jerry D.; Hong, S. Peter; Robinson, Veronica Godfrey; Gibbs, Seth; Graves, Steven W.; Hooth, Michelle J.; Smith, Cynthia S.

    2013-01-01

    Plants containing thujone have widespread use and hence have significant human exposure. α-Thujone caused seizures in rodents following gavage administration. We investigated the toxicokinetics of α-thujone in male and female F344/N rats and B6C3F1 mice following intravenous and gavage administration of α-thujone or a mixture of α- and β-thujone (which will be referred to as α,β-thujone). Absorption of α-thujone following gavage administration was rapid without any dose-, species-, sex- or test article-related effect. Absolute bioavailability of α-thujone following administration of α-thujone or α,β-thujone was generally higher in rats than in mice. In rats, females had higher bioavailability than males following administration of either test article although a sex difference was not observed in mice. C max and AUC ∞ increased greater than proportional to the dose in female rats following administration of α-thujone and in male and female mice following administration of α,β-thujone suggesting possible saturation of elimination kinetics with increasing dose. Dose-adjusted AUC ∞ for male and female rats was 5- to 15-fold and 3- to 24-fold higher than mice counterparts following administration of α-thujone and α,β-thujone, respectively (p-value < 0.0001 for all comparisons). Following both intravenous and gavage administration, α-thujone was distributed to the brains of rats and mice with females, in general, having higher brain:plasma ratios than males. These data are in support of the observed toxicity of α-thujone and α,β-thujone where females were more sensitive than males of both species to α-thujone-induced neurotoxicity. In general there was no difference in toxicokinetics between test articles when normalized to α-thujone concentration. - Highlights: • Absorption of α-thujone following gavage administration was rapid in rats and mice. • Rats undergo higher exposure to α-thujone than mice. • α-Thujone brain:plasma ratios

  4. Toxicokinetics of α-thujone following intravenous and gavage administration of α-thujone or α- and β-thujone mixture in male and female F344/N rats and B6C3F1 mice

    Energy Technology Data Exchange (ETDEWEB)

    Waidyanatha, Suramya, E-mail: waidyanathas@niehs.nih.gov [Division of National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (United States); Johnson, Jerry D.; Hong, S. Peter [Battelle Memorial Institute, Columbus, OH 43201 (United States); Robinson, Veronica Godfrey [Division of National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (United States); Gibbs, Seth; Graves, Steven W. [Battelle Memorial Institute, Columbus, OH 43201 (United States); Hooth, Michelle J.; Smith, Cynthia S. [Division of National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (United States)

    2013-09-01

    Plants containing thujone have widespread use and hence have significant human exposure. α-Thujone caused seizures in rodents following gavage administration. We investigated the toxicokinetics of α-thujone in male and female F344/N rats and B6C3F1 mice following intravenous and gavage administration of α-thujone or a mixture of α- and β-thujone (which will be referred to as α,β-thujone). Absorption of α-thujone following gavage administration was rapid without any dose-, species-, sex- or test article-related effect. Absolute bioavailability of α-thujone following administration of α-thujone or α,β-thujone was generally higher in rats than in mice. In rats, females had higher bioavailability than males following administration of either test article although a sex difference was not observed in mice. C{sub max} and AUC{sub ∞} increased greater than proportional to the dose in female rats following administration of α-thujone and in male and female mice following administration of α,β-thujone suggesting possible saturation of elimination kinetics with increasing dose. Dose-adjusted AUC{sub ∞} for male and female rats was 5- to 15-fold and 3- to 24-fold higher than mice counterparts following administration of α-thujone and α,β-thujone, respectively (p-value < 0.0001 for all comparisons). Following both intravenous and gavage administration, α-thujone was distributed to the brains of rats and mice with females, in general, having higher brain:plasma ratios than males. These data are in support of the observed toxicity of α-thujone and α,β-thujone where females were more sensitive than males of both species to α-thujone-induced neurotoxicity. In general there was no difference in toxicokinetics between test articles when normalized to α-thujone concentration. - Highlights: • Absorption of α-thujone following gavage administration was rapid in rats and mice. • Rats undergo higher exposure to α-thujone than mice. • α-Thujone brain

  5. Assessment of immunotoxicity in female Fischer 344/N and Sprague Dawley rats and female B6C3F1 mice exposed to hexavalent chromium via the drinking water.

    Science.gov (United States)

    Shipkowski, Kelly A; Sheth, Christopher M; Smith, Matthew J; Hooth, Michelle J; White, Kimber L; Germolec, Dori R

    2017-12-01

    Sodium dichromate dihydrate (SDD), an inorganic compound containing hexavalent chromium (Cr(VI)), is a common environmental contaminant of groundwater sources due to widespread industrial use. There are indications in the literature that Cr(VI) may induce immunotoxic effects following dermal exposure, including acting as both an irritant and a sensitizer; however, the potential immunomodulatory effects of Cr(VI) following oral exposure are relatively unknown. Following the detection of Cr(VI) in drinking water sources, the National Toxicology Program (NTP) conducted extensive evaluations of the toxicity and carcinogenicity of SDD following drinking water exposure, including studies to assess the potential for Cr(VI) to modulate immune function. For the immunotoxicity assessments, female Fischer 344/N (F344/N) and Sprague Dawley (SD) rats and female B 6 C 3 F 1 mice were exposed to SDD in drinking water for 28 consecutive days and evaluated for alterations in cellular and humoral immune function as well as innate immunity. Rats were exposed to concentrations of 0, 14.3, 57.3, 172, or 516 ppm SDD while mice were exposed to concentrations of 0, 15.6, 31.3, 62.5, 125, or 250 ppm SDD. Final mean body weight and body weight gain were decreased relative to controls in 250 ppm B 6 C 3 F 1 mice and 516 ppm SD rats. Water consumption was significantly decreased in F344/N and SD rats exposed to 172 and 516 ppm SDD; this was attributed to poor palatability of the SDD drinking water solutions. Several red blood cell-specific parameters were significantly (5-7%) decreased in 250 ppm mice; however, these parameters were unaffected in rats. Sporadic increases in the spleen IgM antibody response to sheep red blood cells (SRBC) were observed, however, these increases were not dose-dependent and were not reproducible. No significant effects were observed in the other immunological parameters evaluated. Overall, exposure to Cr(VI) in drinking water had limited effects on

  6. Tolerance induced by anti-DNA Ig peptide in (NZB×NZW)F1 lupus mice impinges on the resistance of effector T cells to suppression by regulatory T cells.

    Science.gov (United States)

    Yu, Yiyun; Liu, Yaoyang; Shi, Fu-Dong; Zou, Hejian; Hahn, Bevra H; La Cava, Antonio

    2012-03-01

    We have previously shown that immune tolerance induced by the anti-DNA Ig peptide pCons in (NZB×NZW)F(1) (NZB/W) lupus mice prolonged survival of treated animals and delayed the appearance of autoantibodies and glomerulonephritis. Part of the protection conferred by pCons could be ascribed to the induction of regulatory T cells (T(Reg)) that suppressed the production of anti-DNA antibodies in a p38 MAPK-dependent fashion. Here we show that another effect of pCons in the induction of immune tolerance in NZB/W lupus mice is the facilitation of effector T cell suppression by T(Reg). These new findings indicate that pCons exerts protective effects in NZB/W lupus mice by differentially modulating the activity of different T cell subsets, implying new considerations in the design of T(Reg)-based approaches to modulate T cell autoreactivity in SLE. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Uric acid promotes vascular stiffness, maladaptive inflammatory responses and proteinuria in western diet fed mice.

    Science.gov (United States)

    Aroor, Annayya R; Jia, Guanghong; Habibi, Javad; Sun, Zhe; Ramirez-Perez, Francisco I; Brady, Barron; Chen, Dongqing; Martinez-Lemus, Luis A; Manrique, Camila; Nistala, Ravi; Whaley-Connell, Adam T; Demarco, Vincent G; Meininger, Gerald A; Sowers, James R

    2017-09-01

    Aortic vascular stiffness has been implicated in the development of cardiovascular disease (CVD) and chronic kidney disease (CKD) in obese individuals. However, the mechanism promoting these adverse effects are unclear. In this context, promotion of obesity through consumption of a western diet (WD) high in fat and fructose leads to excess circulating uric acid. There is accumulating data implicating elevated uric acid in the promotion of CVD and CKD. Accordingly, we hypothesized that xanthine oxidase(XO) inhibition with allopurinol would prevent a rise in vascular stiffness and proteinuria in a translationally relevant model of WD-induced obesity. Four-week-old C57BL6/J male mice were fed a WD with excess fat (46%) and fructose (17.5%) with or without allopurinol (125mg/L in drinking water) for 16weeks. Aortic endothelial and extracellular matrix/vascular smooth muscle stiffness was evaluated by atomic force microscopy. Aortic XO activity, 3-nitrotyrosine (3-NT) and aortic endothelial sodium channel (EnNaC) expression were evaluated along with aortic expression of inflammatory markers. In the kidney, expression of toll like receptor 4 (TLR4) and fibronectin were assessed along with evaluation of proteinuria. XO inhibition significantly attenuated WD-induced increases in plasma uric acid, vascular XO activity and oxidative stress, in concert with reductions in proteinuria. Further, XO inhibition prevented WD-induced increases in aortic EnNaC expression and associated endothelial and subendothelial stiffness. XO inhibition also reduced vascular pro-inflammatory and maladaptive immune responses induced by consumption of a WD. XO inhibition also decreased WD-induced increases in renal TLR4 and fibronectin that associated proteinuria. Consumption of a WD leads to elevations in plasma uric acid, increased vascular XO activity, oxidative stress, vascular stiffness, and proteinuria all of which are attenuated with allopurinol administration. Copyright © 2017 Elsevier Inc

  8. Balanced Diet-Fed Fat-1 Transgenic Mice Exhibit Lower Hindlimb Suspension-Induced Soleus Muscle Atrophy

    Directory of Open Access Journals (Sweden)

    Gabriel Nasri Marzuca-Nassr

    2017-10-01

    Full Text Available The consequences of two-week hindlimb suspension (HS on skeletal muscle atrophy were investigated in balanced diet-fed Fat-1 transgenic and C57BL/6 wild-type mice. Body composition and gastrocnemius fatty acid composition were measured. Skeletal muscle force, cross-sectional area (CSA, and signaling pathways associated with protein synthesis (protein kinase B, Akt; ribosomal protein S6, S6, eukaryotic translation initiation factor 4E-binding protein 1, 4EBP1; glycogen synthase kinase3-beta, GSK3-beta; and extracellular-signal-regulated kinases 1/2, ERK 1/2 and protein degradation (atrophy gene-1/muscle atrophy F-box, atrogin-1/MAFbx and muscle RING finger 1, MuRF1 were evaluated in the soleus muscle. HS decreased soleus muscle wet and dry weights (by 43% and 26%, respectively, muscle isotonic and tetanic force (by 29% and 18%, respectively, CSA of the soleus muscle (by 36%, and soleus muscle fibers (by 45%. Fat-1 transgenic mice had a decrease in the ω-6/ω-3 polyunsaturated fatty acids (PUFAs ratio as compared with C57BL/6 wild-type mice (56%, p < 0.001. Fat-1 mice had lower soleus muscle dry mass loss (by 10% and preserved absolute isotonic force (by 17% and CSA of the soleus muscle (by 28% after HS as compared with C57BL/6 wild-type mice. p-GSK3B/GSK3B ratio was increased (by 70% and MuRF-1 content decreased (by 50% in the soleus muscle of Fat-1 mice after HS. Balanced diet-fed Fat-1 mice are able to preserve in part the soleus muscle mass, absolute isotonic force and CSA of the soleus muscle in a disuse condition.

  9. Antihyperlipidemic effect of Acanthopanax senticosus (Rupr. et Maxim) Harms leaves in high-fat-diet fed mice.

    Science.gov (United States)

    Nishida, Miyako; Kondo, Momoko; Shimizu, Taro; Saito, Tetsuo; Sato, Shinji; Hirayama, Masao; Konishi, Tetsuya; Nishida, Hiroshi

    2016-08-01

    Metabolic syndrome is a major risk factor for a variety of obesity-related diseases. Recently, the effects of functional foods have been investigated on lipid metabolism as a means to reduce lipid content in the blood, liver and adipose tissues associated with carnitine O-palmitoyltransferase (CPT) activity. Acanthopanax senticosus (Rupr. et Maxim) Harms (AS) is a medicinal herb possessing a wide spectra of functions including antioxidant, anti-inflammatory and anti-fatigue actions. Despite much research being focused on the cortical roots of AS, little information is available regarding its leaves, which are also expected to promote human health, for example by improving abnormal lipid metabolism. Here, we explored whether AS leaves affect lipid metabolism in mice fed a high-fat diet. The administration of AS to BALB/c mice fed a high-fat diet significantly decreased plasma triglycerides (TG). CPT activity in the liver of these mice was significantly enhanced by AS treatment. These findings indicate that AS leaves have the potential to alleviate increase in plasma TG levels due to high-fat diet intake in mice, possibly by increasing mitochondrial fatty acid β-oxidation, especially via CPT activation. Consequently, daily intake of AS leaves could promote beneficial health effects including the prevention of metabolic syndrome. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  10. Balanced Diet-Fed Fat-1 Transgenic Mice Exhibit Lower Hindlimb Suspension-Induced Soleus Muscle Atrophy.

    Science.gov (United States)

    Marzuca-Nassr, Gabriel Nasri; Murata, Gilson Masahiro; Martins, Amanda Roque; Vitzel, Kaio Fernando; Crisma, Amanda Rabello; Torres, Rosângela Pavan; Mancini-Filho, Jorge; Kang, Jing Xuan; Curi, Rui

    2017-10-06

    The consequences of two-week hindlimb suspension (HS) on skeletal muscle atrophy were investigated in balanced diet-fed Fat-1 transgenic and C57BL/6 wild-type mice. Body composition and gastrocnemius fatty acid composition were measured. Skeletal muscle force, cross-sectional area (CSA), and signaling pathways associated with protein synthesis (protein kinase B, Akt; ribosomal protein S6, S6, eukaryotic translation initiation factor 4E-binding protein 1, 4EBP1; glycogen synthase kinase3-beta, GSK3-beta; and extracellular-signal-regulated kinases 1/2, ERK 1/2) and protein degradation (atrophy gene-1/muscle atrophy F-box, atrogin-1/MAFbx and muscle RING finger 1, MuRF1) were evaluated in the soleus muscle. HS decreased soleus muscle wet and dry weights (by 43% and 26%, respectively), muscle isotonic and tetanic force (by 29% and 18%, respectively), CSA of the soleus muscle (by 36%), and soleus muscle fibers (by 45%). Fat-1 transgenic mice had a decrease in the ω-6/ω-3 polyunsaturated fatty acids (PUFAs) ratio as compared with C57BL/6 wild-type mice (56%, p Balanced diet-fed Fat-1 mice are able to preserve in part the soleus muscle mass, absolute isotonic force and CSA of the soleus muscle in a disuse condition.

  11. Phthalate treatment does not influence levels of IgE or Th2 cytokines in B6C3F1 mice

    International Nuclear Information System (INIS)

    Butala, John H.; David, Raymond M.; Gans, Gerhard; McKee, Richard H.; Guo, Tai L.; Peachee, Vanessa L.; White, Kimber L.

    2004-01-01

    Bronchial asthma is mediated, in part, by the immunoregulatory cytokines interleukins 4 and 13 (IL-4 and IL-13). These cytokines stimulate IgE synthesis that in turn is associated with airway hyper-responsiveness. Compounds that stimulate IgE synthesis and elicit bronchial reactivity are generally considered to be respiratory sensitizers. Recently, it has been hypothesized that exposure to phthalates may contribute to childhood asthma. To address this question, di-(2-ethylhexyl) phthalate (DEHP) was tested using a protocol adapted from work by Dearman that involves topical application (and challenge) of test substances to mice followed by measurements of total serum IgE. In addition, auricular lymph nodes were harvested for measurement of IL-4 and IL-13 proteins and their corresponding messenger RNAs. Because skin absorption of high molecular weight phthalates is limited, liver weight increase, a measure of peroxisomal proliferation, was monitored to assure that internal dosing had been achieved. ELISA and RNAse protection assays demonstrated that DEHP treatment did not significantly affect IgE, IL-4, or IL-13 levels. Similarly, IL-4 and IL-13 mRNA levels were not elevated. In contrast, all of these were significantly elevated by trimellitic anhydride (TMA), a respiratory sensitizer used as the positive control in this assay. Liver weights were significantly elevated by DEHP, providing evidence of sufficient percutaneous absorption to induce physiological responses. To extend these observations, three other commercial phthalate ester plasticizers, di-isononyl phthalate (DINP), di-isohexyl phthalate (DIHP), and butyl benzyl phthalate (BBP), were assessed using the same protocol. As above, ELISA and RNAse protection assays showed that IgE, IL-4, and IL-13 proteins, and IL-4 and IL-13 mRNAs in the phthalate-treated animals were all at levels similar to that of control values. The positive control, TMA, produced large, statistically significant increases in all

  12. Transcriptome analysis of the effects of chitosan on the hyperlipidemia and oxidative stress in high-fat diet fed mice.

    Science.gov (United States)

    Wang, Bin; Zhang, Sicong; Wang, Xiaoya; Yang, Shuo; Jiang, Qixing; Xu, Yanshun; Xia, Wenshui

    2017-09-01

    Transcriptome analysis was performed to investigate the alterations in gene expression after chitosan (CS) treatment on the liver of mice fed with high-fat diet (HFD). The results showed that the body weight, the liver weight and the epididymal fat mass of HFD mice, which were 62.98%, 46.51% and 239.37%, respectively, higher than those of control mice, could be significantly decreased by chitosan supplementation. Also, high-fat diet increased both plasma lipid and liver lipid as compared with the control mice. Chitosan supplementation decreased the plasma lipid and liver lipid, increased the lipoprotein lipase (LPL) and hepatic lipase (HL) activity, increased T-AOC and decreased MDA in the liver and the epididymis adipose as compared with the HFD mice. Transcriptome analysis indicated that increased Mups, Lcn2, Gstm3 and CYP2E1 expressions clearly indicated HFD induced lipid metabolism disorder and oxidative damage. Especially, chitosan treatment decreased the Mup17 and Lcn2 expressions by 64.32% and 82.43% respectively as compared with those of HFD mice. These results indicated that chitosan possess the ability to improve the impairment of lipid metabolism as strongly associated with increased Mups expressions and gene expressions related to oxidative stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Effects of bixin in high-fat diet-fed-induced fatty liver in C57BL/6J mice

    Institute of Scientific and Technical Information of China (English)

    Rosa Martha Perez Gutierrez; Rita Valadez Romero

    2016-01-01

    Objective: To evaluate the anti-obesity activity of bixin (BIX) on C57BL/6J mice which were fed a high-fat diet (HFD) and to determine the mechanism of this effect. Methods: C57BL/6J mice were separately fed a high-calorie diet or a normal diet for 8 weeks, then they were treated with BIX for another 13 weeks. After administration for 13 weeks, the animals were sacrificed. Body adiposity, serum lipid level, and insulin resistance were evaluated. In addition, a histological assay of pancreas and liver, an evaluation of the inhibitory properties on pancreatic lipase, and a-amylase were conducted. Results: Administration of BIX significantly decreased the body weight gain, adipocyte size, fat pad weights, hepatic lipid levels in HFD-induced obese mice. In addition, reduced liver weight exhibited decreased serum leptin levels, malic enzyme, glucose-6-phosphate dehydrogenase, hepatic fatty acid synthase, aspartate aminotransferase, alanine aminotransferase and hepatic phosphatidate phosphohydrolase activity. However, superoxide dismutase, catalase, glutathione peroxidase, and glutathione levels were increased in hepatic tissue. BIX also decreased lipid and carbohydrates absorption due to inhibition of pancreatic lipase and a-amylase. Long term supplementation of BIX significantly decreased hyperlipidemia, insulin resistance and glucose level. Decreased levels of hepatic steatosis and the islets of Langerhans appeared less shrunken in HFD-fed mice. Conclusions: The antiobesity effect of BIX appears to be associated at least in part, to its inhibitory effect on lipids and carbohydrate digestion enzymes such as pancreatic lipase, a-glucosidase, and a-amylase. The results suggested that BIX also act as an antioxidant and may treat visceral obesity normalizing glucose levels, improving insulin resistance and increasing energy expenditure. Therefore, achiote which has a main component, the carotenoid BIX, could be a viable food for the treatment of obesity and diabetes.

  14. IL-8 signaling is up-regulated in alcoholic hepatitis and DDC fed mice with Mallory Denk Bodies (MDBs) present.

    Science.gov (United States)

    Liu, Hui; French, Barbara A; Nelson, Tyler J; Li, Jun; Tillman, Brittany; French, Samuel W

    2015-10-01

    Chemokines and their receptors are involved in oncogenesis and in tumor progression, invasion, and metastasis. Various chemokines also promote cell proliferation and resistance to apoptosis of stressed cells. The chemokine CXCL8, also known as interleukin-8 (IL-8), is a proinflammatory molecule that has functions within the tumor microenvironment. Deregulation of IL-8 signaling is shown to play pivotal roles in tumorigenesis and progression. Mallory-Denk Bodies (MDBs) are prevalent in various liver diseases including alcoholic hepatitis (AH) and are formed in mice livers by feeding DDC. By comparing AH livers where MDBs had formed with normal livers, there were significant changes of IL-8 signaling by RNA sequencing (RNA-Seq) analyses. Real-time PCR analysis of CXCR2 further shows a 6-fold up-regulation in AH livers and a 26-fold up-regulation in the livers of DDC re-fed mice. IL-8 mRNA was also significantly up-regulated in AH livers and DDC re-fed mice livers. This indicates that CXCR2 and IL-8 may be crucial for liver MDB formation. MDB containing balloon hepatocytes in AH livers had increased intensity of staining of the cytoplasm for both CXCR2 and IL-8. Overexpression of IL-8 leads to an increase of the mitogen activated protein kinase (MAPK) cascade and exacerbates the inflammatory cycle. These observations constitute a demonstration of the altered regulation of IL-8 signaling in the livers of AH and mice fed DDC where MDBs formed, providing further insight into the mechanism of MDB formation mediated by IL-8 signaling in AH. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. NTP toxicity studies of dimethylaminopropyl chloride, hydrochloride (CAS No. 5407-04-5) administered by Gavage to F344/N rats and B6C3F1 mice.

    Science.gov (United States)

    Abdo, Km

    2007-07-01

    Dimethylaminopropyl chloride, hydrochloride is used primarily as an industrial and research organic chemical intermediate acting as an alkylating reagent in Grignard and other types of reactions. It is also used as a pharmaceutical intermediate for the synthesis of many types of drugs, as an agricultural chemical intermediate, as a photographic chemical intermediate, and as a biochemical reagent for enzyme and other studies. Human occupational or other accidental exposure can occur by inhalation, ingestion, or skin absorption. Male and female F344/N rats and B6C3F1 mice received dimethylaminopropyl chloride, hydrochloride (greater than 99% pure) in water by gavage for 2 weeks or 3 months. Genetic toxicology studies were conducted in Salmonella typhimurium and mouse peripheral blood erythrocytes. In the 2-week toxicity studies, groups of five male and five female F344/N rats and B6C3F1 mice were administered doses of 0, 6.25, 12.5, 25, 50, or 100 mg dimethylaminopropyl chloride, hydrochloride/kg body weight in deionized water by gavage, 5 days per week for 16 days. All dosed male and female rats and mice survived until the end of the 2-week study; one vehicle control female mouse died early. Mean body weights of all dosed groups of rats and mice were similar to those of the vehicle control groups. No gross or microscopic lesions were considered related to dimethylaminopropyl chloride, hydrochloride administration. In the 3-month toxicity studies, groups of 10 male and 10 female F344/N rats and B6C3F1 mice were administered doses of 0, 6.25, 12.5, 25, 50, or 100 mg/kg in deionized water by gavage, 5 days per week for 3 months. One male rat in the 50 mg/kg group died during week 12 of the study, and one female mouse in the 100 mg/kg group died during week 9 and another during week 13. The final mean body weights of 50 mg/kg male rats and 50 mg/kg female mice were significantly less than those of the vehicle controls. Possible chemical-related clinical findings in rats

  16. Pharmacokinetic analysis of trichloroethylene metabolism in male B6C3F1 mice: Formation and disposition of trichloroacetic acid, dichloroacetic acid, S-(1,2-dichlorovinyl)glutathione and S-(1,2-dichlorovinyl)-L-cysteine

    International Nuclear Information System (INIS)

    Kim, Sungkyoon; Kim, David; Pollack, Gary M.; Collins, Leonard B.; Rusyn, Ivan

    2009-01-01

    Trichloroethylene (TCE) is a well-known carcinogen in rodents and concerns exist regarding its potential carcinogenicity in humans. Oxidative metabolites of TCE, such as dichloroacetic acid (DCA) and trichloroacetic acid (TCA), are thought to be hepatotoxic and carcinogenic in mice. The reactive products of glutathione conjugation, such as S-(1,2-dichlorovinyl)-L-cysteine (DCVC), and S-(1,2-dichlorovinyl) glutathione (DCVG), are associated with renal toxicity in rats. Recently, we developed a new analytical method for simultaneous assessment of these TCE metabolites in small-volume biological samples. Since important gaps remain in our understanding of the pharmacokinetics of TCE and its metabolites, we studied a time-course of DCA, TCA, DCVG and DCVG formation and elimination after a single oral dose of 2100 mg/kg TCE in male B6C3F1 mice. Based on systemic concentration-time data, we constructed multi-compartment models to explore the kinetic properties of the formation and disposition of TCE metabolites, as well as the source of DCA formation. We conclude that TCE-oxide is the most likely source of DCA. According to the best-fit model, bioavailability of oral TCE was ∼ 74%, and the half-life and clearance of each metabolite in the mouse were as follows: DCA: 0.6 h, 0.081 ml/h; TCA: 12 h, 3.80 ml/h; DCVG: 1.4 h, 16.8 ml/h; DCVC: 1.2 h, 176 ml/h. In B6C3F1 mice, oxidative metabolites are formed in much greater quantities (∼ 3600 fold difference) than glutathione-conjugative metabolites. In addition, DCA is produced to a very limited extent relative to TCA, while most of DCVG is converted into DCVC. These pharmacokinetic studies provide insight into the kinetic properties of four key biomarkers of TCE toxicity in the mouse, representing novel information that can be used in risk assessment.

  17. Pharmacokinetic analysis of trichloroethylene metabolism in male B6C3F1 mice: Formation and disposition of trichloroacetic acid, dichloroacetic acid, S-(1,2-dichlorovinyl)glutathione and S-(1,2-dichlorovinyl)-L-cysteine

    Science.gov (United States)

    Kim, Sungkyoon; Kim, David; Pollack, Gary M.; Collins, Leonard B.; Rusyn, Ivan

    2009-01-01

    Trichloroethylene (TCE) is a well-known carcinogen in rodents and concerns exist regarding its potential carcinogenicity in humans. Oxidative metabolites of TCE, such as dichloroacetic acid (DCA) and trichloroacetic acid (TCA), are thought to be hepatotoxic and carcinogenic in mice. The reactive products of glutathione conjugation, such as S-(1,2-dichlorovinyl)-L-cysteine (DCVC), and S-(1,2-dichlorovinyl) glutathione (DCVG), are associated with renal toxicity in rats. Recently, we developed a new analytical method for simultaneous assessment of these TCE metabolites in small-volume biological samples. Since important gaps remain in our understanding of the pharmacokinetics of TCE and its metabolites, we studied a time-course of DCA, TCA, DCVG and DCVG formation and elimination after a single oral dose of 2100 mg/kg TCE in male B6C3F1 mice. Based on systemic concentration-time data, we constructed multi-compartment models to explore the kinetic properties of the formation and disposition of TCE metabolites, as well as the source of DCA formation. We conclude that TCE-oxide is the most likely source of DCA. According to the best-fit model, bioavailability of oral TCE was ~74%, and the half-life and clearance of each metabolite in the mouse were as follows: DCA: 0.6 hr, 0.081 ml/hr; TCA: 12 hr, 3.80 ml/hr; DCVG: 1.4 hr, 16.8 ml/hr; DCVC: 1.2 hr, 176 ml/hr. In B6C3F1 mice, oxidative metabolites are formed in much greater quantities (~3600 fold difference) than glutathione-conjugative metabolites. In addition, DCA is produced to a very limited extent relative to TCA, while most of DCVG is converted into DCVC. These pharmacokinetic studies provide insight into the kinetic properties of four key biomarkers of TCE toxicity in the mouse, representing novel information that can be used in risk assessment. PMID:19409406

  18. Effects of Enzymatically Synthesized Glycogen and Exercise on Abdominal Fat Accumulation in High-Fat Diet-Fed Mice.

    Science.gov (United States)

    Tamura, Shohei; Honda, Kazuhisa; Morinaga, Ryoji; Saneyasu, Takaoki; Kamisoyama, Hiroshi

    2017-01-01

    The combination of diet and exercise is the first choice for the treatment of obesity and metabolic syndrome. We previously reported that enzymatically synthesized glycogen (ESG) suppresses abdominal fat accumulation in obese rats. However, the effect of the combination of ESG and exercise on abdominal fat accumulation has not yet been investigated. Our goal in this study was therefore to evaluate the effects of dietary ESG and its combination with exercise on abdominal fat accumulation in high-fat diet (HFD)-fed mice. Male ICR mice were assigned to four groups: HFD, HFD containing 20% ESG, HFD with exercise, HFD containing 20% ESG with exercise. Treadmill exercise was performed for 3 wk (25 m/min, 30 min/d, 3 d/wk) after 5-d adaption to running at that speed. Both ESG and exercise significantly reduced the weights of abdominal adipose tissues. In addition, the combination of ESG and exercise significantly suppressed abdominal fat accumulation, suggesting that ESG and exercise showed an additive effect. Exercise significantly increased the mRNA levels of lipid metabolism-related genes such as lipoprotein lipase, peroxisome proliferator-activated receptor delta; factor-delta (PPARδ), carnitin palmitoyltransferase b, adipose triglyceride lipase (ATGL), and uncoupling protein-3 in the gastrocnemius muscle. On the other hand, dietary ESG significantly decreased the mRNA levels of PPARδ and ATGL in the gastrocnemius muscle. These results suggest that the combined treatment of ESG and exercise effectively suppresses abdominal fat accumulation in HFD-fed mice by different mechanisms.

  19. Acid sphingomyelinase deficiency in Western diet-fed mice protects against adipocyte hypertrophy and diet-induced liver steatosis.

    Science.gov (United States)

    Sydor, Svenja; Sowa, Jan-Peter; Megger, Dominik A; Schlattjan, Martin; Jafoui, Sami; Wingerter, Lena; Carpinteiro, Alexander; Baba, Hideo A; Bechmann, Lars P; Sitek, Barbara; Gerken, Guido; Gulbins, Erich; Canbay, Ali

    2017-05-01

    Alterations in sphingolipid and ceramide metabolism have been associated with various diseases, including nonalcoholic fatty liver disease (NAFLD). Acid sphingomyelinase (ASM) converts the membrane lipid sphingomyelin to ceramide, thereby affecting membrane composition and domain formation. We investigated the ways in which the Asm knockout (Smpd1 -/- ) genotype affects diet-induced NAFLD. Smpd1 -/- mice and wild type controls were fed either a standard or Western diet (WD) for 6 weeks. Liver and adipose tissue morphology and mRNA expression were assessed. Quantitative proteome analysis of liver tissue was performed. Expression of selected genes was quantified in adipose and liver tissue of obese NAFLD patients. Although Smpd1 -/- mice exhibited basal steatosis with normal chow, no aggravation of NAFLD-type injury was observed with a Western diet. This protective effect was associated with the absence of adipocyte hypertrophy and the increased expression of genes associated with brown adipocyte differentiation. In white adipose tissue from obese patients with NAFLD, no expression of these genes was detectable. To further elucidate which pathways in liver tissue may be affected by Smpd1 -/- , we performed an unbiased proteome analysis. Protein expression in WD-fed Smpd1 -/- mice indicated a reduction in Rictor (mTORC2) activity; this reduction was confirmed by diminished Akt phosphorylation and altered mRNA expression of Rictor target genes. These findings indicate that the protective effect of Asm deficiency on diet-induced steatosis is conferred by alterations in adipocyte morphology and lipid metabolism and by reductions in Rictor activation.

  20. Exposure to excess insulin (glargine) induces type 2 diabetes mellitus in mice fed on a chow diet.

    Science.gov (United States)

    Yang, Xuefeng; Mei, Shuang; Gu, Haihua; Guo, Huailan; Zha, Longying; Cai, Junwei; Li, Xuefeng; Liu, Zhenqi; Cao, Wenhong

    2014-06-01

    We have previously shown that insulin plays an important role in the nutrient-induced insulin resistance. In this study, we tested the hypothesis that chronic exposure to excess long-acting insulin (glargine) can cause typical type 2 diabetes mellitus (T2DM) in normal mice fed on a chow diet. C57BL/6 mice were treated with glargine once a day for 8 weeks, followed by evaluations of food intake, body weight, blood levels of glucose, insulin, lipids, and cytokines, insulin signaling, histology of pancreas, ectopic fat accumulation, oxidative stress level, and cholesterol content in mitochondria in tissues. Cholesterol content in mitochondria and its association with oxidative stress in cultured hepatocytes and β-cells were also examined. Results show that chronic exposure to glargine caused insulin resistance, hyperinsulinemia, and relative insulin deficiency (T2DM). Treatment with excess glargine led to loss of pancreatic islets, ectopic fat accumulation in liver, oxidative stress in liver and pancreas, and increased cholesterol content in mitochondria of liver and pancreas. Prolonged exposure of cultured primary hepatocytes and HIT-TI5 β-cells to insulin induced oxidative stress in a cholesterol synthesis-dependent manner. Together, our results show that chronic exposure to excess insulin can induce typical T2DM in normal mice fed on a chow diet. © 2014 The authors.

  1. Proteins Differentially Expressed in the Pancreas of Hepatic Alcohol Dehydrogenase-Deficient Deer Mice Fed Ethanol For 3 Months.

    Science.gov (United States)

    Bhopale, Kamlesh K; Amer, Samir M; Kaphalia, Lata; Soman, Kizhake V; Wiktorowicz, John E; Shakeel Ansari, Ghulam A; Kaphalia, Bhupendra S

    2017-07-01

    The aim of this study was to identify differentially expressed proteins in the pancreatic tissue of hepatic alcohol dehydrogenase-deficient deer mice fed ethanol to understand metabolic basis and mechanism of alcoholic chronic pancreatitis. Mice were fed liquid diet containing 3.5 g% ethanol daily for 3 months, and differentially expressed pancreatic proteins were identified by protein separation using 2-dimensional gel electrophoresis and identification by mass spectrometry. Nineteen differentially expressed proteins were identified by applying criteria established for protein identification in proteomics. An increased abundance was found for ribosome-binding protein 1, 60S ribosomal protein L31-like isoform 1, histone 4, calcium, and adenosine triphosphate (ATP) binding proteins and the proteins involved in antiapoptotic processes and endoplasmic reticulum function, stress, and/or homeostasis. Low abundance was found for endoA cytokeratin, 40S ribosomal protein SA, amylase 2b isoform precursor, serum albumin, and ATP synthase subunit β and the proteins involved in cell motility, structure, and conformation. Chronic ethanol feeding in alcohol dehydrogenase-deficient deer mice differentially expresses pancreatic functional and structural proteins, which can be used to develop biomarker(s) of alcoholic chronic pancreatitis, particularly amylase 2b precursor, and 60 kDa heat shock protein and those involved in ATP synthesis and blood osmotic pressure.

  2. BSN723T Prevents Atherosclerosis and Weight Gain in ApoE Knockout Mice Fed a Western Diet

    OpenAIRE

    Williams, Jarrod; Ensor, Charles; Gardner, Scott; Smith, Rebecca; Lodder, Robert

    2015-01-01

    Objective This study tests the hypothesis that BSN723T can prevent the development of hyperlipidemia and atherosclerosis in ApoE-/- knockout mice fed a Western (high fat, high cholesterol, and high sucrose) diet. BSN723T is a combination drug therapy consisting of D-tagatose and dihydromyricetin (BSN723). Background D-tagatose has an antihyperglycemic effect in animal and human studies and shows promise as a treatment for type 2 diabetes and obesity. Many claims regarding BSN723's pharmacolog...

  3. Effects of Gliadin consumption on the Intestinal Microbiota and Metabolic Homeostasis in Mice Fed a High-fat Diet

    DEFF Research Database (Denmark)

    Zhang, Li; Andersen, Daniel; Roager, Henrik Munch

    2017-01-01

    of an obesogenic diet. Mice were fed either a defined high-fat diet (HFD) containing 4% gliadin (n = 20), or a gliadin-free, isocaloric HFD (n = 20) for 23 weeks. Combined analysis of several parameters including insulin resistance, histology of liver and adipose tissue, intestinal microbiota in three gut...... that gliadin disturbs the intestinal environment and affects metabolic homeostasis in obese mice, suggesting a detrimental effect of gluten intake in gluten-tolerant subjects consuming a high-fat diet.......Dietary gluten causes severe disorders like celiac disease in gluten-intolerant humans. However, currently understanding of its impact in tolerant individuals is limited. Our objective was to test whether gliadin, one of the detrimental parts of gluten, would impact the metabolic effects...

  4. Daily supplementation with fresh pomegranate juice increases paraoxonase 1 expression and activity in mice fed a high-fat diet.

    Science.gov (United States)

    Estrada-Luna, D; Martínez-Hinojosa, E; Cancino-Diaz, J C; Belefant-Miller, H; López-Rodríguez, G; Betanzos-Cabrera, G

    2018-02-01

    Studies have found that pomegranate juice (PJ) consumption increases the binding of high-density lipoproteins (HDL) to paraoxonase 1 (PON1), thus increasing the catalytic activity of this enzyme. PON1 is an antioxidant arylesterase synthesized in the liver and transported in plasma in association with HDL. Decreased levels of PON1 are associated with higher levels of cholesterol. We determined the effects of PJ on body weight, cholesterol, and triacylglycerols through 5 months of supplementation. In addition, the effect of PJ on pon1 gene expression in the liver was also measured by RT-qPCR as well as the activity in serum by a semiautomated method using paraoxon as a substrate. CD-1 mice were either fed a control diet or were fed a high-fat diet 1.25% (wt/wt) cholesterol, 0.5% (wt/wt) sodium cholate, and 15% (wt/wt) saturated fat. 300 μL of PJ containing 0.35 mmol total polyphenols was administered by oral gavage to half of the high fat mice daily. The rest of the high fat mice and the control mice were administered with 300 μL of water. PJ-supplemented animals had significantly higher levels of expression of pon1 compared to the unsupplemented group. PJ-supplemented animals had twice the PON1 activity of the unsupplemented group. In addition, PJ-supplemented animals had the lowest body weight and significantly reduced cholesterol and triacylglycerol levels, although the tricylglycerol levels were not consistently decreased. These results suggest that PJ protects against the effects of a high-fat diet in body weight, and cholesterol levels.

  5. IgA response in serum and gut secretion in sensitized mice fed with the dust mite Dermatophagoides pteronyssinus extract

    Directory of Open Access Journals (Sweden)

    Maciel M.

    2004-01-01

    Full Text Available Induced oral tolerance to mucosal-exposed antigens in immunized animals is of particular interest for the development of immunotherapeutic approaches to human allergic diseases. This is a unique feature of mucosal surfaces which represent the main contact interface with the external environment. However, the influence of oral tolerance on specific and natural polyreactive IgA antibodies, the major defense mechanism of the mucosa, is unknown. We have shown that oral administration of an extract of the dust mite Dermatophagoides pteronyssinus (Dp to primed mice caused down-regulation of IgE responses and an increase in tumor growth factor-ß secretion. In the present study, we observed that primed inbred female A/Sn mice (8 to 10 weeks old fed by gavage a total weight of 1.0-mg Dp extract on the 6th, 7th and 8th days post-immunization presented normal secretion of IL-4 and IL-10 in gut-associated lymphoid tissue and a decreased production of interferon gamma induced by Dp in the draining lymph nodes (13,340 ± 3,519 vs 29,280 ± 2,971 pg/ml. Mice fed the Dp extract also showed higher levels of serum anti-Dp IgA antibodies and an increase of IgA-secreting cells in mesenteric lymph nodes (N = 10, reflecting an increase in total fecal IgA antibodies (N = 10. The levels of secretory anti-Dp IgA antibodies increased after re-immunization regardless of Dp extract feeding. Oral tolerance did not interfere with serum or secretory IgA antibody reactivity related to self and non-self antigens. These results suggest that induction of oral tolerance to a Dp extract in sensitized mice triggered different regulatory mechanisms which inhibited the IgE response and stimulated systemic and secretory IgA responses, preserving the natural polyreactive IgA antibody production.

  6. Irradiated mice lose the capacity to 'process' fed antigen for systemic tolerance of delayed-type hypersensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, M G; Strobel, S; Hanson, D G; Ferguson, A

    1987-12-01

    'Intestinal antigen processing' is a function of the gastro-intestinal tract whereby shortly after an animal has been fed an immunogenic protein antigen, such as ovabumin (OVA), a tolerogenic form of the protein is generated and can be detected in the circulation. The effect of damage to the intestinal epithelium on the processing of OVA has been examined in lethally irradiated mice. Irradiated animals were fed 25 mg OVA and their serum collected 1 h later. When this serum was transferred intraperitoneally into naive recipient mice, this did not induce the typical suppression of systemic delayed-type hypersensitivity. Results were similar when the serum donors were at 2 days after irradiation, with crypt hypoplasia, and at 5 days after irradiation when there was reactive crypt hyperplasia. However reconstitution of donors with normal spleen cells immediately after irradiation restored their capacity to generate a tolerogenic form of the antigen. Immunoreactive OVA was detected by ELISA in both tolerizing and non-tolerizing sera, and the immunological properties of these sera were not related to serum levels of OVA after feeding. The results suggest that lymphoid cells may be involved in the phenomenon of antigen processing.

  7. Impact of diesel exhaust exposure on the liver of mice fed on omega-3 polyunsaturated fatty acids-deficient diet.

    Science.gov (United States)

    Umezawa, Masakazu; Nakamura, Masayuki; El-Ghoneimy, Ashraf A; Onoda, Atsuto; Shaheen, Hazem M; Hori, Hiroshi; Shinkai, Yusuke; El-Sayed, Yasser S; El-Far, Ali H; Takeda, Ken

    2018-01-01

    Exposure to diesel exhaust (DE) exacerbates non-alcoholic fatty liver disease, and may systemically affect lipid metabolism. Omega-3 polyunsaturated fatty acids (n-3 PUFA) have anti-inflammatory activity and suppresses hepatic triacylglycerol accumulation, but many daily diets are deficient in this nutrient. Therefore, the effect of DE exposure in mice fed n-3 PUFA-deficient diet was investigated. Mice were fed control chow or n-3 PUFA-deficient diet for 4 weeks, then exposed to clean air or DE by inhalation for further 4 weeks. Liver histology, plasma parameters, and expression of fatty acid synthesis-related genes were evaluated. N-3 PUFA-deficient diet increased hepatic lipid droplets accumulation and expression of genes promoting fatty acid synthesis: Acaca, Acacb, and Scd1. DE further increased the plasma leptin and the expression of fatty acid synthesis-related genes: Acacb, Fasn, and Scd1. N-3 PUFA-deficient diet and DE exposure potentially enhanced hepatic fatty acid synthesis and subsequently accumulation of lipid droplets. The combination of low-dose DE exposure and intake of n-3 PUFA-deficient diet may be an additional risk factor for the incidence of non-alcoholic fatty liver disease. The present study suggests an important mechanism for preventing toxicity of DE on the liver through the incorporation of n-3 PUFAs in the diet. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A 28-day oral gavage toxicity study of 3-monochloropropane-1,2-diol (3-MCPD) in CB6F1-non-Tg rasH2 mice.

    Science.gov (United States)

    Lee, Byoung-Seok; Park, Sang-Jin; Kim, Yong-Bum; Han, Ji-Seok; Jeong, Eun-Ju; Moon, Kyoung-Sik; Son, Hwa-Young

    2015-12-01

    3-Monochloro-1,2-propanediol (3-MCPD) is a well-known contaminant of foods containing hydrolyzed vegetable protein. However, limited toxicity data are available for the risk assessment of 3-MCPD and its carcinogenic potential is controversial. To evaluate the potential toxicity and determine the dose levels for a 26-week carcinogenicity test using Tg rasH2 mice, 3-MCPD was administered once daily by oral gavage at doses of 0, 25, 50, and 100 mg/kg body weight (b.w.)/day for 28 days to male and female CB6F1-non-Tg rasH2 mice (N = 5 males and females per dose). The standard toxicological evaluations were conducted during the in-life and post-mortem phase. In the 100 mg/kg b.w./day group, 3 males and 1 female died during the study and showed clinical signs such as thin appearance and subdued behavior accompanied by significant decreases in mean b.w. Microscopy revealed tubular basophilia in the kidneys, exfoliated degenerative germ cells in the lumen of the seminiferous tubule of the testes, vacuolation in the brain, axonal degeneration of the sciatic nerve, and cardiomyopathy in the 100, ≥25, ≥50, 100, and 100 mg/kg b.w./day groups, respectively. In conclusion, 3-MCPD's target organs were the kidneys, testes, brain, sciatic nerve, and heart. The "no-observed-adverse-effect level" (NOAEL) of 3-MCPD was ≤25 and 25 mg/kg b.w./day in males and females, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Toxicology study of senna (CAS No. 8013-11-4) in C57BL/6NTAC Mice and toxicology and carcinogenesis study of senna in genetically modified C3B6.129F1/Tac-Trp53tm1Brd haploinsufficient mice (Feed Studies).

    Science.gov (United States)

    2012-04-01

    Senna is used as a stimulant laxative in the management of constipation resulting from opioid use or when treatment with bulking or osmotic agents has failed. Increased use of senna was expected due to the removal of the stimulant laxatives danthron and phenolphthalein from the market. Senna was nominated for study by the Center for Drug Evaluation and Research, United States Food and Drug Administration (FDA) due to the wide use of laxative preparations, positive genotoxicity in vitro for some senna components or metabolites, and unknown carcinogenic potential. Because a 2-year rat study was ongoing by the manufacturer, the FDA requested that the NTP conduct a senna study in the p53(+/-) mouse. In this study, the potential for carcinogenic effects of senna was studied in the C3B6.129F1/Tac-Trp53tm1Brd N12 haploinsufficient (heterozygous F1 p53(+/-)) mouse model as an ongoing goal of the NTP to develop and test model systems for toxicology and carcinogenesis studies, especially those that can provide mechanistic information relative to understanding an agents mode of action. C57BL/6NTac mice were exposed to senna in feed for 5 weeks; heterozygous F1 p53(+/-) mice were exposed to senna in feed for 40 weeks. Genetic toxicology studies were conducted in Salmonella typhimurium, Escherichia coli, and mouse peripheral blood erythrocytes.

  10. Effects of Acerola (Malpighia emarginata DC.) Juice Intake on Brain Energy Metabolism of Mice Fed a Cafeteria Diet.

    Science.gov (United States)

    Leffa, Daniela Dimer; Rezin, Gislaine Tezza; Daumann, Francine; Longaretti, Luiza M; Dajori, Ana Luiza F; Gomes, Lara Mezari; Silva, Milena Carvalho; Streck, Emílio L; de Andrade, Vanessa Moraes

    2017-03-01

    Obesity is a multifactorial disease that comes from an imbalance between food intake and energy expenditure. Moreover, studies have shown a relationship between mitochondrial dysfunction and obesity. In the present study, we investigated the effect of acerola juices (unripe, ripe, and industrial) and its main pharmacologically active components (vitamin C and rutin) on the activity of enzymes of energy metabolism in the brain of mice fed a palatable cafeteria diet. Two groups of male Swiss mice were fed on a standard diet (STA) or a cafeteria diet (CAF) for 13 weeks. Afterwards, the CAF-fed animals were divided into six subgroups, each of which received a different supplement for one further month (water, unripe, ripe or industrial acerola juices, vitamin C, or rutin) by gavage. Our results demonstrated that CAF diet inhibited the activity of citrate synthase in the prefrontal cortex, hippocampus, and hypothalamus. Moreover, CAF diet decreased the complex I activity in the hypothalamus, complex II in the prefrontal cortex, complex II-III in the hypothalamus, and complex IV in the posterior cortex and striatum. The activity of succinate dehydrogenase and creatine kinase was not altered by the CAF diet. However, unripe acerola juice reversed the inhibition of the citrate synthase activity in the prefrontal cortex and hypothalamus. Ripe acerola juice reversed the inhibition of citrate synthase in the hypothalamus. The industrial acerola juice reversed the inhibition of complex I activity in the hypothalamus. The other changes were not reversed by any of the tested substances. In conclusion, we suggest that alterations in energy metabolism caused by obesity can be partially reversed by ripe, unripe, and industrial acerola juice.

  11. Radioprotective effects of miso (fermented soy bean paste) against radiation in B6C3F1 mice. Increased small intestinal crypt survival, crypt lengths and prolongation of average time to death

    International Nuclear Information System (INIS)

    Ohara, Masayuki; Lu, Huimei; Shiraki, Katsutomo; Ishimura, Yoshimasa; Uesaka, Toshihiro; Katoh, Osamu; Watanabe, Hiromitsu

    2001-01-01

    The radioprotective effect of miso, a fermentation product from soy bean, was investigated with reference to the survival time, crypt survival and jejunum crypt length in male B6C3F1 mice. Miso at three different fermentation stages (early-, medium- and long-term fermented miso) was mixed in MF diet into biscuits at 10% and was administered from 1 week before irradiation. Animal survival in the long-term fermented miso group was significantly prolonged as compared with the short-term fermented miso and MF cases after 8 Gy of 60 Co-γ-ray irradiation at a dose rate of 2 Gy min -1 . Delay in mortality was evident in all three miso groups, with significantly increased survival. At doses of 10 and 12 Gy X-irradiation at a dose rate of 4 Gy min -1 , the treatment with long-term fermented miso significantly increased crypt survival. Also the protective influence against irradiation in terms of crypt lengths in the long-term fermented miso group was significantly greater than in the short-term or medium-term fermented miso and MF diet groups. Thus, prolonged fermentation appears to be very important for protection against radiation effects. (author)

  12. Radioprotective effects of miso (fermented soy bean paste) against radiation in B6C3F1 mice: increased small intestinal crypt survival, crypt lengths and prolongation of average time to death.

    Science.gov (United States)

    Ohara, M; Lu, H; Shiraki, K; Ishimura, Y; Uesaka, T; Katoh, O; Watanabe, H

    2001-12-01

    The radioprotective effect of miso, a fermentation product from soy bean, was investigated with reference to the survival time, crypt survival and jejunum crypt length in male B6C3F1 mice. Miso at three different fermentation stages (early-, medium- and long-term fermented miso) was mixed in MF diet into biscuits at 10% and was administered from 1 week before irradiation. Animal survival in the long-term fermented miso group was significantly prolonged as compared with the short-term fermented miso and MF cases after 8 Gy of 60Co-gamma-ray irradiation at a dose rate of 2Gy min(-1). Delay in mortality was evident in all three miso groups, with significantly increased survival. At doses of 10 and 12 Gy X-irradiation at a dose rate of 4 Gy min(-1), the treatment with long-term fermented miso significantly increased crypt survival. Also the protective influence against irradiation in terms of crypt lengths in the long-term fermented miso group was significantly greater than in the short-term or medium-term fermented miso and MF diet groups. Thus, prolonged fermentation appears to be very important for protection against radiation effects.

  13. A cytotoxic Petiveria alliacea dry extract induces ATP depletion and decreases β-F1-ATPase expression in breast cancer cells and promotes survival in tumor-bearing mice

    Directory of Open Access Journals (Sweden)

    John F. Hernández

    Full Text Available Abstract Metabolic plasticity in cancer cells assures cell survival and cell proliferation under variable levels of oxygen and nutrients. Therefore, new anticancer treatments endeavor to target such plasticity by modifying main metabolic pathways as glycolysis or oxidative phosphorylation. In American traditional medicine Petiveria alliacea L., Phytolaccacea, leaf extracts have been used for leukemia and breast cancer treatments. Herein, we study cytotoxicity and antitumoral effects of P. alliacea extract in tumor/non-tumorigenic cell lines and murine breast cancer model. Breast cancer cells treated with P. alliacea dry extract showed reduction in β-F1-ATPase expression, glycolytic flux triggering diminished intracellular ATP levels, mitochondrial basal respiration and oxygen consumption. Consequently, a decline in cell proliferation was observed in conventional and three-dimension spheres breast cancer cells culture. Additionally, in vivo treatment of BALB/c mice transplanted with the murine breast cancer TS/A tumor showed that P. alliacea extract via i.p. decreases the primary tumor growth and increases survival in the TS/A model.

  14. Effect of GPR84 deletion on obesity and diabetes development in mice fed long chain or medium chain fatty acid rich diets.

    Science.gov (United States)

    Du Toit, Eugene; Browne, Liam; Irving-Rodgers, Helen; Massa, Helen M; Fozzard, Nicolette; Jennings, Michael P; Peak, Ian R

    2017-04-20

    Although there is good evidence showing that diets rich in medium chain fatty acids (MCFAs) have less marked obesogenic and diabetogenic effects than diets rich in long chain fatty acids (LCFAs), the role of the pro-inflammatory, medium chain fatty acid receptor (GPR84) in the aetiology of obesity and glucose intolerance is not well characterised. We set out to determine whether GPR84 expression influences obesity and glucose intolerance susceptibility in MCFA and LCFA rich diet fed mice. Wild type (WT) and GPR84 knockout (KO) mice were fed a control, MCFA or LCFA diet, and body mass, heart, liver and epididymal fat mass was assessed, as well as glucose tolerance and adipocyte size. LCFA diets increased body mass and decreased glucose tolerance in both WT and GPR84 KO animals while MCFA diets had no effect on these parameters. There were no differences in body weight when comparing WT and GPR84 KO mice on the respective diets. Glucose tolerance was also similar in WT and GPR84 KO mice irrespective of diet. Liver mass was increased following LCFA feeding in WT but not GPR84 KO mice. Hepatic triglyceride content was increased in GPR84 KO animals fed MCFA, and myocardial triglyceride content was increased in GPR84 KO animals fed LCFA. GPR84 deletion had no effects on body weight or glucose tolerance in mice fed either a high MCFA or LCFA diet. GPR84 may influence lipid metabolism, as GPR84 KO mice had smaller livers and increased myocardial triglyceride accumulation when fed LCFA diets, and increased liver triglyceride accumulation in responses to increased dietary MCFAs.

  15. Effects of bixin in high-fat diet-fed-induced fatty liver in C57BL/6J mice

    Institute of Scientific and Technical Information of China (English)

    Rosa; Martha; Perez; Gutierrez; Rita; Valadez; Romero

    2016-01-01

    Objective:To evaluate the anti-obesity activity of bixin(BIX) on C57BL/6J mice which were fed a high-fat diet(HFD) and to determine the mechanism of this effect.Methods:C57BL/6J mice were separately fed a high-calorie diet or a normal diet for 8weeks,then they were treated with BIX for another 13 weeks.After administration for 13 weeks,the animals were sacrificed.Body adiposity,serum lipid level,and insulin resistance were evaluated.In addition,a histological assay of pancreas and liver,an evaluation of the inhibitory properties on pancreatic lipase,and a-amylase were conducted.Results:Administration of BIX significantly decreased the body weight gain,adipocyte size,fat pad weights,hepatic lipid levels in HFD-induced obese mice.In addition,reduced liver weight exhibited decreased serum leptin levels,malic enzyme,glucose-6-phosphate dehydrogenase,hepatic fatty acid synthase,aspartate aminotransferase,alanine aminotransferase and hepatic phosphatidate phosphohydrolase activity.However,superoxide dismutase,catalase,glutathione peroxidase,and glutathione levels were increased in hepatic tissue.BIX also decreased lipid and carbohydrates absorption due to inhibition of pancreatic lipase and a-amylase.Long term supplementation of BIX significantly decreased hyperlipidemia,insulin resistance and glucose level.Decreased levels of hepatic steatosis and the islets of Langerhans appeared less shrunken in HFD-fed mice.Conclusions:The antiobesity effect of BIX appears to be associated at least in part,to its inhibitory effect on lipids and carbohydrate digestion enzymes such as pancreatic lipase,a-glucosidase,and a-amylase.The results suggested that BIX also act as an antioxidant and may treat visceral obesity normalizing glucose levels,improving insulin resistance and increasing energy expenditure.Therefore,achiote which has a main component,the carotenoid BIX,could be a viable food for the treatment of obesity and diabetes.

  16. Blueberry supplementation improves memory in middle-aged mice fed a high-fat diet.

    Science.gov (United States)

    Carey, Amanda N; Gomes, Stacey M; Shukitt-Hale, Barbara

    2014-05-07

    Consuming a high-fat diet may result in behavioral deficits similar to those observed in aging animals. It has been demonstrated that blueberry supplementation can allay age-related behavioral deficits. To determine if supplementation of a high-fat diet with blueberries offers protection against putative high-fat diet-related declines, 9-month-old C57Bl/6 mice were maintained on low-fat (10% fat calories) or high-fat (60% fat calories) diets with and without 4% freeze-dried blueberry powder. Novel object recognition memory was impaired by the high-fat diet; after 4 months on the high-fat diet, mice spent 50% of their time on the novel object in the testing trial, performing no greater than chance performance. Blueberry supplementation prevented recognition memory deficits after 4 months on the diets, as mice on this diet spent 67% of their time on the novel object. After 5 months on the diets, mice consuming the high-fat diet passed through the platform location less often than mice on low-fat diets during probe trials on days 2 and 3 of Morris water maze testing, whereas mice consuming the high-fat blueberry diet passed through the platform location as often as mice on the low-fat diets. This study is a first step in determining if incorporating more nutrient-dense foods into a high-fat diet can allay cognitive dysfunction.

  17. NTP Toxicology and Carcinogenesis Studies of Barium Chloride Dihydrate (CAS No. 10326-27-9) in F344/N Rats and B6C3F1 Mice (Drinking Water Studies).

    Science.gov (United States)

    1994-01-01

    Barium chloride dihydrate, a white crystalline granule or powder, is used in pigments, aluminum refining, leather tanning and coloring, the manufacture of magnesium metal, ceramics, glass, and paper products, as a pesticide, and in medicine as a cardiac stimulant. Toxicology and carcinogenicity studies were conducted by administering barium chloride dihydrate (99% pure) in drinking water to F344/N rats and B6C3F1 mice for 15 days, 13 weeks, and 2 years. Genetic toxicology studies were conducted in Salmonella typhimurium, cultured Chinese hamster ovary cells, and mouse lymphoma cells. 15-DAY STUDY IN RATS: Groups of five males and five females received barium chloride dihydrate in the drinking water at concentrations of 0, 125, 250, 500, 1,000, or 2,000 ppm for 15 days, corresponding to average daily doses of 10, 15, 35, 60, or 110 mg barium/kg body weight to males and females. No chemical-related deaths, differences in final mean body weights, or clinical findings of toxicity were observed. Water consumption by male and female rats exposed to 2,000 ppm was slightly less (S16%) than controls during week 2. There were no significant differences in absolute or relative organ weights between exposed and control rats. No biologically significant differences in hematology, clinical chemistry, or neurobehavioral parameters occurred in rats. 15-DAY STUDY IN MICE: Groups of five males and five females received barium chloride dihydrate in the drinking water at concentrations of 0, 40, 80,173, 346, or 692 ppm for 15 days, corresponding to average daily doses of 5,10, 20, 40, or 70 mg barium/kg body weight to males and 5, 10, 15, 40, or 85 mg barium/kg body weight to females. No chemical-related deaths, differences in mean body weights or in water consumption, or clinical findings of toxicity were observed in mice. The relative liver weight of males receiving 692 ppm was significantly greater than that of the controls. The absolute and relative liver weights of females that

  18. Acid sphingomyelinase deficiency in Western diet-fed mice protects against adipocyte hypertrophy and diet-induced liver steatosis

    Directory of Open Access Journals (Sweden)

    Svenja Sydor

    2017-05-01

    Full Text Available Objective: Alterations in sphingolipid and ceramide metabolism have been associated with various diseases, including nonalcoholic fatty liver disease (NAFLD. Acid sphingomyelinase (ASM converts the membrane lipid sphingomyelin to ceramide, thereby affecting membrane composition and domain formation. We investigated the ways in which the Asm knockout (Smpd1−/− genotype affects diet-induced NAFLD. Methods: Smpd1−/− mice and wild type controls were fed either a standard or Western diet (WD for 6 weeks. Liver and adipose tissue morphology and mRNA expression were assessed. Quantitative proteome analysis of liver tissue was performed. Expression of selected genes was quantified in adipose and liver tissue of obese NAFLD patients. Results: Although Smpd1−/− mice exhibited basal steatosis with normal chow, no aggravation of NAFLD-type injury was observed with a Western diet. This protective effect was associated with the absence of adipocyte hypertrophy and the increased expression of genes associated with brown adipocyte differentiation. In white adipose tissue from obese patients with NAFLD, no expression of these genes was detectable. To further elucidate which pathways in liver tissue may be affected by Smpd1−/−, we performed an unbiased proteome analysis. Protein expression in WD-fed Smpd1−/− mice indicated a reduction in Rictor (mTORC2 activity; this reduction was confirmed by diminished Akt phosphorylation and altered mRNA expression of Rictor target genes. Conclusion: These findings indicate that the protective effect of Asm deficiency on diet-induced steatosis is conferred by alterations in adipocyte morphology and lipid metabolism and by reductions in Rictor activation. Keywords: Ceramide, NAFLD, Rictor, Western diet

  19. Pasture v. standard dairy cream in high-fat diet-fed mice: improved metabolic outcomes and stronger intestinal barrier.

    Science.gov (United States)

    Benoit, Bérengère; Plaisancié, Pascale; Géloën, Alain; Estienne, Monique; Debard, Cyrille; Meugnier, Emmanuelle; Loizon, Emmanuelle; Daira, Patricia; Bodennec, Jacques; Cousin, Olivier; Vidal, Hubert; Laugerette, Fabienne; Michalski, Marie-Caroline

    2014-08-28

    Dairy products derived from the milk of cows fed in pastures are characterised by higher amounts of conjugated linoleic acid and α-linolenic acid (ALA), and several studies have shown their ability to reduce cardiovascular risk. However, their specific metabolic effects compared with standard dairy in a high-fat diet (HFD) context remain largely unknown; this is what we determined in the present study with a focus on the metabolic and intestinal parameters. The experimental animals were fed for 12 weeks a HFD containing 20 % fat in the form of a pasture dairy cream (PDC) or a standard dairy cream (SDC). Samples of plasma, liver, white adipose tissue, duodenum, jejunum and colon were analysed. The PDC mice, despite a higher food intake, exhibited lower fat mass, plasma and hepatic TAG concentrations, and inflammation in the adipose tissue than the SDC mice. Furthermore, they exhibited a higher expression of hepatic PPARα mRNA and adipose tissue uncoupling protein 2 mRNA, suggesting an enhanced oxidative activity of the tissues. These results might be explained, in part, by the higher amounts of ALA in the PDC diet and in the liver and adipose tissue of the PDC mice. Moreover, the PDC diet was found to increase the proportions of two strategic cell populations involved in the protective function of the intestinal epithelium, namely Paneth and goblet cells in the small intestine and colon, compared with the SDC diet. In conclusion, a PDC HFD leads to improved metabolic outcomes and to a stronger gut barrier compared with a SDC HFD. This may be due, at least in part, to the protective mechanisms induced by specific lipids.

  20. Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice

    Science.gov (United States)

    Wang, Jingjing; Tang, Huang; Zhang, Chenhong; Zhao, Yufeng; Derrien, Muriel; Rocher, Emilie; van-Hylckama Vlieg, Johan ET; Strissel, Katherine; Zhao, Liping; Obin, Martin; Shen, Jian

    2015-01-01

    Structural disruption of gut microbiota and associated inflammation are considered important etiological factors in high fat diet (HFD)-induced metabolic syndrome (MS). Three candidate probiotic strains, Lactobacillus paracasei CNCM I-4270 (LC), L. rhamnosus I-3690 (LR) and Bifidobacterium animalis subsp. lactis I-2494 (BA), were individually administered to HFD-fed mice (108 cells day−1) for 12 weeks. Each strain attenuated weight gain and macrophage infiltration into epididymal adipose tissue and markedly improved glucose–insulin homeostasis and hepatic steatosis. Weighted UniFrac principal coordinate analysis based on 454 pyrosequencing of fecal bacterial 16S rRNA genes showed that the probiotic strains shifted the overall structure of the HFD-disrupted gut microbiota toward that of lean mice fed a normal (chow) diet. Redundancy analysis revealed that abundances of 83 operational taxonomic units (OTUs) were altered by probiotics. Forty-nine altered OTUs were significantly correlated with one or more host MS parameters and were designated ‘functionally relevant phylotypes'. Thirteen of the 15 functionally relevant OTUs that were negatively correlated with MS phenotypes were promoted, and 26 of the 34 functionally relevant OTUs that were positively correlated with MS were reduced by at least one of the probiotics, but each strain changed a distinct set of functionally relevant OTUs. LC and LR increased cecal acetate but did not affect circulating lipopolysaccharide-binding protein; in contrast, BA did not increase acetate but significantly decreased adipose and hepatic tumor necrosis factor-α gene expression. These results suggest that Lactobacillus and Bifidobacterium differentially attenuate obesity comorbidities in part through strain-specific impacts on MS-associated phylotypes of gut microbiota in mice. PMID:24936764

  1. Voluntary running of defined distances reduces body adiposity and its associated inflammation in C57BL/6 mice fed a high-fat diet.

    Science.gov (United States)

    Yan, Lin; Sundaram, Sneha; Nielsen, Forrest H

    2017-11-01

    This study investigated the effect of voluntary running of defined distances on body adiposity in male C57BL/6 mice fed a high-fat diet. Mice were assigned to 6 groups and fed a standard AIN93G diet (sedentary) or a modified high-fat AIN93G diet (sedentary; unrestricted running; or 75%, 50%, or 25% of unrestricted running) for 12 weeks. The average running distance was 8.3, 6.3, 4.2, and 2.1 km/day for the unrestricted, 75%, 50%, and 25% of unrestricted runners, respectively. Body adiposity was 46% higher in sedentary mice when fed the high-fat diet instead of the standard diet. Running decreased adiposity in mice fed the high-fat diet in a dose-dependent manner but with no significant difference between sedentary mice and those running 2.1 km/day. In sedentary mice, the high-fat instead of the standard diet increased insulin resistance, hepatic triacylglycerides, and adipose and plasma concentrations of leptin and monocyte chemotactic protein-1 (MCP-1). Running reduced these variables in a dose-dependent manner. Adipose adiponectin was lowest in sedentary mice fed the high-fat diet; running raised adiponectin in both adipose tissue and plasma. Running 8.3 and 6.3 km/day had the greatest, but similar, effects on the aforementioned variables. Running 2.1 km/day did not affect these variables except, when compared with sedentariness, it significantly decreased MCP-1. The findings showed that running 6.3 kg/day was optimal for reducing adiposity and associated inflammation that was increased in mice by feeding a high-fat diet. The findings suggest that voluntary running of defined distances may counteract the obesogenic effects of a high-fat diet.

  2. Comparisons of [{sup 18}F]-1-deoxy-1-fluoro-scyllo-inositol with [{sup 18}F]-FDG for PET imaging of inflammation, breast and brain cancer xenografts in athymic mice

    Energy Technology Data Exchange (ETDEWEB)

    McLarty, Kristin; Moran, Matthew D. [Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8 (Canada); PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Scollard, Deborah A.; Chan, Conrad [Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Sabha, Nesrin; Mukherjee, Joydeep; Guha, Abhijit [Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, University of Toronto, ON, M5G 1X8 (Canada); McLaurin, JoAnne [Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5S 3H2 (Canada); Nitz, Mark [Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6 (Canada); Houle, Sylvain; Wilson, Alan A. [Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8 (Canada); PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Reilly, Raymond M., E-mail: raymond.reilly@utoronto.ca [Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Toronto General Research Institute, University Health Network, Toronto, ON, M5G 2M9 (Canada); Department of Medical Imaging, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Vasdev, Neil, E-mail: neil.vasdev@utoronto.ca [Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8 (Canada); PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada)

    2011-10-15

    Introduction: The aim of the study was to evaluate the uptake of [{sup 18}F]-1-deoxy-1-fluoro-scyllo-inositol ([{sup 18}F]-scyllo-inositol) in human breast cancer (BC) and glioma xenografts, as well as in inflammatory tissue, in immunocompromised mice. Studies of [{sup 18}F]-2-fluoro-2-deoxy-D-glucose ([{sup 18}F]-FDG) under the same conditions were also performed. Methods: Radiosynthesis of [{sup 18}F]-scyllo-inositol was automated using a commercial synthesis module. Tumour, inflammation and normal tissue uptakes were evaluated by biodistribution studies and positron emission tomography (PET) imaging using [{sup 18}F]-scyllo-inositol and [{sup 18}F]-FDG in mice bearing subcutaneous MDA-MB-231, MCF-7 and MDA-MB-361 human BC xenografts, intracranial U-87 MG glioma xenografts and turpentine-induced inflammation. Results: The radiosynthesis of [{sup 18}F]-scyllo-inositol was automated with good radiochemical yields (24.6%{+-}3.3%, uncorrected for decay, 65{+-}2 min, n=5) and high specific activities ({>=}195 GBq/{mu}mol at end of synthesis). Uptake of [{sup 18}F]-scyllo-inositol was greatest in MDA-MB-231 BC tumours and was comparable to that of [{sup 18}F]-FDG (4.6{+-}0.5 vs. 5.5{+-}2.1 %ID/g, respectively; P=.40), but was marginally lower in MDA-MB-361 and MCF-7 xenografts. Uptake of [{sup 18}F]-scyllo-inositol in inflammation was lower than [{sup 18}F]-FDG. While uptake of [{sup 18}F]-scyllo-inositol in intracranial U-87 MG xenografts was significantly lower than [{sup 18}F]-FDG, the tumour-to-brain ratio was significantly higher (10.6{+-}2.5 vs. 2.1{+-}0.6; P=.001). Conclusions: Consistent with biodistribution studies, uptake of [{sup 18}F]-scyllo-inositol was successfully visualized by PET imaging in human BC and glioma xenografts, with lower accumulation in inflammatory tissue than [{sup 18}F]-FDG. The tumour-to-brain ratio of [{sup 18}F]-scyllo-inositol was also significantly higher than that of [{sup 18}F]-FDG for visualizing intracranial glioma xenografts in

  3. Comparisons of [18F]-1-deoxy-1-fluoro-scyllo-inositol with [18F]-FDG for PET imaging of inflammation, breast and brain cancer xenografts in athymic mice

    International Nuclear Information System (INIS)

    McLarty, Kristin; Moran, Matthew D.; Scollard, Deborah A.; Chan, Conrad; Sabha, Nesrin; Mukherjee, Joydeep; Guha, Abhijit; McLaurin, JoAnne; Nitz, Mark; Houle, Sylvain; Wilson, Alan A.; Reilly, Raymond M.; Vasdev, Neil

    2011-01-01

    Introduction: The aim of the study was to evaluate the uptake of [ 18 F]-1-deoxy-1-fluoro-scyllo-inositol ([ 18 F]-scyllo-inositol) in human breast cancer (BC) and glioma xenografts, as well as in inflammatory tissue, in immunocompromised mice. Studies of [ 18 F]-2-fluoro-2-deoxy-D-glucose ([ 18 F]-FDG) under the same conditions were also performed. Methods: Radiosynthesis of [ 18 F]-scyllo-inositol was automated using a commercial synthesis module. Tumour, inflammation and normal tissue uptakes were evaluated by biodistribution studies and positron emission tomography (PET) imaging using [ 18 F]-scyllo-inositol and [ 18 F]-FDG in mice bearing subcutaneous MDA-MB-231, MCF-7 and MDA-MB-361 human BC xenografts, intracranial U-87 MG glioma xenografts and turpentine-induced inflammation. Results: The radiosynthesis of [ 18 F]-scyllo-inositol was automated with good radiochemical yields (24.6%±3.3%, uncorrected for decay, 65±2 min, n=5) and high specific activities (≥195 GBq/μmol at end of synthesis). Uptake of [ 18 F]-scyllo-inositol was greatest in MDA-MB-231 BC tumours and was comparable to that of [ 18 F]-FDG (4.6±0.5 vs. 5.5±2.1 %ID/g, respectively; P=.40), but was marginally lower in MDA-MB-361 and MCF-7 xenografts. Uptake of [ 18 F]-scyllo-inositol in inflammation was lower than [ 18 F]-FDG. While uptake of [ 18 F]-scyllo-inositol in intracranial U-87 MG xenografts was significantly lower than [ 18 F]-FDG, the tumour-to-brain ratio was significantly higher (10.6±2.5 vs. 2.1±0.6; P=.001). Conclusions: Consistent with biodistribution studies, uptake of [ 18 F]-scyllo-inositol was successfully visualized by PET imaging in human BC and glioma xenografts, with lower accumulation in inflammatory tissue than [ 18 F]-FDG. The tumour-to-brain ratio of [ 18 F]-scyllo-inositol was also significantly higher than that of [ 18 F]-FDG for visualizing intracranial glioma xenografts in NOD SCID mice, giving a better contrast. -- Graphical Abstract: Display Omitted

  4. 17β-estradiol increases liver and serum docosahexaenoic acid in mice fed varying levels of α-linolenic acid.

    Science.gov (United States)

    Mason, Julie K; Kharotia, Shikhil; Wiggins, Ashleigh K A; Kitson, Alex P; Chen, Jianmin; Bazinet, Richard P; Thompson, Lilian U

    2014-08-01

    Docosahexaenoic acid (DHA) is considered to be important for cardiac and brain function, and 17β-estradiol (E2) appears to increase the conversion of α-linolenic acid (ALA) into DHA. However, the effect of varying ALA intake on the positive effect of E2 on DHA synthesis is not known. Therefore, the objective of this study was to investigate the effects of E2 supplementation on tissue and serum fatty acids in mice fed a low-ALA corn oil-based diet (CO, providing 0.6 % fatty acids as ALA) or a high ALA flaxseed meal-based diet (FS, providing 11.2 % ALA). Ovariectomized mice were implanted with a slow-release E2 pellet at 3 weeks of age and half the mice had the pellet removed at 7 weeks of age. Mice were then randomized onto either the CO or FS diet. After 4 weeks, the DHA concentration was measured in serum, liver and brain. A significant main effect of E2 was found for liver and serum DHA, corresponding to 25 and 15 % higher DHA in livers of CO and FS rats, respectively, and 19 and 13 % in serum of CO and FS rats, respectively, compared to unsupplemented mice. There was no effect of E2 on brain DHA. E2 results in higher DHA in serum and liver, at both levels of dietary ALA investigated presently, suggesting that higher ALA intake may result in higher DHA in individuals with higher E2 status.

  5. Eplerenone ameliorates the phenotypes of metabolic syndrome with NASH in liver-specific SREBP-1c Tg mice fed high-fat and high-fructose diet.

    Science.gov (United States)

    Wada, Tsutomu; Miyashita, Yusuke; Sasaki, Motohiro; Aruga, Yusuke; Nakamura, Yuto; Ishii, Yoko; Sasahara, Masakiyo; Kanasaki, Keizo; Kitada, Munehiro; Koya, Daisuke; Shimano, Hitoshi; Tsuneki, Hiroshi; Sasaoka, Toshiyasu

    2013-12-01

    Because the renin-angiotensin-aldosterone system has been implicated in the development of insulin resistance and promotion of fibrosis in some tissues, such as the vasculature, we examined the effect of eplerenone, a selective mineralocorticoid receptor (MR) antagonist, on nonalcoholic steatohepatitis (NASH) and metabolic phenotypes in a mouse model reflecting metabolic syndrome in humans. We adopted liver-specific transgenic (Tg) mice overexpressing the active form of sterol response element binding protein-1c (SREBP-1c) fed a high-fat and fructose diet (HFFD) as the animal model in the present study. When wild-type (WT) C57BL/6 and liver-specific SREBP-1c Tg mice grew while being fed HFFD for 12 wk, body weight and epididymal fat weight increased in both groups with an elevation in blood pressure and dyslipidemia. Glucose intolerance and insulin resistance were also observed. Adipose tissue hypertrophy and macrophage infiltration with crown-like structure formation were also noted in mice fed HFFD. Interestingly, the changes noted in both genotypes fed HFFD were significantly ameliorated with eplerenone. HFFD-fed Tg mice exhibited the histological features of NASH in the liver, including macrovesicular steatosis and fibrosis, whereas HFFD-fed WT mice had hepatic steatosis without apparent fibrotic changes. Eplerenone effectively ameliorated these histological abnormalities. Moreover, the direct suppressive effects of eplerenone on lipopolysaccharide-induced TNFα production in the presence and absence of aldosterone were observed in primary-cultured Kupffer cells and bone marrow-derived macrophages. These results indicated that eplerenone prevented the development of NASH and metabolic abnormalities in mice by inhibiting inflammatory responses in both Kupffer cells and macrophages.

  6. Ufmylation and FATylation pathways are downregulated in human alcoholic and nonalcoholic steatohepatitis, and mice fed DDC, where Mallory-Denk bodies (MDBs) form.

    Science.gov (United States)

    Liu, H; Li, J; Tillman, B; French, B A; French, S W

    2014-08-01

    We previously reported the mechanisms involved in the formation of Mallory-Denk bodies (MDBs) in mice fed DDC. To further provide clinical evidence as to how ubiquitin-like protein (Ubls) modification, gene transcript expression in Ufmylation and FATylation were investigated in human archived formalin-fixed, paraffin-embedded (FFPE) liver biopsies and frozen liver sections from DDC re-fed mice were used. Real-time PCR analysis showed that all Ufmylation molecules (Ufm1, Uba5, Ufc1, Ufl1 and UfSPs) were significantly downregulated, both in DDC re-fed mice livers and patients' livers where MDBs had formed, indicating that gene transcript changes were limited to MDB-forming livers where the protein quality control system was downregulated. FAT10 and subunits of the immunoproteasome (LMP2 and LMP7) were both upregulated as previously shown. An approximate 176- and 5-fold upregulation (respectively) of FAT10 was observed in the DDC re-fed mice liver and in the livers of human alcoholic hepatitis with MDBs present, implying that there was an important role played by this gene. The FAT10-specific E1 and E2 enzymes Uba6 and USE1, however, were found to be downregulated both in patients' livers and in the liver of DDC re-fed mice. Interestedly, the downregulation of mRNA levels was proportionate to MDB abundance in the liver tissues. Our results show the first systematic demonstration of transcript regulation of Ufmylation and FATylation in the liver of patients who form MDBs, where protein quality control is downregulated. This was also shown in the livers of DDC re-fed mice where MDBs had formed. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Oxidative costs of reproduction: Oxidative stress in mice fed standard and low antioxidant diets.

    Science.gov (United States)

    Vaanholt, L M; Milne, A; Zheng, Y; Hambly, C; Mitchell, S E; Valencak, T G; Allison, D B; Speakman, J R

    2016-02-01

    Lactation is one of the most energetically expensive behaviours, and trade-offs may exist between the energy devoted to it and somatic maintenance, including protection against oxidative damage. However, conflicting data exist for the effects of reproduction on oxidative stress. In the wild, a positive relationship is often observed, but in laboratory studies oxidative damage is often lower in lactating than in non-breeding animals. We hypothesised that this discrepancy may exist because during lactation food intake increases many-fold resulting in a large increase in the intake of dietary antioxidants which are typically high in laboratory rodent chow where they are added as a preservative. We supplied lactating and non-breeding control mice with either a standard or low antioxidant diet and studied how this affected the activity of endogenous antioxidants (catalase, superoxide dismutase; SOD, and glutathione peroxidise; GPx) and oxidative damage to proteins (protein carbonyls, PC) in liver and brain tissue. The low antioxidant diet did not significantly affect activities of antioxidant enzymes in brain or liver, and generally did not result in increased protein damage, except in livers of control mice on low antioxidant diet. Catalase activity, but not GPx or SOD, was decreased in both control and lactating mice on the low antioxidant diet. Lactating mice had significantly reduced oxidative damage to both liver and brain compared to control mice, independent of the diet they were given. In conclusion, antioxidant content of the diet did not affect oxidative stress in control or reproductive mice, and cannot explain the previously observed reduction in oxidative stress in lactating mammals studied in the laboratory. The reduced oxidative stress in the livers of lactating mice even under low antioxidant diet treatment was consistent with the 'shielding' hypothesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Antilithiasic and Hypolipidaemic Effects of Raphanus sativus L. var. niger on Mice Fed with a Lithogenic Diet

    Science.gov (United States)

    Castro-Torres, Ibrahim Guillermo; Naranjo-Rodríguez, Elia Brosla; Domínguez-Ortíz, Miguel Ángel; Gallegos-Estudillo, Janeth; Saavedra-Vélez, Margarita Virginia

    2012-01-01

    In Mexico, Raphanus sativus L. var. niger (black radish) has uses for the treatment of gallstones and for decreasing lipids serum levels. We evaluate the effect of juice squeezed from black radish root in cholesterol gallstones and serum lipids of mice. The toxicity of juice was analyzed according to the OECD guidelines. We used female C57BL/6 mice fed with a lithogenic diet. We performed histopathological studies of gallbladder and liver, and measured concentrations of cholesterol, HDL cholesterol and triglycerides. The juice can be considered bioactive and non-toxic; the lithogenic diet significantly induced cholesterol gallstones; increased cholesterol and triglycerides levels, and decreased HDL levels; gallbladder wall thickness increased markedly, showing epithelial hyperplasia and increased liver weight. After treatment with juice for 6 days, cholesterol gallstones were eradicated significantly in the gallbladder of mice; cholesterol and triglycerides levels decreased too, and there was also an increase in levels of HDL (P < 0.05). Gallbladder tissue continued to show epithelial hyperplasia and granulocyte infiltration; liver tissue showed vacuolar degeneration. The juice of black radish root has properties for treatment of cholesterol gallstones and for decreasing serum lipids levels; therefore, we confirm in a preclinical study the utility that people give it in traditional medicine. PMID:23093836

  9. High density lipoproteins improve insulin sensitivity in high-fat diet-fed mice by suppressing hepatic inflammation[S

    Science.gov (United States)

    McGrath, Kristine C.; Li, Xiao Hong; Whitworth, Phillippa T.; Kasz, Robert; Tan, Joanne T.; McLennan, Susan V.; Celermajer, David S.; Barter, Philip J.; Rye, Kerry-Anne; Heather, Alison K.

    2014-01-01

    Obesity-induced liver inflammation can drive insulin resistance. HDL has anti-inflammatory properties, so we hypothesized that low levels of HDL would perpetuate inflammatory responses in the liver and that HDL treatment would suppress liver inflammation and insulin resistance. The aim of this study was to investigate the effects of lipid-free apoAI on hepatic inflammation and insulin resistance in mice. We also investigated apoAI as a component of reconstituted HDLs (rHDLs) in hepatocytes to confirm results we observed in vivo. To test our hypothesis, C57BL/6 mice were fed a high-fat diet (HFD) for 16 weeks and administered either saline or lipid-free apoAI. Injections of lipid-free apoAI twice a week for 2 or 4 weeks with lipid-free apoAI resulted in: i) improved insulin sensitivity associated with decreased systemic and hepatic inflammation; ii) suppression of hepatic mRNA expression for key transcriptional regulators of lipogenic gene expression; and iii) suppression of nuclear factor κB (NF-κB) activation. Human hepatoma HuH-7 cells exposed to rHDLs showed suppressed TNFα-induced NF-κB activation, correlating with decreased NF-κB target gene expression. We conclude that apoAI suppresses liver inflammation in HFD mice and improves insulin resistance via a mechanism that involves a downregulation of NF-κB activation. PMID:24347528

  10. Excessive Vitamin E Intake Does Not Cause Bone Loss in Male or Ovariectomized Female Mice Fed Normal or High-Fat Diets.

    Science.gov (United States)

    Ikegami, Hiroko; Kawawa, Rie; Ichi, Ikuyo; Ishikawa, Tomoko; Koike, Taisuke; Aoki, Yoshinori; Fujiwara, Yoko

    2017-10-01

    Background: Animal studies on the effects of vitamin E on bone health have yielded conflicting and inconclusive results, and to our knowledge, no studies have addressed the effect of vitamin E on bone in animals consuming a high-fat diet (HFD). Objective: This study aimed to evaluate the effect of excessive vitamin E on bone metabolism in normal male mice and ovariectomized female mice fed a normal diet (ND) or HFD. Methods: In the first 2 experiments, 7-wk-old male mice were fed an ND (16% energy from fat) containing 75 (control), 0 (vitamin E-free), or 1000 (high vitamin E) mg vitamin E/kg (experiment 1) or an HFD (46% energy from fat) containing 0, 200, 500, or 1000 mg vitamin E/kg (experiment 2) for 18 wk. In the third experiment, 7-wk-old sham-operated or ovariectomized female mice were fed the ND (75 mg vitamin E/kg) or HFD containing 0 or 1000 mg vitamin E/kg for 8 wk. At the end of the feeding period, blood and femurs were collected to measure bone turnover markers and analyze histology and microcomputed tomography. Results: In experiments 1 and 2, vitamin E intake had no effect on plasma alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) activity, or bone formation, resorption, or volume in femurs in mice fed the ND or HFDs. In experiment 3, bone volume was significantly reduced (85%) in ovariectomized mice compared with that in sham-operated mice ( P vitamin E/kg. Conclusions: The results suggest that excess vitamin E intake does not cause bone loss in normal male mice or in ovariectomized or sham-operated female mice, regardless of dietary fat content. © 2017 American Society for Nutrition.

  11. Body weight considerations in the B6C3F1 mouse and the use of dietary control to standardize background tumor incidence in chronic bioassays

    International Nuclear Information System (INIS)

    Leakey, Julian E.A.; Seng, John E.; Allaben, William T.

    2003-01-01

    In B6C3F 1 mice, the rate of body growth influences susceptibility to liver neoplasia and large variations in body weight can complicate the interpretation of bioassay data. The relationship between body weight and liver tumor incidence was calculated for historical control populations of male and female ad libitum-fed mice (approx. 2750 and 2300 animals, respectively) and in populations of male and female mice which had been subjected to forced body weight reduction due to either dietary restriction or exposure to noncarcinogenic chemicals (approx. 1600 and 1700, respectively). Resulting tumor risk data were then used to construct idealized weight curves for male and female B6C3F 1 mice; these curves predict a terminal background liver tumor incidence of 15-20%. Use of dietary control to manipulate body growth of male B6C3F 1 mice to fit the idealized weight curve was evaluated in a 2-year bioassay of chloral hydrate. Cohorts of mice were successfully maintained at weights approximating their idealized target weights throughout the study. These mice exhibited less body weight variation than their ad libitum-fed counterparts (e.g., standard deviations of body weight were 1.4 and 3.4 g for respective control groups at 36 weeks). Historical control body weight and tumor risk data from the two male mouse populations were utilized to predict background liver tumor rates for each experimental group of the chloral hydrate study. The predicted background tumor rates closely matched the observed rates for both the dietary controlled and ad libitum-fed chloral hydrate control groups when each mouse was evaluated according to either its weekly food consumption or its weekly change in body weight

  12. An integrative transcriptomic approach to identify depot differences in genes and microRNAs in adipose tissues from high fat fed mice.

    Science.gov (United States)

    Wijayatunga, Nadeeja N; Pahlavani, Mandana; Kalupahana, Nishan S; Kottapalli, Kameswara Rao; Gunaratne, Preethi H; Coarfa, Cristian; Ramalingam, Latha; Moustaid-Moussa, Naima

    2018-02-06

    Obesity contributes to metabolic disorders such as diabetes and cardiovascular disease. Characterization of differences between the main adipose tissue depots, white (WAT) [including subcutaneous (SAT) and visceral adipose tissue (VAT)] and brown adipose tissue (BAT) helps to identify their roles in obesity. Thus, we studied depot-specific differences in whole transcriptome and miRNA profiles of SAT, VAT and BAT from high fat diet (HFD/45% of calories from fat) fed mice using RNA sequencing and small RNA-Seq. Using quantitative real-time polymerase chain reaction, we validated depot-specific differences in endoplasmic reticulum (ER) stress related genes and miRNAs using mice fed a HFD vs. low fat diet (LFD/10% of calories from fat). According to the transcriptomic analysis, lipogenesis, adipogenesis, inflammation, endoplasmic reticulum (ER) stress and unfolded protein response (UPR) were higher in VAT compared to BAT, whereas energy expenditure, fatty acid oxidation and oxidative phosphorylation were higher in BAT than in VAT of the HFD fed mice. In contrast to BAT, ER stress marker genes were significantly upregulated in VAT of HFD fed mice than the LFD fed mice. For the first time, we report depot specific differences in ER stress related miRNAs including; downregulation of miR-125b-5p, upregulation miR-143-3p, and miR-222-3p in VAT following HFD and upregulation of miR-30c-2-3p only in BAT following a HFD in mice than the LFD mice. In conclusion, HFD differentially regulates miRNAs and genes in different adipose depots with significant induction of genes related to lipogenesis, adipogenesis, inflammation, ER stress, and UPR in WAT compared to BAT.

  13. Effects of dietary heme iron and exercise training on abdominal fat accumulation and lipid metabolism in high-fat diet-fed mice.

    Science.gov (United States)

    Katsumura, Masanori; Takagi, Shoko; Oya, Hana; Tamura, Shohei; Saneyasu, Takaoki; Honda, Kazuhisa; Kamisoyama, Hiroshi

    2017-08-01

    Animal by-products can be recycled and used as sources of essential nutrients. Water-soluble heme iron (WSHI), a functional food additive for supplementing iron, is produced by processing animal blood. In this study, we investigated the effects of dietary supplementation of 3% WSHI and exercise training for 4 weeks on the accumulation of abdominal fat and lipid metabolism in mice fed high-fat diet. Exercise-trained mice had significantly less perirenal adipose tissue, whereas WSHI-fed mice tended to have less epididymal adipose tissue. In addition, total weight of abdominal adipose tissues was significantly decreased in the Exercise + WSHI group. Dietary WSHI significantly increased the messenger RNA (mRNA) levels of lipoprotein lipase and hormone-sensitive lipase. WSHI-fed mice also tended to show increased mRNA levels of adipose triglyceride lipase in their epididymal adipose tissue. Dietary WSHI also significantly decreased the mRNA levels of fatty acid oxidation-related enzymes in the liver, but did not influence levels in the Gastrocnemius muscle. Exercise training did not influence the mRNA levels of lipid metabolism-related enzymes in the epididymal adipose tissue, liver or the Gastrocnemius muscle. These findings suggest that the accumulation of abdominal fat can be efficiently decreased by the combination of dietary WSHI and exercise training in mice fed high-fat diet. © 2016 Japanese Society of Animal Science.

  14. Hepatic lipid profiling of deer mice fed ethanol using 1H and 31P NMR spectroscopy: A dose-dependent subchronic study

    International Nuclear Information System (INIS)

    Fernando, Harshica; Bhopale, Kamlesh K.; Boor, Paul J.; Ansari, G.A. Shakeel; Kaphalia, Bhupendra S.

    2012-01-01

    Chronic alcohol abuse is a 2nd major cause of liver disease resulting in significant morbidity and mortality. Alcoholic liver disease (ALD) is characterized by a wide spectrum of pathologies starting from fat accumulation (steatosis) in early reversible stage to inflammation with or without fibrosis and cirrhosis in later irreversible stages. Previously, we reported significant steatosis in the livers of hepatic alcohol dehydrogenase (ADH)-deficient (ADH − ) vs. hepatic ADH-normal (ADH + ) deer mice fed 4% ethanol daily for 2 months [Bhopale et al., 2006, Alcohol 39, 179–188]. However, ADH − deer mice fed 4% ethanol also showed a significant mortality. Therefore, a dose-dependent study was conducted to understand the mechanism and identify lipid(s) involved in the development of ethanol-induced fatty liver. ADH − and ADH + deer mice fed 1, 2 or 3.5% ethanol daily for 2 months and fatty infiltration in the livers were evaluated by histology and by measuring dry weights of extracted lipids. Lipid metabolomic changes in extracted lipids were determined by proton ( 1 H) and 31 phosphorus ( 31 P) nuclear magnetic resonance (NMR) spectroscopy. The NMR data was analyzed by hierarchical clustering (HC) and principle component analysis (PCA) for pattern recognition. Extensive vacuolization by histology and significantly increased dry weights of total lipids found only in the livers of ADH − deer mice fed 3.5% ethanol vs. pair-fed controls suggest a dose-dependent formation of fatty liver in ADH − deer mouse model. Analysis of NMR data of ADH − deer mice fed 3.5% ethanol vs. pair-fed controls shows increases for total cholesterol, esterified cholesterol, fatty acid methyl esters (FAMEs), triacylglycerides and unsaturation, and decreases for free cholesterol, phospholipids and allylic and diallylic protons. Certain classes of neutral lipids (cholesterol esters, fatty acyl chain (-COCH 2 -) and FAMEs) were also mildly increased in ADH − deer mice fed 1 or 2

  15. Hepatic lipid profiling of deer mice fed ethanol using {sup 1}H and {sup 31}P NMR spectroscopy: A dose-dependent subchronic study

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, Harshica; Bhopale, Kamlesh K.; Boor, Paul J.; Ansari, G.A. Shakeel; Kaphalia, Bhupendra S., E-mail: bkaphali@utmb.edu

    2012-11-01

    Chronic alcohol abuse is a 2nd major cause of liver disease resulting in significant morbidity and mortality. Alcoholic liver disease (ALD) is characterized by a wide spectrum of pathologies starting from fat accumulation (steatosis) in early reversible stage to inflammation with or without fibrosis and cirrhosis in later irreversible stages. Previously, we reported significant steatosis in the livers of hepatic alcohol dehydrogenase (ADH)-deficient (ADH{sup −}) vs. hepatic ADH-normal (ADH{sup +}) deer mice fed 4% ethanol daily for 2 months [Bhopale et al., 2006, Alcohol 39, 179–188]. However, ADH{sup −} deer mice fed 4% ethanol also showed a significant mortality. Therefore, a dose-dependent study was conducted to understand the mechanism and identify lipid(s) involved in the development of ethanol-induced fatty liver. ADH{sup −} and ADH{sup +} deer mice fed 1, 2 or 3.5% ethanol daily for 2 months and fatty infiltration in the livers were evaluated by histology and by measuring dry weights of extracted lipids. Lipid metabolomic changes in extracted lipids were determined by proton ({sup 1}H) and {sup 31}phosphorus ({sup 31}P) nuclear magnetic resonance (NMR) spectroscopy. The NMR data was analyzed by hierarchical clustering (HC) and principle component analysis (PCA) for pattern recognition. Extensive vacuolization by histology and significantly increased dry weights of total lipids found only in the livers of ADH{sup −} deer mice fed 3.5% ethanol vs. pair-fed controls suggest a dose-dependent formation of fatty liver in ADH{sup −} deer mouse model. Analysis of NMR data of ADH{sup −} deer mice fed 3.5% ethanol vs. pair-fed controls shows increases for total cholesterol, esterified cholesterol, fatty acid methyl esters (FAMEs), triacylglycerides and unsaturation, and decreases for free cholesterol, phospholipids and allylic and diallylic protons. Certain classes of neutral lipids (cholesterol esters, fatty acyl chain (-COCH{sub 2}-) and FAMEs) were

  16. Whey-reduced weight gain is associated with a temporary growth reduction in young mice fed a high-fat diet

    DEFF Research Database (Denmark)

    Tranberg, Britt; Madsen, Andreas N.; Hansen, Axel K.

    2015-01-01

    Whey protein consumption reportedly alleviates parameters of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey) in young mice fed a high-fat diet. We hypothesized that whey as the sole protein source reduced early weight gain associated with retarded growth...... and decreased concentration of insulin-like growth factor-1. Moreover, we hypothesized that these changes were explained by increased nitrogen loss via elevated urea production and/or increased energy expenditure. Male 5-week-old C57BL/6 mice were fed high-fat diets with the protein source being either whey......, casein or a combination of both for 5 weeks. After 1, 3 or 5 weeks, respectively, the mice were subjected to a meal challenge with measurements of blood and urinary urea before and 1 and 3 h after eating a weighed meal of their respective diets. In a subset of mice, energy expenditure was measured...

  17. Gliadin affects glucose homeostasis and intestinal metagenome in C57BL6 mice fed a high-fat diet

    DEFF Research Database (Denmark)

    Zhang, Li; Hansen, Axel Kornerup; Bahl, Martin Iain

    limited. The aim of this study was to investigate the effect of gliadin on glucose homeostasis and intestinal ecology in the mouse. Forty male C57BL/6 mice were fed a high-fat diet containing either 4% gliadin or no gliadin for 22 weeks. Gliadin consumption significantly increased the HbA1c level over......Dietary gluten and its component gliadin are well-known environmental triggers of celiac disease and important actors in type-1 diabetes, and are reported to induce alterations in the intestinal microbiota. However, research on the impact of gluten on type-2 diabetes in non-celiac subjects is more...... time, with a borderline significance of higher HOMA-IR (homeostasis model assessment of insulin resistance) after 22 weeks. Sequencing of the V3 region of the bacterial 16S rRNA genes showed that gliadin altered the abundance of 81 bacterial taxa, separating the intestinal microbial profile...

  18. Disposition and metabolism of the bisphenol analogue, bisphenol S, in Harlan Sprague Dawley rats and B6C3F1/N mice and in vitro in hepatocytes from rats, mice, and humans.

    Science.gov (United States)

    Waidyanatha, Suramya; Black, Sherry R; Snyder, Rodney W; Yueh, Yun Lan; Sutherland, Vicki; Patel, Purvi R; Watson, Scott L; Fennell, Timothy R

    2018-05-10

    With the removal of bisphenol A (BPA) from many consumer products, the potential use of alternatives such as bisphenol S (BPS) and its derivatives is causing some concerns. These studies investigated the comparative in vitro hepatic clearance and metabolism of BPS and derivatives and the disposition and metabolism of BPS in rats and mice following gavage and intravenous administration. The clearance of BPS and its derivatives was slower in human hepatocytes than in rodents. In male rats following gavage administration of 50, 150, and 500 mg/kg [ 14 C]BPS the main route of excretion was via urine; the urinary excretion decreased (72 to 48%) and the fecal excretion increased (16 to 30%) with increasing dose. The disposition was similar in female rats and male and female mice following gavage administration. Radioactivity remaining in tissues at 72 h in both species and sexes was ≤2.4%. In bile duct cannulated rats 53% of a gavage dose was secreted in bile suggesting extensive enterohepatic recirculation of [ 14 C]BPS. Following an intravenous dose in rats and mice, the pattern of excretion was similar to gavage. These data suggest that the dose excreted in feces folowing gavage administration is likely the absorbed dose. Urinary metabolites included the glucuronide and sulfate conjugates with a moderate amount of parent. The pattern of in vitro hepatic metabolsim was similar to in vivo with some difference among derivatives. These data suggest that similar to other bisphenol analogues, BPS was well absorbed following oral expsosure and extensively excreted with minimal tissue retention. Copyright © 2017. Published by Elsevier Inc.

  19. Hepatic Hazard Assessment of Silver Nanoparticle Exposure in Healthy and Chronically Alcohol Fed Mice

    DEFF Research Database (Denmark)

    Kermanizadeh, Ali; Jacobsen, Nicklas R.; Roursgaard, Martin

    2017-01-01

    effects were aggravated in the alcohol pretreated mice in comparison to controls with regards to an organ specific inflammatory response, changes in blood biochemistry, acute phase response and hepatic pathology. In addition, alcoholic disease influenced the organ’s ability for recovery post-NP challenge...

  20. Chemical derivatives of docosahexaenoic acid prevent glucose intolerance in mice fed a high-fat diet

    Czech Academy of Sciences Publication Activity Database

    Rossmeisl, Martin; Jílková, Zuzana; Jeleník, Tomáš; Hensler, Michal; Flachs, Pavel; Mohamed-Ali, V.; Bryhn, M.; Kopecký, Jan

    2007-01-01

    Roč. 31, Suppl.1 (2007), S76-S76 ISSN 0307-0565. [European congress on obesity /15./. 22.04.2007-25.04.2007, Budapest] Institutional research plan: CEZ:AV0Z50110509 Keywords : obesity * insulin resistance * DHA * C57BL/6N mice Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition

  1. The Ratio of Macronutrients, Not Caloric Intake, Dictates Cardiometabolic Health, Aging, and Longevity in Ad Libitum-Fed Mice

    Science.gov (United States)

    Solon-Biet, Samantha M.; McMahon, Aisling C.; Ballard, J. William O.; Ruohonen, Kari; Wu, Lindsay E.; Cogger, Victoria C.; Warren, Alessandra; Huang, Xin; Pichaud, Nicolas; Melvin, Richard G.; Gokarn, Rahul; Khalil, Mamdouh; Turner, Nigel; Cooney, Gregory J.; Sinclair, David A.; Raubenheimer, David; Le Couteur, David G.; Simpson, Stephen J.

    2016-01-01

    Summary The fundamental questions of what represents a macronutritionally balanced diet and how this maintains health and longevity remain unanswered. Here, the Geometric Framework, a state-space nutritional modeling method, was used to measure interactive effects of dietary energy, protein, fat, and carbohydrate on food intake, cardiometabolic phenotype, and longevity in mice fed one of 25 diets ad libitum. Food intake was regulated primarily by protein and carbohydrate content. Longevity and health were optimized when protein was replaced with carbohydrate to limit compensatory feeding for protein and suppress protein intake. These consequences are associated with hepatic mammalian target of rapamycin (mTOR) activation and mitochondrial function and, in turn, related to circulating branched-chain amino acids and glucose. Calorie restriction achieved by high-protein diets or dietary dilution had no beneficial effects on lifespan. The results suggest that longevity can be extended in ad libitum-fed animals by manipulating the ratio of macronutrients to inhibit mTOR activation. PMID:24606899

  2. Pectin penta-oligogalacturonide reduces cholesterol accumulation by promoting bile acid biosynthesis and excretion in high-cholesterol-fed mice.

    Science.gov (United States)

    Zhu, Ru-Gang; Sun, Yan-Di; Hou, Yu-Ting; Fan, Jun-Gang; Chen, Gang; Li, Tuo-Ping

    2017-06-25

    Haw pectin penta-oligogalacturonide (HPPS) has important role in improving cholesterol metabolism and promoting the conversion of cholesterol to bile acids (BA) in mice fed high-cholesterol diet (HCD). However, the mechanism is not clear. This study aims to investigate the effects of HPPS on cholesterol accumulation and the regulation of hepatic BA synthesis and transport in HCD-fed mice. Results showed that HPPS significantly decreased plasma and hepatic TC levels but increased plasma high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A-I (apoA-I) levels, compared to HCD. BA analysis showed that HPPS markedly decreased hepatic and small intestine BA levels but increased the gallbladder BA levels, and finally decreased the total BA pool size, compared to HCD. Studies of molecular mechanism revealed that HPPS promoted hepatic ATP-binding cassette transporter A1 (ABCA1), ATP-binding cassette transporter G1 (ABCG1), and scavenger receptor BI (SR-BI) expression but did not affect ATB binding cassette transporter G5/G8 (ABCG5/8) expression. HPPS inactivated hepatic farnesoid X receptor (FXR) and target genes expression, which resulted in significant increase of cholesterol 7α-hydroxylase 1 (CYP7A1) and sterol 12α-hydroxylase (CYP8B1) expression, with up-regulations of 204.2% and 33.5% for mRNA levels, respectively, compared with HCD. In addition, HPPS markedly enhanced bile salt export pump (BSEP) expression but didn't affect the sodium/taurocholate co-transporting polypeptide (NTCP) expression. In conclusion, the study revealed that HPPS reduced cholesterol accumulation by promoting BA synthesis in the liver and excretion in the feces, and might promote macrophage-to-liver reverse cholesterol transport (RCT) but did not liver-to-fecal RCT. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Alteration of strain background and a high omega-6 fat diet induces earlier onset of pancreatic neoplasia in EL-Kras transgenic mice.

    Science.gov (United States)

    Cheon, Eric C; Strouch, Matthew J; Barron, Morgan R; Ding, Yongzeng; Melstrom, Laleh G; Krantz, Seth B; Mullapudi, Bhargava; Adrian, Kevin; Rao, Sambasiva; Adrian, Thomas E; Bentrem, David J; Grippo, Paul J

    2011-06-15

    Diets containing omega-6 (ω-6) fat have been associated with increased tumor development in carcinogen-induced pancreatic cancer models. However, the effects of ω-6 fatty acids and background strain on the development of genetically-induced pancreatic neoplasia is unknown. We assessed the effects of a diet rich in ω-6 fat on the development of pancreatic neoplasia in elastase (EL)-Kras(G12D) (EL-Kras) mice in two different backgrounds. EL-Kras FVB mice were crossed to C57BL/6 (B6) mice to produce EL-Kras FVB6 F1 (or EL-Kras F1) and EL-Kras B6 congenic mice. Age-matched EL-Kras mice from each strain were compared to one another on a standard chow. Two cohorts of EL-Kras FVB and EL-Kras F1 mice were fed a 23% corn oil diet and compared to age-matched mice fed a standard chow. Pancreata were scored for incidence, frequency, and size of neoplastic lesions, and stained for the presence of mast cells to evaluate changes in the inflammatory milieu secondary to a high fat diet. EL-Kras F1 mice had increased incidence, frequency, and size of pancreatic neoplasia compared to EL-Kras FVB mice. The frequency and size of neoplastic lesions and the weight and pancreatic mast cell densities in EL-Kras F1 mice were increased in mice fed a high ω-6 fatty acid diet compared to mice fed a standard chow. We herein introduce the EL-Kras B6 mouse model which presents with increased frequency of pancreatic neoplasia compared to EL-Kras F1 mice. The phenotype in EL-Kras F1 and FVB mice is promoted by a diet rich in ω-6 fatty acid. Copyright © 2010 UICC.

  4. Comparison of particle-exposure triggered pulmonary and systemic inflammation in mice fed with three different diets.

    Science.gov (United States)

    Götz, Alexander A; Rozman, Jan; Rödel, Heiko G; Fuchs, Helmut; Gailus-Durner, Valérie; Hrabě de Angelis, Martin; Klingenspor, Martin; Stoeger, Tobias

    2011-09-27

    Obesity can be linked to disease risks such as diabetes and cardiovascular disorders, but recently, the adipose tissue (AT) macrophage also emerges as actively participating in inflammation and immune function, producing pro- and anti-inflammatory factors. Connections between the AT and chronic lung diseases, like emphysema and asthma and a protective role of adipocyte-derived proteins against acute lung injury were suggested.In this study we addressed the question, whether a diet challenge increases the inflammatory response in the alveolar and the blood compartment in response to carbon nanoparticles (CNP), as a surrogate for ambient/urban particulate air pollutants. Mice were fed a high caloric carbohydrate-rich (CA) or a fat-rich (HF) diet for six weeks and were compared to mice kept on a purified low fat (LF) diet, respectively. Bronchoalveolar lavage (BAL) and blood samples were taken 24 h after intratracheal CNP instillation and checked for cellular and molecular markers of inflammation. The high caloric diets resulted in distinct effects when compared with LF mice, respectively: CA resulted in increased body and fat mass without affecting blood cellular immunity. Conversely, HF activated the blood system, increasing lymphocyte and neutrophil counts, and resulted in slightly increased body fat content. In contrast to higher pro-inflammatory BAL Leptin in CA and HF mice, on a cellular level, both diets did not lead to an increased pro-inflammatory basal status in the alveolar compartment per se, nor did result in differences in the particle-triggered response. However both diets resulted in a disturbance of the alveolar capillary barrier as indicated by enhanced BAL protein and lactate-dehydrogenase concentrations. Systemically, reduced serum Adiponectin in HF mice might be related to the observed white blood cell increase. The increase in BAL pro-inflammatory factors in high caloric groups and reductions in serum concentrations of anti-inflammatory factors

  5. Comparison of particle-exposure triggered pulmonary and systemic inflammation in mice fed with three different diets

    Directory of Open Access Journals (Sweden)

    Hrabě de Angelis Martin

    2011-09-01

    Full Text Available Abstract Background Obesity can be linked to disease risks such as diabetes and cardiovascular disorders, but recently, the adipose tissue (AT macrophage also emerges as actively participating in inflammation and immune function, producing pro- and anti-inflammatory factors. Connections between the AT and chronic lung diseases, like emphysema and asthma and a protective role of adipocyte-derived proteins against acute lung injury were suggested. In this study we addressed the question, whether a diet challenge increases the inflammatory response in the alveolar and the blood compartment in response to carbon nanoparticles (CNP, as a surrogate for ambient/urban particulate air pollutants. Methods Mice were fed a high caloric carbohydrate-rich (CA or a fat-rich (HF diet for six weeks and were compared to mice kept on a purified low fat (LF diet, respectively. Bronchoalveolar lavage (BAL and blood samples were taken 24 h after intratracheal CNP instillation and checked for cellular and molecular markers of inflammation. Results and discussion The high caloric diets resulted in distinct effects when compared with LF mice, respectively: CA resulted in increased body and fat mass without affecting blood cellular immunity. Conversely, HF activated the blood system, increasing lymphocyte and neutrophil counts, and resulted in slightly increased body fat content. In contrast to higher pro-inflammatory BAL Leptin in CA and HF mice, on a cellular level, both diets did not lead to an increased pro-inflammatory basal status in the alveolar compartment per se, nor did result in differences in the particle-triggered response. However both diets resulted in a disturbance of the alveolar capillary barrier as indicated by enhanced BAL protein and lactate-dehydrogenase concentrations. Systemically, reduced serum Adiponectin in HF mice might be related to the observed white blood cell increase. Conclusion The increase in BAL pro-inflammatory factors in high caloric

  6. Effect of Seyoeum on Obesity, Insulin Resistance, and Nonalcoholic Fatty Liver Disease of High-Fat Diet-Fed C57BL/6 Mice

    Directory of Open Access Journals (Sweden)

    Hyun-Young Na

    2017-01-01

    Full Text Available Background. This study was performed to evaluate the effect of Seyoeum (SYE, a novel herbal meal replacement, on insulin resistance and nonalcoholic fatty liver disease (NAFLD in obese mice fed with a high-fat diet (HFD. Methods. SYE contained six kinds of herbal powder such as Coix lacryma-jobi, Oryza sativa, Sesamum indicum, Glycine max, Liriope platyphylla, and Dioscorea batatas. Male C57BL/6 mice were divided into four groups: normal chow (NC, HFD, SYE, and HFD plus SYE (HFD + SYE. The mice in groups other than NC were fed HFD for 9 weeks to induce obesity and then were fed each diet for 6 weeks. Clinical markers related to obesity, diabetes, and NAFLD were examined and gene expressions related to inflammation and insulin receptor were determined. Results. Compared with HFD group, body weight, serum glucose, serum insulin, HOMA-IR, total cholesterol, triglyceride, epididymal fat pad weight, liver weight, and inflammatory gene expression were significantly reduced in SYE group. Insulin receptor gene expression increased in SYE group. Conclusions. Based on these results, we conclude that SYE improved obesity and insulin resistance in high-fat fed obese mice. Our findings suggest that SYE could be a beneficial meal replacement through these antiobesity and anti-insulin resistance effects.

  7. In Vivo Hypocholesterolemic Effect of MARDI Fermented Red Yeast Rice Water Extract in High Cholesterol Diet Fed Mice

    Directory of Open Access Journals (Sweden)

    Swee Keong Yeap

    2014-01-01

    Full Text Available Fermented red yeast rice has been traditionally consumed as medication in Asian cuisine. This study aimed to determine the in vivo hypocholesterolemic and antioxidant effects of fermented red yeast rice water extract produced using Malaysian Agricultural Research and Development Institute (MARDI Monascus purpureus strains in mice fed with high cholesterol diet. Absence of monacolin-k, lower level of γ-aminobutyric acid (GABA, higher content of total amino acids, and antioxidant activities were detected in MARDI fermented red yeast rice water extract (MFRYR. In vivo MFRYR treatment on hypercholesterolemic mice recorded similar lipid lowering effect as commercial red yeast rice extract (CRYR as it helps to reduce the elevated serum liver enzyme and increased the antioxidant levels in liver. This effect was also associated with the upregulation of apolipoproteins-E and inhibition of Von Willebrand factor expression. In summary, MFRYR enriched in antioxidant and amino acid without monacolin-k showed similar hypocholesterolemic effect as CRYR that was rich in monacolin-k and GABA.

  8. In Vivo Hypocholesterolemic Effect of MARDI Fermented Red Yeast Rice Water Extract in High Cholesterol Diet Fed Mice

    Science.gov (United States)

    Beh, Boon Kee; Kong, Joan; Ho, Wan Yong; Mohd Yusof, Hamidah; Hussin, Aminuddin bin; Jaganath, Indu Bala; Alitheen, Noorjahan Banu; Jamaluddin, Anisah

    2014-01-01

    Fermented red yeast rice has been traditionally consumed as medication in Asian cuisine. This study aimed to determine the in vivo hypocholesterolemic and antioxidant effects of fermented red yeast rice water extract produced using Malaysian Agricultural Research and Development Institute (MARDI) Monascus purpureus strains in mice fed with high cholesterol diet. Absence of monacolin-k, lower level of γ-aminobutyric acid (GABA), higher content of total amino acids, and antioxidant activities were detected in MARDI fermented red yeast rice water extract (MFRYR). In vivo MFRYR treatment on hypercholesterolemic mice recorded similar lipid lowering effect as commercial red yeast rice extract (CRYR) as it helps to reduce the elevated serum liver enzyme and increased the antioxidant levels in liver. This effect was also associated with the upregulation of apolipoproteins-E and inhibition of Von Willebrand factor expression. In summary, MFRYR enriched in antioxidant and amino acid without monacolin-k showed similar hypocholesterolemic effect as CRYR that was rich in monacolin-k and GABA. PMID:25031606

  9. BSN723T Prevents Atherosclerosis and Weight Gain in ApoE Knockout Mice Fed a Western Diet.

    Science.gov (United States)

    Williams, Jarrod; Ensor, Charles; Gardner, Scott; Smith, Rebecca; Lodder, Robert

    This study tests the hypothesis that BSN723T can prevent the development of hyperlipidemia and atherosclerosis in ApoE -/- knockout mice fed a Western (high fat, high cholesterol, and high sucrose) diet. BSN723T is a combination drug therapy consisting of D-tagatose and dihydromyricetin (BSN723). D-tagatose has an antihyperglycemic effect in animal and human studies and shows promise as a treatment for type 2 diabetes and obesity. Many claims regarding BSN723's pharmacological activities have been made including anti-cancer, anti-diabetic, anti-hypertensive, anti-inflammatory, and anti-atherosclerotic effects. To our knowledge this is the first study that combines D-tagatose and BSN723 for the treatment of hyperlipidemia and the prevention of atherosclerosis. ApoE-deficient mice were randomized into five groups with equivalent mean body weights. The mice were given the following diets for 8 weeks: Group 1 - Standard diet; Group 2 - Western diet; Group 3 - Western diet formulated with D-tagatose; Group 4 - Western diet formulated with BSN723; Group 5 - Western diet formulated with BSN723T. Mice were measured for weight gain, tissue and organ weights, total serum cholesterol and triglycerides and formation of atherosclerosis. The addition of D-tagatose, either alone or in combination with BSN723, prevented the increase in adipose tissue and weight gain brought on by the Western diet. Both D-tagatose and BSN723 alone reduced total cholesterol and the formation of atherosclerosis in the aorta compared to mice on the Western diet. Addition of BSN723 to D-tagatose (BSN723T) did not increase efficacy in prevention of increases in cholesterol or atherosclerosis compared to D-tagatose alone. Addition of either D-tagatose or BSN723 alone to a Western diet prevented weight gain, increases in total serum cholesterol and triglycerides, and the formation of atherosclerosis. However, there was no additive or synergistic effect on the measured parameters with the combination BSN

  10. NTP Toxicology and Carcinogenesis of 1,2,3-Trichloropropane (CAS No. 96-18-4) in F344/N Rats and B6C3F1 Mice (Gavage Studies).

    Science.gov (United States)

    1993-08-01

    S9 metabolic activation. At two laboratories, positive responses were obtained for mutagenicity in Salmonella typhimurium strains TA97, TA98, TA100, and TA1535 in the presence of S9; no mutagenic activity was observed in TA1537, with or without S9. 1,2,3-Trichloropropane induced trifluorothymidine resistance in L5178Y mouse lymphoma cells with, but not without, S9. In cultured Chinese hamster ovary cells, sister chromatid exchanges and chromosomal aberrations were induced by 1,2,3-trichloropropane; however, significant increases in the endpoints of both cytogenetic effects occurred only in the presence of S9. Conclusions: Under the conditions of these 2-year gavage studies, there was clear evidence of carcinogenic activity of 1,2,3-trichloropropane in male F344/N rats based on increased incidences of squamous cell papillomas and carcinomas of the oral mucosa and forestomach, adenomas of the pancreas and kidney, adenomas or carcinomas of the preputial gland, and carcinomas of the Zymbal's gland. Adenomatous polyps and adenocarcinomas of the intestine may have been related to chemical administration. There was clear evidence of carcinogenic activity of 1,2,3-trichloropropane in female F344/N rats based on increased incidences of squamous cell papillomas and carcinomas of the oral mucosa and forestomach, adenomas or carcinomas of the clitoral gland, adenocarcinomas of the mammary gland, and carcinomas of the Zymbal's gland. Adenocarcinomas of the intestine may have been related to chemical administration. There was clear evidence of carcinogenic activity of 1,2,3-trichloropropane in male B6C3F1 mice based on increased incidences of squamous cell papillomas and carcinomas of the forestomach, hepatocellular adenomas or carcinomas of the liver, and harderian gland adenomas. Squamous cell papillomas of the oral mucosa may have been related to chemical administration. There was clear evidence of carcinogenic activity of 1,2,3-trichloropropane in female B6C3F1, mice based on

  11. Obesity is mediated by differential aryl hydrocarbon receptor signaling in mice fed a Western diet.

    Science.gov (United States)

    Kerley-Hamilton, Joanna S; Trask, Heidi W; Ridley, Christian J A; Dufour, Eric; Ringelberg, Carol S; Nurinova, Nilufer; Wong, Diandra; Moodie, Karen L; Shipman, Samantha L; Moore, Jason H; Korc, Murray; Shworak, Nicholas W; Tomlinson, Craig R

    2012-09-01

    Obesity is a growing worldwide problem with genetic and environmental causes, and it is an underlying basis for many diseases. Studies have shown that the toxicant-activated aryl hydrocarbon receptor (AHR) may disrupt fat metabolism and contribute to obesity. The AHR is a nuclear receptor/transcription factor that is best known for responding to environmental toxicant exposures to induce a battery of xenobiotic-metabolizing genes. The intent of the work reported here was to test more directly the role of the AHR in obesity and fat metabolism in lieu of exogenous toxicants. We used two congenic mouse models that differ at the Ahr gene and encode AHRs with a 10-fold difference in signaling activity. The two mouse strains were fed either a low-fat (regular) diet or a high-fat (Western) diet. The Western diet differentially affected body size, body fat:body mass ratios, liver size and liver metabolism, and liver mRNA and miRNA profiles. The regular diet had no significant differential effects. The results suggest that the AHR plays a large and broad role in obesity and associated complications, and importantly, may provide a simple and effective therapeutic strategy to combat obesity, heart disease, and other obesity-associated illnesses.

  12. Lipid Emulsion Administered Intravenously or Orally Attenuates Triglyceride Accumulation and Expression of Inflammatory Markers in the Liver of Nonobese Mice Fed Parenteral Nutrition Formula123

    Science.gov (United States)

    Ito, Kyoko; Hao, Lei; Wray, Amanda E.; Ross, A. Catharine

    2013-01-01

    The accumulation of hepatic TG and development of hepatic steatosis (HS) is a serious complication of the use of parenteral nutrition (PN) formulas containing a high percentage of dextrose. But whether fat emulsions or other nutrients can ameliorate the induction of HS by high-carbohydrate diets is still uncertain. We hypothesized that administration of a lipid emulsion (LE; Intralipid) and/or the vitamin A metabolite retinal (RAL) will reduce hepatic TG accumulation and attenuate indicators of inflammation. C57BL/6 male mice were fed PN formula as their only source of hydration and nutrition for 4–5 wk. In Expt. 1, mice were fed PN only or PN plus treatment with RAL (1 μg/g orally), LE (200 μL i.v.), or both LE and RAL. In Expt. 2, LE was orally administered at 4 and 13.5% of energy to PN-fed mice. All PN mice developed HS compared with mice fed normal chow (NC) and HS was reduced by LE. The liver TG mass was lower in the PN+LE and PN+RAL+LE groups compared with the PN and PN+RAL groups (P < 0.01) and in the 4% and 13.5% PN+LE groups compared with PN alone. Hepatic total retinol was higher in the RAL-fed mice (P < 0.0001), but RAL did not alter TG mass. mRNA transcripts for fatty acid synthase (Fasn) and sterol regulatory element-binding protein-1c (Srebpf1) were higher in the PN compared with the NC mice, but FAS protein and Srebpf1 mRNA were lower in the PN+LE groups compared with PN alone. The inflammation marker serum amyloid P component was also reduced. In summary, LE given either i.v. or orally may be sufficient to reduce the steatotic potential of orally fed high-dextrose formulas and may suppress the early development of HS during PN therapy. PMID:23325918

  13. Finger millet bran supplementation alleviates obesity-induced oxidative stress, inflammation and gut microbial derangements in high-fat diet-fed mice.

    Science.gov (United States)

    Murtaza, Nida; Baboota, Ritesh K; Jagtap, Sneha; Singh, Dhirendra P; Khare, Pragyanshu; Sarma, Siddhartha M; Podili, Koteswaraiah; Alagesan, Subramanian; Chandra, T S; Bhutani, K K; Boparai, Ravneet K; Bishnoi, Mahendra; Kondepudi, Kanthi Kiran

    2014-11-14

    Several epidemiological studies have shown that the consumption of finger millet (FM) alleviates diabetes-related complications. In the present study, the effect of finger millet whole grain (FM-WG) and bran (FM-BR) supplementation was evaluated in high-fat diet-fed LACA mice for 12 weeks. Mice were divided into four groups: control group fed a normal diet (10 % fat as energy); a group fed a high-fat diet; a group fed the same high-fat diet supplemented with FM-BR; a group fed the same high-fat diet supplemented with FM-WG. The inclusion of FM-BR at 10 % (w/w) in a high-fat diet had more beneficial effects than that of FM-WG. FM-BR supplementation prevented body weight gain, improved lipid profile and anti-inflammatory status, alleviated oxidative stress, regulated the expression levels of several obesity-related genes, increased the abundance of beneficial gut bacteria (Lactobacillus, Bifidobacteria and Roseburia) and suppressed the abundance of Enterobacter in caecal contents (P≤ 0·05). In conclusion, FM-BR supplementation could be an effective strategy for preventing high-fat diet-induced changes and developing FM-BR-enriched functional foods.

  14. The regulation of non-coding RNA expression in the liver of mice fed DDC.

    Science.gov (United States)

    Oliva, Joan; Bardag-Gorce, Fawzia; French, Barbara A; Li, Jun; French, Samuel W

    2009-08-01

    Mallory-Denk bodies (MDBs) are found in the liver of patients with alcoholic and chronic nonalcoholic liver disease, and hepatocellular carcinoma (HCC). Diethyl 1,4-dihydro-2,4,6,-trimethyl-3,5-pyridinedicarboxylate (DDC) is used as a model to induce the formation of MDBs in mouse liver. Previous studies in this laboratory showed that DDC induced epigenetic modifications in DNA and histones. The combination of these modifications changes the phenotype of the MDB forming hepatocytes, as indicated by the marker FAT10. These epigenetic modifications are partially prevented by adding to the diet S-adenosylmethionine (SAMe) or betaine, both methyl donors. The expression of three imprinted ncRNA genes was found to change in MDB forming hepatocytes, which is the subject of this report. NcRNA expression was quantitated by real-time PCR and RNA FISH in liver sections. Microarray analysis showed that the expression of three ncRNAs was regulated by DDC: up regulation of H19, antisense Igf2r (AIR), and down regulation of GTL2 (also called MEG3). S-adenosylmethionine (SAMe) feeding prevented these changes. Betaine, another methyl group donor, prevented only H19 and AIR up regulation induced by DDC, on microarrays. The results of the SAMe and betaine groups were confirmed by real-time PCR, except for AIR expression. After 1 month of drug withdrawal, the expression of the three ncRNAs tended toward control levels of expression. Liver tumors that developed also showed up regulation of H19 and AIR. The RNA FISH approach showed that the MDB forming cells' phenotype changed the level of expression of AIR, H19 and GTL2, compared to the surrounding cells. Furthermore, over expression of H19 and AIR was demonstrated in tumors formed in mice withdrawn for 9 months. The dysregulation of ncRNA in MDB forming liver cells has been observed for the first time in drug-primed mice associated with liver preneoplastic foci and tumors.

  15. Anti-obesity activity of chloroform-methanol extract of Premna integrifolia in mice fed with cafeteria diet

    Directory of Open Access Journals (Sweden)

    Prashant Y Mali

    2013-01-01

    Full Text Available Aim of the study: Aim of the present study was to evaluate the anti-obesity activity of chloroform:methanol extract of P. integrifolia (CMPI in mice fed with cafeteria diet. Materials and Methods: Female Swiss Albino mice were divided into six groups, which received normal and cafeteria diet, standard drug simvastatin (10 mg/kg and CMPI (50, 100 and 200 mg/kg daily for 40 days. Parameters such as body weight, body mass index (BMI, Lee index of obesity (LIO, food consumption, locomotor behavior, serum glucose, triglyceride, total cholesterol, high density lipoprotein (HDL, low density lipoprotein (LDL, very low density lipoprotein (VLDL, atherogenic index, organ weight and organ fat pad weight were studied for evaluating the anti-obesity activity of P. integrifolia. High performance liquid chromatography (HPLC fingerprint profile of chloroform-methanol extract was also studied using quercetin as the reference standard. Results: There was a significant increase in body weight, BMI, LIO, food consumption, organ weight (liver and small intestine, organ fat pad weight (mesenteric and peri-renal fat pad and in the levels of serum glucose, triglyceride, total cholesterol, LDL and VLDL with a significant decrease in locomotor behavior (ambulation, rearing, grooming and HDL level in cafeteria diet group. Animals treated with CMPI showed dose dependent activity. P. integrifolia (200 mg/kg supplementation attenuated all the above alterations, which indicates the anti-obesity activity. HPLC fingerprint profile of CMPI showed two peaks in the solvent system of 50 mm potassium diphosphate (pH-3 with ortho phosphoric acid: Methanol (30:70 v/v at 360 nm. Conclusion: Present findings suggest that, CMPI possessed anti-obesity activity that substantiated its ethno-medicinal use in the treatment of obesity.

  16. Consequences of exchanging carbohydrates for proteins in the cholesterol metabolism of mice fed a high-fat diet.

    Directory of Open Access Journals (Sweden)

    Frédéric Raymond

    Full Text Available Consumption of low-carbohydrate, high-protein, high-fat diets lead to rapid weight loss but the cardioprotective effects of these diets have been questioned. We examined the impact of high-protein and high-fat diets on cholesterol metabolism by comparing the plasma cholesterol and the expression of cholesterol biosynthesis genes in the liver of mice fed a high-fat (HF diet that has a high (H or a low (L protein-to-carbohydrate (P/C ratio. H-P/C-HF feeding, compared with L-P/C-HF feeding, decreased plasma total cholesterol and increased HDL cholesterol concentrations at 4-wk. Interestingly, the expression of genes involved in hepatic steroid biosynthesis responded to an increased dietary P/C ratio by first down-regulation (2-d followed by later up-regulation at 4-wk, and the temporal gene expression patterns were connected to the putative activity of SREBF1 and 2. In contrast, Cyp7a1, the gene responsible for the conversion of cholesterol to bile acids, was consistently up-regulated in the H-P/C-HF liver regardless of feeding duration. Over expression of Cyp7a1 after 2-d and 4-wk H-P/C-HF feeding was connected to two unique sets of transcription regulators. At both time points, up-regulation of the Cyp7a1 gene could be explained by enhanced activations and reduced suppressions of multiple transcription regulators. In conclusion, we demonstrated that the hypocholesterolemic effect of H-P/C-HF feeding coincided with orchestrated changes of gene expressions in lipid metabolic pathways in the liver of mice. Based on these results, we hypothesize that the cholesterol lowering effect of high-protein feeding is associated with enhanced bile acid production but clinical validation is warranted. (246 words.

  17. Consequences of exchanging carbohydrates for proteins in the cholesterol metabolism of mice fed a high-fat diet.

    Science.gov (United States)

    Raymond, Frédéric; Wang, Long; Moser, Mireille; Metairon, Sylviane; Mansourian, Robert; Zwahlen, Marie-Camille; Kussmann, Martin; Fuerholz, Andreas; Macé, Katherine; Chou, Chieh Jason

    2012-01-01

    Consumption of low-carbohydrate, high-protein, high-fat diets lead to rapid weight loss but the cardioprotective effects of these diets have been questioned. We examined the impact of high-protein and high-fat diets on cholesterol metabolism by comparing the plasma cholesterol and the expression of cholesterol biosynthesis genes in the liver of mice fed a high-fat (HF) diet that has a high (H) or a low (L) protein-to-carbohydrate (P/C) ratio. H-P/C-HF feeding, compared with L-P/C-HF feeding, decreased plasma total cholesterol and increased HDL cholesterol concentrations at 4-wk. Interestingly, the expression of genes involved in hepatic steroid biosynthesis responded to an increased dietary P/C ratio by first down-regulation (2-d) followed by later up-regulation at 4-wk, and the temporal gene expression patterns were connected to the putative activity of SREBF1 and 2. In contrast, Cyp7a1, the gene responsible for the conversion of cholesterol to bile acids, was consistently up-regulated in the H-P/C-HF liver regardless of feeding duration. Over expression of Cyp7a1 after 2-d and 4-wk H-P/C-HF feeding was connected to two unique sets of transcription regulators. At both time points, up-regulation of the Cyp7a1 gene could be explained by enhanced activations and reduced suppressions of multiple transcription regulators. In conclusion, we demonstrated that the hypocholesterolemic effect of H-P/C-HF feeding coincided with orchestrated changes of gene expressions in lipid metabolic pathways in the liver of mice. Based on these results, we hypothesize that the cholesterol lowering effect of high-protein feeding is associated with enhanced bile acid production but clinical validation is warranted. (246 words).

  18. DNA methylation alters transcriptional rates of differentially expressed genes and contributes to pathophysiology in mice fed a high fat diet

    Directory of Open Access Journals (Sweden)

    Pili Zhang

    2017-04-01

    Full Text Available Objective: Overnutrition can alter gene expression patterns through epigenetic mechanisms that may persist through generations. However, it is less clear if overnutrition, for example a high fat diet, modifies epigenetic control of gene expression in adults, or by what molecular mechanisms, or if such mechanisms contribute to the pathology of the metabolic syndrome. Here we test the hypothesis that a high fat diet alters hepatic DNA methylation, transcription and gene expression patterns, and explore the contribution of such changes to the pathophysiology of obesity. Methods: RNA-seq and targeted high-throughput bisulfite DNA sequencing were used to undertake a systematic analysis of the hepatic response to a high fat diet. RT-PCR, chromatin immunoprecipitation and in vivo knockdown of an identified driver gene, Phlda1, were used to validate the results. Results: A high fat diet resulted in the hypermethylation and decreased transcription and expression of Phlda1 and several other genes. A subnetwork of genes associated with Phlda1 was identified from an existing Bayesian gene network that contained numerous hepatic regulatory genes involved in lipid and body weight homeostasis. Hepatic-specific depletion of Phlda1 in mice decreased expression of the genes in the subnetwork, and led to increased oil droplet size in standard chow-fed mice, an early indicator of steatosis, validating the contribution of this gene to the phenotype. Conclusions: We conclude that a high fat diet alters the epigenetics and transcriptional activity of key hepatic genes controlling lipid homeostasis, contributing to the pathophysiology of obesity. Author Video: Author Video Watch what authors say about their articles Keywords: DNA methylation, RNA-seq, Transcription, High fat diet, Liver, Phlda1

  19. Voluntary exercise and green tea enhance the expression of genes related to energy utilization and attenuate metabolic syndrome in high fat fed mice.

    Science.gov (United States)

    Sae-Tan, Sudathip; Rogers, Connie J; Lambert, Joshua D

    2014-05-01

    Obesity and metabolic syndrome are growing public health problems. We investigated the effects of decaffeinated green tea extract (GTE) and voluntary running exercise (Ex) alone or in combination against obesity and metabolic syndrome in high fat (HF) fed C57BL/6J mice. After 16 wk, GTE + Ex treatment reduced final body mass (27.1% decrease) and total visceral fat mass (36.6% decrease) compared to HF-fed mice. GTE + Ex reduced fasting blood glucose (17% decrease), plasma insulin (65% decrease), and insulin resistance (65% decrease) compared to HF-fed mice. GTE or Ex alone had less significant effects. In the skeletal muscle, the combination of Ex and GTE increased the expression of peroxisome proliferator-activated receptor-γ coactivator-1α (Ppargc1a), mitochondrial NADH dehydrogenase 5 (mt-Nd5), mitochondrial cytochrome b (mt-Cytb), and mitochondrial cytochrome c oxidase III (mt-Co3). An increase in hepatic expression of peroxisome proliferator-activated receptor-α (Ppara) and liver carnitine palmitoyl transferase-1α (Cpt1a) and a decrease in hepatic expression of stearoyl-CoA desaturase 1 (Scd1) mRNA was observed in GTE + Ex mice. GTE + Ex was more effective than either treatment alone in reducing diet-induced obesity. These effects are due in part to modulation of genes related to energy metabolism and de novo lipogenesis. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Hypothalamic endoplasmic reticulum stress and insulin resistance in offspring of mice dams fed high-fat diet during pregnancy and lactation.

    Science.gov (United States)

    Melo, Arine M; Benatti, Rafaela O; Ignacio-Souza, Leticia M; Okino, Caroline; Torsoni, Adriana S; Milanski, Marciane; Velloso, Licio A; Torsoni, Marcio Alberto

    2014-05-01

    The goal of this study was to determine the presence early of markers of endoplasmic reticulum stress (ERS) and insulin resistance in the offspring from dams fed HFD (HFD-O) or standard chow diet (SC-O) during pregnancy and lactation. To address this question, we evaluated the hypothalamic and hepatic tissues in recently weaned mice (d28) and the hypothalamus of newborn mice (d0) from dams fed HFD or SC during pregnancy and lactation. Body weight, adipose tissue mass, and food intake were more accentuated in HFD-O mice than in SC-O mice. In addition, intolerance to glucose and insulin was higher in HFD-O mice than in SC-O mice. Compared with SC-O mice, levels of hypothalamic IL1-β mRNA, NFκB protein, and p-JNK were increased in HFD-O mice. Furthermore, compared with SC-O mice, hypothalamic AKT phosphorylation after insulin challenge was reduced, while markers of ERS (p-PERK, p-eIF2α, XBP1s, GRP78, and GRP94) and p-AMPK were increased in the hypothalamic tissue of HFD-O at d28 but not at d0. These damages to hypothalamic signaling were accompanied by increased triglyceride deposits, activation of NFκB, p-JNK, p-PERK and p-eIF2α. These point out lactation period as maternal trigger for metabolic changes in the offspring. These changes may occur early and quietly contribute to obesity and associated pathologies in adulthood. Although in rodents the establishment of ARC neuronal projections occurs during the lactation period, in humans it occurs during the third trimester. Gestational diabetes and obesity in this period may contribute to impairment of energy homeostasis. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Sea cucumber saponin liposomes ameliorate obesity-induced inflammation and insulin resistance in high-fat-diet-fed mice.

    Science.gov (United States)

    Chen, Cheng; Han, Xiuqing; Dong, Ping; Li, Zhaojie; Yanagita, Teruyoshi; Xue, Changhu; Zhang, Tiantian; Wang, Yuming

    2018-02-21

    Obesity has become a worldwide concern in recent years, which may cause many diseases. Much attention has been paid to food components that are considered to be beneficial in preventing chronic metabolic diseases. The present study was conducted to investigate the effects of sea cucumber saponin liposomes on certain metabolic markers associated with obesity. C57/BL6 mice fed with high-fat diet were treated with different forms of sea cucumber saponins for eight weeks. The results showed that liposomes exhibited better effects on anti-obesity and anti-hyperlipidemia activities than the common form of sea cucumber saponins. Sea cucumber saponin liposomes could also effectively alleviate adipose tissue inflammation by reducing pro-inflammatory cytokine releases and macrophage infiltration. Moreover, sea cucumber saponin liposomes improved insulin resistance by altering the uptake and utilization of glucose. Taken together, our results indicated that the intake of sea cucumber saponin liposomes might be able to ameliorate obesity-induced inflammation and insulin resistance.

  2. Phlorizin Supplementation Attenuates Obesity, Inflammation, and Hyperglycemia in Diet-Induced Obese Mice Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Su-Kyung Shin

    2016-02-01

    Full Text Available Obesity, along with its related complications, is a serious health problem worldwide. Many studies reported the anti-diabetic effect of phlorizin, while little is known about its anti-obesity effect. We investigated the beneficial effects of phlorizin on obesity and its complications, including diabetes and inflammation in obese animal. Male C57BL/6J mice were divided into three groups and fed their respective experimental diets for 16 weeks: a normal diet (ND, 5% fat, w/w, high-fat diet (HFD, 20% fat, w/w, or HFD supplemented with phlorizin (PH, 0.02%, w/w. The findings revealed that the PH group had significantly decreased visceral and total white adipose tissue (WAT weights, and adipocyte size compared to the HFD. Plasma and hepatic lipids profiles also improved in the PH group. The decreased levels of hepatic lipids in PH were associated with decreased activities of enzymes involved in hepatic lipogenesis, cholesterol synthesis and esterification. The PH also suppressed plasma pro-inflammatory adipokines levels such as leptin, adipsin, tumor necrosis factor-α, monocyte chemoattractant protein-1, interferon-γ, and interleukin-6, and prevented HFD-induced collagen accumulation in the liver and WAT. Furthermore, the PH supplementation also decreased plasma glucose, insulin, glucagon, and homeostasis model assessment of insulin resistance levels. In conclusion, phlorizin is beneficial for preventing diet-induced obesity, hepatic steatosis, inflammation, and fibrosis, as well as insulin resistance.

  3. Oat beta-glucan ameliorates insulin resistance in mice fed on high-fat and high-fructose diet

    Directory of Open Access Journals (Sweden)

    Jie Zheng

    2013-12-01

    Full Text Available Methods: This study sought to evaluate the impact of oat beta-glucan on insulin resistance in mice fed on high-fat and high-fructose diet with fructose (10%, w/v added in drinking water for 10 weeks. Results: The results showed that supplementation with oat beta-glucan could significantly reduce the insulin resistance both in low-dose (200 mg/kg−1 body weight and high-dose (500 mg/kg−1 body weight groups, but the high-dose group showed a more significant improvement in insulin resistance (P<0.01 compared with model control (MC group along with significant improvement in hepatic glycogen level, oral glucose, and insulin tolerance. Moreover, hepatic glucokinase activity was markedly enhanced both in low-dose and high-dose groups compared with that of MC group (P<0.05. Conclusion: These results suggested that supplementation of oat beta-glucan alleviated insulin resistance and the effect was dose dependent.

  4. Beneficial effects of Allium sativum L. stem extract on lipid metabolism and antioxidant status in obese mice fed a high-fat diet.

    Science.gov (United States)

    Kim, Inhye; Kim, Haeng-Ran; Kim, Jae-Hyun; Om, Ae-Son

    2013-08-30

    This study was designed to examine the potential health benefits of Allium sativum L. (garlic) stem extract (ASSE) on obesity and related disorders in high-fat diet-induced obese mice. Obese mice were orally administered ASSE at doses of 100, 250 and 500 mg kg(-1) body weight day(-1) for 4 weeks. Consumption of ASSE significantly suppressed body weight gain and white adipose tissue (WAT) weight regardless of daily food intake. Obese mice fed ASSE also exhibited a significant decrease in WAT cell size. The decreased level of adiponectin and increased level of leptin in obese mice reverted to near normal mice levels in ASSE-treated mice. ASSE administration significantly improved lipid parameters of the serum and liver and inhibited fat accumulation in the liver by modulating the activities of hepatic lipid-regulating enzymes in obese mice. Administration of ASSE also led to significant increases in antioxidant enzymes and suppressed glutathione depletion and lipid peroxidation in hepatic tissue. These results suggest that ASSE may ameliorate obesity, insulin resistance and oxidative damage in high-fat diet-induced obese mice. © 2013 Society of Chemical Industry.

  5. Targeted Reduction of Vascular Msx1 and Msx2 Mitigates Arteriosclerotic Calcification and Aortic Stiffness in LDLR-Deficient Mice Fed Diabetogenic Diets

    OpenAIRE

    Cheng, Su-Li; Behrmann, Abraham; Shao, Jian-Su; Ramachandran, Bindu; Krchma, Karen; Bello Arredondo, Yoanna; Kovacs, Attila; Mead, Megan; Maxson, Robert; Towler, Dwight A.

    2014-01-01

    When fed high-fat diets, male LDLR?/? mice develop obesity, hyperlipidemia, hyperglycemia, and arteriosclerotic calcification. An osteogenic Msx-Wnt regulatory program is concomitantly upregulated in the vasculature. To better understand the mechanisms of diabetic arteriosclerosis, we generated SM22-Cre;Msx1(fl/fl);Msx2(fl/fl);LDLR?/? mice, assessing the impact of Msx1+Msx2 gene deletion in vascular myofibroblast and smooth muscle cells. Aortic Msx2 and Msx1 were decreased by 95% and 34% in S...

  6. Modulation of the Gut Microbiota by Krill Oil in Mice Fed a High-Sugar High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Chenyang Lu

    2017-05-01

    Full Text Available Multiple lines of evidence suggest that the gut microbiota plays vital roles in metabolic diseases such as hyperlipidemia. Previous studies have confirmed that krill oil can alleviate hyperlipidemia, but the underlying mechanism remains unclear. To discern whether krill oil changes the structure of the gut microbiota during the hyperlipidemia treatment, 72 mice were acclimatized with a standard chow diet for 2 weeks and then randomly allocated to receive a standard chow diet (control group, n = 12 or a high-sugar-high-fat (HSHF diet supplemented with a low (100 μg/g·d, HSHF+LD group, n = 12, moderate (200 μg/g·d, HSHF+MD group, n = 12 or high dosage of krill oil (600 μg/g·d, HSHF+HD group, n = 12, simvastatin (HSHF+S group, n = 12 or saline (HSHF group, n = 12 continuously for 12 weeks. The resulting weight gains were attenuated, the liver index and the low-density lipoprotein, total cholesterol and triglyceride concentrations showed a stepwise reduction in the treated groups compared with those of the control group. A dose-dependent modulation of the gut microbiota was observed after treatment with krill oil. Low- and moderate- doses of krill oil increased the similarity between the composition of the HSHF diet-induced gut microbiota and that of the control, whereas the mice fed the high-dose exhibited a unique gut microbiota structure that was different from that of the control and HSHF groups. Sixty-five key operational taxonomic units (OTUs that responded to the krill oil treatment were identified using redundancy analysis, of which 26 OTUs were increased and 39 OTUs were decreased compared with those of the HSHF group. In conclusion, the results obtained in this study suggest that the structural alterations in the gut microbiota induced by krill oil treatment were dose-dependent and associated with the alleviation of hyperlipidemia. Additionally, the high-dose krill oil treatment showed combined effects on the alleviation of

  7. Krill protein hydrolysate reduces plasma triacylglycerol level with concurrent increase in plasma bile acid level and hepatic fatty acid catabolism in high-fat fed mice

    Directory of Open Access Journals (Sweden)

    Marie S. Ramsvik

    2013-11-01

    Full Text Available Background: Krill powder, consisting of both lipids and proteins, has been reported to modulate hepatic lipid catabolism in animals. Fish protein hydrolysate diets have also been reported to affect lipid metabolism and to elevate bile acid (BA level in plasma. BA interacts with a number of nuclear receptors and thus affects a variety of signaling pathways, including very low density lipoprotein (VLDL secretion. The aim of the present study was to investigate whether a krill protein hydrolysate (KPH could affect lipid and BA metabolism in mice. Method: C57BL/6 mice were fed a high-fat (21%, w/w diet containing 20% crude protein (w/w as casein (control group or KPH for 6 weeks. Lipids and fatty acid composition were measured from plasma, enzyme activity and gene expression were analyzed from liver samples, and BA was measured from plasma. Results: The effect of dietary treatment with KPH resulted in reduced levels of plasma triacylglycerols (TAG and non-esterified fatty acids (NEFAs. The KPH treated mice had also a marked increased plasma BA concentration. The increased plasma BA level was associated with induction of genes related to membrane canalicular exporter proteins (Abcc2, Abcb4 and to BA exporters to blood (Abcc3 and Abcc4. Of note, we observed a 2-fold increased nuclear farnesoid X receptor (Fxr mRNA levels in the liver of mice fed KPH. We also observed increased activity of the nuclear peroxiosme proliferator-activated receptor alpha (PPARα target gene carnitine plamitoyltransferase 2 (CPT-2. Conclusion: The KPH diet showed to influence lipid and BA metabolism in high-fat fed mice. Moreover, increased mitochondrial fatty acid oxidation and elevation of BA concentration may regulate the plasma level of TAGs and NEFAs.

  8. Dietary Broccoli Lessens Development of Fatty Liver and Liver Cancer in Mice Given Diethylnitrosamine and Fed a Western or Control Diet123

    Science.gov (United States)

    Chen, Yung-Ju; Wallig, Matthew A; Jeffery, Elizabeth H

    2016-01-01

    Background: The high-fat and high-sugar Westernized diet that is popular worldwide is associated with increased body fat accumulation, which has been related to the development of nonalcoholic fatty liver disease (NAFLD). Without treatment, NAFLD may progress to hepatocellular carcinoma (HCC), a cancer with a high mortality rate. The consumption of broccoli in the United States has greatly increased in the last 2 decades. Epidemiologic studies show that incorporating brassica vegetables into the daily diet lowers the risk of several cancers, although, to our knowledge, this is the first study to evaluate HCC prevention through dietary broccoli. Objective: We aimed to determine the impact of dietary broccoli on hepatic lipid metabolism and the progression of NAFLD to HCC. Our hypothesis was that broccoli decreases both hepatic lipidosis and the development of HCC in a mouse model of Western diet–enhanced liver cancer. Methods: Adult 5-wk-old male B6C3F1 mice received a control diet (AIN-93M) or a Western diet (high in lard and sucrose, 19% and 31%, wt:wt, respectively), with or without freeze-dried broccoli (10%, wt:wt). Starting the following week, mice were treated once per week with diethylnitrosamine (DEN; 45 mg/kg body weight intraperitoneally at ages 6, 7, 8, 10, 11, and 12 wk). Hepatic gene expression, lipidosis, and tumor outcomes were analyzed 6 mo later, when mice were 9 mo old. Results: Mice receiving broccoli exhibited lower hepatic triglycerides (P broccoli feeding (P = 0.006), whereas microsomal triglyceride transfer protein was upregulated (P = 0.045), supporting the finding that dietary broccoli decreased hepatic triglycerides. Conclusion: Long-term consumption of whole broccoli countered both NAFLD development enhanced by a Western diet and hepatic tumorigenesis induced by DEN in male B6C3F1 mice. PMID:26865652

  9. Dietary Broccoli Lessens Development of Fatty Liver and Liver Cancer in Mice Given Diethylnitrosamine and Fed a Western or Control Diet.

    Science.gov (United States)

    Chen, Yung-Ju; Wallig, Matthew A; Jeffery, Elizabeth H

    2016-03-01

    The high-fat and high-sugar Westernized diet that is popular worldwide is associated with increased body fat accumulation, which has been related to the development of nonalcoholic fatty liver disease (NAFLD). Without treatment, NAFLD may progress to hepatocellular carcinoma (HCC), a cancer with a high mortality rate. The consumption of broccoli in the United States has greatly increased in the last 2 decades. Epidemiologic studies show that incorporating brassica vegetables into the daily diet lowers the risk of several cancers, although, to our knowledge, this is the first study to evaluate HCC prevention through dietary broccoli. We aimed to determine the impact of dietary broccoli on hepatic lipid metabolism and the progression of NAFLD to HCC. Our hypothesis was that broccoli decreases both hepatic lipidosis and the development of HCC in a mouse model of Western diet-enhanced liver cancer. Adult 5-wk-old male B6C3F1 mice received a control diet (AIN-93M) or a Western diet (high in lard and sucrose, 19% and 31%, wt:wt, respectively), with or without freeze-dried broccoli (10%, wt:wt). Starting the following week, mice were treated once per week with diethylnitrosamine (DEN; 45 mg/kg body weight intraperitoneally at ages 6, 7, 8, 10, 11, and 12 wk). Hepatic gene expression, lipidosis, and tumor outcomes were analyzed 6 mo later, when mice were 9 mo old. Mice receiving broccoli exhibited lower hepatic triglycerides (P broccoli feeding (P = 0.006), whereas microsomal triglyceride transfer protein was upregulated (P = 0.045), supporting the finding that dietary broccoli decreased hepatic triglycerides. Long-term consumption of whole broccoli countered both NAFLD development enhanced by a Western diet and hepatic tumorigenesis induced by DEN in male B6C3F1 mice. © 2016 American Society for Nutrition.

  10. Liver Fatty Acid Composition and Inflammation in Mice Fed with High-Carbohydrate Diet or High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Lorena Gimenez da Silva-Santi

    2016-10-01

    Full Text Available Both high-carbohydrate diet (HCD and high-fat diet (HFD modulate liver fat accumulation and inflammation, however, there is a lack of data on the potential contribution of carbohydrates and lipids separately. For this reason, the changes in liver fatty acid (FA composition in male Swiss mice fed with HCD or HFD were compared, at the time points 0 (before starting the diets, and after 7, 14, 28 or 56 days. Activities of stearoyl-CoA desaturase-1 (SCD-1, ∆-6 desaturase (D6D, elongases and de novo lipogenesis (DNL were estimated. Liver mRNA expression of acetyl-CoA carboxylase 1 (ACC1 was evaluated as an additional indicator of the de novo lipogenesis. Myeloperoxidase activity, nitric oxide (NO production, and mRNA expressions of F4/80, type I collagen, interleukin (IL-6, IL-1β, IL-10, and tumor necrosis factor-α (TNF-α were measured as indication of the liver inflammatory state. The HCD group had more intense lipid deposition, particularly of saturated fatty acids (SFAs and monounsaturated fatty acids (MUFAs. This group also showed higher DNL, SCD-1, and D6D activities associated with increased NO concentration, as well as myeloperoxidase activity. Livers from the HFD group showed higher elongase activity, stored more polyunsaturated fatty acids (PUFAs and had a lower omega-6/omega-3 fatty acid (n-6/n-3 ratio. In conclusion, liver lipid accumulation, fatty acids (FA composition and inflammation were modulated by the dietary composition of lipids and carbohydrates. The HCD group had more potent lipogenic and inflammatory effects in comparison with HFD.

  11. Liver Fatty Acid Composition and Inflammation in Mice Fed with High-Carbohydrate Diet or High-Fat Diet.

    Science.gov (United States)

    da Silva-Santi, Lorena Gimenez; Antunes, Marina Masetto; Caparroz-Assef, Silvana Martins; Carbonera, Fabiana; Masi, Laureane Nunes; Curi, Rui; Visentainer, Jesuí Vergílio; Bazotte, Roberto Barbosa

    2016-10-29

    Both high-carbohydrate diet (HCD) and high-fat diet (HFD) modulate liver fat accumulation and inflammation, however, there is a lack of data on the potential contribution of carbohydrates and lipids separately. For this reason, the changes in liver fatty acid (FA) composition in male Swiss mice fed with HCD or HFD were compared, at the time points 0 (before starting the diets), and after 7, 14, 28 or 56 days. Activities of stearoyl-CoA desaturase-1 (SCD-1), ∆-6 desaturase (D6D), elongases and de novo lipogenesis (DNL) were estimated. Liver mRNA expression of acetyl-CoA carboxylase 1 (ACC1) was evaluated as an additional indicator of the de novo lipogenesis. Myeloperoxidase activity, nitric oxide (NO) production, and mRNA expressions of F4/80, type I collagen, interleukin (IL)-6, IL-1β, IL-10, and tumor necrosis factor-α (TNF-α) were measured as indication of the liver inflammatory state. The HCD group had more intense lipid deposition, particularly of saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs). This group also showed higher DNL, SCD-1, and D6D activities associated with increased NO concentration, as well as myeloperoxidase activity. Livers from the HFD group showed higher elongase activity, stored more polyunsaturated fatty acids (PUFAs) and had a lower omega-6/omega-3 fatty acid ( n -6/ n -3) ratio. In conclusion, liver lipid accumulation, fatty acids (FA) composition and inflammation were modulated by the dietary composition of lipids and carbohydrates. The HCD group had more potent lipogenic and inflammatory effects in comparison with HFD.

  12. Lingonberries alter the gut microbiota and prevent low-grade inflammation in high-fat diet fed mice

    Directory of Open Access Journals (Sweden)

    Lovisa Heyman-Lindén

    2016-04-01

    Full Text Available Background: The gut microbiota plays an important role in the development of obesity and obesity-associated impairments such as low-grade inflammation. Lingonberries have been shown to prevent diet-induced obesity and low-grade inflammation. However, it is not known whether the effect of lingonberry supplementation is related to modifications of the gut microbiota. The aim of the present study was to describe whether consumption of different batches of lingonberries alters the composition of the gut microbiota, which could be relevant for the protective effect against high fat (HF-induced metabolic alterations. Methods: Three groups of C57BL/6J mice were fed HF diet with or without a supplement of 20% lingonberries from two different batches (Lingon1 and Lingon2 during 11 weeks. The composition and functionality of the cecal microbiota were assessed by 16S rRNA sequencing and PICRUSt. In addition, parameters related to obesity, insulin sensitivity, hepatic steatosis, inflammation and gut barrier function were examined. Results: HF-induced obesity was only prevented by the Lingon1 diet, whereas both batches of lingonberries reduced plasma levels of markers of inflammation and endotoxemia (SAA and LBP as well as modified the composition and functionality of the gut microbiota, compared to the HF control group. The relative abundance of Akkermansia and Faecalibacterium, genera associated with healthy gut mucosa and anti-inflammation, was found to increase in response to lingonberry intake. Conclusions: Our results show that supplementation with lingonberries to an HF diet prevents low-grade inflammation and is associated with significant changes of the microbiota composition. Notably, the anti-inflammatory properties of lingonberries seem to be independent of effects on body weight gain.

  13. Effect of dietary krill oil supplementation on the endocannabinoidome of metabolically relevant tissues from high-fat-fed mice

    Directory of Open Access Journals (Sweden)

    Cohn Jeffrey S

    2011-07-01

    Full Text Available Abstract Background Omega-3 polyunsaturated fatty acids (ω-3-PUFA are known to ameliorate several metabolic risk factors for cardiovascular disease, and an association between elevated peripheral levels of endogenous ligands of cannabinoid receptors (endocannabinoids and the metabolic syndrome has been reported. We investigated the dose-dependent effects of dietary ω-3-PUFA supplementation, given as krill oil (KO, on metabolic parameters in high fat diet (HFD-fed mice and, in parallel, on the levels, in inguinal and epididymal adipose tissue (AT, liver, gastrocnemius muscle, kidneys and heart, of: 1 the endocannabinoids, anandamide and 2-arachidonoylglycerol (2-AG, 2 two anandamide congeners which activate PPARα but not cannabinoid receptors, N-oleoylethanolamine and N-palmitoylethanolamine, and 3 the direct biosynthetic precursors of these compounds. Methods Lipids were identified and quantified using liquid chromatography coupled to atmospheric pressure chemical ionization single quadrupole mass spectrometry (LC-APCI-MS or high resolution ion trap-time of flight mass spectrometry (LC-IT-ToF-MS. Results Eight-week HFD increased endocannabinoid levels in all tissues except the liver and epididymal AT, and KO reduced anandamide and/or 2-AG levels in all tissues but not in the liver, usually in a dose-dependent manner. Levels of endocannabinoid precursors were also generally down-regulated, indicating that KO affects levels of endocannabinoids in part by reducing the availability of their biosynthetic precursors. Usually smaller effects were found of KO on OEA and PEA levels. Conclusions Our data suggest that KO may promote therapeutic benefit by reducing endocannabinoid precursor availability and hence endocannabinoid biosynthesis.

  14. Isolation of a third species of Sarcocystis in immunodeficient mice fed feces from opossums (Didelphis virginiana) and its differentiation from Sarcocystis falcatula and Sarcocystis neurona.

    Science.gov (United States)

    Dubey, J P; Speer, C A; Lindsay, D S

    1998-12-01

    Opossums (Didelphis virginiana) were found to be hosts for 3 species of Sarcocystis: Sarcocystis falcatula with an avian intermediate host, S. neurona with an undetermined intermediate host, and a third, unnamed, species. Sporocysts from the intestines of 2 opossums (nos. 26 and 47) were fed to budgerigars (Melopsittacus undulatus), nude mice, and gamma-interferon knockout (KO) mice. Sporocysts of S. falcatula were not infective to nude or KO mice. Sporocysts of S. neurona induced encephalitis in KO and nude mice; only schizonts and merozoites were found in tissues of mice, and they reacted with anti-S. neurona serum raised against the SN-2 isolate of S. neurona originally obtained from tissues of a paralyzed horse. All 3 species of Sarcocystis were present in opossum no. 47. Sarcocystis neurona was isolated in cell culture from this opossum. Sporocysts from opossum no. 47 were lethal to budgerigars, indicating S. falcatula infection. Only 1 species of Sarcocystis (the third species) was found in opossum no. 26; the sporocysts were infective to KO and nude mice. Schizonts and merozoites of this species were predominantly in the liver but were also found in other tissues; schizonts did not react with anti-S. neurona serum. Merozoites of the third species were ultrastructurally distinct from S. falcatula and S. neurona merozoites. Sarcocysts were found in leg muscles of 2 mice killed 50 and 54 days after they were fed sporocysts from opossum no. 26. These sarcocysts had steeple-shaped protrusions on the cyst wall and were distinct from sarcocysts of S. falcatula and any other species of Sarcocystis.

  15. Intestinal Barrier Function and the Gut Microbiome Are Differentially Affected in Mice Fed a Western-Style Diet or Drinking Water Supplemented with Fructose.

    Science.gov (United States)

    Volynets, Valentina; Louis, Sandrine; Pretz, Dominik; Lang, Lisa; Ostaff, Maureen J; Wehkamp, Jan; Bischoff, Stephan C

    2017-05-01

    Background: The consumption of a Western-style diet (WSD) and high fructose intake are risk factors for metabolic diseases. The underlying mechanisms are largely unclear. Objective: To unravel the mechanisms by which a WSD and fructose promote metabolic disease, we investigated their effects on the gut microbiome and barrier function. Methods: Adult female C57BL/6J mice were fed a sugar- and fat-rich WSD or control diet (CD) for 12 wk and given access to tap water or fructose-supplemented water. The microbiota was analyzed with the use of 16S rRNA gene sequencing. Barrier function was studied with the use of permeability tests, and endotoxin, mucus thickness, and gene expressions were measured. Results: The WSD increased body weight gain but not endotoxin translocation compared with the CD. In contrast, high fructose intake increased endotoxin translocation 2.6- and 3.8-fold in the groups fed the CD + fructose and WSD + fructose, respectively, compared with the CD group. The WSD + fructose treatment also induced a loss of mucus thickness in the colon (-46%) and reduced defensin expression in the ileum and colon. The lactulose:mannitol ratio in the WSD + fructose mice was 1.8-fold higher than in the CD mice. Microbiota analysis revealed that fructose, but not the WSD, increased the Firmicutes:Bacteroidetes ratio by 88% for CD + fructose and 63% for WSD + fructose compared with the CD group. Bifidobacterium abundance was greater in the WSD mice than in the CD mice (63-fold) and in the WSD + fructose mice than in the CD + fructose mice (330-fold). Conclusions: The consumption of a WSD or high fructose intake differentially affects gut permeability and the microbiome. Whether these differences are related to the distinct clinical outcomes, whereby the WSD primarily promotes weight gain and high fructose intake causes barrier dysfunction, needs to be investigated in future studies. © 2017 American Society for Nutrition.

  16. Endoplasmic reticulum stress does not contribute to steatohepatitis in obese and insulin-resistant high-fat-diet-fed foz/foz mice.

    Science.gov (United States)

    Legry, Vanessa; Van Rooyen, Derrick M; Lambert, Barbara; Sempoux, Christine; Poekes, Laurence; Español-Suñer, Regina; Molendi-Coste, Olivier; Horsmans, Yves; Farrell, Geoffrey C; Leclercq, Isabelle A

    2014-10-01

    Non-alcoholic fatty liver (steatosis) and steatohepatitis [non-alcoholic steatohepatitis (NASH)] are hepatic complications of the metabolic syndrome. Endoplasmic reticulum (ER) stress is proposed as a crucial disease mechanism in obese and insulin-resistant animals (such as ob/ob mice) with simple steatosis, but its role in NASH remains controversial. We therefore evaluated the role of ER stress as a disease mechanism in foz/foz mice, which develop both the metabolic and histological features that mimic human NASH. We explored ER stress markers in the liver of foz/foz mice in response to a high-fat diet (HFD) at several time points. We then evaluated the effect of treatment with an ER stress inducer tunicamycin, or conversely with the ER protectant tauroursodeoxycholic acid (TUDCA), on the metabolic and hepatic features. foz/foz mice are obese, glucose intolerant and develop NASH characterized by steatosis, inflammation, ballooned hepatocytes and apoptosis from 6 weeks of HFD feeding. This was not associated with activation of the upstream unfolded protein response [phospho-eukaryotic initiation factor 2α (eIF2α), inositol-requiring enzyme 1α (IRE1α) activity and spliced X-box-binding protein 1 (Xbp1)]. Activation of c-Jun N-terminal kinase (JNK) and up-regulation of activating transcription factor-4 (Atf4) and CCAAT/enhancer-binding protein-homologous protein (Chop) transcripts were however compatible with a 'pathological' response to ER stress. We tested this by using intervention experiments. Induction of chronic ER stress failed to worsen obesity, glucose intolerance and NASH pathology in HFD-fed foz/foz mice. In addition, the ER protectant TUDCA, although reducing steatosis, failed to improve glucose intolerance, hepatic inflammation and apoptosis in HFD-fed foz/foz mice. These results show that signals driving hepatic inflammation, apoptosis and insulin resistance are independent of ER stress in obese diabetic mice with steatohepatitis.

  17. Decreased production of interleukin-6 and prostaglandin E2 associated with inhibition of delta-5 desaturation of omega6 fatty acids in mice fed safflower oil diets supplemented with sesamol.

    Science.gov (United States)

    Chavali, S R; Forse, R A

    1999-12-01

    The differences in the immune responses in mice fed sesame oil diets and those fed sesamin may be attributed to the presence of other lignans in the non-fat portion of the oil. The fatty acid composition (mean +/- SD mol. %) of liver membrane phospholipids and the levels of endotoxin-induced prostaglandin (PG) E2, interleukin (IL)-6, IL-10, IL-12 and tumor necrosis factor (TNF)-alpha were determined in mice fed diets supplemented with 5% safflower oil (SO) in the absence or presence of 1% sesamol. The levels of dihomo-gamma-linolenic acid (20:3omega6) were markedly higher (P<0.025) in the livers from mice fed sesamol supplemented SO diets (1.6 +/- 0.1) compared to the controls (1.4 +/- 0.1). These data suggest that sesamol or its metabolite could inhibit the in vivo delta-5 desaturation of omega6 fatty acids. Further, in animals fed sesamol supplemented SO diets, the levels of PGE2 (228 +/- 41 pg/ml) were markedly lower (P<0.01) compared to those fed SO diet alone (1355 +/- 188 pg/ml). Concomitantly, the concentrations of IL-6 were also lower (P<0.01) in mice fed sesamol diet (63 +/- 11 ng/ml) compared to the controls (143 +/- 22 ng/ml). A marked reduction in the levels of PGE2 in animals fed sesamol diets suggests that sesamol or its metabolite could inhibit the activity of cyclooxygenase enzyme.

  18. Effects of disturbed liver growth and oxidative stress of high-fat diet-fed dams on cholesterol metabolism in offspring mice.

    Science.gov (United States)

    Kim, Juyoung; Kim, Juhae; Kwon, Young Hye

    2016-08-01

    Changes in nutritional status during gestation and lactation have detrimental effects on offspring metabolism. Several animal studies have shown that maternal high-fat diet (HFD) can predispose the offspring to development of obesity and metabolic diseases, however the mechanisms underlying these transgenerational effects are poorly understood. Therefore, we examined the effect of maternal HFD consumption on metabolic phenotype and hepatic expression of involved genes in dams to determine whether any of these parameters were associated with the metabolic outcomes in the offspring. Female C57BL/6 mice were fed a low-fat diet (LFD: 10% calories from fat) or a high-fat diet (HFD: 45% calories from fat) for three weeks before mating, and during pregnancy and lactation. Dams and their male offspring were studied at weaning. Dams fed an HFD had significantly higher body and adipose tissue weights and higher serum triglyceride and cholesterol levels than dams fed an LFD. Hepatic lipid levels and mRNA levels of genes involved in lipid metabolism, including LXRα, SREBP-2, FXR, LDLR, and ABCG8 were significantly changed by maternal HFD intake. Significantly lower total liver DNA and protein contents were observed in dams fed an HFD, implicating the disturbed liver adaptation in the pregnancy-related metabolic demand. HFD feeding also induced significant oxidative stress in serum and liver of dams. Offspring of dams fed an HFD had significantly higher serum cholesterol levels, which were negatively correlated with liver weights of dams and positively correlated with hepatic lipid peroxide levels in dams. Maternal HFD consumption induced metabolic dysfunction, including altered liver growth and oxidative stress in dams, which may contribute to the disturbed cholesterol homeostasis in the early life of male mice offspring.

  19. Effects of acute exposure to chlorpyrifos on cholinergic and non-cholinergic targets in normal and high-fat fed male C57BL/6J mice.

    Science.gov (United States)

    Kondakala, Sandeep; Lee, Jung Hwa; Ross, Matthew K; Howell, George E

    2017-12-15

    The prevalence of obesity is increasing at an alarming rate in the United States with 36.5% of adults being classified as obese. Compared to normal individuals, obese individuals have noted pathophysiological alterations which may alter the toxicokinetics of xenobiotics and therefore alter their toxicities. However, the effects of obesity on the toxicity of many widely utilized pesticides has not been established. Therefore, the present study was designed to determine if the obese phenotype altered the toxicity of the most widely used organophosphate (OP) insecticide, chlorpyrifos (CPS). Male C57BL/6J mice were fed normal or high-fat diet for 4weeks and administered a single dose of vehicle or CPS (2.0mg/kg; oral gavage) to assess cholinergic (acetylcholinesterase activities) and non-cholinergic (carboxylesterase and endocannabinoid hydrolysis) endpoints. Exposure to CPS significantly decreased red blood cell acetylcholinesterase (AChE) activity, but not brain AChE activity, in both diet groups. Further, CPS exposure decreased hepatic carboxylesterase activity and hepatic hydrolysis of a major endocannabinoid, anandamide, in a diet-dependent manner with high-fat diet fed animals being more sensitive to CPS-mediated inhibition. These in vivo studies were corroborated by in vitro studies using rat primary hepatocytes, which demonstrated that fatty acid amide hydrolase and CES activities were more sensitive to CPS-mediated inhibition than 2-arachidonoylglycerol hydrolase activity. These data demonstrate hepatic CES and FAAH activities in high-fat diet fed mice were more potently inhibited than those in normal diet fed mice following CPS exposure, which suggests that the obese phenotype may exacerbate some of the non-cholinergic effects of CPS exposure. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Obese Mice Fed a Diet Supplemented with Enzyme-Treated Wheat Bran Display Marked Shifts in the Liver Metabolome Concurrent with Altered Gut Bacteria

    DEFF Research Database (Denmark)

    Kieffer, Dorothy A.; Piccolo, Brian D.; Marco, Maria L.

    2016-01-01

    ) associated with specific microbes may be involved. Objective: The objective of this study was to characterize ETWB-driven shifts in the cecal microbiome and to identify correlates between microbial changes and diet-related differences in liver metabolism in diet-induced obese mice that typically display......Background: Enzyme-treated wheat bran (ETWB) contains a fermentable dietary fiber previously shown to decrease liver triglycerides (TGs) and modify the gut microbiome in mice. It is not clear which mechanisms explain how ETWB feeding affects hepatic metabolism, but factors (i.e., xenometabolites...... steatosis. Methods: Five-week-old male C57BL/6J mice fed a 45%-lard based fat diet supplemented with ETWB (20% wt:wt) or rapidly digestible starch (control) (n = 15/group) for 10 wk were characterized by using a multi-omics approach. Multivariate statistical analysis was used to identify variables that were...

  1. Oral treatment with γ-aminobutyric acid improves glucose tolerance and insulin sensitivity by inhibiting inflammation in high fat diet-fed mice.

    Directory of Open Access Journals (Sweden)

    Jide Tian

    Full Text Available Adipocyte and β-cell dysfunction and macrophage-related chronic inflammation are critical for the development of obesity-related insulin resistance and type 2 diabetes mellitus (T2DM, which can be negatively regulated by Tregs. Our previous studies and those of others have shown that activation of γ-aminobutyric acid (GABA receptors inhibits inflammation in mice. However, whether GABA could modulate high fat diet (HFD-induced obesity, glucose intolerance and insulin resistance has not been explored. Here, we show that although oral treatment with GABA does not affect water and food consumption it inhibits the HFD-induced gain in body weights in C57BL/6 mice. Furthermore, oral treatment with GABA significantly reduced the concentrations of fasting blood glucose, and improved glucose tolerance and insulin sensitivity in the HFD-fed mice. More importantly, after the onset of obesity and T2DM, oral treatment with GABA inhibited the continual HFD-induced gain in body weights, reduced the concentrations of fasting blood glucose and improved glucose tolerance and insulin sensitivity in mice. In addition, oral treatment with GABA reduced the epididymal fat mass, adipocyte size, and the frequency of macrophage infiltrates in the adipose tissues of HFD-fed mice. Notably, oral treatment with GABA significantly increased the frequency of CD4(+Foxp3(+ Tregs in mice. Collectively, our data indicated that activation of peripheral GABA receptors inhibited the HFD-induced glucose intolerance, insulin resistance, and obesity by inhibiting obesity-related inflammation and up-regulating Treg responses in vivo. Given that GABA is safe for human consumption, activators of GABA receptors may be valuable for the prevention of obesity and intervention of T2DM in the clinic.

  2. Momordica charantia ameliorates insulin resistance and dyslipidemia with altered hepatic glucose production and fatty acid synthesis and AMPK phosphorylation in high-fat-fed mice.

    Science.gov (United States)

    Shih, Chun-Ching; Shlau, Min-Tzong; Lin, Cheng-Hsiu; Wu, Jin-Bin

    2014-03-01

    Momordica charantia Linn. (Cucurbitaceae) fruit is commonly known as bitter melon. C57BL/6J mice were firstly divided randomly into two groups: the control (CON) group was fed with a low-fat diet, whereas the experimental group was fed a 45% high-fat (HF) diet for 8 weeks. Afterwards, the CON group was treated with vehicle, whereas the HF group was subdivided into five groups and still on HF diet and was given orally M. charantia extract (MCE) or rosiglitazone (Rosi) or not for 4 weeks. M. charantia decreased the weights of visceral fat and caused glucose lowering. AMP-activated protein kinase (AMPK) is a major cellular regulator of lipid and glucose metabolism. MCE significantly increases the hepatic protein contents of AMPK phosphorylation by 126.2-297.3% and reduces expression of phosphenolpyruvate carboxykinase (PEPCK) and glucose production. Most importantly, MCE decreased expression of hepatic 11beta hydroxysteroid dehydroxygenase (11beta-HSD1) gene, which contributed in attenuating diabetic state. Furthermore, MCE lowered serum triglycerides (TGs) by inhibition of hepatic fatty acid synthesis by dampening sterol response element binding protein 1c and fatty acid synthase mRNA leading to reduction in TGs synthesis. This study demonstrates M. charantia ameliorates diabetic and hyperlipidemic state in HF-fed mice occurred by regulation of hepatic PEPCK, 11beta-HSD1 and AMPK phosphorylation. Copyright © 2013 John Wiley & Sons, Ltd.

  3. Composição corporal e exigências energéticas e protéicas de bovinos F1 Limousin x Nelore, não-castrados, alimentados com rações contendo diferentes níveis de concentrado Body composition and energy and protein requirements of F1 Limousin x Nellore bulls fed diets with different concentrate levels

    Directory of Open Access Journals (Sweden)

    Cristina Mattos Veloso

    2002-06-01

    Full Text Available Foram utilizados 50 novilhos F1 Limousin x Nelore inteiros, alocados em dez tratamentos, com cinco níveis de concentrado (25; 37,5; 50; 62,5; e 75% e duas formas de balanceamento protéico da dieta (uma isoprotéica com 12% de proteína bruta [PB] e outra variando proteína com energia. Avaliaram-se os consumos de matéria seca (MS, matéria orgânica (MO, PB, fibra em detergente neutro (FDN e nutrientes digestíveis totais (NDT. Após o abate, todas as partes do corpo do animal foram pesadas, amostradas e analisadas para MS, teores de compostos nitrogenados totais e extrato etéreo. Os conteúdos de proteína, gordura e energia retidos no corpo foram estimados por meio de equações de regressão do logaritmo do conteúdo corporal de proteína, gordura ou energia, em função do logaritmo do peso de corpo vazio (PCVZ. As exigências líquidas de proteína e energia, para ganho de 1 kg de PCVZ foram obtidas a partir da equação Y = b. 10ª. Xb-1, sendo a e b o intercepto e o coeficiente de regressão, respectivamente, das equações de predição dos conteúdos corporais de proteína ou energia. A exigência líquida de energia para mantença (ELm foi estimada como o anti-log do intercepto da equação obtida pela regressão linear entre o logaritmo da produção de calor e o consumo de energia metabolizável. A forma de balanceamento da dieta não influenciou os consumos dos nutrientes. O consumo de MS, em kg/dia, não foi influenciado pelo nível de concentrado (NC, apresentando média de 7,39 kg/dia. O NC das dietas não influenciou o consumo de MO (7,08 kg/dia. Com o aumento do NC, o consumo de FDN reduziu e o de NDT aumentou linearmente. Nas dietas com níveis de proteína variados, o consumo de PB aumentou linearmente. Já as dietas isoprotéicas não foram influenciadas pelo NC, apresentando média de consumo de PB de 0,89 kg/dia. As exigências de energia líquida para ganho de peso de bovinos F1 Limousin x Nelore não-castrados, em

  4. Bovine α-Lactalbumin Hydrolysates (α-LAH Ameliorate Adipose Insulin Resistance and Inflammation in High-Fat Diet-Fed C57BL/6J Mice

    Directory of Open Access Journals (Sweden)

    Jing Gao

    2018-02-01

    Full Text Available Obesity-induced adipose inflammation has been demonstrated to be a key cause of insulin resistance. Peptides derived from bovine α-lactalbumin have been shown to inhibit the activities of dipeptidyl peptidase IV (DPP-IV and angiotensin converting enzyme (ACE, scavenge 2,2′-azinobis [3-ethylbenzothiazoline-6-sulfonate] (ABTS+ radical and stimulate glucagon-like peptide-2 secretion. In the present study, the effects of bovine α-lactalbumin hydrolysates (α-LAH on adipose insulin resistance and inflammation induced by high-fat diet (HFD were investigated. The insulin resistance model was established by feeding C57BL/6J mice with HFD (60% kcal from fat for eight weeks. Then, the mice were fed with HFD and bovine α-LAH of different doses (100 mg/kg b.w., 200 mg/kg b.w. and 400 mg/kg b.w. for another 12 weeks to evaluate its protective effects against HFD-induced insulin resistance. The oral glucose tolerance test (OGTT and intraperitoneal insulin tolerance test (ipITT were conducted after intervention with α-LAH for 10 weeks and 11 weeks, respectively. Results showed that bovine α-LAH significantly reduced body weight, blood glucose, serum insulin, and HOMA-IR (homeostatic model assessment of insulin resistance levels, lowered the area-under-the-curve (AUC during OGTT and ipITT, and downregulated inflammation-related gene [tumor necrosis factor (TNF-α, interleukin (IL-6, monocyte chemoattractant protein (MCP-1] expression in adipose tissues of HFD-fed C57BL/6J mice. Furthermore, bovine α-LAH also suppressed insulin receptor substrate 1 (IRS-1 serine phosphorylation (Ser307, Ser612, enhanced protein kinase B (known as Akt phosphorylation, and inhibited the activation of inhibitor of kappaB kinase (IKK and mitogen activated protein kinase (MAPK signaling pathways in adipose tissues of HFD-fed C57BL/6J mice. These results suggested that bovine α-LAH could ameliorate adipose insulin resistance and inflammation through IKK and MAPK signaling

  5. Altered regulation of miR-34a and miR-483-3p in alcoholic hepatitis and DDC fed mice.

    Science.gov (United States)

    Liu, Hui; French, Barbara A; Li, Jun; Tillman, Brittany; French, Samuel W

    2015-12-01

    MicroRNAs are small noncoding RNAs that negatively regulate gene expression by binding to the untranslated regions of their target mRNAs. Deregulation of miRNAs is shown to play pivotal roles in tumorigenesis and progression. Mallory-Denk Bodies (MDBs) are prevalent in various liver diseases including alcoholic hepatitis (AH) and are formed in mice livers by feeding DDC. By comparing AH livers where MDBs had formed with normal livers, there were significant changes of miR-34a and miR-483-3p by RNA sequencing (RNA-Seq) analyses. Real-time PCR further shows a 3- and 6-fold upregulation (respectively) of miR-34a in the AH livers and in the livers of DDC re-fed mice, while miR-483-3p was significantly downregulated in AH and DDC re-fed mice livers. This indicates that miR-34a and miR-483-3p may be crucial for liver MDB formation. P53 mRNA was found to be significantly downregulated both in the AH livers and in the livers of DDC re-fed mice, indicating that the upregulation of miR-34a is permitted by the decrease of p53 in AH since miR-34a is a main target of p53. Overexpression of miR-34a leads to an increase of p53 targets such as p27, which inhibits the cell cycle leading to cell cycle arrest. Importantly, BRCA1 is a target gene of miR-483-3p by RNA-Seq analyses and the downregulation of miR-483-3p may be the mechanism for liver MDB formation since the BRCA1 signal was markedly upregulated in AH livers. These results constitute a demonstration of the altered regulation of miR-34a and miR-483-3p in the livers of AH and mice fed DDC where MDBs formed, providing further insight into the mechanism of MDB formation mediated by miR-34a and miR-483-3p in AH. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Toxicology and carcinogenesis studies of a nondecolorized [corrected] whole leaf extract of Aloe barbadensis Miller (Aloe vera) in F344/N rats and B6C3F1 mice (drinking water study).

    Science.gov (United States)

    Boudreau, M D; Beland, F A; Nichols, J A; Pogribna, M

    2013-08-01

    Extracts from the leaves of the Aloe vera plant (Aloe barbadensis Miller) have long been used as herbal remedies and are also now promoted as a dietary supplement, in liquid tonics, powders or tablets, as a laxative and to prevent a variety of illnesses. We studied the effects of Aloe vera extract on rats and mice to identify potential toxic or cancer-related hazards. We gave solutions of nondecolorized extracts of Aloe vera leaves in the drinking water to groups of rats and mice for 2 years. Groups of 48 rats received solutions containing 0.5%, 1% or 1.5% of Aloe vera extract in the drinking water, and groups of mice received solutions containing 1%, 2%, or 3% of Aloe vera extract. Similar groups of animals were given plain drinking water and served as the control groups. At the end of the study tissues from more than 40 sites were examined for every animal. In all groups of rats and mice receiving the Aloe vera extract, the rates of hyperplasia in the large intestine were markedly increased compared to the control animals. There were also increases in hyperplasia in the small intestine in rats receiving the Aloe vera extract, increases in hyperplasia of the stomach in male and female rats and female mice receiving the Aloe vera extract, and increases in hyperplasia of the mesenteric lymph nodes in male and female rats and male mice receiving the Aloe vera extract. In addition, cancers of the large intestine occurred in male and female rats given the Aloe vera extract, though none had been seen in the control groups of rats for this and other studies at this laboratory. We conclude that nondecolorized Aloe vera caused cancers of the large intestine in male and female rats and also caused hyperplasia of the large intestine, small intestine, stomach, and lymph nodes in male and female rats. Aloe vera extract also caused hyperplasia of the large intestine in male and female mice and hyperplasia of the mesenteric lymph node in male mice and hyperplasia of the stomach

  7. Cholera toxin-induced ADP-ribosylation of a 46 kDa protein is decreased in brains of ethanol-fed mice

    International Nuclear Information System (INIS)

    Nhamburo, P.T.; Hoffman, P.L.; Tabakoff, B.

    1988-01-01

    The acute in vitro effects of ethanol on cerebral cortical adenylate cyclase activity and beta-adrenergic receptor characteristics suggested a site of action of ethanol at Gs, the stimulatory guanine nucleotide binding protein. After chronic ethanol ingestion, the beta-adrenergic receptor appeared to be uncoupled (i.e., the form of the receptor with high affinity for agonist was undetectable), and stimulation of adenylate cyclase activity by isoproterenol or guanine nucleotides was reduced, suggesting an alteration in the properties of Gs. To further characterize this change, cholera and pertussis toxin-mediated 32 P-ADP-ribosylation of mouse cortical membranes was assessed in mice that had chronically ingested ethanol in a liquid diet. 32 P-labeled proteins were separated by SDS-PAGE and quantitated by autoradiography. There was a selective 30-50% decrease in cholera toxin-induced labeling of 46 kDa protein band in membranes of ethanol-fed mice, with no apparent change in pertussis toxin-induced labeling. The 46 kDa protein has a molecular weight similar to that of the alpha subunit of Gs, suggesting a reduced amount of this protein or a change in its characteristics as a substrate for cholera toxin-induced ADP-ribosylation in cortical membranes of ethanol-fed mice

  8. Comparative evaluation of anti-obesity effect of Aloe vera and Gymnema sylvestre supplementation in high-fat diet fed C57BL/6J mice.

    Science.gov (United States)

    Pothuraju, Ramesh; Sharma, Raj Kumar; Rather, Sarver Ahmed; Singh, Satvinder

    2016-01-01

    The aim of the present study was to investigate, anti-obesity effect of Aloe vera (AV), and Gymnema sylvestre (GS) whole extract powders administration to high-fat diet (HFD) fed C57BL/6J mice for 12 weeks. At the end of experiment, different parameters such as body weight, feed intake, organ weights, fasting blood glucose, oral glucose tolerance test, plasma lipid levels, and expression analysis of adipocytokines were evaluated. At the end of experimental period, oral administration of both herbs showed a significant ( P E. fat) weight in the HFD group was significantly ( P E. fat tissue of HFD fed group. The anti-obesity and other metabolic studies depend on the type of diet, different parts of herbal extractions, and animal models used. Further studies are required in this area to strengthen the anti-obesity effects of herbs with active component, and it can be used a pro-drug instead of whole extract.

  9. Beneficial Effect of Voluntary Exercise on Experimental Colitis in Mice Fed a High-Fat Diet: The Role of Irisin, Adiponectin and Proinflammatory Biomarkers

    Science.gov (United States)

    Mazur-Bialy, Agnieszka Irena; Bilski, Jan; Wojcik, Dagmara; Brzozowski, Bartosz; Surmiak, Marcin; Hubalewska-Mazgaj, Magdalena; Chmura, Anna; Magierowski, Marcin; Magierowska, Katarzyna; Mach, Tomasz; Brzozowski, Tomasz

    2017-01-01

    Inflammatory bowel diseases (IBDs) are a heterogeneous group of disorders exhibited by two major phenotypic forms: Crohn‘s disease and ulcerative colitis. Although the aetiology of IBD is unknown, several factors coming from the adipose tissue and skeletal muscles, such as cytokines, adipokines and myokines, were suggested in the pathogenesis of ulcerative colitis; however, it has not been extensively studied whether voluntary exercise can ameliorate that disorder. We explored the effect of moderate exercise (i.e., voluntary wheel running) on the disease activity index (DAI), colonic blood flow (CBF), plasma irisin and adiponectin levels and real-time PCR expression of proinflammatory markers in mesenteric fat in mice with 2,4,6-trinitrobenzenesulfonic acid (TNBS) colitis fed a high-fat diet (HFD) compared to those on a standard chow diet (SD). Macroscopic and microscopic colitis in sedentary SD mice was accompanied by a significant fall in CBF, some increase in colonic tissue weight and a significant increase in the plasma levels of tumour necrosis factor-alpha (TNF-α), IL-6, monocyte chemotactic protein 1 (MCP-1) and IL-13 (p Exercise significantly decreased macroscopic and microscopic colitis, substantially increased CBF and attenuated the plasma TNF-α, IL-6, MCP-1, IL-1β and leptin levels while raising the plasma irisin and the plasma and WAT concentrations of adiponectin in HFD mice (p < 0.05). We conclude that: (1) experimental colitis is exacerbated in HFD mice, possibly due to a fall in colonic microcirculation and an increase in the plasma and mesenteric fat content of proinflammatory biomarkers; and (2) voluntary physical activity can attenuate the severity of colonic damage in mice fed a HFD through the release of protective irisin and restoration of plasma adiponectin. PMID:28425943

  10. Effects of chocolate supplementation on metabolic and cardiovascular parameters in ApoE3L mice fed a high-cholesterol atherogenic diet.

    Science.gov (United States)

    Yakala, Gopala K; Wielinga, Peter Y; Suarez, Manuel; Bunschoten, Annelies; van Golde, Jolanda M; Arola, Lluis; Keijer, Jaap; Kleemann, Robert; Kooistra, Teake; Heeringa, Peter

    2013-11-01

    Dietary intake of cocoa and/or chocolate has been suggested to exhibit protective cardiovascular effects although this is still controversial. The aim of this study was to investigate the effects of chocolate supplementation on metabolic and cardiovascular parameters. Four groups of ApoE*3Leiden mice were exposed to the following diet regimens. Group 1: cholesterol-free control diet (CO). Group 2: high-dose (1.0% w/w) control cholesterol (CC). Group 3: CC supplemented chocolate A (CCA) and Group 4: CC supplemented chocolate B (CCB). Both chocolates differed in polyphenol and fiber content, CCA had a relatively high-polyphenol and low-fiber content compared to CCB. Mice fed a high-cholesterol diet showed increased plasma-cholesterol and developed atherosclerosis. Both chocolate treatments, particularly CCA, further increased plasma-cholesterol and increased atherosclerotic plaque formation. Moreover, compared to mice fed a high-cholesterol diet, both chocolate-treated groups displayed increased liver injury. Mice on high-cholesterol diet had elevated plasma levels of sVCAM-1, sE-selectin and SAA, which was further increased in the CCB group. Similar effects were observed for renal inflammation markers. The two chocolate preparations showed unfavorable, but different effects on cardiometabolic health in E3L mice, which dissimilarities may be related to differences in chocolate composition. We conclude that discrepancies reported on the effects of chocolate on cardiometabolic health may at least partly be due to differences in chocolate composition. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The modulatory role of spinally located histamine receptors in the regulation of the blood glucose level in d-glucose-fed mice.

    Science.gov (United States)

    Sim, Yun-Beom; Park, Soo-Hyun; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Lim, Su-Min; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi; Suh, Hong-Won

    2014-02-01

    The possible roles of spinal histamine receptors in the regulation of the blood glucose level were studied in ICR mice. Mice were intrathecally (i.t.) treated with histamine 1 (H1) receptor agonist (2-pyridylethylamine) or antagonist (cetirizine), histamine 2 (H2) receptor agonist (dimaprit) or antagonist (ranitidine), histamine 3 (H3) receptor agonist (α-methylhistamine) or antagonist (carcinine) and histamine 4 (H4) receptor agonist (VUF 8430) or antagonist (JNJ 7777120), and the blood glucose level was measured at 30, 60 and 120 min after i.t. administration. The i.t. injection with α-methylhistamine, but not carcinine slightly caused an elevation of the blood glucose level. In addition, histamine H1, H2, and H4 receptor agonists and antagonists did not affect the blood glucose level. In D-glucose-fed model, i.t. pretreatment with cetirizine enhanced the blood glucose level, whereas 2-pyridylethylamine did not affect. The i.t. pretreatment with dimaprit, but not ranitidine, enhanced the blood glucose level in D-glucose-fed model. In addition, α-methylhistamine, but not carcinine, slightly but significantly enhanced the blood glucose level D-glucose-fed model. Finally, i.t. pretreatment with JNJ 7777120, but not VUF 8430, slightly but significantly increased the blood glucose level. Although histamine receptors themselves located at the spinal cord do not exert any effect on the regulation of the blood glucose level, our results suggest that the activation of spinal histamine H2 receptors and the blockade of spinal histamine H1 or H3 receptors may play modulatory roles for up-regulation and down-regulation, respectively, of the blood glucose level in D-glucose fed model.

  12. Editor's Highlight: Complete Attenuation of Mouse Lung Cell Proliferation and Tumorigenicity in CYP2F2 Knockout and CYP2F1 Humanized Mice Exposed to Inhaled Styrene for up to 2 Years Supports a Lack of Human Relevance.

    Science.gov (United States)

    Cruzan, George; Bus, James S; Banton, Marcy I; Sarang, Satinder S; Waites, Robbie; Layko, Debra B; Raymond, James; Dodd, Darol; Andersen, Melvin E

    2017-10-01

    Styrene is a mouse-specific lung carcinogen, and short-term mode of action studies have demonstrated that cytotoxicity and/or cell proliferation, and genomic changes are dependent on CYP2F2 metabolism. The current study examined histopathology, cell proliferation, and genomic changes in CD-1, C57BL/6 (WT), CYP2F2(-/-) (KO), and CYP2F2(-/-) (CYP2F1, 2B6, 2A13-transgene) (TG; humanized) mice following exposure for up to 104 weeks to 0- or 120-ppm styrene vapor. Five mice per treatment group were sacrificed at 1, 26, 52, and 78 weeks. Additional 50 mice per treatment group were followed until death or 104 weeks of exposure. Cytotoxicity was present in the terminal bronchioles of some CD-1 and WT mice exposed to styrene, but not in KO or TG mice. Hyperplasia in the terminal bronchioles was present in CD-1 and WT mice exposed to styrene, but not in KO or TG mice. Increased cell proliferation, measured by KI-67 staining, occurred in CD-1 and WT mice exposed to styrene for 1 week, but not after 26, 52, or 78 weeks, nor in KO or TG mice. Styrene increased the incidence of bronchioloalveolar adenomas and carcinomas in CD-1 mice. No increase in lung tumors was found in WT despite clear evidence of lung toxicity, or, KO or TG mice. The absence of preneoplastic lesions and tumorigenicity in KO and TG mice indicates that mouse-specific CYP2F2 metabolism is responsible for both the short-term and chronic toxicity and tumorigenicity of styrene, and activation of styrene by CYP2F2 is a rodent MOA that is neither quantitatively or qualitatively relevant to humans. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. NTP toxicology and carcinogensis studies of dipropylene glycol (CAS No. 25265-71-8) in F344/N rats and B6C3F1 mice (drinking water studies).

    Science.gov (United States)

    2004-06-01

    Dipropylene glycol is found in antifreeze, air fresheners, cosmetic products, solvents, and plastics. We studied the effects of dipropylene glycol on male and female rats and mice to identify potential or cancer-related hazards to humans. We gave groups of 50 male and female mice drinking water containing dipropylene glycol at concentrations of 10,000, 20,000, or 40,000 parts per million (corresponding to 1%, 2%, or 4%) for two years. Male and female rats received concentrations of 2,500, 10,000, or 40,000 parts per million. Other groups received untreated water and were the control group. Tissues from more than 40 sites were examined for every animal. The groups of animals receiving 40,000 ppm dipropylene glycol weighed less than the control animals. All the make rats receiving 40,000 ppm dipropylene glycol died before the end of the study, mainly because of kidney disease. All the other animal group survived as well as the controls. No increase in tumor rates were seen in any of the groups of rats or mice. We conclude that dipropylene glycol did not cause cancer in male or female rats or mice. Exposure to dipropylene glycol did increase the rate and severity of kidney nephropathy and inflammation of the liver and salivary gland in male rats and some atrophy of the epithelial tissue of the nose in male and female rats.

  14. Antidiabetic and Antihyperlipidemic Effects of Clitocybe nuda on Glucose Transporter 4 and AMP-Activated Protein Kinase Phosphorylation in High-Fat-Fed Mice

    Directory of Open Access Journals (Sweden)

    Mei-Hsing Chen

    2014-01-01

    Full Text Available The objective of this study was to evaluate the antihyperlipidemic and antihyperglycemic effects and mechanism of the extract of Clitocybe nuda (CNE, in high-fat- (HF- fed mice. C57BL/6J was randomly divided into two groups: the control (CON group was fed with a low-fat diet, whereas the experimental group was fed with a HF diet for 8 weeks. Then, the HF group was subdivided into five groups and was given orally CNE (including C1: 0.2, C2: 0.5, and C3: 1.0 g/kg/day extracts or rosiglitazone (Rosi or vehicle for 4 weeks. CNE effectively prevented HF-diet-induced increases in the levels of blood glucose, triglyceride, insulin (P<0.001, P<0.01, P<0.05, resp. and attenuated insulin resistance. By treatment with CNE, body weight gain, weights of white adipose tissue (WAT and hepatic triacylglycerol content were reduced; moreover, adipocytes in the visceral depots showed a reduction in size. By treatment with CNE, the protein contents of glucose transporter 4 (GLUT4 were significantly increased in C3-treated group in the skeletal muscle. Furthermore, CNE reduces the hepatic expression of glucose-6-phosphatase (G6Pase and glucose production. CNE significantly increases protein contents of phospho-AMP-activated protein kinase (AMPK in the skeletal muscle and adipose and liver tissues. Therefore, it is possible that the activation of AMPK by CNE leads to diminished gluconeogenesis in the liver and enhanced glucose uptake in skeletal muscle. It is shown that CNE exhibits hypolipidemic effect in HF-fed mice by increasing ATGL expression, which is known to help triglyceride to hydrolyze. Moreover, antidiabetic properties of CNE occurred as a result of decreased hepatic glucose production via G6Pase downregulation and improved insulin sensitization. Thus, amelioration of diabetic and dyslipidemic states by CNE in HF-fed mice occurred by regulation of GLUT4, G6Pase, ATGL, and AMPK phosphorylation.

  15. Fatty liver accompanies an increase in lactobacillus species in the hind gut of C57BL/6 mice fed a high-fat diet.

    Science.gov (United States)

    Zeng, Huawei; Liu, Jun; Jackson, Matthew I; Zhao, Feng-Qi; Yan, Lin; Combs, Gerald F

    2013-05-01

    High-fat (HF) diets can produce obesity and have been linked to the development of nonalcoholic fatty liver disease and changes in the gut microbiome. To test the hypothesis that HF feeding increases certain predominant hind gut bacteria and development of steatohepatitis, C57BL/6 mice were fed an HF (45% energy) or low-fat (LF) (10% energy) diet for 10 wk. At the end of the feeding period, body weights in the HF group were 34% greater than those in the LF group (P < 0.05). These changes were associated with dramatic increases in lipid droplet number and size, inflammatory cell infiltration, and inducible nitric oxide (NO) synthase protein concentration in the livers of mice fed the HF diet. Consistent with the fatty liver phenotype, plasma leptin and tumor necrosis factor-α concentrations were also elevated in mice fed the HF diet, indicative of chronic inflammation. Eight of 12 pairs of polymerase chain reaction (PCR) primers for bacterial species that typically predominate hind gut microbial ecology generated specific PCR products from the fecal DNA samples. The amount of DNA from Lactobacillus gasseri and/or Lactobacillus taiwanensis in the HF group was 6900-fold greater than that in the LF group. Many of these bacteria are bile acid resistant and are capable of bile acid deconjugation. Because bile acids are regulators of hepatic lipid metabolism, the marked increase of gut L. gasseri and/or L. taiwanensis species bacteria with HF feeding may play a role in development of steatohepatitis in this model.

  16. Fatty Liver Accompanies an Increase in Lactobacillus Species in the Hind Gut of C57BL/6 Mice Fed a High-Fat Diet123

    Science.gov (United States)

    Zeng, Huawei; Liu, Jun; Jackson, Matthew I.; Zhao, Feng-Qi; Yan, Lin; Combs, Gerald F.

    2013-01-01

    High-fat (HF) diets can produce obesity and have been linked to the development of nonalcoholic fatty liver disease and changes in the gut microbiome. To test the hypothesis that HF feeding increases certain predominant hind gut bacteria and development of steatohepatitis, C57BL/6 mice were fed an HF (45% energy) or low-fat (LF) (10% energy) diet for 10 wk. At the end of the feeding period, body weights in the HF group were 34% greater than those in the LF group (P < 0.05). These changes were associated with dramatic increases in lipid droplet number and size, inflammatory cell infiltration, and inducible nitric oxide (NO) synthase protein concentration in the livers of mice fed the HF diet. Consistent with the fatty liver phenotype, plasma leptin and tumor necrosis factor-α concentrations were also elevated in mice fed the HF diet, indicative of chronic inflammation. Eight of 12 pairs of polymerase chain reaction (PCR) primers for bacterial species that typically predominate hind gut microbial ecology generated specific PCR products from the fecal DNA samples. The amount of DNA from Lactobacillus gasseri and/or Lactobacillus taiwanensis in the HF group was 6900-fold greater than that in the LF group. Many of these bacteria are bile acid resistant and are capable of bile acid deconjugation. Because bile acids are regulators of hepatic lipid metabolism, the marked increase of gut L. gasseri and/or L. taiwanensis species bacteria with HF feeding may play a role in development of steatohepatitis in this model. PMID:23486979

  17. Comparison of ultraviolet light-induced skin carcinogenesis and ornithine decarboxylase activity in sencar and hairless SKH-1 mice fed a constant level of dietary lipid varying in corn and coconut oil

    International Nuclear Information System (INIS)

    Berton, T.R.; Fischer, S.M.; Conti, C.J.; Locniskar, M.F.

    1996-01-01

    To investigate the effect of various levels of corn oil and coconut oil on ultraviolet (UV) light‐induced skin tumorigenesis and ornithine decarboxylase (ODC) activity, Sencar and SKH‐1 mice were fed one of three 15% (weight) fat semipurified diets containing three ratios of com oil to coconut oil: 1.0%:14.0%, 7.9%:7.1%, and 15.0%:0.0% in Diets A, B, and C, respectively. Groups of 30 Sencar and SKH‐1 mice were fed one of the diets for three weeks before UV irradiation; then both strains were UV irradiated with an initial dose of 90 mJ/cm2. The dose was given three times a week and increased 25% each week. For Sencar mice (irradiated 33 wks for a total dose of 48 J/cm2), tumor incidence reached a maximum of 60%, 60%, and 53% for Diets A, B, and C, respectively, with an overall average of one to two tumors per tumor‐bearing animal. For the SKH‐1 mice (irradiated 29 wks for a total dose of 18 J/cm2), all diet groups reached 100% incidence by 29 weeks, with approximately 12 tumors per tumor‐bearing mouse. No significant effect of dietary corn oil/coconut oil was found for tumor latency, incidence, or yield in either strain. The effect of increasing com oil on epidermal ODC activity in chronically UV‐irradiated Sencar and SKH‐1 mice was assessed Three groups of mice from each strain were fed one of the experimental diets and UV irradiated for six weeks. Sencar mice showed no increase in ODC activity until six weeks of treatment, when the levels of ODC activity in the UV‐irradiated mice fed Diet A were significantly higher than those in mice fed Diet B or Diet C: 1.27, 0.55, and 0.52 nmol/mg protein/hr, respectively. In the SKH‐1 mice, ODC activity was increased by the first week of UV treatment, and by three weeks of treatment a dietary effect was observed: ODC activity was significantly higher in mice fed Diet C (0.70 nmol/mg protein/hr) than in mice fed Diet A (0.18 nmol/mg protein/hr). Although there was no significant effect of dietary corn oil

  18. Testosterone suppresses the expression of regulatory enzymes of fatty acid synthesis and protects against hepatic steatosis in cholesterol-fed androgen deficient mice.

    Science.gov (United States)

    Kelly, Daniel M; Nettleship, Joanne E; Akhtar, Samia; Muraleedharan, Vakkat; Sellers, Donna J; Brooke, Jonathan C; McLaren, David S; Channer, Kevin S; Jones, T Hugh

    2014-07-30

    Non-alcoholic fatty liver disease and its precursor hepatic steatosis is common in obesity and type-2 diabetes and is associated with cardiovascular disease (CVD). Men with type-2 diabetes and/or CVD have a high prevalence of testosterone deficiency. Testosterone replacement improves key cardiovascular risk factors. The effects of testosterone on hepatic steatosis are not fully understood. Testicular feminised (Tfm) mice, which have a non-functional androgen receptor (AR) and very low serum testosterone levels, were used to investigate testosterone effects on high-cholesterol diet-induced hepatic steatosis. Hepatic lipid deposition was increased in Tfm mice and orchidectomised wild-type littermates versus intact wild-type littermate controls with normal androgen physiology. Lipid deposition was reduced in Tfm mice receiving testosterone treatment compared to placebo. Oestrogen receptor blockade significantly, but only partially, reduced the beneficial effects of testosterone treatment on hepatic lipid accumulation. Expression of key regulatory enzymes of fatty acid synthesis, acetyl-CoA carboxylase alpha (ACACA) and fatty acid synthase (FASN) were elevated in placebo-treated Tfm mice versus placebo-treated littermates and Tfm mice receiving testosterone treatment. Tfm mice on normal diet had increased lipid accumulation compared to littermates but significantly less than cholesterol-fed Tfm mice and demonstrated increased gene expression of hormone sensitive lipase, stearyl-CoA desaturase-1 and peroxisome proliferator-activated receptor-gamma but FASN and ACACA were not altered. An action of testosterone on hepatic lipid deposition which is independent of the classic AR is implicated. Testosterone may act in part via an effect on the key regulatory lipogenic enzymes to protect against hepatic steatosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. In vivo mutagenicity studies in rats mice and Chinese hamsters fed irradiated foodstuffs - chicken, fish, dates, pulses, mangoes and cocoa beans

    International Nuclear Information System (INIS)

    Renner, H.W.

    1982-01-01

    Three in vivo genetic toxicity tests were performed in rats, mice and Chinese hamsters to detect possible mutagenic effects of irradiated chicken, dried dates, fish, cocoa beans, pulses and mangoes. The tests employed were the micronucleus test and sister-chromatid exchange (SCE) test for irradiated and unirradiated samples of all foodstuffs listed, and the spermatogonia test, (including SCE technique) in mice for irradiated and unirradiated chicken, fish and dates only. In the case of cocoa beans, the mutagenicity tests were performed on an additional test group fed beans fumigated with ethylene oxide. The different mammalian species used for the various experiments are given below. None of the tests provided any evidence of mutagenicity induced by irradiation in any of the foodstuffs studied. Moreover, these tests are currently considered to be the most sensitive in vivo mutagenicity tests in mammals. (orig.)

  20. Fatty acid composition in serum correlates with that in the liver and non-alcoholic fatty liver disease activity scores in mice fed a high-fat diet.

    Science.gov (United States)

    Wang, Xing-He; Li, Chun-Yan; Muhammad, Ishfaq; Zhang, Xiu-Ying

    2016-06-01

    In this study, we investigated the correlation between the serum fatty acid composition and hepatic steatosis, inflammation, hepatocellular ballooning scores, and liver fatty acids composition in mice fed a high-fat diet. Livers were collected for non-alcoholic fatty liver disease score analysis. Fatty acid compositions were analysed by gas chromatography. Correlations were determined by Pearson correlation coefficient. Exposed to a high-fat diet, mice developed fatty liver disease with varying severity without fibrosis. The serum fatty acid variation became more severe with prolonged exposure to a high-fat diet. This variation also correlated significantly with the variation in livers, with the types of fatty acids corresponding to liver steatosis, inflammation, and hepatocellular ballooning scores. Results of this study lead to the following hypothesis: the extent of serum fatty acid variation may be a preliminary biomarker of fatty liver disease caused by high-fat intake. Copyright © 2016. Published by Elsevier B.V.

  1. Reduction of Influenza Virus Titer and Protection against Influenza Virus Infection in Infant Mice Fed Lactobacillus casei Shirota

    OpenAIRE

    Yasui, Hisako; Kiyoshima, Junko; Hori, Tetsuji

    2004-01-01

    We investigated whether oral administration of Lactobacillus casei strain Shirota to neonatal and infant mice ameliorates influenza virus (IFV) infection in the upper respiratory tract and protects against influenza infection. In a model of upper respiratory IFV infection, the titer of virus in the nasal washings of infant mice administered L. casei Shirota (L. casei Shirota group) was significantly (P < 0.05) lower than that in infant mice administered saline (control group) (102.48 ± 100.31...

  2. Metabolism and disposition of 2-ethylhexyl-p-methoxycinnamate following oral gavage and dermal exposure in Harlan Sprague Dawley rats and B6C3F1/N mice and in hepatocytes in vitro.

    Science.gov (United States)

    Fennell, Timothy R; Mathews, James M; Snyder, Rodney W; Hong, Yan; Watson, Scott L; Black, Sherry R; McIntyre, Barry S; Waidyanatha, Suramya

    2017-11-23

    1. 2-Ethylhexyl-p-methoxycinnamate (EHMC) is commonly used as an ingredient in sunscreens, resulting in potential oral and dermal exposure in humans. 2. Clearance and metabolism of EHMC in hepatocytes and disposition and metabolism of EHMC in rodents following oral (8-800 mg/kg) intravenous (IV) (8 mg/kg) or dermal (0.8-80 mg/kg representing 0.1-10% formulation concentration) exposure to [ 14 C]EHMC were investigated in rats and mice. 3. EHMC was rapidly cleared from rat and mouse hepatocytes (half-life ≤3.16 min) and less rapidly (half-life ≤48 min) from human hepatocytes. 4. [ 14 C]EHMC was extensively absorbed and excreted primarily in urine by 72 h after oral administration to rats (65-80%) and mice (63-72%). Oral doses to rats were excreted to a lesser extent (3-8%) in feces and as CO 2 (1-4%). Radioactive residues in tissues were <1% of the dose. There were no sex or species differences in disposition in rats. 5. Following dermal application, 34-42% of an 8-mg/kg dose was absorbed in rats, and 54-62% in mice in 72-h. 6. Among numerous urinary metabolites associated with hydrolysis of the ester, two potential reproductive and developmental toxicants, 2-ethylhexanol and 2-ethylhexanoic acid were produced by metabolism of EHMC.

  3. Medium-chain triglycerides promote macrophage reverse cholesterol transport and improve atherosclerosis in ApoE-deficient mice fed a high-fat diet.

    Science.gov (United States)

    Zhang, Xinsheng; Zhang, Yong; Liu, Yinghua; Wang, Jin; Xu, Qing; Yu, Xiaoming; Yang, Xueyan; Liu, Zhao; Xue, Changyong

    2016-09-01

    We previously observed that medium-chain triglycerides (MCTs) could reduce body fat mass and improve the metabolism of cholesterol. We hypothesized that MCTs can improve atherosclerosis by promoting the reverse cholesterol transport (RCT) process. Therefore, the objective of this study was to investigate the roles of MCTs in macrophage RCT and the progression of atherosclerosis. To test this hypothesis, 30 4-week-old ApoE-deficient (ApoE(-/-)) mice were randomly divided into 2 groups and fed a diet of 2% MCTs or long-chain triglycerides (LCTs) for 16 weeks. Ten age- and sex-matched C57BL/6J mice were fed a diet of 2% LCTs as the control. Macrophage-to-feces RCT was assessed in vivo by intraperitoneal injection of RAW 264.7 macrophages containing (3)H-labeled cholesterol, and atherosclerotic plaques were measured. The mRNA and protein expressions were determined by reverse transcriptase polymerase chain reaction and Western blot analyses, respectively. There was a greater decrease in body fat mass, atherosclerotic plaques, and an improvement in serum lipid profiles. In addition, the MCT mice group showed an increase in (3)H-tracer in the feces and a decrease in the liver. Significantly higher levels of mRNA and protein expression of hepatic ATP-binding cassette transporter A1, ATP-binding cassette transporter G5, cholesterol 7α-hydroxylase, and intestinal ATP-binding cassette transporter G8, as well as lower levels of expression of intestinal Niemann-Pick C1-like 1, were found in the MCT group. These results suggest that MCTs could obviously promote macrophage RCT and improve atherosclerosis in ApoE(-/-) mice, indicating that MCTs have the potential to prevent cardiovascular disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Dietary aloe vera gel powder and extract inhibit azoxymethane- induced colorectal aberrant crypt foci in mice fed a high- fat diet.

    Science.gov (United States)

    Chihara, Takeshi; Shimpo, Kan; Kaneko, Takaaki; Beppu, Hidehiko; Higashiguchi, Takashi; Sonoda, Shigeru; Tanaka, Miyuki; Yamada, Muneo; Abe, Fumiaki

    2015-01-01

    Aloe vera gel exhibits protective effects against insulin resistance as well as lipid-lowering and anti-diabetic effects. The anti-diabetic compounds in this gel were identified as Aloe-sterols. Aloe vera gel extract (AVGE) containing Aloe-sterols has recently been produced using a new procedure. We previously reported that AVGE reduced large-sized intestinal polyps in Apc-deficient Min mice fed a high fat diet (HFD), suggesting that Aloe vera gel may protect against colorectal cancer. In the present study, we examined the effects of Aloe vera gel powder (AVGP) and AVGE on azoxymethane-induced colorectal preneoplastic aberrant crypt foci (ACF) in mice fed a HFD. Male C57BL/6J mice were given a normal diet (ND), HFD, HFD containing 0.5% carboxymethyl cellulose solution, which was used as a solvent for AVGE (HFDC), HFD containing 3% or 1% AVGP, and HFDC containing 0.0125% (H-) or 0.00375% (L-) AVGE. The number of ACF was significantly lower in mice given 3% AVGP and H-AVGE than in those given HFD or HFDC alone. Moreover, 3% AVGP, H-AVGE and L-AVGE significantly decreased the mean Ki-67 labeling index, assessed as a measure of cell proliferation in the colonic mucosa. In addition, hepatic phase II enzyme glutathione S-transferase mRNA levels were higher in the H-AVGE group than in the HFDC group. These results suggest that both AVGP and AVGE may have chemopreventive effects on colorectal carcinogenesis under the HFD condition. Furthermore, the concentration of Aloe-sterols was similar between 3% AVGP and H-AVGE, suggesting that Aloe-sterols were the main active ingredients in this experiment.

  5. Influences of a-tocopherol on cholesterol metabolism and fatty streak development in apolipoprotein E-deficient mice fed an atherogenic diet

    Directory of Open Access Journals (Sweden)

    Peluzio M.C.G.

    2001-01-01

    Full Text Available Although the role of oxidized lipoproteins is well known in atherogenesis, the role of vitamin E supplementation is still controversial. There is also little information about cholesterol metabolism (hepatic concentration and fecal excretion in the new models of atherosclerosis. In the present study, we evaluated the effect of moderate vitamin E supplementation on cholesterol metabolism and atherogenesis in apolipoprotein E (apo E-deficient mice. Apo E-deficient mice were fed an atherogenic diet containing 40 or 400 mg/kg of alpha-tocopherol acetate for 6 weeks. Total cholesterol in serum and liver and 3-OH-alpha-sterols in feces, and fecal excretion of bile acids were determined and histological analyses of aortic lesion were performed. A vitamin E-rich diet did not affect body weight, food intake or serum cholesterol. Serum and hepatic concentrations of cholesterol as well as sterol concentration in feces were similar in both groups. However, when compared to controls, the alpha-tocopherol-treated mice showed a reduction of about 60% in the atherosclerotic lesions when both the sum of lesion areas and the average of the largest lesion area were considered. These results demonstrate that supplementation of moderate doses of alpha-tocopherol was able to slow atherogenesis in apo E-deficient mice and to reduce atherogenic lipoproteins without modifying the hepatic pool or fecal excretion of cholesterol and bile acids.

  6. Dietary abscisic acid ameliorates glucose tolerance and obesity-related inflammation in db/db mice fed high-fat diets.

    Science.gov (United States)

    Guri, Amir J; Hontecillas, Raquel; Si, Hongwei; Liu, Dongmin; Bassaganya-Riera, Josep

    2007-02-01

    Despite their efficacy in improving insulin sensitivity, thiazolidinediones (TZDs) are associated with a number of side effects (i.e. weight gain, hepatotoxicity, congestive heart failure) that have limited their use by millions of diabetic patients. We have investigated whether abscisic acid (ABA), a naturally occurring phytochemical with structural similarities to TZDs, could be used as an alternative to TZDs to improve glucose homeostasis. We first examined whether ABA, similar to TZDs, activates PPARgamma in vitro. We next determined the lowest effective dose of dietary ABA (100 mg/kg) and assessed its effect on glucose tolerance, obesity-related inflammation, and mRNA expression of PPARgamma and its responsive genes in white adipose tissue (WAT) of db/db mice fed high-fat diets. We found that ABA induced transactivation of PPARgamma in 3T3-L1 pre-adipocytes in vitro. Dietary ABA-supplementation for 36 days decreased fasting blood glucose concentrations, ameliorated glucose tolerance, and increased mRNA expression of PPARgamma and its responsive genes (i.e., adiponectin, aP2, and CD36) in WAT. We also found that adipocyte hypertrophy, tumor necrosis factor-alpha (TNF-alpha) expression, and macrophage infiltration in WAT were significantly attenuated in ABA-fed mice. These findings suggest that ABA could be used as a nutritional intervention against type II diabetes and obesity-related inflammation.

  7. Effects of Supplemental Acerola Juice on the Mineral Concentrations in Liver and Kidney Tissue Samples of Mice Fed with Cafeteria Diet.

    Science.gov (United States)

    Leffa, Daniela Dimer; dos Santos, Carla Eliete Iochims; Daumann, Francine; Longaretti, Luiza Martins; Amaral, Livio; Dias, Johnny Ferraz; da Silva, Juliana; Andrade, Vanessa Moraes

    2015-09-01

    We evaluated the impact of a supplemental acerola juice (unripe, ripe, and industrial) and its main pharmaceutically active components on the concentrations of minerals in the liver and kidney of mice fed with cafeteria diet. Swiss male mice were fed with a cafeteria (CAF) diet for 13 weeks. The CAF consisted of a variety of supermarket products with high energy content. Subsequently, animals received one of the following food supplements for 1 month: water, unripe acerola juice, ripe acerola juice, industrial acerola juice, vitamin C, or rutin. Mineral concentrations of the tissues were determined by particle-induced X-ray emission (PIXE). Our study suggests that the simultaneous intake of acerola juices, vitamin C, or rutin in association with a hypercaloric and hyperlipidic diet provides change in the mineral composition of organisms in the conditions of this study, which plays an important role in the antioxidant defenses of the body. This may help to reduce the metabolism of the fat tissue or even to reduce the oxidative stress.

  8. Quantitative deviating effects of maple syrup extract supplementation on the hepatic gene expression of mice fed a high-fat diet.

    Science.gov (United States)

    Kamei, Asuka; Watanabe, Yuki; Shinozaki, Fumika; Yasuoka, Akihito; Shimada, Kousuke; Kondo, Kaori; Ishijima, Tomoko; Toyoda, Tsudoi; Arai, Soichi; Kondo, Takashi; Abe, Keiko

    2017-02-01

    Maple syrup contains various polyphenols and we investigated the effects of a polyphenol-rich maple syrup extract (MSXH) on the physiology of mice fed a high-fat diet (HFD). The mice fed a low-fat diet (LFD), an HFD, or an HFD supplemented with 0.02% (002MSXH) or 0.05% MSXH (005MSXH) for 4 weeks. Global gene expression analysis of the liver was performed, and the differentially expressed genes were classified into three expression patterns; pattern A (LFD 002MSXH = 005MSXH, LFD > HFD 005MSXH, LFD > HFD = 002MSXH 002MSXH HFD 005MSXH). Pattern A was enriched in glycolysis, fatty acid metabolism, and folate metabolism. Pattern B was enriched in tricarboxylic acid cycle while pattern C was enriched in gluconeogenesis, cholesterol metabolism, amino acid metabolism, and endoplasmic reticulum stress-related event. Our study suggested that the effects of MSXH ingestion showed (i) dose-dependent pattern involved in energy metabolisms and (ii) reversely pattern involved in stress responses. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Beneficial effects of exercise training (treadmill on insulin resistance and nonalcoholic fatty liver disease in high-fat fed C57BL/6 mice

    Directory of Open Access Journals (Sweden)

    C.M.M. Marques

    2010-05-01

    Full Text Available C57BL/6 mice develop signs and symptoms comparable, in part, to the human metabolic syndrome. The objective of the present study was to evaluate the effects of exercise training on carbohydrate metabolism, lipid profile, visceral adiposity, pancreatic islet alterations, and nonalcoholic fatty liver disease in C57BL/6 mice. Animals were fed one of two diets during an 8-week period: standard (SC, N = 12 or very high-fat (HF, N = 24 chow. An exercise training protocol (treadmill was then established and mice were divided into SC and HF sedentary (SC-Sed, HF-Sed, exercised groups (SC-Ex, HF-Ex, or switched from HF to SC (HF/SC-Sed and HF/SC-Ex. HF/HF-Sed mice had the greatest body mass (65% more than SC/SC-Sed; P < 0.0001, and exercise reduced it by 23% (P < 0.0001. Hepatic enzymes ALP (+80%, ALT (+100% and AST (+70% were higher in HF/HF mice than in matched SC/SC. Plasma insulin was higher in both the HF/HF-Sed and HF/SC-Sed groups than in the matched exercised groups (+85%; P < 0.001. Pancreatic islets, adipocytes and liver structure were greatly affected by HF, ultimately resulting in islet β-cell hypertrophy and severe liver steatosis. The HF group had larger islets than the SC/SC group (+220%; P < 0.0001, and exercise significantly reduced liver steatosis and islet size in HF. Exercise attenuated all the changes due to HF, and the effects were more pronounced in exercised mice switched from an HF to an SC diet. Exercise improved the lipid profile by reducing body weight gain, visceral adiposity, insulin resistance, islet alterations, and fatty liver, contributing to obesity and steatohepatitis control.

  10. Perinatal programming of depressive-like behavior by inflammation in adult offspring mice whose mothers were fed polluted eels: Gender selective effects.

    Science.gov (United States)

    Soualeh, Nidhal; Dridi, Imen; Eppe, Gauthier; Némos, Christophe; Soulimani, Rachid; Bouayed, Jaouad

    2017-07-01

    Several lines of evidence indicate that early-life inflammation may predispose to mental illness, including depression, in later-life. We investigated the impact of perinatal exposure to polluted eels on neonatal, postnatal, and adult brain inflammation, and on the resignation behavior of male and female adult offspring mice. The effects of maternal standard diet (laboratory food) were compared to the same diet enriched with low, intermediate, or highly polluted eels. Brain inflammatory markers including cytokines were assessed in offspring mice on the day of birth (i.e., on the postnatal day-PND 1), upon weaning (PND 21) and at adulthood (PND 100). Plasma myeloperoxidase and corticosterone levels were evaluated at PND 100. Immobility behavior of offspring was assessed in adulthood (i.e., at PNDs 95-100), using the tail suspension and forced swimming tests. Chronic brain inflammation was found in male and female offspring mice compared to controls, as assessed at PNDs 1, 21, and 100. The level of myeloperoxidase was found to be significantly higher in both adult males and females vs. control offspring. However, high corticosterone levels were only found in male offspring mice that were perinatally exposed to eels, suggesting a gender-selective dysregulation of the adult hypothalamic-pituitaryadrenal (HPA) axis. Gender-specific differences were also detected in adulthood in regard to offspring resignation behavior. Thus, compared to controls, males, but not females, whose mothers were fed eels during pregnancy and lactation exhibited a depressive-like behavior in adult age in both behavioral models of depression. Depressive symptoms were more pronounced in male mice perinatally exposed to either intermediate or highly polluted eels than those exposed to only lowly polluted eels. Our results indicate that early-life inflammatory insult is a plausible causative factor that induces the depressive phenotype exhibited by male adult offspring mice, most likely through a

  11. Effective plague vaccination via oral delivery of plant cells expressing F1-V antigens in chloroplasts.

    Science.gov (United States)

    Arlen, Philip A; Singleton, Michael; Adamovicz, Jeffrey J; Ding, Yi; Davoodi-Semiromi, Abdolreza; Daniell, Henry

    2008-08-01

    The chloroplast bioreactor is an alternative to fermentation-based systems for production of vaccine antigens and biopharmaceuticals. We report here expression of the plague F1-V fusion antigen in chloroplasts. Site-specific transgene integration and homoplasmy were confirmed by PCR and Southern blotting. Mature leaves showed the highest level of transgene expression on the third day of continuous illumination, with a maximum level of 14.8% of the total soluble protein. Swiss Webster mice were primed with adjuvant-containing subcutaneous (s.c.) doses of F1-V and then boosted with either adjuvanted s.c. doses (s.c. F1-V mice) or unadjuvanted oral doses (oral F1-V mice). Oral F1-V mice had higher prechallenge serum immunoglobulin G1 (IgG1) titers than s.c. F1-V mice. The corresponding serum levels of antigen-specific IgG2a and IgA were 2 and 3 orders of magnitude lower, respectively. After vaccination, mice were exposed to an inhaled dose of 1.02 x 10(6) CFU of aerosolized Yersinia pestis CO92 (50% lethal dose, 6.8 x 10(4) CFU). All control animals died within 3 days. F1-V given s.c. (with adjuvant) protected 33% of the immunized mice, while 88% of the oral F1-V mice survived aerosolized Y. pestis challenge. A comparison of splenic Y. pestis CFU counts showed that there was a 7- to 10-log reduction in the mean bacterial burden in survivors. Taken together, these data indicate that oral booster doses effectively elicit protective immune responses in vivo. In addition, this is the first report of a plant-derived oral vaccine that protected animals from live Y. pestis challenge, bringing the likelihood of lower-cost vaccines closer to reality.

  12. Salicornia Extract Ameliorates Salt-Induced Aggravation of Nonalcoholic Fatty Liver Disease in Obese Mice Fed a High-Fat Diet.

    Science.gov (United States)

    Kim, Jae Hwan; Suk, Sujin; Jang, Woo Jung; Lee, Chang Hyung; Kim, Jong-Eun; Park, Jin-Kyu; Kweon, Mee-Hyang; Kim, Jong Hun; Lee, Ki Won

    2017-07-01

    High-fat and high-salt intakes are among the major risks of chronic diseases including obesity, nonalcoholic fatty liver disease (NAFLD), and nonalcoholic steatohepatitis (NASH). Salicornia is a halophytic plant known to exert antioxidant, antidiabetic, and hypolipidemic effects, and Salicornia-extracted salt (SS) has been used as a salt substitute. In this study, the effects of SS and purified salt (PS) on the aggravation of NAFLD/NASH were compared. C57BL/6J male mice (8-wk-old) were fed a high-fat diet (HFD) for 6 mo and divided into 3 dietary groups, which were additionally fed HFD, HFD + SS, and HFD + PS for 13 wk. PS induced aggravation of NAFLD/NASH in HFD-fed mice. Although the actual salt intake was same between the PS and SS groups as 1% of the diet (extrapolated from the World Health Organization [WHO] guideline), SS induced less liver injury and hepatic steatosis compared to PS. The hepatic mRNA expressions of inflammatory cytokines and fibrosis marker were significantly lower in the SS group than the PS group. Oxidative stress is one of the major causes of inflammation in NAFLD/NASH. Results of the component analysis showed that the major polyphenols that exhibited antioxidant activity in the Salicornia water extract were ferulic acid, caffeic acid, and isorhamnetin. These results suggest that even the level of salt intake recommended by WHO can accelerate the progression of liver disease in obese individuals consuming HFD. It is proposed that SS can be a salt substitute for obese individuals who consume HFD. © 2017 Institute of Food Technologists®.

  13. Proinsulin-producing, hyperglycemia-induced adipose tissue macrophages underlie insulin resistance in high fat-fed diabetic mice

    Science.gov (United States)

    Adipose tissue macrophages play an important role in the pathogenesis of obese type 2 diabetes. High-fat diet-induced obesity has been shown to lead to adipose tissue macrophages accumulation in rodents;however, the impact of hyperglycemia on adipose tissue macrophages dynamics in high-fat diet-fed ...

  14. Corn oil versus lard: Metabolic effects of omega-3 fatty acids in mice fed obesogenic diets with different fatty acid composition.

    Science.gov (United States)

    Pavlisova, Jana; Bardova, Kristina; Stankova, Barbora; Tvrzicka, Eva; Kopecky, Jan; Rossmeisl, Martin

    2016-05-01

    Mixed results have been obtained regarding the level of insulin resistance induced by high-fat diets rich in saturated fatty acids (SFA) when compared to those enriched by polyunsaturated fatty acids (PUFA), and how metabolic effects of marine PUFA of n-3 series, i.e. docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), depend on dietary lipid background. Here we compared two high-fat diets, in which the major lipid constituent was based either on SFA in the form of pork lard (LHF diet) or PUFA of n-6 series (Omega-6) as corn oil (cHF diet). Both cHF and LHF parental diets were also supplemented with EPA+DHA (∼30 g/kg diet) to produce cHF+F and LHF+F diet, respectively. Male C57BL/6N mice were fed the experimental diets for 8 weeks. Insulin sensitivity was assessed by hyperinsulinemic-euglycemic clamps in mice fed LHF and cHF diets, and then metabolic effects of cHF+F and LHF+F diets were assessed focusing on the liver and epididymal white adipose tissue (eWAT). Both LHF and cHF induced comparable weight gain and the level of insulin resistance, however LHF-fed mice showed increased hepatic steatosis associated with elevated activity of stearoyl-CoA desaturase-1 (SCD1), and lower plasma triacylglycerol levels when compared to cHF. Despite lowering hepatic SCD1 activity, which was concomitant with reduced hepatic steatosis reaching the level observed in cHF+F mice, LHF+F did not decrease adiposity and the weight of eWAT, and rather further impaired insulin sensitivity relative to cHF+F, that tended to improve it. In conclusion, high-fat diets containing as much as ∼35 weight% as lipids induce similar weight gain and impairment of insulin sensitivity irrespective whether they are based on SFA or Omega-6. Although the SFA-rich diet containing EPA+DHA efficiently reduced hepatic steatosis, it did so without a corresponding improvement in insulin sensitivity and in the absence of effect on adiposity. Copyright © 2015 Elsevier B.V. and Société Fran

  15. Supplementation with Vitis vinifera L. skin extract improves insulin resistance and prevents hepatic lipid accumulation and steatosis in high-fat diet-fed mice.

    Science.gov (United States)

    Santos, Izabelle Barcellos; de Bem, Graziele Freitas; Cordeiro, Viviane Silva Cristino; da Costa, Cristiane Aguiar; de Carvalho, Lenize Costa Reis Marins; da Rocha, Ana Paula Machado; da Costa, Gisele França; Ognibene, Dayane Teixeira; de Moura, Roberto Soares; Resende, Angela Castro

    2017-07-01

    Nonalcoholic fatty liver disease is one of the most common complications of obesity. The Vitis vinifera L. grape skin extract (ACH09) is an important source of polyphenols, which are related to its antioxidant and antihyperglycemic activities. We hypothesized that ACH09 could also exert beneficial effects on metabolic disorders associated with obesity and evaluated ACH09's influence on high-fat (HF) diet-induced hepatic steatosis and insulin resistance in C57BL/6 mice. The animals were fed a standard diet (10% fat, control) or an HF diet (60% fat, HF) with or without ACH09 (200mg/[kg d]) for 12weeks. Our results showed that ACH09 reduced HF diet-induced body weight gain, prevented hepatic lipid accumulation and steatosis, and improved hyperglycemia and insulin resistance. The underlying mechanisms of these beneficial effects of ACH09 may involve the activation of hepatic insulin-signaling pathway because the expression of phosphorylated insulin receptor substrate-1, phosphatidylinositol 3-kinase, phosphorylated Akt serine/threonine kinase 1, and glucose transporter 2 was increased by ACH09 and correlated with improvement of hyperglycemia, hyperinsulinemia, and insulin resistance. ACH09 reduced the expression of the lipogenic factor sterol regulatory-element binding protein-1c in the liver and upregulated the lipolytic pathway (phosphorylated liver kinase B1/phosphorylated adenosine-monophosphate-activated protein kinase), which was associated with normal hepatic levels of triglyceride and cholesterol and prevention of steatosis. ACH09 prevented the hepatic oxidative damage in HF diet-fed mice probably by restoration of antioxidant activity. In conclusion, ACH09 protected mice from HF diet-induced obesity, insulin resistance, and hepatic steatosis. The regulation of hepatic insulin signaling pathway, lipogenesis, and oxidative stress may contribute to ACH09's protective effect. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Ursodeoxycholic acid improves insulin sensitivity and hepatic steatosis by inducing the excretion of hepatic lipids in high-fat diet-fed KK-Ay mice.

    Science.gov (United States)

    Tsuchida, Takuma; Shiraishi, Muneshige; Ohta, Tetsuya; Sakai, Kaoru; Ishii, Shinichi

    2012-07-01

    Type 2 diabetes mellitus is frequently accompanied by fatty liver/nonalcoholic fatty liver disease. Hence, accumulation of lipids in the liver is considered to be one of the risk factors for insulin resistance and metabolic syndrome. Ursodeoxycholic acid (UDCA) is widely used for the treatment of liver dysfunction. We investigated the therapeutic effects of UDCA on type 2 diabetes mellitus exacerbating hepatic steatosis and the underlying mechanisms of its action using KK-A(y) mice fed a high-fat diet. KK-A(y) mice were prefed a high-fat diet; and 50, 150, and 450 mg/kg of UDCA was orally administered for 2 or 3 weeks. Administration of UDCA decreased fasting hyperglycemia and hyperinsulinemia. Hyperinsulinemic-euglycemic clamp analyses showed that UDCA improved hepatic (but not peripheral) insulin resistance. Hepatic triglyceride and cholesterol contents were significantly reduced by treatment with UDCA, although the genes involved in the synthesis of fatty acids and cholesterol, including fatty acid synthase and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, were upregulated. Fecal levels of bile acids, neutral sterols, fatty acids, and phospholipids were significantly increased by UDCA treatment. The gene expression levels and protein phosphorylation levels of endoplasmic reticulum stress markers were not changed by UDCA treatment. These results indicate that UDCA ameliorates hyperglycemia and hyperinsulinemia by improving hepatic insulin resistance and steatosis in high-fat diet-fed KK-A(y) mice. Reduction of hepatic lipids might be due to their excretion in feces, followed by enhanced utilization of glucose for the synthesis of fatty acids and cholesterol. Ursodeoxycholic acid should be effective for the treatment of type 2 diabetes mellitus accompanying hepatic steatosis. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Colonic inflammation accompanies an increase of β-catenin signaling and Lachnospiraceae/Streptococcaceae bacteria in the hind gut of high-fat diet-fed mice.

    Science.gov (United States)

    Zeng, Huawei; Ishaq, Suzanne L; Zhao, Feng-Qi; Wright, André-Denis G

    2016-09-01

    Consumption of an obesigenic/high-fat diet (HFD) is associated with a high colon cancer risk and may alter the gut microbiota. To test the hypothesis that long-term high-fat (HF) feeding accelerates inflammatory process and changes gut microbiome composition, C57BL/6 mice were fed HFD (45% energy) or a low-fat (LF) diet (10% energy) for 36 weeks. At the end of the study, body weights in the HF group were 35% greater than those in the LF group. These changes were associated with dramatic increases in body fat composition, inflammatory cell infiltration, inducible nitric oxide synthase protein concentration and cell proliferation marker (Ki67) in ileum and colon. Similarly, β-catenin expression was increased in colon (but not ileum). Consistent with gut inflammation phenotype, we also found that plasma leptin, interleukin 6 and tumor necrosis factor α concentrations were also elevated in mice fed the HFD, indicative of chronic inflammation. Fecal DNA was extracted and the V1-V3 hypervariable region of the microbial 16S rRNA gene was amplified using primers suitable for 454 pyrosequencing. Compared to the LF group, the HF group had high proportions of bacteria from the family Lachnospiraceae/Streptococcaceae, which is known to be involved in the development of metabolic disorders, diabetes and colon cancer. Taken together, our data demonstrate, for the first time, that long-term HF consumption not only increases inflammatory status but also accompanies an increase of colonic β-catenin signaling and Lachnospiraceae/Streptococcaceae bacteria in the hind gut of C57BL/6 mice. Published by Elsevier Inc.

  18. c9t11-Conjugated linoleic acid-rich oil fails to attenuate wasting in colon-26 tumor-induced late-stage cancer cachexia in male CD2F1 mice.

    Science.gov (United States)

    Tian, Min; Kliewer, Kara L; Asp, Michelle L; Stout, Michael B; Belury, Martha A

    2011-02-01

    Cancer cachexia is characterized by muscle and adipose tissue wasting caused partly by chronic, systemic inflammation. Conjugated linoleic acids (CLAs) are a group of fatty acids with various properties including anti-inflammatory cis9, trans11 (c9t11)-CLA and lipid-mobilizing trans10, cis12 (t10c12)-CLA. The purpose of this study was to test whether dietary supplementation of a c9t11-CLA-rich oil (6:1 c9t11:t10c12) could attenuate wasting of muscle and adipose tissue in colon-26 adenocarcinoma-induced cachexia in mice. Loss of body weight, muscle and adipose tissue mass caused by tumors were not rescued by supplementation with the c9t11-CLA-rich oil. In quadriceps muscle, c9t11-CLA-rich oil exacerbated tumor-induced gene expression of inflammatory markers tumor necrosis factor-α, IL-6 receptor and the E3 ligase MuRF-1 involved in muscle proteolysis. In epididymal adipose tissue, tumor-driven delipidation and atrophy was aggravated by the c9,t11-CLA-rich oil, demonstrated by further reduced adipocyte size and lower adiponectin expression. However, expression of inflammatory cytokines and macrophage markers were not altered by tumors, or CLA supplementation. These data suggest that addition of c9t11-CLA-rich oil (0.6% c9t11, 0.1% t10c12) in diet did not ameliorate wasting in mice with cancer cachexia. Instead, it increased expression of inflammatory markers in the muscle and increased adipose delipidation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Reduction of influenza virus titer and protection against influenza virus infection in infant mice fed Lactobacillus casei Shirota.

    Science.gov (United States)

    Yasui, Hisako; Kiyoshima, Junko; Hori, Tetsuji

    2004-07-01

    We investigated whether oral administration of Lactobacillus casei strain Shirota to neonatal and infant mice ameliorates influenza virus (IFV) infection in the upper respiratory tract and protects against influenza infection. In a model of upper respiratory IFV infection, the titer of virus in the nasal washings of infant mice administered L. casei Shirota (L. casei Shirota group) was significantly (P survival rate of the L. casei Shirota group was significantly (P L. casei Shirota group were significantly greater than those of mice in the control group. These findings suggest that oral administration of L. casei Shirota activates the immature immune system of neonatal and infant mice and protects against IFV infection. Therefore, oral administration of L. casei Shirota may accelerate the innate immune response of the respiratory tract and protect against various respiratory infections in neonates, infants, and children, a high risk group for viral and bacterial infections.

  20. Small heterodimer partner (SHP deficiency protects myocardia from lipid accumulation in high fat diet-fed mice.

    Directory of Open Access Journals (Sweden)

    Jung Hun Ohn

    Full Text Available The small heterodimer partner (SHP regulates fatty acid oxidation and lipogenesis in the liver by regulating peroxisome proliferator-activated receptor (PPAR γ expression. SHP is also abundantly expressed in the myocardium. We investigated the effect of SHP expression on myocardia assessing not only heart structure and function but also lipid metabolism and related gene expression in a SHP deletion animal model. Transcriptional profiling with a microarray revealed that genes participating in cell growth, cytokine signalling, phospholipid metabolism, and extracellular matrix are up-regulated in the myocardia of SHP knockout (KO mice compared to those of wild-type (WT mice (nominal p value < 0.05. Consistent with these gene expression changes, the left ventricular masses of SHP KO mice were significantly higher than WT mice (76.8 ± 20.5 mg vs. 52.8 ± 6.8 mg, P = 0.0093. After 12 weeks of high fat diet (HFD, SHP KO mice gained less weight and exhibited less elevation in serum-free fatty acid and less ectopic lipid accumulation in the myocardium than WT mice. According to microarray analysis, genes regulated by PPARγ1 and PPARα were down-regulated in myocardia of SHP KO mice compared to their expression in WT mice after HFD, suggesting that the reduction in lipid accumulation in the myocardium resulted from a decrease in lipogenesis regulated by PPARγ. We confirmed the reduced expression of PPARγ1 and PPARα target genes such as CD36, medium-chain acyl-CoA dehydrogenase, long-chain acyl-CoA dehydrogenase, and very long-chain acyl-CoA dehydrogenase by SHP KO after HFD.

  1. NTP Toxicology and Carcinogenesis Studies of Xylenes (Mixed) (60% m-Xylene, 14% p-Xylene, 9% o-Xylene, and 17% Ethylbenzene) (CAS No. 1330-20-7) in F344/N Rats and B6C3F1 Mice (Gavage Studies).

    Science.gov (United States)

    1986-12-01

    The technical grade of xylenes (mixed) (hereafter termed xylenes) contains the three isomeric forms and ethylbenzene (percentage composition shown above). The annual production for 1985 was approximately 7.4 x 108 gallons. Xylenes is used as a solvent and a cleaning agent and as a degreaser and is a constituent of aviation and automobile fuels. Xylenes is also used in the production of benzoic acid, phthalate anhydride, and isophthalic and terephthalic acids as well as their dimethyl esters. Toxicology and carcinogenesis studies of xylenes were conducted in laboratory animals because a large number of workers are exposed and because the long- term effects of exposure to xylenes were not known. Exposure for the present studies was by gavage in corn oil. In single-administration studies, groups of five F344/N rats and B6C3F1 mice of each sex received 500, 1,000, 2,000, 4,000, or 6,000 mg/kg. Administration of xylenes caused deaths at 6,000 mg/kg in rats and mice of each sex and at 4,000 mg/kg in male rats. In rats, clinical signs observed within 24 hours of dosing at 4,000 mg/kg included prostration, muscular incoordination, and loss of hind limb movement; these effects continued through the second week of observation. Tremors, prone position, and slowed breathing were recorded for mice on day 3, but all mice appeared normal by the end of the 2- week observation period. In 14- day studies, groups of five rats of each sex were administered 0, 125, 250, 500, 1,000, or 2,000 mg/kg, and groups of five mice of each sex received 0, 250, 500, 1,000, 2,000, or 4,000 mg/kg. Chemical- related mortality occurred only at 2,000 mg/kg in rats and at 4,000 mg/kg in mice. Rats and mice exhibited shallow breathing and prostration within 48 hours following dosing at 2,000 mg/kg. These signs persisted until day 12 for rats, but no clinical signs were noted during the second week for mice. In 13- week studies, groups of 10 rats of each sex received 0, 62.5, 125, 250, 500, or 1,000 mg

  2. Humanized HLA-DR4 mice fed with the protozoan pathogen of oysters Perkinsus marinus (Dermo do not develop noticeable pathology but elicit systemic immunity.

    Directory of Open Access Journals (Sweden)

    Wathsala Wijayalath

    Full Text Available Perkinsus marinus (Phylum Perkinsozoa is a marine protozoan parasite responsible for "Dermo" disease in oysters, which has caused extensive damage to the shellfish industry and estuarine environment. The infection prevalence has been estimated in some areas to be as high as 100%, often causing death of infected oysters within 1-2 years post-infection. Human consumption of the parasites via infected oysters is thus likely to occur, but to our knowledge the effect of oral consumption of P. marinus has not been investigated in humans or other mammals. To address the question we used humanized mice expressing HLA-DR4 molecules and lacking expression of mouse MHC-class II molecules (DR4.EA(0 in such a way that CD4 T cell responses are solely restricted by the human HLA-DR4 molecule. The DR4.EA(0 mice did not develop diarrhea or any detectable pathology in the gastrointestinal tract or lungs following single or repeated feedings with live P. marinus parasites. Furthermore, lymphocyte populations in the gut associated lymphoid tissue and spleen were unaltered in the parasite-fed mice ruling out local or systemic inflammation. Notably, naïve DR4.EA(0 mice had antibodies (IgM and IgG reacting against P. marinus parasites whereas parasite specific T cell responses were undetectable. Feeding with P. marinus boosted the antibody responses and stimulated specific cellular (IFNγ immunity to the oyster parasite. Our data indicate the ability of P. marinus parasites to induce systemic immunity in DR4.EA(0 mice without causing noticeable pathology, and support rationale grounds for using genetically engineered P. marinus as a new oral vaccine platform to induce systemic immunity against infectious agents.

  3. Heterozygous Hfe gene deletion leads to impaired glucose homeostasis, but not liver injury in mice fed a high-calorie diet.

    Science.gov (United States)

    Britton, Laurence; Jaskowski, Lesley; Bridle, Kim; Santrampurwala, Nishreen; Reiling, Janske; Musgrave, Nick; Subramaniam, V Nathan; Crawford, Darrell

    2016-06-01

    Heterozygous mutations of the Hfe gene have been proposed as cofactors in the development and progression of nonalcoholic fatty liver disease (NAFLD). Homozygous Hfe deletion previously has been shown to lead to dysregulated hepatic lipid metabolism and accentuated liver injury in a dietary mouse model of NAFLD We sought to establish whether heterozygous deletion of Hfe is sufficient to promote liver injury when mice are exposed to a high-calorie diet (HCD). Eight-week-old wild-type and Hfe(+/-) mice received 8 weeks of a control diet or HCD Liver histology and pathways of lipid and iron metabolism were analyzed. Liver histology demonstrated that mice fed a HCD had increased NAFLD activity score (NAS), steatosis, and hepatocyte ballooning. However, liver injury was unaffected by Hfe genotype. Hepatic iron concentration (HIC) was increased in Hfe(+/-) mice of both dietary groups. HCD resulted in a hepcidin-independent reduction in HIC Hfe(+/-) mice demonstrated raised fasting serum glucose concentrations and HOMA-IR score, despite unaltered serum adiponectin concentrations. Downstream regulators of hepatic de novo lipogenesis (pAKT, SREBP-1, Fas, Scd1) and fatty acid oxidation (AdipoR2, Pparα, Cpt1) were largely unaffected by genotype. In summary, heterozygous Hfe gene deletion is associated with impaired iron and glucose metabolism. However, unlike homozygous Hfe deletion, heterozygous gene deletion did not affect lipid metabolism pathways or liver injury in this model. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  4. Choline Supplementation Prevents a Hallmark Disturbance of Kwashiorkor in Weanling Mice Fed a Maize Vegetable Diet: Hepatic Steatosis of Undernutrition

    OpenAIRE

    Thaddaeus May; Kevin C. Klatt; Jacob Smith; Eumenia Castro; Mark Manary; Marie A. Caudill; Farook Jahoor; Marta L. Fiorotto

    2018-01-01

    Hepatic steatosis is a hallmark feature of kwashiorkor malnutrition. However, the pathogenesis of hepatic steatosis in kwashiorkor is uncertain. Our objective was to develop a mouse model of childhood undernutrition in order to test the hypothesis that feeding a maize vegetable diet (MVD), like that consumed by children at risk for kwashiorkor, will cause hepatic steatosis which is prevented by supplementation with choline. A MVD was developed with locally sourced organic ingredients, and fed...

  5. Green Tea Extract Supplementation Induces the Lipolytic Pathway, Attenuates Obesity, and Reduces Low-Grade Inflammation in Mice Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Cláudio A. Cunha

    2013-01-01

    Full Text Available The aim of this study was to evaluate the effects of green tea Camellia sinensis extract on proinflammatory molecules and lipolytic protein levels in adipose tissue of diet-induced obese mice. Animals were randomized into four groups: CW (chow diet and water; CG (chow diet and water + green tea extract; HW (high-fat diet and water; HG (high-fat diet and water + green tea extract. The mice were fed ad libitum with chow or high-fat diet and concomitantly supplemented (oral gavage with 400 mg/kg body weight/day of green tea extract (CG and HG, resp.. The treatments were performed for eight weeks. UPLC showed that in 10 mg/mL green tea extract, there were 15 μg/mg epigallocatechin, 95 μg/mg epigallocatechin gallate, 20.8 μg/mg epicatechin gallate, and 4.9 μg/mg gallocatechin gallate. Green tea administered concomitantly with a high-fat diet increased HSL, ABHD5, and perilipin in mesenteric adipose tissue, and this was associated with reduced body weight and adipose tissue gain. Further, we observed that green tea supplementation reduced inflammatory cytokine TNFα levels, as well as TLR4, MYD88, and TRAF6 proinflammatory signalling. Our results show that green tea increases the lipolytic pathway and reduces adipose tissue, and this may explain the attenuation of low-grade inflammation in obese mice.

  6. Relative expression of bacterial and host specific genes associated with probiotic survival and viability in the mice gut fed with Lactobacillus plantarum Lp91.

    Science.gov (United States)

    Chandran, Archana; Duary, Raj Kumar; Grover, Sunita; Batish, Virender Kumar

    2013-11-07

    The present investigation was aimed at studying the relative expression of atpD (a key part of F1F0-ATPase operon), bsh (bile salt hydrolase), mub (mucus-binding protein) and MUC2 (mucin) genes in mouse model for establishing the in vivo functional efficacy of Lactobacillus plantarum Lp91 (MTCC5690) by reverse transcription-quantitative PCR (RT-qPCR). The atpD gene was significantly up-regulated to 2.0, 2.4 and 3.2 folds in Lp91 after 15, 30 and 60 min transit in the stomach of mice. The maximal significant (Pstrain Lp5276 after seven days of mice feeding. Simultaneously, mub gene expression increased to 12.8 and 22.7 fold in both Lp91 and Lp5276, respectively. The expression level of MUC2 was at the level of 1.6 and 2.1 fold in the host colon on administration with Lp91 and Lp5276 feeding, respectively. Hence, the expression of atpD, bsh, mub, MUC2 could be considered as prospective and potential biomarkers for screening of novel probiotic lactobacillus strains for optimal functionality in the gut. Copyright © 2013 Elsevier GmbH. All rights reserved.

  7. Dietary incorporation of whey proteins and galactooligosaccharides exhibits improvement in glucose homeostasis and insulin resistance in high fat diet fed mice

    Directory of Open Access Journals (Sweden)

    Praveen Kumar Kavadi

    2017-09-01

    Full Text Available Background: The present study was planned to investigate the effectiveness of whey protein isolate (WPI of high purity and a galactooligosaccharides (GOS preparation on glucose homeostasis and insulin resistance under high fat diet (45.47% energy from fat fed conditions in C57BL/6 mice. The mRNA expression of genes related to gluconeogenesis was also examined. Methods: Fasting blood glucose level, serum insulin & GLP-1 (ELISA were measured; HOMA-IR determined in different treatment groups. mRNA expression of gluconeogenesis genes in liver and small intestine tissues analysed by qRT-PCR. Results: Dietary incorporation of WPI/GOS alone or in combination was observed to significantly resist (p [J Complement Med Res 2017; 6(3.000: 326-332

  8. Targeted reduction of vascular Msx1 and Msx2 mitigates arteriosclerotic calcification and aortic stiffness in LDLR-deficient mice fed diabetogenic diets.

    Science.gov (United States)

    Cheng, Su-Li; Behrmann, Abraham; Shao, Jian-Su; Ramachandran, Bindu; Krchma, Karen; Bello Arredondo, Yoanna; Kovacs, Attila; Mead, Megan; Maxson, Robert; Towler, Dwight A

    2014-12-01

    When fed high-fat diets, male LDLR(-/-) mice develop obesity, hyperlipidemia, hyperglycemia, and arteriosclerotic calcification. An osteogenic Msx-Wnt regulatory program is concomitantly upregulated in the vasculature. To better understand the mechanisms of diabetic arteriosclerosis, we generated SM22-Cre;Msx1(fl/fl);Msx2(fl/fl);LDLR(-/-) mice, assessing the impact of Msx1+Msx2 gene deletion in vascular myofibroblast and smooth muscle cells. Aortic Msx2 and Msx1 were decreased by 95% and 34% in SM22-Cre;Msx1(fl/fl);Msx2(fl/fl);LDLR(-/-) animals versus Msx1(fl/fl);Msx2(fl/fl);LDLR(-/-) controls, respectively. Aortic calcium was reduced by 31%, and pulse wave velocity, an index of stiffness, was decreased in SM22-Cre;Msx1(fl/fl);Msx2(fl/fl);LDLR(-/-) mice vs. controls. Fasting blood glucose and lipids did not differ, yet SM22-Cre;Msx1(fl/fl);Msx2(fl/fl);LDLR(-/-) siblings became more obese. Aortic adventitial myofibroblasts from SM22-Cre;Msx1(fl/fl);Msx2(fl/fl);LDLR(-/-) mice exhibited reduced osteogenic gene expression and mineralizing potential with concomitant reduction in multiple Wnt genes. Sonic hedgehog (Shh) and Sca1, markers of aortic osteogenic progenitors, were also reduced, paralleling a 78% reduction in alkaline phosphatase (TNAP)-positive adventitial myofibroblasts. RNA interference revealed that although Msx1+Msx2 supports TNAP and Wnt7b expression, Msx1 selectively maintains Shh and Msx2 sustains Wnt2, Wnt5a, and Sca1 expression in aortic adventitial myofibroblast cultures. Thus, Msx1 and Msx2 support vascular mineralization by directing the osteogenic programming of aortic progenitors in diabetic arteriosclerosis. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  9. Metabolic effects of intermittent access to caloric or non-caloric sweetened solutions in mice fed a high-caloric diet.

    Science.gov (United States)

    Soto, Marion; Chaumontet, Catherine; Even, Patrick C; Azzout-Marniche, Dalila; Tomé, Daniel; Fromentin, Gilles

    2017-06-01

    Human consumption of obesogenic diets and soft drinks, sweetened with different molecules, is increasing worldwide, and increases the risk of metabolic diseases. We hypothesized that the chronic consumption of caloric (sucrose, high-fructose corn syrup (HFCS), maltodextrin) and non-caloric (sucralose) solutions under 2-hour intermittent access, alongside the consumption of a high-fat high-sucrose diet, would result in differential obesity-associated metabolic abnormalities in mice. Male C57BL/6 mice had ad libitum access to an HFHS diet and to water (water control group). In addition, some mice had access, 2h/day, 5days/week (randomly chosen) for 12weeks, to different solutions: i) a sucrose solution (2.1kJ/ml), ii) an HFCS solution (2.1kJ/ml), iii) a maltodextrin solution (2.1kJ/ml) and a sucralose solution (60mM) (n=15/group). Despite no changes in total caloric intake, 2h-intermittent access to the sucrose, HFCS or maltodextrin solutions led to increased body weight and accumulation of lipids in the liver when compared to the group consuming water only. The HFCS and sucrose solutions induced a higher fat mass in various fat depots, glucose intolerance, increased glucose oxidation at the expense of lipid oxidation, and a lower hypothalamic expression of NPY in the fasted state. HFCS also reduced proopiomelanocortin expression in the hypothalamus. 2h-intermittent access to sucralose did not result in significant changes in body composition, but caused a stronger expression of CART in the hypothalamus. Finally, sucrose intake showed a trend to increase the expression of various receptors in the nucleus accumbens, linked to dopamine, opioid and endocannabinoid signaling. In conclusion, 2h-intermittent access to caloric solutions (especially those sweetened with sucrose and HFCS), but not sucralose, resulted in adverse metabolic consequences in high-fat high-sucrose-fed mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Green tea powder and Lactobacillus plantarum affect gut microbiota, lipid metabolism and inflammation in high-fat fed C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    Axling Ulrika

    2012-11-01

    Full Text Available Abstract Background Type 2 diabetes is associated with obesity, ectopic lipid accumulation and low-grade inflammation. A dysfunctional gut microbiota has been suggested to participate in the pathogenesis of the disease. Green tea is rich in polyphenols and has previously been shown to exert beneficial metabolic effects. Lactobacillus plantarum has the ability to metabolize phenolic acids. The health promoting effect of whole green tea powder as a prebiotic compound has not been thoroughly investigated previously. Methods C57BL/6J mice were fed a high-fat diet with or without a supplement of 4% green tea powder (GT, and offered drinking water supplemented with Lactobacillus plantarum DSM 15313 (Lp or the combination of both (Lp + GT for 22 weeks. Parameters related to obesity, glucose tolerance, lipid metabolism, hepatic steatosis and inflammation were examined. Small intestinal tissue and caecal content were collected for bacterial analysis. Results Mice in the Lp + GT group had significantly more Lactobacillus and higher diversity of bacteria in the intestine compared to both mice in the control and the GT group. Green tea strongly reduced the body fat content and hepatic triacylglycerol and cholesterol accumulation. The reduction was negatively correlated to the amount of Akkermansia and/or the total amount of bacteria in the small intestine. Markers of inflammation were reduced in the Lp + GT group compared to control. PLS analysis of correlations between the microbiota and the metabolic variables of the individual mice showed that relatively few components of the microbiota had high impact on the correlation model. Conclusions Green tea powder in combination with a single strain of Lactobacillus plantarum was able to promote growth of Lactobacillus in the intestine and to attenuate high fat diet-induced inflammation. In addition, a component of the microbiota, Akkermansia, correlated negatively with several metabolic parameters

  11. Streptozotocin-Treated High Fat Fed Mice: A New Type 2 Diabetes Model Used to Study Canagliflozin-Induced Alterations in Lipids and Lipoproteins.

    Science.gov (United States)

    Yu, Tian; Sungelo, Mitchell J; Goldberg, Ira J; Wang, Hong; Eckel, Robert H

    2017-05-01

    The pharmacological effects of type 2 diabetes (T2DM) medications on lipoprotein metabolism are difficult to assess in preclinical models because those created failure to replicate the human condition in which insulin deficiency is superimposed on obesity-related insulin resistance. To create a better model, we fed mice with high fat (HF) diet and treated the animals with low dose streptozotocin (STZ) to mimic T2DM. We used this model to evaluate the effects of canagliflozin (CANA), a drug that reduces plasma glucose by inhibiting the sodium-glucose transporter 2 (SGLT2), which mediates ~90% of renal glucose reabsorption] on lipid and lipoprotein metabolism. After 6 weeks of CANA (30 mg/kg/day) treatment, the increase in total plasma cholesterol in HF-STZ diabetic mice was reversed, but plasma triglycerides were not affected. Lipoprotein fractionation and cholesterol distribution analysis showed that CANA kept HDL-Cholesterol, LDL-Cholesterol, and IDL-Cholesterol levels steady while these lipoprotein species were increased in placebo- and insulin-treated control groups. CANA treatment of HF-STZ mice reduced post-heparin plasma lipoprotein lipase (LPL) activity at 2 (-40%) and 5 (-30%) weeks compared to placebo. Tissue-specific LPL activity following CANA treatment showed similar reduction. In summary, CANA prevented the total cholesterol increase in HF-STZ mice without effects on plasma lipids or lipoproteins, but did decrease LPL, implying a potential role of LPL-dependent lipoprotein metabolism in CANA action. These effects did not recapitulate the effect of SGLT2 inhibitors on lipids and lipoproteins in human, suggesting that a better murine T2DM model (such as the ApoB100 humanized CETP-overexpressing mouse) is needed next. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Galantamine Alleviates Inflammation and Other Obesity-Associated Complications in High-Fat Diet–Fed Mice

    Science.gov (United States)

    Satapathy, Sanjaya K; Ochani, Mahendar; Dancho, Meghan; Hudson, LaQueta K; Rosas-Ballina, Mauricio; Valdes-Ferrer, Sergio I; Olofsson, Peder S; Harris, Yael Tobi; Roth, Jesse; Chavan, Sangeeta; Tracey, Kevin J; Pavlov, Valentin A

    2011-01-01

    Obesity, a serious and growing health threat, is associated with low-grade inflammation that plays a role in mediating its adverse consequences. Previously, we have discovered a role for neural cholinergic signaling in controlling inflammation, and demonstrated that the cholinergic agent galantamine suppresses excessive proinflammatory cytokine release. The main objective of this study was to examine the efficacy of galantamine, a clinically-approved drug, in alleviating obesity-related inflammation and associated complications. After 8 wks on a high-fat diet, C57BL/6J mice were treated with either galantamine (4 mg/kg, intraperitoneally [i.p.]) or saline for 4 wks in parallel with mice on a low-fat diet and treated with saline. Galantamine treatment of obese mice significantly reduced body weight, food intake, abdominal adiposity, plasma cytokine and adipokine levels, and significantly improved blood glucose, insulin resistance and hepatic steatosis. In addition, galantamine alleviated impaired insulin sensitivity and glucose intolerance significantly. These results indicate a previously unrecognized potential of galantamine in alleviating obesity, inflammation and other obesity-related complications in mice. These findings are of interest for studying the efficacy of this clinically-approved drug in the context of human obesity and metabolic syndrome. PMID:21738953

  13. Acerola (Malpighia emarginata DC.) juice intake protects against alterations to proteins involved in inflammatory and lipolysis pathways in the adipose tissue of obese mice fed a cafeteria diet.

    Science.gov (United States)

    Dias, Fernando Milanez; Leffa, Daniela Dimer; Daumann, Francine; Marques, Schérolin de Oliveira; Luciano, Thais F; Possato, Jonathan Correa; de Santana, Aline Alves; Neves, Rodrigo Xavier; Rosa, José Cesar; Oyama, Lila Missae; Rodrigues, Bruno; de Andrade, Vanessa Moraes; de Souza, Cláudio Teodoro; de Lira, Fabio Santos

    2014-02-04

    Obesity has been studied as a metabolic and an inflammatory disease and is characterized by increases in the production of pro-inflammatory adipokines in the adipose tissue.To elucidate the effects of natural dietary components on the inflammatory and metabolic consequences of obesity, we examined the effects of unripe, ripe and industrial acerola juice (Malpighia emarginata DC.) on the relevant inflammatory and lipolysis proteins in the adipose tissue of mice with cafeteria diet-induced obesity. Two groups of male Swiss mice were fed on a standard diet (STA) or a cafeteria diet (CAF) for 13 weeks. Afterwards, the CAF-fed animals were divided into five subgroups, each of which received a different supplement for one further month (water, unripe acerola juice, ripe acerola juice, industrial acerola juice, or vitamin C) by gavage. Enzyme-linked immunosorbent assays, Western blotting, a colorimetric method and histology were utilized to assess the observed data. The CAF water (control obese) group showed a significant increase in their adiposity indices and triacylglycerol levels, in addition to a reduced IL-10/TNF-α ratio in the adipose tissue, compared with the control lean group. In contrast, acerola juice and Vitamin C intake ameliorated the weight gain, reducing the TAG levels and increasing the IL-10/TNF-α ratio in adipose tissue. In addition, acerola juice intake led to reductions both in the level of phosphorylated JNK and to increases in the phosphorylation of IκBα and HSLser660 in adipose tissue. Taken together, these results suggest that acerola juice reduces low-grade inflammation and ameliorates obesity-associated defects in the lipolytic processes.

  14. Eicosapentaenoic acid (EPA) vs. Docosahexaenoic acid (DHA): Effects in epididymal white adipose tissue of mice fed a high-fructose diet.

    Science.gov (United States)

    Bargut, Thereza Cristina Lonzetti; Santos, Larissa Pereira; Machado, Daiana Guimarães Lopes; Aguila, Marcia Barbosa; Mandarim-de-Lacerda, Carlos Alberto

    2017-08-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been demonstrated to be beneficial for many diseases, including those associated with the metabolic syndrome (e.g. insulin resistance and hypertension). Nevertheless, not only their actions are not entirely understood, but also their only effects were not yet elucidated. Therefore, we aimed to compare the effects of EPA and DHA, alone or in combination, on the epididymal white adipose tissue (WAT) metabolism in mice fed a high-fructose diet. 3-mo-old C57Bl/6 mice were fed a control diet (C) or a high-fructose diet (HFru). After three weeks on the diets, the HFru group was subdivided into four new groups for another five weeks: HFru, HFru+EPA, HFru+DHA, and HFru-EPA+DHA (n=10/group). Besides evaluating biometric and metabolic parameters of the animals, we measured the adipocyte area and performed molecular analyses (inflammation and lipolysis) in the epididymal WAT. The HFru group showed adipocyte hypertrophy, inflammation, and uncontrolled lipolysis. The treated animals showed a reversion of adipocyte hypertrophy, inhibition of inflammation with activation of anti-inflammatory mediators, and regularization of lipolysis. Overall, the beneficial effects were more marked with DHA than EPA. Although the whole-body metabolic effects were similar between EPA and DHA, DHA appeared to be the central actor in WAT metabolism, modulating pro and anti-inflammatory pathways and alleviating adipocytes abnormalities. Therefore, when considering fructose-induced adverse effects in WAT, the most prominent actions were observed with DHA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Naringin ameliorates metabolic syndrome by activating AMP-activated protein kinase in mice fed a high-fat diet.

    Science.gov (United States)

    Pu, Peng; Gao, Dong-Mei; Mohamed, Salim; Chen, Jing; Zhang, Jing; Zhou, Xiao-Ya; Zhou, Nai-Jing; Xie, Jing; Jiang, Hong

    2012-02-01

    Metabolic syndrome is a low-grade inflammatory state in which oxidative stress is involved. Naringin, isolated from the Citrussinensis, is a phenolic compound with anti-oxidative and anti-inflammatory activities. The aim of this study was to explore the effects of naringin on metabolic syndrome in mice. The animal models, induced by high-fat diet in C57BL/6 mice, developed obesity, dyslipidemia, fatty liver, liver dysfunction and insulin resistance. These changes were attenuated by naringin. Further investigations revealed that the inhibitory effect on inflammation and insulin resistance was mediated by blocking activation of the MAPKs pathways and by activating IRS1; the lipid-lowering effect was attributed to inhibiting the synthesis way and increasing fatty acid oxidation; the hypoglycemic effect was due to the regulation of PEPCK and G6pase. The anti-oxidative stress of naringin also participated in the improvement of insulin resistance and lipogenesis. All of these depended on the AMPK activation. To confirm the results of the animal experiment, we tested primary hepatocytes exposed to high glucose system. Naringin was protective by phosphorylating AMPKα and IRS1. Taken together, these results suggested that naringin protected mice exposed to a high-fat diet from metabolic syndrome through an AMPK-dependent mechanism involving multiple types of intracellular signaling and reduction of oxidative damage. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Isocaloric pair-fed high-carbohydrate diet induced more hepatic steatosis and inflammation than high-fat diet mediated by miR- 34a/SIRT1 axis in mice

    Science.gov (United States)

    To investigate the different effects of isocaloric high-fat diet (HFD) and high-carbohydrate diet (HCD) on hepatic steatosis and the underlying mechanisms, especially the role of microRNA- 34a/silent information regulator T1 (SIRT1) axis, C57BL/6J mice (n = 12/group) were isocaloric pair-fed with Li...

  17. Beneficial effects of (pGlu-Gln)-CCK-8 on energy intake and metabolism in high fat fed mice are associated with alterations of hypothalamic gene expression.

    Science.gov (United States)

    Montgomery, I A; Irwin, N; Flatt, P R

    2013-06-01

    Cholecystokinin (CCK) is a gastrointestinal hormone with potential therapeutic promise for obesity-diabetes. The present study examined the effects of twice daily administration of the N-terminally modified stable CCK-8 analogue, (pGlu-Gln)-CCK-8, on metabolic control and hypothalamic gene expression in high fat fed mice. Sub-chronic twice daily injection of (pGlu-Gln)-CCK-8 for 16 days significantly decreased body weight (penergy intake (pcontrols. Furthermore, (pGlu-Gln)-CCK-8 markedly improved glucose tolerance (p<0.05) and insulin sensitivity (p<0.05). Assessment of hypothalamic gene expression on day 16 revealed significantly elevated NPY (p<0.05) and reduced POMC (p<0.05) and MC4R (p<0.05) mRNA expression in (pGlu-Gln)-CCK-8 treated mice. High fat feeding or (pGlu-Gln)-CCK-8 treatment had no significant effects on hypothalamic gene expression of receptors for leptin, CCK₁ and GLP-1. These studies underscore the potential of (pGlu-Gln)-CCK-8 for the treatment of obesity-diabetes and suggest modulation of NPY and melanocortin related pathways may be involved in the observed beneficial effects. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Elemental concentrations in kidney and liver of mice fed with cafeteria or standard diet determined by particle induced X-ray emission

    Energy Technology Data Exchange (ETDEWEB)

    Dimer Leffa, Daniela [Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, 88806-000 Criciúma, SC (Brazil); Iochims dos Santos, Carla Eliete; Debastiani, Rafaela; Amaral, Livio; Yoneama, Maria Lucia; Ferraz Dias, Johnny [Ion Implantation Laboratory, Physics Institute, Federal University of Rio Grande do Sul, Porto Alegre (Brazil); Moraes Andrade, Vanessa, E-mail: vmoraesdeandrade@yahoo.com.br [Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, 88806-000 Criciúma, SC (Brazil)

    2014-01-01

    The importance of trace elements in human health is well known and their main source is daily diet. Nowadays, one of the biggest issues is the presence of these micronutrients in levels much higher than required, leading to potential toxic effects. The aim of this work was to investigate the elemental content in organs of mice fed with cafeteria or standard diet using PIXE. Twelve male Swiss mice were divided into two groups: control group (standard chow) and cafeteria group (high-caloric diet). After 17 weeks, samples of different organs (kidney and liver) were collected and prepared for PIXE analysis. The Fe concentration in kidney and liver was statistically higher in animals that received the cafeteria diet (p < 0.001). The Al and Si kidney contents were significantly higher for cafeteria diet in relation to standard diet (p < 0.05). Moreover, the standard diet showed significant differences for Cl and K (p < 0.05) in comparison to cafeteria diet in kidney, and for P, S and Zn (p < 0.005) in liver.

  19. Experimental study on the long-term effect of cadmium in mice fed cadmium-polluted rice with special reference to the effect of repeated reproductive cycles

    International Nuclear Information System (INIS)

    Watanabe, M.; Shiroishi, K.; Nishino, H.; Shinmura, T.; Murase, H.; Shoji, T.; Naruse, Y.; Kagamimori, S.

    1986-01-01

    Long-term biological effects of cadmium-polluted rice and effect of repeated reproductive cycles on them were examined. Female SLC-B6D2F mice (female C57BL/6, male DBA/2) were fed a rice diet containing 65% unpolished rice for about 2 years from 7 weeks of age. The unpolished rice preparations used were commercially available rice (non-Cd-polluted) and Cd-polluted rice (over 1.0 ppm). Average Cd contents in each diet class were 0.12, 0.48, 1.78, 1.75, and 47.1 ppm (50 ppm Cd as CdCl 2 added). Some experimental mice were subjected to repeated reproductive cycles (parity group). Hematological, biochemical, and pathological examinations of urine, blood, and tissues, including Cd measurement, were carried out. Results after statistical analysis indicate Cd toxicities such as anemia and disturbances of Ca metabolism. These Cd effects were found to be enhanced by the reproductive cycles. Soft X-ray radiograms showed osteoporosis in the parity groups, especially in the groups with diets of higher Cd content. However, we could not find any sign of disturbance of renal function under our experimental conditions

  20. Additive effects of clofibric acid and pyruvate dehydrogenase kinase isoenzyme 4 (PDK4) deficiency on hepatic steatosis in mice fed a high-saturated fat diet

    Science.gov (United States)

    Hwang, Byounghoon; Wu, Pengfei; Harris, Robert A.

    2012-01-01

    SUMMARY Although improving glucose metabolism by inhibition of pyruvate dehydrogenase kinase 4 (PDK4) might prove beneficial in the treatment of type 2 diabetes or diet-induced obesity, it might induce detrimental effects by inhibiting fatty acid oxidation. PPARα agonists are often used to treat dyslipidemia in patients, especially in type 2 diabetes. Combinational treatment with a PDK4 inhibitor and PPARα agonists may prove beneficial. However, PPARα agonists may be less effective in the presence of a PDK4 inhibitor because PPARα agonists induce PDK4 expression. In the present study, the effects of clofibric acid, a PPARα agonist, on blood and liver lipids were determined in wild type and PDK4 knockout mice fed a high fat diet. As expected, treatment of wild type mice with clofibric acid resulted in less body weight gain, smaller epididymal fat pads, greater insulin sensitivity, and lower levels of serum and liver triacylglycerol. Surprisingly, rather than decreasing the effectiveness of clofibric acid, PDK4 deficiency enhanced the beneficial effects of clofibric acid on hepatic steatosis, lowered blood glucose levels, and did not prevent the positive effects of clofibric acid on serum triacylglycerols and free fatty acids. The metabolic effects of clofibric acid are therefore independent of the induction of PDK4 expression. The additive beneficial effects on hepatic steatosis may be due to induction of increased capacity for fatty acid oxidation and partial uncoupling of oxidative phosphorylation by clofibric acid and a reduction in the capacity for fatty acid synthesis by PDK4 deficiency. PMID:22429297

  1. Elemental concentrations in kidney and liver of mice fed with cafeteria or standard diet determined by particle induced X-ray emission

    International Nuclear Information System (INIS)

    Dimer Leffa, Daniela; Iochims dos Santos, Carla Eliete; Debastiani, Rafaela; Amaral, Livio; Yoneama, Maria Lucia; Ferraz Dias, Johnny; Moraes Andrade, Vanessa

    2014-01-01

    The importance of trace elements in human health is well known and their main source is daily diet. Nowadays, one of the biggest issues is the presence of these micronutrients in levels much higher than required, leading to potential toxic effects. The aim of this work was to investigate the elemental content in organs of mice fed with cafeteria or standard diet using PIXE. Twelve male Swiss mice were divided into two groups: control group (standard chow) and cafeteria group (high-caloric diet). After 17 weeks, samples of different organs (kidney and liver) were collected and prepared for PIXE analysis. The Fe concentration in kidney and liver was statistically higher in animals that received the cafeteria diet (p < 0.001). The Al and Si kidney contents were significantly higher for cafeteria diet in relation to standard diet (p < 0.05). Moreover, the standard diet showed significant differences for Cl and K (p < 0.05) in comparison to cafeteria diet in kidney, and for P, S and Zn (p < 0.005) in liver

  2. Nuclear factor E2-related factor 2’s activation in transgenic mice fed with dosage of saturated or unsaturated fatty acids using in vivo bioluminescent imaging

    Directory of Open Access Journals (Sweden)

    Elena Mariani

    2017-05-01

    Full Text Available To counteract oxidative stress cells developed several mechanisms, including the transcription factor Nuclear Factor E2-related factor 2 (Nrf2. The aim of the study was to evaluate the activation of Nrf2 in transgenic mice fed saturated or polyunsaturated fatty acids and the anti-inflammatory effect of estrogens on organism. Forty-eight ARE CRE OMO reporter mice were divided into 3 groups, consisting of 16 animals, based on presence/absence of estrogens (ovariectomized or sham female, OVX - SH; male, MA. Each group was further split in 4 subgroups of 4 animals each and fed different diets (7.5% lard, 7.5% tuna oil, 20.0 % lard and 20.0% tuna oil. Two times a week animals were anaesthetized and injected i.p. with 100µL luciferin 15 min before the imaging session. Using the Living Image Software, photon emission was mapped for selected body areas. On day 70, animals were sacrificed after a challenge with Sodium Arsenite. Specific organs were dissected and immediately subjected to ex vivo imaging session. MIXED and GLM procedures of SAS software were used for statistical analysis. Dietary treatments did not affect body weight and feed intake as well as Nrf2 expression in both pre- and post-challenge phases, with the exception of the abdominal region (P=0.031 pre-challenge; in this area, during the pre-challenge phase, OVX showed lower Nrf2 activation (P<0.001. Ex vivo results outlined a significant effect of the challenge on all the considered organs (P<0.001, while OVX subjects had higher Nrf2 expression on urinary bladder and kidney (P<0.05 and high fat diet increased Nrf2 in urinary bladder (P<0.05. The present trial shows how saturated or polyunsaturated fatty acids supplementation in the diet do not exert significant effects on oxidative stress in mice, but confirms the protective role of estrogens under physiological condition.

  3. Differential metabolic effects of constant moderate versus high intensity interval training in high-fat fed mice: possible role of muscle adiponectin.

    Science.gov (United States)

    Martinez-Huenchullan, Sergio F; Maharjan, Babu Raja; Williams, Paul F; Tam, Charmaine S; Mclennan, Susan V; Twigg, Stephen M

    2018-02-01

    Exercise regimens may have differing effects in the presence of obesity. In addition to being fat derived, adiponectin has recently been described as a myokine that regulates insulin sensitivity, which may link to exercise-related metabolic benefits in obesity. Whether skeletal muscle adiponectin varies in different exercise modalities is unclear. This study investigated the comparative effects of 10 weeks of endurance constant-moderate intensity exercise (END) with high intensity interval training (HIIT), on metabolic outcomes, including muscle adiponectin in a mouse model of diet-induced obesity. Ten-week-old male C57BL/6 mice were fed a high-fat diet (HFD) (45% FAT) or standard CHOW diet ab libitum and underwent one of three training regimes: (1) no exercise, (2) END, or (3) HIIT (8 bouts of 2.5 min with eight periods of rest of 2.5 min) for 10 weeks (3 × 40 min sessions/week). Chow-fed mice acted as controls. Compared with HFD alone, both training programs similarly protected against body weight gain (HFD = 45 ± 2; END = 37 ± 2; HIIT = 36 ± 2 g), preserved lean/fat tissue mass ratio (HFD = 0.64 ± 0.09; END = 0.34 ± 0.13; HIIT = 0.33 ± 0.13), and improved blood glucose excursion during an insulin tolerance test (HFD = 411 ± 54; END = 350 ± 57; HIIT = 320 ± 66 arbitrary units [AU]). Alterations in fasting glycemia, insulinemia, and AST/ALT ratios were prevented only by END. END, but not HIIT increased skeletal muscle adiponectin mRNA (14-fold; P HIIT induced a milder increase (2.4-fold). Compared with HFD, neither END nor HIIT altered circulating low (LMW) or high (HMW) molecular weight adiponectin forms. Furthermore, only END prevented the HFD downregulation of PGC1α (P < 0.05) mRNA levels downstream of muscle adiponectin. These data show that different training programs affect muscle adiponectin to differing degrees. Together these results suggest that END is a more effective regimen to prevent HFD

  4. Chronic benzylamine administration in the drinking water improves glucose tolerance, reduces body weight gain and circulating cholesterol in high-fat diet-fed mice.

    Science.gov (United States)

    Iffiú-Soltész, Zsuzsa; Wanecq, Estelle; Lomba, Almudena; Portillo, Maria P; Pellati, Federica; Szöko, Eva; Bour, Sandy; Woodley, John; Milagro, Fermin I; Alfredo Martinez, J; Valet, Philippe; Carpéné, Christian

    2010-04-01

    Benzylamine is found in Moringa oleifera, a plant used to treat diabetes in traditional medicine. In mammals, benzylamine is metabolized by semicarbazide-sensitive amine oxidase (SSAO) to benzaldehyde and hydrogen peroxide. This latter product has insulin-mimicking action, and is involved in the effects of benzylamine on human adipocytes: stimulation of glucose transport and inhibition of lipolysis. This study examined whether chronic, oral administration of benzylamine could improve glucose tolerance and the circulating lipid profile without increasing oxidative stress in overweight and pre-diabetic mice. The benzylamine diffusion across the intestine was verified using everted gut sacs. Then, glucose handling and metabolic markers were measured in mice rendered insulin-resistant when fed a high-fat diet (HFD) and receiving or not benzylamine in their drinking water (3600micromol/(kgday)) for 17 weeks. HFD-benzylamine mice showed lower body weight gain, fasting blood glucose, total plasma cholesterol and hyperglycaemic response to glucose load when compared to HFD control. In adipocytes, insulin-induced activation of glucose transport and inhibition of lipolysis remained unchanged. In aorta, benzylamine treatment partially restored the nitrite levels that were reduced by HFD. In liver, lipid peroxidation markers were reduced. Resistin and uric acid, surrogate plasma markers of metabolic syndrome, were decreased. In spite of the putative deleterious nature of the hydrogen peroxide generated during amine oxidation, and in agreement with its in vitro insulin-like actions found on adipocytes, the SSAO-substrate benzylamine could be considered as a potential oral agent to treat metabolic syndrome. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Corrective effects of acerola (Malpighia emarginata DC.) juice intake on biochemical and genotoxical parameters in mice fed on a high-fat diet.

    Science.gov (United States)

    Leffa, Daniela Dimer; da Silva, Juliana; Daumann, Francine; Dajori, Ana Luiza Formentin; Longaretti, Luiza Martins; Damiani, Adriani Paganini; de Lira, Fabio; Campos, Fernanda; Ferraz, Alexandre de Barros Falcão; Côrrea, Dione Silva; de Andrade, Vanessa Moraes

    2014-12-01

    Acerola contains high levels of vitamin C and rutin and shows the corresponding antioxidant properties. Oxidative stress on the other hand is an important factor in the development of obesity. In this study, we investigated the biochemical and antigenotoxic effects of acerola juice in different stages of maturity (unripe, ripe and industrial) and its main pharmacologically active components vitamin C and rutin, when given as food supplements to obese mice. Initial HPLC analyses confirmed that all types of acerola juice contained high levels of vitamin C and rutin. DPPH tests quantified the antioxidant properties of these juices and revealed higher antioxidant potentials compared to pure vitamin C and rutin. In an animal test series, groups of male mice were fed on a standard (STA) or a cafeteria (CAF) diet for 13 weeks. The latter consisted of a variety of supermarket products, rich in sugar and fat. This CAF diet increased the feed efficiency, but also induced glucose intolerance and DNA damage, which was established by comet assays and micronucleus tests. Subsequently, CAF mice were given additional diet supplements (acerola juice, vitamin C or rutin) for one month and the effects on bone marrow, peripheral blood, liver, kidney, and brain were examined. The results indicated that food supplementation with ripe or industrial acerola juice led to a partial reversal of the diet-induced DNA damage in the blood, kidney, liver and bone marrow. For unripe acerola juice food supplementation, beneficial effects were observed in blood, kidney and bone marrow. Food supplementation with vitamin C led to decreased DNA damage in kidney and liver, whereas rutin supplementation led to decreased DNA damage in all tissue samples observed. These results suggest that acerola juice helps to reduce oxidative stress and may decrease genotoxicity under obesogenic conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Agmatine ameliorates type 2 diabetes induced-Alzheimer's disease-like alterations in high-fat diet-fed mice via reactivation of blunted insulin signalling.

    Science.gov (United States)

    Kang, Somang; Kim, Chul-Hoon; Jung, Hosung; Kim, Eosu; Song, Ho-Taek; Lee, Jong Eun

    2017-02-01

    The risk of Alzheimer's disease (AD) is higher in patients with type 2 diabetes mellitus (T2DM). Previous studies in high-fat diet-induced AD animal models have shown that brain insulin resistance in these animals leads to the accumulation of amyloid beta (Aβ) and the reduction in GSK-3β phosphorylation, which promotes tau phosphorylation to cause AD. No therapeutic treatments that target AD in T2DM patients have yet been discovered. Agmatine, a primary amine derived from l-arginine, has exhibited anti-diabetic effects in diabetic animals. The aim of this study was to investigate the ability of agmatine to treat AD induced by brain insulin resistance. ICR mice were fed a 60% high-fat diet for 12 weeks and received one injection of streptozotocin (100 mg/kg/ip) 4 weeks into the diet. After the 12-week diet, the mice were treated with agmatine (100 mg/kg/ip) for 2 weeks. Behaviour tests were conducted prior to sacrifice. Brain expression levels of the insulin signal molecules p-IRS-1, p-Akt, and p-GSK-3β and the accumulation of Aβ and p-tau were evaluated. Agmatine administration rescued the reduction in insulin signalling, which in turn reduced the accumulation of Aβ and p-tau in the brain. Furthermore, agmatine treatment also reduced cognitive decline. Agmatine attenuated the occurrence of AD in T2DM mice via the activation of the blunted insulin signal. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Colonic aberrant crypt formation accompanies an increase of opportunistic pathogenic bacteria in C57BL/6 mice fed a high-fat diet.

    Science.gov (United States)

    Zeng, Huawei; Ishaq, Suzanne L; Liu, Zhenhua; Bukowski, Michael R

    2018-04-01

    The increasing worldwide incidence of colon cancer has been linked to obesity and consumption of a high-fat Western diet. To test the hypothesis that a high-fat diet (HFD) promotes colonic aberrant crypt (AC) formation in a manner associated with gut bacterial dysbiosis, we examined the susceptibility to azoxymethane (AOM)-induced colonic AC and microbiome composition in C57/BL6 mice fed a modified AIN93G diet (AIN, 16% fat, energy) or an HFD (45% fat, energy) for 14 weeks. Mice receiving the HFD exhibited increased plasma leptin, body weight, body fat composition and inflammatory cell infiltration in the ileum compared with those in the AIN group. Consistent with the gut inflammatory phenotype, we observed an increase in colonic AC, plasma interleukin-6, tumor necrosis factor-α, monocyte chemoattractant protein-1 and inducible nitric oxide synthase in the ileum of the HFD-AOM group compared with the AIN-AOM group. Although the HFD and AIN groups did not differ in bacterial species number, the HFD and AIN diets resulted in different bacterial community structures in the colon. The abundance of certain short-chain fatty acid (SCFA) producing bacteria (e.g., Barnesiella) and fecal SCFA (e.g., acetic acid) content were lower in the HFD-AOM group compared with the AIN and AIN-AOM groups. Furthermore, we identified a high abundance of Anaeroplasma bacteria, an opportunistic pathogen in the HFD-AOM group. Collectively, we demonstrate that an HFD promotes AC formation concurrent with an increase of opportunistic pathogenic bacteria in the colon of C57BL/6 mice. Published by Elsevier Inc.

  8. Simultaneous determination of the content of serotonin, dopamine, noradrenaline and adrenaline in pancreatic islets isolated from fed and starved mice

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, S E; Hedeskov, C J [Copenhagen Univ. (Denmark)

    1977-01-01

    A highly sensitive double isotope method for the simultaneous determination of serotonin, dopamine, noradrenaline and adrenaline has been developed. Advantages and limitations of the method are discussed. The mentioned biogenic amines are all present in isolated pancreatic islet tissue from albino mice in concentrations ranging from approximately 5-30 ..mu..mol per kg wet weight (0.8-5 x 10/sup -3/ pmol/ng DNA). A somewhat higher content of these amines, especially dopamine, was found in pancreatic acinar tissue. The hypothesis that the impaired glucose-induced insulin secretion during starvation partly is caused by an increased content of biogenic amines in the pancreatic islets was not supported by our experiments which showed an unchanged islet content of these amines after 48 h starvation.

  9. Simultaneous determination of the content of serotonin, dopamine, noradrenaline and adrenaline in pancreatic islets isolated from fed and starved mice

    International Nuclear Information System (INIS)

    Hansen, S.E.; Hedeskov, C.J.

    1977-01-01

    A highly sensitive double isotope method for the simultaneous determination of serotonin, dopamine, noradrenaline and adrenaline has been developed. Advantages and limitations of the method are discussed. The mentioned biogenic amines are all present in isolated pancreatic islet tissue from albino mice in concentrations ranging from approximately 5-30 μmol per kg wet weight (0.8-5 x 10 -3 pmol/ng DNA). A somewhat higher content of these amines, especially dopamine, was found in pancreatic acinar tissue. The hypothesis that the impaired glucose-induced insulin secretion during starvation partly is caused by an increased content of biogenic amines in the pancreatic islets was not supported by our experiments which showed an unchanged islet content of these amines after 48 h starvation. (author)

  10. Effects of Diets Differing in Composition of 18-C Fatty Acids on Adipose Tissue Thermogenic Gene Expression in Mice Fed High-Fat Diets

    Directory of Open Access Journals (Sweden)

    Sunhye Shin

    2018-02-01

    Full Text Available Dietary fatty acids play important roles in the regulation of fat accumulation or metabolic phenotype of adipocytes, either as brown or beige fat. However, a systematic comparison of effects of diets with different composition of 18-C fatty acids on browning/beiging phenotype has not been done. In this study, we compared the effects of different dietary fats, rich in specific 18-carbon fatty acids, on thermogenesis and lipid metabolism. Male C57BL/6 mice were fed a control diet containing 5.6% kcal fat from lard and 4.4% kcal fat from soybean oil (CON or high-fat diets (HFD containing 25% kcal from lard and 20% kcal fat from shea butter (stearic acid-rich fat; SHB, olive oil (oleic acid-rich oil; OO, safflower oil (linoleic acid-rich oil; SFO, or soybean oil (mixed oleic, linoleic, and α-linolenic acids; SBO ad libitum for 12 weeks, with or without a terminal 4-h norepinephrine (NE treatment. When compared to SHB, feeding OO, SFO, and SBO resulted in lower body weight gain. The OO fed group had the highest thermogenesis level, which resulted in lower body fat accumulation and improved glucose and lipid metabolism. Feeding SFO downregulated expression of lipid oxidation-related genes and upregulated expression of lipogenic genes, perhaps due to its high n-6:n-3 ratio. In general, HFD-feeding downregulated Ucp1 expression in both subcutaneous and epididymal white adipose tissue, and suppressed NE-induced Pgc1a expression in brown adipose tissue. These results suggest that the position of double bonds in dietary fatty acids, as well as the quantity of dietary fat, may have a significant effect on the regulation of oxidative and thermogenic conditions in vivo.

  11. Effects of ingredients of Korean brown rice cookies on attenuation of cholesterol level and oxidative stress in high-fat diet-fed mice.

    Science.gov (United States)

    Hong, Sun Hee; Kim, Mijeong; Woo, Minji; Song, Yeong Ok

    2017-10-01

    Owing to health concerns related to the consumption of traditional snacks high in sugars and fats, much effort has been made to develop functional snacks with low calorie content. In this study, a new recipe for Korean rice cookie, dasik , was developed and its antioxidative, lipid-lowering, and anti-inflammatory effects and related mechanisms were elucidated. The effects were compared with those of traditional rice cake dasik (RCD), the lipid-lowering effect of which is greater than that of traditional western-style cookies. Ginseng-added brown rice dasik (GBRD) was prepared with brown rice flour, fructooligosaccharide, red ginseng extract, and propolis. Mice were grouped (n = 7 per group) into those fed a normal AIN-76 diet, a high-fat diet (HFD), and HFD supplemented with RCD or GBRD. Dasik in the HFD accounted for 7% of the total calories. The lipid, reactive oxygen species, and peroxynitrite levels, and degree of lipid peroxidation in the plasma or liver were determined. The expression levels of proteins involved in lipid metabolism and inflammation, and those of antioxidant enzymes were determined by western blot analysis. The plasma and hepatic total cholesterol concentrations in the GBRD group were significantly decreased via downregulation of sterol regulatory element-binding protein-2 and 3-hydroxy-3-methylglutaryl-CoA reductase ( P < 0.05). The hepatic peroxynitrite level was significantly lower, whereas glutathione was higher, in the GBRD group than in the RCD group. Among the antioxidant enzymes, catalase (CAT) and glutathione peroxidase (GPx) were significantly upregulated in the GBRD group ( P < 0.05). In addition, nuclear factor-kappaB (NF-κB) expression in the GBRD group was significantly lower than that in the RCD group. GBRD decreases the plasma and hepatic cholesterol levels by downregulating cholesterol synthesis. This new dasik recipe also improves the antioxidative and anti-inflammatory status in HFD-fed mice via CAT and GPx upregulation and

  12. Antiobesity and Hypoglycaemic Effects of Aqueous Extract of Ibervillea sonorae in Mice Fed a High-Fat Diet with Fructose

    Science.gov (United States)

    Rivera-Ramírez, Fabiola; Escalona-Cardoso, Gerardo N.; Garduño-Siciliano, Leticia; Galaviz-Hernández, Carlos; Paniagua-Castro, Norma

    2011-01-01

    Obesity, type II diabetes, and hyperlipidaemia, which frequently coexist and are strongly associated with oxidative stress, increase the risk of cardiovascular disease. An increase in carbohydrate intake, especially of fructose, and a high-fat diet are both factors that contribute to the development of these metabolic disorders. In recent studies carried out in diabetic rats, authors reported that Ibervillea sonorae had hypoglycaemic activity; saponins and monoglycerides present in the plant could be responsible for the effects observed. In the present study, we determined the effects of an aqueous I. sonorae extract on a murine model of obesity and hyperglycaemia, induced by a high-calorie diet, and the relationship of these effects with hepatic oxidation. A high-fat diet over a period of 8 weeks induced weight gain in the mice and increased triglycerides and blood glucose levels. Simultaneous treatment with I. sonorae aqueous extracts, at doses of 100, 200, and 400 mg/kg, decreased triglycerides and glycaemia levels, prevented an increase in body weight in a dose-dependent manner, and decreased hepatic lipid oxidation at a dose of 200 mg/kg. These data suggest that the aqueous extract from I. sonorae root prevents obesity, dyslipidaemia, and hyperglycaemia induced by a hypercaloric diet; however, high doses may induce toxicity. PMID:22174560

  13. Antiobesity and hypoglycaemic effects of aqueous extract of Ibervillea sonorae in mice fed a high-fat diet with fructose.

    Science.gov (United States)

    Rivera-Ramírez, Fabiola; Escalona-Cardoso, Gerardo N; Garduño-Siciliano, Leticia; Galaviz-Hernández, Carlos; Paniagua-Castro, Norma

    2011-01-01

    Obesity, type II diabetes, and hyperlipidaemia, which frequently coexist and are strongly associated with oxidative stress, increase the risk of cardiovascular disease. An increase in carbohydrate intake, especially of fructose, and a high-fat diet are both factors that contribute to the development of these metabolic disorders. In recent studies carried out in diabetic rats, authors reported that Ibervillea sonorae had hypoglycaemic activity; saponins and monoglycerides present in the plant could be responsible for the effects observed. In the present study, we determined the effects of an aqueous I. sonorae extract on a murine model of obesity and hyperglycaemia, induced by a high-calorie diet, and the relationship of these effects with hepatic oxidation. A high-fat diet over a period of 8 weeks induced weight gain in the mice and increased triglycerides and blood glucose levels. Simultaneous treatment with I. sonorae aqueous extracts, at doses of 100, 200, and 400 mg/kg, decreased triglycerides and glycaemia levels, prevented an increase in body weight in a dose-dependent manner, and decreased hepatic lipid oxidation at a dose of 200 mg/kg. These data suggest that the aqueous extract from I. sonorae root prevents obesity, dyslipidaemia, and hyperglycaemia induced by a hypercaloric diet; however, high doses may induce toxicity.

  14. Evaluation of Beneficial Metabolic Effects of Berries in High-Fat Fed C57BL/6J Mice

    Directory of Open Access Journals (Sweden)

    Lovisa Heyman

    2014-01-01

    Full Text Available Objective. The aim of the study was to screen eight species of berries for their ability to prevent obesity and metabolic abnormalities associated with type 2 diabetes. Methods. C57BL/6J mice were assigned the following diets for 13 weeks: low-fat diet, high-fat diet or high-fat diet supplemented (20% with lingonberry, blackcurrant, bilberry, raspberry, açai, crowberry, prune or blackberry. Results. The groups receiving a high-fat diet supplemented with lingonberries, blackcurrants, raspberries or bilberries gained less weight and had lower fasting insulin levels than the control group receiving high-fat diet without berries. Lingonberries, and also blackcurrants and bilberries, significantly decreased body fat content, hepatic lipid accumulation, and plasma levels of the inflammatory marker PAI-1, as well as mediated positive effects on glucose homeostasis. The group receiving açai displayed increased weight gain and developed large, steatotic livers. Quercetin glycosides were detected in the lingonberry and the blackcurrant diets. Conclusion. Lingonberries were shown to fully or partially prevent the detrimental metabolic effects induced by high-fat diet. Blackcurrants and bilberries had similar properties, but to a lower degree. We propose that the beneficial metabolic effects of lingonberries could be useful in preventing obesity and related disorders.

  15. Antiobesity and Hypoglycaemic Effects of Aqueous Extract of Ibervillea sonorae in Mice Fed a High-Fat Diet with Fructose

    Directory of Open Access Journals (Sweden)

    Fabiola Rivera-Ramírez

    2011-01-01

    Full Text Available Obesity, type II diabetes, and hyperlipidaemia, which frequently coexist and are strongly associated with oxidative stress, increase the risk of cardiovascular disease. An increase in carbohydrate intake, especially of fructose, and a high-fat diet are both factors that contribute to the development of these metabolic disorders. In recent studies carried out in diabetic rats, authors reported that Ibervillea sonorae had hypoglycaemic activity; saponins and monoglycerides present in the plant could be responsible for the effects observed. In the present study, we determined the effects of an aqueous I. sonorae extract on a murine model of obesity and hyperglycaemia, induced by a high-calorie diet, and the relationship of these effects with hepatic oxidation. A high-fat diet over a period of 8 weeks induced weight gain in the mice and increased triglycerides and blood glucose levels. Simultaneous treatment with I. sonorae aqueous extracts, at doses of 100, 200, and 400 mg/kg, decreased triglycerides and glycaemia levels, prevented an increase in body weight in a dose-dependent manner, and decreased hepatic lipid oxidation at a dose of 200 mg/kg. These data suggest that the aqueous extract from I. sonorae root prevents obesity, dyslipidaemia, and hyperglycaemia induced by a hypercaloric diet; however, high doses may induce toxicity.

  16. Additive effects of clofibric acid and pyruvate dehydrogenase kinase isoenzyme 4 (PDK4) deficiency on hepatic steatosis in mice fed a high saturated fat diet.

    Science.gov (United States)

    Hwang, Byounghoon; Wu, Pengfei; Harris, Robert A

    2012-05-01

    Although improving glucose metabolism by inhibition of pyruvate dehydrogenase kinase 4 (PDK4) may prove beneficial in the treatment of type 2 diabetes or diet-induced obesity, it may have detrimental effects by inhibiting fatty acid oxidation. Peroxisome proliferator-activated receptor α (PPARα) agonists are often used to treat dyslipidemia in patients, especially in type 2 diabetes. Combinational treatment using a PDK4 inhibitor and PPARα agonists may prove beneficial. However, PPARα agonists may be less effective in the presence of a PDK4 inhibitor because PPARα agonists induce PDK4 expression. In the present study, the effects of clofibric acid, a PPARα agonist, on blood and liver lipids were determined in wild-type and PDK4 knockout mice fed a high-fat diet. As expected, treatment of wild-type mice with clofibric acid resulted in less body weight gain, smaller epididymal fat pads, greater insulin sensitivity, and lower levels of serum and liver triacylglycerol. Surprisingly, rather than decreasing the effectiveness of clofibric acid, PDK4 deficiency enhanced the beneficial effects of clofibric acid on hepatic steatosis, reduced blood glucose levels, and did not prevent the positive effects of clofibric acid on serum triacylglycerols and free fatty acids. The metabolic effects of clofibric acid are therefore independent of the induction of PDK4 expression. The additive beneficial effects on hepatic steatosis may be due to induction of increased capacity for fatty acid oxidation and partial uncoupling of oxidative phosphorylation by clofibric acid, and a reduction in the capacity for fatty acid synthesis as a result of PDK4 deficiency. Journal compilation © 2012 FEBS. No claim to original US government works.

  17. Prebiotic milk oligosaccharides prevent development of obese phenotype, impairment of gut permeability, and microbial dysbiosis in high fat-fed mice.

    Science.gov (United States)

    Hamilton, M Kristina; Ronveaux, Charlotte C; Rust, Bret M; Newman, John W; Hawley, Melissa; Barile, Daniela; Mills, David A; Raybould, Helen E

    2017-05-01

    Microbial dysbiosis and increased intestinal permeability are targets for prevention or reversal of weight gain in high-fat (HF) diet-induced obesity (DIO). Prebiotic milk oligosaccharides (MO) have been shown to benefit the host intestine but have not been used in DIO. We hypothesized that supplementation with bovine MO would prevent the deleterious effect of HF diet on the gut microbiota and intestinal permeability and attenuate development of the obese phenotype. C57BL/6 mice were fed a control diet, HF (40% fat/kcal), or HF + prebiotic [6%/kg bovine milk oligosaccharides (BMO) or inulin] for 1, 3, or 6 wk. Gut microbiota and intestinal permeability were assessed in the ileum, cecum, and colon. Addition of BMO to the HF diet significantly attenuated weight gain, decreased adiposity, and decreased caloric intake; inulin supplementation also lowered weight gain and adiposity, but this did not reach significance. BMO and inulin completely abolished the HF diet-induced increase in paracellular and transcellular permeability in the small and large intestine. Both BMO and inulin increased abundance of beneficial microbes Bifidobacterium and Lactobacillus in the ileum. However, inulin supplementation altered phylogenetic diversity and decreased species richness. We conclude that addition of BMO to the HF diet completely prevented increases in intestinal permeability and microbial dysbiosis and was partially effective to prevent weight gain in DIO. NEW & NOTEWORTHY This study provides the first report of the effects of prebiotic bovine milk oligosaccharides on the host phenotype of high-fat diet-induced obesity in mice. Copyright © 2017 the American Physiological Society.

  18. Effect of GABA on oxidative stress in the skeletal muscles and plasma free amino acids in mice fed high-fat diet.

    Science.gov (United States)

    Xie, Z X; Xia, S F; Qiao, Y; Shi, Y H; Le, G W

    2015-06-01

    Increased levels of plasma free amino acids (pFAAs) can disturb the blood glucose levels in patients with obesity, diabetes mellitus and metabolic syndrome (MS) and are associated with enhanced protein oxidation. Oxidation of proteins, especially in the muscles, can promote protein degradation and elevate the levels of pFAAs. Gamma-aminobutyric acid (GABA), a food additive, can reduce high-fat diet (HFD)-induced hyperglycaemia; however, the mechanisms remain unclear. The aim of this study was to evaluate the effects of GABA on protein oxidation and pFAAs changes. One hundred male C57BL/6 mice were randomly divided into five groups that were fed with control diet, HFD and HFD supplied with 0.2%, 0.12% and 0.06% GABA in drinking water for 20 weeks respectively. HFD feeding led to muscular oxidative stress, protein oxidation, pFAA disorders, hyperglycaemia and augmented plasma GABA levels. Treatment with GABA restored normally fasting blood glucose level and dose-dependently inhibited body weight gains, muscular oxidation and protein degradation. While medium and low doses of GABA mitigated HFD-induced pFAA disorders, the high dose of GABA deteriorated the pFAA disorders. Medium dose of GABA increased the levels of GABA, but high dose of GABA reduced the levels of plasma GABA and increased the activity of succinic semialdehyde dehydrogenase in the liver. Therefore, treatment with GABA mitigated HFD-induced hyperglycaemia probably by repairing HFD-induced muscular oxidative stress and pFAA disorders in mice. Our data also suggest that an optimal dose of GABA is crucial for the prevention of excess GABA-related decrease in the levels of pFAA and GABA as well as obesity. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  19. Adzuki bean ameliorates hepatic lipogenesis and proinflammatory mediator expression in mice fed a high-cholesterol and high-fat diet to induce nonalcoholic fatty liver disease.

    Science.gov (United States)

    Kim, Sera; Hong, Jihye; Jeon, Raok; Kim, Hyun-Sook

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a simple steatosis, in which fat accumulates more than 5% in the liver, and regarded as most common liver diseases worldwide. Because NAFLD can be developed to severe liver disease and correlated with metabolic disease, its importance is currently emphasized. Occurrence of NAFLD is strongly related to dietary patterns and lifestyles; therefore, the suggestion of physiologically beneficial food is essential. Based on these, adzuki beans containing anthocyanin, catechin, and adzukisaponin are suggested as a health-beneficial food. Moreover, the effects of adzuki beans on metabolic improvement are not well established through the in vivo studies. Therefore, this study hypothesized that adzuki beans can alleviate lipid accumulation and oxidative stress-mediated inflammation in high-cholesterol and high-fat diet-induced NALFD mice. To demonstrate its effects, 6-week-old C57BL/6 male mice were allocated into 4 groups and fed a normal diet (ND), a high-cholesterol and high-fat diet (HCD), and HCD with 10% and 20% adzuki bean for 10 weeks. The result shows that fasting blood glucose, serum and hepatic triglyceride and cholesterol levels, and antioxidative enzyme activity ameliorated in the adzuki bean groups (P hepatic lipogenesis, such as adiponectin, AMP-activated protein kinase α, sterol regulatory element-binding protein 1c, fatty acid synthase, carnitine palmitoyltransferase 1, 3-hydroxy-3-methyl-glutaryl-CoA reductase, and apolipoprotein B, as well as proinflammatory mediators, such as tumor necrosis factor α, nuclear factor κB, and caspase-3, improved in both experimental groups (P hepatic messenger RNA expression of lipogenic and inflammatory mediators in NAFLD. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Gelidium elegans Regulates the AMPK-PRDM16-UCP-1 Pathway and Has a Synergistic Effect with Orlistat on Obesity-Associated Features in Mice Fed a High-Fat Diet.

    Science.gov (United States)

    Choi, Jia; Kim, Kui-Jin; Koh, Eun-Jeong; Lee, Boo-Yong

    2017-03-30

    The incidence of obesity is rising at an alarming rate throughout the world and is becoming a major public health concern with incalculable social and economic costs. Gelidium elegans (GENS), also previously known as Gelidium amansii , has been shown to exhibit anti-obesity effects. Nevertheless, the mechanism by which GENS is able to do this remains unclear. In the present study, our results showed that GENS prevents high-fat diet (HFD)-induced weight gain through modulation of the adenosine monophosphate-activated protein kinase (AMPK)-PR domain-containing16 (PRDM16)-uncoupling protein-1 (UCP-1) pathway in a mice model. We also found that GENS decreased hyperglycemia in mice that had been fed a HFD compared to corresponding controls. We also assessed the beneficial effect of the combined treatment with GENS and orlistat (a Food and Drug Administration-approved obesity drug) on obesity characteristics in HFD-fed mice. We found that in HFD-fed mice, the combination of GENS and orlistat is associated with more significant weight loss than orlistat treatment alone. Moreover, our results demonstrated a positive synergistic effect of GENS and orlistat on hyperglycemia and plasma triglyceride level in these animals. Thus, we suggest that a combination therapy of GENS and orlistat may positively influence obesity-related health outcomes in a diet-induced obese population.

  1. Lipid droplet-associated proteins in high-fat fed mice with the effects of voluntary running and diet change.

    Science.gov (United States)

    Rinnankoski-Tuikka, Rita; Hulmi, Juha J; Torvinen, Sira; Silvennoinen, Mika; Lehti, Maarit; Kivelä, Riikka; Reunanen, Hilkka; Kujala, Urho M; Kainulainen, Heikki

    2014-08-01

    The relation between lipid accumulation and influence of exercise on insulin sensitivity is not straightforward. A proper balance between lipid droplet synthesis, lipolysis, and oxidative metabolism would ensure low local intramyocellular fatty acid levels, thereby possibly protecting against lipotoxicity-associated insulin resistance. This study investigated whether the accumulation of triglycerides and lipid droplets in response to high availability of fatty acids after high-fat feeding would parallel the abundance of intramyocellular perilipin proteins, especially PLIN5. The effects on these variables after diet change or voluntary running exercise intervention in skeletal muscle were also investigated. During a 19-week experiment, C57BL/6J mice were studied in six different groups: low-fat diet sedentary, low-fat diet active, high-fat diet sedentary, high-fat diet active and two groups which were high-fat sedentary for nine weeks, after which divided into low-fat sedentary or low-fat active groups. Myocellular triglyceride concentration and perilipin protein expression levels were assessed. We show that, concurrently with impaired insulin sensitivity, the expression level of PLIN5 and muscular triglyceride concentration increased dramatically after high-fat diet. These adaptations were reversible after the diet change intervention with no additional effect of exercise. After high-fat diet, lipid droplets become larger providing more surface area for PLIN5. We suggest that PLIN5 is an important regulator of lipid droplet turnover in altered conditions of fatty acid supply and consumption. Imbalances in lipid droplet metabolism and turnover might lead to lipotoxicity-related insulin resistance. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. A choline-deficient diet exacerbates fatty liver but attenuates insulin resistance and glucose intolerance in mice fed a high-fat diet.

    Science.gov (United States)

    Raubenheimer, Peter J; Nyirenda, Moffat J; Walker, Brian R

    2006-07-01

    Liver fat accumulation is proposed to link obesity and insulin resistance. To dissect the role of liver fat in the insulin resistance of diet-induced obesity, we altered liver fat using a choline-deficient diet. C57Bl/6 mice were fed a low-fat (10% of calories) or high-fat (45% of calories) diet for 8 weeks; during the final 4 weeks, diets were either choline deficient or choline supplemented. In choline replete animals, high-fat feeding induced weight gain, elevated liver triglycerides (171%), hyperinsulinemia, and glucose intolerance. Choline deficiency did not affect body or adipose depot weights but amplified liver fat accumulation with high-fat diet (281%, P insulin (from 983 +/- 175 to 433 +/- 36 pmol/l, P phosphatidylcholine synthesis and of enzymes involved in free fatty acid esterification, without affecting those of de novo lipogenesis or fatty acid oxidation. We conclude that liver fat accumulation per se does not cause insulin resistance during high-fat feeding and that choline deficiency may shunt potentially toxic free fatty acids toward innocuous storage triglyceride in the liver.

  3. Red Cabbage Microgreens Lower Circulating Low-Density Lipoprotein (LDL), Liver Cholesterol, and Inflammatory Cytokines in Mice Fed a High-Fat Diet.

    Science.gov (United States)

    Huang, Haiqiu; Jiang, Xiaojing; Xiao, Zhenlei; Yu, Lu; Pham, Quynhchi; Sun, Jianghao; Chen, Pei; Yokoyama, Wallace; Yu, Liangli Lucy; Luo, Yaguang Sunny; Wang, Thomas T Y

    2016-12-07

    Cardiovascular disease (CVD) is the leading cause of death in the United States, and hypercholesterolemia is a major risk factor. Population studies, as well as animal and intervention studies, support the consumption of a variety of vegetables as a means to reduce CVD risk through modulation of hypercholesterolemia. Microgreens of a variety of vegetables and herbs have been reported to be more nutrient dense compared to their mature counterparts. However, little is known about the effectiveness of microgreens in affecting lipid and cholesterol levels. The present study used a rodent diet-induced obesity (DIO) model to address this question. C57BL/6NCr mice (n = 60, male, 5 weeks old) were randomly assigned to six feeding groups: (1) low-fat diet; (2) high-fat diet; (3) low-fat diet + 1.09% red cabbage microgreens; (4) low-fat diet + 1.66% mature red cabbage; (5) high-fat diet + 1.09% red cabbage microgreens; (6) high-fat diet + 1.66% mature red cabbage. The animals were on their respective diets for 8 weeks. We found microgreen supplementation attenuated high-fat diet induced weight gain. Moreover, supplementation with microgreens significantly lowered circulating LDL levels in animals fed the high-fat diet and reduced hepatic cholesterol ester, triacylglycerol levels, and expression of inflammatory cytokines in the liver. These data suggest that microgreens can modulate weight gain and cholesterol metabolism and may protect against CVD by preventing hypercholesterolemia.

  4. Chronic administration of mitochondrion-targeted peptide SS-31 prevents atherosclerotic development in ApoE knockout mice fed Western diet.

    Directory of Open Access Journals (Sweden)

    Meng Zhang

    Full Text Available Oxidative stress and inflammatory factors are deeply involved in progression of atherosclerosis. Mitochondrion-targeted peptide SS-31, selectively targeting to mitochondrial inner membrane reacting with cardiolipin, has been reported to inhibit ROS generation and mitigate inflammation. The present study was designed to investigate whether SS-31 could suppress the development of atherosclerosis in vivo.Male ApoE-/- mice (8 weeks old fed with Western diet were treated with normal saline or SS-31 (1 mg/kg/d or 3 mg/kg/d through subcutaneous injection for 12 weeks. Oil Red O staining was performed to evaluate area and sizes of the plaques. DHE staining and immunohistochemical staining of 8-OHDG was performed to assess the oxidative stress. The aorta ATP contents were assessed by the ATP bioluminescence assay kit. Immunohistochemical staining of CD68 and α-SMA and Masson's trichrome staining were performed to evaluate the composition of atherosclerotic plaque. Biochemical assays were performed to determine the protein level and activity of superoxide dismutase (SOD. The levels of CD36, LOX-1 and ABCA1 were immunohistochemically and biochemically determined to evaluate the cholesterol transport in aorta and peritoneal macrophages. Inflammatory factors, including ICAM-1, MCP-1, IL-6 and CRP in serum, were detected through ELISA.SS-31 administration reduced the area and sizes of western diet-induced atherosclerotic plaques and changed the composition of the plaques in ApoE-/- mice. Oxidative stress was suppressed, as evidenced by the reduced DHE stain, down-regulated 8-OHDG expression, and increased SOD activity after chronic SS-31 administration. Moreover, systemic inflammation was ameliorated as seen by decreasing serum ICAM-1, MCP-1, and IL-6 levels. Most importantly, SS-31 administration inhibited cholesterol influx by down-regulating expression of CD36 and LOX-1 to prevent lipid accumulation to further suppress the foam cell formation and

  5. Ablation of TRPM5 in Mice Results in Reduced Body Weight Gain and Improved Glucose Tolerance and Protects from Excessive Consumption of Sweet Palatable Food when Fed High Caloric Diets.

    Directory of Open Access Journals (Sweden)

    Marie H Larsson

    Full Text Available The calcium activated cation channel transient receptor potential channel type M5 (TRPM5 is part of the downstream machinery of the taste receptors and have been shown to play a central role in taste signalling. In addition it is also found in other types of chemosensory cells in various parts of the body as well as in pancreatic β-cells. The aim of this study was to investigate the effects of TRPM5 gene ablation on body weight, insulin sensitivity and other metabolic parameters in long-term high caloric diet induced obesity. Trpm5-/- mice gained significantly less body weight and fat mass on both palatable carbohydrate and fat rich cafeteria diet and 60% high fat diet (HFD and developed less insulin resistance compared to wild type mice. A main finding was the clearly improved glucose tolerance in Trpm5-/- mice compared to wild type mice on cafeteria diet, which was independent of body weight. In addition, it was shown that Trpm5-/- mice consumed the same amount of calories when fed a HFD only or a HFD in combination with a palatable chocolate ball, which is in contrast to wild type mice that increased their caloric intake when fed the combination, mainly due to excessive consumption of the chocolate ball. Thus the palatable sugar containing diet induced overeating was prevented in Trpm5-/- mice. This indicates that sweet taste induced overeating may be a cause for the increased energy intake and glucose intolerance development seen for wild type mice on a sugar and high fat rich cafeteria diet compared to when on a high fat diet. This study point to an important role for the taste signalling system and TRPM5 in diet induced glucose intolerance.

  6. Embryo quality of mice (“Mus musculus” fed royal jelly Qualidade embrionária de camundongos ("Mus musculus" suplementados com geléia real

    Directory of Open Access Journals (Sweden)

    Bruno Edésio dos Santos Melo

    2009-03-01

    Full Text Available The study was carried out to verify the effect of feeding royal jelly associated to follicle growth induction on number and quality of mice (Mus musculus embryos. Sixty Swiss females ageing from eight to ten weeks were distributed into three treatments: the first one, composed by animals fed 0.2 mL of physiological solution intraperitoneal (control group, n=20; the second and third ones, composed by females fed 0.5 and 1.0 mg of royal jelly diluted in 0.2 mL of physiological solution (n=20, respectively. Royal jelly was administered during 15 days, followed by the follicular growth induction process. Embryos were collected 68 hours after mating, by uterine flushing. No treatment effects on the number of females that answered to superovulatory process, the number of total recovery structures, the number of viable and non viable structures and the morphological quality of viable embryos (P>0.05 were observed. Therefore, royal jelly doses used were not efficient to increase the number of embryos and to improve the quality recovery from superovulated mice.Objetivou-se verificar a influência da geléia real, associada ao tratamento de indução de crescimento folicular, no número e na qualidade de embriões de camundongos (Mus musculus. Foram utilizadas 60 fêmeas da linhagem Suíço albino com idade entre oito e dez semanas, distribuídas em três tratamentos: o primeiro, composto por animais que receberam 0,2 mL de solução fisiológica, via intraperitonial (grupo controle, n=20; o segundo e terceiro, compostos de fêmeas que receberam 0,5 e 1 mg de geléia real diluídos em 0,2 mL de solução fisiológica via intraperitonial (n=20, respectivamente. Foi administrada geléia real por um período de 15 dias, segundo o processo de indução do crescimento folicular. As coletas dos embriões ocorreram 68 horas após a cobertura, utilizando-se o método da lavagem uterina. Não houve diferença no número de fêmeas que responderam ao tratamento

  7. Fructose Mediated Non-Alcoholic Fatty Liver Is Attenuated by HO-1-SIRT1 Module in Murine Hepatocytes and Mice Fed a High Fructose Diet.

    Directory of Open Access Journals (Sweden)

    Komal Sodhi

    Full Text Available Oxidative stress underlies the etiopathogenesis of nonalcoholic fatty liver disease (NAFLD, obesity and cardiovascular disease (CVD. Heme Oxygenase-1 (HO-1 is a potent endogenous antioxidant gene that plays a key role in decreasing oxidative stress. Sirtuin1 (SIRT1 belongs to the family of NAD-dependent de-acyetylases and is modulated by cellular redox.We hypothesize that fructose-induced obesity creates an inflammatory and oxidative environment conducive to the development of NAFLD and metabolic syndrome. The aim of this study is to determine whether HO-1 acts through SIRT1 to form a functional module within hepatocytes to attenuate steatohepatitis, hepatic fibrosis and cardiovascular dysfunction.We examined the effect of fructose, on hepatocyte lipid accumulation and fibrosis in murine hepatocytes and in mice fed a high fructose diet in the presence and absence of CoPP, an inducer of HO-1, and SnMP, an inhibitor of HO activity. Fructose increased oxidative stress markers and decreased HO-1 and SIRT1 levels in hepatocytes (p<0.05. Further fructose supplementation increased FAS, PPARα, pAMPK and triglycerides levels; CoPP negated this increase. Concurrent treatment with CoPP and SIRT1 siRNA in hepatocytes increased FAS, PPARα, pAMPK and triglycerides levels suggesting that HO-1 is upstream of SIRT1 and suppression of SIRT1 attenuates the beneficial effects of HO-1. A high fructose diet increased insulin resistance, blood pressure, markers of oxidative stress and lipogenesis along with fibrotic markers in mice (p<0.05. Increased levels of HO-1 increased SIRT1 levels and ameliorated fructose-mediated lipid accumulation and fibrosis in liver along with decreasing vascular dysfunction (p<0.05 vs. fructose. These beneficial effects of CoPP were reversed by SnMP.Taken together, our study demonstrates, for the first time, that HO-1 induction attenuates fructose-induced hepatic lipid deposition, prevents the development of hepatic fibrosis and abates

  8. Opuntia ficus-indica seed attenuates hepatic steatosis and promotes M2 macrophage polarization in high-fat diet-fed mice.

    Science.gov (United States)

    Kang, Jung-Woo; Shin, Jun-Kyu; Koh, Eun-Ji; Ryu, Hyojeong; Kim, Hyoung Ja; Lee, Sun-Mee

    2016-04-01

    Opuntia ficus-indica (L.) is a popular edible plant that possesses considerable nutritional value and exhibits diverse biological actions including anti-inflammatory and antidiabetic activities. In this study, we hypothesized that DWJ504, an extract of O ficus-indica seed, would ameliorate hepatic steatosis and inflammation by regulating hepatic de novo lipogenesis and macrophage polarization against experimental nonalcoholic steatohepatitis. Mice were fed a normal diet or a high-fat diet (HFD) for 10 weeks. DWJ504 (250, 500, and 1000 mg/kg) or vehicle (0.5% carboxymethyl cellulose) were orally administered for the last 4 weeks of the 10-week HFD feeding period. DWJ504 treatment remarkably attenuated HFD-induced increases in hepatic lipid content and hepatocellular damage. DWJ504 attenuated increases in sterol regulatory element-binding protein 1 and carbohydrate-responsive element-binding protein expression and a decrease in carnitine palmitoyltransferase 1A. Although DWJ504 augmented peroxisome proliferator-activated receptor α protein expression, it attenuated peroxisome proliferator-activated receptor γ expression. Moreover, DWJ504 promoted hepatic M2 macrophage polarization as indicated by attenuation of the M1 marker genes and enhancement of M2 marker genes. Finally, DWJ504 attenuated expression of toll-like receptor 4, nuclear factor κB, tumor necrosis factor α, interleukin 6, TIR-domain-containing adapter-inducing interferon β, and interferon β levels. Our results demonstrate that DWJ504 prevented intrahepatic lipid accumulation, induced M2 macrophage polarization, and suppressed the toll-like receptor 4-mediated inflammatory signaling pathway. Thus, DWJ504 has therapeutic potential in the prevention of nonalcoholic fatty liver disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Dehydroeburicoic Acid from Antrodia camphorata Prevents the Diabetic and Dyslipidemic State via Modulation of Glucose Transporter 4, Peroxisome Proliferator-Activated Receptor α Expression and AMP-Activated Protein Kinase Phosphorylation in High-Fat-Fed Mice

    Directory of Open Access Journals (Sweden)

    Yueh-Hsiung Kuo

    2016-06-01

    Full Text Available This study investigated the potential effects of dehydroeburicoic acid (TT, a triterpenoid compound from Antrodia camphorata, in vitro and examined the effects and mechanisms of TT on glucose and lipid homeostasis in high-fat-diet (HFD-fed mice. The in vitro study examined the effects of a MeOH crude extract (CruE of A. camphorata and Antcin K (AnK; the main constituent of fruiting body of this mushroom on membrane glucose transporter 4 (GLUT4 and phospho-Akt in C2C12 myoblasts cells. The in vitro study demonstrated that treatment with CruE, AnK and TT increased the membrane levels of glucose transporter 4 (GLUT4 and phospho-Akt at different concentrations. The animal experiments were performed for 12 weeks. Diabetic mice were randomly divided into six groups after 8 weeks of HFD-induction and treated with daily oral gavage doses of TT (at three dose levels, fenofibrate (Feno (at 0.25 g/kg body weight, metformin (Metf (at 0.3 g/kg body weight or vehicle for another 4 weeks while on an HFD diet. HFD-fed mice exhibited increased blood glucose levels. TT treatment dramatically lowered blood glucose levels by 34.2%~43.4%, which was comparable to the antidiabetic agent-Metf (36.5%. TT-treated mice reduced the HFD-induced hyperglycemia, hypertriglyceridemia, hyperinsulinemia, hyperleptinemia, and hypercholesterolemia. Membrane levels of GLUT4 were significantly higher in CruE-treated groups in vitro. Skeletal muscle membrane levels of GLUT4 were significantly higher in TT-treated mice. These groups of mice also displayed lower mRNA levels of glucose-6-phosphatase (G6 Pase, an inhibitor of hepatic glucose production. The combination of these agents produced a net hypoglycemic effect in TT-treated mice. TT treatment enhanced the expressions of hepatic and skeletal muscle AMP-activated protein kinase (AMPK phosphorylation in mice. TT-treated mice exhibited enhanced expression of hepatic fatty acid oxidation enzymes, including peroxisome proliferator

  10. Evaluation of green pepper (Capsicum annuum L.) juice on the weight gain and changes in lipid profile in C57BL/6 mice fed a high-fat diet.

    Science.gov (United States)

    Kim, Na-Hyung; Park, Seong Hoon

    2015-01-01

    Capsicum pepper (green pepper, Capsicum annuum L.), a natural product available in many countries, is considered to be a food additive, with healthful or medical applications. The aim of this study was to evaluate green pepper juice for its potential to reduce weight gain and to determine its effects on lipid profiles in C57BL/6 mice fed a high-fat diet. Mice given a high-fat diet with green pepper juice gained significantly less weight and showed a significant decrease in serum triglycerides, total cholesterol, low density lipoproteins, and alanine aminotransferase compared to mice given only a high-fat diet (P juice were similar to those in mice in the control group. In addition, abdominal fat volume (subcutaneous and visceral), which was quantified by using 4.7 T magnetic resonance imaging, including multi-slice spin-echo T2-weighted images, in mice administered a high-fat diet with green pepper juice tended to decrease compared to the fat volume of mice administered only a high-fat diet. These results suggest that green pepper juice, as a drink, may possibly be helpful in reducing weight gain by regulating the levels of serum lipids. © 2014 Society of Chemical Industry.

  11. Hearts from mice fed a non-obesogenic high-fat diet exhibit changes in their oxidative state, calcium and mitochondria in parallel with increased susceptibility to reperfusion injury.

    Science.gov (United States)

    Littlejohns, Ben; Pasdois, Philippe; Duggan, Simon; Bond, Andrew R; Heesom, Kate; Jackson, Christopher L; Angelini, Gianni D; Halestrap, Andrew P; Suleiman, M-Saadeh

    2014-01-01

    High-fat diet with obesity-associated co-morbidities triggers cardiac remodeling and renders the heart more vulnerable to ischemia/reperfusion injury. However, the effect of high-fat diet without obesity and associated co-morbidities is presently unknown. To characterize a non-obese mouse model of high-fat diet, assess the vulnerability of hearts to reperfusion injury and to investigate cardiac cellular remodeling in relation to the mechanism(s) underlying reperfusion injury. Feeding C57BL/6J male mice high-fat diet for 20 weeks did not induce obesity, diabetes, cardiac hypertrophy, cardiac dysfunction, atherosclerosis or cardiac apoptosis. However, isolated perfused hearts from mice fed high-fat diet were more vulnerable to reperfusion injury than those from mice fed normal diet. In isolated cardiomyocytes, high-fat diet was associated with higher diastolic intracellular Ca2+ concentration and greater damage to isolated cardiomyocytes following simulated ischemia/reperfusion. High-fat diet was also associated with changes in mitochondrial morphology and expression of some related proteins but not mitochondrial respiration or reactive oxygen species turnover rates. Proteomics, western blot and high-performance liquid chromatography techniques revealed that high-fat diet led to less cardiac oxidative stress, higher catalase expression and significant changes in expression of putative components of the mitochondrial permeability transition pore (mPTP). Inhibition of the mPTP conferred relatively more cardio-protection in the high-fat fed mice compared to normal diet. This study shows for the first time that high-fat diet, independent of obesity-induced co-morbidities, triggers changes in cardiac oxidative state, calcium handling and mitochondria which are likely to be responsible for increased vulnerability to cardiac insults.

  12. (−-Epicatechin-3-O-β-d-allopyranoside from Davallia formosana, Prevents Diabetes and Hyperlipidemia by Regulation of Glucose Transporter 4 and AMP-Activated Protein Kinase Phosphorylation in High-Fat-Fed Mice

    Directory of Open Access Journals (Sweden)

    Chun-Ching Shih

    2015-10-01

    Full Text Available The purpose of this experiment was to determine the antidiabetic and lipid-lowering effects of (−-epicatechin-3-O-β-d-allopyranoside (BB from the roots and stems of Davallia formosana in mice. Animal treatment was induced by high-fat diet (HFD or low-fat diet (control diet, CD. After eight weeks of HFD or CD exposure, the HFD mice were treating with BB or rosiglitazone (Rosi or fenofibrate (Feno or water through gavage for another four weeks. However, at 12 weeks, the HFD-fed group had enhanced blood levels of glucose, triglyceride (TG, and insulin. BB treatment significantly decreased blood glucose, TG, and insulin levels. Moreover, visceral fat weights were enhanced in HFD-fed mice, accompanied by increased blood leptin concentrations and decreased adiponectin levels, which were reversed by treatment with BB. Muscular membrane protein levels of glucose transporter 4 (GLUT4 were reduced in HFD-fed mice and significantly enhanced upon administration of BB, Rosi, and Feno. Moreover, BB treatment markedly increased hepatic and skeletal muscular expression levels of phosphorylation of AMP-activated (adenosine monophosphate protein kinase (phospho-AMPK. BB also decreased hepatic mRNA levels of phosphenolpyruvate carboxykinase (PEPCK, which are associated with a decrease in hepatic glucose production. BB-exerted hypotriglyceridemic activity may be partly associated with increased mRNA levels of peroxisome proliferator activated receptor α (PPARα, and with reduced hepatic glycerol-3-phosphate acyltransferase (GPAT mRNA levels in the liver, which decreased triacylglycerol synthesis. Nevertheless, we demonstrated BB was a useful approach for the management of type 2 diabetes and dyslipidemia in this animal model.

  13. Summary of breakout Session F1: F1, decision support systems - technical databases

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The discussions in breakout session F1 are summarized. The topics discussed include oil properties database, case histories database, technical experts database, sorbents database, dispersants database, equipment inventories, and response information. General comments and concerns were discussed and major research issues outlines

  14. Preliminary study on influences of radioactivity of residential granite building materials upon parent mice and their offspring

    International Nuclear Information System (INIS)

    Liang Minyi; Zhang Jinghong; Zhu Weiyun; Li Yinyan; Liang Yongqing; Zhang Songshuan; Zhu Daming; Li Jinlin; Lu Qingpu

    2006-01-01

    Objective: To observe the effects of radioactivity of the residential granite building materials on the survival and fertility of mice. Methods: The radioactivities of A, B, C, and D granite building materials were measured and screened by gamma-ray spectrometer, and then these materials were placed into the mice cages. The residential radon was measured with solid state nuclear track detector's and 24-hour continuous measurement. Ninety-six healthy and ablactated mice were randomly selected and put into the four animal cages with different levels of radioactivity, and fed for 120 days. Mice mated and bred naturally. The fertilities and survivals of P, F 1 , and F 2 generation were observed and analyzed. Results: External exposures in the four mice cages were higher than those from the internal exposure. The differences of rates of pregnancy, abortion, and infertility between the P and F 1 generations had no statistical significance among all the groups after being fed for 120 days (P>0.05). There was significant difference among each group in the fertility of F 1 generation (P< 0.001), and the survival rates of the offspring were decreased with increase of radioactivity in granite building materials (P<0.001). Conclusion: Compared with the residential radon, the gamma rays released from the granite building materials had a greater influence on animals. The study suggested that different granite building materials had different influences on the survival and fertility of mice. (authors)

  15. E2F1-mediated human POMC expression in ectopic Cushing's syndrome.

    Science.gov (United States)

    Araki, Takako; Liu, Ning-Ai; Tone, Yukiko; Cuevas-Ramos, Daniel; Heltsley, Roy; Tone, Masahide; Melmed, Shlomo

    2016-11-01

    Cushing's syndrome is caused by excessive adrenocorticotropic hormone (ACTH) secretion derived from pituitary corticotroph tumors (Cushing disease) or from non-pituitary tumors (ectopic Cushing's syndrome). Hypercortisolemic features of ectopic Cushing's syndrome are severe, and no definitive treatment for paraneoplastic ACTH excess is available. We aimed to identify subcellular therapeutic targets by elucidating transcriptional regulation of the human ACTH precursor POMC (proopiomelanocortin) and ACTH production in non-pituitary tumor cells and in cell lines derived from patients with ectopic Cushing's syndrome. We show that ectopic hPOMC transcription proceeds independently of pituitary-specific Tpit/Pitx1 and demonstrate a novel E2F1-mediated transcriptional mechanism regulating hPOMC We identify an E2F1 cluster binding to the proximal hPOMC promoter region (-42 to +68), with DNA-binding activity determined by the phosphorylation at Ser-337. hPOMC mRNA expression in cancer cells was upregulated (up to 40-fold) by the co-expression of E2F1 and its heterodimer partner DP1. Direct and indirect inhibitors of E2F1 activity suppressed hPOMC gene expression and ACTH by modifying E2F1 DNA-binding activity in ectopic Cushing's cell lines and primary tumor cells, and also suppressed paraneoplastic ACTH and cortisol levels in xenografted mice. E2F1-mediated hPOMC transcription is a potential target for suppressing ACTH production in ectopic Cushing's syndrome. © 2016 Society for Endocrinology.

  16. Baked corn (Zea mays L.) and bean (Phaseolus vulgaris L.) snack consumption lowered serum lipids and differentiated liver gene expression in C57BL/6 mice fed a high-fat diet by inhibiting PPARγ and SREBF2.

    Science.gov (United States)

    Dominguez-Uscanga, Astrid; Loarca-Piña, Guadalupe; Gonzalez de Mejia, Elvira

    2017-12-01

    The aim was to determine the effect of consuming a baked white corn/bean snack (70/30% blend) on improving diet-induced dyslipidemia and liver differential gene expression in mice fed a high-fat diet (HFD). C57BL/6 mice were randomized into six groups and different doses of the snack (0.5-2.0 g/d) supplemented to a basal HFD for 12 weeks. Unsupplemented HFD and a standard diet were used as positive and negative controls, respectively. Groups receiving HFD1.0, HFD1.5 and HFD2.0 showed attenuation in body weight gain (20%). Serum cholesterol and triglycerides were reduced (Psnack. Histological analysis showed a reduction in adipocyte diameters (PSnack consumption induced differential expression of 529 genes in the liver; RGS16 was the highest up-regulated molecule (+15-fold change). Increased expression of this gene could have improved glucose metabolism in HFD2.0. Ingenuity Pathway Analysis downstream analysis showed a predicted inhibition of target genes of peroxisome PPARγ and key regulators of lipogenic genes in the liver. The results suggest that consumption of a white corn/bean snack (70%/30% blend) attenuates weight gain, fat mass accumulation, adipocyte size and nonalcoholic fatty liver disease in HFD-fed mice by inhibiting PPARγ and SREBF2. The study proposes that this type of product might be beneficial by preventing dyslipidemia, obesity and hepatic steatosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Supplementation with antioxidant-rich extra virgin olive oil prevents hepatic oxidative stress and reduction of desaturation capacity in mice fed a high-fat diet: Effects on fatty acid composition in liver and extrahepatic tissues.

    Science.gov (United States)

    Rincón-Cervera, Miguel Angel; Valenzuela, Rodrigo; Hernandez-Rodas, María Catalina; Marambio, Macarena; Espinosa, Alejandra; Mayer, Susana; Romero, Nalda; Barrera M Sc, Cynthia; Valenzuela, Alfonso; Videla, Luis A

    2016-01-01

    The aim of this study was to assess the effect of dietary supplementation with extra virgin olive oil (EVOO) in mice on the reduction of desaturase and antioxidant enzymatic activities in liver, concomitantly with long-chain polyunsaturated fatty acids (LCPUFA) profiles in liver and extrahepatic tissues induced by a high-fat diet (HFD). Male mice C57 BL/6 J were fed with a control diet (CD; 10% fat, 20% protein, 70% carbohydrates) or an HFD (60% fat, 20% protein, 20% carbohydrates) for 12 wk. Animals were supplemented with 100 mg/d EVOO with different antioxidant contents (EVOO I, II, and III). After the intervention, blood and several tissues were analyzed. Dietary supplementation with EVOO with the highest antioxidant content and antioxidant capacity (EVOO III) significantly reduced fat accumulation in liver and the plasmatic metabolic alterations caused by HFD and produced a normalization of oxidative stress-related parameters, desaturase activities, and LCPUFA content in tissues. Data suggest that dietary supplementation with EVOO III may prevent oxidative stress and reduction of biosynthesis and accretion of ω-3 LCPUFA in the liver of HFD-fed mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. 26 CFR 1.860F-1 - Qualified liquidations.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 9 2010-04-01 2010-04-01 false Qualified liquidations. 1.860F-1 Section 1.860F-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Real Estate Investment Trusts § 1.860F-1 Qualified liquidations. A plan of...

  19. Tangeretin and 3',4',3,5,6,7,8-heptamethoxyflavone decrease insulin resistance, fat accumulation and oxidative stress in mice fed high-fat diet

    Science.gov (United States)

    Tangeretin and heptamethoxyflavone were investigated for their ability to repair metabolic damage caused by high-fat diet in C57BL/6J mice. In the first four weeks, induction of obesity was performed and the mice received standard diet (11% kcal from fat) or high-fat diet (45% kcal from fat). After ...

  20. Analysis list: E2f1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available E2f1 Blood,Liver + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/E2f1.1....tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/E2f1.5.tsv http://dbarchive.biosciencedbc.jp/kyus...hu-u/mm9/target/E2f1.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/E2f1.Blood.tsv,http://dbarchive.bioscience...dbc.jp/kyushu-u/mm9/colo/E2f1.Liver.tsv http://dbarchive.bioscience...dbc.jp/kyushu-u/mm9/colo/Blood.gml,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Liver.gml ...

  1. Evaluation of caesium atomic fountain NICT-CsF1

    International Nuclear Information System (INIS)

    Kumagai, M.; Ito, H.; Kajita, M.; Hosokawa, M.

    2008-01-01

    In this paper, we describe the first caesium atomic fountain primary frequency standard NICT-CsF1 of National Institute of Information Communications Technology (NICT) in Tokyo, Japan. The structure of the NICT-CsF1 system and evaluation procedure of the systematic frequency shifts and their uncertainties are presented. Typically, NICT-CsF1 has a frequency stability of 4 * 10 -13 /τ 1/2 and a frequency uncertainty of 1.9 * 10 -15 . (authors)

  2. Kefir alleviates obesity and hepatic steatosis in high-fat diet-fed mice by modulation of gut microbiota and mycobiota: targeted and untargeted community analysis with correlation of biomarkers.

    Science.gov (United States)

    Kim, Dong-Hyeon; Kim, Hyunsook; Jeong, Dana; Kang, Il-Byeong; Chon, Jung-Whan; Kim, Hong-Seok; Song, Kwang-Young; Seo, Kun-Ho

    2017-06-01

    Kefir is a probiotic beverage containing over 50 species of lactic acid bacteria and yeast. In this study, the anti-obesity and anti-non-alcoholic fatty liver disease (NAFLD) effects of kefir were comprehensively addressed along with targeted and untargeted community analysis of the fecal microbiota in a high-fat diet (HFD)-induced obese mouse model. HFD-fed C57BL/6 mice were orally administrated either kefir or milk (control) once a day for 12 weeks, and body and organ weight, fecal microbiota and mycobiota, histopathology, blood cholesterol and cytokines and gene expressions were analyzed. Compared to the control, mice in the kefir group exhibited a significantly lower body weight (34.18 g vs. 40.24 g; p=0.00004) and histopathological liver lesion score (1.13 vs. 3.25; p=0.002). Remarkably, the kefir-fed mice also harbored more Lactobacillus/Lactococcus (7.01 vs. 6.32 log CFU/g), total yeast (6.07 vs. 5.01 log CFU/g) and Candida (5.56 vs. 3.88 log CFU/g). Kefir administration also up-regulated genes related to fatty acid oxidation, PPARα and AOX, in both the liver and adipose tissue (PPARα, 2.95- and 2.15-fold; AOX, 1.89- and 1.9-fold, respectively). The plasma concentration of IL-6, a proinflammatory marker, was significantly reduced following kefir consumption (50.39 pg/ml vs. 111.78 pg/ml; p=0.03). Strikingly, the populations of Lactobacillus/Lactococcus, total yeast and Candida were strongly correlated with PPARα gene expression in adipose and hepatic tissue (r=0.599, 0.580 and 0.562, respectively). These data suggest that kefir consumption modulates gut microbiota and mycobiota in HFD-fed mice, which prevents obesity and NAFLD via promoting fatty acid oxidation. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. 2003F1季中评点

    Institute of Scientific and Technical Information of China (English)

    东临; DarrenHeath

    2003-01-01

    目前2003赛季过半,20位F1车手中,谁的表现最佳?谁最尽力?由全球20位F1资深人士组成的F1 Racing测评小组对今季F1所有参赛车手做出评定。这次的评分结果相当接近。甚至可能会引起争论。

  4. Liquid fructose supplementation in LDL-R−/− mice fed a western-type diet enhances lipid burden and atherosclerosis despite identical calorie consumption

    Directory of Open Access Journals (Sweden)

    Natalia Hutter

    2015-12-01

    Conclusions: SLF, without changing total calorie intake, increases atherosclerosis, visceral adipose tissue and cholesterol burden in a background of overweight LDL receptor knockout mice consuming an unhealthy, Western-type solid rodent chow.

  5. Beta-Glucan-Rich Extract from Pleurotus sajor-caju (Fr. Singer Prevents Obesity and Oxidative Stress in C57BL/6J Mice Fed on a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    G. Kanagasabapathy

    2013-01-01

    Full Text Available Mushrooms have been used in folk medicine for thousands of years. In this study, the effect of β-glucan-rich extract of P. sajor-caju (GE on lipid lowering and antioxidant potential was assessed in C57BL/6J mice fed on a high-fat diet. Obesity was induced in C57BL/6J mice by feeding a high-fat diet. The control groups in this study were ND (for normal diet and HFD (for high-fat diet. The treated groups were ND240 (for normal diet (240 mg/kg b.w and HFD60, HFD120, and HFD240 (for high-fat diet, where the mice were administrated with three dosages of GE (60, 120, and 240 mg GE/kg b.w. Metformin (2 mg/kg b.w served as positive control. GE-treated groups showed significantly reduced body weight, serum lipid, and liver enzymes levels. GE also attenuated protein carbonyl and lipid hydroperoxide levels by increasing the enzymic antioxidants (SOD, CAT, and GPx activities in the mice. GE-treated groups induced the expression of hormone sensitive lipase (HSL and adipose triglyceride lipase (ATGL while downregulated the expression of peroxisome proliferator-activated receptor gamma (PPAR-γ, sterol regulatory binding protein-1c (SREBP-1c, and lipoprotein lipase (LPL. Hence, GE prevented weight gain in the mice by inducing lipolysis and may be valuable in the formulation of adjuvant therapy for obesity.

  6. Beef Production on Rotationally Grazed F1 Pennisetum Hybrid and ...

    African Journals Online (AJOL)

    Comparative studies of elephant grass and the F1 hybrids between the 'maiwa' cultivar of millet (Pennisetum americanum) and elephant grass (P. purpureum) indicated a superiority in quality of the hybrids. To ascertain this potential superiority animal performance was measured by estimating beef production on F1 ...

  7. 26 CFR 1.642(f)-1 - Amortization deductions.

    Science.gov (United States)

    2010-04-01

    ....642(f)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Estates, Trusts, and Beneficiaries § 1.642(f)-1 Amortization deductions. An estate... respect to qualified railroad rolling stock as defined in section 184(d), with respect to certified coal...

  8. The D1 parameter for the equatorial F1 region

    International Nuclear Information System (INIS)

    Adeniyi, J.O.; Radicella, S.M.

    2002-01-01

    This work is a contribution to the effort at improving the representation of the F1 equatorial ionospheric region in the International Reference Ionosphere (IRI) model. The D1 parameter has been proposed for describing the F1 layer. We have therefore produced a maiden table of D1 parameter for an equatorial station. Diurnal and seasonal effects were considered. (author)

  9. 12 CFR 563f.1 - Authority, purpose, and scope.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Authority, purpose, and scope. 563f.1 Section... INTERLOCKS § 563f.1 Authority, purpose, and scope. (a) Authority. This part is issued under the provisions of... generally prohibiting a management official from serving two nonaffiliated depository organizations in...

  10. The Aryl Hydrocarbon Receptor Binds to E2F1 and Inhibits E2F1-induced Apoptosis

    Science.gov (United States)

    Marlowe, Jennifer L.; Fan, Yunxia; Chang, Xiaoqing; Peng, Li; Knudsen, Erik S.; Xia, Ying

    2008-01-01

    Cellular stress by DNA damage induces checkpoint kinase-2 (CHK2)-mediated phosphorylation and stabilization of the E2F1 transcription factor, leading to induction of apoptosis by activation of a subset of proapoptotic E2F1 target genes, including Apaf1 and p73. This report characterizes an interaction between the aryl hydrocarbon (Ah) receptor (AHR), a ligand-activated transcription factor, and E2F1 that results in the attenuation of E2F1-mediated apoptosis. In Ahr−/− fibroblasts stably transfected with a doxycycline-regulated AHR expression vector, inhibition of AHR expression causes a significant elevation of oxidative stress, γH2A.X histone phosphorylation, and E2F1-dependent apoptosis, which can be blocked by small interfering RNA-mediated knockdown of E2F1 expression. In contrast, ligand-dependent AHR activation protects these cells from etoposide-induced cell death. In cells expressing both proteins, AHR and E2F1 interact independently of the retinoblastoma protein (RB), because AHR and E2F1 coimmunoprecipitate from extracts of RB-negative cells. Additionally, chromatin immunoprecipitation assays indicate that AHR and E2F1 bind to the Apaf1 promoter at a region containing a consensus E2F1 binding site but no AHR binding sites. AHR activation represses Apaf1 and TAp73 mRNA induction by a constitutively active CHK2 expression vector. Furthermore, AHR overexpression blocks the transcriptional induction of Apaf1 and p73 and the accumulation of sub-G0/G1 cells resulting from ectopic overexpression of E2F1. These results point to a proproliferative, antiapoptotic function of the Ah receptor that likely plays a role in tumor progression. PMID:18524851

  11. Citrus flavanones prevent systemic inflammation and ameliorate oxidative stress in C57BL/6J mice fed high-fat diet.

    Science.gov (United States)

    Ferreira, Paula S; Spolidorio, Luis C; Manthey, John A; Cesar, Thais B

    2016-06-15

    The flavanones hesperidin, eriocitrin and eriodictyol were investigated for their prevention of the oxidative stress and systemic inflammation caused by high-fat diet in C57BL/6J mice. The mice received a standard diet (9.5% kcal from fat), high-fat diet (45% kcal from fat) or high-fat diet supplemented with hesperidin, eriocitrin or eriodictyol for a period of four weeks. Hesperidin, eriocitrin and eriodictyol increased the serum total antioxidant capacity, and restrained the elevation of interleukin-6 (IL-6), macrophage chemoattractant protein-1 (MCP-1), and C-reactive protein (hs-CRP). In addition, the liver TBARS levels and spleen mass (g per kg body weight) were lower for the flavanone-treated mice than in the unsupplemented mice. Eriocitrin and eriodictyol reduced TBARS levels in the blood serum, and hesperidin and eriodictyol also reduced fat accumulation and liver damage. The results showed that hesperidin, eriocitrin and eriodictyol had protective effects against inflammation and oxidative stress caused by high-fat diet in mice, and may therefore prevent metabolic alterations associated with the development of cardiovascular diseases in other animals.

  12. Dietary supplementation of grape skin extract improves glycemia and inflammation in diet-induced obese mice fed a Western high fat diet.

    Science.gov (United States)

    Hogan, Shelly; Canning, Corene; Sun, Shi; Sun, Xiuxiu; Kadouh, Hoda; Zhou, Kequan

    2011-04-13

    Dietary antioxidants may provide a cost-effective strategy to promote health in obesity by targeting oxidative stress and inflammation. We recently found that the antioxidant-rich grape skin extract (GSE) also exerts a novel anti-hyperglycemic activity. This study investigated whether 3-month GSE supplementation can improve oxidative stress, inflammation, and hyperglycemia associated with a Western diet-induced obesity. Young diet-induced obese (DIO) mice were randomly divided to three treatment groups (n = 12): a standard diet (S group), a Western high fat diet (W group), and the Western diet plus GSE (2.4 g GSE/kg diet, WGSE group). By week 12, DIO mice in the WGSE group gained significantly more weight (24.6 g) than the W (20.2 g) and S groups (11.2 g); the high fat diet groups gained 80% more weight than the standard diet group. Eight of 12 mice in the W group, compared to only 1 of 12 mice in the WGSE group, had fasting blood glucose levels above 140 mg/dL. Mice in the WGSE group also had 21% lower fasting blood glucose and 17.1% lower C-reactive protein levels than mice in the W group (P < 0.05). However, the GSE supplementation did not affect oxidative stress in diet-induced obesity as determined by plasma oxygen radical absorbance capacity, glutathione peroxidase, and liver lipid peroxidation. Collectively, the results indicated a beneficial role of GSE supplementation for improving glycemic control and inflammation in diet-induced obesity.

  13. Dietary oligofructose and inulin protect mice from enteric and systemic pathogens and tumor inducers.

    Science.gov (United States)

    Buddington, Karyl K; Donahoo, Jillian B; Buddington, Randal K

    2002-03-01

    Prebiotics induce changes in the population and metabolic characteristics of the gastrointestinal bacteria, modulate enteric and systemic immune functions, and provide laboratory rodents with resistance to carcinogens that promote colorectal cancer. There is less known about protection from other challenges. Therefore, mice of the B6C3F1 strain were fed for 6 wk a control diet with 100 g/kg cellulose or one of two experimental diets with the cellulose replaced entirely by the nondigestible oligosaccharides (NDO) oligofructose and inulin. From each diet, 25 mice were challenged by a promoter of colorectal cancer (1,2-dimethylhydrazine), B16F10 tumor cells, the enteric pathogen Candida albicans (enterically), or were infected systemically with Listeria monocytogenes or Salmonella typhimurium. The incidences of aberrant crypt foci in the distal colon after exposure to dimethylhdrazine for mice fed inulin (53%) and oligofructose (54%) were lower than in control mice (76%; P 80% for control mice), but fewer of the mice fed inulin died (60%; P dietary NDO was not elucidated, but the findings are consistent with enhanced immune functions in response to changes in the composition and metabolic characteristics of the bacteria resident in the gastrointestinal tract.

  14. Translocation of Klebsiella sp. in mice fed an enteral diet containing prebiotics Translocação de Klebsiella sp. em camundongos alimentados com dieta enteral contendo prebióticos

    Directory of Open Access Journals (Sweden)

    Daniele Ferreira da Silva

    2009-04-01

    Full Text Available OBJECTIVE: This work aimed to evaluate the effect of fructooligosaccharide and inulin added to an enteral diet on the translocation of Klebsiella sp. in mice. METHODS: Four- to six-week-old Swiss albino mice were divided into nine groups and fed enteral diets containing different combinations of fructooligosaccharide, inulin, antibiotic and corticoid, inoculated or not with Klebsiella pneumoniae. On day 5, the animals of four groups were fed an enteral diet contaminated with approximately 10(10CFU/g of K. pneumoniae. At defined times, two animals of each group were sacrificed and their organs (spleen, heart, liver, lungs, and kidneys were aseptically collected, weighed, and analyzed for the presence of typical Klebsiella sp. colonies. RESULTS: A higher number of CFU/g of Klebsiella was detected in the organs of the animals in the immune-suppressed group fed the diet contaminated with K. pneumoniae and without prebiotics. Animals fed the diet enriched with fructooligosaccharide and inulin, at a concentration of 15.3mg/g of body weight, had a shorter period of Klebsiella sp. translocation, compared with those not fed prebiotics in the diet. CONCLUSION: The addition of fructooligosacharide and inulin in enterais diets at a concentration of 15.3mg/g of body weight resulted in the reduction of translocation of Klebsiella for spleen, heart, liver, lung and kidneys of mice that had received the diet contaminated associated or not with antibiotic and imunodepressor drug.OBJETIVO: Avaliar o efeito da administração de frutooligossacarídeo e inulina, adicionados à dieta enteral, na translocação de Klebsiella sp. em camundongos. MÉTODOS: Camundongos albinos suíços, com quatro a seis semanas de vida, foram divididos em nove grupos e tratados com dietas enterais contendo diferentes combinações de frutooligossacarídeos, inulina, antibiótico e corticóide, inoculadas ou não com Klebsiella pneumoniae. No quinto dia de experimento, os animais dos

  15. Genetic identification of F1 and post-F1 serrasalmid juvenile hybrids in Brazilian aquaculture.

    Directory of Open Access Journals (Sweden)

    Diogo Teruo Hashimoto

    Full Text Available Juvenile fish trade monitoring is an important task on Brazilian fish farms. However, the identification of juvenile fish through morphological analysis is not feasible, particularly between interspecific hybrids and pure species individuals, making the monitoring of these individuals difficult. Hybrids can be erroneously identified as pure species in breeding facilities, which might reduce production on farms and negatively affect native populations due to escapes or stocking practices. In the present study, we used a multi-approach analysis (molecular and cytogenetic markers to identify juveniles of three serrasalmid species (Colossoma macropomum, Piaractus mesopotamicus and Piaractus brachypomus and their hybrids in different stocks purchased from three seed producers in Brazil. The main findings of this study were the detection of intergenus backcrossing between the hybrid ♀ patinga (P. mesopotamicus×P. brachypomus×♂ C. macropomum and the occurrence of one hybrid triploid individual. This atypical specimen might result from automixis, a mechanism that produces unreduced gametes in some organisms. Moreover, molecular identification indicated that hybrid individuals are traded as pure species or other types of interspecific hybrids, particularly post-F1 individuals. These results show that serrasalmid fish genomes exhibit high genetic heterogeneity, and multi-approach methods and regulators could improve the surveillance of the production and trade of fish species and their hybrids, thereby facilitating the sustainable development of fish farming.

  16. Obese mice fed a diet supplemented with enzyme-treated wheat bran display marked shifts in the liver metabolome concurrent with altered gut bacteria

    Science.gov (United States)

    Enzyme-treated wheat bran (ETWB) is a fermentable dietary fiber previously shown to decrease liver triglycerides and modify the gut microbiome in mice. It is not clear which mechanisms explain how ETWB feeding impacts hepatic metabolism, but factors (i.e., metabolites) associated with specific micro...

  17. Stochastic Four-State Mechanochemical Model of F1-ATPase

    International Nuclear Information System (INIS)

    Wu Weixia; Zhan Yong; Zhao Tongjun; Han Yingrong; Chen Yafei

    2010-01-01

    F 1 -ATPase, a part of ATP synthase, can synthesize and hydrolyze ATP moleculars in which the central γ-subunit rotates inside the α 3 β 3 cylinder. A stochastic four-state mechanochemical coupling model of F 1 -ATPase is studied with the aid of the master equation. In this model, the ATP hydrolysis and synthesis are dependent on ATP, ADP, and Pi concentrations. The effects of ATP concentration, ADP concentration, and the external torque on the occupation probability of binding-state, the rotation rate and the diffusion coefficient of F 1 -ATPase are investigated. Moreover, the results from this model are compared with experiments. The mechanochemical mechanism F 1 -ATPase is qualitatively explained by the model. (general)

  18. Hypercholesterolemia and hepatic steatosis in mice fed on low-cost high-fat diet - doi: 10.4025/actascihealthsci.v35i1.10871

    Directory of Open Access Journals (Sweden)

    Lívia Bracht

    2013-03-01

    Full Text Available To verify whether high-fat diet prepared from commercial diet plus chocolate, roasted peanuts and corn cookies induces hypercholesterolemia in mice and whether there is any hepatic involvement in this type of animal testing. Swiss mice received a high-fat diet for 15 and 30 days; plasma cholesterol, triglycerides and glucose rates were determined. Hepatic impairment was evaluated by histopathological analysis. Cholesterol levels increased 43% in animals treated with high-fat diet for 30 days. Further, histopathological analysis revealed that treatment of animals for 15 and 30 days produced hepatic steatosis and steatohepatitis, respectively. Experimental model is suitable for assessing the action of anti-hypercholesterolemia and the treatment of steatohepatitis.  

  19. CER-001, a HDL-mimetic, stimulates the reverse lipid transport and atherosclerosis regression in high cholesterol diet-fed LDL-receptor deficient mice.

    Science.gov (United States)

    Tardy, Claudine; Goffinet, Marine; Boubekeur, Nadia; Ackermann, Rose; Sy, Gavin; Bluteau, Alice; Cholez, Guy; Keyserling, Constance; Lalwani, Narendra; Paolini, John F; Dasseux, Jean-Louis; Barbaras, Ronald; Baron, Rudi

    2014-01-01

    CER-001 is a novel engineered HDL-mimetic comprised of recombinant human apoA-I and phospholipids that was designed to mimic the beneficial properties of nascent pre-β HDL. In this study, we have evaluated the capacity of CER-001 to perform reverse lipid transport in single dose studies as well as to regress atherosclerosis in LDLr(-/-) mice after short-term multiple-dose infusions. CER-001 induced cholesterol efflux from macrophages and exhibited anti-inflammatory response similar to natural HDL. Studies with HUVEC demonstrated CER-001 at a concentration of 500 μg/mL completely suppressed the secretion of cytokines IL-6, IL-8, GM-CSF and MCP-1. Following infusion of CER-001 (10mg/kg) in C57Bl/6J mice, we observed a transient increase in the mobilization of unesterified cholesterol in HDL particles containing recombinant human apoA-I. Finally we show that cholesterol elimination was stimulated in CER-001 treated animals as demonstrated by the increased cholesterol concentration in liver and feces. In a familial hypercholesterolemia mouse model (LDL-receptor deficient mice), the infusion of CER-001 caused 17% and 32% reductions in plaque size, 17% and 23% reductions in lipid content after 5 and 10 doses given every 2 days, respectively. Also, there was an 80% reduction in macrophage content in the plaque following 5 doses, and decreased VCAM-1 expression by 16% and 22% in the plaque following 5 and 10 intravenous doses of CER-001, respectively. These data demonstrate that CER-001 rapidly enhances reverse lipid transport in the mouse, reducing vascular inflammation and promoting regression of diet-induced atherosclerosis in LDLr(-/-) mice upon a short-term multiple dose treatment. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Anti-diabetic effects of DA-11004, a synthetic IDPc inhibitor in high fat high sucrose diet-fed C57BL/6J mice.

    Science.gov (United States)

    Shin, Chang Yell; Jung, Mi Young; Lee, In Ki; Son, Miwon; Kim, Dong Sung; Lim, Joong In; Kim, Soon Hoe; Yoo, Moohi; Huh, Tae Lin; Sohn, Young Taek; Kim, Won Bae

    2004-01-01

    DA-11004 is a synthetic, potent NADP-dependent isocitrate dehydrogenase (IDPc) inhibitor where IC50 for IDPc is 1.49 microM. The purpose of this study was to evaluate the effects of DA-11004 on the high fat high sucrose (HF)-induced obesity in male C57BL/6J mice. After completing a 8-week period of experimentation, the mice were sacrificed 1 hr after the last DA-11004 treatment and their blood, liver, and adipose tissues (epididymal and retroperitoneal fat) were collected. There was a significant difference in the pattern of increasing body weight between the HF control and the DA-11004 group. In the DA-11004 (100 mg/kg) treated group the increase in body weight significantly declined and a content of epididymal fat and retroperitoneal fat was also significantly decreased as opposed to the HF control. DA-11004 (100 mg/ kg) inhibited the IDPc activity, and thus, NADPH levels in plasma and the levels of free fatty acid (FFA) or glucose in plasma were less than the levels of the HF control group. In conclusion, DA-11004 inhibited the fatty acid synthesis in adipose tissues via IDPc inhibition, and it decreased the plasma glucose levels and FFA in HF diet-induced obesity of C57BL/6J mice.

  1. Singlet structure function F_1 in double-logarithmic approximation

    Science.gov (United States)

    Ermolaev, B. I.; Troyan, S. I.

    2018-03-01

    The conventional ways to calculate the perturbative component of the DIS singlet structure function F_1 involve approaches based on BFKL which account for the single-logarithmic contributions accompanying the Born factor 1 / x. In contrast, we account for the double-logarithmic (DL) contributions unrelated to 1 / x and because of that they were disregarded as negligibly small. We calculate the singlet F_1 in the double-logarithmic approximation (DLA) and account at the same time for the running α _s effects. We start with a total resummation of both quark and gluon DL contributions and obtain the explicit expression for F_1 in DLA. Then, applying the saddle-point method, we calculate the small- x asymptotics of F_1, which proves to be of the Regge form with the leading singularity ω _0 = 1.066. Its large value compensates for the lack of the factor 1 / x in the DLA contributions. Therefore, this Reggeon can be identified as a new Pomeron, which can be quite important for the description of all QCD processes involving the vacuum (Pomeron) exchanges at very high energies. We prove that the expression for the small- x asymptotics of F_1 scales: it depends on a single variable Q^2/x^2 only instead of x and Q^2 separately. Finally, we show that the small- x asymptotics reliably represent F_1 at x ≤ 10^{-6}.

  2. Role of choline deficiency in the Fatty liver phenotype of mice fed a low protein, very low carbohydrate ketogenic diet.

    Science.gov (United States)

    Schugar, Rebecca C; Huang, Xiaojing; Moll, Ashley R; Brunt, Elizabeth M; Crawford, Peter A

    2013-01-01

    Though widely employed for clinical intervention in obesity, metabolic syndrome, seizure disorders and other neurodegenerative diseases, the mechanisms through which low carbohydrate ketogenic diets exert their ameliorative effects still remain to be elucidated. Rodent models have been used to identify the metabolic and physiologic alterations provoked by ketogenic diets. A commonly used rodent ketogenic diet (Bio-Serv F3666) that is very high in fat (~94% kcal), very low in carbohydrate (~1% kcal), low in protein (~5% kcal), and choline restricted (~300 mg/kg) provokes robust ketosis and weight loss in mice, but through unknown mechanisms, also causes significant hepatic steatosis, inflammation, and cellular injury. To understand the independent and synergistic roles of protein restriction and choline deficiency on the pleiotropic effects of rodent ketogenic diets, we studied four custom diets that differ only in protein (5% kcal vs. 10% kcal) and choline contents (300 mg/kg vs. 5 g/kg). C57BL/6J mice maintained on the two 5% kcal protein diets induced the most significant ketoses, which was only partially diminished by choline replacement. Choline restriction in the setting of 10% kcal protein also caused moderate ketosis and hepatic fat accumulation, which were again attenuated when choline was replete. Key effects of the 5% kcal protein diet - weight loss, hepatic fat accumulation, and mitochondrial ultrastructural disarray and bioenergetic dysfunction - were mitigated by choline repletion. These studies indicate that synergistic effects of protein restriction and choline deficiency influence integrated metabolism and hepatic pathology in mice when nutritional fat content is very high, and support the consideration of dietary choline content in ketogenic diet studies in rodents to limit hepatic mitochondrial dysfunction and fat accumulation.

  3. Role of choline deficiency in the Fatty liver phenotype of mice fed a low protein, very low carbohydrate ketogenic diet.

    Directory of Open Access Journals (Sweden)

    Rebecca C Schugar

    Full Text Available Though widely employed for clinical intervention in obesity, metabolic syndrome, seizure disorders and other neurodegenerative diseases, the mechanisms through which low carbohydrate ketogenic diets exert their ameliorative effects still remain to be elucidated. Rodent models have been used to identify the metabolic and physiologic alterations provoked by ketogenic diets. A commonly used rodent ketogenic diet (Bio-Serv F3666 that is very high in fat (~94% kcal, very low in carbohydrate (~1% kcal, low in protein (~5% kcal, and choline restricted (~300 mg/kg provokes robust ketosis and weight loss in mice, but through unknown mechanisms, also causes significant hepatic steatosis, inflammation, and cellular injury. To understand the independent and synergistic roles of protein restriction and choline deficiency on the pleiotropic effects of rodent ketogenic diets, we studied four custom diets that differ only in protein (5% kcal vs. 10% kcal and choline contents (300 mg/kg vs. 5 g/kg. C57BL/6J mice maintained on the two 5% kcal protein diets induced the most significant ketoses, which was only partially diminished by choline replacement. Choline restriction in the setting of 10% kcal protein also caused moderate ketosis and hepatic fat accumulation, which were again attenuated when choline was replete. Key effects of the 5% kcal protein diet - weight loss, hepatic fat accumulation, and mitochondrial ultrastructural disarray and bioenergetic dysfunction - were mitigated by choline repletion. These studies indicate that synergistic effects of protein restriction and choline deficiency influence integrated metabolism and hepatic pathology in mice when nutritional fat content is very high, and support the consideration of dietary choline content in ketogenic diet studies in rodents to limit hepatic mitochondrial dysfunction and fat accumulation.

  4. Novel bitter melon extracts highly yielded from supercritical extraction reduce the adiposity through the enhanced lipid metabolism in mice fed a high fat diet

    Directory of Open Access Journals (Sweden)

    Li Xu

    2016-12-01

    Full Text Available Bitter melon (Momordica charantia is a species of edible plant known for its medicinal value towards diabetes and obesity. Due to the various compositions of bitter melon extracts (BME, the comprehensive knowledge concerning their anti-obesity effects was insufficient. Here we first introduced supercritical extraction to BME's preparation, (supercritical extraction is a relatively advanced extraction method with a better efficiency and selectivity and expected to be extensively used in future applications and the resultants were subjected to HPLC analysis, validating the presence of 42.60% of conjugated linolenic acid (CLnA, cis9, trans11, trans13-18:3 and 13.17% of conjugated linoleic acid (CLA, cis9, trans11-18:2. The BMSO (bitter melon seed oil was then administered to the HFD mice, an obesity model established by feeding C57BL/6J mice a high fat diet. Consequently, due to the BMSO's supplementation, the HFD mice showed a significantly decreased body-weight, Lee's index, fat index and adipose size, whereas the liver weight stayed unchanged. Meanwhile, the serum FFA (free fatty acids levels returned to normal at the dosage of 10 g/kg, and the elevated serum leptin levels were also recovered by BMSO's supplementation with moderate and high dose. These findings suggested that BMSO restored the balance between lipid intake and metabolism, which was probably mediated by leptin's variation. In summary, a detailed anti-obesity effect was described with regard to a potent CFA's (conjugated fatty acid combination offered by BME. A potential mechanism underlying BME's beneficial effects was proposed, paving the way for the better use of BME's pharmaceutical function to serve the obesity's treatment.

  5. H-2 restriction of the T cell response to chemically induced tumors: evidence from F1 → parent chimeras

    International Nuclear Information System (INIS)

    Lannin, D.R.; Yu, S.; McKhann, C.F.

    1982-01-01

    It has been well established that T cells that react to tumor antigen on virus-induced tumors must share H-2D or H-2K specificities with the tumor. It has been impossible to perform similar studies with chemically induced tumors because each chemically induced tumor expresses a unique tumor antigen that cannot be studied in association with other H-2 types. This study provies evidence that H-2 recognition is also necessary for recognition of chemically induced tumors. We have found that F 1 → parent chimeras preferentially recognize chemically induced tumors of parental H-2 type. C3H/HeJ and C57BL/6 mice were lethally irradiated and restored with (C3H x C57BL/6) F 1 hybrid bone marrow. The F 1 → C3H chimera but not the F 1 → C57BL/6 chimera was able to respond to a C3H fibrosarcoma in mixed lymphocyte-tumor cell culture and also to neutralize the tumor in an in vivo tumor neutralization assay. On the other hand, the F 1 → C57BL/6 chimera but not the F 1 → C3H chimera was able to kill the C57BL/6 lymphoma EL4 in an in vitro cytotoxicity assay. Both chimeras were tolerant to C3H and C57BL/6 alloantigens but could respond normally to Con A and to BALB/c spleen cells in mixed lymphocyte cultures and cytotoxicity assay

  6. Increased glucose tolerance despite low adiponectin levels in obesity-resistent aP2-Ucp1 transgenic mice fed a high-fat diet

    Czech Academy of Sciences Publication Activity Database

    Rossmeisl, Martin; Jeleník, Tomáš; Ogston, N. C.; Slámová, Kristýna; Mohamed-Ali, V.; Kopecký, Jan

    2006-01-01

    Roč. 49, Suppl. 1 (2006), s. 755-755 ISSN 0012-186X. [Annual Meeting of the European Association for the Study of Diabetes /42./. 14.09.2006-17.09.2006, Copenhagen-Malmoe] R&D Projects: GA MŠk(CZ) 1M0520; GA ČR(CZ) GA303/05/2580 Institutional research plan: CEZ:AV0Z50110509 Keywords : adiponectin * transgenic mice * obesity * mitochondria * glucose tolerance * hyperinsulinemic-euglycemic clamp Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition

  7. Absence of Microbiota (Germ-Free Conditions) Accelerates the Atherosclerosis in ApoE-Deficient Mice Fed Standard Low Cholesterol Diet

    Czech Academy of Sciences Publication Activity Database

    Štěpánková, Renata; Tonar, Z.; Bártová, J.; Nedorost, L.; Rossmann, Pavel; Poledne, R.; Schwarzer, Martin; Tlaskalová-Hogenová, Helena

    2010-01-01

    Roč. 17, č. 8 (2010), s. 796-804 ISSN 1340-3478 R&D Projects: GA MZd NS9775; GA ČR GA303/08/0367; GA ČR GA305/08/0535; GA AV ČR 1QS500200572; GA MŠk 2B06155 Institutional research plan: CEZ:AV0Z50200510 Keywords : Germ-free mice * Commensal bacteria * Atherogenesis Subject RIV: EC - Immunology Impact factor: 2.293, year: 2010

  8. A recombinant raccoon poxvirus vaccine expressing both Yersinia pestis F1 and truncated V antigens protects animals against lethal plague.

    Science.gov (United States)

    Rocke, Tonie E.; Kingstad-Bakke, B; Berlier, W; Osorio, J.E.

    2014-01-01

    In previous studies, we demonstrated in mice and prairie dogs that simultaneous administration of two recombinant raccoon poxviruses (rRCN) expressing Yersinia pestis antigens (F1 and V307-a truncated version of the V protein) provided superior protection against plague challenge compared to individual single antigen constructs. To reduce costs of vaccine production and facilitate implementation of a sylvatic plague vaccine (SPV) control program for prairie dogs, a dual antigen construct is more desirable. Here we report the construction and characterization of a novel RCN-vectored vaccine that simultaneously expresses both F1 and V307 antigens. This dual antigen vaccine provided similar levels of protection against plague in both mice and prairie dogs as compared to simultaneous administration of the two single antigen constructs and was also shown to protect mice against an F1 negative strain of Y. pestis.. The equivalent safety, immunogenicity and efficacy profile of the dual RCN-F1/V307 construct warrants further evaluation in field efficacy studies in sylvatic plague endemic areas.

  9. Bitter melon seed oil may reduce the adiposity through the hypothalamus mTOR signaling in mice fed a high fat diet

    Directory of Open Access Journals (Sweden)

    Yi Xu

    2016-12-01

    Full Text Available Bitter melon seed oil (BMSO was found to have an advantageous effect on anti-obesity. Up to date, the mechanisms underlying this process have been extensively investigated. However, there are very few reports focusing on the roles of central nervous system (CNS involved. In this study, Golgi-Cox staining and western blotting assays were used to examine the hypothalamic spine density and the expression levels of NMDA-2B receptor and P-S6 protein, respectively. A significant reduction concerning hypothalamic spine density was observed in HFD mice, a phenomenon that could be partially rescued by the BMSO administration. Furthermore, it was found that BMSO could also reverse the changes upon the phosphorylation levels of S6, a typical protein involved in mTOR signaling pathway, indicating that mTOR signaling potentially participated in this metabolism regulation. Besides, NMDA-2B levels were up-regulated in HFD mice, which could not be considerably influenced by BMSO. In summary, this study first proposed aberrant hypothalamic plasticity as CNS's roles in BMSO's fat-reducing effects, favoring the better recognition and treatment of the intractable hypothalamic obesity.

  10. Fisetin-Rich Extracts of Rhus verniciflua Stokes Improve Blood Flow Rates in Mice Fed Both Normal and High-Fat Diets.

    Science.gov (United States)

    Im, Won Kyun; Park, Hyun Jung; Lee, Kwang Soo; Lee, Jung Hoon; Kim, Young Dong; Kim, Kyeong-Hee; Park, Sang-Jae; Hong, Seokmann; Jeon, Sung Ho

    2016-02-01

    Although it has been previously reported that Rhus verniciflua Stokes (RVS) possesses in vitro anti-inflammatory activity, the precise in vivo mechanisms of RVS extracts and a main active component called fisetin have not been well elucidated. In this study, using newly developed protocols, we prepared urushiol-free but fisetin-enriched RVS extracts and investigated their effects on the vascular immune system. We found that the water-soluble fractions of detoxified RVS with the flavonoid fisetin can inhibit lipopolysaccharide-induced production of nitric oxide (NO) and prostaglandin E2 (PGE2). Furthermore, RVS can reduce inducible nitric oxide synthase and COX2 gene expression levels, which are responsible for NO and PGE2 production, respectively, in RAW264.7 macrophage cells. Because inflammation is linked to the activation of the coagulation system, we hypothesized that RVS and its active component fisetin possess anticoagulatory activities. As expected, we found that both RVS and fisetin could inhibit the coagulation of human peripheral blood cells. Moreover, in vivo RVS treatment could return the retarded blood flow elicited by a high-fat diet (HFD) back to the normal level in mice. In addition, RVS treatment has significantly reduced body weight gained by HFD in mice. Taken together, the fisetin-rich RVS extracts have potential antiplatelet and antiobesity activities and could be used as a functional food ingredient to improve blood circulation.

  11. Antidiabetic, antioxidant and anti inflammatory properties of water and n-butanol soluble extracts from Saharian Anvillea radiata in high-fat-diet fed mice.

    Science.gov (United States)

    Kandouli, Chouaib; Cassien, Mathieu; Mercier, Anne; Delehedde, Caroline; Ricquebourg, Emilie; Stocker, Pierre; Mekaouche, Mourad; Leulmi, Zineb; Mechakra, Aicha; Thétiot-Laurent, Sophie; Culcasi, Marcel; Pietri, Sylvia

    2017-07-31

    According to Saharian traditional medicine, Anvillea radiata Coss. & Dur. (Asteraceae) has been valued for treating a variety of ailments such as gastro-intestinal, liver and pulmonary diseases, and has gained awareness for its beneficial effect on postprandial hyperglycemia. However, to best of our knowledge, no detailed study of the antidiabetic curative effects of this plant has been conducted yet. To determine the hypoglycemic and antidiabetic effect of dietary supplementation with Anvillea radiata extracts on high-fat-diet (HFD)-induced obesity and insulin resistance in C57BL/6J mice in relation with antioxidant, anti-inflammatory, pancreatic beta-cells and skeletal muscle protection, and digestive enzyme inhibiting properties. Six extracts (water soluble and organic) from aerial parts of the plant were analyzed phytochemically (total phenolic and flavonoid content) and screened for in vitro superoxide (by chemiluminescence) and hydroxyl radical (by electron paramagnetic resonance spin-trapping) scavenging, antioxidant (DPPH, TRAP and ORAC assays), xanthine oxidase, metal chelating, α-amylase and α-glucosidase inhibitory property, and protective effects on copper-induced lipoprotein oxidation. Then selected hydroalcoholic and aqueous extracts were assessed for toxicity in normal human lung fibroblasts and A549 cancer cells using FMCA and MTT assays. Two water-soluble extracts having the best overall properties were assessed for their (i) protective effect at 1-15µg/mL on metabolic activity of rat insulinoma-derived INS-1 cells exposed to hyperglycemic medium, and (ii) acute hypoglycemic effect on 16-weeks HFD-induced diabetic mice. Then diabetic mice were administered HFD supplemented by extracts (up to 150mg/kg/day) for 12 additional weeks using standard diet as control and the antidiabetic drug, metformin (150mg/kg), as positive control. Then the antidiabetic, anti-inflammatory and antioxidant activity of extracts were determined. Of the highly efficient

  12. Adenovirus E2F1 Overexpression Sensitizes LNCaP and PC3 Prostate Tumor Cells to Radiation In Vivo

    International Nuclear Information System (INIS)

    Udayakumar, Thirupandiyur S.; Stoyanova, Radka; Hachem, Paul; Ahmed, Mansoor M.; Pollack, Alan

    2011-01-01

    Purpose: We previously showed that E2F1 overexpression radiosensitizes prostate cancer cells in vitro. Here, we demonstrate the radiosensitization efficacy of adenovirus (Ad)-E2F1 infection in growing (orthotopic) LNCaP and (subcutaneous) PC3 nude mice xenograft tumors. Methods and Materials: Ad-E2F1 was injected intratumorally in LNCaP (3 x 10 8 plaque-forming units [PFU]) and PC3 (5 x 10 8 PFU) tumors treated with or without radiation. LNCaP tumor volumes (TV) were measured by magnetic resonance imaging, caliper were used to measure PC3 tumors, and serum prostate-specific antigen (PSA) levels were determined by enzyme-linked immunosorbent assay. Apoptosis was measured by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling, and key proteins involved in cell death signaling were analyzed by Western blotting. Results: Intracellular overexpression of Ad-E2F1 had a significant effect on the regression of TV and reduction of PSA levels relative to that of adenoviral luciferase (Ad-Luc)-infected control. The in vivo regressing effect of Ad-E2F1 on LNCaP tumor growth was significant (PSA, 34 ng/ml; TV, 142 mm 3 ) compared to that of Ad-Luc control (PSA, 59 ng/ml; TV, 218 mm 3 ; p 3 to Ad-Luc+RT/PSA, 42 ng/ml, and TV, 174 mm 3 , respectively; p <0.05). For PC3 tumors, the greatest effect was observed with Ad-E2F1 infection alone; there was little or no effect when radiotherapy (RT) was combined. However, addition of RT enhanced the level of in situ apoptosis in PC3 tumors. Molecularly, addition of Ad-E2F1 in a combination treatment abrogated radiation-induced BCL-2 protein expression and was associated with an increase in activated BAX, and together they caused a potent radiosensitizing effect, irrespective of p53 and androgen receptor functional status. Conclusions: We show here for the first time that ectopic overexpression of E2F1 in vivo, using an adenoviral vector, significantly inhibits orthotopic p53 wild-type LNCaP tumors and subcutaneous

  13. Mutated and Bacteriophage T4 Nanoparticle Arrayed F1-V Immunogens from Yersinia pestis as Next Generation Plague Vaccines

    Science.gov (United States)

    Tao, Pan; Mahalingam, Marthandan; Kirtley, Michelle L.; van Lier, Christina J.; Sha, Jian; Yeager, Linsey A.; Chopra, Ashok K.; Rao, Venigalla B.

    2013-01-01

    Pneumonic plague is a highly virulent infectious disease with 100% mortality rate, and its causative organism Yersinia pestis poses a serious threat for deliberate use as a bioterror agent. Currently, there is no FDA approved vaccine against plague. The polymeric bacterial capsular protein F1, a key component of the currently tested bivalent subunit vaccine consisting, in addition, of low calcium response V antigen, has high propensity to aggregate, thus affecting its purification and vaccine efficacy. We used two basic approaches, structure-based immunogen design and phage T4 nanoparticle delivery, to construct new plague vaccines that provided complete protection against pneumonic plague. The NH2-terminal β-strand of F1 was transplanted to the COOH-terminus and the sequence flanking the β-strand was duplicated to eliminate polymerization but to retain the T cell epitopes. The mutated F1 was fused to the V antigen, a key virulence factor that forms the tip of the type three secretion system (T3SS). The F1mut-V protein showed a dramatic switch in solubility, producing a completely soluble monomer. The F1mut-V was then arrayed on phage T4 nanoparticle via the small outer capsid protein, Soc. The F1mut-V monomer was robustly immunogenic and the T4-decorated F1mut-V without any adjuvant induced balanced TH1 and TH2 responses in mice. Inclusion of an oligomerization-deficient YscF, another component of the T3SS, showed a slight enhancement in the potency of F1-V vaccine, while deletion of the putative immunomodulatory sequence of the V antigen did not improve the vaccine efficacy. Both the soluble (purified F1mut-V mixed with alhydrogel) and T4 decorated F1mut-V (no adjuvant) provided 100% protection to mice and rats against pneumonic plague evoked by high doses of Y. pestis CO92. These novel platforms might lead to efficacious and easily manufacturable next generation plague vaccines. PMID:23853602

  14. Mutated and bacteriophage T4 nanoparticle arrayed F1-V immunogens from Yersinia pestis as next generation plague vaccines.

    Directory of Open Access Journals (Sweden)

    Pan Tao

    Full Text Available Pneumonic plague is a highly virulent infectious disease with 100% mortality rate, and its causative organism Yersinia pestis poses a serious threat for deliberate use as a bioterror agent. Currently, there is no FDA approved vaccine against plague. The polymeric bacterial capsular protein F1, a key component of the currently tested bivalent subunit vaccine consisting, in addition, of low calcium response V antigen, has high propensity to aggregate, thus affecting its purification and vaccine efficacy. We used two basic approaches, structure-based immunogen design and phage T4 nanoparticle delivery, to construct new plague vaccines that provided complete protection against pneumonic plague. The NH₂-terminal β-strand of F1 was transplanted to the COOH-terminus and the sequence flanking the β-strand was duplicated to eliminate polymerization but to retain the T cell epitopes. The mutated F1 was fused to the V antigen, a key virulence factor that forms the tip of the type three secretion system (T3SS. The F1mut-V protein showed a dramatic switch in solubility, producing a completely soluble monomer. The F1mut-V was then arrayed on phage T4 nanoparticle via the small outer capsid protein, Soc. The F1mut-V monomer was robustly immunogenic and the T4-decorated F1mut-V without any adjuvant induced balanced TH1 and TH2 responses in mice. Inclusion of an oligomerization-deficient YscF, another component of the T3SS, showed a slight enhancement in the potency of F1-V vaccine, while deletion of the putative immunomodulatory sequence of the V antigen did not improve the vaccine efficacy. Both the soluble (purified F1mut-V mixed with alhydrogel and T4 decorated F1mut-V (no adjuvant provided 100% protection to mice and rats against pneumonic plague evoked by high doses of Y. pestis CO92. These novel platforms might lead to efficacious and easily manufacturable next generation plague vaccines.

  15. Production of TNF-α, nitric oxide and hydrogen peroxide by macrophages from mice with paracoccidioidomycosis that were fed a linseed oil-enriched diet

    Directory of Open Access Journals (Sweden)

    Sheisa Cyléia Sargi

    2012-05-01

    Full Text Available Omega-3 polyunsaturated fatty acids (n-3 PUFA can modulate the immune system and their primary effect is on macrophage function. Paracoccidioidomycosis (PCM is an endemic systemic mycosis in Latin America that is caused by the dimorphic fungus Paracoccidioides brasiliensis (Pb. Macrophages are the main defence against this pathogen and have microbicidal activity that is dependent on interferon-Γ and tumour necrosis factor (TNF-α. These cytokines stimulate the synthesis of nitric oxide (NO and hydrogen peroxide (H2O2, leading to the death of the fungus. To study the effect of n-3 PUFA on the host immune response during experimental PCM, macrophages that were obtained from animals infected with Pb18 and fed a diet enriched by linseed (LIN oil were cultured and challenged with the fungus in vitro. The macrophage function was analysed based on the concentrations of TNF-α, NO and H2O2. LIN oil seems to influence the production of TNF-α during the development of disease. A diet enriched with LIN oil influences the microbicidal activity of the macrophages by inducing the production of cytokines and metabolites such as NO and H2O2, predominantly in the chronic phase of infection.

  16. Production of TNF-α, nitric oxide and hydrogen peroxide by macrophages from mice with paracoccidioidomycosis that were fed a linseed oil-enriched diet.

    Science.gov (United States)

    Sargi, Sheisa Cyléia; Dalalio, Márcia Machado de Oliveira; Visentainer, Jesuí Vergílio; Bezerra, Rafael Campos; Perini, João Ângelo de Lima; Stevanato, Flávia Braidotti; Visentainer, Jeane Eliete Laguila

    2012-05-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFA) can modulate the immune system and their primary effect is on macrophage function. Paracoccidioidomycosis (PCM) is an endemic systemic mycosis in Latin America that is caused by the dimorphic fungus Paracoccidioides brasiliensis (Pb). Macrophages are the main defence against this pathogen and have microbicidal activity that is dependent on interferon-Γ and tumour necrosis factor (TNF)-α. These cytokines stimulate the synthesis of nitric oxide (NO) and hydrogen peroxide (H₂O₂), leading to the death of the fungus. To study the effect of n-3 PUFA on the host immune response during experimental PCM, macrophages that were obtained from animals infected with Pb18 and fed a diet enriched by linseed (LIN) oil were cultured and challenged with the fungus in vitro. The macrophage function was analysed based on the concentrations of TNF-α, NO and H₂O₂. LIN oil seems to influence the production of TNF-α during the development of disease. A diet enriched with LIN oil influences the microbicidal activity of the macrophages by inducing the production of cytokines and metabolites such as NO and H₂O₂, predominantly in the chronic phase of infection.

  17. Effect of supplementation diets of slipery fish level fat on performance, milk yield and milk composition of F1 (Landrace X Yorkshire) sows

    NARCIS (Netherlands)

    Pham, K.T.; Nghia, D.H.; Duc, N.L.; Huynh Thi Thanh Thuy,; Verstegen, M.W.A.

    2014-01-01

    Twenty five F1 (Landrace x Yorkshire) sows parity of 2- 4 were used to determine the effect of catfish fat to late-pregnant and lactating sows on sow and their piglets’ performance. Sows were fed trial diets from 107 d of gestation until 21 d of lactation. Diets were: control without fish fat; 2%

  18. Congenital Hypopituitarism due to POU1F1 Gene Mutation

    Directory of Open Access Journals (Sweden)

    Ni-Chung Lee

    2011-01-01

    Full Text Available POU1F1 (Pit-1; Gene ID 5449 is an anterior pituitary transcriptional factor, and POU1F1 mutation is known to cause anterior pituitary hypoplasia, growth hormone and prolactin deficiency and various degree of hypothyroidism. We report here a patient who presented with growth failure and central hypothyroidism since early infancy. However, treatment with thyroxine gave no effect and he subsequently developed calf muscle pseudohypertrophy (Kocher-Debre-Semelaigne syndrome, elevation of creatinine kinase, dilated cardiomyopathy and pericardial effusion. Final diagnosis was made by combined pituitary function test and sequencing analysis that revealed POU1F1 gene C.698T > C (p.F233S mutation. The rarity of the disease can result in delayed diagnosis and treatment.

  19. Congenital hypopituitarism due to POU1F1 gene mutation.

    Science.gov (United States)

    Lee, Ni-Chung; Tsai, Wen-Yu; Peng, Shinn-Forng; Tung, Yi-Ching; Chien, Yin-Hsiu; Hwu, Wuh-Liang

    2011-01-01

    POU1F1 (Pit-1; Gene ID 5449) is an anterior pituitary transcriptional factor, and POU1F1 mutation is known to cause anterior pituitary hypoplasia, growth hormone and prolactin deficiency and various degree of hypothyroidism. We report here a patient who presented with growth failure and central hypothyroidism since early infancy. However, treatment with thyroxine gave no effect and he subsequently developed calf muscle pseudohypertrophy (Kocher-Debre-Semelaigne syndrome), elevation of creatinine kinase, dilated cardiomyopathy and pericardial effusion. Final diagnosis was made by combined pituitary function test and sequencing analysis that revealed POU1F1 gene C.698T > C (p.F233S) mutation. The rarity of the disease can result in delayed diagnosis and treatment. Copyright © 2011 Formosan Medical Association & Elsevier. Published by Elsevier B.V. All rights reserved.

  20. F F1-ATPase as biosensor to detect single virus

    International Nuclear Information System (INIS)

    Liu, XiaoLong; Zhang, Yun; Yue, JiaChang; Jiang, PeiDong; Zhang, ZhenXi

    2006-01-01

    F F 1 -ATPase within chromatophore was constructed as a biosensor (immuno-rotary biosensor) for the purpose of capturing single virus. Capture of virus was based on antibody-antigen reaction. The detection of virus based on proton flux change driven by ATP-synthesis of F F 1 -ATPase, which was indicated by F1300, was directly observed by a fluorescence microscope. The results demonstrate that the biosensor loading of virus particles has remarkable signal-to-noise ratio (3.8:1) compared to its control at single molecular level, and will be convenient, quick, and even super-sensitive for detecting virus particles

  1. F-1 Engine for Saturn V Undergoing a Static Test

    Science.gov (United States)

    1964-01-01

    The flame and exhaust from the test firing of an F-1 engine blast out from the Saturn S-IB Static Test Stand in the east test area of the Marshall Space Flight Center. A Cluster of five F-1 engines, located in the S-IC (first) stage of the Saturn V vehicle, provided over 7,500,000 pounds of thrust to launch the giant rocket. The towering 363-foot Saturn V was a multistage, multiengine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  2. S-phase checkpoint elements of the E2F-1 family increase radiosensitivity in fibrosarcoma cells lacking p53

    International Nuclear Information System (INIS)

    Bodis, Stephan; Pruschy, Martin; Wirbelauer, Christiane; Glanzmann, Christoph; Krek, Wilhelm

    1997-01-01

    Purpose: Correct advance of cells through the S-phase of the mammalian cell cycle depends on the timely controlled activity of the E2F-1 transcription factor by cyclin A-cdk2. We are studying the reproductive integrity and radiosensitation of isogenic mouse fibrosarcoma cells, differing only in their p53 status, after expression of E2F-1 wildtype (wt) and specific E2F-1 mutants (mt) lacking the cyclin-A-binding domain. In this tumor model system only p53 wild-type expressing tumor cells are sensitive to ionizing radiation in vitro and in vivo. Material and Methods: Either wild-type p53 or genetically engineered p53 'null' mouse embryo fibroblasts were transfected with the oncogenes E1A and ras. These otherwise isogenic fibrosarcoma cells, with a malignant phenotype and tumorigenic in nude mice, were transfected with retroviruses containing either E2F-1 wild-type or specific E2F-1 mutants lacking the cyclin-A binding domain. Reproductive integrity after E2F-1 transfection with or without ionizing radiation (RT) was tested using the clonogenic assay. Tumor cell morphology of treated cells is analyzed for cell death mechanism. Results: E2F-1 wild-type expression in fibrosarcoma cells induced a clear p53 dependent cell death. While clonogenic survival of p53 'null' tumor cells was only slightly reduced with the expression of E2F-1 wild type (survival fraction of 0.5), the clonogenic survival of p53 wild-type fibrosarcoma tumor cells was reduced by at least one logarithm (survival fraction of 0.05). However, expression of the specific E2F-1 mutant lacking the cyclin-A binding domain reduced clonogenic survival in both the p53 'null' and the p53 wild-type fibrosarcoma cells by at least 2 logarithms (survival fraction 0.01 for p53 'null' and 0.002 for p53 wild-type). The mean values of the survival fractions after 2 and 5 Gy radiation alone in p53 'null' fibrosarcoma cells (SF 2 and SF 5) were SF 2 0.7, SF 5 = 0.15, respectively. The combination of ionizing RT in the p53

  3. High-intensity interval training has beneficial effects on cardiac remodeling through local renin-angiotensin system modulation in mice fed high-fat or high-fructose diets.

    Science.gov (United States)

    de Oliveira Sá, Guilherme; Dos Santos Neves, Vívian; de Oliveira Fraga, Shyrlei R; Souza-Mello, Vanessa; Barbosa-da-Silva, Sandra

    2017-11-15

    HIIT (high-intensity interval training) has the potential to reduce cardiometabolic risk factors, but the effects on cardiac remodeling and local RAS (renin-angiotensin system) in mice fed high-fat or high-fructose diets still need to be fully addressed. Sixty male C57BL/6 mice (12weeks old) were randomly divided into three groups, control (C), High-fat (HF), or High-fructose diet (HRU) and were monitored for eight weeks before being submitted to the HIIT. Each group was randomly assigned to 2 subgroups, one subgroup was started on a 12-week HIIT protocol (T=trained group), while the other subgroup remained non-exercised (NT=not-trained group). HIIT reduced BM and systolic blood pressure in high-fat groups, while enhanced insulin sensitivity after high-fat or high-fructose intake. Moreover, HIIT reduced left ventricular hypertrophy in HF-T and HFRU-T. Notably, HIIT modulated key factors in the local left ventricular renin-angiotensin-system (RAS): reduced protein expression of renin, ACE (Angiotensin-converting enzyme), and (Angiotensin type 2 receptor) AT2R in HF-T and HFRU-T groups but reduced (Angiotensin type 1 receptor) AT1R protein expression only in the high-fat trained group. HIIT modulated ACE2/Ang (1-7)/Mas receptor axis. ACE2 mRNA gene expression was enhanced in HF-T and HFRU-T groups, complying with elevated Mas (Mas proto-oncogene, G protein-coupled receptor) receptor mRNA gene expression after HIIT. This study shows the effectiveness of HIIT sessions in producing improvements in insulin sensitivity and mitigating LV hypertrophy, though hypertension was controlled only in the high-fat-fed submitted to HIIT protocol. Local RAS system in the heart mediates these findings and receptor MAS seems to play a pivotal role when it comes to the amelioration of cardiac structural and functional remodeling due to HIIT. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Hydroxytyrosol prevents reduction in liver activity of Δ-5 and Δ-6 desaturases, oxidative stress, and depletion in long chain polyunsaturated fatty acid content in different tissues of high-fat diet fed mice.

    Science.gov (United States)

    Valenzuela, Rodrigo; Echeverria, Francisca; Ortiz, Macarena; Rincón-Cervera, Miguel Ángel; Espinosa, Alejandra; Hernandez-Rodas, María Catalina; Illesca, Paola; Valenzuela, Alfonso; Videla, Luis A

    2017-04-11

    Eicosapentaenoic acid (EPA, C20:5n-3), docosahexaenoic acid (DHA, C22:6n-3) and arachidonic acid (AA, C20:4n-6) are long-chain polyunsaturated fatty acids (LCPUFAs) with relevant roles in the organism. EPA and DHA are synthesized from the precursor alpha-linolenic acid (ALA, C18:3n-3), whereas AA is produced from linoleic acid (LA, C18:2n-6) through the action of Δ5 and Δ6-desaturases. High-fat diet (HFD) decreases the activity of both desaturases and LCPUFA accretion in liver and other tissues. Hydroxytyrosol (HT), a natural antioxidant, has an important cytoprotective effects in different cells and tissues. Male mice C57BL/6 J were fed a control diet (CD) (10% fat, 20% protein, 70% carbohydrates) or a HFD (60% fat, 20% protein, 20% carbohydrates) for 12 weeks. Animals were daily supplemented with saline (CD) or 5 mg HT (HFD), and blood and the studied tissues were analyzed after the HT intervention. Parameters studied included liver histology (optical microscopy), activity of hepatic desaturases 5 and 6 (gas-liquid chromatography of methyl esters derivatives) and antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase by spectrophotometry), oxidative stress indicators (glutathione, thiobarbituric acid reactants, and the antioxidant capacity of plasma), gene expression assays for sterol regulatory element-binding protein 1c (SREBP-1c) (qPCR and ELISA), and LCPUFA profiles in liver, erythrocyte, brain, heart, and testicle (gas-liquid chromatography). HFD led to insulin resistance and liver steatosis associated with SREBP-1c upregulation, with enhancement in plasma and liver oxidative stress status and diminution in the synthesis and storage of n-6 and n-3 LCPUFAs in the studied tissues, compared to animals given control diet. HT supplementation significantly reduced fat accumulation in liver and plasma as well as tissue metabolic alterations induced by HFD. Furthermore, a normalization of desaturase activities

  5. High maysin corn silk extract reduces body weight and fat deposition in C57BL/6J mice fed high-fat diets.

    Science.gov (United States)

    Lee, Eun Young; Kim, Sun Lim; Kang, Hyeon Jung; Kim, Myung Hwan; Ha, Ae Wha; Kim, Woo Kyoung

    2016-12-01

    The study was performed to investigate the effects and mechanisms of action of high maysin corn silk extract on body weight and fat deposition in experimental animals. A total of 30 male C57BL/6J mice, 4-weeks-old, were purchased and divided into three groups by weight using a randomized block design. The normal-fat (NF) group received 7% fat (diet weight basis), the high-fat (HF) group received 25% fat and 0.5% cholesterol, and the high-fat corn silk (HFCS) group received high-fat diet and high maysin corn silk extract at 100 mg/kg body weight through daily oral administration. Body weight and body fat were measured, and mRNA expression levels of proteins involved in adipocyte differentiation, fat accumulation, fat synthesis, lipolysis, and fat oxidation in adipose tissue and the liver were measured. After experimental diet intake for 8 weeks, body weight was significantly lower in the HFCS group compared to the HF group ( P corn silk extract inhibits expression of genes involved in adipocyte differentiation, fat accumulation, and fat synthesis as well as promotes expression of genes involved in lipolysis and fat oxidation, further inhibiting body fat accumulation and body weight elevation in experimental animals.

  6. 26 CFR 1.415(f)-1 - Aggregating plans.

    Science.gov (United States)

    2010-04-01

    ...). After the 2010 stock sale, XYZ Corporation continues to maintain Plan XYZ. LMN Corporation maintains a qualified defined benefit plan (Plan LMN). After the 2010 stock sale, M begins to accrue benefits under Plan... maintained by ABC Corporation after the 2010 stock sale. Under § 1.415(a)-1(f)(1), any plan maintained by any...

  7. The growth performance of F1 transgenic mutiara catfish

    Science.gov (United States)

    Iskandar; Buwono, I. D.; Agung, M. U. K.

    2018-04-01

    The growth of catfish (African or Sangkuriang strain) these days is tend to decreased. One of the solutions due to this problem is to improve the genetics of growth using transgenesis technology, toward more profitable. The specific objective of the research is to detect the transmission of exogenous GH (African catfish GH inserts) inside the F1 transgenic Mutiara catfish using PCR (Polymerase Chain Reaction) method and to evaluate the growth performance of transgenic Mutiara catfish made using the parameters of feed conversion (FCR = Feed Conversion Ratio). Transgenic catfish (strain mutiara) F0 and F1 carried African catfish GH (600 bp) can be produced. Superiority characters of transgenic catfish represented heritability (h2 ) and heterosis (H), indicating that the offspring of hybrid F1 transgenic mutiara catfish had phenotypes rapid growth (h2 = 17.55 % and H = 42.83 %) compared to non-transgenic catfish (h 2 = 10.07 % and H = 18.56 %). Evaluation of the efficiency of feed use parameters feed conversion ratio, shows that F1 transgenic mutiara catfish (FCR = 0.85) more efficient in converting feed into meat.

  8. A Recombinant Trivalent Fusion Protein F1-LcrV-HSP70(II) Augments Humoral and Cellular Immune Responses and Imparts Full Protection against Yersinia pestis.

    Science.gov (United States)

    Verma, Shailendra K; Batra, Lalit; Tuteja, Urmil

    2016-01-01

    Plague is one of the most dangerous infections in humans caused by Yersinia pestis, a Gram-negative bacterium. Despite of an overwhelming research success, no ideal vaccine against plague is available yet. It is well established that F1/LcrV based vaccine requires a strong cellular immune response for complete protection against plague. In our earlier study, we demonstrated that HSP70(II) of Mycobacterium tuberculosis modulates the humoral and cellular immunity of F1/LcrV vaccine candidates individually as well as in combinations in a mouse model. Here, we made two recombinant constructs caf1-lcrV and caf1-lcrV-hsp70(II). The caf1 and lcrV genes of Y. pestis and hsp70 domain II of M. tuberculosis were amplified by polymerase chain reaction. Both the recombinant constructs caf1-lcrV and caf1-lcrV-hsp70(II) were cloned in pET28a vector and expressed in Escherichia coli. The recombinant fusion proteins F1-LcrV and F1-LcrV-HSP70(II) were purified using Ni-NTA columns and formulated with alum to evaluate the humoral and cell mediated immune responses in mice. The protective efficacies of F1-LcrV and F1-LcrV-HSP70(II) were determined following challenge of immunized mice with 100 LD50 of Y. pestis through intraperitoneal route. Significant differences were noticed in the titers of IgG and it's isotypes, i.e., IgG1, IgG2b, and IgG3 in anti- F1-LcrV-HSP70(II) sera in comparison to anti-F1-LcrV sera. Similarly, significant differences were also noticed in the expression levels of IL-2, IFN-γ and TNF-α in splenocytes of F1-LcrV-HSP(II) immunized mice in comparison to F1-LcrV. Both F1-LcrV and F1-LcrV-HSP70(II) provided 100% protection. Our research findings suggest that F1-LcrV fused with HSP70 domain II of M. tuberculosis significantly enhanced the humoral and cellular immune responses in mouse model.

  9. Dosage-dependent copy number gains in E2f1 and E2f3 drive hepatocellular carcinoma.

    Science.gov (United States)

    Kent, Lindsey N; Bae, Sooin; Tsai, Shih-Yin; Tang, Xing; Srivastava, Arunima; Koivisto, Christopher; Martin, Chelsea K; Ridolfi, Elisa; Miller, Grace C; Zorko, Sarah M; Plevris, Emilia; Hadjiyannis, Yannis; Perez, Miguel; Nolan, Eric; Kladney, Raleigh; Westendorp, Bart; de Bruin, Alain; Fernandez, Soledad; Rosol, Thomas J; Pohar, Kamal S; Pipas, James M; Leone, Gustavo

    2017-03-01

    Disruption of the retinoblastoma (RB) tumor suppressor pathway, either through genetic mutation of upstream regulatory components or mutation of RB1 itself, is believed to be a required event in cancer. However, genetic alterations in the RB-regulated E2F family of transcription factors are infrequent, casting doubt on a direct role for E2Fs in driving cancer. In this work, a mutation analysis of human cancer revealed subtle but impactful copy number gains in E2F1 and E2F3 in hepatocellular carcinoma (HCC). Using a series of loss- and gain-of-function alleles to dial E2F transcriptional output, we have shown that copy number gains in E2f1 or E2f3b resulted in dosage-dependent spontaneous HCC in mice without the involvement of additional organs. Conversely, germ-line loss of E2f1 or E2f3b, but not E2f3a, protected mice against HCC. Combinatorial mapping of chromatin occupancy and transcriptome profiling identified an E2F1- and E2F3B-driven transcriptional program that was associated with development and progression of HCC. These findings demonstrate a direct and cell-autonomous role for E2F activators in human cancer.

  10. Telomerase Reverse Transcriptase Deficiency Prevents Neointima Formation Through Chromatin Silencing of E2F1 Target Genes.

    Science.gov (United States)

    Endorf, Elizabeth B; Qing, Hua; Aono, Jun; Terami, Naoto; Doyon, Geneviève; Hyzny, Eric; Jones, Karrie L; Findeisen, Hannes M; Bruemmer, Dennis

    2017-02-01

    Aberrant proliferation of smooth muscle cells (SMC) in response to injury induces pathological vascular remodeling during atherosclerosis and neointima formation. Telomerase is rate limiting for tissue renewal and cell replication; however, the physiological role of telomerase in vascular diseases remains to be determined. The goal of the present study was to determine whether telomerase reverse transcriptase (TERT) affects proliferative vascular remodeling and to define the molecular mechanism by which TERT supports SMC proliferation. We first demonstrate high levels of TERT expression in replicating SMC of atherosclerotic and neointimal lesions. Using a model of guidewire-induced arterial injury, we demonstrate decreased neointima formation in TERT-deficient mice. Studies in SMC isolated from TERT-deficient and TERT overexpressing mice with normal telomere length established that TERT is necessary and sufficient for cell proliferation. TERT deficiency did not induce a senescent phenotype but resulted in G1 arrest albeit hyperphosphorylation of the retinoblastoma protein. This proliferative arrest was associated with stable silencing of the E2F1-dependent S-phase gene expression program and not reversed by ectopic overexpression of E2F1. Finally, chromatin immunoprecipitation and accessibility assays revealed that TERT is recruited to E2F1 target sites and promotes chromatin accessibility for E2F1 by facilitating the acquisition of permissive histone modifications. These data indicate a previously unrecognized role for TERT in neointima formation through epigenetic regulation of proliferative gene expression in SMC. © 2016 American Heart Association, Inc.

  11. 6-Paradol and 6-Shogaol, the Pungent Compounds of Ginger, Promote Glucose Utilization in Adipocytes and Myotubes, and 6-Paradol Reduces Blood Glucose in High-Fat Diet-Fed Mice

    Directory of Open Access Journals (Sweden)

    Chien-Kei Wei

    2017-01-01

    Full Text Available The anti-diabetic activity of ginger powder (Zingiber officinale has been recently promoted, with the recommendation to be included as one of the dietary supplements for diabetic patients. However, previous studies presented different results, which may be caused by degradation and metabolic changes of ginger components, gingerols, shogaols and paradols. Therefore, we prepared 10 ginger active components, namely 6-, 8-, 10-paradols, 6-, 8-, 10-shogaols, 6-, 8-, 10-gingerols and zingerone, and evaluated their anti-hyperglycemic activity. Among the tested compounds, 6-paradol and 6-shogaol showed potent activity in stimulating glucose utilization by 3T3-L1 adipocytes and C2C12 myotubes. The effects were attributed to the increase in 5′ adenosine monophosphate-activated protein kinase (AMPK phosphorylation in 3T3-L1 adipocytes. 6-Paradol, the major metabolite of 6-shogaol, was utilized in an in vivo assay and significantly reduced blood glucose, cholesterol and body weight in high-fat diet-fed mice.

  12. The stochastic chemomechanics of the F(1)-ATPase molecular motor.

    Science.gov (United States)

    Gaspard, P; Gerritsma, E

    2007-08-21

    We report a theoretical study of the F(1)-ATPase molecular rotary motor experimentally studied by R. Yasuda, H. Noji, M. Yoshida, K. Kinosita Jr., H. Itoh [Nature 410 (2001) 898]. The motor is modeled as a stochastic process for the angle of its shaft and the chemical state of its catalytic sites. The stochastic process is ruled by six coupled Fokker-Planck equations for the biased diffusion of the angle and the random jumps between the chemical states. The model reproduces the experimental observations that the motor proceeds by substeps and the rotation rate saturates at high concentrations of adenosine triphosphate or at low values of the friction coefficient. Moreover, predictions are made about the dependence of the rotation rate on temperature, and about the behavior of the F(1) motor under the effect of an external torque, especially, in the regime of synthesis of adenosine triphosphate.

  13. BREEDING OF F1 HYBRIDS OF PUMPKIN FOR CANNING INDUSTRY

    Directory of Open Access Journals (Sweden)

    A. M. Shantasov

    2016-01-01

    Full Text Available As a result of crossing with patty pan squash with male sterility, the new parent lines of Cucurbita реро L., «ANZH» and «ANZ», with the original set of morphological traits («kabakson» based on the gene of male sterility of functional type were developed. The F1 hybrids with economically valuable features were obtained. These hybrids are characterized by small fruits of pickling types, high yield and biochemical content.

  14. Gold-quercetin nanoparticles prevent metabolic endotoxemia-induced kidney injury by regulating TLR4/NF-κB signaling and Nrf2 pathway in high fat diet fed mice.

    Science.gov (United States)

    Xu, Min-Xuan; Wang, Ming; Yang, Wei-Wei

    2017-01-01

    High-fat diet-induced metabolic syndrome followed by chronic kidney disease caused by intestinal endotoxemia have received extensive attention. Toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) and oxidative stress-related Nrf2/Keap1 were regarded as the key target points involved in metabolic inflammation and kidney injury. However, the molecular mechanism of interaction between TLR4/NF-κB and Nrf2 activation in high-fat diet-induced renal injury is not absolutely understood. Quercetin, a natural product, has been reported to possess antitumor and anti-inflammatory effects. In this regard, this study attempted to prepare poly(d,l-lactide- co -glycolide)-loaded gold nanoparticles precipitated with quercetin (GQ) to investigate the anti-inflammatory and anti-oxidative stress effects in high-fat diet-induced kidney failure. For this study, C57BL/6 mice fed fat-rich fodder were used as the metabolic syndrome model to evaluate the protective effects of GQ on kidney injury and to determine whether TLR4/NF-κB and Nrf2 pathways were associated with the process. Moreover, histological examinations, enzyme-linked immunosorbent assay, Western blot, and basic blood tests and systemic inflammation-related indicators were used to investigate the inhibitory effects of GQ and underlying molecular mechanism by which it may reduce renal injury. Of note, podocyte injury was found to participate in endotoxin-stimulated inflammatory response. TLR4/NF-κB and Nrf2 pathways were upregulated with high-fat diet intake in mice, resulting in reduction of superoxide dismutase activity and increase in superoxide radical, H 2 O 2 , malondialdehyde, XO, XDH, and XO/XDH ratio. In addition, upregulation of TLR4/NF-κB and oxidative stress by endotoxin were observed in vitro, which were suppressed by GQ administration, ultimately alleviating podocyte injury. These findings indicated that GQ could restore the metabolic disorders caused by high-fat diet, which suppresses insulin

  15. E2F1 activation is responsible for pituitary adenomas induced by HMGA2 gene overexpression

    Directory of Open Access Journals (Sweden)

    Fusco Alfredo

    2006-08-01

    Full Text Available Abstract The High Mobility Group protein HMGA2 is a nuclear architectural factor that plays a critical role in a wide range of biological processes including regulation of gene expression, embryogenesis and neoplastic transformation. Several studies are trying to identify the mechanisms by which HMGA2 protein is involved in each of these activities, and only recently some new significant insights are emerging from the study of transgenic and knock-out mice. Overexpression of HMGA2 gene leads to the onset of prolactin and GH-hormone induced pituitary adenomas in mice, suggesting a critical role of this protein in pituitary tumorigenesis. This was also confirmed in the human pathology by the finding that HMGA2 amplification and/or overexpression is present in human prolactinomas. This review focuses on recent data that explain the mechanism by which HMGA2 induces the development of pituitary adenomas in mice. This mechanism entails the activation of the E2F1 protein by the HMGA2-mediated displacement of HDAC1 from pRB protein.

  16. Red nucleus and rubrospinal tract disorganization in the absence of Pou4f1

    Science.gov (United States)

    Martinez-Lopez, Jesus E.; Moreno-Bravo, Juan A.; Madrigal, M. Pilar; Martinez, Salvador; Puelles, Eduardo

    2015-01-01

    The red nucleus (RN) is a neuronal population that plays an important role in forelimb motor control and locomotion. Histologically it is subdivided into two subpopulations, the parvocellular RN (pRN) located in the diencephalon and the magnocellular RN (mRN) in the mesencephalon. The RN integrates signals from motor cortex and cerebellum and projects to spinal cord interneurons and motor neurons through the rubrospinal tract (RST). Pou4f1 is a transcription factor highly expressed in this nucleus that has been related to its specification. Here we profoundly analyzed consequences of Pou4f1 loss-of-function in development, maturation and axonal projection of the RN. Surprisingly, RN neurons are specified and maintained in the mutant, no cell death was detected. Nevertheless, the nucleus appeared disorganized with a strong delay in radial migration and with a wider neuronal distribution; the neurons did not form a compacted population as they do in controls, Robo1 and Slit2 were miss-expressed. Cplx1 and Npas1, expressed in the RN, are transcription factors involved in neurotransmitter release, neuronal maturation and motor function processes among others. In our mutant mice, both transcription factors are lost, suggesting an abnormal maturation of the RN. The resulting altered nucleus occupied a wider territory. Finally, we examined RST development and found that the RN neurons were able to project to the spinal cord but their axons appeared defasciculated. These data suggest that Pou4f1 is necessary for the maturation of RN neurons but not for their specification and maintenance. PMID:25698939

  17. Comparison of mouse, guinea pig and rabbit models for evaluation of plague subunit vaccine F1+rV270.

    Science.gov (United States)

    Qi, Zhizhen; Zhou, Lei; Zhang, Qingwen; Ren, Lingling; Dai, Ruixia; Wu, Benchuan; Wang, Tang; Zhu, Ziwen; Yang, Yonghai; Cui, Baizhong; Wang, Zuyun; Wang, Hu; Qiu, Yefeng; Guo, Zhaobiao; Yang, Ruifu; Wang, Xiaoyi

    2010-02-10

    In this study, a new subunit vaccine that comprised native F1 and recombinant rV270 was evaluated for protective efficacy using mouse, guinea pig and rabbit models in comparison with the live attenuated vaccine EV76. Complete protection against challenging with 10(6) colony-forming units (CFU) of virulent Yersinia pestis strain 141 was observed for mice immunized with the subunit vaccines and EV76 vaccine. In contrast, the subunit vaccine recipes VII (F1-20 microg+rV270-10 microg) and IX (F1-40 microg+rV270-20 microg) and EV76 vaccine provided 86%, 79% and 93% protection against the same level of challenge in guinea pigs and 100%, 83% and 100% protection in rabbits, respectively. The immunized mice with the vaccines had significantly higher IgG titres than the guinea pigs and rabbits, and the immunized guinea pigs developed significantly higher IgG titres than the rabbits, but the anti-F1 response in guinea pigs was more variable than in the mice and rabbits, indicating that guinea pig is not an ideal model for evaluating protective efficacy of plague subunit vaccine, instead the rabbits could be used as an alternative model. All the immunized animals with EV76 developed a negligible IgG titre to rV270 antigen. Furthermore, analysis of IgG subclasses in the immunized animals showed a strong response for IgG1, whereas those receiving EV76 immunization demonstrated predominant production of IgG1 and IgG2a isotypes. The subunit vaccine and EV76 vaccine are able to provide protection for animals against Y. pestis challenge, but the subunit vaccines have obvious advantages over EV76 in terms of safety of use. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  18. Photoproduction of the f1(1285 ) meson

    Science.gov (United States)

    Dickson, R.; Schumacher, R. A.; Adhikari, K. P.; Akbar, Z.; Amaryan, M. J.; Anefalos Pereira, S.; Badui, R. A.; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A.; Boiarinov, S.; Briscoe, W. J.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Chetry, T.; Ciullo, G.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dugger, M.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Filippi, A.; Fleming, J. A.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Holtrop, M.; Hicks, K.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joosten, S.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Kubarovsky, V.; Kuleshov, S. V.; Lanza, L.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Mattione, P.; McKinnon, B.; Meyer, C. A.; Mirazita, M.; Markov, N.; Mokeev, V.; Moriya, K.; Munevar, E.; Murdoch, G.; Nadel-Turonski, P.; Net, L. A.; Ni, A.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Prok, Y.; Puckett, A. J. R.; Raue, B. A.; Ripani, M.; Rizzo, A.; Rosner, G.; Roy, P.; Salgado, C.; Seder, E.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, E. S.; Smith, G. D.; Sober, D.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Strakovsky, I. I.; Stankovic, I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Weygand, D.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zonta, I.; CLAS Collaboration

    2016-06-01

    The f1(1285 ) meson with mass 1281.0 ±0.8 MeV/c2 and width 18.4 ±1.4 MeV (full width at half maximum) was measured for the first time in photoproduction from a proton target using CLAS at Jefferson Lab. Differential cross sections were obtained via the η π+π-,K+K¯0π- , and K-K0π+ decay channels from threshold up to a center-of-mass energy of 2.8 GeV. The mass, width, and an amplitude analysis of the η π+π- final-state Dalitz distribution are consistent with the axial-vector JP=1+ f1(1285 ) identity, rather than the pseudoscalar 0- η (1295 ) . The production mechanism is more consistent with s -channel decay of a high-mass N* state and not with t -channel meson exchange. Decays to η π π go dominantly via the intermediate a0±(980 ) π∓ states, with the branching ratio Γ [a0π (noK ¯K )] /Γ [η π π (all)] =0.74 ±0.09 . The branching ratios Γ (K K ¯π ) /Γ (η π π ) =0.216 ±0.033 and Γ (γ ρ0) /Γ (η π π ) =0.047 ±0.018 were also obtained. The first is in agreement with previous data for the f1(1285 ) , while the latter is lower than the world average.

  19. Cleanup Verification Package for the 118-F-1 Burial Ground

    Energy Technology Data Exchange (ETDEWEB)

    E. J. Farris and H. M. Sulloway

    2008-01-10

    This cleanup verification package documents completion of remedial action for the 118-F-1 Burial Ground on the Hanford Site. This burial ground is a combination of two locations formerly called Minor Construction Burial Ground No. 2 and Solid Waste Burial Ground No. 2. This waste site received radioactive equipment and other miscellaneous waste from 105-F Reactor operations, including dummy elements and irradiated process tubing; gun barrel tips, steel sleeves, and metal chips removed from the reactor; filter boxes containing reactor graphite chips; and miscellaneous construction solid waste.

  20. The tumor suppressor gene hypermethylated in cancer 1 is transcriptionally regulated by E2F1

    DEFF Research Database (Denmark)

    Jenal, Mathias; Trinh, Emmanuelle; Britschgi, Christian

    2009-01-01

    to the HIC1 promoter was shown by chromatin immunoprecipitation assays in human TIG3 fibroblasts expressing tamoxifen-activated E2F1. In agreement, activation of E2F1 in TIG3-E2F1 cells markedly increased HIC1 expression. Interestingly, expression of E2F1 in the p53(-/-) hepatocellular carcinoma cell line...

  1. Induction of a glucocorticoid-sensitive F1-anti-parental mechanism that affects engraftment during graft-versus-host disease.

    Science.gov (United States)

    You-Ten, K E; Seemayer, T A; Wisse, B; Bertley, F M; Lapp, W S

    1995-07-01

    Studies have shown that graft-vs-host disease (GVHD) in animal models induces persistent elevated levels of circulating adrenal glucocorticoids. In this report, we investigated the effects of endogenous glucocorticoids on the outcome of GVHD by adrenalectomizing (ADX) unirradiated (C57BL/6 x A)F1 (B6AF1) mice before GVHD induction. GVHD was induced by injection of 20 x 10(6) A strain parental lymphoid cells into B6AF1 mice. Our results demonstrated that non-ADX recipient mice experienced features characteristic of GVHD on day 13, which became progressively more severe by days 18 to 21. The GVHD features included severe immunosuppression, reversal in the host splenic CD4+/CD8+ ratio, histopathologic lesions in different tissues, and high parental cell chimerism in the spleens and lymph nodes. In contrast, ADX F1 recipient mice experienced GVHD features on day 13 similar to their non-ADX counterparts; however, ADX animals recovered rapidly from GVHD by days 18 to 21. Flow cytometry showed that, although a relatively high frequency of parental cells was detected in the spleens and lymph nodes of ADX mice on day 13, nearly all of the parental cells in the peripheral lymphoid organs disappeared on days 18 to 21, the time of recovery from GVHD. The marked reduction of parental cells and recovery from GVHD were prevented by treating ADX F1 mice with either exogenous glucocorticoid, anti-asialoGM1, or anti-CD8, but not anti-NK1.1 Ab. These results suggest that a dramatic recovery from GVHD was induced by a cell-mediated, steroid-sensitive F1-anti-parental mechanism. The F1-anti-parental phenomenon described herein is different from classical hybrid resistance.

  2. Uranium gastrointestinal absorption: the F1 factor in humans

    International Nuclear Information System (INIS)

    Zamora, M.L.; Zielinski, J.M.; Meyerhof, D.; Moodie, G.; Falcomer, R.; Tracy, B.

    2003-01-01

    The present investigation was undertaken by the Department of Health, Canada, to determine the most appropriate value to use for uranium gastrointestinal absorption (f 1 ) in setting the guideline for drinking water. Fifty participants, free from medical problems, were recruited from two communities: a rural area where drinking water, supplied from drilled wells, contained elevated levels of uranium and an urban area where the water supplied by the municipal water system contained -1 . Uranium intake through f