WorldWideScience

Sample records for eyeblink-like classical conditioning

  1. Classical conditioning in the treatment of psoriasis.

    Science.gov (United States)

    Ader, R

    2000-11-01

    It has been argued that the placebo effect represents a learned response. Research is suggested to address the utility of applying principles derived from classical (Pavlovian) conditioning to the design of drug treatment protocols. In the present instance, it is hypothesized that, by capitalizing on conditioned pharmacotherapeutic responses, it may be possible to reduce the cumulative amount of corticosteroid medication used in the treatment of psoriasis.

  2. Classical eyeblink conditioning in Parkinson's disease.

    Science.gov (United States)

    Daum, I; Schugens, M M; Breitenstein, C; Topka, H; Spieker, S

    1996-11-01

    Patients with Parkinson's disease (PD) show impairments of a range of motor learning tasks, including tracking or serial reaction time task learning. Our study investigated whether such deficits would also be seen on a simple type of motor learning, classic conditioning of the eyeblink response. Medicated and unmediated patients with PD showed intact unconditioned eyeblink responses and significant learning across acquisition; the learning rates did not differ from those of healthy control subjects. The overall frequency of conditioned responses was significantly higher in the medicated patients with PD relative to control subjects, and there was also some evidence of facilitation in the unmedicated patients with PD. Conditioning of electrodermal and electrocortical responses was comparable in all groups. The findings are discussed in terms of enhanced excitability of brainstem pathways in PD and of the involvement of different neuronal circuits in different types of motor learning.

  3. Imaging learning and memory: classical conditioning.

    Science.gov (United States)

    Schreurs, B G; Alkon, D L

    2001-12-15

    The search for the biological basis of learning and memory has, until recently, been constrained by the limits of technology to classic anatomic and electrophysiologic studies. With the advent of functional imaging, we have begun to delve into what, for many, was a "black box." We review several different types of imaging experiments, including steady state animal experiments that image the functional labeling of fixed tissues, and dynamic human studies based on functional imaging of the intact brain during learning. The data suggest that learning and memory involve a surprising conservation of mechanisms and the integrated networking of a number of structures and processes. Copyright 2001 Wiley-Liss, Inc.

  4. Extinction of Aversive Classically Conditioned Human Sexual Response

    NARCIS (Netherlands)

    Brom, M.; Laan, E.; Everaerd, W.; Spinhoven, P.; Both, S.

    INTRODUCTION: Research has shown that acquired subjective likes and dislikes are quite resistant to extinction. Moreover, studies on female sexual response demonstrated that diminished genital arousal and positive affect toward erotic stimuli due to aversive classical conditioning did not extinguish

  5. Role of classical conditioning in learning gastrointestinal symptoms

    OpenAIRE

    Stockhorst, Ursula; Enck, Paul; Klosterhalfen, Sibylle

    2007-01-01

    Nausea and/or vomiting are aversive gastrointestinal (GI) symptoms. Nausea and vomiting manifest unconditionally after a nauseogenic experience. However, there is correlative, quasiexperimental and experimental evidence that nausea and vomiting can also be learned via classical (Pavlovian) conditioning and might occur in anticipation of the nauseogenic event. Classical conditioning of nausea can develop with chemotherapy in cancer patients. Initially, nausea and vomiting occur during and afte...

  6. Sex differences in learning processes of classical and operant conditioning.

    Science.gov (United States)

    Dalla, Christina; Shors, Tracey J

    2009-05-25

    Males and females learn and remember differently at different times in their lives. These differences occur in most species, from invertebrates to humans. We review here sex differences as they occur in laboratory rodent species. We focus on classical and operant conditioning paradigms, including classical eyeblink conditioning, fear-conditioning, active avoidance and conditioned taste aversion. Sex differences have been reported during acquisition, retention and extinction in most of these paradigms. In general, females perform better than males in the classical eyeblink conditioning, in fear-potentiated startle and in most operant conditioning tasks, such as the active avoidance test. However, in the classical fear-conditioning paradigm, in certain lever-pressing paradigms and in the conditioned taste aversion, males outperform females or are more resistant to extinction. Most sex differences in conditioning are dependent on organizational effects of gonadal hormones during early development of the brain, in addition to modulation by activational effects during puberty and adulthood. Critically, sex differences in performance account for some of the reported effects on learning and these are discussed throughout the review. Because so many mental disorders are more prevalent in one sex than the other, it is important to consider sex differences in learning when applying animal models of learning for these disorders. Finally, we discuss how sex differences in learning continue to alter the brain throughout the lifespan. Thus, sex differences in learning are not only mediated by sex differences in the brain, but also contribute to them.

  7. Classically integrable boundary conditions for affine Toda field theories

    International Nuclear Information System (INIS)

    Bowcock, P.; Corrigan, E.; Dorey, P.E.; Rietdijk, R.H.

    1995-01-01

    Boundary conditions compatible with classical integrability are studied both directly, using an approach based on the explicit construction of conserved quantities, and indirectly by first developing a generalisation of the Lax pair idea. The latter approach is closer to the spirit of earlier work by Sklyanin and yields a complete set of conjectures for permissible boundary conditions for any affine Toda field theory. (orig.)

  8. The condition for classical slow rolling in new inflation

    International Nuclear Information System (INIS)

    Sasaki, Misao; Nambu, Yasusada; Nakao, Ken-ichi.

    1988-02-01

    By means of the stochastic description of inflation, we investigate the dynamics of a fixed comoving domain in a continuously inflating universe on the global scale, both analytically and numerically. A particular attention is paid to the condition for a domain to enter the classical slow rolling phase. New inflationary universe models with the potential form, V(φ) ∼ V 0 - cφ 2n at φ ∼ 0 are considered. The critical value of the scalar field beyond which the field slowly rolls down the potential hill is estimated. We find, for all models under consideration, the condition for classical slow rolling is a sufficient condition for the expected amplitude of density perturbations to be smaller than unity. In other words, the density perturbation amplitude at the later Friedmann stage is always smaller than unity if the universe experienced the classical slow roll-over phase. (author)

  9. The condition for classical slow rolling in new inflation

    International Nuclear Information System (INIS)

    Sasaki, Misao; Nambu, Yasusada; Nakao, Ken-ichi

    1988-01-01

    By means of the stochastic description of inflation we investigate the dynamics of a fixed comoving domain in a continuously inflating universe on a global scale, both analytically and numerically. Particular attention is paid to the condition for a domain to enter the classical slow rolling phase. New inflationary universe models with the potential form V(φ) ≅ V 0 -cφ 2n at φ ≅ 0 are considered. The critical value of the scalar field beyond which the field slowly rolls down the potential hill is estimated. We find that for all models under consideration, the condition for classical slow rolling is a sufficient condition for the expected amplitude of density perturbations to be smaller than unity. In other words, the density perturbation amplitude at the later Friedmann stage is always smaller than unity if the universe experienced the classical slow roll-over phase. (orig.)

  10. Role of classical conditioning in learning gastrointestinal symptoms.

    Science.gov (United States)

    Stockhorst, Ursula; Enck, Paul; Klosterhalfen, Sibylle

    2007-07-07

    Nausea and/or vomiting are aversive gastrointestinal (GI) symptoms. Nausea and vomiting manifest unconditionally after a nauseogenic experience. However, there is correlative, quasiexperimental and experimental evidence that nausea and vomiting can also be learned via classical (Pavlovian) conditioning and might occur in anticipation of the nauseogenic event. Classical conditioning of nausea can develop with chemotherapy in cancer patients. Initially, nausea and vomiting occur during and after the administration of cytotoxic drugs (post-treatment nausea and vomiting) as unconditioned responses (UR). In addition, 20%-30% of cancer patients receiving chemotherapy report these side effects, despite antiemetic medication, when being re-exposed to the stimuli that usually signal the chemotherapy session and its drug infusion. These symptoms are called anticipatory nausea (AN) and/or anticipatory vomiting (ANV) and are explained by classical conditioning. Moreover, there is recent evidence for the assumption that post-chemotherapy nausea is at least partly influenced by learning. After summarizing the relevant assumptions of the conditioning model, revealing that a context can become a conditioned stimulus (CS), the present paper summarizes data that nausea and/or vomiting is acquired by classical conditioning and, consequently, may be alleviated by conditioning techniques. Our own research has focussed on two aspects and is emphasized here. First, a conditioned nausea model was established in healthy humans using body rotation as the nausea-inducing treatment. The validity of this motion-sickness model to examine conditioning mechanisms in the acquisition and alleviation of conditioned nausea and associated endocrine and immunological responses is summarized. Results from the rotation-induced motion sickness model showed that gender is an important moderator variable to be considered in further studies. This paper concludes with a review of the application of the

  11. Classical Conditioning with Pulsed Integrated Neural Networks: Circuits and System

    DEFF Research Database (Denmark)

    Lehmann, Torsten

    1998-01-01

    In this paper we investigate on-chip learning for pulsed, integrated neural networks. We discuss the implementational problems the technology imposes on learning systems and we find that abiologically inspired approach using simple circuit structures is most likely to bring success. We develop a ...... chip to solve simple classical conditioning tasks, thus verifying the design methodologies put forward in the paper....

  12. Extinction of aversive classically conditioned human sexual response

    NARCIS (Netherlands)

    Brom, Mirte; Laan, Ellen; Everaerd, Walter; Spinhoven, Philip; Both, Stephanie

    2015-01-01

    Research has shown that acquired subjective likes and dislikes are quite resistant to extinction. Moreover, studies on female sexual response demonstrated that diminished genital arousal and positive affect toward erotic stimuli due to aversive classical conditioning did not extinguish during an

  13. Liouville equation with boundary conditions derived from classical strings

    International Nuclear Information System (INIS)

    Marnelius, R.

    1983-01-01

    It is shown in terms of the classical string theory that a breaking of the Weyl invariance necessarily requires the Liouville equation for the variable phi=1n rho, where rho is the variable that appears in the conformal gauge gsub(α#betta#)=rhoetasub(α#betta#). Appropriate boundary conditions on phi for open and closed strings are then derived. (orig.)

  14. On the scaling of magnetic plasma confinement under classical conditions

    International Nuclear Information System (INIS)

    Lehnert, B.

    1979-04-01

    Present magnetic confinement schemes based on tokamaks and similar devices are characterized by relatively large losses and low beta values. As a consequence, thermonuclear conditions can only be reached in such devices at large linear dimensions or by means of very strong magnetic fields, in combination with large heating powers. This does not rule out the possibility of realizing the same conditions on a smaller scale, i.e. by finding alternative schemes which provide classical and stable confinement of a pure plasma in a closed magnetic bottle. (author)

  15. Classically integrable boundary conditions for symmetric-space sigma models

    International Nuclear Information System (INIS)

    MacKay, N.J.; Young, C.A.S.

    2004-01-01

    We investigate boundary conditions for the non-linear sigma model on the compact symmetric space G/H. The Poisson brackets and the classical local conserved charges necessary for integrability are preserved by boundary conditions which correspond to involutions which commute with the involution defining H. Applied to SO(3)/SO(2), the non-linear sigma model on S 2 , these yield the great circles as boundary submanifolds. Applied to GxG/G, they reproduce known results for the principal chiral model

  16. Rapid learning dynamics in individual honeybees during classical conditioning

    Directory of Open Access Journals (Sweden)

    Evren ePamir

    2014-09-01

    Full Text Available Associative learning in insects has been studied extensively by a multitude of classical conditioning protocols. However, so far little emphasis has been put on the dynamics of learning in individuals. The honeybee is a well-established animal model for learning and memory. We here studied associative learning as expressed in individual behavior based on a large collection of data on olfactory classical conditioning (25 datasets, 3,298 animals. We show that the group-averaged learning curve and memory retention score confound three attributes of individual learning: the ability or inability to learn a given task, the generally fast acquisition of a conditioned response in learners, and the high stability of the conditioned response during consecutive training and memory retention trials. We reassessed the prevailing view that more training results in better memory performance and found that 24h memory retention can be indistinguishable after single-trial and multiple-trial conditioning in individuals. We explain how inter-individual differences in learning can be accommodated within the Rescorla-Wagner theory of associative learning. In both data-analysis and modeling we demonstrate how the conflict between population-level and single-animal perspectives on learning and memory can be disentangled.

  17. Rapid learning dynamics in individual honeybees during classical conditioning.

    Science.gov (United States)

    Pamir, Evren; Szyszka, Paul; Scheiner, Ricarda; Nawrot, Martin P

    2014-01-01

    Associative learning in insects has been studied extensively by a multitude of classical conditioning protocols. However, so far little emphasis has been put on the dynamics of learning in individuals. The honeybee is a well-established animal model for learning and memory. We here studied associative learning as expressed in individual behavior based on a large collection of data on olfactory classical conditioning (25 datasets, 3298 animals). We show that the group-averaged learning curve and memory retention score confound three attributes of individual learning: the ability or inability to learn a given task, the generally fast acquisition of a conditioned response (CR) in learners, and the high stability of the CR during consecutive training and memory retention trials. We reassessed the prevailing view that more training results in better memory performance and found that 24 h memory retention can be indistinguishable after single-trial and multiple-trial conditioning in individuals. We explain how inter-individual differences in learning can be accommodated within the Rescorla-Wagner theory of associative learning. In both data-analysis and modeling we demonstrate how the conflict between population-level and single-animal perspectives on learning and memory can be disentangled.

  18. Pure state condition for the semi-classical Wigner function

    International Nuclear Information System (INIS)

    Ozorio de Almeida, A.M.

    1982-01-01

    The Wigner function W(p,q) is a symmetrized Fourier transform of the density matrix e(q 1 ,q 2 ), representing quantum-mechanical states or their statistical mixture in phase space. Identification of these two alternatives in the case of density matrices depends on the projection identity e 2 = e; its Wigner correspondence is the pure state condition. This criterion is applied to the Wigner functions botained from standard semiclassical wave functions, determining as pure states those whose classical invariant tori satisfy the generalized Bohr-Sommerfeld conditions. Superpositions of eigenstates are then examined and it is found that the Wigner function corresponding to Gaussian random wave functions are smoothed out in the manner of mixedstate Wigner functions. Attention is also given to the pure-state condition in the case where an angular coordinate is used. (orig.)

  19. Classic conditioning of the ventilatory responses in rats.

    Science.gov (United States)

    Nsegbe, E; Vardon, G; Perruchet, P; Gallego, J

    1997-10-01

    Recent authors have stressed the role of conditioning in the control of breathing, but experimental evidence of this role is still sparse and contradictory. To establish that classic conditioning of the ventilatory responses can occur in rats, we performed a controlled experiment in which a 1-min tone [conditioned stimulus (CS)] was paired with a hypercapnic stimulus [8.5% CO2, unconditioned stimulus (US)]. The experimental group (n = 9) received five paired CS-US presentations, followed by one CS alone to test conditioning. This sequence was repeated six times. The control group (n = 7) received the same number of CS and US, but each US was delivered 3 min after the CS. We observed that after the CS alone, breath duration was significantly longer in the experimental than in the control group and mean ventilation was significantly lower, thus showing inhibitory conditioning. This conditioning may have resulted from the association between the CS and the inhibitory and aversive effects of CO2. The present results confirmed the high sensitivity of the respiratory controller to conditioning processes.

  20. Extinction of aversive classically conditioned human sexual response.

    Science.gov (United States)

    Brom, Mirte; Laan, Ellen; Everaerd, Walter; Spinhoven, Philip; Both, Stephanie

    2015-04-01

    Research has shown that acquired subjective likes and dislikes are quite resistant to extinction. Moreover, studies on female sexual response demonstrated that diminished genital arousal and positive affect toward erotic stimuli due to aversive classical conditioning did not extinguish during an extinction phase. Possible resistance to extinction of aversive conditioned sexual responses may have important clinical implications. However, resistance to extinction of aversive conditioned human sexual response has not been studied using extensive extinction trials. This article aims to study resistance to extinction of aversive conditioned sexual responses in sexually functional men and women. A differential conditioning experiment was conducted, with two erotic pictures as conditioned stimulus (CSs) and a painful stimulus as unconditioned stimuli (USs). Only one CS (the CS+) was followed by the US during the acquisition phase. Conditioned responses were assessed during the extinction phase. Penile circumference and vaginal pulse amplitude were assessed, and ratings of affective value and subjective sexual arousal were obtained. Also, a stimulus response compatibility task was included to assess automatic approach and avoidance tendencies. Men and women rated the CS+ more negative as compared with the CS-. During the first trials of the extinction phase, vaginal pulse amplitude was lower in response to the CS+ than in response to the CS-, and on the first extinction trial women rated the CS+ as less sexually arousing. Intriguingly, men did not demonstrate attenuated genital and subjective sexual response. Aversive conditioning, by means of painful stimuli, only affects sexual responses in women, whereas it does not in men. Although conditioned sexual likes and dislikes are relatively persistent, conditioned affect eventually does extinguish. © 2014 International Society for Sexual Medicine.

  1. Classical and quantum initial conditions for Higgs inflation

    Directory of Open Access Journals (Sweden)

    Alberto Salvio

    2015-11-01

    Full Text Available We investigate whether Higgs inflation can occur in the Standard Model starting from natural initial conditions or not. The Higgs has a non-minimal coupling to the Ricci scalar. We confine our attention to the regime where quantum Einstein gravity effects are small in order to have results that are independent of the ultraviolet completion of gravity. At the classical level we find no tuning is required to have successful Higgs inflation, provided the initial homogeneity condition is satisfied. On the other hand, at the quantum level we obtain that the renormalization for large non-minimal coupling requires an additional degree of freedom, unless a tuning of the initial values of the running parameters is made. In order to see that this effect may change the predictions we finally include such degree of freedom in the field content and show that Starobinsky's R2 inflation dominates over Higgs inflation.

  2. CLASSICAL CONDITIONING OF THREE KINDS OF HUMOR IN PUBLICITY

    Directory of Open Access Journals (Sweden)

    CAROLINA M. CIFUENTES

    2006-01-01

    Full Text Available Effects of humor in advertisement published in Colombia were investigated in regards to brands,advertisement, purchase intention, recall and recognition.A simultaneous Classical Conditioning procedure was carried out, using Incongruous, Hostile and Allusivehumor associated to three brands. The procedure was applied to 30 university students. Results revealedthat the three kinds of humor work as unconditioning stimulus, generating positive attitudes towardsadvertisement and brand. Humor influences the purchase intention and recognition, but not the remembranceof brand when compared to neutral advertisement. Incongrous and Hostile Humor generate recognitionand positive attitude towards advertisement and brand. Allusions have a greater effect on purchaseintention than the other ones. Results corroborate the effectiveness of humor as an advertisement tool.

  3. CLASSICS

    Indian Academy of Sciences (India)

    2013-11-11

    Nov 11, 2013 ... Polanyi's classic paper, co-authored by Henry Eyring, reproduced in this ... spatial conf guration of the atoms in terms of the energy function of the diatomic .... The present communication deals with the construction of such .... These three contributions are complemented by a fourth term if one takes into.

  4. Classic conditioning in aged rabbits: delay, trace, and long-delay conditioning.

    Science.gov (United States)

    Solomon, P R; Groccia-Ellison, M E

    1996-06-01

    Young (0.5 years) and aged (2+, 3+, and 4+ years) rabbits underwent acquisition of the classically conditioned nictitating membrane response in a delay (500-ms conditioned stimulus [CS], 400-ms interstimulus interval [ISI]), long-delay (1,000-ms CS, 900-ms ISI), or trace (500-ms CS, 400-ms stimulus-free period) paradigm. Collapsing across age groups, there is a general tendency for animals to acquire trace conditioning more slowly than delay conditioning. Collapsing across conditioning paradigms, there is a general tendency for aged animals to acquire more slowly than younger animals. Of greater significance, however, are the age differences in the different conditioning paradigms. In the delay and long-delay paradigms, significant conditioning deficits first appeared in the 4(+)-year-old group. In the trace conditioning paradigm, significant conditioning deficits became apparent in the 2(+)-year-old animals.

  5. Revisiting classical silicate dissolution rate laws under hydrothermal conditions

    Science.gov (United States)

    Pollet-Villard, Marion; Daval, Damien; Saldi, Giuseppe; Knauss, Kevin; Wild, Bastien; Fritz, Bertrand

    2015-04-01

    In the context of geothermal energy, the relative intensities of primary mineral leaching and secondary mineral precipitation can affect porosity and permeability of the reservoir, thereby influencing its hydraulic performance and the efficiency of the geothermal power station. That is why the prediction of reaction kinetics of fluid/rock interactions represents a critical issue in this context. Moreover, in several geothermal systems such as the one of Soultz-sous-Forêts (Alsace, France), the circulation of aqueous fluids induces only modest modifications of their chemical composition. Therefore, fluid-rock interactions take place at close-to-equilibrium conditions, where the rate-affinity relations are poorly known and intensively debated [1]. To describe more precisely the dissolution processes, our strategy consists in investigating the dissolution of the main cleavages of K-spar minerals (one of the prevalent primary minerals in the reservoir of Soultz-sous-Forêts geothermal system) over a wide range of Gibbs free energy (ΔG) conditions. The aims are to decipher the impact of crystallographic orientation and microstructural surface modifications on the dissolution kinetics and to propose a relation between K-spar dissolution rate and ΔG. Our experimental work relies on a coupled approach which combines classical experiments of K-spar dissolution monitored by aqueous chemical analyses (ICP-AES) and innovative techniques of nm- to μm-scale characterization of solid surface (SEM, AFM, VSI) [2]. Our results confirm that K-spar dissolution is an anisotropic process: we measure a tenfold factor between the slowest and the fastest-dissolving surfaces. Moreover, the formation of etch pits on surfaces during their alteration has been evidenced on all of the different faces that have been studied. This complex evolution of the surface topography casts doubt of the relevance of a surface model based on shrinking particles and represents a possible cause of an

  6. Extending In Vitro Conditioning in "Aplysia" to Analyze Operant and Classical Processes in the Same Preparation

    Science.gov (United States)

    Brembs, Bjorn; Baxter, Douglas A.; Byrne, John H.

    2004-01-01

    Operant and classical conditioning are major processes shaping behavioral responses in all animals. Although the understanding of the mechanisms of classical conditioning has expanded significantly, the understanding of the mechanisms of operant conditioning is more limited. Recent developments in "Aplysia" are helping to narrow the gap in the…

  7. Effect of circadian phase on memory acquisition and recall: operant conditioning vs. classical conditioning.

    Science.gov (United States)

    Garren, Madeleine V; Sexauer, Stephen B; Page, Terry L

    2013-01-01

    There have been several studies on the role of circadian clocks in the regulation of associative learning and memory processes in both vertebrate and invertebrate species. The results have been quite variable and at present it is unclear to what extent the variability observed reflects species differences or differences in methodology. Previous results have shown that following differential classical conditioning in the cockroach, Rhyparobia maderae, in an olfactory discrimination task, formation of the short-term and long-term memory is under strict circadian control. In contrast, there appeared to be no circadian regulation of the ability to recall established memories. In the present study, we show that following operant conditioning of the same species in a very similar olfactory discrimination task, there is no impact of the circadian system on either short-term or long-term memory formation. On the other hand, ability to recall established memories is strongly tied to the circadian phase of training. On the basis of these data and those previously reported for phylogenetically diverse species, it is suggested that there may be fundamental differences in the way the circadian system regulates learning and memory in classical and operant conditioning.

  8. Effect of circadian phase on memory acquisition and recall: operant conditioning vs. classical conditioning.

    Directory of Open Access Journals (Sweden)

    Madeleine V Garren

    Full Text Available There have been several studies on the role of circadian clocks in the regulation of associative learning and memory processes in both vertebrate and invertebrate species. The results have been quite variable and at present it is unclear to what extent the variability observed reflects species differences or differences in methodology. Previous results have shown that following differential classical conditioning in the cockroach, Rhyparobia maderae, in an olfactory discrimination task, formation of the short-term and long-term memory is under strict circadian control. In contrast, there appeared to be no circadian regulation of the ability to recall established memories. In the present study, we show that following operant conditioning of the same species in a very similar olfactory discrimination task, there is no impact of the circadian system on either short-term or long-term memory formation. On the other hand, ability to recall established memories is strongly tied to the circadian phase of training. On the basis of these data and those previously reported for phylogenetically diverse species, it is suggested that there may be fundamental differences in the way the circadian system regulates learning and memory in classical and operant conditioning.

  9. Classical Conditioning of Hippocampal Theta Patterns in the Rat.

    Science.gov (United States)

    1976-08-01

    associated with changes in performance of learned tasks , 1,4,5, 8,9 there have been very few studies of neurona l plasticity of the hippocampus It self...rapid development of a conditioned hippocampal theta response to a visual sti mulus demonstrates tha t there is considerable neurona l plasticity in the

  10. Classical Belief Conditioning and its Generalization to DSm Theory

    Czech Academy of Sciences Publication Activity Database

    Daniel, Milan

    2008-01-01

    Roč. 2, č. 4 (2008), s. 267-279 ISSN 1752-8917 R&D Projects: GA AV ČR 1ET100300419 Institutional research plan: CEZ:AV0Z10300504 Keywords : belief functions * Dempster-Shafer theory * belief conditioning * DSm theory * overlapping elements * hyper-power set * DSm model Subject RIV: BA - General Mathematics http://www.worldacademicunion.com/journal/jus/jusVol02No4paper04.pdf

  11. The sufficient condition for an extremum in the classical action integral as an eingenvalue problem

    International Nuclear Information System (INIS)

    Hussein, M.S.; Pereira, J.G.

    The sufficient condition for an extremum in the classical action integral is studied using Morse's theory. Applications to the classical harmonic and anharmonic oscillators are made. The analogy of the calculations to the quantum mechanical problems in one dimension is stressed. (Author) [pt

  12. Reformulating classical and quantum mechanics in terms of a unified set of consistency conditions

    International Nuclear Information System (INIS)

    Bordley, R.F.

    1983-01-01

    This paper imposes consistency conditions on the path of a particle and shows that they imply Hamilton's principle in classical contexts and Schroedinger's equation in quantum mechanical contexts. Thus this paper provides a common, intuitive foundation for classical and quantum mechanics. It also provides a very new perspective on quantum mechanics. (author

  13. Conditions for the classicality of the center of mass of many-particle quantum states

    International Nuclear Information System (INIS)

    Oriols, Xavier; Benseny, Albert

    2017-01-01

    We discuss the conditions for the classicality of quantum states with a very large number of identical particles. By defining the center of mass from a large set of Bohmian particles, we show that it follows a classical trajectory when the distribution of the Bohmian particle positions in a single experiment is always equal to the marginal distribution of the quantum state in physical space. This result can also be interpreted as a single experiment generalization of the well-known Ehrenfest theorem. We also demonstrate that the classical trajectory of the center of mass is fully compatible with a quantum (conditional) wave function solution of a classical non-linear Schrödinger equation. Our work shows clear evidence for a quantum–classical inter-theory unification, and opens new possibilities for practical quantum computations with decoherence. (paper)

  14. Breaking generalized covariance, classical renormalization, and boundary conditions from superpotentials

    International Nuclear Information System (INIS)

    Livshits, Gideon I.

    2014-01-01

    Superpotentials offer a direct means of calculating conserved charges associated with the asymptotic symmetries of space-time. Yet superpotentials have been plagued with inconsistencies, resulting in nonphysical or incongruent values for the mass, angular momentum, and energy loss due to radiation. The approach of Regge and Teitelboim, aimed at a clear Hamiltonian formulation with a boundary, and its extension to the Lagrangian formulation by Julia and Silva have resolved these issues, and have resulted in a consistent, well-defined and unique variational equation for the superpotential, thereby placing it on a firm footing. A hallmark solution of this equation is the KBL superpotential obtained from the first-order Lovelock Lagrangian. Nevertheless, here we show that these formulations are still insufficient for Lovelock Lagrangians of higher orders. We present a paradox, whereby the choice of fields affects the superpotential for equivalent on-shell dynamics. We offer two solutions to this paradox: either the original Lagrangian must be effectively renormalized, or that boundary conditions must be imposed, so that space-time be asymptotically maximally symmetric. Non-metricity is central to this paradox, and we show how quadratic non-metricity in the bulk of space-time contributes to the conserved charges on the boundary, where it vanishes identically. This is a realization of the gravitational Higgs mechanism, proposed by Percacci, where the non-metricity is the analogue of the Goldstone boson

  15. The role of dopamine in Drosophila larval classical olfactory conditioning.

    Directory of Open Access Journals (Sweden)

    Mareike Selcho

    Full Text Available Learning and memory is not an attribute of higher animals. Even Drosophila larvae are able to form and recall an association of a given odor with an aversive or appetitive gustatory reinforcer. As the Drosophila larva has turned into a particularly simple model for studying odor processing, a detailed neuronal and functional map of the olfactory pathway is available up to the third order neurons in the mushroom bodies. At this point, a convergence of olfactory processing and gustatory reinforcement is suggested to underlie associative memory formation. The dopaminergic system was shown to be involved in mammalian and insect olfactory conditioning. To analyze the anatomy and function of the larval dopaminergic system, we first characterize dopaminergic neurons immunohistochemically up to the single cell level and subsequent test for the effects of distortions in the dopamine system upon aversive (odor-salt as well as appetitive (odor-sugar associative learning. Single cell analysis suggests that dopaminergic neurons do not directly connect gustatory input in the larval suboesophageal ganglion to olfactory information in the mushroom bodies. However, a number of dopaminergic neurons innervate different regions of the brain, including protocerebra, mushroom bodies and suboesophageal ganglion. We found that dopamine receptors are highly enriched in the mushroom bodies and that aversive and appetitive olfactory learning is strongly impaired in dopamine receptor mutants. Genetically interfering with dopaminergic signaling supports this finding, although our data do not exclude on naïve odor and sugar preferences of the larvae. Our data suggest that dopaminergic neurons provide input to different brain regions including protocerebra, suboesophageal ganglion and mushroom bodies by more than one route. We therefore propose that different types of dopaminergic neurons might be involved in different types of signaling necessary for aversive and appetitive

  16. Effect of boundary conditions on the classical skin depth and nonlocal behavior in inductively coupled plasmas

    International Nuclear Information System (INIS)

    Rehman, Aman-ur; Pu Yikang

    2005-01-01

    When the finiteness of plasma geometry is taken into account, the expression for classical skin depth is different from the one obtained for an unbounded plasma (for both the planar and cylindrical geometries). This change in the expression of the classical skin depth also changes the nonlocality parameter, which is defined as the square of the ratio of the effective mean free path to the classical skin depth. It is concluded that it is the compactness of the geometry due to the metallic boundary condition (E=0) that impacts nonlocal heating (particularly in the low-frequency regime) rather than the shape of the geometry

  17. Feeding Behavior of Aplysia: A Model System for Comparing Cellular Mechanisms of Classical and Operant Conditioning

    Science.gov (United States)

    Baxter, Douglas A.; Byrne, John H.

    2006-01-01

    Feeding behavior of Aplysia provides an excellent model system for analyzing and comparing mechanisms underlying appetitive classical conditioning and reward operant conditioning. Behavioral protocols have been developed for both forms of associative learning, both of which increase the occurrence of biting following training. Because the neural…

  18. Sea Slugs, Subliminal Pictures, and Vegetative State Patients: Boundaries of Consciousness in Classical Conditioning

    Science.gov (United States)

    Bekinschtein, Tristan A.; Peeters, Moos; Shalom, Diego; Sigman, Mariano

    2011-01-01

    Classical (trace) conditioning is a specific variant of associative learning in which a neutral stimulus leads to the subsequent prediction of an emotionally charged or noxious stimulus after a temporal gap. When conditioning is concurrent with a distraction task, only participants who can report the relationship (the contingency) between stimuli explicitly show associative learning. This suggests that consciousness is a prerequisite for trace conditioning. We review and question three main controversies concerning this view. Firstly, virtually all animals, even invertebrate sea slugs, show this type of learning; secondly, unconsciously perceived stimuli may elicit trace conditioning; and thirdly, some vegetative state patients show trace learning. We discuss and analyze these seemingly contradictory arguments to find the theoretical boundaries of consciousness in classical conditioning. We conclude that trace conditioning remains one of the best measures to test conscious processing in the absence of explicit reports. PMID:22164148

  19. Sea slugs, subliminal pictures and vegetative state patients: Boundaries of consciousness in classical conditioning.

    Directory of Open Access Journals (Sweden)

    Tristan A Bekinschtein

    2011-12-01

    Full Text Available Classical (trace conditioning is a specific variant of associative learning in which a neutral stimulus leads to the subsequent prediction of an emotionally charged or noxious stimulus after a temporal gap. When conditioning is concurrent with a distraction task, only participants who can report the relationship (the contingency between stimuli explicitly show associative learning. This suggests that consciousness is a prerequisite for trace conditioning. We review and question three main controversies concerning this view. Firstly, virtually all animals, even invertebrate sea slugs, show this type of learning; secondly, unconsciously perceived stimuli may elicit trace conditioning; and thirdly, some vegetative state patients show trace learning. We discuss and analyze these seemingly contradictory arguments to find the theoretical boundaries of consciousness in classical conditioning. We conclude that trace conditioning remains one of the best measures to test conscious processing in the absence of explicit reports.

  20. Considerations on hypoxic conditions. On the past setback of classic radiation biology

    International Nuclear Information System (INIS)

    Nakatsugawa, Shigekazu; Klimova, S.V.; Tamasu, Shogo; Nakamura, Hideaki; Murayama, Chieko

    2002-01-01

    Considerations on hypoxic cancer cell environment are made on classic radiation biology concept and on a new proposal of the anti-cancer strategy. Classic radiation biology knowledge of hypoxic cancer cells has produced many of clinical trials, which, however, have failed after all. This is because the knowledge is that the cells are recognized to be in a rather static hypoxic condition. Based on authors' investigations, made is the proposal that improvement of dynamic, acute hypoxic conditions yielded via blood circulation between the heterogeneous malignant cancer cells and the dynamic homeostatic systems of normal cells including immunity is important as one of cancer therapy approaches. (N.I.)

  1. Legendre condition and the stabilization problem for classical soliton solutions in generalized Skyrme models

    International Nuclear Information System (INIS)

    Kiknadze, N.A.; Khelashvili, A.A.

    1990-01-01

    The problem on stability of classical soliton solutions is studied from the unique point of view: the Legendre condition - necessary condition of existence of weak local minimum for energy functional (term soliton is used here in the wide sense) is used. Limits to parameters of the model Lagrangians are obtained; it is shown that there is no soliton stabilization in some of them despite the phenomenological achievements. The Jacoby sufficient condition is discussed

  2. Condition for unambiguous state discrimination using local operations and classical communication

    International Nuclear Information System (INIS)

    Chefles, Anthony

    2004-01-01

    We obtain a necessary and sufficient condition for a finite set of states of a finite-dimensional multiparticle quantum system to be amenable to unambiguous discrimination using local operations and classical communication. This condition is valid for states which may be mixed, entangled, or both. When the support of the set of states is the entire multiparticle Hilbert space, this condition is found to have an intriguing connection with the theory of entanglement witnesses

  3. An alternative phase-space distribution to sample initial conditions for classical dynamics simulations

    International Nuclear Information System (INIS)

    Garcia-Vela, A.

    2002-01-01

    A new quantum-type phase-space distribution is proposed in order to sample initial conditions for classical trajectory simulations. The phase-space distribution is obtained as the modulus of a quantum phase-space state of the system, defined as the direct product of the coordinate and momentum representations of the quantum initial state. The distribution is tested by sampling initial conditions which reproduce the initial state of the Ar-HCl cluster prepared by ultraviolet excitation, and by simulating the photodissociation dynamics by classical trajectories. The results are compared with those of a wave packet calculation, and with a classical simulation using an initial phase-space distribution recently suggested. A better agreement is found between the classical and the quantum predictions with the present phase-space distribution, as compared with the previous one. This improvement is attributed to the fact that the phase-space distribution propagated classically in this work resembles more closely the shape of the wave packet propagated quantum mechanically

  4. A Temporal-Specific and Transient cAMP Increase Characterizes Odorant Classical Conditioning

    Science.gov (United States)

    Cui, Wen; Smith, Andrew; Darby-King, Andrea; Harley, Carolyn W.; McLean, John H.

    2007-01-01

    Increases in cyclic adenosine monophosphate (cAMP) are proposed to initiate learning in a wide variety of species. Here, we measure changes in cAMP in the olfactory bulb prior to, during, and following a classically conditioned odor preference trial in rat pups. Measurements were taken up to the point of maximal CREB phosphorylation in olfactory…

  5. Cholinergic Septo-Hippocampal Innervation Is Required for Trace Eyeblink Classical Conditioning

    Science.gov (United States)

    Fontan-Lozano, Angela; Troncoso, Julieta; Munera, Alejandro; Carrion, Angel Manuel; Delgado-Garcia, Jose Maria

    2005-01-01

    We studied the effects of a selective lesion in rats, with 192-IgG-saporin, of the cholinergic neurons located in the medial septum/diagonal band (MSDB) complex on the acquisition of classical and instrumental conditioning paradigms. The MSDB lesion induced a marked deficit in the acquisition, but not in the retrieval, of eyeblink classical…

  6. Classical Conditioning Fails to Elicit Allodynia in an Experimental Study with Healthy Humans

    NARCIS (Netherlands)

    Madden, Victoria J; Russek, Leslie N; Harvie, Daniel S; Vlaeyen, Johan W S; Moseley, G Lorimer

    2016-01-01

    OBJECTIVE : Associative learning has been proposed as a mechanism behind the persistence of pain after tissue healing. The simultaneous occurrence of nociceptive and non-nociceptive input during acute injury mimics the pairings thought to drive classical conditioning effects. However, empirical

  7. Stochastic simulations of conditional states of partially observed systems, quantum and classical

    International Nuclear Information System (INIS)

    Gambetta, Jay; Wiseman, H M

    2005-01-01

    In a partially observed quantum or classical system the information that we cannot access results in our description of the system becoming mixed, even if we have perfect initial knowledge. That is, if the system is quantum the conditional state will be given by a state matrix ρ r (t), and if classical, the conditional state will be given by a probability distribution P r (x,t), where r is the result of the measurement. Thus to determine the evolution of this conditional state, under continuous-in-time monitoring, requires a numerically expensive calculation. In this paper we demonstrate a numerical technique based on linear measurement theory that allows us to determine the conditional state using only pure states. That is, our technique reduces the problem size by a factor of N, the number of basis states for the system. Furthermore we show that our method can be applied to joint classical and quantum systems such as arise in modelling realistic (finite bandwidth, noisy) measurement

  8. Reduction in spontaneous firing of mouse excitatory layer 4 cortical neurons following visual classical conditioning

    Science.gov (United States)

    Bekisz, Marek; Shendye, Ninad; Raciborska, Ida; Wróbel, Andrzej; Waleszczyk, Wioletta J.

    2017-08-01

    The process of learning induces plastic changes in neuronal network of the brain. Our earlier studies on mice showed that classical conditioning in which monocular visual stimulation was paired with an electric shock to the tail enhanced GABA immunoreactivity within layer 4 of the monocular part of the primary visual cortex (V1), contralaterally to the stimulated eye. In the present experiment we investigated whether the same classical conditioning paradigm induces changes of neuronal excitability in this cortical area. Two experimental groups were used: mice that underwent 7-day visual classical conditioning and controls. Patch-clamp whole-cell recordings were performed from ex vivo slices of mouse V1. The slices were perfused with the modified artificial cerebrospinal fluid, the composition of which better mimics the brain interstitial fluid in situ and induces spontaneous activity. The neuronal excitability was characterized by measuring the frequency of spontaneous action potentials. We found that layer 4 star pyramidal cells located in the monocular representation of the "trained" eye in V1 had lower frequency of spontaneous activity in comparison with neurons from the same cortical region of control animals. Weaker spontaneous firing indicates decreased general excitability of star pyramidal neurons within layer 4 of the monocular representation of the "trained" eye in V1. Such effect could result from enhanced inhibitory processes accompanying learning in this cortical area.

  9. INFLUENCE OF MUSICAL TONES, IN THE CLASSICAL CONDITIONING OF PREFERENCE OF GEOMETRICAL FIGURES

    Directory of Open Access Journals (Sweden)

    WILSON LÓPEZ

    2004-07-01

    Full Text Available This research intended to create preferences on geometric figures using a classical conditioning procedurewhere 2 specific variations of musical structure were used -mayor and dissonant tones- as unconditionedstimulus. 24 university students with an age average of 23 years were exposed to stimular conditionswhere 2 geometric figures (CS+, were matched with mayor tones (UCS+ and other 2 (CS- withdissonant (UCS-; subsequently the figures were rated on a scale (where +10 = very pleasant and -10 =very unpleasant. According with the formulated hypothesis and the previous discoveries in both basicand applied research, three of the four conditions tested showed significant values using the Wilcoxonsign ranks test.

  10. Omission of expected reward sensitizes the brain dopaminergic system of classically conditioned Atlantic salmon

    DEFF Research Database (Denmark)

    Vindas, M.A.; Höglund, Erik; Folkedal, O.

    in fishes. Here we show that the omission of expected reward (OER) leads to increased aggression towards conspecifics in classically conditioned Atlantic salmon (Salmo salar). Furthermore, in response to an acute stressor, OER fish displayed increased dopaminergic (DA) neurotransmission compared to controls....... There was also a general downregulation of dopamine receptor D1 gene expression in the telencephalon of OER groups, which suggests a coping mechanism in response to unbalanced DA metabolism. These results indicate that animals subjected to unpredictable reward conditions develop a senzitation of the DA...

  11. Dissociating basal forebrain and medial temporal amnesic syndromes: insights from classical conditioning.

    Science.gov (United States)

    Myer, Catherine E; Bryant, Deborah; DeLuca, John; Gluck, Mark A

    2002-01-01

    In humans, anterograde amnesia can result from damage to the medial temporal (MT) lobes (including hippocampus), as well as to other brain areas such as basal forebrain. Results from animal classical conditioning studies suggest that there may be qualitative differences in the memory impairment following MT vs. basal forebrain damage. Specifically, delay eyeblink conditioning is spared after MT damage in animals and humans, but impaired in animals with basal forebrain damage. Recently, we have likewise shown delay eyeblink conditioning impairment in humans with amnesia following anterior communicating artery (ACoA) aneurysm rupture, which damages the basal forebrain. Another associative learning task, a computer-based concurrent visual discrimination, also appears to be spared in MT amnesia while ACoA amnesics are slower to learn the discriminations. Conversely, animal and computational models suggest that, even though MT amnesics may learn quickly, they may learn qualitatively differently from controls, and these differences may result in impaired transfer when familiar information is presented in novel combinations. Our initial data suggests such a two-phase learning and transfer task may provide a double dissociation between MT amnesics (spared initial learning but impaired transfer) and ACoA amnesics (slow initial learning but spared transfer). Together, these emerging data suggest that there are subtle but dissociable differences in the amnesic syndrome following damage to the MT lobes vs. basal forebrain, and that these differences may be most visible in non-declarative tasks such as eyeblink classical conditioning and simple associative learning.

  12. Evidence of plasticity in the pontocerebellar conditioned stimulus pathway during classical conditioning of the eyeblink response in the rabbit.

    Science.gov (United States)

    Tracy, Jo Anne; Thompson, Judith K; Krupa, David J; Thompson, Richard F

    2013-10-01

    Electrical stimulation thresholds required to elicit eyeblinks with either pontine or cerebellar interpositus stimulation were measured before and after classical eyeblink conditioning with paired pontine stimulation (conditioned stimulus, CS) and corneal airpuff (unconditioned stimulus, US). Pontine stimulation thresholds dropped dramatically after training and returned to baseline levels following extinction, whereas interpositus thresholds and input-output functions remained stable across training sessions. Learning rate, magnitude of threshold change, and electrode placements were correlated. Pontine projection patterns to the cerebellum were confirmed with retrograde labeling techniques. These results add to the body of literature suggesting that the pons relays CS information to the cerebellum and provide further evidence of synaptic plasticity in the cerebellar network. 2013 APA, all rights reserved

  13. Spectral boundary conditions and solitonic solutions in a classical Sellmeier dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Belgiorno, F. [Politecnico di Milano, Dipartimento di Matematica, Milan (Italy); INdAM-GNFM, Rome (Italy); INFN, Milan (Italy); Cacciatori, S.L. [Universita dell' Insubria, Department of Science and High Technology, Como (Italy); INFN, Milan (Italy); Vigano, A. [Universita degli Studi di Milano, Dipartimento di Fisica, Milan (Italy)

    2017-06-15

    Electromagnetic field interactions in a dielectric medium represent a longstanding field of investigation, both at the classical level and at the quantum one. We propose a 1+1 dimensional toy-model which consists of an half-line filling dielectric medium, with the aim to set up a simplified situation where technicalities related to gauge invariance and, as a consequence, physics of constrained systems are avoided, and still interesting features appear. In particular, we simulate the electromagnetic field and the polarization field by means of two coupled scalar fields φ, ψ, respectively, in a Hopfield-like model. We find that, in order to obtain a physically meaningful behavior for the model, one has to introduce spectral boundary conditions depending on the particle spectrum one is dealing with. This is the first interesting achievement of our analysis. The second relevant achievement is that, by introducing a nonlinear contribution in the polarization field ψ, with the aim of mimicking a third order nonlinearity in a nonlinear dielectric, we obtain solitonic solutions in the Hopfield model framework, whose classical behavior is analyzed too. (orig.)

  14. Eyeblink Classical Conditioning and Post Traumatic Stress Disorder – A Model Systems Approach

    Directory of Open Access Journals (Sweden)

    Bernard G Schreurs

    2015-04-01

    Full Text Available Not everyone exposed to trauma suffers flashbacks, bad dreams, numbing, fear, anxiety, sleeplessness, hyper-vigilance, hyperarousal, or an inability to cope, but those who do may suffer from post traumatic stress disorder (PTSD. PTSD is a major physical and mental health problem for military personnel and civilians exposed to trauma. There is still debate about the incidence and prevalence of PTSD especially among the military, but for those who are diagnosed, behavioral therapy and drug treatment strategies have proven to be less than effective. A number of these treatment strategies are based on rodent fear conditioning research and are capable of treating only some of the symptoms because the extinction of fear does not deal with the various forms of hyper-vigilance and hyperarousal experienced by people with PTSD. To help address this problem, we have developed a preclinical eyeblink classical conditioning model of PTSD in which conditioning and hyperarousal can both be extinguished. We review this model and discuss findings showing that unpaired stimulus presentations can be effective in reducing levels of conditioning and hyperarousal even when unconditioned stimulus intensity is reduced to the point where it is barely capable of eliciting a response. These procedures have direct implications for the treatment of PTSD and could be implemented in a virtual reality environment.

  15. Eyeblink classical conditioning and post-traumatic stress disorder - a model systems approach.

    Science.gov (United States)

    Schreurs, Bernard G; Burhans, Lauren B

    2015-01-01

    Not everyone exposed to trauma suffers flashbacks, bad dreams, numbing, fear, anxiety, sleeplessness, hyper-vigilance, hyperarousal, or an inability to cope, but those who do may suffer from post-traumatic stress disorder (PTSD). PTSD is a major physical and mental health problem for military personnel and civilians exposed to trauma. There is still debate about the incidence and prevalence of PTSD especially among the military, but for those who are diagnosed, behavioral therapy and drug treatment strategies have proven to be less than effective. A number of these treatment strategies are based on rodent fear conditioning research and are capable of treating only some of the symptoms because the extinction of fear does not deal with the various forms of hyper-vigilance and hyperarousal experienced by people with PTSD. To help address this problem, we have developed a preclinical eyeblink classical conditioning model of PTSD in which conditioning and hyperarousal can both be extinguished. We review this model and discuss findings showing that unpaired stimulus presentations can be effective in reducing levels of conditioning and hyperarousal even when unconditioned stimulus intensity is reduced to the point where it is barely capable of eliciting a response. These procedures have direct implications for the treatment of PTSD and could be implemented in a virtual reality environment.

  16. Boundary conditions, energies and gravitational heat in general relativity (a classical analysis)

    International Nuclear Information System (INIS)

    Francaviglia, M; Raiteri, M

    2004-01-01

    The variation of the energy for a gravitational system is directly defined from the Hamiltonian field equations of general relativity. When the variation of the energy is written in a covariant form, it splits into two (covariant) contributions: one of them is the Komar energy, while the other is the so-called covariant ADM correction term. When specific boundary conditions are analysed one sees that the Komar energy is related to the gravitational heat while the ADM correction term plays the role of the Helmholtz free energy. These properties allow one to establish, inside a classical geometric framework, a formal analogy between gravitation and the laws governing the evolution of a thermodynamical system. The analogy applies to stationary spacetimes admitting multiple causal horizons as well as to AdS Taub-bolt solutions

  17. A fully automated Drosophila olfactory classical conditioning and testing system for behavioral learning and memory assessment.

    Science.gov (United States)

    Jiang, Hui; Hanna, Eriny; Gatto, Cheryl L; Page, Terry L; Bhuva, Bharat; Broadie, Kendal

    2016-03-01

    Aversive olfactory classical conditioning has been the standard method to assess Drosophila learning and memory behavior for decades, yet training and testing are conducted manually under exceedingly labor-intensive conditions. To overcome this severe limitation, a fully automated, inexpensive system has been developed, which allows accurate and efficient Pavlovian associative learning/memory analyses for high-throughput pharmacological and genetic studies. The automated system employs a linear actuator coupled to an odorant T-maze with airflow-mediated transfer of animals between training and testing stages. Odorant, airflow and electrical shock delivery are automatically administered and monitored during training trials. Control software allows operator-input variables to define parameters of Drosophila learning, short-term memory and long-term memory assays. The approach allows accurate learning/memory determinations with operational fail-safes. Automated learning indices (immediately post-training) and memory indices (after 24h) are comparable to traditional manual experiments, while minimizing experimenter involvement. The automated system provides vast improvements over labor-intensive manual approaches with no experimenter involvement required during either training or testing phases. It provides quality control tracking of airflow rates, odorant delivery and electrical shock treatments, and an expanded platform for high-throughput studies of combinational drug tests and genetic screens. The design uses inexpensive hardware and software for a total cost of ∼$500US, making it affordable to a wide range of investigators. This study demonstrates the design, construction and testing of a fully automated Drosophila olfactory classical association apparatus to provide low-labor, high-fidelity, quality-monitored, high-throughput and inexpensive learning and memory behavioral assays. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. PKMzeta maintains spatial, instrumental, and classically conditioned long-term memories.

    Directory of Open Access Journals (Sweden)

    Peter Serrano

    2008-12-01

    Full Text Available How long-term memories are stored is a fundamental question in neuroscience. The first molecular mechanism for long-term memory storage in the brain was recently identified as the persistent action of protein kinase Mzeta (PKMzeta, an autonomously active atypical protein kinase C (PKC isoform critical for the maintenance of long-term potentiation (LTP. PKMzeta maintains aversively conditioned associations, but what general form of information the kinase encodes in the brain is unknown. We first confirmed the specificity of the action of zeta inhibitory peptide (ZIP by disrupting long-term memory for active place avoidance with chelerythrine, a second inhibitor of PKMzeta activity. We then examined, using ZIP, the effect of PKMzeta inhibition in dorsal hippocampus (DH and basolateral amygdala (BLA on retention of 1-d-old information acquired in the radial arm maze, water maze, inhibitory avoidance, and contextual and cued fear conditioning paradigms. In the DH, PKMzeta inhibition selectively disrupted retention of information for spatial reference, but not spatial working memory in the radial arm maze, and precise, but not coarse spatial information in the water maze. Thus retention of accurate spatial, but not procedural and contextual information required PKMzeta activity. Similarly, PKMzeta inhibition in the hippocampus did not affect contextual information after fear conditioning. In contrast, PKMzeta inhibition in the BLA impaired retention of classical conditioned stimulus-unconditioned stimulus (CS-US associations for both contextual and auditory fear, as well as instrumentally conditioned inhibitory avoidance. PKMzeta inhibition had no effect on postshock freezing, indicating fear expression mediated by the BLA remained intact. Thus, persistent PKMzeta activity is a general mechanism for both appetitively and aversively motivated retention of specific, accurate learned information, but is not required for processing contextual, imprecise

  19. PKMzeta maintains spatial, instrumental, and classically conditioned long-term memories.

    Science.gov (United States)

    Serrano, Peter; Friedman, Eugenia L; Kenney, Jana; Taubenfeld, Stephen M; Zimmerman, Joshua M; Hanna, John; Alberini, Cristina; Kelley, Ann E; Maren, Stephen; Rudy, Jerry W; Yin, Jerry C P; Sacktor, Todd C; Fenton, André A

    2008-12-23

    How long-term memories are stored is a fundamental question in neuroscience. The first molecular mechanism for long-term memory storage in the brain was recently identified as the persistent action of protein kinase Mzeta (PKMzeta), an autonomously active atypical protein kinase C (PKC) isoform critical for the maintenance of long-term potentiation (LTP). PKMzeta maintains aversively conditioned associations, but what general form of information the kinase encodes in the brain is unknown. We first confirmed the specificity of the action of zeta inhibitory peptide (ZIP) by disrupting long-term memory for active place avoidance with chelerythrine, a second inhibitor of PKMzeta activity. We then examined, using ZIP, the effect of PKMzeta inhibition in dorsal hippocampus (DH) and basolateral amygdala (BLA) on retention of 1-d-old information acquired in the radial arm maze, water maze, inhibitory avoidance, and contextual and cued fear conditioning paradigms. In the DH, PKMzeta inhibition selectively disrupted retention of information for spatial reference, but not spatial working memory in the radial arm maze, and precise, but not coarse spatial information in the water maze. Thus retention of accurate spatial, but not procedural and contextual information required PKMzeta activity. Similarly, PKMzeta inhibition in the hippocampus did not affect contextual information after fear conditioning. In contrast, PKMzeta inhibition in the BLA impaired retention of classical conditioned stimulus-unconditioned stimulus (CS-US) associations for both contextual and auditory fear, as well as instrumentally conditioned inhibitory avoidance. PKMzeta inhibition had no effect on postshock freezing, indicating fear expression mediated by the BLA remained intact. Thus, persistent PKMzeta activity is a general mechanism for both appetitively and aversively motivated retention of specific, accurate learned information, but is not required for processing contextual, imprecise, or

  20. Gauge fixings, evolution generators and world-line conditions in relativistic classical mechanics with constraints

    International Nuclear Information System (INIS)

    Lusanna, L.

    1981-01-01

    After a review of the main models for classical relativistic N-particle systems based upon Dirac's theory of constraints, a detailed study of their Hamiltonian formulation is made. The choice of the arbitrary functions and of the gauge-fixing constraints and the associated realizations of the reduced phase-space and of the observables by means of Dirac brackets are examined in detail. The restrictions on the gauge fixings to obtain compatibility between the evolution in the reduced phase space, generated by the total energy of the system, and the one in the constraint hypersurface, generated by the Dirac Hamiltonian, are found. It is also demonstrated that these restrictions are nothing else than the world-line conditions, i.e. gauge transformations are needed to ensure the objective existence of the world-lines and manifest covariance is broken. This is due to the property of the Dirac brackets of preserving the gauge fixings in every frame of reference. Predictive mechanics and the Currie-Hill world-line conditions are not in contradiction with the previous results: avoiding the Dirac-bracket mechanism, they save the manifest covariance but at the price of using accelerations which are complicated functions of the original potentials depending upon the whole history of the system. (author)

  1. Semi-classical approximation and the problem of boundary conditions in the theory of relativistic particle radiation

    International Nuclear Information System (INIS)

    Akhiezer, A.I.; Shul'ga, N.F.

    1991-01-01

    The process of relativistic particle radiation in an external field has been studied in the semi-classical approximation rather extensively. The main problem arising in the studies is in expressing the formula of the quantum theory of radiation in terms of classical quantities, for example of the classical trajectories. However, it still remains unclear how the particle trajectory is assigned, that is which particular initial or boundary conditions determine the trajectory in semi-classical approximation quantum theory of radiation. We shall try to solve this problem. Its importance comes from the fact that in some cases one and the same boundary conditions may give rise to two or more trajectories. We demonstrate that this fact must necessarily be taken into account on deriving the classical limit for the formulae of the quantum theory of radiation, since it leads to a specific interference effect in radiation. The method we used to deal with the problem is similar to the method employed by Fock to analyze the problem of a canonical transformation in classical and quantum mechanics. (author)

  2. Classical conditioning for preserving the effects of short melatonin treatment in children with delayed sleep: a pilot study

    Directory of Open Access Journals (Sweden)

    van Maanen A

    2017-03-01

    Full Text Available Annette van Maanen,1 Anne Marie Meijer,1 Marcel G Smits,2 Frans J Oort1 1Research Institute Child Development and Education, University of Amsterdam, Amsterdam, 2Centre for Sleep-Wake Disorders and Chronobiology, Hospital Gelderse Vallei, Ede, the Netherlands Abstract: Melatonin treatment is effective in treating sleep onset problems in children with delayed melatonin onset, but effects usually disappear when treatment is discontinued. In this pilot study, we investigated whether classical conditioning might help in preserving treatment effects of melatonin in children with sleep onset problems, with and without comorbid attention deficit hyperactivity disorder (ADHD or autism. After a baseline week, 16 children (mean age: 9.92 years, 31% ADHD/autism received melatonin treatment for 3 weeks and then gradually discontinued the treatment. Classical conditioning was applied by having children drink organic lemonade while taking melatonin and by using a dim red light lamp that was turned on when children went to bed. Results were compared with a group of 41 children (mean age: 9.43 years, 34% ADHD/autism who received melatonin without classical conditioning. Melatonin treatment was effective in advancing dim light melatonin onset and reducing sleep onset problems, and positive effects were found on health and behavior problems. After stopping melatonin, sleep returned to baseline levels. We found that for children without comorbidity in the experimental group, sleep latency and sleep start delayed less in the stop week, which suggests an effect of classical conditioning. However, classical conditioning seems counterproductive in children with ADHD or autism. Further research is needed to establish these results and to examine other ways to preserve melatonin treatment effects, for example, by applying morning light. Keywords: melatonin, classical conditioning, children, delayed sleep

  3. Fractal analysis on a classical hard-wall billiard with openings using a two-dimensional set of initial conditions

    International Nuclear Information System (INIS)

    Ree, Suhan

    2003-01-01

    Fractal analysis is performed to measure the chaoticity of a classical hard-wall billiard with openings. We use the circular billiard with a straight cut with two openings, and a two-dimensional (2D) set of initial conditions that produce all possible trajectories of a particle injected from one opening. We numerically compute the fractal dimension of singular points of the function that maps an initial condition to the number of collisions with the wall before the exit, using the box-counting algorithm that uses uniformly distributed points inside the 2D set of initial conditions. Finally, the classical chaotic properties are observed while the parameters of the billiard are varied, and the results are compared with those with the one-dimensional set of initial conditions

  4. Accumulation of anthropogenic radionuclides in crops in conditions of water stream and classical hydroponics

    Energy Technology Data Exchange (ETDEWEB)

    Mayrapetyan, Khachatur; Hovsepyan, Albert; Daryadar, Mahsa; Alexanyan, Julietta; Tovmasyan, Anahit; Ghalachyan, Laura; Tadevosyan, Anna; Mayrapetyan, Stepan [Institute of Hydroponics Problems, NAS, Noragyugh 108, 0082, Yerevan (Armenia)

    2014-07-01

    Natural and artificial radionuclides (RN) dangerous for health are emitted into ecosystems because of human anthropogenic activities in the field of nuclear energetics. Biologically artificial RN {sup 90}Sr(T{sub 1/2}=28,6 years) and {sup 137}Cs (T{sub 1/2}=30,1 years)are very dangerous. Therefore obtaining radio-ecologically safe raw material of high quality is a very urgent problem now. Taking into account the above mentioned, in order to obtain ecologically safe raw material we carried out comparative radiochemical investigations on essential oil and medicinal plants peppermint(Mentha piperita L.) and sweet basil (Ocimum basilicum L.) grown in new water-stream (continuous, gully, cylindrical) and classical hydroponics, with the aim of revealing accumulation peculiarities of {sup 90}Sr and {sup 137}Cs. The results of experiments have shown that in classical hydroponics peppermint and sweet basil exceeded the same indices of water-stream hydroponics with {sup 90}Sr and {sup 137}Cs content 1,1-1,2; 1,2-1,3 and 1,5-1,8; 1,4-1,8 times, respectively. Moreover, sweet basil exceeded peppermint in water-stream hydroponics {sup 90}Sr 1,3-1,6; {sup 137}Cs 1,2-1,4 times and in classical hydroponics {sup 90}Sr 1,6; {sup 137}Cs 1,2 times. The content of controlled artificial RN in raw material did not exceed the allowed concentration limit (ACL). New water-stream hydroponics system worked out in Institute of Hydroponics Problems is a radio-ecologically more profitable method for producing raw material than classical hydroponics. At the same time water-stream hydroponics system in comparison with classical hydroponics promoted productivity (dry raw material) increase of peppermint and sweet basil 1,1-1,4 times. (authors)

  5. Balanced plasticity and stability of the electrical properties of a molluscan modulatory interneuron after classical conditioning: a computational study

    Directory of Open Access Journals (Sweden)

    Dimitris Vavoulis

    2010-05-01

    Full Text Available The Cerebral Giant Cells (CGCs are a pair of identified modulatory interneurons in the Central Nervous System of the pond snail Lymnaea stagnalis with an important role in the expression of both unconditioned and conditioned feeding behavior. Following single-trial food-reward classical conditioning, the membrane potential of the CGCs becomes persistently depolarized. This depolarization contributes to the conditioned response by facilitating sensory cell to command neuron synapses, which results in the activation of the feeding network by the conditioned stimulus. Despite the depolarization of the membrane potential, which enables the CGGs to play a key role in learning-induced network plasticity, there is no persistent change in the tonic firing rate or shape of the action potentials, allowing these neurons to retain their normal network function in feeding. In order to understand the ionic mechanisms of this novel combination of plasticity and stability of intrinsic electrical properties, we first constructed and validated a Hodgkin-Huxley-type model of the CGCs. We then used this model to elucidate how learning-induced changes in a somal persistent sodium and a delayed rectifier potassium current lead to a persistent depolarization of the CGCs whilst maintaining their firing rate. Including in the model an additional increase in the conductance of a high-voltage-activated calcium current allowed the spike amplitude and spike duration also to be maintained after conditioning. We conclude therefore that a balanced increase in three identified conductances is sufficient to explain the electrophysiological changes found in the CGCs after classical conditioning.

  6. Information about the model's unconditioned stimulus and response in vicarious classical conditioning.

    Science.gov (United States)

    Hygge, S

    1976-06-01

    Four groups with 16 observers each participated in a differential, vicarious conditioning experiment with skin conductance responses as the dependent variable. The information available to the observer about the model's unconditioned stimulus and response was varied in a 2 X 2 factorial design. Results clearly showed that information about the model's unconditioned stimulus (a high or low dB level) was not necessary for vicarious instigation, but that information about the unconditioned response (a high or low emotional aversiveness) was necessary. Data for conditioning of responses showed almost identical patterns to those for vicarious instigation. To explain the results, a distinction between factors necessary for the development and elicitation of vicariously instigated responses was introduced, and the effectiveness of information about the model's response on the elicitation of vicariously instigated responses was considered in terms of an expansion of Bandura's social learning theory.

  7. Video-based data acquisition system for use in eye blink classical conditioning procedures in sheep.

    Science.gov (United States)

    Nation, Kelsey; Birge, Adam; Lunde, Emily; Cudd, Timothy; Goodlett, Charles; Washburn, Shannon

    2017-10-01

    Pavlovian eye blink conditioning (EBC) has been extensively studied in humans and laboratory animals, providing one of the best-understood models of learning in neuroscience. EBC has been especially useful in translational studies of cerebellar and hippocampal function. We recently reported a novel extension of EBC procedures for use in sheep, and now describe new advances in a digital video-based system. The system delivers paired presentations of conditioned stimuli (CSs; a tone) and unconditioned stimuli (USs; an air puff to the eye), or CS-alone "unpaired" trials. This system tracks the linear distance between the eyelids to identify blinks occurring as either unconditioned (URs) or conditioned (CRs) responses, to a resolution of 5 ms. A separate software application (Eye Blink Reviewer) is used to review and autoscore the trial CRs and URs, on the basis of a set of predetermined rules, permitting an operator to confirm (or rescore, if needed) the autoscore results, thereby providing quality control for accuracy of scoring. Learning curves may then be quantified in terms of the frequencies of CRs over sessions, both on trials with paired CS-US presentations and on CS-alone trials. The latency to CR onset, latency to CR peak, and occurrence of URs are also obtained. As we demonstrated in two example cases, this video-based system provides efficient automated means to conduct EBC in sheep and can facilitate fully powered studies with multigroup designs that involve paired and unpaired training. This can help extend new studies in sheep, a species well suited for translational studies of neurodevelopmental disorders resulting from gestational exposure to drugs, toxins, or intrauterine distress.

  8. Role of the hippocampus in contextual memory after classical aversive conditioning in pigeons (C. livia

    Directory of Open Access Journals (Sweden)

    Reis F.

    1999-01-01

    Full Text Available We investigated the effects of hippocampal lesions with ibotenic acid (IBO on the memory of the sound-context-shock association during reexposure to the conditioning context. Twenty-nine adult pigeons were assigned to a non-lesioned control group (CG, N = 7, a sham-lesioned group (SG, N = 7, a hippocampus-lesioned experimental group (EG, N = 7, and to an unpaired nonlesioned group (tone-alone exposure (NG, N = 8. All pigeons were submitted to a 20-min session in the conditioning chamber with three associations of sound (1000 Hz, 85 dB, 1 s and shock (10 mA, 1 s. Experimental and sham lesions were performed 24 h later (EG and SG when EG birds received three bilateral injections (anteroposterior (A, 4.5, 5.25 and 7.0 of IBO (1 µl and 1 µg/µl and SG received one bilateral injection (A, 5.25 of PBS. The animals were reexposed to the training context 5 days after the lesion. Behavior was videotaped for 20 min and analyzed at 30-s intervals. A significantly higher percent rating of immobility was observed for CG (median, 95.1; range, 79.2 to 100.0 and SG (median, 90.0; range, 69.6 to 95.0 compared to EG (median, 11.62; range, 3.83 to 50.1 and NG (median, 7.33; range, 6.2 to 28.1 (P<0.001 in the training context. These results suggest impairment of contextual fear in birds who received lesions one day after conditioning and a role for the hippocampus in the modulation of emotional aversive memories in pigeons.

  9. Classical conditioning of proboscis extension in harnessed Africanized honey bee queens (Apis mellifera L.).

    Science.gov (United States)

    Aquino, Italo S; Abramson, Charles I; Soares, Ademilson E E; Fernandes, Andrea Cardoso; Benbassat, Danny

    2004-06-01

    Experiments are reported on learning in virgin Africanized honey bee queens (Apis mellifera L.). Queens restrained in a "Pavlovian harness" received a pairing of hexanal odor with a 1.8-M feeding of sucrose solution. Compared to explicitly unpaired controls, acquisition was rapid in reaching about 90%. Acquisition was also rapid in queens receiving an unconditioned stimulus of "bee candy" or an unconditioned stimulus administered by worker bees. During extinction the conditioned response declines. The steepest decline was observed in queens receiving an unconditioned stimulus of bee candy. These findings extend previous work on learning of Afrianized honey bee workers to a population of queen bees.

  10. Autism and classical eyeblink conditioning: Performance changes of the conditioned response related to autism spectrum disorder diagnosis

    Directory of Open Access Journals (Sweden)

    John P Welsh

    2016-08-01

    Full Text Available Changes in the timing performance of conditioned responses (CRs acquired during trace and delay eyeblink conditioning (EBC are presented for diagnostic subgroups of children having autism spectrum disorder (ASD aged 6-15 years. Children diagnosed with autistic disorder (AD were analyzed separately from children diagnosed with either Asperger’s syndrome or Pervasive-developmental disorder not-otherwise-specified (Asp/PDD and compared to an age- and IQ-matched group of children that were typically developing (TD. Within-subject and between-groups contrasts in CR performance on sequential exposure to trace and delay EBC were analyzed to determine whether any differences would expose underlying functional heterogeneities of the cerebral and cerebellar systems in ASD subgroups. The EBC parameters measured were percentage CRs, CR onset latency, and CR peak latency. Neither AD nor Asp/PDD groups were impaired in CR acquisition during trace or delay EBC. AD and Asp/PDD both altered CR timing, but not always in the same way. Although the AD group showed normal CR timing during trace EBC, the Asp/PDD group showed a significant 27 and 28 ms increase in CR onset and peak latency, respectively, during trace EBC. In contrast, the direction of the timing change was opposite during delay EBC, during which the Asp/PDD group showed a significant 29 ms decrease in CR onset latency and the AD group showed a larger 77 ms decrease in CR onset latency. Only the AD group showed a decrease in CR peak latency during delay EBC, demonstrating another difference between AD and Asp/PDD. The difference in CR onset latency during delay EBC for both AD and Asp/PDD was due to an abnormal prevalence of early onset CRs that were intermixed with CRs having normal timing, as observed both in CR onset histograms and mean CR waveforms. In conclusion, significant heterogeneity in EBC performance was apparent within diagnostic groups, and this may indicate that EBC performance can

  11. Comparison of a classical with a highly formularized body condition scoring system for dairy cattle.

    Science.gov (United States)

    Isensee, A; Leiber, F; Bieber, A; Spengler, A; Ivemeyer, S; Maurer, V; Klocke, P

    2014-12-01

    Body condition scoring is a common tool to assess the subcutaneous fat reserves of dairy cows. Because of its subjectivity, which causes limits in repeatability, it is often discussed controversially. Aim of the current study was to evaluate the impact of considering the cows overall appearance on the scoring process and on the validity of the results. Therefore, two different methods to reveal body condition scores (BCS), 'independent BCS' (iBCS) and 'dependent BCS' (dBCS), were used to assess 1111 Swiss Brown Cattle. The iBCS and the dBCS systems were both working with the same flowchart with a decision tree structure for visual and palpatory assessment using a scale from 2 to 5 with increment units of 0.25. The iBCS was created strictly complying with the defined frames of the decision tree structure. The system was chosen due to its formularized approach to reduce the influence of subjective impressions. By contrast, the dBCS system, which was in line with common practice, had a more open approach, where - besides the decision tree - the overall impression of the cow's physical appearance was taken into account for generating the final score. Ultrasound measurement of the back fat thickness (BFT) was applied as a validation method. The dBCS turned out to be the better predictor of BFT, explaining 67.3% of the variance. The iBCS was only able to explain 47.3% of the BFT variance. Within the whole data set, only 31.3% of the animals received identical dBCS and iBCS. The pin bone region caused the most deviations between dBCS and iBCS, but also assessing the pelvis line, the hook bones and the ligaments led to divergences in around 20% of the scored animals. The study showed that during the assessment of body condition a strict adherence to a decision tree is a possible source of inexact classifications. Some body regions, especially the pin bones, proved to be particularly challenging for scoring due to difficulties in assessing them. All the more, the inclusion

  12. Absorbing Boundary Conditions in Quantum Relativistic Mechanics for Spinless Particles Subject to a Classical Electromagnetic Field

    Science.gov (United States)

    Sater, Julien

    The theory of Artificial Boundary Conditions described by Antoine et al. [2,4-6] for the Schrodinger equation is applied to the Klein-Gordon (KG) in two-dimensions (2-D) for spinless particles subject to electromagnetic fields. We begin by providing definitions for a basic understanding of the theory of operators, differential geometry and wave front sets needed to discuss the factorization theorem thanks to Nirenberg and Hormander [14, 16]. The laser-free Klein-Gordon equation in 1-D is then discussed, followed by the case including electrodynamics potentials, concluding with the KG equation in 2-D space with electrodynamics potentials. We then consider numerical simulations of the laser-particle KG equation, which includes a brief analysis of a finite difference scheme. The conclusion integrates a discussion of the numerical results, the successful completion of the objective set forth, a declaration of the unanswered encountered questions and a suggestion of subjects for further research.

  13. Classicality condition on a system observable in a quantum measurement and a relative-entropy conservation law

    Science.gov (United States)

    Kuramochi, Yui; Ueda, Masahito

    2015-03-01

    We consider the information flow on a system observable X corresponding to a positive-operator-valued measure under a quantum measurement process Y described by a completely positive instrument from the viewpoint of the relative entropy. We establish a sufficient condition for the relative-entropy conservation law which states that the average decrease in the relative entropy of the system observable X equals the relative entropy of the measurement outcome of Y , i.e., the information gain due to measurement. This sufficient condition is interpreted as an assumption of classicality in the sense that there exists a sufficient statistic in a joint successive measurement of Y followed by X such that the probability distribution of the statistic coincides with that of a single measurement of X for the premeasurement state. We show that in the case when X is a discrete projection-valued measure and Y is discrete, the classicality condition is equivalent to the relative-entropy conservation for arbitrary states. The general theory on the relative-entropy conservation is applied to typical quantum measurement models, namely, quantum nondemolition measurement, destructive sharp measurements on two-level systems, a photon counting, a quantum counting, homodyne and heterodyne measurements. These examples except for the nondemolition and photon-counting measurements do not satisfy the known Shannon-entropy conservation law proposed by Ban [M. Ban, J. Phys. A: Math. Gen. 32, 1643 (1999), 10.1088/0305-4470/32/9/012], implying that our approach based on the relative entropy is applicable to a wider class of quantum measurements.

  14. Understanding the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions

    Science.gov (United States)

    Dahms, Rainer N.

    2016-04-01

    A generalized framework for multi-component liquid injections is presented to understand and predict the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions. The analysis focuses on the thermodynamic structure and the immiscibility state of representative gas-liquid interfaces. The most modern form of Helmholtz energy mixture state equation is utilized which exhibits a unique and physically consistent behavior over the entire two-phase regime of fluid densities. It is combined with generalized models for non-linear gradient theory and for liquid injections to quantify multi-component two-phase interface structures in global thermal equilibrium. Then, the Helmholtz free energy is minimized which determines the interfacial species distribution as a consequence. This minimal free energy state is demonstrated to validate the underlying assumptions of classic two-phase theory and spray atomization. However, under certain engine-relevant conditions for which corroborating experimental data are presented, this requirement for interfacial thermal equilibrium becomes unsustainable. A rigorously derived probability density function quantifies the ability of the interface to develop internal spatial temperature gradients in the presence of significant temperature differences between injected liquid and ambient gas. Then, the interface can no longer be viewed as an isolated system at minimal free energy. Instead, the interfacial dynamics become intimately connected to those of the separated homogeneous phases. Hence, the interface transitions toward a state in local equilibrium whereupon it becomes a dense-fluid mixing layer. A new conceptual view of a transitional liquid injection process emerges from a transition time scale analysis. Close to the nozzle exit, the two-phase interface still remains largely intact and more classic two-phase processes prevail as a consequence. Further downstream, however, the transition to dense-fluid mixing

  15. Understanding the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dahms, Rainer N., E-mail: Rndahms@sandia.gov [Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551 (United States)

    2016-04-15

    A generalized framework for multi-component liquid injections is presented to understand and predict the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions. The analysis focuses on the thermodynamic structure and the immiscibility state of representative gas-liquid interfaces. The most modern form of Helmholtz energy mixture state equation is utilized which exhibits a unique and physically consistent behavior over the entire two-phase regime of fluid densities. It is combined with generalized models for non-linear gradient theory and for liquid injections to quantify multi-component two-phase interface structures in global thermal equilibrium. Then, the Helmholtz free energy is minimized which determines the interfacial species distribution as a consequence. This minimal free energy state is demonstrated to validate the underlying assumptions of classic two-phase theory and spray atomization. However, under certain engine-relevant conditions for which corroborating experimental data are presented, this requirement for interfacial thermal equilibrium becomes unsustainable. A rigorously derived probability density function quantifies the ability of the interface to develop internal spatial temperature gradients in the presence of significant temperature differences between injected liquid and ambient gas. Then, the interface can no longer be viewed as an isolated system at minimal free energy. Instead, the interfacial dynamics become intimately connected to those of the separated homogeneous phases. Hence, the interface transitions toward a state in local equilibrium whereupon it becomes a dense-fluid mixing layer. A new conceptual view of a transitional liquid injection process emerges from a transition time scale analysis. Close to the nozzle exit, the two-phase interface still remains largely intact and more classic two-phase processes prevail as a consequence. Further downstream, however, the transition to dense-fluid mixing

  16. Classic conditioning and dysfunctional cognitions in patients with panic disorder and agoraphobia treated with an implantable cardioverter/defibrillator.

    Science.gov (United States)

    Godemann, F; Ahrens, B; Behrens, S; Berthold, R; Gandor, C; Lampe, F; Linden, M

    2001-01-01

    A model for the development of anxiety disorders (panic disorder with or without agoraphobia) is needed. Patients with an implantable cardioverter/defibrillator (ICD) are exposed to repeated electric shocks. If the theory of anxiety development by aversive classic conditioning processes is valid, these repeated shocks should lead to an increased risk of anxiety disorders. To study this hypothesis, we retrospectively studied 72 patients after implantation of an automatic ICD. Patients were assessed with the semistructured Diagnostic Interview of Psychiatric Disease 1 to 6 years after implantation of an automatic ICD. Panic disorder and/or agoraphobia was diagnosed in patients who fulfilled all DSM-III-R criteria for those conditions. Anxiety disorder developed in 15.9% of patients after ICD implantation. This was significantly related to the frequency of repeated defibrillation (shocks) to stop malignant ventricular arrhythmias. Dysfunctional cognitions are an additional vulnerability factor. The data support both the conditioning hypothesis and the cognitive model of anxiety development. These findings suggest that ICD patients are an appropriate risk population for a prospective study of the development of anxiety disorders.

  17. Model-Driven Analysis of Eyeblink Classical Conditioning Reveals the Underlying Structure of Cerebellar Plasticity and Neuronal Activity.

    Science.gov (United States)

    Antonietti, Alberto; Casellato, Claudia; D'Angelo, Egidio; Pedrocchi, Alessandra

    The cerebellum plays a critical role in sensorimotor control. However, how the specific circuits and plastic mechanisms of the cerebellum are engaged in closed-loop processing is still unclear. We developed an artificial sensorimotor control system embedding a detailed spiking cerebellar microcircuit with three bidirectional plasticity sites. This proved able to reproduce a cerebellar-driven associative paradigm, the eyeblink classical conditioning (EBCC), in which a precise time relationship between an unconditioned stimulus (US) and a conditioned stimulus (CS) is established. We challenged the spiking model to fit an experimental data set from human subjects. Two subsequent sessions of EBCC acquisition and extinction were recorded and transcranial magnetic stimulation (TMS) was applied on the cerebellum to alter circuit function and plasticity. Evolutionary algorithms were used to find the near-optimal model parameters to reproduce the behaviors of subjects in the different sessions of the protocol. The main finding is that the optimized cerebellar model was able to learn to anticipate (predict) conditioned responses with accurate timing and success rate, demonstrating fast acquisition, memory stabilization, rapid extinction, and faster reacquisition as in EBCC in humans. The firing of Purkinje cells (PCs) and deep cerebellar nuclei (DCN) changed during learning under the control of synaptic plasticity, which evolved at different rates, with a faster acquisition in the cerebellar cortex than in DCN synapses. Eventually, a reduced PC activity released DCN discharge just after the CS, precisely anticipating the US and causing the eyeblink. Moreover, a specific alteration in cortical plasticity explained the EBCC changes induced by cerebellar TMS in humans. In this paper, for the first time, it is shown how closed-loop simulations, using detailed cerebellar microcircuit models, can be successfully used to fit real experimental data sets. Thus, the changes of the

  18. The effects of feeding unpredictability and classical conditioning on pre-release training of white-lipped peccary (Mammalia, Tayassuidae.

    Directory of Open Access Journals (Sweden)

    Selene S C Nogueira

    Full Text Available Some authors have suggested that environmental unpredictability, accompanied by some sort of signal for behavioral conditioning, can boost activity or foster exploratory behavior, which may increase post-release success in re-introduction programs. Thus, using white-lipped peccary (Tayassu pecari, a vulnerable Neotropical species, as a model, we evaluated an unpredictable feeding schedule. Associating this with the effect of classical conditioning on behavioral activities, we assessed the inclusion of this approach in pre-release training protocols. The experimental design comprised predictable feeding phases (control phases: C1, C2 and C3 and unpredictable feeding phases (U1- signaled and U2- non-signaled. The animals explored more during the signaled and non-signaled unpredictable phases and during the second control phase (C2 than during the other two predictable phases (C1 and C3. The peccaries also spent less time feeding during the signaled unpredictable phase (U1 and the following control phase (C2 than during the other phases. Moreover, they spent more time in aggressive encounters during U1 than the other experimental phases. However, the animals did not show differences in the time they spent on affiliative interactions or in the body weight change during the different phases. The signaled unpredictability, besides improving foraging behavior, showing a prolonged effect on the next control phase (C2, also increased the competition for food. The signaled feeding unpredictability schedule, mimicking wild conditions by eliciting the expression of naturalistic behaviors in pre-release training, may be essential to fully prepare them for survival in the wild.

  19. The effects of feeding unpredictability and classical conditioning on pre-release training of white-lipped peccary (Mammalia, Tayassuidae).

    Science.gov (United States)

    Nogueira, Selene S C; Abreu, Shauana A; Peregrino, Helderes; Nogueira-Filho, Sérgio L G

    2014-01-01

    Some authors have suggested that environmental unpredictability, accompanied by some sort of signal for behavioral conditioning, can boost activity or foster exploratory behavior, which may increase post-release success in re-introduction programs. Thus, using white-lipped peccary (Tayassu pecari), a vulnerable Neotropical species, as a model, we evaluated an unpredictable feeding schedule. Associating this with the effect of classical conditioning on behavioral activities, we assessed the inclusion of this approach in pre-release training protocols. The experimental design comprised predictable feeding phases (control phases: C1, C2 and C3) and unpredictable feeding phases (U1- signaled and U2- non-signaled). The animals explored more during the signaled and non-signaled unpredictable phases and during the second control phase (C2) than during the other two predictable phases (C1 and C3). The peccaries also spent less time feeding during the signaled unpredictable phase (U1) and the following control phase (C2) than during the other phases. Moreover, they spent more time in aggressive encounters during U1 than the other experimental phases. However, the animals did not show differences in the time they spent on affiliative interactions or in the body weight change during the different phases. The signaled unpredictability, besides improving foraging behavior, showing a prolonged effect on the next control phase (C2), also increased the competition for food. The signaled feeding unpredictability schedule, mimicking wild conditions by eliciting the expression of naturalistic behaviors in pre-release training, may be essential to fully prepare them for survival in the wild.

  20. Properties of a planar electric double layer under extreme conditions investigated by classical density functional theory and Monte Carlo simulations.

    Science.gov (United States)

    Zhou, Shiqi; Lamperski, Stanisław; Zydorczak, Maria

    2014-08-14

    Monte Carlo (MC) simulation and classical density functional theory (DFT) results are reported for the structural and electrostatic properties of a planar electric double layer containing ions having highly asymmetric diameters or valencies under extreme concentration condition. In the applied DFT, for the excess free energy contribution due to the hard sphere repulsion, a recently elaborated extended form of the fundamental measure functional is used, and coupling of Coulombic and short range hard-sphere repulsion is described by a traditional second-order functional perturbation expansion approximation. Comparison between the MC and DFT results indicates that validity interval of the traditional DFT approximation expands to high ion valences running up to 3 and size asymmetry high up to diameter ratio of 4 whether the high valence ions or the large size ion are co- or counter-ions; and to a high bulk electrolyte concentration being close to the upper limit of the electrolyte mole concentration the MC simulation can deal with well. The DFT accuracy dependence on the ion parameters can be self-consistently explained using arguments of liquid state theory, and new EDL phenomena such as overscreening effect due to monovalent counter-ions, extreme layering effect of counter-ions, and appearance of a depletion layer with almost no counter- and co-ions are observed.

  1. Ion association in concentrated NaCl brines from ambient to supercritical conditions: results from classical molecular dynamics simulations

    Directory of Open Access Journals (Sweden)

    Collings Matthew D

    2002-11-01

    Full Text Available Highly concentrated NaCl brines are important geothermal fluids; chloride complexation of metals in such brines increases the solubility of minerals and plays a fundamental role in the genesis of hydrothermal ore deposits. There is experimental evidence that the molecular nature of the NaCl–water system changes over the pressure–temperature range of the Earth's crust. A transition of concentrated NaCl–H2O brines to a "hydrous molten salt" at high P and T has been argued to stabilize an aqueous fluid phase in the deep crust. In this work, we have done molecular dynamic simulations using classical potentials to determine the nature of concentrated (0.5–16 m NaCl–water mixtures under ambient (25°C, 1 bar, hydrothermal (325°C, 1 kbar and deep crustal (625°C, 15 kbar conditions. We used the well-established SPCE model for water together with the Smith and Dang Lennard-Jones potentials for the ions (J. Chem. Phys., 1994, 100, 3757. With increasing temperature at 1 kbar, the dielectric constant of water decreases to give extensive ion-association and the formation of polyatomic (NanClmn-m clusters in addition to simple NaCl ion pairs. Large polyatomic (NanClmn-m clusters resemble what would be expected in a hydrous NaCl melt in which water and NaCl were completely miscible. Although ion association decreases with pressure, temperatures of 625°C are not enough to overcome pressures of 15 kbar; consequently, there is still enhanced Na–Cl association in brines under deep crustal conditions.

  2. Scattering of H(D) from LiF(1 0 0) under fast grazing incidence conditions: To what extent is classical dynamics a useful tool?

    Energy Technology Data Exchange (ETDEWEB)

    Muzas, A.S. [Departamento de Química Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Martín, F. [Departamento de Química Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-nanociencia), Cantoblanco, 28049 Madrid (Spain); Díaz, C., E-mail: cristina.diaz@uam.es [Departamento de Química Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid (Spain)

    2015-07-01

    Diffraction experiments of atoms and molecules under fast grazing incidence conditions have opened a new field in surface science. This experimental effort calls for complementary theoretical studies, which would allow a detailed analysis of experimental data. Here, we have analyzed the ability of classical dynamics simulations to reproduce experimental results. To perform this study, a DFT (density functional theory) based potential energy surface, describing the interaction between a H atom and a LiF(1 0 0) surface, has been computed. Diffraction probabilities have been simulated by means of a classical binning method. Our results have been found to be in qualitative good agreement with recent experimental measurements.

  3. Persistent Associative Plasticity at an Identified Synapse Underlying Classical Conditioning Becomes Labile with Short-Term Homosynaptic Activation.

    Science.gov (United States)

    Hu, Jiangyuan; Schacher, Samuel

    2015-12-09

    Synapses express different forms of plasticity that contribute to different forms of memory, and both memory and plasticity can become labile after reactivation. We previously reported that a persistent form of nonassociative long-term facilitation (PNA-LTF) of the sensorimotor synapses in Aplysia californica, a cellular analog of long-term sensitization, became labile with short-term heterosynaptic reactivation and reversed when the reactivation was followed by incubation with the protein synthesis inhibitor rapamycin. Here we examined the reciprocal impact of different forms of short-term plasticity (reactivations) on a persistent form of associative long-term facilitation (PA-LTF), a cellular analog of classical conditioning, which was expressed at Aplysia sensorimotor synapses when a tetanic stimulation of the sensory neurons was paired with a brief application of serotonin on 2 consecutive days. The expression of short-term homosynaptic plasticity [post-tetanic potentiation or homosynaptic depression (HSD)], or short-term heterosynaptic plasticity [serotonin-induced facilitation or neuropeptide Phe-Met-Arg-Phe-NH2 (FMRFa)-induced depression], at synapses expressing PA-LTF did not affect the maintenance of PA-LTF. The kinetics of HSD was attenuated at synapses expressing PA-LTF, which required activation of protein kinase C (PKC). Both PA-LTF and the attenuated kinetics of HSD were reversed by either a transient blockade of PKC activity or a homosynaptic, but not heterosynaptic, reactivation when paired with rapamycin. These results indicate that two different forms of persistent synaptic plasticity, PA-LTF and PNA-LTF, expressed at the same synapse become labile when reactivated by different stimuli. Activity-dependent changes in neural circuits mediate long-term memories. Some forms of long-term memories become labile and can be reversed with specific types of reactivations, but the mechanism is complex. At the cellular level, reactivations that induce a

  4. Classical antiparticles

    International Nuclear Information System (INIS)

    Costella, J.P.; McKellar, B.H.J.; Rawlinson, A.A.

    1997-03-01

    We review how antiparticles may be introduced in classical relativistic mechanics, and emphasize that many of their paradoxical properties can be more transparently understood in the classical than in the quantum domain. (authors)

  5. Odor information transfer in the stingless bee Melipona quadrifasciata: effect of in-hive experiences on classical conditioning of proboscis extension.

    Science.gov (United States)

    Mc Cabe, Sofía I; Farina, Walter M

    2009-02-01

    A recent study showed that the stingless bee Melipona quadrifasciata could learn to discriminate odors in a classical conditioning of proboscis extension response (PER). Here we used this protocol to investigate the ability of these bees to use olfactory information obtained within the colony in an experimental context: the PER paradigm. We compared their success in solving a classical differential conditioning depending on the previous olfactory experiences received inside the nest. We found that M. quadrifasciata bees are capable of transferring the food-odor information acquired in the colony to a differential conditioning in the PER paradigm. Bees attained higher discrimination levels when they had previously encountered the rewarded odor associated to food inside the hive. The increase in the discrimination levels, however, was in some cases unspecific to the odor used indicating a certain degree of generalization. The influence of the food scent offered at a field feeder 24 h before the classical conditioning could also be seen in the discrimination attained by the foragers in the PER setup, detecting the presence of long-term memory. Moreover, the improved performance of recruited bees in the PER paradigm suggests the occurrence of social learning of nectar scents inside the stingless bees' hives.

  6. N-methyl-D-aspartate receptor antagonist MK-801 impairs learning but not memory fixation or expression of classical fear conditioning in goldfish (Carassius auratus).

    Science.gov (United States)

    Xu, X; Davis, R E

    1992-04-01

    The amnestic effects of the noncompetitive antagonist MK-801 on visually mediated, classic fear conditioning in goldfish (Carassius auratus) was examined in 5 experiments. MK-801 was administered 30 min before the training session on Day 1 to look for anterograde amnestic effects, immediately after training to look for retrograde amnestic effects, and before the training or test session, or both, to look for state-dependence effects. The results showed that MK-801 produced anterograde amnesia at doses that did not produce retrograde amnesia or state dependency and did not impair the expression of conditioned or unconditioned branchial suppression responses (BSRs) to the conditioned stimulus. The results indicate that MK-801 disrupts the mechanism of learning of the conditioned stimulus-unconditioned stimulus relation. Evidence is also presented that the learning processes that are disrupted by MK-801 occur during the initial stage of BSR conditioning.

  7. On the initial conditions and solutions of the semi-classical Einstein equations in a cosmological scenario

    Energy Technology Data Exchange (ETDEWEB)

    Pinamonti, Nicola [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2010-01-15

    In this paper we discuss the backreaction of a massive quantum scalar field on the curvature, the latter treated as a classical field. Furthermore, we deal with this problem in the realm of cosmological spacetime by analyzing the Einstein equations in a semiclassical fashion. More precisely, we show that, at least on small intervals of time, solutions for this interacting system exist. This result is achieved furnishing an iteration scheme and showing that it converges in the appropriate Banach space. Moreover, we show that the quantum states with good ultraviolet behavior (Hadamard property) used in order to obtain the backreaction will be completely individuated by their form on the initial surface if chosen to be lightlike. On large intervals of time the situation is more complicated but, if the spacetime is expanding, we show that the end limiting point of the evolution does not depend strongly on the quantum state, because, in this limit, the expectation values of the matter fields responsible for the backreaction do not depend on the particular homogeneous Hadamard state at all. Finally, we comment on the interpretation of the semiclassical Einstein equations for this kind of problems. Although the fluctuations of the expectation values of pointlike fields diverge, if the spacetime and the quantum state have a large spatial symmetry and if we consider the smeared fields on regions of large spatial volume, they tend to vanish. Assuming this point of view the semiclassical Einstein equations become more reliable. (orig.)

  8. On the initial conditions and solutions of the semi-classical Einstein equations in a cosmological scenario

    International Nuclear Information System (INIS)

    Pinamonti, Nicola

    2010-01-01

    In this paper we discuss the backreaction of a massive quantum scalar field on the curvature, the latter treated as a classical field. Furthermore, we deal with this problem in the realm of cosmological spacetime by analyzing the Einstein equations in a semiclassical fashion. More precisely, we show that, at least on small intervals of time, solutions for this interacting system exist. This result is achieved furnishing an iteration scheme and showing that it converges in the appropriate Banach space. Moreover, we show that the quantum states with good ultraviolet behavior (Hadamard property) used in order to obtain the backreaction will be completely individuated by their form on the initial surface if chosen to be lightlike. On large intervals of time the situation is more complicated but, if the spacetime is expanding, we show that the end limiting point of the evolution does not depend strongly on the quantum state, because, in this limit, the expectation values of the matter fields responsible for the backreaction do not depend on the particular homogeneous Hadamard state at all. Finally, we comment on the interpretation of the semiclassical Einstein equations for this kind of problems. Although the fluctuations of the expectation values of pointlike fields diverge, if the spacetime and the quantum state have a large spatial symmetry and if we consider the smeared fields on regions of large spatial volume, they tend to vanish. Assuming this point of view the semiclassical Einstein equations become more reliable. (orig.)

  9. [Testing of the effect of classic conditioning stimuli in human experiment by means of the transfer of control paradigm].

    Science.gov (United States)

    Wolter, J

    1999-01-01

    Pavlovian conditioning in animals is often evaluated by means of transfer of control experiments. With human subjects, however, only very few studies have been conducted and the outcomes were often not in accordance with theoretical explanations based on studies with animals. A theoretical framework is presented that tries to integrate the results of the human conditioning paradigm and the animal conditioning paradigm as well, with reference to the well-known Yerkes-Dodson law. The experimental study with human subjects (N = 24) confirmed the predictions out of this framework, when a procedure similar to animal research is applied.

  10. Behavioral determination of stimulus pair discrimination of auditory acoustic and electrical stimuli using a classical conditioning and heart-rate approach.

    Science.gov (United States)

    Morgan, Simeon J; Paolini, Antonio G

    2012-06-06

    Acute animal preparations have been used in research prospectively investigating electrode designs and stimulation techniques for integration into neural auditory prostheses, such as auditory brainstem implants and auditory midbrain implants. While acute experiments can give initial insight to the effectiveness of the implant, testing the chronically implanted and awake animals provides the advantage of examining the psychophysical properties of the sensations induced using implanted devices. Several techniques such as reward-based operant conditioning, conditioned avoidance, or classical fear conditioning have been used to provide behavioral confirmation of detection of a relevant stimulus attribute. Selection of a technique involves balancing aspects including time efficiency (often poor in reward-based approaches), the ability to test a plurality of stimulus attributes simultaneously (limited in conditioned avoidance), and measure reliability of repeated stimuli (a potential constraint when physiological measures are employed). Here, a classical fear conditioning behavioral method is presented which may be used to simultaneously test both detection of a stimulus, and discrimination between two stimuli. Heart-rate is used as a measure of fear response, which reduces or eliminates the requirement for time-consuming video coding for freeze behaviour or other such measures (although such measures could be included to provide convergent evidence). Animals were conditioned using these techniques in three 2-hour conditioning sessions, each providing 48 stimulus trials. Subsequent 48-trial testing sessions were then used to test for detection of each stimulus in presented pairs, and test discrimination between the member stimuli of each pair. This behavioral method is presented in the context of its utilisation in auditory prosthetic research. The implantation of electrocardiogram telemetry devices is shown. Subsequent implantation of brain electrodes into the Cochlear

  11. Classical mechanics

    CERN Document Server

    Benacquista, Matthew J

    2018-01-01

    This textbook provides an introduction to classical mechanics at a level intermediate between the typical undergraduate and advanced graduate level. This text describes the background and tools for use in the fields of modern physics, such as quantum mechanics, astrophysics, particle physics, and relativity. Students who have had basic undergraduate classical mechanics or who have a good understanding of the mathematical methods of physics will benefit from this book.

  12. An embodied biologically constrained model of foraging: from classical and operant conditioning to adaptive real-world behavior in DAC-X.

    Science.gov (United States)

    Maffei, Giovanni; Santos-Pata, Diogo; Marcos, Encarni; Sánchez-Fibla, Marti; Verschure, Paul F M J

    2015-12-01

    Animals successfully forage within new environments by learning, simulating and adapting to their surroundings. The functions behind such goal-oriented behavior can be decomposed into 5 top-level objectives: 'how', 'why', 'what', 'where', 'when' (H4W). The paradigms of classical and operant conditioning describe some of the behavioral aspects found in foraging. However, it remains unclear how the organization of their underlying neural principles account for these complex behaviors. We address this problem from the perspective of the Distributed Adaptive Control theory of mind and brain (DAC) that interprets these two paradigms as expressing properties of core functional subsystems of a layered architecture. In particular, we propose DAC-X, a novel cognitive architecture that unifies the theoretical principles of DAC with biologically constrained computational models of several areas of the mammalian brain. DAC-X supports complex foraging strategies through the progressive acquisition, retention and expression of task-dependent information and associated shaping of action, from exploration to goal-oriented deliberation. We benchmark DAC-X using a robot-based hoarding task including the main perceptual and cognitive aspects of animal foraging. We show that efficient goal-oriented behavior results from the interaction of parallel learning mechanisms accounting for motor adaptation, spatial encoding and decision-making. Together, our results suggest that the H4W problem can be solved by DAC-X building on the insights from the study of classical and operant conditioning. Finally, we discuss the advantages and limitations of the proposed biologically constrained and embodied approach towards the study of cognition and the relation of DAC-X to other cognitive architectures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Classic experiments

    CERN Multimedia

    CERN. Geneva; Franklin, M

    2001-01-01

    These will be a set of lectures on classic particle physics experiments, with emphasis on how the emasurements are made. I will discuss experiments made to measure the electric charge distribution of particles, to measure the symmetries of the weak decays, to measure the magnetic moment of the muon. As well as experiments performed which discovered new particles or resonances, like the tAU2and the J/Psi. The coverage will be general and should be understandable to someone knowing little particle physics.

  14. Classical models for Regge trajectories

    International Nuclear Information System (INIS)

    Biedenharn, L.C.; Van Dam, H.; Marmo, G.; Morandi, G.; Mukunda, N.; Samuel, J.; Sudarshan, E.C.G.

    1987-01-01

    Two classical models for particles with internal structure and which describe Regge trajectories are developed. The remarkable geometric and other properties of the two internal spaces are highlighted. It is shown that the conditions of positive time-like four-velocity and energy momentum for the classical system imply strong and physically reasonable conditions on the Regge mass-spin relationship

  15. Classical tachyons

    International Nuclear Information System (INIS)

    Recami, E.

    1984-01-01

    A review of tachyons, with particular attention to their classical theory, is presented. The extension of Special Relativity to tachyons in two dimensional is first presented, an elegant model-theory which allows a better understanding also of ordinary physics. Then, the results are extended to the four-dimensional case (particular on tachyon mechanics) that can be derived without assuming the existence of Super-luminal reference-frames. Localizability and the unexpected apparent shape of tachyonic objects are discussed, and it is shown (on the basis of tachyon kinematics) how to solve the common causal paradoxes. In connection with General Relativity, particularly the problem of the apparent superluminal expansions in astrophysics is reviewed. The problem (still open) of the extension of relativitic theories to tachyons in four dimensions is tackled, and the electromagnetic theory of tachyons, a topic that can be relevant also for the experimental side, is reviewed. (Author) [pt

  16. Classical entropy generation analysis in cooled homogenous and functionally graded material slabs with variation of internal heat generation with temperature, and convective–radiative boundary conditions

    International Nuclear Information System (INIS)

    Torabi, Mohsen; Zhang, Kaili

    2014-01-01

    This article investigates the classical entropy generation in cooled slabs. Two types of materials are assumed for the slab: homogeneous material and FGM (functionally graded material). For the homogeneous material, the thermal conductivity is assumed to be a linear function of temperature, while for the FGM slab the thermal conductivity is modeled to vary in accordance with the rule of mixtures. The boundary conditions are assumed to be convective and radiative concurrently, and the internal heat generation of the slab is a linear function of temperature. Using the DTM (differential transformation method) and resultant temperature fields from the DTM, the local and total entropy generation rates within slabs are derived. The effects of physically applicable parameters such as the thermal conductivity parameter for the homogenous slab, β, the thermal conductivity parameter for the FGM slab, γ, gradient index, j, internal heat generation parameter, Q, Biot number at the right side, Nc 2 , conduction–radiation parameter, Nr 2 , dimensionless convection sink temperature, δ, and dimensionless radiation sink temperature, η, on the local and total entropy generation rates are illustrated and explained. The results demonstrate that considering temperature- or coordinate-dependent thermal conductivity and radiation heat transfer at both sides of the slab have great effects on the entropy generation. - Highlights: • The paper investigates entropy generation in a slab due to heat generation and convective–radiative boundary conditions. • Both homogeneous material and FGM (functionally graded material) were considered. • The calculations are carried out using the differential transformation method which is a well-tested analytical technique

  17. Classic romance in electronic arrangement

    Directory of Open Access Journals (Sweden)

    Kizin M.M.

    2017-03-01

    Full Text Available this article analyses the transformation of the performing arts of classical romance in the terms of electronic sound and performance via electronic sounds arrangements. The author focuses on the problem of synthesis of electronic sound arrangements and classical romance, offering to acquire the skills of the creative process in constantly changing conditions of live performances.

  18. Generalized classical mechanics

    International Nuclear Information System (INIS)

    De Leon, M.; Rodrigues, P.R.

    1985-01-01

    The geometrical study of Classical Mechanics shows that the Hamiltonian (respectively, Lagrangian) formalism may be characterized by intrinsical structures canonically defined on the cotangent (respectively, tangent) bundle of a differentiable manifold. A generalized formalism for higher order Lagrangians is developed. Then the Hamiltonian form of the theory is developed. Finally, the Poisson brackets are defined and the conditions under which a mapping is a canonical transformation are studied. The Hamilton-Jacobi equation for this type of mechanics is established. (Auth.)

  19. Classicality of quantum information processing

    International Nuclear Information System (INIS)

    Poulin, David

    2002-01-01

    The ultimate goal of the classicality program is to quantify the amount of quantumness of certain processes. Here, classicality is studied for a restricted type of process: quantum information processing (QIP). Under special conditions, one can force some qubits of a quantum computer into a classical state without affecting the outcome of the computation. The minimal set of conditions is described and its structure is studied. Some implications of this formalism are the increase of noise robustness, a proof of the quantumness of mixed state quantum computing, and a step forward in understanding the very foundation of QIP

  20. Numerical stability of finite difference algorithms for electrochemical kinetic simulations: Matrix stability analysis of the classic explicit, fully implicit and Crank-Nicolson methods and typical problems involving mixed boundary conditions

    DEFF Research Database (Denmark)

    Bieniasz, Leslaw K.; Østerby, Ole; Britz, Dieter

    1995-01-01

    The stepwise numerical stability of the classic explicit, fully implicit and Crank-Nicolson finite difference discretizations of example diffusional initial boundary value problems from electrochemical kinetics has been investigated using the matrix method of stability analysis. Special attention...... has been paid to the effect of the discretization of the mixed, linear boundary condition with time-dependent coefficients on stability, assuming the two-point forward-difference approximations for the gradient at the left boundary (electrode). Under accepted assumptions one obtains the usual...... stability criteria for the classic explicit and fully implicit methods. The Crank-Nicolson method turns out to be only conditionally stable in contrast to the current thought regarding this method....

  1. Quantum mechanics from classical statistics

    International Nuclear Information System (INIS)

    Wetterich, C.

    2010-01-01

    Quantum mechanics can emerge from classical statistics. A typical quantum system describes an isolated subsystem of a classical statistical ensemble with infinitely many classical states. The state of this subsystem can be characterized by only a few probabilistic observables. Their expectation values define a density matrix if they obey a 'purity constraint'. Then all the usual laws of quantum mechanics follow, including Heisenberg's uncertainty relation, entanglement and a violation of Bell's inequalities. No concepts beyond classical statistics are needed for quantum physics - the differences are only apparent and result from the particularities of those classical statistical systems which admit a quantum mechanical description. Born's rule for quantum mechanical probabilities follows from the probability concept for a classical statistical ensemble. In particular, we show how the non-commuting properties of quantum operators are associated to the use of conditional probabilities within the classical system, and how a unitary time evolution reflects the isolation of the subsystem. As an illustration, we discuss a classical statistical implementation of a quantum computer.

  2. Classical limit for quantum mechanical energy eigenfunctions

    International Nuclear Information System (INIS)

    Sen, D.; Sengupta, S.

    2004-01-01

    The classical limit problem is discussed for the quantum mechanical energy eigenfunctions using the Wentzel-Kramers-Brillouin approximation, free from the problem at the classical turning points. A proper perspective of the whole issue is sought to appreciate the significance of the discussion. It is observed that for bound states in arbitrary potential, appropriate limiting condition is definable in terms of a dimensionless classical limit parameter leading smoothly to all observable classical results. Most important results are the emergence of classical phase space, keeping the observable distribution functions non-zero only within the so-called classical region at the limit point and resolution of some well-known paradoxes. (author)

  3. Classical algebraic chromodynamics

    International Nuclear Information System (INIS)

    Adler, S.L.

    1978-01-01

    I develop an extension of the usual equations of SU(n) chromodynamics which permits the consistent introduction of classical, noncommuting quark source charges. The extension involves adding a singlet gluon, giving a U(n) -based theory with outer product P/sup a/(u,v) = (1/2)(d/sup a/bc + if/sup a/bc)(u/sup b/v/sup c/ - v/sup b/u/sup c/) which obeys the Jacobi identity, inner product S (u,v) = (1/2)(u/sup a/v/sup a/ + v/sup a/u/sup a/), and with the n 2 gluon fields elevated to algebraic fields over the quark color charge C* algebra. I show that provided the color charge algebra satisfies the condition S (P (u,v),w) = S (u,P (v,w)) for all elements u,v,w of the algebra, all the standard derivations of Lagrangian chromodynamics continue to hold in the algebraic chromodynamics case. I analyze in detail the color charge algebra in the two-particle (qq, qq-bar, q-barq-bar) case and show that the above consistency condition is satisfied for the following unique (and, interestingly, asymmetric) choice of quark and antiquark charges: Q/sup a//sub q/ = xi/sup a/, Q/sup a//sub q/ = xi-bar/sup a/ + delta/sup a/0(n/2)/sup 3/2/1, with xi/sup a/xi/sup b/ = (1/2)(d/sup a/bc + if/sup a/bc) xi/sup c/, xi-bar/sup a/xi-bar/sup b/ = -(1/2)(d/sup a/bc - if/sup a/bc) xi-bar/sup c/. The algebraic structure of the two-particle U(n) force problem, when expressed on an appropriately diagonalized basis, leads for all n to a classical dynamics problem involving an ordinary SU(2) Yang-Mills field with uniquely specified classical source charges which are nonparallel in the color-singlet state. An explicit calculation shows that local algebraic U(n) gauge transformations lead only to a rigid global rotation of axes in the overlying classical SU(2) problem, which implies that the relative orientations of the classical source charges have physical significance

  4. J. Genet. classic 101

    Indian Academy of Sciences (India)

    Journal of Genetics, Vol. 85, No. 2, August 2006. 101. Page 2. J. Genet. classic. 102. Journal of Genetics, Vol. 85, No. 2, August 2006. Page 3. J. Genet. classic. Journal of Genetics, Vol. 85, No. 2, August 2006. 103. Page 4. J. Genet. classic. 104. Journal of Genetics, Vol. 85, No. 2, August 2006. Page 5. J. Genet. classic.

  5. J. Genet. classic 37

    Indian Academy of Sciences (India)

    Unknown

    Journal of Genetics, Vol. 84, No. 1, April 2005. 37. Page 2. J. Genet. classic. Journal of Genetics, Vol. 84, No. 1, April 2005. 38. Page 3. J. Genet. classic. Journal of Genetics, Vol. 84, No. 1, April 2005. 39. Page 4. J. Genet. classic. Journal of Genetics, Vol. 84, No. 1, April 2005. 40. Page 5. J. Genet. classic. Journal of ...

  6. A new method suitable for calculating accurately wetting temperature over a wide range of conditions: Based on the adaptation of continuation algorithm to classical DFT

    Science.gov (United States)

    Zhou, Shiqi

    2017-11-01

    A new scheme is put forward to determine the wetting temperature (Tw) by utilizing the adaptation of arc-length continuation algorithm to classical density functional theory (DFT) used originally by Frink and Salinger, and its advantages are summarized into four points: (i) the new scheme is applicable whether the wetting occurs near a planar or a non-planar surface, whereas a zero contact angle method is considered only applicable to a perfectly flat solid surface, as demonstrated previously and in this work, and essentially not fit for non-planar surface. (ii) The new scheme is devoid of an uncertainty, which plagues a pre-wetting extrapolation method and originates from an unattainability of the infinitely thick film in the theoretical calculation. (iii) The new scheme can be similarly and easily applied to extreme instances characterized by lower temperatures and/or higher surface attraction force field, which, however, can not be dealt with by the pre-wetting extrapolation method because of the pre-wetting transition being mixed with many layering transitions and the difficulty in differentiating varieties of the surface phase transitions. (iv) The new scheme still works in instance wherein the wetting transition occurs close to the bulk critical temperature; however, this case completely can not be managed by the pre-wetting extrapolation method because near the bulk critical temperature the pre-wetting region is extremely narrow, and no enough pre-wetting data are available for use of the extrapolation procedure.

  7. Overview of Classical Swine Fever (Hog Cholera, Classical Swine fever)

    Science.gov (United States)

    Classical swine fever is a contagious often fatal disease of pigs clinically characterized by high body temperature, lethargy, yellowish diarrhea, vomits and purple skin discoloration of ears, lower abdomen and legs. It was first described in the early 19th century in the USA. Later, a condition i...

  8. Effects of OEF/OIF-Related Physical and Emotional Co-Morbidities on Associative Learning: Concurrent Delay and Trace Eyeblink Classical Conditioning

    Directory of Open Access Journals (Sweden)

    Regina E. McGlinchey

    2014-03-01

    Full Text Available This study examined the performance of veterans and active duty personnel who served in Operation Enduring Freedom and/or Operation Iraqi Freedom (OEF/OIF on a basic associative learning task. Eighty-eight individuals participated in this study. All received a comprehensive clinical evaluation to determine the presence and severity of posttraumatic stress disorder (PTSD and traumatic brain injury (TBI. The eyeblink conditioning task was composed of randomly intermixed delay and trace conditioned stimulus (CS and unconditioned stimulus (US pairs (acquisition followed by a series of CS only trials (extinction. Results revealed that those with a clinical diagnosis of PTSD or a diagnosis of PTSD with comorbid mTBI acquired delay and trace conditioned responses (CRs to levels and at rates similar to a deployed control group, thus suggesting intact basic associative learning. Differential extinction impairment was observed in the two clinical groups. Acquisition of CRs for both delay and trace conditioning, as well as extinction of trace CRs, was associated with alcoholic behavior across all participants. These findings help characterize the learning and memory function of individuals with PTSD and mTBI from OEF/OIF and raise the alarming possibility that the use of alcohol in this group may lead to more significant cognitive dysfunction.

  9. J. Genet. classic 235

    Indian Academy of Sciences (India)

    Unknown

    Journal of Genetics, Vol. 83, No. 3, December 2004. 235. Page 2. J. Genet. classic. Journal of Genetics, Vol. 83, No. 3, December 2004. 236. Page 3. J. Genet. classic. Journal of Genetics, Vol. 83, No. 3, December 2004. 237. Page 4. J. Genet. classic. Journal of Genetics, Vol. 83, No. 3, December 2004. 238. Page 5 ...

  10. Psoriasis: classical and emerging comorbidities*

    Science.gov (United States)

    de Oliveira, Maria de Fátima Santos Paim; Rocha, Bruno de Oliveira; Duarte, Gleison Vieira

    2015-01-01

    Psoriasis is a chronic inflammatory systemic disease. Evidence shows an association of psoriasis with arthritis, depression, inflammatory bowel disease and cardiovascular diseases. Recently, several other comorbid conditions have been proposed as related to the chronic inflammatory status of psoriasis. The understanding of these conditions and their treatments will certainly lead to better management of the disease. The present article aims to synthesize the knowledge in the literature about the classical and emerging comorbidities related to psoriasis. PMID:25672294

  11. Metastable gravity on classical defects

    International Nuclear Information System (INIS)

    Ringeval, Christophe; Rombouts, Jan-Willem

    2005-01-01

    We discuss the realization of metastable gravity on classical defects in infinite-volume extra dimensions. In dilatonic Einstein gravity, it is found that the existence of metastable gravity on the defect core requires violation of the dominant energy condition for codimension N c =2 defects. This is illustrated with a detailed analysis of a six-dimensional hyperstring minimally coupled to dilaton gravity. We present the general conditions under which a codimension N c >2 defect admits metastable modes, and find that they differ from lower codimensional models in that, under certain conditions, they do not require violation of energy conditions to support quasilocalized gravity

  12. Classicality in quantum mechanics

    International Nuclear Information System (INIS)

    Dreyer, Olaf

    2007-01-01

    In this article we propose a solution to the measurement problem in quantum mechanics. We point out that the measurement problem can be traced to an a priori notion of classicality in the formulation of quantum mechanics. If this notion of classicality is dropped and instead classicality is defined in purely quantum mechanical terms the measurement problem can be avoided. We give such a definition of classicality. It identifies classicality as a property of large quantum system. We show how the probabilistic nature of quantum mechanics is a result of this notion of classicality. We also comment on what the implications of this view are for the search of a quantum theory of gravity

  13. Classicality in quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Dreyer, Olaf [Theoretical Physics, Blackett Laboratory, Imperial College London, London, SW7 2AZ (United Kingdom)

    2007-05-15

    In this article we propose a solution to the measurement problem in quantum mechanics. We point out that the measurement problem can be traced to an a priori notion of classicality in the formulation of quantum mechanics. If this notion of classicality is dropped and instead classicality is defined in purely quantum mechanical terms the measurement problem can be avoided. We give such a definition of classicality. It identifies classicality as a property of large quantum system. We show how the probabilistic nature of quantum mechanics is a result of this notion of classicality. We also comment on what the implications of this view are for the search of a quantum theory of gravity.

  14. Classical, Semi-classical and Quantum Noise

    CERN Document Server

    Poor, H; Scully, Marlan

    2012-01-01

    David Middleton was a towering figure of 20th Century engineering and science and one of the founders of statistical communication theory. During the second World War, the young David Middleton, working with Van Fleck, devised the notion of the matched filter, which is the most basic method used for detecting signals in noise. Over the intervening six decades, the contributions of Middleton have become classics. This collection of essays by leading scientists, engineers and colleagues of David are in his honor and reflect the wide  influence that he has had on many fields. Also included is the introduction by Middleton to his forthcoming book, which gives a wonderful view of the field of communication, its history and his own views on the field that he developed over the past 60 years. Focusing on classical noise modeling and applications, Classical, Semi-Classical and Quantum Noise includes coverage of statistical communication theory, non-stationary noise, molecular footprints, noise suppression, Quantum e...

  15. Classical spins in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Shiba, H [Tokyo Univ.; Maki, K

    1968-08-01

    It is shown that there exists a localized excited state in the energy gap in a superconductor with a classical spin. At finite concentration localized excited states around classical spins form an impurity band. The process of growth of the impurity band and its effects on observable quantities are investigated.

  16. Classic-Ada(TM)

    Science.gov (United States)

    Valley, Lois

    1989-01-01

    The SPS product, Classic-Ada, is a software tool that supports object-oriented Ada programming with powerful inheritance and dynamic binding. Object Oriented Design (OOD) is an easy, natural development paradigm, but it is not supported by Ada. Following the DOD Ada mandate, SPS developed Classic-Ada to provide a tool which supports OOD and implements code in Ada. It consists of a design language, a code generator and a toolset. As a design language, Classic-Ada supports the object-oriented principles of information hiding, data abstraction, dynamic binding, and inheritance. It also supports natural reuse and incremental development through inheritance, code factoring, and Ada, Classic-Ada, dynamic binding and static binding in the same program. Only nine new constructs were added to Ada to provide object-oriented design capabilities. The Classic-Ada code generator translates user application code into fully compliant, ready-to-run, standard Ada. The Classic-Ada toolset is fully supported by SPS and consists of an object generator, a builder, a dictionary manager, and a reporter. Demonstrations of Classic-Ada and the Classic-Ada Browser were given at the workshop.

  17. Fermions from classical statistics

    International Nuclear Information System (INIS)

    Wetterich, C.

    2010-01-01

    We describe fermions in terms of a classical statistical ensemble. The states τ of this ensemble are characterized by a sequence of values one or zero or a corresponding set of two-level observables. Every classical probability distribution can be associated to a quantum state for fermions. If the time evolution of the classical probabilities p τ amounts to a rotation of the wave function q τ (t)=±√(p τ (t)), we infer the unitary time evolution of a quantum system of fermions according to a Schroedinger equation. We establish how such classical statistical ensembles can be mapped to Grassmann functional integrals. Quantum field theories for fermions arise for a suitable time evolution of classical probabilities for generalized Ising models.

  18. A Neuronal Model of Classical Conditioning.

    Science.gov (United States)

    1987-10-01

    suggests that nervous system activity can be understood in terms of two- 20. DISTRIBUTION/ AVAILABILIT Y OF ABSTRACT 21 ABSTRACT SECURITY CLASSIF ICATION...unconditionea stimuli having an external source (food and water are examples). Acquired neuronal drives, likewise, are expected to have internal...Moore, B. R. (19731. The form of the autushdpeo response with food or water reitArcers. Journal of the Experitiental Analykis uf Behavior, 20, 1b3-18

  19. Stabilization of classic and quantum systems

    International Nuclear Information System (INIS)

    Buts, V.A.

    2012-01-01

    It is shown that the mechanism of quantum whirligig can be successfully used for stabilization of classical systems. In particular, the conditions for stabilization of charged particles and radiation fluxes in plasma are found.

  20. Supersymmetric classical mechanics

    International Nuclear Information System (INIS)

    Biswas, S.N.; Soni, S.K.

    1986-01-01

    The purpose of the paper is to construct a supersymmetric Lagrangian within the framework of classical mechanics which would be regarded as a candidate for passage to supersymmetric quantum mechanics. 5 refs. (author)

  1. Mathematical physics classical mechanics

    CERN Document Server

    Knauf, Andreas

    2018-01-01

    As a limit theory of quantum mechanics, classical dynamics comprises a large variety of phenomena, from computable (integrable) to chaotic (mixing) behavior. This book presents the KAM (Kolmogorov-Arnold-Moser) theory and asymptotic completeness in classical scattering. Including a wealth of fascinating examples in physics, it offers not only an excellent selection of basic topics, but also an introduction to a number of current areas of research in the field of classical mechanics. Thanks to the didactic structure and concise appendices, the presentation is self-contained and requires only knowledge of the basic courses in mathematics. The book addresses the needs of graduate and senior undergraduate students in mathematics and physics, and of researchers interested in approaching classical mechanics from a modern point of view.

  2. Classical field approach to quantum weak measurements.

    Science.gov (United States)

    Dressel, Justin; Bliokh, Konstantin Y; Nori, Franco

    2014-03-21

    By generalizing the quantum weak measurement protocol to the case of quantum fields, we show that weak measurements probe an effective classical background field that describes the average field configuration in the spacetime region between pre- and postselection boundary conditions. The classical field is itself a weak value of the corresponding quantum field operator and satisfies equations of motion that extremize an effective action. Weak measurements perturb this effective action, producing measurable changes to the classical field dynamics. As such, weakly measured effects always correspond to an effective classical field. This general result explains why these effects appear to be robust for pre- and postselected ensembles, and why they can also be measured using classical field techniques that are not weak for individual excitations of the field.

  3. Nation and Classical Music

    DEFF Research Database (Denmark)

    Brincker, Benedikte

    The last book Anthony D. Smith wrote before he died, and which will be published in Spring 2017, has the title Nation and Classical Music. Smith had for a long time been intrigued by the intimate relationship between the nation and classical music. At the most manifest level it involves...... them into their compositions thus challenging the romantic musical style searching for an authentic national musical expression. Against the backdrop of the extensive research carried out by Anthony Smith into the relationship between the nation and classical music, the present paper seeks to add...... cultural centers. In doing this, the paper seeks to unfold how composers channeled musical inspiration embedded in cultural environments that cut across national boundaries into national musical traditions thus catering to specific national audiences. The paper is written as a tribute to a great mentor...

  4. Twisted classical Poincare algebras

    International Nuclear Information System (INIS)

    Lukierski, J.; Ruegg, H.; Tolstoy, V.N.; Nowicki, A.

    1993-11-01

    We consider the twisting of Hopf structure for classical enveloping algebra U(g), where g is the inhomogeneous rotations algebra, with explicite formulae given for D=4 Poincare algebra (g=P 4 ). The comultiplications of twisted U F (P 4 ) are obtained by conjugating primitive classical coproducts by F element of U(c)xU(c), where c denotes any Abelian subalgebra of P 4 , and the universal R-matrices for U F (P 4 ) are triangular. As an example we show that the quantum deformation of Poincare algebra recently proposed by Chaichian and Demiczev is a twisted classical Poincare algebra. The interpretation of twisted Poincare algebra as describing relativistic symmetries with clustered 2-particle states is proposed. (orig.)

  5. Emergence of quantum mechanics from classical statistics

    International Nuclear Information System (INIS)

    Wetterich, C

    2009-01-01

    The conceptual setting of quantum mechanics is subject to an ongoing debate from its beginnings until now. The consequences of the apparent differences between quantum statistics and classical statistics range from the philosophical interpretations to practical issues as quantum computing. In this note we demonstrate how quantum mechanics can emerge from classical statistical systems. We discuss conditions and circumstances for this to happen. Quantum systems describe isolated subsystems of classical statistical systems with infinitely many states. While infinitely many classical observables 'measure' properties of the subsystem and its environment, the state of the subsystem can be characterized by the expectation values of only a few probabilistic observables. They define a density matrix, and all the usual laws of quantum mechanics follow. No concepts beyond classical statistics are needed for quantum physics - the differences are only apparent and result from the particularities of those classical statistical systems which admit a quantum mechanical description. In particular, we show how the non-commuting properties of quantum operators are associated to the use of conditional probabilities within the classical system, and how a unitary time evolution reflects the isolation of the subsystem.

  6. Classical mechanics with Maxima

    CERN Document Server

    Timberlake, Todd Keene

    2016-01-01

    This book guides undergraduate students in the use of Maxima—a computer algebra system—in solving problems in classical mechanics. It functions well as a supplement to a typical classical mechanics textbook. When it comes to problems that are too difficult to solve by hand, computer algebra systems that can perform symbolic mathematical manipulations are a valuable tool. Maxima is particularly attractive in that it is open-source, multiple-platform software that students can download and install free of charge. Lessons learned and capabilities developed using Maxima are easily transferred to other, proprietary software.

  7. The CLASSIC Project

    CERN Document Server

    Iselin, F Christoph

    1996-01-01

    Exchange of data and algorithms among accelerator physics programs is difficult because of unnecessary differences in input formats and internal data structures. To alleviate these problems a C++ class library called CLASSIC (Clas Library for Accelerator System Simulation and Control) is being developed with the goal to provide standard building blocks for computer programs used in accelerator lattice structures in computer memory using a standard input language, a graphical user interface, or a programmed algorithm. It also provides simulation algorithms. These can easily be replaced by modules which communicate with the control system of the accelerator. Exchange of both data and algorithm between different programs using the CLASSIC library should present no difficulty.

  8. Learning Classical Music Club

    CERN Multimedia

    Learning Classical Music Club

    2010-01-01

    There is a new CERN Club called “Learning Classical Music at CERN”. We are aiming to give classical music lessons for different instruments (see link) for students from 5 to 100 years old. We are now ready to start our activities in the CERN barracks. We are now in the enrollment phase and hope to start lessons very soon ! Club info can be found in the list of CERN Club: http://user.web.cern.ch/user/Communication/SocialLifeActivities/Clubs/Clubs.html Salvatore Buontempo Club President

  9. The classical nova outburst

    International Nuclear Information System (INIS)

    Starrfield, S.G.

    1988-01-01

    The classical nova outburst occurs on the white dwarf component in a close binary system. Nova systems are members of the general class of cataclysmic variables and other members of the class are the Dwarf Novae, AM Her variables, Intermediate Polars, Recurrent Novae, and some of the Symbiotic variables. Although multiwavelength observations have already provided important information about all of these systems, in this review I will concentrate on the outbursts of the classical and recurrent novae and refer to other members of the class only when necessary. 140 refs., 1 tab

  10. Elementary classical hydrodynamics

    CERN Document Server

    Chirgwin, B H; Langford, W J; Maxwell, E A; Plumpton, C

    1967-01-01

    Elementary Classical Hydrodynamics deals with the fundamental principles of elementary classical hydrodynamics, with emphasis on the mechanics of inviscid fluids. Topics covered by this book include direct use of the equations of hydrodynamics, potential flows, two-dimensional fluid motion, waves in liquids, and compressible flows. Some general theorems such as Bernoulli's equation are also considered. This book is comprised of six chapters and begins by introducing the reader to the fundamental principles of fluid hydrodynamics, with emphasis on ways of studying the motion of a fluid. Basic c

  11. Classic Problems of Probability

    CERN Document Server

    Gorroochurn, Prakash

    2012-01-01

    "A great book, one that I will certainly add to my personal library."—Paul J. Nahin, Professor Emeritus of Electrical Engineering, University of New Hampshire Classic Problems of Probability presents a lively account of the most intriguing aspects of statistics. The book features a large collection of more than thirty classic probability problems which have been carefully selected for their interesting history, the way they have shaped the field, and their counterintuitive nature. From Cardano's 1564 Games of Chance to Jacob Bernoulli's 1713 Golden Theorem to Parrondo's 1996 Perplexin

  12. Can classical noise enhance quantum transmission?

    International Nuclear Information System (INIS)

    Wilde, Mark M

    2009-01-01

    A modified quantum teleportation protocol broadens the scope of the classical forbidden-interval theorems for stochastic resonance. The fidelity measures performance of quantum communication. The sender encodes the two classical bits for quantum teleportation as weak bipolar subthreshold signals and sends them over a noisy classical channel. Two forbidden-interval theorems provide a necessary and sufficient condition for the occurrence of the nonmonotone stochastic resonance effect in the fidelity of quantum teleportation. The condition is that the noise mean must fall outside a forbidden interval related to the detection threshold and signal value. An optimal amount of classical noise benefits quantum communication when the sender transmits weak signals, the receiver detects with a high threshold and the noise mean lies outside the forbidden interval. Theorems and simulations demonstrate that both finite-variance and infinite-variance noise benefit the fidelity of quantum teleportation.

  13. Classical Curriculum Design

    Science.gov (United States)

    George, Judith W.

    2009-01-01

    The article identifies some key findings in pedagogical research over recent decades, placing them within a framework of logical curriculum development and current practice in quality assurance and enhancement. Throughout, the ideas and comments are related to the practice of teaching classics in university. (Contains 1 figure and 3 notes.)

  14. Classical electromagnetic radiation

    CERN Document Server

    Heald, Mark A

    2012-01-01

    Newly corrected, this highly acclaimed text is suitable for advanced physics courses. The author presents a very accessible macroscopic view of classical electromagnetics that emphasizes integrating electromagnetic theory with physical optics. The survey follows the historical development of physics, culminating in the use of four-vector relativity to fully integrate electricity with magnetism.

  15. Classical solutions in supergravity

    International Nuclear Information System (INIS)

    Baaklini, N.S.; Ferrara, S.; Nieuwenhuizen Van, P.

    1977-06-01

    Classical solutions of supergravity are obtained by making finite global supersymmetry rotation on known solutions of the field equations of the bosonic sector. The Schwarzschild and the Reissner-Nordstoem solutions of general relativity are extended to various supergravity systems and the modification to the perihelion precession of planets is discussed

  16. Classicism and Romanticism.

    Science.gov (United States)

    Huddleston, Gregory H.

    1993-01-01

    Describes one teacher's methods for introducing to secondary English students the concepts of Classicism and Romanticism in relation to pictures of gardens, architecture, music, and literary works. Outlines how the unit leads to a writing assignment based on collected responses over time. (HB)

  17. Classical Mythology. Fourth Edition.

    Science.gov (United States)

    Morford, Mark P. O.; Lenardon, Robert J.

    Designed for students with little or no background in classical literature, this book introduces the Greek and Roman myths of creation, myths of the gods, Greek sagas and local legends, and presents contemporary theories about the myths. Drawing on Homer, Hesiod, Pindar, Vergil, and others, the book provides many translations and paraphrases of…

  18. Teaching Tomorrow's Classics.

    Science.gov (United States)

    Tighe, Mary Ann; Avinger, Charles

    1994-01-01

    Describes young adult novels that may prove to be classics of the genre. Discusses "The "Chocolate War" by Robert Cormier, "The Outsiders" by S. E. Hinton, "The Witch of Blackbird Pond" by Elizabeth George Speare, and "On Fortune's Wheel" by Cynthia Voight. (HB)

  19. Why Study Classical Languages?

    Science.gov (United States)

    Lieberman, Samuel

    This speech emphasizes the significance of living literatures and living cultures which owe a direct debt to the Romans and the Greeks from whom they can trace their origins. After commenting on typical rejoinders to the question "Why study classical languages?" and poking fun at those who advance jaded, esoteric responses, the author dispels the…

  20. Random electrodynamics: the theory of classical electrodynamics with classical electromagnetic zero-point radiation

    International Nuclear Information System (INIS)

    Boyer, T.H.

    1975-01-01

    The theory of classical electrodynamics with classical electromagnetic zero-point radiation is outlined here under the title random electrodynamics. The work represents a reanalysis of the bounds of validity of classical electron theory which should sharpen the understanding of the connections and distinctions between classical and quantum theories. The new theory of random electrodynamics is a classical electron theory involving Newton's equations for particle motion due to the Lorentz force, and Maxwell's equations for the electromagnetic fields with point particles as sources. However, the theory departs from the classical electron theory of Lorentz in that it adopts a new boundary condition on Maxwell's equations. It is assumed that the homogeneous boundary condition involves random classical electromagnetic radiation with a Lorentz-invariant spectrum, classical electromagnetic zero-point radiation. The implications of random electrodynamics for atomic structure, atomic spectra, and particle-interference effects are discussed on an order-of-magnitude or heuristic level. Some detailed mathematical connections and some merely heuristic connections are noted between random electrodynamics and quantum theory. (U.S.)

  1. Classical field theory

    CERN Document Server

    Franklin, Joel

    2017-01-01

    Classical field theory, which concerns the generation and interaction of fields, is a logical precursor to quantum field theory, and can be used to describe phenomena such as gravity and electromagnetism. Written for advanced undergraduates, and appropriate for graduate level classes, this book provides a comprehensive introduction to field theories, with a focus on their relativistic structural elements. Such structural notions enable a deeper understanding of Maxwell's equations, which lie at the heart of electromagnetism, and can also be applied to modern variants such as Chern–Simons and Born–Infeld. The structure of field theories and their physical predictions are illustrated with compelling examples, making this book perfect as a text in a dedicated field theory course, for self-study, or as a reference for those interested in classical field theory, advanced electromagnetism, or general relativity. Demonstrating a modern approach to model building, this text is also ideal for students of theoretic...

  2. Injuries in classical ballet

    Directory of Open Access Journals (Sweden)

    Adriana Coutinho de Azevedo Guimarães

    2008-06-01

    Full Text Available This study aimed to elucidate what injuries are most likely to occur due to classical ballet practice. The research used national and international bibliography. The bibliography analysis indicated that technical and esthetical demands lead to a practice of non-anatomical movements, causing the ballet dancer to suffer from a number of associated lesions. Most of the injuries are caused by technical mistakes and wrong training. Troubles in children are usually due to trying to force external rotation at hip level and to undue use of point ballet slippers. The commonest lesions are in feet and ankles, followed by knees and hips. The rarest ones are in the upper limbs. These injuries are caused by exercise excess, by repetitions always in the same side and by wrong and early use of point slippers. The study reached the conclusion that incorrect application of classical ballet technique predisposes the dancers to characteristic injuries.

  3. The classic project

    International Nuclear Information System (INIS)

    Iselin, F. Christoph

    1997-01-01

    Exchange of data and algorithms among accelerator physics programs is difficult because of unnecessary differences in input formats and internal data structures. To alleviate these problems a C++ class library called CLASSIC (Class Library for Accelerator System Simulation and Control) is being developed with the goal to provide standard building blocks for computer programs used in accelerator design. It includes modules for building accelerator lattice structures in computer memory using a standard input language, a graphical user interface, or a programmed algorithm. It also provides simulation algorithms. These can easily be replaced by modules which communicate with the control system of the accelerator. Exchange of both data and algorithm between different programs using the CLASSIC library should present no difficulty

  4. Classical Diophantine equations

    CERN Document Server

    1993-01-01

    The author had initiated a revision and translation of "Classical Diophantine Equations" prior to his death. Given the rapid advances in transcendence theory and diophantine approximation over recent years, one might fear that the present work, originally published in Russian in 1982, is mostly superseded. That is not so. A certain amount of updating had been prepared by the author himself before his untimely death. Some further revision was prepared by close colleagues. The first seven chapters provide a detailed, virtually exhaustive, discussion of the theory of lower bounds for linear forms in the logarithms of algebraic numbers and its applications to obtaining upper bounds for solutions to the eponymous classical diophantine equations. The detail may seem stark--- the author fears that the reader may react much as does the tourist on first seeing the centre Pompidou; notwithstanding that, Sprind zuk maintainsa pleasant and chatty approach, full of wise and interesting remarks. His emphases well warrant, ...

  5. Classical and statistical thermodynamics

    CERN Document Server

    Rizk, Hanna A

    2016-01-01

    This is a text book of thermodynamics for the student who seeks thorough training in science or engineering. Systematic and thorough treatment of the fundamental principles rather than presenting the large mass of facts has been stressed. The book includes some of the historical and humanistic background of thermodynamics, but without affecting the continuity of the analytical treatment. For a clearer and more profound understanding of thermodynamics this book is highly recommended. In this respect, the author believes that a sound grounding in classical thermodynamics is an essential prerequisite for the understanding of statistical thermodynamics. Such a book comprising the two wide branches of thermodynamics is in fact unprecedented. Being a written work dealing systematically with the two main branches of thermodynamics, namely classical thermodynamics and statistical thermodynamics, together with some important indexes under only one cover, this treatise is so eminently useful.

  6. Invitation to classical analysis

    CERN Document Server

    Duren, Peter

    2012-01-01

    This book gives a rigorous treatment of selected topics in classical analysis, with many applications and examples. The exposition is at the undergraduate level, building on basic principles of advanced calculus without appeal to more sophisticated techniques of complex analysis and Lebesgue integration. Among the topics covered are Fourier series and integrals, approximation theory, Stirling's formula, the gamma function, Bernoulli numbers and polynomials, the Riemann zeta function, Tauberian theorems, elliptic integrals, ramifications of the Cantor set, and a theoretical discussion of differ

  7. Concepts of classical optics

    CERN Document Server

    Strong, John

    1958-01-01

    An intermediate course in optics, this volume explores both experimental and theoretical concepts, offering practical knowledge of geometrical optics that will enhance students' comprehension of any relevant applied science. Its exposition of the concepts of classical optics is presented with a minimum of mathematical detail but presumes some knowledge of calculus, vectors, and complex numbers.Subjects include light as wave motion; superposition of wave motions; electromagnetic waves; interaction of light and matter; velocities and scattering of light; polarized light and dielectric boundarie

  8. Classical Weyl transverse gravity

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Ichiro [University of the Ryukyus, Department of Physics, Faculty of Science, Nishihara, Okinawa (Japan)

    2017-05-15

    We study various classical aspects of the Weyl transverse (WTDiff) gravity in a general space-time dimension. First of all, we clarify a classical equivalence among three kinds of gravitational theories, those are, the conformally invariant scalar tensor gravity, Einstein's general relativity and the WTDiff gravity via the gauge-fixing procedure. Secondly, we show that in the WTDiff gravity the cosmological constant is a mere integration constant as in unimodular gravity, but it does not receive any radiative corrections unlike the unimodular gravity. A key point in this proof is to construct a covariantly conserved energy-momentum tensor, which is achieved on the basis of this equivalence relation. Thirdly, we demonstrate that the Noether current for the Weyl transformation is identically vanishing, thereby implying that the Weyl symmetry existing in both the conformally invariant scalar tensor gravity and the WTDiff gravity is a ''fake'' symmetry. We find it possible to extend this proof to all matter fields, i.e. the Weyl-invariant scalar, vector and spinor fields. Fourthly, it is explicitly shown that in the WTDiff gravity the Schwarzschild black hole metric and a charged black hole one are classical solutions to the equations of motion only when they are expressed in the Cartesian coordinate system. Finally, we consider the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmology and provide some exact solutions. (orig.)

  9. Classical geometry from the quantum Liouville theory

    Science.gov (United States)

    Hadasz, Leszek; Jaskólski, Zbigniew; Piaţek, Marcin

    2005-09-01

    Zamolodchikov's recursion relations are used to analyze the existence and approximations to the classical conformal block in the case of four parabolic weights. Strong numerical evidence is found that the saddle point momenta arising in the classical limit of the DOZZ quantum Liouville theory are simply related to the geodesic length functions of the hyperbolic geometry on the 4-punctured Riemann sphere. Such relation provides new powerful methods for both numerical and analytical calculations of these functions. The consistency conditions for the factorization of the 4-point classical Liouville action in different channels are numerically verified. The factorization yields efficient numerical methods to calculate the 4-point classical action and, by the Polyakov conjecture, the accessory parameters of the Fuchsian uniformization of the 4-punctured sphere.

  10. Classical geometry from the quantum Liouville theory

    Energy Technology Data Exchange (ETDEWEB)

    Hadasz, Leszek [M. Smoluchowski Institute of Physics, Jagellonian University, Reymonta 4, 30-059 Cracow (Poland)]. E-mail: hadasz@th.if.uj.edu.pl; Jaskolski, Zbigniew [Institute of Theoretical Physics, University of WrocIaw, pl. M. Borna, 950-204 WrocIaw (Poland)]. E-mail: jask@ift.uni.wroc.pl; Piatek, Marcin [Institute of Theoretical Physics, University of WrocIaw, pl. M. Borna, 950-204 WrocIaw (Poland)]. E-mail: piatek@ift.uni.wroc.pl

    2005-09-26

    Zamolodchikov's recursion relations are used to analyze the existence and approximations to the classical conformal block in the case of four parabolic weights. Strong numerical evidence is found that the saddle point momenta arising in the classical limit of the DOZZ quantum Liouville theory are simply related to the geodesic length functions of the hyperbolic geometry on the 4-punctured Riemann sphere. Such relation provides new powerful methods for both numerical and analytical calculations of these functions. The consistency conditions for the factorization of the 4-point classical Liouville action in different channels are numerically verified. The factorization yields efficient numerical methods to calculate the 4-point classical action and, by the Polyakov conjecture, the accessory parameters of the Fuchsian uniformization of the 4-punctured sphere.

  11. Classical geometry from the quantum Liouville theory

    International Nuclear Information System (INIS)

    Hadasz, Leszek; Jaskolski, Zbigniew; Piatek, Marcin

    2005-01-01

    Zamolodchikov's recursion relations are used to analyze the existence and approximations to the classical conformal block in the case of four parabolic weights. Strong numerical evidence is found that the saddle point momenta arising in the classical limit of the DOZZ quantum Liouville theory are simply related to the geodesic length functions of the hyperbolic geometry on the 4-punctured Riemann sphere. Such relation provides new powerful methods for both numerical and analytical calculations of these functions. The consistency conditions for the factorization of the 4-point classical Liouville action in different channels are numerically verified. The factorization yields efficient numerical methods to calculate the 4-point classical action and, by the Polyakov conjecture, the accessory parameters of the Fuchsian uniformization of the 4-punctured sphere

  12. Classical impurities associated to high rank algebras

    Energy Technology Data Exchange (ETDEWEB)

    Doikou, Anastasia, E-mail: A.Doikou@hw.ac.uk [Department of Mathematics, Heriot–Watt University, EH14 4AS, Edinburgh (United Kingdom); Department of Computer Engineering and Informatics, University of Patras, Patras GR-26500 (Greece)

    2014-07-15

    Classical integrable impurities associated with high rank (gl{sub N}) algebras are investigated. A particular prototype, i.e. the vector non-linear Schrödinger (NLS) model, is chosen as an example. A systematic construction of local integrals of motion as well as the time components of the corresponding Lax pairs is presented based on the underlying classical algebra. Suitable gluing conditions compatible with integrability are also extracted. The defect contribution is also examined in the case where non-trivial integrable conditions are implemented. It turns out that the integrable boundaries may drastically alter the bulk behavior, and in particular the defect contribution.

  13. Classical impurities associated to high rank algebras

    International Nuclear Information System (INIS)

    Doikou, Anastasia

    2014-01-01

    Classical integrable impurities associated with high rank (gl N ) algebras are investigated. A particular prototype, i.e. the vector non-linear Schrödinger (NLS) model, is chosen as an example. A systematic construction of local integrals of motion as well as the time components of the corresponding Lax pairs is presented based on the underlying classical algebra. Suitable gluing conditions compatible with integrability are also extracted. The defect contribution is also examined in the case where non-trivial integrable conditions are implemented. It turns out that the integrable boundaries may drastically alter the bulk behavior, and in particular the defect contribution

  14. Casimir effect: The classical limit

    International Nuclear Information System (INIS)

    Feinberg, J.; Mann, A.; Revzen, M.

    2001-01-01

    We analyze the high temperature (or classical) limit of the Casimir effect. A useful quantity which arises naturally in our discussion is the 'relative Casimir energy', which we define for a configuration of disjoint conducting boundaries of arbitrary shapes, as the difference of Casimir energies between the given configuration and a configuration with the same boundaries infinitely far apart. Using path integration techniques, we show that the relative Casimir energy vanishes exponentially fast in temperature. This is consistent with a simple physical argument based on Kirchhoff's law. As a result the 'relative Casimir entropy', which we define in an obviously analogous manner, tends, in the classical limit, to a finite asymptotic value which depends only on the geometry of the boundaries. Thus the Casimir force between disjoint pieces of the boundary, in the classical limit, is entropy driven and is governed by a dimensionless number characterizing the geometry of the cavity. Contributions to the Casimir thermodynamical quantities due to each individual connected component of the boundary exhibit logarithmic deviations in temperature from the behavior just described. These logarithmic deviations seem to arise due to our difficulty to separate the Casimir energy (and the other thermodynamical quantities) from the 'electromagnetic' self-energy of each of the connected components of the boundary in a well defined manner. Our approach to the Casimir effect is not to impose sharp boundary conditions on the fluctuating field, but rather take into consideration its interaction with the plasma of 'charge carriers' in the boundary, with the plasma frequency playing the role of a physical UV cutoff. This also allows us to analyze deviations from a perfect conductor behavior

  15. Quantum-Classical Correspondence: Dynamical Quantization and the Classical Limit

    International Nuclear Information System (INIS)

    Turner, L

    2004-01-01

    In only 150 pages, not counting appendices, references, or the index, this book is one author's perspective of the massive theoretical and philosophical hurdles in the no-man's-land separating the classical and quantum domains of physics. It ends with him emphasizing his own theoretical contribution to this area. In his own words, he has attempted to answer: 1. How can we obtain the quantum dynamics of open systems initially described by the equations of motion of classical physics (quantization process) 2. How can we retrieve classical dynamics from the quantum mechanical equations of motion by means of a classical limiting process (dequantization process). However, this monograph seems overly ambitious. Although the publisher's description refers to this book as an accessible entre, we find that this author scrambles too hastily over the peaks of information that are contained in his large collection of 272 references. Introductory motivating discussions are lacking. Profound ideas are glossed over superficially and shoddily. Equations morph. But no new convincing understanding of the physical world results. The author takes the viewpoint that physical systems are always in interaction with their environment and are thus not isolated and, therefore, not Hamiltonian. This impels him to produce a method of quantization of these stochastic systems without the need of a Hamiltonian. He also has interest in obtaining the classical limit of the quantized results. However, this reviewer does not understand why one needs to consider open systems to understand quantum-classical correspondence. The author demonstrates his method using various examples of the Smoluchowski form of the Fokker--Planck equation. He then renders these equations in a Wigner representation, uses what he terms an infinitesimality condition, and associates with a constant having the dimensions of an action. He thereby claims to develop master equations, such as the Caldeira-Leggett equation, without

  16. On Classical Ideal Gases

    Directory of Open Access Journals (Sweden)

    Laurent Chusseau

    2013-02-01

    Full Text Available We show that the thermodynamics of ideal gases may be derived solely from the Democritean concept of corpuscles moving in vacuum plus a principle of simplicity, namely that these laws are independent of the laws of motion, aside from the law of energy conservation. Only a single corpuscle in contact with a heat bath submitted to a z and t-invariant force is considered. Most of the end results are known but the method appears to be novel. The mathematics being elementary, the present paper should facilitate the understanding of the ideal gas law and of classical thermodynamics even though not-usually-taught concepts are being introduced.

  17. A Classic Through Eternity

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    FIVE years ago, an ancient Chinese air was beamed to outer space as a PR exercise. To humankind, music is a universal language, so the tune seemed an ideal medium for communication with extraterrestrial intelligence. So far there has been no response, but it is believed that the tune will play for a billion years, and eventually be heard and understood. The melody is called High Mountain and Flowing Stream, and it is played on the guqin, a seven-stringed classical musical instrument similar to the zither.

  18. On obtaining classical mechanics from quantum mechanics

    International Nuclear Information System (INIS)

    Date, Ghanashyam

    2007-01-01

    Constructing a classical mechanical system associated with a given quantum-mechanical one entails construction of a classical phase space and a corresponding Hamiltonian function from the available quantum structures and a notion of coarser observations. The Hilbert space of any quantum-mechanical system naturally has the structure of an infinite-dimensional symplectic manifold ('quantum phase space'). There is also a systematic, quotienting procedure which imparts a bundle structure to the quantum phase space and extracts a classical phase space as the base space. This works straightforwardly when the Hilbert space carries weakly continuous representation of the Heisenberg group and one recovers the linear classical phase space R 2N . We report on how the procedure also allows extraction of nonlinear classical phase spaces and illustrate it for Hilbert spaces being finite dimensional (spin-j systems), infinite dimensional but separable (particle on a circle) and infinite dimensional but non-separable (polymer quantization). To construct a corresponding classical dynamics, one needs to choose a suitable section and identify an effective Hamiltonian. The effective dynamics mirrors the quantum dynamics provided the section satisfies conditions of semiclassicality and tangentiality

  19. Classical mirror symmetry

    CERN Document Server

    Jinzenji, Masao

    2018-01-01

    This book furnishes a brief introduction to classical mirror symmetry, a term that denotes the process of computing Gromov–Witten invariants of a Calabi–Yau threefold by using the Picard–Fuchs differential equation of period integrals of its mirror Calabi–Yau threefold. The book concentrates on the best-known example, the quintic hypersurface in 4-dimensional projective space, and its mirror manifold. First, there is a brief review of the process of discovery of mirror symmetry and the striking result proposed in the celebrated paper by Candelas and his collaborators. Next, some elementary results of complex manifolds and Chern classes needed for study of mirror symmetry are explained. Then the topological sigma models, the A-model and the B-model, are introduced. The classical mirror symmetry hypothesis is explained as the equivalence between the correlation function of the A-model of a quintic hyper-surface and that of the B-model of its mirror manifold. On the B-model side, the process of construct...

  20. Classical altitude training.

    Science.gov (United States)

    Friedmann-Bette, B

    2008-08-01

    For more than 40 years, the effects of classical altitude training on sea-level performance have been the subject of many scientific investigations in individual endurance sports. To our knowledge, no studies have been performed in team sports like football. Two well-controlled studies showed that living and training at an altitude of >or=1800-2700 m for 3-4 weeks is superior to equivalent training at sea level in well-trained athletes. Most of the controlled studies with elite athletes did not reveal such an effect. However, the results of some uncontrolled studies indicate that sea-level performance might be enhanced after altitude training also in elite athletes. Whether hypoxia provides an additional stimulus for muscular adaptation, when training is performed with equal intensity compared with sea-level training is not known. There is some evidence for an augmentation of total hemoglobin mass after classical altitude training with duration >or=3 weeks at an altitude >or=2000 m due to altitude acclimatization. Considerable individual variation is observed in the erythropoietic response to hypoxia and in the hypoxia-induced reduction of aerobic performance capacity during training at altitude, both of which are thought to contribute to inter-individual variation in the improvement of sea-level performance after altitude training.

  1. Classical dynamics on graphs

    International Nuclear Information System (INIS)

    Barra, F.; Gaspard, P.

    2001-01-01

    We consider the classical evolution of a particle on a graph by using a time-continuous Frobenius-Perron operator that generalizes previous propositions. In this way, the relaxation rates as well as the chaotic properties can be defined for the time-continuous classical dynamics on graphs. These properties are given as the zeros of some periodic-orbit zeta functions. We consider in detail the case of infinite periodic graphs where the particle undergoes a diffusion process. The infinite spatial extension is taken into account by Fourier transforms that decompose the observables and probability densities into sectors corresponding to different values of the wave number. The hydrodynamic modes of diffusion are studied by an eigenvalue problem of a Frobenius-Perron operator corresponding to a given sector. The diffusion coefficient is obtained from the hydrodynamic modes of diffusion and has the Green-Kubo form. Moreover, we study finite but large open graphs that converge to the infinite periodic graph when their size goes to infinity. The lifetime of the particle on the open graph is shown to correspond to the lifetime of a system that undergoes a diffusion process before it escapes

  2. Classical Trajectories and Quantum Spectra

    Science.gov (United States)

    Mielnik, Bogdan; Reyes, Marco A.

    1996-01-01

    A classical model of the Schrodinger's wave packet is considered. The problem of finding the energy levels corresponds to a classical manipulation game. It leads to an approximate but non-perturbative method of finding the eigenvalues, exploring the bifurcations of classical trajectories. The role of squeezing turns out decisive in the generation of the discrete spectra.

  3. On causal nonrelativistic classical electrodynamics

    International Nuclear Information System (INIS)

    Goedecke, G.H.

    1984-01-01

    The differential-difference (DD) motion equations of the causal nonrelativistic classical electrodynamics developed by the author in 1975 are shown to possess only nonrunaway, causal solutions with no discontinuities in particle velocity or position. As an example, the DD equation solution for the problem of an electromagnetic shock incident on an initially stationary charged particle is contrasted with the standard Abraham-Lorentz equation solution. The general Cauchy problem for these DD motion equations is discussed. In general, in order to uniquely determine a solution, the initial data must be more detailed than the standard Cauchy data of initial position and velocity. Conditions are given under which the standard Cauchy data will determine the DD equation solutions to sufficient practical accuracy

  4. Classical solutions of the p-branes

    International Nuclear Information System (INIS)

    Stoyanov, D.T.

    1988-11-01

    An appropriate subsidiary condition is introduced in the classical actions of the p-branes (p arbitrary). A general class of exact solutions of the resulting nonlinear equations of motion are obtained which yield a broad class of characteristics for the original covariant equations of the p-branes. (author). 11 refs

  5. Classical and quantum cosmology

    CERN Document Server

    Calcagni, Gianluca

    2017-01-01

    This comprehensive textbook is devoted to classical and quantum cosmology, with particular emphasis on modern approaches to quantum gravity and string theory and on their observational imprint. It covers major challenges in theoretical physics such as the big bang and the cosmological constant problem. An extensive review of standard cosmology, the cosmic microwave background, inflation and dark energy sets the scene for the phenomenological application of all the main quantum-gravity and string-theory models of cosmology. Born of the author's teaching experience and commitment to bridging the gap between cosmologists and theoreticians working beyond the established laws of particle physics and general relativity, this is a unique text where quantum-gravity approaches and string theory are treated on an equal footing. As well as introducing cosmology to undergraduate and graduate students with its pedagogical presentation and the help of 45 solved exercises, this book, which includes an ambitious bibliography...

  6. Classical and quantum ghosts

    International Nuclear Information System (INIS)

    Sbisà, Fulvio

    2015-01-01

    The aim of these notes is to provide a self-contained review of why it is generically a problem when a solution of a theory possesses ghost fields among the perturbation modes. We define what a ghost field is and we show that its presence is associated with a classical instability whenever the ghost field interacts with standard fields. We then show that the instability is more severe at quantum level, and that perturbative ghosts can exist only in low energy effective theories. However, if we do not consider very ad hoc choices, compatibility with observational constraints implies that low energy effective ghosts can exist only at the price of giving up Lorentz invariance or locality above the cut-off, in which case the cut-off has to be much lower that the energy scales we currently probe in particle colliders. We also comment on the possible role of extra degrees of freedom which break Lorentz invariance spontaneously. (paper)

  7. Classical mechanics with Mathematica

    CERN Document Server

    Romano, Antonio

    2018-01-01

    This textbook takes a broad yet thorough approach to mechanics, aimed at bridging the gap between classical analytic and modern differential geometric approaches to the subject. Developed by the authors from over 30 years of teaching experience, the presentation is designed to give students an overview of the many different models used through the history of the field—from Newton to Hamilton—while also painting a clear picture of the most modern developments. The text is organized into two parts. The first focuses on developing the mathematical framework of linear algebra and differential geometry necessary for the remainder of the book. Topics covered include tensor algebra, Euclidean and symplectic vector spaces, differential manifolds, and absolute differential calculus. The second part of the book applies these topics to kinematics, rigid body dynamics, Lagrangian and Hamiltonian dynamics, Hamilton–Jacobi theory, completely integrable systems, statistical mechanics of equilibrium, and impulsive dyna...

  8. Mechanical Systems, Classical Models

    CERN Document Server

    Teodorescu, Petre P

    2009-01-01

    This third volume completes the Work Mechanical Systems, Classical Models. The first two volumes dealt with particle dynamics and with discrete and continuous mechanical systems. The present volume studies analytical mechanics. Topics like Lagrangian and Hamiltonian mechanics, the Hamilton-Jacobi method, and a study of systems with separate variables are thoroughly discussed. Also included are variational principles and canonical transformations, integral invariants and exterior differential calculus, and particular attention is given to non-holonomic mechanical systems. The author explains in detail all important aspects of the science of mechanics, regarded as a natural science, and shows how they are useful in understanding important natural phenomena and solving problems of interest in applied and engineering sciences. Professor Teodorescu has spent more than fifty years as a Professor of Mechanics at the University of Bucharest and this book relies on the extensive literature on the subject as well as th...

  9. Quantum models of classical systems

    International Nuclear Information System (INIS)

    Hájíček, P

    2015-01-01

    Quantum statistical methods that are commonly used for the derivation of classical thermodynamic properties are extended to classical mechanical properties. The usual assumption that every real motion of a classical mechanical system is represented by a sharp trajectory is not testable and is replaced by a class of fuzzy models, the so-called maximum entropy (ME) packets. The fuzzier are the compared classical and quantum ME packets, the better seems to be the match between their dynamical trajectories. Classical and quantum models of a stiff rod will be constructed to illustrate the resulting unified quantum theory of thermodynamic and mechanical properties. (paper)

  10. Citation classics in epilepsy

    Directory of Open Access Journals (Sweden)

    Maryann Wilson

    2013-01-01

    Full Text Available BACKGROUND: The impact of a scientific article is proportional to the citations it has received. In this study, we set out to identify the most cited works in epileptology in order to evaluate research trends in this field. METHODS: According to the Web of Science database, articles with more than 400 citations qualify as "citation classics". We conducted a literature search on the ISI Web of Science bibliometric database for scientific articles relevant to epilepsy. RESULTS: We retrieved 67 highly cited articles (400 or more citations, which were published in 31 journals: 17 clinical studies, 42 laboratory studies, 5 reviews and 3 classification articles. Clinical studies consisted of epidemiological analyses (n=3, studies on the clinical phenomenology of epilepsy (n=5 – including behavioral and prognostic aspects – and articles focusing on pharmacological (n=6 and non-pharmacological (n=3 treatment. The laboratory studies dealt with genetics (n=6, animal models (n=27, and neurobiology (n=9 – including both neurophysiology and neuropathology studies. The majority (61% of citation classics on epilepsy were published after 1986, possibly reflecting the expansion of research interest in laboratory studies driven by the development of new methodologies, specifically in the fields of genetics and animal models. Consequently, clinical studies were highly cited both before and after the mid 80s, whilst laboratory researches became widely cited after 1990. CONCLUSIONS: Our study indicates that the main drivers of scientific impact in the field of epileptology have increasingly become genetic and neurobiological studies, along with research on animal models of epilepsy. These articles are able to gain the highest numbers of citations in the time span of a few years and suggest potential directions for future research.

  11. Classical dissipation and transport in plasmas

    International Nuclear Information System (INIS)

    Hinton, F.L.

    1989-01-01

    This paper reviews the subject of classical and neoclassical transport. The paper is organized into four main parts, dealing with plasma kinetic theory, classical transport, neoclassical transport, and the present state of the subject. The results of the neoclassical theory of transport are still being used to give the lower limit on the transport rates in tokamaks, which would apply if instabilities and turbulence could be suppressed. So far, only the ion thermal conductivity and the current density have been found experimentally to agree with this theory, and only under special conditions. The electron thermal conductivity has been found experimentally to be much larger than the neoclassical prediction

  12. Free Fermions and the Classical Compact Groups

    Science.gov (United States)

    Cunden, Fabio Deelan; Mezzadri, Francesco; O'Connell, Neil

    2018-06-01

    There is a close connection between the ground state of non-interacting fermions in a box with classical (absorbing, reflecting, and periodic) boundary conditions and the eigenvalue statistics of the classical compact groups. The associated determinantal point processes can be extended in two natural directions: (i) we consider the full family of admissible quantum boundary conditions (i.e., self-adjoint extensions) for the Laplacian on a bounded interval, and the corresponding projection correlation kernels; (ii) we construct the grand canonical extensions at finite temperature of the projection kernels, interpolating from Poisson to random matrix eigenvalue statistics. The scaling limits in the bulk and at the edges are studied in a unified framework, and the question of universality is addressed. Whether the finite temperature determinantal processes correspond to the eigenvalue statistics of some matrix models is, a priori, not obvious. We complete the picture by constructing a finite temperature extension of the Haar measure on the classical compact groups. The eigenvalue statistics of the resulting grand canonical matrix models (of random size) corresponds exactly to the grand canonical measure of free fermions with classical boundary conditions.

  13. Free Fermions and the Classical Compact Groups

    Science.gov (United States)

    Cunden, Fabio Deelan; Mezzadri, Francesco; O'Connell, Neil

    2018-04-01

    There is a close connection between the ground state of non-interacting fermions in a box with classical (absorbing, reflecting, and periodic) boundary conditions and the eigenvalue statistics of the classical compact groups. The associated determinantal point processes can be extended in two natural directions: (i) we consider the full family of admissible quantum boundary conditions (i.e., self-adjoint extensions) for the Laplacian on a bounded interval, and the corresponding projection correlation kernels; (ii) we construct the grand canonical extensions at finite temperature of the projection kernels, interpolating from Poisson to random matrix eigenvalue statistics. The scaling limits in the bulk and at the edges are studied in a unified framework, and the question of universality is addressed. Whether the finite temperature determinantal processes correspond to the eigenvalue statistics of some matrix models is, a priori, not obvious. We complete the picture by constructing a finite temperature extension of the Haar measure on the classical compact groups. The eigenvalue statistics of the resulting grand canonical matrix models (of random size) corresponds exactly to the grand canonical measure of free fermions with classical boundary conditions.

  14. A quantum algorithm for Viterbi decoding of classical convolutional codes

    OpenAIRE

    Grice, Jon R.; Meyer, David A.

    2014-01-01

    We present a quantum Viterbi algorithm (QVA) with better than classical performance under certain conditions. In this paper the proposed algorithm is applied to decoding classical convolutional codes, for instance; large constraint length $Q$ and short decode frames $N$. Other applications of the classical Viterbi algorithm where $Q$ is large (e.g. speech processing) could experience significant speedup with the QVA. The QVA exploits the fact that the decoding trellis is similar to the butter...

  15. Classical- and quantum mechanical Coulomb scattering

    International Nuclear Information System (INIS)

    Gratzl, W.

    1987-01-01

    Because in textbooks the quantum mechanical Coulomb scattering is either ignored or treated unsatisfactory, the present work attempts to present a physically plausible, mathematically correct but elementary treatment in a way that it can be used in textbooks and lectures on quantum mechanics. Coulomb scattering is derived as a limiting case of a screened Coulomb potential (finite range) within a time dependent quantum scattering theory. The difference in the asymptotic conditions for potentials of finite versus infinite range leads back to the classical Coulomb scattering. In the classical framework many concepts of the quantum theory can be introduced and are useful in an intuitive understanding of the quantum theory. The differences between classical and quantum scattering theory are likewise useful for didactic purposes. (qui)

  16. Stereotactic Radiosurgery for Classical Trigeminal Neuralgia

    Directory of Open Access Journals (Sweden)

    Henry Kodrat

    2016-04-01

    Full Text Available Trigeminal neuralgia is a debilitating pain syndrome with a distinct symptom mainly excruciating facial pain that tends to come and go unpredictably in sudden shock-like attacks. Medical management remains the primary treatment for classical trigeminal neuralgia. When medical therapy failed, surgery with microvascular decompression can be performed. Radiosurgery can be offered for classical trigeminal neuralgia patients who are not surgical candidate or surgery refusal and they should not in acute pain condition. Radiosurgery is widely used because of good therapeutic result and low complication rate. Weakness of this technique is a latency period, which is time required for pain relief. It usually ranges from 1 to 2 months. This review enlightens the important role of radiosurgery in the treatment of classical trigeminal neuralgia.

  17. Construction of classical and non-classical coherent photon states

    International Nuclear Information System (INIS)

    Honegger, Reinhard; Rieckers, Alfred

    2001-01-01

    It is well known that the diagonal matrix elements of all-order coherent states for the quantized electromagnetic field have to constitute a Poisson distribution with respect to the photon number. The present work gives first the summary of a constructive scheme, developed previously, which determines in terms of an auxiliary Hilbert space all possible off-diagonal elements for the all-order coherent density operators in Fock space and which identifies all extremal coherent states. In terms of this formalism it is then demonstrated that each pure classical coherent state is a uniformly phase locked (quantum) coherent superposition of number states. In a mixed classical coherent state the exponential of the locked phase is shown to be replaced by a rather arbitrary unitary operator in the auxiliary Hilbert space. On the other hand classes for density operators--and for their normally ordered characteristic functions--of non-classical coherent states are obtained, especially by rather weak perturbations of classical coherent states. These illustrate various forms of breaking the classical uniform phase locking and exhibit rather peculiar properties, such as asymmetric fluctuations for the quadrature phase operators. Several criteria for non-classicality are put forward and applied to the elaborated non-classical coherent states, providing counterexamples against too simple arguments for classicality. It is concluded that classicality is only a stable concept for coherent states with macroscopic intensity

  18. Classical competing risks

    CERN Document Server

    Crowder, Martin J

    2001-01-01

    If something can fail, it can often fail in one of several ways and sometimes in more than one way at a time. There is always some cause of failure, and almost always, more than one possible cause. In one sense, then, survival analysis is a lost cause. The methods of Competing Risks have often been neglected in the survival analysis literature. Written by a leading statistician, Classical Competing Risks thoroughly examines the probability framework and statistical analysis of data of Competing Risks. The author explores both the theory of the subject and the practicalities of fitting the models to data. In a coherent, self-contained, and sequential account, the treatment moves from the bare bones of the Competing Risks setup and the associated likelihood functions through survival analysis using hazard functions. It examines discrete failure times and the difficulties of identifiability, and concludes with an introduction to the counting-process approach and the associated martingale theory.With a dearth of ...

  19. Classical Fourier analysis

    CERN Document Server

    Grafakos, Loukas

    2014-01-01

    The main goal of this text is to present the theoretical foundation of the field of Fourier analysis on Euclidean spaces. It covers classical topics such as interpolation, Fourier series, the Fourier transform, maximal functions, singular integrals, and Littlewood–Paley theory. The primary readership is intended to be graduate students in mathematics with the prerequisite including satisfactory completion of courses in real and complex variables. The coverage of topics and exposition style are designed to leave no gaps in understanding and stimulate further study. This third edition includes new Sections 3.5, 4.4, 4.5 as well as a new chapter on “Weighted Inequalities,” which has been moved from GTM 250, 2nd Edition. Appendices I and B.9 are also new to this edition.  Countless corrections and improvements have been made to the material from the second edition. Additions and improvements include: more examples and applications, new and more relevant hints for the existing exercises, new exercises, and...

  20. Classical tokamak transport theory

    International Nuclear Information System (INIS)

    Nocentini, Aldo

    1982-01-01

    A qualitative treatment of the classical transport theory of a magnetically confined, toroidal, axisymmetric, two-species plasma is presented. The 'weakly collisional' ('banana' and 'plateau') and 'collision dominated' ('Pfirsch-Schlueter' and 'highly collisional') regimes, as well as the Ware effect are discussed. The method used to evaluate the diffusion coffieicnts of particles and heat in the weakly collisional regime is based on stochastic argument, that requires an analysis of the characteristic collision frequencies and lengths for particles moving in a tokamak-like magnetic field. The same method is used to evaluate the Ware effect. In the collision dominated regime on the other hand, the particle and heat fluxes across the magnetic field lines are dominated by macroscopic effects so that, although it is possible to present them as diffusion (in fact, the fluxes turn out to be proportional to the density and temperature gradients), a macroscopic treatment is more appropriate. Hence, fluid equations are used to inveatigate the collision dominated regime, to which particular attention is devoted, having been shown relatively recently that it is more complicated than the usual Pfirsch-Schlueter regime. The whole analysis presented here is qualitative, aiming to point out the relevant physical mechanisms involved in the various regimes more than to develop a rigorous mathematical derivation of the diffusion coefficients, for which appropriate references are given. (author)

  1. Classics in radio astronomy

    CERN Document Server

    Sullivan, Woodruff Turner

    1982-01-01

    Radio techniques were the nrst to lead astronomy away from the quiescent and limited Universe revealed by traditional observations at optical wave­ lengths. In the earliest days of radio astronomy, a handful of radio physicists and engineers made one startling discovery after another as they opened up the radio sky. With this collection of classic papers and the extensive intro­ ductory material, the reader can experience these exciting discoveries, as well as understand the developing techniques and follow the motivations which prompted the various lines of inquiry. For instance he or she will follow in detail the several attempts to detect radio waves from the sun at the turn of the century; the unravelling by Jansky of a "steady hiss type static"; the incredible story of Reber who built a 9 meter dish in his backyard in 1937 and then mapped the Milky Way; the vital discoveries by Hey and colleagues of radio bursts from the Sun and of a discrete source in the constellation of Cygnus; the development of re...

  2. Quantum symmetries of classical spaces

    OpenAIRE

    Bhowmick, Jyotishman; Goswami, Debashish; Roy, Subrata Shyam

    2009-01-01

    We give a general scheme for constructing faithful actions of genuine (noncommutative as $C^*$ algebra) compact quantum groups on classical topological spaces. Using this, we show that: (i) a compact connected classical space can have a faithful action by a genuine compact quantum group, and (ii) there exists a spectral triple on a classical connected compact space for which the quantum group of orientation and volume preserving isometries (in the sense of \\cite{qorient}) is a genuine quantum...

  3. Dynamics of unitarization by classicalization

    International Nuclear Information System (INIS)

    Dvali, Gia; Pirtskhalava, David

    2011-01-01

    We study dynamics of the classicalization phenomenon suggested in G. Dvali et al. , according to which a class of non-renormalizable theories self-unitarizes at very high-energies via creation of classical configurations (classicalons). We study this phenomenon in an explicit model of derivatively-self-coupled scalar that serves as a prototype for a Nambu-Goldstone-Stueckelberg field. We prepare the initial state in form of a collapsing wave-packet of a small occupation number but of very high energy, and observe that the classical configuration indeed develops. Our results confirm the previous estimates, showing that because of self-sourcing the wave-packet forms a classicalon configuration with radius that increases with center of mass energy. Thus, classicalization takes place before the waves get any chance of probing short-distances. The self-sourcing by energy is the crucial point, which makes classicalization phenomenon different from the ordinary dispersion of the wave-packets in other interacting theories. Thanks to this, unlike solitons or other non-perturbative objects, the production of classicalons is not only unsuppressed, but in fact dominates the high-energy scattering. In order to make the difference between classicalizing and non-classicalizing theories clear, we use a language in which the scattering cross section in a generic theory can be universally understood as a geometric cross section set by a classical radius down to which waves can propagate freely, before being scattered. We then show, that in non-classicalizing examples this radius shrinks with increasing energy and becomes microscopic, whereas in classicalizing theories expands and becomes macroscopic. We study analogous scattering in a Galileon system and discover that classicalization also takes place there, although somewhat differently. We thus observe, that classicalization is source-sensitive and that Goldstones pass the first test.

  4. The classic: Bone morphogenetic protein.

    Science.gov (United States)

    Urist, Marshall R; Strates, Basil S

    2009-12-01

    This Classic Article is a reprint of the original work by Marshall R. Urist and Basil S. Strates, Bone Morphogenetic Protein. An accompanying biographical sketch of Marshall R. Urist, MD is available at DOI 10.1007/s11999-009-1067-4; a second Classic Article is available at DOI 10.1007/s11999-009-1069-2; and a third Classic Article is available at DOI 10.1007/s11999-009-1070-9. The Classic Article is copyright 1971 by Sage Publications Inc. Journals and is reprinted with permission from Urist MR, Strates BS. Bone morphogenetic protein. J Dent Res. 1971;50:1392-1406.

  5. Innovation: the classic traps.

    Science.gov (United States)

    Kanter, Rosabeth Moss

    2006-11-01

    Never a fad, but always in or out of fashion, innovation gets rediscovered as a growth enabler every half dozen years. Too often, though, grand declarations about innovation are followed by mediocre execution that produces anemic results, and innovation groups are quietly disbanded in cost-cutting drives. Each managerial generation embarks on the same enthusiastic quest for the next new thing. And each generation faces the same vexing challenges- most of which stem from the tensions between protecting existing revenue streams critical to current success and supporting new concepts that may be crucial to future success. In this article, Harvard Business School professor Rosabeth Moss Kanter reflects on the four major waves of innovation enthusiasm she's observed over the past 25 years. She describes the classic mistakes companies make in innovation strategy, process, structure, and skills assessment, illustrating her points with a plethora of real-world examples--including AT&T Worldnet, Timberland, and Ocean Spray. A typical strategic blunder is when managers set their hurdles too high or limit the scope of their innovation efforts. Quaker Oats, for instance, was so busy in the 1990s making minor tweaks to its product formulas that it missed larger opportunities in distribution. A common process mistake is when managers strangle innovation efforts with the same rigid planning, budgeting, and reviewing approaches they use in their existing businesses--thereby discouraging people from adapting as circumstances warrant. Companies must be careful how they structure fledgling entities alongside existing ones, Kanter says, to avoid a clash of cultures and agendas--which Arrow Electronics experienced in its attempts to create an online venture. Finally, companies commonly undervalue and underinvest in the human side of innovation--for instance, promoting individuals out of innovation teams long before their efforts can pay off. Kanter offers practical advice for avoiding

  6. A Classic Beauty

    Science.gov (United States)

    2007-01-01

    M51, whose name comes from being the 51st entry in Charles Messier's catalog, is considered to be one of the classic examples of a spiral galaxy. At a distance of about 30 million light-years from Earth, it is also one of the brightest spirals in the night sky. A composite image of M51, also known as the Whirlpool Galaxy, shows the majesty of its structure in a dramatic new way through several of NASA's orbiting observatories. X-ray data from NASA's Chandra X-ray Observatory reveals point-like sources (purple) that are black holes and neutron stars in binary star systems. Chandra also detects a diffuse glow of hot gas that permeates the space between the stars. Optical data from the Hubble Space Telescope (green) and infrared emission from the Spitzer Space Telescope (red) both highlight long lanes in the spiral arms that consist of stars and gas laced with dust. A view of M51 with the Galaxy Evolution Explorer telescope shows hot, young stars that produce lots of ultraviolet energy (blue). The textbook spiral structure is thought be the result of an interaction M51 is experiencing with its close galactic neighbor, NGC 5195, which is seen just above. Some simulations suggest M51's sharp spiral shape was partially caused when NGC 5195 passed through its main disk about 500 million years ago. This gravitational tug of war may also have triggered an increased level of star formation in M51. The companion galaxy's pull would be inducing extra starbirth by compressing gas, jump-starting the process by which stars form.

  7. Quantum scattering from classical field theory

    International Nuclear Information System (INIS)

    Gould, T.M.; Poppitz, E.R.

    1995-01-01

    We show that scattering amplitudes between initial wave packet states and certain coherent final states can be computed in a systematic weak coupling expansion about classical solutions satisfying initial-value conditions. The initial-value conditions are such as to make the solution of the classical field equations amenable to numerical methods. We propose a practical procedure for computing classical solutions which contribute to high energy two-particle scattering amplitudes. We consider in this regard the implications of a recent numerical simulation in classical SU(2) Yang-Mills theory for multiparticle scattering in quantum gauge theories and speculate on its generalization to electroweak theory. We also generalize our results to the case of complex trajectories and discuss the prospects for finding a solution to the resulting complex boundary value problem, which would allow the application of our method to any wave packet to coherent state transition. Finally, we discuss the relevance of these results to the issues of baryon number violation and multiparticle scattering at high energies. ((orig.))

  8. Quantum-classical correspondence in the vicinity of periodic orbits

    Science.gov (United States)

    Kumari, Meenu; Ghose, Shohini

    2018-05-01

    Quantum-classical correspondence in chaotic systems is a long-standing problem. We describe a method to quantify Bohr's correspondence principle and calculate the size of quantum numbers for which we can expect to observe quantum-classical correspondence near periodic orbits of Floquet systems. Our method shows how the stability of classical periodic orbits affects quantum dynamics. We demonstrate our method by analyzing quantum-classical correspondence in the quantum kicked top (QKT), which exhibits both regular and chaotic behavior. We use our correspondence conditions to identify signatures of classical bifurcations even in a deep quantum regime. Our method can be used to explain the breakdown of quantum-classical correspondence in chaotic systems.

  9. Classical higher-order processes

    DEFF Research Database (Denmark)

    Montesi, Fabrizio

    2017-01-01

    Classical Processes (CP) is a calculus where the proof theory of classical linear logic types processes à la Π-calculus, building on a Curry-Howard correspondence between session types and linear propositions. We contribute to this research line by extending CP with process mobility, inspired by ...

  10. COMPETITION: CLASSICAL VERSUS NEOCLASSICAL VIEW

    OpenAIRE

    Mihaela Cornelia Sandu

    2013-01-01

    Competition is an important element from economical theory. Over time it has experienced several definitions and classifications much of them being contradictory. In this paper I will make a parallel between classical and neoclassical point of view according to competition. Keywords. Competition; neoclassical theory; classical theory; monopolistic; perfect competition.

  11. Sum rules in classical scattering

    International Nuclear Information System (INIS)

    Bolle, D.; Osborn, T.A.

    1981-01-01

    This paper derives sum rules associated with the classical scattering of two particles. These sum rules are the analogs of Levinson's theorem in quantum mechanics which provides a relationship between the number of bound-state wavefunctions and the energy integral of the time delay of the scattering process. The associated classical relation is an identity involving classical time delay and an integral over the classical bound-state density. We show that equalities between the Nth-order energy moment of the classical time delay and the Nth-order energy moment of the classical bound-state density hold in both a local and a global form. Local sum rules involve the time delay defined on a finite but otherwise arbitrary coordinate space volume S and the bound-state density associated with this same region. Global sum rules are those that obtain when S is the whole coordinate space. Both the local and global sum rules are derived for potentials of arbitrary shape and for scattering in any space dimension. Finally the set of classical sum rules, together with the known quantum mechanical analogs, are shown to provide a unified method of obtaining the high-temperature expansion of the classical, respectively the quantum-mechanical, virial coefficients

  12. 'Leonard pairs' in classical mechanics

    International Nuclear Information System (INIS)

    Zhedanov, Alexei; Korovnichenko, Alyona

    2002-01-01

    Leonard pairs (LP) are matrices with the property of mutual tri-diagonality. We introduce and study a classical analogue of LP. We show that corresponding classical 'Leonard' dynamical variables satisfy non-linear relations of the AW-type with respect to Poisson brackets. (author)

  13. Classicalization of Gravitons and Goldstones

    CERN Document Server

    Dvali, Gia; Kehagias, Alex

    2011-01-01

    We establish a close parallel between classicalization of gravitons and derivatively-coupled Nambu-Goldstone-type scalars. We show, that black hole formation in high energy scattering process represents classicalization with the classicalization radius given by Schwarzschild radius of center of mass energy, and with the precursor of black hole entropy being given by number of soft quanta composing this classical configuration. Such an entropy-equivalent is defined for scalar classicalons also and is responsible for exponential suppression of their decay into small number of final particles. This parallel works in both ways. For optimists that are willing to hypothesize that gravity may indeed self-unitarize at high energies via black hole formation, it illustrates that the Goldstones may not be much different in this respect, and they classicalize essentially by similar dynamics as gravitons. In the other direction, it may serve as an useful de-mystifier of via-black-hole-unitarization process and of the role...

  14. Classical dynamics a modern perspective

    CERN Document Server

    Sudarshan, Ennackal Chandy George

    2016-01-01

    Classical dynamics is traditionally treated as an early stage in the development of physics, a stage that has long been superseded by more ambitious theories. Here, in this book, classical dynamics is treated as a subject on its own as well as a research frontier. Incorporating insights gained over the past several decades, the essential principles of classical dynamics are presented, while demonstrating that a number of key results originally considered only in the context of quantum theory and particle physics, have their foundations in classical dynamics.Graduate students in physics and practicing physicists will welcome the present approach to classical dynamics that encompasses systems of particles, free and interacting fields, and coupled systems. Lie groups and Lie algebras are incorporated at a basic level and are used in describing space-time symmetry groups. There is an extensive discussion on constrained systems, Dirac brackets and their geometrical interpretation. The Lie-algebraic description of ...

  15. Ordering in classical Coulombic systems

    International Nuclear Information System (INIS)

    Schiffer, J. P.

    1998-01-01

    The author discusses the properties of classical Coulombic matter at low temperatures. It has been well known for some time [1,2] that infinite Coulombic matter will crystallize in body-centered cubic form when the quantity Λ (the dimensionless ratio of the average two-particle Coulomb energy to the kinetic energy per particle) is larger than approximately175. But the systems of such particles that have been produced in the laboratory in ion traps, or ion beams, are finite with surfaces defined by the boundary conditions that have to be satisfied. This results in ion clouds with sharply defined curved surfaces, and interior structures that show up as a set of concentric layers that are parallel to the outer surface. The ordering does not appear to be cubic, but the charges on each shell exhibit a ''hexatic'' pattern of equilateral triangles that is the characteristic of liquid crystals. The curvature of the surfaces prevents the structures on successive shells from interlocking in any simple fashion. This class of structures was first found in simulations [3] and later in experiments [4

  16. Classical randomness in quantum measurements

    International Nuclear Information System (INIS)

    D'Ariano, Giacomo Mauro; Presti, Paoloplacido Lo; Perinotti, Paolo

    2005-01-01

    Similarly to quantum states, also quantum measurements can be 'mixed', corresponding to a random choice within an ensemble of measuring apparatuses. Such mixing is equivalent to a sort of hidden variable, which produces a noise of purely classical nature. It is then natural to ask which apparatuses are indecomposable, i.e. do not correspond to any random choice of apparatuses. This problem is interesting not only for foundations, but also for applications, since most optimization strategies give optimal apparatuses that are indecomposable. Mathematically the problem is posed describing each measuring apparatus by a positive operator-valued measure (POVM), which gives the statistics of the outcomes for any input state. The POVMs form a convex set, and in this language the indecomposable apparatuses are represented by extremal points-the analogous of 'pure states' in the convex set of states. Differently from the case of states, however, indecomposable POVMs are not necessarily rank-one, e.g. von Neumann measurements. In this paper we give a complete classification of indecomposable apparatuses (for discrete spectrum), by providing different necessary and sufficient conditions for extremality of POVMs, along with a simple general algorithm for the decomposition of a POVM into extremals. As an interesting application, 'informationally complete' measurements are analysed in this respect. The convex set of POVMs is fully characterized by determining its border in terms of simple algebraic properties of the corresponding POVMs

  17. Envy and jealousy in Classical Athens

    OpenAIRE

    Sanders, E. M.

    2010-01-01

    Emotions differ between cultures, especially in their eliciting conditions, social acceptability, forms of expression, and co-extent of terminology. This thesis examines the psychological sensation and social expression of envy and jealousy in Classical Athens. Previous scholarship on envy and jealousy (Walcot 1978, Konstan and Rutter 2003) has primarily taken a lexical approach, focusing on usage of the Greek words phthonos (envy, begrudging spite, possessive jealousy) and zêl...

  18. Some connections between classical and quantum anholonomy

    International Nuclear Information System (INIS)

    Giavarini, G.; Rohrlich, D.; Thacker, W.D.

    1988-08-01

    In this paper we study the interplay between the classical and quantum anholonomy effects (Hannay's angle and Berry's phase). When a finite-dimensional quantum system has a Berry phase, it has a nonzero Hannay angle. We show how infinite-dimensional systems can evade this correspondence, and find some necessary conditions for a system with a Berry phase to have no Hannay angle. (orig.)

  19. Loire Classics: Reviving Classicism in some Loire Poets

    Directory of Open Access Journals (Sweden)

    Wim Verbaal

    2017-06-01

    Full Text Available The term 'Loire poets' has come to refer to a rather undefinable group of poets that in the second half of the eleventh century distinguishes itself through its refined poetics. They are often characterized as medieval humanists thanks to their renewed interest in the classics. Sometimes their movement is labelled a 'classicist' one. But what does this 'classicism' mean? Is it even permitted to speak of medieval 'classicisms'? This contribution approaches the question of whether we can apply this modern label to pre-modern phenomena. Moreover, it explores the changes in attitude towards the classics that sets the Loire poets off from their predecessors and contemporaries. The article focuses on poems by Hildebert of Lavardin, Baudri of Bourgueil, Marbod of Rennes, and Geoffrey of Reims. They are compared with some contemporary poets, such as Reginald of Canterbury and Sigebert of Gembloux.

  20. Quantum Computing's Classical Problem, Classical Computing's Quantum Problem

    OpenAIRE

    Van Meter, Rodney

    2013-01-01

    Tasked with the challenge to build better and better computers, quantum computing and classical computing face the same conundrum: the success of classical computing systems. Small quantum computing systems have been demonstrated, and intermediate-scale systems are on the horizon, capable of calculating numeric results or simulating physical systems far beyond what humans can do by hand. However, to be commercially viable, they must surpass what our wildly successful, highly advanced classica...

  1. Classical and nonclassical symmetries analysis for initial value problems

    International Nuclear Information System (INIS)

    Zhang Zhiyong; Chen Yufu

    2010-01-01

    Classical and nonclassical symmetries are considered to reduce evolution equations with initial conditions in two independent variables. First of all, we rearrange the classical infinitesimal operators such that they leave the initial value problems invariant. Secondly, we give a sufficient condition for the nonclassical symmetry reductions of initial value problems. The generalized Kuramoto-Sivashinsky equation with dispersive effects is considered to examine the algorithms.

  2. The Wigner representation of classical mechanics, quantization and classical limit

    International Nuclear Information System (INIS)

    Bolivar, A.O.

    2001-08-01

    Starting from the Liouvillian formulation of classical physics it is possible by means of a Fourier transform to introduce the Wigner representation and to derive an operator structure to classical mechanisms. The importance of this new representation lies on the fact that it turns out to be suitable route to establish a general method of quantization directly from the equations of motion without alluding to the existence of Hamiltonian and Lagrangian functions. Following this approach we quantize only the motion of a Browian particle with non-linear friction in the Markovian approximation - the thermal bath may be quantum or classical -, thus when the bath is classically described we obtain a master equation which reduces to Caldeira-Legget equation for the linear friction case, and when the reservoir is quantum we get an equation reducing to the one found by Caldeira et al. By neglecting the environmental influence we show that the system can be approximately described by equations of motion in terms of wave function, such as the Schrodinger-Langevin equation and equations of the Caldirola-Kanai type. Finally to make the present study self-consistent we evaluate the classical limit of these dynamical equations employing a new classical limiting method h/2π → 0. (author)

  3. The Wigner representation of classical mechanics, quantization and classical limit

    Energy Technology Data Exchange (ETDEWEB)

    Bolivar, A.O. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    2001-08-01

    Starting from the Liouvillian formulation of classical physics it is possible by means of a Fourier transform to introduce the Wigner representation and to derive an operator structure to classical mechanisms. The importance of this new representation lies on the fact that it turns out to be suitable route to establish a general method of quantization directly from the equations of motion without alluding to the existence of Hamiltonian and Lagrangian functions. Following this approach we quantize only the motion of a Browian particle with non-linear friction in the Markovian approximation - the thermal bath may be quantum or classical -, thus when the bath is classically described we obtain a master equation which reduces to Caldeira-Legget equation for the linear friction case, and when the reservoir is quantum we get an equation reducing to the one found by Caldeira et al. By neglecting the environmental influence we show that the system can be approximately described by equations of motion in terms of wave function, such as the Schrodinger-Langevin equation and equations of the Caldirola-Kanai type. Finally to make the present study self-consistent we evaluate the classical limit of these dynamical equations employing a new classical limiting method h/2{pi} {yields} 0. (author)

  4. Mathematical methods of classical physics

    CERN Document Server

    Cortés, Vicente

    2017-01-01

    This short primer, geared towards students with a strong interest in mathematically rigorous approaches, introduces the essentials of classical physics, briefly points out its place in the history of physics and its relation to modern physics, and explains what benefits can be gained from a mathematical perspective. As a starting point, Newtonian mechanics is introduced and its limitations are discussed. This leads to and motivates the study of different formulations of classical mechanics, such as Lagrangian and Hamiltonian mechanics, which are the subjects of later chapters. In the second part, a chapter on classical field theories introduces more advanced material. Numerous exercises are collected in the appendix.

  5. A robust classic.

    Science.gov (United States)

    Kutzner, Florian; Vogel, Tobias; Freytag, Peter; Fiedler, Klaus

    2011-01-01

    In the present research, we argue for the robustness of illusory correlations (ICs, Hamilton & Gifford, 1976) regarding two boundary conditions suggested in previous research. First, we argue that ICs are maintained under extended experience. Using simulations, we derive conflicting predictions. Whereas noise-based accounts predict ICs to be maintained (Fielder, 2000; Smith, 1991), a prominent account based on discrepancy-reducing feedback learning predicts ICs to disappear (Van Rooy et al., 2003). An experiment involving 320 observations with majority and minority members supports the claim that ICs are maintained. Second, we show that actively using the stereotype to make predictions that are met with reward and punishment does not eliminate the bias. In addition, participants' operant reactions afford a novel online measure of ICs. In sum, our findings highlight the robustness of ICs that can be explained as a result of unbiased but noisy learning.

  6. Classical Affine W-Algebras and the Associated Integrable Hamiltonian Hierarchies for Classical Lie Algebras

    Science.gov (United States)

    De Sole, Alberto; Kac, Victor G.; Valeri, Daniele

    2018-06-01

    We prove that any classical affine W-algebra W (g, f), where g is a classical Lie algebra and f is an arbitrary nilpotent element of g, carries an integrable Hamiltonian hierarchy of Lax type equations. This is based on the theories of generalized Adler type operators and of generalized quasideterminants, which we develop in the paper. Moreover, we show that under certain conditions, the product of two generalized Adler type operators is a Lax type operator. We use this fact to construct a large number of integrable Hamiltonian systems, recovering, as a special case, all KdV type hierarchies constructed by Drinfeld and Sokolov.

  7. Classical Limit and Quantum Logic

    Science.gov (United States)

    Losada, Marcelo; Fortin, Sebastian; Holik, Federico

    2018-02-01

    The analysis of the classical limit of quantum mechanics usually focuses on the state of the system. The general idea is to explain the disappearance of the interference terms of quantum states appealing to the decoherence process induced by the environment. However, in these approaches it is not explained how the structure of quantum properties becomes classical. In this paper, we consider the classical limit from a different perspective. We consider the set of properties of a quantum system and we study the quantum-to-classical transition of its logical structure. The aim is to open the door to a new study based on dynamical logics, that is, logics that change over time. In particular, we appeal to the notion of hybrid logics to describe semiclassical systems. Moreover, we consider systems with many characteristic decoherence times, whose sublattices of properties become distributive at different times.

  8. New perspectives on classical electromagnetism

    OpenAIRE

    Cote, Paul J.

    2009-01-01

    The fallacies associated with the gauge concept in electromagnetism are illustrated. A clearer and more valid formulation of the basics of classical electromagnetism is provided by recognizing existing physical constraints as well as the physical reality of the vector potential.

  9. Classical Mechanics and Symplectic Integration

    DEFF Research Database (Denmark)

    Nordkvist, Nikolaj; Hjorth, Poul G.

    2005-01-01

    Content: Classical mechanics: Calculus of variations, Lagrange’s equations, Symmetries and Noether’s theorem, Hamilton’s equations, cannonical transformations, integrable systems, pertubation theory. Symplectic integration: Numerical integrators, symplectic integrators, main theorem on symplectic...

  10. The simplest classical models of topological transitions

    International Nuclear Information System (INIS)

    Konstantinov, M.Yu.

    1983-01-01

    It is shown that simplest classical models of topologigal transitions possess scalar singularity of curvature with a point carrier being a source of space-time incompleteness. It is also shown that the condition of energy dominance is broken near the topological transition, asymptotic behaviour of the curvature tensor (growth of curvature at approximation to the topological transition) and energy-momentum tensor of (breaking the condition of energy dominance) being a common property of the considered models and being completely determined by the type of topological transition

  11. Classical theory of radiating strings

    Science.gov (United States)

    Copeland, Edmund J.; Haws, D.; Hindmarsh, M.

    1990-01-01

    The divergent part of the self force of a radiating string coupled to gravity, an antisymmetric tensor and a dilaton in four dimensions are calculated to first order in classical perturbation theory. While this divergence can be absorbed into a renormalization of the string tension, demanding that both it and the divergence in the energy momentum tensor vanish forces the string to have the couplings of compactified N = 1 D = 10 supergravity. In effect, supersymmetry cures the classical infinities.

  12. Teaching Classical Mechanics using Smartphones

    OpenAIRE

    Chevrier, Joel; Madani, Laya; Ledenmat, Simon; Bsiesy, Ahmad

    2012-01-01

    Using a personal computer and a smartphone, iMecaProf is a software that provides a complete teaching environment for practicals associated to a Classical Mechanics course. iMecaProf proposes a visual, real time and interactive representation of data transmitted by a smartphone using the formalism of Classical Mechanics. Using smartphones is more than using a set of sensors. iMecaProf shows students that important concepts of physics they here learn, are necessary to control daily life smartp...

  13. Dynamical systems in classical mechanics

    CERN Document Server

    Kozlov, V V

    1995-01-01

    This book shows that the phenomenon of integrability is related not only to Hamiltonian systems, but also to a wider variety of systems having invariant measures that often arise in nonholonomic mechanics. Each paper presents unique ideas and original approaches to various mathematical problems related to integrability, stability, and chaos in classical dynamics. Topics include… the inverse Lyapunov theorem on stability of equilibria geometrical aspects of Hamiltonian mechanics from a hydrodynamic perspective current unsolved problems in the dynamical systems approach to classical mechanics

  14. Quantum money with classical verification

    Energy Technology Data Exchange (ETDEWEB)

    Gavinsky, Dmitry [NEC Laboratories America, Princeton, NJ (United States)

    2014-12-04

    We propose and construct a quantum money scheme that allows verification through classical communication with a bank. This is the first demonstration that a secure quantum money scheme exists that does not require quantum communication for coin verification. Our scheme is secure against adaptive adversaries - this property is not directly related to the possibility of classical verification, nevertheless none of the earlier quantum money constructions is known to possess it.

  15. Quantum money with classical verification

    International Nuclear Information System (INIS)

    Gavinsky, Dmitry

    2014-01-01

    We propose and construct a quantum money scheme that allows verification through classical communication with a bank. This is the first demonstration that a secure quantum money scheme exists that does not require quantum communication for coin verification. Our scheme is secure against adaptive adversaries - this property is not directly related to the possibility of classical verification, nevertheless none of the earlier quantum money constructions is known to possess it

  16. Quantum formalism for classical statistics

    Science.gov (United States)

    Wetterich, C.

    2018-06-01

    In static classical statistical systems the problem of information transport from a boundary to the bulk finds a simple description in terms of wave functions or density matrices. While the transfer matrix formalism is a type of Heisenberg picture for this problem, we develop here the associated Schrödinger picture that keeps track of the local probabilistic information. The transport of the probabilistic information between neighboring hypersurfaces obeys a linear evolution equation, and therefore the superposition principle for the possible solutions. Operators are associated to local observables, with rules for the computation of expectation values similar to quantum mechanics. We discuss how non-commutativity naturally arises in this setting. Also other features characteristic of quantum mechanics, such as complex structure, change of basis or symmetry transformations, can be found in classical statistics once formulated in terms of wave functions or density matrices. We construct for every quantum system an equivalent classical statistical system, such that time in quantum mechanics corresponds to the location of hypersurfaces in the classical probabilistic ensemble. For suitable choices of local observables in the classical statistical system one can, in principle, compute all expectation values and correlations of observables in the quantum system from the local probabilistic information of the associated classical statistical system. Realizing a static memory material as a quantum simulator for a given quantum system is not a matter of principle, but rather of practical simplicity.

  17. Quantum versus classical statistical dynamics of an ultracold Bose gas

    International Nuclear Information System (INIS)

    Berges, Juergen; Gasenzer, Thomas

    2007-01-01

    We investigate the conditions under which quantum fluctuations are relevant for the quantitative interpretation of experiments with ultracold Bose gases. This requires to go beyond the description in terms of the Gross-Pitaevskii and Hartree-Fock-Bogoliubov mean-field theories, which can be obtained as classical (statistical) field-theory approximations of the quantum many-body problem. We employ functional-integral techniques based on the two-particle irreducible (2PI) effective action. The role of quantum fluctuations is studied within the nonperturbative 2PI 1/N expansion to next-to-leading order. At this accuracy level memory integrals enter the dynamic equations, which differ for quantum and classical statistical descriptions. This can be used to obtain a classicality condition for the many-body dynamics. We exemplify this condition by studying the nonequilibrium evolution of a one-dimensional Bose gas of sodium atoms, and discuss some distinctive properties of quantum versus classical statistical dynamics

  18. Classical collisions of protons with hydrogen atoms

    International Nuclear Information System (INIS)

    Banks, D.; Hughes, P.E.; Percival, I.C.; Barnes, K.S.; Valentine, N.A.; Wilson, Mc.B.

    1977-01-01

    The program solves the equations of motion for the interaction of 3 charged particles, obtaining final states in terms of initial states, and energy transfers, angles of ejection, and final cartesian co-ordinates of relative motion. Using a Monte Carlo method on many orbits total ionization and charge transfer cross sections, integral energy transfer cross sections and moments of energy transfers are estimated. Facilities are provided for obtaining angular distributions, momentum transfer cross sections and for comparison with various approximate classical theories. The equations of motion are solved using stepwise fourth-order Runge-Kutta integration with automatic steplength change. Selection of initial conditions is determined by the user, usually as a statistical distribution determined by a pseudorandom number subroutine. Classical representation theory and transformation methods are extensively used. (Auth.)

  19. Classical trajectories and quantum field theory

    International Nuclear Information System (INIS)

    Vitiello, Giuseppe; Istituto Nazionale di Fisica Nucleare, Salerno

    2005-01-01

    The density matrix and the Wigner function formalism requires the doubling of the degrees of freedom in quantum mechanics (QM) and quantum field theory (QFT). The doubled degrees of freedom play the role of the thermal bath or environment degrees of freedom and are entangled with the system degrees of freedom. They also account for quantum noise in the fluctuating random forces in the system-environment coupling. The algebraic structure of QFT turns out to be the one of the deformed Hopf algebra. In such a frame, the trajectories in the space of the unitarily inequivalent representations of the canonical commutation relations turn out to be classical trajectories and, under convenient conditions, they may exhibit properties typical of classical chaotic trajectories in nonlinear dynamics. The quantum Brownian motion and the two-slit experiment in QM are discussed in connection with the doubling of the degrees of freedom. (author)

  20. Classical and quantum dynamics from classical paths to path integrals

    CERN Document Server

    Dittrich, Walter

    2017-01-01

    Graduate students who wish to become familiar with advanced computational strategies in classical and quantum dynamics will find in this book both the fundamentals of a standard course and a detailed treatment of the time-dependent oscillator, Chern-Simons mechanics, the Maslov anomaly and the Berry phase, to name just a few topics. Well-chosen and detailed examples illustrate perturbation theory, canonical transformations and the action principle, and demonstrate the usage of path integrals. The fifth edition has been revised and enlarged to include chapters on quantum electrodynamics, in particular, Schwinger’s proper time method and the treatment of classical and quantum mechanics with Lie brackets and pseudocanonical transformations. It is shown that operator quantum electrodynamics can be equivalently described with c-numbers, as demonstrated by calculating the propagation function for an electron in a prescribed classical electromagnetic field.

  1. Does classical liberalism imply democracy?

    Directory of Open Access Journals (Sweden)

    David Ellerman

    2015-12-01

    Full Text Available There is a fault line running through classical liberalism as to whether or not democratic self-governance is a necessary part of a liberal social order. The democratic and non-democratic strains of classical liberalism are both present today—particularly in the United States. Many contemporary libertarians and neo-Austrian economists represent the non-democratic strain in their promotion of non-democratic sovereign city-states (start-up cities or charter cities. We will take the late James M. Buchanan as a representative of the democratic strain of classical liberalism. Since the fundamental norm of classical liberalism is consent, we must start with the intellectual history of the voluntary slavery contract, the coverture marriage contract, and the voluntary non-democratic constitution (or pactum subjectionis. Next we recover the theory of inalienable rights that descends from the Reformation doctrine of the inalienability of conscience through the Enlightenment (e.g. Spinoza and Hutcheson in the abolitionist and democratic movements. Consent-based governments divide into those based on the subjects’ alienation of power to a sovereign and those based on the citizens’ delegation of power to representatives. Inalienable rights theory rules out that alienation in favor of delegation, so the citizens remain the ultimate principals and the form of government is democratic. Thus the argument concludes in agreement with Buchanan that the classical liberal endorsement of sovereign individuals acting in the marketplace generalizes to the joint action of individuals as the principals in their own organizations.

  2. Doing classical theology in context

    Directory of Open Access Journals (Sweden)

    Gerrit Neven

    2007-05-01

    Full Text Available This article is about doing classical theology in context. The weight of my argument is that classical text of Karl Barth’s theology is great intellectual text means: being addressed by this text in the context in which one lives. The basic keywords that constitute a rule for reading those texts are “equality”, “event” and “re-contextualisation”. The article contains two sections: The first section elaborates statements about the challenge of the event and the project of rereading classics by way of recontextualisation. The word “event” refers to true and innovating moments in history which one can share, or which one can betray. Classical texts always share in those liberative moments. The question then is in what sense do they present a challenge to the contemporary reader. The second section elaborates the position of man as central and all decisive for doing theology in context now. In this section, the author appeals for a renewal of the classical anthropology as an anthropology of hope. This anthropology contradicts postmodern concepts of otherness.

  3. Classical approach in atomic physics

    International Nuclear Information System (INIS)

    Solov'ev, E.A.

    2011-01-01

    The application of a classical approach to various quantum problems - the secular perturbation approach to quantization of a hydrogen atom in external fields and a helium atom, the adiabatic switching method for calculation of a semiclassical spectrum of a hydrogen atom in crossed electric and magnetic fields, a spontaneous decay of excited states of a hydrogen atom, Gutzwiller's approach to Stark problem, long-lived excited states of a helium atom discovered with the help of Poincare section, inelastic transitions in slow and fast electron-atom and ion-atom collisions - is reviewed. Further, a classical representation in quantum theory is discussed. In this representation the quantum states are treated as an ensemble of classical states. This approach opens the way to an accurate description of the initial and final states in classical trajectory Monte Carlo (CTMC) method and a purely classical explanation of tunneling phenomenon. The general aspects of the structure of the semiclassical series such as renormalization group symmetry, criterion of accuracy and so on are reviewed as well. (author)

  4. The Diversity of Classical Archaeology

    DEFF Research Database (Denmark)

    , settlement patterns, landscape archaeology, historiography, and urban archaeology. Additionally, essays on topics such as the early Islamic period and portraiture in the Near East serve to broaden the themes encompassed by this work, and demonstrate the importance of interdisciplinary knowledge in the field......This book is the first volume in the series Studies in Classical Archaeology, founded and edited by professors of classical archaeology, Achim Lichtenberger and Rubina Raja. This volume sets out the agenda for this series. It achieves this by familiarizing readers with a wide range of themes...... and material groups, and highlighting them as core areas of traditional classical archaeology, despite the fact that some have hitherto been neglected. Themes presented in this volume include Greek and Roman portraiture and sculpture, iconography, epigraphy, archaeology, numismatics, the Mediterranean...

  5. Classical Dimensional Transmutation and Confinement

    CERN Document Server

    Dvali, Gia; Mukhanov, Slava

    2011-01-01

    We observe that probing certain classical field theories by external sources uncovers the underlying renormalization group structure, including the phenomenon of dimensional transmutation, at purely-classical level. We perform this study on an example of $\\lambda\\phi^{4}$ theory and unravel asymptotic freedom and triviality for negative and positives signs of $\\lambda$ respectively. We derive exact classical $\\beta$ function equation. Solving this equation we find that an isolated source has an infinite energy and therefore cannot exist as an asymptotic state. On the other hand a dipole, built out of two opposite charges, has finite positive energy. At large separation the interaction potential between these two charges grows indefinitely as a distance in power one third.

  6. Classical and quantum fingerprinting strategies

    International Nuclear Information System (INIS)

    Scott, A.; Walgate, J.; Sanders, B.

    2005-01-01

    Full text: Fingerprinting enables two parties to infer whether the messages they hold are the same or different when the cost of communication is high: each message is associated with a smaller fingerprint and comparisons between messages are made in terms of their fingerprints alone. When the two parties are forbidden access to a public coin, it is known that fingerprints composed of quantum information can be made exponentially smaller than those composed of classical information. We present specific constructions of classical fingerprinting strategies through the use of constant-weight codes and provide bounds on the worst-case error probability with the help of extremal set theory. These classical strategies are easily outperformed by quantum strategies constructed from line packings and equiangular tight frames. (author)

  7. Optimum Onager: The Classical Mechanics of a Classical Siege Engine

    Science.gov (United States)

    Denny, Mark

    2009-01-01

    The onager is a throwing weapon of classical antiquity, familiar to both the ancient Greeks and Romans. Here we analyze the dynamics of onager operation and derive the optimum angle for launching a projectile to its maximum range. There is plenty of scope for further considerations about increasing onager range, and so by thinking about how this…

  8. CLASSICAL AND NON-CLASSICAL PHILOSOPHICAL ANTHROPOLOGY: COMPARATIVE ANALYSIS

    Directory of Open Access Journals (Sweden)

    T. A. Kozlova

    2018-01-01

    Full Text Available Introduction: The goals and values of human life, the search for the meaning of human existence contain the potential for a meaningful, progressive development of philosophical and anthropological ideas at any time in history. One of the tasks of philosophical anthropology is the formation of the image of man, the choice of ways to achieve the ideal, the methods of comprehension and resolution of universal problems. The increasing processes of differentiation in science led to the formation of different views on the nature of man, to the distinction between classical and non-classical philosophical anthropology. А comparative analysis of these trends is given in this article.Materials and methods: The dialectical method is preferred in the question of research methodology, the hermeneutic and phenomenological approaches are used.Results: The development of philosophical anthropology correlates with the challenges of modernity. By tracking the trends of human change, philosophical anthropology changes the approach to the consideration of its main subject of research. The whole array of disciplines that study man comes to new discoveries, new theories, and philosophical anthropology changes its view of the vision, challenging the principles of classical philosophical anthropology.Classical philosophical anthropology elevates the biological nature of man to a pedestal, non-classical philosophical anthropology actualizes questions of language, culture, thinking, understanding, actualizes the hermeneutic and phenomenological approaches. The desire to understand a person in classical philosophical anthropology is based on the desire to fully reveal the biological mechanisms in a person. The perspective of treating a person in nonclassical philosophical anthropology is polyformen: man as a text, as a dreaming self, as an eternal transition. Non-classical philosophical anthropology, goes from the idea of identity to the idea of variability, from

  9. Resonance phenomenon in classical cepheids

    International Nuclear Information System (INIS)

    Takeuti, Mine; Aikawa, Toshiki

    1981-01-01

    To investigate resonance phenomenon in classical cepheids, the non-linear radial oscillation of stars is studied based on the assumption that the non-adiabatic perturbation is expressed in terms of van der Pol's type damping. Two- and three-wave resonance in this system is applied to classical cepheids to describe their bump and double-mode behavior. The phase of bump and the depression of amplitude are explained for bump cepheids. The double-periodicity is shown by the enhancement of the third overtone in three-wave resonance. Non-linear effect on resonant period is also discussed briefly. (author)

  10. Classical planning and causal implicatures

    DEFF Research Database (Denmark)

    Blackburn, Patrick Rowan; Benotti, Luciana

    In this paper we motivate and describe a dialogue manager (called Frolog) which uses classical planning to infer causal implicatures. A causal implicature is a type of Gricean relation implicature, a highly context dependent form of inference. As we shall see, causal implicatures are important...... to generate clarification requests"; as a result we can model task-oriented dialogue as an interactive process locally structured by negotiation of the underlying task. We give several examples of Frolog-human dialog, discuss the limitations imposed by the classical planning paradigm, and indicate...

  11. Principal bundles the classical case

    CERN Document Server

    Sontz, Stephen Bruce

    2015-01-01

    This introductory graduate level text provides a relatively quick path to a special topic in classical differential geometry: principal bundles.  While the topic of principal bundles in differential geometry has become classic, even standard, material in the modern graduate mathematics curriculum, the unique approach taken in this text presents the material in a way that is intuitive for both students of mathematics and of physics. The goal of this book is to present important, modern geometric ideas in a form readily accessible to students and researchers in both the physics and mathematics communities, providing each with an understanding and appreciation of the language and ideas of the other.

  12. Classical resonances and quantum scarring

    International Nuclear Information System (INIS)

    Manderfeld, Christopher

    2003-01-01

    We study the correspondence between phase-space localization of quantum (quasi-)energy eigenstates and classical correlation decay, given by Ruelle-Pollicott resonances of the Frobenius-Perron operator. It will be shown that scarred (quasi-)energy eigenstates are correlated: pairs of eigenstates strongly overlap in phase space (scar in same phase-space regions) if the difference of their eigenenergies is close to the phase of a leading classical resonance. Phase-space localization of quantum states will be measured by L 2 norms of their Husimi functions

  13. Classical higher-order processes

    DEFF Research Database (Denmark)

    Montesi, Fabrizio

    2017-01-01

    Classical Processes (CP) is a calculus where the proof theory of classical linear logic types processes à la Π-calculus, building on a Curry-Howard correspondence between session types and linear propositions. We contribute to this research line by extending CP with process mobility, inspired...... by the Higher-Order Π-calculus. The key to our calculus is that sequents are asymmetric: one side types sessions as in CP and the other types process variables, which can be instantiated with process values. The controlled interaction between the two sides ensures that process variables can be used at will......, but always respecting the linear usage of sessions expected by the environment....

  14. Classical solutions and extended supergravity

    International Nuclear Information System (INIS)

    de Alfaro, V.; Fubini, S.; Furlan, G.

    1980-03-01

    The existence and properties of classical solutions for gravity coupled to matter fields have been investigated previously with the limitation to conformally flat solutions. In the search for a guiding criterion to determine the form of the coupling among the fields, one is led to consider supersymmetric theories, and the question arises whether classical solutions persist in these models. It is found that a discrepancy persists between supergravity and standard meron solutions. Owing to the appearance of the scalar field, a new set of meron solutions exists for particular Lagrangian models. In conclusion, the form of solutions in Minkowski space is discussed

  15. Classical and sequential limit analysis revisited

    Science.gov (United States)

    Leblond, Jean-Baptiste; Kondo, Djimédo; Morin, Léo; Remmal, Almahdi

    2018-04-01

    Classical limit analysis applies to ideal plastic materials, and within a linearized geometrical framework implying small displacements and strains. Sequential limit analysis was proposed as a heuristic extension to materials exhibiting strain hardening, and within a fully general geometrical framework involving large displacements and strains. The purpose of this paper is to study and clearly state the precise conditions permitting such an extension. This is done by comparing the evolution equations of the full elastic-plastic problem, the equations of classical limit analysis, and those of sequential limit analysis. The main conclusion is that, whereas classical limit analysis applies to materials exhibiting elasticity - in the absence of hardening and within a linearized geometrical framework -, sequential limit analysis, to be applicable, strictly prohibits the presence of elasticity - although it tolerates strain hardening and large displacements and strains. For a given mechanical situation, the relevance of sequential limit analysis therefore essentially depends upon the importance of the elastic-plastic coupling in the specific case considered.

  16. Information transport in classical statistical systems

    Science.gov (United States)

    Wetterich, C.

    2018-02-01

    For "static memory materials" the bulk properties depend on boundary conditions. Such materials can be realized by classical statistical systems which admit no unique equilibrium state. We describe the propagation of information from the boundary to the bulk by classical wave functions. The dependence of wave functions on the location of hypersurfaces in the bulk is governed by a linear evolution equation that can be viewed as a generalized Schrödinger equation. Classical wave functions obey the superposition principle, with local probabilities realized as bilinears of wave functions. For static memory materials the evolution within a subsector is unitary, as characteristic for the time evolution in quantum mechanics. The space-dependence in static memory materials can be used as an analogue representation of the time evolution in quantum mechanics - such materials are "quantum simulators". For example, an asymmetric Ising model on a Euclidean two-dimensional lattice represents the time evolution of free relativistic fermions in two-dimensional Minkowski space.

  17. CLASSICS

    Indian Academy of Sciences (India)

    Our primary source of information on Prof. Ruchi Ram Sahni is his typed autobiography, copies of which have been available with his descendants. Because of typing errors, illegibility, and other disabilities, their use had so far been limited. Now, his great-granddaughter, Neera Burra (whose article appears elsewhere.

  18. CLASSICS

    Indian Academy of Sciences (India)

    IAS Admin

    gravitational acceleration, the physical properties of air and water, and so forth. ... system, I will consider aspects of the physical world and ask what organisms, ..... speed should have little or no direct effect on water loss by transpiration.

  19. CLASSICS

    Indian Academy of Sciences (India)

    IAS Admin

    words, the origin (0;0) of the (x; y)-plane blows-up into the line x0 = 0 of the (x0 ... This is where I entered the picture. .... Especially I remember the tasty salads made with .... vacation cottage that I must do a better job in my introduction, because.

  20. CLASSICS

    Indian Academy of Sciences (India)

    would say various things to make me give up insisting upon my request. But as I was .... I then asked him not to leave the observatory till further orders, ... I have yet to mention another incident when under very strange circumstances, luck.

  1. Classically dynamical behaviour of single particle in heavy nuclei

    International Nuclear Information System (INIS)

    Gu Jianzhong; Zhuo Yizhong; Wu Xizhen

    1998-01-01

    A detailed analysis of the classically dynamical behaviour of a nucleon in heavy nuclei in terms of the TCSM (two-center shell model) is presented. Poincare section is a convenient and reliable criterion to judge the regularity (or chaoticity) of a classical system. The numerical calculations in this work are carried out for a nucleon in 238 U. The Poincare section map and the Poincare surface of section for different conditions are presented

  2. FREEDOM FRANCHISING AS AN ALTERNATIVE TO THE CLASSIC FRANCHISING

    OpenAIRE

    L. A. Solovova

    2016-01-01

    The article is devoted to the model of freedom franchising and to its comparison with the classic franchising model. The aim of the article is to systemize and enrich the knowledge in the sphere of the franchising model evolution. The author’s task was to identify the key features of the freedom franchising model, to compare the freedom franchising with classic franchising and to formulate the conditions under which the freedom franchising model can be developed. To achieve this the analysis,...

  3. Matricial theory in classical photoelasticity

    International Nuclear Information System (INIS)

    Apostol, D.

    1980-01-01

    The matrix calculus in classical photoelasticity is used. Transfer functions for different polariscope arrangements are calculated. Linear polariscopes, circular polariscopes, double-exposure method to obtain isochromatics and Tardy and Senarmont method of measuring fractional relative retardations are analysed using coherency matrix formalism. (author)

  4. Agglomeration Economies in Classical Music

    DEFF Research Database (Denmark)

    Borowiecki, Karol Jan

    2015-01-01

    This study investigates agglomeration effects for classical music production in a wide range of cities for a global sample of composers born between 1750 and 1899. Theory suggests a trade-off between agglomeration economies (peer effects) and diseconomies (peer crowding). I test this hypothesis...

  5. Solved problems in classical electromagnetism

    CERN Document Server

    Franklin, Jerrold

    2018-01-01

    This original Dover publication is the companion to a new edition of the author's Classical Electromagnetism: Second Edition. The latter volume will feature only basic answers; this book will contain some problems from the reissue as well as many other new ones. All feature complete, worked-out solutions and form a valuable source of problem-solving material for students.

  6. Doing classical theology in context

    African Journals Online (AJOL)

    p1243322

    It is a critical concept, because it involves a break with ... question of the sense in which our context and culture have been interrupted by acts of ... challenge of reading a classical text is not only intellectual but also moral or existential. ..... and an opponent of pragmatic and relativistic conceptions8 I want to stress the.

  7. Classical Music as Enforced Utopia

    Science.gov (United States)

    Leech-Wilkinson, Daniel

    2016-01-01

    In classical music composition, whatever thematic or harmonic conflicts may be engineered along the way, everything always turns out for the best. Similar utopian thinking underlies performance: performers see their job as faithfully carrying out their master's (the composer's) wishes. The more perfectly they represent them, the happier the…

  8. Supersymmetric classical mechanics: free case

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, R. de Lima [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]|[Paraiba Univ., Cajazeiras, PB (Brazil). Dept. de Ciencias Exatas e da Natureza]. E-mail: rafael@cfp.ufpb.br; Almeida, W. Pires de [Paraiba Univ., Cajazeiras, PB (Brazil). Dept. de Ciencias Exatas e da Natureza; Fonseca Neto, I. [Paraiba Univ., Campina Grande, PB (Brazil). Dept. de Fisica

    2001-06-01

    We present a review work on Supersymmetric Classical Mechanics in the context of a Lagrangian formalism, with N = 1-supersymmetry. We show that the N = 1 supersymmetry does not allow the introduction of a potencial energy term depending on a single commuting supercoordinate, {phi}(t;{theta}). (author)

  9. Teaching Classical Mechanics Using Smartphones

    Science.gov (United States)

    Chevrier, Joel; Madani, Laya; Ledenmat, Simon; Bsiesy, Ahmad

    2013-01-01

    A number of articles published in this column have dealt with topics in classical mechanics. This note describes some additional examples employing a smartphone and the new software iMecaProf. Steve Jobs presented the iPhone as "perfect for gaming." Thanks to its microsensors connected in real time to the numerical world, physics…

  10. Semi-classical signal analysis

    KAUST Repository

    Laleg-Kirati, Taous-Meriem; Cré peau, Emmanuelle; Sorine, Michel

    2012-01-01

    This study introduces a new signal analysis method, based on a semi-classical approach. The main idea in this method is to interpret a pulse-shaped signal as a potential of a Schrödinger operator and then to use the discrete spectrum

  11. Classical databases and knowledge organization

    DEFF Research Database (Denmark)

    Hjørland, Birger

    2015-01-01

    This paper considers classical bibliographic databases based on the Boolean retrieval model (such as MEDLINE and PsycInfo). This model is challenged by modern search engines and information retrieval (IR) researchers, who often consider Boolean retrieval a less efficient approach. The paper...

  12. Neo-classical impurity transport

    International Nuclear Information System (INIS)

    Stringer, T.E.

    The neo-classical theory for impurity transport in a toroidal plasma is outlined, and the results discussed. A general account is given of the impurity behaviour and its dependence on collisionality. The underlying physics is described with special attention to the role of the poloidal rotation

  13. Listening to classical music ameliorates unilateral neglect after stroke.

    Science.gov (United States)

    Tsai, Pei-Luen; Chen, Mei-Ching; Huang, Yu-Ting; Lin, Keh-Chung; Chen, Kuan-Lin; Hsu, Yung-Wen

    2013-01-01

    OBJECTIVE. We determined whether listening to excerpts of classical music ameliorates unilateral neglect (UN) in stroke patients. METHOD. In this within-subject study, we recruited and separately tested 16 UN patients with a right-hemisphere stroke under three conditions within 1 wk. In each condition, participants were asked to complete three subtests of the Behavioral Inattention Test while listening to classical music, white noise, or nothing. All conditions and the presentation of the tests were counterbalanced across participants. Visual analog scales were used to provide self-reported ratings of arousal and mood. RESULTS. Participants generally had the highest scores under the classical music condition and the lowest scores under the silence condition. In addition, most participants rated their arousal as highest after listening to classical music. CONCLUSION. Listening to classical music may improve visual attention in stroke patients with UN. Future research with larger study populations is necessary to validate these findings. Copyright © 2013 by the American Occupational Therapy Association, Inc.

  14. From classical to quantum plasmonics: Classical emitter and SPASER

    Science.gov (United States)

    Balykin, V. I.

    2018-02-01

    The key advantage of plasmonics is in pushing our control of light down to the nanoscale. It is possible to envision lithographically fabricated plasmonic devices for future quantum information processing or cryptography at the nanoscale in two dimensions. A first step in this direction is a demonstration of a highly efficient nanoscale light source. Here we demonstrate two types of nanoscale sources of optical fields: 1) the classical metallic nanostructure emitter and 2) the plasmonic nanolaser - SPASER.

  15. Embedding quantum into classical: contextualization vs conditionalization.

    Directory of Open Access Journals (Sweden)

    Ehtibar N Dzhafarov

    Full Text Available We compare two approaches to embedding joint distributions of random variables recorded under different conditions (such as spins of entangled particles for different settings into the framework of classical, Kolmogorovian probability theory. In the contextualization approach each random variable is "automatically" labeled by all conditions under which it is recorded, and the random variables across a set of mutually exclusive conditions are probabilistically coupled (imposed a joint distribution upon. Analysis of all possible probabilistic couplings for a given set of random variables allows one to characterize various relations between their separate distributions (such as Bell-type inequalities or quantum-mechanical constraints. In the conditionalization approach one considers the conditions under which the random variables are recorded as if they were values of another random variable, so that the observed distributions are interpreted as conditional ones. This approach is uninformative with respect to relations between the distributions observed under different conditions because any set of such distributions is compatible with any distribution assigned to the conditions.

  16. Classical trajectory methods in molecular collisions

    International Nuclear Information System (INIS)

    Porter, R.N.; Raff, L.M.

    1976-01-01

    The discussion of classical trajectory methods in molecular collisions includes classical dynamics, Hamiltonian mechanics, classical scattering cross sections and rate coefficients, statistical averaging, the selection of initial states, integration of equations of motion, analysis of final states, consecutive collisions, and the prognosis for classical molecular scattering calculations. 61 references

  17. From classical to quantum chaos

    International Nuclear Information System (INIS)

    Zaslavsky, G.M.

    1991-01-01

    The analysis is done for the quantum properties of systems that possess dynamical chaos in classical limit. Two main topics are considered: (i) the problem of quantum macroscopical description of the system and the Ehrenfest-Einstein problem of the validity of the classical approximation; and (ii) the problem of levels spacing distribution for the nonintegrable case. For the first topic the method of projecting on the coherent states base is considered and the ln 1/(h/2π) time for the quasiclassical approximation breaking is described. For the second topic the discussion of GOE and non-GOE distributions is done and estimations and simulations for the non-GOE case are reviewed. (author). 44 refs, 2 figs

  18. Classical theory of algebraic numbers

    CERN Document Server

    Ribenboim, Paulo

    2001-01-01

    Gauss created the theory of binary quadratic forms in "Disquisitiones Arithmeticae" and Kummer invented ideals and the theory of cyclotomic fields in his attempt to prove Fermat's Last Theorem These were the starting points for the theory of algebraic numbers, developed in the classical papers of Dedekind, Dirichlet, Eisenstein, Hermite and many others This theory, enriched with more recent contributions, is of basic importance in the study of diophantine equations and arithmetic algebraic geometry, including methods in cryptography This book has a clear and thorough exposition of the classical theory of algebraic numbers, and contains a large number of exercises as well as worked out numerical examples The Introduction is a recapitulation of results about principal ideal domains, unique factorization domains and commutative fields Part One is devoted to residue classes and quadratic residues In Part Two one finds the study of algebraic integers, ideals, units, class numbers, the theory of decomposition, iner...

  19. Classical and multilinear harmonic analysis

    CERN Document Server

    Muscalu, Camil

    2013-01-01

    This two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained and useful to graduates and researchers in pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. The first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional Calderón-Zygmund and Littlewood-Paley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; Coifman-Meyer theory; Carleson's resolution of the Lusin conjecture; Calderón's commutators and the Cauchy integral on Lipschitz curves. The material in this vo...

  20. Quantum Models of Classical World

    Directory of Open Access Journals (Sweden)

    Petr Hájíček

    2013-02-01

    Full Text Available This paper is a review of our recent work on three notorious problems of non-relativistic quantum mechanics: realist interpretation, quantum theory of classical properties, and the problem of quantum measurement. A considerable progress has been achieved, based on four distinct new ideas. First, objective properties are associated with states rather than with values of observables. Second, all classical properties are selected properties of certain high entropy quantum states of macroscopic systems. Third, registration of a quantum system is strongly disturbed by systems of the same type in the environment. Fourth, detectors must be distinguished from ancillas and the states of registered systems are partially dissipated and lost in the detectors. The paper has two aims: a clear explanation of all new results and a coherent and contradiction-free account of the whole quantum mechanics including all necessary changes of its current textbook version.

  1. THE BUREAUCRATIC PHENOMENON: CLASSICAL CONCEPTS

    OpenAIRE

    Дама Ибрагима

    2013-01-01

    Aim of this article - to analyze Hegel and Karl Marx’s classic bureaucracy theories and also Max Weber’s concept of rational bureaucracy and its development in the works of Herbert Simon, Robert Merton, Peter Blau and Michel Crozier. It shows that the above listed researchers only undertook a change of terminology within the same theoretical tradition. The article describes different approaches to the bureaucratic system of administrative schools of the late 1950s and early 1980s. Major concl...

  2. Classical music and the teeth.

    Science.gov (United States)

    Eramo, Stefano; Di Biase, Mary Jo; De Carolis, Carlo

    2013-01-01

    Teeth and their pathologies are frequent themes in classical music. The teeth have inspired popular songwriters such as Thomas Crecquillon, Carl Loewe, Amilcare Ponchielli & Christian Sinding; as well as composers whose works are still played all over the world, such as Robert Schumann and Jacques Offenbach. This paper examines several selections in which the inspiring theme is the teeth and the pain they can cause, from the suffering of toothache, to the happier occasion of a baby's first tooth.

  3. Semi-classical signal analysis

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2012-09-30

    This study introduces a new signal analysis method, based on a semi-classical approach. The main idea in this method is to interpret a pulse-shaped signal as a potential of a Schrödinger operator and then to use the discrete spectrum of this operator for the analysis of the signal. We present some numerical examples and the first results obtained with this method on the analysis of arterial blood pressure waveforms. © 2012 Springer-Verlag London Limited.

  4. Quantum Mechanics as Classical Physics

    OpenAIRE

    Sebens, CT

    2015-01-01

    Here I explore a novel no-collapse interpretation of quantum mechanics which combines aspects of two familiar and well-developed alternatives, Bohmian mechanics and the many-worlds interpretation. Despite reproducing the empirical predictions of quantum mechanics, the theory looks surprisingly classical. All there is at the fundamental level are particles interacting via Newtonian forces. There is no wave function. However, there are many worlds.

  5. Classical counterexamples to Bell's inequalities

    International Nuclear Information System (INIS)

    Orlov, Yuri F.

    2002-01-01

    This paper shows that a classical system containing a conventional yes/no decision-making component can behave like a quantum system of spin measurements in many ways (although it lacks a wave function) when, in principle, there are no deterministic decision procedures to govern the decision making, and when probabilistic decision procedures consistent with the system are introduced. Most notably, the system violates Bell's inequalities. Moreover, since the system is simple and macroscopic, its similarities to quantum systems arguably provide an insight into quantum mechanics and, in particular, EPR experiments. Thus, from the qualitative correspondences, decisions↔quantum measurements and the impossibility of deterministic decision procedures↔quantum noncommutativity, we conclude that the violation of Bell's inequalities in quantum mechanics does not require the existence of an unknown nonclassical nonlocality. It can merely be a result of local noncommutativity combined with nonlocalities of the classical type. The proposed classical decision-making system is a nonquantum theoretical construct possessing complementarity features in Bohr's sense

  6. Classical optics and curved spaces

    International Nuclear Information System (INIS)

    Bailyn, M.; Ragusa, S.

    1976-01-01

    In the eikonal approximation of classical optics, the unit polarization 3-vector of light satisfies an equation that depends only on the index, n, of refraction. It is known that if the original 3-space line element is d sigma 2 , then this polarization direction propagates parallely in the fictitious space n 2 d sigma 2 . Since the equation depends only on n, it is possible to invent a fictitious curved 4-space in which the light performs a null geodesic, and the polarization 3-vector behaves as the 'shadow' of a parallely propagated 4-vector. The inverse, namely, the reduction of Maxwell's equation, on a curve 'dielectric free) space, to a classical space with dielectric constant n=(-g 00 ) -1 / 2 is well known, but in the latter the dielectric constant epsilon and permeability μ must also equal (-g 00 ) -1 / 2 . The rotation of polarization as light bends around the sun by utilizing the reduction to the classical space, is calculated. This (non-) rotation may then be interpreted as parallel transport in the 3-space n 2 d sigma 2 [pt

  7. A history of seafaring in the classical world (routledge revivals)

    CERN Document Server

    Meijer, Fik

    2014-01-01

    A History of Seafaring in the Classical World, first published in 1986, presents a complete treatment of all aspects of the maritime history of the Classical world, designed for the use of students as well as scholars. Beginning with Crete and Mycenae in the third millennium BC, the author expounds a concise history of seafaring up to the sixth century AD. The development of ship design and of the different types of ship, the varied purposes of shipping, and the status and conditions of sailors are all discussed. Many of the most important sea battles are investigated, and the book is illustrated with a number of line drawings and photographs. Greek and Latin word are only used if they are technical terms, ensuring A History of Seafaring in the Classical World is accessible to students of ancient history who are not familiar with the Classical languages.

  8. The positive-entropy constraint for the classical ideal gas

    International Nuclear Information System (INIS)

    Ciccariello, Salvino

    2004-01-01

    The problem of determining the state parameters' sub-domain where the behaviour of the classical ideal gas approximates that of the Bose and Fermi ideal gases is tutorially discussed. The entropy of any quantum system being always positive, the classical approximation can only be satisfactory within the parameters' sub-domain where the classical entropy turns out to be positive. We show that the sub-domain determined by this condition is close to that where de Broglie's thermal wavelength is smaller than the mean interparticle distance. The exact determination of the state parameters' region, where the particle number density, the grand potential and the entropy of quantum ideal gases differ from those of the classical gas less than a specified quantity, is also illustrated

  9. Intuitionism vs. classicism a mathematical attack on classical logic

    CERN Document Server

    Haverkamp, Nick

    2015-01-01

    In the early twentieth century, the Dutch mathematician L.E.J. Brouwer launched a powerful attack on the prevailing mathematical methods and theories. He developed a new kind of constructive mathematics, called intuitionism, which seems to allow for a rigorous refutation of widely accepted mathematical assumptions including fundamental principles of classical logic. Following an intense mathematical debate esp. in the 1920s, Brouwer's revolutionary criticism became a central philosophical concern in the 1970s, when Michael Dummett tried to substantiate it with meaning-theoretic considerations.

  10. Classical and quantum dynamics from classical paths to path integrals

    CERN Document Server

    Dittrich, Walter

    2016-01-01

    Graduate students who want to become familiar with advanced computational strategies in classical and quantum dynamics will find here both the fundamentals of a standard course and a detailed treatment of the time-dependent oscillator, Chern-Simons mechanics, the Maslov anomaly and the Berry phase, to name a few. Well-chosen and detailed examples illustrate the perturbation theory, canonical transformations, the action principle and demonstrate the usage of path integrals. This new edition has been revised and enlarged with chapters on quantum electrodynamics, high energy physics, Green’s functions and strong interaction.

  11. Classical conditioning of sexual response in women: a replication study

    NARCIS (Netherlands)

    Both, Stephanie; Brauer, Marieke; Laan, Ellen

    2011-01-01

    According to incentive motivation models, sexual stimuli play a crucial role in eliciting sexual arousal, desire, and behavior. Therefore, it seems highly valuable to investigate the process through which stimuli acquire motivational value. Although many theories of human sexual behavior assume that

  12. NUCLEAR MIXING METERS FOR CLASSICAL NOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Keegan J.; Iliadis, Christian; Downen, Lori; Champagne, Art [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States); José, Jordi [Departament de Física i Enginyeria Nuclear, EUETIB, Universitat Politècnica de Catalunya, E-08036 Barcelona (Spain)

    2013-11-10

    Classical novae are caused by mass transfer episodes from a main-sequence star onto a white dwarf via Roche lobe overflow. This material possesses angular momentum and forms an accretion disk around the white dwarf. Ultimately, a fraction of this material spirals in and piles up on the white dwarf surface under electron-degenerate conditions. The subsequently occurring thermonuclear runaway reaches hundreds of megakelvin and explosively ejects matter into the interstellar medium. The exact peak temperature strongly depends on the underlying white dwarf mass, the accreted mass and metallicity, and the initial white dwarf luminosity. Observations of elemental abundance enrichments in these classical nova events imply that the ejected matter consists not only of processed solar material from the main-sequence partner but also of material from the outer layers of the underlying white dwarf. This indicates that white dwarf and accreted matter mix prior to the thermonuclear runaway. The processes by which this mixing occurs require further investigation to be understood. In this work, we analyze elemental abundances ejected from hydrodynamic nova models in search of elemental abundance ratios that are useful indicators of the total amount of mixing. We identify the abundance ratios ΣCNO/H, Ne/H, Mg/H, Al/H, and Si/H as useful mixing meters in ONe novae. The impact of thermonuclear reaction rate uncertainties on the mixing meters is investigated using Monte Carlo post-processing network calculations with temperature-density evolutions of all mass zones computed by the hydrodynamic models. We find that the current uncertainties in the {sup 30}P(p, γ){sup 31}S rate influence the Si/H abundance ratio, but overall the mixing meters found here are robust against nuclear physics uncertainties. A comparison of our results with observations of ONe novae provides strong constraints for classical nova models.

  13. Integration of classical and quantum physics

    International Nuclear Information System (INIS)

    Tisza, L.

    1989-01-01

    The perennial aspect of the Newtonian foundation of mathematical physics is that the concept of ''motion,'' that is, ''kinematics,'' is to serve as the interface between mathematics and physics. Kinematics subdivides into the theory of orbital translation and that of undulation and spinning. Newtonian mechanics is based on giving to translational kinematics a priority over the other modes, since planetary revolution can be represented as translation modified by gravitation. The so-called breakdown of classical physics stems from giving the translational priority a canonical status and extending it to the constituents of matter. We claim that in this case the priority is to be reversed. The main content of this paper is to establish the algebraic model for an indivisible, undulating entity that we call a ''wave simplex.'' It is used as the point of departure for a non-Newtonian quantum dynamics in which physical and algebraic concepts are in close correspondence. The postulates of the classical phenomenological theories and those of the canonical theories based on translational priority are established as theorems under the proper limiting conditions, and forces are constructed rather than postulated. While the formal structure of two-level quantum mechanics is established as well, exception is taken to treating spin as a property of a point particle. It is considered self-evident that a spinning object is orientable, a property accounted for in terms of a unitary triplet. This is the point of departure for an intrinsic particle dynamics. A main result is the integration of classical and quantum physics, thus closing the gap created by the heuristic method of canonical quantization

  14. The Relation between Classical and Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    Mario Bacelar Valente

    2011-01-01

    Full Text Available Quantum electrodynamics presents intrinsic limitations in the description of physical processes that make it impossible to recover from it the type of description we have in classical electrodynamics. Hence one cannot consider classical electrodynamics as reducing to quantum electrodynamics and being recovered from it by some sort of limiting procedure. Quantum electrodynamics has to be seen not as an more fundamental theory, but as an upgrade of classical electrodynamics, which permits an extension of classical theory to the description of phenomena that, while being related to the conceptual framework of the classical theory, cannot be addressed from the classical theory.

  15. Classical and non-classical effective medium theories: New perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Tsukerman, Igor, E-mail: igor@uakron.edu

    2017-05-18

    Highlights: • Advanced non-asymptotic and nonlocal homogenization theories of metamaterials, valid in electrostatics and electrodynamics. • Classical theories (Clausius–Mossotti, Lorenz–Lorentz, Maxwell Garnett) fit well into the proposed framework. • Nonlocal effects can be included in the model, making order-of-magnitude accuracy improvements possible. • A challenging problem for future research is to determine what effective tensors are attainable for given constituents of a metamaterial. - Abstract: Future research in electrodynamics of periodic electromagnetic composites (metamaterials) can be expected to produce sophisticated homogenization theories valid for any composition and size of the lattice cell. The paper outlines a promising path in that direction, leading to non-asymptotic and nonlocal homogenization models, and highlights aspects of homogenization that are often overlooked: the finite size of the sample and the role of interface boundaries. Classical theories (e.g. Clausius–Mossotti, Maxwell Garnett), while originally derived from a very different set of ideas, fit well into the proposed framework. Nonlocal effects can be included in the model, making an order-of-magnitude accuracy improvements possible. One future challenge is to determine what effective parameters can or cannot be obtained for a given set of constituents of a metamaterial lattice cell, thereby delineating the possible from the impossible in metamaterial design.

  16. Classical and non-classical effective medium theories: New perspectives

    International Nuclear Information System (INIS)

    Tsukerman, Igor

    2017-01-01

    Highlights: • Advanced non-asymptotic and nonlocal homogenization theories of metamaterials, valid in electrostatics and electrodynamics. • Classical theories (Clausius–Mossotti, Lorenz–Lorentz, Maxwell Garnett) fit well into the proposed framework. • Nonlocal effects can be included in the model, making order-of-magnitude accuracy improvements possible. • A challenging problem for future research is to determine what effective tensors are attainable for given constituents of a metamaterial. - Abstract: Future research in electrodynamics of periodic electromagnetic composites (metamaterials) can be expected to produce sophisticated homogenization theories valid for any composition and size of the lattice cell. The paper outlines a promising path in that direction, leading to non-asymptotic and nonlocal homogenization models, and highlights aspects of homogenization that are often overlooked: the finite size of the sample and the role of interface boundaries. Classical theories (e.g. Clausius–Mossotti, Maxwell Garnett), while originally derived from a very different set of ideas, fit well into the proposed framework. Nonlocal effects can be included in the model, making an order-of-magnitude accuracy improvements possible. One future challenge is to determine what effective parameters can or cannot be obtained for a given set of constituents of a metamaterial lattice cell, thereby delineating the possible from the impossible in metamaterial design.

  17. Classical Syllogisms in Logic Teaching

    DEFF Research Database (Denmark)

    Øhrstrøm, Peter; Sandborg-Petersen, Ulrik; Thorvaldsen, Steinar

    2013-01-01

    This paper focuses on the challenges of introducing classical syllogisms in university courses in elementary logic and human reasoning. Using a program written in Prolog+CG, some empirical studies have been carried out involving three groups of students in Denmark; one group of philosophy students...... have a tendency correctly to assess valid syllogisms as such more often than correctly assessing invalid syllogisms as such. It is also investigated to what extent the students have improved their skills in practical reasoning by attending the logic courses. Finally, some open questions regarding...

  18. Nonlinear classical theory of electromagnetism

    International Nuclear Information System (INIS)

    Pisello, D.

    1977-01-01

    A topological theory of electric charge is given. Einstein's criteria for the completion of classical electromagnetic theory are summarized and their relation to quantum theory and the principle of complementarity is indicated. The inhibiting effect that this principle has had on the development of physical thought is discussed. Developments in the theory of functions on nonlinear spaces provide the conceptual framework required for the completion of electromagnetism. The theory is based on an underlying field which is a continuous mapping of space-time into points on the two-sphere. (author)

  19. Classics in Chemical Neuroscience: Haloperidol.

    Science.gov (United States)

    Tyler, Marshall W; Zaldivar-Diez, Josefa; Haggarty, Stephen J

    2017-03-15

    The discovery of haloperidol catalyzed a breakthrough in our understanding of the biochemical basis of schizophrenia, improved the treatment of psychosis, and facilitated deinstitutionalization. In doing so, it solidified the role for chemical neuroscience as a means to elucidate the molecular underpinnings of complex neuropsychiatric disorders. In this Review, we will cover aspects of haloperidol's synthesis, manufacturing, metabolism, pharmacology, approved and off-label indications, and adverse effects. We will also convey the fascinating history of this classic molecule and the influence that it has had on the evolution of neuropsychopharmacology and neuroscience.

  20. Markovianity and non-Markovianity in quantum and classical systems

    International Nuclear Information System (INIS)

    Vacchini, Bassano; Smirne, Andrea; Laine, Elsi-Mari; Piilo, Jyrki; Breuer, Heinz-Peter

    2011-01-01

    We discuss the conceptually different definitions used for the non-Markovianity of classical and quantum processes. The well-established definition of non-Markovianity of a classical stochastic process represents a condition on the Kolmogorov hierarchy of the n-point joint probability distributions. Since this definition cannot be transferred to the quantum regime, quantum non-Markovianity has recently been defined and quantified in terms of the underlying quantum dynamical map, using either its divisibility properties or the behavior of the trace distance between pairs of initial states. Here, we investigate and compare these definitions and their relations to the classical notion of non-Markovianity by employing a large class of non-Markovian processes, known as semi-Markov processes, which admit a natural extension to the quantum case. A number of specific physical examples are constructed that allow us to study the basic features of the classical and the quantum definitions and to evaluate explicitly the measures of quantum non-Markovianity. Our results clearly demonstrate several fundamental differences between the classical and the quantum notion of non-Markovianity, as well as between the various quantum measures of non-Markovianity. In particular, we show that the divisibility property in the classical case does not coincide with Markovianity and that the non-Markovianity measure based on divisibility assigns equal infinite values to different dynamics, which can be distinguished by exploiting the trace distance measure. A simple exact expression for the latter is also obtained in a special case.

  1. Pseudoclassical fermionic model and classical solutions

    International Nuclear Information System (INIS)

    Smailagic, A.

    1981-08-01

    We study classical limit of fermionic fields seen as Grassmann variables and deduce the proper quantization prescription using Dirac's method for constrained systems and investigate quantum meaning of classical solutions for the Thirring model. (author)

  2. Physiological characteristics of classical ballet.

    Science.gov (United States)

    Schantz, P G; Astrand, P O

    1984-10-01

    The aerobic and anaerobic energy yield during professional training sessions ("classes") of classical ballet as well as during rehearsed and performed ballets has been studied by means of oxygen uptake, heart rate, and blood lactate concentration determinations on professional ballet dancers from the Royal Swedish Ballet in Stockholm. The measured oxygen uptake during six different normal classes at the theatre averaged about 35-45% of the maximal oxygen uptake, and the blood lactate concentration averaged 3 mM (N = 6). During 10 different solo parts of choreographed dance (median length = 1.8 min) representative for moderately to very strenuous dance, an average oxygen uptake (measured during the last minute) of 80% of maximum and blood lactate concentration of 10 mM was measured (N = 10). In addition, heart rate registrations from soloists in different ballets during performance and final rehearsals frequently indicated a high oxygen uptake relative to maximum and an average blood lactate concentration of 11 mM (N = 5). Maximal oxygen uptake, determined in 1971 (N = 11) and 1983 (N = 13) in two different groups of dancers, amounted to on the average 51 and 56 ml X min-1 X kg-1 for the females and males, respectively. In conclusion, classical ballet is a predominantly intermittent type of exercise. In choreographed dance each exercise period usually lasts only a few minutes, but can be very demanding energetically, while during the dancers' basic training sessions, the energy yield is low.

  3. Modular forms a classical approach

    CERN Document Server

    Cohen, Henri

    2017-01-01

    The theory of modular forms is a fundamental tool used in many areas of mathematics and physics. It is also a very concrete and "fun" subject in itself and abounds with an amazing number of surprising identities. This comprehensive textbook, which includes numerous exercises, aims to give a complete picture of the classical aspects of the subject, with an emphasis on explicit formulas. After a number of motivating examples such as elliptic functions and theta functions, the modular group, its subgroups, and general aspects of holomorphic and nonholomorphic modular forms are explained, with an emphasis on explicit examples. The heart of the book is the classical theory developed by Hecke and continued up to the Atkin-Lehner-Li theory of newforms and including the theory of Eisenstein series, Rankin-Selberg theory, and a more general theory of theta series including the Weil representation. The final chapter explores in some detail more general types of modular forms such as half-integral weight, Hilbert, Jacob...

  4. Teaching classical mechanics using smartphones

    Science.gov (United States)

    Chevrier, Joel; Madani, Laya; Ledenmat, Simon; Bsiesy, Ahmad

    2013-09-01

    A number of articles published in this column have dealt with topics in classical mechanics. This note describes some additional examples employing a smartphone and the new software iMecaProf.4 Steve Jobs presented the iPhone as "perfect for gaming."5 Thanks to its microsensors connected in real time to the numerical world, physics teachers could add that smartphones are "perfect for teaching science." The software iMecaProf displays in real time the measured data on a screen. The visual representation is built upon the formalism of classical mechanics. iMecaProf receives data 100 times a second from iPhone sensors through a Wi-Fi connection using the application Sensor Data.6 Data are the three components of the acceleration vector in the smartphone frame and smartphone's orientation through three angles (yaw, pitch, and roll). For circular motion (uniform or not), iMecaProf uses independent measurements of the rotation angle θ, the angular speed dθ/dt, and the angular acceleration d2θ/dt2.

  5. Classical representation of wave functions for integrable systems

    International Nuclear Information System (INIS)

    Kay, Kenneth G.

    2004-01-01

    Classical exact (CE) wave functions are certain integral representations of energy eigenfunctions that are parameterized in terms of the motion of the corresponding classical system in a semiclassically relevant way. When applied to systems for which they are not exact, such expressions serve as semiclassical approximations. Previous work identified CE wave functions for a number of specific systems and established their semiclassical usefulness. This paper explores the degree to which such representations can be found for more general systems. It is shown that CE wave functions exist, in principle, for bound states of an arbitrary integrable system that are confined to a single classically allowed region. Evidence is presented that CE representations also exist for more general states of such a system that are unbound, or that extend over more than one allowed region. The CE expressions are not unique: an innumerable variety exists for each such system. The existence proof provides a formal method for constructing CE expressions by Fourier transforming certain superpositions of energy eigenstates. The parameterization in terms of the classical motion is achieved by identifying certain quantities in these superpositions as classical action and angle variables. The semiclassical relevance of this identification is ensured by imposing some mild conditions on the coefficients in the superposition. This procedure for parameterizing exact wave functions in terms of classical variables indicates a basic relationship between the quantum and classical descriptions of states. The method of constructing CE wave functions introduced in the proof is shown to be consistent with a number of previously obtained CE formulas and is used to derive two new, closed-form, CE expressions. A simple numerical example is presented to illustrate the semiclassical application of one of these expressions and to further verify the physical significance of the classical parameterization

  6. Classical correlations, Bell inequalities, and communication complexity

    Energy Technology Data Exchange (ETDEWEB)

    Wilms, Johannes; Alber, Gernot [Institut fuer Angewandte Physik, Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany); Percival, Ian C. [Department of Physics, Univ. of London (United Kingdom)

    2007-07-01

    A computer program is presented which is capable of exploring generalizations of Bell-type inequalities for arbitrary numbers of classical inputs and outputs. Thereby, polytopes can be described which represent classical local realistic theories, classical theories without signaling, or classical theories with explicit signaling. These latter polytopes may also be of interest for exploring basic problems of communication complexity. As a first application the influence of non-perfect detectors is discussed in simple Bell experiments.

  7. Origin of classical structure in the Universe

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, Claus [Institut fuer Theoretische Physik, Universitaet zu Koeln, Zuelpicher Str. 77, 50937 Cologne (Germany); Lohmar, Ingo [Institut fuer Theoretische Physik, Universitaet zu Koeln, Zuelpicher Str. 77, 50937 Cologne (Germany); Polarski, David [Laboratoire de Physique Theorique et Astroparticules, UMR 5207 CNRS, Universite de Montpellier II, 34095 Montpellier (France); Starobinsky, Alexei A [Landau Institute for Theoretical Physics, Kosygina St. 2, Moscow 119334 (Russian Federation)

    2007-05-15

    We address the quantum-to-classical transition for primordial fluctuations, that is, the emergence of classical stochastic properties for these fluctuations. We discuss in particular the entanglement entropy for these fluctuations, the decoherence time, and the question of the classical basis (pointer basis) for them. The decoherence time for modes outside the Hubble scale is set by the Hubble parameter. The classical states are narrow Gaussians in the field amplitude.

  8. Local quantum channels preserving classical correlations

    International Nuclear Information System (INIS)

    Guo Zhihua; Cao Huaixin

    2013-01-01

    The aim of this paper is to discuss local quantum channels that preserve classical correlations. First, we give two equivalent characterizations of classical correlated states. Then we obtain the relationships among classical correlation-preserving local quantum channels, commutativity-preserving local quantum channels and commutativity-preserving quantum channels on each subsystem. Furthermore, for a two-qubit system, we show the general form of classical correlation-preserving local quantum channels. (paper)

  9. Markkinointiviestintäsuunnitelma : Classic Coffee Oy

    OpenAIRE

    Eerola, Laura

    2015-01-01

    Opinnäytetyön aiheena oli laatia markkinointiviestintäsuunnitelma kalenterivuodelle 2016 vuosikellon muodossa, toimintansa jo vakiinnuttaneelle Classic Coffee Oy:lle. Classic Coffee Oy on vuonna 2011 perustettu, Tampereella toimiva kahvila-alan yritys joka tarjoaa lounaskahvilatoiminnan lisäksi laadukkaita konditoria-palveluita, yritys- ja kokoustarjoiluja sekä tilavuokrausta. Classic Coffee Oy:llä on yksi kahvila, Classic Coffee Tampella. Kahvila sijaitsee Tampellassa, Tampereen keskustan vä...

  10. About the modern house - and the classical

    DEFF Research Database (Denmark)

    Hauberg, Jørgen

    2010-01-01

    In text and illustrations describes the classical house and the classical city, represented by Andrea Palladio (1508-80), and the modern house, the modern city and building task, represented by Le Corbusier (1857-1965).......In text and illustrations describes the classical house and the classical city, represented by Andrea Palladio (1508-80), and the modern house, the modern city and building task, represented by Le Corbusier (1857-1965)....

  11. Diminuendo: Classical Music and the Academy

    Science.gov (United States)

    Asia, Daniel

    2010-01-01

    How is the tradition of Western classical music faring on university campuses? Before answering this question, it is necessary to understand what has transpired with classical music in the wider culture, as the relationship between the two is so strong. In this article, the author discusses how classical music has taken a big cultural hit in…

  12. Classical orbits in power-law potentials

    International Nuclear Information System (INIS)

    Grant, A.K.; Rosner, J.L.

    1994-01-01

    The motion of bodies in power-law potentials of the form V(r)=λr α has been of interest ever since the time of Newton and Hooke. Aspects of the relation between powers α and bar α, where (α+2)(bar α+2)=4, are derived for classical motion and the relation to the quantum-mechanical problem is given. An improvement on a previous expression for the WKB quantization condition for nonzero orbital angular momenta is obtained. Relations with previous treatments, such as those of Newton, Bertrand, Bohlin, Faure, and Arnold, are noted, and a brief survey of the literature on the problem over more than three centuries is given

  13. Quantum cosmology of classically constrained gravity

    International Nuclear Information System (INIS)

    Gabadadze, Gregory; Shang Yanwen

    2006-01-01

    In [G. Gabadadze, Y. Shang, hep-th/0506040] we discussed a classically constrained model of gravity. This theory contains known solutions of General Relativity (GR), and admits solutions that are absent in GR. Here we study cosmological implications of some of these new solutions. We show that a spatially-flat de Sitter universe can be created from 'nothing'. This universe has boundaries, and its total energy equals to zero. Although the probability to create such a universe is exponentially suppressed, it favors initial conditions suitable for inflation. Then we discuss a finite-energy solution with a nonzero cosmological constant and zero space-time curvature. There is no tunneling suppression to fluctuate into this state. We show that for a positive cosmological constant this state is unstable-it can rapidly transition to a de Sitter universe providing a new unsuppressed channel for inflation. For a negative cosmological constant the space-time flat solutions is stable.

  14. Concise expression of a classical radiation spectrum

    International Nuclear Information System (INIS)

    Wang, C.

    1993-01-01

    In this paper we present a concise expression of the classical electromagnetic radiation spectrum of a moving charge. It is shown to be equivalent to the often used and much more complicated form derived from the Lienard-Wiechert potentials when the observation distance R satisfies the condition R much-gt γλ. The expression reveals a relationship between the radiation spectrum and the motion of the radiation source. It also forms the basis of an efficient computing approach, which is of practical value in numerical calculations of the spectral output of accelerated charges. The advantages of this approach for analytical and numerical applications are discussed and the bending-magnet synchrotron radiation spectrum is calculated according to the approach

  15. Escaping the crunch: Gravitational effects in classical transitions

    International Nuclear Information System (INIS)

    Johnson, Matthew C.; Yang, I-Sheng

    2010-01-01

    During eternal inflation, a landscape of vacua can be populated by the nucleation of bubbles. These bubbles inevitably collide, and collisions sometimes displace the field into a new minimum in a process known as a classical transition. In this paper, we examine some new features of classical transitions that arise when gravitational effects are included. Using the junction condition formalism, we study the conditions for energy conservation in detail, and solve explicitly for the types of allowed classical transition geometries. We show that the repulsive nature of domain walls, and the de Sitter expansion associated with a positive energy minimum, can allow for classical transitions to vacua of higher energy than that of the colliding bubbles. Transitions can be made out of negative or zero energy (terminal) vacua to a de Sitter phase, restarting eternal inflation, and populating new vacua. However, the classical transition cannot produce vacua with energy higher than the original parent vacuum, which agrees with previous results on the construction of pockets of false vacuum. We briefly comment on the possible implications of these results for various measure proposals in eternal inflation.

  16. Ontogeny of Classical and Operant Learning Behaviors in Zebrafish

    Science.gov (United States)

    Valente, Andre; Huang, Kuo-Hua; Portugues, Ruben; Engert, Florian

    2012-01-01

    The performance of developing zebrafish in both classical and operant conditioning assays was tested with a particular focus on the emergence of these learning behaviors during development. Strategically positioned visual cues paired with electroshocks were used in two fully automated assays to investigate both learning paradigms. These allow the…

  17. Theoretical physics 1 classical mechanics

    CERN Document Server

    Nolting, Wolfgang

    2016-01-01

    This textbook offers a clear and comprehensive introduction to classical mechanics, one of the core components of undergraduate physics courses. The book starts with a thorough introduction to the mathematical tools needed, to make this textbook self-contained for learning. The second part of the book introduces the mechanics of the free mass point and details conservation principles. The third part expands the previous to mechanics of many particle systems. Finally the mechanics of the rigid body is illustrated with rotational forces, inertia and gyroscope movement. Ideally suited to undergraduate students in their first year, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successful German editions, the eight volumes of this series...

  18. DOE Fundamentals Handbook: Classical Physics

    International Nuclear Information System (INIS)

    1992-06-01

    The Classical Physics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of physical forces and their properties. The handbook includes information on the units used to measure physical properties; vectors, and how they are used to show the net effect of various forces; Newton's Laws of motion, and how to use these laws in force and motion applications; and the concepts of energy, work, and power, and how to measure and calculate the energy involved in various applications. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility systems and equipment

  19. A course in classical physics

    CERN Document Server

    Bettini, Alessandro

    This first volume covers the mechanics of point particles, gravitation, extended systems (starting from the two-body system), the basic concepts of relativistic mechanics and the mechanics of rigid bodies and fluids. The four-volume textbook, which covers electromagnetism, mechanics, fluids and thermodynamics, and waves and light, is designed to reflect the typical syllabus during the first two years of a calculus-based university physics program. Throughout all four volumes, particular attention is paid to in-depth clarification of conceptual aspects, and to this end the historical roots of the principal concepts are traced. Writings by the founders of classical mechanics, G. Galilei and I. Newton, are reproduced, encouraging students to consult them. Emphasis is also consistently placed on the experimental basis of the concepts, highlighting the experimental nature of physics. Whenever feasible at the elementary level, concepts relevant to more advanced courses in modern physics are included. Each chapter b...

  20. Classical imaging with undetected light

    Science.gov (United States)

    Cardoso, A. C.; Berruezo, L. P.; Ávila, D. F.; Lemos, G. B.; Pimenta, W. M.; Monken, C. H.; Saldanha, P. L.; Pádua, S.

    2018-03-01

    We obtained the phase and intensity images of an object by detecting classical light which never interacted with it. With a double passage of a pump and a signal laser beams through a nonlinear crystal, we observe interference between the two idler beams produced by stimulated parametric down conversion. The object is placed in the amplified signal beam after its first passage through the crystal and the image is observed in the interference of the generated idler beams. High contrast images can be obtained even for objects with small transmittance coefficient due to the geometry of the interferometer and to the stimulated parametric emission. Like its quantum counterpart, this three-color imaging concept can be useful when the object must be probed with light at a wavelength for which detectors are not available.

  1. Introducing Newton and classical physics

    CERN Document Server

    Rankin, William

    2002-01-01

    The rainbow, the moon, a spinning top, a comet, the ebb and flood of the oceans ...a falling apple. There is only one universe and it fell to Isaac Newton to discover its secrets. Newton was arguably the greatest scientific genius of all time, and yet he remains a mysterious figure. Written and illustrated by William Rankin, "Introducting Newton and Classical Physics" explains the extraordinary ideas of a man who sifted through the accumulated knowledge of centuries, tossed out mistaken beliefs, and single-handedly made enormous advances in mathematics, mechanics and optics. By the age of 25, entirely self-taught, he had sketched out a system of the world. Einstein's theories are unthinkable without Newton's founding system. He was also a secret heretic, a mystic and an alchemist, the man of whom Edmund Halley said "Nearer to the gods may no man approach!". This is an ideal companion volume to "Introducing Einstein".

  2. Classical electromagnetism in a nutshell

    CERN Document Server

    Garg, Anupam

    2012-01-01

    This graduate-level physics textbook provides a comprehensive treatment of the basic principles and phenomena of classical electromagnetism. While many electromagnetism texts use the subject to teach mathematical methods of physics, here the emphasis is on the physical ideas themselves. Anupam Garg distinguishes between electromagnetism in vacuum and that in material media, stressing that the core physical questions are different for each. In vacuum, the focus is on the fundamental content of electromagnetic laws, symmetries, conservation laws, and the implications for phenomena such as radiation and light. In material media, the focus is on understanding the response of the media to imposed fields, the attendant constitutive relations, and the phenomena encountered in different types of media such as dielectrics, ferromagnets, and conductors. The text includes applications to many topical subjects, such as magnetic levitation, plasmas, laser beams, and synchrotrons.

  3. Classical Cosmology Through Animation Stories

    Science.gov (United States)

    Mijic, Milan; Kang, E. Y. E.; Longson, T.; State LA SciVi Project, Cal

    2010-05-01

    Computer animations are a powerful tool for explanation and communication of ideas, especially to a younger generation. Our team completed a three part sequence of short, computer animated stories about the insight and discoveries that lead to the understanding of the overall structure of the universe. Our principal characters are Immanuel Kant, Henrietta Leavitt, and Edwin Hubble. We utilized animations to model and visualize the physical concepts behind each discovery and to recreate the characters, locations, and flavor of the time. The animations vary in length from 6 to 11 minutes. The instructors or presenters may wish to utilize them separately or together. The animations may be used for learning classical cosmology in a visual way in GE astronomy courses, in pre-college science classes, or in public science education setting.

  4. Quantum and classical gauge symmetries

    International Nuclear Information System (INIS)

    Fujikawa, Kazuo; Terashima, Hiroaki

    2001-01-01

    The use of the mass term of the gauge field as a gauge fixing term, which was discussed by Zwanziger, Parrinello and Jona-Lasinio in a large mass limit, is related to the non-linear gauge by Dirac and Nambu. We have recently shown that this use of the mass term as a gauge fixing term is in fact identical to the conventional local Faddeev-Popov formula without taking a large mass limit, if one takes into account the variation of the gauge field along the entire gauge orbit. This suggests that the classical massive vector theory, for example, could be re-interpreted as a gauge invariant theory with a gauge fixing term added in suitably quantized theory. As for massive gauge particles, the Higgs mechanics, where the mass term is gauge invariant, has a more intrinsic meaning. We comment on several implications of this observation. (author)

  5. From classical to quantum fields

    CERN Document Server

    Baulieu, Laurent; Sénéor, Roland

    2017-01-01

    Quantum Field Theory has become the universal language of most modern theoretical physics. This introductory textbook shows how this beautiful theory offers the correct mathematical framework to describe and understand the fundamental interactions of elementary particles. The book begins with a brief reminder of basic classical field theories, electrodynamics and general relativity, as well as their symmetry properties, and proceeds with the principles of quantisation following Feynman's path integral approach. Special care is used at every step to illustrate the correct mathematical formulation of the underlying assumptions. Gauge theories and the problems encountered in their quantisation are discussed in detail. The last chapters contain a full description of the Standard Model of particle physics and the attempts to go beyond it, such as grand unified theories and supersymmetry. Written for advanced undergraduate and beginning graduate students in physics and mathematics, the book could also serve as a re...

  6. Classical and quantum thermal physics

    CERN Document Server

    Prasad, R

    2016-01-01

    Covering essential areas of thermal physics, this book includes kinetic theory, classical thermodynamics, and quantum thermodynamics. The text begins by explaining fundamental concepts of the kinetic theory of gases, viscosity, conductivity, diffusion, and the laws of thermodynamics and their applications. It then goes on to discuss applications of thermodynamics to problems of physics and engineering. These applications are explained with the help of P-V and P-S-H diagrams where necessary and are followed by a large number of solved examples and unsolved exercises. The book includes a dedicated chapter on the applications of thermodynamics to chemical reactions. Each application is explained by taking the example of an appropriate chemical reaction, where all technical terms are explained and complete mathematical derivations are worked out in steps starting from the first principle.

  7. State-dependent classical potentials

    International Nuclear Information System (INIS)

    D'Amico, M.

    2001-01-01

    As alternative treatment to the potential operators of standard quantum mechanics is presented. The method is derived from Bohm's mechanics. The operator scalar (V) and vector (A) potential functions are replaced by a quantum potential. It is argued that the classical potential is a special limiting case of a more general quantum potential. The theory is illustrated by deriving an equivalent single-particle equation for the i-th particle of an n-body Bohmian system. The resulting effective state-dependent potential holds the interaction between the single-particle self-wave ψ s and the environment wave ψ e of the n - 1 remaining particles. The effective state-dependent potential is offered as a resolution to the Aharonov-Bohm effect where the phase difference is shown to result from the presence of ψ e . Finally, the interaction between ψ s and ψ e is illustrated graphically

  8. Hydrogen: Beyond the Classic Approximation

    International Nuclear Information System (INIS)

    Scivetti, Ivan

    2003-01-01

    The classical nucleus approximation is the most frequently used approach for the resolution of problems in condensed matter physics.However, there are systems in nature where it is necessary to introduce the nuclear degrees of freedom to obtain a correct description of the properties.Examples of this, are the systems with containing hydrogen.In this work, we have studied the resolution of the quantum nuclear problem for the particular case of the water molecule.The Hartree approximation has been used, i.e. we have considered that the nuclei are distinguishable particles.In addition, we have proposed a model to solve the tunneling process, which involves the resolution of the nuclear problem for configurations of the system away from its equilibrium position

  9. Quantum classical correspondence in nonrelativistic electrodynamics

    International Nuclear Information System (INIS)

    Ritchie, B.; Weatherford, C.A.

    1999-01-01

    A form of classical electrodynamic field exists which gives exact agreement with the operator field of quantum electrodynamics (QED) for the Lamb shift of a harmonically bound point electron. Here it is pointed out that this form of classical theory, with its physically acceptable interpretation, is the result of an unconventional resolution of a mathematically ambiguous term in classical field theory. Finally, a quantum classical correspondence principle is shown to exist in the sense that the classical field and expectation value of the QED operator field are identical, if retardation is neglected in the latter

  10. Classical model of intermediate statistics

    International Nuclear Information System (INIS)

    Kaniadakis, G.

    1994-01-01

    In this work we present a classical kinetic model of intermediate statistics. In the case of Brownian particles we show that the Fermi-Dirac (FD) and Bose-Einstein (BE) distributions can be obtained, just as the Maxwell-Boltzmann (MD) distribution, as steady states of a classical kinetic equation that intrinsically takes into account an exclusion-inclusion principle. In our model the intermediate statistics are obtained as steady states of a system of coupled nonlinear kinetic equations, where the coupling constants are the transmutational potentials η κκ' . We show that, besides the FD-BE intermediate statistics extensively studied from the quantum point of view, we can also study the MB-FD and MB-BE ones. Moreover, our model allows us to treat the three-state mixing FD-MB-BE intermediate statistics. For boson and fermion mixing in a D-dimensional space, we obtain a family of FD-BE intermediate statistics by varying the transmutational potential η BF . This family contains, as a particular case when η BF =0, the quantum statistics recently proposed by L. Wu, Z. Wu, and J. Sun [Phys. Lett. A 170, 280 (1992)]. When we consider the two-dimensional FD-BE statistics, we derive an analytic expression of the fraction of fermions. When the temperature T→∞, the system is composed by an equal number of bosons and fermions, regardless of the value of η BF . On the contrary, when T=0, η BF becomes important and, according to its value, the system can be completely bosonic or fermionic, or composed both by bosons and fermions

  11. Saudi experience with classic homocystinuria

    International Nuclear Information System (INIS)

    Al-Essa, M.; Ozand, P.T.; Rashed, M.

    1998-01-01

    Classic homocystinuria is an autosomal recessive disorder due to cystathionine beta-synthase deficiency. The clinical, radiological and neurophysiological findings of classic homcystinuria diagnosed at King Faisal Specialist Hospital and Research Centre (KFSH and RC) are presented in this report. Twenty-four patients (15 females and 9 males) were referred to KFSH and RC for work-up of mental retardation, seizures, thrombo-embolic episodes and dislocation of the ocular lenses. The common clinical findings included ectopia lentis (20 patients), skeletal system involvement (18 patients), vascular system involvement (9patients), and mental retardation (all patients to varying degrees). Unusual findings consisted of a patient who developed severe lower gastrointestinal bleeding, a patient with insulin-dependent diabetes mellitus, probably due to vasculopathy, and other having severe bronchiectasis, which may have been due to fibrillin disruption, and required the resection of a lobe of lung. The parents of 21 patients were first-degree relatives, and 19 patients had one or more family members affected by the same disease. All patients had markedly elevated plasma levels of methionine. Cystathionine synthase activity in the fibroblast was measured in 25% of the patients and was deficient. Only four patients responded to pyridoxine and their methionine level decreased to almost normal range. The aim of this study was to increase the awareness of this disease in the scientific and medical community, in particular in the general pediatrician working in Saudi Arabia who first encounters the clinical manifestations of disease. Early detection through tandem mass spectrometry of blood spot screening and treatment are important and may prevent the major complications of this disease. (author)

  12. Classical foundations of quantum logic

    International Nuclear Information System (INIS)

    Garola, C.

    1991-01-01

    The author constructs a language L for a classical first-order predicate calculus with monadic predicates only, extended by means of a family of statistical quantifiers. Then, a formal semantic model M is put forward for L which is compatible with a physical interpretation and embodies a truth theory which provides the statistical quantifiers with properties that fit their interpretation; in this framework, the truth mode of physical laws is suitably characterized and a probability-frequency correlation principle is established. By making use of L and M, a set of basic physical laws is stated that hold both in classical physics (CP) and in quantum physics (QP), which allow the selection of suitable subsets of primitive predicates of L and the introduction on these subsets of binary relations. Two languages L E x and L E S are constructed that can be mapped into L; the mapping induces on them mathematical structures, some kind of truth function, an interpretation. The formulas of L E S can be endowed with two different interpretations as statements about the frequency of some physical property in some class (state) of physical objects; consequently, a two-valued truth function and a multivalued fuzzy-truth function are defined on L E S . In all cases the algebras of propositions of these 'logics' are complete ortho-complemented lattices isomorphic to (E E , prec). These results hold both in CP and in QP; further physical assumptions endow the lattice (E E , prec), hence L E x and L E s , with further properties, such as distributivity in CP and weak modularity and covering law in QP. In the latter case, L E x and L E s , together with their interpretations, can be considered different models of the same basic mathematical structure, and can be identified with standard (elementary) quantum logics

  13. Quantum-Classical Hybrid for Information Processing

    Science.gov (United States)

    Zak, Michail

    2011-01-01

    Based upon quantum-inspired entanglement in quantum-classical hybrids, a simple algorithm for instantaneous transmissions of non-intentional messages (chosen at random) to remote distances is proposed. The idea is to implement instantaneous transmission of conditional information on remote distances via a quantum-classical hybrid that preserves superposition of random solutions, while allowing one to measure its state variables using classical methods. Such a hybrid system reinforces the advantages, and minimizes the limitations, of both quantum and classical characteristics. Consider n observers, and assume that each of them gets a copy of the system and runs it separately. Although they run identical systems, the outcomes of even synchronized runs may be different because the solutions of these systems are random. However, the global constrain must be satisfied. Therefore, if the observer #1 (the sender) made a measurement of the acceleration v(sub 1) at t =T, then the receiver, by measuring the corresponding acceleration v(sub 1) at t =T, may get a wrong value because the accelerations are random, and only their ratios are deterministic. Obviously, the transmission of this knowledge is instantaneous as soon as the measurements have been performed. In addition to that, the distance between the observers is irrelevant because the x-coordinate does not enter the governing equations. However, the Shannon information transmitted is zero. None of the senders can control the outcomes of their measurements because they are random. The senders cannot transmit intentional messages. Nevertheless, based on the transmitted knowledge, they can coordinate their actions based on conditional information. If the observer #1 knows his own measurements, the measurements of the others can be fully determined. It is important to emphasize that the origin of entanglement of all the observers is the joint probability density that couples their actions. There is no centralized source

  14. Zwitters: Particles between quantum and classical

    International Nuclear Information System (INIS)

    Wetterich, C.

    2012-01-01

    We describe both quantum particles and classical particles in terms of a classical statistical ensemble, with a probability distribution in phase space. By use of a wave function in phase space both can be treated in the same quantum formalism. Quantum particles are characterized by a specific choice of observables and time evolution of the probability density. Then interference and tunneling are found within classical statistics. Zwitters are (effective) one-particle states for which the time evolution interpolates between quantum and classical particles. Experimental bounds on a small parameter can test quantum mechanics. -- Highlights: ► Quantum particles can be described within classical statistics. ► Classical particles are formulated in quantum formalism. ► Zwitters interpolate between classical and quantum particles. ► Zwitters allow for quantitative tests of quantum mechanics. ► Zwitters could be effective one-particle descriptions of droplets.

  15. Quantum-classical correspondence in steady states of nonadiabatic systems

    International Nuclear Information System (INIS)

    Fujii, Mikiya; Yamashita, Koichi

    2015-01-01

    We first present nonadiabatic path integral which is exact formulation of quantum dynamics in nonadiabatic systems. Then, by applying the stationary phase approximations to the nonadiabatic path integral, a semiclassical quantization condition, i.e., quantum-classical correspondence, for steady states of nonadiabatic systems is presented as a nonadiabatic trace formula. The present quantum-classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow degree of freedom, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels

  16. Scattering of classical and quantum particles by impulsive fields

    Science.gov (United States)

    Balasin, Herbert; Aichelburg, Peter C.

    2018-05-01

    We investigate the scattering of classical and quantum particles in impulsive backgrounds fields. These fields model short outbursts of radiation propagating with the speed of light. The singular nature of the problem will be accounted for by the use of Colombeau’s generalized function which however give rise to ambiguities. It is the aim of the paper to show that these ambiguities can be overcome by implementing additional physical conditions, which in the non-singular case would be satisfied automatically. As example we discuss the scattering of classical, Klein–Gordon and Dirac particles in impulsive electromagnetic fields.

  17. Correlation function behavior in quantum systems which are classically chaotic

    International Nuclear Information System (INIS)

    Berman, G.P.; Kolovsky, A.R.

    1983-01-01

    The time behavior of a phase correlation function for dynamical quantum systems which are classically chaotic is considered. It is shown that under certain conditions there are three time regions of the quantum correlations behavior; the region of classical stochasticity (exponential decay of quantum correlations); the region of the correlations decay with a power law; the region of the constant level of the quantum correlations. The boundaries of these time regions are presented. The estimation of a remaining level of the quantum correlations is given. (orig.)

  18. Bell’s measure and implementing quantum Fourier transform with orbital angular momentum of classical light

    Science.gov (United States)

    Song, Xinbing; Sun, Yifan; Li, Pengyun; Qin, Hongwei; Zhang, Xiangdong

    2015-01-01

    We perform Bell’s measurement for the non-separable correlation between polarization and orbital angular momentum from the same classical vortex beam. The violation of Bell’s inequality for such a non-separable classical correlation has been demonstrated experimentally. Based on the classical vortex beam and non-quantum entanglement between the polarization and the orbital angular momentum, the Hadamard gates and conditional phase gates have been designed. Furthermore, a quantum Fourier transform has been implemented experimentally. PMID:26369424

  19. Classical limit of a quantum particle in an external Yang-Mills field

    International Nuclear Information System (INIS)

    Moschella, U.

    1989-01-01

    It is studied the classical limit of a quantum particle in an external non-abelian gauge field. It is shown that the unitary group describing the quantum fluctuations around any classic phase orbit has a classical limit when h tends to zero under very general conditions on the potentials. It is also proved the self-adjointness of the Hamilton's operator of the quantum theory for a large class of potentials. Some applications of the theory are finally exposed

  20. Generic emergence of classical features in quantum Darwinism

    Science.gov (United States)

    Brandão, Fernando G. S. L.; Piani, Marco; Horodecki, Paweł

    2015-08-01

    Quantum Darwinism posits that only specific information about a quantum system that is redundantly proliferated to many parts of its environment becomes accessible and objective, leading to the emergence of classical reality. However, it is not clear under what conditions this mechanism holds true. Here we prove that the emergence of classical features along the lines of quantum Darwinism is a general feature of any quantum dynamics: observers who acquire information indirectly through the environment have effective access at most to classical information about one and the same measurement of the quantum system. Our analysis does not rely on a strict conceptual splitting between a system-of-interest and its environment, and allows one to interpret any system as part of the environment of any other system. Finally, our approach leads to a full operational characterization of quantum discord in terms of local redistribution of correlations.

  1. Quantum remnants in the classical limit

    International Nuclear Information System (INIS)

    Kowalski, A.M.; Plastino, A.

    2016-01-01

    We analyze here the common features of two dynamical regimes: a quantum and a classical one. We deal with a well known semi-classic system in its route towards the classical limit, together with its purely classic counterpart. We wish to ascertain i) whether some quantum remnants can be found in the classical limit and ii) the details of the quantum-classic transition. The so-called mutual information is the appropriate quantifier for this task. Additionally, we study the Bandt–Pompe's symbolic patterns that characterize dynamical time series (representative of the semi-classical system under scrutiny) in their evolution towards the classical limit. - Highlights: • We investigate the classical limit (CL) of a well known semi classical model. • The study is made by reference to the Bandt Pompe symbolic approach. • The number and type of associated symbols changes as one proceeds towards the CL. • We ascertain which symbols pertaining to the quantum zone remain in the CL.

  2. Quantum remnants in the classical limit

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, A.M., E-mail: kowalski@fisica.unlp.edu.ar [Instituto de Física (IFLP-CCT-Conicet), Universidad Nacional de La Plata, C.C. 727, 1900 La Plata (Argentina); Comision de Investigaciones Científicas (CIC) (Argentina); Plastino, A., E-mail: plastino@fisica.unlp.edu.ar [Instituto de Física (IFLP-CCT-Conicet), Universidad Nacional de La Plata, C.C. 727, 1900 La Plata (Argentina); Argentina' s National Research Council (CONICET) (Argentina); SThAR, EPFL Innovation Park, Lausanne (Switzerland)

    2016-09-16

    We analyze here the common features of two dynamical regimes: a quantum and a classical one. We deal with a well known semi-classic system in its route towards the classical limit, together with its purely classic counterpart. We wish to ascertain i) whether some quantum remnants can be found in the classical limit and ii) the details of the quantum-classic transition. The so-called mutual information is the appropriate quantifier for this task. Additionally, we study the Bandt–Pompe's symbolic patterns that characterize dynamical time series (representative of the semi-classical system under scrutiny) in their evolution towards the classical limit. - Highlights: • We investigate the classical limit (CL) of a well known semi classical model. • The study is made by reference to the Bandt Pompe symbolic approach. • The number and type of associated symbols changes as one proceeds towards the CL. • We ascertain which symbols pertaining to the quantum zone remain in the CL.

  3. Relaxation properties in classical diamagnetism

    Science.gov (United States)

    Carati, A.; Benfenati, F.; Galgani, L.

    2011-06-01

    It is an old result of Bohr that, according to classical statistical mechanics, at equilibrium a system of electrons in a static magnetic field presents no magnetization. Thus a magnetization can occur only in an out of equilibrium state, such as that produced through the Foucault currents when a magnetic field is switched on. It was suggested by Bohr that, after the establishment of such a nonequilibrium state, the system of electrons would quickly relax back to equilibrium. In the present paper, we study numerically the relaxation to equilibrium in a modified Bohr model, which is mathematically equivalent to a billiard with obstacles, immersed in a magnetic field that is adiabatically switched on. We show that it is not guaranteed that equilibrium is attained within the typical time scales of microscopic dynamics. Depending on the values of the parameters, one has a relaxation either to equilibrium or to a diamagnetic (presumably metastable) state. The analogy with the relaxation properties in the Fermi Pasta Ulam problem is also pointed out.

  4. THE BUREAUCRATIC PHENOMENON: CLASSICAL CONCEPTS

    Directory of Open Access Journals (Sweden)

    Дама Ибрагима

    2013-09-01

    Full Text Available Aim of this article - to analyze Hegel and Karl Marx’s classic bureaucracy theories and also Max Weber’s concept of rational bureaucracy and its development in the works of Herbert Simon, Robert Merton, Peter Blau and Michel Crozier. It shows that the above listed researchers only undertook a change of terminology within the same theoretical tradition. The article describes different approaches to the bureaucratic system of administrative schools of the late 1950s and early 1980s. Major conclusions in the article include the following: administering the state apparatus consists in the organization of government on the basis of regulated rights, mandatory procedures that are invoked to ensure balance in the interest of man and society; bad effectiveness of government, infringement of the rights and freedoms of the individual is the result of dysfunction in the state apparatus; the struggle against it can be carried out with the help of administrative, economical and legal methods.DOI: http://dx.doi.org/10.12731/2218-7405-2013-6-45

  5. Transition to classical chaos in a coupled quantum system through continuous measurement

    International Nuclear Information System (INIS)

    Ghose, Shohini; Alsing, Paul; Deutsch, Ivan; Bhattacharya, Tanmoy; Habib, Salman

    2004-01-01

    Continuous observation of a quantum system yields a measurement record that faithfully reproduces the classically predicted trajectory provided that the measurement is sufficiently strong to localize the state in phase space but weak enough that quantum backaction noise is negligible. We investigate the conditions under which classical dynamics emerges, via a continuous position measurement, for a particle moving in a harmonic well with its position coupled to internal spin. As a consequence of this coupling, we find that classical dynamics emerges only when the position and spin actions are both large compared to (ℎ/2π). These conditions are quantified by placing bounds on the size of the covariance matrix which describes the delocalized quantum coherence over extended regions of phase space. From this result, it follows that a mixed quantum-classical regime (where one subsystem can be treated classically and the other not) does not exist for a continuously observed spin-(1/2) particle. When the conditions for classicality are satisfied (in the large-spin limit), the quantum trajectories reproduce both the classical periodic orbits as well as the classically chaotic phase space regions. As a quantitative test of this convergence, we compute the largest Lyapunov exponent directly from the measured quantum trajectories and show that it agrees with the classical value

  6. Relativistic and separable classical hamiltonian particle dynamics

    International Nuclear Information System (INIS)

    Sazdjian, H.

    1981-01-01

    We show within the Hamiltonian formalism the existence of classical relativistic mechanics of N scalar particles interacting at a distance which satisfies the requirements of Poincare invariance, separability, world-line invariance and Einstein causality. The line of approach which is adopted here uses the methods of the theory of systems with constraints applied to manifestly covariant systems of particles. The study is limited to the case of scalar interactions remaining weak in the whole phase space and vanishing at large space-like separation distances of the particles. Poincare invariance requires the inclusion of many-body, up to N-body, potentials. Separability requires the use of individual or two-body variables and the construction of the total interaction from basic two-body interactions. Position variables of the particles are constructed in terms of the canonical variables of the theory according to the world-line invariance condition and the subsidiary conditions of the non-relativistic limit and separability. Positivity constraints on the interaction masses squared of the particles ensure that the velocities of the latter remain always smaller than the velocity of light

  7. Classical region of a trapped Bose gas

    Energy Technology Data Exchange (ETDEWEB)

    Blakie, P Blair [Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin (New Zealand); Davis, Matthew J [ARC Centre of Excellence for Quantum-Atom Optics, School of Physical Sciences, University of Queensland, Brisbane, QLD 4072 (Australia)

    2007-06-14

    The classical region of a Bose gas consists of all single particle modes that have a high average occupation and are well described by a classical field. Highly occupied modes only occur in massive Bose gases at ultra-cold temperatures, in contrast to the photon case where there are highly occupied modes at all temperatures. For the Bose gas the number of these modes is dependent on the temperature, the total number of particles and their interaction strength. In this paper, we characterize the classical region of a harmonically trapped Bose gas over a wide parameter regime. We use a Hartree-Fock approach to account for the effects of interactions, which we observe to significantly change the classical region as compared to the idealized case. We compare our results to full classical field calculations and show that the Hartree-Fock approach provides a qualitatively accurate description of a classical region for the interacting gas.

  8. The relation between classical and quantum mechanics

    International Nuclear Information System (INIS)

    Taylor, Peter.

    1984-01-01

    The thesis examines the relationship between classical and quantum mechanics from philosophical, mathematical and physical standpoints. Arguments are presented in favour of 'conjectural realism' in scientific theories, distinguished by explicit contextual structure and empirical testability. The formulations of classical and quantum mechanics, based on a general theory of mechanics is investigated, as well as the mathematical treatments of these subjects. Finally the thesis questions the validity of 'classical limits' and 'quantisations' in intertheoretic reduction. (UK)

  9. Classical Mechanics as Nonlinear Quantum Mechanics

    International Nuclear Information System (INIS)

    Nikolic, Hrvoje

    2007-01-01

    All measurable predictions of classical mechanics can be reproduced from a quantum-like interpretation of a nonlinear Schroedinger equation. The key observation leading to classical physics is the fact that a wave function that satisfies a linear equation is real and positive, rather than complex. This has profound implications on the role of the Bohmian classical-like interpretation of linear quantum mechanics, as well as on the possibilities to find a consistent interpretation of arbitrary nonlinear generalizations of quantum mechanics

  10. Classical logic and logicism in human thought

    OpenAIRE

    Elqayam, Shira

    2012-01-01

    This chapter explores the role of classical logic as a theory of human reasoning. I distinguish between classical logic as a normative, computational and algorithmic system, and review its role is theories of human reasoning since the 1960s. The thesis I defend is that psychological theories have been moving further and further away from classical logic on all three levels. I examine some prominent example of logicist theories, which incorporate logic in their psychological account, includin...

  11. Digital Classics Outside the Echo-Chamber

    OpenAIRE

    Bodard, Gabriel; Romanello, Matteo

    2016-01-01

    This volume, edited by the organizers of the “Digital Classicist” seminars series, presents research in classical studies, digital classics and digital humanities, bringing together scholarship that addresses the impact of the study of classical antiquity through computational methods on audiences such as scientists, heritage professionals, students and the general public. Within this context, chapters tackle particular aspects, from epigraphy, papyrology and manuscripts, via Greek language, ...

  12. Connections between classical and parametric network entropies.

    Directory of Open Access Journals (Sweden)

    Matthias Dehmer

    Full Text Available This paper explores relationships between classical and parametric measures of graph (or network complexity. Classical measures are based on vertex decompositions induced by equivalence relations. Parametric measures, on the other hand, are constructed by using information functions to assign probabilities to the vertices. The inequalities established in this paper relating classical and parametric measures lay a foundation for systematic classification of entropy-based measures of graph complexity.

  13. Quasi-classical integral method for spectra calculation of symmetric central problems

    International Nuclear Information System (INIS)

    Lobashev, A.A.; Trunov, N.N.

    2000-01-01

    The new approach to the quantization quasi-classical conditions is developed. It is based on general exact properties of the wave equations and their spectra and it does not use asymptotic decompositions. The quantization conditions for the central-symmetric potentials depend only on the totality of integrals, including the classical pulse degrees. The energy level values, calculated by means of this conditions, are in good agreement with the numerical data [ru

  14. Entangled states that cannot reproduce original classical games in their quantum version

    International Nuclear Information System (INIS)

    Shimamura, Junichi; Oezdemir, S.K.; Morikoshi, Fumiaki; Imoto, Nobuyuki

    2004-01-01

    A model of a quantum version of classical games should reproduce the original classical games in order to be able to make a comparative analysis of quantum and classical effects. We analyze a class of symmetric multipartite entangled states and their effect on the reproducibility of the classical games. We present the necessary and sufficient condition for the reproducibility of the original classical games. Satisfying this condition means that complete orthogonal bases can be constructed from a given multipartite entangled state provided that each party is restricted to two local unitary operators. We prove that most of the states belonging to the class of symmetric states with respect to permutations, including the N-qubit W state, do not satisfy this condition

  15. Locking classical correlations in quantum States.

    Science.gov (United States)

    DiVincenzo, David P; Horodecki, Michał; Leung, Debbie W; Smolin, John A; Terhal, Barbara M

    2004-02-13

    We show that there exist bipartite quantum states which contain a large locked classical correlation that is unlocked by a disproportionately small amount of classical communication. In particular, there are (2n+1)-qubit states for which a one-bit message doubles the optimal classical mutual information between measurement results on the subsystems, from n/2 bits to n bits. This phenomenon is impossible classically. However, states exhibiting this behavior need not be entangled. We study the range of states exhibiting this phenomenon and bound its magnitude.

  16. Seven steps towards the classical world

    International Nuclear Information System (INIS)

    Allori, Valia; Duerr, Detlef; Goldstein, Shelly; Zanghi, Nino

    2002-01-01

    Classical physics is about real objects, like apples falling from trees, whose motion is governed by Newtonian laws. In standard quantum mechanics only the wavefunctions or the results of measurements exist, and to answer the question of how the classical world can be part of the quantum world is a rather formidable task. However, this is not the case for Bohmian mechanics which, like classical mechanics, is a theory about real objects. In Bohmian terms, the problem of the classical limit becomes very simple: when do the Bohmian trajectories look Newtonian?

  17. Classical An-W-geometry

    International Nuclear Information System (INIS)

    Gervais, J.L.

    1993-01-01

    By analyzing the extrinsic geometry of two dimensional surfaces chirally embedded in C P n (the C P n W-surface), we give exact treatments in various aspects of the classical W-geometry in the conformal gauge: First, the basis of tangent and normal vectors are defined at regular points of the surface, such that their infinitesimal displacements are given by connections which coincide with the vector potentials of the (conformal) A n -Toda Lax pair. Since the latter is known to be intrinsically related with the W symmetries, this gives the geometrical meaning of the A n W-Algebra. Second, W-surfaces are put in one-to-one correspondence with solutions of the conformally-reduced WZNW model, which is such that the Toda fields give the Cartan part in the Gauss decomposition of its solutions. Third, the additional variables of the Toda hierarchy are used as coordinates of C P n . This allows us to show that W-transformations may be extended as particular diffeomorphisms of this target-space. Higher-dimensional generalizations of the WZNW equations are derived and related with the Zakharov-Shabat equations of the Toda hierarchy. Fourth, singular points are studied from a global viewpoint, using our earlier observation that W-surfaces may be regarded as instantons. The global indices of the W-geometry, which are written in terms of the Toda fields, are shown to be the instanton numbers for associated mappings of W-surfaces into the Grassmannians. The relation with the singularities of W-surface is derived by combining the Toda equations with the Gauss-Bonnet theorem. (orig.)

  18. Quantum experiments without classical counterparts

    International Nuclear Information System (INIS)

    Pavicic, M.

    2005-01-01

    Full text: We present a generalized and exhaustive method of finding the directions of the quantization axes of the measured eigenstates within experiments which have no classical counterparts. The method relies on a constructive and exhaustive definition of sets of such directions (which we call Kochen-Specker vectors) in a Hilbert space of any dimension as well as of all the remaining vectors of the space. Kochen-Specker vectors are elements of any set of orthonormal states, i.e., vectors in n-dim Hilbert space, Hn, n > 2 to which it is impossible to assign 1s and 0s in such a way that no two mutually orthogonal vectors from the set are both assigned 1 and that not all mutually orthogonal vectors are assigned 0. Our constructive definition of such Kochen-Specker vectors is based on algorithms that generate MMP diagrams corresponding to blocks of orthogonal vectors in Rn, on algorithms that single out those diagrams on which algebraic to 0-1 states cannot be defined, and on algorithms that solve nonlinear equations describing the orthogonalities of the vectors by means of statistically polynomially complex interval analysis and self-teaching programs. The algorithms are limited neither by the number of dimensions nor by the number of vectors. To demonstrate the power of the algorithms, all 4-dim KS vector systems containing up to 24 vectors were generated and described, all 3-dim vector systems containing up to 30 vectors were scanned, and several general properties of KS vectors were found. (author)

  19. Classical behavior of few-electron parabolic quantum dots

    International Nuclear Information System (INIS)

    Ciftja, O.

    2009-01-01

    Quantum dots are intricate and fascinating systems to study novel phenomena of great theoretical and practical interest because low dimensionality coupled with the interplay between strong correlations, quantum confinement and magnetic field creates unique conditions for emergence of fundamentally new physics. In this work we consider two-dimensional semiconductor quantum dot systems consisting of few interacting electrons confined in an isotropic parabolic potential. We study the many-electron quantum ground state properties of such systems in presence of a perpendicular magnetic field as the number of electrons is varied using exact numerical diagonalizations and other approaches. The results derived from the calculations of the quantum model are then compared to corresponding results for a classical model of parabolically confined point charges who interact with a Coulomb potential. We find that, for a wide range of parameters and magnetic fields considered in this work, the quantum ground state energy is very close to the classical energy of the most stable classical configuration under the condition that the classical energy is properly adjusted to incorporate the quantum zero point motion.

  20. Quantum healing of classical singularities in power-law spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Helliwell, T M [Department of Physics, Harvey Mudd College, Claremont, CA 91711 (United States); Konkowski, D A [Department of Mathematics, US Naval Academy, Annapolis, MD 21402 (United States)

    2007-07-07

    We study a broad class of spacetimes whose metric coefficients reduce to powers of a radius r in the limit of small r. Among these four-parameter 'power-law' metrics, we identify those parameters for which the spacetimes have classical singularities as r {yields} 0. We show that a large set of such classically-singular spacetimes is nevertheless non-singular quantum mechanically, in that the Hamiltonian operator is essentially self-adjoint, so that the evolution of quantum wave packets lacks the ambiguity associated with scattering off singularities. Using these metrics, the broadest class yet studied to compare classical with quantum singularities, we explore the physical reasons why some that are singular classically are 'healed' quantum mechanically, while others are not. We show that most (but not all) of the remaining quantum-mechanically singular spacetimes can be excluded if either the weak energy condition or the dominant energy condition is invoked, and we briefly discuss the effect of this work on the strong cosmic censorship conjecture.

  1. Classical and semiclassical aspects of chemical dynamics

    International Nuclear Information System (INIS)

    Gray, S.K.

    1982-08-01

    Tunneling in the unimolecular reactions H 2 C 2 → HC 2 H, HNC → HCN, and H 2 CO → H 2 + CO is studied with a classical Hamiltonian that allows the reaction coordinate and transverse vibrational modes to be considered directly. A combination of classical perturbation theory and the semiclassical WKB method allows tunneling probabilities to be obtained, and a statistical theory (RRKM) is used to construct rate constants for these reactions in the tunneling regime. In this fashion, it is found that tunneling may be important, particularly for low excitation energies. Nonadiabatic charge transfer in the reaction Na + I → Na + + I - is treated with classical trajectories based on a classical Hamiltonian that is the analogue of a quantum matrix representation. The charge transfer cross section obtained is found to agree reasonably well with the exact quantum results. An approximate semiclassical formula, valid at high energies, is also obtained. The interaction of radiation and matter is treated from a classical viewpoint. The excitation of an HF molecule in a strong laser is described with classical trajectories. Quantum mechanical results are also obtained and compared to the classical results. Although the detailed structure of the pulse time averaged energy absorption cannot be reproduced classically, classical mechanics does predict the correct magnitude of energy absorption, as well as certain other qualitative features. The classical behavior of a nonrotating diatomic molecule in a strong laser field is considered further, by generating a period advance map that allows the solution over many periods of oscillation of the laser to be obtained with relative ease. Classical states are found to form beautiful spirals in phase space as time progresses. A simple pendulum model is found to describe the major qualitative features

  2. Expert Western Classical Music Improvisers' Strategies

    Science.gov (United States)

    Després, Jean-Philippe; Burnard, Pamela; Dubé, Francis; Stévance, Sophie

    2017-01-01

    The growing interest in musical improvisation is exemplified by the body of literatures evidencing the positive impacts of improvisation learning on the musical apprentice's aptitudes and the increasing presence of improvisation in Western classical concert halls and competitions. However, high-level Western classical music improvisers' thinking…

  3. Tarnished Gold: Classical Music in America

    Science.gov (United States)

    Asia, Daniel

    2010-01-01

    A few articles have appeared recently regarding the subject of the health of classical music (or more broadly, the fine arts) in America. These include "Classical Music's New Golden Age," by Heather Mac Donald, in the "City Journal" and "The Decline of the Audience," by Terry Teachout, in "Commentary." These articles appeared around the time of…

  4. The Dirac equation in classical statistical mechanics

    International Nuclear Information System (INIS)

    Ord, G.N.

    2002-01-01

    The Dirac equation, usually obtained by 'quantizing' a classical stochastic model is here obtained directly within classical statistical mechanics. The special underlying space-time geometry of the random walk replaces the missing analytic continuation, making the model 'self-quantizing'. This provides a new context for the Dirac equation, distinct from its usual context in relativistic quantum mechanics

  5. Converting Projects from STK Classic to STK

    Energy Technology Data Exchange (ETDEWEB)

    Foucar, James G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-08-01

    The version of STK (Sierra ToolKit) that has long been provided with Trilinos is no longer supported by the core develop- ment team. With the introduction of a the new STK library into Trilinos, the old STK has been renamed to stk classic. This document contains a rough guide of how to port a stk classic code to STK.

  6. Hilbert space theory of classical electrodynamics

    Indian Academy of Sciences (India)

    Furthermore, following Bondar et al, {\\it Phys. Rev.} A 88, 052108 (2013), it is pointed out that quantum processes that preserve the positivity or nonpositivity of theWigner function can be implemented by classical optics. This may be useful in interpreting quantum information processing in terms of classical optics.

  7. Dispersions in Semi-Classical Dynamics

    International Nuclear Information System (INIS)

    Zielinska-Pfabe, M.; Gregoire, C.

    1987-01-01

    Dispersions around mean values of one-body observables are obtained by restoring classical many-body correlations in Vlasov and Landau-Vlasov dynamics. The method is applied to the calculation of fluctuations in mass, charge and linear momentum in heavy-ion collisions. Results are compared to those obtained by the Balian-Veneroni variational principle in semi-classical approximation

  8. Linguistic Investigations into Ellipsis in Classical Sanskrit

    Science.gov (United States)

    Gillon, Brendan S.

    Ellipsis is a common phenomenon of Classical Sanskrit prose. No inventory of the forms of ellipsis in Classical Sanskrit has been made. This paper presents an inventory, based both on a systematic investigation of one text and on examples based on sundry reading.

  9. Quantum Statistical Operator and Classically Chaotic Hamiltonian ...

    African Journals Online (AJOL)

    Quantum Statistical Operator and Classically Chaotic Hamiltonian System. ... Journal of the Nigerian Association of Mathematical Physics ... In a Hamiltonian system von Neumann Statistical Operator is used to tease out the quantum consequence of (classical) chaos engendered by the nonlinear coupling of system to its ...

  10. Classical and Quantum-Mechanical State Reconstruction

    Science.gov (United States)

    Khanna, F. C.; Mello, P. A.; Revzen, M.

    2012-01-01

    The aim of this paper is to present the subject of state reconstruction in classical and in quantum physics, a subject that deals with the experimentally acquired information that allows the determination of the physical state of a system. Our first purpose is to explain a method for retrieving a classical state in phase space, similar to that…

  11. Modular sequent calculi for classical modal logics

    NARCIS (Netherlands)

    Gilbert, David; Maffezioli, Paolo

    This paper develops sequent calculi for several classical modal logics. Utilizing a polymodal translation of the standard modal language, we are able to establish a base system for the minimal classical modal logic E from which we generate extensions (to include M, C, and N) in a modular manner. Our

  12. The Zoology of the classical islamic culture

    DEFF Research Database (Denmark)

    Provencal, Philippe; Aarab, Ahmed

    2014-01-01

    This article brings a survey of research on the science of zoology in the Classical Arabic/Islamic Culture as revealed in texts on this subject written in Classical Arabic from the second half of the 8th century to the 15th century A.D. In the light of recent research and by use of examples from...

  13. Surfactant enhanced non-classical extraction

    International Nuclear Information System (INIS)

    Szymanowski, J.

    2000-01-01

    Surfactant enhanced non-classical extractions are presented and discussed. They include micellar enhanced ultrafiltration and cloud point extraction. The ideas of the processes are given and the main features are presented. They are compared to the classical solvent extraction. The fundamental of micellar solutions and their solubilisation abilities are also discussed. (author)

  14. Overgroups of root groups in classical groups

    CERN Document Server

    Aschbacher, Michael

    2016-01-01

    The author extends results of McLaughlin and Kantor on overgroups of long root subgroups and long root elements in finite classical groups. In particular he determines the maximal subgroups of this form. He also determines the maximal overgroups of short root subgroups in finite classical groups and the maximal overgroups in finite orthogonal groups of c-root subgroups.

  15. Mimicking anti-correlations with classical interference

    International Nuclear Information System (INIS)

    Godoy, S; Seifert, B; Wallentowitz, S

    2013-01-01

    It is shown how classical laser light impinging on a beam splitter with internal reflections may mimic anti-correlations of the detected outputs, similar to those observed for anti-bunched light. The experimentally observed anti-correlation may be interpreted as a classical Hong–Ou–Mandel dip. (paper)

  16. Surfactant enhanced non-classical extraction

    International Nuclear Information System (INIS)

    Szymanowski, J.

    1999-01-01

    Surfactant enhanced non-classical extractions are presented and discussed. They include micellar enhanced ultrafiltration and cloud point extraction. The ideas of the processes are given and the main features are presented. They are compared to the classical solvent extraction. The fundamental of micellar solutions and their solubilization abilities are also discussed. (author)

  17. Quantum Communication Attacks on Classical Cryptographic Protocols

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre

    , one can show that the protocol remains secure even under such an attack. However, there are also cases where the honest players are quantum as well, even if the protocol uses classical communication. For instance, this is the case when classical multiparty computation is used as a “subroutine......In the literature on cryptographic protocols, it has been studied several times what happens if a classical protocol is attacked by a quantum adversary. Usually, this is taken to mean that the adversary runs a quantum algorithm, but communicates classically with the honest players. In several cases......” in quantum multiparty computation. Furthermore, in the future, players in a protocol may employ quantum computing simply to improve efficiency of their local computation, even if the communication is supposed to be classical. In such cases, it no longer seems clear that a quantum adversary must be limited...

  18. Classical-driving-assisted entanglement dynamics control

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ying-Jie, E-mail: yingjiezhang@qfnu.edu.cn [Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165 (China); Han, Wei [Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165 (China); Xia, Yun-Jie, E-mail: yjxia@qfnu.edu.cn [Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165 (China); Fan, Heng, E-mail: hfan@iphy.ac.cn [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing, 100190 (China)

    2017-04-15

    We propose a scheme of controlling entanglement dynamics of a quantum system by applying the external classical driving field for two atoms separately located in a single-mode photon cavity. It is shown that, with a judicious choice of the classical-driving strength and the atom–photon detuning, the effective atom–photon interaction Hamiltonian can be switched from Jaynes–Cummings model to anti-Jaynes–Cummings model. By tuning the controllable atom–photon interaction induced by the classical field, we illustrate that the evolution trajectory of the Bell-like entanglement states can be manipulated from entanglement-sudden-death to no-entanglement-sudden-death, from no-entanglement-invariant to entanglement-invariant. Furthermore, the robustness of the initial Bell-like entanglement can be improved by the classical driving field in the leaky cavities. This classical-driving-assisted architecture can be easily extensible to multi-atom quantum system for scalability.

  19. Interaction between classical and quantum systems

    International Nuclear Information System (INIS)

    Sherry, T.N.; Sudarshan, E.C.G.

    1977-10-01

    An unconventional approach to the measurement problem in quantum mechanics is considered--the apparatus is treated as a classical system, belonging to the macro-world. In order to have a measurement the apparatus must interact with the quantum system. As a first step, the classical apparatus is embedded into a large quantum mechanical structure, making use of a superselection principle. The apparatus and system are coupled such that the apparatus remains classical (principle of integrity), and unambiguous information of the values of a quantum observable are transferred to the variables of the apparatus. Further measurement of the classical apparatus can be done, causing no problems of principle. Thus interactions causing pointers to move (which are not treated) can be added. The restrictions placed by the principle of integrity on the form of the interaction between classical and quantum systems are examined and illustration is given by means of a simple example in which one sees the principle of integrity at work

  20. Citation Classics from Industrial Marketing Management

    DEFF Research Database (Denmark)

    Lindgreen, Adam; Di Benedetto, C. Anthony

    2017-01-01

    , system sellers and systems integrator, third-party logistics providers, and value). Finally, each of the 30 citation classics is introduced, and the classics' theoretical implications to business-to-business marketing management and fields related to (e.g., supply chain management, strategic management......This article proposes a categorization of what constitutes a citation classic. General observations reveal, with regard to the top 30 citation classics from Industrial Marketing Management, the number of authors per article, country of origin of the lead author, and type of article (literature...... review, qualitative methodology, or quantitative methodology). In addition, these citation classics can be classified by topic (firm performance, goods-dominant and service-dominant logics, Internet and high-technology markets, product innovation, relationships and business networks, supply chains...

  1. Quantum Communication Attacks on Classical Cryptographic Protocols

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre

    , one can show that the protocol remains secure even under such an attack. However, there are also cases where the honest players are quantum as well, even if the protocol uses classical communication. For instance, this is the case when classical multiparty computation is used as a “subroutine......” in quantum multiparty computation. Furthermore, in the future, players in a protocol may employ quantum computing simply to improve efficiency of their local computation, even if the communication is supposed to be classical. In such cases, it no longer seems clear that a quantum adversary must be limited......In the literature on cryptographic protocols, it has been studied several times what happens if a classical protocol is attacked by a quantum adversary. Usually, this is taken to mean that the adversary runs a quantum algorithm, but communicates classically with the honest players. In several cases...

  2. Classical molecular dynamics simulation of nuclear fuels

    International Nuclear Information System (INIS)

    Devanathan, R.; Krack, M.; Bertolus, M.

    2015-01-01

    Molecular dynamics simulation using forces calculated from empirical potentials, commonly called classical molecular dynamics, is well suited to study primary damage production by irradiation, defect interactions with fission gas atoms, gas bubble nucleation, grain boundary effects on defect and gas bubble evolution in nuclear fuel, and the resulting changes in thermomechanical properties. This enables one to obtain insights into fundamental mechanisms governing the behaviour of nuclear fuel, as well as parameters that can be used as inputs for mesoscale models. The interaction potentials used for the force calculations are generated by fitting properties of interest to experimental data and electronic structure calculations (see Chapter 12). We present here the different types of potentials currently available for UO 2 and illustrations of applications to the description of the behaviour of this material under irradiation. The results obtained from the present generation of potentials for UO 2 are qualitatively similar, but quantitatively different. There is a need to refine these existing potentials to provide a better representation of the performance of polycrystalline fuel under a variety of operating conditions, develop models that are equipped to handle deviations from stoichiometry, and validate the models and assumptions used. (authors)

  3. Origin of constraints in relativistic classical Hamiltonian dynamics

    International Nuclear Information System (INIS)

    Mallik, S.; Hugentobler, E.

    1979-01-01

    We investigate the null-plane or the front form of relativistic classical Hamiltonian dynamics as proposed by Dirac and developed by Leutwyler and Stern. For systems of two spinless particles we show that the algebra of Poincare generators is equivalent to describing dynamics in terms of two covariant constraint equations, the Poisson bracket of the two constraints being weakly zero. The latter condition is solved for certain simple forms of constraints

  4. A Classic Case of Basal Cell Nevus Syndrome

    Directory of Open Access Journals (Sweden)

    Dattaprasad Dadhe

    2015-01-01

    Full Text Available The basal cell nevus syndrome is an autosomal dominant inherited condition characterized mainly by basal cell carcinomas, multiple keratinizing odontogenic tumors, and other systemic anomalies. As these manifestations do not alter the patient′s lifestyle, most of the cases are diagnosed through oral abnormalities. A classic case of basal cell nevus syndrome fulfilling almost all the major and minor criteria has been reported here.

  5. The motion of a classical particle with spin

    International Nuclear Information System (INIS)

    Amorim, R.

    1983-01-01

    A set equations of motion for a classical charged point particle with magnetic moment is proposed. These equations are obtained from a self-consistent variational principle and avoid the unphysical helicoidal motions characteristic of the theories that satisfy the condition S sup(μν) u sub(ν) = 0. The theories that satisfy the condiction S sup(μν) p sub(ν) = 0 are unified with the present theory in a trivial way. (Author) [pt

  6. Second quantization of classical nonlinear relativistic field theory. Pt. 2

    International Nuclear Information System (INIS)

    Balaban, T.

    1976-01-01

    The construction of a relativistic interacting local quantum field is given in two steps: first the classical nonlinear relativistic field theory is written down in terms of Poisson brackets, with initial conditions as canonical variables: next a representation of Poisson bracket Lie algebra by means of linear operators in the topological vector space is given and an explicit form of a local interacting relativistic quantum field PHI is obtained. (orig./BJ) [de

  7. The concept of 'optimal' path in classical mechanics

    International Nuclear Information System (INIS)

    Passos, E.J.V. de; Cruz, F.F. de S.

    1986-01-01

    The significance of the concept of 'optimal' path in the framework of classical mechanics is discussed. The derivation of the local harmonic approximation and self-consistent collective coordinate method equations of the optimal path is based on a careful study of the concepts of local maximal decoupling and global maximal decoupling respectively. This exhibits the nature of the differences between these two theories and allows one to establish the conditions under which they become equivalent. (author)

  8. Comparison of classical and modern theories of longitudinal wave propagation in elastic rods

    CSIR Research Space (South Africa)

    Shatalov, M

    2009-07-01

    Full Text Available are constructed for the classical, Rayleigh, Bishop, and Mindlin-Herrmann models in which the general solutions of the problem are obtained. The principles of construction of the multimode theories, corresponding equations and orthogonality conditions...

  9. Equivalence of classical spins and Hartree-Fock-Bogoliubov approximation of the Fermionic Anharmonic Oscillator

    International Nuclear Information System (INIS)

    Thomaz, M.T.; Toledo Piza, A.F.R. de

    1994-01-01

    We show that the Hartree-Fock-Bogoliubov (alias Gaussian) approximation of the initial condition problem of the Fermionic Anharmonic Oscillator i equivalent to a bosonic Hamiltonian system of two classical spin. (author)

  10. Driven topological systems in the classical limit

    Science.gov (United States)

    Duncan, Callum W.; Öhberg, Patrik; Valiente, Manuel

    2017-03-01

    Periodically driven quantum systems can exhibit topologically nontrivial behavior, even when their quasienergy bands have zero Chern numbers. Much work has been conducted on noninteracting quantum-mechanical models where this kind of behavior is present. However, the inclusion of interactions in out-of-equilibrium quantum systems can prove to be quite challenging. On the other hand, the classical counterpart of hard-core interactions can be simulated efficiently via constrained random walks. The noninteracting model, proposed by Rudner et al. [Phys. Rev. X 3, 031005 (2013), 10.1103/PhysRevX.3.031005], has a special point for which the system is equivalent to a classical random walk. We consider the classical counterpart of this model, which is exact at a special point even when hard-core interactions are present, and show how these quantitatively affect the edge currents in a strip geometry. We find that the interacting classical system is well described by a mean-field theory. Using this we simulate the dynamics of the classical system, which show that the interactions play the role of Markovian, or time-dependent disorder. By comparing the evolution of classical and quantum edge currents in small lattices, we find regimes where the classical limit considered gives good insight into the quantum problem.

  11. Classical and anaplastic seminoma: Difference in survival

    International Nuclear Information System (INIS)

    Bobba, V.S.; Mittal, B.B.; Hoover, S.V.; Kepka, A.

    1987-01-01

    The authors undertook a retrospective study of seminoma patients treated with radiation therapy between 1961 and 1985. The classical group consisted of 66 patients, of whom 47 were stage I and 19 were stage II. The anaplastic group consisted of 21 patients, of whom 11 were stage I, nine were stage II, and one was stage III. The median follow-up was 66 months. The five-year crude survival rate for the entire group was 92%, for classical 96%, and for anaplastic 78% (P<.005). Similarly, there was a significant difference (P<.005) in actuarial relapse-free survival at 5 years between classical and anaplastic seminoma. For classical stage I, the relapse-free actuarial 5-year survival rate was 96; for classical stage II, 84%. For anaplastic stage I the relapse-free actuarial 5-year survival rate was 82%, and for stage II 75%. Six patients in the classical group (9%) failed treatment. In the anaplastic group, five patients or 24 failed treatment. Therefore, the authors' data suggest a difference in survival and failure rate between classical and anaplastic seminoma. Extratesticular seminoma with anaplastic histology has an even worse prognosis

  12. Classical solutions with nontrivial holonomy in SU(2) LGT at T ≠ 0

    International Nuclear Information System (INIS)

    Ilgenfritz, E.-M.; Martemyanov, B.V.; Mueller-Preussker, M.; Veselov, A.I.

    2002-01-01

    We generate SU(2) lattice gauge fields at finite temperature and cool them in order to characterize the two phases by the occurrence of specific classical solutions. We apply two kinds of spatial boundary conditions: fixed holonomy and standard periodic b.c. For T c our findings concerning classical configurations semi-quantitatively agree for both types of boundary conditions. We find in the confinement phase a mixture of undissociated calorons with lumps of positive or negative half-integer topological charges

  13. Fluctuations of wavefunctions about their classical average

    International Nuclear Information System (INIS)

    Benet, L; Flores, J; Hernandez-Saldana, H; Izrailev, F M; Leyvraz, F; Seligman, T H

    2003-01-01

    Quantum-classical correspondence for the average shape of eigenfunctions and the local spectral density of states are well-known facts. In this paper, the fluctuations of the quantum wavefunctions around the classical value are discussed. A simple random matrix model leads to a Gaussian distribution of the amplitudes whose width is determined by the classical shape of the eigenfunction. To compare this prediction with numerical calculations in chaotic models of coupled quartic oscillators, we develop a rescaling method for the components. The expectations are broadly confirmed, but deviations due to scars are observed. This effect is much reduced when both Hamiltonians have chaotic dynamics

  14. A Classical Introduction to Galois Theory

    CERN Document Server

    Newman, Stephen C

    2012-01-01

    This book provides an introduction to Galois theory and focuses on one central theme - the solvability of polynomials by radicals. Both classical and modern approaches to the subject are described in turn in order to have the former (which is relatively concrete and computational) provide motivation for the latter (which can be quite abstract). The theme of the book is historically the reason that Galois theory was created, and it continues to provide a platform for exploring both classical and modern concepts. This book examines a number of problems arising in the area of classical mathematic

  15. Classical realizability in the CPS target language

    DEFF Research Database (Denmark)

    Frey, Jonas

    2016-01-01

    Motivated by considerations about Krivine's classical realizability, we introduce a term calculus for an intuitionistic logic with record types, which we call the CPS target language. We give a reformulation of the constructions of classical realizability in this language, using the categorical...... techniques of realizability triposes and toposes. We argue that the presentation of classical realizability in the CPS target language simplifies calculations in realizability toposes, in particular it admits a nice presentation of conjunction as intersection type which is inspired by Girard's ludics....

  16. A classical model for the electron

    International Nuclear Information System (INIS)

    Visser, M.

    1989-01-01

    The construction of classical and semi-classical models for the electron has had a long and distinguished history. Such models are useful more for what they teach us about field theory than what they teach us about the electron. In this Letter I exhibit a classical model of the electron consisting of ordinary electromagnetism coupled with a self-interacting version of Newtonian gravity. The gravitational binding energy of the system balances the electrostatic energy in such a manner that the total rest mass of the electron is finite. (orig.)

  17. Bohmian measures and their classical limit

    KAUST Repository

    Markowich, Peter

    2010-09-01

    We consider a class of phase space measures, which naturally arise in the Bohmian interpretation of quantum mechanics. We study the classical limit of these so-called Bohmian measures, in dependence on the scale of oscillations and concentrations of the sequence of wave functions under consideration. The obtained results are consequently compared to those derived via semi-classical Wigner measures. To this end, we shall also give a connection to the theory of Young measures and prove several new results on Wigner measures themselves. Our analysis gives new insight on oscillation and concentration effects in the semi-classical regime. © 2010 Elsevier Inc.

  18. On the quantization of classically chaotic system

    International Nuclear Information System (INIS)

    Godoy, N.F. de.

    1988-01-01

    Some propeties of a quantization in terms of observables of a classically chaotic system, which exhibits a strange are studied. It is shown in particular that convenient expected values of some observables have the correct classical limit and that in these cases the limits ℎ → O and t → ∞ (t=time) rigorously comute. This model was alternatively quantized by R.Graham in terms of Wigner function. The Graham's analysis is completed a few points, in particular, we find out a remarkable analogy with general results about the semi-classical limit of Wigner function. Finally the expected values obtained by both methods of quantization were compared. (author) [pt

  19. Classical dynamics of particles and systems

    CERN Document Server

    Marion, Jerry B

    1965-01-01

    Classical Dynamics of Particles and Systems presents a modern and reasonably complete account of the classical mechanics of particles, systems of particles, and rigid bodies for physics students at the advanced undergraduate level. The book aims to present a modern treatment of classical mechanical systems in such a way that the transition to the quantum theory of physics can be made with the least possible difficulty; to acquaint the student with new mathematical techniques and provide sufficient practice in solving problems; and to impart to the student some degree of sophistication in handl

  20. QCD2 and the classical correspondence in the large-N-limit

    International Nuclear Information System (INIS)

    Krauss, L.M.; Lykken, J.D.; Massachusetts Inst. of Tech., Cambridge; Massachusetts Inst. of Tech., Cambridge

    1981-01-01

    It is shown that the large-N limit of quantum chromodynamics in two dimensions is determined by classical equations with boundary conditions. The nonperturbative quantum spectrum of mesonic bound states is obtained from a classical equation with a simple N-dependent boundary condition on the local charge density. The simplicity of the classical correspondence is shown to be directly tied to the simplicity of the space of gauge invariant operators of the theory. Implications for other large-N models are discussed. (orig.)

  1. Classics in Chemical Neuroscience: Methylphenidate.

    Science.gov (United States)

    Wenthur, Cody J

    2016-08-17

    As the first drug to see widespread use for the treatment of attention deficit hyperactivity disorder (ADHD), methylphenidate was the forerunner and catalyst to the modern era of rapidly increasing diagnosis, treatment, and medication development for this condition. During its often controversial history, it has variously elucidated the importance of dopamine signaling in memory and attention, provoked concerns about pharmaceutical cognitive enhancement, driven innovation in controlled-release technologies and enantiospecific therapeutics, and stimulated debate about the impact of pharmaceutical sales techniques on the practice of medicine. In this Review, we will illustrate the history and importance of methylphenidate to ADHD treatment and neuroscience in general, as well as provide key information about its synthesis, structure-activity relationship, pharmacological activity, metabolism, manufacturing, FDA-approved indications, and adverse effects.

  2. A derivation of the classical limit of quantum mechanics and quantum electrodynamics

    International Nuclear Information System (INIS)

    Ajanapon, P.

    1985-01-01

    Instead of regarding the classical limit as the h → 0, an alternative view based on the physical interpretation of the elements of the density matrix is proposed. According to this alternative view, taking the classical limit corresponds to taking the diagonal elements and ignoring the off-diagonal elements of the density matrix. As illustrations of this alternative approach, the classical limits of quantum mechanics and quantum electrodynamics are derived. The derivation is carried out in two stages. First, the statistical classical limit is derived. Then with an appropriate initial condition, the deterministic classical limit is obtained. In the case of quantum mechanics, it is found that the classical limit of Schroedinger's wave mechanics is at best statistical, i.e., Schroedinger's wave mechanics does not reduce to deterministic (Hamilton's or Newton's) classical mechanics. In order to obtain the latter, it is necessary to start out initially with a mixture at the level of statistical quantum mechanics. The derivation hinges on the use of the Feynman path integral rigorously defined with the aid of nonstandard analysis. Nonstandard analysis is also applied to extend the method to the case of quantum electrodynamics. The fundamental decoupling problem arising form the use of Grassmann variables is circumvented by the use of c-number electron fields, but antisymmetrically tagged. The basic classical (deterministic) field equations are obtained in the classical limit with appropriate initial conditions. The result raises the question as to what the corresponding classical field equations obtained in the classical limit from the renormalized Lagrangian containing infinite counterterms really mean

  3. Bohmian measures and their classical limit

    KAUST Repository

    Markowich, Peter; Paul, Thierry; Sparber, Christof

    2010-01-01

    We consider a class of phase space measures, which naturally arise in the Bohmian interpretation of quantum mechanics. We study the classical limit of these so-called Bohmian measures, in dependence on the scale of oscillations and concentrations

  4. Quantum manifestations of classical resonance zones

    International Nuclear Information System (INIS)

    De Leon, N.; Davis, M.J.; Heller, E.J.

    1984-01-01

    We examine the concept of nodal breakup of wave functions as a criterion for quantum mechanical ergodicity. We find that complex nodal structure of wave functions is not sufficient to determine quantum mechanical ergodicity. The influence of classical resonances [which manifest themselves as classical resonance zones (CRZ)] may also be responsible for the seeming complexity of nodal structure. We quantify this by reexamining one of the two systems studied by Stratt, Handy, and Miller [J. Chem. Phys. 71, 3311 (1974)] from both a quantum mechanical and classical point of view. We conclude that quasiperiodic classical motion can account for highly distorted quantum eigenstates. One should always keep this in mind when addressing questions regarding quantum mechanical ergodicity

  5. Classical limit for semirelativistic Hartree systems

    KAUST Repository

    Aki, Gonca L.; Markowich, Peter A.; Sparber, Christof

    2008-01-01

    Wigner transformation techniques that its classical limit yields the well known relativistic Vlasov-Poisson system. The result holds for the case of attractive and repulsive mean-field interactions, with an additional size constraint in the attractive

  6. Classical algebra its nature, origins, and uses

    CERN Document Server

    Cooke, Roger L

    2008-01-01

    This insightful book combines the history, pedagogy, and popularization of algebra to present a unified discussion of the subject. Classical Algebra provides a complete and contemporary perspective on classical polynomial algebra through the exploration of how it was developed and how it exists today. With a focus on prominent areas such as the numerical solutions of equations, the systematic study of equations, and Galois theory, this book facilitates a thorough understanding of algebra and illustrates how the concepts of modern algebra originally developed from classical algebraic precursors. This book successfully ties together the disconnect between classical and modern algebraand provides readers with answers to many fascinating questions that typically go unexamined, including: What is algebra about? How did it arise? What uses does it have? How did it develop? What problems and issues have occurred in its history? How were these problems and issues resolved? The author answers these questions and more,...

  7. Persistent entanglement in the classical limit

    Energy Technology Data Exchange (ETDEWEB)

    Everitt, M J [Centre for Physical Electronics and Quantum Technology, School of Science and Technology, University of Sussex, Falmer, Brighton BN1 9QT (United Kingdom); Clark, T D [Centre for Physical Electronics and Quantum Technology, School of Science and Technology, University of Sussex, Falmer, Brighton BN1 9QT (United Kingdom); Stiffell, P B [Centre for Physical Electronics and Quantum Technology, School of Science and Technology, University of Sussex, Falmer, Brighton BN1 9QT (United Kingdom); Ralph, J F [Department of Electrical and Electronic Engineering, Liverpool University, Brownlow Hill, Liverpool L69 3GJ (United Kingdom); Bulsara, A R [Space and Naval Warfare Systems Center, Code 2363, 53560 Hull Street, San Diego, CA 92152-5001 (United States); Harland, C J [Centre for Physical Electronics and Quantum Technology, School of Science and Technology, University of Sussex, Falmer, Brighton BN1 9QT (United Kingdom)

    2005-02-01

    The apparent difficulty in recovering classical nonlinear dynamics and chaos from standard quantum mechanics has been the subject of a great deal of interest over the last 20 years. For open quantum systems-those coupled to a dissipative environment and/or a measurement device-it has been demonstrated that chaotic-like behaviour can be recovered in the appropriate classical limit. In this paper, we investigate the entanglement generated between two nonlinear oscillators, coupled to each other and to their environment. Entanglement-the inability to factorize coupled quantum systems into their constituent parts-is one of the defining features of quantum mechanics. Indeed, it underpins many of the recent developments in quantum technologies. Here, we show that the entanglement characteristics of two 'classical' states (chaotic and periodic solutions) differ significantly in the classical limit. In particular, we show that significant levels of entanglement are preserved only in the chaotic-like solutions.

  8. Classic Phenylketonuria: Diagnosis Through Heterozygote Detection

    Science.gov (United States)

    Griffin, Robert F.; Elsas, Louis J.

    1975-01-01

    In an attempt to improve the identification of the asymptomatic carrier of classic phenylketonuria (PKU) 59 male and female normal control Ss were differentiated from 18 males and females heterozgous for PKU. (DB)

  9. Quantum machine learning: a classical perspective.

    Science.gov (United States)

    Ciliberto, Carlo; Herbster, Mark; Ialongo, Alessandro Davide; Pontil, Massimiliano; Rocchetto, Andrea; Severini, Simone; Wossnig, Leonard

    2018-01-01

    Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning (ML) techniques to impressive results in regression, classification, data generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets is motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed up classical ML algorithms. Here we review the literature in quantum ML and discuss perspectives for a mixed readership of classical ML and quantum computation experts. Particular emphasis will be placed on clarifying the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems. Learning in the presence of noise and certain computationally hard problems in ML are identified as promising directions for the field. Practical questions, such as how to upload classical data into quantum form, will also be addressed.

  10. Minimal classical communication and measurement complexity for ...

    Indian Academy of Sciences (India)

    Minimal classical communication and measurement complexity for quantum ... Entanglement; teleportation; secret sharing; information splitting. ... Ahmedabad 380 009, India; Birla Institute of Technology and Science, Pilani 333 031, India ...

  11. The classical limit of W-algebras

    International Nuclear Information System (INIS)

    Figueroa-O'Farrill, J.M.; Ramos, E.

    1992-01-01

    We define and compute explicitly the classical limit of the realizations of W n appearing as hamiltonian structures of generalized KdV hierarchies. The classical limit is obtained by taking the commutative limit of the ring of pseudodifferential operators. These algebras - denoted w n - have free field realizations in which the generators are given by the elementary symmetric polynomials in the free fields. We compute the algebras explicitly and we show that they are all reductions of a new algebra w KP , which is proposed as the universal classical W-algebra for the w n series. As a deformation of this algebra we also obtain w 1+∞ , the classical limit of W 1+∞ . (orig.)

  12. Quantum vertex model for reversible classical computing.

    Science.gov (United States)

    Chamon, C; Mucciolo, E R; Ruckenstein, A E; Yang, Z-C

    2017-05-12

    Mappings of classical computation onto statistical mechanics models have led to remarkable successes in addressing some complex computational problems. However, such mappings display thermodynamic phase transitions that may prevent reaching solution even for easy problems known to be solvable in polynomial time. Here we map universal reversible classical computations onto a planar vertex model that exhibits no bulk classical thermodynamic phase transition, independent of the computational circuit. Within our approach the solution of the computation is encoded in the ground state of the vertex model and its complexity is reflected in the dynamics of the relaxation of the system to its ground state. We use thermal annealing with and without 'learning' to explore typical computational problems. We also construct a mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating an approach to reversible classical computation based on state-of-the-art implementations of quantum annealing.

  13. Semi-classical quantization of chaotic billiards

    International Nuclear Information System (INIS)

    Smilansky, U.

    1992-02-01

    The semi-classical quantization of chaotic billiards will be developed using scattering theory approach. This will be used to introduce and explain the inherent difficulties in the semi-classical quantization of chaos, and to show some of the modern tools which were developed recently to overcome these difficulties. To this end, we shall first obtain a semi-classical secular equation which is based on a finite number of classical periodic orbits. We shall use it to derive some spectral properties, and in particular to investigate the relationship between spectral statistics of quantum chaotic systems and the predictions of random-matrix theory. We shall finally discuss an important family of chaotic billiard, whose statistics does not follow any of the canonical ensembles, (GOE,GUE,...) but rather, corresponds to a new universality class. (author)

  14. Progress in classical and quantum variational principles

    International Nuclear Information System (INIS)

    Gray, C G; Karl, G; Novikov, V A

    2004-01-01

    We review the development and practical uses of a generalized Maupertuis least action principle in classical mechanics in which the action is varied under the constraint of fixed mean energy for the trial trajectory. The original Maupertuis (Euler-Lagrange) principle constrains the energy at every point along the trajectory. The generalized Maupertuis principle is equivalent to Hamilton's principle. Reciprocal principles are also derived for both the generalized Maupertuis and the Hamilton principles. The reciprocal Maupertuis principle is the classical limit of Schroedinger's variational principle of wave mechanics and is also very useful to solve practical problems in both classical and semiclassical mechanics, in complete analogy with the quantum Rayleigh-Ritz method. Classical, semiclassical and quantum variational calculations are carried out for a number of systems, and the results are compared. Pedagogical as well as research problems are used as examples, which include nonconservative as well as relativistic systems. '... the most beautiful and important discovery of Mechanics.' Lagrange to Maupertuis (November 1756)

  15. Quantum machine learning: a classical perspective

    Science.gov (United States)

    Ciliberto, Carlo; Herbster, Mark; Ialongo, Alessandro Davide; Pontil, Massimiliano; Rocchetto, Andrea; Severini, Simone; Wossnig, Leonard

    2018-01-01

    Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning (ML) techniques to impressive results in regression, classification, data generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets is motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed up classical ML algorithms. Here we review the literature in quantum ML and discuss perspectives for a mixed readership of classical ML and quantum computation experts. Particular emphasis will be placed on clarifying the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems. Learning in the presence of noise and certain computationally hard problems in ML are identified as promising directions for the field. Practical questions, such as how to upload classical data into quantum form, will also be addressed.

  16. Local gauge invariant Lagrangeans in classical field theories

    International Nuclear Information System (INIS)

    Grigore, D.R.

    1982-07-01

    We investigate the most general local gauge invariant Lagrangean in the framework of classical field theory. We rederive esentially Utiyama's result with a slight generalization. Our proof makes clear the importance of the so called current conditions, i.e. the requirement that the Noether currents are different from zero. This condition is of importance both in the general motivation for the introduction of the Yang-Mills fields and for the actual proof. Some comments are made about the basic mathematical structure of the problem - the gauge group. (author)

  17. Classical Music Clustering Based on Acoustic Features

    OpenAIRE

    Wang, Xindi; Haque, Syed Arefinul

    2017-01-01

    In this paper we cluster 330 classical music pieces collected from MusicNet database based on their musical note sequence. We use shingling and chord trajectory matrices to create signature for each music piece and performed spectral clustering to find the clusters. Based on different resolution, the output clusters distinctively indicate composition from different classical music era and different composing style of the musicians.

  18. Factorizations of one-dimensional classical systems

    International Nuclear Information System (INIS)

    Kuru, Senguel; Negro, Javier

    2008-01-01

    A class of one-dimensional classical systems is characterized from an algebraic point of view. The Hamiltonians of these systems are factorized in terms of two functions that together with the Hamiltonian itself close a Poisson algebra. These two functions lead directly to two time-dependent integrals of motion from which the phase motions are derived algebraically. The systems so obtained constitute the classical analogues of the well known factorizable one-dimensional quantum mechanical systems

  19. On the Predictability of Classical Propositional Logic

    OpenAIRE

    Finger, Marcelo; Reis, Poliana

    2013-01-01

    In this work we provide a statistical form of empirical analysis of classical propositional logic decision methods called SAT solvers. This work is perceived as an empirical counterpart of a theoretical movement, called the enduring scandal of deduction, that opposes considering Boolean Logic as trivial in any sense. For that, we study the predictability of classical logic, which we take to be the distribution of the runtime of its decision process. We present a series of experiments that det...

  20. The classical notion of competition revisited

    OpenAIRE

    Salvadori, Neri; Signorino, Rodolfo

    2010-01-01

    The paper seeks to fill a lacuna within Classical economics concerning the process of market price determination in a short-period equilibrium. To this aim, first we distinguish the Classical notion of free competition from the Walrasian notion of perfect competition and we argue that the latter is beset by some theoretical difficulties alien to the former. Second, we reconstruct in some detail Smith and Marx’s views concerning market price determination and we show that Marx’s extensive use ...

  1. Classical geometry Euclidean, transformational, inversive, and projective

    CERN Document Server

    Leonard, I E; Liu, A C F; Tokarsky, G W

    2014-01-01

    Features the classical themes of geometry with plentiful applications in mathematics, education, engineering, and science Accessible and reader-friendly, Classical Geometry: Euclidean, Transformational, Inversive, and Projective introduces readers to a valuable discipline that is crucial to understanding bothspatial relationships and logical reasoning. Focusing on the development of geometric intuitionwhile avoiding the axiomatic method, a problem solving approach is encouraged throughout. The book is strategically divided into three sections: Part One focuses on Euclidean geometry, which p

  2. New mechanism for bubble nucleation: Classical transitions

    International Nuclear Information System (INIS)

    Easther, Richard; Giblin, John T. Jr; Hui Lam; Lim, Eugene A.

    2009-01-01

    Given a scalar field with metastable minima, bubbles nucleate quantum mechanically. When bubbles collide, energy stored in the bubble walls is converted into kinetic energy of the field. This kinetic energy can facilitate the classical nucleation of new bubbles in minima that lie below those of the 'parent' bubbles. This process is efficient and classical, and changes the dynamics and statistics of bubble formation in models with multiple vacua, relative to that derived from quantum tunneling.

  3. Classical theory of electric and magnetic fields

    CERN Document Server

    Good, Roland H

    1971-01-01

    Classical Theory of Electric and Magnetic Fields is a textbook on the principles of electricity and magnetism. This book discusses mathematical techniques, calculations, with examples of physical reasoning, that are generally applied in theoretical physics. This text reviews the classical theory of electric and magnetic fields, Maxwell's Equations, Lorentz Force, and Faraday's Law of Induction. The book also focuses on electrostatics and the general methods for solving electrostatic problems concerning images, inversion, complex variable, or separation of variables. The text also explains ma

  4. Classical and Quantum Chaos in Atom Optics

    OpenAIRE

    Saif, Farhan

    2006-01-01

    The interaction of an atom with an electromagnetic field is discussed in the presence of a time periodic external modulating force. It is explained that a control on atom by electromagnetic fields helps to design the quantum analog of classical optical systems. In these atom optical systems chaos may appear at the onset of external fields. The classical and quantum chaotic dynamics is discussed, in particular in an atom optics Fermi accelerator. It is found that the quantum dynamics exhibits ...

  5. Expert Western Classical Music Improvisers' Strategies

    OpenAIRE

    Despres, JP; Burnard, Pamela Anne; Dube, F; Stevance, S

    2017-01-01

    The growing interest in musical improvisation is exemplified by the body of literatures evidencing the positive impacts of improvisation learning on the musical apprentice’s aptitudes and the increasing presence of improvisation in Western classical concert halls and competitions. However, high-level Western classical music improvisers’ thinking processes are not yet thoroughly documented. As a result of this gap, our research addresses the following question: What strategies are implement...

  6. ENVIRONMENTALISM AND CLASSIC PARADIGMS OF INTERNATIONAL RELATIONS

    OpenAIRE

    D. D. Miniaeva

    2014-01-01

    This article examines an environmentalism integration process into Three classical paradigms of international relations theory (Liberalism, Realism and Marxism) into Three classical paradigms of international relations theory (Liberalism, Realism and Marxism). The main purpose of this study is to reveal the result of this integration. Methods used in this article include analysis and comparison of "ecological" paradigms on selected parameters (the nature of international relations, actors, ta...

  7. Quantum-correlation breaking channels, quantum conditional probability and Perron-Frobenius theory

    Science.gov (United States)

    Chruściński, Dariusz

    2013-03-01

    Using the quantum analog of conditional probability and classical Bayes theorem we discuss some aspects of particular entanglement breaking channels: quantum-classical and classical-classical channels. Applying the quantum analog of Perron-Frobenius theorem we generalize the recent result of Korbicz et al. (2012) [8] on full and spectrum broadcasting from quantum-classical channels to arbitrary quantum channels.

  8. Bohmian mechanics and the emergence of classicality

    International Nuclear Information System (INIS)

    Matzkin, A

    2009-01-01

    Bohmian mechanics is endowed with an ontological package that supposedly allows to solve the main interpretational problems of quantum mechanics. We are concerned in this work by the emergence of classicality from the quantum mechanical substrate. We will argue that although being superficially attractive, the de Broglie-Bohm interpretation does not shed new light on the quantum-to-classical transition. This is due to nature of the dynamical law of Bohmian mechanics by which the particles follow the streamlines of the probability flow. As a consequence, Bohmian trajectories can be highly non-classical even when the wavefunction propagates along classical trajectories, as happens in semiclassical systems. In order to account for classical dynamics, Bohmian mechanics needs non-spreading and non-interfering wave packets: this is achieved for practical purposes by having recourse to decoherence and dense measurements. However one then faces the usual fundamental problems associated with the meaning of reduced density matrices. Moreover the specific assets of the de Broglie-Bohm interpretation - in particular the existence of point-like particles pursuing well-defined trajectories - would play no role in accounting for the emergence of classical dynamics.

  9. Characterization of particle states in relativistic classical quantum theory

    International Nuclear Information System (INIS)

    Horwitz, L.P.; Rabin, Y.

    1977-02-01

    Classical and quantum relativistic mechanics are studied. The notion of a ''particle'' is defined in the classical case and the interpretation of mechanics in space-time is clarified. These notions are carried over to the quantum theory, as much as possible. The relation between the results of Feyman's path integral approach and the theory of Horwitz and Piron is discussed. The ''particle'' interpretation is shown to imply an asymptotic condition for scattering. A general method of constructing the dynamical mass spectrum of composite ''particle'' states is discussed. An interference experiment is proposed to affirm the interpretation and applicability of Stueckelberg type wave functions for actual physical phenomena. Some discussion of the relation of this relativistic quantum theory to Feynman's approach to quantum field theory is also given

  10. Characterization of classical static noise via qubit as probe

    Science.gov (United States)

    Javed, Muhammad; Khan, Salman; Ullah, Sayed Arif

    2018-03-01

    The dynamics of quantum Fisher information (QFI) of a single qubit coupled to classical static noise is investigated. The analytical relation for QFI fixes the optimal initial state of the qubit that maximizes it. An approximate limit for the time of coupling that leads to physically useful results is identified. Moreover, using the approach of quantum estimation theory and the analytical relation for QFI, the qubit is used as a probe to precisely estimate the disordered parameter of the environment. Relation for optimal interaction time with the environment is obtained, and condition for the optimal measurement of the noise parameter of the environment is given. It is shown that all values, in the mentioned range, of the noise parameter are estimable with equal precision. A comparison of our results with the previous studies in different classical environments is made.

  11. Principal parameters of classical multiply charged ion sources

    International Nuclear Information System (INIS)

    Winter, H.; Wolf, B.H.

    1974-01-01

    A review is given of the operational principles of classical multiply charged ion sources (operating sources for intense beams of multiply charged ions using discharge plasmas; MCIS). The fractional rates of creation of multiply charged ions in MCIS plasmas cannot be deduced from the discharge parameters in a simple manner; they depend essentially on three principal parameters, the density and energy distribution of the ionizing electrons, and the confinement time of ions in the ionization space. Simple discharge models were used to find relations between principal parameters, and results of model calculations are compared to actually measured charge state density distributions of extracted ions. Details of processes which determine the energy distribution of ionizing electrons (heating effects), confinement times of ions (instabilities), and some technical aspects of classical MCIS (cathodes, surface processes, conditioning, life time) are discussed

  12. Progress in the application of classical S-matrix theory to inelastic collision processes

    International Nuclear Information System (INIS)

    McCurdy, C.W.; Miller, W.H.

    1980-01-01

    Methods are described which effectively solve two of the technical difficulties associated with applying classical S-matrix theory to inelastic/reactive scattering. Specifically, it is shown that rather standard numerical methods can be used to solve the ''root search'' problem (i.e., the nonlinear boundary value problem necessary to impose semiclassical quantum conditions at the beginning and the end of the classical trajectories) and also how complex classical trajectories, which are necessary to describe classically forbidden (i.e., tunneling) processes, can be computed in a numerically stable way. Application is made to vibrational relaxation of H 2 by collision with He (within the helicity conserving approximation). The only remaining problem with regard to applying classical S-matrix theory to complex collision processes has to do with the availability of multidimensional uniform asymptotic formulas for interpolating the ''primitive'' semiclassical expressions between their various regions of validity

  13. Infinite number of integrals of motion in classically integrable system with boundary: Pt.2

    International Nuclear Information System (INIS)

    Chen Yixin; Luo Xudong

    1998-01-01

    In Affine Toda field theory, links among three generating functions for integrals of motion derived from Part (I) are studied, and some classically integrable boundary conditions are obtained. An infinite number of integrals of motion are calculated in ZMS model with quasi-periodic condition. The authors find the classically integrable boundary conditions and K +- matrices of ZMS model with independent boundary conditions on each end. It is identified that an infinite number of integrals of motion does exist and one of them is the Hamiltonian, so this system is completely integrable

  14. Lorentzian condition in holographic cosmology

    International Nuclear Information System (INIS)

    Hertog, Thomas; Monten, Ruben; Vreys, Yannick

    2017-01-01

    We derive a sufficient set of conditions on the Euclidean boundary theory in dS/CFT for it to predict classical, Lorentzian bulk evolution at large spatial volumes. Our derivation makes use of a canonical transformation to express the bulk wave function at large volume in terms of the sources of the dual partition function. This enables a sharper formulation of dS/CFT. The conditions under which the boundary theory predicts classical bulk evolution are stronger than the criteria usually employed in quantum cosmology. We illustrate this in a homogeneous isotropic minisuperspace model of gravity coupled to a scalar field in which we identify the ensemble of classical histories explicitly.

  15. Emergence of classical theories from quantum mechanics

    International Nuclear Information System (INIS)

    Hájícek, P

    2012-01-01

    Three problems stand in the way of deriving classical theories from quantum mechanics: those of realist interpretation, of classical properties and of quantum measurement. Recently, we have identified some tacit assumptions that lie at the roots of these problems. Thus, a realist interpretation is hindered by the assumption that the only properties of quantum systems are values of observables. If one simply postulates the properties to be objective that are uniquely defined by preparation then all difficulties disappear. As for classical properties, the wrong assumption is that there are arbitrarily sharp classical trajectories. It turns out that fuzzy classical trajectories can be obtained from quantum mechanics by taking the limit of high entropy. Finally, standard quantum mechanics implies that any registration on a quantum system is disturbed by all quantum systems of the same kind existing somewhere in the universe. If one works out systematically how quantum mechanics must be corrected so that there is no such disturbance, one finds a new interpretation of von Neumann's 'first kind of dynamics', and so a new way to a solution of the quantum measurement problem. The present paper gives a very short review of this work.

  16. Population structure of the Classic period Maya.

    Science.gov (United States)

    Scherer, Andrew K

    2007-03-01

    This study examines the population structure of Classic period (A.D. 250-900) Maya populations through analysis of odontometric variation of 827 skeletons from 12 archaeological sites in Mexico, Guatemala, Belize, and Honduras. The hypothesis that isolation by distance characterized Classic period Maya population structure is tested using Relethford and Blangero's (Hum Biol 62 (1990) 5-25) approach to R matrix analysis for quantitative traits. These results provide important biological data for understanding ancient Maya population history, particularly the effects of the competing Tikal and Calakmul hegemonies on patterns of lowland Maya site interaction. An overall F(ST) of 0.018 is found for the Maya area, indicating little among-group variation for the Classic Maya sites tested. Principal coordinates plots derived from the R matrix analysis show little regional patterning in the data, though the geographic outliers of Kaminaljuyu and a pooled Pacific Coast sample did not cluster with the lowland Maya sites. Mantel tests comparing the biological distance matrix to a geographic distance matrix found no association between genetic and geographic distance. In the Relethford-Blangero analysis, most sites possess negative or near-zero residuals, indicating minimal extraregional gene flow. The exceptions were Barton Ramie, Kaminaljuyu, and Seibal. A scaled R matrix analysis clarifies that genetic drift is a consideration for understanding Classic Maya population structure. All results indicate that isolation by distance does not describe Classic period Maya population structure. (c) 2006 Wiley-Liss, Inc.

  17. Lagrangian formulation of classical BMT-theory

    International Nuclear Information System (INIS)

    Pupasov-Maksimov, Andrey; Deriglazov, Alexei; Guzman, Walberto

    2013-01-01

    Full text: The most popular classical theory of electron has been formulated by Bargmann, Michel and Telegdi (BMT) in 1959. The BMT equations give classical relativistic description of a charged particle with spin and anomalous magnetic momentum moving in homogeneous electro-magnetic field. This allows to study spin dynamics of polarized beams in uniform fields. In particular, first experimental measurements of muon anomalous magnetic momentum were done using changing of helicity predicted by BMT equations. Surprisingly enough, a systematic formulation and the analysis of the BMT theory are absent in literature. In the present work we particularly fill this gap by deducing Lagrangian formulation (variational problem) for BMT equations. Various equivalent forms of Lagrangian will be discussed in details. An advantage of the obtained classical model is that the Lagrangian action describes a relativistic spinning particle without Grassmann variables, for both free and interacting cases. This implies also the possibility of canonical quantization. In the interacting case, an arbitrary electromagnetic background may be considered, which generalizes the BMT theory formulated to the case of homogeneous fields. The classical model has two local symmetries, which gives an interesting example of constrained classical dynamics. It is surprising, that the case of vanishing anomalous part of the magnetic momentum is naturally highlighted in our construction. (author)

  18. A Case of Classic Raymond Syndrome

    Directory of Open Access Journals (Sweden)

    Nicholas George Zaorsky

    2012-01-01

    Full Text Available Classic Raymond syndrome consists of ipsilateral abducens impairment, contralateral central facial paresis, and contralateral hemiparesis. However, subsequent clinical observations argued on the presentation of facial involvement. To validate this entity, we present a case of classic Raymond syndrome with contralateral facial paresis. A 50 year-old man experienced acute onset of horizontal diplopia, left mouth drooling and left-sided weakness. Neurological examination showed he had right abducens nerve palsy, left-sided paresis of the lower part of the face and limbs, and left hyperreflexia. A brain MRI showed a subacute infarct in the right mid-pons. The findings were consistent with those of classic Raymond syndrome. To date, only a few cases of Raymond syndrome, commonly without facial involvement, have been reported. Our case is a validation of classic Raymond syndrome with contralateral facial paresis. We propose the concept of two types of Raymond syndrome: (1 the classic type, which may be produced by a lesion in the mid-pons involving the ipsilateral abducens fascicle and undecussated corticofacial and corticospinal fibers; and (2 the common type, which may be produced by a lesion involving the ipsilateral abducens fascicle and undecussated corticospinal fibers but sparing the corticofacial fibers.

  19. Classical kinematic model for direct reactions of oriented reagents

    International Nuclear Information System (INIS)

    Schechter, I.; Prisant, M.G.; Levine, R.D.

    1987-01-01

    A simple kinematic model based on the concept of an orientation-dependent critical configuration for reaction is introduced and applied. The model serves two complementary purposes. In the predictive mode the model provides an easily implemented procedure for computing the reactivity of oriented reagents (including those actually amenable to measure) from a given potential energy surface. The predictions of the model are compared against classical trajectory results for the H + D 2 reaction. By use of realistic potential energy surfaces the model is applied to the Li + HF and O + HCl reactions where the HX molecules are pumped by a polarized laser. A given classical trajectory is deemed reactive or not according to whether it can surmount the barrier at that particular orientation. The essential difference with the model of Levine and Bernstein is that the averaging over initial conditions is performed by using a Monte Carlo integration. One can therefore use the correct orientation-dependent shape (and not only height) of the barrier to reaction and, furthermore, use oriented or aligned reagents. Since the only numerical step is a Monte Carlo sampling of initial conditions, very many trajectories can be run. This suffices to determine the reaction cross section for different initial conditions. To probe the products, they have employed the kinematic approach of Elsum and Gordon. The result is a model where, under varying initial conditions, examining final-state distributions or screening different potential energy surfaces can be efficiently carried out

  20. Comparison of Balance Performance Between Thai Classical Dancers and Non-Dancers.

    Science.gov (United States)

    Krityakiarana, Warin; Jongkamonwiwat, Nopporn

    2016-01-01

    Thai classical dance is a traditional dramatic art, the technique of which has many features in common with South East Asian performing art. The choreographic patterns consist of various forms of balance control together with limb movements in slow rhythm. The grace and beauty of the dancer are dependent on how well the limb movements curve and angle. The relationship of whole body proportion and balance control in various patterns of support base is also important. The purpose of this study was to compare balance abilities between Thai classical dancers and non-dancers in different balance conditions. Twenty-five Thai classical dancers and 25 non-dancers performed the modified Sensory Organization Test (mSOT) and were further challenged by adding dynamic head tilts (DHTs) in four different directions during mSOT. Mixed model ANOVA was applied to determine the equilibrium score in each balance condition and also the interaction between dancer and non-dancer groups. It was found that Thai classical dancers achieved better equilibrium scores in all mSOT conditions except the least challenging one. Moreover, additional multitask conditions (mSOT+DHT) were revealed to profoundly affect differences between dancers and controls. In conclusion, Thai classical dancers demonstrated a better ability to maintain postural stability during different challenging postural tests. This information suggests various ways of putting the practice of Thai classical dance to use in the future.

  1. A study on infinite number of integrals of motion in classically integrable system with boundary: Pt.1

    International Nuclear Information System (INIS)

    Chen Yixin; Luo Xudong

    1998-01-01

    By the zero curvature condition in classically integrable system, the generating functions for integrals of motion and equations for solving K +- matrices are obtained in two-dimensional integrable systems on a finite interval with independent boundary conditions on each end. Classically integrable boundary conditions will be found by solving K +- matrices. The authors develop a Hamiltonian method in classically integrable system with independent boundary conditions on each end. The result can be applied to more integrable systems than those associated with E.K. Sklyanin's approach

  2. The Segal chronogeometric redshift - a classical analysis

    International Nuclear Information System (INIS)

    Fairchild, E.E. Jr.; Washington Univ., St. Louis, Mo.

    1977-01-01

    An error is shown to exist in the Segal chronogeometric redshift theory. The redshift distance relation of z=tan 2 (d/2R) derived by Segal using quantum theory violates the classical correspondence limit. The corrected result derived using simple classical arguments is z=tan 2 (d/R). This result gives the same predictions for small redshift objects but differs for large redshift objects such as quasars. The difference is shown to be caused by inconsistencies in the quantum derivation. Correcting these makes the quantum result equal to the classical result as one would expect from the correspondence principle. The impact of the correction on the predictions of the theory is discussed. (orig.) [de

  3. The chronicle of the classical electrodynamics

    International Nuclear Information System (INIS)

    Bassalo, J.M.F.

    1984-01-01

    In this Chronicle of the classical electrodynamics it is shown how this important branch of classical physics was developed since the mathematical formulation of the electromagnetism empiric laws carried by Maxwell, mainly the laws of Coulomb, Oersted, Ampere, Biot-Savart, Faraday, Henry and Lenz, up to the settlement of the radiation theory, scientific background for the technological development of the wireless telegraphy. Through this chronicle, it is also seen how Maxwell got one of the main results of the past century classical physics - the electromagnetic theory of light -, and how the experimental production of an electromagnetic wave by Hertz, unchained a collection of theoretical papers which explained many experimental results such as dispersion of light, thermical radiation, X-rays and its scattering through the matter. At last, it is still seen that the study of electrodynamics of moving bodies led to the relativity theory, presented by Einstein's famous paper about such subject. (Author) [pt

  4. Quantum and classical optics–emerging links

    International Nuclear Information System (INIS)

    Eberly, J H; Qian, Xiao-Feng; Qasimi, Asma Al; Ali, Hazrat; Alonso, M A; Gutiérrez-Cuevas, R; Little, Bethany J; Howell, John C; Malhotra, Tanya; Vamivakas, A N

    2016-01-01

    Quantum optics and classical optics are linked in ways that are becoming apparent as a result of numerous recent detailed examinations of the relationships that elementary notions of optics have with each other. These elementary notions include interference, polarization, coherence, complementarity and entanglement. All of them are present in both quantum and classical optics. They have historic origins, and at least partly for this reason not all of them have quantitative definitions that are universally accepted. This makes further investigation into their engagement in optics very desirable. We pay particular attention to effects that arise from the mere co-existence of separately identifiable and readily available vector spaces. Exploitation of these vector-space relationships are shown to have unfamiliar theoretical implications and new options for observation. It is our goal to bring emerging quantum–classical links into wider view and to indicate directions in which forthcoming and future work will promote discussion and lead to unified understanding. (invited comment)

  5. Quantum dynamics of classical stochastic systems

    Energy Technology Data Exchange (ETDEWEB)

    Casati, G

    1983-01-01

    It is shown that one hand Quantum Mechanics introduces limitations to the manifestations of chaotic motion resulting, for the case of the periodically kicked rotator, in the limitation of energy growth; also, as it is confirmed by numerical experiments, phenomena like the exponential instability of orbits, inherent to strongly chaotic systems, are absent here and therefore Quantum Mechanics appear to be more stable and predictable than Classical Mechanics. On the other hand, we have seen that nonrecurrent behavior may arise in Quantum Systems and it is connected to the presence of singular continuous spectrum. We conjecture that the classical chaotic behavior is reflected, at least partially, in the nature of the spectrum and the singular-continuity of the latter may possess a self-similar structure typical of classical chaos.

  6. Globalising the classical foundations of IPE thought

    Directory of Open Access Journals (Sweden)

    Eric Helleiner

    2015-12-01

    Full Text Available Abstract Current efforts to teach and research the historical foundations of IPE thought in classical political economy in the 18th, 19th and early 20th centuries centre largely on European and American thinkers. If a more extensive 'global conversation' is to be fostered in the field today, the perspectives of thinkers in other regions need to be recognised, and brought into the mainstream of its intellectual history. As a first step towards 'globalising' the classical foundations of IPE thought, this article demonstrates some ways in which thinkers located beyond Europe and the United States engaged with and contributed to debates associated with the three well-known classical traditions on which current IPE scholarship often draws: economic liberalism, economic nationalism and Marxism. It also reveals the extensive nature of 'global conversations' about IPE issues in this earlier era.

  7. Comparison of Classical and Quantum Bremsstrahlung

    International Nuclear Information System (INIS)

    Pratt, R.H.; Uskov, D.B.; Korol, A.V.; Obolensky, O.I.

    2003-01-01

    Classical features persist in bremsstrahlung at surprisingly high energies, while quantum features are present at low energies. For Coulomb bremsstrahlung this is related to the similar properties of Coulomb scattering. For bremsstrahlung in a screened potential, the low energy spectrum and angular distribution exhibit structures. In quantum mechanics these structures are associated with zeroes of particular angular-momentum transfer matrix elements at particular energies, a continuation of the Cooper minima in atomic photoeffect. They lead to transparency windows in free-free absorption. The trajectories of these zeroes in the plane of initial and final transition energies (bound and continuum) has been explored. Corresponding features have now been seen in classical bremsstrahlung, resulting from reduced contributions from particular impact parameters at particular energies. This has suggested the possibility of a more unified treatment of classical and quantum bremsstrahlung, based on the singularities of the scattering amplitude in angular momentum

  8. Classical dynamics and its quantum analogues

    International Nuclear Information System (INIS)

    Park, D.

    1979-01-01

    In this book the author establishes mathematical connections between classical and quantum mechanics, between ray optics and wave optics. The approach is to consider classical mechanics as a limiting case of quantum mechanics, and ray optics as a limiting case of wave optics. The conceptual background is discussed where necessary, so the reader should be already fairly familiar with it. The main goal of this approach is the revelation that classical and quantum theory are not so different conceptually as one thinks at first exposure. The first chapters recall the basic facts about light waves and light rays and demonstrate the construction of Newtonian orbits from Schroedinger waves. In the following the Lagrangian and Hamiltonian formulation of few-body system is developed showing as often as possible the relations to the corresponding quantum systems. To illustrate the theory planetary motion using perturbation theory is treated in some detail and several calculations in general relativity such as the deflection and retardation of light by the sun and the precession of planetary perikelia are included. The final parts deal with the motions of systems of many particles. The quantum mechanics of rigid bodies is presented in analogy with the classical theory and contrasts are noted. There is also a discussion of the roles of spinors in the two theories. The book is intended as a text in classical mechanics for readers which have already some knowledge in classical and quantum mechanics. It may help to deepen their understanding of the relation between the old and new theory and show something of the ways in which new discoveries are made. (orig.) 891 HJ/orig. 892 BRE

  9. Learning, Realizability and Games in Classical Arithmetic

    Science.gov (United States)

    Aschieri, Federico

    2010-12-01

    In this dissertation we provide mathematical evidence that the concept of learning can be used to give a new and intuitive computational semantics of classical proofs in various fragments of Predicative Arithmetic. First, we extend Kreisel modified realizability to a classical fragment of first order Arithmetic, Heyting Arithmetic plus EM1 (Excluded middle axiom restricted to Sigma^0_1 formulas). We introduce a new realizability semantics we call "Interactive Learning-Based Realizability". Our realizers are self-correcting programs, which learn from their errors and evolve through time. Secondly, we extend the class of learning based realizers to a classical version PCFclass of PCF and, then, compare the resulting notion of realizability with Coquand game semantics and prove a full soundness and completeness result. In particular, we show there is a one-to-one correspondence between realizers and recursive winning strategies in the 1-Backtracking version of Tarski games. Third, we provide a complete and fully detailed constructive analysis of learning as it arises in learning based realizability for HA+EM1, Avigad's update procedures and epsilon substitution method for Peano Arithmetic PA. We present new constructive techniques to bound the length of learning processes and we apply them to reprove - by means of our theory - the classic result of Godel that provably total functions of PA can be represented in Godel's system T. Last, we give an axiomatization of the kind of learning that is needed to computationally interpret Predicative classical second order Arithmetic. Our work is an extension of Avigad's and generalizes the concept of update procedure to the transfinite case. Transfinite update procedures have to learn values of transfinite sequences of non computable functions in order to extract witnesses from classical proofs.

  10. Beam structures classical and advanced theories

    CERN Document Server

    Carrera, Erasmo; Petrolo, Marco

    2011-01-01

    Beam theories are exploited worldwide to analyze civil, mechanical, automotive, and aerospace structures. Many beam approaches have been proposed during the last centuries by eminent scientists such as Euler, Bernoulli, Navier, Timoshenko, Vlasov, etc.  Most of these models are problem dependent: they provide reliable results for a given problem, for instance a given section and cannot be applied to a different one. Beam Structures: Classical and Advanced Theories proposes a new original unified approach to beam theory that includes practically all classical and advanced models for be

  11. Hidden invariance of the free classical particle

    International Nuclear Information System (INIS)

    Garcia, S.

    1994-01-01

    A formalism describing the dynamics of classical and quantum systems from a group theoretical point of view is presented. We apply it to the simple example of the classical free particle. The Galileo group G is the symmetry group of the free equations of motion. Consideration of the free particle Lagrangian semi-invariance under G leads to a larger symmetry group, which is a central extension of the Galileo group by the real numbers. We study the dynamics associated with this group, and characterize quantities like Noether invariants and evolution equations in terms of group geometric objects. An extension of the Galileo group by U(1) leads to quantum mechanics

  12. Classical noise, quantum noise and secure communication

    International Nuclear Information System (INIS)

    Tannous, C; Langlois, J

    2016-01-01

    Secure communication based on message encryption might be performed by combining the message with controlled noise (called pseudo-noise) as performed in spread-spectrum communication used presently in Wi-Fi and smartphone telecommunication systems. Quantum communication based on entanglement is another route for securing communications as demonstrated by several important experiments described in this work. The central role played by the photon in unifying the description of classical and quantum noise as major ingredients of secure communication systems is highlighted and described on the basis of the classical and quantum fluctuation dissipation theorems. (review)

  13. Classical and quantum chaos in atom optics

    International Nuclear Information System (INIS)

    Saif, Farhan

    2005-01-01

    The interaction of an atom with an electro-magnetic field is discussed in the presence of a time periodic external modulating force. It is explained that a control on atom by electro-magnetic fields helps to design the quantum analog of classical optical systems. In these atom optical systems chaos may appear at the onset of external fields. The classical and quantum chaotic dynamics is discussed, in particular in an atom optics Fermi accelerator. It is found that the quantum dynamics exhibits dynamical localization and quantum recurrences

  14. Mathematical optics classical, quantum, and computational methods

    CERN Document Server

    Lakshminarayanan, Vasudevan

    2012-01-01

    Going beyond standard introductory texts, Mathematical Optics: Classical, Quantum, and Computational Methods brings together many new mathematical techniques from optical science and engineering research. Profusely illustrated, the book makes the material accessible to students and newcomers to the field. Divided into six parts, the text presents state-of-the-art mathematical methods and applications in classical optics, quantum optics, and image processing. Part I describes the use of phase space concepts to characterize optical beams and the application of dynamic programming in optical wave

  15. The classical behavior of measuring instruments

    International Nuclear Information System (INIS)

    Kraus, K.

    1986-01-01

    This paper constructs a quantum mechanical model of a counter monitoring the decay of an unstable microsystem. In spite of its quantum mechanical nature, the counter may be assumed to behave classically during the measurement. The relevance of this result for a particular interpretation of quantum mechanics is discussed. The quantum mechanical nature of the model counter could be easily detected in measurements of counter observables which do not commute with the observable P/sub +/. The statistical predictions for such measurements will be definitely incompatible with classical concepts

  16. Quantization of soluble classical constrained systems

    International Nuclear Information System (INIS)

    Belhadi, Z.; Menas, F.; Bérard, A.; Mohrbach, H.

    2014-01-01

    The derivation of the brackets among coordinates and momenta for classical constrained systems is a necessary step toward their quantization. Here we present a new approach for the determination of the classical brackets which does neither require Dirac’s formalism nor the symplectic method of Faddeev and Jackiw. This approach is based on the computation of the brackets between the constants of integration of the exact solutions of the equations of motion. From them all brackets of the dynamical variables of the system can be deduced in a straightforward way

  17. Quantization of soluble classical constrained systems

    Energy Technology Data Exchange (ETDEWEB)

    Belhadi, Z. [Laboratoire de physique et chimie quantique, Faculté des sciences, Université Mouloud Mammeri, BP 17, 15000 Tizi Ouzou (Algeria); Laboratoire de physique théorique, Faculté des sciences exactes, Université de Bejaia, 06000 Bejaia (Algeria); Menas, F. [Laboratoire de physique et chimie quantique, Faculté des sciences, Université Mouloud Mammeri, BP 17, 15000 Tizi Ouzou (Algeria); Ecole Nationale Préparatoire aux Etudes d’ingéniorat, Laboratoire de physique, RN 5 Rouiba, Alger (Algeria); Bérard, A. [Equipe BioPhysStat, Laboratoire LCP-A2MC, ICPMB, IF CNRS No 2843, Université de Lorraine, 1 Bd Arago, 57078 Metz Cedex (France); Mohrbach, H., E-mail: herve.mohrbach@univ-lorraine.fr [Equipe BioPhysStat, Laboratoire LCP-A2MC, ICPMB, IF CNRS No 2843, Université de Lorraine, 1 Bd Arago, 57078 Metz Cedex (France)

    2014-12-15

    The derivation of the brackets among coordinates and momenta for classical constrained systems is a necessary step toward their quantization. Here we present a new approach for the determination of the classical brackets which does neither require Dirac’s formalism nor the symplectic method of Faddeev and Jackiw. This approach is based on the computation of the brackets between the constants of integration of the exact solutions of the equations of motion. From them all brackets of the dynamical variables of the system can be deduced in a straightforward way.

  18. The classic. Review article: Traffic accidents. 1966.

    Science.gov (United States)

    Tscherne, H

    2013-09-01

    This Classic Article is a translation of the original work by Prof. Harald Tscherne, Der Straßenunfall [Traffic Accidents]. An accompanying biographical sketch of Prof. Tscherne is available at DOI 10.1007/s11999-013-3011-x . An online version of the original German article is available as supplemental material. The Classic Article is reproduced with permission from Brüder Hollinek & Co. GesmbH, Purkersdorf, Austria. The original article was published in Wien Med Wochenschr. 1966;116:105-108. (Translated by Dr. Roman Pfeifer.).

  19. On the Classical and Quantum Momentum Map

    DEFF Research Database (Denmark)

    Esposito, Chiara

    In this thesis we study the classical and quantum momentum maps and the theory of reduction. We focus on the notion of momentum map in Poisson geometry and we discuss the classification of the momentum map in this framework. Furthermore, we describe the so-called Poisson Reduction, a technique...... that allows us to reduce the dimension of a manifold in presence of symmetries implemented by Poisson actions. Using techniques of deformation quantization and quantum groups, we introduce the quantum momentum map as a deformation of the classical momentum map, constructed in such a way that it factorizes...

  20. Classical treatments of quantum mechanical effects in collisions of weakly bound complexes

    International Nuclear Information System (INIS)

    Lopez, Jose G.; McCoy, Anne B.

    2005-01-01

    Classical and quantum simulations of Ne + Ar 2 collision dynamics are performed in order to investigate where quantum mechanical effects are most important and where classical simulations provide good descriptions of the dynamics. It is found that when Ar 2 is in a low-lying vibrational state, the differences between the results of quantum and quasiclassical simulations are profound. However, excellent agreement between the results of the quantum and classical simulations can be achieved when the initial conditions for the classical trajectories are sampled from the quantum phase space distribution given by the Wigner function. These effects are largest when collisions occur under constrained geometries or when Ar 2 is in its ground vibrational state. The results of this work suggest that sampling the initial conditions using the Wigner function provides a straightforward way to incorporate the most important quantum mechanical effects in simulations of collisions involving very cold weakly bound complexes

  1. A quantum algorithm for Viterbi decoding of classical convolutional codes

    Science.gov (United States)

    Grice, Jon R.; Meyer, David A.

    2015-07-01

    We present a quantum Viterbi algorithm (QVA) with better than classical performance under certain conditions. In this paper, the proposed algorithm is applied to decoding classical convolutional codes, for instance, large constraint length and short decode frames . Other applications of the classical Viterbi algorithm where is large (e.g., speech processing) could experience significant speedup with the QVA. The QVA exploits the fact that the decoding trellis is similar to the butterfly diagram of the fast Fourier transform, with its corresponding fast quantum algorithm. The tensor-product structure of the butterfly diagram corresponds to a quantum superposition that we show can be efficiently prepared. The quantum speedup is possible because the performance of the QVA depends on the fanout (number of possible transitions from any given state in the hidden Markov model) which is in general much less than . The QVA constructs a superposition of states which correspond to all legal paths through the decoding lattice, with phase as a function of the probability of the path being taken given received data. A specialized amplitude amplification procedure is applied one or more times to recover a superposition where the most probable path has a high probability of being measured.

  2. Classical sociology and cosmopolitanism: a critical defence of the social.

    Science.gov (United States)

    Turner, Bryan S

    2006-03-01

    It is frequently argued that classical sociology, if not sociology as a whole, cannot provide any significant insight into globalization, primarily because its assumptions about the nation-state, national cultures and national societies are no longer relevant to a global world. Sociology cannot consequently contribute to a normative debate about cosmopolitanism, which invites us to consider loyalties and identities that reach beyond the nation-state. My argument considers four principal topics. First, I defend the classical legacy by arguing that classical sociology involved the study of 'the social' not national societies. This argument is illustration by reference to Emile Durkheim and Talcott Parsons. Secondly, Durkheim specifically developed the notion of a cosmopolitan sociology to challenge the nationalist assumptions of his day. Thirdly, I attempt to develop a critical version of Max Weber's verstehende soziologie to consider the conditions for critical recognition theory in sociology as a necessary precondition of cosmopolitanism. Finally, I consider the limitations of some contemporary versions of global sociology in the example of 'flexible citizenship' to provide an empirical case study of the limitations of globalization processes and 'sociology beyond society'. While many institutions have become global, some cannot make this transition. Hence, we should consider the limitations on as well as the opportunities for cosmopolitan sociology.

  3. Classical and semi-classical solutions of the Yang--Mills theory

    International Nuclear Information System (INIS)

    Jackiw, R.; Nohl, C.; Rebbi, C.

    1977-12-01

    This review summarizes what is known at present about classical solutions to Yang-Mills theory both in Euclidean and Minkowski space. The quantal meaning of these solutions is also discussed. Solutions in Euclidean space expose multiple vacua and tunnelling of the quantum theory. Those in Minkowski space-time provide a semi-classical spectrum for a conformal generator

  4. Why aortic elasticity differs among classical and non-classical mitral valve prolapsed?

    Science.gov (United States)

    Unlu, Murat; Demirkol, Sait; Aparci, Mustafa; Arslan, Zekeriya; Balta, Sevket; Dogan, Umuttan; Kilicarslan, Baris; Ozeke, Ozcan; Celik, Turgay; Iyisoy, Atila

    2014-01-01

    Mitral valve prolapse (MVP) is the most common valvular heart disease and characterized by the displacement of an abnormally thickened mitral valve leaflet into the left atrium during systole. There are two types of MVP, broadly classified as classic (thickness ≥5 mm) and non-classic (thickness elastic properties of the aorta in young male patients with classical and non-classical MVP. In the present study, 63 young adult males (mean age: 22.7 ± 4.2) were included. Patients were divided into classic MVP (n = 27) and non-classic MVP (n = 36) groups. Aortic strain, aortic distensibility and aortic stiffness index were calculated by using aortic diameters obtained by echocardiography and blood pressures measured by sphygmomanometer. There was no significant difference between the groups in terms of age, body mass index, left ventricular mass and ejection fraction. When comparing the MVP group it was found that aortic strain and aortic distensibility were increased (p = 0.0027, p = 0.016, respectively) whereas the aortic stiffness index was decreased (p = 0.06) in the classical MVP group. We concluded that the elastic properties of the aorta is increased in patients with classic MVP. Further large scale studies should be performed to understand of morphological and physiological properties of the aorta in patients with MVP.

  5. Noise-induced drift in systems with broken symmetry and classical routes to superconductivity

    International Nuclear Information System (INIS)

    Shapiro, V.E.

    1994-01-01

    We discuss concepts and mechanisms of particle motion in a variety of conditions of asymmetry towards spatial inversion that suggest an idea for the possibility of persistent currents within classical statistical considerations. We expose misapplications of Gibbs statistics and the Langevin approach and show that the idea does not contradict general principles. It gains support from the classical mechanism of capillary wave instability and keeps within the detailed balance and fluctuation-dissipation theorems. (author). 7 refs., 2 figs

  6. Additional integrals of the motion of classical Hamiltonian wave systems

    International Nuclear Information System (INIS)

    Shul'man, E.I.

    1989-01-01

    It is shown that a classical Hamiltonian wave system that possesses at least one additional integral of the motion with quadratic principal part has an infinite number of such integrals in the cases of both nondegenerate and degenerate dispersion laws. Conditions under which in a space of dimension d ≥ 2 a system with nondegenerate dispersion law is completely integratable and its Hamiltonian can be reduced to normal form are found. In the case of a degenerate dispersion law integrals are not sufficient for complete integrability

  7. On classical solutions of SU(3) gauge field equations

    International Nuclear Information System (INIS)

    Chakrabarti, A.

    1975-01-01

    Static classical solutions of SU(3) gauge field equations are studied. The roles of the O(3) subgroup and of the quadrupole generators are discussed systematically. The general form thus obtained leads, through-out, to a high degree of symmetry in the results. This brings in some simplifying features. An octet of scalar mesons is finally added. Certain classes of exact solutions are given that are singular at the origin. A generalized gauge condition is pointed out. The relation of the general form to known particular cases is discussed [fr

  8. The soliton content of classical Jackiw-Teitelboim gravity

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, Enrique G [Departamento de Matematicas y Ciencia de la Computacion, Universidad de Santiago de Chile, Casilla 307 Correo 2, Santiago, Chile (Chile)

    2006-01-13

    It is pointed out that every generic-in a sense to be made precise in section 2-solution to an arbitrary equation describing pseudo-spherical surfaces (or, equivalently, an arbitrary equation which is the integrability condition of a sl(2, R)-valued linear problem) determines pseudo-Riemannian surfaces of constant scalar curvature, and therefore, classical solutions to the Jackiw-Teitelboim field equations for two-dimensional gravity. In particular, this observation explains why some standard soliton equations appear in this theory. (letter to the editor)

  9. Functional integral approach to classical statistical dynamics

    International Nuclear Information System (INIS)

    Jensen, R.V.

    1980-04-01

    A functional integral method is developed for the statistical solution of nonlinear stochastic differential equations which arise in classical dynamics. The functional integral approach provides a very natural and elegant derivation of the statistical dynamical equations that have been derived using the operator formalism of Martin, Siggia, and Rose

  10. A slow component of classic Stroop interference

    NARCIS (Netherlands)

    Phaf, R. Hans; Horsman, Hark H.; van der Moolen, Bas; Roos, Yvo B. W. E. M.; Schmand, Ben

    2010-01-01

    The interference in colour naming may extend beyond critical Stroop trials. This "slow'' effect was first discovered in emotional Stroop tasks, but is extended here to classical Stroop. In two experiments, meaningless coloured letter strings followed a colour word or neutral word. Student

  11. Peaceful Coexistence between Pop and the Classics.

    Science.gov (United States)

    MacCluskey, Thomas

    1979-01-01

    The 1967 MENC symposium at Tanglewood advocated the inclusion of popular music, along with the classics, in the general music curriculum. The author looks briefly at how well this recommendation is being implemented and discusses the benefits of using popular works in music instruction. (SJL)

  12. Integrable models in classical and quantum mechanics

    International Nuclear Information System (INIS)

    Jurco, B.

    1991-01-01

    Integrable systems are investigated, especially the rational and trigonometric Gaudin models. The Gaudin models are diagonalized for the case of classical Lie algebras. Their relation to the other integrable models and to the quantum inverse scattering method is investigated. Applications in quantum optics and plasma physics are discussed. (author). 94 refs

  13. Unraveling Quantum Annealers using Classical Hardness

    Science.gov (United States)

    Martin-Mayor, Victor; Hen, Itay

    2015-01-01

    Recent advances in quantum technology have led to the development and manufacturing of experimental programmable quantum annealing optimizers that contain hundreds of quantum bits. These optimizers, commonly referred to as ‘D-Wave’ chips, promise to solve practical optimization problems potentially faster than conventional ‘classical’ computers. Attempts to quantify the quantum nature of these chips have been met with both excitement and skepticism but have also brought up numerous fundamental questions pertaining to the distinguishability of experimental quantum annealers from their classical thermal counterparts. Inspired by recent results in spin-glass theory that recognize ‘temperature chaos’ as the underlying mechanism responsible for the computational intractability of hard optimization problems, we devise a general method to quantify the performance of quantum annealers on optimization problems suffering from varying degrees of temperature chaos: A superior performance of quantum annealers over classical algorithms on these may allude to the role that quantum effects play in providing speedup. We utilize our method to experimentally study the D-Wave Two chip on different temperature-chaotic problems and find, surprisingly, that its performance scales unfavorably as compared to several analogous classical algorithms. We detect, quantify and discuss several purely classical effects that possibly mask the quantum behavior of the chip. PMID:26483257

  14. Classical probabilities for Majorana and Weyl spinors

    International Nuclear Information System (INIS)

    Wetterich, C.

    2011-01-01

    Highlights: → Map of classical statistical Ising model to fermionic quantum field theory. → Lattice-regularized real Grassmann functional integral for single Weyl spinor. → Emerging complex structure characteristic for quantum physics. → A classical statistical ensemble describes a quantum theory. - Abstract: We construct a map between the quantum field theory of free Weyl or Majorana fermions and the probability distribution of a classical statistical ensemble for Ising spins or discrete bits. More precisely, a Grassmann functional integral based on a real Grassmann algebra specifies the time evolution of the real wave function q τ (t) for the Ising states τ. The time dependent probability distribution of a generalized Ising model obtains as p τ (t)=q τ 2 (t). The functional integral employs a lattice regularization for single Weyl or Majorana spinors. We further introduce the complex structure characteristic for quantum mechanics. Probability distributions of the Ising model which correspond to one or many propagating fermions are discussed explicitly. Expectation values of observables can be computed equivalently in the classical statistical Ising model or in the quantum field theory for fermions.

  15. Discrete gradients in discrete classical mechanics

    International Nuclear Information System (INIS)

    Renna, L.

    1987-01-01

    A simple model of discrete classical mechanics is given where, starting from the continuous Hamilton equations, discrete equations of motion are established together with a proper discrete gradient definition. The conservation laws of the total discrete momentum, angular momentum, and energy are demonstrated

  16. Classical Etymologies of Select Gynaecological and Ophthalmic ...

    African Journals Online (AJOL)

    In early times, many terms were traced to the treatises of early Greek and Roman physicians such as Hippocrates, Galen and Celsus, who were famous doctors in antiquity. This paper attempts to identify, through the philological and semantic methods, the Classical stories and linguistic history that surround the etymology of ...

  17. Classical system underlying a diffracting quantum billiard

    Indian Academy of Sciences (India)

    Manan Jain

    2018-01-05

    Jan 5, 2018 ... Wave equation; rays; quantum chaos. PACS Nos 03.65.Ge; 05.45.Mt; 42.25.Fx. 1. Introduction. Diffraction [1] is a complex wave phenomenon which manifests classically and quantum mechanically. Among a wide range of systems where diffraction becomes important, there is an interesting situation of.

  18. Classical diagnostic radiological features of Von Recklinghausen's ...

    African Journals Online (AJOL)

    ... and appropriately guiding management decisions. The patient presented is a 29- year old female who had presented with right orbital and periorbital masses, lisch nodules, multiple scalp and body nodules, cranial bony defect and complex kyphoscoliosis. She had three of the seven classical diagnostic features of NF-1 ...

  19. Ethnicity and Classicism: A Beautiful Connection.

    Science.gov (United States)

    Mitchell, Arthur

    1984-01-01

    The founder of the Dance Theater of Harlem describes his own professional development and discusses how Martin Luther King's assassination led him to make a commitment to the people of Harlem, to the untapped talents of Black artists, and to breaking the traditional barrier against Black dancers in classical ballet. (CMG)

  20. Language Skills in Classical Chinese Text Comprehension

    Science.gov (United States)

    Lau, Kit-ling

    2018-01-01

    This study used both quantitative and qualitative methods to explore the role of lower- and higher-level language skills in classical Chinese (CC) text comprehension. A CC word and sentence translation test, text comprehension test, and questionnaire were administered to 393 Secondary Four students; and 12 of these were randomly selected to…

  1. Cyril Stanley Smith's Translations of Metallurgical Classics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 6. Cyril Stanley Smith's Translations of Metallurgical Classics. Martha Goodway. General Article Volume 11 Issue 6 June 2006 pp 63-66. Fulltext. Click here to view fulltext PDF. Permanent link:

  2. Hilbert space theory of classical electrodynamics

    Indian Academy of Sciences (India)

    Hilbert space; Koopman–von Neumann theory; classical electrodynamics. PACS No. 03.50. ... The paper is divided into four sections. Section 2 .... construction of Sudarshan is to be contrasted with that of Koopman and von Neumann. ..... ture from KvN and [16] in this formulation is to define new momentum and coordinate.

  3. Classical solutions in lattice gauge theories

    International Nuclear Information System (INIS)

    Mitrjushkin, V.K.

    1996-08-01

    The solutions of the classical equations of motion on a periodic lattice are found which correspond to abelian single and double Dirac sheets. These solutions exist also in non-abelian theories. Possible applications of these solutions to the calculation of gauge dependent and gauge invariant observables are discussed. (orig.)

  4. Quantum machine learning: a classical perspective

    Science.gov (United States)

    Ciliberto, Carlo; Herbster, Mark; Ialongo, Alessandro Davide; Pontil, Massimiliano; Severini, Simone; Wossnig, Leonard

    2018-01-01

    Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning (ML) techniques to impressive results in regression, classification, data generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets is motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed up classical ML algorithms. Here we review the literature in quantum ML and discuss perspectives for a mixed readership of classical ML and quantum computation experts. Particular emphasis will be placed on clarifying the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems. Learning in the presence of noise and certain computationally hard problems in ML are identified as promising directions for the field. Practical questions, such as how to upload classical data into quantum form, will also be addressed. PMID:29434508

  5. Summary of classical general relativity workshop

    Indian Academy of Sciences (India)

    In the classical general relativity workshop, ten lectures were presented on various topics. The topics included aspects of black-hole physics, gravitational collapse and the formation of black holes, specific stellar models like a superdense star, method of extracting solutions by exploiting Noether symmetry, brane world and.

  6. On normal modes in classical Hamiltonian systems

    NARCIS (Netherlands)

    van Groesen, Embrecht W.C.

    1983-01-01

    Normal modes of Hamittonian systems that are even and of classical type are characterized as the critical points of a normalized kinetic energy functional on level sets of the potential energy functional. With the aid of this constrained variational formulation the existence of at least one family

  7. Nanotribology investigations with classical molecular dynamics

    NARCIS (Netherlands)

    Solhjoo, Soheil

    2017-01-01

    This thesis presents a number of nanotribological problems investigated by means of classical molecular dynamics (MD) simulations, within the context of the applicability of continuum mechanics contact theories at the atomic scale. Along these lines, three different themes can be recognized herein:

  8. The Classical Version of Stokes' Theorem Revisited

    Science.gov (United States)

    Markvorsen, Steen

    2008-01-01

    Using only fairly simple and elementary considerations--essentially from first year undergraduate mathematics--we show how the classical Stokes' theorem for any given surface and vector field in R[superscript 3] follows from an application of Gauss' divergence theorem to a suitable modification of the vector field in a tubular shell around the…

  9. Classical Pragmatism on Mind and Rationality

    Science.gov (United States)

    Maattanen, Pentti

    2005-01-01

    One of the major changes in twentieth century philosophy was the so-called linguistic turn, in which natural and formal languages became central subjects of study. This meant that theories of meaning became mostly about linguistic meaning, thinking was now analyzed in terms of symbol manipulation, and rules of classical logic formed the nucleus of…

  10. Classical quantum theory of wobbling modes

    International Nuclear Information System (INIS)

    Onishi, Naoki

    1986-01-01

    Wobbling modes are studied extensively in terms of time-dependent variational theory. Quantum states and their energies are determined by the Bohr-Sommerfeld rule of classical quantization. Numerical calculations are performed for states of 166 Er with vertical strokejvertical stroke=30-40 (h/2π). (orig.)

  11. Mathematics of classical and quantum physics

    CERN Document Server

    Byron, Frederick W

    Well-organized text designed to complement graduate-level physics texts in classical mechanics, electricity, magnetism, and quantum mechanics. Topics include theory of vector spaces, analytic function theory, Green's function method of solving differential and partial differential equations, theory of groups, more. Many problems, suggestions for further reading.

  12. "Scars" connect classical and quantum theory

    CERN Multimedia

    Monteiro, T

    1990-01-01

    Chaotic systems are unstable and extremely sensitive to initial condititions. So far, scientists have been unable to demonstrate that the same kind of behaviour exists in quantum or microscopic systems. New connections have been discovered though between classical and quantum theory. One is the phenomena of 'scars' which cut through the wave function of a particle (1 page).

  13. Multiple-Access Quantum-Classical Networks

    Science.gov (United States)

    Razavi, Mohsen

    2011-10-01

    A multi-user network that supports both classical and quantum communication is proposed. By relying on optical code-division multiple access techniques, this system offers simultaneous key exchange between multiple pairs of network users. A lower bound on the secure key generation rate will be derived for decoy-state quantum key distribution protocols.

  14. Classical or equilibrium thermodynamics: basic conceptual aspects

    Directory of Open Access Journals (Sweden)

    Luiz Augusto Calvo Tiritan

    2008-08-01

    Full Text Available The Classical or Equilibrium Thermodynamics is one of the most consolidated fields of Physics. It is synthesized by a well-known and self coherent knowledge structure. The essence of the Classical Thermodynamics theoretical structure consists of a set of natural laws that rule the macroscopic physical systems behavior. These laws were formulated based on observations generalizations and are mostly independent of any hypotheses concerning the microscopic nature of the matter. In general, the approaches established for the Classical Thermodynamics follow one of the following alternatives: the historical approach that describes chronologically the evolution of ideas, concepts and facts, and the postulational approach in which postulates are formulated but are not demonstrated a priori but can be confirmed a posteriori. In this work, a brief review of the pre-classical historical approach conceptual evolution is elaborated, from the beginning of the seventeenth century to the middle of the nineteenth century. As for this, the following themes are dealt with in an evolutionary and phenomenological way: heat nature, thermometry, calorimetry, Carnot’s heat engine, heat mechanical equivalent and the first and second laws. The Zeroth law that was formulated afterwards is included in the discussion.

  15. The classical theory of fields electromagnetism

    CERN Document Server

    Helrich, Carl S

    2012-01-01

    The study of classical electromagnetic fields is an adventure. The theory is complete mathematically and we are able to present it as an example of classical Newtonian experimental and mathematical philosophy. There is a set of foundational experiments, on which most of the theory is constructed. And then there is the bold theoretical proposal of a field-field interaction from James Clerk Maxwell. This textbook presents the theory of classical fields as a mathematical structure based solidly on laboratory experiments. Here the student is introduced to the beauty of classical field theory as a gem of theoretical physics. To keep the discussion fluid, the history is placed in a beginning chapter and some of the mathematical proofs in the appendices. Chapters on Green’s Functions and Laplace’s Equation and a discussion of Faraday’s Experiment further deepen the understanding. The chapter on Einstein’s relativity is an integral necessity to the text. Finally, chapters on particle motion and waves in a dis...

  16. Some recent progress in classical general relativity

    Science.gov (United States)

    Finster, Felix; Smoller, Joel; Yau, Shing-Tung

    2000-06-01

    In this short survey paper, we shall discuss certain recent results in classical gravity. Our main attention will be restricted to two topics in which we have been involved; the positive mass conjecture and its extensions to the case with horizons, including the Penrose conjecture (Part I), and the interaction of gravity with other force fields and quantum-mechanical particles (Part II).

  17. Maxwell and the classical wave particle dualism.

    Science.gov (United States)

    Mendonça, J T

    2008-05-28

    Maxwell's equations are one of the greatest theoretical achievements in physics of all times. They have survived three successive theoretical revolutions, associated with the advent of relativity, quantum mechanics and modern quantum field theory. In particular, they provide the theoretical framework for the understanding of the classical wave particle dualism.

  18. Using CAS to Solve Classical Mathematics Problems

    Science.gov (United States)

    Burke, Maurice J.; Burroughs, Elizabeth A.

    2009-01-01

    Historically, calculus has displaced many algebraic methods for solving classical problems. This article illustrates an algebraic method for finding the zeros of polynomial functions that is closely related to Newton's method (devised in 1669, published in 1711), which is encountered in calculus. By exploring this problem, precalculus students…

  19. Simple classical approach to spin resonance phenomena

    DEFF Research Database (Denmark)

    Gordon, R A

    1977-01-01

    A simple classical method of describing spin resonance in terms of the average power absorbed by a spin system is discussed. The method has several advantages over more conventional treatments, and a number of important spin resonance phenomena, not normally considered at the introductory level...

  20. Conduction bands in classical periodic potentials

    Indian Academy of Sciences (India)

    The energy of a quantum particle cannot be determined exactly unless there is an infinite amount of time to perform the measurement. This paper considers the possibility that , the uncertainty in the energy, may be complex. To understand the effect of a particle having a complex energy, the behaviour of a classical ...

  1. Conduction bands in classical periodic potentials

    Indian Academy of Sciences (India)

    is an infinite amount of time to perform the measurement. This paper ... the observation that when the energy is real, the classical trajectories in the com- plex plane are .... Figure 4 shows that the particle can travel smoothly from one well to the ...

  2. Selected topics from classical bacterial genetics.

    Science.gov (United States)

    Raleigh, Elisabeth A; Elbing, Karen; Brent, Roger

    2002-08-01

    Current cloning technology exploits many facts learned from classical bacterial genetics. This unit covers those that are critical to understanding the techniques described in this book. Topics include antibiotics, the LAC operon, the F factor, nonsense suppressors, genetic markers, genotype and phenotype, DNA restriction, modification and methylation and recombination.

  3. Data Structures in Classical and Quantum Computing

    NARCIS (Netherlands)

    M.J. Fillinger (Max)

    2013-01-01

    textabstractThis survey summarizes several results about quantum computing related to (mostly static) data structures. First, we describe classical data structures for the set membership and the predecessor search problems: Perfect Hash tables for set membership by Fredman, Koml\\'{o}s and

  4. Lower Bound on the Energy Density in Classical and Quantum Field Theories.

    Science.gov (United States)

    Wall, Aron C

    2017-04-14

    A novel method for deriving energy conditions in stable field theories is described. In a local classical theory with one spatial dimension, a local energy condition always exists. For a relativistic field theory, one obtains the dominant energy condition. In a quantum field theory, there instead exists a quantum energy condition, i.e., a lower bound on the energy density that depends on information-theoretic quantities. Some extensions to higher dimensions are briefly discussed.

  5. On Kubo-Martin-Schwinger states of classical dynamical systems with the infinite-dimensional phase space

    International Nuclear Information System (INIS)

    Arsen'ev, A.A.

    1979-01-01

    Example of a classical dynamical system with the infinite-dimensional phase space, satisfying the analogue of the Kubo-Martin-Schwinger conditions for classical dynamics, is constructed explicitly. Connection between the system constructed and the Fock space dynamics is pointed out

  6. Classical Photogrammetry and Uav - Selected Ascpects

    Science.gov (United States)

    Mikrut, S.

    2016-06-01

    The UAV technology seems to be highly future-oriented due to its low costs as compared to traditional aerial images taken from classical photogrammetry aircrafts. The AGH University of Science and Technology in Cracow - Department of Geoinformation, Photogrammetry and Environmental Remote Sensing focuses mainly on geometry and radiometry of recorded images. Various scientific research centres all over the world have been conducting the relevant research for years. The paper presents selected aspects of processing digital images made with the UAV technology. It provides on a practical example a comparison between a digital image taken from an airborne (classical) height, and the one made from an UAV level. In his research the author of the paper is trying to find an answer to the question: to what extent does the UAV technology diverge today from classical photogrammetry, and what are the advantages and disadvantages of both methods? The flight plan was made over the Tokarnia Village Museum (more than 0.5 km2) for two separate flights: the first was made by an UAV - System FT-03A built by FlyTech Solution Ltd. The second was made with the use of a classical photogrammetric Cesna aircraft furnished with an airborne photogrammetric camera (Ultra Cam Eagle). Both sets of photographs were taken with pixel size of about 3 cm, in order to have reliable data allowing for both systems to be compared. The project has made aerotriangulation independently for the two flights. The DTM was generated automatically, and the last step was the generation of an orthophoto. The geometry of images was checked under the process of aerotriangulation. To compare the accuracy of these two flights, control and check points were used. RMSE were calculated. The radiometry was checked by a visual method and using the author's own algorithm for feature extraction (to define edges with subpixel accuracy). After initial pre-processing of data, the images were put together, and shown side by side

  7. Towards a Categorical Account of Conditional Probability

    Directory of Open Access Journals (Sweden)

    Robert Furber

    2015-11-01

    Full Text Available This paper presents a categorical account of conditional probability, covering both the classical and the quantum case. Classical conditional probabilities are expressed as a certain "triangle-fill-in" condition, connecting marginal and joint probabilities, in the Kleisli category of the distribution monad. The conditional probabilities are induced by a map together with a predicate (the condition. The latter is a predicate in the logic of effect modules on this Kleisli category. This same approach can be transferred to the category of C*-algebras (with positive unital maps, whose predicate logic is also expressed in terms of effect modules. Conditional probabilities can again be expressed via a triangle-fill-in property. In the literature, there are several proposals for what quantum conditional probability should be, and also there are extra difficulties not present in the classical case. At this stage, we only describe quantum systems with classical parametrization.

  8. Well-posedness of (N = 1) classical supergravity

    International Nuclear Information System (INIS)

    Bao, D.; Choquet-Bruhat, Y.; Isenberg, J.; Yasskin, P.B.

    1985-01-01

    In this paper we investigate whether classical (N = 1) supergravity has a well-posed locally causal Cauchy problem. We define well-posedness to mean that any choice of initial data (from an appropriate function space) which satisfies the supergravity constraint equations and a set of gauge conditions can be continuously developed into a space-time solution of the supergravity field equations around the initial surface. Local causality means that the domains of dependence of the evolution equations coincide with those determined by the light cones. We show that when the fields of classical supergravity are treated as formal objects, the field equations are (under certain gauge conditions) equivalent to a coupled system of quasilinear nondiagonal second-order partial differential equations which is formally nonstrictly hyperbolic (in the sense of Leray--Ohya). Hence, if the fields were numerical valued, there would be an applicable existence theorem leading to well-posedness. We shall observe that well-posedness is assured if the fields are taken to be Grassmann (i.e., exterior algebra) valued, for then the second-order system decouples into the vacuum Einstein equation and a sequence of numerical valued linear diagonal strictly hyperbolic partial differential equations which can be solved successively

  9. Quantum flesh on classical bones: Semiclassical bridges across the quantum-classical divide

    Energy Technology Data Exchange (ETDEWEB)

    Bokulich, Alisa [Center for Philosophy and History of Science, Boston University, Boston, MA (United States)

    2014-07-01

    Traditionally quantum mechanics is viewed as having made a sharp break from classical mechanics, and the concepts and methods of these two theories are viewed as incommensurable with one another. A closer examination of the history of quantum mechanics, however, reveals that there is a strong sense in which quantum mechanics was built on the backbone of classical mechanics. As a result, there is a considerable structural continuity between these two theories, despite their important differences. These structural continuities provide a ground for semiclassical methods in which classical structures, such as trajectories, are used to investigate and model quantum phenomena. After briefly tracing the history of semiclassical approaches, I show how current research in semiclassical mechanics is revealing new bridges across the quantum-classical divide.

  10. Quantum and classical dissipation of charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Ibarra-Sierra, V.G. [Departamento de Física, Universidad Autónoma Metropolitana at Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 México D.F. (Mexico); Anzaldo-Meneses, A.; Cardoso, J.L.; Hernández-Saldaña, H. [Área de Física Teórica y Materia Condensada, Universidad Autónoma Metropolitana at Azcapotzalco, Av. San Pablo 180, Col. Reynosa-Tamaulipas, Azcapotzalco, 02200 México D.F. (Mexico); Kunold, A., E-mail: akb@correo.azc.uam.mx [Área de Física Teórica y Materia Condensada, Universidad Autónoma Metropolitana at Azcapotzalco, Av. San Pablo 180, Col. Reynosa-Tamaulipas, Azcapotzalco, 02200 México D.F. (Mexico); Roa-Neri, J.A.E. [Área de Física Teórica y Materia Condensada, Universidad Autónoma Metropolitana at Azcapotzalco, Av. San Pablo 180, Col. Reynosa-Tamaulipas, Azcapotzalco, 02200 México D.F. (Mexico)

    2013-08-15

    A Hamiltonian approach is presented to study the two dimensional motion of damped electric charges in time dependent electromagnetic fields. The classical and the corresponding quantum mechanical problems are solved for particular cases using canonical transformations applied to Hamiltonians for a particle with variable mass. Green’s function is constructed and, from it, the motion of a Gaussian wave packet is studied in detail. -- Highlights: •Hamiltonian of a damped charged particle in time dependent electromagnetic fields. •Exact Green’s function of a charged particle in time dependent electromagnetic fields. •Time evolution of a Gaussian wave packet of a damped charged particle. •Classical and quantum dynamics of a damped electric charge.

  11. Quantum and classical dissipation of charged particles

    International Nuclear Information System (INIS)

    Ibarra-Sierra, V.G.; Anzaldo-Meneses, A.; Cardoso, J.L.; Hernández-Saldaña, H.; Kunold, A.; Roa-Neri, J.A.E.

    2013-01-01

    A Hamiltonian approach is presented to study the two dimensional motion of damped electric charges in time dependent electromagnetic fields. The classical and the corresponding quantum mechanical problems are solved for particular cases using canonical transformations applied to Hamiltonians for a particle with variable mass. Green’s function is constructed and, from it, the motion of a Gaussian wave packet is studied in detail. -- Highlights: •Hamiltonian of a damped charged particle in time dependent electromagnetic fields. •Exact Green’s function of a charged particle in time dependent electromagnetic fields. •Time evolution of a Gaussian wave packet of a damped charged particle. •Classical and quantum dynamics of a damped electric charge

  12. On the Predictability of Classical Propositional Logic

    Directory of Open Access Journals (Sweden)

    Poliana M. Reis

    2013-01-01

    Full Text Available In this work we provide a statistical form of empirical analysis of classical propositional logic decision methods called SAT solvers. This work is perceived as an empirical counterpart of a theoretical movement, called the enduring scandal of deduction, that opposes considering Boolean Logic as trivial in any sense. For that, we study the predictability of classical logic, which we take to be the distribution of the runtime of its decision process. We present a series of experiments that determines the run distribution of SAT solvers and discover a varying landscape of distributions, following the known existence of a transition of easy-hard-easy cases of propositional formulas. We find clear distributions for the easy areas and the transitions easy-hard and hard-easy. The hard cases are shown to be hard also for the detection of statistical distributions, indicating that several independent processes may be at play in those cases.

  13. Classical wave experiments on chaotic scattering

    International Nuclear Information System (INIS)

    Kuhl, U; Stoeckmann, H-J; Weaver, R

    2005-01-01

    We review recent research on the transport properties of classical waves through chaotic systems with special emphasis on microwaves and sound waves. Inasmuch as these experiments use antennas or transducers to couple waves into or out of the systems, scattering theory has to be applied for a quantitative interpretation of the measurements. Most experiments concentrate on tests of predictions from random matrix theory and the random plane wave approximation. In all studied examples a quantitative agreement between experiment and theory is achieved. To this end it is necessary, however, to take absorption and imperfect coupling into account, concepts that were ignored in most previous theoretical investigations. Classical phase space signatures of scattering are being examined in a small number of experiments

  14. Gravitation in the 'quasi-classical' theory

    International Nuclear Information System (INIS)

    Wignall, J.W.G.; Zangari, M.

    1990-01-01

    The 'quasi-classical' picture of particles as extendend periodic disturbances in a classical nonlinear field, previously shown to imply all the equations of Maxwell electrodynamics with very little formal input, is here applied to the other known long-range force, gravitation. It is shown that the picture's absolute interpretation of inertial mass and four-potential as measures of the local spacing between equal-phase hypersurfaces, together with the empirically established proportionality of gravitational 'charge' to inertial mass, leads naturally to the gravitational red-shift formula, and it thus provides a physical basis for the spacetime curvature that is the central idea of Einstein's general theory of relativity. 16 refs., 1 fig

  15. Sugawara operators for classical Lie algebras

    CERN Document Server

    Molev, Alexander

    2018-01-01

    The celebrated Schur-Weyl duality gives rise to effective ways of constructing invariant polynomials on the classical Lie algebras. The emergence of the theory of quantum groups in the 1980s brought up special matrix techniques which allowed one to extend these constructions beyond polynomial invariants and produce new families of Casimir elements for finite-dimensional Lie algebras. Sugawara operators are analogs of Casimir elements for the affine Kac-Moody algebras. The goal of this book is to describe algebraic structures associated with the affine Lie algebras, including affine vertex algebras, Yangians, and classical \\mathcal{W}-algebras, which have numerous ties with many areas of mathematics and mathematical physics, including modular forms, conformal field theory, and soliton equations. An affine version of the matrix technique is developed and used to explain the elegant constructions of Sugawara operators, which appeared in the last decade. An affine analogue of the Harish-Chandra isomorphism connec...

  16. Vortex rings in classical and quantum systems

    International Nuclear Information System (INIS)

    Barenghi, C F; Donnelly, R J

    2009-01-01

    The study of vortex rings has been pursued for decades and is a particularly difficult subject. However, the discovery of quantized vortex rings in superfluid helium has greatly increased interest in vortex rings with very thin cores. While rapid progress has been made in the simulation of quantized vortex rings, there has not been comparable progress in laboratory studies of vortex rings in a viscous fluid such as water. This article overviews the history and current frontiers of classical and quantum vortex rings. After introducing the classical results, this review discusses thin-cored vortex rings in superfluid helium in section 2, and recent progress in understanding vortex rings of very thin cores propagating in water in section 3. (invited paper)

  17. The Classical Version of Stokes' Theorem Revisited

    DEFF Research Database (Denmark)

    Markvorsen, Steen

    2005-01-01

    Using only fairly simple and elementary considerations - essentially from first year undergraduate mathematics - we prove that the classical Stokes' theorem for any given surface and vector field in $\\mathbb{R}^{3}$ follows from an application of Gauss' divergence theorem to a suitable modification...... of the vector field in a tubular shell around the given surface. The intuitive appeal of the divergence theorem is thus applied to bootstrap a corresponding intuition for Stokes' theorem. The two stated classical theorems are (like the fundamental theorem of calculus) nothing but shadows of the general version...... to above. Our proof that Stokes' theorem follows from Gauss' divergence theorem goes via a well known and often used exercise, which simply relates the concepts of divergence and curl on the local differential level. The rest of the paper uses only integration in $1$, $2$, and $3$ variables together...

  18. Classical mechanics and electromagnetism in accelerator physics

    CERN Document Server

    Stupakov, Gennady

    2018-01-01

    This self-contained textbook with exercises discusses a broad range of selected topics from classical mechanics and electromagnetic theory that inform key issues related to modern accelerators. Part I presents fundamentals of the Lagrangian and Hamiltonian formalism for mechanical systems, canonical transformations, action-angle variables, and then linear and nonlinear oscillators. The Hamiltonian for a circular accelerator is used to evaluate the equations of motion, the action, and betatron oscillations in an accelerator. From this base, we explore the impact of field errors and nonlinear resonances. This part ends with the concept of the distribution function and an introduction to the kinetic equation to describe large ensembles of charged particles and to supplement the previous single-particle analysis of beam dynamics. Part II focuses on classical electromagnetism and begins with an analysis of the electromagnetic field from relativistic beams, both in vacuum and in a resistive pipe. Plane electromagne...

  19. Isoperiodic classical systems and their quantum counterparts

    International Nuclear Information System (INIS)

    Asorey, M.; Carinena, J.F.; Marmo, G.; Perelomov, A.

    2007-01-01

    One-dimensional isoperiodic classical systems have been first analyzed by Abel. Abel's characterization can be extended for singular potentials and potentials which are not defined on the whole real line. The standard shear equivalence of isoperiodic potentials can also be extended by using reflection and inversion transformations. We provide a full characterization of isoperiodic rational potentials showing that they are connected by translations, reflections or Joukowski transformations. Upon quantization many of these isoperiodic systems fail to exhibit identical quantum energy spectra. This anomaly occurs at order O(h 2 ) because semiclassical corrections of energy levels of order O(h) are identical for all isoperiodic systems. We analyze families of systems where this quantum anomaly occurs and some special systems where the spectral identity is preserved by quantization. Conversely, we point out the existence of isospectral quantum systems which do not correspond to isoperiodic classical systems

  20. Quantum secret sharing with classical Bobs

    International Nuclear Information System (INIS)

    Li Lvzhou; Qiu Daowen; Mateus, Paulo

    2013-01-01

    Boyer et al (2007 Phys. Rev. Lett. 99 140501) proposed a novel idea of semi-quantum key distribution, where a key can be securely distributed between Alice, who can perform any quantum operation, and Bob, who is classical. Extending the ‘semi-quantum’ idea to other tasks of quantum information processing is of interest and worth considering. In this paper, we consider the issue of semi-quantum secret sharing, where a quantum participant Alice can share a secret key with two classical participants, Bobs. After analyzing the existing protocol, we propose a new protocol of semi-quantum secret sharing. Our protocol is more realistic, since it utilizes product states instead of entangled states. We prove that any attempt of an adversary to obtain information necessarily induces some errors that the legitimate users could notice. (paper)